
Abstract
Safe virtual execution (SVE) allows a host computer

system to reduce the risks associated with running
untrusted programs. SVE prevents untrusted programs
from directly accessing system resources, thereby giv-
ing the host the ability to control how individual
resources may be used. SVE is used in a variety of
safety-conscious software systems, including the Java
Virtual Machine (JVM), software fault isolation (SFI),
system call interposition layers, and execution moni-
tors. While SVE is the conceptual foundation for these
systems, each uses a different implementation technol-
ogy. The lack of a unifying framework for building SVE
systems results in a variety of problems: many useful
SVE systems are not portable and therefore are usable
only on a limited number of platforms; code reuse
among different SVE systems is often difficult or impos-
sible; and building SVE systems from scratch can be
both time consuming and error prone.

To address these concerns, we have developed a por-
table, extensible framework for constructing SVE sys-
tems. Our framework, called Strata, is based on
software dynamic translation (SDT), a technique for
modifying binary programs as they execute. Strata is
designed to be ported easily to new platforms and to
date has been targeted to SPARC/Solaris, x86/Linux,
and MIPS/IRIX. This portability ensures that SVE
applications implemented in Strata are available to a
wide variety of host systems. Strata also affords the
opportunity for code reuse among different SVE appli-
cations by establishing a common implementation
framework.

Strata implements a basic safe virtual execution
engine using SDT. The base functionality supplied by
this engine is easily extended to implement specific SVE
systems. In this paper we describe the organization of
Strata and demonstrate its extension by building two
SVE systems: system call interposition and stack-
smashing prevention. To illustrate the use of the system
call interposition extensions, the paper presents imple-
mentations of several useful security policies.

1. Introduction

Today’s software environment is complex. End users
acquire software from a number of sources, including
the network, and have very little on which to base their
trust that the software will correctly perform its
intended function. Given the size of modern software—
operating system kernels are comprised of millions of
lines of source code and application programs are often
an order of magnitude larger—it is difficult or impossi-
ble for developers to guarantee that their software is
worthy of the end user’s trust. Even if developers could
make such guarantees about the software they distrib-
ute, hostile entities actively seek to modify that soft-
ware to perform unanticipated, often harmful functions
via viruses and Trojan horses.

In recent years, researchers have developed a variety
of techniques for managing the execution of untrusted
code. These techniques can be divided into two orthog-
onal categories: static and dynamic. Static techniques
analyze untrusted binaries before execution to deter-
mine whether or not the program is safe to run. Proof
carrying code [17] is a good example of the static
approach—before a program can execute, the runtime
system must successfully validate a proof that the
untrusted binary will adhere to a given safety policy.
Many static approaches, including proof carrying code,
rely on source code analyses to produce safe binaries
[5,15,22]. Dynamic techniques, on the other hand, do
not require access to source code. Rather, dynamic
techniques prevent violation of safety policies by moni-
toring and modifying the behavior of untrusted binaries
as they execute. An example of a dynamic approach is
execution monitoring [9,18]. Execution monitors termi-
nate the execution of a program as soon as an imper-
missible sequence of events (corresponding to a safety
policy violation) is observed. System call interposition
layers [11, 12, 13, 14] are similar to execution monitors
with the additional ability to alter the semantics of
events, specifically system calls. Yet another similar
dynamic technique, software fault isolation (also

Safe Virtual Execution Using Software Dynamic Translation

Kevin Scott and Jack Davidson

Department of Computer Science, University of Virginia
Charlottesville, VA 22904

{kscott, jwd}@cs.virginia.edu

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

000001
Symantec 1024

IPR of U.S. Pat. No. 8,677,494
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

known as sandboxing) [23] limits the potential damage
an untrusted binary can do by preventing loads, stores,
or jumps outside of a restricted address range.

In this paper we make the following observation:
many dynamic trust management systems, including
the ones mentioned above, can be implemented using a
technique called safe virtual execution (SVE). SVE
mediates application execution, virtualizing access to
sensitive resources in order to prevent untrusted bina-
ries from causing harm. Despite the fact that SVE pro-
vides a conceptual framework for the implementation
of systems such as execution monitors, interposition
layers, and sandboxing, these systems are frequently
based on widely differing implementation technologies.
These systems are often dependent on a specific target
architecture or on special operating system services,
hence impeding their widespread use in the modern het-
erogeneous networked computing environment. In
addition to non-portability, the use of different imple-
mentation technology places undue engineering bur-
dens on the designers of SVE systems. They cannot
share code and features with similar systems and must
often endure the time consuming and error-prone chore
of building their systems from scratch.

To address these concerns, we have developed a por-
table, extensible framework for constructing SVE sys-
tems. Our framework, called Strata, is based on
software dynamic translation (SDT), a technique for
modifying binary programs as they execute [1, 2, 3, 6,
7, 20, 21, 24]. Using SDT, Strata offers a basic safe vir-
tual execution engine. The base functionality supplied
by this engine can be extended in order to implement
specific SVE systems. Using this approach useful SVE
systems can often be implemented with very few lines
of new code. Strata is designed to be easily ported to
new platforms and to date has been targeted to SPARC/
Solaris, x86/Linux, and MIPS/IRIX. This portability
ensures that SVE applications implemented in Strata
are available to a wide variety of host systems. Strata
also affords the opportunity for code reuse among dif-
ferent SVE applications by establishing a common
implementation framework.

The remainder of this paper is organized as follows.
Section 2 provides an overview of software dynamic
translation and Section 3 describes Strata’s organization
and architecture. Section 4 then describes how Strata is
used to implement a system call interposition layer and
how this layer can be used to implement powerful secu-
rity policies. Section 5 discusses our results while Sec-
tion 6 discusses related work, and Section 7 provides a
summary.

2. Software Dynamic Translation

SDT is a technique for dynamically modifying a
program as it is being executed. Software dynamic
translation has been used in a variety of different areas:
binary translation for executing programs on non-native
CPUs [6, 7, 21]; fast machine simulation [3, 24]; and
recently, dynamic optimization [1]. In this paper we
describe how software dynamic translation can be used
to implement safe virtual execution.

Most software dynamic translators are organized as
virtual machines (see Figure 1a). The virtual machine
fetches instructions, performs an application-specific
translation to native instructions, and then arranges for
the translated instructions to be executed. Safe virtual
execution systems can be viewed as types of virtual
machines. On a conceptual level, an SVE virtual
machine prevents untrusted binaries from directly
manipulating system resources. The difference between
SVE systems is in how this virtual machine is imple-
mented. For instance, in the Java Virtual Machine an
interpreter is used to isolate Java bytecode programs
from underlying system resources [16]. Systems such
as SASI [9] and SFI [23] merge the application program
with the SVE virtual machine, using binary rewriting at
load time; the virtual machine is in the form of instruc-
tions that check certain sequences of instructions before
they are allowed to execute. Systems such as Janus [13]
and Interposition Agents [14] use special operating sys-
tem facilities to virtualize the execution of a very spe-
cific aspect of execution, specifically, system calls.

In this paper we propose the use of software
dynamic translation as the basis for implementing safe
virtual execution systems. Implementing an SVE appli-
cation in a software dynamic translator is a simple mat-
ter of overriding the translator’s default behavior. For
example, an SDT implementation of a software fault
isolator would translate load instructions into a
sequence of instructions that performs an address check
before the load executes.

In order to illustrate our approach in brief, consider
the task of preventing stack-smashing attacks using
SDT. Stack-smashing attacks take advantage of unsafe
buffer manipulation functions (e.g., strcpy from the C
standard library) to copy, and subsequently execute,
malicious code from the application stack. The mali-
cious code is executed with the privileges of the user
running the program, and in many cases can lead to
serious security compromises on affected systems
[4,15].

A simple way to prevent stack-smashing attacks is to
make the application stack non-executable. In the
abscence of operating system support for non-execut-
able stacks, it is a trivial matter to prevent execution of

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

000002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

code on the stack by using SDT. This task is accom-
plished by replacing the software dynamic translator’s
default fetch function with a custom fetch that prevents
execution of stack resident code.
The custom fetch function

custom_fetch (Address PC) {
if (is_on_stack(PC)) {

fail("Cannot execute code on the
stack");

} else {
return default_fetch(PC);

}
}

checks the PC against the stack boundaries and termi-
nates program execution if the instruction being fetched
is on the stack. If the instruction being fetched is not on
the stack, it is alright to execute the instruction, and
consequently the fetch is completed by calling the
default fetch function.

3. Strata

To facilitate SDT research and the development of
innovative SDT applications, we have constructed a
portable, extensible SDT infrastructure called Strata. As
shown in Figure 1a, Strata is organized as a virtual
machine. The Strata VM mediates application execu-
tion by examining and translating instructions before
they execute on the host CPU. Translated instructions
are held in a Strata-managed cache. The Strata VM is
entered by capturing and saving the application context
(e.g., PC, condition codes, registers, etc.). Following
context capture, the VM processes the next application
instruction. If a translation for this instruction has been
cached, a context switch restores the application context

and begins executing cached translated instructions on
the host CPU.

If there is no cached translation for the next applica-
tion instruction, the Strata VM allocates storage for a
new fragment of translated instructions. A fragment is a
sequence of code in which branches may appear only at
the end. The Strata VM then populates the fragment by
fetching, decoding, and translating application instruc-
tions one-by-one until an end-of-fragment condition is
met. The end-of-fragment condition is dependent on the
particular software dynamic translator being imple-
mented. For many translators, the end-of-fragment con-
dition is met when an application branch instruction is
encountered. Other translators may form fragments that
emulate only a single application instruction. In any
case, when the end-of-fragment condition is met, a con-
text switch restores the application context and the
newly translated fragment is executed.

As the application executes under Strata control,
more and more of the application’s working set of
instructions materialize in the fragment cache. This,
along with certain other techniques—e.g., partial inlin-
ing of functions and indirect branch elimination—that
reduce the number and cost of context switches, permits
Strata to execute applications with little or no measur-
able overhead [19].

Figure 1b shows the components of the Strata VM.
Strata was designed with extensibility and portability in
mind. Extensibility allows Strata to be used for a vari-
ety of different purposes; researchers can use Strata to
build dynamic optimizers, dynamic binary translators,
fast architecture emulators, as well as safe virtual exe-
cution systems. Portability allows Strata to be moved to
new machines easily. To date, Strata has been ported to
SPARC/Solaris, x86/Linux, and MIPS/IRIX. More

Figure 1: Strata Architecture

Application

Host CPU

Target Specific Functions

Strata Virtual CPU

Context Management

Memory Management

Cache Management

S
tr

at
a

V
ir

tu
al

M
ac

h
in

e

Target Interface

Linker

Context
Switch

Fetch

Decode

Translate

New
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

SDT Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

(a) (b)

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

000003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

importantly, Strata’s portability means that software
implemented using Strata’s extensibility features is
readily available on a wide range of target architectures
and operating systems.

To achieve these goals, the Strata virtual machine is
implemented as a set of target-independent common
services, a set of target-specific functions, and a recon-
figurable target interface through which the machine-
independent and machine-dependent components com-
municate (see Figure 1b). Implementing a new software
dynamic translator often requires only a small amount
of coding and a simple reconfiguration of the target
interface. Even when the implementation is more
involved, e.g., when retargeting the VM to a new plat-
form, the programmer is only obligated to implement
the target-specific functions required by the target inter-
face; common services should never have to be reim-
plemented or modified.

Strata consists of 5000 lines of C code, roughly half
of which is target-specific. In Figure 1b, shaded boxes
show the Strata common services which comprise the
remaining half of the Strata source. The Strata common
services are target-independent and implement func-
tions that may be useful in a variety of Strata-based
dynamic translators. Features such as context manage-
ment, memory management, and the Strata virtual CPU
will most likely be required by any Strata-based
dynamic translator. The cache manager and the linker
can be used to improve the performance of Strata-based
dynamic translators, and are detailed in other work
[19].

4. Strata and Safe Virtual Execution

In Section 2 we sketched one example that demon-
strates the process one can use to write a Strata-based
safe virtual execution system, specifically, a stack-
smashing inhibitor. In this section we use Strata to
implement a system call interposition layer. This inter-
position layer, like all Strata-based applications, is user-
level software and requires no kernel modifications.
Our Strata-based system call interposition layer also
obviates the need for special operating system services
for interception or redirection of system calls. As a con-
sequence, our system call interposition layer is more
flexible and portable than many existing systems.

SDT’s ability to control and dynamically modify a
running program provides an ideal mechanism for
implementing a system call interposition layer. As the
untrusted binary is virtualized and executed by Strata,
code is dynamically inserted to intercept system calls
and potentially redirect those calls to user supplied
functions. In general though, this process does not need
to be limited to system calls; all access to host CPU and

operating system resources are explicitly controlled by
Strata (see Figure 2).

In this paper, we will use terms and phrases that are
typically employed when discussing the Unix operating
system (e.g., “becoming root”, “exec’ing a shell”, “per-
forming a setuid(0)”, etc.). The actions indicated by
these terms have analogs in other major operating sys-
tems (e.g., Windows NT, Windows 2000, Window XP,
VxWorks, and PSOSystem) and the approaches we
describe would apply equally well to applications run-
ning on these systems.

A simple, but realistic example illustrates our
approach. Suppose a user wishes to enforce a policy
that prohibits untrusted applications from reading a file
that the user normally has permission to read. Let’s call
this file /etc/passwd (registry.dat, SAM, or sys-
tem might be equally good choices). Now assume that
the user receives an untrusted binary called funny and
wishes to run it. The user invokes funny using the
Strata loader. The Strata loader locates the entry point
of the application and inserts a call to the Strata startup
routine. When the loader begins the execution of the
application, the call to the Strata startup routine leads to
the dynamic loading and invocation of Strata.

As Strata processes funny’s text segment and builds
fragments to be executed, it locates open system calls
and replaces them with code that invokes the execution
steering policy code. When the fragment code is exe-
cuted, all open system calls are diverted to the policy
code. It is the policy code’s job to examine the argu-
ments to the original open system call. If the untrusted
application is attempting to open /etc/passwd, an
error message is issued and the execution of the appli-
cation is terminated. If the file being opened is not /
etc/passwd, the security policy code performs the

Figure 2: Strata

Host CPU

Strata SVE Application

Untrusted
Binary

Host CPU and OS
Services

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

000004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

open request, returns the result, and execution contin-
ues normally (albeit under the control of Strata).

4.1. A System Call Interposition API

We support system call interposition through an API
implemented by overriding Strata’s base functionality.
The API is a simple, efficient mechanism that allows
the user to specify which operating system calls are to
be monitored and the code to execute every time the
operating system call is invoked. Strata’s execution
steering API consists of four functions. They are:

void init_syscall();
watch_syscall(unsigned num, void *callback);
void strata_policy_begin(unsigned num);
void strata_policy_end(unsigned num);

The first function is called on the initial entry to Strata.
The implementation of this function will contain calls
to the second API function watch_syscall(). Func-
tion watch_syscall() specifies an operating system
call to watch (i.e., num) and the redirected system call to
execute when that OS call is invoked (i.e., callback).
The signature of callback should match the signature
of the operating system call being watched. The final
two API functions are used to bracket redirected system
call code. The need for the bracketing functions will be
explained shortly when we describe how Strata dynam-
ically injects code into the application.

To illustrate the implementation of Strata’s security
API, we show the Strata security policy for preventing
an untrusted application from reading /etc/passwd.
Following the style used on hacker websites to demon-
strate the exploitation of security vulnerabilities, we
give a small demonstration program that exercises the
policy. The demonstration code is given in Listing 1.

Before explaining how Strata injects this code into
an untrusted binary, we review the code at a high level.
Function init_syscall() at lines 17–19 specifies
that SYS_open calls should be monitored and that when
a SYS_open call is to be executed by the application,
control is to be transferred to the policy routine myo-
pen().

Function myopen() (lines 5–16) implements the
redirected system call. As mentioned previously, invo-
cations of strata_policy_begin() and
strata_policy_end() are used to bracket the redi-
rected system call code and their purpose will be
explained shortly.

In function myopen(), the path to be opened is con-
verted to an absolute pathname by calling the utility
function makepath_absolute(). The path returned is
compared to the string /etc/passwd and if it matches,
an error message is issued and execution is terminated.
If the file to be opened is not /etc/passwd, then the
policy code performs the SYS_open system call and
returns the result to the client application as if the actual
system call was executed.

When an untrusted binary is to be executed, the
Strata loader modifies the application binary so that ini-
tial control is transferred to Strata’s initialization rou-
tines. This routine dynamically loads and executes the
init_syscall() function that sets up a table of sys-
tem calls to watch and their corresponding callback
functions.

After initialization is complete, Strata begins build-
ing the initial application fragment by fetching, decod-
ing and translating instructions from the application
text into the fragment cache. The system call interposi-
tion API is implemented by overriding the translate
function that handles trap or interrupt instructions. For
the SPARC/Solaris platform, less than 20 lines of code
are required to implement the new translation function-
ality.

Strata examines each operating system call site to
determine if the OS call is one to be monitored. In most
cases, Strata can determine at translation time which
operating system call will be invoked at the call site. If

1. #include <stdio.h>
2. #include <string.h>
3. #include <strata.h>
4. #include <sys/syscall.h>

5. int myopen (const char *path, int oflag) {
6. char absfilename[1024];
7. int fd;

8. strata_policy_begin(SYS_open);

9. makepath_absolute(absfilename,path,1024);
10. if (strcmp(absfilename,"/etc/passwd") == 0) {
11. strata_fatal("Naughty, naughty!");
12. }
13. fd = syscall(SYS_open, path, oflag);

14. strata_policy_end(SYS_open);

15. return fd;
16. }
17. void init_syscall() {
18. (*TI.watch_syscall)(SYS_open, myopen);
19. }

Listing 1: Code for preventing a file from being
opened.

20.
21. int main(int argc, char *argv[]) {
22. FILE *f;

23. if (argc < 2 || (f = fopen(argv[1],"r")) ==
NULL) {

24. fprintf(stderr,"Can't open file.\n");
25. exit(1);
26. }

27. printf("File %s opened.\n",argv[1]);

28. return 0;
29. }

Listing 1: Code for preventing a file from being
opened.

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

000005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

