
000001

Symantec 1026
Symantec v. Finjan

IPR2015-01892

.
.11. vuut

INTERNATIONAL

CONFERENCE

Boston Park Plaza Hotel and Towers

20-22 September

ymantec 1026

Symantec v. Finjan

000001 |PR2015-01892

.4

000002

-(4.._}—:J._.43.—i_..(CC_Z1_:m_~Z>,x—J_OZ3:.oozzzazom

000003

J ngton -

ks

lnterlibrary Loan (Lending) _

University of Washington‘ Libraries

G027 Suzzallo Library
Box 352900

Seattle WA 98195-2900'

LIBRARY MAIL

000004

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - i

Proceedings of

The Fifth International

Virus Bulletin Conference

VIRUS BUILLET./N CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOOO4

000005

ii - VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995
 _

Copyright © 1 995

Virus Bulletin Ltd

21 The Quadrant, Abingdon, OX 14 3YS, England

All rights reserved. No part ofthis publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior permission ofthe publishers.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a
matter ofproducts liability, negligence or otherwise, or from any use ofoperation of any methods, products,
instructions ofideas contained in the material herein.

VIRUS BULLETIN CONFERENCE @1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

OOOOO5

000006

FOREWORD

000007

000008

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - iii

CONTENTS

DAY 1

Corporate stream

The anti-virus strategy system
Sarah Gordon 1

Blessings in disguise: building out ofdisaster
PaulDucklin 11

Human dimension ofcomputerviruses

Jean Hitchings . 21

Fully automated response for i11 the wild viruses (FAR - ITW)
Mike Lambert 29

Technical stream 1

The PC boot sequence, its risks and opportunities
Jonathan Lettvin 41

Securing DOS
Neville Bulsara 51

Modern methods ofdetecting and eradicating known and unknown viruses

Dmitry Mostovoy 67

Evaluating distributedvirusprotectionproducts
Scott Gordon 71

Technical stream 2

Dynamic detection and classification ofcomputerviruses using general

behaviourpatterns
Morton Swimmer 75

Flash BIOS - anewsecurity loophole
Jakub Kaminski 89

Automaticvirus analyser system
Ferenc Leitold 99

The problems in creating goat files

IgorMuttik ' 109

Automatic testing ofmemory resident anti-virus software

DavidAubrey-Jones 125

Late additions

Computervirusesin heterogeneous Unixnetworks
PeterRadatti

1214/223097enslrx
Why do we need heuristics?
Frans Veldman

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOOO8

000009

iv ° VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ..

DAY 2

Corporate stream

A testing time
Paul Robinson

Fending offviruses in the university community: a case study ofthe Macintosh
Judy Edwards A 145

Recentviruses, virus writers and routes ofvirus spread in Hong Kong and China
Allan Dyer 151

Case study ofvirus control in a large organisation
Lucijan Caric & Philip Kruss . 159

133

Computerviruses: a globalperspective
Steve White, Jefiey Kephart & David Chess 165

Technical stream 1

Virusprotection aspart ofthe overall software developmentprocess
Robin Kinney 183

Harmless and usefulviruses can hardly exist

PavelLamacka 193

The effect ofcomputer viruses on OS/2 and Warp
John Morar & David Chess ‘ 199

Technical stream 2

Heuristic scanners: artificial intelligence?

RighardZwienenberg 203

Virus detection - ‘the brainy way’

Glenn Coates & DavidLeigh 21 1

Data securityproblems associated with high capacity IDE hard disks
R0gerRiordan 217

Scanners ofthe year2000: heuristics

Dmitijy Gryaznov 225

Computerviruses and artificial intelligence
DavidStang 235

Late additions

The evolution ofpolymorphic viruses

Fridrik Skulason I

Macroviruses — the sum ofall Ph3 3 rs?

RichardFord IX

UK Government certificationofanti-virus software
Chris Baxter

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Cxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOOO9

000010

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - v

THE SPEAKERS

WES AMES

Wes Ames is a Senior Principal Scientist in Personal Computer Hardware and Operating Systems for the

Boeing Company in Seattle, Washington. He is responsible for specific hardware and 0/S standards and

support in the Boeing Company. Over the past six years, Ames has managed the anti-virus activities for

Boeing, which has responsibility for over seventy thousandpersonal computers worldwide. These activities

range from policy determination to technical support training.

Ames has created the Boeing corporate policies necessary for reducing the risk from computerviruses, and

is responsible for their implementation and update. He teaches anti-virus classes to technical support

analysts, and consults with corporate customers on virus methodologies. He has lectured and led anti-virus

discussion groups at the Law Enforcement Conference for Computer Security, and the Society for

Information Management.

DAVID AUBREY-JONES

David Aubrey-Jones has been aprolific figure in the computer industry since 1980 and is an authority on

viruses and anti-virus warfare. Aubrey-Jones has a PhD from Leeds University. In 1988, he started his own

company, Speedlock, which specialised in copy protection, and soon became a market leader. It was through

copy protection that Aubrey-Jones became involved with Reflex Magnetics, finallyjoining as Technical
Directorin 1991.

Aubrey-Jones is the author ofdisknetTM’Reflex ’s multi-layered computer security solution, which currently

protects over 750,000 PCs in multi-nationals, government institutions and other blue-chip organisations
worldwide.

JI1VI BATES

Jim Bates has been involved in electronics all his working life. After service as an Air Radar Engineer m the

RoyalAirForce, he worked as an Electronic Service Engineer on early computers and tabulators. When

computer viruses appeared, he was the first in the UK to disassemble them. In 1989, he broke the code

encryption and analysed the infamous AIDS Information Disk. This marked the start ofhis connection with

the Computer Crime Unit at New Scotland Yard: he is now regularly consulted by them and other national

and international law enforcement agencies. He runs his own company, Computer Forensics Ltd, and he is

the designer ofthe DIBS copying system

As well as being a respected member of Wrus Bulletin’s advisory board, Bates also belongs to the

Computer Security Specialist Group ofthe British Compumr Society. He holds a degree in Electronic

Engineering, and was elected a Fellow ofthe Institute ofAnalysts andProgrammers in 1987. He was

appointed President ofthe ruling council ofthe IAP in 1993, and is an active member ofthe Forensic

Science Society.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of Ihis publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000010

000011

vi ° VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995
._:____.?

NEVILLE BULSARA

Neville Bulsara first began programming in assembler at the age of 18. In 198 8, at the age of2 l , he
pioneered the anti-virus movement in India by being the first in the country to take apart the Brain virus and
write an antidote for the same. Since then, he has been at the forefront ofthe battle against viruses in India

Since 1989, Bulsara has served as a consultant on the field to the Government ofIndia, some ofthe largest
corporations in the country and various defence establishments. He considers the lack ofuser-awareness as
the greatest factor contributing to the virus menace, and so is to be regularly found lecturing on the subject
at user-group meetings and computer shows.

LUCIJAN CARIC

Lucijan Caric gained his LL.B. at the University ofZagreb. When he started to work in the area ofcomputer
security and anti-virus measures in 1991, he already had extensive experience in the computing. He joined
UnitedNations Peace Forces (UNPF) in the former Yugoslavia in 1993 and is currently the Special
Projects Coordinator in the Information Technology Services Section. Caric is responsible for computer
security projects and the development ofmajorprojects conducted by the section.

In an effort to improve standards ofcomputer security and anti-virus protection in Croatia, Caric is also
acting as a contributing editor to a leading Croatian computer magazine, Bug, and has taken part in a series
ofbroadcasts about computer viruses on the metropolitan TV station.

GLENN COATES

Glenn Coates is 23 years old and has recently completed a BSc (Hons) degree in Computing Science at
Staffordshire University. For his final year project, he developed aprototype Virus Description Language
(VDL) upon which his paper at V3 '94 was based.

He is now working at Security Information Systems Ltd (SISL) as a trainee security evaluator. His other
computing interests include operating systems design, compiler writing, neural networks and human
computer interaction. His hobbies include fitness training, parachuting and socialising.

PAUL DUCKLIN

Paul Ducklin’s involvement in the anti-virus field started in 1989 in South Africa, at the time that computer

viruses firstbegan to appear there. He spent five years as the head ofthe Computer Virus Lab at the South
African Councilfor Scientific andIndustrialResearch in Pretoria, before moving to England earlier this
year to join the anti-virus team at Sophos Plc, the producers of SWEEP. Though a recent arrival in the EC,
he has attempted to make his mark as a true European by eating British cheese, driving a French car, and
riding an Italian motorcycle.

ALLAN DYER

Allan Dyer first studied biological viruses, graduating in Microbiology from University College, London, in
1984. He switched fields, gaining a Master’s in Control Engineering from Sheflield University in 1987 and
combined his skills programming in a haematology research laboratory. He first met computer viruses in
1988 while a Systems Programmer at the London School ofHygiene and TropicalMedicine, andjoined the
team controlling them in a number ofLondon colleges. He moved to Hong Kong in 1993, and now manages
F-PROT Professional for Yui Kee Co. Ltd.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00001 1

000012

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - vii

JUDY EDWARDS

Judy Edwards is a Microcomputer Software Specialist at Illinois State University, where she is a member of

the WWW Team and an ftp site administrator. She provides Internet training and help desk support to

faculty, staffand instructional computer labs, and also does independent Internet consulting.

Edwards holds a Master’s degree in Instructional Systems Technology from Indiana University's College of

Education, and a Personal Computer Coordinators certificate from the University ofSouthern Maine.

RICHARD FORD

Richard Ford obtained a BA in Physics from Queen’s College, Oxford, in 1989, and went on to study for a

D. Phil. in Semiconductor Physics. His interest in computer viruses began during the course ofhis research,

when the computer he was using became infected with the Spanish Telecom virus. The virus triggered,

nearly destroying six months’ worth ofresults, but rather than turning to anti-virus software for the answer,

Ford analysed the virus himself

In the following year, he wrote various articles for Virus Bulletin and became editor in January 1993. He has

since lectured and talked world-wide on the problems posed by malicious software. In April ofthis year he

joined the National Computer SecurityAssociation (NCSA) in the US as Director ofResearch.

SARAH GORDON

Sarah Gordon, Security Analyst for Command Software Systems, Inc, has been an invited speaker at such

diverse conferences as those sponsored by The American Associationfor the AdvancementofScience,

EICAR, DEFCON, and Virus Bulletin. A frequent contributor to security industry technical publications,

she is also the winner of the Sec 94 IFIP TCl 1 award for her research on social and ethical implications of

technology: ‘Technologically Enabled Crime: Shifting Paradigms for the Year 2000’.

She has recently completed research projects at Indiana University in Unix Security and in Computer Ethics.

Current projects include ‘Development ofInformation Security Education in Developing Countries’, and

‘Anti-Virus Product Certification Methodologies’. Sarah can be heard at the upcoming National Computer

Security Conference in Baltimore, in October and also at Compsec in London, in November.

SCOTT GORDON

Scott Gordon is the Product Manager forMcAfee Associates’ security solutions. Acting as the focal point

relating to product development, positioning, delivery and support, he is a company spokesperson and

among resident experts on issues relating to computer viruses, enterprise date quality assurance, and

security. Gordon’s background in the computer industry spans a broad range ofexperience; from retail,

channel and corporate sales to consulting and product marketing / development manager for network

security and management.

Prior to joining McAfee, Gordon was the product development manager for network security and

management products at Cheyenne Software. Before this, he was responsible for product marketing and

technical sales functions with ComputerAssociates International and, previously, was a product manager

with a network technology seminar company and an independent systems consultant. He has an MBA from

the University ofPhoenix and a BBS from Hofstra University.

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO12

000013

viii - VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995

jT——

IGOR GREBERT

Igor Grebert studied in Paris and graduated in 1989 from Ecole Centrale de Paris, with a major in
bio-technology. He worked as a post-doctorate researcher at Stanford designing neural networks applied to
target tracking, image analysis and automatic pilots. In 1990, he started to use his pattern matching expertise
to help detect the growing number ofcomputer viruses. In 1993, he headed the redesign ofMcAfee’s
VirusScan product line as manager of the research and development team. Today he applies his skills to
designing enhanced anti-virus systems, integrating his years of experience in the field.

DMITRY GRYAZNOV

Dmitry Gryaznov was born in 1961 in Frunze, Kirghyzskaya SSR, USSR He was educated at the Moscow
Skills ImprovementInstitute and the MoscowPhysics and Technology Institute (MPh17), where he gained a
Unix Operating System programmer and administrator certificate and an MSc in Computer Science in 1984.

Since graduating, Gryaznov has held various positions in the Program Systems Institute at the Russian
Academy ofSciences. Earlier this year he moved to the UK, and now works as a senior virus research
analyst with S&SInternational Plc.

HAROLD HIGHLAND

Dr. Harold Joseph Highland, FICS, FACM, is the only Fellow ofboth the Irish Computer Society and the
US Associationfor Computer Machinery. The career ofthis ‘elder statesman’ ofcomputing spans over 57
years with experience in the military, industry and academia.

His professinal life started when he was designated as Honor Graduate ofhis military class and
commissioned on his college graduation in 193 8. He served as Provost Marshall and was seconded to
cryptographic analysis and later to intelligence analysis. In addition to working for The New York Times and
other newspapers, Highland was a research statistician, an economist, a management consultant, a methods
engineer, a magazine editor and publisher, a television producer and even MCed one ofhis programs. He
also owned an advertising/public relations organization, was a dean ofa graduate school, associate dean ofa
liberal arts college, director ofvarious computer centers, a consultant, and a classroom teacher. Likewise, he
has worked with various government agencies and even today serves as computer security consultant to the
Beijing government.

Prior to his retirement in 1981, Highland planned a new international journal, Computers & Security, the
first issue ofwhich appeared in 1982: he was Editor-in-Chief. In 1984, his publication became the official
journal ofInternational FederationforInformation Processing ’s Technical Committee I I on information
security [IFIP/TCl 1]. Dr. Highland is a prolific author, who has written 27 books in the past 35 years. He
has also published and!orpresented over 200 technical papers in various areas ofcomputing at regional,
national and international conferences, as well as in professional journals.

JEAN HITCHINGS

Jean Hitchings obtained a BSc in Computer Science from the University ofWestminster in 1982 and went on
to study for an MSc in the same subject at the University oflondon. Since January 1992 Jean has been a
lecturer in Information Technology at the University ofNottingham. She has recently gained a PhD in

Computer Science from the University ofEastAnglia.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00001 3

000014

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° ix

JAN HRUSKA

Jan Hruska is the Technical Director ofSophos Plc in Oxford. A graduate ofDowning College, Cambridge,

he gained his doctorate at Magdalen College, Oxford. In April 1980, he formed Sophos with Dr. Peter

Lammer as a computer design partnership: the company was incorporated m 1987 and specialises in data

security. He is a co-author (with Dr Keith Jackson) of ‘The PC Security Guide’, published by Elsevier, and

‘Computer Security Solutions’, published by Blackwells. He is the author of ‘Computer Viruses and

Anti-Virus Warfare’, published by Ellis-Horwood. Hruska regularly speaks at computer security
conferences and consults on a number ofsecurity aspects, including virus outbreaks. His extra-curricular

interests include flying, skiing, scuba-diving and piano-playing and he is an ex—member ofMensa.

JAKUB KAMINSKI

Jakub Kaminski graduated and received an MSc in Electronics from Warsaw Technical University in 1986.

He went on to work for the Institute ofFundamental TechnologicalResearch, at the Polish Academy of

Sciences, spending most ofhis time doing system programming and working in different assemblers.

In 1992, Kaminski moved to Australia and started working for CYBEC. He disassembles new viruses and

incorporates them into CYBEC’s VET. In June 1995, he joined the Virus Bulletin team as Technical Editor.

ROBIN KINNEY

Robin Kinney has dedicated nearly his entire career to devices used for treating cancer. The last nine years

he has spent in software management of Varian Oncology Systems, where he has managed both departments

and projects.

Kinney is an advocate ofsoftware process improvement. He led the effort within Varian Oncology Systems

for ISO-9001 certification, and has spent more than a year as chair ofthe Software Process Improvement

Committee within that organization.

PAVEL LAMACKA

Pavel Lamacka graduated in 1971 and, in 1983, gained a degree in computer science from the Slovak

Technical University in Bratislava. He has worked at several research institutions, mainly in software

engineering, taking part in work on software - including a real-time operating system for the first Slovak

control computer. He was a member ofthe team which designed and implemented the BPS programming

system based on a MODULA-2-like programming language (this system was used for years on IBM

mainframes and DECminicomputers) and has also worked on a perspective block-building programming

system.

In Spring 1988, he encountered and disassembled his first virus and gave his first lecture on viruses and

other computer infiltration means. Since then, he has been active in computer security, initially as a

consultant, later as an author ofcomputer security products. Lamacka is currently the Head ofthe Computer

Accidents Research Center, which he formed in 1992 and which is based in HTC, a large private computer
company.

IVIIKE LANIBERT

Mike Lambert is Electronic Security Manager atFrontier Corporation. He has been involved with computer

viruses since 1988; doing analyses, testing products and assisting in cases ofvirus infections. He has

written other papers on Disaster Recovery Disks for the PC and fatal DOS vulnerability.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO14

000015

x - VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995

FERENC LEITOLD

Ferenc Leitold graduated from the Department of Informatics atBudapest Technical University. Having
completed a three year post-graduate course at the university, he is now in the process ofdoing a PhD on
the mathematical modelling ofoperating systems and computer viruses.

Leitold joined the fight against computer viruses in 1988, with the appearance of the first virus in Hungary
(Cascade). He is a founding member ofthe Hungarian VirusBuster Team, operating under the aegis of
Hunix Ltd. Their anti-virus product, VirusBuster for DOS and NetWare, is sold throughout Hungary.

JONATHAN LETTVHV

Jonathan Lettvin has been Lotus’ anti-virusprincipal investigator for six years. He developed all ofthe

company’ s anti-virus policies and procedures. He also created the Lotus ‘Release Engineering Anti-virus
Laboratory’ (REAL): this is responsible for examining all Lotus products for viruses before shipping.
REAL has an unblemished record ofpreventing viruses being shipped in Lotusproducts.

Lettvin has been programming for many years, and views his anti-virus work at Lotus as strongly influenced
by his training at MIT, medical school and Bell Labs, as well as some beneficial professional partnerships.

0verByte was incorporated to develop and market products based on Lettvin’s experience fighting viruses in
the Lotus corporate environment. Lotus has been generous in granting all commercial rights for
DisQuick/ViRemove to 0verByte and is its first and best customer.

DMITRY MOSTOVOY

Dmitry Mostovoy was born in 1962, in Moscow. He graduated from the MoscowAviation Institute,
specializing in Space Science, and then worked at the Keldysh Institute ofAppliedMathematics at the
Russian Academy ofSciences, on the dynamics ofthe re-entry ofspace vehicles. Mostovoy participated in
the Russian orbiter ‘Buran’ project

Mostovoy obtained a PhD degree in theoretical mechanics and, in 1989, became interested in the computer
virus problem. Since 1991, he has been a leading anti-virus designer at Dial0gueScience Inc, and the author
ofone ofthe renowned Russian anti-virus utilities, ADinf, a data integrity checker. Mostovoy is also an

active yachtsman.

IGOR MUTTIK

Muttik Igor was born in Moscow in 1962. He graduated from the Physics Department ofMoscow State
University in 1985, where he subsequently worked on low temperature physics and used computers in
physics experiments. In 1989, he received a PhD in physics and mathematics from Moscow University. He
then worked on the use ofcomputers in education and experiments, and published more than 50 scientific
articles in various Russian and international magazines. In 1988, he became interested in computer viruses,

although this anti-virus activity was just a hobby.

A programmer and a researcher, Muttik has developed an interest in the fundamental investigation of
viruses. He is especially engaged in complex polymorphic, armored and multi-partite viruses. In 1994 he
joined CAR0. In August 1995 he was appointed Virus Research Analyst at the Virus Laboratory ofS&S
International Plc, in Aylesbury, UK

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
— ~ Tel. —+44 (0)1235 555139. —No—part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

without the prior written permission of the publishers.
OOOO15

000016

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° Xi

PETER RADATTI

Pete Radatti is the founder and President ofCyberSofi, Inc, manufacturers ofVFind, the antivirus software

product which executes on Unix systems. VFind simultaneously scans for Unix, MS-DOS, Macintosh and

Amiga destructive software while providing cryptographic integrity to filesysterns.

ROGER RIORDAN

Roger Riordan graduated in Electrical Engineering from Melbourne University in 1954. After two years

with English Electric in the UK, and some years with CSIRO, he set up CYBECElectronics in 1973. At

CYBEC, he designed a wide range ofscientific and industrial equipment. Hejoined Chisholm Institute of

Technology as a lecturer in Electronics in 1983, and became involved with computer viruses in 1989, when

the PC labs were paralysed by an outbreak ofthe Stoned virus. He wrote the first version ofVET to counter

it, and gave it to the students as shareware.

Riordan has attended a number of international conferences, and published several papers on his work
related to virus research. He is a member ofCARO, the intemational anti-virus research organisation.

PAUL ROBINSON

Paul Robinson, Editor ofSECUR.E Computing magazine, has a long track record writing about security

issues and related solutions. Prior to assuming the editorship, he wrote for many ofthe top UK computer

and business magazines. SECURE Computing is an international securityjournal with one ofthe largest

circulations ofa publication in its field.

FRIDRIK SKULASON

Fridrik Skulason received a BSc fiom the University ofIceland. In 1987, he started his own software

company in Reykjavik, specialising in programs tailored for Icelandic needs. Skulason became involved in

computer viruses in early 1989, when they first appeared in Iceland. He is the author ofF-Prot anti-virus
software and is a former Technical Editor of Virus Bulletin.

DAVID STANG

David Stang has been involved in computer security for several years, and is currently the ChiefTechnical

Officer for Norman Data Defense Systems, Inc. He was the founder ofthe National Computer Security

Association (NCSA) and also founder and chairman ofthe International ComputerSecurity Association

(ICSA), the umbrella organization for the NCSA. He is the author ofseveral books on computer security

including Norman’s ‘Computer Virus Handbook’, and co-author (with Syliva Moon) of ‘Network Security

Secrets’. Stang edited Wrus News andReviews (VNR), ajournal which was published monthly throughout

1992. He is also a member ofthe editorial board and columnist for InfoSecurity News, and has contributed

over 160 articles to the computer trade press.

Stang holds a PhD from Syracuse University, an MS from the University ofToronto and a BS from Cornell

University.

MORTON SWIMIVIER

Morton Swimmer was born in New York City, USA. Afier moving to Germany, he studied first in England

and then at the University ofHamburg, Germany. He is currently close to completing his Master’s degree in

Computer Science (Inforrnatik).

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 2'] The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a reuieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO16

000017

xii ° VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995
 m

Swimmer has been a member of the Virus Test Center at the University ofHamburg since its inception in

1988. He has also managed S&S International (Deutschland) GmbHas well as working in the Virus Lab at
S&S International Plc, UK His research interests are in computer and network security, ir1 particular

computer viruses and worms.

IAN WHALLEY

Ian Whalley has been Editor of Virus Bulletin since April 1995; before that he worked at Sophos Plc
developing an anti-virus solution for Windows NT. He is a graduate ofManchester University (1994),
where he studied Physics and Computer Science, and it was here that he first became interested in the field
ofcomputer security. He maintains a keen interest in viruses on the new generation ofPC operating
systems, not least Windows NT.

STEVE WHITE

Steve White received a PhD from UCSD in theoretical physics in 1982, and since then has been at the IBM
Thomas./'. Watson Research Center. He has had articles published on avariety ofsubjects, including

condensed matter physics; optimization by simulated annealing; software protection; computer security and
computer viruses. White holds several patents in security-related fields. He organized and now manages the
High Integrity Computing Laboratory at IBMResearch, where he is responsible for the research and
development ofIBManti-virus products. His research interests include the long-term implications of
computer viruses and other self-replicating programs in distributed systems.

RIGHARD ZWTENENBERG

Righard Zwienenberg is the Research & Development Manager ofComputer Security Engineers Ltd. He
started dealing with computerviruses in 1988 after encountering the first virus problem on a system at the
Technical University ofDelft. His interest thus kindled, Zwienenberg has studied virus behaviour and
presented solutions and detection schemes ever since - initially as an independent consultant and later, in
1991, with CSE. His interests have now broadened to include general security issues, such as network
protection and intemet firewalls.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO17

000018

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° xiii

THE DELEGATES

(asof29/08/95)

Emmanuel Areola EBA Communications UK

Sqn Ldr Mark Baker RAF High Wycombe UK

Philip Bancroft Digital Equipment Corporation USA

Pavel Baudis Alwil Software Czech Republic

Ken Bauman Computer Security Consultants Inc USA

Richard Beard State Street Bank USA

Juergen Benz Deutsche Telekom AG Germany

Joseph Bemfeld Merrill Lynch USA

Daphne Bertrand United Parcel Service USA

Derril Bibby Texaco Group Inc USA

Robin Bijland ESaSS GmbH The Netherlands

Pat Bitten S&S International UK

Jim Blackwell US Department ofAgriculture USA

Peter Bohm NoVIR Data Germany

Vesselin Bontchev Frisk Software International Iceland

Kevin Bosworth British Telecom UK

Adrienne Botti Department ofthe Navy USA

Donald Boyd NewYork Times USA

Carl Bretteville Norman Data Defense Systems Norway

James Brown Fidelity Investments USA

Charles Brown Keiretsu Institute USA

Torri Buchwald Pratt & Whitney USA

John Butler The Automobile Association UK

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO18

000019

xiv 0 VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995

Bob Cartwright Chevron USA

Banda Casella Royal Bank ofCanada Canada

Alex Chen Cheyenne Software Inc USA

Sing Bin Chew TAS Inc USA

Graham Cluley S&S International UK

Gary Cornelius Command Software Systems USA

Martin Damen Ministry ofDefence UK

Helen Dawe Sophos Plc UK

Chris Debracy Command Software Systems USA

Paul Docherty Portcullis Computer Security UK

Moti Dover Eliashirn Microcomputers Inc USA

Dyan Dyer Command Software Systems USA

Wesley Fagan US Army USA

Tom Farrell Alternative Computer Technology USA

Cheryl Flerk Detroit Edison USA

Thomas Le Fleur S&S International UK

David Flury BT Payphones UK

Dan Fox Defense Logistics Agency USA

Susan Franco American Airlines USA

Blase Gaude Sandia National Laboratories USA

Mr Donny Gilor Iris Software Israel

Ray Glath RG Soitware Systems USA

Eint Goedhart Ministry ofDefense The Netherlands

Albert Gorter NATO / NAPMA The Netherlands

James Gosler Sandia National Laboratories USA

Paul Graham Bureau ofReclamation USA

Jeremy Gumbley Command Software Systems USA

Pege Gustafsson Telia AB Sweden

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00001 9

000020

Ronald Halbgewachs

Neil Halliday

Cynthia Hanlon

Philip Harris

Mike Hills

Robert Hinten

Richard Ho

Steve Holstein

Tony Hopkins

Zoltan Homak

Frank Horvvitz

Tore Hoyem

Mikko Hypponen

Craig Jackson

Portia Jackson

Richard Jacobs

Ken Jaworski

Joy Johnson

Martin Jones

Natalya Kasperskaya

Norkio Kato

Tapio Keihanen

Greg Kendig

Jeffrey Kephart

Michal Kovacic

Eduard Kucera

Lawrence LaBella

Paul Lawrence

Orlton Lawrence

Dave Leigh

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° xv

Sandia National Laboratories

Sophos Plc

Fidelity Investments

Fidelity Investments

Ministry ofDefence (Army)

Enviromnental Protection Agency

IBM Corporation

Virus Bulletin

Kingston University

Technical University ofBudapest

Reflex Inc

Norske Shell A/S

Data Fellows Ltd

Datawatch Corporation

Department ofVeterans Affairs

Sophos Plc

Detroit Edison

Intel

Computacenter

KAMI

Jade Corporation Ltd

MikroPC Magazine

AMP Incorporated

IBM

Alwil Software

Alwil Software

Merrill Lynch

S&S International

Toronto Dominion Bank

Staffordshire University

000020

USA

USA

USA

USA

USA

USA

Hungary

USA

Norway

Finland

USA

USA

USA

USA

Russia

Japan

Finland

USA

USA

Czech Republic

Czech Republic

USA

Canada

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000021

xvi - VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995
 __

Darren Leonard Alternative Computer Solutions USA

Sharon Lettvin OverByte Corporation USA

Myron Lewis Norman Data Defense Systems Inc. USA

Vince Lombardi Fleet & Industrial Supply Center USA

Tina Lombardi McAfee Associates USA

Greg Lutz OverByte Corporation USA

Merrill Lynch Chevron USA

Sherry Lynch Detroit Edison USA

RI

Jafar Muhammad Mamun El-Mamun Ent. Ghana

Henry Matos The Segal Co. USA

Jack McAulay University ofEninburgh UK

Tom McCllough IBM Corporation USA

Svein Meland Allianse Informasjonssystemer Norway

Alison Millar Standard Life Assurance Co UK

Mahesh Moorthy IBM Corporation USA

Seiji Murakarni Jade Corporation Ltd Japan

Akihfl<o Muranaka Jade Corporation Ltd Japan

Sean Nabeau ESaSS GmbH The Netherlands

Carey Nachenberg Syrnantec USA

Kurt Natvig Norman Data Defense Systems Norway

Senthil Nathan IBM USA

Kevin Norris Allied Irish Bank Group Ireland

Martin Odvarko Alwil Software Czech Republic

Jorgen Olsen DOU, Odense University Denmark

Ernst Oud Crypsys The Netherlands

hnOvamn GFTLw. UK

Therese Padilla Command Software Systems USA

Charles Parker IBM USA

Keith A Peer Central Command Inc. USA

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO21

000022

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 0 xvii

Chen Yi-Pen Trend Micro Devices Inc Taiwan

Manfred Philipowsky Deutsche Telekom AG Germany

Donald Phipps The Clorox Company USA

Andre Pitkowski Compusul Brazil

Kirstin Police Alternative Computer Solutions USA

Alastair Port KPMG UK

Edward Pring IBM USA

Judy Pruitt Alternative Computer Technology USA

Richard Ramza Deere & Company USA

Francisco Ramos Microasist Mexico

Carole Reid Defense Commissary Agency USA

Charles Renert Syrnantec USA

Sally Riordan Cybec Pty Ltd Australia

Eduardo Rios Mexico

Frank Roache BBC World Service UK

Jake Roddy Defense Contracts Audit Agency USA

Rhonda Rosenbaum IBM USA

Marvin Ruppert National Futures Association USA

Alla Segal IBM USA

Marek Sell Apexirn Co S.A Poland

James Shaeffer Reflex Inc USA

Lee Jieh—Sheng Trend Micro Devices Inc Taiwan

Risto Siilasmaa Data Fellows Ltd Finland

Lester Sirnons Lloyd’s Register UK

George Sneddon Sophos Plc UK

Alan Solomon S&S lntemational UK

Susan Solomon S&S International UK

David Stanley Royal Air Force UK

Philip Statham CESG/GCHQ UK

Ken Stieers Ontrack Computer Systems USA

Howard Stone BBC World Service UK

Tom Stormer Alternative Computer Solutions USA

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO22

000023

xviii ° VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995

Robert Stroud Cybec Pty Ltd Australia

Mary Sullivan Alternative Computer Technology USA

Gabriel Takami S&S International Mexico

Allen Taylor Customs Service USA

Tony Tedridge Minsitry ofDefence (Army) UK

Howard Thaw ESaSS GmbH The Netherlands

Peter Theobald Quantum System Sofiware India

Andrew Tilling Royal Military Police Info Systems UK

Shelagh Todd NationsBank Services Inc USA

Ruben Tovar S&S International Mexico

Howard Townsend Virginia Housing Development Auth. USA

Alan Tremblay Statistics Canada Canada

Gert van de Nadort Crypsys The Netherlands

Chan V0 The New York Times Company USA

VV

Reed Ward Ontrack Computer Systems USA

Simon Webber Defense Research Agency UK

Joe Wells IBM USA

Ian West Royal Air Force UK

Simon John Williams Bass Brewers Ltd UK

Denis Woods Renaissance Contingency Services Ireland

Simon Woolley Sophos Plc UK

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO23

000024

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - xix

EXHIBITORS

Akwflhflwme

Conmmndsofiwmesyamns

Computer Security Consultants Inc

Cybec Pty Ltd

Eliashirn Microcomputers Inc

E&£SGnbH

IBM Corporation

lMoAfieA&wdwms

Nonnan Data Defense Systems

Ontrack Computer Systems

Reflexlnc

RG Software Systems

S&S International

Sophos Plc

Virus Bulletin Ltd

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pennission of the publishers.

OOOO24

000025

xx ° VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995
_

ANTI-VIRUS PRODUCT DEVELOPERS

Thefollowing is a list ofanti-virusproduct developers known to Virus Bulletin in August I 995. Its
accuracy and currency are not attested andcannotbe guaranteed.

Alwil Software, Prubezna 76, CS-100 00 Prague 10, Czech Republic

Tel +42 278 22050, Fax +42 278 22553

Product: Avast!

Carmel Software Engineering, PO Box 25055, Hamachshev Ltd Hahistradrut Av 20, Haifa, Israel.

Tel +972 4 416976, Fax +972 4 416979

Product: TNTAnti-virus, Carmel Anti-virus

Cheyenne Software Inc., 3 Expressway Plaza, Roslyn Heights, New York 11577, USA.
Tel +1 516 629 4459, Fax +1 5 16 484 3446

Product: Inoculan

Command Software, Suite 500, 1061 E Indian Town Road, Jupiter, FL 33477, USA.

Tel: +1 407 575 3200, Fax +1407 575 3026

Product: F-PROT

Computer Security Engineers Ltd, Postbus 85 502, 2508 CE Den Haag, The Netherlands.
Tel +31 70 362 2269, Fax +31 70 365 2286

Product: PC Vaccine Professional

Cybec Pty. Ltd., 133 Alexander Street, Crows Nest, NSW 2065, Australia.

Tel +61 2 9965 7216, Fax +61 3 2438 2335

Product: VET

Cybersoft, 1508 Butler Pike, Conshohocken, PA 19428, USA.

Tel: +1 610 825 4748, Fax: +1 610 825 6785

Product: V—FIND

Data Fellows Ltd, Paivantaite 8, 02210 Espoo, Finland.

Tel: +358 0 478 444 , Fax: +358 0 478 44599

Product: F-PROT

:

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO25

000026

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° xxi

Datawatch Corporation, 234 Ballardvale Street, Wilmington, MA 01887, USA.

Tel: +1 508 988 9700, Fax: +1 508 988 0105

Product: Virus XScreen Link, Virexfor Macintosh

Diamond Chip Computers CC, 2nd Floor, 4 Susmann Avenue, Blairgowrie, Randburg, Johannesburg,
South Africa.

Tel: +27 11 8863131, Fax: +27 11 86 3331

Product: ViruGuard

EliaShim Microcomputers Ltd., PO Box 9195, Haifa 31091, Israel.

Tel: +972 4 516111, Fax: +972 4 528613

Product: Virusafe

EMD Enterprises, 6 Cardinal Drive, Glenrock, PA 17327, USA.
Tel: +1 717 235 4261, Fax: +1 717 2351456

Product: EMD ArmorPlus

ESaSS BV, Saltshof 1 0-18, 6604 EA Wijchen, The Netherlands.

Tel: +31 8894 22282, Fax: +31 8894 50899

Product: Ihunderbyte

Frisk Software International, PO Box 7180, 127 Reykjavik, Iceland.

Tel: +354 1 617273, Fax: +354 1 617274

Product: F-PROT

H+BEDV Datentechnik GmbH, Olgastrasse 4, D-88069 Tettnang, Germany.

Tel: +49 7542 93040, Fax: +49 7542 52510

Product: AVScan

Hunix Ltd, Budafoki ut. 57/A, 1111 Budapest, Hungary.
Tel: +36 1 186 7408, Fax: +36 1 186 7408

Product: Virus Buster

IBM, TJ Watson Research Centre, PO Box 218, Route 134, Yorktown Heights, NY 10598, USA.

Tel: +1 914 945 3000, Fax: +1 914 945 2141

Product: IBMAV

Information Security Services Inc., 1211 Distribution Way, Beltsville, MA 20705, USA.

Tel: +1 301 470 2500, Fax: +1 301 470 2507

Product: DetectPlus

Intel Corp., 5200 N E Elam Young Parkway, Hillsborough, OR 97124, USA.

Tel: +1 503 629 7354, Fax: +1 503 629 7580

Product: LANDesk Virus Protect

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

.wi1.‘nout the prior written permission of the publishers.

OOOO26

000027

xxii - VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995

Iris Software, 6 Hamavo Street, Givataim 53303, Israel.

Tel: +972 3 571 5319, Fax: +972 3 318 731

Product: Iris A V

Leprechaun Software Pty. Ltd., 75 Redland Bay Road, Capalaba, Queensland 4157, Australia.
Tel: +61 7 823 1300, Fax: +61 7823 1233

Product: Virus Buster

McAfee Associates, 2710 Walsh Avenue, Suite 200, Santa Clara, CA 95051-0963, USA.

Tel: +1 408 988 3832, Fax: +1 408 970 9727

Product: I/irus—Scan, V-Shield

Norman Data Defense Systems, Suite 201, 3028 Javier Road, Fairfax, VA 22031, USA.

Tel: +1 703 573 8802, Fax: +1 703 573 3919

Product: Norman Virus Control

Panda Systems, 801 Wilson Road, Wilmington, DE 19803, USA.

Tel: +1 302 764 4722, Fax: +1 302 764 6186

Product: Panda Pro, Bear Lock, DrPanda Utilities

Peter Hoffmann Service GmbH, Friedrichsplatz 12, 68165 Mannheim, Germany.

Tel: +49 621 4311 901, Fax: +49 621 444 273

Product: PCSafe

Reflex Magnetics Ltd, 31-33 Priory Park Road, Kilbum, London, NW6 7OP, UK.

Tel: +44 71 372 6666, Fax: +44 71 372 2507

Product: Dz'skNet

RG Software Systems, 6900 East Camelback, Suite 630, Scottsdale, AZ 85251, USA.

Tel: +1 602 423 8000, Fax: +1 602 423 8389

Product: Vi-spy

Safetynet Inc., 140 Mountain Avenue, Springfield, NJ 07081, USA.

Tel: +1 908 851 0188, Fax: +1 908 276 6575

Product: VirusNet-Pro

SA Software, 28 Denbigh Road, London, W13 8NH, UK.

Tel: +44 81 998 2351, Fax: +44 81 998 7507

Product: PCImmunize II

S&S International Plc, Alton House, Gatehouse Way, Aylesbury, Bucks HP19 3XU, UK.

Tel: +44 296 318700, Fax: +44 296 318777

Product: Dr Solomon ’s Toolkit

SikkerhedsRadgiverne ApS, Knabrostraede 20, 4th Floor, DK-1210 Copenhagen K, Denmark.

Tel: +45 3332 3537, Fax: +45 3332 3547

Product: ASP Integrity Toolkit

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO27

000028

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° xxiii

Softcraft AG, Niederwiesstrasse 8, CH-5417 Untersiggenthal, Switzerland.

Tel: +41 56 281116,Fax:+4156281116

Product: I/YP

Sophos Plc, 2] The Quadrant, Abingdon Science Park, Abingdon, Oxfordshire OX14 3YS, UK.

Tel: +44 1235 559933, Fax: +44 1235 559935

Product: Sweep, Vaccine

Symantec Corporation, 10201 Torre Avenue, Cupertino, CA 95014, USA.

Tel: +1 408 725 2762, Fax: +1 408 253 4992

Product: Norton Anti-vims, CPA V

The Davidson, Group, 20 Exchange Place, 27th Floor, New York, NY 10005, USA.

Te1:+1212 480 1050, Fax: +1 212 4221953

Product: Vaccine

Thompson Security Software, PO Box 669306, Marietta, GA 30066, USA.

Tel: 0101404 971 8900, Fax: +1 404 971 8828

Product: Doctor

Trend Micro Devices Inc., 1F #28 Li-Shui Street, Taiwan, Republic of China.

Tel: +886 2 312 0191, Fax: +886 2 3412137

Product: PC-Cillin, Stazionlock

Visionsoft, Unit C7, Enterprise Way, Five Lane Ends, Idle, Bradford, West Yorkshire BD10 8EW, UK.

Tel: +44 274 610503, Fax: +44 274 616010

Product: Smar-tScan, Immunizer

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OXI4 3YS, Engand.
Tel. +44 (0)1235 555139. No part of t‘nis publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO28

000029

xxiv - VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
-—Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a reuieval system, or transmitted in any form

without fire prior written permission of the publishers.
OOOO29

000030

000031

000032

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ~ I

THE ANTI-VIRUS STRATEGY SYSTEM

Sarah Gordon

Command Software Systems, Inc, 1061 E. Indiantown Road, Suite 500, Jupiter, FL 33477, USA

sarah@doclcmaster.ncsc.mil

ABSTRACT

Anti-virusprotection is, or should be, an integralpart ofany Information Systems operation, be itpersonal

orprofessional. However, our observation shows that the design ofthe actual anti-virus system, as well as

its implementation and maintenance, can rangefiom haphazard andsketchy to almost totally nonfirnctional.

While systems theory in sociological disciplines has come under much attack, it has much to ofler in the

management ofintegration oftechnological applications into daily operations. We will examine the ‘anti-

virus ’strategy (Policy, Procedure, Software [selection, implementation, maintenance]), focusing on areas

where the ‘system ’ canfail. We will address this interactionfrom a business, rather than apersonal

computing, pointofview.

The Anti- Virus Strategy System will examine anti-virus strategiesfrom a Holistic General Systems Theory

perspective. By this, we mean that we will concern ourselves with the individualparts ofthe system, their

functionality, and their interaction. We will drawfrom variousITmodels specifically designed toprovide a

holistic, forward- thinking approach to the problem, andshow thatfor our strategy toflourish, we must

concern ourselves with the system as a whole, not merely with its individual components.

1 INTRODUCTION

Computer virus. System failure. These words bring to mind a computer system brought to its knees - data

corrupted and time wasted. Is this an accurate picture? We hear arguments against investing in virus

protection: ‘Viruses are mythical. Your chances ofgetting hit by one are pretty rare.’ Others tell us

anti-virus software is a necessity: ‘Viruses can cost your company a lot ofmoney. Better safe than sorry.’
What are we to believe?

Let’s assume that you don’t have any anti-virus software. Ifyou are ‘hit’ by a virus, the cost will be

proportional to the value ofyour data and the value ofyour time. Independent studies [1] have shown

that this cost can be quite high, depending on these factors as well as environmental factors such as how

many computers you have (Note: Ifyour data is oflittle or no value, and ifyour time is worthless, then you

can well afford not to have an anti-virus strategy).

We will assume here that your data is worth something to your company, and that your time also has a

significant value. In this case, you will want to protect your computer system from viruses. We will concede

for the purists among us that not all viruses are intentionally harmful, but stipulate that intentional harm is

I/YR USBULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX1 43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers. ‘

OOOO32

000033

2 - GORDON: THE ANTI—VIRUS STRATEGY SYSTEM

not requisite for actual harm. For our purposes, allocating disk space and CPU time and/or modification of
files without knowledge and consent (implied or otherwise) constitutes damage, as do deliberate or

unintentional disruption ofwork, corruption ofdata and the lost time mentioned earlier. Basically, we are

saying viruses are bad and we want to protect against them (there may be some wonderful new virus out
there in development that can help us, but that is beyond the scope of this paper).

Fortunately, we are in luck. The very thing we need already exists: software, which will detect 100 percent

ofviruses listed by the Wildlist [2] as being known to be in the wild. In tests run against a library matched

with the Wildlist, several programs were capable ofdetecting all such viruses. The necessity ofdetection of

‘lab’ viruses is another matter, and will not be covered at this time, although it is addressed in [3].

Since we have such software, we should have no problems. However, there are problems. Something is
wrong. Before examining the sources of the problem, a few comments on definitions we will be using are
in order.

2 DEFINITIONS

The definitions used here are pretty generic, and are adapted for use in an interdisciplinary approach to

the problems addressed. Some among us would argue that the systems movement was born out of
science’s failures [4], but in this paper, we take the view that General System theory is a child of

successful science, and as most children, it sees things through optimistic eyes. We have specifically

avoided in-depth discussion ofcategorical schemes, generalizations, and other commonly used ‘tools’ of
General Systems thought, and have focused instead on the simplest ofthe simple. The ideas in this paper

are drawn heavily from very basic works in systems theory. They are not new ideas, but it is our hope

that their application to the management ofsecurity and computer viruses will help us identify some of

the problems we may be overlooking. '

2.1 GENERAL SYSTEMS THEORY

A system is a set, or group, ofrelated elements existing in an environment and forming awhole. Systems

can be made up ofobjects (computers), subjects (your employees) and concepts (language and
communication); they can be made up ofany one or more of these elements. There are ‘real systems’

(those which exist independent of an observer), and ‘conceptual systems’ (those which are symbolic
constructs). Our system, ‘The anti-virus strategy system’, is not so different from many others, in that it

is composed of all three elements: computers (objects), people (subjects) and concepts (policies and

ideas). Each of these systems has its own subsystems. For example, your system ofnetworked computers
consists ofindividual computers. These computers are comprised ofyet more subsystems;

microprocessors, resistors, disk drives, etc. Our system consists ofboth real and conceptual subsystems.

A system can also be said to be away of looking at the world, or a point ofview [5].

Concepts, laws, and models often appear in widely different fields [6] based upon totally different facts.

This appears to be at least in part due to problems oforganization, phenomena which cannot be resolved into
local events, and dynamic interactions manifested in the difference ofbehaviour ofparts when isolated or in

higher configurations. The result is, ofcourse, a system which is not understandable by investigating their

respective parts in isolation. One reason these identical principles have been discovered in entirely different
fields is because people are unaware ofwhat those in other disciplines are doing. General Systems theory

attempts to avoid this overlap in research efforts.

There are two main methodologies ofGeneral Systems research; the empirico-intuitive and the deductive

theory. The first is empirical, drawing upon the things which regularly exist in a set ofsystems. It can be
illustrated fairly easily, but lacks mathematical precision and can appear to the ‘scientist’ to be naive.

However, the main principles which have been offered by this method include differentiation, competition,

VIR US BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

OOOO33

000034

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 3

closed and open systems, and wholeness — hardly naive or worthless principles. The second method,

basically, can be described as ‘the machine with input’, defined by a set ‘S’ of internal states, a set ‘I’ of

input and a mapping ‘f ' ofthe productl x S into S (organisation is defined by specifying states and

conditions). Self-organising systems (those progressing from lower to higher states ofcomplexity, as in

many social organisations) are not well suited to this approach, as their change comes from an outside agent.

Our anti-virus strategy system is such a system and for this reason we will use the empirico-intuitive

rggethodology.

Classical system theory uses classical mathematics to define principles which apply to systems in general or

to subclasses. General System theory can be called the doctrine ofprinciples applying to defined classes of

systems. It is our hope that we can stimulate thought on how already-known principles can help us in

managing our anti-virus protection by examining the system as a whole.

2.2 HOLISM

Our definition ofholisrn, drawing where appropriate from the medical profession, is health—oriented, and

focuses on maintaining and improving the existing health ofthe system. It does not focus on disease and

illness. It is interesting to note that, while we have many terms that relate to compromised and infected

systems, we do not seem to have many terms relating to ‘well’ computers. Holism operates under the

assumption that the open system possesses an innate organising principle, with the interdependence ofthe

parts having an effect on the total system health. Holism views symptoms ofdistress as signalling

disharmonic conditions, from which we can learn how to adjust the system (feedback); it is open to avariety

of approaches for attaining balance. The focus ofholism is heavily slanted toward the correction ofcausal

factors,_not symptomatic relief Thus, the role ofthe holistic practitioner is to facilitate the potential for

healing [7].

3 ANTI-VIRUS STRATEGY SYSTEMS

Where do our anti-virus strategy systems fit in this picture? We hope to explore some answers to that

question by first examining the components ofour model system. Keep in mind, however, that the goal

of this paper is not to provide you with answers, but rather to stimulate new ways of thinking about the

problems we face daily.

3.1 COMPONENTS

Each ofthe components in Diagram 1 contributes to the overall health of the system. Conversely, each

can contribute to the illness of the system. For instance, our computer can contribute to the health of the

system by functioning properly. If the hard drive crashes, a disharmonic condition is introduced. Our

managers contribute to the overall well-being ofthe system, as long as they perform correctly. However,

if one ofthem intentionally or unintentionally infects a computer with a virus, he or she contributes to

the illness of the system. Our sofitware contributes to the wellness by keeping employees reassured, and

by keeping viruses out. If it is disabled by an employee desirous ofmore speed upon boot, or if it does

not do its job in virus detection, it contributes to the illness or chaos in the system. There are other

factors not shown, as the anti-virus strategy system model does not stop at the boundary ofthe company.

The model includes your Internet service provider, virus writers, makers of electronic mail front-ends,

anti-virus product tech support people and more. For the purposes of this paper, we must draw an

artificial boundary. We mention the rest to give you food for thought, and to illustrate that boundaries are
not static.

VIR US BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO34

000035

4 - GORDON: THE ANTI-VIRUS STRATEGY SYSTEM

Management

111% Computers Outputs
Costs Software

Resources People SY
Viruses Networks

Attitudes Viruses

SYSTEM

 SYSTEM

SYSTElVl

Figure 1. Anti-virus Strategy System - The Environment

3.2 PROGRAMS POLICY AND PROCEDURES

(SELECTION, IMPLEMENTA TIONAND MAINTENANCE)

Where do we begin in examining the interaction of our chosen system elements? Let’s start with the
software selection. Anti-virus software is selected based on a wide number ofcriteria (8). While some of

these criteria are beneficial, several are counterproductive at best (9). We need to be aware ofexactly how

our company’s software is being chosen, and not leave this vital aspect of software selection up to people
who do not have the experience or expertise to make a selection that will maximize your organisation’s

protection against viruses.

Does your anti-virus software detect all ofthe viruses which are a real threat to your organisation? Before

you glibly answer yes, you should recognise that all products are far from created equal, and that even the
bestproducts will not achieve this goal if not properly maintained. Consider the following:

‘When asked what happens to two blocks ofcopper initially at dijferent temperatures left alone together in

an insulated container, students will reply that the blocks will come to the same temperature. Ofcourse, if

asked how they know, they usually say ‘ ‘Because it is a law ofnature ’ ’...the opposite is true...it is a law of

nature because it happens. [10]. ’

Apply this to your anti-virus software. Does it catch viruses because it is anti-virus software? Ifso, you can
depend on it, as its name defines what it is. But, ifyou even loosely apply this concept, you will see that it
is anti-virus software because it catches viruses — and if it does not, then what does that make it?

Remember the following quote:

‘Ifyou call a tail a leg, how many legs has a dog? ’

‘Five? ’

‘No, Four. Calling a tail a leg doesn ’t make it a leg ’ [1 l]

I/YR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0Xl43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO35

000036

VIRUS BULLETIN CONFERENCE, SEPTBI/1BER I995 ° 5

Maintenance ofyour software is another critical issue. Maintenance refers not to the upgrade, but to the

maintaining ofthe software on a daily basis. What does it require to run? Are you supplying what it needs to

live? Or is it merely surviving? Does it have adequate memory, power, disk space to run optimally and

lessen the chance your employees will disable it? Is it in an environment free from otherprograms which

may hinder its performance? Ifyou cannot answer yes to these questions, you are not providing an

environment for this element ofyour strategy system which will allow it to remain viable. It will not

survive. Like living systems, the anti-virus strategy system requires a favorable environment, else the

system will adapt. Unfortunately, in the case ofthis system, adaptation can mean software becoming

disabled by the user component ofthe system, or overridden by a competing software component All this,

and we have not even added viruses which by design cause a problem to the system by the introduction of

instability. '

Even ifyou have the best anti-virus software, and are running it optimally, there can still be problems.

Software is just one part ofthe strategy system. Policies and procedures play an important role in the

overall strategy. Even the viruses we mentioned earlier play a part in this system. Then there are the least

predictable aspects of the system, the human beings. How complex is this system? How much should we

expect the people involved to understand?

Ackoffdefines an abstract system as one in which all ofthe elements are concepts, whereas a concrete

system is one in which at least two ofthe elements are objects [12]. As you can see, our system is concrete.

It is also by design an open system, one into which new components may be introduced. Some ofthese

components are by nature ‘unknown’ (i.e. actions ofpeople, how software may react, viruses which may

appear).

When these components are introduced, we have to consider first how they behave on their own. Next, we

have to consider how they would behave in combination with any and/or all ofthe other elements. Finally,

we have to consider how ‘things’ in general will be ifneither of the objects are present. In its most simple

form, a two-part system would require four equations, but ofcourse, you can see that as the number of

elements increases, the number of interactive equations grows by leaps and bounds [Table 1].

Linear Equations Nonlinear Equations

One Several Many One Several Many

Equation Equation Equations Equations Equation Equations Equations

Algebraic Trivial Easy Essentially Very Very Impossible

impossible difficult difficult

Ordinary Easy Difficult Essentially Very Impossible Impossible

differential impossible difficult

Partial Difficult Essentially Impossible Impossible Impossible Impossible

differential impossible

Table 1. [From [5]] - Introduction ofElements

I/YRUS BULLETINCONFERENCE©1 995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOOO36

000037

6 - GORDON: THE ANTI-VIRUS STRATEGY SYSTEM

One ofthe systems theory approaches we can draw from here to help illustrate the problem comes from
what is sometimes called the Square Law of Computation. This means basically that unless you can

introduce some simplifications, the amount ofcomputation involved in figuring something out will increase
at least as fast as the square of the number ofequations. Consider all ofthe interactions between humans,
computers, and software, and you will see why it is impossible to precisely calculate what the results ofall
ofthose interactions will be. We cannot even measure them. In other words, you cannot possibly anticipate

all ofthe problems you will encounter in trying to keep your company's data safe from viruses, because you
cannot possibly calculate the interactions which will occur once you begin trying to formulate a strategy.
Needless to say, these interactions create ‘problems’.

Ifwe examine our anti-virus strategy in various ways, we may be able to see things more clearly. Another

helpful way in which we can view our system is as an expression, such as the terms ofa set. For instance,
the notation:

Let 1: stand for marriage

Let y stand for carriage

Let z stand for bicycle

The set [x,y,z] is simple enough for anyone to understand. Using names in sets takes us to the more

complex:

[The look on your face when you saw your first child, a proof that Vesselin Bontchev is not the Dark
Avenger, an atom ofplutonium]; wherein the first no longer exists (or possibly never did); the second has
not yet existed, and the third is out ofreach of the common man.

Ifyou were to be asked for the meaning of the in the set [Alan, Dmitry, Fridrik...] would you say the
represented men’s names? Names ofprogrammers? Names ofprogrammers who make anti-virus software?
Names ofpeople not from the United States?

What is the rule for determining the meaning ofwhat is unstated? Is there some unwritten heuristic ofwhich

your employees are not aware? What is the meaning ofthe three dots in our set?

This has a particular application to policy. Users can easily understand, ‘Do not turn the computer offifyou
find a virus’. Can they as easily understand, ‘ Do not reset the computer ifyou find a virus’? Can they
understand, ‘In the event ofa suspected virus, call the administrator or take appropriate action’? What is a

suspected virus? Is it any time the computer system seems to act strangely? Is it only when the letters fall
off? After all, that’s what viruses do, right? What is appropriate action? [Turn offthe computer, Call your

supervisor, Reboot the computer, ...] What is the meaning of the in this set?

4 VARIATIONS ON A THEME

How well are our strategies doing? As pointed out early on, not very well. Why not? To help answer that
question, next we will examine the problems ofour strategy using the concept ofvariation. We recognise
the duality ofvariables as they relate to information processing; the significant values which variables
acquire at the two extremes oftheir respective spectra. Specifically, in order for a system to continue to
thrive, information must be processed. Disorder, uncertainty, variety — all must shift from high to low
[Table 2].

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX l43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO37

000038

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 7

Disorder, Uncertainty and Variety: Entropy and the Amount of information Processed

High Disorder Low _

High Uncertainty Low

High Variety Low

Large Number Small
of Alternatives

Small Probability of Large
an Event

Low Regulation High
and Control

Table 2 - Predictable Output

The probability ofparticular events follows by decreasing from small to large. The amount ofregulation and

control increases from low to high. We become increasingly sure of the output ofour systems [13].

However, viruses introduce a form of disorder with which the human components of our systems are not

intimately familiar. While the probability ofinfection can be calculated mathematically [14], we are unable

to calculate the probability ofother events related to viral infections[l5]. In what ways does this introduced

unfamiliarity manifest itself? One manifestation is the appearance ofproblems.

We typically try to solve most ofthese problems deductively, to determine the reason for a variation

between design and operation or design and implementation. This approach is doomed to failure because it

places the blame on the subsystems. We attempt to ‘restore to normal’ instead ofredesigning our system.

We formulate plans based on incorrect, incomplete or obsolete assumptions. We neglect to factor in

spillover effect, that is, the unwanted effect which actions in one system can have in another. Improving an

isolated system may seem the epitome ofsystem integrity. You can have your pure clean computer. Of

course, it is virtually useless, unconnected to the rest of the world. Or, perhaps it is the solution. Isolated

perfect machines. This would probably create a dissatisfied workforce, however, which would ultimately

impact business negatively. In the case ofanti-virus strategy, ‘spillover’ takes on many new dimensions — as

many as the human beings with which our machines interface. Can you control all ofthe aspects ofthis

system? You cannot.

Another factor to consider is the size and extent of our system. Further insight may be gained by considering

what is sometimes referred to as the generalised thermodynamic law, which states that the probable state is

more likely to be observed than the less probable. While this may incite the physicists among us, it has two

parts which correspond to the first and second law ofthermodynamics. The first law is hardly worth

mentioning (physical reason), but the second is of interest to us. We should be concerned with the limited

power ofobservers when viewing large systems. In other words, we cannot expect our managers to be in

every place at once, knowing what is going on with every system, every employee. The concept of

boundaries can be used to help solve this problem, but their definition is beyond the scope ofthis paper

[16].

VIRUS BULLETINCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
wn'tten permission ofthe publishers.

OOOO38

000039

' 8 ° GORDON: THE ANTI-VIRUS STRATEGY SYSTEM
 Tj_

4.1 SYSTEM FAILURE AND MEASUREMENT

We say the system is failing for three reasons. It is not performing as intended. It is producing results other
than expected. It is not meeting its goal. The objective is NO VIRUSES. However, in addition to often
neglecting to define what ‘no viruses’ actually means, we are frequently unaware ofhow ‘no viruses’ can
mean different things to different people. Notperforming as intended could mean it finds some viruses but
not all, or it finds all but only removes some. Unexpected results could mean it crashes 1 out ofevery 6000
machines, orproduces system degradation you did not anticipate (if this is the case, does the fault really lie
with the product for producing the degradation or you for not anticipating?) Not meeting its goal most likely
means failing to keep out viruses. However, to some people, this is a different goal from ‘no viruses’.

How is this possible? Isn’t ‘no viruses’ a simple concept? In a word, no. When there is a malfunction, i.e. a
virus is found, the natural tendency is to look for the cause within the system. We tend to blame the problem
on the variation ofthe system from its ‘desired’ behaviour. It could be the fault ofthe program, the
employee, the policy. We tend to blame the program as it is the part ofthe system most closely identified
with the failure as immediately perceived. However, consider for a moment that, to your employee, ‘no

viruses’ means simply that. No viruses are found. Following that line ofthought, finding ‘no viruses’ would
be a system success — that is, until it brought your operation to a halt. You see, to some people, ‘ no viruses’
means that none are seen or observed, and not that none are actually operational in the system. We plan

grandiose policies and procedures around finding a virus and make no space for ‘no viruses’ as a possible
failed variation. Ifyou find ‘no virus’, you need to be very sure it is not due to your employees disabling

your software, or your software not finding the virus.

Many system ‘improvements’ are possible which in reality doom the system. Faulty assumptions and goals
are often at-the root ofthis problem. For instance, it is obvious that all ofyour computer workers must,

under dire penalty, refrain from bringing disks from home into your office. You implement this policy. You
assume they will comply. Your goal is compliance, not ‘no viruses’. Ifthe goal was ‘no viruses’, you would
be forced to be more realistic.

Consider the following two statements:

‘We have clean, working computers and by not bringing in software, we can keep them that way. It will
save us all a lot oftime, and eflort! ’

‘lfyou bring in disks, you willprobably infect our oflice computers. It will cost us all a lot ofmoney. ’

In the first instance, the focus is on the well machine. Everyone wants well machines. People like to be

part ofwinning teams, and participate in things that are nice.

In the second, the focus is on the sick machine. None ofyour people would have viruses on their home

computers. So, this must not apply to them. And ifthey do break the rule, you have already set them up to
be afraid to tell you. After all, they don’t want to cost you a lot ofmoney and they certainly don’t want to be
known as the culprit for infecting the office computers.

How do we measure the performance of our anti-virus strategy system? Not very well. Ifwe find some
viruses, we say it's working. Ifwe don’t find any viruses, we say it's working. In some cases, you can apply
‘we say it’s not working’ to these same sentences. There is no standard way in which we measure the
success ofthe entire system. Only in the act ofbeing out ofcontrol will the system be able to detect and

bring back the control.

5 CONCLUSION

The systems approach proposed here is a ‘whole system’ optimization. Think of it as the configuration of a
system which will facilitate optimal performance. There exists, ofcourse, a dilemma, in that at some time

VIRUSBULLETINCONFERENCE ©1 995 Virus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, 0X14 3 YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pennissionofthe publishers.

OOOO39

000040

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 9

suboptimization may be necessary, or even the only possible approach. An approximation which is used may
be a great deal better than an exact solution which is not [17]. Nevertheless, our model will attempt to show
ways to optimize system performance.

Models are how we express things we want to understand and possibly change, designed in temas of

something we think we already understand. Models sometimes present problems when you try to

translate them into real world activities. With this in mind, I would like to suggest a simple model which

may help us begin to find ways to find a solution to the problem ofdesigning a workable anti-virus

strategy.

‘Models should not so much explain andpredict as topolarize thinking andpose sharp questions. ’ [18]

Using a holistically modelled approach, we would strive to maintain the existing health ofthe system. This

assumes we have a healthy system to begin with. This requires you not depend on your belief that your

software is correctly installed and operational, and that your employees know how to use it and are using it,

and that your equipment is functional, and that yourpolicies are correct and being followed... It requires that

you actually take it upon yourselves to designate people to ensure that your system is optimal to begin with.

‘Ifyou are not willing to do this, you cannot expect to restore the system to health. The focus should shift

‘ from ‘blame’ to ‘responsibility’. This may require investment on your part. You may need to update

‘equipment. You may need to train employees. You may need to purchase software. You may need to

subscribe to publications which can keep your employees up to date on trends in virus and security matters.

You will need to monitor feedback between various aspects ofyour anti-virus strategy system. We have not

discussed feedback at any great length in this paper, due to the number ofelements ofthe system and the

complexity ofthe feedback. However, using the empirico-intuitive General Systems theoretical approach

defined earlier in this paper, you should be able to detem1ine the sorts offeedback which are required to

keep your system functioning optimally. Ifthere is NO feedback, you can rest assured your system will fail.

Lack offeedback produces entropy. In simple terms, entropy can be called the steady degradation or

disorganization ofa society or a system. This is not what you want for your system. You want to move the

system into organisation and order, high rates ofprobability and certainty. As we discussed earlier, this

happens when information is processed. The information can be communication ofany type between any

elements ofthe system.

Our current focus seems to be on the existing illnesses in our systems. Ifopen systems indeed, as

suggested, possess an innate organising principle, perhaps we should be paying more attention to what

the elements ofour systems are telling us. We could learn the sorts of information required to maintain

organised reliability. We could learn the amount and types offeedback required to process information

optimally, and to keep the system both desirably adaptive and from adapting negatively. We must examine

our systems as a whole, including all of the parts, as best we can, to determine what the elements and the

system are telling us. 1n the case ofour anti-virus strategy systems, we have yet to detennine what that

message is. Many ofus have not even yet defined the elements of the system, the system boundaries, or the

goal ofthe system.

It is clear that there are dishannonic conditions in the ‘Anti-virus strategy systems’ ofmost companies; if

there were not, no one would be attending this conference or reading this paper. It is also clear that the

way we traditionally approach these problems is not working. We have been using these approaches for a

long time, and the problems are not going away. Drawing from the holism model, one thing we can do is

examine causal factors, instead of focusing on symptomatic relief. We need to examine more closely the

interdependence ofthe parts of our system, and as security professionals, should facilitate the potential

for healing our systems. It is hoped that some ofthe ideas mentioned in this paper can provide a starting

point for this.

VIRUSBULLETINCONFERENCE©1995 Vims Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000040

000041

I0 ° GORDON: THE ANTI-VIRUS STRATEGY SYSTEM
 -T...—.T

The authorwould like to thankLouise Yngstrom, University ofStockholm,for late night chats on System

Theory, above and beyond the call ofeven academic duty.

BIBLIOGRAPHY

[1] ‘Virus Encounters, 1995: Cost to the World Population’. Testimony, House Subcommittee on
Telecommunications and Finance, Tippett, Peter, June 1993.

[2] ‘The Wildlist’. Maintained by Joe Wells.

[3] ‘Real World Anti-Virus Product Reviews and Evaluation’. Gordon, Sarah and Ford, Richard,
Proceedings ofSecurity on the I- Way, NCSA, 1995.

[4] ‘An Introduction to General Systems Thinking’, p.3, Weinberg, Gerald. John Wiley and Sons,
1975.

[5] ‘An Introduction to General Systems Thinking’, p.51, Weinberg, Gerald. John Wiley and Sons,
1975.

[6] ‘General Systems Theory: Foundations, Development, Applications’, pp.xix-xx, Revised Edition,
Von Bertalanffy, Ludwig. George Braziller, Inc, 1980.

[7] ‘Health Promotion Throughout the Lifespan’, Edelman, Carole and Mandle, Carole. Mosby, 1994.

[8] ‘Guide to the Selection ofAnti-Virus Tools and Techniques’. Polk, T. and Bassham, L. NIST
Special Publication 800-5. NIST, December, 1992.

[9] ‘Real World Anti-Virus Product Reviews and Evaluation’, Gordon, Sarah and Ford, Richard.
Proceedings ofSecurity on the I- Way. NCSA, 1995.

[10] ‘Semantics, Operationalism and the Molecular-Statistical Model in Thermodynamics’, Dixon,
John and Emery, Alden. American Scientist, 53, 1965.

[11] Quote attributed to Abraham Lincoln.

[12] ‘Applied General Systems Theory’, p.39, Van Gigch. John P. Harper and Row, 1974.

[13] ‘Applied General Systems Theory’, Figure 2.2, Van Gigch. John P. Harper and Row, 1974.

[14] ‘Directed Graph Epidemiological Models ofComputer Viruses’, Kephart, Jeffrey O. and White,
Steve, R, Proceedings ofIEEE Computer Society Symposium on Research in Security and
Privacy, 1991.

[15] ‘The Viability and Cost Effectiveness ofan ‘In the Wild’ virus scanner in a Corporate
Environment’, Gordon, Sarah, 1995.

[16] ‘Applied General Systems Theory’, p.25, Van Gigch. John P. Harper and Row, 1974.

[17] ‘The Development ofOperations Research as a Science’, pp.59-60, as cited in [4]. Ackoff,
Russell. Scientific Decision Making in Business.

[18] ‘Some MathematicalModels in Science’, Kac, Mark. Science, 166 No. 3906 695, 1969.

VIRUS B ULLETINCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOOO41

000042

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° I I

BLESSINGS IN DISGUISE: BUILDING OUT OF DISASTER

Paul Ducklin

Sophos Plc, 21 The Quadrant, Abingdon, 0X14 3YS, UK

Tel +44 1235 544037 - Fax +44 1235 559935 - Email duck@sophos.com

Imagine, for a moment, that there is such a thing as the ‘average anti-virus expert’. Take him or her aside

briefly, and start talking gently and generally about computer viruses. The chances are good, even ifyou

are skilled in keeping a conversation running along lines ofyour choice, that the subject matter will veer

rapidly towards the technical. You should not be surprised if the expert makes a sudden subroutine call to

highly technical matters; you should be even less surprised ifyou find that the subroutine stack becomes

lost, so that a return to the original topic of discussion is impossible.

Likewise, much ofthe literature published in the short lifetime of the anti-virus field is largely technical

in content. Even documents which are supposed to be corporate anti-virus policies, written in ‘plainspeak’

and signed by Topmost Management, sometimes manage to lose themselves in a tangle of ‘technobabble’.

This can be hard to avoid ifyou are trying to describe the best way to navigate through a nightmare world

infested with armoured, tunnelling, full—stealth, highly polymorphic, multi-partite, fast-infecting malware

objects.

Sometimes, though, the problems which emerge from the technological computer virus battleground are

decidedly plain. Often, the ‘obvious’ attack (the unsubtle, widely telegraphed, low—tech viral broadside)

succeeds where deviously clever programming fails. It may be an old bromide [1], but we can hardly blame

technology for the ongoing prevalence ofviruses such as Form and Stoned [2]. In July 1994, another

technically unremarkable virus succeeded globally, making a sudden appearance worldwide: Kaos4.

This paper is a case study ofan attack by this virus on a large South African company. Managers, network

administrators, and users alike were all surprised by the sudden appearance ofthe virus; they were even

more surprised when the virus reappeared just as suddenly three months later. As you will probably guess,

these were not innocent, defenceless victims — especially as the lessons learned after the first attack should at

best have prevented the second, and at worst allowed it to be handled with ease.

However, as an internal survey has shown, this organisation’s corporate anti-virus awareness has improved

as a direct result of the Kaos4 incidents, and the risk ofviral disaster in the future has been addressed, and

reduced. It would probably be going too far to describe Kaos4 as a blessing in disguise for this company

(and it would offer the virus itselfa function and legitimacy it does not possess), but they have certainly

managed to learn from their mistakes. As will become obvious, though, they did not learn quite as swiftly as

they might have done; others will want to aim to do better, faster. ‘

VIRUS BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

OOOO42

000043

I2 ° DUCKUN: BLESSINGS IN DISGUISE: BUILDING OUT OF DISASTER

To maintain the privacy of the company studied here, we shall refer to them as ‘The Company We’re
Studying, Limited’, and abbreviate this name as ‘TCWS’. And, before you smirk at their story, ask
yourself ifyou are absolutely certain that it couldn’t happen to you. ‘

THE INTERNET SPEAKS

According to the Internet, this is what happened (messages have been edited to remove personal or
commercial identifying information; errors are reproduced as they originally appeared):

Date: Thu, 28 Jul 94 07:58:11 -0400

From: ABC Anti—Virus Company <abc@def.ghi>

Subject: Virus warning (PC)

We have discovered an infected file which has been spread on Usenet

in the group ‘alt.binaries.pictures.erotica’. The virus is called

Chaos4/ kohntark 697, and is a com/exe infector. No current scanners

seem to be able to detect it yet. A detector/disinfector routine is

available in the file ’abcdefg.zip’, which has been uploaded to

several sites (wuarchive.wustl.edu, ftp.funet.fi,

ftp.informatik.uni—hamburg.de etc.)

Sincerely,
S. O. Meone

ABC Anti—Virus Company

Date: Tue, 30 Aug 94 01:04:37 +0400

From: XYZ <xyz@uvw.rst>

Subject: Re; [News] KAOS? (PC)

Hi !

somebody@somewhere.com (Some Body) writes:

> I have been hearing about a new (?) virus called KAOS that

> has been transferred over the internet. Does any one have

> any info on it?

Any name of this virus is ’Kaos4’.

So far, verified reports or samples of this virus have been received

from the US, Austria, Norway and Finland.

It seems that the virus was distributed over Usenet, possibly in one

of the alt. groups.

The virus is not very remarkable — it is a 697 byte non—resident

COM/EXE infector, which contains the string ’KODE4 / Kohntark' (The

’o’ has 2 dots above it). This string is not encrypted and can be

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO43

000044

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I3

found with any text search utility.

The virus does not seem to have any specially interesting functions,

and does not contain any destructive code, so the problem is not as

serious as it might have been, but the virus might have non-

intentional side—effects, such as preventing a machine from booting

if it infects IBMBIO.COM/IBMDOS.COM on a machine running IBM DOS.

—XYZ

Date: Sat, 01 Oct 94 11:20:46 -0400

From: Another Person <ap@pqr.stu>

Subject: Re: Re; [News] KAOS? (PC)

XYZ (xyz@uvw.rst) wrote:

> Any name of this virus is ‘Kaos4’ .

> So far, verified reports or samples of this virus have

> been received from the US, Austria, Norway and Finland.

, and South Africa. . .

Cheers, Another Person

Ignore for the moment the obvious inconsistencies in the above messages; the bulk of the information

explains what happened, and how the virus came to make momentary global headlines. From a viral

point ofview, Kaos4 was interesting because of a novel combination of factors:

p > the virus was uploaded openly to the Internet, posted into a newsgroup, which acted as a vehicle to

spread the virus rapidly across the globe

> the uploaded infected object was a commercial shareware program

> this program was a game

> the upload destination on the Internet was an unmoderated newsgroup better known for

disseminating pornographic pictures

> the uploader made no attempt to conceal himself, acknowledged the upload and claimed that he had

taken appropriate precautions, but had been let down by an anti-virus scanner which gave his

upload a false bill ofhealth.

MYTHS CONSOLIDATED

The nature of the Kaos4 distribution gave the virus multiple angles of importance in the media, and in

tearoorns across the corporate world. Unfortunately, the immediate lessons learned from it, judging from

informal conversations with Victims at TCWS during my consultancy immediately following their first

attack, were not particularly useful. In some cases, they served only to perpetuate those inaccurate myths

which arose years ago, when the computer virus first began to become a problem [3].

Computer games have long been singled out as ‘dangerous’ software, and many companies have banned

games because ofthe viral risk they pose — rather than because their employees are usually taken on to

V./R USBULLET1NCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX1 4 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO44

000045

I4 ' DUCKIJN: BLESSINGS IN DISGUISE: BUILDING OUT OF DISASTER

perform tasks other than playing games at work. In fact, games may even serve a valuable purpose in
business (indeed, I learned to type fastplaying the curiously-named ‘Lobster Sea Adventure’, designed
specifically to teach keyboard speed and accuracy). Worse still, suggesting that there is a specific type of
‘dangerous’ computer program serves to suggest that there are programs which are inherently ‘safe’, and
therefore immune to viral infection. Since many file viruses will infect just about any executable file which

comes their way, this is an unsafe myth.

Many companies also retain shareware and freeware on their list of ‘dangerous’ programs. Clearly, it is the
means by which shareware is sometimes distributed that needs consideration, rather than the shareware
itself. After all, a careless or unscrupulous dealer selling shrink-wrapped commercial software might easily

use, infect, and re-package that software (and such cases are well-documented) — so singling out the
shareware concept as virally risky simply serves to deflect attention from the facts.

The burying ofKaos4 in a pornographic newsgroup also obscured corporate risks, with managers and users
who steered clear ofsuch newsgroups tending to believe that this would keep them and their workgroups
safe from the virus — in the same way, perhaps, that those who are not sexually promiscuous reduce their

risk ofHIV infection to negligible levels.

Unfortunately, the obvious analogy here is not the correct one; a more useful analogy would be the
observation. that because you and I are not thieves does not mean that our houses are, ipsofacto, safe

from burglars. Furthermore, once a virus is in the wild, its initial mode of distribution becomes relatively
unimportant — once Kaos4 was out there, companies not even on the Internet were at risk from infected
floppies, just as they would be with any other virus.

The fact that Kaos4 was connected with not one but four arenas often proscribed to corporate users —

games, shareware, bulletin boards (or the Internet, seen by some as a giant global BBS) a_nd
pornography — has led some observers to conclude that the uploader of the virus deliberately sought out a
multiply-prohibited way in which to introduce the virus. This, presumably, would delay initial reports of the
virus inside an organisation, with users possibly quadruply afraid ofrecriminations. You can imagine that

the average user, complaining to Technical Support about a new-found problem with his or her PC, would
be unlikely to offer a report such as, ‘I downloaded a shareware porno game file called SEXY.EXE from the
Internet, installed it on my work PC and ran it, whereupon the network fell apart’.

SOMEONE ELSE’S FAULT

Although access to the Internet is increasingly popular, and increasingly important to business, it is still
often seen as an unconquerably dangerous vehicle, and incidents such as Kaos4 serve to fuel fear and

ignorance about the safety and useability of the Internet. Many corporate computer network and security
policies deal with the Internet in simple, total fashion — interconnectivity with the ‘Net’ is prohibited. In the
wake ofKaos4, the Internet was certainly a convenient hook on which to hang blame.

Within TCWS, who had (and have) partial Internet connectivity, one of the outcomes ofKaos4 was to

concentrate security attention on the interconnection point. Whilst network firewalls do indeed require

expert attention, TCWS’s firewall was configured quite restrictively, and was already fairly carefully
managed. Their internal networks, on the other hand, were not. If the organisation’s internal
policymakers had stepped back before the Kaos4 incident, they would doubtless have prevented the first
attack with ease. Ifthey had resisted the temptation to zoom in afterwards, they would have prevented the
second attack.

VIRUS BULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOOO45

000046

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I5

BATTLE STATIONS

The first TCWS engagement appears to have unfolded like this:

I> The actual infected game, as uploaded to the Internet, was brought into the company. Whether it

was downloaded directly from the Internet or transferred to an employee by someone outside is

uncertain, although it seems that the latter was the case.

l> The game was tried on a handful of PCs on the corporate network, which all became infected.

I> Infection spread from one of those PCs to one ofthe company’s NetWare servers, and executable

objects which were part ofthe corporate mail system were infected.

l> Other servers on the network became infected when control workstations attached to both the mail

server and one or more ofthe user file servers executed infected mail software.

I> Workstations were rapidly hit as infected programs on infected servers were accessed by users.

A None ofthe anti-virus scanners in use at TCWS detected Kaos4, which is unsurprising: presumably, the
author went to some trouble to ensure that this would be the case, and relied on the virus travelling so far,

so fast, that some victims would be hit before their scanner updates arrived.

Scanner detractors will be quick to point out that this is an unacceptable and ongoing weakness in

scanner-based protection, and that integrity checkers would have noticed this viral attack as soon as it

started. Thus, TCWS’s problem was that they had elected to use the wrong anti-viral tools. Scanner

versus integrity-checker arguments have become, in some quarters, the ‘Holy War’ ofthe anti-virus

community; fortunately, there is little need for us to consider this debate here, because TCWS’s problem

was rather different, and much broader than this.

Firstly, although several brands ofanti-virus software were in use within the company, TCWS had a

corporate licence for one specific product. This licence permitted them to install the software on all user

workstations, where the built-in integrity checker ofthe software would have identified the spread of the

virus early in the day. Additionally, their vendor was consulted by telephone, and immediately provided

a virus database update which allowed TCWS to detect Kaos4.

Some departments ofTCWS swung into action quickly, and removed the virus from PCs in their

corridors. Others had never got round to installing anti-virus software on their systems in the first place

(though the company had bought and paid for corporate protection some time before). They were much

slower to react, because they had never carried out a dry run — they left the anti-virus learning process

until they were faced with the ‘Real Thing’, whereupon fear and panic added themselves to the equation

and frustrated their attempts to do things correctly and efficiently.

One or two departments took the extreme approach ofclosing down all their PCs, disconnecting from the

network, and laboriously cleaning every PC before going live again. Sadly, the fact that the corporate

clean-up was neither co-operatively performed nor centrally run meant that they beat some ofthe more

lax departments to it. Furthermore, they merely removed the virus, and paid little attention to their

current network configuration. So, when they brought everything back up again, it was back to square

one. Just as the virus had entered and propagated across their server and workstations before, so it did
again.

THE ENEMY WITHOUT

From the scope of the attack, you might conjecture that Kaos4 is a ‘difficult’ virus, with tricks such as fast

infection and stealth to help it spread far, fast, and unobserved. Actually, it is a very plain little virus. Kaos4

is a direct action (non-memory-resident) file infector; it has no stealth capabilities, making no effort to

WRUSBULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000046

000047

I6 ° DUCKUN:BLESSING$ IN DISGUISE: BUILDING OUT OF DISASTER

disguise itself; and it is entirely unencrypted, so that the text string ‘KAOS4’ (not ‘KODE4’ as stated in the
Internet posting above) is clearly visible in every infected file. It is, in aword, obvious.

Because Kaos4 is a non-resident, non-stealth virus, it is the kind offile virus that a network administrator,

faced with a compulsory viral infection, would be well advised to choose. Indeed, even the ‘Golden Rule’ of
virus hunting — boot from a known, clean, write-protected system diskette — can be ignored in the face of
Kaos4. Even without any anti-virus software, a network administrator would need very little to get his
network back on its feet again: minimal programming skill; a BASIC compiler (or even a simple

programmer’s tool such as GREP); and a network operating system which supports login scripting would be
enough to do the job.

It is interesting to note that, in my wanderings around TCWS whilst on contract to investigate the nature and
extent oftheir problem, I came across a small workgroup who had decided to take on Kaos4 themselves.
Although most computer scientists who have ever been involved in technical support might shudder at the
thought ofa band of ‘Have-A-Go-Henries’ within a community ofcomputer users, their approach
demonstrates that careful thinking, combined with the use ofobvious precautions, can often produce a high-

speed one—offsolution to an apparently large problem.

They noticed that program files on their workstations were growing in size, and surmised that they had a
virus. One ofthe team set about an immediate backup ofthe workgroup’s PCs; two others began to examine

the altered files. Although they knew very little about viral replication, they compared infected objects with
fresh originals, and deduced enough about the relationship between the two to guess how to convert infected
files into clean ones.

One ofthe two had done a little Pascal programming, and whipped up a utility to apply the conversion

scheme they had deduced. A little testing, both ofthe hypothesis and their utility, and they were ready to
try it out. By this time the backup was complete, so they had little to lose — instead ofwaiting for their
network administrator to visit their machines personally, they were the first on the block to be up, running,
and clean. In some companies, you could probably get sacked for that sort ofbehaviour — but these three
‘Wild West’ problem solvers got away with it. Their utility worked; they simply neglected to mention it to
their administrator, and quietly allowed him to take credit for cleaning their workplace. And they did make a

proper backup first, so their experiments were relatively risk-free.

THE ENEMY WITHIN

If someone tosses a lighted match through your letterbox, burning down the house, they would be guilty of
arson. They ought to have foreseen that your house might burn down, and should be punished accordingly.
At the same time, ifyou knew such an attack was likely, it would be a wise move to buy a fire extinguisher,
and to learn to use it. It would also be prudent to give up the habit of storing uncovered buckets of aviation

fuel inside your front door.

In the same way, the ultimate responsibility for the attack on TCWS lies with the author of the virus —
Kohntark, as he seems to call himself (there was, at the time of the first appearance of the virus, an
attempt to establish some sort offorensic link between the person who uploaded the virus to the Net, and
the author, though no connection was ever proved).

In terms of self-protection, however, some ofthe TCWS internal networks and procedures were veritable
buckets ofpetrol, and this served to help the attack succeed. Most of the mistakes are fairly obvious from
the battle chronology listed above. Their details are as follows:

o Untrusted software — even if its origin appears more benign than an unmoderated Internet

newsgroup — ought not to have been used directly on any machine on the main network. Untrusted
software should be track-tested on an auxiliary system first.

VIRUS B ULLETINCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555]39. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO47

000048

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 - I 7

o The central mail system executables, although write-protected on the sewer, became infected

during a SUPERVISOR login from an infected workstation. Because super-user logins grant

unlimited power, they ought never to be allowed except from secure, trusted workstations.

Additionally, in this case, the super-user login was used for a mundane task out ofhabit, not out of

necessity.

o The virus spread from the central mail server to other servers, thanks to inappropriate access control

configurations on those other servers. Programs had been unnecessarily deposited in a world-

writeable data directory due to a misunderstanding about the requirements ofthe software.

0 Workstations for which anti-virus software had been ordered, received and paid for were unprotected.

Even though the software would not have detected Kaos4 directly, its integrity checking component

would have provided rapid indirect notification ofinfection, if it had only been installed.

These configurational and procedural errors were confirmed rapidly during my investigation, and steps were

taken to educate the company’s network administrators about what was wrong, and what they could do at

once to reduce the risk ofreinfection. To what I thought was the extreme credit ofthe IT managers at

TCWS, I was never asked to present them with information that could be used in a witch-hunt. The briefof

my work was.simple: find out what went wrong this time; help set things up to prevent it happening again.

The wisdom ofTCWS in resisting a knee-jerk reaction, such as insisting on finding someone to punish,

cannot be understated. In this case, it was recognised that numerous mistakes had been made, and that

these mistakes had worked together to leave the corporate network insecure. There had obviously been no

deliberate sabotage attempt; instead, the virus attack was seen as a ‘total corporate quality’ failure. With

this insmind, an in-house seminar, open to all staff and paid for out of a central corporate budget, was

scheduled and duly held.

Sadly, there was a repeat attack of Kaos4 at TCWS about three months later. Initially, when I was

contacted again to look into the circumstances of this attack and to assist in cleanup, I felt a sense of

personal failure. It was not as though I had been contracted to help reduce the number ofvirus attacks by

7%, or some such nebulous score. There had been one attack, and the new target was zero, which left

little margin for error.

REPEAT PERFORMANCE

Cleanup the second time around was straightforward, because most of those involved had previous

experience with this very virus. Additionally, I observed a number of things that made me feel much less

personally concerned about the repeat attack. Consultants are often despised as those who talk about

solving problems because they are incapable ofactually solving them; by the same token, their role,

especially in large corporates, is usually defined to stop short of implementing any solutions they devise.

Consultants usually do not need to say ‘I told you so’, because that is what they were employed to do in

the first place — and this is how it was at TCWS.

The repeat infections would have been prevented if the simple changes recommended three months

earlier had been carried out. This time, there was no Internet to blame, as the reinfection started

completely internally. Amongst the things which had happened or not happened since my previous

involvement, were:

o Reinfected networks on which the purchased anti-virus software (now fully Kaos4-aware) had still

not been installed three months later, despite the protestations ofusers.

o Reinfected networks on which infection had again been spread by shared programs on the server that
were world-writeable.

VIR USBULLETINCONFERENCE©l995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOOO48

000049

I 8 ° DUCKUN: BLESSINGS IN DISGUISE: BUILDING OUT OF DISASTER

o On-going routine use ofthe SUPERVISOR account from arbitrary user workstations, due to its
convenience.

Clearly, the lesson to be learned here is that where changes are required, they must be seen to have been
carried out. Network configuration can be monitored with auditing tools; the output ofsuch tools can be
cross-checked. Basic informal examination ofnetwork security by users, as well as by trusted outsiders,

is a simple task. In a multi-departmental company such as TCWS, with departmental networks,
administrators can easily assist one another with basic security audits. The idea here is not to watch for
malicious internal breaches ofsecurity (that is a separate issue), but to prevent easily-avoided lapses which

could prove costly.

A YEAR ON

One ofthe things which TCWS pushed most strongly after the first Kaos4 incident was the education ofend
users. My own hope, as the person contracted to run the first major seminar, was that users would be keen
to attend. Before the TCWS incident, my experience had been ofcorporate anti-virus seminars being

restricted by top management, in order to keep both direct and indirect costs down. TCWS, on the other
hand, made every effort to remove this barrier, providing central funds and encouraging all staffto attend.
Their beliefwas that the cost ofthe seminar in lost working hours would easily be recovered in hours saved

handling virus problems in the future.

The users proved relatively uninterested, despite considerable publicity given to the event via corporate e-
mail and through network administrators. In the end, less than 5% ofpotential delegates attended, although

preliminary estimates suggested a turnout ofover 12% was likely. I should like to be able to say why
attendance was so poor in order to help other organisations avoid similar disappointments; sadly, the reasons
were never clear.

It was clear, however, from a survey carried out amongst TCWS users one year after the original Kaos4
attack, that users continue to consider in-house anti-virus seminars unimportant. Users were asked:

Rate the following in terms of their importance to virus protection

inside the organisation (use the digits l to 5, with 5 for ‘most

important’, down to l for ‘least important’).

Formal corporate anti-virus policy
Anti—virus software

Network administration and configuration

Seminars, information sharing and awareness campaigns

General” attention to ‘total corporate quality’ .
|—‘l.\)UJU‘|il>

Unsurprisingly, anti-virus software was overwhelmingly voted most important. Seminars and awareness
campaigns, however, were rated second last, just above ‘total corporate quality’. Clearly, TCWS users do
not see the anti-virus issue as their management do: whilst users put a formal corporate anti-virus policy

in second place, they seem relatively unconcerned about getting themselves into a position to understand
how they might build this policy into their own computing regimen. Whatever TCWS users may think, I
agree with their managers, and rate anti-virus protection as atotal corporate quality issue.

Nevertheless, TCWS users have a healthy understanding oftheir own importance in the corporate anti-virus
battle. They were presented with:

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO49

000050

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - I9

Rate these people or groups in order of their importance to

controlling viruses inside the organisation (use the digits 1 to 5,

with 5 for ’most important’, down to 1 for ’least important’).

) Top management

) Network administrators

) Computer maintenance contractors

) Everyone else

) Me.
.:>.L\)oqLn»—=

Although they chose to place the bulk ofthe responsibility on someone else (they picked network

administrators as most important), they voted ‘Me’ into close second, which is a good sign. Top

management were placed in a very distant last place. Strangely, however, despite the importance associated

with network administrators, it was unclear what TCWS users thought these administrators would be doing

in dealing with viruses:

Rate the following items or activities in order of the viral risk

they pose to the organisation (use the digits 1 to 5, with 5 for

’highest risk’, down to l for ’lowest risk’).

) Exchange of disks with outside companies

) Use of disks to move information between work and home

) Incorrect network administration and configuration

) Software taken from bulletin boards or the Internet

) Illicit copying of software from other people.

u1w_n—~wu>.
(

(

(

(

(

Incorrect network administration and configuration was felt to pose the lowest risk to the organisation.

Although the inextricability of the link between virus protection and network security was stressed at the

TCWS user anti-virus seminar, it would seem that there were not enough users there to hear the message

that was preached that day. Piracy was rated most risky, with exchange ofdisks with other companies voted

into second place; the Internet got offmore lightly than I had expected, rated in third place.

WHAT NEXT?

The organisational culture lessons from this case study are clear, and somewhat surprising: even though

your users may recognise the significance oftheir role in keeping the organisation virus-free, they may

yet have a certain reluctance to learn. Their virus awareness may improve, but not as much as you might
wish it to:

How would you describe your computer virus awareness of a year ago?

[7%] Excellent. Understood the technical and organisational issues

[30%] Good — confident I knew enough to handle one if I got hit

[46%] Fair — heard of them, and had some idea of how they spread

[l7%] Poor — heard of them, but they were ’someone else’s problem’

[~O%] Zero — never even knew that viruses existed.

And how do you describe that awareness now?

[7%] Excellent. Understand the technical and organisational issues

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000050

000051

20 ' DUCKUN: BLESSINGS IN DISGUISE: BUILDING OUT OF DISASTER

[40%] Good — confident I know enough to handle one if I get hit

[45%] Fair — heard of them, and have some idea of how they spread

[8%] Poor — heard of them, but they're ‘someone else’s problem’

[0%] Zero — never even knew that viruses existed until right now.

Satisfactorily, 23% ofrespondents claimed their knowledge had increased over the last year; 3%,

surprisingly, said their knowledge had gone down. Nevertheless, even after a year during which computer
viruses received a high profile inside the organisation, more than half the respondents effectively rated
their own knowledge as insufficient to deal with a virus should they get hit. And hit they were:

Did you get hit by the Kaos4 virus in the past year?

[5%] Yes, more than once

[2l%] Yes, once only

[74%] No.

Have you had a virus *other than Kaos4* in the last year?

[2%] Yes ~ more than one

[l3%] Yes — one only

[85%] No.

This is a high virus incidence rate, and the administrative lessons here are obvious, and not especially
novel: run your networks properly; use your anti-virus software; and make sure that when network
reconfiguration is necessary, that it actually gets carried out. At TCWS, the IT administrators managed to
make the same mistake twice. Your goal, ofcourse, will be to make no mistakes at all..

REFERENCES

[1] Ducklin, P: ‘Anti-Virus Education: Have We Missed the Boat?’; Proceedings ofthe 1994 Virus
Bulletin Conference, September 1994.

[2] Whalley, 1 (ed.): ‘Virus Prevalence Table’, Virus Bulletin, June 1995.

[3] Greenberg, R & Rosenberger R: ‘Computer Virus Myths’ , October 1993.

[4] alt.comp.virus: Usenet newsgroup - various postings, various dates.

[5] comp.virus: Usenet newsgroup - various postings, various dates.

VIR USBULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

00005 1

000052

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 2!

HUMAN DIMENSION OF COMPUTER VIRUSES

Jean Hitchings

ICL Institute of Infonnation Technology, University of Nottingham, Nottingham, NG8 IHL, UK

Tel +44 115 951 3356 - Fax +44 115 951 3353 - E-mail jean.hitchings@nottingham.ac.uk

ABSTRACT

This research considers the human issues when designing an information system that is resistant to

computer viruses. Most information security considers technicalfactors but often ignores human issues.

This paper begins by looking at the development ofsystems analysis and the compares it with
information security. This isfollowed by a summary ofcurrent literature which indicates the importance

ofhumanfactors.

Finally, there is a case study ofa large multinational organisation where a computer virus infected the
computer systems. The situation is analysed in context to current literature and the developments which

are occurring in systems analysis.

KEY WORDS

Computer virus, infonnation security, Virtual Methodology, Soft systems analysis, Human issues and

computing.

INTRODUCTION

It is possible to compare information security to general systems analysis as both involve analysing an
information system in order to detennine requirements followed by a design phase. While methods to

implement information security have remained relatively static, the last decade has seen the traditional

approach to systems analysis (also known as hard systems thinking) questioned as to its suitability to
information systems. A major problem with the traditional method is that it ignores the human factor.

Infonnation systems are considered in the same light as machines, assuming that they behave logically

and as instructed. People are the main component of any information system and it is generally

understood that they are not totally logical.

The human issues are manyfold and include the objectives of personnel (which may conflict with those

of the organisation); the cultures of the people involved; and attitudes which can be influenced negatively

by low morale or positively by a good esprit de corps. It would not be feasible to expect users to

cooperate in designing a system which is going to make them redundant or cause them to carry out a
considerable number of extra tasks in their day to day work.

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO52

000053

22 - HITCHINGS: HUMAN DIMENSION OF COMPUTER VIRUSES

The new approach to systems analysis is called the soil: systems methodology [1,2]. It intends to include
human issues in the analysis and design phases. In addition, the new methodology considers

organisational issues, such as policies. If management policy is to praise staff only ‘on visible output then
it is quite feasible that a junior will concentrate on jobs which will help him to obtain recognition and
ultimately promotion. Other tasks which may be more important, such as security procedures, could be
totally ignored. This was certainly a major contributing factor to a large multinational organisation where
outsiders were able to hack into the networked system. There were no obvious results to show

management if time was spent on learning and implementing network security. The hackers were able to
roam freely through the system with super user privilege, because this was the default. There is obviously
‘a need to reconsider our approach to information security in order to avoid such situations in the future.

Another factor that should not be ignored is the environment within which the system and organisation

operate. The environment includes for example, customers, competitors, and legislation. Competitors can
affect a company in many ways. An organisation may be forced to produce an extra product or service,
because competitors have introduced one and it is proving popular. Customers can affect organisations
by only buying a certain product causing others to be discontinued.

The human issue can have a powerful effect on organisations and at last its significance has been

considered by systems designers. However, this important issue is being ignored by those implementing
information security and the traditional approach is still being used. The information security designer
should be even more concerned with human behaviour as after all it is people that commit crime not

computers.

Most information security breaches are committed by employees who are opportunists, have seen an
opening in procedures and have taken advantage of this [3]. Now that information technology has moved
into the open office there is even more opportunity to tempt employees. Coupled with this is the fact that
managers in general appear to be unaware that the main threat is from within. Such managers are
concerned with procedures that prevent outsiders from entering their systems and are much more lax with
internal procedures. This was the situation in the case study described below where a virus infected an

organisation’s computers.

CURRENT LITERATURE

For some time it has been suggested that information security is not just a technology problem, but that it

also concerns people. Davis and Price [4] state that security is a people related issue and give a number of
reasons. Firstly, the system is designed by people and the original controls are dependent on their ability
to understand the problems and the relevant solutions. The integrity of the system is also dependent on
the people who build the system as well as the people who undertake the day to day maintenance. Once
operational, the system is reliant on people to run it. They must carry out the security related procedures
adequately, if the system is to remain secure. Finally, there is always someone whose level of control of
the system is high. This person is necessary in most systems. They may be a senior manager with the
authority to transfer large sums of money or perhaps a systems administrator who potentially has the
ability to access any data or programs in the system and is responsible for the allocation of passwords to
authorised users.

Morrie Gasser [5], devotes a section in his book to ‘The Problem is People, Not Computers’. In this he

explains that computer crime is usually concerned with breakdowns in procedural or personnel controls,
rather than exploiting a weakness in internal controls. He concludes that so long as relatively easy non-
technical methods exist to commit a crime, technical controls can largely be regarded as superfluous.

Often the case is put forward that computer systems are not particularly usefiil for detecting or preventing
computer related crime because the perpetrators are usually employees that do not violate internal

 T

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any fonn without the prior
written permission ofthe publishers.

' OOOO53

000054

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - 23

controls. Instead they tend to misuse the information or privileges which they are authorised to access or

use. However, Gasser continues that, on reflection, it is often the case that people gain access to more

information than they need. This may be because the security restraints have not been implemented or

that it has been too costly or inconvenient to include them.

Wong and Watt [3]) devote a large chapter to people, ‘People - Asset or Liability’. In this, they state that

many cases of sabotage to computer equipment, data and systems are committed by employees. Also,

most computer related fraud has been undertaken by trusted staff in organisations, sometimes colluding
with outsiders.

A number of cases are described to support their claim, followed by a section on fraud prevention or

reduction measures. These include traditional controls, such as, separation of duties, job rotation, and

split knowledge or dual controls. Controls on inputs, outputs and amendments are discussed, along with

structured walk-throughs of the system design and good documentation. Finally, there is a section on

password management.

It can be seen that although the people aspect of information security has been discussed as a problem by

several authors, it does not appear to receive the same attention in industry. This means that either

information security personnel in industry are not aware of the issue, (which seems unlikely) or they
consider the issue to be too difficult or too costly to implement.

The answer may be as indicated by Gasser, who gives the explanation that while it is relatively easy to

detect a single bug in a system which can be exploited for individual gain or to the detriment of the

organisation, it is much more difficult to totally eradicate bugs from the system.

THE ORGANISATIONAL DINIENSION

At the time of writing, only two publications have been identified which attempt to tackle security issues

using a soft systems approach. Richard Baskerville [6] states that discussion of information security is

restricted by the narrow influence of technology as the only solution. He feels this has prevented the field

from expanding and keeping pace with developments within the area of computing.

Baskerville looks at the design of information systems security in the light ofmodern system analysis

and design. He states that by discarding traditional information security approaches, it is possible to

consider security as a variation of normal information system design.

Hitchings [7] develops an information security methodology called the Virtual Methodology (VM),

which considers organisational, contextual and human issues as well as offering technical solutions.

It is clear that there is a genuine problem and current literature indicates that information security is a

management issue which involves people. Over the last decade computing has developed rapidly, with

advances in technology and in methodologies for systems analysis and design. In the area of information

security great progress has been made in the technology being used, but there have been no real advances

in the management of these techniques and the understanding of the role of human factors.

The methods for implementing security are outdated and a new methodology is required that takes into

account the people problem. This methodology should ideally follow the soft systems approach, in

keeping with current trends in systems analysis. By considering the human issue, an organisation may be

better equipped to tackle the problem of information security and deter the introduction of computer
viruses.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Ahingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000054

000055

24 ° HITCHINGS: HUMAN DIMENSION OF COMPUTER VIRUSES

There follows a description of a case study where a virus was introduced into the organisation’s computer

system by an application programmer. It was allowed to happen because of organisational policy and

carelessness on behalf of the employee. ‘

THE CASE STUDY

1) Introduction

This case study refers to the accidental virus infection of a personal computer caused by unauthorised use

of software. The personal computer was one of many in use in a large confectionery organisation

providing the possibility of massive cross infection.

2) The organisation

The organisation is a major international confectionery manufacturer based in the UK with a significant

world presence. Their strength in this market has been increased by a merger with another large company
that also manufactures confectionery.

At the time of the incident the organisation employed more than 10,000 people in Europe and the UK
with a turnover of around £1 billion.

3) Systems description

Information technology plays a major role in company business. Computer based systems cover all the

commercial areas of the business, process control manufacturing, environmental controls, research and

site security.

4) Technical details

The organisation is a medium to large IBM site and has a DEC based distributed network. Personal
computers are used extensively throughout the company. Both physical and logical security access
controls are employed.

5) Context description

The departments involved in the incident were the Finance Department of one of the factory sites, remote
from head office, their local Information Technology Department and the Central Information
Technology Department at head office.

The Finance Department was responsible to the factory Chief Accountant, who in turn was responsible to
the Factory General Manager, who was responsible to the company Managing Director.

The personnel involved were the local Information Technology Coordinator, a local Finance Department
Section Head and a Central Information Technology Analyst/Programmer. The Analyst/Programmer was

temporarily responsible to the local Finance Manager and his role was to advise and develop a local
specialist accounting system based on personal computers.

The local Information Technology Coordinator was also the local Computer Security Administrator and

was therefore responsible not only to the Chief Accountant but also to the Information Technology

Security Manager.

6) Details of the security lapse

The security breach involved the implanting of a computer virus into the personal computer that was

being used to develop an accounting application.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000055

000056

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 25

The responsibility for personal computer security rests with the local departmental managers and the

local Computer Security Administrator. Standards and guidelines for the use of personal computers in

terms of physical, data and software security had been distributed to all personal computer users.

However, there were no software controls in place to prevent or detect viruses.

7) Discovery of the problem

The Information Technology Security Manager at Head Office received a report from the Information

Technology Manager at one of the other factory sites saying that unusual characters kept appearing on

one of the personal computer screens. Following discussions, it was discerned that the personal computer

had most probably been infected by a ‘friendly’ virus.

The personal computer was dispatched to head office and the origin of the vims traced as far as possible.

It was decided that the source had been at one of the other factory sites.

At this point the incident was reported to Senior Management and it was agreed that the Information

Technology Security Manager should investigate further and report his findings.

8) Organisational analysis

The size and geographical distribution of the organisation makes it difficult to check that each of the

personal computer users are adhering to the organisation’s distributed standards and guidelines.

As previously stated, the responsibility for personal computers rests with local departmental management

and local Security Administrators. It is not practical to check on every user to ensure that standards are

being followed. The main duty of the management is to ensure that each employee is aware of the need

for infonnation security and to provide the information as necessary to observe company standards.

Personal computer software was usually obtained from standard, reputable suppliers, but some arrived

unsolicited through mailshots. Sometimes games were brought from home and loaded onto a company

personal computer to play during lunch breaks.

The effects of a malicious virus spreading through the organisation’s personal computers could have a

significant effect on the computer based application systems. The biggest impact would probably be the

time it would take to locate the spread of the virus, remove it and then recreate the data afterwards. The

cost of such an operation is considered to be significant.

There have been no changes with regard to the roles and duties of personnel in so far as they relate to

information security, however, positive steps (e.g. the installation of virus detection software on each-PC)

have been taken to reduce the likelihood of known personal computer viruses infecting the organisation’s

personal computers.

9) Reflections on the organisation

A memo from the company Managing Director was issued to every employee stating categorically that

the playing and storing of computer games on company computers was now banned and anyone found to

be doing this would be dealt with at a senior level.

The organisation has installed virus checkers on all personal computers. It has also established a

‘quarantine area’ for scanning any unsolicited software that may arrive through the post. Even though

this service is well publicised, it relies on the active involvement of the recipient.

The organisation also accepts that there is a minor risk of being infected by a virus from a standard

supplier but feels that the suppliers checks are adequate enough for this to be ignored.

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO56

000057

26 - HITCHINGS: HUMAN DIMENSION OF COMPUTER VIRUSES

10) What happened to the people concerned

An employee who was an Analyst/Programmer on secondment to the finance department was suspected.
He was severely reprimanded, removed from the project he was working on and returned to head office.

The Analyst/Programmer lefi the organisation shortly alter this incident to set himself up in business

writing software for personal computers.

Members of management and those involved in IT security in the organisation were considered to have
behaved correctly and in accordance with organisational procedures.

11) Conclusions from the case study

Viruses are considered by the organisation to be a real threat, not just to large companies but also to

standalone applications in small enterprises and therefore should be taken seriously.

It was felt that the creation of standards and guidelines was vital and that it was essential to check for

their compliance, even if it was only in a cursory way.

The organisation thought that awareness of the need for information security has to come from the top

and each layer must be seen to support the policy.

Organisationally, information technology plays an important role in this company. In addition to
business computing, it is used in other areas such as process control manufacturing and site security.
Through experience, the company has a well-developed ethos of security towards its computing
resources. However, its geographically dispersed nature has led to a fairly complex organisational

structure with some duplication and some gaps in managerial responsibility.

In particular, the growth of PC based end-user computing has provided some weaknesses in overall
organisational control. This is because the security ethos was based on centralised large scale computer
systems. Consequently, there was a lack of sufficient security measures and procedures in this area.

The management of end-user computing resources is by its nature a difficult task. Its main purpose is to
harness the creative talents of employees by arming them with powerful tools, but inevitably this can

cause control problems from an overall organisational perspective. Managerially, it requires a level of
trust combined with publicity and an educational policy that creates awareness of the organisational risks.
This is largely because the disparate nature of the computing resources makes it very difficult to regulate

each individual user.

Unfamiliarity with the culture of the PC can, as in this case, present problems. The ease of access and
widespread use of PCs (many people own one at home) encourages the exchange and swapping of
software, (especially games) and experience. This is completely in contrast to the bureaucratic,
centralised and heavily controlled culture of centralised computing. The capabilities of many modern PCs

easily outstrip mainframe computers of a few years ago and the sense of power accorded to end-users
may lead to almost fanatical extremes.

The problems in the case arose out of a common blind spot exhibited by many computing professionals
whose experience is based on centralised systems. Despite the existence of seemingly secure systems,

they were unable to anticipate one of the major problems of PCs - virus infection.

The perpetrator of the misuse was clearly a PC enthusiast who was almost certainly using company
resources for his own interests. His subsequent occupation as a games author would seem to confirm this.

An approach to secure systems such as that offered by the Virtual Methodology [Hitchings,l995] would
not only reveal the organisational and managerial issues but it would expose this kind of weakness. It

 —_j

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Ahingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000057

000058

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 27

would also, for example, highlight the bureaucratic or political nature of control exercised by centralised

computing departments and the clash with the ethos of end-user computing.

CONCLUDING REMARKS

The prevention of computer viruses and information security in general is usually considered a technical

problem, however, it has become clear that organisational issues have been a major factor. The size and

geographical distribution of an organisation can make information security weaker, especially if the

company has become too devolved and there is no centralised checking or controls.

The ethos of organisations must be reconsidered with information security in mind. Too much trust is not

desirable, it must be balanced with adequate controls. Allowing staff to run their own software on the

company’s machines may at first seem harmless. However, on closer inspection, it is obvious that a virus

can enter a networked system in this way and spread throughout an organisation’s computers.

Managerial issues are also of importance. Management skills should be improved so that a managers

understand their staff and are aware of what they are doing.

It is now known that most threats to information security are from insiders. This highlights the fact that

trust in employees must be balanced by adequate controls. It also shows that the myth of the lone hacker

attempting to disrupt systems should not be the major concern of organisations.

By using a methodology like VM, information security can be dramatically improved because the entire

organisation is considered and not just one area. Organisational ethos and policy are re-evaluated with

security-in mind, as are managerial issues. It only takes one breach in security for a problem to occur and

by looking at the organisation as a whole, as well as local issues, a successfiil information security policy

is more likely.

REFERENCES

[1] Checkland, P., ‘Systems thinking, systems practice’, Chichester: Wiley, 1981

[2] Checkland, P. and Scholes, J ., ‘Soft systems methodology in action’, Chichester: Wiley, 1990

[3] Wong, K. and Watt, S., ‘Managing information security’, Oxford: Elsevier Advanced

Technology, 1990.

[4] Davis, D.W. and Price W.L., ‘Security for computer networks’, Chichester: John Wiley and

Sons, 1987.

[5] Gasser, M., ‘Building a secure computer system’, New York: Van Nostrand Reinhold, 1988.

[6] Baskerville, R., ‘Designing infonnation system security’, Chichester: Wiley, 1988.

[7] Hitchings, J. ‘Achieving an integrated design: the way forward for information security’,

Proceedings of the Eleventh International Security Conference IFIP SEC ’95, Cape Town,

South Africa, 9 - 12 May 1995, Chapman & Hall.

VYR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Ahingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO58

000059

28 ~ HITCHINGS: HUMAN DIMENSION OF COMPUTER VIRUSES

VIRUS BULLETIN CONPERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pennission ofthe publishexs.

OOOO59

000060

VIRUS BULLETIN CONFERENCE SEPTFJWBER I995 ° 29

FULLY AUTOMATED RESPONSE FOR IN THE WILD VIRUSES

(FAR - ITW)

Mike Lambert

Frontier Corporation, 61 Coventry Avenue, Rochester, NY 14610, USA

Tel +1 716 777 4761 - Fax +1 716 423 9853 ~ Email mlambert@rochgte.fidonet.org

1 INTRODUCTION

1 recently looked at some anti-virus (AV) products as a buyer and found that the state-of-the-art in virus

response has moved forward, but only slightly, toward what we need in an enterprise environment. One

product will auto-disinfect floppy disk boot sectors on presentation without user intervention. Another

product will auto-recover from BS/MBR virus infections but still requires operator intervention. There is

also a product that will install on infected systems and clean the system during the installation. There is a

product that has been capturing virus specimens for years. Many products will notify someone over a

network, but incident accounting seems to be missing altogether.

The reason for the slow progress may be because there is no vision ofwhat kind ofproduct we should be

moving toward, or maybe the AV development community is just more resistant to change than other

development communities. We can do something about the former; that is, tell the AV development

community what we want. This paper isjust that, the ‘Enterprise Wish-list for AV product developers’. I

hope that there will be other papers that will correct my errors or include my omissions when and ifthey are

identified. Such work is good and will fill the need for the lack ofvisionary direction it seems that we need

so desperately.

Generally speaking, we are still working with the philosophy ofnon-automated response to virus exposure

and infection response. Basically it’s ‘product sees it, someone cleans it’. This is fine for the single user at

home, but not much good for an enterprise environment. What we need is a FullyAut0matedResponse .

(FAR)for virus exposures and infectionsproduced by the virusesfrom which we are most at risk, the

In The Wild (ITW) virus. I would like to see an automated response with no user intervention and

automatic sample gathering and reporting for ITW virus infections and exposures. I think this is extremely

important in our environments which are directly exposed to the same in-the-wild viruses on a daily basis.

FAR is a response philosophy for the known risk; it is not a substitute for unknown risk mitigation. FAR

handles the 99% you know, not the 1% risk you have yet to experience. Once experienced, the unknown

risk becomes the known risk and is included in the known risk handling (FAR).

VIRUSBULLETIN CONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000060

000061

30 ° LAMBERT: VIRUSES IN THE ENTERPRISE ENVIRONMENT...

2 SPECIFICATIONS AND DEFINITIONS

The target audience is the Corporate Security Manager or the Network Administrator-responsible for Anti-
Virus capabilities. This is not meant to be a feasibility study, a technical justification, or a technical
description of implementation. This is intended to present the idea ofFAR to the target audience, highlight a
few problems which will surface, and describe what FAR might look like from the functional point ofview.

This paper is concerned with only a subset ofall known DOS viruses. That subset consists ofthe ‘in-the-
wild’ (ITW) viruses. There is no provision for MAC viruses, or for viruses not found in the wild. The
reader is charged to keep this in mind throughout the paper, because what is stated here and applies here
applies to ‘in-the-wild DOS viruses’ only. WhatI am asserting may notbe applicable in the theoretical
realm which includes response for all known and future viruses, and it isn’t meant to be.

In-the-wild viruses are those viruses which are actually cruising computers in homes and organizations.

These are the viruses that are likely to visit your organization (99% or more of the time). There are zoos

containing thousands ofviruses. These zoos are passed around to professionals, non-professionals, and
the curious. Just because a virus is in a zoo, it does not mean that you are likely to see it in your

organization. ‘Zoo specimens’ should not be confused with ‘in the wild’ viruses. I will refer to the ‘in the
wild’ as ITW.

The current document which attempts to identify ITW viruses and appears to be accepted by all is Joe
Wells’ Wildlist. It is a good starting place, but one should keep in mind that there are viruses in the wild
which are not on Joe’s Wildlist, and a few problems with the list itself. For instance, because ofnaming

variations, the same virus appears more than once. Since there is not a repository for actual ITW samples,
some ofthe listed viruses are too vague to point to a specific strain. I think using this list is the most

acceptable place to start, and that the list will overcome its current problems as it is used more.

I use the term ‘virus exposure’ as the general definition ofa clean system in which a virus is present.

Examples ofthis are: 1) a clean system which has an infected floppy disk in the drive; and, 2) a clean
system which has an object (file infector) with a virus in it that, if executed, can infect the system.

I use the term ‘virus infection’ as the general defmition ofa system which has a memory-resident virus

active and capable ofreproducing (non-resident viruses not included).

I use the terms ‘enterprise’, ‘organization’, and ‘site’ to indicate a networked system with multiple DOS
computers connected to it. This could be a small company, a school or university, or a multi-national
corporation.

FAR is Fully Automated Response. This is an automated identification, disinfection, and reporting response
to those viruses for which it is most appropriate. No user intervention is required and no user notification is
delivered. Most BS/MBR, multipartite, and file viruses can be dealt with by restoring infected objects, even

with the virus present. Some viruses cannot or should notbe included in an automated response; these
viruses are termed non-FAR viruses. Non-FAR viruses include those which destroy the executable or which

require the virus to be present to access data.

A FAR-ITWvirus is an ‘in the wild’ virus that can be disinfected without a special disinfection procedure

(i.e.. can be totally contained in a software solution). All ITW boot sector (BS), master boot record (MBR),
companion, directory, appending, andprepending viruses that do not produce ‘virus resident dependent’
problems should be included in a fully automated restoration capability. Exceptional ITW viruses requiring
special disinfection procedures need not be included in the FAR requirement and are noted as non-FAR-
ITW viruses. EXEbug would be a FAR-ITW virus, One-halfmay be a non_FAR-ITW virus (depends on the
expertise ofthe AV developer). Some hardware implementations may dictate some virus infections as non-
FAR

I/YR USBULLETINCONFERENCE©1995 VirusBulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO61

000062

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ‘ 3!

A ‘workplace interruption’ is any unnecessary interruption ofa user’s productivity. This includes manually

cleaning floppy disks, scanning systems, cleaning systems, etc. A workplace interruption is not limited to a

single worker; it often extends to other workers nearby. Workplace interruptions can be short or extended.

The organization loses productivity with each incident which interrupts the worker. This productivity loss is

ofien much more expensive than the actual cost ofthe technical response to the incident. In larger

organizations, with employees located across large geographical areas, virus incident support often requires

the user, increasing the magnitude ofthe interruption. An interruption need only occur when the ITW virus
infection is non-FAR

Non-ITW viruses can be included in the FAR but if it is not ITW there is little reason to include them.

Doing this work ahead of time will certainly be necessary ifthe virus ever attains the ITW status. If a

non-ITW virus is subsequently found in the wild, it can be included at that time.

No specific network is required for this model; communication requirements are stated generically. The

specific implementation will vary from network to network, feature to feature.

‘NLMs’ and FAR have almost nothing to do with one another. File and multi-partite infections may reside

on servers, but it is workstations that ‘get infected’ and ‘ spread infections’. An NLM does not FAR; don’t

confirse an NLM scanning executables delivered from a server with a Fully Automated Response to a virus

exposure or infection. The closest an NLM comes to FAR is to ‘move’ or copy a suspected file to a

protected directory. This is not FAR You may need an NLM ifyou don’t have any decent network security

(i.e. someone using the network can infect an object residing on the network), but FAR is a different

philosophy.

3 :1»: THE WILD VIRUSES

So just how many ofthe thousands ofviruses are we talking about? It is not near as many as you think! Joe

Wells’ list of July 1, 1994 lists a total of 152. January 1, 1995 shows a total of 197. The current list of

June 1, 1995 gives us a total of235 worldwide! 1 know that there are more ITW viruses than those on Joe’s

list. It is the requirement oflist participation which causes this problem. Even ifwe add 30% to Joe’s list

we still only reach just over 300 viruses!

Ofthe 6, 000 or more viruses in existence, it is mostprobably a mere 300 that we are talking aboutfor

FAR! This is just 5% ofthe world’ s virus population.

Let’s say that 3 5% ofthe ITW are BS/MBR viruses. A conservative figure is that 65% ofthe virus

incidents in the an organization are ITW BS/MBR viruses. This means that more than 65% ofthe problem

is caused by a mere one and one quarter percent (1.25%) ofthe viruses! In many organizations, BS/MBR
infections account for 90+% ofthe number ofvirus incidents.

I think that when we look at the viruses which we see every day; they are virtually all ITW viruses.

4 TI-IE FULLY AUTOMATED RESPONSE (FAR) OVERVIEW

Fully Automated Response is:

A. Detect the ITW virus

B. Remove the ITW virus automatically and without any user notification or intervention

C. Report the incident to technical support

The difference between current solutions and FAR is that software does all the work automatically and

quietly. We make all the decisions up front.

" VIRUS B ULLETZNCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO62

000063

32 ° LAMBERT: VIRUSES IN THE ENTERPRISE ENVIRONMENT...

Decision 1 - always remove the ITW virus.

Decision 2 - always report incidents and include a sample ofthe virus.

Decision 3 - always compile statistics.

The event, as an exposure or an infection, must be closed by the conclusion ofthe response. After-action
decisions, such as notification, are handled outside ofthe response. It is this ‘total response to the event’
that we currently lack. We augment our current responses with customer service manpower, technical
support manpower, user manpower, and training manpower. All ofthis manpower is a waste ofour
organization’s resources. We’ve just got to do things smarter!

FAR should be considered a ‘medium securigg’ solution. (Those needing a ‘high security’ solution must add

appropriate technology.)

Note that FAR lacks the ‘tell the user and make a big deal of it’ philosophy. I have found in asking users

that the last thing they want to deal with is a virus; ‘I just want to do my work’ is the most common phrase I
hear when talking to enterprise users. I agree with the user; let them work. Let virus administrators notify
users when necessary.

For those concerned with ‘user interfaces’, what better user interface could there be than FAR? Absolutely

no user input is required. In non-FAR situations, user response is via a message directing the user to call
the Help Desk (or whatever is desired). Administrator interface (to the PARproduct administration) is a
different issue, and keep in mind that system administrators generally are more computer literate than most
end users.

The reasons we need FAR are:

o It costs too much to ‘open a ticket and dispatch a tech’ for individual virus incidents

o The resulting (and expensive) workplace interruption is not necessary and too costly

o We can cut down the necessary virus training for technicians and employees

o We need the automated reporting, so that we can justify re-licensing the product next year.

Ifyour virus problem consists solely ofinfections by FAR-ITW viruses, it is easy to calculate the cost
savings. Just add all the costs of the Help Desk calls, plus the PC technician’s time, plus the lost worker
productivity. This is the amount you would save with FAR for ITW viruses.

FAR need only handle our biggest risk, the ITW virus. There is no need to include every obscure
research virus in the FAR concept New ITW will viruses appear, and need to be included in the FAR Most

products have demonstrated that they can supply scanners and cleaners for new ITW viruses very quickly
(sometimes in mere hours), so including them in FARproducts is trivial.

The idea behind FAR is to use an automated response to a FAR-ITW virus infection or exposure whenever

possible. This includesproduct installation. There are no technical reasons for why a FAR-ITW virus
cannot be dealt with when installing a FARproduct on an infected system. Ifgeneric solutions such as a

generic MBR restoration instead ofa real MBR restoration are necessary, these are acceptable.

‘False Positives’ are non-existent in the FAR model. Since we are talking about working with known

viruses, both memory and object infections can be positively identified.

FAR is not a replacement for all current AV products. FAR is the distillation of the best technologies into
the exact product that will be ofthe most value in fighting viruses on the front lines. FAR’s technology
comes from the multitude ofother products, all FAR necessagg technology is already in existence in
different products. Research and Development ofcurrent products must continue. There is no reason for

 ..:j._j

VIR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO63

000064

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 33

FAR to be the only technology an organization utilizes. All organizations must select the technology which

best fulfills their security philosophy.

5 PROBLEMS WE FACE TO FAR-I I W

We face four basic problems to implement FAR—ITW:

o No ITW base from which to start from

o Current ‘zoo’ certifications

o Industry resistance

o Ourselves.

NO ITW BASE

Unfortunately, while Joe’s Wildlist is a starting place, it is not a base to define the ITW. There is no actual

‘ITW zoo’ from which to specify ‘these are the ITW viruses’. The only public ITW attempt is currently

made by Virus Bulletin and it does not resemble Joe’s list to any great degree. I have 90% ofthe ITW

viruses on Joe’s list and it is easy to argue that they are not the actual ITW viruses which are reported on

the list. This is due to the variety ofnames and inexact identification by some products. Still, it is from this
list that we can at least start an interim solution.

We need two solutions to this problem.

Thefirst is an interim solution which will comprise a consensus ofwhat AV developers and professionals

will concede that makes a reasonable ITW zoo. This work is in progress by Richard Ford at the NCSA.

Richard is working with the Anti Virus Product Developer group to define an initial ITW specification.

The agreed-upon samples will form the first ITW sample base.

The second, long-terrn solution is to ‘start from scratch’. We must assemble a ‘new’ ITW list directly

supported by an ITW sample base. These samples would be from actual ITW infections. This would

provide the indisputable base from which to launch a definite FAR—ITW implementation. Information

compiled must include generic site information and specific virus informationfor each infection and

exposure reported. This will give us more information than ever, virus location and prevalence. All

incidents need to be reported to get an accurate picture ofthe true ITW virus.

We, as corporations, organizations, sites and private users, must "assist in the assembly ofthis new base by

reporting ITW infections and exposures, complete with samples. The new ITW sample base will identify a

real sample ofthe actual ITW threat to computer systems that all can agree on. This must be a world-wide
effort. I am confident that the AV developer, professional, independent, and the user communities will

support such an effort.

To facilitate such a massive effort requires central clearing houses from which to assemble reports and

samples to define the actual ITW virus. Existing and new reporting lines will be able to support and

represent all ofus. Joe Wells has a reporting structure in place. Joe will collect samples. Virus Bulletin has

been reporting ITW infections and can collect samples. The NCSA has a large number ofmembers and

being a security organization seems the most likely place to house the ITW sample base. All ITW

samples must be made available to all AV developers (a situation that does not now exist). Other

professionals and independents in organizations can help by forwarding reports and samples to another
central location. This could be the first joint venture for all to unite to solve our biggest single problem.

V./R US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO64

000065

34 ~ LAMBERT: VIRUSES IN THE ENTERPRISE ENVIRONMENT...

The actual details ofcreating a working solution from which we may all come together is in the making. lt
looks like there will be three or four different places to report infections and exposures and send samples.

More details will be forthcoming. I

ZOO CERTIFICATIONS

While there have been no ITW sample bases to test products with, there are a lot of ‘virus zoos’ out there.

Using these zoos to ‘test scanners’ has been the definition ofAV product testing. ‘Zoo scanning’ requires a

known control base and proper interpretation ofresults, two things ir1 short supply. What has taken the place

ofrepresenting our actual threat has been this ‘zoo testing’. The scanner is pitted against one or many

private collections of a myriad ofviruses, Trojans, joke programs, simulator samples, andjust plain junk
files. We are ‘given results’ and told that this certifies some product as good for use in our ITW

environments. Few things are further than the truth.

Zoo certifications are really a sort of ‘what ifthe research virus made it to the wild‘?’. Occasionally this

happens, but frequently the new ITW virus is new, so ‘zoo scanning’ doesn’t help. Proper interpretation of
this sort of ‘scanner testing’ may be valuable, butjust isn’t directly transferable to solutions to our ITW

problems. Worse still is that these certifications give one a false sense of security because they are very
inadequate tests. Just because a scanner can identify something in a zoo scanning test does not mean that it
will find the virus in an infected environment (this is a common occurrence).

We must de-emphasize ‘zoo certifications’ and emphasize ‘ITW certifications’ using a known ITW sample

base. Casual magazine-type of ‘AV testing’ without professional guidance mustbe avoided.

INDUSTRY RESISTANCE

The AV development industry has just come out ofa war with the virus creation community. The virus
creation community provided, the AV development community included, regardless. This has little to do

with our ITW problems except that some AV developers got so caught up in the war, they forgot the
civilians. The fact is, until recently when ITW virus testing became something which could not be ignored,

it was ignored by most. There has never been a concerted effort by the AV community to deal with ITW
viruses. AV developers must engage ‘full disclosure’ ofITW viruses. Current exchange restrictions should

only apply to research viruses. Current systems and philosophies will take time to change.

The AV industry is sometimes inflexible in what we need, but inclined to what they think we need.
Consumers bear a fair amount ofthe blame forpicking products which identified ever-increasing numbers

ofviruses (zoo certifications) and insisting on a scanner solution. We have refused to listen to sage
advice for the different level of security solutions, insisting that there should be just one, the scanner.

The industry is geared to our marketing weaknesses and will resist the direction in which we really need
to go. We must change our requirements to reflect our real needs ifwe wish to move the AV industry to

provide the solutions we need.

OURSELVES

We as a consumer community are going to have to look at the information that we see and make some

intelligent, objective analysis. We have to learn the difference between an article and an advertisement.
We are considered by the marketing community to be drones waiting to be told what to do. Don’t blame

anyone else; it is our fault. We are much more educated in other areas ofpurchase, and naive in AV product
selection.

We need to get reliable information from security organizations rather than advertisements. We need to
support activities which are directed at ITW viruses and the reliable, appropriate handling of them. Ifyour
security organization does not have sound, measurable efforts in these areas, we need to demand them.

VIRUS BULLETINCONFERENCE©1995 V'1rusBulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a. retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO65

000066

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 35

6 THE ANATOMY OF FAR

FAR is comprised of six tasks:

1. Identify the ITW virus

2. Collect a sample

3. Clean the ITW virus

4. Make a report

5. Send report to virus administrator

6. Keep all incident statistics for the virus administrator

and must operate equally well in:

1. The clean environment

2. The infected environment

Under clean conditions, FAR requires that the virus be cleaned without user notification or intervention.

Notification ofthe exposure should be a virus sample and report to the virus administrator. Leave the
user notification to the virus administrator. Installation should be automatic, no user intervention

required, and should save the MBR, BS, system files, and command processor (depending on product
design philosophy). These objects can be used later, in infection recovery instances.

Under FAR-ITW infected conditions, FAR requires that the virusbe handled exactly as under clean

conditions (i.e. identify, remove, report). Installation should recover the system and save the same objects as
under clean installation.

Under non-FAR-ITW infected conditions, FARrequires that the user be notified to contact his local

technical support personnel. Under these conditions, the situation is hazardous enough to warrant the

workplace interruption. All ofthe sample gathering and reporting should be done, but in the non-FAR-
ITW infected condition, the virus is not automatically cleaned.

All ofthe techniques necessary to accomplish the related tasks necessary for FAR have been in use in one

product or another at some time. I note that some products really excel in some ofthese areas. What we
have never seen is those techniques combined to accomplish FAR. It’ s not that FAR is impossible; it just

hasn’t been a priority Worth pursuing...yet. Ifthe ‘best identification’, the best ‘working in an infected
environment’, and the ‘best restoration’ were all to join together with the ‘best accounting’, we could have a

superior FAR product!

7 FARIN OPERATION

To be complete, I must describe FAR response enough to facilitate its development. Some managers may

not be concerned with some ofthe specifics. Skip this section ifyou wish.

A THE INFECTED FLOPPY VIRUS EXPOSURE

This is the easiest response to implement. The object in question is not executed and needs to be replaced

with a known object.

FAR says that, when a user inserts an infected floppy disk in the system, the following happens:

o Identify the ITW virus

VIRUS BULLETZNCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO66

000067

36 ° LAMBERT: VIRUSES IN THE ENTERPRISE ENVIRONMENT...

o Save a sample ofthe BS

o Clean the floppy ifnot write-protected

o Create an infection report

o Send the report and sample to the virus administratorwhen possible

o Integrate the infection report into the virus administrator’s summary.

Several things happen and don’t happen in this instance:

o The user continues working with a clean floppy which will not later infect a computer

o The administrator knows what the user is exposed to before the organization gets infected by it

o Virus incident statistics are automatically compiled

I do not consider the failure to restore a BS on a write protected disk as a reason to interrupt the user.

This disinfection failure should be forwarded to the virus administrator and the appropriate decisions

made by the administrator.

What’s left to do? The virus administrator needs to determine how and when the user is notified of the

problem which could have disrupted their work. The administrator also needs to determine the fate ofthe
collected sample.

B THE BS/MBR VIRUS-INFECTED SYSTEM

By definition, this should not happen on a FAR-protected system. Suppose, for this example, that someone
booted an infected floppy while the regular user was on vacation.

The FAR response is:

Identify the ITW virus

Save a sample ofthe MBR or BS

Clean the MBR or BS

Reboot the clean system

Create an infection report

Send the report and sample to the virus administrator when possible
.\‘.°‘S":'>‘:*’!\’:‘

Integrate the infection report into the virus administrator’s summary

Again, the user continues to work without an interruption, the administrator knows what is happening, and
statistics are gathered.

C THE FILE VIRUS EXPOSURE

This looks much like the response to the exposure to the infected floppy BS, but additionally must deal with

an object that must be executed. There will be cases where the ‘clean the virus’ requirement may not be able
to be fulfilled. Ifthis situation exists, all other FAR requirements should be fulfilled.

o Identify the ITW virus on copy, execution, etc

o Save a sample of the file

o Clean the object ifnot write-protected

o Perform the originally requested action (copy, execute, etc) ifpossible

_ I/YRUS BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO67

000068

VIRUS BULLETIN CONFERENCE SEPTEMBER I 995 ° 3 7

o Create an infection report

o Send the report and sample to the virus administrator when possible

o Integrate the infection report into the virus administrator’s summary

Several things happen and don’t happen in this instance:

3 The user continues working with a clean executable that does not later infect the system

3 The administrator knows what the user is exposed to before the organization gets infected by it

3 Virus incident statistics are automatically compiled.

I do not consider the failure to restore a write-protected file as a reason to intenupt the user. This

disinfection failure should be forwarded to the virus administrator, and the appropriate decisions made by
the administrator.

Same cleanup as the BS exposure: The virus administrator -needs to determine how and when the user is

notified of the problem that could have disrupted their work. The administrator also needs to determine

the fate of the collected sample.

D THE FILE VIRUS INFECTION

File infections come in a huge variety ofinfection types and techniques. In some cases, the virus is

non—resident, making it easy to deal with. In others it may be prudent to use the resident virus. Some viruses

are so virulent that they must be removed from memory entirely. The exact technique or series ofsteps to

disinfect the system is dictated by the virus type and capability. However, the goal is the same: remove the

virus without user intervention, get a sample, and make a report.

In this case, we imagine an executable which is infected without FARprotection. The subsequent starting of

this system thus makes the virus resident. Let’ s say someone booted their own floppy, infected the system,
and left. The virus infection will be active when the system is subsequently booted by the regular user.

The general FAR response is:

o Identify the ITW virus infection

o Establish a clean environment or change configuration, ifdesired or necessary

o Secure a sample ofthe virus

o Restore the infected objects or delete companions

o Create the infection report

o Restore the system to an operational configuration ifnecessary

o Start or restart the system

o Send the report and sample to the virus administrator when possible

o Integrate the infection report into the virus administrator’s summary.

The order ofsome items can be changed depending on the implementation philosophy. The point is to get a

sample, remove the virus, and notify the appropriate party when possible.

While the user may get a little show as the system is restoring itself, the user goes to work with the

minimum interruption once the restoration is completed, the administrator knows what is happening, and

statistics are gathered.

I/YRUS BULLETHVCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

OOOO68

000069

38 ° LAMBERT: VIRUSES IN THE ENTERPRISE ENVIRONMENT...
 T

E THE MULTIPARTITE VIRUS EXPOSURE AND INFECTION

The FAR response for the multipartite is much like the BS and file exposure and infection responses, with
the added requirement ofthe additional object restoration.

Again, the user continues to work without an interruption, the administrator knows what is happening, and
statistics are gathered.

8 WHEN NOT TO FAR

Not doing FAR does not mean not doing all ofFAR tasks. Whatever steps can be done, should be done. In
many cases, this requires‘ notifying the user and possibly creating an interruption. If nothing else, there
should be a sample gathered and report created. The report can be sent ifor when practical. Ifthere must be
a workplace interruption, the user can be directed to call the Help Desk with a message.

There are times when you don’t want to FAR This would be when removing the virus would deny access to

data (in whatever form this may take). In this case it may be necessary to back up data while the virus is
present and then remove the virus. Years ago, this concept was illustrated by the Volga virus. It’s not that it
is impossible to FAR with Volga or One_halfi there just may not be enough use of the particular FAR
technique to warrant the expense ofdeveloping it.

Another instance is when your FAR product meets an anti-AV product that is FAR hostile. Theoretically
this should not happen, as the FAR response should be to remove the virus without ‘ setting offthe bomb’.

Other non-FAR situations are those where the object is write-protected. This can be a file on the server, a
write-protected floppy, or write protection on the workstation. These situations are non-FAR as cleaning the
object is concerned, but should still be as FAR handled as possible.

There are other non-FAR situations that can be described. AV developers may decide to make different

viruses FAR and non-FAR. The definition ofa non-FAR virus is ‘that virusfor which no A Vcleveloper can

provide a software only solution ’. Not all AV developers are created equally. I wouldn’t be surprised to see
some ‘partial-FAR solutions’ for those which lack the skills for a complete solution. I’m sure we will see
some viruses considered non-FAR because the virus is not sufficiently in the wild to warrant the work

necessary for the FAR solution. There are many shades of gray which the tailor may use.

9 FAR BENEFITS

Ofcourse the benefits are obvious. The enterprise has software do all the work, and the security and

network administrators get all the credit. The software even justifies itself for you. The benefit for AV

developers is new product potential, significantly less user technical support required, and enterprise
users have the justification to relicense next year.

10 FAR EVALUATION

I hope that FAR product evaluation does not parallel many of the current testing and evaluations. If the
evaluation does not make a good case for the utility ofthe product, and properly evaluate that product,
we should disregard the test. FAR testing should primarily be concerned with the ability of the product to
do the job (and the job is viruses). Tests which are notprimarily concerned with the ability of the product to
do the job for which it was designed should be ignored.

We, the community which needs and will use FAR, should require that all primary testing is geared to the
security aspect of the product, dealing with ITW viruses. Other tests for ease ofuse for administrators
should be clearly labeled as secondary tests, not directly measuring the product for its primaryjob ofdealing

I/YR US BULLETINCONFERENCE©l995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO69

000070

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 - 39

with ITW viruses. All Objective conclusions pertain to the primary job of the product; Subjective

conclusions pertain to the secondary job ofthe product.

1 1 CONCLUSION

FAR is what users want.

FAR saves organizational resources (money) responding to virus incidents.

FAR makes almost all viruses in the enterprise environment a non-event.

FAR takes no technology other than what is already in use to implement.

FAR will be a reality when we demand it.

The question is not ‘do we need it?’; the question is ‘when will it be provided?’. I’ll bet the first AV

developer which produces a working version will find that it is ‘the better mousetrap’. Just open the door.

CREDITS

PC Viruses in the Wild (Wi1dlist). is a collation by Joe Wells in co-operation with many AV

product developers and AV professionals.

The ideas and opinions expressed are wholly my own and are not necessarily those ofmy employer or associates. I wish to

acknowledge and thank all those people who have contributed to the AV community and its advancements; their efforts and views
become a part of all of us and are many times difficult to separate from our opinions.

Special thanks to my friends and associates who have listened, assisted, and criticized me during the writing ofthis paper. The
remaining imperfections here are mine alone.

VIRUS BULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Ahingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000070

000071

40 * LAMBERT: VIRUSES IN THE ENTERPRISE ENVIRONMENT...

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO71

000072

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° 4!

THE PC BOOT SEQUENCE, ITS RISKSAND OPPORTUNITIES

(THE USE AND HVIPORTANCE OF THE BOOT SEQUENCE IN REDUCING BOOT

VIRUS EPl])EMICS)

Jonathan D. Lettvin

OverByte Corporation, 194 Waltham Street, Lexington, MA 02173-4914, USA

Tel +1 617 860 91 19 - Email jonathan_1ettvin.lotus@crd.1otus.com

ABSTRACT

A singlebad user habit accountsfor the epidemic spread ofmost boot sector viruses (leaving diskettes in
the boot drive). Users need education to ‘unlearn ’ this habit. The best time to educate users is when they
boot

No general anti-virusproductprovides boot-time educational text, or anti-virus code. Someproducts

provide a virus detecting TSRfor DOS. This would usually be ideal because the TSR identifies a boot sector

virus before it is activated byfinding it on thefloppy before the user boots. However, lack ofcompliance,

bad habits, and unavoidable events make bootingfromfloppy a serious continued source ofvirus spread.

We have discovered thatspeciallyprepared diskettes, formattedforgeneral use andfordelivery of

commercialproducts, provide a new and important layerofvirus epidemicprevention.

WHO AM I?

I am an employee ofLotus Development Corporation and, at the same time, I am president of0verByte

Corporation having a special relationship with Lotus. Lotus uses our anti-virus products and services. I

speak to you today as the President of 0verByte.

WHO CARES ABOUT EPIDEMIC BOOT SECTOR VIRUSES?

I think everyone in this room has spent time dealing with epidemic boot sector viruses. The ‘virus

prevalence charts’ document that epidemic boot sector viruses dominate the virus industry. Ifyou are an
anti-virus developer or reporter, you are confronted daily by epidemic boot sector viruses. The majority of

corporate anti-virus dollars are spent on removing epidemic boot sector viruses.

I’ve spent over six years at Lotus studying viruses and the corporate response to the problem. In the last five
years, I saw exactly one ‘file infector’ attack by Natas. All other virus attacks were attacks by the top twenty

or so epidemic boot sector viruses. At 0verByte we know customers need to detect thousands ofother

viruses just for diligence, but we rarely hear of even those thousands ofviruses that are in the wild.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO72

000073

42 ' LETTVIN: THE PC BOOT SEQUENCE, ITS RISKS AND OPPORTUNITIES

WHO CARES ABOUT THE BOOT SEQUENCE?

I believe the moment ofvirus attack is the best time for virus defense. At no other time may any program

assume total control ofa PC without risk. The boot sequence is unique in its opportunities for virus combat.

All epidemic boot sector viruses rely on special knowledge ofthe boot sequence. Boot sector viruses modify
BIOS resources before any operating systems are loaded. Once an operating system is loaded, restoring

BIOS resources perfectly is impossible.

When a virus is detected, many anti-virus products force a clean reboot of the PC as part ofvirus removal.
The methods used by 0verByte to restore the boot sequence often pre-empts the need for rebooting.

I feel that this is important. I believe that you in the audience will agree with me when you experience the
difference DisQuick diskettes make both in initial virus detection time within a group, and the elapsed time
between an attack ofan epidemic boot sector virus and when you can get back to work.

WHAT IS THE BOOT SEQUENCE?

This talk is focused on what I have identified as the boot sequence. I consider the boot sequence as the

transition from Power-Up, through POST (Power On SelfTest), MBR, and BS to any OS (Operating

System). Virus programmers have exploited this transition more than any other aspect ofthe PC. I will
certainly not be able to cover the subject exhaustively during this talk. Mostly, I will describe a few ofthe
methods already exploited by virus programmers and mention quickly other areas needing protection.

I know ofno good book describing the exact requirements of the boot sequence. I constructed the
‘GENERIC PC STANDARD’, which we will describe shortly, and how it is used by the boot sequence

from first-hand experience and hints from the many popularbooks which cover PC Hardware, BIOS, DOS,
and collateral subjects. I have put a short bibliography ofour most frequently referenced books at the end of
this paper.

WHAT IS THE GENERIC PC STANDARD?

What defines a generic PC is a fairly uniform standard ofoperation between hardware and firmware. This
standard is so well documented that very little stands unrevealed, although almost none of it is official.

The standard is so firmly entrenched that a specific PC has little market unless it scores very close to 100%

against compatibility tests.

Compatibility tests include recognition ofhard-numbered BIOS entry points for vectors, exact contents of
certain RAM locations during the POST (Power On SelfTest) and boot process, exact contents ofcertain
disk locations, and many, many more. The actual standard even allows for relaxation ofenforcement on
documented standards. This means that methods considered to be permanent standards often change.

One example of an item incorporated in the GENERIC PC STANDARD is that the absolute real-mode
ROM-BIOS location FO0O:EC59 will probably remain permanently as the entry point for floppy diskette

BIOS services. Many useful programs use this hard-coded entry-point.

To clarify a little more, consider what a generic PC is not. It is not the applications we run every day. It is
not the device drivers loaded by our preferred operating systems. It is not DOS, OS/2, or Windows.
However, almost all ofthese rely on the GENERIC PC STANDARD, and will fail on PCs which deviate
from this norm. It is not even the specific PC on your desk which has a specific configuration and physical

options set, although, in all likelihood your PC follows the generic PC standard completely.

I/YR USBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO73

000074

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 43

WHAT ARE THE RISKS lN DEVIATION FROM THE STANDARD?

Deviation from the standard can cause failure ofoperating systems, device drivers-, and application

programs. Developers of add-in cards must usually recognize and follow these standards completely to be
successful.

On a system where a standard breaking card is installed, viruses sometimes fail, with dramatic results. Even

on a system where the standard has been upgraded, viruses which depended on an earlier standard may cause

system failure. For instance, some common viruses do not recognize the 1.44 MB drives which are now the
standard boot drive. These viruses make the assumption that the drive is 720K, and use unintended sectors

for propagation.

Most viruses are not successful in following the new standard for operating systems which engage ‘Protect

Mode’ on the newer Intel chip family members. These operating systems will sometimes warn the user with
obscure references like ‘Cannot load 32 bit driver’ , when a virus has chained a vector which needs to be in

ROM—BIOS to follow the new standard.

I suspect that part ofthe reluctance in adopting new operating systems has been due to interference by
I viruses, making a given PC appear to ignore the new standard, and thus misbehave. This misbehaviour is

often seen as a dramatic decrease from the intended performance ofthe new operating system. This kind

ofanecdotal report spreads rapidly by word ofmouth, making potential new users reluctant to purchase
otherwise fine software.

ANY VIRUSES SUCCESSFUL AT ALL?

Not surprisingly, most successful epidemic viruses attack PCs as hardware. Most virus programmers use

knowledge ofthe GENERIC PC STANDARD, as well as knowledge of specific file systems and operating

systems, to propagate. Since the average user is interested only in application programs useful to their daily
activities, the very slight changes viruses make in resources and operations on which the operating system

relies are usually either invisible or merely nettlesome until the warhead triggers.

WHY IS THE FORM VIRUS THE MOST SUCCESSFUL?

Probably the most frequently found virus in the wild is the ‘Form’ virus. We believe the reason for its

success is its very careful attendance to the PC and FAT file system standards. I note the remarkable care

taken by its author to allow Form to adapt. Form appears to lack a formal warhead, but it has certain
technical flaws which amount to an accidental warhead. I could be convinced that the flaws were intentional.

The consistency ofcode style breaks for this flaw.

WHAT CHARACTERIZES BOOT-T]l\/IE RAM AND VECTORS?

The actual condition ofthe vectors and BIOS data when the boot sector has been read in is required to have

a certain character. When this character is not correct, we believe a number ofmethods can be used to

correct it. The only time this character may be corrected safely is during the boot.

For example, a documented BIOS vector will point into one ofseveral known areas. If the vector is in a

segment F000 or above, We consider it safe. Ifthe vector is in segment C000 or above, but below D000, we
consider it safe. If the vector is below segment A000, we consider it distinctly unsafe. However, the

standard leaves segments D000 through EFFF as areas ofconj ecture. We have methods for dealing with

these as well, but the standard is unclear for that range.

VIRUS B ULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO74

000075

44 ° LETTVIN: THE PC BOOT SEQUENCE, ITS RISKS AND OPPORTUNITIES

WHAT ARE THE STANDARD STEPS IN THE BOOT SEQUENCE?

The PC boot sequence is a long process to explain in words. Iwill be discussing the four numbered items of

the boot sequence in greater detail afier the description ofthe entire boot sequence in digested form. I break

the sequence down into four major sections:

NORMAL PREAl\/[BLE TO FLOPPY OR FIXED DISK BOOT

Starting at power-on, the Intel chip loads REAL CS:IP with FFFF:OOOO.

This location is in ROM-BIOS (Writable FLASH EPROMS in newer PCs).

The instructions at FFFF:00OO start the Power On SelfTest (POST).

1. POST installs vectors pointing into ROM or shadow RAM.

POST performs all its duties and scans for additional ROMS.

Each ROM may initialize more vectors, returning control to POST.

2. CMOS memory is examined to determine the device to be used for BOOT.POST finishes and checks

for presence of a floppy in the BOOT drive.

If a CMOS confirmed floppy is present, BIOS performs the FLOPPY BOOT.

Ifnot, BIOS performs the FIXED DISK MBR BOOT.

NORMAL FLOPPY BOOT

Read drive 0, sector 1, head 0, track 0 into location 0000:7C0O.

Then continue the process with the GENERIC OPERATING SYSTEM BOOT .

NORMAL FIXED DISK BOOT

Read drive 80, sector 1, head 0, track 0 into location OOO0:7COO.

Set CS:IP to OOO0:7C00.

3. The code executed is usually a standard MBR

The MBR contains two critical data areas, one undocumented.

DRIVE ID used by newer Microsoft Operating Systems

Offset lB8H through IBEH is undocumented.

PARTITION TABLE (PT)

Offset IBEH through IFEH is well documented.

The MBR code starts by copying itselfto location OOO0:OO6OH.

The code sets CS:IP to 0OO0:O060H transferring control to the copy.

The MBR code reports any errors or absence ofpartitions in the PT.

Ifthere are no errors, the MBR code loads the active partition BS.

This BS is loaded at 0000:7C0O.

Continue the process with the GENERIC OPERATING SYSTEM BOOT.

V./R US BULLETINCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any‘ form
without the prior written permission of the publishers.

OOOO75

000076

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 45

GENERIC OPERATING SYSTEM BOOT (USING IBM DOS AS AN EXANIPLE)

Set CS:IP to 0O00:7C00.

4. The code executed is usually a DOS BOOTOR SECTOR sector.

This code may change diskette-tuning parameters in BIOS.

This code analyses the BPB (BIOS Parameter Block) for disk structure.

The BPB contains the size of the system areas and the sector count.

Using the BPB, the directory is found and loaded.

Compare the first items in the directory to IBMBlO.SYS and lBMDOS.SYS.

If they exist, set the cylinder/head/sector to logical cluster 2.

Calculate the cluster count from the size of IBMBIO.SYS.

Load those sequential clusters starting at cluster 2 into RAM.

If absent, notify the user ofa ‘Non-System Disk’ and request reboot sector sector sector sector. If

present, set CS:IP to the beginning ofthe loaded IBMBIO.SYS.

For brevity, I have marked only four ofthe many places ofvirus risk in the sequence. These four will be
discussed next.

WHAT ARE SOME PRJIVIARY RESOURCES EXPLOITED BY EPIDEMIC BOOT
VIRUSES?

1 . VECTOR CHAINING

Most boot sector viruses simply chain INT 13H (BIOS disk services). Some boot sector viruses chain a

vector like the timer and wait for DOS to be loaded. All current epidemic boot sector viruses occupy RAM

and not ROM. This may change, due to certain advances in PC BIOS distribution.

2. CMOS MODIFICATION

Some viruses will modify CMOS RAM during infection, and force the PC to ignore the diskette drives

during subsequent boot. This kind ofvirus will then always boot from fixed disk. Once the virus boots, it

may hide its having booted from fixed disk by detecting, loading, and executing the floppy boot.

3. MASTER BOOT SECTOR CHAINING

Many methods are used by viruses to gain control during fixed disk boot. One virus has completely

rewritten the code for loading the active partition. Others use methods similar to diskette boot sector

chaining. Some viruses change methods on fixed disk, when the same method would suffice.

4. OPERATING SYSTEM BOOT SECTOR CHAINING

We see two common methods for storing boot sector viruses on a floppy. The first method moves the

original boot sector to a fixed location. The second method calculates a place to store the original boot
sector. When using the fixed location, the virus programmer counts on rare overwrites. When using

calculation, the virus programmer counts on rare disk maintenance. Both methods have been successful. An

attempt to subsume the entire legitimate boot code will probably fail.

VIRUSBULLETZNCONEERENCE©l995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pennission of the publishers.

OOOO76

000077

46 ° LETTVIN: THE PC BOOT SEQUENCE, ITS RISKS AND OPPORTUNITIES

WHAT ARE SOME BOOT-T]lVlE OPPORTUNITIES AGAINST EPIDENIIC BOOT

SECTOR VIRUSES?

1. VECTOR CHAINING

Certain portions ofthe first 1 MB are known to be ROM only. Other portions may be either RAM or ROM,
and still others are RAM only. We detect vectors which are potentially pointing into virus-owned memory.

2. CMOS MODIFICATION

Where a specific virus has modified the CMOS memory, the original values can usually be restored.

3. MASTER BOOT SECTOR CHAINING

We cannot claim to protect Master Boot Sector code from rewriting viruses. However, in combination with
our diskette methods, we will still detect them. For chaining viruses, our code will usually alert the user to a
virus attack. We will install a new and better Master Boot Sector code portion than the original when we

remove one ofthese viruses.

4. OPERATING SYSTEM BOOT SECTOR CHAINING

BIOS has a documented unchangeable diskette vector which can be safely used. Certain precautions must be

taken to guarantee that safety. With the virus disabled, the vector chain through the virus may also be used.

WHAT ARE THE 24 CRITERIA BY WHICH WE MEASURE ANTI-VIRUS PRODUCTS?
(MORE OR LESS IN THE ORDER OF EXPECTED OCCURRENCE)

We feel that epidemic boot sector viruses should be given special attention, beyond simple removal. Over
time, we have developed a set ofcriteria by which we measure our own and other anti-virus products. We

currently have 24 such criteria.

Some criteria measure solutions to technical problems. For example, all viruses can be disabled while they

are active in RAM. We expect anti-virus products to disable at least the epidemic viruses.

Other criteria measure solutions to social and operational problems. For instance, we believe the most
effective time to educate a virus victim is the exact time at which they put themselves at risk. The action

which put them at risk must be defined simply, and the ways ofavoiding future risk must be explained, also
simply.

Eight items in the following list will be given extra attention during the talk. They are marked by
asterisks (*).

* 1 Detection

There is a virus here.

* 2 Identification

It is this virus, with sufficient certainty.

3 Acquire pre-removal recovery data

Recovery is sometimes difficult without the virus present.

* 4 Disable viruses

Chain through all virus ISRs, or replace vectors.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO77

000078

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 47

5 Report virus disabling to user and identify the virus

Let the user know when the virus function has been stopped.

6 Overwrite the virus in memory

Leave ISR chains when required to guarantee operations.

7 Restore/replace boot sector/master boot record as necessary

Restore when a copy has been saved, replace when overwritten.

* 8 Offer a new Master Boot Record even when no virus is present

Only install new MBR to detect future viruses ifuser accepts.

* 9 Overwrite virus data on disk with removal distinguishing data

Users must be able to identify overwritten data easily.

10 Restore CMOS RAM data where possible

Some viruses protect themselves by preventing floppy boot.

* 11 Report damaged files if possible

Decode the FAT and report files overwritten by boot sector viruses.

12 Restore program files where possible, back up ambiguous restorations

Leave the choice to use the infected file up to the user.

13 Report infected files

Believe it or not, some products do not report properly.

14 Report virus removals

I h This too is sometimes inadequately reported.

* 15 Describe how this virus infects PCs, and how to avoid re-infection

The user must be educated to avoid re-infection.

16 Provide virus Hot-Line information customizable for MIS departments

Most companies want an internal specialist to be notified.

17 Announce product name, version, and copyright

Everyone does this correctly nowadays

18 Perform all these functions optimized for speed

Some anti-virus products are slow and/or cumbersome.

19 Store encoded session results on original media ifwrite-enabled

Keep avery condensed record ofresults: there may be many.

20 Allow user to write-enable for storing encoded session results

Give users a chance to recover from a simple mistake.

21 Offer to copy contents from virus-infected floppy to clean one

Users need to continue using their current active diskettes.

22 Suggest write-protection for current diskette (compliment if found)

Keep encoded session safe for later review.
23 Provide session results to caller

For desk-to-desk virus removal, an easy review method is good.

* 24 Restore RAM (if boot loaded) or suggest reboot (if COMMAND loaded)

Bring the PC back to the GENERIC STANDARD for the OS.

I/IR US BULLETHVCONFERENCE ©1 995 VirusVBulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO78

000079

48 ' LETTVIN: THE PC BOOT SEQUENCE, ITS RISKS AND OPPORTUNITIES

We have developed these 24 criteria as a guideline. Each point helps us produce high-quality products. We

add to these criteria whenever we see an opportunity to improve our virus handling. Our compliance with

our own criteria is as close as possible to 100%. The criteria are demanding, and we are occasionally forced

to drop one or two points for certain viruses where the criteria cannot be met. For instance, the AntiCMOS

virus overwrites the MBR. An original MBR cannot be recovered. We have written a better-than-original

replacement MBR which obeys all known constraints on content and function, both documented and
undocumented.

General anti-virus products must cover thousands ofviruses, regardless oftheir rarity. Many of these

products have truly important and exceptional qualities which address virus problems that we do not. We
continue to recommend purchasing at least one top-rated anti-virus product and keeping it up-to-date, to use

in addition to our product, for better overall coverage.

However, when we compare our score on these 24 criteria with other anti-virus products, we find that we

stand apart. This is understandable, given the narrower technical objective we have set for ourselves. We

focus strictly on those viruses which are considered epidemic or everyday nuisances.

Our Lotus experience has taught us that criteria other than these 24 are far less valuable on a day-to-day
basis. Mostly, what our customers demand is immediate and complete relieffrom epidemic boot sector virus

attacks. We think 0verByte answers this demand well with DisQuz'c/r/ViRem0ve diskettes.

WHAT DOES OVERBYTE PRODUCE AND WHAT ARE ITS FEATURES?

We produce pre-forrnatted diskettes for general sale, and special formats for third-party software companies.
These formats and contents are protected under pending copyrights, trademarks, and patents.

DQTM, DisQu1'ckTM, ViT0ler8TM, T/iRem0ve1M, DQExpertTM

DisQuick optimizes diskette I/O increasing Read/Write speeds by 3 O%+ (on a fiill diskette, 40
seconds is saved on combined Read/Write)

ViT0ler8 prevents data from begin stored in areas viruses damage (virus tolerance means that the

probability ofdata damage is reduced)

Dz'sQuz'c/c launches compliant applications from special boot sectors (we work with other anti-virus
companies to launch theirproducts too)

ViRemove detects, identifies, disables, and removes viruses, (we update this to handle more viruses

regularly)

DQExpert debugging allows expert user intervention ofviruses (we develop new features to allow

easy interception ofnew viruses)

Booting from aDQ diskette causes educational text to be displayed. The display program adapts the
text to the immediate user needs. Fast use by corporate MIS is easy. Slow comprehensive reading is
also.

Our focus on responding to epidemic boot sector viruses at boot-time makes 0verByte products quite
different from other anti-virus programs. Many ofour anti-virus operations may be done safely only
at boot-time.

Along with Dz'sQuz'ck/ViRemove, we have provided a boot-time debugger. DQExpert allows the virus
professional to examine the PC in detail. New viruses can be analyzed, disabled, and removed before
the OS runs. The features ofDQExpert have been optimized forvirus investigation.

VIRUS BULLET[NCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO79

000080

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 49

WHAT DO WE RECOMIVIEND TO PREVENT OR WIPE OUT EPIDEMIC BOOT

SECTOR VIRUSES?

Identify behaviours that cause virus spread. Educate users to avoid these behaviours. Use all available tools

to facilitate this education and behaviour prevention. Determine what features an anti—virus needs to be

useful in your organization. Buy the best general anti—virus product with those features. Install it properly

and keep it up to date. In addition, we feel that when the majority ofdiskettes used in an organization have

DQ technology, the number ofvirus attacks will decrease dramatically.

0verByte Corporation welcomes licensing to and industrial partnerships with other anti—virus companies.

REFERENCES

[1] Undocumented PC (Frank Van Gilluwe, Addison Wesley)

[2] Undocumented DOS (Andrew Shulman et al, Addison Wesley)

[3] System BIOS for IBM PC/XT/AT Computers and Compatibles (Addison Wesley)

[4] Pentium Processor User’s Manual (Intel)

[5] DOS Technical Reference (IBM) I

[6] MS-DOS Encyclopedia (Microsoft, Microsoft Press)

[7] PC Interrupts (Ralf Brown & Jim Kyle, Addison Wesley)

[8] - - The Programmers PC Sourcebook (Thom Hogan, Microsoft Press)

[9] Zen ofAssembly Language/Code Optimization (Michael Abrash, Coriolis)

[10] The Waite Group’s MS-DOS Developer’s Guide (Howard Sams & Company)

ABOUT LOTUS

We will maintain close ties with Lotus Development Corporation. Ofcourse, Lotus is to be held harmless

regarding 0verByte issues.

Trademarks: DQW, DisQuickTM, ViToZer8“"‘, ViRemoveTM,DQExpert“"

I/YR USBULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000080

000081

50 ° LETTVIN: THE PC BOOT SEQUENCE ITS _RlSKS AND OPPORTUNITIES

I/I/RUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Ahingdon, Oxfordshire, OX1 43YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOOO81

000082

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° 5!

SECURING DOS

Neville Bulsara

Quantum System Software, 52 Regency Chambers, Near Nandi Theatre, Bandra (W), Bombay 400 050,
India

Tel +91 22 643 1233 ‘ Fax +91 22 642 2182 - Email neville.bulsara@f1.n606.z6.fidonet.org

ABSTRACT

Ever since the arrival ofviruses on the MS/PC-DOSplaIform, various methods have been adopted to

deal with the problem. These methods (virus specific and non-specific) have met with varying degrees of

success (orfailure!).

‘ What with the increasing number ofviruses and the threatposed by the mutation tools looming on the

horizon, the problem ofglut threatens to swamp the developers ofvirus specific solutions.

While the importance ofscanners cannot be understated, the needfor generic solutions increasing seems

to be aforegone conclusion. One ofthe ‘weapons ’ in the armoury ofthe developers ofgeneric products

is the behaviour blocker. Integrity checkers attempt to plug the holes left open by behaviour blockers.

This paper aims then to highlight thefact that existing behaviour blockers and integrity checkersfail to

‘SECURE DOS’ effectively. It also provides an insight into why wefind ourselves in this sorry state!

This paper highlights the author's argument that an eflective way to SECURE DOS (as Microsoft seems

not to be concerned with the virus menace), would involve parking oneselfbetween the ‘D’ and the ‘OS’

of DOS - that is, intercepting viruses at a level below the generic OS callsforfile I/O and at a level

above the actualphysical disk

The paper goes on to explain precisely what happens in the ‘innards ’ ofDOS with respect to translating

file 1/0 to actualphysical disk I/O.

The paperputsforward a new generic method which the authorfeels, in conjunction with existing

methods ofscanning and checksumming, would ofler afair level ofrobust security. The method would

involve the creation ofa ‘Safe Zone’ (non-writable) on media which would be host to all executable

entities. This zone would eflectively be a ‘disk Within a disk’ (a mountable volume (‘I la DOS ’s CFV’s),
which would be mounted via a device driver.

An insight into how such a device driver wouldfunction so as to enable it to determine without user

intervention (since the elimination of the associated nuisance ofa behaviour blocker in this case is a

primary design goal), whether a write to the Safe Zone (read that as creation/modification ofan

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO82

000083

52 ° BULSARA: SECURING DOS

executable) is legitimate or not etc., is explained in detail. Various methods are discussed to deal with

the presence ofcompanion viruses and EXEfile header infectors on the Safe Zone.

The paper ends by highlighting the possible problems which could crop up with such a system in place

and how effective such a solution would be under NetWare and Windows.

PREFACE

First things first - THIS PAPER IS TOO LATE!! As a matter of fact, this subject itself is too late.

Securing DOS - at a time when DOS as we (or rather I) understand it is on it’s way out? Sure, one may

say that Windows ’95 will continue to support DOS applications. Yes, it will, but it’s still not DOS (as I

see it), and hence I repeat - this paper is too late! However, the idea behind it is not.

As we all know, a large number of methodologies exist for combatting the virus menace - Scanners,

Behaviour Blockers, Checksummers etc. All of these have their advantages - and their disadvantages.

While it is not my intent to debunk any method which one may employ to safeguard their systems, it is

only fair that we highlight the major problems associated with the above.

The greatest problem with scanners is that they are able to detect only known viruses. A heuristic scanner

may be able to detect an ‘unknown’ virus, but then there are ways of bypassing such scanners. As

someone put it - ‘No virus was everfirst detected by a scanner’. The problem with scanners then is that

they are reactive - someone has to get infected before the scanner is updated to handle a new virus.
Nevertheless, because of their irreplaceable propose of detecting known viruses, a scanner is a

compulsory weapon in an anti-virus armoury.

The greatest advantage of a checksummer is that it can ‘detect unknown viruses’. As we all lmow by
now, checksummers detect changes, not viruses! Sure, a change may be due to a virus (and then, it may

not!). Hence, checksummers are an important tool in generic virus detection. The problem with them,
however, is that they are even more reactive than scanners. A file must become infected (with a

‘known’ or ‘unknown’ virus) before the checksummer does its work. Another major problem with

checksummers is that they are liable to be ‘led up the garden path’ by stealth viruses - unless they use

some very low-level routines to bypass the operating system in order to process files.

The only pro-active weapon in the anti-virus armoury is the behaviour blocker. These look out for ‘virus-

like activity ’ rather than viruses. That is to say that they aim to ‘stop the virus at the letter v’ - when it

tries to go memory-resident, infect files etc, etc. The problem - or rather the problems - are as follows:

(a') they leave the decision in the hands of the user

(b) they raise false alanns

(c) they can be bypassed - VERY easily bypassed.

What, then, is the way out? Do we live with this state of affairs? Or is it time to look at the problem from

a different angle - perhaps even redefine the problem? Perhaps the problem can be additionally tackled at

a diflerent level. Perhaps it’s time to redefine the rules of the game!

The problem with trying to solve the problem (no pun intended!) by redefining the rules in the middle of
the game is - well, you’ll see that for yourselves!

Having been a ‘hard-core’ DOS programmer (so they tell me) for the last 11+ years and an anti-virus
researcher (now THAT, I am!) for the last seven, if ‘Securing DOS’ is one of the topics of discussion,

here then is a proposed method of doing so - for better or for worse.

VIRUS’ BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission of the publishers.

000083

000084

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 53

Around half of this paper is devoted to exploring in depth the way DOS handles files. You will find a

regular sprinkling of several Data Structures maintained by DOS. At first glance it might seem that this

piece is devoted to a dissection of the innards of the DOS filing system, rather than a paper on ‘Securing

DOS’. However, it is notpossible to SECURE DOS without knowing what DOS is. And the filing

system is what DOS is all about (or at least a majority of it is). I

I would like to clarify that, in this paper, l’m not suggesting a rigid solution. As a matter of fact, there are

no solutions in here. This paper raises more questions than it answers; questions which I’ve asked myself

over the past few years. Some of them I’ve managed to answer. The rest are for you to ponder. If these

questions lead anyone to devise a solution, similar or drastically different from the one I propose, this

paper will have served its purpose.

Iacta alea est: The die is cast.

WHEN ARE VIRUSES A PROBLEM?

I became involved with computer viruses in 1988. Back in those days, I used to teach at a computer

training institute. They happened to get hit by the Brain virus. It was a bad situation, 60+ infected

systems (they used simple PCs - not even XTs - in their training labs back then). All disks were infected,

including the student’s floppy disks - it wasn’t funny! Anyway, it so happened that I was the only person

around who could perhaps do anything about it - I did. The rest as they say, is history.

Since then I’ve served as a consultant to several large organizations, the Government and some Defence

Establishments. Over the years, I’ve come to a conclusion that viruses (by themselves) are not a problem.

By themselves they’re just like any other software or hardware glitch. You’re just unlucky if it happens

to hit you.

The problem is THE PROLIFERATION OF A VIRUS. I’ve always encouraged organizations that

have had a major outbreak to try and reconstruct the sequence of events which led to that outbreak. In

over 98% of the cases, it turned out that the virus came in on a single floppy disk. From this entity, it

jumps to usually just one system (so far this is NOT a problem you can’t cope with). From this system it

jumps to other disks and from these to other systems (it could also go over a network). By the time you

detect the intruder, scores of systems are infected. NOWyou have a problem on your hands!

I’ve always stated that the earlier you detect the intruder, the faster you can deal with it, saving oneself
much heartache later.

The trick then lies in DETECTING THE INTRUDER AT THE EARLIEST AND PREVENTING IT

FROM PROLIFERATINGI

MY CONCEPT OF SECURING DOS

My concept of securing DOS is securing the executable entities which can be infected by a virus. For the

purpose of this paper, I’ve restricted myselfjust to securing executable files. Boot Blocks, by

comparison, are far easier to secure.

When I talk of securing executable files (before I proceed fi.1rther and I actually detail how this can be

done), it is important that we have a clear understanding ofjust how DOS deals with files - especially

since what we are going to end up doing is securing files.

VIRUS BULLETIN CONFERENCE ©1995 Vims Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000084

000085

54 - BULSARA: SECURING DOS

HOW DOS KEEPS TRACK OF FILES

DOS keeps track of files on a volume using its file system. The DOS file system consists of the File
Allocation Tables (FATS) and the Root Directory. The Root Directory can contain both files and

subdirectories. Each subdirectory can also contain files or further subdirectories.

For the next couple of lines (unless stated otherwise), I will refer to a file as an ‘Entity’.

Every entity has an ‘entry’ (hereafter referred to as a Directory Entry or DirEntry) in either the root or a
subdirectory. That DirEntry is the starting point from which DOS manages that entity. From the

DirEntry, DOS knows (amongst other things) where the file actually starts on the disk, and its length (the
file size).

If the DirEntry provides information as to where the file actually starts, the FAT provides information as
to where it resides as a whole on the volume. For a detailed understanding of how the DirEntry and FATS

are used to keep track of a file, one can refer to several books on the topic.

Suffice it for now to state that the Directory Entries and the FAT are used by DOS to keep track of the

actual layout of files on a given medium.

While it is not important for us to know the FAT structure, it is important to know precisely what the

DirEntry looks like, as we will be employing it in our scheme. Each Directory Entry is 32 bytes in length
and has the following structure:

Table 1 : DirEntry (Directory Entry) Structure

DirEntry ' STRUC

DE_PrimaryName db 8 dup (‘ ’) ; 8 byte primary name

DE_Extension db 3 dup (‘ ’) ; 3 byte extension

DE_FileAttrib db ? ; 1 byte for file attribute

DE_Reserved db 10 dup (?) ; 10 bytes reserved field

DE_FileTime dw ? ; 2 bytes (word) file time

DE_FileDate dw ? ; 2 bytes (word) file date

DE_Cluster dw ‘.7 ; 2 bytes (word) starting cluster

DE_Size dd ‘.7 ; 4 bytes (dword) file size

DirEntry ENDS

As you can see, the DE_Cluster (starting position of the file) and the DE_Size fields in a DirEntry and
then using the FAT, DOS is able to get to a required file.

Since we’ve got around to defining some structures, we might as well define another - especially as we’re

going to employ it in our proposed scheme. We’ll call this structure the Current Directory Structure
(CDS). A CDS is maintained for each and every drive in the system. Each CDS Entry (CDSEntry)
contains the current working directory for that drive (which explains why DOS doesn’t forget which

directory you’re in on drive C when you go to drive A or whatever!) Apart from the current working
directory, the CDSEntry contains a pointer to the device driver to be called for performing actual disk I/O
on that media; bit attributes which specify the availability of the disk, whether it is JOINed,

SUBSTituted, or a network drive, etc.

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000085

000086

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 - 55

The CDS is built at boot time by DOS as it processes CONFIG.SYS. If the said file has LASTDRIVE=F,

DOS builds CDSEntries for drives A through F. If there were no drives beyond C, the bit attributes for

CDSEntries for drives D thru F are masked to indicate that those drives are invalid or not available.

The structure of each entry in the CDS is as follows:

Table 2 : Structure of Entry in CDS (one for each drive till LASTDRIVE)

Structure valid for DOS 4+

CDSEntry STRUC

CDS_CurrentPath db 67 dup (0) ; 67 bytes to hold current path for the drive in the

; form: C:\DOS\VERSION5. The path is null

; terminated

CDS_DrvAttrib dw ? ; 2 bytes that hold flags to indicate whether drive

; is physical, network JOINed, SUBSTituted etc.

CDS_DPB_Ptr dd ? ; far pointer to the Drive Parameter block for this

; drive

For local drives

CDS_StartCluster dw ? ; start cluster of current directory

C_DS_Unknownl dd ? ; unknown

For network drives

CDS_Redirector dd ? ; far pointer to Redirector

CDS_UserData dw ‘.? ; user data from 21h/5fl)3h

For all drives

CDS_SkipCount dw ? ; holds count of bytes to skip over when

; displaying the current directory. Normally 2 so

; that the drive and the colon are masked.

SUBST and JOIN change this so that only

; appropriate parts are visible

CDS_Unl<nown2 db ? ; unknown

CDS_IFSPtr dd ? ; far pointer to IFS driver

CDS_Unknown3 dw 7 I ; unknown word

CDSEntry ENDS

Phew! That much information, just so that DOS can remember what the current directory for a drive is?

Well, it has some other purposes too, as we shall see below.

INSIDE THE MSDOS FILE SERVICES BY

‘Inside the IBM PC’, by Peter Norton, was the first book which delved into the innards of the PC. A

great many programmers got their first taste of low-level activity by reading that book. Before that, it

was just a case of:

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO86

000087

56 - BULSARA: SECURING DOS

‘That box there does it (though it ain ’t black./). We don ’t know how it does it, but it does. So there! ’

That’s what we’re all prone to do. Take things for granted. The Classical ‘black box’ approach. Supply
the (correct) inputs and get the desired output. The black box approach guarantees correct results (we

hope!). There’s nothing wrong with this approach, but it’s taboo to a hacker. A hacker needs to know
what makes the box tick. Till he figures that out, well - hopefiilly you know what I’m talking about!

Let’s consider the typical black box approach when it comes to doing things (opening/reading/writing/

closing) with a file. If we use the DOS API, all we need to do is (a) Open the file, (b) Read from it, (c)
Write to it and (d) Close it. Pure and simple. You call DOS with the correct inputs, DOS does its work.

You’re OK, DOS is OK (with due_apologies to the author of I’m OK, you’re OK).

But what happens inside DOS when let’s say you open C:\COMMAND.COM, read from it, write

to it and then close it? Here’s what happens in reality:

o DOS indexes into the current PSP to locate a free entry in the JFT (Job File Table). If no free

entries exist, DOS returns, indicating that there are too many open files.

c Having found a free entry in the JFT, DOS remembers the position of this entry. This index into

the JFT eventually will become the ‘handle’ or the JFN (Job File Number) which will be returned

to your application, assuming that the Open is successfiil.

o DOS goes through its SFTs (System File Tables - more on this later) looking for the first free SFT

entry (SFT_Entry). If no SFT entries can be found, DOS returns, indicating an error.

o DOS parses the filename to detennine the drive on which the file is supposed to exist (in our

example it would be C).

o DOS goes through the CDS (remember the CDS?) to determine whether the said drive exists and

is valid. If not, DOS returns with an error.

o DOS examines the CDSEntry for that drive to determine whether the drive is networked. If it is

not, DOS uses CDS_DPB_Ptr to derive the address of the Drive Parameter Block (DPB) for that

drive. The DPB is used by DOS in order to locate the root directory and the address of the device

driver to be called, in order to actually do the low level disk i/o.

o DOS calls the device driver for that drive to read the root directory. It processes what is read to

look for COMMAND.COM. If not found, DOS returns with an error code. Remember at this point

that what is read is a series of entries of type DirEntry.

c Having found the required file, DOS updates the SFT_RefCount in SFT_Entry. The index ofthis

SFT_Entrjy within the SFT itselfis referred to as SFN (System File Number). DOS then updates

SFT_Entry with information such as the filename, starting cluster, initial open mode, address of
the device driver etc.

o The SFN for this file is copied into the index into the IFT (JFN) which DOS had determined at

step 2. ‘

o The JFN is returned to the application as the file handle.

Let us assume that the handle returned on the Open request was ‘X’. Whenever you wish to refer to this

file subsequently, you just call DOS with one of the inputs as X. This is what happens when you try to
read from COMMAND.COM:

1. DOS uses X as an index into the JFT to determine the SFN. Having found the SFN, DOS indexes

into the SFT in order to locate SFT_Entry for that file.

2. DOS calls the device driver, whose address is stored in the SFT_Entry, to read the block of data.

VIR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 SYS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a reuieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO87

000088

VIRUS BULLETIN CONFERENGE, SEPTEMBER I995 ' 5 7

3. DOS returns any necessary information to the application.

When you try to write to the file, the following happens:

1. Identical to step 1 above

2. DOS examines the initial open mode field stored in that SFT_Entry to determine whether you can

write to the file (to prevent writing to files opened in read mode). If not, DOS returns with an
error.

3. DOS calls the device driver to write data.

4. DOS returns any necessary information.

When you close the file:

1. You got it! It’s identical to step 1 above.

2.: DOS calls the device driver to flush any data it might have had in its internal buffers. This includes
the updated DirEntry with the new Date/Time stamps, etc.

3. DOS decrements the SFT_RefCount field to indicate that SFT_Entry is now free for use.

All that just to open, read from, write to and close a file? Yep! No one said it was going to be easy!

Since we’ve been discussing SFTs, we might as well shed some more light on the topic. An SFT is

nothing but a table ofSFT_Entries. Each file which is open at any given time under DOS has an entry in

the SFT. I/’Dir_Entrjv is the structure by which DOS manages a Directory Entry on disk, SFT_Entry is

the structure which enables DOS to manage allfile-related activitiesfor a given file. Below is the layout

of a System File Table entry:

Table 3 : Structure of System File Table Entry (SFT_Entry)

Structure valid for DOS 4+

SFT_Entry STRUC

SFT_RefCount dw ? ; count of number of file handles referring to this file

SFT_Initia10penMode dw ? ; initial mode (read,write etc) in which the file was

; opened.

SFT_FileAttrib db ? ; the attribute of the file on disk field is filled up from

; DE_FileAttrib; during the open.

SFT_DeviceInfo dw ‘.7 ; this word holds various bits indicating whether the

; file is remote, the drive number on which the file

; resides, etc.

SFT_Ptrl dd ? ; far pointer to device driver header or DPB or REDIR

; data

SFT_Cluster dw ? ; starting cluster for file - field filled up from

; DE_Cluster on Open

SFT_FileTime dw ‘.7 ; file time (taken from DE_FileTime).This field is

; updated whenever the file is written to

SFT_FileDate dw ‘.7 ; file date (taken from DE_FileDate). This field is

; updated whenever the file is written to

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission of the publishers.

OOOO88

000089

58 ° BULSARA: SECURING DOS

SFT_Size dd ? ; file size - taken from DE_Size on Open. Updated if

; neccessary when file is written to.

SFT__FilePtr dd ‘.7 ; file pointer — indicates where the next read or write

; will occur (relative to start of file)

For local files

SFT_RelCluster dw ? ; relative cluster within file of last cluster accessed

SFT_Sector dd ‘.7 ; number of sector containing DirEntry

SFT_SectorIndex db ? ; number ofDirEntry within sector

For remote files

SFT_REDIRIFS_Ptr dd ‘.7 ; far pointer to REDIRIFS record

SFT_Unknown db 3 dup (0) ; unknown

For all files

SFT_FCBName db ll dup (‘ ’) ; filename in FCB format

SFT_Sharel db 6 dup (?) ; information for use by SHARE

SFTTPSP dw ? ; PSP address of owner of the file

SFT_Share2 dw ? ; information for use by SHARE

SFT_AbsCluster dw ? ; absolute address of last cluster accessed

SFT_IFSPtr dd ? ; far pointer to IFS driver for file

SFT_Entry ENDS

But WHAT’S ALL THIS GOT T0 DO WITH VIRUSES?

Well, so far we’ve made a candle. Now it’s time to light it!

WHY DO BEHAVIOUR BLOCKERS FAIL?

As I mentioned before, a behaviour blocker is the only proactive tool which can detect (hope to?) an

unknown virus before it manages to infect an entity. Forgetting for the time being the associated nuisance

value which comes along with one, you would think that these busters can keep out all viruses - past,

present and future. Think again!

You can liken a behaviour blocker to a sentry commissioned to guard the entrances of a room. A

behaviour blocker posts sentinels at every entrance (read that as KNOWN ENTRANCES) to the room

in order to screen visitors for suspicious objects. So you post one at those two doors and one each at the

five windows. Then pray like hell!

The problem is you didn ’t build that room. Neither did the security agency (read that as anti-virus

vendor) which supplied the guards. The room (as a matter of fact the whole building) was built by that

company up in Redmond. And for all you know, that room ofyours could have a trapdoor that neither

you nor the Vendor know anything about. Did I say ONE? Well, think perhaps in the hundreds! Anyway,

that’s the loophole an intruder could exploit to get into your system - and they do.

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO89

000090

VIRUS BULLETIN CONFERENQ5. SEPTEMBER I995 - 59

Let us consider a few methods used by some of the more ‘novel’ viruses to bypass behaviour blockers:

o Opening a file in Read mode (this allows the behaviour blocker to allow-the request). Upon return

from DOS, use the handle to index into the JFT; from there get the corresponding SFT_Entry;

twiddle with the SFT_lnitialOpenMode field to indicate that file opened in Read+Write mode.

o Use the starting cluster field in the DirEntry; process the FAT; infect the file using lnt 25h/26h,

thereby bypassing any Int 21h handlers set up by a behaviour blocker.

o Use the start cluster field to infect the header of EXE files. Again using Int 25h/26h bypass
Int 21h.

o Using lnt l3h to monitor reads to disks and ‘infecting’ any sector which starts with the ‘MZ’
indicator.

o Twiddling with the starting cluster field in the SFT_Entry in order to ‘open a file, but write to
another’.

o Using various tunneling techniques to derive the address of the original interrupt handlers and

subsequently making far calls to them.

o Using ‘reserved’ interrupts/functions in order to open, read from,write to files (e.g. using the
undocumented DOS Indirect Server Call).

o Infecting the file system itself - DIR-II, for example.

o Modifying the contents of DOS’s buffers (infecting them), then setting their bits to indicate that

_the buffer is dirty, causing DOS itself to flush their contents to disk. -

Get the idea? Too many unguarded DOS, WINDOWS, and safety NetWares (sorry that should read

doors, windows and nets), about which one knows little or nothing.

THE PREREQUISITES FOR WINNING A BATTLE

Sun Tzu, the author of ‘The Art of War’ wrote as follows:

‘Do not understandyourself? You will lose 100 percent of the time. Understandyourself? You will

lose 50 percent ofthe time. Understandyourselfandyour opponent? You will win 100% ofthe time. ’

Well we so far have understood ourselves (the DOS filing system). We understand - or at least try to - the

methods cooked up by the opponents. Unfortunately, the game being as it is, it is impossible to win all

the time. But at least we can try.

By now I have hopefully lit a candle or two. It is now time tofeed theflame.

SECURDIG AN OS

As I view it, the way to secure any OS from viruses is really very simple. If a single word could describe

it, the word that fits the bill would be SEGREGATION.

The current problem (to the best of my limited knowledge) lies in the fact that all Operating Systems

store both data andprogram files on the same medium. That is to say, both these types of files lie on

the same volumes, and the OS uses the same filing system and the same file system (File system = FATs,

Directories etc. Filing system = routines to manage the file system) to keep track of them. It is hence

obvious that if the OSfails to distinguish between code and data, viruses will exploit this loophole and

continue to proliferate.

l/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduce<L stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000090

000091

60 ° BULSARA: SECURING DOS

The key then lies in SEGREGA TING data files andprogramfiles; storing them on ‘diflerent volumes ’,

and using differentfile systems andfiling systems to manage them. If this segregation can be achieved,

then program files can reside on a so called ‘Safe Zone’ - to coin a new term. This'Safe Zone (hereafter

referred to as SZ) would be a read-only volume managed exclusively by the OS. Since the SZ would be

read-only, a new virus introduced into the system would be unable to spread (though itwould attempt

to). However, the OS could keep track of these write requests, and maintain a log. Frequent examination

of this log would display strange behaviour and would indicate the fact that a possible virus is attempting

to spread - albeit unsuccessfully. Presto - you have just secured your OS!

Seems simple enough - but there is a lot more to it, as we shall shortly see.

SECURING DOS USING THE SEGREGATION PRINCIPLE

Since DOS (as it stands today) has no concept of SEGREGATION, it is obvious that such a concept

would need to be externally induced. I have been thinking about this concept for the last two plus years. I

have conducted various experiments which have shown that it is TECHNICALLY feasible to employ
such a scheme.

The seed for this idea was sown shortly after I disassembled the infamous DIR-II virus to see what made

it tick. After studying the virus, I reached a conclusion that the only way to secure DOS pro-actively was

by parking yourself between the D and the OS of DOS. That is to say, at a level between the OS and the

actual physical media. The proposed method does precisely that.

It is said that examples bring the obscure to life. Keeping this in mind, we’ll proceed with a real example

of how such a system is implemented.

Let us consider a system having a single partition (drive C). As things stand, the following directories
and files exist on that volume:

C:\ (root directory)

IO.SYS (executable entity)

MSDOS.SYS (executable entity)

COMMAND.COM (executable entity)

CONFIG.SYS (executable entity)

AUTOEXEC.BAT (executable entity)

C:\DOS (sub directory)

HIMEM.SYS (executable entity)

EMM386.EXE (executable entity)

C:\NC (sub directory)

NC.EXE (executable entity)

NCMAIN.EXE (executable entity)

NC.INI (non-executable entity)

NC.MNU (non-executable entity)

Our objective at this stage is the creation of a Safe Zone (SZ) which will be host to executable

entities. All non-executables will reside on a normal volume called the Data Zone (DZ).

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in my form without the prior
written permission of the publishers.

00009 1

000092

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° 6!

STAGE 1 - PREPARATION OF THE SZ

A program (let’s call it SZPREP) is run. SZPREP sweeps through your hard disk determining the

directory tree and collecting the names of all executable entities which can be moved to the SZ. It

determines that C:\COMMAND.COM, C:\AUTOEXEC.BAT, C:\NC\NC.EXE and

C:\NC\NCMAIN.EXE can be moved to the SZ. (lO.SYS, MSDOS.SYS, CONFIG.SYS, HIMEM and

EMM3 86 cannot be moved, as they must load prior to any other drivers).

Having determined the names (and the total size) of the files which can be moved to the SZ, SZPREP
creates a hidden read-onlyfile in the root directory ofdrive C. Let us call this file SAFEZONE.NB (how

imaginative!) A more generic term for this file would be a Safe File Volume (SFV) - there, l’ve just
coined another new term!

We need to clarify at this point itself what the structure of the SFV will be like. Since it will essentially

play host to files, it must have its own file system and data space. The exact structure of the file system is
a matter of design. For simplicity, it can be almost identical to the DOS file system - i.e. it can have a

boot sector, FAT, directory and data area. I would suggest that, instead of having the concept of sub

directories, a flat directory structure, using the 10 unused bytes in DirEntry (DE_Reserved) to store the

checksum of the path where this file resides (refer to Table 1) be employed.

SZPREP then moves (copy to destination, deletefrom source) all the above-mentionedfiles which are

candidatesfor being moved into the SFV. SZPREP then plonks a file (let’s call it SZMOUNT.SYS) into

the root directory of drive C, and modifies CONFIG.SYS. Your SZ is now ready, and drive C looks like:

C_:\ (Root Directory)

lO.SYS (executable entity - can’t be moved)

MSDOS.SYS (executable entity - can’t be moved)

CONFIG.SYS (executable entity - can’t be moved)

SAFEZONE.NB (SFV)

SZMOUNT.SYS (executable entity to manage the SFV)

C:\DOS (Sub directory)

HIMEM.SYS (executable entity - can’t be moved)

EMM386.EXE (executable entity - can’t be moved)

C:\NC (Sub Directory)

NC.lNl (non-executable entity)

NC.MNU (non-executable entity)

As we can observe, all but the barest minimum ofinfectable objects have ‘disappeared ’from the volume.

In a real—world situation, hundreds ofobjects would have been moved into the SZ, leavingjust six

possible candidatesfor infection.

STAGE 2 - MOUNTING THE SZ

The SZ is mounted at the time when the system is booted off the hard disk. DOS processes

CONFIG.SYS, and loads the SZMOUNT.SYS driver. SZMOUNT detects the presence of the SFV, reads

it (in order to determine its size, volume characteristics) and then (as one would guess) implements it as a

drive - a la STACKER, DBLSPACE, DRVSPACE - right?

WRONG!

In the case of the above mentioned ‘drive doublers ’, they would either treat the SFV (in their case it is a

CFV- Compressed File Volume) as C: and the original drive as D: - or vice-versa. Our software can’t

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO92

000093

62 - BULSARA: SECURING DOS

afford to do that, as most programs expect their non-executable components (configuration files, INI files

etc) to reside in the same drive and directory as they do. As for example, NC.EXE would expect NC.INI

and NC.MNU to be present where it loaded. Hence, NC would not work (as would not a large number of

other programs) if we implemented our SZ as C and the original volume as drive D or vice-versa.

What we need to do is make it seem as though they exist on the same drive, which in reality they do
not. This calls for a bit ofmagic!

Keep in mind too that we need to monitor all activities (such as DIR, Open, Read, Write, Close, Delete,
MD, RD, CD, Get Disk free space etc) - that are in any way connected with disk 1/0. We need to pass

these requests seamlessly either to the original volume or to the SZ. And most important, both volumes
must look like the same original volume. And in case we’ve forgotten, we’ve got to maintain the

integrity of files on the SZ.

In a nutshell, here’s what SZMOUNT does when it loads up:

o copy the CDS Entry (refer to Table 2) for drive C: (The DZ) into one of its internal buffers

0 take over the DOS interrupt 21h (practically all the file/directory handling calls require an

Int 21h)

o take over the DOS Multiplex interrupt (Int 2Fh)

o determine the address of the DOS Swappable Data Area (SDA - more on this later).

That is all that SZMOUNT needs to do when it loads up. The rest, which is the integration of the SZ with

the DZ, is sheer magic!!!

I STAGE 3 - SEANILESS INTEGRATION WITH THE DZ

Stage 3 comes into play the moment Stage 2 is over. It works as follows:

On the occurrence of any Int 21h, control comes to the Int 21h handler inside SZMount. Again, as it is
far simpler to explain using examples, I shall supply a few.

Let us suppose that SYSINIT (part of the DOS startup-code) finished processing CONFIG.SYS. It then

needed to allocate some memory. SYSINIT issues an Int 21h, with the AH register = 48h. This is trapped

by SZMOUNT’s Int 21h handler. SZMOUNT goes through a lookup table, and determines that this

function does not deserve its attention, and so LOWERS aflag, andpasses control to DOS to do the
necessary.

On the other hand, let us suppose that the request was to open a file (let us say C:\NC\NC.'MNU).

SZMOUNT determines that an open file request is one ofthe many requests which is deserving ofits

attention. So, it RAISES aflag andpasses control to DOS. ‘ '

If we recollect our earlier discussion ‘Inside the MS-DOS File System’, DOS essentially checks the

CDS, determines that C: is a valid drive, calls the device driver associated with the drive, fills up a

SFTEntry etc,etc, and then returns with a handle (JFN) specifying that the open was successful.

At this stage, control comes back to SZMOUNT before it returns to the application (as DOS was called

by SZMOUNT which was called by the Application). At this point, SZMOUNT checks whether its flag
is in a raised state (it is). Now, SZMOUNT checks whether DOS has returned an error (it hasn ’t). So,

SZMOUNT LOWERS its flag and returns to the application. This is how SZMOUNT manages file,

opens on the DZ (actually, DOS does). As a matter of fact, this is how SZMOUNT manages any

file/directory related activities on the DZ.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO93

000094

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 63

What then, if an application wanted to open C:\NClNC.EXE. Well, theflag is RAISED, controlpasses
down to DOS but DOS can ’tfind an NC.EXE, and so returns to SZMOUNT with an error.

SZMOUNT sees that its flag is raised (a raisedflag indicates POSSIBLE activity may be required on

the SZ) AND DOS has returned an error. This tells SZMOUNT that it should attempt to repeat that

activity on the SZ. And at this point the Int 21h handler of SZMOUNT begins its real juggling act.

First, the Int 21h handler twiddles with the CDS entryfor drive C, indicating that the drive is a
NETWORK drive.

Second, the handler refers to the DOS SDA to find out the contents of the various registers when DOS’s

Int 21h handler got control of the request (the contents of registers, along with other information is stored

within the SDA). The registers are reloaded with the stored contents.

Lastly, SZMOUNT lowers its flag and REISSUES the call to DOS!

This time across, DOS examines the CDS for drive C, and discovers that it’s a NETWORK (remote)

drive. A NETWORK drive, as far as DOS knows, may not have a DOS compatible FAT, and can be

implemented by any vendor he/she deems fit.

In order to integrate alien not-FAT file systems with DOS, DOS provides hooks by which it calls

programs to implement remote drives. These hooks constitute the DOS Network Redirector Interface,

and a program using these hooks is called the Network Redirector. The Network Redirector interface is

called via Int 2Fh (that is why SZMOUNT captured that interrupt, too) with the AH register loaded with

the value 11h, and the AL register loaded with the sub-fiinction (Open, Read, Write, Close etc.)

To cuta long story short, DOS, finding that the drive is a network drive, issues an Int 2Fh with AH=1 lh

and AL=16h (open existing file). DOS also passes a pointer to an uninitialized SFT along with other
relevant information in the SDA.

On receiving control via Int 2Fh, SZMOUNT determines the function, derives a pointer to the filename

(C:\NC\NC.EXE), reads the file system from the SZ into memory (at the disk level, not making any DOS

calls!), and ending the file, fills information into the supplied SFT. At this point, SZMOUNT twiddles

with the SFT entry for that file to indicate that this file is a remote file. SZMOUNT then twiddles with

the CDS for drive C, to indicate it is a physical drive, and returns. Application wanted the file opened;

SZMOUNT (and not DOS) has opened it for you.

Similarly, if you issued a ‘DIR C:\NC’ command, first the files on the DZ followed by the files on the

SZ would be displayed - despite the fact that they lie on seperate volumes! Well, actually, a DIR (that

translates into a series of find first/find next calls to the OS) requires a bit of special handling (as do the

remove directory and the rename functions), but it is possible to do it.

Reads (and writes) do not raise theflag in the Int 21h handler of SZMount. The handler does not need

to meddle with the CDS to indicate that the drive is networked. A read request on a file will result in

DOS issuing an Int 2Fh, AH=l lh, AL=8 if the SFT for that file indicates that the file is remote. Hence, if

a file on the SZ needs to be read from (or written to), the Redirector gets control and does its job

(actually reading but never writing).

Similarly, various fimctions to take care of setting attributes, deleting files, managing directories, etc, can

be seamlessly integrated as DOS will always call the Redirector when it needs to access ‘networked
drives ’.

VIR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO94

000095

64 ° BULSARA: SECURING DOS _

WHAT OF A VIRUS TRYING TO INFECT FILES ON THE SZ?

o If a virus tried using one of the standard (or even undocumented) DOS calls to write to a file, an
Int 2Fh would nevertheless be invoked

o If a virus opened a file in Read mode and then changed the SFT entry to Read Write, this would
not matter, because writing to the SZ is prohibited, as implemented by SZMOUNT

o The file system as used by SZMOUNT is alien to the standard DOS file system. Hence, no virus
would be able to infect files by manipulating the file system directly

o For viruses which infect the header of EXE files, it is very simple to stop them in their tracks by

encrypting data before it is written to the SZ and decrypting it (in memory) in case DOS needs to
read it

o Viruses can tunnel their way to ‘Kingdom come’ and derive the address of DOS for all we care, as

we are operating at a level below DOS

o File system infectors would fail on an alien file system (they wouldn’t even see it!)

c Any virus trying to infect would end up ultimately calling the Redirector. The Redirector could log
these attempts and, in the event of a threshold being crossed, could sound an alarm indicating the

presence of a virus.

As we can see, by SEGREGATING our code and data, we achieve the purpose of SECURING DOS.

Unfortunately we achieve it too well...

PROBLEMS WITH THE APPROACH

This proposed solution (if it can be called one) raises quite a few questions (as I’d promised!) which
remain unanswered. But then at times, I seek not to know the answers, but to understand the questions.

o What of our six files on the DZ: how do we secure them?

I DON’T KNOW!

o What of self-modifying files?

You know, it is becoming increasingly difficult to convince me that we ought to tolerate

companies which in this day and age write programs that modify themselves.

But then, I guess that it does not speak very highly of the anti-virus community when the publisher
of a certain product still calls its configuration file — what was it? I forget. Something like..
s0meCFG.BIN.

Well, the only thing to do with such files is to keep them on the DZ. And pray that people learn!

o What happens when you update software?

I knew you were gonna ask that one. Quite frankly, this is a sticky situation. My proposal is, treat
the update as you would treat a create request. Let the executable get created on the DZ. At the
earliest, move it to the SZ (but ask for user permission before doing so - especially when you’re

overwriting existing files on the SZ).

Files created on the DZ are vulnerable until moved to the SZ. If it is any consolation, only these

files can get infected, they cannot spread the infection to other files (THAT IS NO
CONSOLATIONI).

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO95

000096

.r.§-._

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ~ 65

o What happens with files on CFVs created via STACKER etc?

The concept can be extended on such volumes too - though you’d have to call upon the device

driver that manages that drive to perform disk I/O. That is a negative point; it makes that volume
vulnerable!

o What of disk utilities?

Disk utilities (CHKDSK/NDD/NU etc) should work just fine. This is because, at any given

instance, an application sees only the host drive (the DZ). None of the executable entities would be
visible at a sector level.

o What of development environments?

Programs under development should be kept in the DZ until you’re done with them.

o What of executables with non-executable extensions?

Bad habit - and bad manners! It is time to change.

o What of DOS files residing on a NetWare server?

I see no reason why the Segregation principle cannot be employed at the server level.

o What of Windows?

Yikes! You got me there! I’m no cat at Windows programming. So I can’t answer this one. But

some educated guesses...

Windows 3.11 - with 32 bit file access - no way is that going to work! But perhaps a VxD would.

Someone needs to explore this further Windows ’95 - hey we’re talking of Securing DOS here!

Remember I said that it may run DOS apps, but it still ain’t DOS. It ain’t - the file system is

different, which is what we’re discussing here.

o What of targeted attacks against this method?

The encryption/decryption of the SZ data should be variable. So should the name of the file which

actually holds the SFV, and the name of the driver that implements it.

The driver should be almost 64K (on disk). This prevents it from being infected by a device driver

infector. To safeguard it against a possible fiiture device driver infector, it should avoid having

repeated sequences of bytes (no large uninitalized buffers).

Perhaps the driver itself should be polymorphic - with apologies to Alan, Vesselin & Fridrik (in no

particular order) - I hope they don’t strangle me for suggesting this. But this reduces the possibility

of a targeted attack.

o Is the method safe?

I’ve been an Assembler programmer for as long as I can remember. And despite the fact that my

programs may have the declaration:

‘assume cszcode, dszcode ..’

what precedes this is a reminder to myself which reads...

"; —— assume NOTHING ’ (Neville Bulsara’s first law ofprogramming).
9

To be quite honest, the method described makes a lot of assumptions. It assumes that the

documentation of the Network Redirector Interface is accurate (it is reputed to be undocumented

even within Microsoft!) As for example, most of the information on the Network Redirector is to

be found in the book, ‘Undocumented DOS’. One would tend to take this information at face

value. Beware - mistakes do occur. Case in point - Schulman states that Novell uses the Redirector

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordsllire, OXI4 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO96

000097

66 ° BULSARA: SECURING DOS

in versions 4 and above of NetWare. Actually, it started with Version 3.12! We also assume that

Microsoft will not change the data structures overnight. All these assumptions make me a wee bit
I16I'V01JlS . . .

But then as I said before, ifsomeone carries the ballfrom here, and takes the segregation principle to its

logical conclusion, the paper will have solved its purpose.

CONCLUSION

In theory, the Segregation principle may seem the best way of securing executable files. The scheme is
best used if implemented within the OS itself. However, as mentioned, at all times must executables and
non-executables appear to lie on the same volume. The actual juggling, must be done at a level lower
than the OS’s file I/O API.

The method can (can it?) be implemented within any OS. My only regret is that I thought of this method

of securing DOS when DOS finally seems to be on its way out!

ACKNOWLEDGEMENTS

I would like to thank the following people for providing inputs which directly or indirectly contributed to

this piece:

Dr. Alan Solomon - for discussions on viruses which extended till the wee hours of the morning.

Vesselin Bontchev - whose suggestion that I submit a paper made this possible.

Chetan Varde and Jhankar Shah from back home - for thinking along lines as crazy as I do.

FURTHER READING

Advanced MSDOS - by Ray Duncan

This book gives an accurate description of the MS-DOS file system.

Undocumented DOS - by Andrew Schulman

For descriptions of the Network Redirector and various structures such as the CDS, SDA, SFTs, etc.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationtmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO97

000098

VIRUS BULLETIN CONFERENCE, SEPTBVIBER I995 ° 67

MODERN METHODS OF DETECTING AND ERADICATING

KNOWN AND UNKNOWN VIRUSES

Dr. Dmitzy Mostovoy

Dialoguescience, Inc. Computing Center of the Russian Academy of Sciences, 40 Vavilova Street,
Moscow 117967, Russia.

Tel +7 095 137 0150 - Fax +7 095 938 2970 - E-mail dmost@dials.msk.su

ABSTRACT

Viruses are growing in numberfrom day to day, so it is obvious that soon anti-virus programs like NAV

or MSAV will not be quite efficacious. Therefore, we started designing a program that would annihilate

not individual infectors, but viruses in general, regardless ofwhether a virus is known or not, or whether
it is old or new.

Thefirst outcome ofour efforts in this direction, ADinf (Advanced Diskinfoscope), is aforecasting center

which alerts the user in advance with great reliability about the intrusion ofviruses, even HITHERT0

unknown infectors. As distinctfrom all other data integrity checkers, ADinf inspects a disk by scanning

the sectors one by one via direct addressing ofBIOS without the assistance ofthe operating system and

takes under check all vitalparts ofhard disk. T0 evade such detection tactics is almost impossible.

ADinfalerts the user in time about virus intrusion and restores infected boot sectors. How to restore the

infectedfiles automatically? Our next step was to produce a curing companion to ADinf The new tool,

ADinf Cure Module, deploys a novel strategy. Paradoxicalbz, ninety seven percent ofthe viruses in our

collectionfall under a few standard groups by the types ofinfection methods. New viruses are as a rule

designed on one ofthese common infection principles and, therefore, ADinfCure Module will be about

97% efi’zcient in its performance also in thefitture.

ADinfand ADinf Cure Module are parts ofDialogueScience anti-virus kit - the most popular anti-virus
in Russia.

INTEGRITY CHECKING

The basic classes of anti-virus programs are well known. They are scanners/removers, monitors, and

Vaccines. I would like to discuss the development of programs to which, in my opinion, anti-virus

designers undeservedly pay little attention. This class of anti-virus programs is known as ‘integrity

checkers’, although the name does not fully characterize the programs’ policy which we describe below.

This is the only class ofpurely software anti-virus protection, which pennits the detection of known and

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO98

000099

68 ° MOSTOVOY: MODERN METHODS OF DETECTING AND ERADICATING KNOWN AND UNKNOWN VIRUSES

unknown viruses with reliability approaching 100% and eradication up to 97% of file infectors, including
hitherto unknown viruses.

The operation of integrity checkers is based on a simple fact: even though it is impossible to know all
information about potentially infinite number of viruses, it is quite possible to store a finite volume of
information about each logical drive in the disk and to detect virus infection from the changes taken place

in files and system areas of the disk. As already mentioned, the name ‘integrity checker’ does not fully
reflect the essence of these programs. Infection techniques are not restricted to a simple modification of

the program code. Other paths for infection either already exist or are also possible. For example,
companion viruses [1]. A disk can be corrupted by restructuring the directory tree, say, by renaming the
directories and creating new directories, and by other such manipulations. Consequently, to provide

reliable protection, integrity checkers must take care of far more parameters that the mere changes in the
size and CRC of files as is done by most programs of this class. Thus, master boot record (MBR) and

boot sectors of logical drives;'a list of bad clusters; directory tree structure; free memory size; CRC of Int
13h handler in BIOS; and even the Hard Disk Parameter Tables must be under the control of integrity

checkers. Changes in the size and CRC of files, creation of new files and directories and removal of old
files and directories are obviously objects for strict control. A designer of an integrity checker must be

one step ahead of virus designers and block every possible loophole for parasite intrusion.

Despite the large amount of controlled information, an integrity checker must nonetheless be user-
friendly, simple in usage, and quick in checking disks. It must at the same time be user-customizable as
regards the levels of messages displayed on the changes occurred in the disk and be capable of
conducting a preliminary analysis of the changes, particularly the suspicious modifications such as:

o changes in size and CRC of files without any change in datestamp

o illegal values of hours, minutes or seconds in the datestamp of infected files (for example, 62
seconds)

a year greater than the current year (certain viruses mark infected files by increasing the year of
creation by 100 years, which cannot be detected visually because ‘dir’ command only displays the

last two figures of the year

a any changes in files specified in the ‘stable’ list

a change in master boot record or boot sector

a appearance of new bad clusters on the disk and others.

Let us now discuss the main problems faced by a designer of ‘integrity checkers’. First, there is the

dodging ability of viruses based on stealth-mechanisms. Integrity checkers that rely on operating system
tools in their scarming mission are absolutely helpless against this class of viruses. They have stimulated

the development of an integrity checker that checks disks by reading the sectors via direct addressing
through BIOS. Stealth viruses cannot hide the changes in an infected file size; on the contrary, under
such a scanning technique the stealth-mechanism betrays the presence of known and hitherto unknown

stealth viruses through the discrepancy between the information given out by DOS and the information

obtained by reading via BIOS. Such algorithms have been created and successfirlly detect the appearance
of stealth-viruses.

Scanning a disk by reading the sectors by direct addressing of BIOS has one more important merit which
is ofien overlooked. If a computer is infected by a so-called ‘fast infector’ [1], (i.e., a virus that infects

files not only when they are started, but also when opened), such an integrity checker will not spread the
infection to all files in the disk, because it does not at all address the operating system for reading a disk

via sectors and uses an independent file opening system, preventing the virus from getting any control.

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOOO99

000100

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 69

Finally, an integrity checker utilizing direct reading of sectors is twice as fast at checking a disk than any

other program that relies on the operating system tools, because a disk scan algorithm can be created that

reads each sector only once and optimizes the head movements. ’

Disk handling via BIOS has its own hurdles. The foremost problem is the compatibility with the large

number of diverse hardware and sofiware, including disk compactors (Stacker, DoubleSpace), specialized

drivers for accessing large disks (Disk Manager), SCSI disk drivers etc. Furthermore, there are many

MS-DOS compatible operating systems that have imperceptible but quite important features in

partitioning logical drives. Integrity checkers must pay due attention to these fine factors.

VIRUS REMOVAL TECHNIQUES

Modern integrity checkers are useful not only in detecting infection, but are also capable of removing

viruses immediately with the help of the information they retrieve from an uninfected machine at the

time of installation. An integrity checker can kill known viruses as well as the viruses which were

unknown at the time of creation of the integrity checker.

How this is done? Most obvious are the methods for removing viruses from the master boot record and

boot sectors. An integrity checker stores images of uninfected boot sectors in its tables and in case of

damage can instantly restore them. The only restriction is that the restoration must also be effected via

direct addressing of BIOS and after restoration, the system must be rebooted immediately in order to

prevent the active virus from reinjecting infection while accessing the disk via INT 13h.

Removal of file viruses is based on a surprising fact,
namely, despite the vast number of diverse viruses, there are

only a few techniques by which a virus is injected into a file. EXE—header ‘IHere we only briefly outline the file restoration strategy.
Figure 1 shows a schematic diagram of a usual EXE file. Relocation table 2

For each file, the integrity checker keeps a header (area 1),

relocation table (area 2) and the code at the entry point (area

4). Strings (area 3 and area 5) are vital because they are the COCIG 3
keys to identifying the mutual locations of various areas in
an infected file when a virus writes its tail, not at the file

end, but at the file beginning or in the file body (afier the Entry point 4
relocation table or at the entry point). In an infected file,

after determining the area that coincides with the imaged

areas in the table, the displacement of a block (for example,

the block for area 3 begins at the end of area 2 and ends at

the beginning of the area 4) can be identified by string 3

position and thus moved back to its original location. Debug information or 6
Image of area 6 takes about 3-4 Kb and is essential in Oveflays
recovering a file corrupted by viruses which damage the

debug information and overlays in the course of defective

infection. Fig. 1

Thus, a file is recovered by reinstating its original status,

overwriting the image of its structure stored in integrity checker tables on an infected file. Consequently,

a knowledge as to which virus infected the file is not mandatory.

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000100

000101

70 ° MOSTOVOY: MODERN METHODS OF DETECTING AND ERADICATING KNOWN AND UNKNOWN VIRUSES

Tables containing, information necessary for recovering files take about 200-450 Kb for one logical drive.
The table size can be cut down to 90 Kb, if a user decides not to save the relocation information and this

has no perceptible influence on the quality of recovery in most cases. '

CONCLUSION

Integrity checkers undoubtedly do not provide a panacea against computer viruses. Unfortunately, there
is no such panacea, nor can there be one. But they are quite reliable protection utilities which must be
used jointly with other classes of anti-virus tools. The highlights of integrity checkers described above
are all implemented in ADinf program, the most popular itegrity checker in Russia. It is also known in
Germany where it is distributed on CD-ROM as a component of the DialogueScience Anti-Virus Kit. lt
checks a disk by reading its sectors one by one directly addressing BIOS, easily traps active stealth

viruses by comparing the information obtained through BIOS and DOS. It instantly restores up to 97% of

files corrupted by known and unknown viruses.

REFERENCES

[1] Vesselin Bontchev, Possible Virus Attacks Against Integrity Programs And How To Prevent
Them, Proc. 2nd Int. Virus Bulletin Conf, September 1992, pp. 131-141.

[2] Mostovoy D. Yu., A Method of Detecting and Eradicating Known and Unknown Viruses, IFIP
Transactions, A—43, Security & Control of Information Technology in Society, February, 1994,

pp. 109-111.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

0001 O1

000102

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 7I

EVALUATING DISTRIBUTEDVIRUS PROTECTION PRODUCTS

Scott Gordon

McAfee Associates, 2710 Walsh Avenue, Suite 200, Santa Clara, CA 95051, USA

Tel 001 408 988 3832- Fax 001 408 970 9727 -Email 77321.2764@compuserve.com

Preserving the integrity, confidentiality and accessibility ofinformation resources continues to present new

challenges to the data security officer, IS department, network administrator and end user. In the midst of

computer ‘upsizing, downsizing and rightsizing’, the risk ofcorporate information destruction, modification

and disclosure is increasing. The classic centralized model ofpasswords and physical guards are difficult to

apply within a vastly distributed environment ofgrowing, moving and changing workstation and server

technologies. The computer industry is well aware that one ofthe most serious and dangerous security

threats to the burgeoning microcomputer and network environment is the virus. Computer viruses are

hazardous entities which require continuous industry vigilance in terms ofdetection, containment and

resolution. Although, with all the publicity generated by computer viruses, one might assume that the

marketplace is well equipped and can dismiss the thoughts ofepidemic contamination. This is not the case.

A 1994 National Computer SecurityAssociation (NCSA) virus impact survey showed little statistical

change since its original Dataquest research of 1992. Among U.S. corporate respondents, over 50% still do

not adequately employ anti-virus solutions. Only 38% ofcorporate users consistently apply workstation

anti-virus products. This contributes to the fact that more than 40% ofall networks have viruses! A majority

ofinfections are introduced innocently by employees. Clean up can be very costly, and reinfection occurs

within an average period of30 days. In 1994, viruses cost American business approximately $2.7 billion.

Researchers are discovering new viruses at a rate ofmore than two dozen viruses/strains a month; thus, the

threat to data security will be worse before it gets better. As present, there is substantial growth of

polymorphic virus incidents. Would-be-writer can obtain, and learn to create, generic viruses from ‘how-to’

books, virus kits, the intemet, bulletin boards and even CD-ROM. Since the threat ofaccidental and

intentional virus damage to the corporate environment, including off-site date, is strong, there are several

competing issues which must be addressed. This paper will explore the criteria on which customers may

base their choice ofanti-virus protection.

THE VIRUS WORLD

A computer virus is a program which replicates itself, attaches itself to other programs, and performs

unsolicited, itnot malicious, actions. Computer viruses are predominantly written for IBM-compatible and

Macintosh operating systems. The two fimdarnental virus categories are ‘boot’ and ‘file’ viruses such as

‘Form’ and ‘Yankee Doodle’. Boot viruses, the most reported type, are programs which become active on

system start-up. They dwell within the boot sector ofa system’s infected floppy or hard disk. Most

commonly, the boot virus spreads as it becomes memory resident, replicates and attaches onto other

WR US BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000 1 O2

000103

72 ° GORDON: EVALUATING DISTRIBUTED VIRUS PROTECTION PRODUCTS

available logical disks. File viruses are programs which become active only when executed - these include
.EXE, .COM, .DLL and other executable files. The file virus spreads on execution as it typically becomes
memory resident, replicates and attaches to other executable programs. Multi-partites’ are a type ofvirus
which have both file and bootvirus characteristics. A virus may monitor for a trigger event, a computer

condition which causes apayload to be delivered. A payload may vary from an ‘amusing’ message,

disruption ofcomputer processes or data destruction, to the most lethal type, inconspicuous activity and
minute data damage spread cross long periods oftime.

Worldwide incident reports indicate that the majority ofviruses are introduced innocently to the corporate
environment from unsuspecting employees bringing viruses from their home computer or elsewhere outside
the office, or through electronic distribution such as bulletin board systems. Virus authors themselves range
greatly in terms ofage, background and intent. Also, their ability to design and test theirprograms gives
evidence to the diversity ofvirus performance and propagation. Many viruses require ideal conditions for

proper execution, and indeed, many fail to operate, or never execute at all. Certain viruses are more
prevalent in one part ofthe world than in others. Virus researchers judge the most common prevailing
viruses as those which consistently and successfully execute and replicate under universal conditional and/or

are substantially observed in the computer community. The two hundred most common viruses (which range
between one halfand three years) account for the majority of infections. Protecting your system from these
common viruses may offer sufficient protection, because the likelihood ofinfection by another virus is quite
slim. Still, while there is no standard naming convention, industry researchers have defined more than three
thousand ‘documented’ viruses.

VIRUS CQUNTERACTION OPTIONS

Many virus symptoms are not easily distinguishable until overt damage has been done. Ofien, the only early
indication may be that a computer is running slowly or that a program doesn’t execute correctly. Currently,
there are four techniques to detect the computer virus: integrity checking, memory detection, interrupt
monitoring and signature scanning. The integrity checking method determines ifa program’s file size has
increased due to virus attached-code. The memory detection method recognizes the location and code ofa

given documented virus while in memory. The interrupt monitoring method observes all program system
calls (i.e. DOS and Macintosh) in the attempt to stop a sequence ofcalls which may indicate virus activity.
The signature scanning method relies on identifying a unique set ofhexadecimal code, the virus signature,
which a virus leaves within an infected file. Al anti-virus products use variations ofsome or all of these

virus counteraction techniques.

Two dominant virus classes, stealth and polymorphic, offer additional demands on the anti-virus

community. A stealth virus, both passive and active, cloaks its actions, thus making it difficult to detect. A
passive stealth virus might maintain a program’ s preinfected file size in order to hide the infected program’s
actual increased file size. Therefore, it would evade most integrity checkers. An active stealth virus might

target and eliminate the detection fimctionality ofa commercial anti-virus product. The most difficult type of
virus to detect is a polymorphic virus. It contains a ‘mutation engine’ which produces a virus that randomly
changes its signature on certain replications. To detect a polymorphic virus, a signature scanning engine
must apply a set ofscanning rules. Ifa product utilizes the signature scanning technique (and all leading
vendors do), it must actively update its virus signature file (an encrypted file which contains known virus
signatures used by the scanner) as well as maintain the scanning engine itself (whose rules mustbe refined).
Depending on the implementation, all ofthe above-mentioned counteraction methods can be employed on
both the workstation or sewer, and either in real-tirne or not.

Virus counteraction technology is not without deficiencies, and effectiveness does vary by their application.

Integrity checking involves applying a calculation algorithm to a file in order to produce a checksum value.
The end user registers a file, and on later execution, the anti-virus system automatically tries to determine if
the file has been altered. The down-side to this technology includes: registering infected files, missing

VIRUSBULLETINCONFERENCE©1995 V'1rus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England. »

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000 1 O3

000104

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 - 73

stealth viruses, flagging self-modifying executables, and managing the checksum database. Memory

detection technology may impose resource requirements and obstruct PC operations. interrupt monitoring,

which finds the virus after execution, often flags valid system calls, and has had limited success against all

virus types. Signature scanning is only as good as how recent the signature file is updated; albeit, most

signature files contain all common virus signatures. Sometimes the signature scanner may identify a
signature within a valid file (false positive detection). Depending on how detailed the rule set ofa heuristics-
based scanning engine, polymorphic iteration might also avoid detection. The combined use ofall these

technologies suggests a more thorough method ofvirus obstruction. As the number ofviruses continues to

increase, virus counteraction must also mature.

EVALUATION CRITERIA FOR THE DISTRIBUTED ENVIRONNIENT

To choose from among the leading anti-virus vendor, the best anti-virus data protection solution for a

specific environment, a set ofpertinent evaluation criteria must first be identified. Many assumptions, which
at first or even second glance seem crucial factors, prove, with further exploration, to be misleading. We

will first discuss these most obvious criteria and then suggest an optimal list ofdetermining factors.

Is the product which claims to catch the most number ofviruses the best? Not necessarily. Since the number
ofviruses increases each month, each vendor’s documented virus detection rate will change monthly. In

addition, this detection rate relies on the availability of the product’s updates; one month is the de facto

standard for signature files. A typical experiment sends a library ofviruses through each product’s
countermeasures and either counts the number ofdetections or declares a detection percentage. Obtaining

appropriate viruses for a library can be complicated, since vendors cannot ethically aid in the distribution of
viruses.'The results ofthis test will vary significantly due to: the depth ofthe virus library (how many are

needed?) and how many ofwhat type ofvirus (i.e. polymorphic), the purity ofthe library (only viruses?),

the naming conventions utilized (uniform?), the most current update (when was the test?), and whether the
tester maximizes or normalizes each product’s counter-measures. As previously discussed, the two hundred

most common viruses account for the vast majority of infections. Therefore, on further investigation, it is

apparent that it may be of little consequence that one product detects only a few more viruses than another.

Is the product which claims to perform the fastest and with the least resource utilization is the best? Not

necessarily. Evaluators must average multiple test runs for both workstations and servers in order to

produce a standard set ofvalues. Being that servers, by nature, perform multi-tasking, one should not
assume a product’s server memory requirements or server thread usage to affectperformance. Typical

experiments will send a library offiles and viruses through a given server. The experiment is repeated for

each product with countermeasures and features activated. Comparisons can then measure the time it took to
scan a number offiles and/or detect a number a viruses. The results ofthis test will vary significantly based

on: the size and types offiles (how many are necessary?), the testing platform (server and workstation

configurations), the most current update (when was the test?) and whether the test maximizes or normalizes

each product’s countermeasures and/or features. The next question is what detection rate was foundat which

performance level. Acknowledging that most tests are implemented under controlled conditions, how can one
have more confidence in a product which performed merely a few ‘seconds’ faster, or with slightly less
resource utilization?

Is the product which claims to offer the most features the best? Not necessarily. Evaluators must strive to

explore each product’s feature claims in terms of implementation. All features are not created equal, nor is
their implementation suited for all needs. Typical experiments will first establish a standard feature set, such
as Novell and NCSA certification. Each product’s feature set will be tabulated and some unique features will

be discovered. Comparisons can then be made to those products which offer the most features. The results

of this test will vary significantly due to the perceived need of the feature (is it just a ‘nice-to-have’ or is it

needed?), the depth ofanalyses (did empirical results or assumptions qualify each feature?), the most current

VIRUS B ULLETINCONFERENCE©1995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000104

000105

74 ° GORDON: EVALUATING DISTRIBUTED VIRUS PROTECTION PRODUCTS
__m__.

update (when was the test?), whether the tester maximizes or normalizes each feature set, and how these
features are to be implemented (will it be beneficial?). From this discussion it is obvious that one cannot

choose a product merely because it offers a greater number offeatures. ’

Certainly, the above limitations notwithstanding, an evaluator must test a product’s detection rate,
performance and features. In addition, products designed for today’s vastly distributed environments must
safeguard network servers, connected workstations, remote users and stored data. Although the network
server itselfcannot support virus replication, it can substantially contribute to the spread ofviruses to other
servers or workstations. While running under a network operating system such as Novell or Windows NT,

virus system calls are unsuccessful. Moreover, the server is a vital organ ofthe network whose availability
and manageability remains crucial to efficient operations. Workstations remain the breeding ground and
entry point for the vast majority ofviruses. If a workstation becomes inoperable, or data is diminished, the
user is unproductive. The remote user, distant or isolated from the server, is equally at risk as the connected
user. In fact, some argue that the remote user is at greater risk, due to the usual difficulty in serviceability,
critical need for data availability, and value ofsummarized or customized corporate information.

Most users do not associate viruses with data storage management. Within a distributed environment, it is

not unusual to witness the daily backup of up to a terabyte ofnetwork data. A high performance,

uninterrupted virus-free backup is critical to the integrity ofthe network. Therefore, to omit any ofthese
areas from protection is to assume some level ofvulnerability. Overall, the question is whichproduct oflers
the most usefulfeatures while saving the most time andeffort

The author believes that one must consider how a product is best suited to managing the virus threat within

the evaluator’s distributed environment in terms ofdetection, performance, administration, notification and

reliability. ‘

o Detection - Does the product detect all ‘common’ viruses; consistently detect predominant viruses;

and employ a variety ofconfigurable counteraction methodologies?

0 Performance - Will the product’s impact on the environment, both server and workstation, be minimal

in the light ofuser detection requirements?

o Administration - Can the product be centrally managed and maintained by the administrator while
remaining transparent to, and convenient to operate for, the end-user?

o Notification - Does the product offer a variety ofways to enable quick response to a virus incident?

o Reliability - Is the product’s design stable; can the vendor support the product; is the vendor pursuing
ongoing product development; and does the vendor have the facilities and relationships to meet your
current and future needs?

CONCLUSION

Virus controls must be practical and plausible within the context ofdata preservation, confidentiality and

accessibility requirements. With the enterprise not wholly protected, the possibility ofavirus spreading

quickly and wreaking significant damage increases. It is important to have a firm understanding of the threat
ofvirus exposure, current detection technologies, and present and future environmental needs and
constraints. Furthermore, user-customizable testing methodology is a necessity. Ultimately, to select the best

enterprise-wide anti-virus solution, the evaluator must fully understand the detection, performance,
administration, notification and reliability criteria which best suits the environment.

VIRUS B ULLETZNCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX 1 43YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000 1 O5

000106

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 75

DYNAMIC DETECTION AND CLASSIFICATION OF

COMPUTER VIRUSES USING GENERAL BEHAVIOUR

PATTERNS

Morton Swimmer

Virus Test Center, University ofHamburg, Odenwaldstr. 9, 20255 Hamburg, Germany

Tel +49 404 910041 - Fax +49 405 471 5226 - Email swimmer@acm.org

Baudouin Le Charlier andAbdelaziz Mounji

F.U.N.D.P., lnstitut d’Informatique, University ofNamur, Belgium

Email ble@info.fimdp.ac.be / amo@info.fundp.ac.be

ABSTRACT

The number offiles which needprocessing by virus labs is growing exponentially. Even though only a small

proportion ofthesefiles will contain a new virus, eachfile requires examination. The normal methodfor
dealing withfiles is still bruteforce manual analysis. A virus expert runs several tests on a givenfile and
delivers a verdict on whether it is virulent or not. Ifit is a new virus, it will be necessary to detect it. Some

tools have been developed to speed up thisprocess, rangingfromprograms which identifizpreviously-

classifiedfiles to programs thatgenerate detection data. Some anti-virusproducts have built-in mechanisms
based on heuristics, which enable them to detect unknown viruses. Unfortunately all these tools have
limitations.

In thispaper, we will demonstrate how an emulator is used to monitor the system activity ofa virtual PC,
and how the expert system ASAXis used to analyse the stream ofdata whicg the emulatorproduces. We use

general rules to detect real viruses generically and reliably, andspecific rules to extract details oftheir
behaviour. The resulting system is called VIDES: it is aprototypefor an automatic analysis systemfor

computer viruses andpossibly aprototype anti-virusproduct for the emerging 32 bitPC operating
svstems.

1 INTRODUCTION

Virus researchers must cope with many thousands ofsuspected files each month, but the problem is not so
much the number ofnew viruses (which number perhaps a few hundred and grows at a nearly exponential

rate) as the number offiles the researcher receives and must analyse - the glut. Out ofperhaps one hundred
files, only one may actually contain a new virus. Unfortunately, there are no short cuts. Every file has to be

processed.

VIRUS BULLETINCONFERENCE©1995 Virus Bu1letinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a rehieval system, or transmitted in my form
without the prior written permission of the publishers.

000106

000107

76 ° SWIMMER' DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

The standard method ofsorting out such files is still brute force manual analysis, requiring specialists.

Some tools have been developed to help cope with the problem, ranging from programs which identify and

remove previously-classified files and viruses to utilities which extract strings from infected files that aid in
identifying the viruses. However, none ofthe solutions are satisfactory. Clearly, more advanced tools are
needed.

In this paper, the concept ofdynamic analysis as applied to viruses is discussed. This is based on an idea
called VIDES (Virus Intrusion Detection Expert System), coined at the Virus Test Center [BFHS9 1]. The

system will comprise ofa PC emulation and an IDES-like expert system. It should be capable of detecting
viral behaviour using a set ofapriori rules, as shown in the preliminary work done with Dr. Fischer-

Hfibner. Furthermore, advanced rules will help in classifying the detected virus.

The present version ofVIDES is only of interest to virus researchers; it is not designed to be a practical
system for the end-user - its demands on processing power and hardware platform are too high. However, it
can be used to identify unknown viruses rapidly and provide detection and classification information to the

researcher. lt also serves as a prototype for the future application of intrusion detection technology in

detecting malicious software under future operating systems, such as OS/2, MS-Windows NT and 95,
Linux, Solaris, etc.

The rest ofthe paper is organized as follows: Section 2 presents the current state ofthe art in anti-virus
technology; Section 3 describes a generic virus detection rule; Section 4 discusses the architecture of the PC

auditing system; Section 5 shows how the expert system ASAX is used to analyse the activity data collected
by the PC emulator; and finally, Section 6 contains some concluding remarks.

2 CURRENT STATE OF THE ART

For the purpose ofdiscussion it will be necessary to define the term computer virus.

2.1 TERMS

There is still no universally-agreed definition for a computer virus. What is missing is a description which

is still general enough to account for all possible implementations ofcomputer viruses. An attempt was
made in [Swi95], which is the result ofmany years ofexperience with viruses in the Virus Test Center. The
following definition for a computer virus is the result of discussion in comp.virus (Virus-L) derived from

[Seb] :

Def 1 A Computer Virus is a routine or aprogram that can ‘infect’ otherprograms by modifying them
or their environment such that a call to an infectedprogram implies a call to apossibly evolved,

fiinctionally similar, copy ofthe virus.

A more formal, but less useful, definition of a computer virus can be found in [Coh85]. Using the formal

definition, it was possible to prove the virus property undecidable.

We talk of the infected file as the hostprogram. System viruses infect system programs, such as the boot

or Master Boot Sector, whereas file viruses infect executable files such as EXE or COM files. For an in-

depth discussion of the properties ofviruses, please refer to literature such as: [Hru92], [SK94], [Coh94] or
[Fer92].

Today, anti-virus technology can be divided into two approaches: the virus specific and the generic
approach. In principle, the former requires knowledge of the viruses before they can be detected. Due to
advances in technology, this prerequisite is no longer entirely valid in many of the modern anti-virus

products. This type oftechnology is known to us as a scanner. The latter attempts to detect a virus by
observing attributes characteristic ofall viruses. For instance, integrity checkers detect viruses by checking
for modifications in executable files; a characteristic ofmany (although not all) viruses.

VIR USBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000107

000108

VIRUS BULLETIN CONFERENCE SEPTEMBER 1995 ° 77

2.2 VIRUS SPECIFIC DETECTION

Virus specific detection is by far the most popular type ofvirus protection used on PCs. Information
from the virus analysis is used in the so-called scanner to detect it. Usually, a scanner uses a database of

virus identification information which enable it to detect all viruses previously analysed.

The term scanner has become increasingly incorrect terminology. The term comes from lexical scanner, i.e.

a pattern matching tool. Traditionally scanners have beenjust that. The information extracted from viruses
were strings which were representative ofthat particular virus. This means that the string has to:

a differ significantly from all other viruses, and

o differ significantly from strings found in bonafide anti-virus programs.

Finding such strings was the entire art ofanti-virus program writing until polymorphic viruses appeared on
the scene.

Encrypted viruses were the first minor challenge to string searching methods. The body of the virus was
‘I encrypted in the host file, and could not be sought, due to its variable nature. However, the body was

prepended by a decryptor-loader which must be in plain text (unencrypted code); otherwise it would not be

.\ executable. This decryptor can still be detected using strings, even if it becomes difficult to differentiate
between viruses.

Polymorphic viruses are the obvious next step in avoiding detection. Here, the decryptor is implemented
in a variable manner, so that pattern matching becomes impossible or very difficult. Early polymorphic

viruses were identified using a set ofpatterns (strings with variable elements). Moreover, simple virus

detection techniques are made unreliable by the appearance of the so-called Mutation Engines such as

MtE and TPE (Trident Polymorphic Engine). These are object library modules generating variable

implementations ofthe virus decryptor. They can easily be linked with viruses to produce highly

polymorphic infectors. Scanning techniques are further complicated by the fact that the resulting viruses
do not have any scan strings in common even if their structure remains constant. When polymorphic

technology improved, statistical analysis ofthe opcodes was used.

Recently, the best of the scanners have shifted course from merely detecting viruses to attempting to

identify the virus. This is often done with added strings, perhaps position dependent, or checksums, over the

invariant part ofthe virus. To support this, many anti-virus products have implemented machine-code
emulators so that the virus’ own decryptor canbe used to decrypt the virus. Using these enhancements, the

positive identification ofeven polymorphic viruses poses no problem.

The next shifi many scarmers are presently experiencing is away from known virus only detection to
detection ofunknown viruses. The method ofchoice is heuristics. Heuristics are built into an anti-virus

product in an attempt to deduce whether a file is infected or not. This is most often done by looking for a

pattern ofcertain code fragments that occur most ofien in viruses and hopefully not in bonafide programs.

Heuristics analysis suffers from a moderate to high false-positive rate. Ofcourse, a manufacturer ofa

heuristic scanner will improve the heuristics both to avoid false positives and still find all new viruses, but

both cannotbe achieved completely. Usually, a heuristic scanner will contain a ‘traditional’ pattem-matching

component, so that viruses can be identified by name.

2.3 GENERIC VIRUS DETECTION

Computer viruses must replicate to be viruses. This means that a virus must be observable by its mechanism
ofreplication.

I/YRUS BULLETZNCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000108

000109

78 ° SWIMMER' DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

Unfortunately, it is not as easy to observe the replication as it may seem. DOS, in it various flavours,

provides no process isolation, or even protection ofthe operating system from programs. This means that
any monitoring program can be circumvented by a virus which has been programmed to do so. There used to
be many anti-virus programs which would try to monitor system activity for viruses, but were not proof

against all viruses. This problem led to the demise ofmany such programs. Later in the paper, we shall

discuss how we avoided the problem when implementing VIDES.

A more common approach is to detect symptoms of the infection such as file modifications. This type of

program is usually called an integrity checker or checlcsummer.

When programs are installed on the PC, checksums are calculated over the entire file, or over portions ofthe
file. These checksums are then used to verify that the programs have not been modified. The shortcoming of

this method is that the integrity checker can detect a modification in the file, but cannot determine whether

the modification is due to a virus or not. A legitimate modification to, for instance, the data area of a

program will cause the same alann as a virus infection.

Another problem is virus technology aimed specifically against anti-virus products. Advances in stealth and
tunnelling technology have made updates necessary. There have also been direct attacks against

particular integrity checkers, rendering them useless. Again, the lack ofsupport from the operating
system makes the prevention of such attacks very difficult. As a consequence, the acceptance of such

products is low.

The non-specific nature of the detection has little appeal for many of the users. Even generic repair
facilities in the anti-virus products do not help, despite these methods effectively rendering identification
unnecessary. The problem is partly understandable. The user is concemed with hisdata. Merely

disinfecting the programs is not enough if data has been manipulated. Only ifthe virus has been
identified and analyzed can the user determine if his data was threatened.

Generic virus detection technology should not be dismissed. It isjust as valid as virus-specific technology.

The problems so far have stemmed from the permissiveness ofthe underlying operating system, DOS, and
from the limits in the programs. Both problems can be addressed.

3 DYNAMIC DETECTION RULES

Before we can attempt to detect a virus using ASAX, we need to model the virus attack strategy. This is
then translated into RUSSEL, the rule-based language which ASAX uses to identify the virus attack.

3.] REPRESENTING INFECTION PATTERNS USING STATE TRANSITION DLAGRAMS

State transition diagrams are eminently suitable for representing virus infection scenarios. In this model of

representation, we distinguish two basic components: a node in a state transition diagram represents some
aspects ofthe computing system state. Arcs represents actions performed by a program in execution.
Given a (current) state s,, the action a takes the system from the state s, to the state sfas shown in Figure
1. The infection process played by a virus can be viewed as a sequence ofactions which drives the system
from an initial clean state to a final infectious state, where some files are infected. In order to get a complete

description ofthe actual scenario, a state is adorned by a set ofassertions, characterizing the objects as
affected by actions.

Figure I .' State transition diagram

VIR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000109

000110

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 79

In practice, we only represent those actions relevant to the infection scenario. As a result, many possible

actions may occur between adjacent states, but are not recorded because they do not entail a modification in

the current state. In terms ofauditing, irrelevant audit records may be present in the sequence of audit

records representing the infection signature.

For the sake ofsimplicity, discussion ofthe generic detection rules are based on the state transition

diagrams described above.

3.2 BUILDING THE RULES

VIDES uses three types of detection rules: generic detection rules, virus specific rules, other rules. As its

name implies, generic rules are used to detect all viruses which use a known attack pattern. For this, models

ofvirus behaviour are needed for the target system (in our case MS-DOS). Virus-specific rules use

information from a previous analysis to detect that specific virus, or direct variants. These rules are similar

to Virus-specific detection programs, except for the fact that they analyze the dynamic behaviour ofthe virus

7 instead ofits code. Finally, there are the ‘other rules’ for gleaning other information from the virus which
can be used in its classification.

We will not go into the virus-specific rules or the ‘other’ rules, concentrating instead on the generic rules.

‘In developing a generic rule for detecting viruses, we need to have a model for the virus attack No one
model will do, because MS-DOS viruses can use choose from many effective strategies. This is

compounded by the diversity of executable file types for MS-DOS. Fortunately for us, the majority of

viruses have chosen one particular strategy, and infect only two types ofexecutable files. This means that

we can detect most viruses with very few rules. On the other hand, a virus which uses an unknown attack

strategy will not be detected. For this reason, the prototype analysis system contains an auxiliary static

analysis component to detect such problems.

In the following, we will develop a generic rule which detects file infectors that modify the file directly to

gain control over that file. We will concentrate on COM file infectors. EXE file infectors are detected in an

analogous way.

We must make two assumptions about the behaviour ofDOS viruses to help us build the rule.

Assumption 1: Afile-infecting virus modifies the hostfile in such a way that it gains control over the

hostfile when the hostfile is run.

This is a specific version ofthe virus definition (Def 1). However, it doesn’t specify when the virus gains
control over the host file.

Assumption 2: The virus in an infectedfile receives control over thefile before the original host
program.

That is, when the infected file is run, the virus is run before the host program.

Discussion: Ifthe virus never gains control over the host file, it would not fulfil the definition ofa virus.

This observation leads to Assumption 1. However, there is no reason (in the definition) why the virus must

gain control before the host does.

We make an additional assumption that the virus does gain control before the hostprogram does. The reason

we do this is to avoid very blatant false positives. However, it should be noted that Assumption 2 does not

result from the virus definition, and will cause some viruses to be missed. For these cases, other rules are
used.

I/YR US BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 1 O

000111

80 ° SWIMMER‘ DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

3.3 FINDING COM FILE INFECTIONS

With respect to assumptions 1 and 2, we are looking for two possible infection strategies:

 other

read or writes

read BOF 5 other other
‘° read or writes read or writes

\
s

open \ ° reopen

520 close found Virus _>

other

read or writes

Figure 2: Generic rulefor identifi/ing COMfile infectors

l The virus is overwriting. Therefore, we are looking for a write to the beginning of the file (BOF),
without a previous read to the same location. Other reads and writes are permitted.

2 The virus is non-overwriting. We expect to see a read to BOF, then a write to BOF. Before, in
between, and after these two events, other reads and writes are permitted.

The assumption in both cases is that the write to BOF causes the virus to gain control on execution.

In the case of a non-overwriting virus, we assume that the virus first reads the original code at BOF and

then replaces it with its own code, usually ajump to the virus body. In most cases, the number ofbytes read
will be the same as the number ofbytes written, but we cannot assume this. In the case ofan overwriting

virus, the code is not read (and saved somewhere), but overwritten.

Other reads and writes are not actually relevant to the detection ofthe virus. They can be logged and used in

generating virus- specific rules.

The rule is initiated by the opening ofa file (in this case a COM file). The rule is terminated by a close of
the file, where this does not have to be done by the virus itself. In between these two events, we expect the
actual infection to occur. We look for the readBOF followed by the write BOF or the write BOFwithout

the read. Other administrative operations, like tracking the file position, are also done by the rule. This is
shown in the state transition diagram ofFigure 2.

Some viruses cause problems for the rule by closing the file after a first set ofoperations. This is handled I
by a reopen mechanism which waits for apossible open event on the same file from the virus. In order that
this rule does not stay active indefinitely and clog up the rule memory, there are a number of terminating

V./R US B ULLETZNCONFERENCE©1995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX1 4 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or Iransmitted in any form
without the prior written permission of the publishers.

OOO111

000112

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 8 I

events. In fig. 2, reopen is abstracted as a transition element, whereas its implementation is as a separate
rule.

MS—DOS provides two methods ofaccessing files. The most common method uses file handles. Access

usingfile control blocks (FCB) was provided for compatibility to CP/M, and is rarely used, even by
viruses. However, because it is used, we need a separate rule to handle this method. The basic rule stays the

same, but internal handling ofthe data is different.

We could avoid this problem by abstracting the audit data to give us a generic view of the system events.

This way, we could reduce the number ofaudit records to only relevant higher-level records by using a

filter. After that, processing becomes simpler as the problems ofreopens and handle/FCB use disappear.

This method also allows us to apply the rules on non-MS-DOS systems which provide similar file handling.

As a matter of fact, ASAX itself is the logical choice to act as the filter. The first ASAX system reads the

raw audit trail, converts it into generic data, and pipes its output as a NADF file for further processing (see

Section 5). Using ASAX as a filter allows us to reduce the complexity ofmaintaining such a system while

not sacrificing any power.

4 PC AUDITING

The prerequisite for using an Intrusion Detection (ID) system like ASAX is an audit system which securely
collects system activity data. In addition, integrity of the ID system itself must not be compromised: this

means that the audit data retrieval, analysis and archiving must be secured against corruption by viruses.

Moreover, the ID system must not be prevented from reporting (raising alarms, updating virus information
databases) the results ofsuch analysis. DOS neitherprovides such a service, nor makes the implementation
of such a service easy. Its total lack ofsecurity mechanisms means that the collection ofdata can be

subverted. Even if the collection can be secured, the data is open to manipulation ifstored on the same
machine.

For the prototype ofVIDES, we were not bound to a real world implementation, so we explored various

alternative possibilities. The experience gained by the use ofsuch a system will not benefit DOS users, but

should be applicable to users ofvarious emerging 32-bit operating systems which offer DOS support.

We have made several attempts to build a satisfactory audit system: these are described hereafter.

4.1 DOS INTERRUPTS

All DOS services are provided to application programs via interrupts, which can be described as indexed

inter-segment calls. Primarily, interrupt 0x21 is used. The requested service is entered into the AH

register and its parameters are entered into the other registers. When the service is finished, it returns
control to the calling program and provides its results in registers or in buffers.

The very first implementation ofan auditing system was a filter which was placed before DOS Services and

registered all calls to DOS functions. This was done very early on, together with Dr. Fischer—Hiibner, to

prove the feasibility ofthe VIDES concept. It also demonstrated the limits which DOS imposes on the

implementation ofsuch an auditing system: it did not run reliably, and could be subverted by tunnelling
viruses.

This implementation was soon scrapped, but it did prove that the premise was correct: viruses could be

found using ID technology. This was perhaps the first such a trial that had been done [BFHS9 l].

VIRUS BULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 ‘I2

000113

82 ° SWIMMER‘ DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

4.2 VIRTUAL 8086 MACHINE

The Intel iAPX 386 introduced the so-called virtual 8086 machine mode. A protected_mode operating system

can create many virtual 8086 machines in which tasks can run completely isolated from each other and from
the operating system. Each task ‘sees’ only its own environment. Operating systems such _OS/2 use these
constructs to provide a full DOS environment for DOS programs. All calls to the machine (via the BIOS
interface or direct port access) and DOS are redirected to the host operating system (OS/2 in this case) for

processing.

This mechanism can also be used to monitor the activity in DOS session. Because all interrupts are being

redirected to the native operating system, the native operating system can record the activity securely and

unobtrusively.

Care has to be taken in the implementation ofthe virtual 8086 machine. The DOS windows in OS/2 have
been shown in tests at the VTC to be too permissive. In the course of a comprehensive test including the

entire collection offile viruses, many ofthe viruses running under a DOS window managed to harm vital

parts ofthe system. One problem was that OS/2 files could be manipulated directly from within the DOS
session. However, this did not explain the corruption ofthe rurming operating system.

Even though using a virtual 8086 machine was the original method ofchoice, such experiments showed that
the complexity ofbuilding a safe implementation would be difficult. A more secure method was sought for
the prototype.

4.3 HARDWARE SUPPORT

Hardware debugging systems, such as the Periscope [K may be used to monitor system events closely in
real time. This is achieved by a card fitted between the CPU and the motherboard and which can set break

points on various types ofevents on the PC’s bus. The card is connected to a receiving card in a second PC
which is used to control the debugging session.

Monitoring system behaviour on a DOS machine can be accomplished by capturing the Interrupt 0x21
directly, or by setting a break point in the resident DOS kernel. Special memory areas can be monitored by
setting a break condition on access to those areas.

The monitoring is completely unobtrusive, i.e. the program will not notice a difference between running
with or without the debugger. When an event is triggered, the PC is stopped while the controlling PC is

processing the data. Ifthe controlling PC is fast enough, the time delay should be nearly negligible.

A hardware solution using the Periscope IVis complicated by the problem ofautomating the processes

necessary to test large numbers ofviruses on different operating systems. When such a solution is
implemented, it will offer the possibility oftesting viruses on other PC operating systems which require full
iAPX 3 86 compatibility.

4.4 8086 EMULATION

The solution which was finally chosen was the software emulation ofthe 8086 processor. An emulation is a

program which accepts the entire instruction set ofaprocessor as input, and interprets the binary code as the
original processor would. All other elements ofthe machine must be implemented or emulated, e. g. the
various ports. To simplify and quicken the emulation, the BIOS Code (Basic Input Output System - the
interface between the operating system and the hardware) can be replaced with special emulation hooks, so
that the complicated machine access can be skipped as long as all access to those services are routed via the
BIOS. In the case of a graphics adapter, the entire hardware must be emulated, whereas disk access can be
handled with hooks in the BIOS.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 ‘I3

000114

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 83

Using emulation gives us all the advantages of the hardware solution plus the possibility ofhandling

everything in pseudo real-time with respect to the program running in the emulation. Because even the

time-giving functions ofthe emulation are being steered by the emulation, when interruptable to process an

event, the time in the emulation can also be stopped.

The emulation is ‘safe’ as the running virus has no access to the host machine at all. This is because the

target machine’s memory is being controlled entirely by the emulation, and file accesses are directed to a

virtual disk, stored as a disk image file.

The major problem with using an emulation is its lack ofspeed. Even on fast platforms, the running speed

is only marginally faster than an original PC/XT.

4.5 ACTIVITY DATA FORNIAT

Audit records representing the program behaviour in general, and virus activity in particular, have a pattern

which is borrowed from the Dorothy Denning’s model ofIntrusion Detection [Den87] (<Subject, Action,

Object, Exception-Condition, Resource— Usage, Time-Stamp>). However, due to the way processes are

handled in DOS, this pattern is slightly modified to collect useful available attributes. For instance, the code

segment ofa process is chosen instead of the common process identifier in most existing multi-user

operating systems.

The audit record attributes ofrecords as collected by the PC emulator have the following meaning: code

segment is the address in memory of the executable image ofthe program;function number is the number

ofthe DOS function requested by the program; arg (...) is a list ofregister/memory values used in the

call to a'DOS function; ret (. .) is a list ofregister/memory values as returned by the function call;

RecType is the type of the record; StartTz'me and EndTz'me are the time stamp ofaction start and end

respectively. The final format for an MS-DOS audit record is as follows: <code segment, RecType,

StartTz'me, EndTz'me, function number, arg (...), ret (..)>. An example ofan audit trail is given in fig. 3.

<CS=391l 'I‘ype=O Fn=3O arg) ret(AX=5)>(

<CS=39La Type=O Fn=29 arg() ret(BX=l28 ES=391l)>

<CS=39La Type=O Fn=64 arg(AL=6l CL=3 strl=*.COM) ret(AL=O CF=O)>

<CS:3911 Type=O Fn=5l arg(AL=O strl=COMMAND.COM) ret(AL=O CX=32 CF=O)>

<CS=3911 Type=O Fn=5l arg(AL=l strl=COMMAND.COM) ret(AL=O CX=32 CF=O)>

<CS:39_¢ Type=O Fn=45 arg(AL=2 CL=32 strl=COMMAND.COM) ret(AL=O AX=5 CF=O)>

<CS:39l1 Type=O Fn=73 arg(BX=5) ret(CX=lO24l DX=6206 CF=O)>

<CS=39ll Type=O Fn=27 arg() ret(CX=5l2l DX=8032)>

<CS=39_l Type=O Fn=47 arg(BX=5 CX=3 DX=828 DS=39ll) ret(AX=3 CF=O)>

<CS:391L Type=O Fn=5O arg(AL=2 BX=5 CX=O DX=O) ret(AL=O AX=5003l DX= CF=O)>

<CS=3911 Type=O Fn=48 arg(BX=5 CX=648 DX=313 DS=39ll) ret(AX=648 CF=O)>

<CS=39__ Type=O Fn=5O arg(AL=O BX=5 CX=O DX=O) ret(AL=O AX:O DX=O CF=O)>

<CS=391_ Type=O Fn=48 arg(BX=5 CX=3 DX=83l DS=39ll) ret(AX=3 CF=O)>

<CS=391l Type=O Fn=74 arg(BX=5 CX=lO27l DX=6206) ret(CF=O)>

<CS:39¢l Type=O Fn=46 arg(BX=5) ret(CF=O)>

<CS=39_l Type=O Fn=5l arg(AL=l strl:COMMAND.COM) ret(AL=O cX=32 CF=O)>

Figure 3: Excerptfrom an audit trailfor the Vienna virus

4.6 ACTIVITY DATA COLLECTION

The audit system was integrated into an existing PC emulation by placing hooks into the module for

processing all opcodes corresponding with the events (see fig. 4). These are primarily calls to the DOS

functions. This was implemented in such a way, that stealth and tunnelling viruses could not circumvent the

I/YRUSB ULLETZNCONFERENCE©1 995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX] 43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO114

000115

84 ° SWIMMER DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

mechanism. A separate module receives notification ofthe event and pushes all parameters on to a stack.
When the DOS call returns, the parameters are popped from the stack and sent to the audit trail with the
return values.

hardware

vga vgahard
(mfs)

xstuff

I UNIX

Figure 4: Modules in Pandora

.I

Internally, the audit trail complies to a canonical format, which is also ASAX’s native format. This is very
generic, and allows most types ofrecords to be implemented.

An example of an audit trail is printed in Figure 3. This is a human readable representation ofthe binary
NADF file.- The example is from an audit trail of the Vienna virus. The text representation does not

comply exactly with the binary version. Some ofthe less important fields are missing so that the audit
record becomes clearer and shorter.

In the next section, we show how the activity data produced by the emulator is analysed using ASAX.

4.7 USING RUSSEL TO DETECT INFECTION SCENARIOS

In this section, we show how the RUSSEL language can be used effectively to detect an infection scenario.
We first model the infection as a state transition diagram, then briefly show how this diagram can be
translated into RUSSEL rules.

Each state in the diagram is represented by a rule describing not only the current state, but also the sequence

ofprevious states leading to it. The actual parameters ofthe current rule encode all the relevant information
collected in previously-visited states. A transition in the diagram is represented by the rule-triggering
mechanism ofthe RUSSEL language as described in section 5. The actual parameters ofthe current rule are

computed from the data items conveyed by the current audit record and from the parameters ofthe current
rule. Once triggered, the new rule represents the new current state in the transition diagram.

In particular, the very first active rule at the beginning ofthe detection process has no actual parameters,
since no information is contained in the initial state (one can argue that the initial state contains this

assertion: system is clean. That is then represented by an empty list ofparameters). As an example, the

states s0, s1 and s2 offig. 5. are represented by the rules Open, readBOF(...), and lseekEOF(...) respectively.
Figure 4.7 depicts this set ofrules in the RUSSEL language. In this figure, RUSSEL keywords are noted in
bold-face characters, words in italic style identify fields in the current audit record, and actual parameters are

noted in roman-style words.

VIRUS BULLET[NCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO115

000116

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 - 85

Open ReadBOF |seekEOF

<s1 st read 44 : >r>i
filename = prg.COM filename = prg.COM E
Codesegment = Ox3911 Codesegment = Ox3911
Handle = 5 count = 3

Handle = 5

Figure 5: Example ofa state transition diagram

Finally, the transition leading to the final state does not trigger further rules, but instead initiates a procedure

which raises an alarm message describing the infection and using the data items accumulated along the path.

5 ASAX FEATURES

This section outlines the main features of the ASAX (Advanced Security audit trailAnalysis on uniX) tool.

It is used in VIDES as an expert system for intelligent analysis ofvirus activity data collected by the PC

emulator. For a more detailed description ofASAX’s architecture, the reader is referred to [HLCMM92a].

A comprehensive description ofASAX and its implementation is presented in [HLCMM92b, HLCM92].

rule Open;
if

strToInt (Function) = 45 /*open file */

and match(’.COM$’,arg_strl = l
—>

trigger off for_neXt

readBOF(ret_AX, CS, arg_strl)
true
—>

trigger off for_next
Open

fi;

rule readBOF(handle, codeseg, filename string);
if

strToInt(Function) = 47 /* read file */

and CS = codeseg

and ret_BX = handle
—>

trigger off for_next

lseekEOF(handle, codeseg, arg_CX, filename)

fi;

rule 1seekEOF(handle, codeseg, count, filenamezstring);
if

Figure 6: The File0pen rule

ASAX has proved very powerful for efficient intrusion detection on UNIX platforms. It uses apriori rules

for detecting malicious behaviour. Two versions of the ASAX system are currently available. The single

WRUS BULLETINCONFERENCE ©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a re1Iieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO116

000117

86 ° SWIMMER DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

audit trail analysis version is applicable only to a single audit trail. The other version allows a distributed

analysis ofmultiple audit trails produced at various machines on a network. In the latter version, ASAX
filters audit data at each monitored node and analyses the filtered data gathered at a central host (see

[MLCHZ95]). In the following, we describe briefly the main features ofASAX.

5.1 UNIVERSALITY

ASAX is theoretically able to analyse arbitrary sequential files. No semantic restrictions are imposed on the

file being analysed. For instance, analysed files could be trace data, generated by a process controller, or
audit data, collected in a multi-user environment. In the context ofthis paper, the sequential file is the

activity data record produced by the PC emulator. The universality is attained by translating native files to a
generic format which is the only one supported by the evaluator. The format is simple and flexible enough to
allow straightforward conversion ofmost file formats. This generic format is referred to as the Normalized
Audit Data Format (NADF).

An NADF file is a sequential file ofrecords in NADF format. An NADF record consists ofthe following:

o a four-byte integer representing the length (in bytes) ofthe whole NADF record (including the length

field);

o a certain number ofcontiguous audit data fields. Each audit data field contains the three following

contiguous items:

identifier: an unsigned short (16-byte) integer which is the identifier of the audit data.

This item must be aligned on a 2-bytes boundaries;

length: an unsigned short integer which is the length ofthe audit data value;

value: the actual audit data value.

In addition, audit data identities appearing in an NADF record must be sorted in a strict ascending order.

This is important for ASAX to preprocess audit records efficiently before analysis. A user guide for
constructing NADF files is presented is [Mou95].

5.2 POWER: THE RUSSEL LANGUAGE

RUSSEL (RUle-baSed Sequence Evaluation Language) is a novel language, specifically tailored to the
problem ofsearching arbitrary patterns ofrecords in sequential files. The built-in mechanism of rule
triggering allows a single pass analysis of the sequential filefrom left to right.

The language provides common control structures such as conditional, repetitive, and compound actions.
Primitive actions include assignment, external routine call and rule triggering. A RUSSEL program

simply consists of a set ofrule declarations which are made ofa rule name, a list offormal parameters and
local variables, and an action part. RUSSEL also supports modules sharing global variables and exported

rule declarations. The operational semantics ofRUSSEL can be briefly described as follows:

o Records are analysed sequentially. The analysis of the current record consists in executing all active
rules. The execution ofan active rule may trigger offnew rules, raise alarms, write report messages

or alter global variables, etc.

o Rule triggering is a special mechanism by which a rule is made active, either for the current or for the
next record. In general, a rule is active for the current record because aprefix of a particular
sequence ofaudit records has been detected (the rest ofthis sequence may still be found in the rest of
the file). Actual parameters in the set of active rules represent knowledge about the already-found
subsequence and is useful for selecting further records in the sequence.

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd,-21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO117

000118

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 8 7

c When all the rules active for the current record have been executed, the next record is read and the

rules triggered for it in the previous step are executed in turn.

e To initialize the process, a set ofso-called init rules are made active for the first record.

User-defined and built-in C-routines may be called from a rule body. A simple and clearly-specified

interface with the C language allows to extend the RUSSEL language with any desirable feature. This

includes simulation ofcomplex data structures, sending an alarm message to the security officer, locking

an account in the case ofan outright security violation, etc.

5.3 IMPLEMENTATION

Efficiency is a critical requirement for the analysis oflarge sequential files, especially when on-line

monitoring is involved. The very principle ofthe rule-based language RUSSEL allows each record to be

processed only once, whatever complex is the analysis. RUSSEL is efficient, thanks to its operational

semantics, which exhibit a bottom-up approach in constructing the searched record patterns. Furthermore,

optimization issues are carefully addressed in the implementation ofthe language: for instance, the internal

code generated by the compiler ensures a fast evaluation ofBoolean expressions and the current record is

pre-processed before evaluation by all the current rules, in order to provide a direct access to its fields.

All reports and conference papers related to the RUSSEL language, as well as the whole ASAX package, are

available from the anonymous ftp site ftp.info.fundp.ac.be/pub/projects/asax.

6 CONCLUSION

As with all virus detection systems, it is not possible to state that all future viruses will be detected by the

system. However, whereas scanner technology requires previous knowledge ofthe actual virus, VIDES

requires a knowledge ofthe infection strategy. The number ofnew viruses averages a few hundred every

month, however, the number ofnew infection strategies which are significantly different from the point of

view ofthe detection rules average less than one a year.

This is demonstrated by the generic detection rule which was developed using some ofthe first viruses. The

rule, when used on a collection of all known viruses, scored 95% of all viruses which ran in the emulation.

This indicates that significant departures from the mainstream infection strategy are rare.

The advanced rules generate enough information to give a rough idea as to what type ofvirus is being

analysed. With further development of the audit system, we hope to get more details of the virus. In

particular, indications to the virus’ damage routine would be important.

VIDES could conceivably be used outside the virus lab to detect viruses in a real environment. One

possibility is to use it as a type offirewall for programs entering a protected network. Anotherpossibility is

the detection ofviruses in the DOS sessions ofemerging 32- bit desktop operating systems.

For such a system to be accepted, it must not cause false positives. A concept for this is currently under

development. Such a system must also be unnoticeable unless a virus is found. As a virtual 8086 machine

will be the basis for this, the only extra overhead will come from the audit system and from ASAX. The

audit system can be tuned to provide only the nesessary data, which eliminates some overhead. ASAX has

proven itselfvery fast: only the rules must be tuned for speed.

The prototype VIDES system shows that an automatic analysis system for computer viruses is possible and

useful. At the same time, it is a prototype for the use of intrusion detection technology for desktop systems.

VIR US BULLETINCONFERENCE ©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO118

000119

88 ° SWIMMER: DYNAMIC DETECTION AND CLASSIFICATION OF COMPUTER VIRUSES...

REFERENCES

[BFHS91] Klaus Brunnstein, Simone Fischer-Hiibner, Morton Swimmer. ‘Concepts ofan expert

system for computer virus detection’, Proceedings ofthe 7th International IFIP TC-11

Conference on Information Security, SEC ’9 1 , May 1991. ‘

[Coh85] Frederick Cohen. Computer Viruses. PhD thesis, University ofSouthern California,
December 1985.

[Coh94] Dr. Frederick B. Cohen. ‘A Short Course on Computer Viruses’, John Wiley & Sons,

Inc., 1994. ISBN 0-471-00769-2.

[Den87] Dorothy E. Denning. ‘An intrusion detection model’, IEEE Transactions on Software

Engineering, l3—2:222, Feb 1987.

[Fer92] David Ferbrache. ‘A Pathology ofComputer Viruses’, Springer Verlag, 1992.
ISBN 3-540-19610-2.

[HLCM92] N. Habra, B. Le Charlier, and A. Mounj i. ‘ASAX: Implementation design ofthe

NADF evaluator’, Technical report, Institut d’Informatique, University ofNamur,

Namur, Belgium, March 1992.

[HLCMM92a] N. Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ‘ASAX: Software Architecture

and Rule-based language for Universal audit trail analysis’ , In Proceedings ofthe Third

European Symposium on Research in Security (ESORICS ’92), Lecture Notes in

Computer Science, Toulouse, November 1992. Springer Verlag.

[HLCMM92b] N Habra, B. Le Charlier, A. Mounji, and I Mathieu, ‘Preliminary report on ASAX’.

Technical report, Institut d’Inforrnatique, University ofNamur, Namur, Belgium,

January 1992.

[Hru92] Jan Hruska. ‘Computer Viruses and Anti-Virus Warfare’, Ellis Horwood Ltd, 2nd
edition, 1992. ISBN 0-13-03 63 77-4.

[MLCHZ95] A. Mounji, B. Le Charlier, N. Habra, and D. Zampunieris. ‘Distributed Audit Trail

Analysis’, In Proceedings ofthe Internet Society Symposium on Network and

Distributed System Security (ISOC '95), San Diego, California, Feb 1995. IEEE.

[Mou95] A. Mounji. ‘User Guide for Implementing NADF Adaptors’, Technical report, Institut

d’Info1matique, University ofNamur, Namur, Belgium, Jan 1995.

[Seb] Brian Seborg. Upcoming comp.virus FAQ.

[SK94] Alan Solomon and Tim Kay. ‘Dr So1omon’s PC Anti-Virus Book’, Newtech, 1994.
ISBN 0-7506-16148.

[Swi95] Morton Swimmer. ‘Fortschiittliche Virus-Analyse - Die Benutzung von statischer und

dynamischer Programm-Analyse zur Bestimmung von Virus-Charalcteristika’,

Diplomarbeit, University ofHamburg, Germany, Fachbereich Infomiatik,

Arbeitsbereich AGN, 1995.

VIRUS BULLETINCONFERENCE ©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 19

000120

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 89

FLASH BIOS - A NEW SECURITY LOOPHOLE

Jakub Kaminski

Cybec Pty Ltd, PO Box 205, Hampton, VIC 3188, Australia

Tel +61 3 521 0655 - Fax +61 3 521 0727 - Email jakub@tmxmelb.mhs.oz.au

INTRODUCTION

When a PC is first started, control is transferred to the program called the BIOS (Basic Input Output

' System). Until recently, this has usually been stored in EPROM (Electrically Programmable Read Only

Memory) and as this can be altered only by exposure to ultraviolet light after being removed from a

computer, it has been effectively tamper proof. However the openness ofthe IBM compatible systems
and fast increase in the number ofdifferent peripherals designed to extend the functionality of such

computers force the system producers to upgrade the BIOS code. The number ofconstant changes

pointed towards another less expensive and easier to maintain solution.

In many modern PCs, the BIOS is stored in the Flash EEPROM (Electrically Erasable Programmable

Read Only Memory). Some applications even include the procedures necessary for updating the BIOS

version. As a result BIOS vendors can supply the updates in the form ofdata files sent on a diskette or,

even more simply, accessible by modern and stored on BBS or in the producer’s FTP site. Simplicity of

updating ROM code has many attractions to the manufacturer, but unfortunately also opens a massive

security loophole; if the BIOS contents can be reprogrammed (and this can be done by a malicious user

as well as by a virus or a trojan horse) we could face the situation when ‘the clean system boot’ is no

longer achievable.

1 WHAT IS FLASH MEMORY

Flash memory is a non-volatile, high-density, electrically erasable and programmable memory (bulk-

erasable, byte-programmable), characterised by low power consumption and extreme ruggedness.

Flash memory provides the same non-volatility and alterability as traditional EPROM (erasable under

ultraviolet light and electrically programmable read-only memory) used until recently in almost all

personal computers to store the BIOS code, but, additionally, offers the easy and inexpensive way of

updating the software version. The contents ofFlash memory can be changed using the ISW (in system

writing) method, eliminating the need to remove the chip from the board in order to reprogram it. It also

means that memory can be fixed to the motherboard eliminating unreliable sockets.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000120

000121

90 - KAMINSKI: FLASH BIOS — A NEW SECURITY LOOPHOLE

2 FOUNDATION SHAKE

We have got used to taking the presence ofthe BIOS for granted. It was always there, somewhere inside our
PCs, imprinted forever in the read-only memory, hidden between dozens ofother chips on the motherboard.
Like a reliable part ofthe brain controlling the fundamental activities ofthe organism ensuring cooperation
between all peripherals, the BIOS is an essential part ofa computer. When the BIOS code crashes the whole
PC may stay unbootable and useless.

We have got used to the fact that malicious programs (viruses and trojans) can damage our files, overwrite
whole disks, even corrupt the CMOS data. We keep backups ofour work, we make rescue disks containing

copies ofthe boot sectors and we create copies of the CMOS configuration. It is not only average users, but
also people involved in anti—virus research and those concerned with security issues, who do not keep copies
oftheir BIOS code (read from their PCs).

Until now, there was no need for it. And for the vast majority ofusers there won’t be a need in the very near
future. At least not until most ofthe PCs on the market are equipped with Flash BIOS, when trojans and

viruses targeting such systems may become a real threat.

3 TRYING SOMETHING NEW

In 1993, in the third edition of ‘Upgrading and Repairing PCs’, Scott Mueller wrote: ‘Without the look, any

program that knows the right instructions can rewrite the ROM in your system - not a comforting thought!
Without the write protection, it is conceivable that virus programs could even be written that copy

themselves directly into the ROM BIOS code in your system!’

The idea that BIOS code could, theoretically, be altered without even opening the computer case has already

attracted the virus writers’ attention. The first such virus, completely naive and funny in its ignorance,

without any chance ofworking, was a boot sector virus; its source code was revealed in October 1994.

Coincidentally, a few weeks later, I had a chance to investigate a PC that was showing all the signs ofan
unknown virus infection. When booted on 13th ofNovember, the PC played the Happy Birthday tune and

the system hung. After eliminating the possibility of an infection with a file and later with a boot sector
virus I started looking through the BIOS code. I’ve found the malicious procedures and fortunately

discovered that the trojan does nothing but plays the tune and locks up the computer. As it turned out later,

the ‘ Happy Birthday’ trojan was written ‘in house’, and the big party oftrojanised motherboards was
shipped from one of the South-Asian countries all over the world. This was not a case ofmalicious
software targeting specific BIOS types but it encouraged me to investigate further into the BIOS security

problem and the implementation ofFlash EEPROM chips in the modern PCs.

4 THE REAL THING

There are many different Flash components, including: Flashfile Memory, Bulk-Erase Memory, Boot
Block Memory, Flash Drives, Flash Cards. The manufacturers’ Flash Memory catalogues contain
hundreds ofpages. Currently it seems like the most commonly used as BIOS storage elements are the
Boot Block Memory chips with 128 KB capacity in typical desktop implementations (eg PVI-486SP3,
GA-586AP). One of the motherboard distributors in Australia, ASUSTek, supplies Flash Memory Writer
utilities supporting a few typical flash block components, including: Intel 28F00lB, SST 27EEOlO,
Winbond W29EE0l 0.

The Boot Block Memory is a component in which the memory array is divided into blocks that can be

erased separately and an additional hardware protection feature is added to protect data in the one selected
area (the boot block).

VIRUS B ULLETINCONFERENCE©l995 Virus Bulletin Ltd,2l TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO121

000122

VIRUS BULLETIN CONFERENCE SEPTFJVIBER I995 ° 9!

The example of internal memory map ofone ofthe 128 KB Boot Block device is pictured in fig. 1.

1FFF

BOOT BLOCK 8 KB

‘I E00

PARAMETER BLOCK 4 KB

1DOO

PARAMETER BLOCK 4 KB
‘lC00

MAIN BLOCK 112 KB

0000

Figure 1. Memory Map ofIntel 28F001BX

The four blocks allow logical segmentation ofthe entire code. The parameter blocks provide convenient

storage for software and hardware configuration data backing up or even reducing system SRAM and

battery configurations. The bootblock can store the recovery procedures in case of system failure while

updating the code in the main or parameter blocks.

In order to access and control the Flash memory component in-built in the system structure, it’s

necessary to provide the proper interface including the required signals and signal levels. The basic

requirements of the Microprocessor System - Flash Memory interface is presented in fig.2

5 THE WORKING MODES

The typical Block Flash Memory chip has a few different modes which define specific possible

operations. The most important, from the security point ofview, are Read and Write Modes. The modes

are selected and changed by external memory-control pins like: RP, CE, OE, WE, Address and Data

lines. The level ofVpp does not determine the type ofcurrent working mode.

5.1 READ MODE

After the initial power up, the Flash memory operates as a standard EPROM. From the users point ofview,

the process ofreading the contents ofFlash memory looks exactly the same as reading any ofthe memory

mapped inside the system memory resources (EPROM, Static or Dynamic RAM).

VIR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No pa.rt of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 22

000123

92 ° KAMINSKI: FLASH BIOS - A NEW SECURITY LOOPHOLE

Vpp ?->

Intel

28 F001 BX

Figure 2. System - Flash Memory Interface

5.2 WRITE MODE

Write Mode together with Read Mode enables access to the Command Register and invokes a special set of
operations like reading the Intelligent Identifier or reading and resetting the Status Register. Together with
the high (active) level ofVpp, Write Mode enables erase and program operations. The Command Register
does not occupy any specific memory location, and it’s function is fulfilled by the latch storing commands,
addresses and data needed to perform the specific operation.

6 ERASE/PROGRAM PROTECTION

The Flash BIOS memory chip installed in the specific PC is usually quite well protected against accidental
or unwanted erasing or reprogramming. The general protection scheme is presented in fig.3. The elements
that can be considered as parts ofthe erase/program protection are: programming voltage (Vpp),
hardware environment of the specific implementation, segmentation and additional boot block protection,

specific component requirements.

6.1 RAISING PROGRAMMING VOLTAGE (VPP)

Turning the Vpp on/off is sometimes referred to as ‘the absolute data protection’. This term perfectly
reflects the fact that without providing the active level ofVpp alterations to the Flash memory data is

impossible. It also means that whoever controls the Vpp, controls, in fact, any changes to memory contents.

Some ofthe motherboard producers prefer to implement a hardware switch to enable the erasing and
programming ofthe Flash ROM memory or to protect the chip against unwanted writing. The jumper placed
on the motherboard enables/disables the active state ofVpp. In the latest solutions (eg PVI-486SP3), a set of

two jumpers not only allows you to turn Vpp on, but also selects its level depending on the type ofthe Flash

VIRUSBULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO123

000124

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 93

Component

Specifications

Flash Memory

Figure 3. Erase/Program Protection Scheme

memory chip (l2V'or 5V voltage can be chosen). The producers ofcomplete computers (especially laptops
and notebooks) prefer to rely on software methods for controlling and switching the memory modes. This is

mainly because ofspace hungry hardware designs, which don’t make the task oftaking machines apart (in

order to change a switch) fast and easy. I

Another, quite drastic solution is to leave Vpp high all the time and leave the memory in the programmable

state (erase and program enable). Such a design is not likely to be found in the modern PCs, partly because

ofthe additional power required and partly because ofsecurity considerations (a constant program enable

state ofthe memory containing the most important system resources makes a whole system extremely

vulnerable to an accidental destruction by overwriting valuable BIOS code).

From the point ofview ofthe user updating the Flash BIOS, the activation of the Vpp can be achieved in

three different ways:

. by using the programprovided by the producer ofthe motherboard enabling and disabling Vpp when

necessary, depending on the general function selected by the user (eg. Save BIOS, Program BIOS)

. by using one ofthe BIOS interrupts supporting the Flash EPROM interface (see Appendix)

. by directly accessing the specific I/O devices and executing the sequence ofnecessary commands,

with the required timing.

6.2 HARDWARE ENVIRONIVIENT

The endless number ofhardware and software designs implemented in the personal computers available on

the market shifts the level ofcompatibility to the higher level. Those who write DOS—platforrn based

software know that even using the DOS calls does nor guarantee code portability these days. Relying on

BIOS services or direct I/O access is possible only after correctly identifying dozens ofdifferent system

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 24

000125

94 ‘ KAMINSKI: FLASH BIOS - A NEW SECURITY LOOPHOLE
 —??:—.:

features like version number, structure, components type, memory mapping or available I/O ports. In most

of the systems, direct access to the flash memory (essential for BIOS updating) is not easy to achieve
without complete documentation. After shadowing, address shifting or address inverting, the flash BIOS
does not appear to the user in the last 64 or 128 KB ofthe first megabyte ofmemory. Additionally, the
access to the flash chip may be impossible without unlocking the Flash Memory Configuration Space
(usually a sequence ofread/write operations from/to specific memory and I/O addresses). The I/O port
numbers and the data values necessary to gain access to the Command Register differ from one motherboard
to another.

6.3 BOOT BLOCK PROTECTION

The segmentation ofthe memory enables logical segmentation ofthe code and speeds the erasing and
reprogramming of selected parts of the BIOS. The Boot Block containing start up and recovery procedure
is additionally hardware protected against undesirable alterations. The erase and programming ofthe Boot
Block is possible only when additional high level voltage is connected to either RP or OE pins.

6.4 COMPONENT SPECIFICATIONS

Different types offlash devices take different additional measures to prevent accidental memory alterations.
The main feature is the special format ofcommands passed to the Command Register for execution. In the
most common solutions, the commands like Erase or Program are two-step instructions. In some cases,

producers went even further; Sector Erase memory from AMD: AM29F0l0 requires six-step Erase and
four-step Program commands.

Because ofthe variety ofdesigns, Flash components implement a function that returns the Intelligent
Identifier characterising each particular chip. The Identifier consists usually oftwo bytes: the manufacturer
code and the device code (eg. InteI’s 28FOOlBX-T returns 89H,94H; 28FOO1BX-B returns 89H,95H;
AMD’s AM29FO 1 0 returns 01H,2OH).

7 UPDATING VS DAMAGING

Updating the contents ofa Flash BIOS memory using the ISW method requires stepping through a certain
procedure. The particular implementations will strongly differ from one another, depending on flash device
type, Flash ROM interface and the hardware environment. The general algorithm ofupdating the Flash
BIOS is presented in fig.4.

Using the flash BIOS updating software supplied by the producer ofthe particular motherboard, a user does
not need to worry about identifying the hardware environment and the way ofcontrolling Vpp or accessing
the Command Register. However someone who wanted to destroy or infect/trojanise the contents ofthe
Flash BIOS memory would have to properly identify the type ofmotherboard, type and version ofBIOS,

type ofa Flash chip, the chipset configuration, etc. The possible algorithm of the infection/trojanising and
corruption ofFlash BIOS are presented in figures 5 and 6.

8 CONCLUSION

The new way ofupdating the BIOS code without removing the ROM chip from the motherboard and
reprogramming the system using only software tools has enormous advantages for both a computer vendor
and a computer user. The new procedure cuts the costs ofupgrading the system and shortens the waiting
time for incorporating any BIOS fixes and new features. Flash devices are already implemented in many
different technical solutions not limited to the PC market (laserprinters, mobile phones and military

equipment).

 _m

VIRUS BULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Ahingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 25

000126

VIRUS BULLETIN CONFERENCE SEPTEMBER 1995 ° 95

Identify Hardware
interface

Prepare Chipset

Indentify Memory

Type

Raise Vpp

Identify Hardware
Environment Save & Prepare

Chipset Settings

Memory Type

Read & Check

New BIOS File

Raise Vpp

Erase Flash

 Save & Prepare

Chrpset Settings

Identify Memory

Read Current BIOS

Change BIOS

Code to include Erase Flash

Virus/trojan code

’ i— — — — —i

IUnprotected Boot I
Program Flash L. _ _ _ _i

BIOS F
Erase Flash Er;eEo;EEcEi_ _ _ _ _ _i

 Lower Vpp

Restore Chipset

Settings

Program Flash
BIOS

Restore Chipset
Settin s

Figure 4. Figure 5. Figure 6.

Flash BIOS Update Flash BIOS Infection Flash BIOS Destruction

Since mobile computing is constantly growing, Flash components are finding a large market who are hungry

for low-power, high density and extremely rugged elements. Flash Memory Cards and Flash Disks using

new faster technology will successfully compete against less reliable mechanical solutions (hard drives).

On the other side, virus writers and generally speaking malicious software authors will try to abuse the fact

that destruction of the BIOS code leads to complete system crash. We will see the efforts of

reprogramming/damaging the contents ofthe Flash BIOS memory but very few ofthem will succeed. The

VIRUS BULLETINCONFERENCE ©1995 Vir'us Bulletin Ltd, 2] The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000126

000127

96 ° KAMINSKI: FLASH BIOS - A NEW SECURITY LOOPHOLE

problems discussed in this paper show us quite clearly that the skills and knowledge needed for successful

reprogramming the Flash BIOS are far beyond the reach ofthe average virus writer. _

APPENDIX. AMIBIOS

American Megatrends corporation produces one ofthe most popular and well documented AMIBIOS. The

08/08/93 and later versions provide additional fimctions to support the American Megatrends Flash Utility

(AMIFlash). INT 16H, function EOH provides 14 subfimctions that facilitate the use ofthe AMIFlash

EPROM programming utility, so that it can be used successfiilly with all types ofFlash ROM hardware.

These subfunctions are:

subfiinction OOH Get Version Number ofBIOS/Flash Memory Interface

This call returns the version number in BCD format stored in the BX register.

subfunction 01H Save and Restore Status Requirement

This call returns in BX number ofbytes needed to save the chipset environment.

subfunction 02H Save Chipset Status and Prepare Chipset

This procedure saves the chipset features, disables Shadow RAM, cachememory, power

management functions and other chipset features.

subfianction 03H Restore Chipset Status

This procedure restores saved by function 02H chipset features.

subfunction 04H Turn Programming Voltage Off

This function lowers Vpp to its normal level and disables Erase/Program mode.

subfunction OSH Tum Programming Voltage On

This function raises Vpp to the high level and enables Flash memory alterations.
subfunction 06H Write Protect

This function is usually redundant to function 04H
subfiinction 07H Write Enable

This function is usually redundant to function 05H

subfunction 08H Flash Memory Select

This fiinction is called only ifFlash and standard EPROM are located on the same
motherboard.

subfunction 09H Flash Memory Deselect

This function is complementary to function 08H.

subfunction OAH Verify Allocated Memory

This procedure checks ifmemory used by AMIFlash is accessible (after disabling the
shadowing).

subfunction OBH Save Internal Cache Status

subfunction OCH Restore Internal Cache Status

subfunction OFH CPU Reset

This subfunction doesn’t return to the calling program and reboots the system after

successful updating ofthe Flash BIOS.

REFERENCES

[1] ‘Flash Memory’, vols I,II, Intel Corporation, 1994

[2] ‘Flash Memory Products’, Data Book/Handbook, Advanced Micro Devices, Inc. 1994

[3] ‘Programmer’s Guide to the AMIBIOS’, American Megatrends, Inc., 1993

[4] ‘Intal’s SL Architecture’, Desmond Yuen, McGraw Hill, 1993

[5] ‘ GA-586AP’, User’s Manual, 1995

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 27

000128

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 97

[6] ‘NM29N16 CMOS NAND FLASH EZPROM’, Data Sheet, National Semiconductors

Corporation, 1994

[7] ‘Flash File Systems’, Drew Gislason, Dr.Dobb ’s Journal, May 1993

[8] ‘The Microsoft Flash File System’, Peter Torelli, Dr.Dobb ’s Journal, February 1995

I/YRUS BULLET1NCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO128

000129

98 ° KAMINSKI: FLASH BIOS - A NEW SECURITY LOOPHOLE

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO129

000130

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 99

AUTOMATIC VIRUS ANALYSER SYSTEM

Ferenc Leitold

Hunix Ltd, Budafoki ut 57/a, Budapest 1 111, Hungary

Tel +36 1 209 2711 -Fax +361 166 9206

ABSTRACT

Thispaperhighlights thefact that Bulletin Board Systems can also be used aspoweifitl tools against

computer viruses. At the last Virus Bulletin Conference, Jeremy Gumbleypresented apaper about Virus

eXchange BBSs [1]. Thispaper intends to show the other side, i. e. apossible way ofusing BBSs against

viruses. The Automatic Virus Analyser System (A VAS) can be used to establish generalfeatures ofa virus

and also to generate the searching and killing algorithms ofa virus, with certain restrictions.

1 INTRODUCTION

The large-scale growth ofcomputer viruses sets increasing tasks for anti-virus specialists. On discovering a

new and unknown virus, specialists should examine it, add it into their virus database, and develop a

remedy. In most cases, these activities representphases which can be performed nearly automatically. In the

automation ofthese activities, the first step was to develop a prcess called VIRSKILL, which describes the

algorithms ofseeking and killing viruses [2]. On the one hand, as shown in Fig. 1, VIRSKILL significantly

accelerates the development ofthe remedy for a new virus after its first appearance. On the other hand,

VIRSKILL is a powerfirl tool for sharing searching and killing algorithms.

catch virus

Anti-virus program

l t
DEBUG Upgrade antivirus SW

VIRSKILL technique I t

interpreter I DEBUG Create
developement I VIRSKILL

I source

Fig. 1: Upgradingperiods I

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000130

000131

I00 - LEITOLD:AUTOMATIC VIRUS ANALYSER SYSTEM

However, in addition to the development ofsearching and killing algorithms, anti-virus specialists should

also perform an examination ofthe virus and insert the data into the database. The Automatic Virus
Analyser System (AVAS) is intended to provide assistance in performing these tasks-.

2 THE PURPOSE OF THE AVAS

During the examination ofa virus, the AVAS discovers its basic features as follows:

o what the infected code areas are

o whether or not the virus is polymorphic or not

o which anti-virus program is able to identify the virus; by which name, and whether it can be

completely 'killed'

o whether the virus is already stored in the database

It frequently occurs that certain features (e.g. spreading) are different when examined under different
versions ofoperating systems. Thus, it is desirable to perform the examination under several operating
systems, which further increases the large number ofrepeated actions.

Following the establishment ofthe basic features, the AVAS is capable offormulating the searching and
killing algorithm for the virus in the language VIRSKILL. The algorithm thus made is verified, using a
large number ofvirus infections. If the virus has not yet been inserted into the virus database, the AVAS
then inserts it, together with the results obtained.

Considering that it is impossible to develop a perfect anti-virus system, even AVAS has its limits of

operation as follows:

o it is only capable ofexamining viruses which also infect executable files under DOS

o the searching and killing algorithm developed can only be used in the case offile infections

o the system is unable to yield results with every kind ofvirus. It may be that the virus reproduces
itselfonly under certain circumstances. The virus may also be polymorphic. In fact, in the case of
polymorphic viruses, the development ofthe searching and killing algorithm is more difficult, as the
traditional sequence-searching algorithm cannot be used in most cases.

3 STRUCTURE OF THE AVAS

The main tasks ofthe AVAS are performed by two PCs; the MASTER and the SLAVE:

o The MASTER controls the operating cycles ofthe SLAVE, as well as examining, evaluating and

collecting the results obtained by the SLAVE.

o The SLAVE computer serves the MASTER while changing the different operating systems,

generating a virus-free environment, and reproducing viruses.

Ofcourse, it is also possible that a third PC is charged with the task ofserving the user(s), e. g. through
BBS, Internet, or some other medium.

3.1 HARDWARE AND SOFTWARE ENVIRONMENT

As mentioned, the main tasks ofthe AVAS are performed by two PCs (Fig. 2). On the one hand, the
communication between the two PCs is performed through an Ethernet cable, using the Novell NetWare Lite
software. On the other hand, the MASTER can issue either ofthe two commands listed below to th
SLAVE: -

VIRUS BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO131

000132

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I0!

o Reset: restarts the SLAVE. The same fimction is obtained by depressing the <Reset> key on the
SLAVE.

o ClumgeFloppyDrives: inverts the sequence ofdrives A and B in the SLAVE.

*5-LI? "" ‘ ' " ' ‘('2'

Fig.2: The structure of/1 VAS

These two commands enable the MASTER to create a clear and virus-free environment for the SLAVE. In

fact, during operation ofthe AVAS, one ofthe floppy drives on the SLAVE holds a write-protected boot

disk, while the other drive is empty. Thus, the MASTER is capable ofchanging the boot drive ofthe

SLAVE, on the one hand, and perform the booting on the other hand. This link between the MASTER and

the SLAVE is connected to a parallel port on the MASTER Within the SLAVE, a dedicated electronic unit

controls the reset terminal ofthe mainboard as well as ‘changing over’, certain wires of the flat cable

connecting the floppy drives and the controller.

3.2 THE STATES OF THE SLAVE

During the operation ofthe AVAS, the active drives are changing in the SLAVE. This is done by changing

the Master Boot Record (MBR) of the SLAVE and changing the CMOS.

The SLAVE includes an IDE disk area of 130-MByte capacity, divided into 22 logic drives (Fig. 3). The

change among the various operating systems is performed on the first partition (VIRTEST) located at the

beginning ofthe disk. This partition serves for reproducing the viruses. It has a 30-MByte capacity, which

is limited by the fact that it has to function as a boot partition, e.g. even under the operating system MS-

DOS 3.30. The next partition, which has a 20-MByte capacity (COMMON), stores the programs

independent ofthe operating systems which are necessary for the operation ofthe SLAVE. The various

operating systems are stored on the next 20 partitions of4 MBytes each.

VIR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
TeL +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 32

000133

I02 ° LEITOLD: AUTOMATIC VIRUS ANALYSER SYSTEM

VIRTEST

COMMON

DOS-O0

DOS-O1

DOS-02

—

1 DOS-18 i
DOS-19

Fig. 3: The structure ofthe disk in SLA VE

During the operation ofthe SLAVE, three principal states are possible as follows (Fig. 4):

o virus reproduction state (VIR)

0 data saving state (SAVE)

o regeneration state (GEN).

Fig. 4: States ofthe SLA VE

GenToVirtest

Save-ToGen

VirtestToSave

The SLAVE regards the partitions mentioned above and the floppy drives as different logic drives in its
various states. The disk parameters ofCMOS also change in various states. This is represented in Fig. 5.

VIRUS BULLETINCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000133

000134

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - I03

States/Valid drives Disk parameters

Start End Cyl

C: C: E: VIRTEST 30 MByte O 147 148

T - -nos=0o—4MByte—2zn 260l

Fig. 5: Active drives andpartitions in difference states

In the virus reproduction state (VIR), according to the CMOS disk parameters, there is only one disk of

149 cylinders in the computer. In this state, the BIOS is unable to handle the remaining cylinders. In logic

respect, only the partition VIRTEST is active (as drive C); drive A does not include a floppy diskette, while

a write-protected diskette is inserted into drive B. Thus, the reproduction ofthe virus does not endanger
other disk areas.

The data saving state (SAVE) differs from the virus reproduction state in that the partition COMMON

also appears as drive D. In addition, drive A is that drive which contains the floppy diskette. Thus, in this

state, the virus-free environment can be ensured by booting from the virus-free diskette in drive A.

In the regeneration state (GEN), drive B contains the floppy diskette. Booting will be performed from the

partition ofthe operating system to be generated. This is drive C (DOS-xx). As in the data-saving state, the

partition COMMON appears as drive D, while the partition VIRTEST is shown as drive E.

VIR USBULLETZNCONFERENCE ©1995 VirusBulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO134

000135

I04 ° LEITOLD: AUTOMATIC VIRUS ANALYSER SYSTEM

4 FUNCTIONS OF THE SLAVE AND THE MASTER

During the operation ofthe AVAS, the SLAVE and the MASTER function by turn: as long as one ofthem

performs some function, the other waits for the termination ofthat activity. The only exception is the
virus reproduction state, in which the SLAVE performs virus reproduction while the MASTER monitors it
continuously. One group ofactivities belonging to the SLAVE performs the change-over among the states of
SLAVE as follows:

o GenToVirtest: After regenerating the partition VIRTEST, the regeneration state is changed

automatically to the virus reproduction state. On terminating regeneration, both the CMOS and the

MBRwi1l be updated and, by restarting, the SLAVE enters into the virus reproduction state.

o VirtestToSave: The SLAVE can be entered from the virus reproduction state to the data saving state

with the aid of the MASTER. The MASTER changes over drivesA and B ofthe SLAVE and

restarts the SLAVE. Thus, the SLAVE will be booted from the floppy diskette in drive A. During the

booting procedure, it detects that no drive D (partition COMMON) is included. Therefore, after

updating the MBR and the CMOS, it restarts the computer. At the time ofthe second booting from
the floppy diskette, drive D already exists; thus, the SLAVE will be set in data— saving state.

o SaveToGen: On termination ofthe data-saving state, the MASTER places a file describing the next

MBR and CMOS contents through NetWare Lite onto the partition COMMON. These items of

information willbe written by the SLAVE into the MBR and the CMOS, respectively, and the

computer restarts itself.

The other group ofactivities belonging to the SLAVE includes those performed by the SLAVE in the

specific states:

o MakePart: In the regeneration state, the SLAVE creates the fiill content ofthe partition VIRTEST;

i.e. the files ofthe actual operating system, the files to be infected, and the fi1e(s) already infected.
Furthermore, the files ensuring operation ofthe virus regeneration state, the files ofNetWare Lite and

the batch file performing the running will also be created. Ofcourse, the SLAVE has to connect to the
MASTER during regeneration, in order to copy the files to be examined (reproduced).

o Makelnfectionsz In the virus reproduction state, the first step is for the SLAVE to make connection

with the MASTER through NetWare Lite. This is necessary to enable the MASTER to monitor the

infection process. Then, the SLAVE starts the files already infected and, subsequently, those not
infected. This activity will be repeated until the MASTER restarts the SLAVE.

o PassToMaster: In the data saving state, the SLAVE makes connection with the MASTER and waits

until the MASTER performs saving and evaluation. Then, the SLAVE enters into the regeneration
state.

As a result ofthe function PassToMaster, control passes to the MASTER. The MASTER performs two

main functions: it evaluates the files infected, then creates the files necessary for the generation ofthe

subsequent virus-free environment and passes control to the SLAVE. The evaluation offiles presents the

following fundamental functions:

o Checklntegrityz By examining the integrity ofthe files, this function establishes which files were
changed, and identifies the difference between the original and the infected files.

o CheckPolymorph: Examining the infection ofthe files, this establishes whether or not the virus is

polymorphic. This will be obtained by finding bytes which are the same in the infected files. Using

this byte mask, the polymorphic character can be recognized. A

o CheckDatabase: This establishes whether the virus is in the database but can be perfectly performed

only in the case ofnon-polymorphic viruses.

I/YRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 35

000136

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I05

o CheckAntiVir: By running the anti-virus products stored in the anti-virus database, the ‘hit

probability’ ofrecognizing the virus is established.

a Makestrainz Ifthe virus is not polymorphic, a searchstring will be selected from among the identical
bytes.

o RunEmulator: If the virus is polymorphic, this function creates the searching algorithm for the

virus. In certain simple cases, this procedure is also suitable for creating the killing algorithm ofthe

virus. Using this function, a processor emulator tests the instructions and activities carried out in each
infected file.

o TestAlgorithm: This function tests the searching and (ifany) killing algorithms created by
MakeStrain or RunEmulator.

Further fundamental tasks ofthe MASTER consist ofperforming the functions listed below. These are

necessary for the next generation:

a PassToSlave: The MASTERplaces a file describing the next MBR and CMOS contents onto the

partition COMMON. The SLAVE monitors the creation of this file and, after closing it, the SLAVE

updates the MBR and the CMOS and enters into the regeneration state.

As a result ofthe PassToSlave function, ‘control’ passes to the SLAVE. Then the MASTER perfomus the
activity Look&Reset:

o Look&Reset: The MASTER monitors continuously the start of the virus reproduction procedure.

During virus reproduction, it examines the changes in the monitored files through NetWare Lite. If

each file is infected, or the time-out expires, the MASTER restarts the SLAVE by changing the

sequence offloppy drives, and waits for the PassToMaster function to be initiated.

5 WORKING PERIODS

In respect ofthe examination ofviruses, the AVAS includes two databases which are subject to continuous

changes:

a the virus database (including the virus and its features)

a the anti-virus programs database

Both ofthese databases may change continuously, as new viruses, or a new version ofan anti-virus program

appear. Ofcourse, installing a new anti-virus program, means that the complete database has to be

examined: the examination ofthe viruses included in the database has to be repeated 0). On appearance ofa

new virus, examination is significantly faster; in fact, only one virus must be examined. This examination

procedure is represented in Fig. 6.

VIRUSBULLETINCONFERENCE ©1995 V'1rus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
TeL +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000136

000137

I06 ° LEITOLD:AUTOMATlC VIRUS ANALYSER SYSTEM

$"i‘r¥R-3}; { 5 ““““ it ja sLm*E-3; funzzzitan:

,fun.ca,=.i«:m

4. ,,c::1zaci:‘1%§p-vm.v..~....v.«.«.-. \. \ i%’a1as'‘Ii‘ta'.?9iast¢:r

Ifig6:Wbflbqfi3mkm

VIRUS BULLETZNCONFERENCE ©1 995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 37

000138

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - I 07

6 SUMMARY

This paper has highlighted how the Automatic Virus Analyser System could be used to establish general

features ofa virus, and how it can generate the searching and killing algorithms ofa virus, (with certain

restrictions). Ofcourse, this system cannot be perfect, because no anti—virus system is perfect. However, it

should be possible to use this system widely. Using AVAS, the upgrading period ofanti-virus software is

much easier (Fig.7).

catch virus

Antivirus program I t
I DEBUG Upgrade antivirus SW
I

VIRSKILL technique I t
interpreter I Create

development I VIRSKILL

I source
AVAS technique I t

AVAS and Run

interpreter I AVAS
developments I

I

Fig. 7: Upgradingperiods 11

REFERENCES

[1] Jeremy Gumbley: VX bulletin boards, Proceedings of4th International Virus Bulletin

Conference, Jersey, UK, 1994.

[2] Leitold, F.: Csotai,J.: Virus Searching and Killing Language, Proceedings of2ndInternational

Virus Bulletin Conference, Edinburgh, 1992.

VIR US BULLETINCONFERENCE ©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO138

000139

I08 ° LEITOLD:AUTOMATIC VIRUS ANALYSER SYSTEM

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 39

000140

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I09

THE PROBLEMS IN CREATING GOAT FILES

Igor G. Muttik

S & S International PLC, Alton House, Gatehouse Way, Aylesbury, Bucks HPl9 3XU, UK
Tel +44 1296 318700 - Fax +44 1296 318777 - E-mailMlG@sands.co.uk

ABSTRACT

Having more than 6000 virusesfor IBMPCs, the maintenance and updating ofa virus library ofsamples is

a difficult task Parasiticfile infectors are the majority ofthis great quantity and testing theirproperties

and creation ofsamples takes great effort. T0 help solve thisproblem, the author has developed a special
toolfor anti-virus researchers, which allows the creation ofbaitfiles (also called sacrificial goats).

Theoreticalpoints ofbait creation (infectable objects, unusual infection conditions, environmental

requirements) are discussed anda detailed description ofthe GOATpackage is given.

Thispaper is an attempt to summarize theproblems which appear during weeding suspiciousfiles and
replicating viruses. A safe testing environment based on hardware hard disk drive (HDD) protection is

described. Thepaper also describes DOSpeculiarities, which appear when working with long
directories.

The possible appearance ofviruses targeted against anti—virus research environments are discussed.

1 VIRUS SANIPLES

1.] WHAT IS ‘A VIRUS SAMPLE’?

A file-infector virus usually attaches itselfto an executable file using an appending or prepending

technique. Such viruses are called parasitic infectors. Among anti-virus researchers these viruses are
usually transferred in the ‘sample form’ - the Virus is attached to a do-nothing file ofsome fixed size

(usually divisible with 10**N or l6**N) and simple contents (do-nothing or printing a short message on

the screen). The result of infection of such a goat file is called “a Virus sample”. We have:

Virus sample = Virus(Goat file)

or, simply:

Virus sample = Goat file + Virus

Can we ‘standardize’ the virus sample? Generally speaking, unfortunately not. All polymorphic viruses have

zillions ofinstances and it is impossible to select some ‘standard’ image ofsuch a virus. Oligomorphic and

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000140

000141

I I 0 ° MUTTIK: THE PROBLEMS IN CREATING GOATFILES

encrypted viruses are difficult to ‘standardize’ too. Even for non-encrypted viruses the problem is not

simple - they usually have some variables, stored inside their body (especially resident viruses) and, though,
their image is variable.

1.2 TYPES OF GOAT OBJECTS

We have many infectable objects in the DOS environment. This includes:

1) Files:

- EXE/COM/OV? executable files (usually started by the user)

- SYS drivers (called by DOS kernel at startup)

- BAT files (run on user request or from AUTOEXEC.BAT)

- OBJ/LIB/source files (compiled into executables on the user request)

- DLL/CPL/etc. (NE, LE, etc. - Windows, OS/2 executables)

- DOC/WK?/etc. (including macro and OLE files)

2) Pointers:

- MBRpartition table (£1 la Starship)

- DBR pointers (IO.SYS/MSDOS.SYS; IBMBIO.COM/IBMDOS.COM)

- directory entries (ex., DIR—II family)

— FAT pointers (ex., Necropolis)

3) Startup code:

- Flash ROM (called by microprocessor after RESET)

- MBR code (called by ROM BIOS after POST)

- DBR code on HDD (called by MBR code)

- DBR code on floppy (called by BIOS)

- DOS kernel code (called by DBR code)

Each mentioned object can be infected and, therefore, requires preparation ofa ‘goat object’. Fortunately,

most types ofunusual infection techniques are very rare or even not yet found. And creation ofbait objects
for bizarre viruses is a rare task - the great majority ofknown viruses are simple parasitic file infectors.

Furthermore, the creation ofa goat BAT file (or source file) is rather easy - one can use a text editor to
make a bait for the virus. To create a goat floppy diskette we can use standard FORMAT utility.

Anti-Virus researchers are mostly disappointed with a problem of ‘virus glut’ [Skulason]. ‘Virus glut’

means the rapid increase ofthe number ofknown viruses, the great majority ofwhich are file viruses. So, in
most cases, the attention ofanti-virus researchers is focused on parasitic file infectors. We’ll discuss only

this type ofvirus in the rest of the paper.

1.3 CREATION OF GOAT FILES

To try to replicate a virus, one has to have a set ofgoat files. Most anti-virus researchers have their own

pre—created sets offiles, produced using an ASM source or directly from the DEBUG utility. This
approach has a drawback - if new goat file is required it has to be created manually. And ifwe need a lot
offiles (eg., for testing polymorphic virus detection rate) the process must be repeated many times.

Obviously, a specific automated tool has many more options and capabilities. It can create sets offiles on
one invocation.

It is convenient to use a set of goat files with linearly increasing length (say, 1000, 2000, ...2000O). If the

virus leaves alone short victims after infection, and file growth can be calculated subtracting the size of

the infected file from the original size, this will be easily noticeable.

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, OX1 43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 41

000142

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - I I I

2 INFECTION OF A GOAT FILE

2.1 ‘WEEDING PROBLEM’

From the point ofview of an anti-virus researcher all incoming suspicious samples should be classified in

one ofthe following groups (for definition - see VIRUS-L FAQ [FAQ]):

o innocent file (includes garbage and damaged programs)

o virus (includes germs, droppers, viruses ofthe 1st generation)

o trojan

o intended

o joke

One mentioned classification problem is called ‘weeding’. There are automated and manual methods, used to

weed a set offiles. The following automated tools are used:

o scanners, detecting viruses by name

o heuristic scanner

o TRASHCAN/DUSTBIN, detecting non-viruses, jokes, garbage and intendeds

Manual ‘weeding’ methods are used after automatic ones:

o visual analysis (eg., presence of ‘MZ’, ‘PK’ identifiers)

o tracing in DEBUG (includes partial on-the-fly disassembling)

o full disassembling

We should take into account that the infected sample may be compressed with one of the EXE-packers

(PKLITE, LZEXE, DIET, EXEPACK, COMPACK, PGMPACK, KVETCH, SHRINK, TINYPROG,

WWPACK, AXE, IMPLODE, AVPACK, etc.). In such a case UNP and UUP programs should be used

to remove the compression code before manual analysis.

Visual checks of incoming suspicious files are usually made using DEBUG or HIEW (Hackers View) - a

a wonderful viewer ofexecutable files. The latter combines features of simple ASCII/HEX viewer with a

built-in disassembler/assembler (both 16 and 32-bit modes) and a binary file editor. Although I can hardly

recommend this utility for all anti-virus researchers.

2.2 SAFETY PROBLEM

Every anti-virus researcher faces a problem when he needs to start the infected (or just suspicious)

program or troj an horse. The usual solution is to use a special goat PC (usually an old PC/XT/AT). But
the malware can easily destroy data on the hard disk of this PC. It can even cause malfunction of the

hardware (_eg., low-level format IDE disk, ifany) and it will take significant time and effort to restore

your testing environment. The hardware protection of the hard disk ofyour PC can only be a 100%-
reliable solution. To make hardware protection you will need some switch, which selects an operation

mode — ‘normal’/‘protected’.

2.2.1 Hardware protection using ‘Turbo’ switch

‘Turbo’ switch is rarely used in computer operation for the following reasons: first, any user will usually

select the highest possible speed to minimize the response time of the software. Second, most available

BIOSes support toggling ofturbo mode using the keyboard eg., AMI BIOS uses [Alt]—[Ctrl]-[+] to set

higher speed and [Alt]-[Ctrl]-[-] to set lower speed). Therefore, you can easily replace your connection of

I/YR US B ULLETZNCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO142

000143

I I 2 ° MUTTIK: THE PROBLEMS IN CREATING GOAT FILES

‘Turbo’ switch to the motherboard with a simple jumper. Now your ‘Turbo’ switch connector is free for use

as a hard-disk protection switch. Typically the connector of ‘Turbo’ switch has three contacts (and a switch
shorts two left contacts or two right ones). The use of this switch to turn the disk protection on/off looks

like an elegant solution.

Now find the jumper on your hard disk controller, which enables its operation (examine the controller
manual ifneeded). Most MFM, IDE and SCSI controllers have such ajumper. Remove this ‘HDD—enable’

jumper and substitute it with the connector of ‘Turbo’ switch (the connector should replace the jumper on
the controller and short the contacts instead ofthe jumper).

Now, after the above modification, you can easily turn offthe HDD by simply pressing the ‘Turbo’ switch

pressing it again to return it to operation. t

The LED indicator (or simple LED) ofyour PC (which usually shows the current frequency ofprocessor
operation) is wired to the turbo switch and reflects its state. You can easily configure the LED indicator
to reflect the current mode of operation (say, ‘On’/‘FF’).

2.2.2 Software shell for hardware protection

To work without HDD you will need some media instead of it. An ideal solution is to use a ramdrive.
You have to add the following statement to your CONFIG.SYS:- DEVICE=RAMDRIVE.SYS nnnn

(where nnnn stands for the size oframdrive in kilobytes, you may also need /e switch to use extended
memory). Ramdrive size <2MB is usually not sufficient, so it’s better to select 2-4MB.

First, copy all software, needed for virus testing (plus suspicious files) to your virtual disk. When your
hard disk is switched off, all programs will be inaccessible, so make a good selection (in my case it took
around 1MB or more). Now you are ready to disable hard disk. But DOS still thinks that HDD is present.
Its internal buffers and cache utilities (ifany) still remember the current contents of some portions of

your hard disk in the computer memory. The most obvious solution is the elimination ofall ‘notes’ about
hard disk presence. To simulate the absence ofa hard disk on the PC, I wrote a special program, which
clears INT_41h and INT_46h (pointers to the HDD disk tables) and sets the number of available hard disks

(BIOS variable at [01475h]) to zero. To reroute any access from hard disk (eg., drives C:, Dz, E1) to the
virtual disk, I use DOS’ SUBST utility, which replaces drives C:, D: and E: with the Virtual disk drive letter
(F: in my case). SUBST also clears HDD cache contents. Finally, the DOS environmentvariables (eg.,
COMSPEC and PATH) should be rewritten to point on the ramdrive objects.

2.3 ‘REPLICATION PROBLEM’

The problem ofinfecting a goat file, with a sample ofa possible virus is called ‘replicating’. Very often one
researcher will ask the others, ‘I have a sample thatl think is a virus, but cannot replicate it. Have you tried?

If anybody has succeeded in doing this, send me a sample, please...’ And this is repeated very frequently.
We see that the ‘replication problem’ is one ofthe most common problems. The question is to find correct
computer environment and meet all virus infection conditions. Obviously, both problems can be solved with
the help of full disassembly ofthe viral code, but that is not a very practical approach, because it takes much
time. Usually, suspicious files are simply tested in the so—called ‘goat computer’. Only in the case of
problems (files not replicating, but looking suspicious) are they disassembled and analyzed in deep. We
have already seen one approach to the replication problem - to ask for help from other researchers. There are
also other options:

o try a lot ofdifferent goats

o try a lot ofdifferent environments

o manual analysis (tracing, debugging, disassembling) to find out all infection conditions (i.e.,
requirements for the goat and environment).

I/YR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 43

000144

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I I3

2.4 INFECTION CONDITIONS

To replicate a virus we have to feed it a goat file, which meets internal virus infection conditions. This must
be done in the environment which is appropriate for the current virus. Fortunately, to make viruses more

infective, they are usually made to operate in a wide range ofenvironments. On the other hand, sometimes,

numerous limitations are implemented to simplify the viral code (eg., Ping-Pong, Vindicator, Yale and.

Exeheader.Mz1 viruses work only on 88/86 processors; 3APA3A and MIREA. 4156 viruses require a 16 bit

FAT hard disk; the AT144 virus requires a 286 processor or higher; The Green_Caterpillar virus needs a

CMOS clock; the Lovechild virus requires MS—DOS 3 .2; the Nightfallvirus does not replicate without an

XMS driver [Brown]; the EMMA virus requires the presence ofEMS [Kaspersky]; etc.). In the case of

specific requirements, only a random environment selection or manual analysis ofthe virus internals may

help to find the correct environment.

Parasitic file infectors can theoretically infect all ofthe following types offiles:

o COM

o EXE

MZ/ZM (DOS executables)

NE (Windows, OS/2 16-bit)

LE, W3 (Windows VxD, Win3 86)

LX (OS/2)

_ PE (Windows, NT 32-bit)

MP, P2, P3 (Pharlap DOS extenders)

o SYS/COM (normal DOS drivers)

o SYS/EXE (understood only by DOS 5.0, 6.0)

There are following infection conditions (except file type)

o file size

o filename

o attributes

o file timestamp (date/time ofcreation/modification)

o file contents

The most common infection condition is file type (COM/EXE) and the second is the size ofthe victim.

Very short files are usually avoided, because their growth is too noticeable. Infection ofdo-nothing goat

files (like primitive INT_20, 2-byte files)is also avoided.

Most file infectors are targeted against simple DOS executables - COM files and EXE files (with MZ or

ZM markers). Some file infectors are capable of infecting DOS drivers of SYS type (eg., S VC. 4644,

SVC. 4661, SVC. 4677, Alpha. 4000, Astra, Astra_II, Cysta or Comsysexe, Terminator.32 75, CCBB, Talon

or Daemaen, Ontario, VLAD.Hemlock, Face. 2521, etc.). All other formats ofexecutables need

reclamation of the virgin lands from virus writers. For example, there are only a few known Windows

viruses up to date (all infecting only executables in NE-EXE format).

Speaking ofthe contents of goat files, we should mention that viruses, which check the internals of the

victim file, are rather rare. I do not mean a selfcheck to avoid multiple infections of the same file. I mean

checking ofvirus-free areas (same as inspection ofthe uninfected file). Nevertheless, such viruses exist.

VIR US BULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a reuieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO144

000145

I I 4 ° MUTTIK: THE PROBLEMS IN CREATING GOAT FILES

The Lucretia virus looks for an OXE8 byte (Intel x86 CALL instruction) in the file and replaces the offset of

the call to point on the viral body. The Warlock virus avoids all files having the 0Eh byte at the start of
program code (includes all LZEXE-packed programs). Raptorvirus does not infect EXE files with SS in
the header equal to 07BC, 141D, ...2894 (13 entries). The behaviour ofInternal 1381 virus depends on
the contents of the EXE header too. Moreover, there are Zerohunter viruses, which look for a series of

zeroes (412 bytes for Zerohunter. 412 and 415 for Zerohunter. 415) in the file and infect the victim
overwriting this block ofzeroes, if found. Zerohunter viruses are typical representatives ofthe class of
‘cavity viruses’ (like Helicopter. 777, Grog.Hop, Gorlovka.1 022/1024, Russian_Anarchy. 2048, Locust. 2486,
Tony.338, etc.).

There are also viruses of the exeheader type - Dragon, Hobbit, SkidRow, Mike, VVM, Bob, XAM, M21,

Pure, etc. They infect only EXE files, having a long block ofzeroes (around 200-300 bytes) in the EXE
header (it is 512 bytes by default). They can be regarded as a subclass ofcavity viruses.

Many viruses do not infect some programs. They usually avoid command processor COMMAND.COM and
certain anti-virus or widely used programs (archivers, command-line shells, etc.). The following reason

come to my mind: infection ofCOMMAND.COM is very noticeable and causes many incompatibilities, so
virus writers simply filter-offCOMMAND.COM to avoid compatibility problems. This approach has a
drawback (from the virus writer’ s point ofview), as the infection of COMMAND.COM with a resident
virus guarantees that the computer will come up with a virus installed in memory, because
COMMAND. COM is always automatically invoked during the boot process. Viruses try to avoid anti-virus

programs - they normally check their own integrity and a virus will be detected immediately. The list of
viruses that avoid infection ofcertain programs is given in Table 1.

A more difficult case occurs ifthe virus infects only on certain days ofweek, or during the first 20 minutes

ofan hour (like Vienna. 644. a does). For example, the Kylie virus affects the victim ifthe current year is not
1990. The Fumble virus infects only on even dates. The virus called Invisible avoids certain COM files by

doing a checksum on the name ofthe victim. Viruses ofthe Phoenix family (also called Live_affer_Death)
avoid some file sizes and about 1/8 of files are left uninfected. The Russian Mirror (Beeper) virus infects

only every third executed file. Some ofthese viruses are called ‘sparse’ infectors. Random environment/goat
selection may not help in this case and viruses have to be traced and/or disassembled.

Many viruses require a JMP instruction in the beginning ofthe victim file (eg., the first versions of
Yankee_Dooclle, Russian_Tiny.143, Rust. 1 710, Screen. 1014, Leapfrog. 51 6, etc.)

All mentioned exclusions and conditions must be taken into account when trying to create goat files
suitable for the infection and if the virus does not replicate.

2.5 INFECTION MARKERS AS AN OBSTACLE FOR INFECTION

Almost all Viruses try to ‘mark’ their victims to avoid multiple infections of the same file, because the

growth offiles beyond some reasonable limit cannot go unnoticed (because ofwaste ofdisk space and
delays for the reinfections) and may even cause infected an file to hang (eg., COM file >64k). Viruses
use different ‘infection markers’:

o detection ofself-presence (check own code; fiill or partial)

o sequence ofbytes (text or binaiy designator; usually at specific position)

o timestamp (62 seconds, >2000 year, etc.)

o file size (ex., Uruguay—#3, #4)

o attribute (some viruses mark their victims as ReadOnly).

VIR USBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO145

000146

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I I 5

Some viruses use perfectly legal markers — for example, seconds value (say, all infected files have 335) or

file length (say, all infected files’ lengths are divisible by 23). If, occasionally, our goat file carries a

‘marker’ of the virus, it will not be infected. Some unusual infection markers are listed in Table 2.

Fortunately, most viruses use specific markers. In fact, viruses have to behave in such a way to be

infective. Therefore, it is usually easy to make an infectable goat file if the first attempt of replication

failed because of a coincidence with a legal virus marker.

2.6 CHECKING OF GOAT FILES AFTER ATTACK

After trying to infect a goat we have to detect possible changes. Ifwe see file growth (in a directory

listing) - the reason is obvious: longer files are virus children. One additional test is recommended — to

check whether virus child is itself replicating. In some cases (because ofthe errors in the virus) it is not

and, therefore, must be classified as intended, not a virus. Visual checks after the attack are made just
like before the attack - see 2.1.

If the virus has stealth or semi-stealth properties, the detection of infected samples is somewhat more

complex. The best approach is to preserve all goat files, involved in the test and inspect them after a

clean reboot (copy them to a floppy disk ifyour HDD is disabled as described in 2.2). More simple, but

not that a reliable method, try to remove the virus from the interrupt chains using, say MARK/RELEASE

programs by TurboPower Software. MARK should be installed before the first start of the virus, it

remembers the whole internipttable; RELEASE should be started after the attack to restore the old

interrupt table and remove the virus from the interrupt chain). Unfortunately, this approach might not

work ifthe virus uses tunneling.

In principle, we can use an integrity checker to compare test files before and after the virus attack. This

generic method can detect almost all stealth viruses ifused in the low—level disk access mode. For

example, this mode is available in the Russian integrity checker ADInf.

3 ‘POLYMORPHICS DETECTION RATE’

3.1 HUGE QUANTITIES OF GOATS

In product reviews, we frequently read something like the following: “... the ‘Polymorphic’ test-set
contains a mammoth 4796 infected files” [TOP] or “When tested against the 500 positively replicating

Mutation Engine {MtE) samples, all but two were correctly detected as infected” [Jackson]. Why all

these tests need so many samples of the same virus? The answer is simple because ofthe great variability

ofpolymorphic viruses (more correctly - because of the variability of the virus decryptor). Any scanner

coping with polymorphics has to decrypt the body of the virus and locate a search-string. Another

approach is to try to distinguish the viral decryptor from normal non-viral code. Both methods can

produce both false positives and false negatives. They are, ofcourse, rather rare, but practically (and even

theoretically) unavoidable. To find out the weaknesses ofthe scanner, the number of tested samples

should be very high. That is why almost all comparisons of scanners are performed using very large

samples. That is, unavoidably, ofcourse, rather time consuming and not very convenient practice.

How can we speedup the tests and preparation ofsamples? The first idea is to put virus samples on fast
media - virtual disk looks the ideal selection. But can we enhance DOS’ access to the drive?

3.2 DOS SLOWDOWN WHEN WORKING VVITH LONG DIRECTORIES

When experimenting with the creation ofhundreds offiles, I have noticed a very interesting peculiarity.

After creating a number of files in the directory (in my case, around 700 files) all additional files needed

much more time to be created! Obviously, some internal resource of DOS was exhausted. To shed the

light on this effect I have run the same task - creation of lOO*N goat files (N=l..10) using GOATS (with

VIRUSBULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 46

000147

I I 6 ° MUTTIK: THE PROBLEMS IN CREATING GOAT FILES
 _?:___

no size increase; i.e., all goats were identical), but thevaried number ofBUFFERS (as written in
CONFIG.SYS). Note, that the disk cache (SMARTDRV) was not active, because files were created on
the virtual disk. Collected data is given in the table:

Time needed to create given number offiles (in seconds +/-1).

FILES 100 200 300 400 500 600 700 800 900 1000

BUFFERS

Note: ‘*’ - shows number offiles, when significant slowdown occurs.

1. We see that total time greatly depends on the number of BUFFERS.

2. At some place significant slowdown always occurs (compare columns to see).

3. The moment of this slowdown depends on the number of BUFFERS.

4. For creation of 1000 files, 68 BUFFERS are sufficient.

5. For 48 BUFFERS slowdown occurred at around 720 files.

6. For 58 BUFFERS slowdown occurred at around 870 files.

Thus, addition of 1 0 BUFFERS (1o*512=512o bytes) shifts the limit on (870-720=150) files. We can
calculate how many bytes are needed per file - 5120/150=34. 1. Surprisingly, this is very close to the

directory entry size! This is additional evidence that slowdown occurs when there is no more space in
BUFFERS to store current directory (and DOS needs to reload it from disk).

I have also found an interesting fact (_not yet known to me) - the creation offiles in a fresh directory takes

much less time, than the creation of the same number offiles in the same directory after removing 1000

files! And the creation time for 1000 files in used directory is approximately three times more than in a

fresh directory! That is because DOS scans a directory only until it encounters zero entry. And for a used

directory there are no such entries (at least near the beginning) and DOS has to scan the whole list of
deleted entries.

Thus, we have to create bait files in a set offresh directories ofmoderate size. The same applies to the

testing ofscanners against huge virus collections - fresh and short directories will be scanned faster.

4 GOAT SOFTWARE PACKAGE

After discussing some theoretical points, let’s turn to the realization of these ideas in the GOAT package

[GOAT]. This package is a set of tools for anti-virus researchers, which help to create bait files (also
called sacrificial goat files or, simply, goat files).

VIR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO147

000148

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I I 7

The purpose of the programs can be explained using the following table:

Bait file with some special internal structure GOAT.COM‘

A series ofbait files ofdifferent sizes GOATS.COM

Files of the same size, but with different contents GOATSET.BAT

Many identical files to infect them with polymorphic virus FLOCKCOM

Using GOAT.COM you can manually select the size, the name ofa sacrificial goat file and vary its internals
to meet the criteria, which the virus uses when deciding ‘to infect or not to infect’ the victim file. You can

enter the size ofa sacrificial goat file in any given format: decimal, hexadecimal or in kilobytes. Size ofthe

victim files can be as small as 2 bytes and as large as many gigabytes (it is stored in 32-bit variable).

GOAT.COM is very flexible - it can create COM, EXE, SYS(COM) and SYS(EXE) files, with code at the

beginning, in the middle, or at the very end ofthe goat file. Files can be filled with zeroes, NOPs, two types
ofpattern and even filled with random garbage. You can add stack segment for the EXE files, vary header
size, and many other options are available. The GOATS.COM file is intended to create a series ofbait

files with linearly increasing length. Length increase step is changeable. GOATS.COM has the same

flexibility as GOAT.COM.

FLOCICCOM creates up to 1,000,000 identical files. You can infect them in a polymorphic virus to test its

behaviour and properties. FLOCKCOM uses the same engine as GOAT.COM and GOATS.COM. Thus,

the same flexibility as GOAT.COM is available too.

GOATSET.BAT produces some sort of ‘a standard set’ offiles of the same size. These files are different

(internal contents or attribute is variable). GOATSET.BAT needs GOAT.COM for execution. GOAT.COM
should be located in the current directory accessible via PATH environment variable.

A small batch file RUN—ALL.BAT will help you to run (or infect, ifyou have a resident virus) all

generated bait files.

4.1 SYNOPSIS AND SWITCHES

Usage ofthe main program - GOAT.COM looks like this (others are similar):

GOAT Size [Filename] [/switch] [/switch]

Size - decimal, hexadecimal, or in kbytes

(Example: 10000, 3E00h, FF00h, 31k, 512K, 2048k)
Filename - file to create. If no, makes GOAT000, GOATOOI,

Short reference of all available switches is given below in alphabetical order:

/Annrm set device Attribute (default=0C853h)

/B place code at bottom of file (default - at start)

/C[n] set selfcheck level (by default equal to 2, the highest)

(/C means /C0; i.e., no selfchecking at all)

/Dnnn create maximum ‘nnn’ subdirectories (default=l O)

(recognized only by FLOCK_COM, ignored by GOAT and GOATS)

/E create EXE file (ifsize > 65280 - done automatically)

VIR US BULLETINCONFERENCE©] 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a. retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO148

000149

I I8 - MUITIK: THE PROBLEMS IN CREATING GOAT FILES

/Fnnn create maximum ‘nnn’ files in a subdirectory (default=500)

(recognized only by FLOCKCOM, ignored by GOAT and GOATS)

/H, /? Help screen

/Inn use fill byte ‘nn’ instead ofstandard zero-fill

(ex., decimal /il 00 or hexadecimal notation /iE5h)

/J remove JMP at code start (default - JMP present)

/Knnnn add ‘nnnn’ bytes of STACK segment to the bottom ofEXE file

(stack segment is filled with ‘STACK’ by default)

/l\/Innnn place code in the middle ofthe file exactly at nnnn

position (‘nnnn’ is 32-bit value, but see limitations below)

/N[nrmn] fill goat file with pseudorandom bytes. The parameter

(if given) is a random number generator seed.
RNG uses a multiplicative congruental method with 2* *32 period

/0 do not make long EXE (>256K) with internal overlay structure

/P fill free file space with pattern 00, O1, .. FE, FF, 00, ..

/R make file ReadOnly (default - normal) 5

/S make short (32 bytes) EXE header (default - 512 bytes)

/Tnn set tirnestamp seconds field = nn (<63, even: 0, 1 Eh, 62, ..)

set SS:SP equal to CS:IP

/W make word pattern (0000, 0001, ...FFFF, 0000)

/X suppress signature defined in the INI file using “Motto=”

/Y create device driver (SYS file)

/Z _ _ make ‘ZM’ EXE header instead of ‘MZ’

/9 fill free file space with NOPs (default - with zeroes)

GOAT.COM, GOATS.COM and FLOCK.COM programs use the same set ofcommand line switches.

Most switches are self-explanatory.

The pattern inside the goat file always reflects the current offsets in the file (i.e., it is ‘anchored’ to the
absolute location in the file). For example, at the file offset 1A2Bh you will see bytes ‘2B’, ‘2C’, ‘2D’,

(for byte pattern). Word pattern at the same location will look like this:- ‘2B’, ‘ 1A’, ‘2C’, ‘ 1A’, etc.
Sometimes pattern filling is very useful.

Switch /Knnnn adds stack segment at the bottom of the EXE file. Size of the stack segment is limited -
16 < nnnn < 65536. Obviously, SP always points on the bottom of stack segment (i.e., SP=nnnn). Small
and odd values in /K switch should be avoided, because they can hang the computer or cause ‘Exception

#13 ’ (QEMM frequent warning), when SP goes through the stack segment boundary (i.e., halfof a word is
written at SS:O000 and other half— at SS:FFFF).

Switches /Fnnn and /Dnnn are recognized only by FLOCK.COM (GOAT.COM and GOATS.COM_

simply ignore them). You can specify the desired number offiles and subdirectories to create. By default,
10 subdirectories with 500 files in each are created.

4.2 SIZE LIMITATIONS

By default GOAT.COM, GOATS.COM and FLOCK COM programs produce a sacrificial file ofCOM
type. This applies to any given size, which meets the following criterion:

2 < Size_of_COM < 65280

The magic number 65280 is a maximum size ofCOM file, which must fit in a segment size (64k=65 53 6)
without PSP size (256): '

65536 - 256 = 65280

VYRUS BULLETINCONFERENCE©1995 VirusBulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a. retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 49

000150

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I I 9

When placing the code at the bottom ofthe COM file, which size is around 64K, the code may lay too close

to SS:SP (SS=CS for COM files; SP=FFFE) and the program may hang when run, because stack will likely
overwrite the code. Therefore, if the spacing between IP and SP is less than 64 bytes, the goat generation is

aborted and the output file is not created (you will see a waming, ‘Goat IP will be too close to SP. Abort! ’).

When the size specified in the command line is greater than 65280 (or equal to), an EXE file is generated

automatically (you do not need to write /E or /S switch explicitly). Such a file will have a normal 512-

bytes EXE header in the beginning. When you need to create an EXE file shorter than 65280 bytes,

use /E (or /S, /Z or /Knnnn) command line switch.

4.3 INI FILE

You may like to put your preferences (signature, switches, filename templates, etc.) into a separate file -

GOAT.INI (common for GOAT.COM, GOATS.COM and FLOCKCOM). Use any text editor to create

or modify anINI file. The sample GOAT.INI file is given below:

GOAT.INI

Motto=’ ’Anti-virus test file. ’ ’ ;all output bait files will carry this string.

GOATfiles=FPROT ;files will be FPROT000.COM, FPROT001.COM,

;(default=GOAT)

GOATSfiles=ESASS ;files will be ESASS000.COM, ESASS001.COM,

;(default=GOAT)

FLOCKfiles=S&S ;files will be S&S000.COM, S&SO0l .COM,

;(default=GOAT)

FLOCKdirs=HEAP gdirectories created - HEAP000, HEAP001, HEAP002

;(defaulFDIR)

STACKfill=”*MYSTACK” ;fill stack with ‘*MYSTACK*MYSTACK*MYSTACK’

;(default=STACK)

SYSname=”DRlVERXX” ;this string is inserted into SYS header

;(default‘—-GOATXXXX)

Switches=/F200/D50 ;make 50 dirs, 200 files in each. 10000 in total

Switches=/C1 ;to turn off registers check and avoid

;waming “Your PC might be infected...”

Switches=/iF6h galways fill free file space with 0F6h byte

Switches=/O ;never make overlaid EXE files

GOAT.INI may be located in the current directory or in the path of the started program. The first location

has priority over the second. GOAT.INI may not exist. In that case programs use built-in defaults.

Filename and subdirectory templates are limited to 5 symbols, because programs always add ‘000’ and then

start incrementing this number until it becomes ‘999’. Any string exceeding the limit of5 symbols will

result in the following error message:

‘Error in the INI file line #nnn’

4.4 BAIT FILE INTERNALS

The bait files created with GOAT.COM, GOATS.COM and FLOCK.COM (ifthey are the same size) are

absolutely identical in their internal structure and properties.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000150

000151

I20 ° MUTTIK: THE PROBLEMS IN CREATING GOAT FILES

A created sacrificial goat file contains a small program, which displays its type (COM, EXE or SYS), size

in hexadecimal and in decimal (only when the goat file is ofbig enough, i.e., space for code itself is at least
70 bytes). Sacrificial goat files consist ofthe two parts: the small portion ofcode (70 bytes or, ifspace not
allows, just 2 bytes) and a block ofzeroes, NOPs or pattern ofvariable size (00..FF, 000O...FFFE or

random pattern). Zeroes (or NOPs or pattern) take all space of the file, free from the code. EXE files

have additionally an EXE-header. The non-used part ofthe EXE header is always filled with zeroes. SYS

files have additionally a device header, strategy and interrupt routines.

The output of a sample goat file (the size of the sample was 100 bytes) is the following:

‘Goat file (COM). Size=00000064h/00000001 00d bytes.’

File type (COM/EXE/SYS) and real numbers are inserted into the goat file message at the moment of
creation.

4.5 NAMING OF GOATS

Usually GOAT.COM, GOATS.COM and FLOCK.COM programs create output sacrificial files in the

following order: GOAT000.COM, GOATO01.COM, GOATOO2.COM, etc. The same applies to EXE

files: GOATOO0.EXE, GOAT001.EXE, GOAT002.EXE, etc. If some file in a row (say GOATO50.COM

or GOAT050.EXE) already exists - the next file number is selected automatically (it will be

GOATO5 1 .COM or GOAT051.EXE). Thus, we cannot generate both GOATO50.COM and

GOAT050.EXE in the same directory. This rule does not apply to SYS f1les(eg., GOATOO0.COM and

GOAT000.SYS are allowed). This naming strategy is used to give some freedom for companion viruses.

Note, that definitions, given in the INI file may change the default file (and subdirectory) naming.

4.6 BAIT DEVICE DRIVERS

There are two formats ofDOS device drivers - the old format (a la COM, understood by all DOS

versions >2.0) and new format (51 la EXE, introduced in MS-DOS 5.0). Drivers ofthe old type can only

be started from CONFIG.SYS using a DEVICE statement. The entry point is defined in a special SYS

header. Drivers of the new (EXE) type can additionally be started as a normal executables from the DOS

command prompt. Drivers of the EXE type have two entry points - one for invocation from

CONFIG.SYS/DEVICE (as written in the SYS header, which goes after EXE header) and the other is

defined by CS:IP fields in the EXE header (this one works only when the file is started from the

command line). The other advantage of the EXE format driver - it is not limited to 64K, like the old type
ofdrivers. The first example ofa driver with EXE format was SETVER.EXE from MS-DOS v.5.0. Such

drivers can exceed 64K, but pointers to Strategy and Interrupt routines must fit into the first 64k (they are

limited to 16-bits).

To create a device driver (SYS) file use switch /Y. Goat drivers of the old (COM) style will print the

message ‘Goat file (SYS). Size=...’ when DOS requests an initialization ofthe driver (during CONFIG.SYS

processing). Files in the new format (SYS&EXE) will do the same, but will print this message also when
run from the DOS command line as a normal EXE file. In both cases, this driver file prints the same

message. Note, that the EXE device drivers bear a ‘(SYS)’ designator inside, but are always named as EXE

files (to enable start from the command line as a normal executable).

Minimal size of the device driver is around 150 bytes (including SYS header). This limit increases for

S SYS & EXE files (it should include additionally the size of the EXE header - 32 bytes for /S; 512 bytes

for /E).

VIRUSBULLETZNCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX1 43YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 51

000152

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - I2!

5 ‘A STANDARD SET’ OF GOAT FILES

Let’s imagine that we know that we have a sample of the virus (eg., we got the sample from a
knowledgeable anti-virus researcher), but we have no information about the properties ofthe virus. This

situation frequently occurs in practice. First, we test it against a set of files ofdifferent lengths (say, 1000,

2000, 1 0000 bytes). Now we see that the virus infected 8 files (3000, ...l0000) and conclude that the
virus avoids short victims (<3 000). The ‘standard set’ ofgoat files may help you to find out which files are

preferred by the virus (eg., the virus may infect only COM files starting with JMP). Checking ‘a standard
set’ after virus attack, you can easily understand which files are infectable.

Now we have another question. Does the virus infect all files longer than 3000 bytes regardless of their

contents? We have to test the virus against a set of files of fixed size, but with different contents. To

simplify this task, the GOAT package has the generator of ‘a standard set’ ofbaits ofgiven size it is called:-
GOATSETBAT. Yes, this file is really a DOS batch file, issuing a series ofcalls to GOAT.COM with

different parameters. GOATSET.BAT makes COM, EXE and SYS files. Files are filled with zeroes or

NOPs (90h), with the initial JMP (0E9h) or without it. Some files carry the ReadOnly attribute. EXE files
are with normal (5 12 bytes) and short (32 bytes) EXE headers, with MZ and ZM markers.

GOATSET.BAT needs only one command line parameter - size ofthe files in the set. After invocation 52

files ofthe same size are generated - 12 COM, 34 EXE, 2 SYS and 4 SYS&EXE files. GOATSET.BAT
also writes a report file GOATSET.LOG and places a full description ofthe generated bait files set there.

Being a BAT file, GOATSET.BAT is fully customizable. It can be easily changed with any text editor.

6 FUTURE THREATS

6.] AN'TI-GOAT VIRUSES

Fortunately, there are only a few viruses that try to avoid infecting goat files. One ofthem is Sarov.1400.

It uses primitive algorithm to avoid victims with many repeated bytes.

The corresponding code is:

0100 8B161C00 MOV DX,[001C] ;LOAD RELATIVE OFFSET IN FILE

0104 33C9 XOR CX,CX

0106 D1EA SHR DX,1

0108 B80042 MOV AX,4200 ;LSEEK TO CHECKED FILE AREA

010B E80F01 INT 21

010E BAD804 MOV DX,04D8 ;BUFFER LOCATION

0111 B43F MOV AH,3F ;READ 100 BYTES FROM FILE

0113 B96400 MOV CX,0064 ;SIZE OF BLOCK TO CHECK

0116 8BFA MOV DI,DX ;DI —> BUFFER

0118 CD21 INT 21

011A 268A05 MOV AL,ES:[DI] ;GET FIRST BYTE (ES=DS)

011D 47 INC DI ISKIP TO NEXT BYTE

011E F3AE REPZ SCASB ;COMPARE WITH THE FIRST

0120 7455 JZ DON’T_INFECT ; ALL BYTES ARE THE SAME!

INFECT_THE_FILE:

Without any doubt, more and more anti-goat viruses will appear in the future. We can also expect the

appearance ofmore viruses which avoid victims placed on virtual disk. Or viruses, which do not infect files

with certain typical lengths (divisible with 10* *N and 16* *N). Fortunately, most virus writers have not yet
realized that such features are a very strong weapon. 1 would say, comparable with polymoiphicity, because

VIRUSBULLETINCONFERENCE ©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000152

000153

I22 - MUTTIK: THE PROBLEMS IN CREATING GOATFILES

in most cases full disassembly ofthe virus will be required and that takes time. Moreover, such anti-goat

tricks are programmed much more easily than any polymorphic engine.

6.2 ARMORING TRICKS, VIRUS/TROJAN CONVERSION

There are a lot ofviruses which try to complicate their investigation. Viruses use anti-tracing techniques:

SVC. 4644, Ieronim, XPEH (family ofviruses), Zlzerkov (called also Loz), Magnitogorsk, HideNowt,

0neHalf3544, 0neHalf35 77, Cornucopia, etc. A wonderful set of antitracing capabilities is found in
Compact Polymorphic Engine (CPE 0.1 lb), which is actually a Virus creation tool.

Some viruses, when they detect that they are being traced switch to the ‘trojan’ mode and try to damage

files, floppies and/or hard disks. That looks like revenge by the virus writer for an anti-virus researcher s

attempts to catch the virus. Many viruses have such behaviour - for example, recently found
RDA.Fighter. 58 71/5969/7408 overwrites random sectors on the HDD [Daniloff], whereas Maltese
Amoeba destroys 4 sectors on each of the first 30 cylinders of all drives; CLME.Ming.1952 overwrites 34
first sectors on all drives; DR&ET. I 710 erases 128 first sectors on HDDs; Gambler.288 destroys first 10

sectors on drive Cz; Kotlas removes original non-infected copy ofMBR, SumCMOS. 6000 tries to corrupt
HDD.

The most nasty idea is to use destructive capabilities (a la trojan) if the virus senses the anti-virus

environment. For example, when a virus detects goat files.

REFERENCES

[Skulason] Fridrik Skulason ‘The Virus Glut. The Impact ofthe Virus Flood.’, Proceedings of
EICAR '94 Annual Conference, St.Albans, 1994, pp. 143-147

[FAQ] VIRUS-L FAQ, Available from fip.informatik.uni-hamburg.de in pub/Virus/texts/
viruses/v-l-faq.zip or also from ‘comp.virus’ newsgroup.

[Brown] Matt Brown ‘N8FALL: The Nightmare Bug’, Wrus Bulletin, May 1995, p. ll

[Kaspersky] Eugene Kaspersky ‘Hiding in EMS — A Creative Crisis?’, Virus Bulletin, January

1995, pp.8-9

[TOP] ‘The 1995 Scanner Top Ten’ , Virus Bulletin, January 1995, pp. 14-19

[Jackson] Keith Jackson ‘ S&S: The Anti-Virus Toolkit’, Virus Bulletin, May 1995, p.22

[GOAT] Available from fip.informatik.uni-hamburg.de in pub/virus/progs/goat3O.zip

[Danilofl] Igor Daniloff, Documentation to Dr.Web anti-virus scanner.

TABLES

Table 1. A list ofviruses avoiding infection of some files (usually, anti-virus programs)

Virus name(s) Avoids

2UP.6000 AID*, COMMAND*, ANTI*, AV*, HOOK*, SOS*,

- TSAFE*, -V*, SCAN*, NC*, VC*, TNT*, ADINF*

Armagedon *ND.COM

Bastard. 1979 SC*, CL*, F-*, TB*, VS*, Vl*, lM*, MS*, CV*

(also deletes MS*.* and CP*.*)
ChDz’r.523 C*.*

CLME.Ming 1952 *AN.*, *OT.*, *86.*, *PY.*, *EG.*

VIRUSBULLETINCONFERENCE©l995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrievalbsystem, or transmitted in any form
without the prior written permission of the publishers.

000153

000154

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - I 23

Cornucopia PROT*, SCAN*, VIRU*, NAV*

Cpw CNC*, GUARD*, EMS*, CPAV*, SCAN*,
CLEAN*, FINDVIRU*, CHKVIRUS* ‘

Cmncher CO*, SC*, CL*, VS*, NE*, HT*, TB*, VI*,

FI*, GI*, RA*, FE*, MT*, BR*, IM*

Daemaen.1894 (Talon) SC*, CL*, VS*, F-*
Datacrime *D.COM

DR&E1".I710 SC*, CL*, VS*, F-*, CP*, VI*

Erase-821 *AID*, *VIR*, *DINF*, *CHK*, *TEST*,

AUR, *PAV*, *NAV*, *-V*, *SENT*, *ASM*,

SCAN, *LEAN*, *ANT*, *SAFE*, *BOOT*,

STRA (and deletes these files)

Grog.2075 *MBIO*, *MDOS*, *SCAN*, *LEAN*, *PROT*,

CPAV (and deletes CHKLIST.CPS)

Grog2825i IBMBIO*, IBMDOS*, SCAN*, CLEAN*, F-PROT*,

Helloween-1376

Jerusalem-113b PHENOME.COM

Jemsalem—Nemesis NEMESIS.COM

Metal—500 *ST.*

Migram-Smack *ND.*, *AN.*, *HA.*, *HK.*

Migram-Cemelry *ND.*
MPITY-1536 AIDSTEST.*,VL.*

MrD.1569 VIR*, *MKS*, *AV*, *NV*, *TB*,

Pla_vGame.2000 CO*, 4D*, SC*, CL*, VS*, NE*, HT*, TB*,

V1*, F-*, FI*, GI*, IM*, RA*, FE*, MT*, BR*

Prea'at0r2448 *PROT*, *SCAN*, *CLEA*, *VSAF*, *CPAV*,

NAV., *DECO*

PS-MPC.Joshua *ND.COM

RDA.Fz'ghter *ES?, *WE?, *AN?
Sh.983/988 AI*, WP*, HI*, DO*, KR*

Slovakia. 1. 0/]. SCAN*, AVG*, VIR*, ASTA*, ALIK*, REX*,

MSAV*, CPAV*, NOD*, CLEAN*, F-PROT*, TBAV*,

TBUTIL*, AVAST*, NAV*, VSHIELD*, VSAFE*, DIZZ*

Squealrer SCAN*.*, ??VU*.*

SumCMOS. 6000 COMMANDCOM, GDLEXE, DOSX.EXE,

WIN3 86.EXE, KRNL286.EXE, KRNL386.EXE,

USEREXE, WSWAP.EXE,CHKDSKEXE

S1/€l’dl0V—I 064 Al*.*, SC*.*

Swami (Bhaktivedanta) *ND.COM, *AN, *LD, *RJ

Thirteen Minutes COMMAND.COM, SCAN*, CLEAN*, VIR*,

(also called Thursday-12th)

Tired—1 740 Has a checksum list of 16 programs

(checksum includes name and contents)

TPE.Bosnia CO*, SC*, CL*, VS*, NE*, MS*, TB*, VI*, FI*, F-*,1M*,

CP*, NA*, -V*, RA*, FE*, MT*, BR*

TPE.Gz‘rafe CO*, SC*, CL*, VS*, NE*, HT*, TB*, VI*,FI*, GI*,

CPAV*, MSAV*, NAV*

(and deletes ANTI-VIRDAT, CHKLIST.*)

SCAN.*, CLEAN.*

ARJ*, FLU*

RA*, FE*, MT*, BR*, IM*

VYRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO154

000155

I24 ° MUTTIK: THE PROBLEMS IN CREATING GOAT FILES

Union. 1449 AI*, AD*, SC*, NC*

Umguay-#6/#7/#8 COMMAND.COM, SC*.*, F-*.*, *V*
XPEH-4016 COMMANDCOM, AIDSTEST.*

Note: SC = SCAN, CL=CLEAN, TB=TBSCAN, F-=F-PROT, CP=CPAV,

AI=AIDSTEST, VS=VSIELD/VSAFE, NA=NAV, FI=FINDVIRU,

AV=AVSCAN/AVP/AVPRO, AD=ADINF, BR=BRM_SCAN, 4D=4DOS.

Table 2. Some unusual virus markers

Virus Infection marker

Atas.1268 Minutes mod 8=O, seconds=34 in file timestamp

Corn2con Timestamp: time=1 1 : 19

Kela.2099 62s in file timestamp, JMP, ‘KLM’ at start

Ku/cu.448 20s in file timestamp

Taiwan. 708 62s in file timestamp

Uruguay-#1 Filesize mod 13h=O

Umguay—#2/#3/#4 mod l7h=0

Filedate I I (V-53 7) Tirnestamp: date=17.08.88, time=02:O8:34

Vienna 005-62) 625 in file timestamp

Vienna. 3 77 Filestamp date (certain bits)

I/YRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 55

000156

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I25

AUTOMATIC TESTING OF MEMORY RESIDENT ANTI-VIRUS

SOFTWARE

DrDavid Aubrey—Jones

Reflex Magnetics Ltd, Units 1-2, 31-33 Priory Park Road, London NW6 7UP, UK

Tel +44 171 372 6666 - Fax +44 171372 2507

ABSTRACT

Testing ofAnti— Virusproducts has with veryfew exceptions been limited to static scanning, and has

excluded testingofthe memory-resident componentprograms, theparts on which many relyfor their virus

protection. The reasonfor the exclusion is simple: such testing is normally extremely time consuming

A simple methodforautomating such testing has therefore been devised. Such a method is likely toprove

useful to A Vcompanies in quality testing their sofiware. It should also helppinpoint security holes within

protectionprovided by TSR scanners and behaviour monitors.

INTRODUCTION

A number ofdifferent techniques have been developed to combat the growing threat ofcomputer viruses.

However, in reviews and product tests only a small part ofthe whole product is commonly tested against

viruses; namely, the non-resident scarmer. Such tests, while undoubtedly useful, leave an important part of

the products totally untested. To make matters worse, these are commonly the very parts on which users rely

for virus protection.

The reason for this exclusion is simple. Such testing is extremely time consuming, and would be a logistical

nightmare ifperformed in a large-scale test. In terms ofpublished reviews, very few have included such
tests.

POOR PERFORMANCE FOUND IN TESTS

In September 1993, Virus Bulletin conducted a comparative review ofsix memory-resident scanners. They
tested the ability ofthese products to detect 83 ‘In the Wild’ Virus files, and 250 other virus-infected files as

they were copied using the DOS copy command.

Interesting findings resulted. Only one product reviewed demonstrated equal performance between the non-

resident scanner and the memory-resident version, with the memory-resident version in most cases trailing

significantly behind. The review concluded ‘The poor performance ofall the memory-resident scanners

WRUSBULLETINCONFERENCE @1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000156

000157

I26 ° AUBREY—_IONE$: AUTOMATIC TESTING OF MEMORY RESIDENTANTI-VIRUS SOFTWARE

came as something ofa shock when conducting this review’. It is obvious from these results that it is not

safe to extrapolate from the results with the non-resident scanners to their memory-resident counterparts.

Since this time, no such tests appear to have been published elsewhere. Secure Computing made an attempt

in February ofthis year to look at memory-resident scanners, but limited themselves to observations in

memory usage and the performance impact ofcopying files (normally very significant). They shied away
from the really interesting tests; the tests against real viruses.

There are several methods which have been developed to protect against viruses: virus-specific scanning

software, behaviour monitors/blockers and integrity checkers. All rely on being memory resident, and the

ability to monitor various aspects of the PC to provide constantprotection. They also normally alert the user
ifsomething is amiss.

THE ULTINIATE TEST

To test any ofthese methods and their ability to provide virus protection adequately, they must be submitted
to a real virus attack. This is the ultimate test of any anti—virus product. However, such tests are normally

far too time consuming and tedious ever to be conducted. Even copying infected files, as was done in the
Virus Bulletin tests, takes a lot of time. Copying files is also limited in scope, and is unable to test products

fully. Only memory-resident scanners can be evaluated in this way, and then onlyin a limited way. It is
interesting that Virus Bulletin has never conducted further tests along these lines.

With these factors in mind, it is readily apparent that there is a vital need for some automated method to test

protection provided against virus attacks. Companies producing anti-virus software require such a method to
test their products fully, and to provide adequate quality control. Such a method is also required to evaluate
products properly and to provide meaningful results, such as under the European ITSEC scheme.

REQUIREMENTS FOR TESTING AV SOFTWARE

Let us examine some of the requirements for testing virus protection. To start, the test computer must. be

virus-free, and exact information on file and system integrity must be established, so that any changes

produced by a virus can be detected.

Next, the anti-virus protection must be activated, and then the virus sample must be introduced under
controlled conditions. Following this, an attempt must be made to activate the virus, by executing the

infected sample. At this point the resident anti-virus software may or may not protect the system, and may
produce an alert message.

Lastly, several other programs should be executed to act as virus bait, or goats. Memory-resident parasitic
file viruses commonly infect on file execution, file open or file close when a suitable target file presents

itself. Again the anti-virus software may provide protection, and may provide an alert message. All traces of
the virus must now be removed from memory, by ensuring a clean boot. The method normally adopted

for this is a cold boot from a DOS system floppy disk, with a watch being kept for CMOS-modifying

viruses such as EXEBug. A full integrity check must follow to discover ifthe virus succeeded in infecting

the computer, or in making any other unauthorised changes to the system.

Finally, and most importantly, the PC must be completely cleaned ofthe virus (if it was infected) and all
files etc must be restored to their original state. Using the Cleanup utility from an anti-virus toolkit is

obviously not adequate.

If this procedure is strictly followed, a fairly good knowledge ofthe protection offered by a product against
a particular virus threat will result, although even this is by no means an exhaustive test. A person could

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshjre, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO157

000158

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I2 7

probably accomplish in the order of four tests an hour using this method, when one takes into account

fatigue, etc. It now becomes obvious why no product tests are generally conducted using such a method!

POTENTIAL PROBLEMS W I I H AUTOMATED TESTS

ATOMS (Automated Testing OfMemory-resident Software) is a method we developed at Reflex Magnetics

to automate such a test procedure. From the outset, it was clear that an adequate system could not be

constructed from a single computer on its own without a large amount ofextra hardware. It was far better to

use two separate PCs, with various links between the two (see Fig.1). One of the PCs would control the

testing process (the Control PC), and the other would act as the dirty PC, with active viruses on it (the Test

PC). With such an arrangement, the Control PC can remain in full control, since it can be kept totally free
from viruses at all times.

CLEAN BOOTING

When constructing ATOMS, one of the first questions to be decided was how to clean—boot. This is a

necessary requirement for accurate analysis of infected items, to avoid interference from virus stealth

techniques, and to ensure cleanup after a virus. The most common method ofclean-booting is via a system

floppy disk, but this method was far from ideal for use by ATOMS, for a number ofreasons. We therefore

decided to clean boot from a network, using a boot image. This was faster and had the advantage that, by

changing the boot image on the network, different modes ofoperation could readily be initiated.

HANGJNG

Another potential difficulty we had encountered was the propensity ofmany virus samples to hang a

computer. Similarly, considerable numbers of so-called virus samples often turn out to not be viruses at

all, but Trojan horses, which immediately cause damage, resulting in a hang when executed. Obviously, if

the Test PC hangs during a test cycle, the Control PC must have a method to sense this and force a reset.

Otherwise, when testing a number ofvirus samples, the process would be very likely to stall part way

through, requiring operator input, and would not be fully automated.

A system such as ATOMS could be constructed using memory-resident code ofone form or another to

monitor the infection process and log or report results. Reliance on such code would be a mistake, however,

in a DOS system enviromnent, due to the ease with which viruses could cause interference.

Hardware links

Fig.1 ATOMS component links

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 58

000159

I28 ' AUBREY-jONE$:AUTOMATIC TESTING OF MEMORY RESIDENTANTI-VIRUS SOFTWARE

ATOMS DESIGN AND OPERATION

ATOMS uses a Novell network to link the Control PC to the test PC, plus other proprietary Hardware links

(Fig.1). All virus samples are stored on the network drive in a directory with restricted access. Each sample
is selected for testing in sequence according to a list which is accessed sequentially from a database.

TEST PC SETUP

The test PC is normally configured as a basic DOS PC. MSDOS 3.3 was selected as being most ‘virus

friendly’, there being some viruses which are very fussy about which version of DOS they will function

on. An additional run using other versions ofDOS can be used for such awkward viruses.

A Goat directory containing a number ofdifferent Goat files ofdiffering lengths, etc is used on the test PC,

and the virus sample is inserted after these. There is also a standard DOS directory containing a full

complement ofDOS files.

INTTIALISATION

The testing procedure starts by the Control computer clean-booting the test computer (see Fig.2). The test

files and programs including DOS, etc are loaded onto the test PC, and a copy is made for comparison later
ofvarious tracks on the Hard Disk which contain the MBR and partition boot sectors, etc. The main loop

which is performed for each virus in turn is now begun. This consists ofthree main phases: the Infection

phase, the Analysis phase and the Cleanup phase.

 More viruses

to test?

Fig. 2. Main stages in ATOMS testing

VIRUS BULLETINCONFERENCE©1 995 V'1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 59

000160

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I 29

HVFECTUKMN

The Infection phase is begun by booting the test PC from a clean boot image. Included within this are the
files CONFIG.SYS and AUTOEXEC.BAT which first execute the anti-virus TSR to be tested. The virus is

then executed, followed by a series ofgoat files.

AUNAJJYSIS

When all the Goat files have been executed, the test PC is rebooted, and the Analysis phase begins. A full

comparison check is made for changes, and any found are logged to the report file.

ATOMS — Automatic Testing Of Memory—resident Software

Copyright (C) 1995 Reflex Magnetics Limited. Designed by David

Aubrey—Jones, written by Andrew Oaten and David Aubrey—Jones

Report Started on Wednesday 28th of June l995. Time 4:55 pm.

Virus K : Abal.
Filename : AL758.COM.

Number : 1.

Changed Files:

:\TARGET\COMIT.COM

:\TARGET\AlOOO.COM

:\TARGET\A5000O.COM

:\TARGET\Al0OOO.COM

:\DOS\FORMAT.COM

:\DOS\MODE.COM

:\DOS\SELECT.COM

:\DOS\SYS.COM

:\DOS\ASSIGN.COM

:\DOS\BACKUP.COM

:\DOS\CHKDSK.COM

:\DOS\COMP.COM

000000000000
Virus 2 Bruchetto.

Filename : BRUCETTO.COM.

Number : 2.

Changed Files:

C: \TARGE‘.T\COMIT.COM

C:\TARGE‘.T\AlO00 .COM

C: \TARGET\A5000O .COM

C: \TARGET\Al00OO .COM

Virus : Dir II.

Filename : DIR2M.COM.

Number : 3.

No changes detected.

VIR US BULLETINCONFERENCE ©1 995 V'1rus Bulletin Ltd,21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000160

000161

I 30 - AUBREY-jONES: AUTOMATIC TESTING OF MEMORYRESIDENTANTI-VIRUS SOFTWARE

Virus : Dark Slayer Mutation Engine virus.

Filename : DSME.COM.

Number 2 4.

Changed Files:

C:\TARGET\WAIT.EXE

C:\TARGET\COMIT.COM

C:\TARGET\AlOOO.COM

C:\TARGET\BlOOO.EXE

C:\TARGET\BlOOOO.EXE

C:\TARGET\B5000O.EXE

C:\TARGET\AlOOOO.COM

C:\TARGET\A200.COM

Virus : F—soft.590.

Filename : F—SOFT59.COM.

Number : 5.

Changed Files:

:\TARGET\COMIT.COM

:\TARGET\A5000O.COM

:\TARGET\AlOOOO.COM

:\TARGET\AVl.DAT

:\TARGET\AV2.DAT

:\TARGET\AV3.DAT

:\TARGET\AV4.DAT

0000000
Virus 2 Fax_free.2766.

Filename : FAM.EXE.

Number : 6.

Changed Files:

C:\TARGET\WAIT.EXE

C:\TARGET\BlOOO.EXE

C:\TARGET\BlOOO0.EXE

C:\TARGET\B5000O.EXE

Virus : HLLC.l6850.

Filename : WORM.COM.

Number : 7.

New files:

C:\BlOOO.COM

C:\TARGET\AVl.COM

C:\TARGET\AV2.COM

C:\TARGET\AV3.COM

C:\TARGET\AV4.COM

C:\TARGET\AV5.COM

C:\TARGET\AV6.COM

C:\TARGET\B50000.COM

C:\TARGET\B1000O.COM

C:\TARGET\BlOOO.COM

C:\TARGET\WAIT.COM

WRUS BULLETINCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000161

000162

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ~ I 3]

CONCLUSION

Finish Time : Wednesday 28th of June 1995. Time 5:19 pm.

Time taken to process 7 viruses 0 hours 24 minutes.

Average time to process a virus 3 minutes 25 seconds.

There were 7 viruses tested.

The viruses that infected were:

1) Abal

2) Bruchetto

4) Dark Slayer Mutation Engine

5) F-soft.59O

6) Fax_free.2766

7) HLLC.1685O

Total : 6

()lJ>'D>{J>OlJ>'
C - Companion Virus.

0 — Overwrites code in original file.

A — Appends code to original file.

The viruses that were stopped were:

3) Dir II

Total : 1

Fig.3 Sample reportproduced by ATOMS

CLEANUP

Lastly, the Cleanup phase commences. The hard disk is wiped clean and formatted, and fresh copies ofall

files required are then copied onto the test PC from the network. Finally, to complete the cleanup, the next

virus sample file specified in the database is copied into the directory with the Goat files, and the Infection

phase begins again.

Based on a 486 DX2 test PC ATOMS is capable ofperforming around 30 tests per hour. In a day it can

therefore manage nearly 800 virus samples. However, memory-resident scanners slow file access times

considerably, and ATOMS perfonnance when testing these products can be greatly reduced.

FINDINGS

Sections from a typical report produced by ATOMS are shown in Fig.3. Details on each virus which

succeeded in bypassing the memory-resident protection is produced. This includes information on

changes to hard disk boot sectors, and all files.

At the end ofthe report, there is a summary noting the time taken for the tests, the number ofvirus samples

tested, and the number which produced a change on the test PC. A list of all viruses which produced a

change is given, with a note on the type.

I/I/RUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000162

000163

I32 ° AUBREY-JONES: AUTOMATIC TESTING OF MEMORYRESIDENTANTI-VIRUS SOFTWARE

LIMITATIONS or ATOMS 9

One must be careful when conducting any kind ofanti-virus product test, and in this sense ATOMS is no

different. There are several potential problems. One of the most important of these is the library ofviruses

which are used. Obviously, all these should be true viruses, but many viruses are very fussy about the

conditions under which they will function, and must be ‘spoon fed’. DOS version, BIOS type, disk type,

type ofGoat files, et. can all prove very important. Such viruses may well never infect on a given PC. Slow

viruses, although uncommon, may also not infect For this reason, all the viruses used in our final tests were

first checked to make sure that they were functioning under the ATOMS setup. It should be remembered that

ifa change is found after a test with a given virus sample, it does not necessarily mean that a true infection

has resulted. Changes could be caused by payload activation, etc and may not always correspond to an
infection in the true sense ofthe word.

ATOMS has not been designed for use with boot sector viruses and cannot at present be used to perform

any tests with them. This is something to be addressed in the future.

HUGE HOLES

Several memory-resident anti-virus programs have so far been tested with interesting results. These support

the fmdings of Virus Bulletin two years ago, which showed that memory-resident scanners in general have a

far poorer performance than their non-resident counterparts. In some cases the differences are striking, with

huge holes in their security. For example, very few memory-resident scanners can detect many polymorphic
viruses, which are becoming more and more common. By contrast, the performance achieved by behaviour

blockers was generally superior.

THE FUTURE OF ATOMS

After initial teething problems, ATOMS soon proved invaluable. It is now possible to take a library of
several thousand different viruses, and, with minimal operator input, check a memory-resident anti-virus

product for any weaknesses. This is invaluable for good quality control. I

It would also be very suitable for adoption as a tool to assist with evaluation ofmemory-resident anti-virus

products. It enables tests with a meaningful number ofviruses to be conducted which would otherwise be
impossible, and reduces the cost of those tests. In addition, it has the advantage ofbeing reproducible.

VIRUS BULLET[NCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0Xl43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 63

000164

LATE SUBMISSION

The following papers are a late addition to the proceedings and, therefore, appear out of sequence.

OOO164

000165000165

000166

VIRUS BULLETIN CONFERENCE, SEPTBVIBER I995 ° I

COMPUTERVIRUSES IN HETEROGENEOUS UNIX NETWORKS

Peter V. Radatti

Cybersoft, Inc., 1508 Butler Pike, Conshohocken, PA 19428, USA

Tel +1 610 825 4748 - Fax +1 610 825 6785 - Email radatti@cyber.com

1 ABSTRACT

Unix systems are as susceptible to hostile software attacks as any other system, however; the Unix

community is zealous in its beliefthat it is immune. This beliefis in theface ofhistorical reality. Thefirst

computer viruses created were on Unix systems. The Internet Worm, Trojan horses and logic bombs are all

ignored milestones in this belief. Not withstanding these beliefs, there is a growing concern among

computer securityprofessionals about theseproblems: this is based on recognition ofthe complex nature of
theproblem and the increasing value ofUnix based networks. Whereas the Internet Worm disrupted the
Internet in 1988 the cost was relativity low; ifthis attack were repeated today, the cost will be very high

because ofthe new-found importance ofthe Internet, electronic business networks usingEDI, andprivate

networks, all ofwhich are Unix-based.

Traditional methods used against attacks in other operating system environments such as MS-DOS are

insuflicient in the more complex environmentprovided by Unix. Additionally, Unixprovides a special and

significantproblem in this regard due to its open and heterogeneous nature. Theseproblems are expected to
become both more common and morepronouncedas 32-bit multi-tasking network operating systems such as

Microsoft NTbecomepopular. Therefore, theproblems experienced today are good indicators ofthe

problems and the solutions which will be experienced in thefuture, no matter which operating system

becomespredominate.

2 TI-IE EXISTENCE OF TI-[E PROBLEM AND ITS NATURE

The problem of software attacks exists in all operating systems. These attacks follow different forms

according to the function ofthe attack. In general, all forms ofattack contain a method ofself-preservation,

which may be propagation or migration, and a payload. The most common method ofself-preservation in

Unix is obscurity. Ifthe program has an obscure name or storage location, then it may avoid detection until

after its payload has had the opportunity to execute. Computer worms preserve themselves by migration,

while computer viruses use propagation. Trojan horses, logic bombs and time bombs protect themselves by

obscurity.

While the hostile algorithms which have captured the general public’s imagination are viruses and worms,

the more common directproblem on Unix systems are Trojan horses and time bombs. A Trojan horse is a

program which appears to be something it is not. An example ofa Trojan horse is a program that appears to

VIRUS BULLETZNCONFERENCE©l 995 Virus BulletinLtd,2l The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or uansmitted in any form
without the prior written permission of the publishers.

000166

000167

II - RADATTI: COMPUTER VIRUSES IN HETEROGENEOUS UNIX NETWORKS

be a calculator or other useful utility which has a hidden payload of inserting a back door onto its host

system. A simple Trojan horse can be created by modifying any source code with the addition ofa payload.
One ofthe most favorite payloads observed in the wild is ‘/bin/rrn -rf/ >/dev/null 2>&l ’. This payload will

attempt to remove all accessible files on the system as a background process with all messages redirected to
waste disposal. Since system security is lax at many sites, there are normally thousands offiles with

permission bit settings ofoctal 777. All files on the system with this permission setting will be removed by
this attack. Additionally, all files owned by the user, their group, or anyone else on the system whose files
are write—accessible to the user will be removed. This payload is not limited to use by Trojan horses, but can

be utilized by any form of attack. Typically, a time bomb can be created by using the ‘cron’ or ‘at’ utilities
ofthe Unix system to execute this command directly at the specified time.

While the ‘bin remove’ payload is a favorite ofmany authors, there are other traditional attacks which are
not as overt in their destruction. These other attacks are more important because they bend the operation of

the system to the purposes ofthe attacker while not revealing themselves to the system operator. Attacks of
this form include the appending ofan account record to the password file, copying the password file to an
off-site email address for leisurely cracking and modification ofthe operating system to include back doors

or cause the transfer ofmoney or property. It is extremely simple to email valuable information offsite in

such a manner as to insure that the recipient cannot be traced or located. Some ofthese methods are path

dependent; however, the path selected is at the discretion ofthe attacker.

One ofthe most simple methods ofinserting aback door is the well known ‘sticky bit shell’ attack. In this
attack, a Trojanized program is used to copy a shell program to an accessible directory. The shell program is

then set with permission bits that allow it to execute with the user ID and permission of its creator. A simple
one line sticky bit shell attack can be created by adding the following command to a user’s ‘ .login’ or any
other file they execute. Example: cp /bin/sh /trnp/gotu ; chmod 4777 /tmp/gotu.

Trojan horses and time bombs can be located using the same methods required to locate viruses in the Unix
environment. There are many technical reasons why these forms ofattack are not desirable, the foremost

being their immobility. A virus or worm attack is more important because these programs are mobile and
can integrate themselves into the operating system. Ofthese two forms ofattack, the virus attack is the
hardest to detect and has the best chance ofsurvival. Worms can be seen in the system process tables and

eliminated, since they exist as individual processes, while virus attacks are protected from this form of

detection by their host programs. All ofthe methods used to detect and prevent viruses are also effective
against the other forms ofattack; therefore, the remainder ofthis paper will deal with the more serious
problem ofviral attacks.

3 UNIX VIRUS ATTACKS

The promotion ofthe concept of ‘magical immunity’ to computer viral attacks surfaces on a regular basis.
This concept, while desirable, is misleading and dangerous since it tends to mask a real threat. Opponents of
the possibility ofviral attacks in Unix state that hardware instructions and operating system concepts such as
supervisor mode or permission settings, security ratings like C2 or B1 provide protection. These ideas have
been proven wrong by real life. The use ofsupervisor mode, the additional levels ofprotection provided by
C2 and the mandatory access control provided by security level B1 are not necessary for viral activity and

are therefore moot as a method ofprotection. This fact is supported by the existence ofviruses which infect

Unix systems as both scripts and binary.

In fact, virus attacks against Unix systems will eventually become more popular as simpler forms of attack

become obsolete. Computer viruses have significantly more virility, methods ofprotection and opportunity
for infection. Methods ofprotection have been highly refined in viruses, including rapid reproduction by
infection, migration though evaluation ofits environment, (boot viruses look for uninfected floppy
diskettes), armor, stealth and polymorphism. In addition, the host system itselfbecomes a method of

I/YRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000167

000168

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - Ill

protection and propagation. Virus-infected files are protected just as much by the operating system as are

non-infected files. The introduction ofviruses into systems has also been refined using so-called ‘droppers’.

A dropper is a Trojan horse that has a virus or viruses as a payload. Finally, extensive networking

technology such as NFS (Network File System) allows viruses to migrate between systems without effort.

All ofthese reasons point to viruses as the future ofhostile algorithms; however, the most significantreason

for this determination is the effectiveness ofthe virus as a form ofattack. Past experiments by Doctor Fred

Cohen [1984] used a normal user account on a Unix system, withoutprivileged access, and gained total

security penetration in 3 0 minutes. Doctor Cohen repeated these results on many versions ofUnix, including

AT&T Secure Unix and over 20 commercial implementations ofUnix. The results have been confirmed by

independent researchers worldwide. Separate experiments by Tom Duff [1989] demonstrated the tenacity of

Unix viruses even in the face ofdisinfectors. The virus used in Mr. Duffs experiment was a simple virus

written in script. It was believed to have been reintroduced by the operating system from the automated

backup and restore system. Reinfection took place after the system had been virus-free for one year.

4 HETEROGENEOUS VIRUS ATTACKS

I have observed non-Unix personal computers attached to a heterogeneous network which were infected with

computer viruses originating from Unix servers [I987]. The Unix systems were not the original point of

entry for the viruses. They were donnant while on the Unix systems but became harmfirl when they

migrated to their target systems. The Unix systems acted as unaffected carriers ofcomputer viruses for

other platforms. For the sake ofsimplicity, I have named this effect after an historical medical problem of

similar nature, ‘Typhoid Mary Syndrome’ [199 1]. Networks and specifically Unix servers which provide

network file systems are very susceptible to this problem I first observed this problem while investigating

an infection ofpersonal computers attached to a networkwith a large population ofUnix servers and

workstations. The virus was manually attacked on the personal computers using virus scanners. During the

infection period, all ofthe personal computers were disconnected from the network and idle. Once all the

computers were disinfected, all removable media was tested and the infection was unobserved for a period of
time, the computers were reattached to the network. A few weeks later, a test ofthe computers using the

same virus scanner indicated they had become reinfected with the same viruses. The source ofinfection was

then identified as repositories ofexecutables stored on the Unix file servers.

These repositories were organically grown centralized resources for all the personal computers because the
Unix servers were effective atproviding these shared services via NFS. In retrospect, this problem had to

exist. The use ofnetworked systems exported from the Unix platforms provided an easy, powerfirl method

of transferring data, including executables. Some network designs provide all third party software from a

network disk, for ease ofmaintenance and reduced storage requirements. This easy access provides an open
door for viruses.

5 TRANSPLATFORM VIRUSES ATTACK UNIX

During late 1994 and early 1995, I observed multiple instances ofat least three transplatforrn virus attacks

on Unix systems. All ofthese attacks involved MS-DOS viruses which attacked PC-based Unix systems.

The first attack involved a virus that corrupted the Unix file system every night. The attack was located

using avirus scanner and indicated a Unix binary which was executed at midnight by ‘cron’. The MS-DOS

virus had become embedded in the Unix executable where it was executed. The virus did notperforrn as

designed, in that the corruption was the result ofthe virus attempting to infect other files: it was not an
intended effect. The virus was reinstalled every morning when the system was restored. The second attack

involved an MS-DOS virus which executed, and was successful in infecting other files. Once again, the file

system corrupted, but it took longer to do so, thereby allowing the virus to propagate. The final infection

involved a boot sector virus. Since this type ofvirus executes prior to the loading ofthe operating system ,

I/YR USBULLETINCONFERENCE©1995 V'1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 68

000169

IV ° RADATTI: COMPUTER VIRUSES IN HETEROGENEOUS UNIX NETWORKS

the differences between Unix and MS-DOS are moot. The PC-BIOS and processor chips are the same in

both cases, and the virus is able to execute according to design. In fact, two different viruses were observed

performi ng in this way. The first virus was spread by an MS-DOS setup diskette, while the second virus
was transmitted using a still undiscovered method. While we observed no boot sector infections ofPC-

based Unix systems during 1994, we received reports from system administrators who were requesting
information on our Unix anti-virus product because they had experienced hundreds ofinfections during

1995. In one instance, a single multi-national company lost its entire international network overnight. The

estimated cost in lost time, resources, and sales was in the millions of dollars.

Once it is understood that the BIOS and processor functions are the same for both operating systems, it is

very easy to see how a transplatform virus could be designed by intention. The virus would be able to
process correctly by inspecting the operating system using only common BIOS calls and then modify its
basic behavior using a simple ‘if’ structure.

6 TRADITIONAL CATEGORIES OF PROTECTION AND THEIR FAILURE

There are three traditional categories ofprotection, none ofwhich provide complete or significant protection

as stand-alone methods ofimplementation. The categories are Control, Inspection and Integrity. Each of

these methods has traditionally been used separately.

Control has been the primary intent ofthe U. S. national standards on computer security. They deal with the
control ofaccess to the system, its functions, resources and the ability to move or share data in the system.

These national standards are codified in a library generally referred to as the Rainbow series (the name was

given because the books have different color covers, making a library shelflook like a rainbow). While
these standards are a valuable and important aspect ofcomputer security, they do not provide a deterrent

against software attack. A virus is an effective way ofgaining control over a system, even a highly

controlled system such as a B 1-rated version ofUnix. In this case, control does not provide protection

against software attacks because ofthe viruses’ ability to change permission sets with each new owner
infected. A virus attack gains access to multiple users thought shared files. Access control is designed to

allow the sharing offiles. The ability to share files is a basic need ofthe user and carmot be eliminated

without destroying the usefulness ofthe system Discretionary Access Control (DAC) is not protection

against software attacks, because it is a weak form ofprotection which can be bypassed and, as
discretionary, is at the control of the end users who very ofien ignore it. Sites where the majority ofthe files

on the system have no DAC protection are nomral (many Unix sites have permission bit settings of777,

which allow anyone to read, write, execute or modify the file.) Mandatory Access Controls (MAC) also

have little efiect on virus activity for the same reasons, although MAC can be configured to be neither weak

nor easy to bypass. Each time avirus attacks an executable file owned by a different user, it takes on the full

privileges ofthat user, including access to files ofother users whose permissions intersect the DAC and

MAC permission sets ofthe infected user. On all systems, the need to share files forces the creation of
users who exist in multiple permission sets. This multiple membership allows viruses to move between

MAC compartments and levels. The reduction ofmultiple membership users will slow the advance ofa
virus but will not eliminate it. Finally, once a virus gains access to an operator account (root, operator, isso)

it cannot be stopped by any form ofcontrol.

Inspection is the traditional way oflocating both known holes in operating systems and locating known
viruses. The key word here is ‘known’. System audit tools such as COPS, SATAN and others can only

locate holes known to them. Virus scarmers can only locate viruses known to them. This means that a virus

scanner or inspection tool is obsolete even before it is shipped from the factory. It can only deal with the

past, never the present or future, since conditions searched for must exist at the time ofcoding. Virus
scanner have to be constantly updated. This is becoming a problem with the explosion ofviruses being

created by new authors and virus computer aided design and manufacturing tools (V-CAD/CAM).

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel +44 (0)1235 555139. No part of this publication may ‘be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 69

000170

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° V

It has been proposed that audit tools such as COPS can be used to deter virus infections because they

strengthen the system’s ability to control access and data movement. These inspection tools only improve
control. As stated, control does not provide protection against virus attacks. It attempts to keep outside

people out and inside people within their areas ofauthorization.

The third category ofprotection is Integrity. Integrity systems are intended to detect change. In the MS-DOS

world, early integrity systems used cyclic redundancy character, CRC, values to detect change. A virus was

then created which countered this protection. The virus determined the CRC value ofthe target file, infected

it, then padded the file until the CRC value computed the same. Many Unix users still use this method of

change detection, or worse, they attempt to use the date oflast modification as an indication ofchange. The
date of last modification can be changed to any value on Unix systems with a simple user command. On

many systems, an option ofthe ‘touch’ command provides this ability.

Any integrity tool which does not use cryptographic methods is of little value. In fact, ifthe integrity system
fails to detect critical changes, the false sense ofsecurity created in the system operator can be devastating to

the system. CyberSoft created an integrity tool, CIT, using the RSA Associates’ MD5 cryptographic hash

algorithm. Since the algorithm is cryptographic, it can detect even a single bit flip and cannot be misled by

any known means. In addition, during the development of CIT, it was determined that it was necessary to
detect additions and deletions to the file system, since these could be indications ofnon-infectious attacks

such as performed by Trojan horses, worms and hackers. In this way, a rolling baseline can be created
which will allow the system operator to recover quickly from any form offile system attack. Modifications

to the protected file system created by unauthorized users or software attacks can be detected and removed.

Using a tool ofthis type allows the administrator to locate the approximate time ofattack, since the
modification will have taken place between two known timed events, the last and current execution ofthe

integrity tool. Finally, integrity tools can be used to determine ifa third party file has been modified or

tampered with prior to use. Some manufacturers ofUnix operating systems now publish MD5 digests of
their systems. Using these digests, it is possible to determine that the file on your system is exactly as it
should be. There was no degradation from misreading the installation media, deterioration ofthe disk

system, or intentional modification. Ifa manufacturer does not publish a list, end users can create their own

by installing an operating system on multiple systems from different media sources. The created digests of

each system should agree.

7 NON-TRADITIONAL CATEGORIES OF PROTECTION AND THEIR FAILURE

In the past, fencing systems were sold as a popular method ofvirus protection on PC platforms. A fencing

system write-protects parts of the disk using a hardware board which is added to the system bus. Since a
virus cannot infect a file that is write protected using hardware, it appears to be a good method. The obvious

drawback is that the user cannot write to the disk ifit is write-protected. The fencing system therefore had to

create zones ofprotection so that the user could perform useful work. Viruses happily infected the

unprotected zones. Fencing systems appear to have never been marketed for Unix systems. CyberS0ft did

provide fencing as a custom solution to an Internet service provider a few years ago. We suggested that their
boot disk have the write-enable line cut and a shunt installed. The operating system was installed and logical

links were created for all files which required constant modification to a second write-enabled disk. This

method has been very successful against hacker attacks. The service provider has never had a write-protected

file modified by an attack. Many people have tried, but the method has stood the test oftime. This

implementation method also suffers from the problem ofzones ofprotection.

WRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000170

000171

VI ~ RADATTI: COMPUTER VIRUSES IN HETEROGENEOUS UNIX NETWORKS

8 CURRENTLY AVAILABLE NIETHODS OF PROTECTION

CyberS0fi, Inc. manufactures the first and oldest [1991] product in this category. The product is called
VFind and runs on most Unix systems. Since I have not studied the other products available for Unix, I will

deal with the product which I am qualified to discuss, VFind.

VFind provides protection in all three categories. It provides Control by supplying the COPS audit tool
along with aproprietary audit tool called THD (Trojan Horse Detector). COPS was not developed by
CyberSoft and is available free on the Internet; however, CyberSoft believes it is necessary to provide a
certificate oftraceability for COPS. It receives the program directly from the author, Dan Fanner, and

supplies it to the end user without modification, other than packaging. This insures that the end user does
not receive a Trojanised or corrupt copy ofthe program The THD program makes use ofthe fact that many
Trojan attacks use duplicate file names where the file name ofthe Trojan is the same as apopular Unix
command in order to execute. The ‘ls’ command is normally stored in the ‘/usr/bin’ directory. Since many

users allow world read permission on their account control file, (aka dot-files), it is easy to learn the search

path selected by that user to search for system commands. Ifan area that can be written into is in the search
path prior to ‘/usr/bin’, then a Trojan or virus-infected version ofthe ls command can be located in that
directory and will be executed. The THD program looks for duplicate file names throughout the system. It
also detects known high risk file names such as ‘/tmp/gifi’, which is the result ofthe Unix Usenix Virus
(aka AT&T Attack Virus) running on the system.

Inspection is provided by a standard virus scanner. Since the Typhoid Mary problem affects Unix systems,
the scanner simultaneously searches for Unix, MS-DOS, Macintosh and Amiga viruses on the Unix system.
It has a user accessible pattern matching language called CyberSofiVirus Description Language, CVDL,
which can be used to keep the scanner up to date. In fact, the end user can use legally-obtained scan codes
from other vendors, or ones oftheir own creation, in order to provide independence from the vendor.

There were multiple reasons why CyberSofi felt it was necessary to develop a virus description language.
The increasing sophistication ofthe problem was becoming difficult using standard scanning technology.
Many ofthe viruses which attack Unix are written entirely in source code and executed in intelpretative
languages such as script. Scan codes cannot be easily designed to find a virus in which white space, the use
oftabs, and variable names change. Normal scan codes depend on the fact that binary executables contain

stable strings ofcode which can be searched for at specific addresses (excluding polymorphic and stealth
viruses). This is only partially true in the Unix enviromnent. Since VFind was designed to search for Unix,
MS-DOS, Apple Macintosh and Commodore Amiga viruses on the Unix platform, addresses could no
longer be specific, since the infected file might exist within apseudo-disk or a compound file such as a tar
file. In addition, the sequences of stable code values had to increase in size, to hold statistical validity and

not generate false hits.

Scanning for viruses written in source code required several innovations in virus scanners. Many ofthe
features required are normal parts ofcompiler parsers. Compiler parsers are the first step in the process of
taking a computer program written in a source language and producing a binary executable. CyberSofl felt
that a compiler parser couldprovide a solution to its technical goals; however, it would be necessary to
define an entire language for the parser to work correctly. At the time this decision was being made, 1991,
CyberSofi was unable to locate any standards for a virus description language. The language was defined in
January 1992 and named the CyberSofi‘Virus Description Language, CVDL.

During the design ofCVDL, several goals were defined. The first was to design a universal way of
describing pattern matching. The second was that the language incorporate enough features that unforeseen
future requirements could be resolved without changing the language or code. The grammar and versatility
ofthe language must allow general programming within the pattern matching fiamework. These goals
dictated many ofthe intrinsic features within CVDL, including the necessity to process any character or hex

WR USBULLETHVCONFERENCE©1 995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, 0Xl43YS, England.

Tel. +44 (0)1235 555139. No—pa.rt of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 71

000172

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - VII

stream Originally, we desired the capability ofprocessing any length ofpattern description; however,

practical limitsprevailed and a limit of32,000 bytes per description was defined. A description of32,000
bytes length can yield an actual pattern thousands oftimes longer, so the constraint was considered
nonbinding. Boolean operators were defined, and upper/lower case sensitivity (or case insensitivity) was

made a user selectable option. One ofthe hardest requirements to design efficiently was the ability to

provide forward reference proximity scanning. This feature was a necessity to locate source code viruses.
Proximity scanning allows the definition ofapattem which will not be affected by the ambiguity ofthe

typist or white space.

One ofthe design features of CVDL is its ability to be used for the clean-up ofdata spills by searching a

system for predefined patterns. While data spills are not a common problem with software attacks, they are
a common problem with hacker attacks. A hacker will store interesting files in obscure locations. Many

organizations caveat ‘interesting’ files using document headers such as ‘TOP SECRET’ or ‘COMPANY
CONFIDENTIAL’. Using CVDL, many differentpossible patterns ofactual code can be pattern matched

within defmedconstraints. In this way, CVDL is able to produce a basic model ofa pattern which can match

with a high percentage ofaccuracy and integrity.

Finally, an MD5 cryptographic integrity tool called CIT provides integrity to the entire file system. CIT
identifies all files which have been modified, added to, or deleted from the file system. A side benefit to this

ability is a reduction in help desk repair time when correcting system problems.

The use oftools from all three categories ofprotection, along with sensible policies and procedures,

provides maximum protection against software method attacks in Unix by providing support in each area
which is deficient in the other tools.

9 PROJECTION OF FUTURE PROBLEMS

I believe that the problem ofattack software written for and targeted against Unix systems will continue to

grow, especially now that the Internet has gained popularity. Unix systems are the backbone of the
world-wide Internet. Viruses will become more prevalent because they provide all ofthe benefits ofother

forms ofattack while having few drawbacks. Transplatform viruses may become common as an effective

attack. All ofthe methods currently used in creating MS-DOS viruses can be ported to Unix. This includes

the creation ofautomated CAD/CAM virus tools, stealth, polymorphism and armor. The future ofviruses

on Unix is already hinted at by the wide spread use ofBots and Kill-Bots, (slang term referring to software

robots). These programs are able to move from system to system performing their fimction. Using a Bot as

a dropper, or creating a virus which includes bot—like capability, is simple. With the advent ofglobal
networks, the edge between viruses, bots, worms and Trojans will blur. Attacks will be created that use

abilities from all of these forms and others to be developed. There have already been cases where people

have used audit tools such as COPS and SATAN to attack a system. Combining these tools with a virus

CAD/CAM program will allow a fiilly fimctional virus factory to create custom viruses and attacks against

specific targets such as companies which are disliked by the perpetrator. The information services provided
by the Internet already provide sufficient information, in the form ofIP addresses and email domain
addresses, to identify, locate and attack systems owned by specific entities.

Finally, viruses and worms can provide the perfect format for ahostage-shielded denial ofservice attack. It
is well known that an Intemet-attached system can be made to ‘disappear’ or crash by flooding it with IP

packets. Site administrators can protect their systems from crashing byprogramming their local router to
filter out packets from the attacking source. The system will still disappear, because legitimate users will be

squeezed out by the flood ofattack packets, but filtering at the router can at least save the system from
crashing. Unfortunately, anyone can masquerade as someone else on the Internet merely by using their IP
address. This attack can send a barrage ofpackets to the target site, each ofwhich has a different source IP

address. It is not possible to use a router to filter from this type ofattack, but the Internet service provider

VIRUSBULLETINCONFERENCE ©1 995 V'1rus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO172

000173

VIII - RADAITI: COMPUTER VIRUSES IN HETEROGENEOUS UNIX NETWORKS

can trace the source ofattack by physical charmel without relying on the IP address. In cooperation with

other Internet providers, the attacker can be isolated from the Internet for a short time. Hopefully, the

attacker will become bored and go away, or can be identified for action by law enforcement. Another

possibility is to use viruses to generate the attack. Ifa virus is successful in spreading to thousands ofsites
on the Internet, and is programmed to start an IP attack against a specific target on the same day at the same

time, then there is no way to stop the attack, because it has originated from thousands ofsites-all ofwhich

are live hostages. The site under attack will have to go off-line, since the Internet service providers will be

helpless in the face ofa coordinated dispersed attack. As the impact against each individual hostage system
is low, the hostages may not even notice that there is a problem. The Internet service provider attached to the

target system is in the bestposition to detect the attack; however, they are as subject to this attack as the

target, since they may ‘crash’ from the excessive bandwidth usage flooding their network from multiple
SOLIICCS.

10 SCENARIO OF A VIRUS ATTACK AGAINST A SECURE UNIX NETWORK

The military and many other companies believe that they are protected against focused attacks because they

employ a closed network configuration. In some cases these networks may also use highly secure ‘B’ rated

operating systems [NCSC-TG-006]. Typically, the network will not allow modems, Internet connections or
have any electronic connections to organizations outside ofthe immediate need. In addition, the networks are

almost always heterogeneous because of legacy equipment, primarily PC systems. The network designers

normally allow the PC systems to retain their floppy disk drives even thought their attachment to a network
renders them nonessential. Networks ofthis type have been considered secure; however, they are open to
information warfare attacks via focused virus.

Assuming that the perpetrator is an outsider without access to the equipment orpremises, one possible
method ofattack against this type ofnetwork would take advantage ofboth the Typhoid Mary Syndrome and

Transplatform Viruses to produce an attack which is targeted against the Unix systems but originated from
an attached PC. A virus can be created whose payload is triggered by executing on a PC attached to the

target network. This is not hard, with a little inside infomiation about the configuration ofthe network The
perpetrator would then install the virus at all ofthe local Universities in the hope that someone working at
the installation is taking a night class, or one oftheir children, will unknowingly infect a common usage

home computer. At that point, the virus has a good chance ofentering the target network This is a
well-known vector and is enhanced because the virus will not reveal itself. Once on the target system, the

PC virus will act like a dropper releasing a Unix virus into the backbone. The payload virus may be

necessary because many Unix backbone systems are not PC—compatible. The Unix virus payload can then
install a backdoor which can be remotely directed. In addition, the virus can create a covert channel by

making use ofmessenger viruses. While the use ofmessenger viruses are slow and have low bandwidth,
they are bi—directional and can be used for command and control ofmore complex attacks.

1 1 CONCLUSION

I believe that the problem ofattack software targeted against Unix systems will continue to grow. Viruses

may become more prevalent because they provide all ofthe benefits ofother forms ofattack, while having
few drawbacks. Transplatform viruses may become common as an effective attack. All the methods

currently used in creating MS-DOS viruses can be ported to Unix. This includes the creation ofautomated
CAD/CAM virus tools, stealth, polymorphism and armor. The firture ofviruses on Unix is already hinted at

by the wide spread use ofBots and Kill-bots (slang term referring to software robots). These programs are
able to move from system to systemperforming their function. Using a Bot as a dropper or creating a virus

which includes bot-like capability is simple. With the advent ofglobal networks, the edge between viruses,

bots, worms and Trojans will blur. Attacks will be created that use abilities from all of these forms and

others to be developed. There have already been cases where people have used audit tools such as COPS and

VIRUS BULLETINCONFERENCE©l995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 73

000174

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - IX

SATAN to attack a system. Combining these tools with a virus CAD/CAM program will allow a fully

functional virus factory to create custom viruses to attack specific targets.

As these problems unfold, new methods ofprotection must be created. Research has hinted at several

promising methods ofprotection, including real-time security monitors which use artificial intelligence for

simple decision making. It is my hope that these problems never reach existence, but I am already testing
them in an attempt to devise methods ofcounteracting them. If I can create these programs, so can others.

Even with the current problems and the promise ofmore sophisticated problems and solutions in the future,

the one thing I believe to be certain is that Unix or Unix-like systems will continue to provide a payback

well worth the cost ofoperating them.

VZR USBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

OOO174

000175

X ° RADATTI: COMPUTER VIRUSES IN HETEROGENEOUS UNIX NETWORKS
 j_:

 e

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
wimout the prior written permission of the publishers.

OOO175

000176

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° XI

WHY DO WE NEED HEURISTICS?

Frans Veldman

ESaSS GmbH, Saltshof 10-18, 6604 EA Wijchen, The Netherlands

Tel +31 8894 22282 - Fax +31 8894 50899 - Email veldman@esass.iaf.nl

One ofthe main disadvantages ofmost Virus scanners is that they recognize only known viruses. In

addition, about 100 new viruses appear each month. The exact number depends on how much spare time the

virus writers have, on the season, and probably even on the weather, but an average of 100 viruses per
month is a safe estimate.

This number is significant for products with a monthly update cycle because, the day before you receive the

upgrade, there are about 100 viruses your installed version does not recognize. For products with a bi-

monthly update scheme, there will be about 200 new viruses that may not be detected. In fact, such a product

fails to identify on average about 100 viruses. Some will be detected as a new variant ofsomething known,

but many are not detected at all. Generic detection is therefore required, or at least desirable.

HOW DID HEURISTICS COME ABOUT?

Researching viruses is fun, but like everything else, a great deal ofit is annoying. After having examined

thousands ofviruses, the fun is gone. A positive side-effect, however, is the tremendous speed ofvirus

analysis today. About halfthe samples a researcher receives are non-viruses: false positives from a

competing product, intended viruses, or files from a Virus Exchange Bulletin Board System. The first thing

that needs to be done is to separate the viruses from the non—viruses. Ifyou are able to do that quickly, you
save valuable time.

HOW DOES HEURISTICS WORK?

Every anti-virus specialist can do it. Load the file into the debugger, and browse around. Does the file start

reading command line parameters, initializing the screen, showing a copyright notice, allocating memory?

Then it looks very much like an innocent program.

However, if it performs an undocumented system call to look for a strange response in order to find out

whether it is already resident in memory, and if it contain routines to search for executable files, and

contains a disk formatting routine, then it is something that deserves closer examination.

Heuristics attempts to perform this basic research automatically. Basically, a heuristic analyzer looks for

virus-specific things, and increases a score with a certain value when it finds something very virus—like. If

the score exceeds a predefined value, it yells ‘virus’.

I/YR USBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 76

000177

XII ° VELDMAN: WHYDO WE NEED HEURISTICS?

WHY IS HEURISTICS SO DIFFICULT?

Ifheuristics is so simple, why don’twe make more use of it? The answer is: it isn’t simple! For a person,
heuristics is simple, but for a person to instruct a computer in heuristics is anything but simple. The
difference is crucial. The human brain is an excellentpattern recognizer. It works so automatically and

unconsciously that we don’t even know ourselves that we are using it and how we are using it.

How do we recognize people? Most ofus are able to recognize hundreds, or even thousands of different
faces. Even ifsomeone has a different haircut or wears sun-glasses, we still recognize the face. From

different vision angles, or on a black and white picture, recognition is no problem. Mistakes are very rare.
But can anyone tell you exactly how he or she does it? Can anyone write a guideline for composing
heuristics so a computer programmer can make a program for it?

Here’s an example ofwhat I mean: When the virus was new, I did an experiment at a conference. I showed a
disassembly ofthe decryptor loop of an MtE-infected file on the overhead projector. Even before I finished
the question, ‘What is this?’ , a few people - virus researchers - yelled: ‘MtE! ’. Obviously, these virus
researchers knew MtE and were able to recognize an infected sample immediately once it was loaded into a

debugger. But the strange thing is that these same developers had severe difficulties developing a detection
algorithm for MtE for their scanner!

The same applies to heuristics. For a virus expert, it is a trivial task to find out whether something is
completely innocent or a virus. The problem is to find out how to identify the differences exactly. What we
learned is that we see a lot of tiny details, and that we classify all these details as innocent, or virus-like, or
very virus-like, etc. All this information is collated in a process that has more than a few similarities to
fuzzy logic. Finally, we come to a conclusion. '

Think of it like this: suppose you want to be able to recognize a bank robber. Ifyou see someone rushing
towards a bank with a nylon stocking over his head and a gun in his hand, the chances are you can assume
something suspicious is going on. The fact that someone is rushing to a bank is not suspicious. The fact that
he has a gun is something that triggers some attention, but since police officers (and, in the US, even
civilians) carry guns, this is not a valid reason to classify someone as a criminal. The nylon stocking over
his head is quite a unique thing; one you will rarely see among innocent people. But even then, children may
use it to play an innocent game. But on the basis of these observations collectively, we can make a rule
about identifying bank robbers: ifsomeone is wearing a nylon stocking over his head, and is not a child, and
also carries a gun but wears no uniform, and is also moving towards or away from a bank site, then it is
probably a criminal. To detect other types ofcriminals, you will have to apply quite a lot of rules.

FALSE POSITIVES

The above example also shows that something can go wrong. The person described above is obviously a
criminal, but the fact that there is a fihn crew on the opposite side of the street giving directions and filming
the event may change the conclusion dramatically. Apparently, one fact can contradict a whole set ofother
facts. Ifthat single quality is not in your field ofvision for some reason, you may arrive at the wrong
conclusion.

The same is true for heuristic scanners. A program can look very suspicious, but just one quality may make
the program completely innocent: the difficult thing is to make sure that this one quality is in our vision
field. This is not always the case, and results in a conclusion that we classify as a ‘ false positive’.

Nobody is happy with false positives: it costs time and money to find out what is going on; longer term,
false positives may result in the famous ‘wolf-effect’.

n:j

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 77

000178

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - XIII

A false positive does not necessarily need to have a bad effect. One thing that can make the problem much

easier to cope with is that the scanner says why it thinks that a program may be a virus.

If the scanner says a specific file is suspicious because it has memory-resident capabilities anda disk

formatting routine, then the user is able to judge for himselfthe meaning. Ifthe warning is issued about a

word processing program, then chances are that something very strange is going on, because a word

processing program is not supposed to be able to format disks and stay resident in memory.

Here’s the dilemma: ifthe warning is issued about a resident disk formatting utility which provides the user

with the opportunity to format a diskette ‘on the fly’ while still inside an application, then you know there is

nothing to worry about. The same warning can have quite different meanings and consequences, depending

on the kind ofprogram it refers to. Therefore, it is important that a scanner tells you exactly why it thinks a
file contains a virus.

If a scanner is doing this, the question also arises: what exactly is a false positive? If the scanner puts a

statement in the log file that the resident formatting utility called RESFORM.EXE is able to stay resident in

memory, and is also able to format a disk, is this a false positive? The information is accurate and correct.

Only the conclusion that the file is a virus would be incorrect, but that is not a conclusion ofthe scanner.

The human is the one who finally decides whether it is a virus, ifhe ofcourse receives the appropriate
information from the scanner.

Unfortunately, there are many products that just yell something like: ‘This file may contain a virus’. What

exactly is the meaning of this? Ifyou get a diskette from someone with a new program, it may contain a

virus, right? Ifyou consult a scanner and it reports that the file MAY contain avirus, then you haven’t

gained very much.

There are three reasons why scanners do not tell you what they find:

0 You are supposed not to understand it

- It may help competitors

- It may help virus authors.

The first argument is used the one most often used. A scanner should state that a file is infected; not issue a

‘maybe’. The nature ofheuristics, however, implies that the result is notblack or white, but gray. The result

will always be questionable. Supplying all information to the customer may help him. Ifhe doesn’t

understand, too bad. Ifhe actually does understand, then the information helped. Let everybody decide for

themselves whether they understand something. In most business enviromnents, new files are scanned in a

footbath machine, so the average user is not bothered by heuristic results anyway.

The second argument is not often used, but is a valid argument. By telling the customer what you found in a

file, you also tell your competitors what you are looking for. It may help them to design or improve their
heuristics.

The last argument may be the best one. Supplying information about what you found in the file tells virus

authors what you are looking for and may help them avoid detection in their next viruses. What actually

happens is comparable to bank robbers who set up a film crew on the opposite side of the street to hide the

fact that something illegal is going on.

HOW SERIOUS ARE THE COUNTERMEASURES OF THE VIRUS AUTHORS?

Ofcourse virus authors don’t like heuristics. It is annoying for them that a completely new virus is detected

before it is even released. They try to avoid detection by heuristics, but that is 11ot a trivial task for them. It

is possible, but it has a price.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 78

000179

XIV ° VELDMAN: WHY DO WE NEED HEURISTICS?

To avoid detection by heuristics, they need to hide most virus-like operations, which means globally that
anti-heuristics activity has the following effects:

- Viruses become larger, slower, and more difficult to develop

- Some techniques cannot be used anymore at all

- Anti-heuristics may become a suspicious quality by itself.

For instance, virus authors used to set the seconds of an infected file’s time stamp to an invalid value to
allow the virus to find out quickly which files were already infected. Due to heuristics, they cannot use that
method anymore, and must look for themselves inside the files. This is more difficult to program, making
the virus larger and much slower. This is just one of the virus techniques that cannot be used anymore.

Also, anti-heuristics by itselfis worth detection by a heuristic scanner! Some anti-heuristic methods used in
the past by virus authors became, later, something that was excellent to separate viruses from non-viruses.
In other words, anti-heuristics was used to define another virus-like quality ofa program. For instance,
virus authors used to encrypt viruses to hide what was inside and thus avoid detection by heuristic scanners.
These days, with generic decryption engines, encryption is no longer useful to avoid detection by heuristics,
and, in fact, has became a suspicious characteristic. An encrypted program by itself is already suspicious,
and causes the scanner to look at the program more closely.

Also, there is a cross-relation between heuristics and other virus programming methods. Polymorphism, for
example, makes it more difficult to create a signature for the virus, but also makes the virus look suspicious
to heuristic scanners, because a polymorphic virus looks quite different from normal programs. It is one

way or the other, and the virus authors have to choose. Anti-heuristics always has a price.

Virus authors have been trying to avoid detection by heuristics for quite some time. There are various
documents written by the virus-underground explaining how to avoid detection by heuristics. Still, about
80% ofthe new viruses are detected by heuristics. Virus authors do not seem to be very successful with
their anti-heuristics methods: I have seen original virus sources where the author of the virus states that he
could have avoided detection by heuristics, but that it was ‘too much work’ and ‘it finally gets caught

anyway’ .

Is that not part ofour goal, to make writing viruses more difficult?

NEW DEVELOPMENTS

There are some new developments that will play an important role in the near future. Previously, heuristics
was appearance oriented. This means that the scanner was looking for certain instruction sequences. It was
like searching for criminals using the supposition that they look different from ordinary people. This is how
customs officials decide whose luggage to open. It works, but not very well.

A new approach is to use an emulator to simulate execution ofthe virus, instead ofjust looking at the
instructions. Instead ofsearching for Virus-like code fragments, heuristics now looks for virus-like
behaviour. We no longer search for bank robbers using the fact that they do not wear ties, but instead look
for behaviour. If someone wears a tie and an expensive suit, but behaves like a criminal, he or she is still a
criminal.

Why did we not use these methods before? The reason was simple: we didn’t have emulators. We finally
had to develop emulators in order to decrypt encrypted viruses. We can now use the same emulator to
simulate execution of the virus. It doesn’t matter how the virus authors hide what they are doing. Ifthe virus

is executed on a real computer, it finally has to execute its viral task, like infecting other files, no matter

VIRUSBULIETINCONFERENCE ©1995 V'1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or lransmitted in any form
without the prior written permission of the publishers.

0001 79

000180

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - XV

how it is hidden. By simulating the virus inside the scanner, it will finally reveal what it intends to do, no
matter how it has been concealed.

The results of these new methods? They are excellent. Currently, about 80% ofthe viruses can be detected,

without false positives. I expect that, with continued research, it will finally be possible to detect about 90%

ofthe viruses, still without false positives.

This means that out of 10 new viruses, nine will still be detected! Virus authors will try to avoid detection,

but it will be quite difficult for them to achieve that. Even if they succeed, they have to pay a huge price for

it, and must refrain from using some convenient techniques. They also have to accept that the virus becomes

larger, slower, and much more difficult to develop. Whatever the outcome, we have beaten them: isn’t that

what we are supposed to do?

VIR USBULLETZNCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
wi1hout the prior written permission of the publishers.

000180

000181

XVI ° VELDMAN: WHY DO WE NEED HEURISTICS?

VIRUSBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

‘Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

0001 81

000182

000183

000184

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I33

A TESTING TIME

Paul Robinson

Secure Computing, William Knox House, Britannic Way, Llandarcy, Swansea SAl0 6EL, UK

Tel +44 1792 324000 - Fax +44 1792 324001

Ifyou have seen the film Broadcast News, you may recall the scene where Jane Craig, the character played
by Holly Hunter, is preparing a news report for broadcast. The time available to get the taped report ready is
quickly running out. People are screaming and shouting to get it ready in time, other people are shouting that
there’s not enough time. A production assistant snatches up the finished tape and runs with it through the
obstacle course ofthe news room to the studio’s control room. The tape is thrust into a machine and the

news broadcast continues with the taped reportprepared by Jane Craig but without any ofthe viewers

realising the drama that has taken place behind the scenes.

Well ofcourse that wasjust a movie and things aren’t like that in real life — are they? No ofcourse not. but

there is more than a grain oftruth in the movie about the way that the broadcast media works. To a lesser
extent the same is true ofthe print media and this is a central characteristic ofmagazine publishing. To

understand why things are the way they are and to understand why things are not as good as they should be,
it is necessary to start here:

PRODUCT REVIEWS

There has been a good deal ofcriticism from one source or another about security product reviews ~ and in

particular anti-virus product reviews. The substance ofthis criticism is that these reviews either are trivial;
fail to address the real issue (whatever, in the opinion of the critic, that might be); are wrong in some aspect,
or are based on tests which are flawed; draw conclusions which are not consistent with the test results; fail

to explain their conclusions — and so on.

It is true that there have been poor product reviews. In this first part ofmy paper, I want to look at what
happens when a magazine reviews an anti-virus product, what it sets out to achieve and why this
sometimes leads to dissatisfaction in certain parts ofthe anti-virus community.

Magazine publishing is a funny sort ofbusiness. Unlike many products, a magazine is built from the
ground up every month (in the case ofa monthly magazine). This puts a lot ofpressure on magazine
editors to fill those pages each month, and many editors will tell you that it is a bit of a treadmill. Any of

you that have been involved with a company magazine or newsletter will recognise how difficult it is to
source the material which goes onto the page.

The pressure to fill the pages is compounded by a shortage ofspecialist journalists who can at once
understand the technology and write coherently; there are many people who can do one thing or other but

VIR US B ULLETINCONFERENCE @1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No partofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

OOO184

000185

I34 ° ROBIN$ON:A TESTING TIME

not both. I can count on the fingers ofone hand (in the UK) the journalists who fit the bill — and from what

l’ve seen ofproduct reviews from other countries, the picture is the same all over the world. In these

circumstances, an editor is often at a loss to source the necessary article. It could, ofcourse, be said that it

would be better ifthe editor chose not to cover the subject area rather than publish a less than first rate

review. Such a proposition might satisfy some but it is not a solution which would survive in the real world.

Computerjournalism, you would think, would include a high number ofjournalists who are technically

accomplished. This is not, lbelieve, the case. The vast majority ofcomputer journalists are not computer

experts. Ifyou look at the majority ofproduct reviews they are not stern tests ofthe product, but are, by

and large, descriptions ofthe product and its features. Now while this may be legitimate in showing how

well a word-processor works, as far as anti-virus product reviews are concerned the question that

everyone wants to have answered is how well does the product detect viruses. Therefore describing the

features, the interface and so on does not significantly answer the question. To test the virus detection of

a product requires some considerable understanding of(a) how viruses work and (b) how anti-virus

products work. Even those computer journalists who are technically accomplished are only rarely

sufficiently up to speed on computer viruses. Furthermore, there is considerable suspicion among

journalists about the information offered by anti-virus product developers or their local distributors

— clearly the developer/vendor’s agenda is to promote his or her own product, so the information provided

may be coloured to present the product in a favourable light. Editors could turn to journalists who have

published in authoritative journals such as Virus Bulletin and Virus News International but there is

concern that such publications and therefore their contributors were not impartial because of the

association with their anti-virus producing owners Sophos and S&S International (though I cannot recall

a single occasion on which anyone has established bias in the products reviewed in either publication).

Anti-virus organisations such as CARO or EICAR could remedy the independence issue and would be

well-placed to provide consultancy or documentation forjournalists and magazines working in this field

— sadly, however, this has not happened yet.

The majority ofmagazines world-wide are reliant on freelance journalists. There are advantages for

magazines in using freelancers: for example, their costs are usually lower than staffjournalists. In many

cases, freelancers are a good option since, in principle at least, they are more likely to specialise in a

certain aspect ofcomputing. But increasingly the corporate computing experience is not replicable by

freelancers who commonly will only have two or three computers to work on (instead of the several

hundreds or thousands that typically exist in corporate organisations). Few freelancers will be running a

network and those that are will most likely be running a peer-to-peer network rather than something like

NetWare or Vines or Pathworks. And though there are some freelancers who are network specialists they

will not have sufficient resources to have several networks, several servers or several different versions of

network operating systems (few will even have several different versions ofDOS running on their PCs).

No freelancer I know ofhas sufficient resources to set up aproper lab which could be devoted to

scientifically testing products. Anotherproblem for freelancers is that they are paid on the number of

words they produce. There is no additional element for the research which is demanded by the more

challenging product reviews. In consequence, few freelancers have enough time to testproducts properly.

Some magazines have their own (or share) a test lab. Even where the lab is well-equipped and well—staffed

— there are some problems which are specific to reviewing anti-virus products. For example, machines in the

lab would have to contain computer viruses and for some tests would have the PCs’ memory or boot sectors

infected with viruses. Such procedures would make the entire lab a ‘ dirty’ site — with all the problems that

that brings — and this is made more difficult where the lab is shared with another magazine or where other

product tests are queuing up for testing. Cleaning up the lab is a problem and special procedures are

necessary (which procedures add to the costs) to avoid continued infection or reinfection ofthe lab

hardware. Trying to construct a test environment which both recognises the situation which prevails for the

readership and which recognises the demands of the anti-virus products being tested is very troublesome.

VIRUS BULLETINCONFERENCE©l995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

000 1 85

000186

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I 35

The lab supervisor needs to understand as much about viruses and anti-virus products as the reviewers — and

should be in a good position to understand the day-to-day experience ofMIS personnel.

Whether the anti-virus product tests are conducted by a freelancer or within the magazine’s lab, all reviewers

have to overcome the issue ofa virus collection. We know ofproduct reviews which have been conducted

without viruses ~ this is analogous to a word processor review without words. The viruses have to be

genuine viruses and therefore you cannot create dummy files with ‘virus strings’ in them — this is simply not

a genuine test (we know that some anti-virus products themselves use several tests to establish a genuine

infection including comparing a checksum ofthe alleged virus with one held on file). By the same token you

cannot use simulated viruses (Rosenthal) such as were used in the NIST/Byte test — this is analogous to

testing a spreadsheet but deciding to use words instead ofnumbers. Ifan anti-virus package doesn’t detect

simulated viruses as viruses, you cannot declare that the product has failed the test (since they’re not

viruses) and so the test is meaningless. One must use a full collection — the review should not be limited to

just a few viruses or to certain carefully selected viruses otherwise once again the review is open for

- , accusations ofinaccuracy. The next problem that arises is: from which source should the reviewer obtain the

genuine viruses. Setting aside the reservations that many anti-virus developers have about releasing a copy

oftheir virus collection willy—nilly, each collection will contain a collection offiles some ofwhich are

infected and some ofwhich are not. Such ‘dirty’ collections will raise controversy since the product ofthe

developer who provided the collection is likely to score higher results than other developers’ products. The

inaccuracy that this introduces to the test is likely to discredit the test completely. One solution would be for

the reviewer to obtain an independent virus collection but few such collections exist — and even fewer would

be available for the reviewer to use. Finally the reviewer could create his or her own collection, however,

this is a significantly ‘non-trivial’ operation — and I will return to this issue later.

The economics ofmagazine publishing is also something that we need to consider in our look at why things

are not better than they are. A principal (in some cases the principal) source ofrevenue for magazines is

advertising. In the UK, the advertising rates are significantly lower than they are in the US — competition

from a very large number oftitles has forced big discounts to be applied to the published rate card. This

pressure on revenue results in lower budgets for the editorial teams — I accept that this is only part of the

problem because some publishing houses, while earning relatively good margins, are still penny-pinching

when it comes to editorial budgets. The relatively low editorial budgets constrains what an editor can

commission either from staffor from freelance sources. Given that many reviews are compromises between

what is possible and what is achievable — all of the pressures and difficulties are further compounded by the

failure ofthe anti-virus developers themselves (or their local distributor) to work sufficiently closely with

the magazine reviewers and to ensure, for example, that the very latest version ofthe software is available.

Considering the impact ofthe reviews and the criticism that has been levied against them by the anti-virus

developers, it is startling to discover that some developers take such a casual approach to the knowledge that

a review oftheir product is being considered and under way.

Finally, you have to look at how things work in the real world. When you are responsible for a publication

which publishes on a monthly cycle, as most magazines do, you tend to work within that cycle. Your staff

journalists and regular contributors tend to produce articles and product reviews within the framework of

that month. Even where you are working with a month’s or even a two month’ s lead time, you are still

working to an allowance oftime that is dictated by your publishing cycle. Therefore each month you have to

produce a product review even ifthat review will not be published until the next month or the month after

that. This means that you do not have much time to throw at a review — although to some extent as a

professional reviewer (as is the case ofa professional virus researcher) you learn to work quickly because

you recognise how to take a product apart. At least this is true in a general sense, but it is a truism which is

compromised when you enter a specialist field like security and even more so with a highly specialist field

like anti-virus technology. So remembering our look at Broadcasz‘News you find that the allowances oftime

are intolerably tight and when things go wrong, reviewers and editors have to abandon what they would

I/YRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX]4 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000 1 86

000187

I36 - ROBINSON:A TESTING TIME

ideally like to do and settle for what they can achieve right now. To break this cycle and step offthe
treadmill takes both a great deal ofplanning and a great deal ofresources (later in this paper l’l1 talk about
where these resources come from). To give you some idea ofthe scale ofthis operation, at SECURE

Computing magazine we plan what we are going to publish (Editorial Schedule) about 15 months ahead of
time. Major reviews take several months (in terms of lead time) ofplanning and background research and
then several months to marshal the resources and conduct the tests. We have been planning the anti-virus

product review that we will publish in the January issue since May. Our virus librarian has been working on
the virus collection since June. We formally started some aspects ofthe testing earlier this month

(September). Concurrent with the testing is the analysis ofthe results, retesting and checking with product
developers where our tests show discrepancies with their claims. At the end of the day, tests (each ofwhich
may have taken days to complete) will appear as a simple table ofresults occupying no more than a few
column inches. As an editor it is galling at times for me to see that such an effort is not accompanied with a
fanfare oftrumpets, the flash and dazzle ofpyrotechnics or the glitter and glamour ofan awards ceremony.
But there it is.

These reviews typically occupy less than 25 per cent ofthe magazine but they suck up a considerable portion
ofour expenses. In the competitive world ofmagazine publishing any publisher who is seeking to trim costs
will have to look at product reviews. It is relatively easy to slice away at the budget 1‘: for example cutting
out a test which may have taken three days and cost a $1,000 and replacing it with a bit more description of
the product or some more graphics may save the publisher as much as $900. The downside is that the review
will be less stringent but in a market place where the majority ofmagazines are given away free what place
does stringency have?

A MODEL REVIEWER

When I was preparing this paper, I rather rashly posed the question, ‘Who is getting it right?’ Looking at
the world of anti-virus product reviews only, I feel the answer is, ‘No—one! ’ I think there are good
product reviews in the general product arena and I think there have been reasonably competent reviews of
some security products. But as far as anti-virus product reviews are concerned I don’t really think anyone
has got there yet.

There have been some excellent efforts - Vesselin Bontchev is one anti-virus researcher who has

produced laudable efforts and much as I respect his efforts, he is on record himselfas criticising his own
reviews. Both Virus Bulletin and SECURE Computing have in their time produced good attempts at

anti-virus product reviews — and yetI think that their efforts have been some way away from the ideal. As
far as the other testing and publishing organisations are concerned, Ibelieve that they are some way behind
even the best efforts produced by the examples I have cited so far.

What are the deficiencies ofproduct reviews that have reached print in the last 12 months? One ofthe major
deficiencies (and I’m not sure how this could be addressed) is the lack ofcompleteness. Anti-virus product
testers have carte blanche to decide whichproducts and whatfeatures ofthose products they test. Ifyou

look at even the best reviews in the last year, you will see that not all the products available world-wide have
been tested and that ofthose which have been included not all of their features have made it to the review

page. I know why this is because as an editor, I have had to make the decision myselfon what goes in and
what is left out — and therefore speaking only for my own publication, which I feel I am entitled to criticise,
I believe that the anti-virus reviews we have published this year have been incomplete because we left out

(for example) the repair function that is offered by many products. I believe that the solution about what
goes in and what is left out is something that we ducked last year when we spread our anti-virus product
review over three issues - delivering network anti-virus product reviews in December, scanner reviews in

January and TSRs and checksummers in February. I think it was a noble effort on our part but it did not
deliver a comprehensive verdict on which is the best all-round anti-virus product.

_m

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written penni ssion ofthe publishers.

OOO187

000188

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I 37

There are I believe a number ofpublications who are getting it wrong. I have seen several reviews which

frankly should not be given house room. One of the biggest problems for reviewers is the absence of a
virus collection on which to test the products. In the early days ofanti-virus product reviews, I saw

product reviews which had not used any viruses. Later 1 saw product reviews which had been conducted
with only about a dozen viruses. I have seen product reviews which were conductedusing a virus
collection fromjust a single anti-virus developer. I have seen product reviews which were conducted
with non-viruses or simulated viruses. All these reviews are flawed and the reason that they occur is the

one I gave earlier, the reviewers and editors do not have sufficient time or money to do the job properly.

I also believe there are some real problems ahead for anti-virus product reviewers. The first question is how

do we represent the complex subject ofanti-virus product reviews on the page ofa magazine without

packing the information in so densely that people do not want to or are not able to read it? How do we deal
with the information overflow, for example should we make additional information available to people and

what mechanisms do we use to do this — supplements, world wide web pages, ftp and so on? How do we

review memory resident anti-virus products? And finally who pays for these product reviews in the future?

A MODEL FOR REVIEWS

Let me try to deal with what I think product reviewers need to do to conduct an anti-virus product review.

First, you need to establish a testprotocol. This doesn’tjust mean devising a set oftests, it means working

to a set ofprinciples which you can discuss, publish and defend. It may well be that you will invite
assistance or advice from experts in the area that you are testing — controversially much expertise exists

among the very people whose products you are testing. Do you approach them and invite them to talk to

you? The pros and cons could be presented as two questions: Ifyou talk to the product developers will you

compromise your integrity? Ifyou don ’t talk to the product developers will you compromise the quality of

your review?

Second, you need to prepare the virus collectionfor the test. There are some principles involved here:

(a) the collection should not be product developer specific, (b) it should contain second generation viruses

(that is everything that’s in there should be a genuine infection), (c) it should contain test suites for

polymorphic virus with no fewer than 500 mutations ofchosen polymorphic viruses, ((1) it should contain
an in-the-wild test set which sensibly reflects the viruses which are genuinely in the wild, (e) the

collection (and suites) should be available in some form or other forproduct developers whose "products
have been used in the test. When it comes to publishing the results, there is a convention which says that

the viruses used in the tests should be identified. However, this does not make particularly exciting

reading and trying to balance attractive and appealing content versus the possible value of the
information is a tough editorial decision. The decision is complicated by the absence ofa global

acceptance ofvirus names — the closest we have come to this is the CARO naming convention but this
convention uses very long names which from a layout perspective causes considerable difficulty.

Third, you need to have an adequate range ofhardware andsoftware on which to conduct the test. Part of
the test should be an indication ofproduct performance and on that basis, the test should include both

standalone PCs and workstations. From a hardware perspective, a reviewer may take a decision on what

constitutes the typical user’s machine (and clearly this will change from time to time) but the review
should at least explore a wider range ofhardware and identify ifthere are ‘significant’ problems. There has

to be a consistent specification and set-up on the hardware which is used for the test. In other words, ifyou

are looking at testing the speed ofa virus scan on an uninfected machine, you must make sure that the

machine is properly setup. From a software perspective, the computer should be populated with a
conventional choice ofuser software — this will vary according to the type ofuser (clearly corporate users

will have a different software profile from home users). Windows users may include software which hinders

DOS scanners — for example does the caching software work for or against the software. There are a number

I/YRUS B ULLETINCONFERENCE©1995 Virus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

OOO188

000189

I 38 ° ROBINSON:A TESTING TIME _

ofaspects of the set-up which will affect the performance ofa scanner and these matters should be explored
— where a decision is taken which disadvantages aparticular product, this needs to be explained to the

readers. However, even where this happens and is explained to readers, it raises the principle offair play

since the way in which that information is presented may not claim the attention ofa reader to the same
extent that the overall result does.

Fourth, you need to make sure thatyou obtain the very latestproductfrom theproduct developer. This is no
mean feat — even though you might think it would be simplicity itself. One ofthe problems in gathering

together the latest versions ofa product is that developers are at different stages ofdevelopment at any one
point. So it may not be possible to co-ordinate what may be 15 to 20 companies to provide their latest
product. Where companies delay sending out aproduct, the knock-on effect may mean that you could have
the September version ofsome products and the October version ofother products. This situation can arise
in spite ofone’s best efforts to get everybody moving to the same beat. The situation is further confused
where a product developer is not local and the local distributor has agreed with the developer that he or she
will be responsible for all press contact. In such situations it may be completely impossible to get the latest
version ofthe software — and hostilities can break out ifyou try to deal directly with the product developer.

Fifth, you need to establish aprocedurefor identifi/ing errors in the tests you have conducted. Part ofthis
process will require an analysis ofthe results. This is not easy to achieve because it is not always clear
whether results make sense or not. In order to analyse the results, you have to do more than simply run a

scanner at a collection ofviruses and then read offthe number it detects and the number it misses. You have

to know which viruses it misses — it may be that some ofthe viruses in your collection (even though they are

genuine infections) may not replicate and are therefore not genuine viruses; you can only discover this ifyou
have a full report ofthe results. To take another example, ifyou are considering the results for scanners on
the polymorphic suite, you may wonder why an otherwise reliable product fails to detect some ofthe
infected files. In the past we have used an older version of the software to check if it detects the infected
files — sometimes products lose their ability to detect a particular virus reliably (it has happened); sometimes
the product has introduced some new capability which improves its detection performance (such as generic
decryption) and what you were confident were viruses (and had been identified by scarmers as viruses) are
now more accurately identified as non-viruses — in the first case the product developer was wrong in the
second case we were. Checking to see whether the infected files will replicate is one sure-fire method of
identifying whether this is a genuine missed shot or not; such non-viruses should, ofcourse, have been
weeded out ofthe collection already. Another procedure which we recommend is for anti-virus product

reviewers to pre-publish their results to the appropriate product developer. (SECURE Computing employs
this as one of its product reviewprocedures and has published notes ofguidance which explain what
happens in this stage ofthe product review process.) You can only produce reliable results ifyou analyse
them and ask questions about them — it is, however, all too tempting to look at a set ofresults and say, ‘Hey,
Product X has improved/deteriorated over the last year.’ Such an approach accepts the validity ofthe test
above the validity ofthe product — it may be that the test is valid or the converse may be true — such a
conviction, however, leads a reviewer to be blinkered and makes the likelihood oferrors very much greater.

Sixth, you need to think carefully howyou will conduct the test on eachproduct. This is not such an obvious
statement as it might seem at first (he said, patronisinglyl). The way that you conduct the tests has to
remove as many of the variables as possible. This may mean, for example, running DOS scanners from the
C: prompt, cutting out the screen display, piping the results straight to a report — in other words cutting
down on those things which add variables to the results equation. It also means drawing some conclusions
about on whom the report is based. Is what you are doing the action ofa typical user? (And who is your

typical user — is it the system supervisor or the end-user?) The decisions you take here may dramatically
affect the outcome ofthe product review. Some virus scanners have a heavy resource-drain in the shape of
the interface which either prevents or severely limits the scanning ofa large number of files.
Accommodating these scanners by switching them to quiet (no screen report) mode makes it possible to test

I/YRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOO189

000190

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I39

them but it also tests them in a way which is contrary to the default mode of operation and (arguably)

derives results which do represent the nonnalperforrnance ofthe product. This is a matter which different

people take widely different views upon. In this sense, your test needs to consider the design ofthe product
you are testing though this is only rarely explained by the product developer. Frequently you discover
features ofthe design when you try to run a test and it doesn’t work properly; you then spend a lot of time

tracking down the problem/feature through technical support who either don’t know about the problem/
feature or say they don’t know about it. Failing to recognise that your test has to accommodate product
design may result in the misrepresentation ofsome products. For example, we have recently been looking at
products which include a heuristic element within them. Some ofthose products have been designed for
different users and this emerges in a fundamental aspect ofthe product namely how does the product report

an infected or suspicious file? Ifthe product is aimed at a user with a higher than usual level of
understanding ofcomputing then the report can contain information which would baffle a novice. Other

products assume that the user knows little or nothing about computing and therefore the reports take a
different character. Depending on which design you accept is valid will determine whether you characterise

"the reports on suspicious files as false alarms or not. Coming to a decision one way or another could leave
you open to charges that you are simply ducking an important issue (false alarms). The job ofthe reviewer
is to determine whether this is a legitimate design issue or whether it is an attempt by the product developer

to win a more favourable treatment for his product.

Finally, you need to consider how the various tests are going to be marked. You will need to decide on the

principle on which marks are awarded — will you award marks according to a firm mathematical model or
will you use a sort offuzzy award and totting up ofpros and cons — based, for example, on aproduct being
Poor or Below Average orAverage or Above Average or Good? You may also need to combine the marks

from the individual tests in some way to achieve an overall or final mark — this adding up ofmarks may

employ some sort ofequation which gives priority to one test over another. How will you make all of this
clear to your readers? Will you present your results in one overall table or will you split the results across
several tables — and will you explain why you award your final recommendations or opinion?

There are many further aspects ofwhat you have to do as a product reviewer — but many ofthose things
revolve around how you manage the review process. How we manage it — is a commercial secret. But

what I can tell you is that it involves a very heavy investment in hardware. It also involves a great deal of

planning, heavy investment in the preparation ofsystems and finally heavy investment in frustration
avoidance.

AND SOME OF THE PEOPLE

In preparing this paper, I conducted a number of interviews with the readers ofproduct reviews. As it
happens many of the interviews were conducted in the US which I thought appropriate since this paper
will be given in the US. However, some ofthe interviews were conducted in the UK because of the
difference in the magazine publishing trade in that country. All interviews are reported on a non-
attributable basis because the individuals concerned either did not want their companies to be identified or

they could not get clearance in time. (Only two of the interviewees could obtain the necessary clearances in
time so I decided they should not be singled out.) I have condensed the information from all the interviews.

One ofthe things that surprised me was how avidly people read reviews. Typical of the people interviewed
was Daniel who said that he sought out reviews when he was looking for support for a buying decision.

Daniel is a well-qualified expert in the area ofnetwork‘comms and works in a company thatproduces a

number ofproducts in that area. In response to questions on the quality ofproduct reviews he said that he

formed judgements based upon how the review was written, what level ofdetail was included, the accuracy
ofthe reviewer’s knowledge (wherever that coincided with what he already knew). Daniel said that he had

been prepared to approve purchases on the basis ofreviews he had read but he qualified this statement

VIRUS BULLETHVCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in arelrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

000190

000191

I 40 ° ROBINSON:A TESTING TIME

saying that each case was taken on its individual merits and the product very much dictated the final
outcome.

John is the head ofa marketing department (for a household product manufacturer) who is particularly

interested in products which assist his department in their work. John was less critical on the whole than

Daniel of the product reviews he read. He said that he looked at any product reviews for software that he

was thinking ofbuying but also read reviews (from time to time) on products that he had recently

purchased or that he was using personally to see how they rated against other competing products. He
said that he was particularly interested in reviewer’s opinions.

Shamilla is the manager ofan MIS department (within a large corporation) who said she had little time

for reading product reviews. She said that she mainly used product reviews as a source of information

about the marketplace and that she tended to skim through the reviews identifying products to be brought

in-house for evaluation. She said that she utilised the reviewer’s opinions to eliminate products rather
than to choose products. She was particularly conscious ofthose reviews which confirmed her own

opinion of the product (where appropriate). She said it was unheard of for a major decision to be taken as
a result of a product review although if a review which was hostile to a product appeared at a critical

period, this might cause the purchase to be delayed while further consideration was given. Where two
products were neck and neck, a favourable review might swing the balance. Shamilla had telephoned
editors and reviewers about product reviews where she was looking for additional information (which is

how I first became aware ofher existence).

Simon works in the accounts department ofa major retail network. He regularly goes out on the road to

visit different sites and uses a notebook computer. He purchased a computer for his own use at home and

unlike many users does not use it for games and connecting to the Internet; he does not allow his children

to play on it, using it instead for a little accounting freelancing. He is an avid reader ofproduct reviews
and purchases computer magazines regularly which he reads while commuting to work. Simon does not
consider himselfan expert in computing and pays great attention to the opinion of the reviewers - he is

principally interested in the products that the reviewer gives high marks to, and doesn’t always read those
sections of the review about products which were given low marks. He also pays close attention to

features tables to see which products contain the most features. Simon has asked for various products to

be bought by his employers based on the information he has gleaned from product reviews. He is seldom
successful in getting what he wants from the MIS department but has occasionally purchased software for
his own use on the basis ofthe reviews he reads.

From the results of the interviews I conducted, we can see product reviews are read and considered by

those people who have an interest in software or hardware purchasing or who have some interest or

responsibility for the way their computers function. The picture is very different among ordinary users
who are only rarely interested in product reviews (or any other aspect of their PCs apart from the speed at

which the ‘damn thing’ operates). Corporates pay close attention to the product reviews but temper the
advice they receive in the light oftheir own experience — they are less likely to accept product reviews at face

value though this is mainly because the purchase ofsoftware or hardware is only a small part of the IT bill
for a corporate; switching from one security product to another causes MIS departments great upheavals and
they, on the whole, were extremely unlikely to embrace this unless there were significant benefits — a few
percentage points on avirus detection chart (even where those viruses were in the wild) was not considered,
by the MIS departments I spoke to, sufficient grounds to move from an existing product. Small and medium
sized companies were more likely to buy a product or make a switch to a different product where they had
experienced some problems and felt that a different product could solve the problem. Home users were the
most likely to buy a product on the basis ofa product review.

[Iconducted 36 interviews among a wide and representational sample ofcomputer users. The views which
the characters above express are a generally a composite ofthe interviews Iconducted.]

I/YRUS BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pennissionofthe publishers.

000 1 9 1

000192

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - I 4/

WHAT TC) LOOK FOR IN A REVIEW

It isn’t easy at first glance to be able to see whether you can put your faith in a product review. Many

reviews are written in an authoritative style designed to give you confidence in the reviewers opinion -

that is, of course, what they’re in the business for.

Some reviewers will indicate that they have a history in product reviews of this type. They may indicate

how a product has improved or deteriorated since they last looked at it. While it is difficult to generalise

on these matters, 1 would be looking for depth in a review — a feeling that the reviewer was at home in the

subject under review or had just completed a very thorough research of the subject. This is indicated by

his or her understanding of aspects of the product being reviewed. For example, why were polymorphic

viruses invented and why are they difficult to detect, and in this context what is the significance of

generic decryption?

Secondly I am looking for what isn’t reviewed in the product review. What features of the product have

been ignored and why might that be so? One of the big problems for reviewers, particularly magazine
reviewers, is testing memory resident (TSR) virus scanners. I can tell you that SECURE Computing has

done a good deal of research into this area and there are no short cuts and no utilities which facilitate

testing TSRs. Many product reviews do not have tests for memory resident scanners because they can’t

do them. Is this a problem? It is when you realise that TSRs and now VXDs are going to form, in my
opinion, the front line in virus defences. You can ask the same sort of questions about the absence of

tests for heuristics, repairing infected files and scanning inside compressed files.

Thirdly, 1 would want to look at the level of testing within a product review. Testing is difficult,

expensive and time-consuming. lt is much easier to describe the product, the interface and the user

manual. Ifthe number of tests are fairly limited and if the analysis of those tests is limited or missing,

this is another indication that this is a less-than-fully-competent product review. What 1 would seek as an

ideal is a good balance between the description ofthe product, its interface, manual and so on and the

tests which examine the technical prowess ofthe product. It is also important to have descriptions of the

tests and how they were conducted, where products failed and what was the significance of the failure,

what viruses were used (in certain circumstances) and where they were sourced (I’d be extremely

sceptical about a virus collection which suddenly materialised out ofnowhere — say the XMagazine virus

collection). Also as a part ofwhat’s ideal, I’d like to see some elaboration of the way that performance is

marked (and the marks are combined) so that where I disagree with the marking, I can nonetheless still
make use ofthe data.

Fourthly, I am looking for how the product reviewer examines issues like the interface, or the

management aspects of the products, or the technical support, or the manual — Iwant to know what

importance is put in such issues (if any) so that Ican determine how such aspects contribute to the overall

assessment ofthe product.

Finally, I think it is important that the product review presents its infonnation in a way which is helpful to

users. It is all too easy for publications to hurl information at readers with little or no thought to how it is

going to be interpreted.

HOW CAN THE SITUATION BE HVIPROVED

I’ve spent a lot oftime in this paper indicating that the reviewers are at fault, where they’re at fault and how
they can change things. But this is not the complete story. There are two other players in this tragedy, the

first is the reader and the second is the developer.

Let’s deal with the developer first. l’ve been reviewing anti-virus products or editing reviews for a good

many years — consistently more years than any other editor in the industry. In that time, I’ve come to

VIR US BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
TeL +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

000192

000193

I 42 ° ROBlNSON:A TESTING TIME

know most ofthe developers ofanti-virus products personally. Many ofthe developers could do a lot more

to make the product reviewer’s job both easier and more effective. Unfortunately, too many ofthe people
who are dealing with the press are from the developers’ marketing departments - and what they know about

the technical side ofthe product (to be kind to them) is insufflcient for the reviewer’s purpose. Most

marketing departments are working on the ‘short-terrn principle’ — that is they want the review to say good

things about their product now, they’re not interested in solving the problem long-terrn. The trouble is that

to do good product reviews on anti-virus products requires a long—term commitment by the reviewers — I’ve
indicated above the sort oftime and computing resources that need to be put into the reviews.

Some ofthe developers do recognise the benefits ofworking with the press and their technical staffdo make
themselves available — but the technical staff(particularly the most accomplished among them) feel very

much under pressure and they are reluctant to invest much time in addition to their other commitments in

talking to the press. Clearly only the developers can decide on the priorities for their staffbut this matter it
seems cries out for such investment. In addition, the marketing department and PR agencies are extremely

nervous when a techie gets up in front ofa conference or user group audience or speaks to the press. They

are never certain what a techie will reveal about their product (which they would prefer was kept secret). I

once tumed up for a one-on-one interview with the chief architect ofan anti-virus product and found him

chaperoned byfourmarketing people, it is extremely rare for me to get an interview with any techie these
days without at least one marketing person present. It is a given fact that techies and marketing people
neither understand each other or want to understand each other (neither much valuing what the other does)

and this is an area which needs to be improved ifthe product reviews are to be improved.

One ofthe questions which is invariably asked by PR agencies, sometimes asked by marketing departments
and almost never asked by techies when talking to the press is, ‘What’s your deadline?’ This simple

question will indicate the pressure that the journalist is working under. Ifsomething has to be given or sent
to the journalist you need to know how much time is available. Many joumalists are frustrated when their
attempts to do a goodjob are thwarted because the company concerned does not respond within the time
available. I can testify to the number oftimes, we have failed to get a response from a company to some

question which results in the product receiving a less flattering review than it might otherwise have done.
Remember the BroadcastNews example I mentioned earlier, final deadlines in publishing mean just that— if

you pass over the line you’re dead. I remember my first editor chiding me (in thatjocular and friendly way
that is unique to editors) because I was running up against a deadline, ‘I don’t want it good’, he snorted, ‘I
don’t want it bad. I want it NOW! ’ Ifyou want your products to do better, you’ d better understand how

journalists have to work — this isn’t saying that their work is more important it’s just saying that these are
rules ofthe game that you’re playing in once you produce a product.

In another sense developers have already started to respond to reviewers — by cheating. We came across one

developer who sent us a special version ofhis software which was designed to detect every ‘so-called virus’
in a certain virus collection. Unfortunately for that developer we source our viruses very widely and we also

employ a virus researcher to manage our collection. We spotted the ‘deception’, demanded a genuine copy
and then wrote up the whole story. That was probably the most blatant episode — however we know ofother
developers who have tweaked their products so that they don’t irritate reviewers (who ofcourse subject the
product to quite different pressures from those that a user will).

The other player in our little tragedy is the reader. To some extent, I feel you cannot blame someone for
wanting something for nothing — and clearly it was the publishers who started this business ofgiving
publications away for free. But the pressure ofcosts on publishers which this has caused, has caused
some ofthe problems which I have spoken about here. There is a truism that you only get what you pay
for — and it is tempting for me to suggest that this is true for all those magazines which come free. But I
do not think such a direct link between cause and effect is accurate. There are some free magazines which

are excellent and then there are also subscription-based publications which are dreadful. I believe,

however, that the free magazines apply an unhelpful pressure on the publishing marketplace - which is

I/YR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000 1 93

000194

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - I 43

unbalanced as a result. Some readers seem now to take the viewpoint that all publications should be free —

and are therefore dismissive ofany publication which charges a subscription. It seems to me that in the

end all readers lose from this approach and are poorer both in the knowledge ofwhat systems are out

there and in the quality of software (whose developers, without a well-informed and active press, are

likely to concentrate on pressing forward their marketing campaigns rather than their research and

development programme). Readers need to be more demanding ofmagazines but their voice is not as

powerful as it might be since as receivers of a freebie magazine they are not customers in the true sense —

they have not directly bought into the product. Free magazine receivers cannot vote with their feet and

indicate their dissatisfaction — they can’t stop buying something they don’t care for, it keeps on arriving

whether they read it or throw it in the trash can. And because of the absence of this crude but effective

‘approval indicator’, editors and reviewers don’t get the message. Sales ofbought magazines and

newspapers do fluctuate when readers disapprove ofwhat they’re being given. To give an example, the Sun

newspaper (for those who may not know it, The Sun is a tabloid daily newspaper in the UK) reported a

tragedy which involved Liverpool people in a way which the people ofLiverpool regarded as unacceptable.
"The sales ofthe newspaper in Liverpool collapsed, plunging from 524,000 per day to 320,000 per day — a

loss of 38.9 per cent.

IN CONCLUSION

While product reviews are improving in some senses, there are strong forces at work which discourage
rigorous product reviews. Even where some publications are making valiant efforts to produce

meticulous evaluations ofproducts there is little or patchy support from the product developers or the

reading public. It is easy to criticise magazines and deplore their lack of expertise and lack of

thoroughness in conducting product reviews — but such criticism is on the one hand misunderstood and

on the other is essentially a waste oftime. To do the sort of thing that Virus Bulletin and SECURE

Computing have been trying to do is buck the trend in computer publishing.

I hope that this paper will provide you, as a member of the product-review-reading public, and you, as

product developers, with some insight into the way that magazine publishing works — and why things are

not as good as they could be and how they could be better.

VIR USB ULLETZNCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000 1 94

000195

I 44 ° ROBIN$0N:A TESTING TIME

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0Xl43YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000 1 95

000196

VIRUS BULLETIN CONFERENCE; SEPTEMBER I 995 - I45

FENDING OFF VIRUSES IN THE UNIVERSITY COMMUNITY:

A CASE STUDY OF THE MACINTOSH

Judy R. Edwards

Illinois State University, MC 3470, Normal, IL 61790-3470, USA

Fax +1 309 438 3027 - Email jedwards@rs6000.cmp.ilstu.edu

ABSTRACT

There is a potentially risky situation evolving with regard to the risk ofvirus infection and transmission

due to the portability oftelnet (Internet) clients coupled with the work habits of the university
community. But rather than resist temptation to use the wealth ofMacintosh telnet clients available,

sound virus protection methods create a safer environmentfor obtaining and using them.

Experts estimate the number ofMS DOS viruses at 5500 and growing [1], and the ease ofwriting and

transmission seems to point to the conclusion that there is no real end in sight. While there does not

appear to be exponential growth ofthe DOS virus population now, we have witnessed over the pastfew

years an enormous increase in the number ofDOS viruses. The same cannot be said ofMacintosh

viruses. However, there is a potentially risky situation evolving with regard virus infection and

transmission due to the portability oftelnet (Internet) clients coupled with the work habits ofthe

university community.

The easily—installable andfreely available Macintosh telnet (Internet) clients have made accessing

internet resources easier than ever. It is common practicefor members of the university community to

use telnet clients to download and transport their email, and otherpersonal configurationfiles, between

their office and home computers on a diskette. Students who rely on public workstations have no choice
in the matter.

This is also a population accustomed to sharing data with other institutions rather than shying away

from doing so with anyone outside ‘the company’ This behavior has carried over into thefree exchange

oftelnet clients, often without regard to exposure to viruses.

Yet the temptation to movefiles and applications across the Internet almost becomes irresistible. After

all, this is the essence ofcomputing: the sharing ofinformation!

Should you resist using telnet clients? Ofcourse not. A more appropriate response is to keep current

virus protection in place and to educate end users on how to deal with the presence ofa virus.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000196

000197

I46 ° EDWARDS: FENDING OFF VIRUSES IN THE UNIVERISTY COMMUNITY

 *'jT‘

FILE EXCHANGES

Macintosh telnet clients have vastly increased the frequency of file exchanges of all types across the

' intemet. Where once a user may have had only one shareware file, they may now easily pass through

numerous files during a single month — obviously increasing the probability of exposure to a virus-
infected file.

POPmail clients simplify mail transfers (and attached shareware application and text files) by physically
moving mail from a Unix machine to a Macintosh, for instance. Text files, which can contract INIT 29
[2] or the MDEF A, B or C strain [3], can be exchanged electronically as end users collaborate on
projects via popmail attachments, innocently passing a virus onto a colleague.

File Transfer Protocol clients eliminate the need to learn the command line ftp process to transfer even

entire directories of data -— including collections ofadditional shareware clients — to your Macintosh with

lightning speed from anonymous ftp sites. Gopher clients not only locate information on the Internet, but
automatically ftp and install new shareware onto your Macintosh as you continue to work. The basic
default configuration takes place with initial use — and, if virus protection is not in place, so can
contamination of your Macintosh.

Installation of the Macintosh clients that make all this possible requires merely that MacTCP, Apple

Remote Access, or a PPP client be installed on the workstation. The main application can either reside on
the hard drive or the user’s diskette — provided it remains unlocked when in use.

End users store their personal application settings files (lNITs or Preferences), on their Macintosh, along
with email, bookmarks, and hotlists storing Internet addresses for favorite sites for downloading
information, and subscriptions to UseNet newsgroups they regularly read on a non-write protected
diskette. By saving these files to an unlocked diskette, the end user can access information resources they
use frequently as they move from one Macintosh to another.

There are two inherent problems in this situation. The first problem is the security risk of randomly
transferring files, either applications or mail attachments, without heeding where those files have been.
Each time a file passes across another Macintosh desktop, it is potentially exposed to a virus which it can
contract or pass on to any other Macintosh desktop it passes across.

The second problem pertains to end users who move from one workstation to another, including students
who use open labs as well as staff/faculty who carry client settings files between the office and home
computer on a diskette that is not write-protected. Removing write-protection from a diskette creates an
environment ripe for passing viruses.

RANDOM FILE TRANSFERS

From a support viewpoint, the ease of randomly transferring files is a tremendous boon to a university’s
ever changing flow of new end users. It has become commonplace for universities to pre-configure telnet
client applications and utilities for end users and then make the clients widely available. This process
saves the Help Desk staff from having to personally assist every end user through the configuration
process.

The original ‘clean’ copy will be opened and the site-specific information entered, such as the names of
the university’s gopher, news, web, mail servers. MacTCP can be pre-configured for the correct domain
name and gateway, before being passed on to users, as part of a site licensing arrangement.
Communications software can be pre-configured with the local dialup number.

Files are then compressed, usually with a product such as BinHex or Compact Pro, among dozens
available, that have also been downloaded from an anonymous FTP site. Once compressed, the

 _.j

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicmtion may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000197

000198

VIRUS BULLETIN CONFERENCE,_SEPTEMBER I995 - I47

pre-configured files are stored at the university’s anonymous ftp site or on various Macintosh servers or
public workstations where end users are encouraged to take their own copies for personal use.

But the question always remains as to how clean an application transferred via the Internet may be, and
how clean the server that application resides on may be. Anyone can offer up applications from their

server — and that web server or fip server may actually reside on a Macintosh which could have virus

infections on it and, by association, pass those viruses on.

There exists the temptation to use a Macintosh as a file server, rather than a unix machine, because files
can be transferred either via ftp or Appleshare, offering users greater choice in how they access the

server. It also introduces more contamination points, beyond just the traditional unix-based Internet
server.

Anyone maintaining shareware on a Macintosh fileserver, must maintain stringent virus protection on

7.‘ that fileserver in order to avoid the risk of infecting clients being made available to end users. This is
4. especially true for those individuals who open and pre-configure them. Infected applications don’t even

need to be run in order to pass on viruses such as ZUC and MDEF [3].

In addition, the clients make it so easy to begin participating in this file exchange with other end users,

. further increasing the end user’s vulnerability. The nature of the world wide web contributes to the need

to participate in this free exchange of applications. The plethora of ‘helper applications’ for viewing
graphics, listening to sound files, or viewing movies within the web clients are also transferred over the
Internet.

As users gain greater exposure to the wealth of data files available, they may also be exposed to a
destructive infection. One Macintosh Trojan horse, CPro 1.41, masquerades as the commonly-used

decompression program Compact Pro 1.41 and erases the System and floppy diskettes [4].

It is crucial that virus protection be installed and kept up to date on every single Macintosh and that

anyone pre-configuring clients vigilantly maintains a sterile environment to avoid putting end users at
risk.

TRAVELLING END USERS

The mobile nature of end users adds yet another entry point for infection. Faculty often work from both

home and office. Students who don’t have their own computer have no choice but to travel between

computer labs. In order to make this possible, they carry clients on an unlocked diskette from one
workstation to another in order to maintain access to their personal information. As these end users move

files from one workstation to another, they may inadvertently encounter a virus on one of those machines

or pass it on to another.

PROPER USE OF VIRUS PROTECTION

Commonly used Macintosh virus protection products include Disinfectant, Gatekeeper, MacTools and

Virex. Each require that a Control Panel be stored in the System folder. It is also necessary to open the

application and configure the software. Many end users skip this step, causing the virus protection to fail
to scan disks or notify the end user when a virus has been detected or removed.

The ease of installing most Macintosh applications is contrasted by the fact that one of the more effective

tools, Gatekeeper, does require some technical expertise to install properly. Even Disinfectant and

MacTools require some installation and, if not configured properly, can fail to scan floppy diskettes.

Some products such as Virex sometimes must be disabled when installing other applications and then
automatically reactivated after a specified period of time.

I/YR US BULLETIN CONPERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOO198

000199

I48 - EDWARDS: FENDING OFF VIRUSES IN THE UNIVERISTY COMMUNITY

Disinfectant is possibly the most commonly used — and one of the more effective — tools, partly because it
is a freeware product itself However, it does not address viruses which infect HyperCard stacks or trojan
horses. Trojan horses, briefly defined, are ‘stand-alone applications that must be launched in order to be
activated, and that are similar to viruses in the damage they can cause’ [5].

While the telnet applications themselves are not HyperCard-based, many of the helper applications for
creating hypertext markup language documents are HyperCard add-ons. For HyperCard users,
Disinfectant is not fiilly effective and they need additional protection such as Virex.

SCANNING FLOPPY DISKETTES

It is possible to configure Disinfectant, and other products, to skip scanning floppy diskettes. Since the
telnet clients’ settings file may reside on a floppy diskette, this is an unwise decision. Older versions of

Eudora popmail, for instance, are small enough for the entire client, along with the end user’s mail, to
reside on a high-density floppy diskette.

It maybe possible, with any product, for an end user to cancel a scan. To counter this, Virex and
MacTools can be configured to perform a scan at startup, shutdown — and at pre-selected intervals while
the workstation is running. If a scan was cancelled during a virus infection, the next automatic scan
should detect the virus.

COMPATIBILITY PROBLEMS

The Gatekeeper documentation stipulates that certain files such as ‘communications programs,

compression utilities, and electronic mail packages require File(Other) privileges when decoding
downloaded applications and system files’. Not assigning these privileges within Gatekeeper can
interfere with the way people actually work when they use the various telnet clients and decompression

programs such as Stufflt Lite.

One advantage of Virex is that it protects against some trojan horses, in addition to viruses. However, a
QuickMail Server will not transmit mail messages over a modem while Virex is running. The same is
true for Apple’s PowerBook Express Modem software for fax transmission. The solution is to disable the
feature that diagnoses HyperCard stacks. These are not problems — unless HyperCard users are on the
same network, or unless users are using a modem.

A novice is not always prepared to deal with these issues and may either stop using virus protection or

spend a regrettable amount of time calling a Help Desk for assistance.

NETWORKS

Serving up applications over a server is a wonderful way to manage applications on every end users’
workstation and include tools which prevent end users from disabling virus protection on the system. It is

a wise decision on the part of the network administrator to ensure that the entire network’s integrity is
maintained.

Networked users must be made aware of upgrades that have been transparently installed for them,

including an upgrade of their virus protection so that they also upgrade protection on their home
computer. Site license purchases can include users who work from home in order to encourage all users
to keep their workstations current.

KEEPING THE CAMPUS CURRENT

An ongoing problem for everyone is just keeping current of the latest product releases. Commercial
vendors are sometimes unaware of the structure of the American university system. While there is often a

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingrlon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any fomi without the prior
written permission ofthe publishers.

000199

000200

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 - I49

central information services office on campus, individual departments generally have the freedom to
purchase software independently.

Frequently, an individual department will purchase a site license for the software, unaware that another
department has done the same. The contact name for the most recent purchase will then become the new
contact name in the vendor’s database, even though it may be the secretary who processed the invoice for

an academic department, for instance. That person may not be responsible for actually maintaining
software and therefore not comprehend that this is a crucial upgrade.

When an upgrade announcement is sent to the university, it may only also be sent to that single contact

person, bypassing all other departments including the campus computing services. It may also be that
anyone wishing to purchase the upgrade, may need to order through that department who was last-listed
as the contact. Vendors are often unprepared for listing multiple contacts and departments as ‘the’ official

contact point. Work with your vendor, and explain that your university may have multiple site-license

contact points, if that is the case.

Through other -means (such as trade publications), managers and computer services can remain aware of

new upgrades even before — or in lieu of — receiving an announcement. Universities sometimes also keep

users informed of new upgrades via a university-based listserv or mail list. John Norstad makes the

following recommendations, among others:

5 Join a user group such as BMUG (Berkeley Macintosh User Group), BCS (Boston Computer

Society) or a local user group.

D Subscribe to the BITNET distribution lists VIRUS—L and INFO-Mac.

I Read the USENET news groups comp.sys.mac.armounce and comp.virus.

DEFENDING AGAINST VIRUSES

The old adage ‘keep your disks locked’ is no longer sufficient, nor appropriate since doing so prevents

the clients from updating personal settings or exchanging email. But there are reasonable responses.

I Install virus protection on every computer, not just scanning stations or at the office.

D Install and maintain current virus protection to immediately scan newly downloaded and

decompressed files before using them.

5 Configure virus protection to issue a notification if a virus has been detected and destroyed.

5 Run a second scan just to be sure that you have eliminated the virus. If a virus such as INIT 29 is

currently infecting one file it could reasonably be infecting others as well.

D Configure products like Stufflt Lite 3.07 to instantly activate resident virus protection to scan new

files as they are decompressed.

D Rebuilding the Desktop when installing new applications is not only good maintenance procedure
but it can remove the WDEF and CDEF viruses.

5 Use Checksum Tools such as Checksum from Geoff Walsh or Virex and MacTools which have

built-in checksums to perform integrity checking similar to that found in some MS DOS

Anti-Virus programs.

I Download a ‘clean’ copy of virus protection and scan public or shared workstations before starting
to work.

5 Scan diskettes every time they are used at public or shared workstations.

I/YRUS BULLETIN CONHRENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or uansmitted in any form without the prior
written permission ofthe publishers.

000200

000201

I50 - EDWARDS: FENDING OFF VIRUSES IN THE UNIVERISTY COMMUNITY

0 FTP ‘clean’ copies of telnet clients from an anonymous ftp site rather than accepting shareware

that someone has been using as their personal copy or on public workstations.

0 Scan software that has been pre-configured for your site.

5 Notify end users when there is a new virus protection upgrade available to them. A

0 Network Administrators should be especially wary of running an infected client on a network

server, thereby passing on an infection.

The privilege of sharing of information carries with it the responsibility for protecting yourself and
others. Sound virus protection methods create a safer environment for obtaining and using the Wealth of
Macintosh telnet clients available.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

Gordon, Sarah, ‘Technologically Enabled Crime: Shifting Paradigms for the Year 2000’,

Proceedings, Sec 94, IFIP TCl1. Curacao, Netherlands Antilles. 1994

Spafford, Gene, ‘New Macintosh Virus Discovered (INIT-29-B), 2 April 1994’, Purdue
University. 1994.

Norstad, John, ‘Disinfectant 2.5.1’, Northwestern University. 1991.

Harris, Kevin, ‘Virus Reference 2.1.3’, Software Perspective. 1994.

Schnier, Bruce, ‘Virus Killers: Macworld Lab tests virus software and survives’, Mac World,

July 1994, p. 116ff.

ACKNOWLEDGEMENTS

The author would like to thank Sarah Gordon for countless hours of assistance in exploring similarities

between DOS and Macintosh threats. It is my hope that collaborative work between researchers will lead

to solutions to this ever growing threat.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
. written permission ofthe publishers.

000201

000202

VIRUS BULLETIN CONFERENCE SEPTEMBER I 995 ° I5!

RECENT VIRUSES, VIRUS WRITERS AND ROUTES OF VIRUS

SPREAD IN HONG KONG AND CHINA

Allan Dyer

Yui Kee Company Ltd, Flat C & D, 8th Floor, Yally Industrial Building, 6 Yip Fat Street,
Wong Chuk Hang, Hong Kong

Tel +852 2555 0209 - Fax +852 2873 6164 - Email adyer@yuikee.mhs.compuserve.com

ABSTRACT

During thepast two years, a number ofviruses have emergedfrom Hong Kong and China. Some have

spread internationally while others are only known locally. Hong Kong and China are simultaneously
very close and widely separated in terms ofbusiness, communications, technical knowledge and

availability ofcomputingpower.

The types ofvirus written and their spread are dependent in diflerent ways on the environments in the

two cultures. This paper will look at the viruses written and relate this to what is known about the virus

writers and virus writing groups in Hong Kong and China.

The differences in virus reportsfrom business and BBS users in Hong Kong show that diflerent viruses

are suited to spreading in these environments. Corporate indifference and teenage irresponsibility

contribute to the virus problem in diflerent ways.

INTRODUCTION

I think everyone knows that Hong Kong is a major international finance centre and the biggest entry port
to China. How do viruses fit into this environment, and what effect does this have on the international

virus scene?

BACKGROUND

Change is dominant For Hong Kong, 1997 will mark the end of British rule and preparations are being

made throughout society. In China, the use of computers is growing enormously. Last year, the estimated

number of PCs in China was one million. This year it is double and the growth will continue.

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000202

000203

I 52 ° DYER: RECENT VIRUSES, IN HONG KONG AND CHINA

THE LAW

Relevant laws exist in Hong Kong & China. Hong Kong has the Computer Crimes Ordinance, introduced

in 1993 [1]. The first case prosecuted under this act earlier this year, was a ‘cracker’.

In China, the National Congress issued a Guideline in February 1994 [2]. This places the Ministry of

Public Security in charge of the whole nation’s computer information systems security. More

specifically, this Ministry is given responsibility to manage research and investigation of ‘computer
viruses and other data endangering social and public security and related harmfiil programs’. In addition,

a permit is required for selling products specifically designed for computer information systems security.

These permits are designed and administered by the same Ministry.

Paragraph 28 of China’s guideline makes two definitions: a computer virus is a program or programs

inserted into computer programs which can destroy the fimction of the computer and/or destroy data or

influence the function of the computer. It is also a program that can be self-replicating. This definition

appears to cover most malware: viruses, Trojan horses, logic bombs, and maybe even buggy programs.

Secondly, a specialised computer information security product is a hardware or software product

specialising in protecting computer information system security.

Paragraph 23 of the guideline specifies punishments: deliberately introducing computer viruses or any
other harmful data which endangers computer information system security, or selling a computer

information system security product without a permit, can result in a warning from the Ministry of Public

Security or a personal fine of up to 5000 yuen. Organisations may be fined up to 15000 yuen. Any gains
from the violation would be confiscated and there may be a fine of from one to three times the quantity

gained. As a comparison, the average monthly salary in China is 200 to 300 yuen, although anyone

privileged with access to a computer could have a much higher salary.

This leads to a curious situation. People who spread viruses do not gain from their actions, so the penalty

for selling a security product without a license is potentially higher than the penalty for deliberately

spreading a virus. It seems that the National Congress failed to understand the nature of the problem
when it issued this Guideline. The level of the penalty is also lenient for a country where corruption can

be punished with the death penalty. For comparison, deliberately spreading a virus in Hong Kong can be
punished with up to ten years imprisonment.

However, the level ofpunishment is irrelevant when no prosecutions have been brought in either

jurisdiction.

THE VIRUSES

I have compiled a list of viruses for Hong Kong and China (table 1). This is different from my
submissions to Joe Well’s ‘In the Wild’ list because I have used a slacker criteria for inclusion: I must

have received a sample of the virus from someone in Hong Kong or China. Some of these I received in
collections; some I received via local BBSs, and while I could see that they were spreading, I could not

confirm a single case of infection. Rather than indicating the viruses in the wild, this list indicates the
viruses which are ‘available’. Some of the older ones were probably in the wild in the past; the newer

ones may turn out to be mere zoo specimens or the first indications ofa wider spread.

The list is short: just 52 viruses for Hong Kong, and a handful for China. It is almost certainly

incomplete; the China list should improve as stronger links are forged. For Hong Kong, it is possible that
my contacts are insufficient, but it may also be because the local ‘virus collector’ community does not

have frequent exchange with their European and American counterparts. This brings us to
communications.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000203

000204

VIRUS BULLETIN CONFERENCE,- SEPTEMBER I995 - I 53

TABLE 1:0HONG KONG & CHINA VIRUSES

Hong Kong China

AntiCad.2900.Plastique.A Beijing
AntiCad.4096.Danube _l492

AntiCMOS.A Changsha

AntiEXE Democracy.3806

BuIger.560.AY Green_Caterpillar. 1575.1
BuIger.560.BA HideNowt
Cascade.170l.A New or modified variant of Little_Red

Crazy_Lord Mange_tout.1099
Dalian Specified

Green_Caterpillar.1575.A Uestc

Green_CaterpillaI. 1575 .D

Green_CaterpillaI.1575.H
Jerusalem. 1808.Standard

Jerusa1em.Clipper AmiCMOS.B
Jerusalem.CVEX.5l20.A

Jerusa1em.HK.2358

Jerusa1em.HK.25 13

Jerusa1em.HK.288O

Jerusalem.HK.2886

Jerusa1em.Sunday.A

June_12th

Keypress.1232.A

Liberty.2857
Line

New or modified variant of Little_Red

MacGyver.2824.A

Mange_tout. 1099

Ming. 1 01 7

Ming.49l

Ming.CLME.1528

Ming.CLME.1952
NRLG.1030 - Generation 1

NRLG.776 - Generation 1

NRLG.992 — Generation 1

Ping-Pong.StandaId

Possibly a variant of Devil’s_Dance

Quartz

Sampo
Sblank

Shatin

Shutdown.644

Shutdown.698

Stoned.Dinamo

Stoned.Empire.Monkey.D
Stoned.Flame

Stoned.NoInt.A

Stoned.Standard

Timid.305

TV

Vienna.648.Reboot.A

Yankee_Doodle.TP.44

Yankee_Dood1e.TP.44.E

Shenzen

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000204

000205

I54 ° DYER: RECENT VIRUSES, IN HONG KONG AND CHINA

BBSs AND INTERNET

In Hong Kong, local phone calls are free, and, as HK is a small territory, everywhere is local.

Consequently, there are large numbers ofBulletin Boards. However, international calls are expensive. A
recent change is in access to the Internet. The first Internet Service Provider opened in 1994, and interest
has rocketed in the last six months, whether this vastly cheaper method of reaching international sites

will result in a wider range of viruses in Hong Kong zoos remains to be seen.

On the BBSs, there is a well-established Virus Echo, which is unmoderated. Most of the messages deal

with combating viruses, but some are from self-proclaimed virus authors (fig. 1 is part of a typical

message). There are hints in these messages that virus exchange BBSs exist, and some indication that
there might be one or more virus writing groups, but I have been unable to verify this.

PUBLIC Message from ***** *** to **** ***.

Source: *******; Conference 4 (V-Viruses); Message No. 8601

Time Stamp: 09-03-95 20:27

Subject: Form Virus

So.. do you know I created my OWN virus?

It is called the Jason virus... I am working on the Jason II virus...

It is REALLY strong...

I use CLME object tool and file embedding to create a fiilly polymorphic virus.

There are NO symptoms... no one lmows if he/she is infected.

It infects EVERYTHING... boot sector, files (even data), overlays, etc.

It is like the HKVTECH... infact, so of the technology used is from the

HKVTECH. Files cannot be protected at all... even attrib cannot help. MY virus

slowly uses Low Level Format... it also uses the LATEST technology...

Fig. 1: Part ofmessagefrom a ‘virus writer’ on HK BBS virus echo

The virus writers take advantage of the BBS rules to spread their creations. Many of the BB Ss specify an

upload-download ratio, and check uploaded files against files already on the BBS. Those who upload
new versions may also be awarded with extra privileges. As soon as a new version appears on one BB S,
users will race to be the first to upload it to all the other BBSs they lmow. The virus writer merely has to

infect a well-known package, give it a new version number and upload it to one or two BBSs with a

tantalising description. The ensuing confiision will obliterate any trail to the instigator.

Some of the virus families which have emerged from the local BBSs are:

JERUSALEM.HK

The first in this family was Ierusalem.HK.2358. It appeared in March 1994. It displayed the text string

‘HKs Vtech’, which led to it being called Jerusalem.Vtech. This was later changed to Jerusalem.HK

because a company manufacturing computers and other consumer electronics in Hong Kong is called
Vtech. There is no connection between the company and the Jerusalem.HK family of viruses.

Jerusalem.HK.288O appeared in May 1994, and .2886 and .2513 soon followed. These were initially

distributed using the ‘Trojanised new version upload’ method. By June, reports of Jerusalem.HK.28 80

were circulating Dutch BBSs. This is certainly a distribution method that can be very effective.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000205

000206

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° I 55

The .2880 and .2886 variants, after displaying ‘HKs Vtech’, also say ‘using VTME V1.11’ and ‘Please

ask S—S Chan to help you!’. These are polymorphic, and it seems likely that VTME is the name of the

mutation engine developed for this family.

MING

Ming. 1017 was first found in January 1994 and contains the text message: ‘Nice To Meet You!

Copyright(c) 1-11-1993 By Ming. From Tuen Mun, Hong Kong Version 3.10’.

It is a simple, overwriting file virus and is only notable because a minor variant reached Lapland two
weeks later on video driver diskettes which had originated in Hong Kong. Even something as obvious as

an overwriting virus can spread internationally with a lucky break.

In April, messages appeared on the local virus echo claiming to be from the Ming who had written this
virus. He said that he was changing his name to Crazy_Lord and he that had written CLME, the Crazy

Lord Mutation Engine. Different messages mentioned versions 0.5 and 0.6. He also thanked ‘HKs Vtech’

for assistance and challenged ‘S-S Chan’ to kill it.

It was July before a sample of a CLME virus was obtained. The decryptor used a simple XOR loop with

a variable amount ofjunk code.

Ming.CLME.l952, Ming. 1017 and Ming.CLME.1528 increased in samples uploaded to my BBS during

the following months and are still occasionally uploaded now. A total of five Ming viruses are currently
known.

The author appears to be a novice programmer, improving his skills with practice. One can only guess at

the collaboration between this person and the author of the Jerusalem.HK family. '

SHUTDOWN

Shutdown.644 appeared in January 1994. It contains the text message:

Computers must be shut down to dedicate my sister

Reports of it and a second variant, .698, have appeared sporadically in the BBSs until recently.

CHINESE LANGUAGE VIRUSES

Two other viruses known in Hong Kong BBSs are notable because they display, or attempt to display, a

message in Chinese characters.

Jerusalem.J, which first appeared in October 1994, uses DOS calls to redefine four characters as two

Chinese characters ‘Death God’. The display routine fails on some video cards. Interestingly, in

November 1994, a message complaining that it had been named incorrectly, and was actually called

‘Jerry virus’ was posted in the local virus echo. The writer of the message claimed it was not related to

Jerusalem because it ‘only has 30 bytes like Jerusalem’.

Shatin, which first appeared in Febraury 1995, takes a different approach to displaying Chinese

characters. It uses block graphics to make the Chinese characters for ‘Forget me not’ as a full screen

display (fig. 2). All these viruses have been widely reported in the local virus echo, but there have been

no local reports from commercial sites.

I had hoped to give a detailed profile of Hong Kong virus writers, but firm evidence has not surfaced.

The impression from numerous BBS messages is of a small number of actual writers, probably

adolescent males, and a larger number of ‘wannabe’ virus-writers and hangers-on. One correspondent at

different times claimed to be a virus writer and to know a virus-writing group, but not be a writer

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000206

000207

I56 ~ DYER: RECENT VIRUSES, IN HONG KONG AND CHINA

himself. He claimed to be concerned about what the group would do to him if he revealed what he knew.

I could not work out if he was trying to fool me, or if he was really worried, or even if the messages

originated from one or more people.

.' 'I

|II~||]|I’E IIIIIIIE DI
Hade in Hong Kong (Shatin)

Fig. 2: Screen shot ofShatin

THE ROUTE FROM CHINA

The commercial companies have more international interchange.

Literally thousands of Hong Kong companies have offices or factories in China. It is easy to imagine that

this provides a channel for viruses written in China to reach the international scene. Two specific

incidents suggest, but do not prove this:

ANTICMOS

In March 94, within a couple of weeksof each other, I received two samples of AntiCMOS.A. One was

from an airline, the other a manufacturing company. Both believed that the virus had come from their

China branches. These were not the first samples of AntiCMOS found internationally, but they were
close to that date.

The next stage in the chain is a company without an anti-virus policy. In April 94, I received a sample

from a large local bank. In May, a salesperson for an on-line banking service from that bank was found to
have an infected demonstration diskette. The diskette in question was not write-protected, and the

salesperson’s standard procedure was to use a customer’s machine to do a directory of the diskette, and
then to boot the machine from it. This procedure seems designed to maximise the chances ofpicking up

an infection and distributing it to the maximum number of customers. Since then, reports of AntiCMOS
have risen.

I have had only one sample of AntiCMOS.B, in early May 94. This was collected from a computer

company in Shenzen. This variant contains the text: ‘I am Li Xibin’. Li Xibin is a plausible Chinese
name, that and the dates of first appearance suggest that AntiCMOS is a Chinese virus.

I/YRUS BULLETIN CONITRENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000207 _

000208

VIRUS BULLETIN CONFERENCE. SEPTEMBER I995 - I 57

MANGE_TOUT.l099

This was first found in January 1994 in a manufacturing company with a branch in China (as labour costs

rose in Hong Kong, many companies moved their factories to China, and kept their head office in Hong

Kong). Again, the possibility that this virus had travelled from the Chinese branch was mentioned. It

spread in Hong Kong in the subsequent months and a trip to Beijing at the beginning of August 94
showed it to be well known there. Several samples were received, and local anti-virus sofiware detected

it as DA01. Near the end of August, it leaped to Norway via video device driver diskettes which had been

duplicated in Hong Kong.

CHINA

China itself requires a lot more research, but of the ten viruses found, six have not been seen elsewhere.
Of the others: AntiCMOS.B was found almost simultaneously in China and elsewhere; Mange_tout we

have already mentioned; Hidenowt was found in Hong Kong soon alter its original discovery (Chinese

anti-virus software recognises it with the name of ‘Dong’); and Changsha contains a name and address in
China.

A perception noted in China was that foreign anti-virus sofiware is unable to detect Chinese viruses, this
sample shows how that idea could arise. The Chinese anti-virus software mentioned is called Kill and is

produced by the Ministry of Public Security. It used to be distributed free, but it is now being sold. The
apparent conflict of interest between the same organisation having responsibility for issuing permits to
sell security software, and selling its own security product, does not seem to be a concern.

THREE ENVIRONMENTS

In Hong Kong, the corporate and hobbyist appear to fonn two separate environments (fig. 3). The

corporate environment has more frequent Chinese and international connections but, for the most part,

exchange only data diskettes. Thus, boot sector viruses are dominant and their prevalence assisted by the
failure of many corporations to take the simplest of precautions.

Fig. 2: Major and Minor Floules of Virus Spread in Hong Kong and China

Commercial
Community

HongKong 0
IIIIIIIIIIIlIIIIIIIIIII;IIIIIIIIIIII IIIIIIIII I‘.

The World ..+‘

Fig. 3: Major and minor routes ofvirus spread in Hong Kong and China

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any fomi without the prior
written permission ofthe publishers.

000208

000209

I 58 ° DYER: RECENT VIRUSES, IN HONG KONG AND CHINA

The hobbyist environment frequently exchange files on BBSS, but these will generally be entirely within
Hong Kong. So, file viruses are common, and locally written viruses are well represented, but some
viruses, well-known internationally, are missing. This may change as the Internet boom allows exchange

between previously isolated collectors.

China is largely isolated, but has its own virus writers. Who they are, and why they write, is currently
unknown. However, it seems certain that we will encounter more from China as it develops and increases
its links.

China and Hong Kong

REFERENCES

[1] Dr Matthew K 0 Lee, ‘Information Systems Security: legal aspects’, Hong Kong Computer
Journal, vol. 9 no. 11 pp. 19-22

[2] Title: 18th Feb., 1994 PRC NC no. 147 issue, available at Law-on-Line,

URL:http://lawhk.hku.hk

WRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No pan ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000209

000210

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I59

CASE STUDY OF VIRUS CONTROL IN A LARGE

ORGANISATION

THE UNITED NATIONS PEACE FORCES APPROACH TO VIRUS CONTROL

Lucijan Caric

Information Technology Services Section, United Nations Peace Forces, PO Box 870, Zagreb, Croatia

Tel +385 1 180394 - Fax +3 85 1 176288 - Email Lucijan_Caric_at_DPKO-UNPF@un.org

Phillip D. Kruss

Information Technology Services Section, United Nations Peace Forces, PO Box 870, Zagreb, Croatia

Tel +3 85 1 180327 - Fax +3 85 1 176288 - Email Phillip_Kruss_at_DPKO-UNPF@un.org

ABSTRACT

The UnitedNations PeaceForces (UNPF) operation in theformer Yugoslavia includes a significant

information technology (IT) component, with an ITServices Section (ITSS) staffof80personnel, several

networks and 4, 000 PCs. Despite initial similarities, the environment under which ITSS must control

viruses is not a typical corporate one. There arefresh injections ofviruses on a regular basis because

each ofthe many troop contingents rotates every six months. Also, a high percentage ofthe PCs are

standalone and located in war-torn locations that are diflicult to access on a regular basis in order to

update virus scanners.

Prior to the implementation ofa comprehensive anti-virusprogram, the numberofvirus incidents had

reached a critical level. Hence, all measures which could be brought to bear were utilized, including

BIOS-in-builtfeatures, scanning, and the use ofcryptographic checksums. It was also clearly necessary

to develop a system which would defend against attackfrom users (e.g. changes to the DOS

environment), which could cause as much damage and downtime as viruses, and also lead to the

disabling ofthe virusprotection. The constraints to the approach were software cost, maintenance cost,

and the need to reduce the annoyance to the user to a minimum (the greater the impact on the user —such as

long bootprocess — the more likely the user was to attempt to disable the virusprotection).

An analysis ofthe viruspopulation at large in UNPF at that time showed that 90% ofinfections were due

to boot sector viruses, and therefore an initial emphasis wasplaced on the elimination ofthese viruses.

Many ofUNPF ’s computerspossess so-called built-in ‘Boot Sector Virus Protection ’, but, for a number of

reasons, this wasfound to be totally ineflective. Howevera BIOS—configurati0n solution wasfound and

implemented which drastically reduced the incidence ofbootsector viruses andas an added bonus reduced

the ‘annoyancefactor ’ by speeding up the bootprocess. This solution has often been overlooked

VIR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00021 O

000211

I 60 ° CARIC & KRUSS: CASE STUDY OF VIRUS CONTROL IN A LARGE ORGANISATION

In addition to the above, both virus scanning and verification ofcryptographic checksums were introduced.

This implementation covered memory and the most criticalfiles, including thosefiles which do not come

under virus threat, but are subject to user attack; the checking offiles subject to userattack was

implemented toprevent deterioration ofthe DOS/Windows environments and disabling ofthe virus

protection itself In the execution ofthese measures, it wasfound that displaying a message to the user

regarding the detection ofa virus was simply not effective. Hence, on detection ofa virus or a user-
instigated change to vital systemfiles, locking ofthe system was introducedso that an infected computer

could no longer be used.

The end result ofthis exercise was that, at very low cost, the computers were very eflectivelyprotected

against known and unknown viruses, and also against degradation ofthe DOS and Windows
environments due to inadvertent or intentional attack by users.

Despite a continuing significant increase in PCS, and regular injections ofvirus-infected disks by

incoming troops, the number ofvirus infections ofPCs at UNPF has been dramatically reduced.

INTRODUCTION

One major task before the Information Technology Services Section (ITSS) ofthe United Nations Peace

Forces (UNPF) in the former Yugoslavia at the beginning ofthe 1994 was the necessity to develop a
standard and reliable user environment for the standalone PCs used within the organization. A primary

criterion in this regard was to design an operating system environment which would prevent degradation
at both the DOS and Windows levels. At the same time, the number ofvirus infections had reached a

critical level, counting more than 15 separate incidents per month. A decision was taken to address both

ofthese problems with one solution.

In the early stages ofany UnitedNations (UN) mission, virus infections always present a difficult problem
because many computers are moved rapidly into areas out ofreach ofany centralised infonnation technology

(IT) section. Further, there is a communications problem, which results in widespread use ofdiskettes for
the dissemination of information. In addition, the rapid arrival ofthousands ofcivilians and military

personnel and the rotation oftroops every six months results in a very regular inflow ofviruses into the
mission area.

There are currently over 4,500 civilians and 40,000 troops in the former Yugoslavia. The total UNPC count

provided by the MVis over 4,000, although many nations, as well as other UNand non-govemmental
agencies, also possess their own PCs. A high percentage ofPCs are standalone and are located in war-tom
areas that are difficult to access on a regular basis to update virus scarmers.

In designing the user environment, we were aware of the problems caused on machines by the users.
Installing unauthorised software packages, either intentionally or unintentionally, changing the
configuration ofthe DOS/Windows environments and introducing virus infected files and disks onto the
PC were common actions. It was decided to design an environment which would be resistant to change

and which would prevent operation ofa PC whose configuration was significantly modified. At the same
time, that environment needed to ensure trouble-free operation ofthe PCs, while providing the user with

all necessary application software. It should also cause no virus false alarms or irritate users with long

lasting and frequent system checks.

THE DESIGN ENVIRONMENT

When anti-virus measures were planned, ITSS was responsible for over 1000 PCs, with more than 3000

PCs projected to be in place within one additional year. More than halfofthese PCs were standalones
and the rest were connected in several multiple-server networks. Most application software was located

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00021 1

000212

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - I 6I

on the PCs, with only major applications (e.g. procurement) running as server-based. Since more than half

of the PCs were standalones, and this percentage was expected to remain static (there is only so much

network penetration that can be accomplished in areas such as Sarajevo), it was clear that it would be

difficult to upgrade anti-virus software on any regular basis.

ANTI-VIRUS MEASURES

BIOS SETUP FEATURES

Before any anti—virus software is introduced, it is very important to identify and utilize all possible means of

virus prevention present as built-in features ofthe PC. Most BIOS versions for the PCs used by UNPF

possess several features which can be used to help prevent a PC from becoming infected. There are three
main features which were used:

1 Boot Sequence

The ability to alter the boot sequence is a feature available on essentially all desktop PCs available on the

market today. By altering the boot sequence, so that the computer boots from drive C: first, the time

required for the system to boot up is shortened and the risk of the computer being infected with the boot

sector viruses is greatly reduced since it is impossible for a virus to utilize accidental booting from drive
A: in order to infect the PC.

2 Boot Sector Protection

Boot sector protection is another BIOS feature available for anti-virus prevention on today’s PCs. The idea

behind boot sector protection is to prevent a virus writing itselfto the master boot sector (MBS) ofthe hard

disk. Ifa virus tries to write to the MBS, a message is displayed on the screen warning the user and asking

for confirmation before writing is allowed. Regrettably this virus protection feature is ofvery limited use

because ofthe several reasons. One major loophole ofthis type ofboot sector protection is that it typically

protects only the MBS of the hard disk, leaving the DOS boot sector unprotected. For example, if infection

is attempted by the Jack The Ripper virus it will be detected, but if infection is attempted by the Form virus,

the user will not be warned and the virus will successfully infect the PC.

A second disadvantage ofsuch boot sector protection is that it relies on the user’s judgement and action.

The user is typically confronted with a message like: ‘Boot sector write -possible virus. Continue (Y/N)?’

Most users as a rule choose the easier possible escape and press YES which leads to infection of the PC. It

is our opinion that it would be much better if BIOS producers allowed for the possibility ofwriting to the

master boot sector to be authorized from the BIOS setup in the ON/OFF form. In this case, ifa write

attempt is made to MBS, it would just cause a message to be displayed stating that writing to the MBS is

not allowed. In order to write to the MBS, the user would need to change the BIOS setup first. Since writing

to the MBS is a rare operation under most operating systems, imposing a more complicatedprocedure in

order to allow somebody to perform it would not unduly complicate anyone’s life since the advantages are
obvious.

3 BIOS Setup Password

The availability of a BIOS setup password is a standard feature designed to prevent unauthorized access to

the BIOS setup. This feature is ofvery limited use in professional data protection because passwords are

easily disclosed by the many BIOS password crackers available today and many boards lose their password

protection ifthe CMOS battery is removed. However, despite these limitations, this feature has been found

to be very useful at UNPF through the use of a standard password to prevent a user from altering the BIOS

setup, especially the boot sequence.

VIR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00021 2

000213

I62 - CARIC & KRUSS: CASE STUDY OF VIRUS CONTROL IN A LARGE ORGANISATION

SCANNING I

An anti-virus scanner was loaded onto each PC, with at-boot scanning ofmemory, boot sectors and selected

files at various levels depending on boot action (see next section). However, in view ofaccess difficulties as

outlined above, and hence reduced update opporttmities, the dependence on scanning was minimised. At this

point we are not using a resident scanner because it appears that most resident scanners suffer from a lack of

detection capabilities and as well cause significant overheads during operation ofthe PC.

Since in almost all cases the scanner started during booting was successfully detecting infections on the PC

(and because the booting sequence was set in such a way as to prevent accidental infections with boot sector

Viruses and cryptographic checksumming was used to prevent installation ofthe unauthorised software to the

PC), we did not consider the use ofa proactive anti-virus component at this time. It was decided that the

server based type ofproactive anti-virus software would be considered for use and tested later. This process

is now completed and all networked PCs will be protected with a server based anti-virus system.

CRYPTOGRAPHIC CHECKSUMS AND LOCKING

In order to strengthen the protection against unknown viruses, cryptographic checksumming was added to

the virus protection offered by the scanner. The use ofcryptographic checksums is the only possible way to
discover all viruses, known and unknown and is particularly critical at UNPF where the scanners on many

PCs carmot be updated regularly. Cryptographic checksumming was applied to the master and DOS boot

sectors as well as to all executables for the purpose ofvirus detection. However, this concept was further

extended to test the integrity ofthe main parts ofthe operating enviromnent, including DOS and Windows

configuration files. In other words, cryptographic checksumming was used to detect modifications not only

to executable files but to other file types as well, which were not subject to virus attack but which were

subject to user attack.

For the purpose ofvirus detection, the master and DOS boot sectors, all files invoked during the booting

sequence, and all executables with the following extensions COM, EXE, SYS, DLL, OV? were checked
using cryptographic checksums. For the purpose ofdetecting user intervention WIN.INI, SYSTEM.INI,
PROGMAN.INl, AUTOEXEC.BAT, CONFIG.SYS and all .BAT files were checked.

A customized installation floppy-disk was designed and batch files provided for automated use. The

creation and encryption ofchecksums is carried out through batch files on floppy-disk provided only for

use by authorized ITSS staff. Users have no means ofcomputing checksums on their computers. In
addition, six DOS and Windows configuration files were automatically copied as part of the installation

process for backup and recovery purposes.

Checking is performed automatically each time the computer boots, Windows is started or Norton

Commander, Login or Logout are executed. Ifan integrity violation is discovered, the user is notified. If

system configuration files have been modified, then, depending on which files have been modified, they
will either be automatically restored from backup and control returned to the user, or the system will be

halted and user will be advised to call the Help Desk. If executables are found to be modified, the system
is halted.

CHECKING SEQUENCES

On first power up

Memory and hard disks are scanned for the presence ofknown viruses. Cryptographic checksums ofall
executable files are checked. If the integrity of any file has been violated, the computer is halted. This

full check is performed only once a day on first power up.

VIRUS BULLETINCONFERENCE©1995 V'1rus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00021 3

000214

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I63

Every time computer boots

The computer’s memory is scanned for the presence ofknown computer viruses. Integrity ofWIN.INI,

SYSTEM.INI and PROGMAN.INI files are checked. If the integrity check fails then the original ofeach

file is restored from backup, with modified files being stored for analysis. The integrity ofNC.MNU

(Norton Commander Menu) file is checked. Ifthe integrity check fails, the original file is restored from

backup. The modified file is stored for analysis. The integrity ofall files invoked during booting is checked

and ifthe integrity ofany file used during booting has been violated, the computer is halted.

Every time Windows is started or Norton Commander executed

The integrity ofAUTOEXEC.BAT and CONFlG.SYS is checked and if the integrity of either ofthese files

has been violated they are restored from the backup. Modified files are stored for analysis.

ADVANTAGES

During the implementation and operation ofthe above measures, several objectives were reached. With the

basic features implemented to prevent accidental booting from infected floppy-disks, over 90% ofviruses

present in the environment were covered. Implementation ofcryptographic checksumming covered the
problem ofunknown Viruses was proved worthwhile by detecting two previously ‘unknown’ viruses at that

time (OneHalf-3 544 and SillyCOM-290). At the same time, the boot process was speeded up and checking

procedures were causing little or no delay. Finally, operating system setup was protected against tampering
and degradation.

RESULTS

2.0%

I .5%

I .0%

0.5%

0.0%

Mar94 May Jul Sep Nov Jan95 Mar May July

Apr Jun Aug Oct Dec Feb Apr Jun

The graph shows the very rapid decrease in infections soon afler the above measures were introduced (graph

covers Zagreb sites only). The graph shows the percentage ofPCs infected during a given month (solid line,

left axis) as well as the number of PCs in use in Zagreb (dashed line, right axis). Over time, as the number

VIR USBULLETZNCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO214

000215

I64 ° CARIC & KRUSS: CASE STUDY OF VIRUS CONTROL IN A LARGE ORGANISATION

of PCs used within the organization grew, the number ofvirus infections showed no increase. Maintenance

was straightforward and effective since the computer setup was standardized and protection procedures were

able to identify problems. The number offalse positives was very low and detection accurate and effective.

CONCLUSIONS

The best anti-virus protection on a standalone PC is useless ifdisabled by the user, something which users
tend to do in an enviromnent where control is difficult due to lack ofaccess.

Messages to users regarding possible detection ofa virus are essentially useless — some disabling action is

necessary, within our case, any infected machine being locked to prevent use.

Changing the boot sequence to C: then A: and subsequently password-protecting the BIOS setup is a very

effective way ofreducing the spread ofboot-sector viruses in an enviromnent where floppy-disks are in

significant use.

Cryptographic checksum techniques designed for anti-virus purposes can be effectively used to limit users

ability to modify Windows and DOS configuration files, thus enhancing environment stability and reducing
maintenance costs.

In environments where policy enforcement is difficult, anti-virus techniques cannot be effective unless they

are married with techniques for the preservation ofthe operating system environment, including anti-virus '
measures themselves — users tend to disable anti-virus measures.

The annoyance factor ofany suite ofanti-virus measures must be reduced as far as possible to reduce the

likelihood ofuser attack against those measures.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

00021 5

000216

,m""\‘\«‘

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ~ I 65

COMPUTERVIRUSES:A GLOBAL PERSPECTIVE

Steve R. White, Jeflrey 0. Kephart andDavidM Chess

High Integrity Computing Laboratory, IBM Thomas J. Watson Research Center, P.O. Box 704,

Yorktown Heights, NY 10598, USA

Tel +1 914 784 73 68 - Fax +1 914 784 6054 - Email srwhite@watson.ibm.com

1 INTRODUCTION

Technical accounts ofcomputer viruses usually focus on the microscopic details of individual viruses: their

structure, their function, the type ofhost programs they infect, etc. The media tends to focus on the social

implications of isolated scares. Such views ofthe virus problem are useful, but limited in scope.

One ofthe missions ofIBM ’s High Integrity Computing Laboratory is to understand the virus problem

from a global perspective, and to apply that knowledge to the development ofanti-virus technology and

measures. We have employed two complementary approaches: observational and theoretical virus

epidemiology [1, 2, 3, 4, 5, 6]. Observation ofa large sample population for six years has given us a good

understanding ofmany aspects ofvirus prevalence and virus trends, while our theoretical work has bolstered

this understanding by suggesting some ofthe mechanisms which govern the behavior that we have observed.

In this paper, we review some ofthe main findings ofour previous work. ln brief, we show that, while

thousands ofDOS viruses exist today, less than 10% ofthese have actually been seen in real virus incidents.

Viruses do not tend to spread wildly. Rather, it takes months or years for a virus to become widespread, and

even the most common affect only a small percentage ofall computers. Theoretical models, based on

biological epidemiology, can explain these major features ofcomputer virus spread.

Then, we demonstrate some interesting trends that have become apparent recently. We examine several

curious features ofviral prevalence over the past few years, including remarkable peaks in virus reports, the

rise ofboot-sector-infecting viruses to account for almost all incidents today, and the near extinction of file-

infecting viruses. We show that anti-virus software can be remarkably effective within a given organization,

but that it is not responsible for the major changes in viral prevalence worldwide. Instead, our study

suggests that changes in the computing environment, including changes in machine types and operating

systems, are the most important effects influencing what kinds ofviruses become prevalent and how their

prevalence changes.

Finally, we look at current trends in operating systems and networking, and attempt to predict their effect on

the nature and extent ofthe virus problem in the coming years.

VIR US BULLETINCONFERENCE©1995 V'1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)l235,555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

000216

000217

I 66 0 WHITE, KEPHART & CHESS: COMPUTER VlRUSES:A GLOBAL PERSPECTIVE

2 THE STATUS OF THE VIRUS PROBLEM TODAY

Over the past decade, computer viruses have gone from being an academic curiosity to a persistent,
worldwide problem. Viruses can be written for, and spread on, virtually any computing platform. While
there have been a few large-scale network-based incidents to date [7, 8, 9, 10] the more significant problem
has been on microcomputers. Viruses are an ongoing, persistent, worldwide problem on every popular

rnicrocomputing platform.

In this section, we shall first review briefly our methods for monitoring several aspects ofcomputer virus

prevalence in the world. Then, we shall present a number ofthe most interesting observations. We will
attempt to explain these observations in later sections ofthe paper.

2.1 MEASURING COMPUTERVIRUS PREVALENCE

We have learned much about the extent of the PC—DOS virus problem by collecting virus incident statistics

from a fixed, well—monitored sample population ofseveral hundred thousand PCs for six years. The sample

population is international, but biased towards the United States. It is believed to be typical ofFortune 500
companies, except for the fact that central incident management is used to monitor and control virus
incidents.

Briefly, the location and date ofeach virus incident is recorded, along with the number of infected PCs and
diskettes and the identity ofthe virus. From these statistics, we obtain more thanjust an understanding of
the virus problem within our sample population: we also can infer several aspects ofthe virus problem
worldwide. Figure 1 illustrates how this is possible‘.

Penetration

Figure 1: Computer virus spreadfrom an organization ’sperspective. White circles represent uninfected
machines, black circles represent infected machines, andgray circles represent machines in theprocess of
being infected. Throughout the world, computer viruses spreadamongPCs, many ofthem being detected

and eradicated eventually. Left: Occasionally, a viruspenetrates the boundary separating the organization

from the rest ofthe world, initiating a virus incident. Right: The infection has spread to other PCS within
the organization. The number ofPCs which will be infected by the time the incident is discoveredand V

cleaned up is referred to as the site ofthe incident.

1Fur1her details about our methods for collecting and interpreting statistics can be found in several references [2, 4, 5, 6].

VYRUS B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

0002 1 7

000218

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I 67

From the perspective ofone ofthe organizations which comprises our sample population, the world is full

ofcomputer viruses that are continually trying to penetrate the semi-permeable boundary which segregates

that organization from the external world. At a rate depending on the number ofcomputer virus infections in

the world, the number ofmachines in the organization, and the permeability ofthe boundary, a computer

virus will sooner or later make its way into the organization. This marks the beginning ofa virus incident.

Assuming that the permeability ofthe boundary remains constant, the number ofvirus incidents per unit

time per machine within the set oforganizations that makes up our sample population should be proportional

to the number ofcomputer virus infections in the world during that time period (in fact, our measure will lag

the actual figure somewhat, since incidents are not always discovered immediately).

2.2 OBSERVATIONS OF COIVEPUTERVIRUS PREVALENCE

Number of Different PC—DOS Viruses
4500

4000

3500

3000

2500

2000TotalViruses
1500

1000

500 /' Observed.0-' .
'_ _,_,..-0-9-0-0-04 °

.9-O-04".

1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1

1988 1989 1990 1991 1992 1993 1994 1995

Figure 2: Cumulative number ofvirusesfor which signatures have been obtained by IBM’s High Integrity

Computing Laboratory vs. time. There are thousands ofviruses, but only afew have been seen in real
incidents.

As shown in Figure 2, there are thousands ofDOS viruses today. During the past several years, the rate at

which they have appeared worldwide has crept upwards to its present value of3-4 new viruses a day, on

average (see Fig. 3).

Note that the number ofnew viruses is not ‘increasing exponentially’, as is often claimed [1 1, 3]. The rate

of appearance ofnew viruses in the collections ofanti-virus workers has been increasing gradually for

several years. The number ofnew viruses is increasing at no more than a quadratic rate. In fact, almost

nothing at all about viruses is ‘increasing exponentially’. The problem is significant, and it is growing

somewhat worse, butprophets of doom in this field do not have good trade records.

While there are thousands of DOS viruses, less than 10% ofthem have been seen in actual virus incidents

within the population that we monitor. These are the viruses which actually constitute a problem for the

general population ofPC users. It is very important that anti-virus sofiware detect viruses which have been

observed ‘in the wild’. The remainder are rarely seen outside the collections ofanti-virus groups like ours.

Although many ofthem might never spread significantly, viruses which are not prevalent remain ofinterest

to the anti-virus community. We must always be prepared for the possibility that a low-profile virus will

start to become prevalent. This requires us to be familiar with all viruses, prevalent or not, and to

VIRUSBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

00021 8

000219

I68 - WHITE, KEPHART 84 CHESS: COMPUTER VlRUSES:A GLOBAL PERSPECTIVE

incorporate a knowledge ofas many ofthem as possible into anti-virus software. We continue to monitor

the prevalence ofall viruses, regardless ofhow prevalent they are atpresent

New PC—DOS Viruses Per Day

TotalViruses
1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1 1/1 7/1

1988 1989 1990 1991 1992 1993 1994 1995

Figure 3: The number ofnew viruses appearing worldwideper day has been increasing steadily.

Out ofthe several hundred viruses which have ever been observed in actual incidents, a mere handful

account for most ofthe problem. Figure 4 shows the relative fraction of incidents caused by the ten most

prevalent viruses in the world in the past year. These ten account for over two-thirds of all incidents. The
one hundred other viruses which have been seen in incidents in the past year account for less than third of

the incidents. Most ofthese were seen in just a single incident.

Form

AntiEXE

Stealth Boot.B

AntiCMOS

Parity Boot.B Sample Population

Monketg? (3094 through 2095)
V—Sign

Monkey.A
2KB

100 others

0% 10% 20% 30% 40%

Fraction of Incidents

Figure 4: The top ten viruses accountfor two-thirds ofall incidents, and are all boot infectors.

Curiously, the ten most prevalent viruses are all boot viruses. Boot viruses infect boot sectors ofdiskettes
and hard disks. When a system is booted from an infected diskette, its hard disk becomes infected.

Typically, any non-write-protected diskette which is used in the system thereafter also becomes infected,

VIR USBULLETINCONFERENCE ©1995 VirusBulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000219

000220

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - I69

spreading the virus. The dominance ofboot viruses is especially striking when one takes into account the

fact that, ofthe thousands ofknown DOS viruses, only about 10% are boot sector infectors.

Boot viruses have not always been dominant. Three years ago, the second and third most prevalent viruses

were file infectors, as were 4 ofthe top 10. The total incident rates for boot infectors and file infectors were

roughly equal. Figure 5 provides another View ofwhat has happened to the relative prevalence ofthese two

types ofviruses over time. Beginning in 1992, the incident rate for boot sector infectors continued to rise,

while the incident rate for file infectors began to fall dramatically. We will attempt to explain this

phenomenon in a subsequent section.

1.0

Total Incidents per 1000 PCs per Quarter

0_8 Boot infectors

0.6

0.4

0.2
0.0

Q1 3 Q1 3 Q1 3 Q1 3 Q1 3 Q1 A

1 990 1991 1 992 1993 1994 1995

Figure 5 : Boot viruses have continued to rise inprevalence, whilefile viruses have declined.

It is interesting to break up our incident statistics even further into trends for individual viruses. Figure 6

shows the incident rate for selected viruses. Note that some viruses have increased in prevalence, while
others have declined.

0.5

Incidents per 1000 PCs per Quarter

0.4 X1.
1".-i

0.3

0.2

0.1
Q13Q13Q13Q13Q13Q13

1990 1991 1992 1993 1994 1995

0.0

Figure 6: Some viruses have increased in prevalence, while others have declined.

VIR USBULLET[NCONFERENCE@1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000220

000221

I 70 ° WHITE, KEPHART & CHESS: COMPUTER VIRUSES:A GLOBAL PERSPECTIVE

Figures 2-6 raise several important questions:

1. Why are some viruses more prevalent than others?

2. Why do some viruses continue to increase in prevalence, while others plateau or decline?

3. Why are boot viruses so prevalent relative to file infectors, and why has their dominance increased
over time?

4. Finally, can we predict what viruses are likely to become more prevalent in the fiiture?

To begin to address these questions, we now review some ofourprevious theoretical work on virus

epidemiology.

3 HOW VIRUSES SPREAD

Over the past several years, we have constructed theoretical models ofhow computer viruses spread in a

population, and compared them against the results ofan ongoing study ofactual virus incidents [1, 2, 3, 4,

5, 6].

Our models are purposefully simple, in an attempt to understand the most important aspects ofglobal virus

spread. In these models, a system is either infected or it is not. If it is infected, there is some probability

each day that it will have an infectious contact with some other system in the world, typically via exchange

offloppy diskettes, or software exchange over a network. This is called the birth rate of the virus.

Similarly, there is some probability each day that an infected system will be discovered to be infected. When

that happens, it is cleaned up, and it returns to the pool ofuninfected systems. This is called the death rate
ofthe virus.

The birth and death rates are influenced by a number offactors. A virus’ birth rate is governed by its

intrinsic properties, such as the particular way in which it infects and spreads. Just as for biological

diseases, its birth rate is also highly dependent on social factors, such as the rate of software or diskette

exchange among systems. The death rate is determined by how quickly the virus is found and eliminated,

which in turn depends on the extent to which people notice the virus, due to its behavior or through the use

ofanti-virus software. As we shall see, the birth and death rates also depend critically on the nature of the

world’s computing environment.

All our models show the same basic characteristics ofvirus spread. One fimdamental insight is that there is

an epidemic threshold above which a virus may spread, and below which it cannot. Ifthe birth rate ofa virus

is greater than its death rate, the virus has a chance to spread successfully, although it may die out before it

spreads much. Ifthe virus does manage to get a foothold, it will start to rise slowly in prevalence. The rate
at which it does so is governed by a number offactors, such as intrinsic characteristics ofthe virus and the

overall rate at which software is exchanged. A second fimdamental insight which has emerged from our

research is that the growth rate can be much slower than the exponential rate that was predicted by one

theory [1 1]. Our theory shows that, when software sharing is localized, the global rate ofspread can be very

slow, even roughly linear [1, 2]. At some point, the virus levels off in prevalence, reaching an equilibrium

between spreading and being eliminated. Figure 7 illustrates the typical behavior ofa system above the

epidemic threshold.

If the birth rate is less than the death rate — ifthe virus is found and eliminated more quickly than it spreads

— then the virus cannot spread widely. It may spread to a few machines for a little while, but it will

eventually be found and eliminated from the population, becoming ‘extinct’. Figure 8 illustrates this
behavior.

VIR USBULLETINCONFERENCE©1995 V‘1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

* 00022 1

000222

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I7I

100

80
U)

.2
E 60as
E

3 40
.32’
E

20

100—node simulation

0

0 10 20 30 40 50

time

Figure 7: Above the epidemic threshold, a virus rises in prevalence at a rate which depends on a variety of

Mfizctors, thenplateaus at an equilibrium. In this simulation, the birth rate exceeded the death rate by a
‘ factor of5.

InfectedMachines
100—node simulation

0 1 2 3 4 5

time

Figure 8: Below the epidemic threshold, very small outbreaks can occur, but extinction ofthe infection is
inevitable. In this simulation, the birth rate was 10% less than the death rate. Note that the vertical and

horizontal scales are very differentfrom those ofFig. 7.

4 VIRUS CASE STUDIES

In this section, we illustrate the interaction between viruses and their environment by narrowing our focus to

the behavior of selected, individual viruses. We relate changes and shifts in virus prevalence to theoretical

findings and to our knowledge ofrelevant shifis in the computing environment.

4.1 MICHELANGELO MADNESS

The Michelangelo virus was first found in early 1991 in New Zealand. It is a typical infector of diskette

boot records and the Master Boot Record ofhard disks, with one exception. If an infected system is booted

VIRUS BULLETWCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOO222

000223

I 72 ~ WHITE, KEPHART & CHESS: COMPUTER VIRU$ES:A GLOBAL PERSPECTIVE

on March 6 ofany year, the Michelangelo virus will overwrite parts ofthe hard disk with random data. This

renders the hard disk ofthe system, and all its information, inaccessible.

The virus is named Michelangelo not because of any messages in the virus itself, but because one ofthe

first people to analyze it noticed that March 6 is the birthday ofthe famous artist. The name stuck.

Finding a new virus is not unusual in itself; several dozen new viruses are found each week. Michelangelo
was unusual in that it was found in an actual incident, rather than as one ofthe thousands ofviruses gathered

by anti-virus workers but as yet unseen in an incident. It was also unusual because it could cause such
substantial damage to the information on peoples’ PCs, and because that damage would all happen on a

single day.

In the weeks which preceded March 6, I992, something even more unusual happened. In a fascinating

interplay between the media and some parts ofthe anti-virus industry, the Michelangelo virus became a
major news event. News stories warning about Michelangelo’s destructive potential were broadcast on major
television networks. Articles about the virus appeared prominently in major newspapers.

As March 6 drew nearer, the stories grew ever more hysterical. The predictions ofthe number ofsystems

which would be wiped out grew to hundreds of thousands, then millions [12, 13].

When the fateful date came, the predictions ofdoom turned out to have been a bit inflated. The

Michelangelo virus was found on some systems, and probably did destroy data on a few ofthem. But the
worldwide disaster did not occur. Indeed, it was difficult to find any verified incident ofdestruction ofdata

by Michelangelo in most places [14].

This should not have come as a surprise. Our own research at the time showed that the Michelangelo virus

was not very prevalent, and certainly not one ofthe most common viruses. We estimated that about the same
number ofsystems would have their hard disks crash due to random hardware failures on March 6, as would
have their data destroyed by the Michelangelo virus. It is important to keep the risks in perspective.

‘Michelangelo Madness’, as we came to call it, did have a dramatic effect, though not the anticipated one.
Concerned about the predictions ofwidespread damage, people bought and installed anti-virus software in
droves. In some locations, lines ofpeople waiting to buy anti-virus software stretched around the block. In

other places, stores sold out oftheir entire supply ofanti-virus software during the week leading up to
March 6. Around the world, a very large number ofpeople checked their systems for viruses in those few

days.

Figure 9 illustrates the effect ofthis activity. In the two weeks before March 6, 1992, reports ofvirus
incidents shot up to unprecedented levels. Naturally, this was not because viruses were spreading out of
control during those two weeks. Rather, infections which had been latent for days or weeks were found,
simply because people were looking for them. In environments like that ofour sample population, where
anti-virus software is widely installed and used, it is likely that these same infections would have been

caught anyway in subsequent weeks. But, since so many people checked their systems prior to March 6, the
infections were discovered then rather than later.

People did find the Michelangelo virus, but they found far more viruses ofother kinds. The Stoned virus,
for instance, the most prevalent virus at the time, was found about three times more frequently than was the

Michelangelo virus.

In the first few months after Michelangelo Madness, fewer virus incidents were reported than in the few

month before it. This is easy to understand. First, virus incidents were caught earlier than they might have

been because everyone was looking. Viruses found in the beginning ofMarch might have been found in the

beginning ofApril instead. So, you would expect fewer virus incidents to be reported shortly after March 6
ofthat year. Second, viruses were probably found and eliminated even in systems which might not have

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000223

000224

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - I73

found them for a very long time. ln just a few days, the worldwide population ofviruses was decreased. We

would expect that the virus population, and hence virus incident reports, would increase again in subsequent
months.

Virus incidents did increase after that, but in a way which is rather complicated. We will examine this in

more detail in a subsequent section.

Despite the beneficial effects ofeliminating some viruses temporarily, the hysteria caused by this event was

clearly out ofproportion to the risk. lndividuals and businesses spent vast sums ofmoney and time warding

offa threat which was much smaller than they were led to believe. We hope that those involved leamed from

the experience — that our friends in the anti-virus industry will be more careful in saying that they understand

viral prevalence when they do not, and that the media will examine predictions of impending doom with a

somewhat more critical eye.

Incidents per 1000 PCs (2—Week Periods)
0.4

-All other viruses

osloned

03 vMiche|angelo

0.2
0.0

4/05 5/31 7/26 9/20 11/15 1/10 3/06 5/01 6/26 8/21 10/1612/11 2/05

1 991 1 992 1 993

Figure 9: Michelangelo Madness resulted in manypeoplefinding viruses ofall kinds.

4.2 THE MISSING BRAIN

The Brain virus was first observed in October 1987, making it one of the first DOS viruses seen in the

world [15]. It infects diskette boot sectors, and becomes active in a system when that system is booted from

an infected diskette. Unlike most boot viruses today, Brain does not infectboot sectors ofhard disks.

In the early days ofPCs, most PCs were booted from diskettes and did not have hard disks. This provided a
perfect medium for Brain to spread. Diskettes used in an infected system became infected themselves, and

could carry that infection to other systems. Brain spread around the world in just this way.

Beginning with the introduction ofthe IBM PC-XT in 1982, the PC industry made a transition to systems

which have hard disks. Unlike theirpredecessors, these systems were not booted from diskettes as

frequently. When they were booted from diskettes, it was typically for some special activity, such as system

maintenance. Once that activity was concluded, the system was rebooted from the hard disk. It became very

uncommon for a system to be booted from a diskette and then used for an extended period oftime, with

more diskettes being inserted into the system. This denied the Brain virus the opportunity to spread in most

cases. The world became a much more difficult place for the Brain virus to spread, and its prevalence
declined.

VIR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX 1 43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOO224

000225

I 74 ° WHITE, KEPHART & CHESS: COMPUTER VIRUSES:A GLOBAL PERSPECTIVE

This decline in prevalence occurred before we started gathering accurate statistics about virus incidents, so

we cannot illustrate it quantitatively. Anecdotal evidence and our own informal statistics from the late 1980s,

however, suggest that the Brain virus was substantially more common than it is today. While Brain is still

seen on rare occasions, it does not spread well today. We sighted the Brain virus several times from mid-

1988 until n1id-1990, but since 1990 it has only appeared in our sample population once, in early 1992.

4.3 NOT STONED AGAIN

0.5

Incidents per 1000 PCs per Quarter

0.4

0.3
Q13Q13Q13Q13Q13Q13

1990 1991 1992 1993 1994 1995

Figure 10: The Stoned virus, a boot infector, rose inprevalence and then declined.

The Stoned virus was first observed in an incident in 1989. It is a typical boot virus, infecting diskette boot

records and Master Boot Records ofhard disks. One time out ofeight that a system is booted from an

infected diskette, the message ‘Your PC is now Stoned! ’ will appear on the display. The virus has no other
effects.

This virus followed the expected pattern ofrising in prevalence through 1991, at which time it had reached a

rough equilibrium. After a large peak during Michelangelo Madness, it slowly declined in prevalence over
the next several years. Once the most prevalent virus in the world, the Stoned virus is seen much less

frequently today.

Its rise in prevalence and subsequent equilibration is what we expect of a virus. Its decline is a bit puzzling
at first, until we notice that a system infected with the Stoned virus only spreads that infection to the diskette

in the A: drive, not to any other diskette drive. The system became infected in the first place by booting
from an infected diskette in the A: drive. The Stoned virus started its life on 5.25-inch diskettes. In

spreading from diskette to system to diskette, it could only spread to other 5.25-inch diskettes.

Early in Stoned’s life, most systems used 5.25 -inch drives, so there was a fertile medium around the world
which Stoned could use to spread. In the late 1980s, however, a trend began towards systems that used 3.5 —

inch drives as theirA: drive. The fraction ofsystems which had 5.25-inch A: drives declined, and has been

declining steadily ever since. With fewer and fewer systems that Stoned could infect and spread between, the

virus too declined in prevalence.

Vi/R US B ULLETZNCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

OOO225

000226

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I75

4.4 JERIJSALEM’S RISE AND FALL

0.5

Incidents per 1000 PCs per Quarter

0.4

0.3

0.2

o\._

0.1 y /K’ Jerusareih,/.\
9 ,_‘O

0.0

Q13Q13Q13Q13Q13Q13

1990 1991 1992 1993 1994 1995

Figure 1 1: The Jerusalem virus, once quiteprevalent, is seen much less often today.

The Jerusalem virus was first observed in December 1987, in the city ofJerusalem, Israel [15]. In many

ways, it is an archetypical file virus. When an infected program is run, the Jerusalem virus installs a

resident extension in DOS. Subsequently, when any otherprogram is executed, the virus’ resident extension

will infect the program file.

Prior to 1992, the Jerusalem virus followed the expected pattern ofa virus which is spreading around the

world. It rose gradually in prevalence through 1990. At the end of 1990, it had reached an equilibrium level

in most ofthe world. Through 1991, it maintained this same level ofprevalence, neither increasing or

decreasing.

After 1991, however, an odd thing happened. Fewer and fewer incidents ofthe Jerusalem virus occurred.

What was one ofthe mostprevalent viruses in 1990 declined to one ofthe least prevalent viruses in 1995.

Indeed, we saw only five incidents ofthe Jerusalem virus in our sample population in 1994, and just a single
incident so far in 1995.

What caused this decrease? It was not achange in diskette drive type, or the move from floppy diskettes to

hard disks. File viruses like the Jerusalem virus spread to files on any kind ofdiskette, and persist in

systems that boot from hard disks. We will return to the cause of this mysterious decrease in a subsequent

section ofthis paper.

4.5 FORM FOLLOWS FUNCTION

The Form virus was first observed in an incident in the second quarter of 1990. It infects diskette boot

sectors and system boot sectors ofhard disks. When the system is booted from an infected diskette or hard

disk, the virus becomes active in memory and infects essentially any diskette used in the system thereafter.

Unlike the Brain virus, the Form virus remains on the hard disk and can spread ifthe system is booted from

the hard disk subsequently. Unlike the Stoned Virus, the Form virus is capable of infecting diskettes ofany

kind in any diskette drive, so it did not remain limited to one kind ofdiskette. On the 18th ofany month, the

Form virus will cause a slight clicking when keys are depressed on an infected system. This is often subtle

enough to go unnoticed.

VZRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Ahingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior

. written permission ofthe publishers.

000226

000227

I 76 ° WHITE, KEPHART8: CHESS: COMPUTER VIRUSES:A GLOBAL PERSPECTIVE

0.5

Incidents per 1000 PCs per Quarter

0.4

0.3

0.2

0.1
o.o -

Q13Q13Q13Q13Q13Q13

1990 1991 1992 1993 1994 1995

Figure 12 : The Fom; virus, another boot infector, rose steadily inprevalence before reaching equilibrium

The Form virus does not possess the limiting features that caused the Brain and Stoned viruses to have

difficulty spreading in the early and middle 1990s. It has exhibited what we expect to be typical behavior for
a virus which has found its way into the world. It took over a year before it started rising significantly in

prevalence. It rose steadily during 1992 and 1993, becoming the most prevalent virus worldwide. By the end
of 1994, it had reached a rough equilibrium at about the same level as other mature viruses such as

Jerusalem or Stoned. In the absence ofenvironmental change, we might expect the Form virus to remain

about as prevalent as it is today.

5 WHY ARE BOOT VIRUSES SO COMIVION?

Boot viruses are by far the most common viruses today, accounting for nearly 90% ofall incidents in the

second quarter of 1995. File viruses, on the other hand, have decreased in prevalence. This is a remarkable
change. Several years ago, file viruses accounted for around 50% ofall incidents. What could be responsible
for this dramatic change?

Was it Michelangelo Madness? No. That caused only a temporary depletion ofviruses ofall kinds.

Michelangelo Madness explains the large peak in reported incidents, and the subsequent temporary decrease
in incidents. It does not account for the difference in prevalence between boot infectors and file infectors.

Is it due to the increased use ofanti-virus software? As anti-virus researchers and producers ofanti-virus

software, we would certainly like to think so. It is tempting to conclude that anti-virus software has made a

difference in the world, given our experience with the sample population, in which we have found that

widespread usage ofanti-virus software and central incident management substantially reduces the size of
incidents within an organization [4, 5, 2, 6]. Unforttmately, a closer look at our own data show that, while

anti-virus software and policies can make a real difference within organizations, anti-virus software does not
seem to have made as much ofa difference to the world in general. All ofthe common viruses have been

known for quite some time. All ofthese are detected, even by older anti-virus programs. Ifanti-virus
software was responsible, we would have expected to see a decline in all viruses. The use ofanti-virus
software does not account for the difference in prevalence between boot infectors and file infectors.

To fmd the solution to this mystery, we look once again at changes in the computing environment, rather

than events associated with the anti-virus industry. The biggest change in the PC computing environment

WRUSBULLETINCONFERENCE©1995 V'1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX]43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

OOO227

000228

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I 77

over the past several years has been the change from the use ofnative DOS to the use ofWindows 3.0 and

3.1. Windows 3.0 was released in 1990, and started to become a popular enhancement to the DOS operating

system. Windows 3.1, released in 1992, accelerated this trend. Today, many PCs run Windows 3.1.

How does Windows affect the spread ofviruses? Experiments carried out at IBM’s High Integrity

Computing Laboratory demonstrated that Windows is a fragile environment in the presence oftypical file

viruses. In many cases, if a file virus is resident in the memory ofa DOS system, Windows cannot even

start. On the other hand, Windows behaves very differently on a system infected with a typical boot virus.

For many boot viruses, an infected DOS system can not only start Windows, but can spread the virus to
diskettes from within Windows.

IfWindows users get a file virus, Windows will typically be inoperable. This will cause the users to

eliminate the virus one way or another, whether or not they realise that the system is infected. They might

use anti-virus software. They might send their system out for repair. They might re-install everything from

backups. Whatever they do, they will eliminate the virus because they cannot get back to work until they do.

IfWindows users get a boot virus, however, they might not notice it at all. Windows will usually start and

function as expected. Unfortunately, the virus will typically spread to non—write-protected diskettes that are

accessed from within Windows. In this sense, most boot viruses are not affected by Windows, and spread in

just the same way whether the user is running DOS or Windows. Unless users have good anti-virus

software, they will not usually have any reason to suspect a problem, and hence will have no reason to get
rid ofthe virus.

This environmental analysis led us to predict, in 1994, that boot viruses would continue to increase in

prevalence, oblivious to the use ofWindows. Similarly, we predicted that file infectors would continue to

decrease in prevalence. Furthermore, we predicted that boot viruses that were not then very prevalent would

become more prevalent, while few file viruses would [16].

This is exactly what has happened. Figure 5 illustrates the dramatic rise ofboot virus incidents over the past

several years, and the corresponding dramatic decrease in file virus incidents.

Several boot viruses which do spread from within Windows, including AntiEXE and AntiCMOS, were low

in prevalence in 1994 but are now substantially more prevalent. As shown in Figure 6, they are approaching

the prevalence ofmore common boot viruses like Form. Once they increase to this level ofprevalence, we

would expect them to reach equilibrium and not increase further in prevalence.

6 PREDICTING THE FUTURE

We have come to the surprising conclusion that the world’ s computing environment has been the primary

factor in determining the change in prevalence ofcomputer viruses. It is reasonable to assume that this will
continue to be the case for some time.

If this is so, we can get some insight into future problems by examining current trends and the expected

changes in the computing environment over the next several years. Some of these changes will tend to

decrease viral prevalence, while others will tend to increase it.

Ifthere were no changes in the world’s computing environment, we might expect to see current trends

continue. File viruses would continue to remain very low in prevalence. Boot viruses which have already

reached equilibrium, such as the Form virus, would remain at about the same level ofprevalence they have

today. Other boot viruses would be expected to start becoming more prevalent, perhaps rising in prevalence

until they too reach equilibrium. Since there are several hundred boot viruses, having all ofthem rise in

prevalence to the level reached by Form would result in a huge rise in virus incidents worldwide.

VIRUS B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior .
written permission ofthe publishers.

OOO228

000229

I 78 - WHITE, KEPHART & CHESS: COMPUTER VIRUSES:A GLOBAL PERSPECTIVE

There are, however, some environmental changes which we might expect over the next few years: 32-bit

operating systems and networking. These changes could have a significant effect on the virus problem.

6.1 32-BIT OPERATING SYSTEMS

One ofthe significant environmental changes will be the transition from DOS to 32-bit operating systems
for PCs, such as OS/2 and Windows 95. In the next few years, we expect that more and more systems will

run 32-bit operating systems in order to better use the increasing power ofnewer PCs.

IBM’s OS/2 is a 32-bit operating system which lets users run DOS, Windows and OS/2 simultaneously.

The effects ofcomputer viruses on OS/2 systems is described elsewhere [17]. Boot viruses do not generally

spread from within OS/2 itself, though they can spread from systems which have DOS as well as OS/2

installed in separate partitions.

File viruses can often spread to other files when infected programs are run in Virtual DOS Machines (VDM)

within OS/2. However, they remain active in the system only as long as the infected VDM is active, which

is often only as long as the infected program is running. Some file viruses are likely to not spread in VDMs,

simply because ofdifferences between VDMs and DOS. This decreases the rate at which file viruses spread
in collections of OS/2 systems [17]. In environments in which OS/2 predominates over DOS, we would

expect this to lead to a decline in prevalence ofall current DOS viruses.

Ilficrosoffs Windows 95 is a 32-bit operating systems that supports DOS, Windows 3 .1 and Windows 95

programs. Recent experiments with a pre-release version ofWindows 95 suggest that DOS boot viruses will
not in general spread well from Windows 95 systems [18]. File viruses were not tested in these

experiments.

Preliminary experiments carried out at the High Integrity Computing Laboratory with a pre-release version

ofWindows 95 suggest that some DOS file viruses will spread as usual, some might not, and some might

cause systemproblems. In environments in which Windows 95 predominates over DOS, we would also

expect this to lead to a decline inprevalence ofall current DOS viruses.

Not all of the news is good, however. Viruses can be written for 32-bit operating systems, and the first few

such crude viruses have already appeared [17]. These operating systems offer new facilities which viruses

can use both to hide and spread. The transition to these newer operating systems will change the virus

problem, perhaps significantly, but it will not eliminate it.

6.2 NETWORKING

As more and more systems are connected to local and wide area networks, networks may become a more

common medium for viral spread.

Ofparticular interest is the inclusion ofnetworking capabilities in newer 32-bit operating systems. Ifpeople
typically configure their systems to take advantage of these capabilities, and ifthat leads to more program

sharing on local area networks, it could also increase viral spread in these environments. Currently, these

capabilities are used primarily for workgroup computing rather than wide area networking, so the increased

spread will result primarily in larger incidents (affecting an entire workgroup instead ofa single PC), rather
than a large increase in worldwide prevalence.

The final trend which bears watching is the rise ofthe Internet and global computing. This has the ability to

increase the virus problem substantially over time.

There have been incidents ofDOS viruses being transmitted on the Internet. Sometimes, they are posted to

Internet newsgroups, which fimction much like bulletin board systems for anyone on the Internet. When the

infected programs are downloaded and 11111, they can infect your PCjust like any other infected program. So

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000229

000230

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I79

far, vigilance and rapid action have spread the word about infected programs in newsgroups quickly, and

eliminated the problems as they have occurred.

The Internet can be used to support wide—area file servers. These are much like file servers on a LAN, but

they can be accessed globally. A Virus can spread to files on a LAN-based file server, and from there to the

other client systems attached to the server. Similarly, systems which run programs fromwide-area file

servers can become infected if the programs on the server are susceptible to infection.

While boot viruses could be transmitted on the Internet as diskette images, which would be downloaded and

installed onto diskettes, this seems unlikely to become a common means oftransporting information. As

more information is exchanged over the Internet instead ofon diskettes, and the use ofdiskettes decreases,

we would expect a decrease in the prevalence ofDOS boot viruses. We would also expect that the increased

use ofthe Internet to interchange and access programs would promote an increase in the prevalence of DOS
file viruses.

There have been a few incidents ofviruses and worms which are specifically designed to use world-wide

networks to spread [7, 8, 9, 10]. These provide dramatic examples ofhow quickly and how widely viruses

can spread on such networks. Fortunately, while these incidents have been rapid and large, they did not

usually recur. After a matter ofhours or days, when the virus was eliminated from the network and

increased defenses put into place, the virus did not continue to spread. Unlike DOS viruses, which have

continued to spread around the world for years, Intemet viruses have (so far!) been episodic —they come,

and then they go. But this need not always be the case.

7 CONCLUSION

The problem ofDOS viruses continues to get slowly worse around the world. There are many more viruses

than there were a few years ago, and they are appearing at a slightly higher rate. Virus incidents have also

increased slightly, but we have to analyze the changes in prevalence ofeach individual virus in order to
understand this trend.

Fortunately, we have made significant progress in this regard. We have achieved a good basic understanding

ofthe spread ofcomputer viruses. We know that a virus can either spread widely or almost not at all,

depending upon how fast the virus spreads and how quickly an infection can be found and eliminated. Ifa

virus does spread worldwide, it will rise slowly in prevalence, until it reaches an equilibrium level in the

population.

For DOS viruses, this rise is very slow, often taking months or years. The equilibrium level is also quite

low. Well-prepared‘ organizations experience about one virus incident per quarter for every one thousand

PCs they have, and this incident rate has not changed substantially for a number ofyears.

Our ongoing study ofactual virus incidents had also demonstrated the remarkable effectiveness ofgood anti-

virus software coupled with central incident management in controlling the virus problem within an

organization.

This paper has focused on the causes ofthe major changes in viral prevalence worldwide. We conclude,

perhaps surprisingly, that the use ofanti-virus software does not play a major role in these changes. Rather,

they are determined by the way in which specific viruses, and classes ofviruses, interact with the world’s

computing environment.

We examine the history ofseveral specific viruses to understand this interaction between a virus and its

changing environment. The Michelangelo virus was never very prevalent, but media attention to it resulted

in increased reports ofviruses ofall kinds, followed by atemporary decrease in reports. The Brain virus,

which spread primarily among systems without hard disks, effectively died out as systems with hard disks

VIR US BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

000230

000231

I 80 ~ WHITE, KEPHART & CHESS: COMPUTER VIRUSES:A GLOBAL PERSPECTIVE

became the norm. Virtually all file viruses, including the once-prevalent Jerusalem virus, have decreased

dramatically in prevalence because ofthe increased usage ofWindows, and because Windows is fragile in

the presence offile viruses. The Form virus, along with other boot viruses, have increased substantially in

prevalence, to the point where boot viruses account for around 90% ofall virus incidents today. Their spread
is not unusual. It is the expected behavior ofviruses in a population. They have not died offas have file

viruses because their spread is not limited by Windows.

Ifthe computing environment did not change, we would expect that file viruses would remain very low in

prevalence, while other boot viruses would increase substantially. Ifdozens ofboot viruses became as

prevalent as the Fonn virus is today, the total number ofvirus incidents would increase substantially.

By examining trends iii the computing environment, however, we can analyze how these might affect
computer virus prevalence in the next few years.

Increased use of32-bit operating systems, such as OS/2 and Windows, is likely to cause a decrease in the

prevalence ofall current DOS viruses. This is notbecause they were designed to resist viruses. Quite the
contrary: viruses can be written for, and spread by, these operating systems. Rather, the predicted decrease
in DOS virus prevalence is simply because features which current DOS viruses use to spread changed in

these newer operating systems.

Increased networking, and global networking in particular, will tend to increase the spread offile viruses and

decrease the spread ofboot viruses. Viruses written to take advantage offeatures of3 2-bit operating

systems, especially local and global networking, could become increasing problems. This is a worrisome
prospect, as viruses can spread with remarkable speed on world-wide networks.

The technology required to deal with a world ofrapidly spreading viruses will be much more challenging
than current anti-virus technology. It will be required to respond very quickly, and globally, to new viruses -

probably more quickly than humans can respond. While elements ofthis technology are working in the lab
today [19, 20] the task ofcreating an immune system for cyberspace will occupy us for some time to come

[21].

ACKNOWLEDGMENTS

The authors thank Alan Fedeli, Yann Stanczewski and many others for diligently gathering accurate

information on worldwide virus incidents for many years. We also thank Joe Wells for his suggestion, later

verified experimentally, that most boot viruses can spread from within Windows, while most file viruses
cannot.

REFERENCES

[1] J.0. Kephart and SR White, ‘Directed-Graph Epidemiological Models ofComputer Viruses’,
Proceedings ofthe I991 IEEE Computer Society Symposium on Research in Security andPrivacy,

Oakland, California, May 20-22, 1991, pp. 343-359.

[2] Jeffrey O. Kephart and Steve R White. ‘Measuring and Modeling Computer Virus Prevalence’,
Proceedings ofthe 1993 IEEE Computer Society Symposium on Research in Security andPrivacy,
Oakland, California, May 24-26, 1993, pp. 2-15.

[3] J.0. Kephart and SR White, ‘Commentary on Tippett’s ‘ ‘Kinetics ofComputer Virus

Replication’ ’ ’ , Safe Computing: Proceedings ofthe Fourth Annnal Computer Virus and Security
Conference, New York, New York, March 14-15, 1991, pp. 88-93.

. VIR USBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

00023 1

000232

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I 8!

J.O. Kephart and SR White, ‘How Prevalent Are Computer Viruses’, Proceedings ofthe Fz'fth

International Computer Virus and Security Conference, March 12-13, 1992, New York, pp. 267-
284.

J.0. Kephait and SR White, ‘Measuring Computer Virus Prevalence’, Proceedings ofthe Second

International Virus Bulletin Conference, Edinburgh, Scotland, September 2-3 , I 992, pp. 9-28.

Jeffrey O. Kephart, Steve R. White, and David M. Chess. ‘Computers and Epidemiology’, IEEE

Spectrum, May 1993, pp. 20-26.

Spafford, E. H. 1989. ‘The Internet Worm Program: An Analysis’. Computer Comm. Review, 19,

p. 1.

Cliff Stoll, ‘An Epidemiology ofViruses and Network Worms’, 12th National Computer Security

Conference, 1989, pp. 369-377.

M.W: Eichin and J.A. Rochlis, ‘With Microscope and Tweezers: An Analysis of the Internet

Virus ofNovember 1988 ’ , Proc. 1989 IEEE Symp. on Security andPrivacy, Oakland, California,

May 1-3, 1989, pp. 326-343. I

D. Seeley, ‘A Tour ofthe Worm’, Proc. Usenix Winter 1989 Conference, San Diego, California,

1989, p. 287.

P.S. Tippett, ‘The Kinetics ofComputer Virus Replication: A Theory and Preliminary Survey’,

Safe Computing: Proceedings ofthe Fourth Annual Computer Virus and Security Conference,

New York, New York, March 14-15, 1991, pp. 66-87.

J. McAfee, quoting expert sources on The MacNeil/Lehrer News Hour, March 5, 1992.

Joshua Quittner, ‘Michelangelo Virus: No Brush With Disaster’, New YorkNewsday, April 5,
1 992, pp. 6 8.

Michael W. Miller, “Michelange1o’ Scare Ends In an Anticlirnax’, The Wall StreetJournal,

March 9, 1992, pp. B5.

Harold J. Highland, ‘Computer Virus Handbook’, ElsevierAdvanced Technology, Oxford,

England, 1990, pp. 32.

Steve R. White, Jeffrey O. Kephart, David M. Chess, ‘An Introduction to Computer Viruses’,

Proceedings ofthe Fourth International Virus Bulletin Conference, St. Helier, Jersey, UK,

September 8-9, 1994.

John F. Morar and David M. Chess. ‘The Effect ofComputer Viruses on OS/2 and Warp’,

Proceedings ofthe Fifth International Virus Bulletin Conference, Boston, Massachusetts, Sept.

20-22, 1995.

‘Viruses on Windows 95’, Virus Bulletin, June 1995, pp. 15-17.

Jeffrey O. Kephart, ‘A Biologically Inspired Immune System for Computers’, in R Brooks and

P. Maes, editors, ArtificialLife IV: Proceedings ofthe Fourth International Workshop on the

Synthesis and Simulation ofLiving Systems, pages 130-139, MIT Press, 1994.

Jeffrey O. Kephart, Gregory B. Sorkin, William C. Arnold, David M. Chess, Gerald J . Tesauro,

and Steve R White, ‘Biologically Inspired Defenses against Computer Viruses’, Proceedings of

IJCAI ’95, Montreal, August 19-25, 1995.

IBM’s Massively Distributed Systems home page on the World Wide Web, http: //www.
research. ibm. com/massdist.

VIRUS B ULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Qmdrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000232

000233

I 82 ° WHITE, KEPHART& CHESS: COMPUTER VIRUSES:A GLOBAL PERSPECTIVE

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of1his publicationmay be reproduced, stored in a retrieval system, or 1ransmitted in any form without the prior
writtenpermission ofthe publishers. '

000233

000234

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I83

VIRUS PROTECTION AS PART OF THE OVERALL

SOFTWARE DEVELOPMENT PROCESS

Robin J. Kinney

Varian Oncology Systems, Mailstop C-080, 911 Hansen Way, Palo Alto, CA 943 04, USA

Tel +1 415 4246127 - Fax+1 415 424 4511

INTRODUCTION

In developing written processes for dealing with computer viruses in a commercial software development

environment, there are two aspects to be considered: the successful elimination of the virus after an

infection occurs, and the prevention ofvirus infection in the first place. The first is relatively

straightforward and mechanical. It relies primarily on thoroughness for success. The second aspect can be

more difficult, as it is more motivational and relies heavily on the culture ofthe organization. Developing a

formal process for dealing with computer viruses provides a uniform way oftraining new employees and a

mechanism ofimproving the organization’s performance ofboth prevention and eradication ofviruses.

An alternative to a written process is an ad hoc process. When a virus is discovered, why notjust choose

someone for the task, arm them with the best tools, and tell them to go forth? If the same person is

chosen each time, they will likely develop their own process, whether it is captured on paper or not. In

addition, they will probably get better at it each time. However, without the benefit ofa written process, the

upper boundary ofprocess improvement is limited, management intervention is required, and the same

person must be involved each time for the task to be efficiently performed.

Committing the process to paper does not provide the complete answer. People must be trained to know

when and how to use the process. Using the example ofsystem backups, an alternate system administrator

who is shown the location ofthe development system, how to mount a tape, and what commands to type,

can successfiilly perform that task on his own when using the written procedure for guidance. Effective

training ofpeople in how to use the process is key and is discussed in greater detail later.

The purpose of a software process is to support the mission ofthe organization. This mission is to make

money through the development ofsoftware products, and to do this in a sustainable way. It is not enough

simply to produce innovative products which meet customer needs. You must be fast in time to market and

deliver a product ofhigh quality. This allows the software developers to concentrate on newproducts which

generate revenue, as opposed to working on removing bugs found by the customer. High quality and short

times to market are expected by customers today: ifyou can’t provide them, your competition will. Effective

processes which deal with computer viruses support the mission ofthe organization, and should be part of

the overall software development process.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000234

000235

I84 ° KINNEY: VIRUS PROTECTION AS PART OF THE SOFTWARE DEVELOPMENT PROCESS

When examining another organizations processes, that organization must be understood to a certain extent to

best determine how those processes may apply to your organization. I will describe our software

development organization at Varian Oncology Systems to provide that understanding. I will then move
on to discuss the specific processes dealing with virus eradication and prevention; then finish with a case

study.

Oncology Systems ofVarian Associates produce medical devices used to treat cancer. Our majorproducts
are linear accelerators used to deliver radiation therapy to patients and data systems which manage

information concerning patients’ treatments, and also the business ofradiation therapy, such as billing and

patient scheduling. The business generates $350 million in annual sales, and employs a total of 1250 people
with 40 people involved in software development. Currently we have 3000 accelerators and data systems in
use at 2700 locations world wide.

The business is highly complex. Part ofthis is due to the highly technical nature ofthe products, and part to

the safety aspects, since a coding defect could result in the death ofa patient. Our business is regulated by
the Federal Drug Administration, and an investigator could turn up on our door step without notice. We are
also ISO-9001 certified as of 1992.

The data systems we produce use DOS workstations and fileservers in aNovell network. The linear

accelerator also uses a DOS PC to provide the user interface and as a storage ofconfiguration data.

Several options available for the linear accelerator require additional DOS PC workstations for user
interface and control.

The software development environment also consists ofDOS workstations and fileservers in a Novell

network. Programming languages are C, C++, assembly, and SQL. Software is maintained in a

configuration management system and a defect tracking system is used. Processes are used to promote

uniformity in our documentation to coordinate reviews ofdocumentation, to organize software testing,
and to conduct software releases, to name just a few.

VIRUS PREVENTION

Even in today’s environment ofnetworks, fileservers and workgroups, the floppy diskette is heavily relied

upon. The floppy diskette is also the primary vector ofcomputer virus infections. The challenge of_virus
prevention in commercial software development is to control the flow ofsoftware in and out ofan
organization without reducing productivity or stifling creativity. ‘Into the organization’ pertains to
prevention of infection in the first place and ‘out ofthe organization’ pertains to increasing the probability
that the virus is detected before distribution to the customer - a highly undesirable event.

There are two ways to prevent infections — the methods used by the Department of Defense (DoD), and

everything else. In organizations under DoD contracts, it may be a federal offense to bring unauthorized
media into a secure area. This may be a bit excessive for a commercial organization, but any time floppies

move freely in and out of an organization, viruses are going to propagate. This means that a process to

prevent infection in a commercial software organization is only going to be marginally effective. Still,
marginal success is the best we have, short oftight security.

The goal, then, is to develop processes which provide the best possible results. At Varian, our prevention
process is based on the statement, ‘Do not place a floppy diskette in any computer unless you know that it is
free ofcomputer virus’. The purpose ofthis statement is to raise awareness, as it has obvious flaws iftaken

literally. For example, how do you know when a diskette is completely free ofviruses? Virus detection
software offers the best solution, and should be part of the prevention process.

Virus detection software available today is good, but there are no guarantees. Perhaps the most difficult

problem is how to motivate people to use such software and use it correctly. The virus detection programs

VIRUS BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000235

000236

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I85

which execute as TSRs perhaps offer the best solution, but again, there are no guarantees. People must be

motivated to use them properly, keep them at the latest revision (assuming the signature detection type), and

continue to use them even when main memory conflicts arise. Awareness and motivation are key.

Having said that, I must admit thatl know of no sure-fire way to motivate people regarding processes. So

much ofthe motivational issue is governed by the organization’s system of rewards. Often, software

development teams receive their rewards by the timeliness and quality oftheir products, and not by their

effectiveness at virus prevention. Perhaps the best which can be done is motivation on a personal level.

Make people aware ofthe problem ofcomputer viruses and what is expected ofthem regarding prevention.

The written process is a good tool for providing awareness and can also describe how virus detection

software is tobe used, as well as good practices which decrease the likelihood of infection.

Some ofthe topics to consider in a process dealing with virus prevention are listed below:

I the vectors by which viruses enter an organization

I the types ofviruses and how they infect systems

I the proper use ofvirus detection programs

I the simple rules ofvirus prevention:

always buy from reputable dealers.
never install shareware.

‘do you know where that floppy has been?’

I how might a virus manifest itself

I what to do ifyou suspect an infection.

Ifwe acknowledge the fact that viruses are occasionally going to find their way into the development

environment, then two issues are ofprimary importance: virus eradication and prevention ofdistribution to
external customers.

VIRUS ERADICATION

The process ofvirus eradication goes hand in hand with the process ofvirus prevention. The lessons learned

during the elimination ofa virus can feed back to make the virus prevention process more effective. In our

organization, neitherprocess is so complicated that separate process documents are warranted, thus both

topics are covered in the same document. This allows more cohesion between the two processes in both
execution and education.

Becoming suspicious ofa virus when computers rnisbehave is the crucial first step in the eradication

process. If the virus is detected by a virus scanner, this first step is simplified. Equally important to this
first step is the notification of a designated person on suspicion or detection. Even ifthe person finding the

virus is qualified, and they usually are, to remove the virus from their system effectively, they must not do
so. There are two reasons for this. The first is that it is difficult to say where else in the organization the

virus exists. The second is, even though this one computer may be the only one infected (and it usually

isn’t), merely removing it deprives the organization of the learning experience which leads to process

improvement.

At Varian Oncology Systems, we have a Systems Administrator who maintains the development

environment. This is the designated person whom we notify, and the person empowered to form an

eradication team. We have found the team approach to be the most effective means ofremoving the virus

from the organization. Although the process oferadication is not particularly difficult, thoroughness is

WR USBULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000236

000237

I86 - KINNEY: VIRUS PROTECTION AS PART OF THE SOFTWARE DEVELOPMENT PROCESS

demanded, and speed is necessary to prevent further virus spread. A team is best suited for the task.
Whoever is the focus ofvirus eradication must be empowered to assemble a team.

Who are the people who make good members ofthe eradication team? One logical person is the person who
discovered the virus or first became suspicious ofa virus infection. He/she is likely to take a personal

interest in the eradication process, and is motivated to see it through to the end. Other people who make

good team members are the leaders in the software development organization; often the more senior
developers. Although you’re using the most valuable resource for a task which may not warrant it from a
technical standpoint, you’re sending a very important message to the organization. You’re saying that this is

important, and that it requires a thorough and professional job. Using a highly-respected person decreases
the likelihood that developers say, ‘Gee, can you come back when I’m done debugging this module?’ when
the eradication team comes around. Just think ofthe message sent ifonly the mostjunior developers are

assigned! Clearly, you don’t need every team member to be your senior developers - one or two are
adequate.

How many people should be on the team? This depends on the size ofthe organization, and on the type of
virus. In our organization, we have three separate product teams simultaneously developing software, and a
total ofabout 40 people involved in this effort. One or two people from each development team up to a
maximum ofperhaps 10% ofthe entire software organization, is a good rule ofthumb. Be careful to not let

your team become too large as it may cease to function effectively.

Now that an eradication team is assembled, what are they to do? Before they can do anything, the virus must

be identified and an effective means ofremoval must be devised. Identification includes understanding the

means ofinfection, ofcourse. Virus scanners are your best resource here ifthe virus is detectable by this
means. Virus Bulletin is also a source of information. Some developers ofvirus scanner software offer

advice over the telephone as part oftheir product’s licensing agreement. They see a lot more viruses in a
month than most ofus will (hopefully) see in our entire career. I frequently rely on this service. The virus

eradication process is useless, unless a means of detecting and removing the virus is devised. Thus, these
steps are essential before the team can proceed.

The team is now armed with a means ofvirus detection and removal, and is ready to go. Ifthe virus can

propagate by means other than floppy diskette, the development systems or frleservers should be taken off-
line and not placed back on-line until all systems or workstations which have connectivity are cleared of the
virus. A good tactic is to divide and conquer. Separate the organization by workgroups, departments, labs,
etc., then proceed through that part ofthe organization checking for and eliminating the virus. Every floppy
which could have been used in the recent past must be checked. When searching in people’s offices, out of

respect for their space, it may be best to engage them in scanning the hard disk and floppies. Ifyou purchase
pre-formatted floppy diskettes, and cannot determine the entry point ofthe virus, it would be prudent to
check a diskette from each box. Be especially careful in shared work areas such as labs and testing areas.

Don’t forget those floppies kept in briefcases, and the systems people have at home. Thoroughness is the
watchword during the phase ofvirus eradication.

As the eradication team moves through the organization eliminating the virus, good record-keeping is

necessary. Every floppy diskette, every workstation hard disk, every frleserver checked for viruses should
be recorded. The purpose of the recording is to answer three questions. First, how did the virus enter the

organization? Second, how much did the infection cost the organization? Third, could the virus have
escaped into the customer’s environment and, ifso, by what means?

A sample worksheet and checklist are included at the end ofthis paper. The worksheet helps organize
information before the eradication effort begins. The checklist sirnplifres the record-keeping during the

eradication process.

WR USBULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000237

000238

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° I87

The process of eradication should specify checking all areas which could be infected, but must allow some

flexibility. For example, ifthe team has checked a large quantity offloppies and workstations directly

associated with the original infection and found no new infections, the search could end at this point. I

would recommend that this decision be made on the conservative side, because a missed infected floppy is

likely to reinfect the organization at a later time. T

The team should attempt to follow the trail of infection by asking questions such as, ‘Who has used this

floppy?’ and ‘Who has most recently used this laptop?’. Remember, we want to determine the source as

well as removing all instances ofthe virus.

Even when the team has completed the eradication to its satisfaction, the task is still not complete. For this

process, and every software development process, areas of improvement must be explored. This exploration

is performed through the development ofa post-mortem report. Many of the written records kept by the

team during the eradication process are used to generate this report, which is written by the team leader or

anyone on the team, and archived for future reference. The post-mortem report should cover the following

topics:

the chain ofevents from suspicion through eradication

the source of infection, or most probable sources ifthe specific source cannot be determined

the total cost to the organization

evaluation ofthe effectiveness ofthe prevention and eradication processs2=.4>s»r~>f~—‘
suggestions forprocess improvement.

The action necessary to affect the improvement must be assigned to someone for implementation. Imagine

the effect on the team iftheir recommendations are ignored. A member ofthe eradication team is a logical

candidate for the process improvement task. It is important that individuals are rewarded for process

improvement efforts. At Varian Oncology Systems, process improvement is expected, and is one of the

items considered during annual performance evaluations.

PREVENTION OF VIRUS DISTRIBUTION

There remains one other area in which a process is helpful in dealing with computer viruses: preventing the

distribution ofvirus to customers. At Varian Oncology Systems and in most commercial organizations, this

is a highly undesirable situation, to say the least. The nature ofour business is such that we would make a
service call to each infected customer to install ‘clean’ software. Each service call costs our business

approximately $1000 domestically; even more ifthe customer is in another country. In addition, it is

damaging to our reputation. From our customers’ point ofview, they are trusting the quality of cancer

therapy to the quality of our software. A virus distributed with that software is inconsistent with that trust.

Lastly, we are regulated by the Food and Drug Administration, and the distribution ofa virus with our

software may require explanations to that regulatory agency.

Having identified this as a threat, what processes are effective at mitigating the release of a virus to a

customer? A well-defined process for how a software product is released is a good start. I will describe the

highlights ofthe processes which work effectively for us at Varian Oncology Systems.

Our Software Quality Engineering organization, in preparation for software validation, builds the software

using ‘gets’ ofsource code explicitly called by file name from the software configurationmanagement

system. It is unlikely that source code would become infected, except by malicious intent. Libraries in object

form could be infected, but this probability is reduced by purchasing only from reputable vendors and never

using shareware or objects downloaded from uncontrolled bulletin boards.

VIR US BULLETINCONFERENCE©1 995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000238

000239

I88 - KINNEY: VIRUS PROTECTION AS PART OF THE SOFTWARE DEVELOPMENT PROCESS

Software Quality Engineering, after validation testing is completed, creates distribution masters. These are

never created on prefonnatted diskettes. The distribution masters are released to our manufacturing

organization, along with byte counts for each diskette. The manufacturing organization will accept software
only ifit is properly released, and only from Software Quality Engineering. This provides a narrow
controllable channel through which all released software must pass. ’

The first thing the manufacturing organization does with the distribution masters is to verify the byte counts
and scan the floppy diskettes for viruses. The diskettes are kept in a secure location, and media is copied for
distribution on an isolated system. This system is kept secure because only authorized people can gain

access: these people are knowledgeable about the threat ofvirus infection, and are educated in the process.
From each batch ofdistribution diskettes made, a floppy is checked to verify the correct byte count.

TRAINING

Education ofthe processes associated with virus prevention, eradication, and all software development

processes for that matter, is essential ifthe process is to be effective. Integration ofthe processes
associated with viruses into the processes directly associated with software development provides a

uniform way oftraining new employees, and demonstrates an equal level ofimportance. Employees new to
the organization should be provided with training which familiarizes them with the complete set of
processes. This education should stress the employees’ roles and responsibilities regarding these processes
and to their continual improvement.

Clearly, the set ofprocesses for an organization defines the entire collection ofactivities. Often, for small
projects or those which are less critical, not all processes apply. Flexibility for sizing the process to the task
at hand should be built in to the processes. This helps eliminate confusion, and empowers the team to
determine what activities apply. On the other hand, ifcertain employees, projects, or teams are held to a
different set ofstandards than those defined by the processes, then a larger organizational problem exists.

CASE STUDY

SUSPICION AND IDENTIFICATION

At 10:05 a.m. on Tuesday, August 9, I994, Jeff, a software engineer on our data systems product, asked
that I come to his office. We had only one systems administrator at the time, and she was off-site at a

training course for the week. Jeffwas aware ofmy interest in computer viruses and my involvement in
software process improvement. Jefftold me that he had discovered a virus identified as ‘Newbug’ on a
floppy he used to transport files between work and home. The virus was discovered on the floppy at his
home, by Central Point’s scanner, PCTools Anti Virus version 2.0 executing as a TSR

DETERMINING THE METHOD OF REMOVAL

I began a preliminary investigation of the virus. I determined that the current version ofVi-Spy, the virus
tool generally used by our organization, successfully detected and removed the virus. I was unable to
locate our back issues of the Virus Bulletin so I gave a quick call to Ray Glath ofRG Software. Ray

confnmed that it was a simple boot sector virus which corrupts DOS executables, and that it has aliases of
‘Generic’, ‘D3 ’, and ‘Newbug’, but is more generally known as ‘Anti-Exe’.

ASSEMBLING THE ERADICATION TEAM

With the Systems Administrator unavailable, I was hoping that the Software Operations Manager would
assign someone to lead the eradication team. The data systems team was in the middle of a software release,
so Ivolunteered to lead the team. This decision was made at 1:00 p.m. on the same day Jeff first called me.

VIRUS BULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000239

000240

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 0 I89

As this was a simple boot sector virus, I decided to deviate from the process slightly, and begin with a

preliminary search through this one project team. I engaged the help ofJeff for eradication during this
preliminary phase. Also, due to the nature ofthe virus, I elected to not remove fileservers and
workstations from the network.

ERADICATION OF THE VIRUS

Throughout the afternoon ofAugust 9, and into the next day, Jeffand I scanned for AntiEXE. Below are the
statistics for this preliminary phase.

total number ofworkstations checked 26

total number ofworkstations infected 1

total number offloppies checked 25

total number offloppies infected 7

Five ofthe seven floppies infected were the distribution masters of an official build. This was rather

curious, giventhe mode ofpropagation ofAntiEXE, because the build engine on which these masters were
built was not infected. This led to two possibilities. Either someone discovered the infected build engine

and removed the virus without proper notification, or the floppies were infected before files were copied to
them

Due to the significant number ofinfections discovered during the preliminary search and particularly, the
inconsistencies in the information, the search was expanded with more rigor. I added one more person to

the eradication team. During the first three days ofthe week ofAugust 15th, a total of 19 additional

floppies in the data system testing lab were found to be infected. At that time we used preformatted
floppies for the distribution masters, so one floppy from each box from our in-house store was checked.

These floppies were free ofviruses.

Then, on Friday, August 19th, 36 infected floppies and one infected workstation were discovered in the

office ofone ofthe data systems technical writers. Many ofthese floppies were received from an outside
vendor under contract to create customer training material for the data system product. This vendor was

contacted, but they were very quick to stress that the virus could not have originated with them. It was

impossible to tell if their floppies infected the technical writer’s workstation or vice versa.

Also on Friday, August 19th, due to the large number of infections discovered thus far, I decided to check

the building where the linear accelerator software is developed, and engaged five people to form the
eradication team there. We moved quickly through 23 offices, 32 workstations, and 88 floppies, finding no

instance ofthe virus. This effort required approximately three hours.

1 had learned during the eradication process that, approximately two weeks before this discovery of the

virus, AntiEXE was discovered on the workstation ofthe same technical writer who, this time, had the 36

infected floppies. At that time, the virus was removed from the workstation by a person who meant well but
was outside the software organization, and was unaware ofour process.

It was impossible to determine with certainty the vector ofthe infection. The two prime candidates were the
vendor creating the customer training material, and the preformatted floppies.

The statistics for this infection ofAntiEXE are as follows:

Elapsed time from virus suspicion to eradication 9 days

Total time to eradicate the virus 9 days

Total number ofcomputers checked 52

VIRUS BULLETINCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written, permission of the publishers.

000240

000241

I90 ~ KINNEY: VIRUS PROTECTION AS PART OF THE SOFTWARE DEVELOPMENT PROCESS

Total number offloppies checked 316

Total number ofworkstations infected 2

Total number offloppies infected 61

Total number offileservers infected 0

Total man-hours lost due to infection 1 16

Total cost to the organization $3 500

In examining the statistics for this infection, it seems unlikely that only two workstations would have

propagated 61 infected floppies. Unfortunately, there is insufficient data to reach a conclusion.

LESSONS LEARNED

0 It would serve us well to have a more comprehensive way ofdealing with viruses for the entire

enterprise. Had this been the case, we would have likely been spared the reinfection ofAntiEXE.

0 We have a process by which we evaluate outside software houses. This includes evaluation oftheir
ability to deal with computer viruses. The development ofthe customer training material was

managed by a department which was unaware ofthis process, and thus did not arrange for a vendor
evaluation. Had this process been followed, the probability that the infection would have been

prevented increases somewhat. This assumes that this vendor is the source ofthe virus, which cannot
be positively determined. A better way ofgeneral process training may be beneficial.

0 We should not use preformatted floppies for software distribution masters.

0 A group ofpeople working as a team can move quickly and effectively through an organization to
search and remove avirus detectable by a virus scanner.

CONCLUSION

Written processes dealing with computer viruses can be ofgreat value to a software organization.
Although for a commercial organization the process offers only marginal benefit for prevention, it offers
significant benefit for removal of the virus. An effective process can also help in preventing viruses from
being distributed to customers with released software. Incorporation of these processes into the set of
processes which define how business is conducted provides a unifonn way ofeducating new employees in
the area ofcomputer viruses. This incorporation also provides a standard method for process

improvement. The processes associated with computer viruses not only complement each other, they
mesh with those processes associated with software releases, producing distribution media, development

system backup, and development environment security, to name just a few.

lnstituting written processes in an organization, and the continuous process improvement associated with
this, can be a difficult undertaking. It is extremely hard to build that initial momentum, and there are always

those in the organization who fear and resist change. Don’t be discouraged. Begin with a small set which the

organization is already using infonnally and build from there.

As for the processes dealing with viruses, each time you are required to respond to an infection, examine
what works well and what doesn’t. Concentrate your process improvement not only on the mechanics of

virus eradication, but also on the infrastructure and communications needed to be effective in the process. It

is the infrastructure and communication, as opposed to the mechanics, which will be most important when

faced with one ofthe viruses not detectable by virus-scanning soflware.

VIRUSBULLETINCONFERENCE©l995 V'rrus Bulletin Ltd,21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO241

000242

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - l9I

VIRUS ERADICATION TEAM WORKSHEET

VirusName

Aliases

Virus Type

First Suspicion

Date Time

Person

Date Systems Administrator Notified

Time

Positive I.D.

Date Time

Person

Scarmer Name Version Number

Virus Expression Characteristics

Virus Elimination Method

Is this the first infection by this virus? Y / N

Previous Date if ‘No’

Eradication Team Members

VIRUS BULLETINCONFERENCE©1995 VirusBulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO242

000243

I92 - KINNEY: VIRUS PROTECTION AS PART OF THE SOFTWARE DEVELOPMENT PROCESS

VIRUS ERADICATION TEAM CHECKLIST

Name Date _j___

page ofj

FOR EVERY ITEM CHECKED:

Type Name Location Time

Spent i

f h fis ——
f h f/s
f h f/s --
f h fls
f h f/s —-
f h f/s YZEZ
fhf/s

fhf/s

fhf/s

fhf/s

fhf/s

fhfls

fhf/s

l-<

’-<1’-<1’-<*<’-<1’-<~<-<-<~<1'-<*<‘.
Z2

fhf/s

fhf/s

fhf/s

fhf/s

fhf/s

fhf/s

fhf/s

fhf/s ~<

zzzzzzzzzzzz
f - floppy h - hard disk f/s - fileserver

Name - any specific identification ofthe media or the fileserver (not necessary for uninfected

floppies)

Location - name ofthe lab, office, server room, etc

Time Spent - total time to and from location and checking and/or removing virus and restoration
of files

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO243

000244

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I 93

HARMLESS AND USEFULVIRUSES CAN HARDLY EXIST

PavelLamacka

5 HT Computers Ltd, (Computer Accidents Research Center), Sliacska 1, 831 02 Bratislava,
Slovak Republic

Tel +42 7251 426 - Fax +42 7252 742

INTRODUCHON

Some virus authors and even some antiviral experts claim that not all viruses and programming techniques

used in them are hamiful a11d therefore bad [Cohen-85] [Cohen-92]. They argue that viruses which have the

ability to execute no action, neither harmful not useful, are harmless and therefore neutral, and that viruses
which are able to execute beneficial actions are useful and therefore good. Discussions about harmless and

useful viruses are still not fmished as can be seen, for example, from [Kaspersky-93] or [Timson-93].

Neither are they academic, because our basic attitude towards viruses; the techniques oftheir
implementation; and their originators and propagators depends on the results ofthese discussions. Ifviruses
are really neutral in nature, it is necessary to discipline only those responsible for their unsuitable purposes
and usage. But ifwe find out that viruses are bad in principle, we obtain the right to take a consequently
defensive attitude towards their originators and propagators. The goal of this paper is the presentation of

reasoning leading to a standpoint which is usable in practice regarding the existence and feasibility of
harmless and usefiil computer viruses. The presented reasoning is based on a combination ofknown, lesser
known and so farprobably undiscussed facts and conclusions. Those ofwhich are considered contributions
of this paper are indicated.

HARNIFUL VIRUSES

Before we start a discussion about the possible existence ofharmless and

useful viruses, we will take a look at harmful viruses. Viruses which are able
to execute a hamiful action, like destroying data or disabling the usage ofa MSR
computer, are considered harmful. Generally a hamiful virus VH (Fig. 1)
consists of at least the two following modules: a module of self-replication

MSR and a module ofharmful action MHA. The harmful action is usually MHA
executed by the virus on a certain condition. Other modules and functions of
the viruses, for example, stealth, encryption orpolymorphism, will not be
considered here, because they are irrelevant to this paper.

Fig. 1 Harmful virus

Many people claim that viruses have gained their bad reputation only due to
the harmful actions which many ofthem execute. Let us therefore look at
whether the harmfulness ofa virus would disappear after removing the harmful action code from it, and then

at whether it is possible to obtain a usefiil virus after it is given the ability to execute a useful action.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Ahingdon,0xfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO244

000245

I 94 ° LAMACKA: HARMLESS AND USEFUL VIRUSES HARDLY CAN EXIST

HARMLESS VIRUSES

Virus VN (Fig.2), which can do nothing but self-replicate, consists ofa self-
replication module MSR only. Several such viruses are known in practice. It is
known that although this type ofvirus does not contain any harmful action
module, it is able to damage the code ofa program on which it is a parasite.
This is often caused by the untidy implementation ofthe virus. It may happen

that the virus is implemented in a competent way, but then it meets with a new

program structure which it cannot infect properly and therefore it damages the
structure. Users have no means ofdefending against such side-effects because

until now it has been unusual to accept complaints about viruses, for example,
on hot-lines.

Fig. 2 No action virus ,

Moreover, it follows from the principle ofthe function ofviruses that they always interfere with the
integrity of infected programs by their activity. This results from the fact that all viruses obtain controlflow
by theft, that viruses steal control from the programs which they have infected. Usually, but not always, they
steal control by modifying the code ofthe infected programs. An example ofviruses which steal control
without program modification, are companion viruses. By the theft ofcontrol the viruses act asparasites on
the programs infected by them. This ability is given to each virus at the time of its origin. It is the inherently
parasitic nature ofthe self-replication ofcomputer viruses which interferes with the integrity ofthe
programs affected by them.

Besides, by self-replication, viruses waste computer resources, particularly memory and processor time,
which is also a form ofdoing harm. Although this form is often tolerated, it is unpredictable and in time-
critical applications it can be substantial and is therefore intolerable. ‘

It depends whether some ofthe given influences are demonstrated to be harmful ones. In all cases, by
their ability to self-replicate and their parasitic nature, viruses violate the conditions of function ofthe
programs affected by them, therefore the authors of the programs cannot guarantee the functionality of
the programs, which restricts their author’s rights.

From the above mentioned arguments, it is sufficient for everyday practice that the best which can be
said about the simplest viruses, containing no code for harmful actions, is the following:

(1) The harmlessness ofcomputer viruses is not guaranteed.

In other words, the usage of any virus is risky, because ofthe danger ofviolating computer activity. This
riskiness ofcomputer viruses results from their ability to parasitically self-replicate. Because without this
ability the virus is not a virus, it follows that this riskiness is peculiar to all computer viruses, also in
cases when they have no ability to execute harmfiil action, and even when they have the ability to
execute useful action. It also follows from that, that the danger ofharmful viruses does not rest only in

their ability to execute harmful actions.

USEFUL VIRUSES

Generally, a useful virus Vu (Fig.3) consists of at least the following two modules: module of self-
replication MSR and a module ofuseful action MUA. The useful action is usually executed by the virus
on a certain condition.

A useful action which virus can execute is, for example, the compression ofthe code of an infected program,

as is done by the virus ‘Cruncher’ [Kaspersky-93] [Timson-93]. Another example is the virus ‘AVV’
[Kaspersky-94], which detects the presence ofother viruses.

_j:

I/YR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO245

000246

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I95

It is problematic to evaluate the virus Vu as unambiguously useful, because it .

is unknown whether the usefulness ofits action outweighs the riskiness of its VU
self-replication. Moreover, it is problematic to compare the usefulness of the
action to the riskiness of the self-replication. Even ifthe usefulness of the MSR
action was much greater, the riskiness ofthe self-replication, however low,

might be intolerable, and therefore, the virus as a whole could not be evaluated
as unambiguously useful.

Let us consider a virus Vc, whose useful action is a compression ofthe code

ofprograms. Fig. 4 shows the situation when N programs P1 - PN have been .
infected by the virus. Each ofthe programs P, has been compressed at the time Fig 3 Useful WW5
of its infection by the virus. Along with it a part of the virus Vc acting as a

parasite on it has been compressed. The rest of the virus, which is a
decompression module D, has not been compressed and receives control at the time ofactivation of the
program Pi. Module D decompresses the program P, and the compressed part of the virus V0 to their
original state, control is passed to the decompressed remainder ofthe virus VC, and the rest ofthe process
goes on as usual for viruses. This means that a program Pi infected by the virus VC behaves like a self-
expanding program

From the user’s,point ofview, besides the above mentioned problems, there are the following interesting
matters. The compression module is present
in each instance ofthe virus V0, in our case

it is N-times, which is not the case in

common compression programs. Next, it is

interesting that the virus activity is

uncontrollable, because the virus itself

finds the programs to be infected, fiilly

autonomously, according to the rules built

into it. Due to this reason, the user is

unable to decide on which programs the

compression should be applied and on
which ones it should not. Finally, it is

interesting that viruses behave in an D

indeterminate way, because their activity

often depends on software configuration,

sequence ofexecuted operations and other

parameters ofrandom nature. Therefore it

is generally unpredictable whether at a

given moment the compression has been

applied to any given program or whether it has been applied to all considered programs.

 Compressed part [: Uncompressed part

Fig. 4 Programs Pi infected by compression virus V0

The above facts disqualify the useful and harmless viruses to such a degree, that the least negative statement
we can say about them, is the following:

(2) Harmless and usefirl viruses can hardly exist

In the next section we will look at whether it is necessary to regret that useful viruses have such weak

prospects.

VIRUSBULLETINCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pennission of the publishers.

OOO246

000247

[96 ° LAMACKA: HARMLESS AND USEFUL VIRUSES HARDLY CAN EXIST

USEFUL VIRUSES VS USEFUL NON-VIRAL PROGRAMS

Ifa common, correctly implemented compression program is used, we avoid the problems inherent in the
compression virus, Vc. First ofall, we avoid problems with uncontrollability and indeterminacy, because it
is possible to state on which programs to apply the compression and, after the compression is finished, it is
apparent that compression has been applied only to the stated programs and not to others. 5

The differences in the

demands on memory

and time are not

negligible as well. The

compression code

together with the self-

replicating one occur in
each instance of the

virus Vc, that is, in

each infected program

(F1g- 4_)- On the Other Fig. 5 Programs Pl. compressed and uncompressed byprogram PCD
hand, ifwe use a

compression program

PCD, Which may or may not be memory resident, the compression code is necessary only in one instance
and the self-replicating code is unnecessary (Fig. 5). It can be seen that the programs P, - PN, on which
the compression program PCD was applied, contain no extraneous code.

Similarly, the program PCD is more time-efficient, because it works on demand only, and not like the
virus Vc, which works every time it steals control. If the compression program PCD is memory resident,
it works autonomously, which removes the last illusory advantage of the useful viruses, for which some
oftheir proponents

argue.

In practice we also use

compression program
PC, which transforms PC
the given programs into

self-expanding form

(Fig. 6). A compression

program PC
compresses given

Programs P1 ' PN and Fig. 6 Self—expandz’ngprograms PI. compressed byprogram PC
then adds to them a .

decompression module,
D, which automatically decompresses them at their activation. The addition ofthe decompression module
influences the integrity of the given programs, but ifthe authors ofthe programs agree with this process,
their author rights are not violated, and if they themselves apply such compression to their programs, the
integrity of the programs is not affected.

The procedure, which was demonstrated in the comparison ofcompression viruses and compression
programs, can be generalised in the following statement:

(3) For each virus which is able to execute an action, it ispossible to implement aprogram,
which is not a virus and which is able to execute the same action.

__

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO247

000248

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° I 97

 Therefore for each virus Vu (Fig. 3), which is able to execute a useful action

using the module MUA, it is possible to work out a useful program Pu (Fig. P
7), which is able to execute the same useful action as the virus Vu. Pu U
needs no self-replication code, therefore it is not a virus. Instead it contains a MSA
module ofselective application, MSA, by which the useful action is

selectively applied according the commands of the user of the program Pu.
In an extreme, the program Pu can contain a copy of the module MSA, MUA
which would guarantee the equivalency of an execution of the useful action.

Using statement (3), the above comparison offeatures shown for

compression viruses and compression programs is valid for every pair VU —
Pu, which executes the same action.

Fig. 7 Usefulprogram

Now we are at the end ofthe comparison ofthe features of the useful viruses,

Vu, and the useful programs Pu. Their comparison overview is given in Table 1. From it and from

statement (3 1) the following statement results:

(4) Useful viruses are useless.

This is so because useful programs are unambiguously more advantageous, as useful viruses have only one

from the given list ofpositive features, which is the ability to execute useful actions. Otherwise the usage of
viruses for useful purposes is hazardous, because it is accompanied by several risks.

"1"

feature useful virus Vu useful program Pu

useful action + able to execute (+ able to execute

self-replication - basic ability, without it virus is not a virus I’ + does not need

parasitic ability - basic ability, without it virus is not a virus + does not need

controllability - autonomous, uncontrollable + . user controllable

predictability - indeterminate behaviour V + predictable behaviour

memory usage - unpredictably excessive + need not be excessive

processor usage - unpredictably excessive + need not be excessive

- is risky and therefore negativefeature + ispositivefeature

Table 1. Comparison ofbasicfeatures ofuseful viruses and useful non-viralprograms

CONCLUSION

To justifiably speak about the existence ofharmless computerviruses, it would be necessary to prove, or at
least to show, how to implement them in such a way that it would be possible to guarantee their
harrnlessness. That would disprove the validity of statement (1) and at the same time open the possibility
ofthe existence ofunambiguously useful viruses.

To justifiably speak about the existence ofuseful computer viruses, it would be necessary to prove, or at
least to show, that there exists an action which can be implemented in the framework ofa virus and
which cannot be implemented in the framework ofany non-viral program. That would disprove the
validity of statement (3) and therefore (4). Another possibility would be to prove, or at least to show, that

I/YRUS BULLETINCONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO248

000249

I98 ° LAMACKA: HARMLESS AND USEFUL VIRUSES HARDLY CAN EXIST
 _

there exists an action which is more effective to implement in the framework ofa virus than in the

framework ofany non-viral program. That would disprove the validity ofstatement (4), but not (3). To
justifiably speak about these viruses as being unambiguously useful, statement (1) may not be valid.

Until such proofs can be given, claims about the existence ofharmless and useful viruses are but the
products ofwishful thinking oftheir proponents, and attempts to create and use them are hazardous. In
the case of the useful viruses it is an unnecessary hazard, because useful non—viral programs do not carry
the risks which viruses do. The hazardousness of the viruses results from the cumulative effect of risks
connected with their usage. These are mainly risks resulting from the parasitic self-replication of the
viruses, from their uncontrollable and indeterminate activity, and from their unpredictably excessive .
usage ofmemory and processor.

Software engineering looks for programming techniques whose use minimises the risks of incorrect
software function. This is why we consider as unsuitable those programming techniques, which the
hazardousness of the computer viruses is based on. From the viewpoint of software engineering, viral
programming techniques are dirty at least as unstructured or non-modular programming is, since their
exploitation is dangerous.

It is known that all viruses in some way violate the integrity of the infected programs, which is a given

due to their parasitic nature. This interferes with the author and user rights of the respective infected
programs. The authors and users of those programs have the right to protection by law, to
recompensation and to the prosecution of the culprits who spread viruses actively or support their spread
through negligence.

REFERENCES

[Cohen-85] Fred Cohen, ‘Computer Viruses’, 1985.

[Cohen-92] Frederick B. Cohen, “Wrong’ Said Fred’, Virus Bulletin, January 1992, pp. 5-6.

[Kaspersky-93] Eugene Kaspersky, ‘Cruncher - The First Beneficial Virus?’, Virus Bulletin, June 1993,
pp. 8-9.

[Kaspersky-94] Eugene Kaspersky, ‘AVV - The Anti-Virus Virus’, Virus Bulletin, January 1994,
pp. 10-1 1.

[Tirnson-93] Harriet Tirnson, ‘Cnmcher - Zipping or Zapping’, Virus News International, May 1993,
p. 3 1.

I/YRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or‘ transmitted in any form
without the prior written pemiission of the publishers.

OOO249

000250

.\‘:

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - I99
 _?.__T_

THE EFFECT OF COMPUTER VIRUSES ON OS/2 AND WARP

John F. Morar, David M. Chess

High Integrity Computing Laboratory, IBM Thomas J. Watson Research Center, Yorktown Heights,
*~‘—-I » NY 10598, USA

Fax +1 914 784 7007 - Email morar@watson.bm.com

OVERVIEW 1

Although the number ofOS/2 viruses can be counted on the fingers ofone hand, systems running OS/2 still
require protection against thousands ofDOS-based viruses which can infect boot records and DOS programs
on OS/2 systems.

OS/2 is a 32-bit multitasking operating system which can simultaneously run programswritten for OS/2,

DOS and Microsofi‘ Windows“. DOS programs running under OS/2 execute in a Virtual DOS Machine

(VDM) which is designed to provide an environment which appears the same as real DOS. Ironically,
moving toward the goal ofa perfect virtual DOS machine increases the probability that an infected DOS
program will execute properly, and effectively propagate its virus to other DOS programs stored on the
system. Indeed, DOS programs executing under OS/2 can frequently spread file infecting viruses to other
DOS programs.

Boot sector viruses interact primarily with the Basic Input and Output System (BIOS) which is common

to all IBM PC (and compatible) personal computers. Boot sector viruses typically receive control during the
boot process, before the operating system is loaded; this allows them to infect boot sectors independent of
the operating system in use. Boot sector viruses under OS/2 don’t usually spread to diskettes because ofthe
details ofhow OS/2 uses diskettes. However, they can have other detrimental effects on the system, and

therefore need to be removed.

Viruses designed to infect native OS/2 executables are more complicated to write than their DOS
counterparts, but they will likely be a problem at some point in the future. We are currently aware ofonly
two OS/2 viruses.

Both ofthese viruses are very simple and neither ofthem has been detected in the wild (‘in the wild’ viruses

are those which have been detected spreading in real life situations.)

OS/2 is far more versatile than DOS/Windows. It has the ability to run multiple DOS and Windows

sessions, provides facilities for booting multiple operating systems, and allows file names up to 255

bytes long.

I/YR US BULZETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a renieval system, or transmitted in any form
without the prior written permission of the publishers.

000250

000251

200 - MORAR & CHESS: THE EFFECT OF COMPUTER VIRUSES ON OS/2 AND WARP

These additional capabilities offer new places for viruses to hide, and necessitate additional anti-virus
capabilities not available in native DOS/Windows anti-virus soflzware. Although native DOS/Windows anti-
virus programs can often execute under OS/2, they do not provide an adequate level ofprotection. They will
not have access to files with long names, nor will they find all the boot records which may be located on the
machine. Under some versions of OS/2, the boot sectors are not writable by DOS/Windows programs and

can therefore not be disinfected by DOS/Windows anti-virus products.

This susceptibility to DOS viruses is not unique to OS/2. Indeed, Windows NT and Windows 95 are also
fertile ground for the spread ofDOS viruses. Each ofthese operating systems requires individually
tailored anti-virus protection software.

BOOT SECTOR VIRUSES UNDER OS/2

Boot sector viruses are responsible for the overwhelming majority ofin-the-wild virus infections. They
reside in the boot records found on each disk and diskette. The primary method for checking a particular
machine for boot sector viruses is to scan all the boot records located on the personal computer. One

consequence of OS/2’s versatility is the possibility ofadditional boot records not found in DOS systems.

OS/2 provides optional facilities for installing more than one operating system on a single personal
computer.

Two methods are provided for choosing which operating system is to be booted: Dual Boot and Boot
Manager. Each of these methods involves manipulating which boot sectors become active. Using either
of these techniques results in additional boot sectors not found on DOS and Windows-based systems.
Effective OS/2 anti-virus programs will scan all the boot records located on the personal computer, even
those which are not active at the time the scan is being performed.

In particular, on a Dual Boot system the system boot record of the operating system which is not currently
active is stored on the hard disk, under a special name.

OS/2 anti-virus software should know to scan for boot sector viruses in files with these names. In a Boot

Manager system, a special Boot Manager boot record exists which is neither a master boot record nor an
operating system boot record; OS/2 anti-virus soflzware must know how to scan and repair this special kind
ofboot record.

OS/2 offers a choice oftwo file systems; the File Allocation Table (FAT) file system and the High

Performance File System (HPFS). Some boot sector viruses assume that all file systems are FAT, and
write to specific disk locations in ways which can damage HPFS boot partitions. The risk ofsuch
complications for OS/2 systems in high virus risk enviromnents can be minimized by using the FAT file
system for all boot partitions.

DOS FILE INFECTING VIRUSES UNDER OS/2

DOS programs running on an OS/2 system execute inside a Virtual DOS Machine (VDM), a controlled
environment in which OS/2 provides DOS programs with all the usual DOS services, and in general
simulates a DOS environment.

Multiple VDMs can be used to simultaneously execute multiple DOS programs. Many infected DOS
programs execute properly in OS/2 VDMs and can effectively propagate a virus to other DOS programs
stored on the system.

File infecting viruses frequently install a memory resident component in the DOS operating system (or in
the VDM in the OS/2 case); this component infects new programs as they are executed, or executable

_?

WR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

OOO251

000252

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ' 20/

files as they are opened, or it may follow any ofa variety ofother strategies. Because the DOS simulation

provided by the VDM supports this kind ofmemory-resident component, viruses ofthis kind often continue
to operate in a VDM.

(Some file infecting viruses use undocumented and unsupported features ofDOS to function; these will
often fail in OS/2 VDMs.)

Memory-resident viruses cannot spread directly between separate VDMs; however, any program executed
from within an infected VDM will likely become infected. Ifthatprogram (once infected) is later executed

in another VDM, that VDM can also become infected, in the sense that the virus will have installed its

resident portion in that VDM as well.

The best protection for VDMs under OS/2 is to install memory-resident virus protection in each VDM as it
is opened. This fimction can be performed automatically by anti-virus software tailored to the OS/2
enviromnent

Occasionally, afile-infecting virus designed for DOS will also attempt to infect OS/2 executable files.
Although the structure of an OS/2 executable file is superficially similar to a DOS EXE file, it is in fact
far more complex. If a DOS program attempts to infect an OS/2 executable, it will almost always fail,
rendering the OS/2 executable unable to execute under OS/2, and making it impossible to repair fully the
file. In some cases, trying to start an OS/2 program in an infected VDM can cause the OS/2 program’s

‘DOS stub’ (the part ofan OS/2 program which prints ‘This program cannot be run in DOS mode’) to
become infected. An OS/2 program infected in this way can sometimes even spread the virus when started
under DOS, or in an OS/2 VDM. It is therefore important to check both DOS and OS/2 executables for file-

infecting viruses on OS/2 systems.

NATIVE os/2 VIRUSES

There are currently only two OS/2 viruses known to us.

o OS2virl: This virus functions by (roughly) replacing all EXE files in the current directory with a

copy of itself Since infected files no longer perform their normal functions, this is a very
noticeable virus and therefore unlikely to spread. It is distributed as source code, and as

distributed, prints out messages as it runs saying which files it’s “infecting”.

o Jiskefet: Replaces EXE files with a new file which contains within itselfthe original EXE file. When
the infected file is executed, it recreates the original EXE file under another name and then executes

the original file. This is a technological advance over OS2vir1 since the function ofthe original
program is preserved. However, Jiskefet is not very effective at finding new files to infect. Similar
viruses in the DOS world have never spread well, suggesting that Jiskefet will also not pose any

significant threat to OS/2 systems.

In spite ofthe current unsophisticated attempts at OS/2 viruses, there is no insurmountable technological
barrier to generating effective viruses for any ofthe currently shipping 32-bit operating systems; it makes
sense to prepare now, by installing the best available anti-virus software designed specifically for the
operating systems thatyou are actually using.

TAKING ADVANTAGE OF OS/2 FACILITIES

Like any other modern product, anti-virus products should take advantage ofthe power and flexibility which
OS/2 brings to the user. An anti-virus product should, for instance, be able to run in the background atpre-
selected times, to avoid interfering with the user’s daily work. An anti-virus product should have a full

graphical user interface, allowing any necessary user interactions to take place on the desktop, rather than

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

000252

000253

202 ° MORAR & CHESS: THE EFFECT OF COMPUTER VIRUSES ON OS/2 AND WARP

through older command-line interfaces. Advanced file systems, like the one provided with OS/2, require the
system to be shut down so the file system can close all files and store all data. The next action after a
shutdown is to restart the system, either immediately or at some later time. The shutdown process is an
excellent time to scan any diskette left in the A drive for boot sector viruses. Diskette scanning during
shutdown avoids possible infection when the system is again restarted.

Even a non-bootable diskette can be infected with a boot sector virus, and can spread the virus ifan attempt
is made to boot from the infected diskette.

SUMMARY: REQUIREMENTS FOR PROTECTING OS/2 SYSTEMS

To be effective in protecting an OS/2 system from viruses, an anti-virus product must:

run as a native OS/2 application, in order to check files and directories which DOS applications
cannot see

check all boot records on the system, including BootManager boot records and the files used by Dual
Boot to store boot records

provide protection for all DOS VDMs and Windows sessions running under OS/2

check to see if there is an infected diskette in the diskette drive immediately before shutting down

perform scheduled scans ofthe system, in the background, exploiting OS/2 multitasking abilities

take advantage ofthe sophisticated user interface facilities in OS/2 to run cleanly on the desktop,
rather than requiring command-line interaction.

Our development of IBM AntiVirus for OS/2 has been motivated by the need to satisfy all the
requirements described in this article.

* IBM, OS/2 and OS/2 Warp are registered trademarks ofInternational Business Machines Corporation.

* All other products are trademarks or registered trademarks oftheir respective companies.

:

VIRUS B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000253

000254

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 0 203

HEURISTIC SCANNERS: ARTIFICIAL INTELLIGENCE?

Righard Zwienenberg

Computer Security Engineers, Postbus 85 502, NL—2508 CE Den Haag, The Netherlands

Tel +31 70 362 2269 ~ Fax +31 70 365 2286 - Email rizwi@csehost.knoware.nl

Though not explicitly stated, heuristic anti-virus methods have been in use for almost as long as the virus
threat has existed. In the ‘old days’, F1uShot(+) was a very popular monitor, alerting the user when it

detected ‘strange and dangerous’ actions. This can be regarded as simple heuristic analysis, because FluShot
did not know ifthe action was legitimate or not. Itjust warned the user.

During the last couple ofyears, several resident behaviour-blockers have been developed, used and
dismissed again. In most cases, the user finds warnings irritating, aggravating and incomprehensible. The

only resident protection they normally use - ifany - is a resident scanner. This makes life easier for the
users, because the resident scanner clearly indicates that a file or disk is infected by a certain virus when it

pops up its box. The disadvantage, which the user doesn’t see, is that it does not detect new viruses.

Also, the less popular (but very important) Integrity Checkers may be regarded as heuristic tools. They warn
the user when the contents offiles have been changed, when files have grown in size, received new time and

date stamps, etc. They often display a warning such as: ‘file might be infected by an unknown virus’ in the
case ofa changed executable. Especially in a development environment, Integrity Checkers can be really

irritating. The user already knows that his executable has changed, because hejust changed and recompiled
the source code. But how is the Integrity Checker to know that? Using a list of executables to skip is not

safe, because a virus may indeed have infected an executable on the list. In that case, the change was not

caused by a recompilation. However, the integrity checker can’t tell the difference!

Based on these early attempts, the first generation ofscanners with minor heuristic capabilities were

developed. The heuristics they used were very basic and usually generated warnings about peculiar file date
and file time stamps, changes to file lengths, strange headers, etc. Some examples: '

EXAMPLE1. COM 12345 01-01-1995 12:02:62

EXAMPLE2. COM 12345 01-01-2095 12:01 :36

EXAMPLE3. EXE Entry point at 0000:0001

The heuristics of the current, second, generation of scanners are much better. All the capabilities ofthe first

generation scanners are obviously retained, but many new heuristic principles have been added: code
analysis, code tracing, strange opcodes, etc. For example:

OF POP CS

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pennission of the publishers.

000254

000255

204 ° ZWIENENBERG: HEURISTIC SCANNERS: ARTIFICIAL INTELUGENCE?

Strange opcode — an 8086-only instruction!

C70600019090 MOV WORD PTR [lOO],909O

C606020l9O MOV BYTE PTR [lO2],9O

E9 JMP 0100

Tracing through the code shows that it jumps back to the entry point:

B9 MOV CX,....

BE.... MOV SI,....

89F7 MOV DI,SI

AC LODSB

34A5 XOR AL,A5

AA STOSB

E2 LOOP

This is obviously decryption code.

A (third generation?) scanner type based exclusively on heuristics exists, performing no signature,
algorithmic or other checks. Maybe this is the future, but the risk of a false alarm (false positive, true
negative) is quite high at this moment. In large corporations, false alarms (false positives) can cost a lot of
time and thus money.

We are not going to examine this scanner type except to note that it may lead us into a new generation, or
area, ofsystem examination and protection: Rule-based Examination Systems.

RULE-BASED EXAMINATION SYSTEMS

Rule-based systems are as such not a novelty. They already exist, also in the security field. In this field they
are often characterised by applying very few, but very broad, rules.

What we are going to look at here are Rule-based Examination Systems seen as large heuristic analysers.

Looking at this sequence ofopcodes:

B8DCFE MOV AX,FEDC

CD21 INT 21

3D98BA CMP AX,BA98

75.. JNE getint2l

E9.... JMP wherever

getint2l:

B92135 MOV AX,352l

CD21 INT 21

everyone in the field ofcomputer security can see that we may have a virus here (or at least suspicious or
badly programmed code). The problem is how to convert something we see in a split second into one or
more specific and relevant behaviour characteristics, which we can feed into an examination system. This in
turn is able to tell us whether or not we are looking at a virus.

With most of the rules used by the first generation ofheuristic scanners, this was not at all difficult. Most

were simple comparisons (<,>,==, !=) of the type: ‘Ifa file date exceeds the current date, or is after the year
2000, give an alert’; ‘If the seconds field ofthe file time shows 62 seconds, we can conclude that this is
pretty strange and give an alert’. This generation ofheuristics, ofcourse, did not have the power to analyse
the code in the example shown above.

VIRUS BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

000255

000256

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° 205

The second generation ofheuristic scanners has more possibilities. Bearing those in mind, defining a rule to

cover the example above is not difficult, but imagine a complex decryption routine preceding the actual

(virus/1‘rojan/suspicious) code or — most likely — legitimate code. For example:

re-vector int3

re-vector intl

disable keyboard

get intl offset into di

get int3 offset into si

add counter—l to si to point to

encrypted data

add counter—2 to di to point to

encrypted data

get word into ax

perform some calculations with ax

to decrypt word

store word

increase counter—l

increase counter—2

look if end of encrypted code has

been reached

jmp back if more code to decrypt

enable keyboard...

In case this is just one ofthe instances generated by a complex mutation engine, it will be hard to derive a

heuristic rule directly to detect a virus using this engine.

1

Cryptographic
Checksummer

Forensic

emulator

Behaviour characteristic

Analyser

Result

Rule-Building

Utility

Signature
Scanner

Identification

One ofthe solutions, maybe the best one, is to include a code emulator in the analysing system as illustrated

in the figure above, which shows a part ofa working network security system. The file to be checked is first

given to a checksummer. If the file is already known to the system, a hash code is generated across the file,

and this is compared to a stored value. Ifthese are identical, no further action is taken, and the file is

declared clean. Ifnot, the file is fed to the emulator, and the results from the code emulation are given to an

analyser as described below.

VIR US BULLETINCONFERENCE©l995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000256

000257

206 ° ZWIENENBERGHEURISTIC SCANNERS: ARTIFICIAL INTELLIGENCE?

Including a code emulator is possible, and as a matter offact has already been done. It should have special
knowledge ofa variety ofpossible tricks used in malicious code; it should know when to stop emulating
(e.g. at the end of a decryption routine); it should be able to realise when anti-debug tricks are used, etc.
Both in order to obtain portability, and to avoid obvious pitfalls, it must adhere to one basic and important

rule: Never actually execute an instruction, only emulate it.

In short, the task of the emulator is first to make sure that the code is decrypted (in case it was encrypted),
and then to derive and combine relevant behaviour characteristics to pass on to the analyser, which analyses

and organises these behaviour characteristics and compares the results ofthe analysis with a set ofrules.

ARTIFICIAL INTELLIGENCE

From the point ofview ofthe developer it would be nice ifsuch a system were able to learn about behaviour
characteristics and generate new rules automatically. Ifthe system bypasses an instance ofvirus/Trojan/

suspicious code because the current rules are no longer sufficient, special examination tools should be able
to extract the necessary information from the code in question and create new rules enabling the system to
detect this trojan/virus/suspicious code, and hopefiilly every other form derived from this one. In other
words: Artificial Intelligence.

For security reasons, these additional tools with their special fiinctionality should not be given to users.
Evil-minded knowledgeable persons could use them to do an in-depth disassembly to research the

possibilities ofbypassing the rules generated by the system. Security through obscurity may not be safe,
but it does help...

EMULATOR DESIGN ISSUES

When designing a code emulator for forensic purposes, a number ofspecial requirements must be met.

One problem to tackle is the multiple opcodes and multiple instructions issue:

87 C3 XCHG AX,BX

93 XCHG BX,AX

87 D8 XCHG BX,AX

The result is the same, but different opcodes are used.

PUSH AX PUSH AX

PUSH BX MOV AX,BX

POP AX POP BX

POP BX

These give the same result. More than the five different code sequences shown above exist to exchange the
contents ofregisters AX and BX. The technique ofexpressing the same functionality using many different
sets ofopcode sequences is used by encryptors generated by polymorphic engines. Some being over 200
bytes in size, they only contain the functionality ofa cleanly coded decryptor of25 bytes. Most ofthe
remaining code is redundant, but sometimes seemingly redundant code is used to initiate registers for further
processing.

It is the job ofthe emulator to make sure that the rule-based analyser gets the correct information, i.e. that
the behaviour characteristics passed to the analyser reflect the actual facts. No matter which series of

instructions/opcodes are used to perform 3D02h/21h, the analyser only has to know that the behaviour of
that piece ofcode is:

Open afilefor (both reading and) writing.

VIR USB ULLETZNCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000257

000258

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 207

On the one hand, this may not seem that difficult. Most viruses do perform interrupt calls, and when they

do, we just have to evaluate the contents ofthe registers to derive the behaviour characteristic. On the other

hand, this is only correct ifwe talk about simple, straightforward viruses. For viruses using different

techniques (hooking different interrupts, using call/jmp far constructions) it may be very difficult for the

emulator to keep track of the instruction flow. In any case, the emulator must be capable ofreducing

instruction sequences to the bare functionality in a well-defmed manner. We call the result ofthis reduction

a behaviour characteristic, if it can be found in a pre-compiled list ofcharacteristics to which we attach

particular importance.

Another problem is that the emulator mustbe capable ofmaking important decisions, normally based on

incomplete evidence (we obviously want to emulate as little code as possible before reaching a

conclusion regarding the potential maliciousness ofthe software in question).

Let us illustrate this with a small example:

MOV AX,4567

INT 2].

CMP AX,7654

JNE jmp-l

JMP jmp-2

This is an example ofan ‘Are you there?’ call used by a virus. When tracing through the code, the emulator

obviously does not know whether jmp-l orjmp-2 leads to the code which installs the virus in case it is not

already there. So, should the emulator continue with thejmp-l flow or the jmp-2 flow? Now, a simple

execution ofthe code will result in just one ofthese flows being relevant, whereas a forensic emulator must

be able to follow all possible program flows simultaneously, until either a flow leads to a number ofrelevant

behaviour characteristics being detected, at which time the information is passed to the analyser, or a flow

has been followed to a point where one ofthe stop-criteria built into the emulator is met. The strategy used

in this part ofthe emulator is a determining factor when it comes to obtaining an acceptable scanning speed.

Hopefully, this has illustrated some ofthe problems associated with designing a forensic emulator. lt is a

very difficult and complex part of this set-up.

Once the emulator has finished its job it passes information, a list ofbehaviour characteristics which it has

found in the code, on to the analyser.

BEHAVIOUR RULES

Before the analyser is able to compare the behaviour characteristics found by the emulator to information in

its behaviour database, this database needs to be defined. Assume that we have a COM and an EXE file

infecting virus with the following behaviour:

I MODIFY FILE ATTRIBUTE REMOVING READ-ONLY FLAG

! OPEN A FILE FOR (BOTH READING AND)WRITING

!* WRITE DATA TO END OF FILE

l* MODIFY ENTRY POINT IN HEADER or WRITE TO BEGINNING OF

FILE

— MODIFY FILE DATE AND FILE TIME

- CLOSE FILE

- MODIFY FILE ATTRIBUTE

WR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO258

000259

208 - ZWIENENBERG: HEURISTIC SCANNERS: ARTIFICIAL INTELUGENCE?

Ifwe want to develop a behaviour rule for this virus, it will look like this:

1. MODIFY_FILE_ATTRIBUTE + OPEN_FILE

+ WRITE_DATA_TO_EOF +

MODIFY_EP_IN_HEADER

2. MODIFY_FILE_ATTRIBUTE + OPEN_FILE

+ WRITE_DATA_TO_EOF +

WRITE_DATA_TO_BOF

where rule 1 is a rule for the EXE—file, and rule 2 for the COM-file.

Since a lot ofviruses and virus source codes are widely available, a number ofdifferent instruction

sequences resulting in this functionality will probably show up. Normally, derived viruses contain minor

changes to bypass a single scanner by just changing the order of two or more instructions, but sometimes

larger code sequences can be changed without changing the functionality of the virus. It is trivial to

change the code, so it will first modify the entry-point in the header or change the start-up code, and
afterwards write the virus code. In order to detect these changes (variants) the next rules may be added:

3. MODIFY_FILE_ATTRIBUTE + OPEN_FILE

+ MODIFY_EP_IN_HEADER +

WRITE_DATA_TO_EOF @CODE LINE =

4. MODIFY_FILE_ATTRIBUTE + OPEN_FILE

+ WRITE_DATA_TO_BOF +

WRITE_DATA_TO_EOF

Another example (an MBR infector):

- PERFORM SELF CHECK

l HOOK INTl3

! BECOME RESIDENT

I INTERCEPT READ/WRITE TO MBR

1 READ MBR

-* WRITE MBR TO OTHER LOCATION

!* WRITE NEW MBR

Rule:

HOOK_INTl3 + INTERCEPT

READ/WRITE_TO_MBR + WRITE_NEW_MBR

The signs in front of the descriptors in the examples above hint at the weighing procedure used by the

analyser to attach significance to the behaviour characteristics supplied by the emulator. A ‘-’ means that the

characteristic does not have to be present, an ‘ ! ’ that it must be present (but does not in itself indicate

malicious code). A ‘*’ indicates a high weighing value. Thus ‘-* ’ means that the characteristic does not

have to be present in the sequence ofactions, but if it is, this is a highly important fact.

If rules 1 - 4 above are examined more closely, it can be concluded that they describe behaviour found in a
number ofviruses from different families.

A single behaviour rule may detect an unlimited number ofviruses. That is the power behind using

behaviour characteristics. While at present we in most cases need a new signature or new (changed)

algorithm to detect a new variant ofa virus or a new virus family, the behaviour characteristics will continue
to do their work This is extremely important, because it removes the necessity for the virus researcher and

I/YR USBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000259

000260

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 209

the anti-virus developer to react to a new virus unless it is technologically innovative. And those are few and
far between.

Ofcourse, some viruses will be developed which will not be caught by any ofthe rules in the behaviour
database. These must be taken care ofjust like we do right now with any new virus; but instead ofcreating a

signature, we create a new rule.

With a little luck, a new virus behaves like a virus already covered by a rule. Ifwe attach a level of

importance to each part of a behaviour characteristic, we can use this in the analyser to arrive at a
conclusion. Depending on the level ofimportance ofeach individual component ofa behaviour characteristic
detected, the system may decide to give a message to the user, such as ‘may be infected by an unknown
virus’, or ‘suspicious code’.

The reason for attaching a level ofimportance to each individual part of a behaviour characteristic is that it
makes it easier to sort out cases where combinations of individually innocent behaviour characteristics put

together constitute malicious code — or vice versa. Filedate, from Norton 19 Utilities, is able to change file
date and file time; as a matter of fact, this is the purpose ofthe utility. The ATTRIB command is developed

to change file attributes. Evidently, changing file attributes is in itselfinsufficient evidence ofmalicious
behaviour. A virus needs to write to a file as well. So a file write is mandatory for code to be considered

suspicious and is heavily weighted. A change ofattributes is not that important, and thus given a lower
weighting.

Ifthe user so wishes, the file or part ofthe (decrypted) code on which the analysing system triggered can be

checked by a signature scanner to see ifavirus can be identified.

CREATING RULES AUTOMATICALLY

An important part ofthe system is a Rule Building Utility. Whenever a new virus or Trojan emerges, it may
be processed by this utility, which is similar to the emulator, albeit with some important differences. The
emulator only collects behaviour information without knowing anything about the importance ofa particular

type ofbehaviour, or ifthe behaviour is suspicious.

The Rule Building Utility has to learn the level ofimportance ofbehaviour characteristics, has to know
which behaviour is mandatory for a virus or Trojan, which behaviour is used by a virus but may be omitted,

etc. Because research and development time is very expensive, the utility must be able to remember this for
similar behaviour characteristics, and only ask for additional unknown information when needed, saving the
researcher valuable time.

Behaviour A: Behaviour B:

SEARCH FIRST FILE SEARCH FIRST FILE

DELETE FILE DELETE FILE

SEARCH NEXT FILE CREATE NEW FILE

WRITE CODE INTO FILE

SEARCH NEXT FILE

When rules have been defined for behaviour B and a file (behaviour A, which was reported being

suspicious) is processed, the utility must be able to realise that this behaviour is not as indicative of
potential maliciousness as behaviour A. As a matter of fact, ifbehaviour A is taken on its own, it might
well be a DEL *.* command.

At first, the utility will, ask for input frequently, because it needs to build up its database. However, over a

period oftime this type ofutility should make life easier for the researcher.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000260

000261

2 I 0 - ZWIENENBERG: HEURISTIC SCANNERS: ARTIFICIAL INTELUGENCE?

CONCLUSION

The number ofviruses is increasing rapidly: this is a known fact. Thetime will soon arrive when scanning

using signatures and dedicated algorithms will either use too much memory orjust become too slow. With

storage media prices dropping fast, lots ofsystems now come equipped with very large hard disks, which

will take more and more time, and thus money, to scan using traditional techniques. A properly designed

rule-based analysing system feeding suspicious code to a scanner, which can identify the suspicious code as

a known virus or Trojan, or perhaps dangerous code needing further investigation, is bound to save a lot of
1311116.

Although it is impossible to prove that code is not malicious without analysing it from one end to the other,

we in Computer Security Engineers Ltd believe it possible to reduce significantly the time used to check

files by using all the available system knowledge instead ofonly small bits ofit, as it is done today. Using

virus scanning as the primary, or in many cases the only, anti-virus defence is an absurd waste oftime and

money, and furthermore blatantly insecure!

ABOUT CSE

Computer Security Engineers Ltd is one ofthe pioneers ofanti—virus system development. The anti—virus

system PC Vaccine Professional was first published in 1987, and since the start of 1988 a new version has

been published each and every month. From 1988, cryptographic checksumrning was introduced as the

primary line ofdefence, scarming as the second. In 1992, the emphasis shifted, and behaviour blocking was

introduced as the first line ofdefence, followed by checksurnrning and — in the case ofan alarm from one of

these countermeasures or to examine incoming diskettes — scanning for known viruses. Most recently, the

basic philosophies underlying PC Vaccine professional, or PCVP as the system is also known, were

expanded into a powerful and easily-maintained network perimeter and in-depth defence based on the well-

known military tenets of: (1) keep them out and (2) ifyou can’t keep them out, find and destroy them as fast

as possible.

WRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pemrission of the publishers.

000261

000262

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ~ 2/ I

VIRUS DETECTION — ‘THE BRAINY WAY’

Glenn Coates & DavidLeigh

Staffordshire University, School ofComputing, PO Box 334, Beaconside, Stafford, ST18 ODG, UK

Tel +44 1782 294000 - Fax +44 1782 353497

ABSTRACT

Thispaper explores thepotential opportunitiesfor the use ofNeural Networks in the detection ofcomputer
viruses.

Neural computing aims to model the guidingprinciples used by the brainforproblem solving, andapply

them to a computing domain. It is not known how the brain solvesproblems at a high level; however, it is
widely known that the brain uses many small highly interconnected units called ‘neurons ’.

Like the brain, a neural network can be trained to solve aparticularproblem or recognise apattern by

example. The outcome is an algorithm-driven recogniser which does not exhibit the same behaviouras a

deterministic algorithm. According to the way in which it has been trained, it may make ‘mistakes ’. That is,

it may declare apositive resultfor a sample which is actually negative, and vice-versa. The ratio ofcorrect

results to incorrect ones can usually be improved by more or better training.

Can suchpattern recognition be harnessed to the use ofvirus detection? It could be argued that the

characteristics ofviruspatterns, no matter how they are expressed, are suitable subjectsfor detection by
Neural Networks.

INTRODUCTION

The received wisdom is that neural computing is an interesting ‘academic toy’ of little use, apart from

modelling the animal brain. If this is true, then it is surprising that 7 out of 10 ofthe UK’s leading blue chip

companies are either investigating the potential ofneural computing technology or are actually developing

neural applications [Con94]. If leading edge companies are prepared to spend money on this ‘academic toy’,

then maybe there are advantages to be gained from its use.

Without investigating new techniques (for example heuristic scanning), one must accept that the rapid rise in

new viruses will exert a heavy speed penalty from existing virus scanners. As a result ofthis rise in virus

numbers and sophistication, there will be an increasing conflict between acceptable speed and acceptable

accuracy. It is easy to become complacent and rely on increasing processor power to bail us out ofthis

problem, but processor design is increasingly becoming a mature technology.

What follows are the results ofa feasibility study into the utilisation ofneural networks within the field of
virus detection.

VIR USBULLETINCONFERENCE©1 995 VinlsBulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
' Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior

written permissionofthe publishers.

000262

000263

212 ° COATES & LEIGH: VIRUS DETECTION - ‘THE BRAINY WAY’

WHAT IS A NETWORK?

The workings ofthe brain are only lmown at a very basic level. It contains approximately ten thousand
million processing units called neurons, each of these neurons is connected to approximately ten thousand
others. This network ofneurons fonns a highly complex pattern recognition tool, capable ofconditional

learning. Figure 1 illustrates a model ofthe biological neuron alongside its corresponding mathematical
model.

Inputs i

Synapse W1[1 /
(Connection) Dendme

_ Axon

BK
(CUTOUT 10 had cell [S)]

W:

5/’ °”*‘’“‘
I

II W '

Weights w,

Axon
[Output from
Previous cell)

Synapse
[Connection]

Axon n Input Function Activation Function
[Output irom l

Prenous cem El l= z,_,,, w.i.-bios m) = 1m +e“‘]
Biological Neuron Mathematical Neuron ’

Figure 1

The individual neuron is stimulated by one or more inputs. In the biological neuron, some inputs will tend to
excite the neuron, whilst others may be inhibitory. That is to say, some cany more ‘weight’ than others.
This is mirrored in the mathematical model via the use ofa ‘weighting mechanism’. The neuron accumulates

the total value of its inputs, before passing through a threshold function to determine its final output. This
output is then fired as an input to another (or a number of) neurons, and so on. In the biological neuron, the
axon performs the threshold fimction. The mathematical model would typically use a sigmoid function or a
simple binary ‘yes/no’ threshold function. The reader is referred to [Mar93] for further discussion.

NEURAL NETWORK DEVELOPIVENT

When approaching a problem using a neural network, it is not always necessary to know in detail what is to
be done before planning its use. In this sense, they are quite unlike procedurally—based computer programs,
which have to be written with a distinct goal in mind ifthey are to work properly. It is not even like a

declarative program, for the same rule should apply. It is, perhaps, more like an expert system, where the
outcome depends on the way in which an expert has answered a pre-defmed series of questions.

In this approach, a ‘standard’ three-layer neural network is constructed using the ‘back propagation’ learning
algorithm. The architecture consists ofan input layer, a hidden layer, and an output layer. Training is carried
out by submitting a ‘training set’ ofdata to the network’s input, observing what output is given, and
adjusting the variable weights accordingly. Each neuron in the network processes its inputs, with the
resultant values steadily ‘percolating’ through the network until a result is given by the output layer. This
output result is then compared to the actual result required for the given input, giving an error value. On the
basis ofthis error value, the weights in the network are gradually adjusted, working backwards from the
output layer. This process is repeated until the network has ‘learnt’ the correct response for the given input
[DTI95]. Figure 2 illustrates this.

VIRUS B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000263

000264

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ' 2 I3

DOTCI
+

Expected
Repetitive training

process

Figure 2

In this instance, the inputs represent the virus information, or other data concerning a virus-infected file.

There are only two possible outputs, corresponding to ‘possible virus found’ and ‘file appears to be OK’.

The training data is divided into two classes, one containing the data for an infected file; and the other,

uninfected files. When a suitable output is generated for the training data, the network is checked with a

separate ‘validation set’. Ifthe output for the validation set is not acceptable, it is merged with the original
training set and the entire process is repeated . This process is described schematically in figure 3.

Figure 3

The result should be a very robust fuzzy recogniser capable ofcoping with unseen data. Because neural

networks can process deeply hidden patterns, some have provided decisions superior to those made by
trained humans.

I/IR US BULLETZNCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form wifliout the prior
written permission ofthe publishers.

OOO264

000265

2 I4 - COATES & LEIGH: VIRUS DETECTION - ‘THE BRAINY WAY’

EXISTING SYSTEMS

In 1990, a neural network was developed which acted as a ‘communications link’ between the mass ofvirus
information available and end-user observations. By answering a set ofstandard questions regarding

information on virus symptoms, the virus could be classified, and a set ofremedies given. Due to the nature
ofneural networks, the system could cope with incomplete and erroneous data provided by the end user.
Even when faced with a new mutation, the system still gave suitable counter-measures and information. See

[Gui91] for a full discussion.

IDENTIFICATION OF VIRUS CODE PATTERNS VIA NEURAL NETWORKS

A neural network could be constructed to learn the actual machine code patterns ofa specific virus.

However, as most viruses are mutations ofexisting viruses, a network could be made to identify a virus
family. This carries the advantage ofbeing capable ofidentifying future variants. This would result in a set
ofsub—networks linked together to provide the end solution.

At the lowest level this could be done at the bit level. Figure 4 illustrates this.

32313252? 00000000
1 1 1 1 1 1 1 1

Figure 4

Although recognition at this level would be very difficult (ifnot impossible for a human) a neural network
would be capable of it. The only limiting factors would be the volume and quality ofthe training data. The
number ofinput neurons for a ‘/2K virus code segment with a one-neuron output would be 4096. Given this,
according to the ‘geometric pyramid rule’, the number ofneurons in the hidden layer would be 64.

The number ofvirus samples for effective recognition would be in the region ofat least 525,000. This
figure should then be trebled for the number ofnon—infected files. Others would argue far more, due to the
problems associated with false positives.

At a higher level, the input data could be presented at the byte level, where each byte would correspond to a
single input neuron. In this context, the number ofhidden neurons would be reduced to 22, and the number
ofvirus samples would be at least 23,000. Again, the same applies for the number ofnon—infected files.
This figure could be reduced further by pre-processing the code segmentby extracting operand information,
which could also increase accuracy and training time.

The British Technology Group, with the involvement of Oxford University, conducted research into such a
solution. Although no formal documentation was produced, the results are believed to be negative.

From this, it can be seen that the use ofneural networks in virus detection only seems practical at a high
level. After all, a virus expert armed with a ‘Virus Detection Language’ and a ‘Generic Decryption Engine’
can provide a 100% accurate scanning resultwith advanced polymorphic viruses such as Pathogen in a
relatively short period of time.

VIR USBULLETINCONFERENCE©1995 V'1rus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any fonn without the prior
written permission ofthe publishers.

000265

000266

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 2/5

A NEURAL NETWORK POST-PROCESSOR

Rather than utilising a neural network to solve the virus alone, one could be used to process high level

information, for example, that generated by aheuristic scanner.

Currently, most heuristic scanners use a form ofemulation in order to determine the behaviour ofa program

file. Should that program appear to execute a suspicious activity, a ‘flag’ is set indicating this. However,
some ofthese flags indicate more virus-like activity than others. In order to solve this problem, the flags are

weighted via a score. Therefore, a flag indicating a ‘suspicious memory reference’ may be given more
weighting than a flag indicating an ‘inconsistent EXE header’. The total weights of the set flags are

computed, and if a set threshold value is met, the heuristic scanner issues a suitable warning.

In the example ofa well-known heuristic scanner, 35 ofthese flags are used. The weights are applied on an

experimental basis. Initially, the weights are applied using a ‘best-guess’ approach, based on the virus
experts’ knowledge. The results of this are then tested on a virus collection and on a clean set of files. The
results are analysed, and the weights adjusted accordingly. This cycle continues until satisfactory results are

obtained. Figure 5 illustrates this cycle.

Figure 5

This process will probably increase in complexity over the next few years. In the above example, the number

of flags could literally double due to the increase in knowledge, new techniques employed by the virus
writers, and further development of heuristic scanners. It is imminent that the cycle of adjust, test, re-adjust

will become far more complex and time-consuming. For example, why should flag-x be given a weight of 8,

and not 7 or 9, and flag-y be given a weight of 1, and not 2?

Already, one can see that the illustrated cycle is very similar in nature to that used in neural network

training. Indeed, a neural network could be used in place ofthe weighting mechanism and bias imposed by
the virus expert. Based on the results of other neural network applications, the results should be very
accurate, because the neural network will ‘learn’ the ‘optimum’ weights. The human element is removed,

and the entire learning process is automated.

I/YR USBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000266

000267

2! 6 ° COATES & LEIGH: VIRUS DETECTION - ‘THE BRAINY WAY’

In terms ofnetwork size, the number of input neurons would be 35, with 6 hidden neurons, and 1 output

neuron. In theory, the minimum number ofinfected file samples required for training would be at least 432.

However, there would be no detrimental effects from training the network with higher samples, in order to
reflect current virus numbers.

CONCLUSIONS

Neural computing is no longer seen as apure academic subject. Indeed, many companies are now looking

towards the use ofneural networks as serious tools. Many systems are currently in use, with very high
SLICCCSS rates.

It has been found that it may be feasible to use neural computing technology in the virus detection field.

However, at a low level the results are unclear. There seems to be greater accuracy using deterministic

techniques.

Using a neural network as a pre-/post-processing tool could offer a powerful addition to the virus expert’s

toolbag. Just one example is with the heuristic scanner. The authors believe other uses will also exist.

ACKNOWLEDGMENTS

As Bernard of Chartres said, echoed by Sir Isaac Newton: ‘If [we] have seen further, it is by standing on the

shoulders ofgiants’. The assistance given by the following people is gratefully acknowledged: Jan Hruska,

Frans Veldman, Alan Solomon, Martin Slade, Robert Mortimer and Michael Twist. The continuing support

ofthe staffat Staflordshire University and at Visionsoft has also been gratefully appreciated.

REFERENCES

[Con94] ‘Adopting The Neural Approach’, ControlMagazine, Issue 5, March/April 1994.

[DTI95] UKDepartment OfTradeAndIndustry, Neural Computing Technology Programme,
1995.

[Gui91] Dr. Daniel Guinier, ‘ Computer ‘virus’ identification by neural networks’, SIGSAG,
1991.

[Ma193] Timothy Masters, ‘ Practical Neural Networks in C++’, Academic Press, 1993.
ISBN 0-12-479040-2 Further Reading.

‘Neural Computing — an introduction’, R Beale and T Jackson, IOP Publishing, 1990.
ISBN O-85274-262-2.

Vesselin Bonchev, Future Trends in Virus Writing, Proceedings ofthe Fourth

International Virus Bulletin Conference, 1994.

Glenn Coates and David J. Leigh, ‘Virus Detection using a Generalised Virus

Description Language’ , Proceedings ofthe Fourth International Virus Bulletin

Conference, 1994.

VIRUS BULLETINCONFERENCE©l995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Te]. +44 (0)1235 555139. No partofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

000267

000268

VIRUS BULLETIN CONFERENCE SEPTEMBER I995 ° 2 I 7

DATA SECURITY PROBLEMS ASSOCIATED WITH HIGH

CAPACITY IDE HARD DISKS

Roger Riordan

. Cybec Pty Ltd, PO Box 205, Hampton, VIC 3188, Australia

Tel +61 3 521 0655 - Fax +61 3 521 0727 - Email riordan@tmxmelb.mhs.oz.au

INTRODUCTION

Every article on viruses starts with the advice ‘Before running any anti—viral or integrity checking

software you should always boot from a clean DOS floppy disk, to ensure there are no stealth viruses in

memory where they could interfere in the test’. Just before we sent out our February update my eye was

caught by a reference to problems being caused by special drivers used with large IDE drives. By chance

we had just bought a 1G hard disk for a home PC, so I took a copy of VET home and installed it. Then I

booted from a floppy. When I ran an uninstalled copy of VET it was unable to check drive C. This was

bad enough, as it meant the traditional advice was useless. But then I ran VET from the reference disk I

had just made. It announced ‘Master Boot Record has been changed; would you like to replace it?’

Clearly we had a problem.

This paper will discuss how the problem has arisen, the nature of the problem, what it means to users,

and what they can do to avoid the dangers these drives have introduced.

BACKGROUND

Engineers traditionally regard a safety factor of 10 as conservative; if you are designing a bridge, or a

building, you think of the largest conceivable load and then design the structure to handle something 10

times as big. This thinking has carried over into the computer industry; when IBM designed the PC most

personal computers had 64K of memory, so they allocated a luxurious 640K. Unfortrmately the

unprecedented speed of development has rendered this thinking dangerously inadequate. Sizes of

memory chips and disk drives have been doubling every two to three years, and so a safety factor of 10

will be used up in only three to four years. Given that it may well take a couple ofyears to bring a new

design to market, the old joke about the computer shop with the banner ‘New Model’, and the salesman

saying ‘It’s on sale; it’s superseded’, is all too likely to be true.

When Microsoft designed the disk handling logic for MSDOS they had to decide how to allocate all the

various steps on the way fiom the user asking to read a particular file to the disk controller being told to

read a particular sector. The first mistake they made was to make DOS do the low level sector handling,

instead of leaving it to the BIOS, and the next was in allocating disk parameters to registers in the call to

Int 13, which provides the interface between DOS and the BIOS [1].

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000268

000269

2 I8 ° RIORDAN: DATA SECURITY PROBLEMS ASSOCIATED WITH HIGH CAPACITY IDE HARD DISKS

The scheme they used was:

AH Read/write command AL Number of sectors to read

CH Number of first cylinder CL Number of first sector

DH Starting Head DL Drive

This was OK for floppies, but when IBM introduced the XT (in about 1985) this allocation meant that
the number of the starting cylinder could not be more than 255. This was too small, so Microsoft decided

to steal the top two bits of CL, and add them to CH, increasing the maximum number of cylinders to
1024, but limiting the maximum number of sectors to 63. This was messy, but not critical. The BIOS
extensions to handle the hard disk were in ROM on the disk controller card.

Then, almost immediately, the AT was introduced, and the BIOS was extended to handle the hard disk
directly. The extension loaded the various parameters into registers in the disk controller, using I/O
instructions to port addresses in the range 1F1 to lF6, and finally passing a read/write command to port
IF7. The allocation used was:

lF2 Number of sectors to read lF3 Number of first sector

lF4 Number of 1st cylinder (low) lF5 Number of 1st cylinder (high)

lF6 Head (bits 0-3 only) 1F7 I/O command.

This arrangement was fine in itself, as it would handle any conceivable size of drive, but it was seriously
incompatible with the Int 13 interface, as the maximum values which could pass unmodified through
both interfaces were:

Number of sectors 63 (6 bits from CL in Int 13)

Number of cylinders 1024 (8 bits from CH, two from CL in Int 13)

Number of heads 16 (4 bits of 1F6 in drive controller)

Length of sector 512 (DOS standard)

Thus the maximum disk size had effectively been limited to l6*1024*63*512 = 528.482 Mbyte. This

was not noticed at the time, as hard disks were typically 5 or 10 Mbytes, but by the end of the 80s hard

disks with up to I Gbyte were becoming increasingly common. At first these used the SCSI interface, but
this required a non-standard BIOS and a relatively expensive interface card. Meanwhile the far simpler
IDE interface had become standard, and had improved to the point where the SCSI interface offered

little, if any, improvement in perfonnance, and there was a strong incentive to devise a way for big drives
to be used with it, without having to replace the BIOS.

In 1994, several companies devised ways around this limitation, and inexpensive high capacity (ie greater
than 528 Mbyte) IDE drives began to appear [2]. Most of these use variations of a scheme referred to as
Extended CHS (Cylinder, Head, Sector) addressing, and replace the normal Master Boot Record with a

special boot sector. This loads an extension to the BIOS from the normally unused area following the
MBR. This copies itself to the top of normal memory (or to an area in high memory), hooks Int 13, and
then loads a normal MBR. After this the PC boots normally, but all calls to Int 13 are caught, and the

parameters translated before they are passed on to the drive controller.

When IBM designed the XT they put the MBR in sector I of head 0, cylinder 1, and left the whole of the
rest of this track empty. However many ‘compatibles’ put the DOS boot sector in sector 2, with the File
Allocation Table (FAT) following immediately after it. This incompatibility was not a significant

problem until 1988, when the unknown authors of the Stoned virus realised this unused area made an
ideal place for their virus to hide the original MBR.

I/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000269

000270

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 2 I 9

This was fine on true clones, but when Stoned infected one of these non-standard PCs it overwrote the

FAT, with disastrous results. Indeed I became involved in the AV industry only because the college

where I worked had a lab full of Olivetti M24s, and these were crashing faster than the technicians could
re-install the software on them.

Stoned, and its many descendants, have provided a strong incentive to the industry not to put anything

important in track zero, and it has come to be regarded as a convenient working area. However, as we

have noted, the special device drivers for the big IDE drives are loaded here, and so the old

incompatibility, which rendered Stoned so serious, has been re-introduced, without any warning to the

unsuspecting customers buying these drives [3].

THE DRIVERS

We believe that at least three drivers are in use, but only two seem to be common in Australia. These are:

1. Disk Manager, written by Ontrack Computer Systems, and sold with Western Digital drives, and

2. EZ-Drive, written by Micro House International, Inc, and sold with Conner drives.

Both have a non-standard MBR (in the normal location in track 0, head 0, sector 1), and store the body of

the driver in track zero, head zero, but with EZ-Drive the rest of the drive is arranged normally, whereas

Disk Manager moves the whole of the normal disk structure down one head (so that the normal MBR is

in Cylinder 0, Head 1, Sector 1, and the DOS boot sector is in Cylinder 0, Head 2, Sector 1, and so on.
For want of a better name we refer to the non-standard MBR as the Extended Boot Record (EBR). Thus

in this paper, the EBR is the sector loaded first, while the MBR is the sector loaded after the driver has

been installed. In normal use the EBR is invisible, and utilities (and viruses) will only see the MBR,

which will appear to be in the normal location.

Disk Manager occupies sectors 2 to 30, leaving sector 7 free for Stoned (the designers had apparently not

heard of the many viruses which use other sectors), and sector 63 has some data labelled ‘Disk Tables’. It

is likely this location was chosen because it is relatively unlikely to be overwritten by accident.

EZ-Drive occupies sectors 2 to 14, with no provision for viruses. Sector 2 contains the ‘normal’ MBR.
This has no boot program at all; everything but the actual partition record and sector marker is zeroed.
There are several tables which could be drive data. All these sectors are used by known viruses.

When they are active both drivers ‘stealth’ the EBR, and show the MBR, with apparently normal

partition information. Thus any virus which infects the EBR, and is compatible with the driver, will be
hidden from normal anti-viral software.

Both drivers offer to ‘boot from a floppy’ after they have installed themselves (and any compatible

viruses), so that you can then access the hard disk without running anything else from it. The On Track

driver is already compatible with quite a few viruses, and will protect them from older AV software, and

the dark side will probably try to produce more ‘compatible’ viruses to take advantage of this protection.

But at least if the virus is compatible with the driver it means that the virus can be removed by the

normal means after booting from a normal boot disk, without the AV software having to know about the
driver.

VIR USBULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000270

000271

220 - RIORDAN: DATA SECURITY PROBLEMS ASSOCIATED WITH HIGH CAPACITY IDE HARD D.ISKS
 —:?_

CHANGE OF DRIVE LAYOUT

When a PC with one of these drives is booted from a floppy, not only the MBR, but also the actual

physical layout of the drive, will appear to have been changed. Thus for two test drives:

Drive Booted from floppy Booted normally

Heads Sectors/1"rack Heads Sectors/Track

Conner/Micro House 540Mb 15 17 15 63

Western Digital/Ontrack 1Gb 6 55 16 63

This discrepancy is not too serious for the Micro House driver, as all the relevant information is
contained in the first 17 sectors, and these can be read using Int 13. However the On Track driver appears

to store the vital drive parameters in head zero, sector 63, and the normal MBR in head 1, sector 1, as
seen when the driver is resident. But ifyou have booted from a floppy and want to read these using Int

13, you would have to read head 1, sectors 8 & 9.

In general the new address is not immediately obvious, though it can be determined either by
interrogation of the disk controller, using poorly documented commands, or by reading successive
sectors until the read command fails, and then moving to the next head. Fortunately however, the

function to read using direct I/O commands can read an arbitrary number of consecutive sectors,

regardless of the layout. Thus ifwe read 64 sectors, starting with head 0, sector 1, we read the whole of
track zero, including the drive parameters, and also the normal MBR.

(As an interesting aside, despite what some utilities may report, it would appear that the initial values for
the Western Digital drive are almost certainly the true physical values; it is difficult enough to imagine

fitting three platters in a drive of that size, let alone eight!)

DISASTER CONTROL

Disk Manager has provision for generating a boot disk which loads the driver as a device driver, so that
you can access the hard disk without running any software from it. Provided the EBR (and probably also
the MBR) are intact this enables you to access the hard disk even if the device driver has been severely
damaged. This feature is not mentioned in the documentation, but is offered as a menu option during
installation.

EZ-Drive apparently cannot generate a boot disk of this type. However the installation menu does offer
‘Antiviral Boot Sector Code’. The help menu for this says:

This feature will defend your system against boot sector viruses. This does not include all viruses,

so do not rely exclusively on this or any single virus protection package. If a virus is ever detected,

a message will be posted, the virus will be removed, and the machine will reboot.

As we will see, the value of this is problematic.

No documentation is supplied with EZ-Drive. The documentation supplied with Disk Manager gives no

warning about incompatibility problems with either viruses or low level utilities.

 __ma

1/YR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pemrission ofthe publishers.

OOO271

000272

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 22]

EFFECT OF VIRUSES

The hard disk boot sectors can get infected in four different situations. These are:

i. The PC is booted directly from an infected floppy

ii. An infected floppy is inserted when the driver, afler being loaded from the hard disk, offers to boot

from a floppy '

iii. The PC is booted from an On Track special boot disk

iv. A file infected with a multi-paitite virus is run.

So far as the EZ-Drive driver is concerned these all have effectively the same result. In all cases we have

tried, or can think of, the driver will be over-written and the PC rendered unbootable. In our tests the

‘Antiviral Boot Sector Code’ was never invoked, and it would seem that the key clause in the help menu
is ‘If a virus is ever detected ..’.

With the On Truck driver, in case i. the virus will infect the EBR in head 0, sector 1, and will normally

overwrite one or more sectors in the same track. Many viruses will destroy the driver, but Stoned and

other viruses which only overwrite sector 7 will fit in the hole provided for them, and the PC will

continue to boot. In this case the, virus will be installed in memory before the driver, and the infected
sector will be hidden from normal AV software.

In all the other cases the virus will infect the normal MBR in head 1, sector 1, and overwrite one or more

following sectors. As these are unused, the PC will boot normally. In this case, the virus will be installed

in memory after the driver.

In either case, if the PC is able to boot, the virus will be able to spread.

If the EBR is infected, normal AV software will be able to remove the virus, after booting from a clean

floppy, but the PC will remain unbootable until the device driver is replaced. This can most easily be

done if a copy of track zero is saved during installation. Both drivers offer some facilities for repairing

damage, but these have not yet been fully evaluated.

If the MBR becomes infected normal AV software should be able to remove the virus, provided it can

disable the virus in memory. However if the PC is clean booted the AV software will not be able to find

the virus, unless the boot disk installs the On Track driver.

It would appear that DOS boot sector infectors should operate normally, and should not pose any special

problems.

Given this range of possibilities, disinfection of these drives poses considerable problems, especially

when the software is being operated by unskilled users.

THE PROBLEM

Ifyou are responsible for any PCs fitted with one of these drives, you should be aware of the following

dangers.

1. Most anti-viral and integrity checking programs recommend that you boot from a clean DOS disk

before running them, to ensure that no stealth viruses are in memory. However if you do so you

will be unable to access your hard disk at all. Furthermore the MBR (and even the drive

parameters) will be completely different, and if the software has taken copies of the normal MBR

it may offer to replace it, with disastrous results.

VIRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000272

000273

222 ° RIORDAN: DATA SECURITY PROBLEMS ASSOCIATED WITH HIGH CAPACITY IDE HARD DISKS

2. Most boot sector viruses will destroy the driver, rendering the contents of the hard disk
inaccessible

3. Some viruses will allow the PC to operate nonnally, but will be screened from normal AV

software by the drivers

4. Some utility sofizware uses the unused area on track zero as a work space, again making the hard
disk inaccessible. We have already recovered several drives damaged by ‘disk optimisers’.

HOW VET HANDLES THESE DRIVES

When VET 8.3 checks a hard disk, it reads the MBR using Int 13 in the normal way, and then it reads it

again, using direct port access. This bypasses the driver (and probably many security products) and
returns the true contents of head zero, sector 1. VET refers to the value obtained this way as the Extended

Boot Record, or EBR. It then compares the results, and if they differ, assumes that it is dealing with a

‘big’ drive. In this case it reads the whole track under head zero, and saves it. VET also recognises the
MBR and the EBR for both the On Track and Micro House drivers.

VET will detect and warn if the PC has been booted from a floppy, and has a facility to compare track

zero with the template, and if necessary replace it. If VET is asked to check the boot sectors, and detects
a virus in the EBR, and a template for the clean track is available, it will automatically offer to replace

the damaged track.

COMPATIBILITY PROBLEMS

Windows 95, and probably Windows NT, issue a warning when VET uses direct 1/0 to read the EBR.
This is not fatal, but may alarm users.

Some early PCs may give erroneous results when VET reads the EBR, and could be classified
erroneously as big drives, and it is possible that some security products may either complain, or confuse
VET.

THE SOLUTION

If you are in charge of any PCs using these drives (and which do not have the new motherboards
described in the next section) there are a number of steps you should take. These include:

1. Prepare a rescue disk for these PCs. At the minimum this should include a copy of the special
driver, the same version of DOS, and any utilities required to get your system running. Ifyour

anti-viral software permits it, make a separate rescue disk for each PC, and use it to save a copy of
track zero on the disk. (And make sure you label the disks clearly, so you know which PCs they

belong to.)

I would strongly advise against buying any drive using a driver which does not permit you to

prepare such a disk.

2. Ensure that all anti-viral, security and utility software in your organisation is aware of these drives.

Be particularly wary of users with their cherished ‘private’ utilities hidden away.

3. Warn the users (again!) about the dangers viruses pose to their system, and ensure that up-to-date
AV software is readily accessible at all times AND USED!

4. Review your backup procedures!

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OXI4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOO273

000274

VIRUS BULLETIN CONFERENCE SEPTEMBER I 995 0 223

THE FUTURE

An ironic feature of this affair is that the problem these drivers overcome is a short term one. As well as

the Extended Cylinder, Head, Sector addressing already described, the large drives can all be addressed

using a second addressing mode, known as Logical Block Addressing (LBA).

In this system, which Microsoft should have introduced years ago, all addresses are passed to the drive

simply as an absolute address. Instead of fiddling around with drive parameter tables, cylinders, heads,

sectors and all the rest, DOS would simply ask ‘Read 73 blocks, starting at block 34,156’. Thus DOS has

much less book-keeping to worry about, as all the dirty details of mapping the request to the physical

arrangement of the disk can be left to the drive controller.

This frees the drive maker from the restrictions imposed by CHS addressing, and makes it far simpler to

introduce more sophisticated designs. For example, in existing drives the capacity is set by the inmost

tracks, wheretthe head is moving more slowly, so that the bits are packed more closely. LBA addressing

will make it easier for the drive designers to increase the capacity by putting more sectors on the outer

tracks where the head is moving faster.

This advance is being utilised in two ways.

The motherboards in the latest PCs feature a modified BIOS which traps Int 13 and converts the CHS
address back to an LBA address, which it then passes on to the drive. This means these PCs can use the

large drives, with existing versions of DOS, without encountering the problems already described.

Windows 95, and presumably equivalent versions of competing operating systems, will use LBA

addressing throughout, and will be able to access the new drives directly.

Thus everyone in the industry is being forced to worry about a problem which will have been solved

almost as soon as it has been introduced. Unfortunately the large number of these drives being fitted to

existing PCs means that we will probably have to go on dealing with it for another ten years.

CONCLUSION

The computer industry generally, and the PC industry in particular, is notorious for its disregard for

standards, and the number and inelegance of the 'kludges' it resorts to. These drivers are one more

example of this; a kludge introduced to overcome a short-term problem which will cause many users to

lose data, and raise problems for other sections of the industry for years to come.

Fortunately, knowledge, as usual, is power, and if you are aware of the problem, and use the right

software, these drives should not cause you any serious problems.

REFERENCES

[1] ‘IDE Takes Off, John Bryan, Byte, March 1994

[2] ‘Breaking the 528 MB DOS Barrier’, Quantum Corp, PC Update, April 1995.

[3] ‘Breaking the 528 MB DOS Barrier; the Downside’, R.H.Riordan, PC Update. June 1995.

I/YRUS BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

OOO274

000275

224 ° RIORDAN: DATA SECURITY PROBLEMS ASSOCIATED WITH HIGH CAPACITY IDE HARD DISKS

VIR US BULLETIN CONFERENCE ©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers. '

OOO275

000276

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 - 225
 m_j

SCANNERS OF THE YEAR 2000: HEURISTICS

Dmitry 0. Gryaznov

S&S lntemational Plc, Alton House, Gatehouse Way, Aylesbury, Bucks, HP19 3XU, UK

Tel +44 1296 318700 - Fax +44 1296 318777 - Email grdo@sands.co.uk

INTRODUCTION

At the beginning of 1994, the number ofknown MS-DOS viruses was estimated at around 3,000. One year
later, in January 1995, the number ofviruses was estimated at about 6,000. By the time this paper was
written (July 1995), the number ofknown viruses exceeded 7,000. Several anti-virus experts expect this
number to reach 10,000 by the end of the year 1995. This large number ofviruses, which keeps growing

fast, is known as the glut and it does cause problems to anti-virus software — especially to scanners.

Today, scanners are the most frequently used type ofanti-virus software. The fast-growing number of
viruses means that scanners should be updated frequently enough to cover new viruses. Also, as the number

ofviruses grows, so does the size ofthe scanner or its database, and in some implementations the scanning

speed suffers.

It was always very tempting to find a final solution to the problem; to create a generic scanner which can
detect new Viruses automatically without the need to update its code and/or database. Unfortunately, as

proven by Fred Cohen, the problem ofdistinguishing a virus from a non—virus program is algorithmically
unsolvable as a general rule.

Nevertheless, some generic detection is still possible, based on analysing a program for features typical or
not typical ofviruses. The set of features, possibly together with a set of rules, is known as heuristics.
Today, more and more anti-virus software developers are looking towards heuristical analysis as at least a

partial solution to the glut problem.

Working at the Virus Lab, S&S International Plc, the author is also carrying out a research project on
heuristic analysis. The article explains what heuristics are. Positive and negative heuristics are introduced
and some practical heuristics are represented. Different approaches to a heuristical program analysis are
discussed and the problem offalse alarms is explained and discussed. Several well-known scanners

employing heuristics are compared (without naming the scanners) both virus detection and false alarms rate.

1 WHY SCANNERS?

Ifyou are following computer virus-related publications, such as the proceedings ofanti-virus conferences,
magazine reviews, anti-virus software manufacturers’ press releases, you read and hear mainly ‘scanners,
scanners, scanners’. The average user might even get the impression that there is no anti-virus software
other than scanners. This is not true. There are other methods offighting computer viruses —but they are not

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No pan of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pennission of the publishers.

000276

000277

226 ° GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

as popular or as well known as scanners; and anti-virus packages based on non-scanner technology do not
sell well. Sometimes people who are trying to promote non-scanner based anti-virus software even come to
the conclusion that there must be some kind ofan international plot ofpopular anti-virus scanner producers.

Why is this? Let us briefly discuss existing types ofanti-virus software. Those interested in more detailed
discussion and comparison ofdifferent types ofanti-virus software can find it in [Bontchevl], for example.

1.1 SCANNERS

So, what is a scanner? Simply put, a scanner is a program which searches files and disk sectors for byte
sequences specific to this or that known virus. Those byte sequences are often called virus signatures. There
are many different ways to implement a scanning technique; from the so-called ‘dumb’ or ‘grunt’ scanning
of the whole file, to sophisticated virus-specific methods ofdeciding which particular part ofthe file should
be compared to a virus signature. Nevertheless, one thing is common to all scanners: they detect only known
viruses. That is, viruses which were disassembled or analysed and from which virus signatures unique to a

specific virus were selected. In most cases, a scanner cannot detect a brand new virus until the virus is
passed to the scanner developer, who then extracts an appropriate virus signature and updates the scanner.
This all takes time — and new viruses appear virtually every day. This means that scanners have to be

updated frequently to provide adequate anti-virus protection. A version ofa scanner which was very good
six months ago might be no good today ifyou have been hit byjust one ofthe several thousand new viruses

which have appeared since that version was released.

So, are there any other ways to detect viruses? Are there any other anti-virus programs which do not depend

so heavily on certain virus signatures and thus might be able to detect even new viruses? The answer is yes,
there are: integrity checkers and behaviourblockers (monitors). These types of anti-virus software are
almost as old as scanners, and have been known to specialists for ages. Why then are they not used as

widely as scanners?

1.2 BEHAVIOUR BLOCKERS

A behaviour blocker (or a monitor) is a memory-resident (TSR) program which monitors system activity
and looks for virus-like behaviour. In order to replicate, a virus needs to create a copy of itself. Most often,

viruses modify existing executable files to achieve this. So, in most cases, behaviour blockers try to

intercept system requests which lead to modifying executable files. When such a suspicious request is
intercepted, a behaviour blocker, typically, alerts a user and, based on the user’s decision, can prohibit such
a request from being executed. This way, a behaviour blocker does not depend on detailed analysis ofa
particular virus. Unlike a scanner, abehaviour blocker does not need to know what a new virus looks like to
catch it.

Unfortunately, it is not that easy to block all the virus activity. Some viruses use very effective and
sophisticated techniques, such as tunnelling, to bypass behaviour blockers. Even worse, some legitimate
programs use virus-like methods which could trigger a behaviour blocker. For example, an install or setup
utility is often modifying executable files. So, when a behaviour blocker is triggered by such a utility, it’s up
to the user to decide whether it is a virus or not — and this is often a tough choice: you would not assume that

all users are anti-virus experts, would you?

But even an ideal behaviour blocker (there is no such thing in our real world, mind you!), which never

triggers on a legitimate program and never misses a real virus, still has a major flaw. To enable a behaviour
blocker to detect a virus, the virus must be run on a computer. Not to mention the fact that virtually any user

would reject the very idea ofrunning a virus on his/her computer, by the time a behaviour blocker catches
the virus attempting to modify executable files, the virus could have triggered and destroyed some ofyour

valuable data files, for example.

VIRUSBULLETINCONFERENCE©l995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OXl43YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO277

000278

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ' 22 7

1.3 INTEGRITY CHECKERS

An integrity checker is a program which should be run periodically (say, once a day) to detect all the

changes made to your files and disks. This means that, when an integrity checker is first installed on your

system, you need to run it to create a database of all the files on your system. During subsequent runs, the

integrity checker compares files on your system to the data stored in the database, and detects any changes
made to the files. Since all viruses modify either files or system areas ofdisks in order to replicate, a good

integrity checker should be able to spot such changes and alert the user. Unlike a behaviour blocker, it is
much more difficult for a virus to bypass an integrity checker, provided you run your integrity checker in a

virus clean environment — e.g. having booted your PC from a lmown virus-free system diskette.

But again, as in the case ofbehaviour blockers, there are many possible situations when the user’s expertise

is necessary to decide whether changes detected are the result ofvirus activity. Again, ifyou run an install

or setup utility, this normally results in modifications to your files which can trigger an integrity checker.

That is, every time you install new software on your system, you have to tell your integrity checker to

register these new files in its database.

Also,"there is a special type ofvirus, aimed specifically at integrity checkers — so-called slow infectors. A

slow infector only infects objects which are about to be modified anyway; e. g. as a new file being created by

a compiler. An integrity checker will add this new file to its database to watch its further changes. But in the
case ofa slow infector, the file added to the database is infected already!

Even ifintegrity checkers were free of the above drawbacks, there still would be a major flaw. That is, an

integrity checker can alert you only after a virus has run and modified your files. As in the example given

while discussing behaviour blockers, this might be well too late...

1.4 THAT’S WHY SCANNERS!

So, the main drawbacks ofboth behaviour blockers and integrity checkers, which prevent them from being

widely used by an average user, are:

1. Both behaviour blockers and integrity checkers, by their very nature, can detect a virus only after you

have run an infected program on your computer, and the virus has started its replication routine. By

this time it might be too late —many viruses can trigger and switch to destructive mode before they

make any attempts to replicate. It’s somewhat like deciding to find out whether these beautiful yet

unknown berries are poisonous by eating them and watching the results. Gosh! You would be lucky to

get away with just dyspepsia!

2. Often enough, the burden to decide whether it is a virus or not is transferred to the user. It’s as if

your doctor leaves you to decide whether your dyspepsia is simply because the berries were not ripe

enough, or it is the first sign ofdeadly poisoning, and you’ll be dead in few hours ifyou don’t take

an antidote immediately. Tough choice!

On the contrary, a scanner can and should be used to detect viruses before an infected program has a chance

to be executed. That is, by scanning the incoming software prior to installing it on your system, a scanner

tells you whether it is safe to proceed with the installation. Continuing our berries analogy, it’s like having a

portable automated poisonous plants detector, which quickly checks the berries against its database ofknown

plants, and tells you whether or not it is safe to eat the berries.

But what ifthe berries are not in the database ofyour portable detector? What if it is a brand new species?

What ifa software package you are about to install is infected with a new, very dangerous virus unknown to

your scanner? Relying on your scanner only, you might find yourselfin big trouble. This is where behaviour

blockers and integrity checkers might be helpful. It’s still better to detect the virus while it’s trying to infect

VIRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO278

000279

228 ° GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURJSTICS

your system, or even after it has infected but before it destroys your valuable data. So, the best anti-virus

strategy would include all three types ofanti-virus software:

o a scarmer to ensure the new software is free of at least known viruses before you run the software

o a behaviour blocker to catch the virus while it is trying to infect your system

o an integrity checker to detect infected files after the Virus has propagated to your system but not yet
triggered.

As you can see, the scanners are the first and the most simply implemented line ofanti-virus defence.

Moreover, most people have scanners as the only line ofdefence.

2 WHY HEURISTICS?

2.1 GLUT PROBLEM

As mentioned above, the main drawback ofscarmers is that they can detect only known computer viruses.

Six or seven years ago, this was not a big deal. New viruses appeared rarely. Anti-virus researchers were

literally hunting for new viruses, spending weeks and months tracking down rumours and random reports
about a new virus to include its detection in their scanners. It was probably during these times that a most

nasty computer virus-related myth was bom that anti-virus people develop viruses themselves to force users

to buy their products and profit this way. Some people believe this myth even today. Whenever I hear it, I

can’t help laughing hysterically. Nowadays with two to three hundred new viruses arriving monthly, it
would be total waste of time and money for anti-virus manufacturers to develop viruses. Why should they

bother ifnew viruses arrive in dozens virtually daily, completely free ofcharge? There were about 3,000

known DOS viruses at the beginning of 1994. A year later, in January 1995, the number ofviruses was

estimated at least 5,000. Another six months later, in July 1995, the number exceeded 7,000. Many anti-

virus experts expect the number ofknown DOS viruses to reach the 10,000 mark by the end of 1995. With
this tremendous and still fast-growing number ofviruses to fight, traditional virus signature scanning

software is pushed to its limits [Skulasom Bontc/zev2]. While several years ago a scanner was often

developed, updated and supported by a single person, today a team of a dozen skilled employers is only

barely sufficient. With the increasing number ofviruses, R&D and Quality Control time and resource

requirements grow. Even monthly scanner updates are often late, by one month at least! Many formerly
successful anti-virus vendors are giving up and leaving the anti-virus battleground and market. The fast-

growing number ofviruses heavily affects scanners themselves. They become bigger, and sometimes
slower. Just few years ago a 36OKb floppy diskette would be enough to hold halfa dozen popular scarmers,

leaving plenty ofroom for system files to make the diskette bootable. Today, an average good signature-
based scanner alone would occupy at least a 720Kb floppy, leaving virtually no room for anything else.

So, are we losing the war? I would say: not yet — but ifwe get stuck with just virus signature scanning, we

will lose it sooner or later. Having realised this some time ago, anti-virus researchers started to look for

more generic scanning techniques, known as heuristics.

2.1 WHAT ARE HEURISTICS?

In the anti-virus area, heuristics are a set ofrules which should be applied to a program to decide whether

the program is likely to contain a virus or not. From the very beginning of the history of computer

viruses different people started looking for an ultimate generic solution to the problem. Really, how does

an anti-virus expert know that a program is a virus? It usually involves some kind ofreverse engineering

(most often disassembly) and reconstructing and understanding the virus’ algorithm: what it does and how it
does it. Having analysed hundreds and hundreds ofcomputer viruses, it takes just few seconds for an

experienced anti-virus researcher to recognise a virus, even it is a new one, and never seen before. It is

WR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 2] The Quadrant, Abingdon, Oxfordshire, 0Xl43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO279

000280

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 229

almost a subconscious, automated process. Automated? Wait a minute! If it is an automated process, let’ s

make a program to do it!

Unfortunately (or rather, fortunately) the analytic capabilities ofthe human brain are far beyond those ofa
computer. As was proven by Fred Cohen [Cohen], it is impossible to construct an algorithm (e.g. a
program) to distinguish a virus from a non-virus with 100 per cent reliability. Fortunately, this does not
rule out a possibility of90 or even 99 per cent reliability. The remaining one per cent, we hope to be able to
solve using our traditional virus signatures scanning technique. Anyway, it’s worth trying.

2.2 SIMPLE HEURISTICS

So, how do they do it? How does an anti-virus expert recognise a virus? Let us consider the simplest case: a
parasitic non-resident appending COM file infector. Something like Vienna, but even more primitive. Such a
virus appends its code to the end of an infected program, stores a few (usually just three) first bytes ofthe
victim file in the virus body and replaces those bytes with a code to pass control to the virus code. When the

infected program is executed, the virus takes control. First, it restores the original victim’s bytes in its
memory image. It then starts looking for other COM files. When found, the file is opened in
Read_and_Write mode; then the virus reads the first few bytes ofthe file and writes itself to the end of the

file.aSo, a primitive set ofheuristical rules for a virus ofthis kind would be:

l. The program immediately passes control close to the end of itself

2. It modifies some bytes at the beginning of its copy in memory

3. Then it starts looking for executable files on a disk

4. When found, a file is opened

5. Some data is read from the file

6. Some data is written to the end of the file.

Each ofthe above rules has a corresponding sequence in binary machine code or assembler language. In

general, ifyou look at such a virus under DEBUG, the favourite tool of anti-virus researchers, it is usually
represented in a code similar to this:

START: ; Start of the infected program

JMP VIRUSCODE ; Rule 1: the control is passed

; to the virus body

<victim’ s code>

VIRUS: ; Virus body starts here

SAVED: ; Saved original bytes of the
victim’s code

MASK: DB ‘*.COM’,O ; Search mask

VIRUSCODE: ; Start of the virus code

MOV DI,OFFSET START ; Rule 2: the virus restores

MOV SI,OFFSET SAVED ; victim’s code

MOVSW ; in memory
MOVSB ;

MOV DX,OFFSET MASK ; Rule 3: the virus

VIRUSBULLET[NCONFERENCE©l995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of fliis publication may be reproduced, stored i.n a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000280

000281

230 ° GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

MOV AH,4EH ; looks for other

INT 21H ; programs to infect

MOV AX,3DO2H ; Rule 4: the virus opens a file

INT 21H 7

MOV DX,OFFSET SAVED ; Rule 5: first bytes of a file

MOV AH,3FH ; are read to the virus

INT 21H ; body

MOV DX,OFFSET VIRUS ; Rule 6: the virus writes itself

MOV AH,4OH ; to the file
INT 21H 7

Figure 1. A sample virus code

When an anti-virus expert sees such code, it is immediately obvious that this is a virus. So, our heuristical

program should be able to disassemble a binary machine-language code in a similar manner to DEBUG, and
to analyse it, looking for particular code patterns in a similar manner to an anti-virus expert. In the simplest
cases, such as the one above, a set ofsimple wildcard signature string matching would do for the analysis.

In this case, the analysis itself is simply checking whether the program in question satisfies rules 1 through

6; in other words, whether the program contains pieces ofcode corresponding to each ofthe rules.

In a more general case, there are many different ways to represent one and the same algorithm in machine

code. Polymorphic viruses, for example, do this all the time. So, a heuristic scanner must use many clever
methods, rather than simple pattem-matching techniques. Those methods may involve statistical code

analysis, partial code interpretation, and even CPU emulation, especially to decrypt self-encrypted viruses:
but you would be surprised to know how many real life viruses would be detected by the above six simple
heuristics alone! Unfortunately, some non-virus programs would be ‘ detected’ too.

2.3 FALSE ALARMS PROBLEM

Strictly speaking, heuristics do not detect viruses. As behaviour blockers, heuristics are looking for virus-
like behaviour. Moreover, unlike the behaviour blockers, heuristics can detect not the behaviour itself, but

justpotential ability to perform this or that action. Indeed, the fact that a program contains a certain piece of
code does not necessarily mean that this piece ofcode is ever executed. The problem ofdiscovering whether

this or that code in a program ever gets control is known in the theory ofalgorithms as the Halting Problem,

and is in general unsolvable. This issue was the basis of Fred Cohen’s proofofthe impossibility ofwriting

a perfect virus detector. For example, some scarmers contain pieces ofvirus code as the signatures for which
to scan. Those pieces might correspond to each and every one ofthe above six rules. But they are never

executed — the scanner uses themjust as its static data. Since, in general, there is no way for heuristics to
decide whether these code pieces are ever executed or not, this can (and sometimes does) causefalse alarms.

A false alarm is when an anti-virus product reports a virus in a program, which in fact does not contain any

viruses at all. Different types of false alarms, as well as most widespread causes of false alarms, are

described in [Solomon] for example. A false alarm might be even more costly than an actual virus infection.

We all keep saying to users: ‘The main thing to remember when you think you’ve got a virus — do not

panic! ’ Unfortunately, this does not work well. The average user will panic. And the user panics even more
if the anti-virus software is unsure itselfwhether it is a virus or not. In the case, say, where a scanner

definitely detects a virus, the scanner is usually able to detect all infected programs, and to remove the virus.

At this point, the panic is usually over; but ifit is a false alarm, the scanner will not be able to remove the
virus, and most likely will report something like: ‘This file seems to have a virus’, naming just a single file

as infected. This is when the user really starts to panic. ‘It must be a new virus! ’ — the user thinks. ‘What do

VIRUS BULLETINCONFERENC©1995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX1 43YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000281

000282

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 23/

I do?!’ As a result, the user well might format his/her hard disk, causing himselfa far worse disaster than a
virus could. Formatting the hard disk is an unnecessary and un-justified act, by the way; even more so as

there are many viruses which would survive this act, unlike legitimate software and data stored on the disk.

Another problem a false alarm can (and did) cause is negative impact on a software manufacturing company.
If an anti-virus software falsely detects a virus in a new software package, the users will stop buying the

package and the software developer will suffer not only profit losses, but also a loss ofreputation. Even if it
was later made known that it was a false alarm, too many people would think: ‘There is no smoke without

fire’, and would treat the software with suspicion. This affects the anti-virus vendor as well. There has

already been a case where an anti-virus vendor was sued by a software company whose anti-virus protection

mistakenly reported a virus.

In a corporate environment, when a virus is reported by anti-vims software, whether it is a false alarm or
not, the normal flow ofoperation is interrupted. It takes at best several hours to contact the anti-virus

technical support and to ensure it was a false alarm before normal operation is resumed — and, as we all
know, time is money. In the case of a big company, time is big money.

So, it is not at all surprising that, when asked what level offalse alarms is acceptable (10 per cent? 1 per

cent? 0.1 per cent?), corporate customers answer: ‘Zero per cent! We do not want any false alarms! ’

As previously explained, by its very nature heuristic analysis is more prone to false alarms than traditional
scanning methods. Indeed, not only viruses but many scanners as well would satisfy the six rules we used as

an example: a scanner does look for executable files, opens them, reads some data and even writes
something back when removing a virus from a file. Can anything be done to avoid triggering a false positive

on a scanner? Let’s again turn to the experience of a human anti-virus expert. How does one know that this

is a scanner, and not avirus? Well, this is more complicated than the above example ofaprimitive virus.

Still, there are some general rules too. For example, if a program relies heavily on its parameters or involves

an extensive dialogue with a user, it is highly unlikely that the program is a virus. This leads us to the idea

ofnegative heuristics; that is, a set ofrules which are true for a non-virus program. Then, while analysing a

program, our heuristics should estimate the probability ofthe program to be a virus using both positive
heuristics, such as the above six rules, and negative heuristics, typical for non-virus programs and rarely

used by real viruses. Ifa program satisfies all our six positive rules, but also expects some command—line

parameters and uses an extensive user dialogue as well, we would not call it a virus.

So far so good. Looks like we found a solution to the virus glut problem, right? Not really! Unfortunately,

not all virus writers are stupid. Some are also well aware ofheuristic analysis, and some oftheir viruses are

written in a way which avoids the most obvious positive heuristics. On the other hand, these viruses include

otherwise useless pieces ofcode, the only aim ofwhich is to trigger the most obvious negative heuristics, so
that such a virus does not draw the attention ofa heuristical analyser.

2.4 VIRUS DETECTION VS. FALSE ALARMS TRADE-OFF

Each heuristic scanner developer sooner or later comes to the point when it is necessary to make a decision:

‘Do I detect more viruses, or do I cause less false alarms?’ The best way to decide would be to ask users

what do they prefer. Unfortunately, the users’ answer is: ‘I want it all! 100 per cent detection rate and no
false alarms!’ As mentioned above, this cannot be achieved. So, a virus detection versus false alarms trade-

offproblem must be decided by the developer. It is very tempting to build the heuristic analyser to detect
almost all viruses, despite false alarms. After all, reviewers and evaluators who publish their tests results in

magazines read by thousands ofusers world-wide, are testing just the detection rate. It is much more

difficult to run a good false alarms test: there are gigabytes and gigabytes ofnon-virus software in the

world, far more than there are viruses; and it is more difficult to get hold ofall this software and to keep it

for your tests. ‘Not enough disk space’ is only one of the problems. So, let’s forget false alarms and

negative heuristics and call a virus each and every program which happens to satisfy just some ofour

VJR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000282

000283

232 ~ GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

positive heuristics. This way we shall score top most points in the reviews. But what about the users? They
normally run scanners not on a virus collection but on a clean disks. Thus, they won’t notice our almost
perfect detection rate, but are very likely to notice our not-that-perfect false alarms rate. Tough choice.
That’s why some developers have at least two modes ofoperation for their heuristical scanners .The default _
is the so-called ‘normal’ or ‘low sensitivity’ mode, when both positive and negative heuristics are used and

a program needs to trigger enough positive heuristics to be reported as a virus. In this mode, a scanner is
less prone to false alarms, but its detection rate might be far below what is claimed in its documentation or
advertisement. The often-used (in advertising) figures of ‘more than 90 per cent’ virus detection rate by
heuristic analyser refer to the second mode of operation, which is often called ‘high sensitivity’ or
‘paranoid’ mode. It is really a paranoid mode: in this mode, negative heuristics are usually discarded, and
the scanner reports as a possible virus any program which happens to triggerjust one or two positive
heuristics. In this mode, a scanner can indeed detect 90 per cent ofviruses, but it also produces hundreds
and hundreds of false alarms, making the ‘paranoid’ mode useless and even harmful for real-life everyday

use, but still very helpful when it comes to a comparative virus detection test. Some scanners have a special
command—line option to switch the paranoid mode on; some others switch to it automatically whenever they
detect a virus in the normal low sensitivity mode. Although the latter approach seems to be a smart one, it

takes just a single false alarm out ofmany thousands ofprograms on a network file server to produce an
avalanche of false virus reports.

2.5 HOW IT ALL WORKS IN PRACTICE: DIFFERENT SCANNERS COMPARED

Being myselfan anti-virus researcher and working for a leading anti-virus manufacturer, I have developed a
heuristic analyser ofmy own. And ofcourse, I could not resist comparing it to other existing heuristic
scanners. We believe the results will be interesting to other people. They underscore what was said about

both virus detection and false alarms rates. As the products tested are our competitors, we decided not to

publish their names in the test results. So, only FindVirus ofDrSolomon ’s Anti Virus Toolkitis called by its
real name. All the other scanners are referred to with letters: Scarmer_A, Scanner_B, Scanner_C and

Scanner_D. The latest versions ofthe scanners available at the time ofthe test were used. For FindVirus, it

was version 7.50 — the first version to employ a heuristic analyser.

Each scanner tested was run in heuristics-only mode, with normal virus signature scanning disabled. This

was achieved by either using a special command—line option, where available, or using a special empty virus

signature database in other cases.

The test consisted oftwo parts: virus detection rate and false alamis rate. For the virus detection rate S&S
InternationalPlc ONE OF EACH virus collection was used, containing more than 7,000 samples ofabout

6,500 different known DOS viruses. For the false alarms test the shareware and freeware software collection
ofSIMTEL20 CD-ROM (fully unpacked), all utilities from different versions ofMS-DOS, IBM DOS,
PC-DOS and other known files were used (current basic S&S false alarms test set).

When measuring false alarms and virus detection rate, all files reported were counted; reported either as
‘Infected’ or ‘Suspicious’. Separate figures for the two categories are given where applicable.

In both parts ofthe test, the products were run in two heuristic sensitivity modes, where applicable: normal
or low sensitivity mode, and paranoid or high sensitivity mode. The automatic heuristic sensitivity

adjustment was prohibited, where applicable.

The results of the tests are as follows:

_—

VIRUSBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000283

000284

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 233

Virus Detection Test

Files Files triggered (infected + suspicious)
scanned Normal Paranoid

FindVirus 7375 5902 (N/A) 80.02% N/A

. Scanner_D 7375 5743 (0+5743) 77.87% 6182 (0+6182) 83.54%

Scanner_C 73 75 5692 (O+5692) 77.18% N/A

Scanr1er_A 73 75 4250 (N/A) 57.63% 6491 (N/A) 87.74%

Scanner_B 7392(*) 3863 (2995+868) 52.38% 6124 (2992+3132) 82.68%

(*) Scanner_B was tested couple ofdays later, when 17 more infected files were added to the collection.

Table 1. Wrus detection test results.

False alarms test

Files Files triggered (infected + suspicious)

scanned(*) Normal Paranoid

FindVirus 13603 0 (N/A) 0.000% N/A

Scanner_A 13428 11 (N/A) 0.082% 371 (N/A) 2.746%

Scanner_B 13471 17 (0+17) 0.126% 382 (0+3 82) 2.836%

Scanner_D 13840 24 (0+24) 0.173% 254 (0+254) 1.824%

Scanner_C 13603 28 (0+28) 0.206% N/A

(*) Different number of files reported as scanned is due to the fact different products treat somewhat different sets of file extensions
as executables.

Table 2. False alarms test results

3 WHY ‘OF THE YEAR 2000’?

Well, first of all simply because I could not resist the temptation of splitting the name of the paper into three

questions and using them as the titles of the main sections ofhis presentation. I thought it was funny.

Maybe I have a weird sense ofhumour. Who knows...

On the other hand, the year 2000 is very attractive by itself. Most people consider it a distinctive milestone

in all aspects ofhuman civilisation. This usually happens to the years ending with double zero; still more to

the end of a millennium, with its triple zero at the end. The anti-virus arena is not an exclusion. For

example, during the EICAR’ 94 conference there were two panel sessions discussing ‘Viruses ofthe year

2000’ and ‘Scanners ofthe year 2000’ respectively. The general conclusion made by a panel ofwell-known

anti-virus researchers was that, at the current pace ofnew virus creation by the year 2000, we well might

face dozens (ifnot hundreds ofthousands) ofknown DOS viruses. As I tried to explain in the second

section ofthis paper (and other authors explained elsewhere [Skulas0n, Bontchev2]), this might be far too

much for a current standard scanners’ technique, based on known virus signature scanning. More generic

anti-virus tools, such as behaviour blockers and integrity checkers, while being less vulnerable to the

growing number ofviruses and the rate at which the new viruses appear, can detect a virus only when it is

already running on a computer or even only after the virus has run and infected other programs. In many

cases, the risk ofallowing a virus to run on your computer is just not affordable. Using a heuristic scanner,

on the other hand, allows detection ofmost ofnew viruses with a regular scanner safe manner: before an

infected program is copied to your system and executed. And very much like behaviour blockers and

integrity checkers, a heuristic scanner is much more generic than a signature scanner, requires much rare

updates, and provides an instant response to a new virus. Those 15-20 per cent ofviruses which a heuristic

WR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO284

000285

234 ° GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

scanner cannot detect could be dealt with using current well-developed signature scanning techniques. This
will effectively decrease the virus glut problem five fold, at least.

Yet another reason for choosing the year 2000 and not, say, 2005 is thatI have strong doubts whether the

current computer virus situation will survive the year 2000 by more than a couple ofyears. With new

operating systems and environments appearing (Windows NT, Windows’95, etc.) I believe DOS is doomed.
So are DOS viruses. So is the modern anti-virus industry. This does not mean viruses are not possible for

new operating systems and platfonns — they are possible in virtually any operating environment. We are
aware ofviruses for Windows, OS/2, Apple DOS and even UNIX. But to create viruses for these operating

systems, as well as for Windows NT and Windows’95, it requires much more skill, knowledge, effort and
time than for the virus-friendly DOS. Moreover, it will be much more difficult for a virus to replicate under

these operating systems. They are far more secure than DOS, if it is possible to talk about DOS security at
all. Thus, there will be far fewer virus writers and they will be capable ofwriting far fewer viruses. The

viruses will not propagate fast and far enough to represent a major problem. Subsequently, there will be no

virus glut problem. Regrettably, there will be a much smaller anti-virus market, and most oftoday’s anti-

virus experts will have to find another occupation...

But until then, DOS lives, and anti-virus developers still have a lot ofwork to do!

REFERENCES

[Bontclzevl] Vesselin Bontchev, ‘Possible Virus Attacks Against Integrity Programs And How To

Prevent Them’, Proc. 2ndInt. Virus Bulletin Conf, September 1992, pp. 131-141.

[Skulason] Fridrik Skulason, ‘The Virus Glut. The Impact ofthe Virus Flood’, Proc. 4th

EICAR Conf, November 1994, pp. 143-147.

[Bontclzev2] Vesselin Bontchev, ‘Future Trends in Virus Writing’, Proc. 4th Int. Virus Bulletin

Conf, September 1994, pp. 65-81.

[Cohen] Fred Cohen, ‘Computer Viruses — Theory and Experiments’, Computer Security: A

Global Challenge, Elsevier Science Publishers B. V. (North Holland), 1984,

pp. 1 43 - 1 58.

[Solomon] Alan Solomon, ‘False Alarms’, Virus News International, February 1993, pp. 50-52.

I/YR US BULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

OOO285

000286

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 235

COMPUTERVIRUSES ANDARTIFICIAL INTELLIGENCE

DavidJStang

Norman Data Defense Systems Inc, 3028 Javier Road, Suite 201, Fairfax, VA 22031, USA

Te1+1703 573 8802 - Fax+1 703 573 3919

INTRODUCTION

The world ofcomputing has talked much about ‘artificial intelligence’, but unfortunately the last decade has

not seen much intelligence in software. The task ofdefending systems against computer viruses is one in

which artificial intelligence could certainly be applied, with potentially valuable results.

The purpose ofthis paper is to show how traditional anti-virus practices (namely, scanning) cannot keep up
in today’s more sophisticated computer virus era. Instead, one must look towards advanced techniques for

generic prevention, detection, and removal ofviruses.

BACKGROUND: THE PROBLEMS OF DETECTION

Computer viruses have been around since 1986. Since then, four distinct phases have emerged, each with a
different impact on anti-virus scanners:

PHASE 1: SIMPLE, STATIC VIRUSES

In 1986, there were 8 viruses, all written in what we will term ‘the traditional approach’. That is to say, each

virus was written with static code, resulting in every copy ofthe virus looking the same. The traditional

approach to detecting these viruses was to search for static code with a scanner and alarm when amatch was
found. The key to scanning is to have a ‘scan string’ which identifies each virus. These scan strings can
only be extracted ifthe anti-virus vendor has a sample ofthe virus; and the goal ofscanning is to detect a
virus which has already infected a file or a boot sector.

PHASE 2: ENCRYPTION

In 1987, virus authors began writing encrypted viruses, such as Cascade, in an attempt to defeat scanners. In

Cascade, all but the first 35 bytes ofthe virus are encrypted, with each copy being different. This difference

was accomplished by an encryption algorithm which used the original file size as the key. The actual number
of different copies (except for the first few bytes) is the number ofdifferent file sizes available. Scanner

developers solved such problems by scanning for those 35 static, stable bytes. This feat was manageable,
and soon all scanners detected all copies ofCascade.

VIRUS BULLETINCONFERENCE©l995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000286

000287

236 ° STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE

PHASE 3: ENCRYPTION WITH VARIABLE JUNK IN DECRYPTION ALGORITHM

In the late 1980’s, virus authors came up with another method ofdefeating scanners: by inserting variable

bytes in various places, replacing the static code reminiscent of 1986. The best ofsuch viruses placed these
variable bytes in the decryption algorithm itself. Scanner developers solved this new problem this way:

define scan strings which contain markers for variable bytes, develop scanning algorithms to find some

bytes, skip a variable number ofbytes, and search for a match on the next bytes. For instance, to detect the

fully encrypted virus Sverdlov (also known as ‘Hyrrm ofthe USSR’, ‘USSR. 1962’, etc, and written in

September, 1991), a scanner could use a scan string such as ‘FE EB 02 ‘.7? ?? 83 EE 08’. Using this method,

scanning was slowed, but the scanners could still ‘win’.

PHASE 4: POLYMORPHICS ROAM THE EARTH

In 1990, the beginning ofthe fourth and currentphase, virus authors began writing polymorphic viruses, in

which the stable bytes — the decryption algorithm— became shorter and shorter, and in which a number of

different encryption algorithms were nested. Some Viruses, such as Whale (August, 1990), were also able to

be encrypted in memory, meaning that a traditional scan ofmemory might not identify them any better than
a traditional scan offiles. Some scanner vendors responded with large additional chunks ofcode in their

scanner engines — code which was able to decrypt a specific polymorphic virus. Other vendors responded

initially with more brute force in the scan string approach. For example, to detect the 32 morphs ofWhale,

Norton Anti-Virus version 1.5 provided 32 scan strings.

This approach seemed to work for atirne, but then polymorphic engines came on the scene, including the

Cybertech Mutation Technology, Dark Avenger’s Mutation Engine (MtE), Simulated Metamorphic
Encryption Generator (SMEG), Trident Polymorphic Engine (TPE), Virus Creation Laboratory WCL), and
more. Such engines take a non-polymorphic virus as input and then output the virus with polymorphic

qualities. The availability ofsuch engines has obviously made the task ofwriting a polymorphic virus
straightforward. With these engines, virus authors no longer need to write their own polymorphic code. This
cuts down on theirproduction cycle and, as a result, the number ofpolymorphics has doubled about every 8
months, rather than the 8.5 month doubling time for viruses in general. Today, over 200 viruses are known

to use a polymorphic engine, and another 50 polymorphic viruses exist which do not use any ‘off-the-shelf
engine. Quite understandably, scanners have a difficult time detecting such polymorphic viruses.

It is difficult to estimate how many different polymorphic viruses exist:

1. Scanners have trouble detecting all copies ofa single polymorphic virus, much less discriminating

between two viruses which use the same engine. Thus, all viruses written with MtE are likely to be

identified by a scanner as ‘MtE’. Ifcar buyers could only distinguish cars based on engine manufacturer,

they would not think they had much to choose from.

2. No one seems to be able to agree on exactly what a polymorphic virus is. We could say that it was a

virus which never had more than a string ofn constant, consecutive bytes in common across copies of
itself. But then we would need to define n. Ifn is less than a certain size, scanners will sometimes raise a

false alarm. If the position ofthese bytes is variable, the false alarm rate goes up. Ifthe bytes are bytes

in common with many other uninfected programs (e.g., ‘(c) Microsofi’) then false alarms are inevitable.

Some ofthese engines make the viruses highly polymorphic and difficult to detect using a traditional
scanner. For instance, Girafe, which uses the Trident Polymorphic Engine (TPE), is able to create 1615

different copies of itself— about 18,446,774,000, 000,000,000 different morphs! Anti-virus vendor response

was predictable: try to reverse—engineer a polymorphic virus, then try to detect its engine. However, vendor
success has been limited. Some products, such as Central Point Anti-Virus seem unable to detect any

polymorphic viruses whatsoever (see Virus Bulletin, July 1994). Few products are able to detect all copies
of such polymorphic viruses as NATAS or Satan Bug, and no product is able to detect all copies of
Commander Bomber.

VIR USBULLETINCONFERENCE ©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX] 43YS, England.

Tel. +44 (0)1 235 555139. N0 part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pennission ofthe publishers.

OOO287

000288

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ~ 237

Another characteristic ofthe fourth phase — the large numbers ofnew viruses being produced — augments the
strain on ‘scanners’ due to the sheer number ofscan strings which must be produced. In the past 5 years, the

total number ofviruses has doubled about every 8.5 months. As ofJanuary 1, 1995, there may have been

7,198 or so different viruses‘. Ifthis number is correct, and the doubling rate is 8.5 months, then at the time
ofwriting this, there would be about 16,000 different viruses. Surely this number exceeds the discrimination
power of scanners.

There are many reasons for this glut ofnew viruses.

There is ample help for doing so in published books, journals (such as Computer Virus Developments
Quarterly, which published source code for a ‘Windows 95’ virus two months before Windows 95
shipped), virus authoring software, and heavily commented source code. Virus Exchange BBSs (VXBBSS)
are electronic bulletin boards, to which hackers connect in order to communicate electronically and exchange

files and viruses. VXBBSs typically stock the source code for 1,000 or more viruses, along with samples of

viruses which a budding author can disassemble and study. Virus authors believe in sharing their virus-

writing skills, and therefore provide their source code for others to revise and/or adapt.

In contrast, not everyone can write an anti-virus product. The effort required to write a product which stops

all viruses is far greater than the effort required to write a single virus which gets past some anti-virus

products. There is no published help for doing so, either. Vendors strive to be profitable, so don’t share
source code for their products.

With perhaps 500 active virus authors in the world, and only about 50 active anti-virus vendors, the stage is
set for overtaking products with problems. Over the past 4 years, viruses have emerged at a faster rate than

scanner detections have improved. Where once a scanner could detect 100% ofthe world’s viruses, today
few scanners detect more than 80%, and some, such as MSAV/MWAV with DOS 6.22, may only detect

about 25%. (MSAV/MWAV in DOS 6.22 is exactly the same program which shipped with DOS 6.00, and

only detects 1,404 viruses— about 25% ofthose which some other products can detect). In relative terms,
scanners have gotten worse.

BACKGROUND: THE ‘PROBLEMS OF REMOVAL’

Users and organizations live by a single cardinal rule: any virus found must be removed. Although some
believe that deleting the infected file and restoring the file from backups is sufficient and satisfactory, often

no backups exist, and sometimes the backups are infected. Removing the virus from an infected file or boot
sector is a worthy and reachable goal.

As with scanners, new virus technologies have been problematic for virus removal.

The traditional approach for dealing with removal was to ‘hard code’ the instructions for removal into the

product: move the file pointer, copy bytes, then truncate the file. With hard-coded removal instructions,
precision in both the identification and removal algorithms is critically important, for an error in either
means that the anti-virus product simply damages the file or sector. Many users who have experienced such

damage have stoically considered this to be one ofthe hazards ofwar; an unfortunate event.

The removal problem for vendors is complicated by the large number ofviruses that are out there. Today, it
is no longer adequate for a scanner to casually identify a virus based on a dozen bytes matched, then proceed
to brutalize the file in which they were found, because the actual virus might be a derivative ofthe original

which the scanner has identified — one which requires different removal steps. For instance, one single scan

string can detect most members ofthe Jerusalem family, but various variants ofJerusalem add different
numbers ofbytes to the infected file.

1 See Norman Technical Report #9, ‘ How Many Viruses Are There?’

VIR US BULLETZNCONFERENCE©l995 Virus Bulletin Ltd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOO288

000289

238 - STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELLIGENCE

Here are just a few examples:

Variant ofJerusalem Bytes Added

Suriv 1 897

Slow 1701-1716

Jerusalem 2187 2187

Any removal instructions which treat each ofthese different samples in the same manner are likely to leave
the user in an unfortunate condition.

Removal is further complicated when a virus is derived from two or more other viruses. Some scanners use

short scan strings, with which they might detect the file or boot sector to be infected with one ofthe

progenitors, not the derivative. Furthermore, ifthe scanner proceeds to attempt to remove the virus, the

scanner would surely fail to remove the derivative virus and/or succeed in damaging the file.

Encryption makes for difficult removal as well. Ifa file virus encrypts just 1 byte ofa file, then traditional

removal requires that the scanner know how to decrypt that byte; for, without decryption, removal is not

possible.

Anti-virus vendors have responded to the issue ofremoval with a variety oftactics. They have argued that

only 100 or so viruses have ever been found in the wild, thus the ability to remove thousands ofviruses is

not important. Unfortunately, no one has done any real research on which viruses are found in the wild, and

it is likely that there are thousands, rather than hundreds, which have surfaced in one or more offices in the

past year.

Anti-virus vendors have also coped by suggesting that the virus at hand is a ‘new variant’; that the user

somehow has the misfortune ofbeing one ofthe first to ever have this virus. Users are in no position to

judge the truth ofthis statement, but the fact is that because viruses take a great deal of time to become

widely distributed and common, most of these ‘new variants’ are actually 2 or 3 years old.

OTHER PROBLEMS WITH THE CURRENT ANTI-VIRUS PARADIGMS

We have noted that the current anti-virus paradigms have problems with both virus detection and removal,

and that these problems are growing over time. There are otherproblems as well, leading us to the

conclusion that a new paradigm is necessary.

1. Scanning takes time. It takes a fmite amount of time to scan a machine for viruses — perhaps 5

minutes or more. Ifthe country’s 70 million employees who use PCs spend 5 minutes a day

scanning, and earn $15 an hour, the annual cost ofscanning (260 days a year) is $22,659,000,000.

The ‘costs ofscanning’ exceed the purchase price ofanti-virus software afterjust a few weeks of

scanning.

2. Scanning is mis-timed. Ifa machine is scanned every day at 9:00 AM, and infected one day at 9:05

AM, the virus has an entire day to spread throughout the machine and the organization. A virus can

spread surprisingly far in this length oftime. Even if the scanner is able to detect this virus, scanning

presumes that the virus has already infected some disks or files. Traditional scanning is thus a means

ofdetecting a problem which has already occurred, rather than a way ofpreventing a problem.

3. Scanners need constant upgrading. With 10 new viruses each day, full detection via a scanner

requires daily upgrades to the product. But most organizations find upgrades a nightmare, and will

not be able to upgrade this frequently. Organizations need something which does not require frequent

upgrades.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

OOO289

000290

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 239

4. Scanners are slowing. The more viruses a scanner must search for, the more places within a file it
must search, and the more files it must search across, the slower the search must be. Since strings

must be stored in memory, and memory is limited, we will soon see two-pass products, which load

one set of strings, scan, then load a second set and scan. While vendors have used indexed searching

techniques to speed their task, and computers are faster than they once were, their drives are also
getting larger. Tomorrow’ s scanners will inevitably be slower than today’s and yesterday’s.

Scanner maintenance is beyond the capability ofvendors. Ifthere are only 10,000 viruses today,

and the average virus requires only 1 hour to analyze, write detection instructions, and test those
instructions, then creating just the detection instructions is a 10,000 hour job - about 4 person years.
To compound the problem, polymorphic viruses can each require weeks ofanalysis by the world’s
most skilled programmers to determine how to detect it. It is no wonder that during the past year,
many vendors have either failed or been absorbed by bigger companies. Today, the U.S. has only a
few vendors with American-made products: IBM, McAfee, Symantec/Norton, Norman Data Defense

Systems and RG Software. The programming strain ofthe traditional scanning paradigm has been one
ofthe causes ofthis shrinking in the anti-virus vendor industry.

UI

IN SEARCH OF A NEW PARADIGM

If the old scanning paradigm is falling farther behind in dealing with the virus problem, what must we look

toward ‘in a newparadigm? Here are some minimal requirements:

l> The new paradigm must be able to prevent viruses from infecting boot areas and files, and prevent
them from gaining control of the machine. The adage about an ounce ofprevention is still true.

I> The new paradigm must not require any user intervention. Background, transparent operation is
critical for users who do not have the time to do a daily (or hourly!) scan.

I> The new paradigm must not slow the user or the machine. Today’s computers are used in business,
where time is money.

I> The new paradigm must be able to remove all viruses without necessarily resorting to prior
knowledge ofthe specific nature ofthe virus. This is a requirement because it will be increasingly

likely, in the future, that the virus in your machine is not a virus which your vendor has ever seen.

l> The new paradigm mustprovide automatic recording ofevents and automatic notification ofthe

organization’s virus response team.

These requirements point to a proactive, preventive solution which includes artificial intelligence: behavior

blocking (dynamic code analysis) and static code analysis.

BEHAVIOR BLOCKING (DYNAMIC CODE ANALYSIS)

Ifwe cannot realistically expect to detect viruses with scan strings — because of their proliferation, because

ofthe increase in polymorphics, etc — then we must find some other way ofdetecting them. Ideally, users
should strive to buy a product which prevents viruses from infecting rather than merely detecting them after

they have infected. This kind ofprotection is available with behavior blocking.

DEFINITION

Behavior blocking is defined as the process ofdynamic code analysis. The sequence ofactions ofa program
is monitored to determine ifthe actions are consistent with the behavior ofviruses. Because a blocker cannot

merely monitor action, but must prevent certain actions, the smart behavior blocker must employ some

technique to prevent the actual results ofa sequence ofsteps, (for instance, the behavior blockercould permit
a program to execute in a ‘virtual machine’ until it had determined that the sequence ofactions was

VIRUS BULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000290

000291

240 ~ STANC: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE

legitimate or was virus-like; if legitimate, the actions could be echoed to the real machine. The virtual
machine could include virtual CPUs, virtual drives, etc). The techniques used by one behavior blocker may

differ from those used by another, but the underlying principle will be the same: a sequence ofcode
execution willbe monitored until it is determined that the sequence is safe or is harmful; ifharmful, the

code will not be permitted to execute and the user will be notified.

HISTORY OF THE IDEA

The idea ofbehavior blocking is not entirely new. Andy Hopkins was one ofthe first to offer a behavior

blocker named Bombsqad, a TSR which would alert the user whenever a boot sector was written to, a file

was written to, and so on. It simply watched the usage ofDOS interrupts, and when a designated event took

place, stopped the event and alerted the user, awaiting pennission to continue. The problem with his
approach was that it could not distinguish between a virus and a user. So the user would attempt to write to a
file, and the warning would be triggered. After a number offalse alarms , the user would eventually abandon
the behavior blocker.

Bombsqad is no longer used. Many detractors ofthe technique assumed that behavior blocking had to cause
false alarms, and dismissed the approach. Today, behavior blocking is not widely accepted as an approach,

in part because ofthe inadequacy ofthe early demonstrations ofthe technique.

A number ofproducts come with components which could be considered to be behavior blockers. For

example, products from ESaSS and Prescription Software include resident file attribute monitors. Ifa
virus is to infect an executable file (in a ‘parasitic’ wayz), it can do so only ifthe file attributes permit it. If a

file is marked read—only, then the virus must change this attribute to read-write before infecting. Ofcourse,

viruses have been clearing file attributes, infecting, then restoring attributes since the Jerusalem virus

(1987). A resident attribute monitor can intercept the process ofclearing attributes, or the process of
changing the read-only attributeto read-write, or the process ofchanging any attribute. It can be selective or
clumsy, be programmed to permit exceptions (such as changes caused by ATTRIB) or not, and can even be

self-learning (let the user come up with an attribute changer ofhis own, a self-learning resident attribute
monitor can be told to ignore these kinds ofchanges, and won’tbother the user again when this same

program is used to change other attributes).

Another approach to behavior blocking can be found in Norton ’s resident scanner, which intercepts Ctrl-Alt-

Del, and checks the floppy drives for boot viruses. If it finds the floppy infected, it does not permit the
warm reboot, but rather warns the user that the disk is infected. This effectively prohibits a reboot from

infecting a machine with a boot virus, ‘blocking’ the infection.

Smart behavior blocking has been in use worldwide for several years. Developed by RE Solutions in

Malaysia, and marketed in Asia by Extol and elsewhere by Norman Data Defense Systems, a device driver is
able to ‘see’ the difference between an uninfected TSR (such as IPX or NETX) loading into memory and an

infected TSR loading into memory. It is able to see the difference between the behavior ofa database

program which writes bytes to a database, and a virus which writes bytes to an executable. This behavior A
blocking device driver, called NVC.SYS, is part of‘Armour’, Norman ’s virus protection package.

HOW SMART BEHAVIORBLOCKING WORKS

A smart behavior blocker is able to disentangle the complex behavior of a virus from the complex behavior

ofa user running complex software. The basic design ofsuch an instrument requires that viruses be very
well understood by the designer, and that detailed sequences ofbehavior, not simple coarse behaviors, be

examined and analyzed. The designer ofa smart behavior blocker must use statistical analysis to determine

the probabilities that particular behavior sequences are those ofa virus or of a user. A coarse behavior

2 A virus that ‘infects’ by creating separate code that is called before the ‘infected file (as with DIR-II or a companion virus) will not
be thwarted by file attributes. Such viruses are rare.

VIR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

OOO291

000292

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° 24!

blocker might simply stop writing to a COM file, which may be an entirely valid action (e.g. some MS—DOS
patches write directly to executables). A smart behavior blocker might reason as follows:

Action Comment

A process opens a file oftype ‘COM’ Nothing wrong so far.

The process reads to the end ofthe file Still nothing wrong, but suspicious.
and then adds to the end ofit, increasing
its size.

The process returns to the beginning ofthe Definitely something wrong. Like virus
file and patches the code to point to the activity, and must be stopped, reversed,

segment which was appended to the file. and reported.

ADVANTAGES OF BEHAVIOR BLOCKING

Behavior blocking has its advantages:

I> Becauselthe behavior blocker prevents the virus from infecting, it eliminates the need for removal
from all but the original infected file.

V A behavior blocker can have a long shelf-life. Advanced algorithms can be used so that upgrades need
not be done with the frequency ofscanner updates. Because the behavior blocker does not scan for

specific viruses but instead looks at the program’s behavior, it need not be upgraded each time a new
virus is discovered.

BEHAVIOR BLOCKING VS. RESIDENT SCANNING

Behavior blockers are sometimes confused with resident scanners. In fact, they are completely different

technologies. Resident scanners are scanners that stay in memory, and scan a file or boot area when

triggered by some event. Therefore, the problems with resident scanners are the same as those we have
already enumerated for scanners. In addition, resident scanners necessarily occupy large amounts of

memory, something most users cannot spare these days3. To cut down on memory consumption, most
resident scanners do not contain any code to detect polymorphic viruses. This is not surprising — the code

required would exceed the amount ofmemory a user is willing to allocate to such a program, and the
resident scanner would slow the machine far too much. But a smart behavior blocker can detect and stop all

polymorphic viruses at the time they try to go resident or infect a file. After all, a resident polymorphic
virus goes into memory exactly the Way a non—polymorphic virus does; a polymorphic’s infection process is

exactly the same as anon-polymorphic’s process.

Smart behavior blocking’s effectiveness is shown by Norman tests, in which only 12 viruses of 1,000 new

1994 viruses (less than 1.2%) got past the 1993 version of the Norman device driver. In comparison, the
most recent versions oftraditional non-resident scanners missed more than 20% ofthese viruses.

FUNCTIONS OF A BEHAVIOR BLOCKER

What might a behavior blocker be asked to do? Thinking of ‘behavior’ alone, here is a short list:

5 Prevent avirus from going resident by loading low and allocating memory.

I> Prevent avirus from going resident by loading to the top ofconventional memory and not allocating
memory.

3 It is not necessary for a resident scanner to occupy a lot ofconventional or upper memory, however. Thu.nderbyte’s TBSCANX

and its companion TBDRIVER can be loaded so as to use 0Kb ofconventional memory, and only 4Kb ofupper memory. The
remainder ofmemory consumption is effectively hidden from the user, in the form ofextended or expanded memory.

VIRUS BULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000292

000293

242 ° STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELLIGENCE

I> Prevent a virus (or any other code) from writing to the Master Boot Sector or boot sector.

IF Prevent a virus from adding its code to programs, whether resident or direct action.

Iv Prevent a virus from tunnelling around anti-virus or other software in an effort to gain control ofthe
machine without detection. —

Ifwe did not split hairs, and permitted a resident behavior blocker to do other forms ofanti-virus work, and
wished it to be generic (working with all viruses), then we could add to this list offunctions:

I> Determine ifa boot virus is resident at the time the behavior blocker is loaded, and optionally disable

the resident code.

Iv Determine ifa floppy disk is infected with some boot virus, and if so, clean it.

We might also expect that the behavior blocker would signal users audibly and visually (whether in DOS or
Windows), would recommend the proper course ofaction, would record the event in a log, and would
transmit relevant information to a server if the user is on a network. It happens that all ofthese capabilities

are provided by Norman ’s NVC.SYS.

DRAWBACKS OF BEHAVIOR BLOCKING

Even smart behavior blocking may never be always smart enough. Some programs, for instance, write to
themselves in a virus-like way. Installation and upgrade routines may patch existing files in a virus-like

way. WINCIM and other communication programs may create temporary marker files when a batch
download is requested, then dribble bytes into these existing files during a download, in a virus-like way.
Programmers compiling to a file which already exists may overwrite the existing file in avirus-like way.
Access controlproducts, and products which use stealth boot virus technology to redirect the view of the
Master Boot Sector (such as MicroHouse’ EZDrive and OnTrack’s Disk Manager), can look like they are
stealth boot viruses in memory. Odd boot sectors on a floppy can be detected by generic examiners as boot

viruses, and get an unneeded cleaning.

In the end, whether a behavior blocker works well for a user, without false alarms, depends on exactly what
other software they are using. In the future, the very, very smart behavior blocker will probably be able to
deal with exceptions, so that certain pre-defined or user-defmed events do not trigger it.

STATIC CODE ANALYSIS FOR DETECTION

Behavior blocking requires behavior, or live action. A program which loads and executes is behaving. But a
behavioral analysis is not the only ‘generic’ way to detect a virus.

CHECKSUMMING

One common method ofdetecting avirus in a file is to checksum the file and store the information. Later,

when the file is checksummed again, the checksummer can compare the current result with the previously
stored value and warn the user ofany difference.

The checksum approach has so many problems with its common implementations that it has fallen out of
favor with knowledgeable users.

Problems include:

Iv Many checksummers ignore boot sectors and Master Boot Sectors, yet perhaps 90% of office
infections are ofboot sectors, rather than files.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000293

000294

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 243

I> Checksummers which do not scan memory might be run at the same time a virus which infects on

open, close, or directory scan is resident in memory. In such a case, the checksummer itselfwill

become infected, as well as the files which it checks.

Ir Checksummers cannot report on why a file has changed, and therefore triggers false alarms on self-

modifying programs.

l> Checksummers cannot name, remove, or tell us anything about viruses.

There is a pleasant variation ofchecksumming which we have found useful. Since the master boot record

and the boot record are small, and are rarely changed ‘legally’, why not back them up, then compare the

backup copy with the current version; ifthey have changed, tell the user, and offer to repair by replacement?

Norman has used this approach in its BootGuard (BG.EXE) and rescue disk program (RC.EXE) with

considerable success. RC.EXE can also determine that CMOS has changed in some way, and can restore it.

STATIC __CODE ANALYSIS

A superior alternative to checksumming is that ofstatic code analysis, both for detection and removal. Static

code analysis is defined as the process during which the code is not loaded and executed but rather studied

while it is,‘dormant’. Examples ofstatic code analysis include ‘heuristic scanning’ and code disassembly.

Static code analysis for detection ofviruses generally involves looking at the ‘sum ofthe parts’. Ifthe tool

finds a few very good reasons to think something contains a virus, or finds a number of fairly good reasons,
it can conclude that the file is infected.

Products able to do heuristic analysis ofstatic code (i.e. a file or sector which was stored on a drive) and

conclude whether or not the code contained a virus have been around for years. Some implementations have

been slow, some produce false alarms, but generally the approach has merit. Products ofnote which offer

heuristic scanning include TBScan (from the ESaSS), F-Prot (from Frisk Sofiware), NSCAN and ViewBoot

(both from Norman).

In an appendix, we provide samples ofstatic code analysis. For a file virus, we provide copies ofthe output

from ESaSS’s TBScan and Normar1’s NScan. (F-Prot will, if run with the switches /analyze /only, produce

the line ‘ [filename] seems to be infected with a virus’. We did not think this enough information to provide

a page in the appendix. If F-Prot is told to do heuristics, but it recognizes the virus by name, it does not

provide anything but the name ofthe virus found.) For a boot virus, we provide copies of the output from

Norman ’s ViewBoot. (Neither F-Prot nor TBScan provide static code analysis ofboot sectors.) This output

includes both the ViewBoot report and the ViewBoot disassembly.

Static code analysis offers these potential benefits:

l> Potentially it can provide accurate information on a virus sample. If a product identifies a virus as

‘Jerusalem’, static code analysis can, potentially, provide more useful information about that

particular sample than V-Base or other pre-published reports, for the name ‘Jerusalem’ is not

adequately precise to determine which strain it is, and thus, exactly what it does.

Ir It can, potentially, determine that a suspect sample is infected, or is not infected with a virus. This

can be useful ifthe virus is new, and not detected and named by a standard scanner.

However, static code analysis can suffer from these drawbacks:

l> Static code analyzers must be carefully tuned, or they will show very high false alarm rates. Such

alarms ultimately lead to distrust of the static code analyzer, and cause all manner ofmischiefand

mayhem until the alarm is determined to be a false alarm.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX]43YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pennission ofthe publishers.

000294

000295

244 ° 5TANG: COMPUTER VIRUSES AND ARTIFICIAL INTELLIGENCE

If Static code analyzers typically do not name the virus, when they find one. While the static code
analyzer cannot be faulted for this, it leaves us with an incomplete understanding ofwhat we have
found.

I> Static code analysis can be slower than traditional scanning. Since traditional scanning is already
slower than users might like, static code analysis is likely to not be used quite as ofien as might be

appropriate.

I> Static code analysis, in itself, constitutes detection, but not removal. Unless the code analyzer
contains algorithms for removal, it leaves the user in the precarious position ofknowing they have a
problem, but not knowing what to do about it. There are, however, generic approaches to removal —
approaches which work. We discuss these approaches in the next section.

If A static code analyzer must know how to decrypt an encrypted virus, or it will (falsely) conclude that
the file is not infected.

STATIC CODE ANALYSIS FOR REMOVAL

In the same way we use static code analysis for detection, we can use static code analysis for removal. The
goal is generic removal — removing a virus without identifying it by name and without having prior
knowledge about the particular virus. Many sceptics might say that generic removal is not possible, but
some companies, such as ESaSS and Norman, have been doing this with great success for years.

NON-SPECIFIC CLEANING OF FILES

The basic concept is simple. Consider the lowly COM file. On the first pass, the first 3 bytes ofthe COM
file can be captured and stored along with some appended code which indicates the file’s original size, date,
and time. When a virus infects such a file, it replaces the first 3 bytes, stores them, and typically appends to

the bottom ofthis file. On the second pass with the generic remover, the remover can see that the code it has

added is no longer at the bottom. Ifthe virus has left the code intact, then removal involves simply replacing
the first 3 bytes (now ajump to the virus) with the original 3 bytes and then truncating the file to the correct
size, date, and time. With an EXE file, the process involves first safely storing the header ofthe file, along
with the size, date, time, and program entry point in a separate file. Repair can be done by replacing the
header; removing prepended code, as needed, returning the entry point to its original state; then truncating to
the correct length.

What ifa file becomes infected with a virus which encrypts l or more bytes of the file? The generic remover

can discern that the result of its effort is not successful, because the stored checksum mismatches the

checksum which would be produced on its straightforward repair. In such a case, the remover can build a
‘box’ in memory, and run the virus in the box, allowing it to single-step against a ‘virtual CPU’. The virus
begins by decrypting itself(and the program it has infected). With each step, the generic remover studies the
results to determine ifthe checksum is now correct. If so, it copies the decrypted file from memory to the

drive, and closes the box on the virus, shutting it off long before it does any damage.

1n the case ofWindows files, overwriting becomes a serious problem for traditional removers. Many DOS
viruses which infect Windows files assume that the file is a DOS file, and overwrite the first few thousand

bytes ofWindows program code, adding themselves to what they see as a DOS program with a DOS EXE
header. Because ofthis destruction, Windows EXE files do not seem to survive infection by DOS EXE

infectors. However, with generic removal, the Windows program code can be stored safely away and
restored when needed. This restoration is enough to remove the virus and return the Windows program to its

original condition.

V./RUS BULLETINCONFERENCE©] 995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, OX1 43YS, England.

Tel. +44 (0)1235 555139. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

000295

000296

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° 245

 m

NON-SPECIFIC CLEANING OF THE BOOT AREA

There are other approaches to generic removal. Boot viruses provide the simplest example. Consider a non-
stealth, non-encrypting boot virus (which is to say, most virus infections). The virus typically copies the
original Master Boot Record or boot record to some other sector, places its code in the sector of the code it
has just copied, and ends with a jump to the displaced code. Then, when the machine boots, it reads the
infected code, then the displaced unmodified original code.

Generic removal is straightforward: simply determine that the sector is infected (for instance, count the
number ofoccurrences ofcalls to lnterrupt 13h. Healthy Master Boot Records and healthy boot records each

contain 2 occurrences; infected sectors contain more or less). Now look in all the obvious places for such a

virus to have moved the original code: the slack space (side 0, cylinder 0, sectors 2 through 11), the bottom
ofthe root directory, the final cylinder, and any clusters marked bad in the FAT. Once the healthy record is
located, simply copy it back to where it belongs. This is the approach taken by Norman ’s NVCLEAN, and it
works with almost all boot viruses. It fails in those rare cases ofviruses that overwrite the sector, such as

Da’Boys.

If the virus is a stealth, encrypting virus (such as Monkey), the process can be different: use a pair of

independent mechanisms to determine whether Interrupt 13h is owned by hardware or software. Ifowned by
software, take a ‘photograph’ ofthe master boot record and boot record as the resident virus would permit.

i Such a picture isvperfect, showing the sector as it should look. Now disable the virus by borrowing Interrupt
13 from it, and take another look. Either the Master Boot Sector or boot sector will look different, and we

are in a position to repair by reversing the virus’ original displacement ofthe sector. Thus in the case of
Monkey, we can now copy the code from side 0, cylinder 0, sector 3 (the original Master Boot Record,
which we saw in unencrypted form when Monkey was active) to side 0, cylinder 0, sector 1, overwriting

Monkey and ‘cleaning’ the machine. This is the approach taken by Norman ’s NOSTELTH.

Another approach to dealing with the stealth, encrypting virus is easier on the programmer; a bit harder on
the user: boot dirty (from the infected hard disk) and take a picture ofthe Master Boot Sector and boot

sector. Copy the picture to a floppy. Now reboot clean. When drive C yields an ‘invalid drive specification’,

simply write the code photographed to the appropriate sectors. This can be done with Norman ’s BootGuard.

THE FUTURE OF ARTIFICIAL INTELLIGENCE IN THE WAR AGAINST VIRUSES

It is a mistake to assume that nothing has been done with artificial intelligence concepts in fighting viruses.

In truth, the most popular anti—virus products seem to use none ofthese techniques in their own design. But
good anti—virus products do use artificial intelligence. Each ofthe techniques described in this paper has
successful implementation in commercial products. For instance, Norman ’s products, which incorporate all
ofthe new paradigm techniques described here, boast about 2 million users around the world.

But there is much to be done. For instance, users still shop for traditional scanners, having learned this

paradigm back in 1989, when the paradigm had merit and the implementations oftoday’s newparadigm left
much to be desired. User acceptance is required before the vendors oftraditional anti—virus products begin to

look into the new intelligent paradigm.

User acceptance will always be affected by the false alarm rate. Ifa product triggers false alarms too often,
users will reject it. That is not to say that reviewers will find fault. Typically, a reviewer aims a scanner at a
directory full ofviruses and garbage. A traditional scanner, which is well-written, will separate the viruses
from the garbage by following the flow ofprogram execution before reaching a decision. Ifvirus code is in
an unreachable area, the program is damaged, not infected. This means that the very best scanners can
achieve detection rates ofonly 60% in some tests, where the number ofgarbage files is high. But any

product which triggers false alarms under such conditions is likely to win praise from the reviewer.

VIR US B ULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000296

000297

246 ~ STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE

APPENDIX: ESASS’S TBSCAN ANALYSIS OF A JERUSALEM STRAIN

Thunderbyte virus detector V6.24 — (C) Copyright 1989-1994, ESaSS B.V.

Tbscan report, 02-21-1995 12:55:00

Parameters: c:\oops*.com heuristic lo

C \OOPS\JERUSTD.COM infected by Jerusalem related virus

c No checksum / recovery information (Anti—Vir.Dat) available.

F Suspicious file access. Might be able to infect a file.

M Memory resident code. The program might stay resident in memory.

U Undocumented interrupt/DOS call. The program might be just tricky

but can also be a virus using a non—standard way to detect itself.

Found 1 files in 1 directories, 1 files seem to be executable.

1file is infected by one or more viruses

 _:a

I/YRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX1 4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000297

000298

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° Z47 '

APPENDIX: NORMAN’S NSCAN ANALYSIS OF A JERUSALEM STRAIN

Scanning Results.

Report prepared by NSCAN on 02-21-1995 at 12:58:12.

Contact your help desk or Norman Data Defense Systems Inc. at 703-573-8802
with questions.

There is a 100% chance that C:\OOPS\JERUSTD.COM contains a Virus.

* appears to infect when files are loaded and executed.

* opens files, moves file pointer, reads files, writes to files, closes

files.

* gets, sets attributes. * gets, resets file date.

* adds the text —>I2V2l<— to the end of files it infects.

Use of Memory:

* allocates memory. * resizes memory. * goes resident.

Interrupt Usage:

* disables, enables interrupts.

* uses interrupts: 21h, 08h, 24h.

Symptoms:

* deletes files.

* displays a message or graphic.

* effects may be date—actiVated.

* checks for date of 13, Friday, 1987.

Stealth Index: 6 (above average: resets attributes, sets file date, hides in

memory, disables error handler.)

4EO0B8003DCD21725A2EA370008BD8B80242B9FFFFBAFBFFCD2172EB0505002EA311OOB905OOBA6B

———————————————————————————————— —— SUMARY —--————————-———————--—————————-———

Switches : C:\OOPS ANALYZE

Total files scanned : 3

Total bytes scanned : 3,325

Total infected files : 1

VIRUS BULLETINCONFERENCE ©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX]4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

000298

000299

248 - STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE

APPENDIX: NORMAN’S VIEWBOOT ANALYSIS OF A BOOT VIRUS

Analysis of Boot Record of A:

Prepared by ViewBoot, a product of Norman Data Defense Systems Inc.

Date: 02-21-1995

Time: 13:01:48

1. Positive Identification

— > This sector contains the Form.A.DS5 virus or variant! <-

— > Norman checksum: 00081694

(The .DS means this virus is one identified by David Stang, but not yet

accurately named by other products. The name is provisional.)

2. Analysis of code in the sector

u Number of FATS is normal: 2

— Contains no code to wait for keyboard input if disk is not bootable. May

be encrypted.

— This boot sector does not contain bootstrap code. This is abnormal. The

virus may occupy two sectors, or may be encrypted.

- Contains no code to display error messages in event of trouble. May be

encrypted.

— Contains code to write sectors. This is very virus—like! This code is
found 3 times!

— Contains 8 occurrences of calls to Int l3h. Healthy boot and master boot

sectors contain 2 and only 2 occurrences of this interrupt. Boot viruses

usually contain more, sometimes less.

— Contains code to get the date from the real—time clock. This is like some

viruses, and unlike healthy sectors.

0 Normal boot signature (Ua) found.

-> Conclusion: This sector is infected with a virus. <-

VIR US BULLET[NCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.
Tel. +44 (0)1235 555139. No partofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000299

000300

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 249

 APPENDIX: DISASSENIBLY BY NORNIAN’S VIEWBOOT

Disassembly of Boot Record of A:

Performed on 02-21-1995 at 13:02:01

By ViewBoot, a program from Norman Data Defense Systems 703-573-8802

(c) 1994 Norman Data Defense Systems Inc.

Start Hex Meaning Comment

0 EB5390 jump Boot Sector Jump

This jumps to the bootstrap routine.

3 4D53444F53352E3O

db OEM name (MSDOS5.0)

This is the manufacturer's version of MS—DOS

8‘: - - Start of BIOS parameter block —

T'ii 11 0002 dw bytes per sector

13 01 db sectors per cluster

14 0100 dw number of reserved sectors

Usually 1 (0100), unless the manufacturer has

reserved additional sectors.

16 02 db number of FATS

The number of File Allocation Tables following the

reserved sectors. If two or more, the spares can be

used for data recovery.

17 E000 dw number of root directory entries

the maximum number of entries in the root directory

0002 means 200 (common for large hard drives)

19 400B dw total number of sectors

on the drive. If 0000, then this value is provided

just below, with huge sectors.

21 F0 db media descriptor byte

F0 means l.44Mb, 2 88Mb, 1.2Mb, or other media.

22 0900 dw number of sectors per FAT

24 1200 dw sectors per track

26 0200 dw number of heads

a number like 0700 means 8 heads — reverse the

bytes to read 0007, then remember that the first

head is 0, so 0007 8 heads

28 00000000 dd number of hidden sectors

a number like 11000000 means 11 hidden sectors

— the least significant byte goes first.

VIRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshlre, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or n-ansmitted in any form without the prior
written permissionofthe publishers.

000300

000301

250 ° STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE
__——_____—_______

32 OOOOOCOO dd huge sectors 4 numer of

sectors if total number of sectors (above) is O

- End of BIOIS parameter block -

Otherwise, the value here is 00

38 29 db extended boot signature (29h)

39 6828DFl5 dd volume ID number

43 4E4FS24E45545'.-354202020

db ll dup('?) volume label (NORNNETUT)

A volume label of NO NAME is created if the drive

or disk is formatted without specifying a volume

label (with /V)

54 464lS43l3220202O db 8 dup (?) (FA‘I‘l2) file system type

FATl2 means a 12-bit FAT

62 FA cli Disable interrupts

63 Ol ??

64 FE ??

65 D6 ??

66 8A ??

68 F0 ??

69 87 I .9?

7O E9OOFO jmp loc

73 O53BOO add ax,3BOO

76 O1 ??

77 O4 ??

78 3B ??

80 Ol ??

81 0100 add [bx+si],ax

83 80 ??

84 O1 ??

85 FA cli Disable interrupts

86 33CO xor ax,ax Zero AX register

AX has been set to O.

88 8EDO mov ss,ax

90 BCFE7B mov sp,FE7Bh

93 PB sti 5 Enable interrupts

94 1E push ds

95 56 push si

96 52 push dx

97 50 push ax

VIRUS BULLETINCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any fomi without the prior
written permissionofthe publishers.

000301

000302

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 25 I
 _

 98 07 pop es

99 B8C0O7 mov ax,COO7h ax now has the value 0

102 8ED8 mov ds,ax

104 33F6 xor si,si Zero SI register

SI has been set to O

106 26 ??

107 83 ??

108 2B ??

109 13 ??

110 O4 ??

111 02 ??

112 26A11304 mov ax,es:data

i 116 B106 mov c1,06h
118 D3EO shl ax,cl Shift w/zeros fill

120 8ECO mov es,ax

122 33FF xor di,di Zero DI register

DI has been set to O.

124 B9FFOO mov cx,OOFFh

127 PC cld Clear direction

128 F3A5 rep movsw Rep when cx >0 Mov [si] to
es:[di]

130 O6 push es

131 B89AOO mov ax,9AOOh ax now has the value 9

134 50 push ax

-35 BBFEO1 mov bx,FEO1h

138 B80102 mov ax,O102h ax now has the value 102

-41 8B ??

142 OE push cs

143 4D dec bp

145 8B ??

-46 16 push ss

147 4F dec di

-49 CD13 int 13h interrupt 13h, function 02h

This function reads one or more sectors into memory.

a1 = #sectors to read, ch = cylinders to read,

d1 = drive, dh = side to read.

151 72FE jc loc Jump if carry Set

153 CB retf

154 OE push cs

VJR US BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers.

000302

000303

252 ° STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE

155 1F pop ds

156 E82F0O call sub

159 E84100 call sub

162 BB4C00 mov bx,4COOh

165 BE4100 mov si,data

168 BF4603 mov di,data

171 E8C700 call sub

174 B404 mov ah,04h AH has now been set to 04h

176 CD1A int 1Ah real time clock

AH has been set to 04h. When this interrupt is called,

function 04h gets the date, with cx returning the

year, and dx returning the month/day.

178 80FA18 cmp dl,18h

181 750C jne 0C

183 BB2400 mov bx,2400h

-86 BE4500 mov si,data

189 BF5D03 mov di,data

L92 E8B20O call sub

195 5A pop dx

:96 5E pop si

197 1F pop ds

198 33CO xor aX,aX Zero AX register

AX has been set to 0.

200 50 push ax

201 B8007C mov ax,0O7Ch ax now has the value 7

204 50 push ax

205 CB retf

206 33C0 Xor ax,aX Zero AX register

AX has been set to 0.

208 8ECO mov es,aX

210 BBOO7C mov bX,0O7Ch

213 B80102 mov ax,Ol02h ax now has the value 102

216 8B ??

217 0E push cs

218 49 dec cx 2

220 8B ??

221 16 push ss

222 4B dec bx

224 CD13 int 13h interrupt 13h, function 02h

 :—

VIRUS BULLETINCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

000303

000304

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - Z53

This function reads one or more sectors into memory.

a1 = #sectors to read, ch = cylinders to read,

d1 = drive, dh = side to read.

226 C3 retn

227 OE push cs

228 07 pop es

229 B280 mov dl,80h

231 B408 mov ah,O8h AH has now been set to 08h

233 BBF903 mov bx,F903h

236 CD13 int 13h interrupt 13h, function 02h

This function reads one or more sectors into memory.
a1 = #sectors to read, ch : cylinders to read,

dl : drive, dh side to read.

238 7214 jc loc Jump if carry Set

240 B280 mov dl,80h

242 890E49OO mov cx,ds:data

246 89l64BOO mov data,dx

250 B80102 mov ax,0102h ax now has the value 102

253 B90100 mov cx,0O01h

256 32F6 xor dh,dh Zero DH register

DH has been set to 0.

258 CD13 int 13h interrupt 13h, function 02h

This function reads one or more sectors into memory.

a1 = #sectors to read, ch = cylinders to read,

d1 = drive, dh = side to read.

260 726E jc loc Jump if carry Set

262 8lC3 BE01 cmp word ptr [di],BE01h

266 B104 ' mov cl,O4h 268 80 ??

269 3F ??

270 80 ??

271 7407 je 1ocO7

273 83 ??

274 C3 retn

275 10 ??

276 E2F6 loop local loop

278 EBSC jmp short loc

280 8A ??

281 77 ??

282 01 ??

VIR USBULLETINCONFERENCE©1 995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any fonn without the prior
written permission ofthe publishers.

000304

000305

254 - STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE

283 8B ??

284 4F dec di

285 02 ??

286 890E5100 mov cx,ds:data

290 89165300 mov data,dX

294 B80102 mov aX,0102h ax now has the value 102

297 BBF903 mov bx,F903h

300 CD13 int 13h interrupt 13h, function 02h

This function reads one or more sectors into memory.

al = #sectors to read, ch = cylinders to read,

d1 = drive, dh = side to read.

302 7244 jc loc Jump if carry Set

304 81BF3F00 cmp word ptr [di],3FOOh 308 01 ??

309 FE ??

310 743C je loc3C

312 817FOB0O cmp word ptr [di],OBO0h

316 O2 ??

317 7535 jne 35

319 B80103 mov aX,0103h ax now has the value 103

322 8B ??

323 OE push cs

324 49 dec cx

326 8B ??

327 16 push ss

328 4B dec bx

330 CD13 int 13h interrupt 13h, function 02h

This function reads one or more sectors into memory.

a1 = #sectors to read, ch = cylinders to read,

dl = drive, dh = side to read.

332 7226 jc loc Jump if carry Set

334 BBFE01 mov bx,FEO1h

337 49 dec cx

338 890E4D0O mov cX,ds data

342 89164FO0 mov data,dX

346 B80103 mov aX,O103h ax now has the value 103

349 CD13 int 13h interrupt 13h, function 02h

This function reads one or more sectors into memory.

a1 = #sectors to read, ch = cylinders to read,

d1 = drive, dh side to read.

VIRUS BULLET[NCONFERENCE©1995 Virus Bulletin Ltd, 21 TheQuadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

000305

000306

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° 255

 351 7213 jc loc Jump if carry Set

353 E82BOO call sub

356 BBF903 mov bx,F903h

359 B80103 mov ax,O103h ax now has the value 103

362 8B ??

363 16 push ss

364 53 push bx

366 8B ??

367 OE push cs

368 51 push cx

370 CD13 int 13h interrupt 13, function 02h

This function reads one or more sectors into memory.

al = #sectors to read, ch = cylinders to read,

d1 = drive, dh side to read.

372 C3 retn

373 33CO xor ax,ax Zero AX register

AX has been set to O.

375 8ECO mov es,ax

377 26 ??

378 8B ??

379 07 pop es

380 89 ??

381 O4 ??

382 26 ??

383 8B4702 mov aX,[bi+O2h]

386 89 ??

387 44 inc sp

388 02 ??

389 FA cli Disable interrupts

390 26 ??

391 89 ??

392 3F ??

393 26 ??

394 8C ??

395 4F dec di

396 O2 ??

397 FB sti Enable interrupts

398 C3 retn

399 BEF903 mov si,data

 :__

VIRUS B ULLETINCONFERENCE©1995 VirusBulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000306

000307

256 ° STANG: COMPUTER VIRUSES AND ARTIFICIAL INTELUGENCE
___——__———__________

402 BF030O mov di,data

405 03 ??

406 F7 ??

407 B93C00 mov cX,003Ch

410 FC cld Clear direction

411 F3A4 rep movsb

413 33F6 xor si,si Zero SI register

SI has been set to 0

415 BFF903 mov di,data 418 B9FFO0 mov cX,00FFh

421 F3A5 rep movsw ‘ Rep when cx >0 Mov [si] to
es:[di]

423 C7 ??

424 0555AA add ax,55AA

427 C3 retn

428 8B ??

429 1E push ds

430 1100 adc [bx+si],aX

432 B104 mov cl,04h 434 D3 ‘P?

435 E3 mul bx dx:ax = reg * ax

436 A1 ??

437 16 push ss

439 F6 ??

440 26 ??

441 10 ??

442 0002 add [bp+si],a1

444 C7 ??

445 40 inc ax

446 A3 '2?

447 O3 ??

449 8B ??

450 1E push ds

451 13 ??

453 2B ??

454 D8 ??

455 8A ??

456 0E push cs

457 0D ??

459 49 dec cx

460 D3 ??

VZRUS BULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 TheQuadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written permission ofthe publishers.

000307

000308

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 - 257

461

463

464

467

470

473

476

479

481

484

485

489

491

493

494

495

497

501

503

504

505

506

507

510

EB89

1E

O500C3

B90200

BF0800

BEOFOO

BBF903

32F6

B80202

9C

FFlE4l00

7273

F7

FF

OF

7506

8lO8F7OF

EBZB

46

47

3B

3E

050073

55AA

jmp short loc

push ds

add ax,0OC3

mov cx,0O02h

mov di,data

mov si,data

mcv bx,F903h

xor dh,dh Zero DH register

DH has been set to O.

mov ax,O202h

pushf

call data

jc loc

??

??

pop cs

jne 06

ax now has the value 202

push flags

Jump if carry Set

Dangerous 8088 only

cmp word ptr [di],F7OFh

jmp short loc

??

??

??

??

add ax,0O73

Normal marker for end of boot record

Number of unexplained bytes: 77

Note: this disassembly is imperfect.

Please do not attempt to reassemble.

VIRUS BULLETINCONFERENCE©1995 V'1rus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
written pennission ofthe publishers.

000308

000309

LATE SUBMISSION

The following papers are a late addition to the proceedings and, therefore, appear out of sequence.

000309

000310000310

000311

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 °I

THE EVOLUTION OF POLYMORPHIC VIRUSES

Fridrik Skulason

Frisk Software International, PO Box 7180, 127 Reykjavik, Iceland

Tel +354 5 617273 - Fax +3 54 5 617274 - Email frisk@complex.is

The most interesting recent development in the area ofpolymorphic viruses is how limited their
development actually is. This does not mean that there are no new polymorphic viruses, far from it — new
ones are appearing constantly, but there is nothing ‘new’ about them - they are just variations on old and
well-known themes.

However, looking at the evolution ofpolymorphic viruses alone only shows one halfofthe picture — it is
necessary to consider the development ofpolymorphic virus detection as well. More complex polymorphic
viruses have driven the development ofmore advanced detection methods, which in turn have resulted in the

development ofnewpolymorphic techniques.

Before looking at those developments that can be seen, it is perhaps proper to consider some basic issues
regarding polymorphic viruses, starting with the question ofwhy they are written.

That question is easy to answer — they are written primarily for the purpose ofdefeating one particular class
of anti—virus product - the scanners. Considering virus scanners are the most popular type of anti-virus
program, it is not surprising that they are the subj ect of attacks.

At this point it is worth noting that polymorphic viruses pose no special problems to a different class of
anti-virus product, namely integrity checkers. This does not mean that integrity checkers should be
considered superior to scanners - afier all there is another class ofviruses, the ‘slow’ viruses, which are
easily detected by scanners, but which are a real problem for integrity checkers.

Fortunately, polymorphic slow viruses are not common at the moment. As a side note ‘slow polymorphic’
viruses also exist, and should not be confused with ‘polymorphic slow’ viruses. This category will be
described at the end of this paper, togetherwith some other ‘nasty’ tricks.

Considering how virus scanners work, a virus author can in principle attack them in two different ways -
either by infecting an object the scanner does not scan, or by making the detection ofthe virus so difficult
that the scanner, or rather the producers of the scanner may not be able to cope with it.

Polymorphic viruses attempt to make detection difficult - either too time consuming to be feasible, or
beyond the technical capabilities of the anti-virus authors.

The success ofvirus authors depends not only on their programming skills, but also on the detection

techniques used. Before describing the current techniques, however, a briefclassification ofpolymorphic
viruses is in order.

VIRUS B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

0003 ‘I ‘I

000312

II ° SKULASON: THE EVOLUTION OF POLYMORPHIC VIRUSES

Polymorphic viruses are currently divided into three groups:

1) Encrypted, with variable decryptors. This is the largest and currently the most important group.
Several methods to implement the variability are discussed below, but most of them should be
familiar to readers of this paper.

2) ‘Block-swapping’ viruses. Only a handful ofviruses currently belong to this group, but they
demonstrate that a polymorphic virus does not have to be encrypted. These viruses are composed of
multiple blocks ofcode, theoretically as small as two instructions, that can be swapped around in any
order, making the use ofnormal search strings nearly impossible.

3) Self-modifying viruses using instruction replacement techniques. This is where the virus may
modify itselfby replacing one or more instructions in itselfwith one or more functionally equivalent
instruction when it replicates. So far this category is only a theoretical possibility, as no viruses have
yet been written that use this technique. It is possible that some such viruses will appear in the future,
perhaps only to written to demonstrate that it can indeed be done.

Considering that the viruses that currently fall into the second group are easy to detect using ordinary search
strings, and that the third group is non—existent, the only polymorphic viruses currently of interest are
encrypted ones.

Eor that reason the term ‘polymorphic viruses’ should, in the rest of this paper, really be understood to
mean only viruses ofthe first group, that is, encrypted with variable decryptors.

So, how are those viruses detected?

Basically the detection methods fall into two classes - those that detect and identify only the decryptor and
those that look ‘below’ the decryptor, detecting the actual virus. This is not a strict ‘either-or’ classification
- a scanner may analyse the decryption loop to determine that it might have been generated by a particular
virus, before spending time decrypting the code.

DECRYPTION-LOOP DETECTORS

There are several different methods that have been used to detect and identify decryption loops - which used

to be the standard way of detecting polymorphic viruses - but there are several significantproblems with
these methods. The most common methods are described later, but ifthey are only used as the first step, and

the virus then properly decrypted some of the following problems disappear:

D Virus-specific. Basically, the detection of one polymorphic virus does not make it any easier to detect
another.

5 More likely to cause false positives. As we get more and more polymorphic viruses, capable of
producing an ever-increasing variety ofdecryptors, the chances ofgenerating a false positive increase,
as some innocent code may happen to lookjust like apossible decryptor.

D Identification is difficult. Many polymorphic viruses will generate similar decryptors, and it is
entirely possible that a scanner will mis—identify a decryptor generated by one polymorphic virus as
having been produced by another, unrelated virus. Also, in the case ofvariants ofthe same
polymorphic virus, it may be possible to determine the family, but not the variant.

5 No disinfection. Virus disinfection requires the retrieval ofa few critical bytes from the original host
file that are stored usually within the encrypted part ofpolymorphic viruses. This means that virus-
specific disinfection is generally not possible, at it would require decrypting the virus.

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX1 4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

00031 2

000313

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ' III

On the positive side, detection ofa particular decryptor may be quite easy to add, although that depends on
the design of the scarmer and the complexity ofthe virus. The decryption techniques are old, and several
anti-virus producers have abandoned them, in favour ofmore advanced methods.

The most common detection methods in this group are:

- Search strings containing simple wildcards

- Search strings containing variable-length wildcards

- Multiple search strings

- Instruction usage recognition

- Statistical analysis

- Various algorithmic detection methods

SEARCH STRINGS CONTAINING SIIVIPLE WILDCARDS

The limitations of this method are obvious, as it can only handle a few ‘not very polymorphic’ viruses,

which are sometimes called ‘oligomorphic’. They may for example make use ofa simple decryption loop,

with a single variable instruction. The least variable polymorphic virus uses two different instructions, NEG
and NOT, which differ by only one bit. Defeating this detection method is easy: just insert a random number

of ‘junk’ instructions at variable places in the code. ‘Junk’ does not mean ‘invalid’, but rather any
instruction that can be inserted in the decryption loop without having any effect. Typical examples include

NOP, IMP $+2, MOV AX, AX and other similar ‘do nothing’ instructions.

SEARCH STRINGS CONTAINING VARIABLE-LENGTH WILDCARDS

This method takes care of decryptors that contain those junk instructions. However, there are two problems

with this approach. Some scanners cannot use this method as their design does not allow variable-length
wildcards, but that really does not matter, as the technique is very easy to defeat: just make the decryptor

slightly more variable so that no single search string, even using a variable-length wildcard will match all
instances ofthe decryptor. This can be done in several ways.

I> Changing register usage: For example the DI register might be used for indexing, instead of S1, or the
decryption key might be stored in BX instead ofAX.

I> Changing the order of instructions: Ifthe order of instructions does not matter, they can be freely
swapped around.

I> Changing the encryption methods: Instead ofusing XOR, the virus author couldjust as well use ADD
or SUB.

MULTIPLE SEARCH STRINGS

This is generally considered an obsolete technique, but many anti-virus producers used it back an 1990 when
the Whale virus appeared. This virus could be reliably detected with a fairly large set ofsimple search

strings. Today, however, most ofthem would probably use a different method. This detection method can
easily be defeated by increasing the variability ofthe decryptor past the point where the number ofsearch
strings required becomes unreasonably large. There are other cases where the multiple search string
technique has been used. One anti-virus company had access to the actual samples of a particular
polymorphic virus that were to be used in a comparative product review. Rather than admitting that they
were not able to detect the virus, they seem to have added a few search strings to detect those particular

samples — and they did indeed score 100% in that test, although later examination revealed that they only
detected 5% ofthe instances ofthe virus in question.

VIRUS B ULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

0003 ‘I 3

000314

IV ° SKULASON: THE EVOLUTION OF POLYMORPHIC VIRUSES

INSTRUCTION USAGE RECOGNITION

This method was developed to deal with Dark Avenger’s Mutation engine. It basically involves assuming
initially that all files are infected, then tracing through the decryptor, one instruction at a time. If an
instruction is found that could not have been generated by a particular virus as a part ofthe decryptor, then
the virus is not infected by that virus. If one reaches the end ofthe decryptor, still assuming that the file is
infected, it is reported as such. There are two major ways to attack this technique, but the more obvious is to
increase the number ofpossible instructions used in the decryptor. If avirus used every possible instruction
in a decryptor, it simply could not be detected with this method without modifying it. The second method is
more subtle, but it involves making it more difficult to determine when the end ofthe decryption loop has
been reached.

STATISTICAL ANALYSIS

This method is generally not used, due to the unacceptably large risk offalse positives. It basically involves
statistical analysis ofthe number ofcertain bytes in the decryptor. It works best with viruses that generate
large decryptors, that use few and uncommon ‘do-nothing’ instructions.

Other algorithmic detection methods are possible, and are frequently used. Sometimes they are only used to
quickly eliminate the possibility ofa particular file being infected with a particular virus, for example:

IF The file is an EXE—structure file

AND The initial CS:IP value equals 0000:0000

THEN The file is not infected by Virus—X

In other cases the algorithm provides detection, instead ofnegative detection:

IF The file is aCOM-structure file

AND It is at least 5623 bytes long

AND It starts with a JMP FAR to a location at least 1623 bytes from the end ofthe file

AND The first 10 instructions contain at least five instructions from the following set

{AAD,NOP,CLI,CLD,STC}

AND Within the first 100 bytes from the entry point there is an XOR [SI/DI/BX],AX instruction

AND Within the first 200 bytes from the entry point there is a branch instruction that transfers
control back to the XOR instruction described above

THEN The file is infected with Virus-Y

It should be obvious from this example that the rules can get complex, perhaps unreasonably complex, and
obviously require significant work to implement. Also, ir1 some instances it is just notpossible to get a
sufficient number ofrules like this to ensure accurate detection, not even considering the rules the virus

itselfmay use to determine if a file has already been infected as the number offalse positives would be too
high.

At this point it is very important to bear in mind that, while false positives are avery serious problem for
the anti—virus author, they do not matter at all to the virus author. A false positive just means that the virus
will not infect one particular file it might otherwise have infected...so what - after all, it has plenty ofother
files to infect.

Having looked at the detectors that only detect the encryption loop, we must look at the more advanced
detectors, which detect the actual virus, instead ofjust the encryption loop.

VIRUSBULLETZNCONFERENCE©1995 VirusBulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior

writtenpermissionofthe publishers. O0 1 4

000315

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 0 V

Compared to the decryptor-detecting methods, the following differences are obvious:

D More generic. These methods require significantly more initial work, but the extra effort required to
add detection of a new polymorphic virus is far less than with some of the other methods described
above.

D Less chances offalse positives. Having decrypted the virus, it should be possible to reduce the

chances offalse positives almost down to zero, as the entire virus body should be available.

§ Identification is easy. When the virus has been decrypted, identification is no more difficult than in

the case ofnon-encrypted viruses.

I Easy disinfection. The same applies to disinfection — it should not be any more difficult than ifthe
virus had not been encrypted to begin with.

There are two such techniques which have been used to detect polymorphic viruses.

6 9

Generic decryption

The X-raying technique was probably only used in two products, both ofwhich have mostly abandoned it by
now. It basically involved assuming that a particular block ofcode had been encrypted with an unknown

algorithm, and then deriving the encryption method and the encryption keys from a comparison between the
original and encrypted code.

As this sounds somewhat complicated, an example is in order:

Assume that manual decryption of one virus sample reveals that a particular block ofcode should

contain the following byte sequence:

B8 63 25 B9 88 01 CD21

The corresponding encrypted block ofcode in a different sample looks like this:

18 C4 8B 0C 34 C2 07 F0

ls there any way this sequence could have been obtained from the first one by applying one or two

primitive, reversible operations like for example:

XOR with a constant

ADD/SUB a constant

ROL/ROR a fixed number ofbytes

Yes, because XORing the two sequences together generates the sequence:

A0 A7 AE B5 BC C3 CA D1

Calculating the differences between the bytes in that sequence gives the following result:

07 07 O7 07 07 07 07

which shows that the original sequence, and (presumably) the entire virus body can be obtained by

XORing each byte with a key, and then adding the constant value 7 to that key, before applying it to
the next byte.

Using this method, it may be possible to deduce the operation ofthe decryptor, without looking at it at all.
There is a variant of the X-ray method which has been developed by Eugene Kaspersky, which works in a

different way, but produces the same result. -

VIRUS BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenperrnission ofthe publishers.

OOO315

000316

VI ~ SKULASON: THE EVOLUTION OF POLYMORPHIC VIRUSES
__:____

The reason ‘X-raying’ has mostly been abandoned is that it can easily be defeated, for example by using an
operation the X—ray procedure may not be able to handle, by using three or more operations on each
decrypted byte or by using multiple layers ofencryption.

The last method to be developed does not suffer fiom that limitation, and can handle decryptors ofalmost
any complexity. It basically involves using the decryptor ofthe virus to decrypt the virus body, either by
emulating it, or by single-stepping through it in a controlled way so the virus does not gain control ofthe
execution.

Unfortunately, there are several problems with this method:

- Which processor should be emulated? It is perfectly possible to write a virus that only works properly
on one particular processor, such as a Cyrix 486 SLC, but the decryptor will just generate garbage if
executed on any other processor. An intelligent emulator may be able to deal with this, but not the
‘single-stepping’ method.

° Single-stepping is dangerous - what ifthe virus author is able to exploit some obscure loophole,
which allows the virus to gain control. In this case, just scanning an infected file would result in the
virus activating, spreading andpossibly causing damage, which is totally unacceptable. It should be
noted that a very similar situation has actually happened once — however the details will not be
discussed here.

- Emulation is slow — ifthe user has to wait a long time while the scanner emulates harmless programs,

the scanner will probably be disabled, and obviously a scanner that is not used will not find any
viruses.

- If the virus decryptor goes into an infinite loop and hangs when run, the generic decryptor might do
so too. This should not happen, but one product has (or used to have) this problem.

° How does the generic decryptor determine when to stop decrypting code, and not waste unacceptable
amount oftime attempting to decrypt normal, innocent programs?

° What ifthe decryptor includes code intended to determine ifit is being emulated or run normally,
such as a polymorphic timing loop, and only encrypts itself ifit is able to determine that it is running
normally?

- What ifthe decryptor is damaged, so that the virus does not execute normally? A scanner that only
attempted to detect the decryptor might be able to do so, but a more advanced scanner that attempts to
exploit the decryptor will not find anything. This is for example the case with one ofthe SMEG
Viruses - it will occasionally generate corrupted samples. They will not spread further, but should a

scanner be expected to find them or not? '

Finally, it should be noted that there are other ways to make polymorphic viruses difficult thanjust attacking
the various detection techniques as described above.

‘ Slow polymorphic’ viruses are one such method. They are polymorphic, but all samples generated on the
same machine at the same time will seem to have the same decryptor. This may mislead an anti—virus

producer into attempting to detect the virus with a single search string, as if it was just a simple encrypted
but not polymorphic virus.

However, virus samples generated on a different machine, or on a different day ofthe week, or even under a
different phase of the moon will have different decryptors, revealing that the virus is indeed polymorphic.

Another recentphenomena has been the development ofmore ‘normal-looking’ polymorphic code. Placing a
large number of ‘do-nothing’ instructions in the decryptor may be the easiest way to make the code look

VIR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

00031 6

000317

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° VII

random, but it also makes it look really suspicious to an ‘intelligent’ scanner, and worthy ofdetailed study.
If the code looks ‘normal’, for example by using harrnless-looking ‘get dos-Version number’ function calls,
it becomes more difficult to find.

So, where does this leave us? Currently anti-virus producers are able to keep up with the virus developers,
but unfortunately the best methods available have certain problems - the one most obvious to users is that
scanners are becoming slower. There is no indication that this will get any better, but on the other hand there

are no signs that virus authors will be able to come up with new polymorphic techniques which require the
development ofa new generation ofdetectors.

VIRUS B ULLETZNCONFERENCE©1995 V'1rus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX1 4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

000317

000318

Vlll ° SKULASON: THE EVOLUTION OF POLYMORPHIC VIRUSES

I/YRUSBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX]4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermission ofthe publishers.

0003 1 8

000319

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° IX

MACROVIRUSES - THE SUM OFALL PH33RS?

RichardFord

National Computer Security Association, 10 South Courthouse Ave, Carlisle, PA 17013, USA

Tel +1 717 258 1816- Fax +1 717 243 8642 - Email rford@ncsa.com

The discovery of the first macro virus in the wild has precipitated a flurry ofarticles over the last few

weeks. The coverage has ranged in depth and topic, from claims that ‘Revolutionary Multi-Platforrn Virus

Attacks Word Users World-Wide’ [1] to the rather more muted coverage given by Microsoft, which claimed

that ‘aprank macro is a harmless but annoying macro.’ [2]

Which ofthese viewpoints (if either) is correct, andjust what are the threats posed by WordMacro.Concept,

and macro viruses in general?

A BRIEF HISTORY OF MACRO VIRUSES

The possibility ofa macro virus is nothing new [3]. Many virus researchers have discussed the subject, and
several papers addressing the issue have been published - an overview is presented in [4]. However, we
now have not one, but three, macro viruses, all ofwhich have appeared in reasonably quick succession. The

idea (and, unfortunately, the actual code) is now in the public domain, and it seems likely that we will see a

spate ofvariants in the next few months.

For the sake ofbrevity, we will concentrate on the Wordfor Windows environment for the remainder of this

paper, but readers should note that the techniques described are applicable to many different applications.
Before taking a look into the crystal ball and trying to predict what developments we may expect, let us
examine three macro viruses: WordMacro.Concept, WordMacro.DMV and WordMacro.Nuc1ear.

WORDMACRO.CONCEPT

The operation ofa macro virus is, in essence, identical to that of the more familiar file infecting virus: when
an infected macro is run, the virus replicates, creating macros which contain copies ofthe virus code within

them. Whereas a file infector requires that the infected file be run, a macro infector requires that an infected

macro be run. Unfortunately, the functionality provided by many applications allows macros to be executed

automatically, frequently leaving the user completely unaware that anything untoward has occurred. In the

case ofWordMacro.Concept, the virus utilises a ‘feature’ ofMicrosofl Word: if a file is opened which

contains a macro named ‘AutoOpen’, the contents of this macro are automatically executed. Users have

come to expect features like this, and often demand this type offirnctionality in their mail readers, PGP front

ends, etc. However, it is precisely this feature which allows the virus to operate.

I/YRUSBULLETINCONFERENCE©1995 Virus Bulletin Ltd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted ir1 any form without the prior
writtenpermission ofthe publishers.

0003 1 9

000320

X ° FORD: MACRO VIRUSES - THE SUM OF ALL PH33R$?

In the case ofWordMacro.Concept, this AutoOpen macro performs a briefcheck to make certain that the

system is not already infected. If the virus is not already installed, it creates several new macros on the
system, named AAAZAO, AAAZFS, Fi1eSaveAs and PayLoad. Finally, the virus displays a message box,
containing what appears to have been intended to be an infection counter.

The PayLoad macro is never called and contains only the text

Sub MAIN

REM That's enough to prove my point

End Sub

making it obvious that the virus author fiilly recognised the potential for future viruses. The macros
AAAZAO and AAAZFS are simply used for storing copies ofthe AutoOpen and Fi1eSaveAs macros which
are added to infected files.

The bulk of the work done by the virus is carried out by the Fi1eSaveAs macro. This macro uses a very

powerful feature of the Microsoft WordBASICprogramming language: the ability to ‘enhance’ standard
features ofthe Word environment (in this case, the File ‘Save As’ menu option) by linking them to a new

macro routine. This happens transparently, and the user is not aware that any skulduggery has taken place.

When any file is saved using the File ‘Save As’ menu option, control is passed to the virus’ own
Fi1eSaveAs macro. This displays the standard File Save As dialogue box, with one exception: the user is
only given the opportunity to select a destination drive and directory using the point and click GUI ifthe file
is not already infected.

Once a filename and location has been selected, the virus creates four new macros in the target document:

AutoOpen (which is simply a copy ofthe AAAZAO macro), AAAZAO, AAAZFS and PayLoad. Infection
is now complete and the new document is saved. It should be noted that in fact although the file is saved
with the extension .DOC, it is now more correctly titled a ‘Document Template’, although this distinction is

lost on the average user.

This virus does deliberately reveal its presence when it infects a system, but this routine is trivial to remove.
Note that we have only taken a very brief look at the properties ofthis virus; a more complete examination

maybe found in [5].

WORDMACRO.DMV

The document in which the WordMacro.DMV virus was distributed states that it was written by Joel

McNamara. The paper claims to address the inherent risks ofapplications which allowed for the automatic
loading and execution ofembedded macros. The virus code contains the followingjustification and
description ofMcNamara’s actions:

REM This demonstrates an application—specific document virus

REM generated by and automatic macro in Microsoft Word 6.0.

REM Code is executed each time a document is closed. This

REM macro is only a demonstration, and does not perform any

REM destructive actions.

REM The purpose of this code is to reveal a significant security

REM risk in software that supports macro languages with

REM auto—loading capabilities. Current virus detection tools are

REM currently not capable of detecting this type of virus, and

REM most users are blissfully unaware that threats can come from
REM documents.

I/YRUS B ULLETZNCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX1 4 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior

writtenpermissionofthe publishers.

000321

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° XI

It should be noted, however, that the claim that current tools are incapable ofdetecting this type ofvirus is
untrue.

Unlike WordMacro.Concept, WordMacro.DMV utilises another ‘auto-executing’ macro within the Word

environment: AutoClose, which is executed whenever a document is closed. In order to understand exactly

how DMV functions, let us consider the actions which take place when a DMV-infected file is opened.

Whenever a file is opened within Word, Word checks the file format. If it is a document template file, it

searches for macros contained within it and adds them to the local environment. In the case ofDMV, an

infected document contains a macro which is automatically executed whenever a document is shut.

The AutoClose macro first checks all the global macros, to make certain that it is not already installed. If

this condition is not met, the AutoClose macro is copied to the global document template. The macro then

checks to see ifthe document which is currently being closed is infected. This is carried out by searching for

the existence ofa macro within thatparticular document. If one is found, the document is assumed to be

infected, and the routine aborts. Ifno macros are present, the virus copies the AutoClose macro from the

global document template into the current document, and closes it. Thus, the new document (once again,

now more correctly labelled a document template) is infected, and is capable ofspreading the virus to other
machines.

WORDMACRO.NUCLEAR

The most complex Word macro virus to date, ofwhich I am aware, is named WordMacro.Nuclear. This

virus comes complete with ten different macros: AutoExec, AutoOpen, ToolsMacro, FileSaveAs, FilePrint,

FilePrintDefault, InsertPayload, PayLoad, DropSuriv and FileExit.

Rather than present a complete analysis ofthe virus, I will simply give an overview ofits main features.

The overall operation ofthe virus is very similar to that ofboth WordMacro.Concept and

WordMacro.DMV. However, the author ofNuclear has taken the development significantly further. The

most immediate difference is that the individual macros which make up the virus code cannot be viewed, as

they have been saved as ‘ Execute only’. Although this restriction can be easily circumvented, it represents at

least some attempt by the author to hide his handywork.

Secondly, the virus contains a number ofdifferent side effects.

- If the date is 5th April, the virus attempts to overwrite the files IO.SYS, MSDOS.SYS and

COMMAND.COM, rendering the DOS partition u11bootable. Fortunately, due to abug in the code,
this routine fails.

° If a user attempts to print a file and the seconds value of the time is greater than 55, the lines

And finally I would like to say:
STOP ALL FRENCH NUCLEAR TESTING IN THE PACIFIC!

are added to the end ofthe document.

- If the time is 5pm, and an uninfected file is opened, the virus attempts to launch DEBUG, and run a

binary infected with the Ph3 3r virus. Once again, this routine is buggy and fails.

Although the techniques used within Nuclear are not entirely successful, the ideas are there. The possibility

ofdropping a ‘traditional’ file virus or rendering the fixed disk unbootable just by double-clicking on a
‘data’ file is very close to being realised.

VIRUS B ULLETZNCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or fiansmitted in any form without the prior
writtenpermission ofthe publishers.

00032 1

000322

XII ° FORD: MACRO VIRUSES - THE SUM OF ALL PH33RS?

PROBLEMS PROBLEMS

The main reason why WordMacro.Concept caused such a big stir was that it is capable ofinfecting files
which were not considered executable in the normal sense ofthe word. However, as applications have

become more complex, the concept ofexecutable must also be extended to objects which we would normally
consider to be ‘ data’, such as spreadsheets, and word processor documents. This is a separate threat from
that posed by object linking and embedding; this increasingly blurred distinction between data and executable
is explored in [6].

The existence ofmacro viruses ir1 the wild causes a number ofproblems for both users and anti-virus

product developers. Some ofthe more obvious risks are outlined below:

- A macro virus will not necessarily be in a filename with a known extension. Whereas a typical file
infector will usually only infect files with the extension COM ofEXE, a macro virus can infect any
file, provided it is in the correct format for the enviromnent in which it is running. For example,
MS-WORD does not care about the file extensions used by files; ifone wishes to save weekly reports

with the extension .RPT, this is perfectly acceptable. Thus, macro viruses may well infect files

according to their use, not their extension. Moreover, these will tend to be files which are typically
thought ofas data, not executables.

° Macro viruses are very easy to write. In the case of the two Word viruses currently known, the entire
source code ofthe virus is visible within all infected files. This means that very little programming

knowledge is required to modify the virus. The author is already aware ofWW sites which are
offering samples ofthe virus for download.

- As applications become better integrated, there is the possibility ofmacro viruses which can spread
between different applications. Even ifthis is not realised, readers should note that the virus
theoretically may be able to spread within specific applications, regardless ofthe underlying operating
system. In the case ofWordMacro.Concept, any operating system which is capable ofrunning Word
6.0 is susceptible to the virus.

° Virus non-specific anti-virus products are currently unable to detect macro viruses. The infected
object is one which by its nature we expect to change, and so a simple behaviour blocking or
checksurnming technique is not viable. It is possible to alter such programs to handle these viruses,
but such efforts may not be practical. In the case of a checksurnrner, it is relatively easy to only
checksum those parts ofa file which are concerned with macros. However, the checksum would alter
every time any macro within the file was altered. Additionally, new documents created would have to
be assumed to be clean. Those developing entirely hardware—based products are likely to have an even
more difficult time, as the actions ofthe virus are identical to certain functions which a legitimate

program might undertake.

- Although it is possible to scan all areas ofall files, this would greatly increase scan times. By making
the scanner aware of the Word document template file structure, the necessity to scan an entire file
would be decreased. Furthermore, a scanner manufacturer may opt to scan only those files with .DOC
or .DOT extensions, and ask the user to only scan all files if a virus is discovered. One concern with
a scanner-based solution is the ease with which the virus can be altered - whether this becomes a

genuine problem or not remains to be seen.

- It is increasingly common to use an Email package which is capable ofsending binary files over the
Internet without any special actions on the part ofthe user. Such a system provides the perfect
environment for a macro virus like WordMacro.Concept. While a user may think twice before

running an ‘executable’ file sent to him as a file attachment, the expansion and loading ofan infected
document file will often pass completely unnoticed. Additionally, what could be more natural than to
send a document via Email? It is likely that until the user community gains a solid understanding of
the actual risks posed by macro viruses, few will take the necessary precautions.

VIRUS B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored m a retrieval system, or transmitted in any form without the prior
written permissionofthe publishers. O022

000323

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° XIII

- Scanning for macro viruses in several different ‘data’ file formats requires time and research on the

part ofthe anti-virus software vendor. While scanner size and complexity will hopefully not suffer

too badly, the effects on TSR virus protection are more difficult to predict. In this case, memory

overhead and speed ofexecution are paramount. There are likely to be additional problems for TSR
behaviour blockers.

- It is possible to launch other executables simply by opening a data file. IfDEBUG is present on the

system, it is trivial to assemble aprogram and execute it. Thus, Trojans, logic bombs and viruses
which are not confined to aparticular application’s environment may be dropped onto a system.

- Macro viruses are intimately involved with the ‘data’ file to which they are attached. By using macro

commands it is extremely easy to include damaging routines which change the data stored on the

system in subtle ways (e. g. WordMacro.Nuclear’ s plea against nuclear testing).

SOLUTIONS

In the preceding section, we have outlined some ofthe more immediate problems posed by macro viruses,

while trying to avoid seeding the virus writing community with new ideas. Suffice it to say that most macro

languages are extremely powerful, and simply by adding a suitable amount ofimagination, it ispossible to
carry out many varied attacks using this technique. It should also be noted that these attacks are in no way

lirr1ited to Microsoft Word: many applications are vulnerable to attack in the same way.

There is some debate as to the long-term solution to the major virus threat. While some vendors seem to

feel that a scanner-based solution is adequate, it seems likely that improvements can be made within the

environment ofthe effected application. Although it will never be possible to completely eliminate the

possibility ofwriting a macro virus, it is possible to make the task a little more difficult.

Perhaps the largest contribution to the virulence ofWordMacro.Concept is the fact that the AutoOpen macro

is run by default, transparently to the user. Similarly, the feature ofWordMacro.DMV which makes it a

potential threat is that the file can add anew macro to the global environment simply by being loaded and
closed. Although it is possible to prevent the execution ofboth AutoOpen and AutoClose, if the document is
loaded/closed with the Shift key pressed, this is not a practical solution. While it is conceivable that a user

may remember when opening a document, few would be likely to be suspicious when exiting one.

One possible reduction in the threat is to prevent any macro from autoexecuting, without first warning the
user. However, although this puts control fnmly into the hands of the user, it is still not an entirely

acceptable fix as it requires continual user interaction whenever a document which contains macros is
encountered; interaction which the average user is not technically competent to provide.

Another possibility would be for Word to warn a user that a file is a document template, and not a

docmnent. Once again, however, this puts the onus forprotection on the user, who has to make the decision

whether to open the document or not.

Although several fixes rapidly appeared for the WordMacro. Conceptvirus, we are, as yet, devoid ofa long

term solution. Adding macros to the Word environment which prevent installation of thisparticular macro

virus is all well and good, but will provide protection fiomjust this one variant. Even during the

development of this paper, another Wordmacro virus has been discovered; a custom-built fix for each is not
an attractive solution.

There may be some silver lining to the cloud. According to Microsoft, it is currently finishing work on a

macro-based solution which will alert the user ofpossible macro virus attacks. This shield is based on

currently available WordBASIC functionality, and it attempts to detect suspicious files before they can infect

the system. The user will then have the choice ofopening the file with or without its embedded macros.

VIR US B ULLETZNCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior
writtenpermissionofthe publishers.

000323

000324

XIV ° FORD: MACRO VIRUSES - THE SUM OF ALL PH33RS?

Microsoftplans to post this updated solution on many on-line services, including its WWW site, http://
www.microsofi.com.

CONCLUSIONS

There seems to be little doubt that macro viruses are here to stay - whether or not we like it. Although this

paper has concentrated on the MS Word WordBASIC environment, it is possible to write similar macro
Viruses for many other applications. Unless developers keep a careful eye on the functionality they build into
products, this situation is likely to get worse not better.

There is currently no obvious long-term solution to the problem. In the interim, a scanner-based technique
will suffice, but the ease with which macro viruses can be edited is a definite cause ofconcern. An integrity
checking approach is likely to be fraught with difficulties, though proponents ofsuch products should not
feel too gloomy: devices which rely on a purely hardware based approach may have encountered a threat type
which is impractical (although not necessarily impossible) to defend against.

REFERENCES

[1] S&S International, Press Release (1995)

[2] Microsoft Product Support Services Applicaiton Note WDl21 5 (1995)

[3] Harold Highland, ‘A Macro Virus’, Computers & Security 8, pp. 178-188 (1989)

[4] Vesselin Bontchev, ‘Future Trends in Virus Writing’, Proc. 4th Int. Virus Bulletin Conference,
pp. 65-82 (1994)

[5] Sarah Gordon, ‘What a (Winword.) Concept’, Virus Bulletin, September 1995, pp. 8-9

[6] James Beckett, ‘When is Not a Program a Program?’, Virus Bulletin, July 1993, pp. 9-1 1

l/YRUSBULLETINCONFERENCE ©1995 Virus BulletinLtd, 2 1 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part ofthis publicationmay be reproduced, stored in a retrieval system, or transmitted in any form without the prior

writtenpermissionofthe publishers. 00O324

000325

VIRUS BULLETIN CONFERENCE, SEPTEMBER I 995 ° XV

UK GOVERNMENT CERTIFICATION OFANTI-VIRUS

SOFTWARE

Chris Baxter

CCTA, Room 2024, Empress State Building, Lillie Road, London, SW1, UK

Tel +44 171 824 4101

INTRODUCTION

There are said to be difficulties with evaluations ofanti-virus products.

It is widely felt amongst industry figures that in many cases they are not being done sufficiently well to
inform users in an effective manner. And the problems are not minor, or due to a surfeit of ‘cowboy’

evaluations done on the cheap, although this has often been the case in the past. When we see experts ofthe

calibre ofVesselin Bontchev complaining that the best evaluations he can manage are not good enough we

know that the problems are not superficial, but fundamental.

If the experts are talking like this, what hope have the end users of these products? Can we do to anything to
improve the situation, and ifso, what?

I have been working with the UK Government on aspects ofevaluation applied to anti-virus products, and I

am going to talk about some ofthe history and principles ofevaluation in this rather esoteric area, what
government work in both the US and Europe has brought to the field, and what could be done to improve the
situation. Though this is intended to be a general talk, and I will not be describing detailed test protocols
which Iwould recommend, 1 will be trying to indicate general areas where lbelieve current evaluations are

having difficulty, and how we are hoping to alleviate this.

I will also be talking at a general level because I believe that the world ofa/v evaluations has something to

teach those who evaluate other security products, and that the particular difficulties which are faced in our

community are also faced, to a lesser extent, by those in other computer security fields.

EARLY EVALUATION HISTORY

The problem ofmalicious software started in 1986, with the BRAIN and VIENNA viruses, plunging the
world into a new dark age, or giving security professionals something extra to threaten us with, depending

on your point ofview. From the start the world faced this new threat with an almost complete lack of
information. You may recall Peter Norton’s famous rejection ofthe problem as an ‘urban myth, like

alligators in the sewers’. This field started as an arcane one, filled with forbidden secret knowledge, and the

VIRUS BULLETINCONFERENCE©1995 V'1rus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000325

000326

XVI ° BAXTER: UK GOVERNMENT CERTIFICATION OF ANTI—VIRUS SOFTWARE

rapid rate ofchange we have experienced since then has ensured that it remained largely a dark continent to
most people.

In the earliest days ofa/v work many researchers kept their collections and the knowledge they gained from

studying them closely guarded secrets. It is understandable in hindsight. The press were warning that
viruses would bring down the Western world with its reliance on technology, and early academic studies

indicated the potential for rapid world-wide spread. It was surely right to pass as little information as

possible out to the world at large, since any data could be used to improve viruses. And ifan a/v product
was being sold it made no sense to release data to competitors, did it?.

The first ‘product evaluations’ under these conditions tended to be discussions on bulletin boards, typically
inside the academic community. Looking back on such early discussions, it seems that the ‘best’ product

was usually designated as the one which could detect the ‘latest’ virus. Product vendors would sometimes

respond with complaints (particularly ifthey also detected that virus but under a different name), and the
stage was set for the numbers game, which so many people played between 1989 and 1993.

You will all remember that period. The best product was the one which detected the most viruses. It was so

easy - anyone could weigh up the relative merits oftwo products simply by noting the numbers on the front
of the packaging. It was just as easy for the a/v producers, especially when it was realised that what was
being measured was not what you could do, but what you claimed you could do. And we are only talking
about scanners here. Salesmen for products which were based on checksurnmers or behaviour analysis

would regularly claim that not only could they detect all known viruses, but all those as yet unwritten, which
put them in a commanding lead, on the grounds that infinity is a greater number than any which can
conveniently be written on the front ofa 3 1/2" disk.

The non-specialist PC magazine evaluations ofthat period tended to be functional descriptions, with the
simple results ofa run against a collection noted, sometimes prominently, and sometimes even almost
ignored, as if the colour of the installation screen was a more important feature than the number ofviruses
found. With some ofthe evaluations that could almost be true, since the collections which were used for

testing tended to come from one product manufacturer, who not surprisingly detected all ofthem. When
such magazines attempted to run independent tests without expertise from the product manufacturers, as on
one famous occasion in the UKwhen a magazine used a collection of ‘viruses’ altered so that they would not

replicate, the findings degenerated into farce.

MORE CONSIDERED OPINIONS

A number ofacademic institutions began to show an interest in studying this field, offering the prospect of

truly independent expertise, and possible doctorates. After all, Frederick Cohen can claim the rather dubious
title of ‘ father ofthe virus problem’ as a result ofhis seminal paper in this field. Unfortunately the early

results ofacademic research were rather mixed - the application ofmedical epidemiology techniques to the

problem led some early researchers to conclude that all computers in the world would soon be infected by
viruses - data which the press were eager to publish, but which brought no fame to the researchers. The best

work, by universities such as Karlsruhr, has been invaluable in keeping an independent voice ofcomment on

a/v products alive but the work required has been very heavy, and dependent on individual skilled
researchers remaining with the university. These have tended to move out or be ‘poached’ by the a/v

industry as it expanded during this period, and since there remains a real shortage of skills in this field it
will obviously be increasingly difficult for a good researcher to retain an independent voice against

increasing financial temptations from the industry .

Through all this a few specialist a/v magazines have maintained an island ofcomparative reliability. They
ran tests to their own protocols, against their own collections, which were generally reliable. They
commissioned individual expert appreciations ofparticular products, and more recently have begun to offer

VIRUSBULLETZNCONFERENCE©1 995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

without the prior written permission of the publishers. v

000327

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° XVII

specialist tests on individual types ofviruses or aspects ofprotection such as repair or heuristic scanning.
They have remained the best source for end users to obtain useful information about a/v products.

Yet there are still problems with these evaluations, admittedly both independent and expert, for the end-user.

A typical test report is best characterised as a race with the tester holding the prize. We all believe that these
race meetings are held fairly, and we applaud the principle ofpublishing the protocols so that those who

wish to can investigate them, but what do the findings mean? ls a small percentage difference in a table

significant, or is a large one not particularly worrying? It is hard to know what is acceptable, as opposed to
which is best and whether it matters that another, on the day, is (just) second best.

And ofcourse the other problem is that the race meetings keep happening. A winner on one track comes

third or fourth a month later in a different race, even one which you have reason to believe is run as fairly as

possible by reputable officials. Perhaps that is what is meant when some ofthe most respected names claim
that, no matter how hard they try, even the best run competitions are just not good enough. Are there any

other approaches to evaluation which would give us awarmer feeling that we can rely on the findings

staying reasonably constant, and maybe even letting us understand how they apply to real life? During this

period oftime one ofmy responsibilities was the provision ofadvice to government departments on the
purchase ofa/v products, and I certainly wished that this were so.

GOVERNMENT COMPUTER SECURITY EVALUATION TECI-HVIQUES

THE ORANGE BOOK

While industry has been struggling with the issue ofhow to recognise a good anti-virus product since 1986,

government bodies around the world responsible for purchasing secure computer system, usually for the
military, have been trying to understand what constituted a good secure system for a somewhat longer

period. It might be thought, and I think that it is the case, that some ofthis work could be applied to the

problem ofcommercial evaluations ofa/vproducts. Both the scholia ofknowledge and experience are aimed
at a similar problem, and both complement each other. For while the a/v community have developed their
evaluation approaches from experience, much government work in this field has been designed from theory.

The first example ofgovernment evaluation work is, ofcourse, the US Army and MITRE studies which
culminated in the ‘Orange Book’ the Trusted Computer Security Evaluation Criteria. This document was the

first attempt in the world to lay down guidelines on what constituted ‘security’ on a computer system, and
so, as the first metric, set the language and thinking for all the work that came later.

Ofcourse, the Orange‘Book did not address virus problems directly. It was really quite restrictive, confining
itselfto the security problems of the military in the 197OS, which were ahnost exclusively those of

confidentiality on operating systems. Viruses may cause confidentiality problems, but are essentially a

system integrity issue, confused by the fact that they are an active threat. Most system integrity threats are
passive - a line goes down, a component breaks. But viruses are active, like the majority ofconfidentiality ,
threats.

The major contribution ofthe Orange Book was to propose that security on a computer system could be seen
as comprising two primary components, Functionality and Assurance. Any system had these components,
and an evaluation consisted ofdefining arequired functionality and then testing it with a specified level of

rigour to give the required assurance that the functionality existed, and was properly implemented.

The Orange Book comprised, indeed comprises, because it is still the basic US Government Computer

Security Evaluation manual, a set ofascending levels offimctionality for an operating system. As the levels
rise extra functionality is added on, and more stringent testing is required. Continuing the image of an

athletics competition, if a/v industry evaluations are like races, this is closer to a high jump. The levels and
rules are well specified, and any product can be entered at a particular height.

VIR USBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X14 3YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

OOO327

000328

XVIII - BAXTER: UK GOVERNMENT CERTIFICATION OF ANTI-VIRUS SOFTWARE

As it stands, the Orange Book is not much use for a/v product evaluation, since it contains no specific a/V
functionality. Because ofthis, no a/v product has been evaluated using Orange Book techniques.

ITSEC

In response to the Orange Book work, several European countries began developing their own criteria for
security evaluations, and within a few years these were brought together as a single method for security
evaluation which could be recognised throughout Europe. This was the IT Security Evaluation Criteria

(ITSEC).

With the benefit ofhindsight it could be seen that restricting the testing regime to operating systems alone

‘ was too constraining, and ITSEC allows any functionality to be specified and tested, to increasing assurance
levels similar to the Orange Book.

This increased flexibility had the disadvantage ofmaking the evaluation approach more complex. ITSEC
does not consist ofa series oflevels against which a restricted set ofproducts can be matched, but rather a

process, a series ofstages starting with the definition of a functionality, and progressing through a series of
tests to achieve assurance.

The major contribution ofITSEC was to recognise that, to gain the flexibility ofbeing able to specify any
function and test for it, two new concepts had to be introduced. We understand that a product may have

Functionality and Assurance, but ifwe want to allow any fimctionality, we need to be sure that it is the right
functionality. So the ITSEC testing regime specifies that, when the Assurance testing is done, specific
stages oftesting must identify the Correctness of the functions (whether they work as specified), and the
Effectiveness ofthe functions (whether what they do is useful).

Testing for the Effectiveness of a product only makes sense ifwe know what it is that it has to do
’ effectively. So the ITSEC process requires a statement to be made at the beginning ofthe evaluation
describing the threat which the product is intendedto deal with, and the manner in which it does so. This
statement, together with other related items such as the environment inwhich the product is meant to work,
is lmown as the Security Target, and an Orange Book evaluation is similar to an ITSEC evaluation with a

government specified Security Target.

If the Orange Bookprocess can be thought ofas describing a highjump competition, the ITSEC process is
a little more general. Think of it as describing the rules for a jumping competition - high, long, triple,
standing, indeed any kind ofjump which can be imagined.

With the ITSEC process we have the first indication that a formal govemment-sponsored evaluation method
could be ofuse in the field of a/V product examination. An a/v product could be offered for evaluation with
an appropriate Security Target, and be given a grading according to the level ofassurance that it could
achieve. What advantages might this approach offer over the more accepted techniques I have described
above?

Jirsnc ADVANTAGES

Government evaluation techniques differ fiom typical Industry techniques in that considerable emphasis is

placed on the theory ofwhat is being done, and on adherence to a set of rules. In the case ofITSEC
evaluations, an approach is taken which relies less on testing that a given ftmction (say, detecting FORM)
exists, and more on proving that it must exist by study ofthe design and implementation ofthe code. This is
certainly a slower and more cumbersome approach than simply testing whether the detection capability
works, but it has the advantage ofbeing a more fundamental approach -there is less room for errors such as
testing products against files which do not contain viruses. Such testing is not banned, it isjust that
assurance is best seen as coming from an examination of the product design against a specification ofthe
threat. Ofcourse, it is crucially important that the original requirement - the threat - is right.

I/YRUS BULLETINCONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000328

000329

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 ° XIX

Another difference which will be noted is this emphasis on tracing the function and code ofthe product from

the original requirement. The concept is less obvious in both a typical Industry evaluation, where the

evaluating expert decides what will be tested for, and the Orange Book type of evaluation where a set of

fimctions is predetermined, and was originally derived from theoretical work. This is an area in which the

ITSEC approach might offer advantages to a typical magazine evaluation; instead ofsetting up a single test

which has to be fair to two different products with two different approaches each product could be required

to justify its claims and approach in the light of the threat. In practice this would be too costly and labour-

intensive to consider for tight magazine budgets and deadlines, but the principle offers one ofthe few

available methods ofbeing fairto each product and still testing them in a justiflable way.

So have we produced the answer? Is the a/v industry beating apath to our door? Sadly, the answer is no, or

at least, not yet. In fact, we have had some experience ofa/v evaluations using the earlier UK methodology

that pre-dated ITSEC, but was very similar to it in concept and were sufficiently unhappy with the results to

suspend evaluating this type ofproduct until we felt that we could do a goodjob.

ITSEC DISADVANTAGES

Our experiences are worth examining, since Ibelieve that they can shed some light on my earlier question -

why it is that even the best industry a/v evaluators are unhappy with their results.

The first is that an ITSEC evaluation costs money, a fair amount ofmoney. Has this made ITSEC

ineffective as a general purpose security evaluation process? Though cost must always be a factor I think the

answer is no. Although an ITSEC certificate is not yet considered an essential accessory for all security

products, there is a continual and growing stream ofapplicants requesting evaluations.

Is it that an ITSEC evaluation takes a considerable time? This is certainly a problem for products in the a/vi

arena, where new releases happen every month. Any reasonable examination ofaproduct must take some M

time, but the approach taken by the ITSEC methodology ofexamining the fundamental design ofthe product

takes longer. However, we know that major test studies with large collections take a lot oftime to set up too,

and this is accepted by the industry. It is true that any evaluation system intended for a/v products needs the

ability to react quickly to new releases ofproducts, and ITSEC could not do this at the time. But then,

neither could any other approach.

If the ITSEC evaluation approach can offer a more reliable method ofchecking fimctionality than testing .

alone, and can offer a more fair evaluation ofproducts using different approaches to solving the same

problem, why were we as unhappy with our evaluation technique as some ofthe less-skilled magazines were

in the early days of industry evaluations? In a word, it has to do with the threat.

An ITSEC evaluation depends crucially on a statement ofthe threat at the outset. From this ajustification of

what the product does is developed, and this is then shown to be effective and correct in the later stages of

the process. And the statement of the threat that the product is expected to defend against is obtained from

the product producer.

From one point ofview this makes sense. A security product manufacturer may decide to defend against any

kind ofthreat he wishes, and it is assumed that ifhis clients wish to defend against this threat also, they will

buy his wares. Ifthey do not, the product will not sell. But this analysis does not cater for the situation

where few or no users have any idea ofwhat the threat really consists of, and even the product producers are
not too sure.

In retrospect what is likely to happen is obvious. The product manufacturers simply claimed that the threat

they had to match was the one which their product defended against. And not surprisingly, they passed the

evaluation. The problem we had was similar to that ofthe simplistic early magazine evaluations, in that each

VIR US BULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000329

000330

XX 0 BAXTER: UK GOVERNMENT CERTIFICATION OF ANTI—VIRUS SOFTWARE

manufacturer would simply present their collection ofviruses and claim that that was the threat, which, of
course, for them it was.

IlVfl’ROVING ITSEC AND OTHER EVALUATION PROCESSES.

How could we solve this problem? Well, we had to have an unambiguous and clear definition ofthe threat.
So we tried to find out more about it, and instead, Ibelieve, stumbled on the problem which lies at the heart

ofall current a/v product evaluations, done by the industry, independent magazines, academic institutions or
governments. There is no clear, widely agreed and accepted definition ofthe threat from malicious software.

There are certainly people who know all that is available to be known about the problem. There are
institutions which house the largest collections ofvirus-related data, and even viruses, in the world. But

there are few people, and I have not found any, who are able to quantify the real-world threat from different
viruses, explain how effective each type is at passing from machine to machine in reality rather than theory,
and generally provide all the data which the ITSEC methodology requires if it is to successfully evaluate a/v
products against the actual threat.

I I believe that this is the problemwhich is causing similar difficulty to the best independent researchers in
the world today. You can certainly maintain a clean (ish) and up-to-date (ish) collection, though this is a
major achievement which few institutions in the world have managed in practice. You can establish a test
protocol which is fair to all products (though it is probably an impossibility to establish a protocol which is
admitted by all the product manufacturers to be fair!) But when you have done these things, which are very

, hard to manage, and run a test, how do you distinguish between two products scoring 97% and 98%? How
doyou distinguish between two products scoring similar marks but detecting different viruses? Ifyou decide

I to run a special test, such as detection ofa particular sub-type ofvirus, how do you relate this to the
performance ofthe product as a whole?

T These questions are currently difficult to answer, and the subject ofdebate between researchers. An
evaluator can certainly present findings as a set offigures and offer an opinion, but an end-user reading
them cannot be sure how they relate to the virus problem in the world in general, let alone his computer in

_ particular.

. This problem has hitthe formal evaluation processes beloved by governments harder that the independent
’ evaluations undertaken by industry experts. After all, no problem is ever understood fully, and by definition

the best industry experts are doing the best evaluations that can be done in the world. They can make
estimations and offer opinions which are worth something even in the absence ofproof. Those ofus who are
working with more formal evaluation techniques, however, fall at the first hurdle ifthe base data we need to
work from is absent. I think, however, that ifthe problems we have found can be addressed, then all those
concerned with the a/v world will benefit - the manufacturers, independent experts and users - all, in fact,

except the virus writers.

You will not be surprised, therefore, to learn that we are trying to tackle the problem offmding enough
. information about the threat from viruses to recover our capability to evaluate a/v products using the ITSEC

method. We have been working in this area for the last two years, and have been collecting some ofthe data
we feel that we will need for over a year now, so we are now close to being able to ‘open for business’

again.

It may be ofinterest to know what sort ofdata we are collecting. We have several processes operating to
gather data and convert it into a suitable format for use in an evaluation. The earliest one we have put into
action - it has been running for a year and a halfnow — is the collection ofdata on virus incidents. We need
to know which viruses are common, which are rare but still out there, what damage they cause, and several
other items of information associated with an infection.

VIRUSBULLETINCONFERENCE©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, 0X143YS, England.

Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written permission of the publishers.

000330

000331

VIRUS BULLETIN CONFERENCE, SEPTEMBER I995 °)O(I

This information is collected in the UK from a combination ofsources. Government departments, the police

and the virus industry all contribute, merging their data into a common format, and we have a database of

some 3000 incidents which is now big enough to examine for trend information. We operate this in

association with the German computer security authorities, who also contribute, and I hope shortly to be able

to increase our collection area to take in the USA, Canada and other countries.

As well as virus incident data we will need access to large virus collections. We have found that the most

reputable collections are, in general, either happy to make their collections available to a body with our aims,

or will agree to run tests to our protocols once we have agreed them. However, as I indicated before, the

emphasis on ITSEC evaluations is less on practical tests and more on the description and justification of

processes in the product which are intended to defend against the threat. This does not preclude the running
oftests in a similar manner to other evaluation protocols, but does require us to examine a product and

understand why it is performing the actions it is. ’

This requirement has led us to develop another less usual aid to evaluations, a Virus Encyclopedia. For the

use ofITSEC evaluators, this document aims at describing all known virus techniques, with particular

reference to how the technique attempts to circumvent detection, and the implications for testing products
which aim to deal with it. Armed with this data, an ITSEC evaluator can examine the design of a/V products

for known flaws which viruses may take advantage of, and check that all known virus attack techniques are

able to be defended against.

Finally, we have a coverall subject heading, that of ‘Best Practice’. Items are considered for inclusion here‘

by a UK Industry—Govemment liaison group, who make a ruling on whether a particular technique - selling

a/V products only on write-protected disks, for instance - should be a requirement for any product to pass»
evaluation. * ’“?

All these items, put together, constitute the Threat Statement, a description of the entire body ofmalicious .5

code which we would expect an a/v product to deal with, including descriptions ofwhat would constitute

‘dealing with’, and indications ofhow this could be measured. v

It will immediately be understood that the Threat Statement is dynamic. We have not commissioned single

items ofwork, but instead have set up processes which are intended to continue to function indefmitely;-and

which can pass out the data we require on the virus threat and associated subjects as we require. This

dynamic nature ofthe threat brings a second problem in its wake - ifwe can manage to evaluate a product by
‘freezing’ the threat at one moment in time and requiring the manufacturer to justify his product design

against it, what do we do when the next issue ofthe product comes out? ‘

A second evaluation would be out ofthe question. The ITSEC process is never going to be as fast asa, ’

conventional evaluation, and it is not free. The organisation who want the product evaluated, usually the V
manufacturer but sometimes a large customer, have to pay an Evaluation Facility to undertake the actual ~- I

evaluation work. While we may hope that one evaluation per year may be commissioned, we are unlikelyto

get one per month! ‘ ‘

We have approached this problem in a novel manner, and one which would, perhaps, be less available to an
independent researcher or magazine evaluating several products in tandem. Having checked that the product .

is acceptable, we will proceed to examine the manufacturer to determine whether the company is capable of

keeping the product up to scratch.

This operation will resemble a quality inspection in some ways; it will examine the processes inside the V

company which are needed to maintain the product, and confirm that they are in place and working. Then, if

everything is acceptable, the company can be issued with its ITSEC certificate valid for a year. It will retain

this depending on a satisfactory outcome from the periodic audit visits which will occur during this time.

I/YR USBULLETINCONFERENCE ©1995 Virus BulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

000331

000332

XXII ° BAXTER: UK GOVERNMENT CERTIFICATION OF ANTI-VIRUS I ll, .

These processes for formally measuring and documenting the threat are unlike anything we have worked
with before, but they seem to be called for by the unusually dynamic nature of the virus threat. We believe
that they will work - our data already seems to be following the trends in the virus world closely, and we
have hopes that it will prove useful in a wider variety ofcircumstances than for virus product evaluations
alone.

CONCLUSION

l have indicated the crucial importance that formal evaluations, and lTSEC in particular, attach to overtly
describing the threat. Ofcourse, all security evaluations must be done with some appreciationofthe threat in
mind, but in fields where this threat moves slowly there is usually a general consensus amongst most
workers in the field.

I believe that many of the current concerns ofevaluators in this field, ofall types, springs from the fact that
there istoo little agreement on what constitutes an adequate anti-virus product, because there is too little
known and quantified about the threat. This knowledge is lacking on both sides ofthe counter - the product
manufacturers may be more informed that the users ofthe character ofthe threat, but they would still find it

hard to quantify.

We have begun the processes needed to pin this data down, to enable all those involved in this subject to talk
about the threat in the same language, and provide a platform for differing conclusions to be discussed, and
agreement reached. This process seems to be operating well over the last year in the UK, but.viruses are, of
course, a world problem, and world solutions are needed to cope with them.

So we hope over the next few months to encourage a similar process ofmonitoring the virus threat using a
standard format to begin in other countries round the world. Ifthis can be achieved we will have a repository
ofdata which may be used in different ways by different evaluation techniques, but which should still
produce similar findings, since it will be derived from a single source, mutually agreed by the virus
researchers around the world. Ifwe can manage this, then the work we are doing will have a useful purpose
over and above that for which it was originally designed, and possibly one which will enable users ofall

a computer security products in the future to havea greater beliefin the effectiveness of their chosen products.

I/IRUSBULLETlI\ICONI1"1.*7‘81£“1I\[:C‘jir_:f,‘©._ .. eti_nLtd,21 TheQuadrant,Abingdon,Oxl'ordsl1ire,OX143YS,England.
Tel. +44 (0)1235 555;-1v'.,’a9 '_'_No’ part’ of th1s~pu ication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written ..»p,§‘§tmission of the publishers.

» A: ’ > 000332

000333

UNIVERSITY OF WASHINGTON LIBRARIES

All overdue materials are subject to fines.

Due date may be changed if needed by others.
ILKTEIUE

i A * '.-' .2?-vi

_J

. L 4
L

:1

_|

:1

T J_ —

4‘ _l
Lib. 65 Rev. GU02 1-5:1-25:13_...—..T

Jam‘.-*.",.-'3.

000333

._.._fi

000334 000334

