
Lipitor® (Atorvastatin Calcium) Tablets

DESCRIPTION

Lipitor® (atorvastatin calcium) is a synthetic lipid-lowering agent. Atorvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis.

Atorvastatin calcium is $[R-(R^*, R^*)]$ -2-(4-fluorophenyl)- β , δ -dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid, calcium salt (2:1) trihydrate. The empirical formula of atorvastatin calcium is $(C_{33}H_{34} FN_2O_5)_2Ca \cdot 3H_2O$ and its molecular weight is 1209.42. Its structural formula is:

Atorvastatin calcium is a white to off-white crystalline powder that is insoluble in aqueous solutions of pH 4 and below. Atorvastatin calcium is very slightly soluble in distilled water, pH 7.4 phosphate buffer, and acetonitrile, slightly soluble in ethanol, and freely soluble in methanol.

Lipitor tablets for oral administration contain 10, 20, 40, or 80 mg atorvastatin and the following inactive ingredients: calcium carbonate, USP; candelilla wax, FCC; croscarmellose sodium, NF; hydroxypropyl cellulose, NF; lactose monohydrate, NF; magnesium stearate, NF; microcrystalline cellulose, NF; Opadry White YS-1-7040 (hydroxypropylmethylcellulose, polyethylene glycol, talc, titanium dioxide); polysorbate 80, NF; simethicone emulsion.

CLINICAL PHARMACOLOGY

Mechanism of Action

Atorvastatin is a selective, competitive inhibitor of HMG-CoA reductase, the ratelimiting enzyme that converts 3-hydroxy-3-methylglutaryl-coenzyme A to mevalonate, a precursor of sterols, including cholesterol. Cholesterol and triglycerides circulate in the bloodstream as part of lipoprotein complexes. With ultracentrifugation, these complexes separate into HDL (high-density lipoprotein), IDL (intermediate-density lipoprotein), LDL (low-density lipoprotein), and VLDL (very-low-density lipoprotein) fractions. Triglycerides (TG) and cholesterol in the liver are incorporated into VLDL and released into the plasma for delivery to peripheral tissues. LDL is formed from VLDL and is catabolized primarily through the high-affinity LDL receptor. Clinical and pathologic studies show that elevated plasma levels of total cholesterol (total-C), LDL-cholesterol (LDL-C), and apolipoprotein B (apo B) promote human atherosclerosis and are risk factors for developing cardiovascular disease, while increased levels of HDL-C are associated with a decreased cardiovascular risk.

In animal models, Lipitor lowers plasma cholesterol and lipoprotein levels by inhibiting HMG-CoA reductase and cholesterol synthesis in the liver and by increasing the number of hepatic LDL receptors on the cell-surface to enhance uptake and catabolism of LDL; Lipitor also reduces LDL production and the number of LDL particles. Lipitor reduces LDL-C in some patients with homozygous familial hypercholesterolemia (FH), a population that rarely responds to other lipid-lowering medication(s).

A variety of clinical studies have demonstrated that elevated levels of total-C, LDL-C, and apo B (a membrane complex for LDL-C) promote human atherosclerosis. Similarly, decreased levels of HDL-C (and its transport complex, apo A) are associated with the development of atherosclerosis. Epidemiologic investigations have established that cardiovascular morbidity and mortality vary directly with the level of total-C and LDL-C, and inversely with the level of HDL-C.

Lipitor reduces total-C, LDL-C, and apo B in patients with homozygous and heterozygous FH, nonfamilial forms of hypercholesterolemia, and mixed dyslipidemia. Lipitor also reduces VLDL-C and TG and produces variable increases in HDL-C and apolipoprotein A-1. Lipitor reduces total-C, LDL-C, VLDL-C, apo B, TG, and non-HDL-C, and increases HDL-C in patients with isolated hypertriglyceridemia. Lipitor reduces intermediate density lipoprotein cholesterol (IDL-C) in patients with dysbetalipoproteinemia. The effect of Lipitor on cardiovascular morbidity and mortality has not been determined.

Like LDL, cholesterol-enriched triglyceride-rich lipoproteins, including VLDL, intermediate density lipoprotein (IDL), and remnants, can also promote atherosclerosis. Elevated plasma triglycerides are frequently found in a triad with low HDL-C levels and small LDL particles, as well as in association with non-lipid metabolic risk factors for coronary heart disease. As such, total plasma TG has not consistently been shown to be an independent risk factor for CHD. Furthermore, the independent effect of raising HDL or lowering TG on the risk of coronary and cardiovascular morbidity and mortality has not been determined.

Pharmacodynamics

DOCKET

Atorvastatin as well as some of its metabolites are pharmacologically active in humans. The liver is the primary site of action and the principal site of cholesterol synthesis and LDL clearance. Drug dosage rather than systemic drug concentration correlates better with LDL-C reduction. Individualization of drug dosage should be based on therapeutic response (see DOSAGE AND ADMINISTRATION).

Pharmacokinetics and Drug Metabolism

Absorption: Atorvastatin is rapidly absorbed after oral administration; maximum plasma concentrations occur within 1 to 2 hours. Extent of absorption increases in proportion to atorvastatin dose. The absolute bioavailability of atorvastatin (parent drug) is approximately 14% and the systemic availability of HMG-CoA reductase inhibitory activity is approximately 30%. The low systemic availability is attributed to presystemic clearance in gastrointestinal mucosa and/or hepatic first-pass metabolism. Although food decreases the rate and extent of drug absorption by approximately 25% and 9%, respectively, as assessed by Cmax and AUC, LDL-C reduction is similar whether atorvastatin is given with or without food. Plasma atorvastatin concentrations are lower (approximately 30% for Cmax and AUC) following evening drug administration compared with morning. However, LDL-C reduction is the same regardless of the time of day of drug administration (see DOSAGE AND ADMINISTRATION).

Distribution: Mean volume of distribution of atorvastatin is approximately 381 liters. Atorvastatin is \geq 98% bound to plasma proteins. A blood/plasma ratio of approximately 0.25 indicates poor drug penetration into red blood cells. Based on observations in rats, atorvastatin is likely to be secreted in human milk (see CONTRAINDICATIONS, Pregnancy and Lactation, and PRECAUTIONS, Nursing Mothers).

Metabolism: Atorvastatin is extensively metabolized to ortho- and parahydroxylated derivatives and various beta-oxidation products. *In vitro* inhibition of HMG-CoA reductase by ortho- and parahydroxylated metabolites is equivalent to that of atorvastatin. Approximately 70% of circulating inhibitory activity for HMG-CoA reductase is attributed to active metabolites. *In vitro* studies suggest the importance of atorvastatin metabolism by cytochrome P450 3A4, consistent with increased plasma concentrations of atorvastatin in humans following coadministration with erythromycin, a known inhibitor of this isozyme (see PRECAUTIONS, Drug Interactions). In animals, the ortho-hydroxy metabolite undergoes further glucuronidation.

Excretion: Atorvastatin and its metabolites are eliminated primarily in bile following hepatic and/or extra-hepatic metabolism; however, the drug does not appear to undergo enterohepatic recirculation. Mean plasma elimination half-life of atorvastatin in humans is approximately 14 hours, but the half-life of inhibitory activity for HMG-CoA reductase is 20 to 30 hours due to the contribution of active metabolites. Less than 2% of a dose of atorvastatin is recovered in urine following oral administration.

Special Populations

DOCKET

Geriatric: Plasma concentrations of atorvastatin are higher (approximately 40% for Cmax and 30% for AUC) in healthy elderly subjects (age ≥ 65 years) than in young adults. Clinical data suggest a greater degree of LDL-lowering at any dose of drug in the elderly patient population compared to younger adults (see PRECAUTIONS section; Geriatric Use subsection).

Pediatric: Pharmacokinetic data in the pediatric population are not available.

Gender: Plasma concentrations of atorvastatin in women differ from those in men (approximately 20% higher for Cmax and 10% lower for AUC); however, there is no

clinically significant difference in LDL-C reduction with Lipitor between men and women.

Renal Insufficiency: Renal disease has no influence on the plasma concentrations or LDL-C reduction of atorvastatin; thus, dose adjustment in patients with renal dysfunction is not necessary (see DOSAGE AND ADMINISTRATION).

Hemodialysis: While studies have not been conducted in patients with end-stage renal disease, hemodialysis is not expected to significantly enhance clearance of atorvastatin since the drug is extensively bound to plasma proteins.

Hepatic Insufficiency: In patients with chronic alcoholic liver disease, plasma concentrations of atorvastatin are markedly increased. Cmax and AUC are each 4-fold greater in patients with Childs-Pugh A disease. Cmax and AUC are approximately 16-fold and 11-fold increased, respectively, in patients with Childs-Pugh B disease (see CONTRAINDICATIONS).

Clinical Studies

Hypercholesterolemia (Heterozygous Familial and Nonfamilial) and Mixed Dyslipidemia (*Fredrickson* Types IIa and IIb)

Lipitor reduces total-C, LDL-C, VLDL-C, apo B, and TG, and increases HDL-C in patients with hypercholesterolemia and mixed dyslipidemia. Therapeutic response is seen within 2 weeks, and maximum response is usually achieved within 4 weeks and maintained during chronic therapy.

Lipitor is effective in a wide variety of patient populations with hypercholesterolemia, with and without hypertriglyceridemia, in men and women, and in the elderly. Experience in pediatric patients has been limited to patients with homozygous FH.

In two multicenter, placebo-controlled, dose-response studies in patients with hypercholesterolemia, Lipitor given as a single dose over 6 weeks significantly reduced total-C, LDL-C, apo B, and TG (Pooled results are provided in Table 1).

		(Adju	sted Mean %	Change Fro	m Baseline) ^a	
Dose	Ν	TC	LDL-C	ApoB	TG	HDL-C	Non-HDL-C/
							HDL-C
Placebo	21	4	4	3	10	-3	7
10	22	-29	-39	-32	-19	6	-34
20	20	-33	-43	-35	-26	9	-41
40	21	-37	-50	-42	-29	6	-45
80	23	-45	-60	-50	-37	5	-53

TABLE 1. Dose-Response in Patients With Primary Hypercholesterolemia	
(Adjusted Mean % Change From Baseline) ^a	

^aResults are pooled from 2 dose-response studies

DOCKE.

In patients with *Fredrickson* Types IIa and IIb hyperlipoproteinemia pooled from 24 controlled trials, the median (25th and 75th percentile) percent changes from baseline in HDL-C for atorvastatin 10, 20, 40, and 80 mg were 6.4 (-1.4, 14), 8.7 (0, 17), 7.8 (0, 16), and 5.1 (-2.7, 15), respectively. Additionally, analysis of the pooled data demonstrated

consistent and significant decreases in total-C , LDL-C, TG, total-C/HDL-C, and LDL-C/HDL-C.

In three multicenter, double-blind studies in patients with hypercholesterolemia, Lipitor was compared to other HMG-CoA reductase inhibitors. After randomization, patients were treated for 16 weeks with either Lipitor 10 mg per day or a fixed dose of the comparative agent (Table 2).

		(Double-Bli	nd, Randomiz	ed, Active-Co	ontrolled Tria	ls)	
Treatment	Ν	Total-C	LDL-C	ApoB	TG	HDL-C	Non-HDL-C/
(Daily Dose)							HDL-C
Study 1							
Atorvastatin 10 mg	707	-27 ^a	-36 ^a	-28 ^a	-17 ^a	+7	-37 ^a
Lovastatin 20 mg	191	-19	-27	-20	-6	+7	-28
95% CI for Diff ¹		-9.2,-6.5	-10.7,-7.1	-10.0,-6.5	-15.2,-7.1	-1.7,2.0	-11.1,-7.1
Study 2							
Atorvastatin 10 mg	222	-25 ^b	-35 ^b	-27 ^b	-17 ^b	+6	-36 ^b
Pravastatin 20 mg	77	-17	-23	-17	-9	+8	-28
95% CI for Diff ¹		-10.8,-6.1	-14.5,-8.2	-13.4,-7.4	-14.1,-0.7	-4.9,1.6	-11.5,-4.1
Study 3							
Atorvastatin 10 mg	132	-29 ^c	-37 ^c	-34 ^c	-23 ^c	+7	-39 ^c
Simvastatin 10 mg	45	-24	-30	-30	-15	+7	-33
95% CI for Diff ¹		-8.7,-2.7	-10.1,-2.6	-8.0,-1.1	-15.1,-0.7	-4.3,3.9	-9.6,-1.9

TABLE 2. Mean Percent Change From Baseline at End Point
(Double-Blind, Randomized, Active-Controlled Trials)

¹A negative value for the 95% CI for the difference between treatments favors atorvastatin for all except HDL-C, for which a positive value favors atorvastatin. If the range does not include 0, this indicates a statistically significant difference.

^aSignificantly different from lovastatin, ANCOVA, $p \le 0.05$

^bSignificantly different from pravastatin, ANCOVA, $p \leq 0.05$

^cSignificantly different from simvastatin, ANCOVA, $p \le 0.05$

The impact on clinical outcomes of the differences in lipid-altering effects between treatments shown in Table 2 is not known. Table 2 does not contain data comparing the effects of atorvastatin 10 mg and higher doses of lovastatin, pravastatin, and simvastatin. The drugs compared in the studies summarized in the table are not necessarily interchangeable.

In a large clinical study, the number of patients meeting their National Cholesterol Education Program-Adult Treatment Panel (NCEP-ATP) II target LDL-C levels on 10 mg of Lipitor daily was assessed. After 16 weeks, 156/167 (93%) of patients with less than 2 risk factors for CHD and baseline LDL-C \geq 190 mg/dL reached a target of \leq 160 mg/dL; 141/218 (65%) of patients with 2 or more risk factors for CHD and LDL-C \geq 160 mg/dL achieved a level of \leq 130 mg/dL LDL-C; and 21/113 (19%) of patients with CHD and LDL-C \geq 130 mg/dL reached a target level of \leq 100 mg/dL LDL-C.

Hypertriglyceridemia (Fredrickson Type IV)

The response to Lipitor in 64 patients with isolated hypertriglyceridemia treated across several clinical trials is shown in the table below. For the atorvastatin-treated patients, median (min, max) baseline TG level was 565 (267-1502).

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.