NASA-CR-203049
v D
ISI Research Report
ISI/RS-94-399
September 1994

VR
Kerberos: An Authentication =47
Service for Computer Networks

B. Clifford Neuman and Theodore Ts’o

ISI/RS-94-399
September 1994

University of Southern California

Information Science Institute

4676 Admiralty Way, Marina del Rey, CA 90292-6695
310-822-1511

The major sponsors of Project Athena were Digital Equipment Corporation and IBM. Neuman's security efforts are
funded in part by the Advance Research Projects Agency under NASA Cooperative Agreement NCC-2-539 and
other awards, and by CyberSAFE Corporation (formerly Open Computing Security Group). The views and conclu-
sions contained in this paper are those of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of any of the funding organizations. Figures and descriptions in this paper were
provided by the authors and are used with permission.

©1994 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from IEEE Comm;.mications
Magazine, Volume 32, Number 9, pages 33-38, September 1994,

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Kerberos: An Authentication
Service for Computer Networks

When using authentication based on cryptography, an attacker
listening to the network gains no information that would enable it
to falsely claim another’s identity. Kerberos is the most commonly
used example of this type of authentication technology.

B. Clifford Neuman and Theodore Ts’o

CLIFFORD NEUMAN is a
scientist at the Information
Sciences Institute of the Uni-

versity of Southern Califomia.

THEODORE TS°0 leads the
Kerberos VS development
effort at the Massachusetts
Institute of Technology.

oderncomputersystems provide
service to multiple users and
require the ability to accurate-
ly identify the user making a
request. In traditional systems,
the user’s identity is verified by
checkmg a password typed during login; the sys-
tem records the identity and uses it to determine
what operations may be performed. The process
of verifying the user’s identity is called authenti-
cation. Password-based authenticationis notsuitable
for use on computer networks. Passwords sent across
the network can be intercepted and subsequently
used by eavesdroppers toimpersonate the user. While
this vulnerability hasbeen long known, it was recent-
ly demonstrated on a major scale with the discov-
ery of planted password collecting programs at critical
points on the Internet [4].

Authentication, Integrity,
Confidentiality, and
Authorization

Authentxcatlon is the verification of the identity
of a party who generated some data, and of the
integrity of the data. A principal is the party whose
identity is verified. The verifier is the party who
demands assurance of the principal’s identity.
Dataintegrity is the assurance that the datareceived
is the same as generated. Authentication mecha-
nisms differ in the assurances they provide: some
indicate that data was generated by the principal
atsome pointinthe past,afewindicate that the prin-
cipal was present when the data was sent, and
others indicate that the data received was freshly
generated by the principal. Mechanisms also dif-
fer in the number of verifiers: some support a sin-
gleverifier per message, while others support multiple
verifiers. A third difference is whether the mecha-
nism supports non-repudiation, the ability of the ver-
ifier to prove to a third party that the message
originated with the principal.

Because these differences affect perfor-
mance, it is important to understand the require-
ments of an application when choosing a method.

For example, authentication for electronic mail
may require support for multiple recipients and
non-repudiation, but can tolerate greater latency.
In contrast, poor performance would cause prob-
lems for authentication to a server responding to
frequent queries.

Other security services include confidentiality
and authorization. Confidentiality is the protec-
tion of information from disclosure to those not
intended to receive it. Most strong authentication
methods optionally provide confidentiality.
Authorization is the process by which one deter-
mines whether a principal is allowed to perform
an operation. Authorization is usually performed
after the principal has been authenticated, and
may be based on information local to the verifier,
or based on authenticated statements by others.

The remainder of this article will concentrate
on authentication for real-time, interactive ser-
vices that are offered on computer networks. We use
the term real-time loosely to mean that a client
process is waiting for a response to a query or
commandso thatitcan display the resultstotheuser,
orotherwise continue performing itsintended func-
tion. This class of services includes remote login, file
system reads and writes, and information retrieval
for applications like Mosaic.

Why Kerberos

The introduction discussed the problems asso-
ciated with password-based authentication and,
in particular, how passwords can be collected by
eavesdropping. In addition to the security con-
cern, password based authentication isinconvenient;
usersdonotwant toenter a password each time they
access a network service. This has led to the use
of even weaker authentication on computer net-
works: authentication by assertion.

‘While more convenient for the user, authenti-
cation by assertion hardly qualifies as authentication
at all. Examples include the Berkeley R-command
suite and the IDENT protocol. With authentica-
tion by assertion, applications assert the identity
of the user and the server believes it. Such authen-
tication is easily thwarted by modifying the applica-

1IER¥E |V}

DOC KET

_ ARM

NI1LA LONANANNAL NN SONA o I an

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

D
A

The Kerberos
Authentica-
tion System
uses a series
of encrypted
messages to
provetoa
verifier that
a client is
running on
behalf of a
particular
user.

tion. This may require privileged access to the
system, which is easily obtained on PCs and per-
sonal workstations. While most uses of authenti-
cation by assertion require thata connection originate
from a “trusted” network address, on many networks,
addresses are themselves simply assertions.

Stronger authentication methods based oncryp-
tography are required. When using authentica-
tion based on crytography, an attacker listening
to the network gains no information thatwould enable
it to falsely claim another’s identity. Kerberos is
the most commonly used example of this type of
authentication technology. Unfortunately, strong
authentication technologies are not used as often
astheyshould be, although the situationis gradually
improving.

The Kerberos Authentication
Service

Kerberos is a distributed authentication ser-
vice that allows a process (a client), running on
behalf of a principal (a user), to prove its identity
to a verifier (an application server, or just server)
without sending data across the network that might
allowanattackeror the verifier tosubsequently imper-
sonate the principal. Kerberos optionally provides
integrity and confidentiality for data sent between
the client and server. Kerberos was developed in
the mid-'80s as part of MIT’s Project Athena [2].
As use of Kerberos spread to other environments,
changes were needed to support new policies and
patterns of use. To address these needs, design
of Version 5 of Kerberos (V5) began in 1989 [11).
Though V4 still runs at many sites, V5 is consid-
ered to be standard Kerberos [10].

Limitations of Kerberos

Limitations of Kerberos have been described in the
literature [1]. Though most are a matter of pref-
erence or apply to V4 and early drafts of V5, a few
are fundamental and are discussed here. In par-
ticular, Kerberos is not effective against password
guessing attacks; if a user chooses a poor pass-
word, then an attacker guessing that password
can impersonate the user. Similarly, Kerberos
requires a trusted path through which passwords
are entered. If the user enters a password to a
program that has already been modified by an

attacker (a Trojan horse), or if the path between -

the user and the initial authentication program
can be monitored, then an attacker may obtain
sufficient information toimpersonate the user. Ker-
beros can be combined with other techniques, as
described later, to address these limitations.

To be useful, Kerberos must be integrated
with other parts of the system. It does not protect
all messages sent between two computers; it only
protects the messages from software that has
been written or modified to use it. While it may
be used to exchange encryption keys when estab-
lishing link encryption and network level security
services, this would require changes to the net-
work software of the hosts involved.

Kerberos does not itself provide authorization,
but V5 Kerberos passes authorization information
generated by other services. In this manner, Ker-
beros can be used as a base for building separate
distributed authorization services [14].

How Kerberos Works

The Kerberos Authentication System [18] uses a
series of encrypted messages to prove to a verifier
that a client is running on behalf of a particular user.
The Kerberos protocol is based in part on the
Needham and Schroeder authentication protocol
[13], but with changes to support the needs of the
environment for which it was developed. Among
these changes are the use of timestamps to reduce
the number of messages needed for basic authen-
tication [6], the addition of a “ticket-granting”
service to support subsequent authentication
without re-entry of a principal’s password, and a
different approach to cross-realm authentication
(authentication of a principal registered with a
different authentication server than the verifier).

‘The remainder of this section describes the Ker-
beros protocol. The description is simplified for
clarity; additional fields are present in the actual
protocol. Readers should consult RFC 1510 [10]
for a more thorough description of the Kerberos
protocol.

Kerberos Encryption — Though conceptually,
Kerberos authentication proves that a client is
running on behalf of a particular user, a more
precise statement is that the client has knowl-
edge of an encryption key that is known by only
the user and the authentication server. In Ker-
beros, the user’s encryption key is derived from
and should be thought of as a password; we will
refer to it as such in this article. Similarly, each
application server shares an encryption key with
the authentication server; we will call this key the
server key.

Encryption in the present implementation of
Kerberos uses the data encryption standard
(DES). It is a property of DES that if ciphertext
(encrypted data) is decrypted with the same key
used to encrypt it, the plaintext (original data)
appears. If different encryption keys are used for
encryption and decryption, or if the ciphertext is
modified, the result will be unintelligible, and
the checksum in the Kerberos message will not
match the data. This combination of encryption
and the checksum provides integrity and confi-
dentiality for encrypted Kerberos messages.

The Kerberos Ticket — The client and server do
not initially share an encryption key. Whenever a
client authenticates itself to a new verifier it relies
ontheauthentication server togenerate a new encryp-
tion key and distribute it securely to both parties.
This new encryption key is called a session key
and the Kerberos ticket is used to to distribute it
to the verifier.

The Kerberos ticket is a certificate issued by
an authentication server, encrypted using the
server key. Among other information, the ticket
contains the random session key that will be used
for authentication of the principal to the verifier,
the name of the principal to whom the session
key was issued, and an expiration time after
which the session key is no longer valid. The ticket
is not sent directly to the verifier, but is instead
sent to the client who forwards it to the verifier as
part of the application request. Because the tick-
et is encrypted in the server key, known only by
the authentication server and intended verifier, it

34

OCKET

LARM

IEEE Communications Magazine * September 1994

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

isnot possible for the clientto modify the ticket with-
out detection.

Application Request and Response —Messages
3 and 4 in Fig. 1 show the application request and
response, the most basic exchange in the Ker-
beros protocol.! It is through this exchange that a
client proves to a verifier that it knows the session
key embedded in a Kerberos ticket. There are
two parts to the application request, a ticket
(described above) and anauthenticator. The authen-
ticator includes, amongother fields: the current time,
a checksum, and an optional encryption key, all
encrypted with the session key from the accompa-
nying ticket.

Upon receipt of the application request, the
verifier decrypts the ticket, extracts the session
key, and uses the session key to decrypt the
authenticator. If the same key was used to encrypt
the authenticator as used to decrypt it, the checksum
will match and the verifier can assume the authen-
ticator was generated by the principal named in
the ticket and to whom the session key was issued.
Thisisnotby itself sufficient for authenticationsince
anattacker canintercept an authenticator and replay
it later to impersonate the user. For this reason
the verifier additionally checks the timestamp to
make sure that the authenticator is fresh. If the times-
tamp is within a specified window (typically five
minutes) centered around the current time on
the verifier, and if the timestamp has not been
~ seen on other requests within that window, the
verifier accepts the request as authentic. A dis-
" cussion of the benefits and drawbacks to the use
of timestamps in authentication protocols can be
found in [15].

At this point the identity of the client has been
verified by the server. For some applications the
client also wants to be sure of the server’s identity.
If such mutual authentication is required, the
server generates an application response by extract-
ing the client’s time from the authenticator, and
returns it to the client together with other infor-
mation, all encrypted using the session key.

Authentication Request and Response — The
client requires a separate ticket and session key
for each verifier with which it communicates. When
aclient wishes to create an association with a partic-
ularverifier, the client uses the authenticationrequest
and response, messages 1 and 2 from Fig. 1, to
obtain a ticket and session key from the authenti-
cation server. In the request, the client sends the
authentication server its claimed identity, the
name of the verifier, a requested expiration time
for the ticket, and a random number that will be
used to match the authentication response with
the request.

Initsresponse, the authentication server returns
the session key, the assigned expiration time, the
random number from the request, the name of
the verifier, and other information from the tick-
et, all encrypted with the user’s password regis-
tered with the authentication server, together
with a ticket containing similar information,andwhich
is to be forwarded to the verifier as part of the
application request. Together, the authentication
request and response and the application request
and response comprise the basic Kerberos authen-
tication protocol.

ts}Ku (optlonal)

!‘

Kc.v, v, tlmew n, »-}Kc,
Kaubsession, ... ‘.v}Kv

LV}KV R

] Fugure 1. Basic Kerberos authentication protocol (simplified).

Obtaining Additional Tickets — The basic Ker-
beros authentication protocol allows a client with
knowledge of the user’s password to obtain a tick-
et and session key for and to prove its identity to
any verifier registered with the authentication
server. The user’s password must be presented
each time the user performs authentication with a
new verifier. This can be cumbersome; instead, a
system should support single sign-on, where the user
logs in to the system once, providing the pass-
word at that time, and with subsequent authenti-
cation occurring automatically. The obvious way
to support this, caching the user’s password on
the workstation, is dangerous. Though a Ker-
beros ticket and the key associated with it are
valid for only a short time, the user’s password
canbe usedtoobtain tickets, and toimpersonate the
useruntil the password ischanged. A better approach,
and that used by Kerberos, is to cache only tickets
and encryption keys (collectively called credentials)
that will work for a limited period.

The ticket granting exchange of the Kerberos
protocol allows a user to obtain tickets and
encryption keys using such short-lived creden-
tials, without re-entry of the user’s password.
When the user first logs in, an authentication
request is issued and a ticket and session key for
the ticket granting service is returned by the
authentication server. This ticket, called a ticket
granting ticket, has a relatively short life (typically
on the order of eight hours). The response is
decrypted, the ticket and session key saved, and
the user’s password forgotten.

Subsequently, when the user wishes to prove
its identity to a new verifier, a new ticket is request-
ed from the authentication server using the ticket
granting exchange. The ticket granting exchange
is identical to the authentication exchange except
that the ticket granting request has embedded
within it an application request, authenticating
the client to the authentication server, and the
ticket granting response is encrypted using the
session key from the ticket granting ticket, rather
than the user’s password.

IMessages 1 and 2 are
described in the section on
authentication request
and response.

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Client/server
applications
must be
modified to
use Kerberos
for authenti-
cation; such
Kerberos-
aware
applications
are said to be
Kerberized.

Figure 2 shows the complete Kerberos authen-
tication protocol. Messages 1 and 2 are used only
when the user first logs in to the system, messages
3 and 4 whenever a user authenticates to a new
verifier, and message 5 is used each time the user
authenticates itself. Message 6 is optional and
used only when the user requires mutual-authen-
tication by the verifier.

Protecting Application Data — As described so
far, Kerberos provides only authentication: assur-
ance that the authenticated principal is an active
participant in an exchange. A by-product of the
Kerberos authentication protocol is the exchange
of the session key between the client and the serv-
er. The session key may subsequently be used by
the application to protect the integrity and priva-
cy of communications. The Kerberos system
defines two message types, the safe message and
the private message to encapsulate data that must
be protected, but the application is free to use a
method better suited to the particular data that is
transmitted.

Additional Features — The description of Ker-
beros just presented was greatly simplified. Addi-
tional fields are present in the ticket, authenticator,
and messages, to support bookkeeping and addi-
tional functionality. Some of the features present
in Version 5 include renewable and forwardable tick-
ets, support for higher level authorization mecha-
nisms, and support for multi-hop cross-realm
authentication (described in the following sec-
tion). Amore rigorous presentation of the Kerberos
protocol, and a description of each field is found
in RFC 1510 {10].

Kerberos Infrastructure and
Cross-Realm Authentication

I nasystem that crosses organizational boundaries,
it is not appropriate for all users to be regis-
tered with a single authentication server. Instead,
multiple authentication servers will exist, each
responsible for a subset of the users or servers in
the system. The subset of the users and servers
registered with a particular authentication server
is calied a realm (if a realm is replicated, users
will be registered with more than one authentication
server). Cross-realm authentication allows a prin-
cipal to prove its identity to a server registered in
a different realm.
To prove its identity to a server in a remote
realm, a Kerberos principal obtains a ticket grant-
ing ticket for the remote realm from its local
authentication server. This requires the princi-
pals’s local authentication server to share a cross-
realm key with the verifier’s authentication
server. The principal next uses the ticket granting
exchange to request a ticket for the verifier from
the verifier’s authentication server, which detects
that the ticket granting ticket was issued in a for-
eignrealm, looks up the cross-realm key, verifies the
validity of ticket granting ticket, and issues a tick-
etandsession keytotheclient. The name of the client,
embedded in the ticket, includes the name of the
realm in which the client was registered.
With Version 4, it was necessary for an authen-
tication server to register with every other realm

withwhich cross-realm authentication wasrequired.
This was not scalable; complete interconnection
required the exchange of n* keys where n was the
number of realms.

In contrast, Version 5 supports multi-hop cross-
realm authentication, allowing keys to be shared
hierarchically. With VS5, each realm shares a key
with its children and parent, i.e. the ISI.EDU realm
shares a key with the EDU realm, which also shares
keyswithMIT. EDU, USC . EDU, and WASHINGTON . EDU.
If no key is shared directly by ISI.EDU and
MIT. EDU, authentication of the client bon@1SI . EDU
to a server registered with the MIT.EDU realm
proceeds by obtaining a ticket granting ticket for EDU
from the ISI.EDU authentication server, using
that ticket granting ticket to obtain a ticket grant-
ing ticket for the MIT . EDUrealm from the EDU authen-
tication server, and finally obtaining a ticket for the
verifier from the MIT. EDU authentication server.

The list of realms that are transited during
multi-hop cross-realm authenticationisrecordedin
the ticket and the verifier accepting the authenti-
cation makes the final determination about
whether the path that was followed should be -
trusted. Shortcuts through the hierarchy are sup-
ported and can improve both the trust in and the per-
formance of the authentication process.

This hierarchical organization of realms is sim-
ilar to the hierarchical organization of certifica-
tion authorities and certificate servers for public-key
cryptography [3]. Aswith the public key certification
hierarchy, the utility of the authentication infra-
structure supporting authentication between parties
not previously known toone another dependsin part
ontheavailability of authentication servers for realms
near the top of the hierarchy. Unfortunately,
political and legal ambiguity has the potential toslow
the establishment of these realms. Inthe meantime,
pairwise relationships between regions of the
hierarchy (shortcuts) are important. A discussion of
the tradeoffs available when establishing realms
for large organizations can be found in [5].

Obtaining and Using Kerberos

ource code releasesfor V4 and Beta V5 Kerberos

are freely available from MIT, however, MIT
does not officially support these releases. Several
companies have taken reference implementations
from MIT and provide commercially supported prod-
ucts. Information on the free releases and the
supported versions can be obtained by reading
the “Kerberos Frequently Asked Questions” doc-
ument [8] periodically posted to the Usenet
newsgroup comp .protocols.kerberos, or by
sending a message to info-kerberos@mit.edu.

Setting up the Authentication Server
Since the Kerberos authentication server maintains
adatabase of passwords (encryption keys) foralithe
users at a site, it is extremely important that it be
installed on a carefully protected and physically secure
machine. If possible, the machine should be ded-
icated to running the authentication server and the
number of users with access should be limited.
Initial passwordsforasite’susersmust beregistered
with the authentication server. If the number of users
is small, initial registration is best achieved in person
in front of an accounts administrator who can check
adriver’slicense, passport, or other physical document.

36

DOC KET

_ ARM

1EEE Communications Magazine * September 1994

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




