Efficient Software-Based Fault Isolation

Robert Wahbe

Steven Lucco

Thomas E. Anderson

Susan L. Graham

Computer Science Division
University of California

Berkeley, CA 94720

Abstract

One way to provide fault isolation among cooperating
software modules is to place each in its own address
space. However, for tightly-coupled modules,; this so-
lution incurs prohibitive context switch overhead. In
this paper, we present a software approach to imple-
menting fault isolation within a single address space.
Our approach has two parts. First, we load the code
and data for a distrusted module into its own fault do-
main, a logically separate portion of the application’s
address space. Second, we modify the object code of a
distrusted module to prevent it from writing or jump-
ing to an address outside its fault domain. Both these
software operations are portable and programming lan-
guage independent.

Our approach poses a tradeoff relative to hardware
fault isolation: substantially faster communication be-
tween fault domains, at a cost of slightly increased
execution time for distrusted modules. We demon-
strate that for frequently communicating modules, im-
plementing fault isolation in software rather than hard-
ware can substantially improve end-to-end application
performance.

This work was supported in part by the National Sci-
ence Foundation (CDA-8722788), Defense Advanced Research
Projects Agency (DARPA) under grant MDA972-92-J-1028 and
contracts DABT63-92-C-0026 and N0O0600-93-C-2481, the Digi-
tal Equipment Corporation (the Systems Research Center and
the External Research Program), and the AT&T Foundation.
Anderson was also supported by a National Science Foundation
Young Investigator Award. The content of the paper does not
necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

To appear in the Proceedings of the Symposium on Op-
erating System Principles, 1993.

DOCKET

_ ARM

1 Introduction

Application programs often achieve extensibility by
incorporating independently developed software mod-
ules. However, faults in extension code can render a
software system unreliable, or even dangerous, since
such faults could corrupt permanent data. To in-
crease the reliability of these applications, an operat-
ing system can provide services that prevent faults in
distrusted modules from corrupting application data.
Such fault isolation services also facilitate software de-
velopment by helping to identify sources of system fail-
ure.

For example, the POSTGRES database manager in-
cludes an extensible type system [Sto87]. Using this
facility, POSTGRES queries can refer to general-purpose
code that defines constructors, destructors, and pred-
icates for user-defined data types such as geometric
objects. Without fault isolation, any query that uses
extension code could interfere with an unrelated query
or corrupt the database.

Similarly, recent operating system research has fo-
cused on making it easier for third party vendors
to enhance parts of the operating system. An ex-
ample is micro-kernel design; parts of the operat-
ing system are implemented as user-level servers that
can be easily modified or replaced. More gener-
ally, several systems have added extension code into
the operating system, for example, the BSD network
packet filter [MRA87, MJ93], application-specific vir-
tual memory management [HC92], and Active Mes-
sages [vCGS92]. Among industry systems, Microsoft’s
Object Linking and Embedding system [Cla92] can
link together independently developed software mod-
ules. Also, the Quark Xpress desktop publishing sys-
tem [Dys92] is structured to support incorporation of

Email: {rwahbe, lucco, tea, graham}@cs.berkeley.edu

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

general-purpose third party code. As with POSTGRES,
faults in extension modules can render any of these
systems unreliable.

One way to provide fault isolation among cooperat-
ing software modules is to place each in its own address
space. Using Remote Procedure Call (RPC) [BN84],
modules in separate address spaces can call into each
other through a normal procedure call interface. Hard-
ware page tables prevent the code in one address space
from corrupting the contents of another.

Unfortunately, there is a high performance cost
to providing fault isolation through separate address
spaces. Transferring control across protection bound-
aries is expensive, and does not necessarily scale
with improvements in a processor’s integer perfor-
mance [ALBL91]. A cross-address-space RPC requires
at least: a trap into the operating system kernel, copy-
ing each argument from the caller to the callee, sav-
ing and restoring registers, switching hardware ad-
dress spaces (on many machines, flushing the transla-
tion lookaside buffer), and a trap back to user level.
These operations must be repeated upon RPC re-
turn. The execution time overhead of an RPC, even
with a highly optimized implementation, will often
be two to three orders of magnitude greater than
the execution time overhead of a normal procedure
call [BALL90, ALBL91].

The goal of our work is to make fault isolation cheap
enough that system developers can ignore its perfor-
mance effect in choosing which modules to place in
separate fault domains. In many cases where fault iso-
lation would be useful, cross-domain procedure calls
are frequent yet involve only a moderate amount of
computation per call. In this situation it is imprac-
tical to isolate each logically separate module within
its own address space, because of the cost of crossing
hardware protection boundaries.

We propose a software approach to implementing
fault isolation within a single address space. Our ap-
proach has two parts. First, we load the code and data
for a distrusted module into its own fault domain, a
logically separate portion of the application’s address
space. A fault domain, in addition to comprising a con-
tiguous region of memory within an address space, has
a unique identifier which is used to control its access to
process resources such as file descriptors. Second, we
modify the object code of a distrusted module to pre-
vent it from writing or jumping to an address outside
its fault domain. Program modules isolated in sepa-
rate software-enforced fault domains can not modify
each other’s data or execute each other’s code except
through an explicit cross-fault-domain RPC interface.

We have identified several programming-language-
independent transformation strategies that can render
object code unable to escape its own code and data

DOCKET

_ ARM

segments. In this paper, we concentrate on a sim-
ple transformation technique, called sandboxing, that
only slightly increases the execution time of the mod-
ified object code. We also investigate techniques that
provide more debugging information but which incur
greater execution time overhead.

Our approach poses a tradeoff relative to hardware-
based fault isolation. Because we eliminate the need to
cross hardware boundaries, we can offer substantially
lower-cost RPC between fault domains. A safe RPC in
our prototype implementation takes roughly 1.1us on a
DECstation 5000/240 and roughly 0.8us on a DEC Al-
pha 400, more than an order of magnitude faster than
any existing RPC system. This reduction in RPC time
comes at a cost of slightly increased distrusted module
execution time. On a test suite including the the C
SPEC92 benchmarks, sandboxing incurs an average of
4% execution time overhead on both the DECstation
and the Alpha.

Software-enforced fault isolation may seem to be
counter-intuitive: we are slowing down the common
case (normal execution) to speed up the uncommon
case (cross-domain communication). But for fre-
quently communicating fault domains, our approach
can offer substantially better end-to-end performance.
To demonstrate this, we applied software-enforced
fault isolation to the POSTGRES database system run-
ning the Sequoia 2000 benchmark. The benchmark
makes use of the POSTGRES extensible data type sys-
tem to define geometric operators. For this bench-
mark, the software approach reduced fault isolation
overhead by more than a factor of three on a DECsta-
tion 5000/240.

A software approach also provides a tradeoff be-
tween performance and level of distrust. If some mod-
ules in a program are trusted while others are dis-
trusted (as may be the case with extension code), only
the distrusted modules incur any execution time over-
head. Code in trusted domains can run at full speed.
Similarly, it is possible to use our techniques to im-
plement full security, preventing distrusted code from
even reading data outside of its domain, at a cost of
higher execution time overhead. We quantify this ef-
fect in Section 5.

The remainder of the paper is organized as follows.
Section 2 provides some examples of systems that re-
quire frequent communication between fault domains.
Section 3 outlines how we modify object code to pre-
vent it from generating illegal addresses. Section 4
describes how we implement low latency cross-fault-
domain RPC. Section 5 presents performance results
for our prototype, and finally Section 6 discusses some
related work.

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

2 Background

In this section, we characterize in more detail the
type of application that can benefit from software-
enforced fault isolation. We defer further description
of the POSTGRES extensible type system until Section
5, which gives performance measurements for this ap-
plication.

The operating systems community has focused con-
siderable attention on supporting kernel extensibil-
ity. For example, the UNIX vnode interface is de-
signed to make it easy to add a new file system into
UNIX [Kle86]. Unfortunately, it is too expensive to
forward every file system operation to user level, so
typically new file system implementations are added
directly into the kernel. (The Andrew file system is
largely implemented at user level, but it maintains a
kernel cache for performance [HKM*88].) Epoch’s ter-
tiary storage file system [Web93] is one example of op-
erating system kernel code developed by a third party
vendor.

Another example is user-programmable high perfor-
mance I/O systems. If data is arriving on an I/0
channel at a high enough rate, performance will be
degraded substantially if control has to be transferred
to user level to manipulate the incoming data [FP93].
Similarly, Active Messages provide high performance
message handling in distributed-memory multiproces-
sors [vCGS92]. Typically, the message handlers are
application-specific, but unless the network controller
can be accessed from user level [Thi92], the message
handlers must be compiled into the kernel for reason-
able performance.

A user-level example is the Quark Xpress desktop
publishing system. One can purchase third party soft-
ware that will extend this system to perform func-
tions unforeseen by its original designers [Dys92]. At
the same time, this extensibility has caused Quark a
number of problems. Because of the lack of efficient
fault domains on the personal computers where Quark
Xpress runs, extension modules can corrupt Quark’s
internal data structures. Hence, bugs in third party
code can make the Quark system appear unreliable,
because end-users do not distinguish among sources of
system failure.

All these examples share two characteristics. First,
using hardware fault isolation would result in a signif-
icant portion of the overall execution time being spent
in operating system context switch code. Second, only
a small amount of code is distrusted; most of the exe-
cution time is spent in trusted code. In this situation,
software fault isolation is likely to be more efficient
than hardware fault isolation because it sharply re-
duces the time spent crossing fault domain boundaries,
while only slightly increasing the time spent executing

DOCKET

_ ARM

the distrusted part of the application. Section 5 quan-
tifies this trade-off between domain-crossing overhead
and application execution time overhead, and demon-
strates that even if domain-crossing overhead repre-
sents a modest proportion of the total application ex-
ecution time, software-enforced fault isolation is cost
effective.

3 Software-Enforced Fault Iso-
lation

In this section, we outline several software encapsula-
tion techniques for transforming a distrusted module
so that it can not escape its fault domain. We first
describe a technique that allows users to pinpoint the
location of faults within a software module. Next, we
introduce a technique, called sandbozing, that can iso-
late a distrusted module while only slightly increasing
its execution time. Section 5 provides a performance
analysis of this techinique. Finally, we present a soft-
ware encapsulation technique that allows cooperating
fault domains to share memory. The remainder of
this discussion assumes we are operating on a RISC
load/store architecture, although our techniques could
be extended to handle CISCs. Section 4 describes
how we implement safe and efficient cross-fault-domain
RPC.

We divide an application’s virtual address space into
segments, aligned so that all virtual addresses within
a segment share a unique pattern of upper bits, called
the segment identifier. A fault domain consists of two
segments, one for a distrusted module’s code, the other
for its static data, heap and stack. The specific seg-
ment addresses are determined at load time.

Software encapsulation transforms a distrusted
module’s object code so that it can jump only to tar-
gets in its code segment, and write only to addresses
within its data segment. Hence, all legal jump tar-
gets in the distrusted module have the same upper bit
pattern (segment identifier); similarly, all legal data
addresses generated by the distrusted module share
the same segment identifier. Separate code and data
segments are necessary to prevent a module from mod-
ifying its code segment®. It is possible for an address
with the correct segment identifier to be illegal, for in-
stance if it refers to an unmapped page. This is caught
by the normal operating system page fault mechanism.

3.1 Segment Matching

An unsafe instruction is any instruction that jumps to
or stores to an address that can not be statically ver-

1Qur system supports dynamic linking through a special
interface.

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

ified to be within the correct segment. Most control
transfer instructions, such as program-counter-relative
branches, can be statically verified. Stores to static
variables often use an immediate addressing mode and
can be statically verified. However, jumps through reg-
isters, most commonly used to implement procedure
returns, and stores that use a register to hold their
target address, can not be statically verified.

A straightforward approach to preventing the use of
illegal addresses is to insert checking code before ev-
ery unsafe instruction. The checking code determines
whether the unsafe instruction’s target address has the
correct segment identifier. If the check fails, the in-
serted code will trap to a system error routine outside
the distrusted module’s fault domain. We call this
software encapsulation technique segment matching.

On typical RISC architectures, segment matching
requires four instructions. Figure 1 lists a pseudo-code
fragment for segment matching. The first instruction
in this fragment moves the store target address into
a dedicated register. Dedicated registers are used only
by inserted code and are never modified by code in
the distrusted module. They are necessary because
code elsewhere in the distrusted module may arrange
to jump directly to the unsafe store instruction, by-
passing the inserted check. Hence, we transform all
unsafe store and jump instructions to use a dedicated
register.

All the software encapsulation techniques presented
in this paper require dedicated registers?. Segment
matching requires four dedicated registers: one to hold
addresses in the code segment, one to hold addresses
in the data segment, one to hold the segment shift
amount, and one to hold the segment identifier.

Using dedicated registers may have an impact on
the execution time of the distrusted module. However,
since most modern RISC architectures, including the
MIPS and Alpha, have at least 32 registers, we can
retarget the compiler to use a smaller register set with
minimal performance impact. For example, Section 5
shows that, on the DECstation 5000/240, reducing by
five registers the register set available to a C compiler
(gee) did not have a significant effect on the average
execution time of the sSPEC92 benchmarks.

3.2 Address Sandboxing

The segment matching technique has the advantage
that it can pinpoint the offending instruction. This
capability is useful during software development. We
can reduce runtime overhead still further, at the cost
of providing no information about the source of faults.

2For architectures with limited register sets, such as the
80386 [Int86], it is possible to encapsulate a module using no re-
served registers by restricting control flow within a fault domain.

DOCKET

_ ARM

dedicated-reg <= target address
Move target address into dedicated register.
scratch-reg < (dedicated-reg>>shift-reg)
Right-shift address to get segment identifier.
scratch-reg is not a dedicated register.
shift-reg is a dedicated register.
compare scratch-reg and segment-reg
segment-reg is a dedicated register.
trap if not equal
Trap if store address is outside of segment.
store instruction uses dedicated-reg

Figure 1: Assembly pseudo code for segment matching.

dedicated-reg <= target-reg&and-mask-reg
Use dedicated register and-mask-reg
to clear segment identifier bits.
dedicated-reg < dedicated-reg|segment-reg
Use dedicated register segment-reg
to set segment identifier bits.
store instruction uses dedicated-reg

Figure 2: Assembly pseudo code to sandbox address
in target-reg.

Before each unsafe instruction we simply insert code
that sets the upper bits of the target address to the
correct segment identifier. We call this sandbozing the
address. Sandboxing does not catch illegal addresses;
it merely prevents them from affecting any fault do-
main other than the one generating the address.

Address sandboxing requires insertion of two arith-
metic instructions before each unsafe store or jump
instruction. The first inserted instruction clears the
segment identifier bits and stores the result in a ded-
icated register. The second instruction sets the seg-
ment identifier to the correct value. Figure 2 lists the
pseudo-code to perform this operation. As with seg-
ment matching, we modify the unsafe store or jump
instruction to use the dedicated register. Since we are
using a dedicated register, the distrusted module code
can not produce an illegal address even by jumping
to the second instruction in the sandboxing sequence;
since the upper bits of the dedicated register will al-
ready contain the correct segment identifier, this sec-
ond instruction will have no effect. Section 3.6 presents
a simple algorithm that can verify that an object code
module has been correctly sandboxed.

Address sandboxing requires five dedicated registers.
One register is used to hold the segment mask, two
registers are used to hold the code and data segment

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

~a—Tegtoffset
- regj

Guard Zones:

Segment

Figure 3: A segment with guard zones. The size of
the guard zones covers the range of possible immediate
offsets in register-plus-offset addressing modes.

identifiers, and two are used to hold the sandboxed
code and data addresses.

3.3 Optimizations

The overhead of software encapsulation can be re-
duced by using conventional compiler optimizations.
Our current prototype applies loop invariant code mo-
tion and instruction scheduling optimizations [ASU86,
ACDT4]. In addition to these conventional techniques,
we employ a number of optimizations specialized to
software encapsulation.

We can reduce the overhead of software encapsula-
tion mechanisms by avoiding arithmetic that computes
target addresses. For example, many RISC architec-
tures include a register-plus-offset instruction mode,
where the offset is an immediate constant in some lim-
ited range. On the MIPS architecture such offsets are
limited to the range -64K to +64K. Consider the
store instruction store value,offset(reg), whose
address offset(reg) uses the register-plus-offset ad-
dressing mode. Sandboxing this instruction requires
three inserted instructions: one to sum reg+toffset
into the dedicated register, and two sandboxing in-
structions to set the segment identifier of the dedicated
register.

Our prototype optimizes this case by sandboxing
only the register reg, rather than the actual target ad-
dress regtoffset, thereby saving an instruction. To
support this optimization, the prototype establishes
guard zones at the top and bottom of each segment.
To create the guard zones, virtual memory pages ad-
jacent to the segment are unmapped (see Figure 3).

We also reduce runtime overhead by treating the
MIPS stack pointer as a dedicated register. We avoid
sandboxing the uses of the stack pointer by sandboxing

DOCKET

_ ARM

this register whenever it is set. Since uses of the stack
pointer to form addresses are much more plentiful than
changes to it, this optimization significantly improves
performance.

Further, we can avoid sandboxing the stack pointer
after it is modified by a small constant offset as long as
the modified stack pointer is used as part of a load or
store address before the next control transfer instruc-
tion. If the modified stack pointer has moved into a
guard zone, the load or store instruction using it will
cause a hardware address fault. On the DEC Alpha
processor, we apply these optimizations to both the
frame pointer and the stack pointer.

There are a number of further optimizations that
could reduce sandboxing overhead. For example,
the transformation tool could remove sandboxing se-
quences from loops, in cases where a store target ad-
dress changes by only a small constant offset during
each loop iteration. Our prototype does not yet imple-
ment these optimizations.

3.4 Process Resources

Because multiple fault domains share the same virtual
address space, the fault domain implementation must
prevent distrusted modules from corrupting resources
that are allocated on a per-address-space basis. For
example, if a fault domain is allowed to make system
calls, it can close or delete files needed by other code
executing in the address space, potentially causing the
application as a whole to crash.

One solution is to modify the operating system to
know about fault domains. On a system call or page
fault, the kernel can use the program counter to deter-
mine the currently executing fault domain, and restrict
resources accordingly.

To keep our prototype portable, we implemented
an alternative approach. In addition to placing each
distrusted module in a separate fault domain, we re-
quire distrusted modules to access system resources
only through cross-fault-domain RPC. We reserve a
fault domain to hold trusted arbitration code that de-
termines whether a particular system call performed
by some other fault domain is safe. If a distrusted
module’s object code performs a direct system call, we
transform this call into the appropriate RPC call. In
the case of an extensible application, the trusted por-
tion of the application can make system calls directly
and shares a fault domain with the arbitration code.

3.5 Data Sharing

Hardware fault isolation mechanisms can support data
sharing among virtual address spaces by manipulat-
ing page table entries. Fault domains share an ad-

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




