	B1									
	PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION									
	INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)									
	(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 96/26948							
	C07F 9/12, A61K 31/66, C07F 9/655	A1	(43) International Publication Date: 6 September 1996 (06.09.96)							
	INTERNATIONAL APPLICATION PUBLISI	 (43) International Publication Date: 6 September 1996 (06.09.96) (81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, Eurasian patent (AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. O UREAS AND THIOUREAS ving ACAT is the same, O(OH)2 and OPO(OH)2: R3 and R4, atom can be								
L										
	Find authenticated court do	cume	nts without watermarks at <u>docketalarm.com</u> .							

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	КР	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
СМ	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	ТJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

DOCKET

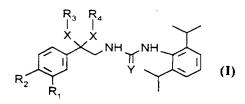
LARM

Δ

PCT/EP96/00781

1

Phosphate derivatives of disubstituted ureas and thioureas


The present invention relates to novel compounds having ACAT inhibitory activity, to a process for their preparation and to pharmaceutical compositions containing them.

- 5 The inhibition of the enzime acylCoA:cholesterol acyltransferase is generally considered one of the most appealing approaches to the treatment of dyslipidemias and to the prevention of the atherosclerotic process (Exp. Opin. Invest. Drugs (1994) 3(5) 427-436). ACAT inhibitors are well known in the art, for instance, the inventors of the present invention in EP 0500348 disclosed a new class of urea and thiourea derivatives endowed with high in
- 10 vitro ACAT inhibitory activity. However such urea and thiourea derivatives, similarly to most of the known ACAT inhibitors, were characterized by high lipophilicity, extreme low aqueous solubility and low bioavailability; by consequence their effects on blood and tissutal cholesterol levels were indirect and appeared almost exclusively related to a reduction of the intestinal cholesterol absorption. Recently further experimental data demonstrated that the
- 15 therapeutic potential of an ACAT inhibitor can be markedly enhanced when the compound directly affects ACAT activity in target tissues such as the liver and the arterial wall (Atherosclerosclerosis and Thrombosis (1994) 149(9) 1498). Therefore a hydrosolubility sufficient to achieve high systemic bioavailability is now considered a crucial requirement for an ACAT inhibitor to be developed as a hypolipidemic as well as an antiatherosclerotic
- 20 agent. The task to combine in the same molecule a high affinity for ACAT enzime and an adequate hydrosolubility cannot be achieved by merely introducing hydrophilic groups into the structure of in vitro active ACAT inhibitors, as this strategy results in most cases in a significant loss of the inhibitory activity.

It has now been discovered that new phosphate derivatives of a selected class of hydroxy 25 compounds embraced by the general formula disclosed in EP 0500348, besides being highly hydrosoluble, are also potent in vivo ACAT inhibitors. By virtue of such properties the compounds of the present invention can be useful therapeutic agents in the treatment of dyslipidemias and atherosclerosis.

Accordingly, the present invention provides new compounds having the following general formula (I).

35 wherein: the X substituents, being the same, are O or S;

Y is independently O or S;

one of R_1 and R_2 is OPO(OH)₂ and the other is hydrogen, C_1 - C_6 alkyl, halo, hydroxy, C_1 - C_4 alkoxy or OPO(OH)₂;

5 each of R_3 and R_4 , being the same or different, is C_1 - C_6 alkyl; or R_3 and R_4 , taken together, form a C_2 - C_4 alkylene chain in which each carbon atom can be optionally substituted by 1 or 2 substituents independently chosen from halo or C_1 - C_3 alkyl; and the pharmaceutically acceptable salts thereof.

The alkyl and alkoxy groups may be branched or straight groups. Representative examples of C_1 - C_6 alkyl groups include methyl, ethyl, *n*- and *iso*-propyl, *n*-, *iso*-, *sec*- and *tert*-butyl.

- 10 of C_1 - C_6 alkyl groups include methyl, ethyl, *n* and *iso*-propyl, *n*-, *iso*-, *sec* and *tert*-butyl. Representative examples of C_1 - C_4 alkoxy groups include methoxy or ethoxy. A C_1 - C_3 alkyl group is in particular methyl or ethyl. Halo includes fluoro, bromo, chlorine or iodine, in particular chlorine or bromine.
- When R₃ and R₄, taken together, are a C₂-C₄ alkylene chain and X is oxygen, then the
 resulting pentatomic, hexatomic or heptatomic 1,3-dioxalkyl ring is respectively a 1,3-dioxolan, 1,3-dioxan or 1,3-dioxepan ring which may be represented by the formula

20 wherein R_3-R_4 represents a C_2-C_4 alkylene chain in which each carbon atom can be optionally substituted by 1 or 2 substituents independently chosen from halogen, in particular chlorine or C_1-C_3 alkyl, in particular methyl.

When R_3 and R_4 , taken together, are a C_2 - C_4 alkylene chain and X is sulfur, then the resulting pentatomic, hexatomic or heptatomic 1,3-dithialkyl ring is respectively a 1,3-dithiolan, 1,3-dithian or 1,3-dithiepan ring which may be represented by the formula

25

wherein R_3-R_4 represents a C_2-C_4 alkylene chain in which each carbon atom can be 30 optionally substituted by 1 or 2 substituents independently chosen from halogen, in particular chlorine or C_1-C_3 alkyl, in particular methyl.

The pharmaceutically acceptable salts of the compounds of formula (I) include the salts of inorganic bases, for example hydroxides of alkaly metals, e.g. sodium or potassium, or alkaline-heart metals, e.g. calcium or magnesium, and the salts of organic bases organic

WO 96/26948

bases, such as for example aliphatic amines, e.g. methylamine, ethylamine, diethylamine, trimethylamine, or heterocyclic amines, e.g. piperidine.

The present invention also include within its scope all the possible isomers, stereoisomers, and their mixtures and both the metabolites and the pharmaceutically acceptable bioprecursors (otherwise known as pro-drugs) of the compounds of formula (I).

Preferred compounds of the invention are the compounds of formula (I) wherein: X is O;

Y is O;

5

one of R_1 and R_2 is OPO(OH)₂ and the other is hydrogen;

10 R_3 and R_4 , taken together, are a C_2 - C_3 alkylene chain in which each carbon atom can be optionally substituted by 1 or 2 substituents independently chosen from halo or C_1 - C_2 alkyl; and the pharmaceutically acceptable salts thereof.

Examples of preferred compounds of the invention are the following:

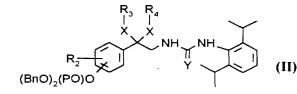
4-{2-[3-(2,6-diisopropylphenyl)ureidomethyl]-4,5-dimethyl-1,3-dioxolan-2-

15 yl}phenylphosphate;

3-{2-[3-(2,6-diisopropylphenyl)ureidomethyl]-4,5-dimethyl-1,3-dioxolan-2yl}phenylphosphate;

3-{2-[3-(2,6-diisopropylphenyl)ureidomethyl]-5,5-dimethyl-1,3-dioxan-2-

yl}phenylphospate;


4-{2-[3-(2,6-diisopropylphenyl)ureidomethyl]-5,5-diethyl-1,3-dioxan-2-yl}phenylphospate;
 3-{2-[3-(2,6-diisopropylphenyl)ureidomethyl]-5,5-diethyl-1,3-dioxan-2-yl}phenylphospate;
 and

4-{2-[3-(2,6-diisopropylphenyl)ureidomethyl]-5,5-dimethyl-1,3-dioxan-2-

yl}phenylphospate;

25 if the case either as a single isomer or as a mixture of isomers thereof, and the pharmaceutically acceptable salts thereof.

The compounds of the invention and the salts thereof can be obtained by a process comprising the hydrogenolysis of a compound of formula (II)

30

wherein Bn means benzyl and R_2 , R_3 , R_4 , Y and X are as defined above by reaction with hydrogen in the presence of a catalyst; and, if desired, converting a compound of formula (I) into another compound of formula (I), and/or resolving a mixture of compounds of

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.