(12) United States Patent

Müller et al.
(10) Patent No.: US 6,245,775 B1
(45) Date of Patent:
(54) CYCLOALKANO-INDOLE AND -AZAINDOLE DERIVATIVES
(75) Inventors: Ulrich Müller, Wuppertal (DE); Richard Connell, Trumbull, CT (US); Siegfried Goldmann, Wuppertal; Rudi Grützmann, Solingen, both of (DE); Martin Beuck, Nilford, CT (US);
Hilmar Bischoff; Dirk Denzer, both of Wuppertal (DE); Anke Domdey-Bette, Hückeswagen (DE); Stefan Wohlfeil, Hilden (DE)
(73) Assignee: Bayer Aktiengesellschaft, Leverkusen (DE)
(*) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.: 08/887,781
(22) Filed: Jul. 3, 1997

Related U.S. Application Data
(62) Division of application No. 08/535,698, filed on Sep. 28, 1995, now Pat. No. 5,684,014
(30) Foreign Application Priority Data

Oct. 4, 1994 (DE) 4435477
(51) Int. Cl. ${ }^{7}$ \qquad A61K 31/437; A61K 31/403; C07D 471/04; C07D 209/82
(52) U.S. CI. \qquad 514/292; 514/411; 546/86; 546/87; 548/444
(58) Field of Search \qquad 546/86, 87; 514/292, 514/411; 548/444

References Cited

U.S. PATENT DOCUMENTS

$3,632,807$	$\mathbf{1 / 1 9 7 2}$	Maurer et al.	$514 / 411$	
$4,775,680$	$10 / 1988$	Gillard et al. $546 / 345$		
$5,521,206$	$5 / 1996$	Muller et al. $514 / 400$		
$5,684,014$	$*$	$11 / 1997$	Muller et al. $514 / 292$	
$5,776,964$	$7 / 1998$	Muller et al. $514 / 394$		
$5,952,498$	$9 / 1999$	Lenfers et al.	$544 / 252$	
FOREIGN PATENT DOCUMENTS				

0234708 A 1	$9 / 1987$	(EP).
0300676 A 2	$1 / 1989$	(EP).
0310179 A 2	$4 / 1989$	(EP).
0513533 A 2	$4 / 1992$	(EP) $514 / 400$
0496237 A 2	$7 / 1992$	(EP).
0509359	$10 / 1992$	(EP).
0617035 A 1	$9 / 1994$	(EP).

Heterocycles, vol. 22, No. 10, 1984 (pp. 2277-2279).

* cited by examiner

Primary Examiner-Alan L. Rotman
(74) Attorney, Agent, or Firm-Norris McLaughlin \& Marcus

(57)

ABSTRACT
Cycloakano-indole and -azaindole derivatives are prepared by reaction of appropriately substituted carbonylic acids with amines. The cycloalkano-indole and -azaindole derivatives are suitable as active compounds for medicaments, preferably antiatherosclerotic medicaments.

8 Claims, No Drawings

CYCLOALKANO-INDOLE AND

 -AZAINDOLE DERIVATIVESThis is a division of application Ser. No. 08/535,698, filed on Sep. 28, 1995, now U.S. Pat. No. 5,684,014.

The present invention relates to cycloalkano-indole and -azaindole derivatives, processes for their preparation and their use as medicaments, in particular as antiatherosclerotic medicaments.

It is known that increased blood levels of triglycerides (hypertriglyceridaemia) and cholesterol (hypercholesterolaemia) are associated with the genesis of atherosclerotic vessel wall changes and coronary heart diseases.

A distinctly increased risk of the development of coronary heart disease is moreover present if these two risk factors occur in combination, which is accompanied, in turn, with an overproduction of apolipoprotein B-100. There is therefore, as before, a great need to make available effective medicaments for the control of atherosclerosis and coronary heart diseases.

The present invention relates to cycloalkano-indole and -azaindole derivatives of the general formula (I):

(I) 25
in which
R^{1} and R^{2}, including the double bond connecting them, together form a phenyl or pyridyl ring or a ring of the formula

wherein
R^{8} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a 4- to 8 -membered cycloalkene or oxocycloalkene radical,
all ring systems mentioned under R^{1} / R^{2} and R^{3} / R^{4} optionally being substituted up to 3 times by identical or different halogen, trifluoromethyl, carboxy] or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms or by straight-chain or branched alkyl having up to 6 carbon atoms, which, for its part, can be substituted by hydroxyl or by straight-chain or branched alkoxy having up to 4 carbon atoms,
D represents hydrogen, cycloalkyl having 4 to 12 carbon atoms or straight-chain or branched alkyl having up to 12 carbon atoms,
E represents the $-\mathrm{CO}-$ or $-\mathrm{CS}-$ group,

L represents an oxygen or sulphur atom or a group of the formula $-\mathrm{NR}^{\circ}$,
wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl or a 5- to 7-membered saturated or unsaturated heterocycle having up to 3 heteroatoms from the series consisting of S, N and/or O , the cycles optionally being substituted up to 3 times by identical or different nitro, carboxyl, halogen or cyano substituents or by straight-chain or branched alkenyl or alkoxycarbonyl each having up to 6 carbon atoms or by straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms, and/or the cycles optionally being substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
R^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms,
R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms or straightchain or branched acyl having up to 8 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$, wherein
R^{13} and R^{14} are identical or different and denote bydrogen or straight-chain or branched acyl having up to 8 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 5 carbon atoms, or represents straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$, wherein
R^{15} denotes phenyl which is optionally substituted up to 3 times by identical or different halogen or hydroxyl substituents or by straight-chain or branched alkyl having up to 5 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 22 carbon atoms, each of which is optionally substituted by a group of the formula - OR^{16},
wherein
R^{16} is hydrogen, benzyl, triphenylmethyl or straightchain or branched acyl having up to 6 carbon atoms,
R^{7} represents hydrogen or
R^{6} and R^{7} together represent the group of the formula $=\mathrm{O}$,
if appropriate in an isomeric form, and their salts.
The cycloalkano-indole and -azaindole derivatives according to the invention can also be present in the form of their salts. In general, salts with organic or inorganic bases or acids may be mentioned here.

In the context of the present invention, physiologically acceptable salts are preferred. Physiologically acceptable salts of the compounds according to the invention can be salts of the substances according to the invention with mineral acids, carboxylic acids or sulphonic acids. Particularly preferred salts are, for example, those with hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, ethanesulphonic acid, toluenesul-
phonic acid, benzenesulphonic acid, naphthalenedisulphonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid or benzoic acid.

Physiologically acceptable salts can also be metal or ammonium salts of the compounds according to the invention which have a free carboxyl group. Particularly preferred salts are, for example, sodium, potassium, magnesium or calcium salts, and also ammonium salts which are derived from ammonia, or organic amines, such as, for example ethylamine, di- or triethylamine, di- or triehanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine, ethylenediamine or 2-phenylethylamine.

Including the double bond of parent structure, the cycloalkene radical $\left(\mathbf{R}^{3} / \mathbf{R}^{4}\right)$ in the context of the invention in general represents a 4 - to 8 -membered hydrocarbon radical, preferably a 5 - to 8 -membered hydrocarbon radical, for example a cyclobutene, cyclopentene, cyclohexene, cycloheptene or cyclooctene radical. The cyclopentene, cyclohexene, cyclooctene or cycloheptene radicals are preferred.

Heterocycle (R^{5}) in the context of the invention in general represents a saturated or unsaturated 5 - to 7 -membered heterocycle, preferably a 5 - to 6 -membered beterocycle, which can contain up to 3 heteroatoms from the series consisting of S, N and/or O. Examples which may be mentioned are: pyridyl, thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, morpholinyl or piperidyl. Pyridyl and thienyl are preferred.

The compounds according to the invention can exist in stereoisomeric forms which either behave as image and mirror image (enantiomers), or do which do not behave as image and mirror image (diastereomers). The invention relates both to the enantiomers and diastereomers and their respective mixtures. These mixtures of the enantiomers and diastereomers can be separated in a known manner into the stereoisomerically uniform constituents.

Preferred compounds of the general formula (1) are those in which
R^{1} and R^{2}, including the double bond connecting them, together form a phenyl or pyridyl ring or a ring of the formula

wherein
R^{8} denotes hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a cyclopentene, cyclohexene, cycloheptene, cyclooctene, oxocyclopentene, oxocyclohexene, oxocycloheptene or oxocyclooctene radical,
all ring systems mentioned under $\mathrm{R}^{1} / \mathrm{R}^{2}$ and $\mathrm{R}^{3} / \mathrm{R}^{4}$ optionally being substituted up to 2 times by identical or different fluorine, chlorine, bromine, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms or by straight-chain or branched alkyl having up to 4 carbon atoms, which, in turn, can be substituted by 6 hydroxyl or by straight-chain or branched alkoxy having up to 3 carbon atoms.
R^{7} repre
R^{6} and R^{7} together represent the group of the formula $=0$,
if appropriate in an isomeric form, and their salts.
Particularly preferred compounds of the general formula
(I) are those
in which
R^{1} and R^{2}, including the double bond connecting them, together form a phenyl or pyridyl ring or a ring of the formula

R^{8} denotes hydrogen or methyl,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a cyclopentene, cyclohexene, cycloheptene, cyclooctene, oxocyclopentene, oxocyclohexene, oxocycloheptene or oxocyclooctene radical,
all ring systems mentioned under R^{1} / R^{2} and R^{3} / R^{4} optionally being substituted up to 2 times by identical or different fluorine, chlorine, bromine, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 3 carbon atoms or by straight-chain or branched alkyl having up to 3 carbon atoms, which, for its part, can be substituted by hydroxyl, methoxy or ethoxy,
D represents hydrogen, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 6 carbon atoms,
E represents the - $\mathrm{CO}-$ or $-\mathrm{CS}-$ group,
L represents an oxygen or sulphur atom or represents a group of the formula $-\mathrm{NR}^{9}$,
wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl, pyridyl or thienyl, each of which is optionally substituted up to 2 times by identical or different nitro, carboxyl, fluorine, chlorine, bromine or cyano substituents, by straight-chain or branched alkenyl or alkoxycarbonyl each having up to 3 carbon atoms or by straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms, and/or the cycles are optionally substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
R^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 3 carbon atoms,
R^{11} and R^{12} are identical or different and denote 5 phenyl, hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms
or denote straight-chain or branched acyl having up to 5 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$, where in
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 5 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 3 carbon atoms,

40 to 4 carbon atoms, which is optionally substituted, by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-$ R^{15},

wherein

R^{15} denotes phenyl which is optionally substituted up to 3 times by identical or different straightchain or branched alkyl having up to 3 carbon atoms,
or denotes straight-chain or branched alkyl or alkenyl each having up to 19 carbon atoms, each of which is optionally substituted by a group of the formula $-\mathrm{OR}^{16}$,
wherein
R^{16} denotes hydrogen, benzyl, triphenylmethyl or straight-chain or branched acyl having up to 4 carbon atoms,
R^{7} represents hydrogen or
R^{6} and R^{7} together represent the group of the formula $=\mathrm{O}$,
if appropriate in an isomeric form, and their salts.
A process for the preparation of the compounds of the general formula (I) according to the invention has additionally been found, characterized in that carboxylic acids of the general formula (II):

in which
$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ and D have the meaning indicated, are armidated using compounds of the general formula (III):

in which
R^{5} has the meaning indicated
and
R^{17} has the indicated meaning of R^{6}, but does not represent carboxyl,
in an inert solvent and in the presence of bases and/or auxiliaries,
and, if appropriate, functional groups are varied by hydrolysis, esterification or reduction.

The process according to the invention can be illustrated by the following reaction scheme:

Suitable solvents for the amidation are in this case inert organic solvents which do not change under the reaction conditions. These include ethers, such as diethyl ether or tetraydrofuan halogenohydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane, tricioroetane, tetrachloroethane, 1,2-dichloroethane or trichloroethylene, hydrocarbons such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, nitromethane, dimethylformamide, acetone, acetonitrile or hexamethylphosphoramide. It is also possible to employ mixtures of the solvents. Dichloromethane, tetraydrofuran acetone and dimethylformamide are particularly preferred.

Bases which can be employed for the process according to the invention are in general inorganic or organic bases. These preferably include alkali metal hydroxides such as, for example, sodium hydroxide or potassium hydroxide, alkaline earth metal hydroxides, such as, for example, barium hydroxide, alkali metal carbonates such as sodium carbonate
or potassium carbonate, alkaline earth metal carbonates such as calcium carbonate, or alkali metal alkoxides such as sodium or potassium methoxide, sodium or potassium ethoxide or potassium tert-butoxide, or organic amines (trialkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ amines) such as triethylamine, or heterocycles such as 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), pyridine, diaminopyridine, methylpiperidine or morpholine. It is also possible to employ alkali metals such as sodium and their hydrides such as sodium hydride as bases. Sodium and potassium carbonate and triethylamine are preferred.

The base is employed in an amount from 1 mol to 5 mol , preferably from 1 mol to 3 mol , relative to 1 mol of the compound of the general formula (II).
The reaction is in general carried out in a temperature range from $0^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$., preferably from $+20^{\circ} \mathrm{C}$. to $+110^{\circ} \mathrm{C}$.

The reaction can be carried out at normal, increased or reduced pressure (e.g. 0.5 to 5 bar). In general, the reaction is carried out at normal pressure.

The amidation can optionally proceed via the activated stage of the acid halides, which can be prepared from the corresponding acids by reaction with thionyl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus tribromide or oxalyl chloride.

The above mentioned bases can optionally also be employed for the amidation as acid-binding auxiliaries.

Suitable auxiliaries are also dehydrating reagents. These include, for example, carbodiimides such as diisopropylcarbodiimide, dicyclohexylcarbodiimide and N -(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride or carbonyl compounds such as carbonyldiimidazole or 1,2-oxazolium compounds such as 2-ethyl-5-phenyl-1,2-oxazolium-3-sulphonate or propanephosphonic anhydride or iso-butyl chloroformate or benzotriazolyloxy-tris-(dimethylamino)phosphonium hexafluorophosphate or diphenyl phosphoramidate or methanesulphonyl chloride, if appropriate in the presence of bases such as triethylamine or N -ethylmorpholine or N -methylpiperidine or dicyclohexylcarbodiimide and N -hydroxysuccinimide.

The acid-binding agents and dehydrating reagents are in general employed in an amount from 0.5 to 3 mol , preferably from 1 to 1.5 mol , relative to 1 mol of the corresponding carboxylic acids

The variation of functional groups, for example hydrolysis, esterification and reduction, and also separation of isomers and salt formation is carried out by customary methods.

The carboxylic acids of the general formula (II) are new and can be prepared by reacting compounds of the general formula (IV):

in which
D has the meaning indicated,
T represents a typical leaving group, for example chlorine, bromine, iodine, tosylate or mesylate, preferably bromine,

and

R^{18} represents $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl,
with compounds of the general formula (V)

(V)
in which
$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} have the meaning indicated,
in inert solvents, if appropriate in the presence of a base. 6
Suitable solvents for the process are the customary
organic solvents which do change under the reaction con-
of the formation and/or the release of ApoB-100-associated lipoproteins from liver cells, which results in a lowering of the VLDL plasma level. This lowering of VLDL must be accompanied by a lowering of the plasma level of ApoB100, LDL, triglycerides and cholesterol; a number of the above mentioned risk factors which are involved in vessel wall changes are thus simultaneously decreased.

The compounds according to the invention can therefore be employed for the prevention and treatment of atherosclerosis, obesity, pancreatitis and constipation.
I. Inhibition of the Release of ApoB-100-Associated Lipoproteins

The test for detecting the inhibition of the release of ApoB-100-associated lipoproteins from liver cells was carried out in vitro using cultured liver cells, preferably using cells of the human line HepG2. These cells are cultured under standard conditions in medium for the culture of eukaryotic cells, preferably in RPMI 1640 with 10% foetal calf serum. HepG2 cells synthesize and secrete into the culture supernatant ApoB-100-associated lipoprotein particles which in principle are built up in a similar manner to the VLDL and LDL particles which are to be found in the plasma.

These particles can be detected using an immunoassay for human LDL. This immunoassay is carried out using antibodies which have been induced against human LDL in rabbits under standard conditions. The anti-LDL antibodies (rabbit anti-LDL Ab) were purified by affinity chromatography on an immunosorbent using human LDL. These purified rabbit anti-LDL Ab are adsorbed on the surface of plastic. Expediently, this adsorption is carried out on the plastic surface of microtitre plates having 96 wells, preferably on MaxiSorp plates. If ApoB-100-associated particles are present in the supernatant of HepG2 cells, they can be bound to the insolubilized rabbit anti-LDL Ab, and an immune complex results which is bound to the plastic surface. Unbound proteins are removed by washing. The immune complex located on the plastic surface is detected using monoclonal antibodies which have been induced against human LDL and purificd according to standard conditions. These antibodies were conjugated with the enzyme peroxidase. Peroxidase converts the colourless substrate TMB into a coloured product in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. After acidification of the reaction mixture with $\mathrm{H}_{2} \mathrm{SO}_{4}$, the specific light absorption at 450 nm is determined, which is a measure of the amount of ApoB-100-associated particles which have been secreted into the culture supernatant by the HepG2 cells.

Surprisingly, the compounds according to the invention inhibit the release of the ApoB-100-associated particles. The IC_{50} value indicates at which substance concentration the light absorption is inhibited by 50% in comparison with the control (solvent control without substance).

Ex. No.	$\mathrm{IC}_{50}\left[10^{-9} \mathrm{~mol} / \mathrm{l}\right]$
1	28
5	1.1
31	170
50	29

2. Determination of the VLDL Secretion in vivo in the Hamster

The effect of the test substances on VLDL secretion in vivo is investigated in the hamster. To do this, golden hamsters are anesthetized with Ketaset ($83 \mathrm{mg} / \mathrm{kg} \mathrm{s.c}$.) and
3. Inhibition of Intestinal Triglyceride Absorption in vivo (rats)

The substances which are to be investigated for their triglyceride absorption-inhibiting action in vivo are administered orally to male Wistar rats having a body weight of between 170 and 230 g . For this purpose, the animals are divided into groups of 6 animals 18 hours before substance administration and food is then withdrawn from them. Drinking water is available to the animals ad libitum. The animals of the control groups receive an aqueous tragacanth suspension or a tragacanth suspension which contains olive oil. The tragacanth-olive oil suspension is prepared using an Ultra-Turrax. The substances to be investigated are suspended in an appropriate tragacanth-olive oil suspension likewise using the Ultra-Turrax, directly before substance administration.
To determine the basal serum triglyceride content, blood is taken from each rat by puncture of the retroorbital venous plexus before stomach tube application. The tragacanth suspension, the tragacanth-olive oil suspensions without substance (control animals) or the substances suspended in an appropriate tragacanth-olive oil suspension are then 60 administered to the fasting animals using a stomach tube. Further taking of blood to determine the postprandial serum triglyceride rise is carried out, as a rule, 1,2 and 3 hours after stomach tube application.

The blood samples are centrifuged and, after recovering the serum, the triglycerides are determined photometrically using an EPOS analyzer 5060 (Eppendorf Geratebau, Netheler \& Hinz GmbH, Hamburg). The determination of
the triglycerides is carried out completely enzymatically using a standard commercial UV test.

The postprandial serum triglyceride rise is determined by subtraction of the triglyceride preliminary value of each animals from its corresponding postprandial triglyceride concentrations (1, 2 and 3 hours after administration).

The differences (in mmol/l) at each point in time (1,2 and 3 hours) are averaged in the groups. and the mean values of the serum triglyceride rise ($\Delta \mathrm{TG}$) of the substance-treated animals is compared with the animals which only received the tragacanth-oil suspension.

The serum triglyceride course of the control animals which only received tragacanth is also calculated The substance effect at each point in time (1,2 and 3 hours) is determined as follows and indicated in $\Delta \%$ of the oil-loaded control.

$$
\Delta \% \text { Triglyceride rise }=\frac{\Delta T G_{\text {substance }}-\Delta T G_{\text {tragacanth controi }}}{\Delta T G_{\text {oil loading }}-\Delta T G_{\text {tnagacanth control }}} \times 100
$$

Effect of 10 mg of test substance $/ \mathrm{kg}$ of body weight p.o. on the triglyceride rise ($\Delta \%$) 2 h after a triglyceride loading in the serum of fasting rats. The serum triglyceride rise of fat-loaded control animals relative to the serum triglyceride level of tragacanth control animals corresponds to 100%. $\mathrm{n}=6$ animals per group.

	Serum triglyceride rise in $\%(2 \mathrm{~h} \mathrm{pp})$
Triglyceride loading	100
Tragacanth control	0
Substance $10 \mathrm{mg} / \mathrm{kg}$ of body weight p.o.	
Ex. No. 10	
Ex. No. 66	34
Ex. No. 54	67
Ex. No. 71	54
Ex. No. 5	18
Ex. No. 20	-16

Statistical evaluation is carried out using Student's t test after preliminary checking of the variances for homogeneity.

Substances which at one point in time statistically significantly ($\mathrm{p}<0.05$) decrease the postprandial serum triglyceride rise by at least 30% compared with the untreated control group are regarded as pharmacologically active.
4. Inhibition of VLDL secretion in vivo (rat)

The action of the test substances on VLDL secretion is likewise investigated in the rat. To do this, $500 \mathrm{mg} / \mathrm{kg}$ of body weight ($2.5 \mathrm{mg} / \mathrm{kg}$) of Triton WR-1339, dissolved in physiological saline solution, is administered intravenously into the tail vein of rats. Triton WR-1339 inhibits lipoprotein lipase and thus leads to an increase in the triglyceride and cholesterol level by inhibition of the VLDL catabolism. These rises can be used as a measure of the VLDL secretion rate.

Blood is taken from the animals by puncture of the retroorbital venous plexus before and also one and two hours after administration of the detergent. The blood is incubated at room temperature for 1 h for clotting and the serum is obtained by centrifugation at $10,000 \mathrm{~g}$ for 20 s . The triglycerides are then photometrically determined by means of a standard commercial coupled enzyme test (Sigma Diagnostics $®$, No. 339) at a wavelength of 540 nm . Measurement is carried out with the aid of a likewise coupled enzyme test (Boehring Mannheim® ${ }^{(®)}$, No. 1442350) at a
wavelength of 546 nm . Samples with triglyceride or cholesterol concentrations which exceed the measuring range of the methods are diluted with physiological saline solution. The determination of the respective serum concentrations is carried out with the aid of standard series measured in parallel. Test substances are administered orally, intravenously or subcutaneously immediately after the Triton injection.

The invention additionally relates to the combination of cycloalkano-indole and -azaindole derivatives of the general formula (I) with glucosidase and/or amylase inhibitor for the treatment of familial hyperlipidaemia, obesity (adiposity) and diabetes mellitus. Glucosidase and/or amylase inhibitors in the context of the invention are, for example, acarbose, adiposine, voglibase, miglitol, emiglitate, MDL 25637, camiglibase (MDL 73945), tendamistat, AI-3688, trestatin, pradimilin- Q and salbostatin.

Combination of acarbose, miglitol, emiglitate or voglibase with one of the above mentioned compounds of the general formula (I) according to the invention is preferred.

The new active compounds can be converted in a known manner into the customary formulations, such as tablets, coated tablets, pils, granules, aerosols, syrups, emulsions, suspensions and solutions, using inert, non-toxic, pharmaceutically suitable excipients or solvents. In this case, the therapeutically active compound should in each case be present in a concentration of approximately 0.5 to 90% by weight of the total mixture, i.e. in amounts which are sufficient in order to achieve the dosage range indicated.

The formulations are prepared, for example, by extending the active compounds with solvents and/or excipients, if appropriate using emulsifiers and/or dispersants, it optionally being possible, e.g. in the case of the use of water as a diluent, to use organic solvents as auxiliary solvents.

Administration is carried out in a customary manner, preferably orally or parenterally, in particular perlingually or intravenously.

In the case of parenteral administration, solutions of the active compound can be employed using suitable liquid vehicles.

In general, it has proved advantageous in the case of intravenous administration to administer amounts of approximately 0.001 to $1 \mathrm{mg} / \mathrm{kg}$ of body weight, preferably approximately 0.01 to $0.5 \mathrm{mg} / \mathrm{kg}$ of body weight, to achieve effective results, and in the case of oral administration the dose is approximately 0.01 to $20 \mathrm{mg} / \mathrm{kg}$ of body weight, preferably 0.1 to $10 \mathrm{mg} / \mathrm{kg}$ of body weight.
In spite of this, it may optionally be necessary to depart from the amounts mentioned, namely depending on the body weight or on the type of administration route, on individual behaviour towards the medicament, the manner of its formulation and the time or interval at which administration takes place. Thus, in some cases it may be adequate to manage with less than the abovementioned minimum amounts while in other cases the upper limit mentioned must be exceeded. In the case of the administration of larger amounts, it may be advisable to divide these into several individual doses over the course of the day.
Definition of the isomer types:
-continued

Abbreviations used:

Ac	=	acetyl
Bn	=	benzyl
Bz	=	benzoyl
iB	$=$	isobutyl
nBu	=	normal butyl
sBu	=	secondary butyl
tBu	=	tertiary butyl
DDQ	=	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
cDec	=	cyclo-decyl
DMF	=	N, N-dimethylformamide
DMSO	=	dimethyl sulphoxide
cDodec	=	cyclo-dodecyl
Et	=	ethyl
cHept	=	cyclo-heptyl
cHex	=	cyclo-hexyl
HOBT	=	1-hydroxy-1H-benzotriazole
Me	$=$	methyl
Mes	$=$	mesyl
cNon	=	cyclo-nonyl
cOct	=	cyclo-octyl
cPent	=	cyclo-pentyl
n Pent	=	normal pentyl
Ph	=	phenyl
cPr	=	cyclo-propyl
${ }_{n} \mathrm{Pr}$	=	normal propyl
${ }^{\text {Pr }}$	=	isopropyl
THF	=	tetrahydrofuran
TMS	=	tetramethylsilane
pTol	$=$	para-tolyl
pTos	$=$	para-tosyl
cUndec	=	cyclo-undecyl

	Symbol
Dichloromethane:methanol $=20: 1$	A
Dichloromethane:methanol $=50: 1$	B
Dichloromethane:ethanol $=20: 1$	C
Dichloromethane:ethanol $=50: 1$	D
Petroleum ether:ethyl acetate $=1: 1$	E
Dichloromethane:methanol:acetic acid $=90: 10: 2$	F
Petroleum ether:ethyl acetate $=2: 1$	G
Petroleum ether:ethyl acetate $=10: 1$	H
Toluene	I
Toluene:ethyl acetate $=1: 1$	K
Petroleum ether:ethyl acetate $=5: 1$	L
Dichloromethane	M
Petroleum ether:ethyl acetate $=20: 1$	N
Dichloromethane:methanol $=10: 1$	O
Cyclohexane:ethyl acetate $=1: 1$	P
Toluene:ethyl acetate $=9: 1$	Q
Toluene:ethyl acetate $=8: 1$	R
Petroleum ether:ethyl acetate $=1: 2$	S
Dichloromethane:ethanol $=5: 1$	T
Dichloromethane:ethanol $=10: 1$	U

Preparation Procedure for the TLC Mobile Phase BABA: 65 87.9 ml of an aqueous 0.06667 molar potassium dihydrogen phosphate solution and 12.1 ml of an aqueous 0.06667
molar disodium hydrogen phosphate solution are mixed. 60 ml of the solution prepared in this way are shaken with 200 ml of n-butyl acetate, 36 ml of n-butanol and 100 ml of glacial acetic acid and the aqueous phase is removed. The organic phase is the mobile phase BABA.

STARTING COMPOUNDS

EXAMPLE I

1-Allyloxy-2-chloromethylbenzene

11.5 g (70 mmol) of 1-allyloxy-2-hydroxymethylbenzene are treated with $11.6 \mathrm{ml}(84 \mathrm{mmol})$ of triethylamine at $0^{\circ} \mathrm{C}$. in 110 ml of dichloromethane and then slowly reacted with $5.4 \mathrm{ml}(70 \mathrm{mmol})$ of methanesulphonyl chloride. After 4 hours, the mixture is extracted several times with water, and the organic phase is dried over magnesium sulphate and evaporated. Residual solvent is removed in a high vacuum.

Yield: $8.5 \mathrm{~g} ; \mathrm{R}_{f}=0.23$ (dichioromethane:ethanol $=20: 1$).

EXAMPLE II
(2-Allyloxy-benzyl)amine

$3.0 \mathrm{~g}(16.4 \mathrm{mmol})$ of the compound from Example I arc boiled under reflux for 17 hours in 250 ml of a saturated methanolic ammonia solution. The reaction mixture is the mixture is evaporated again; this process is repeated few times. The crude product is taken up in dichloromethane and extracted several times with water. The aqueous phase is evaporated to a very great extent, an oil being obtained

Yield: 0.454 g (crude)
The product is reacted further without further purification.

[^0]17
EXAMPLE III

6-Chloro-2,4lutidine

10

For the preparation of the title compound [U.S. Pat. No. $3632807], 600 \mathrm{~g}(4.91 \mathrm{~mol})$ of 6-amino-2,4-lutidine are dissolved in 21 of methanol and the solution is saturated with hydrogen chloride gas at about 0° C. $1.3071(9.82 \mathrm{~mol})$ of isopentyl nitrite are added dropwise (about 2.5 h) at an internal temperature of below $10^{\circ} \mathrm{C}$. and the mixture is left in this way for 15 h while warming to room temperature (about $25^{\circ} \mathrm{C}$.). The solution is largely freed from the solvent in vacuo, mixed with 31 of dichloromethane and 1.51 of water and adjusted to $\mathrm{pH}=9.5$ while cooling ($<20^{\circ} \mathrm{C}$.) with concentrated aqueous ammonia solution. The separated organic phase is dried with sodium sulphate, first concentrated in vacuo on a rotary evaporator and then distilled through a Vigreux column:

Fraction 1) B.p. $=47-49^{\circ} \mathrm{C} .(12 \mathrm{~mm} \mathrm{Hg}), 603 \mathrm{~g}$; Fraction 2) B.p. $=82-85^{\circ} \mathrm{C} .(12 \mathrm{~mm} \mathrm{Hg}), 612 \mathrm{~g}$ (about 88% crude); $\mathrm{R}_{f}=0.39$ (petroleum ether:ethyl acetate $=10: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} 200 \mathrm{MHz}, \mathrm{TMS}\right): \delta=2.28(\mathrm{~S}, 3 \mathrm{H}), 2.47(\mathrm{~S}, 3 \mathrm{H}), 6.88$ $(\mathrm{S}, 1 \mathrm{H}), 6.96(\mathrm{~S}, 1 \mathrm{H}) \mathrm{ppm}$.

The crude product, which may contain small amounts of 6-methoxy-2,4lutidine, is reacted further without further purification.

EXAMPLE IV
6-Hydrazino-2,4-lutidine (4,6-dimethyl-2-hydrazinopyridine)

$580 \mathrm{~g}(4.10 \mathrm{~mol})$ of the compound from Example 1 Il are dissolved in 800 ml of diethylene glycol and the solution is stirred with 1050 ml of hydrazine hydrate for 48 h at a bath temperature of about $140^{\circ} \mathrm{C}$. The cooled mixture is poured into 4.51 of ether and 4.51 of water and the organic phase is extracted twice with 2.31 of dichloromethane each time. The combined organic phases are dried with sodium sulphate and evaporated in vacuo. 784 g of solvent-containing crude product are obtained, which is reacted further without working up.
$\mathrm{R}_{f} \rightleftharpoons 0.37$ (dichloromethane:methanol $=10: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d_{6}-DMSO, 250 MHz, TMS): $\delta=2.13(\mathrm{~S}, 3 \mathrm{H}), 2.22(\mathrm{~S}, 3 \mathrm{H})$, $4.02(\mathrm{~S}, 2 \mathrm{H}), 6.26(\mathrm{~S}, 1 \mathrm{H}), 6.35(\mathrm{~S}, 1 \mathrm{H}), 7.11(\mathrm{~S}, 1 \mathrm{H}) \mathrm{ppm}$.

TABLE I

Ex. No.	R_{f} (solvent)	Starting material (hydrazine*)
VII	0.59 (A)	Ex. No. IV

VIII

IX

X

XI

XII

XIII

XIV

0.59 (O)

TABLE I-continued
Ex. No.

EXAMPLE XIX
2,4Dimethyl- α-carboline

$100 \mathrm{~g}(499 \mathrm{mmol})$ of the compound from Example VI are reacted under reflux with $164 \mathrm{ml}(1 \mathrm{~mol})$ of diethyl fumarate on 52 g of palladium (5% on carbon) in 700 ml of diethylene glycol. A small amount of ethanol distills off at the high internal temperature (if desired use a water separator). After about 8 h , the starting material has disappeared (TLC checking; petroleum ether:ethyl acetate $=1: 1$, detection in an iodine chamber). The cooled mixture is treated with 31 of acetone, boiled, filtered off hot with suction through a clarifying filter (Seitz) and washed with 11 of hot acetone. On cooling a precipitate is obtained which yields 58.3 g of product after filtering with suction, rinsing with cold acetone and drying in vacuo. The mother liquor is largely freed from acetone in vacuo, the precipitate which is deposited being worked up as above $(9.4 \mathrm{~g})$. The filtrate is again freed from acetone; after addition of n-pentane, product precipitates a further time ($3.1 \mathrm{~g} /$ working up see above); total yield 72%.

50
M.p. 220-221 ${ }^{\circ}$ C. (uncorrected); $\mathrm{R}_{f}=0.47$ (petroleum 40 ether: ethyl acetate $=1: 1$) ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{d}_{6}-\mathrm{DMSO}, 200 \mathrm{MHz}\right.$, TMS): $\delta=2.54(\mathrm{~S}, 3 \mathrm{H}), 2.75(\mathrm{~S}, 3 \mathrm{H}), 6.89(\mathrm{~S}, 1 \mathrm{H}), 7.20(\mathrm{M}$, $1 \mathrm{H}), 7.40(\mathrm{M}, 1 \mathrm{H}), 7.48(\mathrm{DD}, 1 \mathrm{H}), 8.05(\mathrm{DD}, 1 \mathrm{H}), 11.61(\mathrm{~S}$, 1 H), ppm.

450 g (3 mol) of 4-methylphenyl-acetic acid (Aldrich), $1.131(12 \mathrm{~mol})$ of tert-butanol and $90 \mathrm{~g}(0.74 \mathrm{~mol})$ of 4-(N,N-diethylamino)pyridine are dissolved in 21 of dichloromethane. After addition of $680 \mathrm{~g}(3.3 \mathrm{~mol}$ of 60 dicyclohexylcarbodiimide, dissolved in 400 ml of dichloromethane, the mixture is stirred at $25^{\circ} \mathrm{C}$. for 20 h , the precipitated urea is filtered off with suction and washed with 200 ml of dichloromethane, and the organic phase is washed twice each with 500 ml of 2 M hydrochloric acid and water.

EXAMPLE XX
tert-Butyl 4-methylphenyl-acetate

The organic phase is concentrated and distilled.
Yield: 408 g (66% of theory); Boiling point: $73-78^{\circ}$ C. $/ 0.2 \mathrm{~mm}$.

EXAMPLE XXI
tert-Butyl 2-Cyclopentyl-2-(4-methylphenyl)acetate

$33.5 \mathrm{~g}(0.3 \mathrm{~mol}$ of potassium tert-butoxide are initially introduced into 100 ml of anhydrous DMF at $0^{\circ} \mathrm{C}$., and 51.6 $\mathrm{g}(0.25 \mathrm{~mol})$ of the compound from Example XX in 250 ml of anhydrous DMF are added dropwise. The mixture is 15 stirred at $0^{\circ} \mathrm{C}$. for 30 min and $32.2 \mathrm{ml}(0.3 \mathrm{~mol})$ of cyclopentyl bromide in 150 ml of anhydrous DMF are added dropwise at $5-15^{\circ} \mathrm{C}$. and the mixture is stirred at $25^{\circ} \mathrm{C}$. for 20 h . After concentrating, the residue is partitioned between water and diethyl ether, and the ether phase is dried over sodium sulphate and concentrated. The product crystallizes out.

Yield: 67 g (97.5% of theory); Solidification point: $51-53^{\circ} \mathrm{C}$.

The compounds of Table II are prepared in analogy to the 25 procedure of Example XXI:

TABLE II

EXAMPLE XXVIII
tert-Butyl 2-(4-bromomethyl-phenyl)-2-cyclopentylacetate

$27.4 \mathrm{~g}(0.1 \mathrm{~mol})$ of the compound from Example XXI are dissolved in 200 ml of tetrachloromethane and the solution is heated to boiling. After addition of 0.82 g of azobisisobutyronitrile, $18.7 \mathrm{~g}(0.105 \mathrm{~mol})$ of N -bromosuccinimide are added in portions and the mixture is then refluxed for 1 h , cooled to $0^{\circ} \mathrm{C}$. and succinimide is filtered off. After concentrating the filtrate the product precipitates. It is washed with petroleum ether (40/60) and 65 dried.

Yield: $20 \mathrm{~g}\left(57 \%\right.$ of theory); M.p.: $73-76^{\circ} \mathrm{C}$.

24

The compounds of Table III are prepared analogously to the procedure of Example XXVIII:

TABLE III

racemic

Ex. No.	D	R^{19}	R_{f} (solvent)	Starting material (Syn. from Ex. No.)
XXIX	cHex	tBu	$0.58(\mathrm{H})$	Ex. No. XXII
XXX	cHept	tBu	$0.84(\mathrm{M})$	Ex. No. XXIII
XXXI	iPr	CH_{3}	$0.78(\mathrm{M})$	Ex. No. XXIV
XXXII	iBu	tBu	$0.86(\mathrm{M})$	Ex. No. XXV
XXXIII	cPent	CH_{3}	$0.63(\mathrm{H})$	Ex No. XXVI
XXXIV	cHept	CH_{3}	$0.59(\mathrm{I})$	Ex No. XXVII

EXAMPLE XXXV

tert-Butyl 2(R,S)-2-cyclopentyl-2-[4-(2,4-dimethyl-α-carbolin-9-yl)methyl]phenyl-acetate

M.p.: $160-161^{\circ} \mathrm{C}$. (uncorrected).
$\mathrm{R}_{\mathrm{J}}=0.39$ (petroleum ether:ethyl acetate $=10: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}, \mathrm{TMS}\right): \delta=0.91(\mathrm{M}, 1 \mathrm{H}), 1.18-1.68(\mathrm{M}$, $6 \mathrm{H}), 1.87(\mathrm{M}, 1 \mathrm{H}), 1.47(\mathrm{~S}, 9 \mathrm{H}), 2.42(\mathrm{M}, 1 \mathrm{H}), 2.66(\mathrm{~S}, 3 \mathrm{H})$, $2.83(\mathrm{~S}, 3 \mathrm{H}), 3.09(\mathrm{D}, 1 \mathrm{H}), 5.67(\mathrm{~S}, 2 \mathrm{H}), 6.88(\mathrm{~S}, 1 \mathrm{H})$, 7.13-7.41 (M, 7H), 8.09 (D, 1H) ppm.

The compounds of Tables IV and V are prepared analogously to the procedure of Example XXXV :

TABLE IV
xxxix

XL

XLI

cHept 0.29 (H)
Benzyl bromide: Ex. No. XXX Heterocycle: Ex. No. VIII

TABLE IV-continued

TABLE IV-continued

Ex. No.				
	Z	D	$\begin{gathered} \mathrm{R}_{\mathrm{f}} \\ \text { (solvent) } \end{gathered}$	Starting material (Syn. from Ex. No.)
IL		cHept	0.56 (H)	Benzyl bromide: Ex. No. XXX Heterocycle: Ex. No. XI
L		cPent	0.57 (C)	Benzyl bromide: Ex. No. XXVIII
LI		cHex	0.35 (H)	Benzyl bromide: Ex. No. XXIX Heterocycle: Ex. No. VI
LII		cHex	0.57 (B)	Benzyl bromide: Ex. No. XXIX Heterocycle: Ex. No. XIX
LIII		cPent	$\begin{gathered} \text { M.p. }= \\ 189-190^{\circ} \\ \text { C. } \end{gathered}$	Benzyl bromide: Ex. No. XXVIII Heterocycle: a) C. Herdeis et al., Heterocycles 22, 2277 (1984).
LIV		iBu	$0.49(\mathrm{M})$ M.p.: $142^{\circ} \mathrm{C}$. MS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)$ 457 (100%)	Benzyl bromide: c) Ex. No. XXXII Heterocycle: Ex. No. XIX

33
EXAMPLE LXI
2-(R,S)-2-Cyclopentyl-2-[4-(2,4-dimethyl- α -carbolin-9-yl)methyl]phenyl-acetic acid hydrochloride

34

139.8 g (298 mmol) of the compound from Example XXXV are dissolved in 11 of 1,4-dioxane and the solution is stirred at $70^{\circ} \mathrm{C}$. for 3 h with 240 ml of concentrated hydrochloric acid (37% strength). After reaction is complete
5 (TLC checking; petroleum ether:ethyl acetate=10:1), the mixture is cooled to about $15^{\circ} \mathrm{C}$. and then poured in portions into 5 l of water. The pH is adjusted to 2.8 using 2 M aqueous sodium hydroxide solution, and the precipitate obtained is filtered off with suction through a paper filter and washed
10 with water until the washing water has a $\mathrm{pH}>4$. The rapidly filtered off solid is stirred with 11 of petroleum ether (boiling range $60-80^{\circ} \mathrm{C}$.), filtered off with suction again and dried over phosphorus pentoxide in vacuo.
Yield: $130.3 \mathrm{~g}(290 \mathrm{mmol} / 97 \%)$; M.p.: $260-262^{\circ} \mathrm{C}$. 15 (uncorrected); $\mathrm{R}_{f}=0.51$ (dichloromethane:ethanol=20:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d_{6}-DMSO, $200 \mathrm{MHz}, \mathrm{TMS}$): $\delta=0.88(\mathrm{M}, 1 \mathrm{H})$, $1.09-1.67(\mathrm{M}, 6 \mathrm{H}), 1.79(\mathrm{M}, 1 \mathrm{H}), 2.38(\mathrm{M}, 1 \mathrm{H}), 2.68(\mathrm{~S}$, $3 \mathrm{H}), 2.84(\mathrm{~S}, 3 \mathrm{H}), 3.16(\mathrm{D}, 1 \mathrm{H}), 4.7-5.9(1 \mathrm{H}), 5.80(\mathrm{~S}, 2 \mathrm{H})$, $7.12-7.26(\mathrm{M}, 5 \mathrm{H}), 7.32(\mathrm{M}, 1 \mathrm{H}), 7.49(\mathrm{M}, 1 \mathrm{H}), 7.59(\mathrm{D}$, $\left.{ }^{20} 1 \mathrm{H}\right), 8.17(\mathrm{D}, 1 \mathrm{H}) \mathrm{ppm}$.

The compounds of Table VI are prepared analogously to the procedure of Example LXI:
(SXII

TABLE VI-continued

TABLE VI-continued
(CXIC.

TABLE VI-continued

racemic
Ex. No.

EXAMPLE LXXXI

2-(R,S)-2-[4-(2-Methyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cylcoheptyl-acetic acid

$1.5 \mathrm{~g}(3.37 \mathrm{mmol})$ of the compound from Example LIX are reacted with 20 ml of 1 M methanolic sodium hydroxide
solution for 48 h . Water is added thereto and the methanol component is evaporated. The alkaline aqueous phase is extracted several times with ether, freed from residues of organic solvent in vacuo and adjusted to a pH of about 2 at $0^{\circ}-5^{\circ} \mathrm{C}$. using aqueous 1 M hydrochloric acid. The precipi-

50

55

60

65 tate which is deposited in this process is filtered off with suction, thoroughly washed with water and dried over phosphorus pentoxide in a high vacuum.

The reaction can be accelerated using potassium hydroxide instead of sodium hydroxide and with addition of 1,4 , 7, 10, 13, 16hexaoxacyclooctadecane.
$\mathrm{R}_{f}=0.39$ (petroleum ether: ethyl acetate $=2: 1$).

The compounds of Table VII are prepared in analogy to the procedure of Example LXXXI:

Ex. No.

LXXXII
Method
1

Z

LXXXIV

cHept rac $\quad 0.11(\mathrm{~K}) \quad$ Ex. No. LVIII

TABLE VII-continued

Ex. No.

Example LXXX11 can also be prepared by method 230 which follows:

2-[4-2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-prop-2-yl)-acetic acid

45
$1.11 \mathrm{~g}(2.77 \mathrm{mmol})$ of the compound from Example No. LV are boiled under reflux for 18 hours in 45 ml of methanol and 3 ml of 2 M aqueous sodium hydroxide solution. As the reaction is incomplete according to TLC (dichioromethane:methanol=20:1), 30 ml of tetrahydrofuran
35 and a further 3 ml of 2 M aqueous sodium hydroxide solution are added, a clear solution being obtained. After boiling under reflux for four hours, the reaction is complete (TLC, see above). The mixture is cooled, diluted with water and neutralized with 2 M aqueous hydrochloric acid. The 40 precipitate which is obtained in this process is filtered off with suction, washed with water and dried over phosphorus pentoxide in vacuo.

Yicld: $0.597 \mathrm{~g} ;$ M.p. $=225^{\circ}$ C.; $\mathrm{R}_{f}=0.28$ (dichloromethane:methanol=20:1).

The compounds of Table VIII are prepared analogously to the procedure of Example XXXV:

TABLE VIII

LXXXVIII

*Ex. No. XXVIII was employed as the benzyl bromide.

The compounds of Table IX are prepared analogously to the procedure of Example LXI:

TABLE IX

racemic

Ex. No.
LXXXIX

TABLE IX-continued

EXAMPLE XCl
2-Hydrazino-5-trifluoromethylpyridine

In analogy to the procedure of Example No. 1V, ${ }_{45}$ 2-hydrazino-5-trifluoromethylpyridine is prepared from 2-chloro-5-trifluoromethylpyridine.
$\mathrm{R}_{f}=0.37$ (BABA)
EXAMPLE XCII
5-Oxo-5,6,7-etrahydro- α-carboline

50
40 diethyl ether. The evaporated organic phase yields a crude product which is purified by chromatography (silica gel 60 , Merck, first petroleum ether:ethyl acetate $=1: 1$, then dichloromethane:methanol=20:1). The fractions thus obtained are precipitated by stirring with acetone, and the product is filtered off with suction and freed from the solvent in vacuo.

Yield: $0.92 \mathrm{~g} ; \mathrm{R}_{f}=0.17$ (petroleum ether:ethyl acetate $=$ 1:4).
55
$30 \quad 3.3 \mathrm{~g}(19.2 \mathrm{mmol})$ of $5,6,7,8$-tetrahydro- α-carboline (Lit.: S. Okuda and M. M. Robinson, J. Am. Chem. Soc. 81, 740 (1959)) are initially introduced into 43 ml of tetrahydrofuran while stirring at $0^{\circ} \mathrm{C}$. and the mixture is treated dropwise tetrahydrofuran and 31 ml of water. The reaction mixture is stirred at $0^{\circ} \mathrm{C}$. for 5 minutes and at $20^{\circ} \mathrm{C}$. for 2 hours, then treated with a buffer of $\mathrm{pH}=10$ (Mcrek) and extracted with
${ }^{60}$ The compounds of Table X are prepared analogously to the procedure of Example VI:

TABLE X

Ex. No.	M.p. $\left({ }^{\circ} \mathrm{C}\right.$.) $\mathrm{R}_{\mathrm{f}}($ solvent $)$
$\mathrm{MS}(\mathrm{EI})$	Stating material from Ex. No.
XCII	

The compounds of Table XI are prepared analogously to the procedure of Example XIX:

TABLE XI
Ex. No.

The compounds of Table XXI are prepared analogously to the procedure of Example XXXV :

TABLE XII

Ex. No.				
	Z		$\begin{aligned} & \text { M.p. }\left[{ }^{\circ}{ }^{\mathrm{C} .]}\right. \\ & \mathrm{R}_{\mathrm{f}} \text { (solvent) } \end{aligned}$	Starting material from Ex. No.
IC		cPent	$0.73 \text { (C) }$	Benzyl bromide: Ex. No. XXVIII
C		cPent	0.63 (H)	Benzyl bromide: Ex. No. XXVIII Heterocycle: Ex. No. XCV
CI		cPent	0.27 (H)	Benzyl bromide: Ex. No. XXVIII Heterocycle: Ex. No. XCVI
CII		cPent	0.33 (H)	Benzyl bromide: Ex. No. XXVIII Heterocycle: Ex. No. XCI
CIII		cPent	0.41 (H)	Benzyl bromide: Ex. No. XXVIII Heterocycle: Ex. No. XCVII
CIV		cPent	0.18 (H)	Benzyl bromide: Ex. No. XXVIII Heterocycle: Ex. No. XCVIII

The compounds of Table XIII are prepared analogously to the procedure of Example LXI:

TABLE XIII
(

1-(R,S)-1-Phenyl-2-triphenylmethyloxy-ethanol

13 g (94 mmol) of 1-(R,S)-1-Phenyl-2-hydroxy-ethanol are reacted at $20^{\circ} \mathrm{C}$. with $15.6 \mathrm{ml}(113 \mathrm{mmol})$ of triethylamine and $23.6 \mathrm{~g}(84.6 \mathrm{mmol})$ of triphenylnethyl chloride in 200 ml of DMF. After 20h, the mixture is poured into buffer of $\mathrm{pH}=4$ (Merck), the phases are separated, and the organic phase is dried with magnesium sulphate and evaporated to dryness. The crude product is purified by chromatography on silica gel 60 (Merck/petroleum ether:ethyl acetate $=20: 1$ later 10:1); yield 27 g .
$\mathrm{R}_{f}=0.36$ (petroleum ether: ethyl acetate $=5: 1$).

EXAMPLE NO. CXII

6-Chloro-5-methyl-3-nitro-2-(2-oxo-cyclohexyl)pyridine

20 g (95.7 mmol) of 2,6-dichloro-5-methyl-3-nitropyridine are reacted with $13.3 \mathrm{ml}(95.7 \mathrm{mmol})$ of triethylamine and 14.5 g (95.7 mmol) of freshly distilled 1-pyrrolidino-cyclopentene at $20^{\circ} \mathrm{C}$. in 200 ml of DMF under argon as a protective gas. After the starting material has disappeared according to thin-layer chromatography (silica gel/petroleum ether:ethyl acetate=4:1), 200 ml of 1 M hydrochloric acid are added and the mixture is diluted with about 600 ml of water. The precipitate which is deposited is filtered off with suction, dried over phosphorus pentoxide in a high vacuum and purified by chromatography (silica gel 60/Merck/petroleum ether:ethyl acetate=2:1).
$\mathrm{R}_{f}=0.69$ (petroleum ether: ethyl acetate $=4: 1$).

The compounds of the following Table XIV are obtained in analogy to the procedure of Example No. XIX:

TABLE XIV
Ex. No.

EXAMPLE NO. CXVIII
1-Chloro5,7-dimethyl- β-carboline

10.2 g (49 mmol) of the compound from Example No. CXV are reacted at $125^{\circ} \mathrm{C}$. for 24 h with $222 \mathrm{ml}(2.4 \mathrm{~mol})$ of phosphorus oxychloride and $155 \mu \mathrm{l}$ of N, N-dimethylaniline. The mixture is poured into 11 of ice water after cooling, then neutralized with aqueous sodium carbonate solution and extracted several times with ethyl acetate. The organic phase is dried with magnesium sulphate, evaporated and freed from the residual solvent in a high vacuum. The crude product is purified by chromatography on silica gel 60 (Merck/dichloromedtane); yield: 4.3 g .
$\mathrm{R}_{f}=0.39$ (dichiorome thane :ethanol $=20: 1$).

EXAMPLE NO. CXIX

5,7-Dimethyl- β-carboline

$3.8 \mathrm{~g}(16.5 \mathrm{mmol})$ of the compound from Example CXV1II are reacted with 1.3 g of sodium hydrogen carbonate on 700 mg of palladium $(10 \%) /$ carbon at a hydrogen pressure of about 3 bar and $20^{\circ} \mathrm{C}$. for 10 d in 40 ml of THF, 300 mg of palladium (10%)/carbon and 5 ml of methanol being
added on every second day. The catalyst is then filtered off with suction through kieselguhr, washed with THF, boiled in methanol and dichloromethane and again filtered off with suction. The combined organic solutions are evaporated, and the residue is precipitated by stirring with ether and filtered off with suction. After vacuum drying, 3 g of product are obtained.
$\mathrm{R}_{\mathrm{f}}=0.13$ (dichlorometane: ethanol $=20: 1$).
EXAMPLE NO. CXX
5,6-Dimethyl-1-(pyrid-2-yl)-1H-benzotriazole

$14.85 \mathrm{~g}(103 \mathrm{ml})$ of 5,6 -dimethyl-1H-benzotriazole are 55 dissolved in 150 ml of anhydrous DMSO, reacted with 5 g $(104 \mathrm{mmol})$ of 50% strength sodium hydride ($+40 \%$ paraffin oil) at $20^{\circ} \mathrm{C}$. until evolution of hydrogen is complete, treated with 10 g (103 mmol) of 2 -fluoro-pyridine and the mixture is boiled under reflux for 18 h . After cooling to $20^{\circ} \mathrm{C}$., the

The compounds in Table XVI are prepared in analogy to the procedure of Example No. XXVIII:

20
TABLE XVI
$8.9 \mathrm{~g}(39.7 \mathrm{mmol})$ of the compound from Example No. CXX are slowly heated to $165^{\circ} \mathrm{C}$. in 140 g of polyphosphoric acid under argon, the mixture being poured into 1.5 1 of water and adjusted to $\mathrm{pH}=6-7$ with 1 M aqucous sodium hydroxide solution before disappearance of the starting material (TLC checking/dichloromethane:ethanol=20:1). The precipitate obtained is filtered off with suction, washed with water, rapidly filtered off with suction, then washed with petroleum ether and filtered off with suction again. 30 After vacuum drying 1.8 g of product are obtained.
$\mathrm{R}_{f}=0.32$ (dichloromethane : ethanol $=20: 1$).
35

40 Cxxvi

50
The compounds in Table XV are prepared in analogy to the procedure of Example No. XXI:

CXXIII

CXXVII
55

60

65

CXXIII

CXXIV

The compounds of Table XVII are prepared analogously to the procedure of Example XXXV:

TABLE XVII
(

Ex. No. Z		Position $(\mathrm{o}, \mathrm{m}$ or p$)$ CXXXV	D	R^{10}	R_{f} (solvent)	MS	Starting material Ex. No.

CXXXVI

CXXXVII

CXXXVIII

CXXXIX

CXL

p rac

Et
XIX and CXXVI

The compounds of Table XVIII are prepared analogously to the procedure of Example Nos. LXI or LXXXI:

TABLE XVIII

Ex. No. Z		$\begin{aligned} & \text { Position } \\ & (\mathrm{o}, \mathrm{~m} \text { or } \mathrm{p}) \text { (1) D } \end{aligned}$		R_{f} (solvent)	MS	Starting material Ex. No.	Preparation analogous to Ex. No.
CVLIII	Me	p	rac cPent	0.15 (C)		cxxxv	LXI

CIL

p rac ePent
CXXXVI LXXXI

CL

CLI

CLII

CLIII

p rac

PREPARATION EXAMPLES
EXAMPLES 1, 2 AND 3
2-(S)- and 2-(R)-2-[4-(2,4-Dimetyl-5,6,7,8-tetrahydro- α-carbolin-9-yl)methyl-phenyl]-2-
cyclopentyl-acetic acid N -[(R)phenylglycinolamide]

3.00 g (7.2 mmol of the compound from Example LXII are dissolved in 70 ml of dichloromethane with 0.99 g (7.2 $\mathrm{mmol})$ of (R)-phenylglycinol (Aldrich), and the solution is treated successively at $0^{\circ} \mathrm{C}$. with $1.07 \mathrm{~g}(7.9 \mathrm{mmol})$ of 1-hydroy-1H-benzotriazole hydrate (Aldrich), 1.58 g (8.3 mmol) of N^{\prime}-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (Aldrich) and 2 ml of triethylamine and then stirred at room temperature for 20 hours. The organic solution is extracted with aqueous ammonium chloride solution, with aqueous sodium hydrogen carbonate solution and with a buffer of $\mathrm{pH}=4$ (ready-to-use buffer solution, E. Merck, Darmstadt), dried with solid anhydrous sodium sulphate and evaporated. Yield of the diastereomer mixture:

70

3.50 g (Example 1). The product mixture is separated by chromatography (silica gel, dichloromethane : ethanol=50:1):

EXAMPLE NO. 2

Diastereomer A [2(S)-diastereomer]: $1.23 \mathrm{~g} ; \mathrm{R}_{f}=0.18$ (dichlorometane:ethanol=50:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d-DMSO, 250 $\mathrm{MHz}, \mathrm{TMS}): ~ \delta=0.87(\mathrm{M}, 1 \mathrm{H}), 1.19-1.63(\mathrm{M}, 6 \mathrm{H}), 1.72(\mathrm{M}$, $1 \mathrm{H}), 2.45(\mathrm{M}, 1 \mathrm{H}), 2.58(\mathrm{~S}, 3 \mathrm{M}), 2.79(\mathrm{~S}, 3 \mathrm{H}), 3.26(\mathrm{D}, 1 \mathrm{H})$, $3.44-3.53(\mathrm{M}, 2 \mathrm{H}), 4.21-4.31(\mathrm{M}, 2 \mathrm{H}), 5.63(\mathrm{~S}, 2 \mathrm{H})$,
${ }^{10} 6.97-7.11(\mathrm{M}, 8 \mathrm{H}), 7.20-7.28(\mathrm{M}, 3 \mathrm{H}), 7.41(\mathrm{M}, 1 \mathrm{H}), 7.54$ $(\mathrm{D}, 1 \mathrm{H}), 8.12(\mathrm{D}, 1 \mathrm{H}), 8.24(\mathrm{D}, 1 \mathrm{H}) \mathrm{ppm}$.

EXAMPLE NO. 3

15 Diastereomer B [2(R- diastereomer]: $1.12 \mathrm{~g} ; \mathrm{R}_{f}=0.16$ (dichloromehane:ethanol=50:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d-DMSO, 250 $\mathrm{MHz}, \mathrm{TMS}$): $\delta=0.84$ (M, 1H), 1.07-1.59 (M, 7H), 2.34 (M, $1 \mathrm{H}), 2.61(\mathrm{~S}, 3 \mathrm{H}), 2.80(\mathrm{~S}, 3 \mathrm{H}), 3.25(\mathrm{D}, 1 \mathrm{H}), 3.43(\mathrm{M}, 2 \mathrm{H})$, $4.63-4.72(\mathrm{M}, 2 \mathrm{H}), 5.66(\mathrm{~S}, 2 \mathrm{H}), 6.98(\mathrm{~S}, 1 \mathrm{H}), 7.13(\mathrm{M}, 2 \mathrm{H})$, $7.20-7.30(\mathrm{M}, 8 \mathrm{H}), 7.43(\mathrm{M}, 1 \mathrm{H}), 7.57(\mathrm{D}, 1 \mathrm{H}), 8.12(\mathrm{D}$, $1 \mathrm{H}), 8.36$ (D, 1H) ppm.

The absolute configurations of the enantiomerically pure carboxylic acids 2-(S)- and 2-(R)-2- \{4-[(quinolin-2-yl) methoxy]phenyl\}-2-cyclopentyl-acetic acid [cf. EP 509
$25359]$ are known, so the absolute configurations of the amides Ex. No. C1 and Ex. No. C2 prepared therefrom analogously to the procedure of Examples 1 and 2 can be derived. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the two diastercomeric products (200 $\mathrm{MHz}, \mathrm{d}_{6}$-DMSO, TMS for Example No. C1 and 250 MHz , d_{6}-DMSO, TMS for Example No. C2/FIG. 1) have significant differences in the aromatic region: the H signals of the phenyl radical of Ex. No. C1 are at about $7.1 \mathrm{ppm}(3 \mathrm{H})$ and $7.3 \mathrm{ppm}(2 \mathrm{H})$ and the H signals of Ex. No. C2 are at about $7.3 \mathrm{ppm}(5 \mathrm{H})$. This finding is applicable to the compounds of Examples 2 and 3 (FlG. 2) and also to many other

The examples mentioned in Tables 1, 2 and 3 are prepared in analogy to the procedure of Examples 1,2 and 3:

TABLE 1

Ex. $\mathrm{No} . \mathrm{Z}$

TABLE 1-continued
6

7

8

9

10

TABLE 1-continued

| Ex. No. Z | | D\quadStarting material*
 (Ex. No.) | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | | RHept S | 0.24 (E) | LXIV |

12

13

14

15

16

TABLE 1-continued

18

19

20

21

22

cHept S 0.28 (D)
LXIX
TABLE 1-continued
24

25

26

27

28

cHept rac $0.12 / 0.15$ (B) LXXXIV
cPent rac $0.28(\mathrm{E})$
LXXI
29

cHept rac 0.17/0.23 (B) LXXXI

TABLE 1-continued

TABLE 1-continued
38

*(R)-Phenylglycinol is commercially available from Aldrich.
40

TABLE 2

TABLE 2-continued

"(S)-Phenylglycinol is commercially available from Aldrich.

TABLE 3

Ex. No. Z	$\mathrm{D} \quad \mathrm{X}$	1	R_{f} (solvent)	Starting material (Ex. No.)
42	Carboxylic acid: Ex. No. LXIII Amine from Aldrich			

43

cIIept II
rac $\quad 0.78(\mathrm{E})$
Carboxylic acid:
Ex. No. LXIV
Amine from Aldrich

TABLE 3-continued

TABLE 3-continued

Ex. No. Z	D	X	1	R_{f} (solvent)	Starting material (Ex. No.)
50	cHept	H	rac	0.71 (E)	Carboxylic acid: Ex. No. LXX Amine from Aldrich
	cHept	H	rac	0.59 (B)	Carboxylic acid: Ex. No. LXXXI Amine from Aldrich
52	cHept	H	rac	0.40 (B)	Carboxylic acid: Ex. No. LXXXIV Amine from Aldrich
53	cHept	$3-\mathrm{OH}$	rac	0.45 (D)	Carboxylic acid: Ex. No. LXV Amine: Ref.: US 4388250
54	cHept	4-OH	rac	0.39 (A)	Carboxylic acid: Ex. No. LXV Amine: Ref.: C. Hartmann and J. P. Klinman, Biochemistry, 30 , $4605 \text { (1991) }$
55	cHept	$2-\mathrm{OCH}_{3}$	rac	0.15 (B)	Carboxylic acid: Ex. No. LXV Amine from Aldrich

TABLE 3-continued

TABLE 3-continued

Ex. No. Z	1		Starting material (Ex. No.)
62	rac	0.39 (B)	Carboxylic acid: Ex. No. LXV Amine: Ref.: EP 373891
63	mac	0.28 (B)	Carboxylic acid: Ex. No. LXV Amine from Aldrich
64	rac	0.21 (B)	Carboxylic acid: Ex. No. LXV Amine from Aldrich
65	rac	0.75 (D)	Carboxylic acid: Ex. No. LXV Amine from Aldrich
66	rac	0.71 (D)	Carboxylic acid: Ex. No. LXV Amine from Lancaster
67	rac	0.61 (D)	Carboxylic acid: Ex. No. LXV Amine from Aldrich

TABLE 3-continued

*Resolution of enantiomers is carried out by means of HPLC (Chiralpak AD, length 250 mm , diameter 4.6 mm , particle size 10μ, eluent: 95% n-heptane $+5 \%$ ethanol (the latter containing 1% water and 0.2% trifluoroacetic acid)).

25
EXAMPLE 69

2-(R,S)-2-[4-(2,4-Dimethyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cycloheptyl-acetic acid N -(2-hydroxybenzyl)amide

0.60 g of the compound from Example 58 are boiled under reflux for 22 hours with 33 mg of palladium (10% on animal carbon) and 33 mg of para-toluenesulphonic acid monohydrate in 3 ml of methanol and 0.6 ml of water under argon as a protective gas. If reaction is incomplete (TLC checking, dichloromethane:ethanol=50:1), 33 mg of palladium (10% on animal carbon) and 33 mg of paratoluenesulphonic acid monohydrate are added once more and the mixture is boiled under reflux for a further 24 hours. The catalyst is filtered off hot with suction and washed with plenty of hot methanol, and the filtrate is evaporated. After drying in a high vacuum over phosphorus pentoxide, 0.52 g of product are obtained.

$$
\mathrm{R}_{f}=0.33 \text { (dichloromethane: ethanol=50:1). }
$$

EXAMPLE 70
$50 \quad 500 \mathrm{mg}(0.868 \mathrm{mmol})$ of the compound from Example 31 are treated dropwise with $1.737 \mathrm{ml}(1.737 \mathrm{mmol})$ of a 1 M lithium aluminium hydride solution in tetraydrofuran under argon at $0^{\circ} \mathrm{C}$. in 5 ml of anhydrous tetrahydrofuran and stirred at about $20^{\circ} \mathrm{C}$. for 4 h . The reaction mixture is treated cautiously with 5 ml of water and adjusted to a pH of about 2 using 2 M aqueous hydrochloric acid. The aqueous phase is extracted several times with diethyl ether and dichloromehane, dried with sodium sulphate and evaporated. The crude product is purified by chromatography on methyl-phenyl]-2-cyclo-pentyl-acetic acid N -(R)phenylglycinolamide
 silica gel 60 (Merck, dichloromethane to dichloromethane:methanol-50:1).

Yield: $0.12 \mathrm{~g} ; \mathrm{R}_{f}=0.26$ (dichloromethane:ethanol-20:1).

2-(R,S)-2-[4-(3-Hydroxymethyl- β-carbolin- $9-y \mathrm{y}$)-

The compounds of Table 4 are prepared in analogy to the procedure of Example 70:

TABLE 4

EXAMPLE 73

2-(R,S)-2-[4-(2,4-Dimethyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cycloheptyl-acetic acid N-(4-carboxybenzyl)amide

$0.325 \mathrm{~g}(0.55 \mathrm{mmol})$ of the compound from Example 60 is reacted at $60^{\circ} \mathrm{C}$. with 0.5 ml of aqueous 2 M sodium hydroxide solution in 3 ml of methanol for 18 h . If the reaction is still not complete according to thin-layer analysis (solvent F), a further 0.5 ml of aqueous 2 M sodium

50

55

60
hydroxide solution in 1 ml of methanol is added and the mixture is then boiled under reflux for 24 h . The reaction mixture is cooled and adjusted to a pH of about 4 using 1 M hydrochloric acid, and the precipitate which is deposited is filtered off with suction, washed with water and petroleum ether: diethyl ether $=5: 1$ and freed from the residual solvents in a high vacuum over phosphorus pentoxide.

$$
\begin{array}{cccc}
\text { Yield: } & 0.154 & \mathrm{~g} ; & \mathrm{R}_{f}=0.50
\end{array}
$$

(dichloromethane:methanol:acetic acid=90:10:2).

EXAMPLE 74

2-(R,S)-2-[4-(2,4-Dimethyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cycloheptyl-acetic acid N-(3-carboxybenzyl)amide

The title compound can be prepared from the compound of Example 59 analogously to the procedure of Example 73.

$$
\mathrm{R}_{f}=0.27 \text { (dichlorome thane:e thanol }=20: 1 \text {). }
$$

The compounds shown in Tables 5, 6, 7, 8, 9 and 10 are prepared in analogy to the procedure of Example 1:

TABLE 5

Ex. No.	Y	$\mathbf{1}$	M.p.	Starting material
75	$3-\mathrm{OH}$	rac	$177-178$	Carboxylic acid:
				Ex. No. LXII
				Amine: US 43 88 250

TABLE 5-continued

5

10

15

20

* racemic

Amine: LXII
C. Hartmann and J.P. Klinman, Biochemistry 30, 4605 (1991)

TABLE 6

* racemic
$\begin{array}{lll}\text { Ex. } & & \\ \text { No. } & R^{5} & R_{f} \text { (solvent) }\end{array} \quad$ Starting material

35
25

No.
79

30

40

45 45
45

55

78

Carboxylic acid: Ex. No. LXV Amine from Aldrich

TABLE 6-continued

80 S 0.24 (D) Carboxylic acid: Ex. No. LXV Amine from Aldrich
\qquad

TABLE 7

60

Ex. No. 1	$-\mathrm{R}^{20}$	R_{i} (solvent)	Starting material	
81	rac	$\mathrm{C}_{6} \mathrm{H}_{5}$	$0.10(\mathrm{P})$	Acid: Ex. No. LXXIX Amine from Aldrich

82 rac $\mathrm{C}_{6} \mathrm{H}_{5} \quad 0.28(\mathrm{P}) \quad$ Acid: Ex. No. LXXIX

65 \qquad

TABLE 8

Ex. No.	I	X	Y	$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C} .\right) \\ & \mathrm{R}_{\mathrm{f}} \text { (solvent) } \end{aligned}$	MS (FAB)	Starting material a) Reference b) Distributor c) Synthesis from Ex.No.
83	rac	$3-\mathrm{OCH}_{3}$	$4-\mathrm{OCH}_{3}$	$\begin{gathered} 179 \\ 0.50(\mathrm{~A}) \end{gathered}$	$\begin{aligned} & 562(100 \%) \\ & 154(80 \%) \end{aligned}$	Carboxylic acid: c) Ex. No. LXI
84	rac	3-CH3	$5-\mathrm{CH}_{3}$	$\begin{gathered} 212 \\ 0.60(\mathrm{~B}) \end{gathered}$	530 (100\%)	Amine from Aldrich. Carboxylic acid: c) Ex. No. LXI
85	rac	$3-\mathrm{Cl}$	$5-\mathrm{Cl}$	$\begin{gathered} 212 \\ 0.18(\mathrm{M}) \end{gathered}$	$\begin{aligned} & 570(100 \%) \\ & 196(50 \%) \end{aligned}$	Amine from Emka-Chemie. Carboxylic acid: c) Ex. No. LXI
86	rac	$3-\mathrm{OH}$	4-OH	$\begin{gathered} 137 \\ 0.39 \text { (A) } \end{gathered}$	$\begin{gathered} 534(100 \%) \\ 307(60 \%) \end{gathered}$	Amine from Maybridge. Carboxylic acid: c) Ex. No. LXI
87	rac	$3-\mathrm{OCH}_{3}$	4-OH	$\begin{gathered} 135 \\ 0.65(\mathrm{~A}) \end{gathered}$	$\begin{gathered} 548(80 \%) \\ 154(100 \%) \end{gathered}$	Amine from Aldrich. Carboxylic acid: c) Ex. No. LXI Amine from Aldrich.

TABLE 9

* (R)-Phenylglycinol is commercially available from Aldrich.

TABLE 10

The compounds of Table 11 are prepared analogously to the procedure of Example Nos. 1, 2 and 3:

TABLE 11

96

97

98

99

TABLE 11-continued

(

TABLE 11-continued

Ex. No.
113

114

CX

CX

116

cPent diaA $194^{\circ} \mathrm{C}$.
81

7

81

The compounds of Table 12 are prepared analogously to the procedure of Example Nos. 1, 2 and 3:

TABLE 12

TABLE 12-continued

Ex. No.	1	R^{22}	$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C} .\right) \\ & \mathrm{R}_{\mathrm{f}} \text { (solvent) } \end{aligned}$	MS (FAB)	Slarting material from Ex. No.
123	rac		$\begin{gathered} 0.17 \text { (D) } \\ 0.32 \end{gathered}$		LXI

124 rac

125 rac

126 rac

127 rac
0.14 (C)

137

TABLE 12-continued

$\begin{aligned} & \text { Ex. } \\ & \text { No. } \end{aligned}$	1	R^{22}	$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C} .\right) \\ & \mathrm{R}_{\mathrm{f}} \text { (solvent) } \end{aligned}$	MS (FAB)	Slarting material from Ex. No.
128	S		$187^{\circ} \mathrm{C}$.	$\begin{aligned} & 548(100 \%) \\ & 154(80 \%) \\ & 137(85 \%) \end{aligned}$	LXI

The compounds of Table 13 are prepared analogously to the procedure of Example No. 73:

TABLE 13

40

45

50

Example	(1)				M.p. $\left[{ }^{\circ} \mathrm{C}.\right]$ R_{f} (solvent)	Starting material from Ex. No.
No.		X	Y	Z		
129	$\mathrm{rac} / \mathrm{rac}$	H	H	H	$0.15(\mathrm{~S})$	118
130	$\mathrm{rac} / \mathrm{rac}$	H	OH	H	$0.18(\mathrm{~T})$	119
					0.24	
131	$\mathrm{rac} / \mathrm{rac}$	H	H	OH	$0.68(\mathrm{~S})$	120
132					0.76	
	$\mathrm{rac} / \mathrm{rac}$	OH	H	H	$0.16(\mathrm{~T})$	121
					0.24	

55	Example No.	(1)	X	Y	Z	$\begin{aligned} & \text { M.p. }\left[{ }^{\circ} \mathrm{C} .\right] \\ & \mathrm{R}_{f} \text { (solvent) } \end{aligned}$	Starting material from Ex. No.
	133	rac/rac	II	OII	II	0.30 (A)	119
	134	rac/rac	H	H	OH	0.25 (A)	120
60	135	rac/rac	OH	H	H	0.33 (A)	121
	136	rac/rac	H	OH	OH	0.23 (A)	122
	137	$\mathrm{rac} / \mathrm{rac}$	H	H	NH_{2}	0.31 (C)	125

The compounds of Table 14 are prepared analogously to the procedure of Example No. 70:

117
EXAMPLE NO. 138
2-(R,S)-2-[4-(2,4Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid $\mathrm{N}-[1-(\mathrm{R}, \mathrm{S})-1$-(4-acetamido-phenyl)2-hydroxy-ethyl]amide

Part A)
$0.60 \mathrm{~g}(1.10 \mathrm{mmol})$ of the compound from Example No. 137 is treated uitl $192 \mu \mathrm{l}(3.29 \mathrm{mmol})$ of triethylamine in 10 ml of dichioromethane and then reacted at $0^{\circ} \mathrm{C}$. with $70 \mu \mathrm{l}$ (0.99 mmol) of acetyl chloride. After a stirring time of 3 hours, in which the reaction temperature rises to $20^{\circ} \mathrm{C}$., the mixture is shaken successively with 1 M hydrochloric acid, 0.1 M aqueous sodium hydroxide solution and water, and the organic phase is dried with magnesium sulphate and evaporated.
Part B)
The crude product thus obtained shows a double acetylation $\left(631,57 \%, \mathrm{M}^{+}+\mathrm{H} / 653,6 \%, \mathrm{M}^{+}+\mathrm{Na}\right)$ in the mass spectrum (FAB). It is therefore reacted with 2 M sodium hydroxide solution at $20^{\circ} \mathrm{C}$. for one hour in 6 ml of methanol. The pH is then adjusted to 2 using 1 M hydrochloric acid and the mixture obtained is extracted with ethyl acetate. The organic phase is washed with water until neutral, dried with magnesium sulphate and evaporated in vacuo. Drying in a high vacuum yields 0.28 g of product.
$\mathrm{R}_{f}=0.17$ (Dichloromehane:ethanol=20:1).
EXAMPLE NO. 139
2-(R,S)-2-[4-(2,4Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid N -[1-(R,S)-1-(4-acetarnido-phenyl)-2-acetoxy-ethyl]amide

118
If the compound from Example No. 137 is reacted with 4 equivalents each of triethylamine and acetyl chloride analogously to Part A of the procedure from Example No. 138, the title compound is obtained.

The compounds of Table 15 are prepared analogously to the procedure of Example No. 138:

TABLE 15

10

15

20

25

30

40

45

50

55
$4.5 \mathrm{~g}(8.46 \mathrm{mmol})$ of the compound No. 2 are suspended in 300 ml of dichloromethane, treated with 2.05 ml (25.4 $\mathrm{mmol})$ of pyridine and $1.82 \mathrm{ml}(25.4 \mathrm{mmol})$ of acetyl chloride in 30 ml of dichloromethane and reacted at $20^{\circ} \mathrm{C}$.
60 or 20 hors. of $\mathrm{pH}=2$ and water, dried with sodium sulphate and evaporated. After precipitating by stirring with methanol and subsequently drying in a high vacuum over phosphorus pentoxide, 3.6 g of product are obtained.
$65 \mathrm{R}_{f}=0.62$ (Petroleum ether:ethyl acetate $=1: 1$)
The compounds of Table 16 are prepared analogously to the procedure of Example No. 142:

TABLE 16

Example No.	R^{24}	M.p. [${ }^{\circ} \mathrm{C}$.] R_{f} (solvent $)$	Starting material from Ex. No.
143	-Et	$0.25(\mathrm{D})$	2
144	$-\mathrm{CH}_{2} \mathrm{OAc}$	$0.29(\mathrm{D})$	2
145	$-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$	$0.27(\mathrm{D})$	2
146	$\mathrm{cis}-\left(\mathrm{CH}_{2}\right), \mathrm{Z}-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	$0.52(\mathrm{D})$	2
147	$-\left(\mathrm{CH}_{2}\right)_{14}-\mathrm{CH}_{3}$	$0.69(\mathrm{G})$	2
148	-Ph	$0.65(\mathrm{C})$	2
149			

EXAMPLE NO. 151
2-(S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-thioaceticacid N -[1-(R)-1-phenyl-2-ace toxy-ethyl]amide

$1.5 \mathrm{~g}(2.6 \mathrm{mmol})$ of the compound from Example No. 142 are treated with $1.27 \mathrm{~g}(3.13 \mathrm{mmol})$ of 2,4-bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulphide (Lawesson's reagent) in 50 ml of dioxane and boiled under reflux for 5 hours. The reaction mixture is evaporated to dryness in vacuo and purified by chromatography on silica gel MATREX ${ }^{\text {TM }}$ silica Si (Amicon, Grace Company/ $20 \mu /$ MPTLC column/dichloromethane: ethanol= $100: 1$); yield: 665 mg .
$\mathrm{R}_{j}=0.53$ (Petroleum ether:ethyl acetate $=2: 1$); MS (FAB): $\mathrm{m} / \mathrm{c}=612\left(4 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 590\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 529(19 \%$, $\left.\mathrm{M}^{+}-\mathrm{AcOH}\right)$.

EXAMPLE NO. 152
2-(S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid N -[1-(R)-1-phenyl-2-[2-hydroxy-acet)-oxy]ethyl]amide

50

55

121
through kieselguhr, washed several times with methanol and dichloromethane, and the combined organic solutions are evaporated. The solid residue is stirred with pentane, filtered off with suction and freed from the residual solvent in a high vacuum.
$\mathrm{R}_{f}=0.31$ (Petroleum ether: ethyl acetate $=1: 1$).

EXAMPLE NO. 153

2-(S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-thioaceticacid $\mathrm{N}-[1-(\mathrm{R})-1-$ phenyl-2-hydroxyethyl]-amide

The title compound is prepared at $20^{\circ} \mathrm{C}$. from the compound of Example No. 151 in DME as a solvent analogously to the synthesis procedure from Example No. 73.
$\mathrm{R}_{f}=0.24$ (Dichloromethane: ethanol=50:1).
EXAMPLE NO. 154
2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-
phenyl]-2-cyclopentyl-acetic acid N-[1-(thien-2-yl)1 -methoxycarbonyl-methyl]-amide

The title compound is prepared from the compound of Example No. LXII and (R,S)-(thien-2-yl)-glycine methyl ester analogously to the synthesis procedure of Example Nos. 1, 2 and 3.

$$
\mathrm{R}_{f}=0.67 \text { (Dichloromethane:ethanol=20:1). }
$$

The title compound is prepared from the compound of Example No. 154 analogously to the synthesis procedure of Example No. 70.

122
EXAMPLE NO. 155

2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-pheny1]-2-cyclopentyl-acetic acid N -[1-(thien-2-yl) 2-hydroxyethyl]-amide

$\mathrm{R}_{f}=0.21$ (Dichloromethane:ethanol 50:1).

EXAMPLE NO. 156

> 2-(S)-2-[4-(2,4-Dimetyl- α-carbolin-9-yl)-methylphenyl]-2-cyclopentyl-acetic acid N-[1-(R)-1phenyl-2-(2,4,6-trimethyl-benzoyl-oxy)ethyl]-amide

45

60
50

55

The compound is prepared from Example No. 2 is reacted to give the title compound analogously to the procedure of Example No. 142.
$\mathrm{R}_{f}=0.26$ (Mobile phase D).

123
EXAMPLE NO. 157

1-(R,S)-1-Phenyl-2-triphenylmethyloxy-ethyl 2-(R, S)-2-[4-(2,4-dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetate

1.0 g (2.42 mmol) of the compound from Example LXI is reacted with $1 \mathrm{ml}(7.27 \mathrm{mmol}$ of triethylamine and 206μ] (2.67 mmol) of mesyl chloride in 30 ml of DMF at $-30^{\circ} \mathrm{C}$. for 2 h , then treated dropwise with a solution of $1.1 \mathrm{~g}(2.9$ mmol) of the compound from Example No. CXI and 296 mg (2.42 mmol) of DMAP in 10 ml of DMF and stirred for about 20 h while gradually warming to $20^{\circ} \mathrm{C}$. For working up, the mixture is stirred into ether/water, the phases are separated, and the organic phase is extracted with aqueous 1 M sodium hydroxide solution and washed with water. The organic phase is dried with magnesium sulphate and evaporated-finally in a high vacuum; yield: 1.0 g .

$$
\mathrm{R}_{f}=0.44 \text { (Petroleum ether:ethyl acetate }=5: 1 \text {). }
$$

124

EXAMPLES 158 and 159
1-(R,S)-1-Phenyl)-2-triphenylmethyloxy-ethyl [2-(R,S)-2-[4-(2,4-dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetate
$1.0 \mathrm{~g}(1.29 \mathrm{mmol})$ of the compound from Example No. 157 is stirred with 5 ml of trifluoroacetic acid in 10 ml of THF and 5 ml of water at $20^{\circ} \mathrm{C}$. for 48 h . The mixture is then stirred with 300 ml of ether and 200 ml of aqueous sodium hydrogen carbonate solution, the phases are separated after evolution of carbon dioxide has subsided and the organic phase is extracted with buffer of $\mathrm{pH}=7$ (Merck) and dried with magnesium sulphate. After evaporating the solvents, a crude product is obtained which is purified by chromatography on silica gel (Merck/petroleum ether:ethyl acetate= $5: 1$) and separated into the diastereomers.

Racemic diastereomer A)

Yield: $300 \mathrm{mg} ; \mathrm{R}_{f}=0.54$ (Petroleum ether:ethyl acetate $=$ 2:1).
Racemic diastercomer B)
Yield: $320 \mathrm{mg} ; \mathrm{R}_{f}=0.42$ (Petroleum ether:ethyl acetate $=$ 2:1).

The compounds of Table are prepared analogously to the procedure of Example Nos. 1, 2 and 3:

TABLE 17

Ex. No. Z	$\begin{aligned} & \text { Position } \\ & (\mathrm{o}, \mathrm{~m} \text { or } \mathrm{p})(1) \end{aligned}$	D	$\mathrm{R}_{\text {f }}$ (solvent)	MS	Starting material Ex. No.
160	p -	H	0.30 (C)	FAB: 464 (100\%)	CXLI

TABLE 17-continued

TABLE 17-continued

TABLE 17-continued

133
EXAMPLE 185
2-(R,S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid [N -benzyl, N -
benzoyl]-amide

2.0 g (4.8 mmol) of the compound from Example No. LXI are reacted with $0.74 \mathrm{ml}(5.3 \mathrm{mmol})$ of triethylamine and $0.41 \mathrm{ml}(5.3 \mathrm{mmol})$ of mesyl chloride at $-30^{\circ} \mathrm{C}$. in anhydrous DMF for 1 h . A solution of $1.07 \mathrm{~g}(5.1 \mathrm{mmol})$ of N -benzyl-benzamide and $1.42 \mathrm{ml}(10.2 \mathrm{mmol})$ of triethylamine in 10 ml of anhydrous DMF is then added dropwise at $-30^{\circ} \mathrm{C}$. and stirred for 16 h while gradually warming to $20^{\circ} \mathrm{C}$. The reaction mixture is stirred with ether and water, the phases are separated and the aqueous phase is washed after setting a pH of 4 and 7 in each case. The combined organic solutions are evaporated and purified by chromatography on silica gel 60 (Merck/first 35 dichloromethane :ethanol=60:1; then petroleum ether:ethyl acetate $=4: 1$).
$\mathrm{R}_{f}=0.58$ (Petroleum ether: ethyl acetate $=2: 1$).
EXAMPLE 186
2-(R,S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid [N-benzoyl]amide

$2.0 \mathrm{~g}(3.3 \mathrm{mmol})$ of the compound from Example No. 185 are reacted at $20^{\circ} \mathrm{C}$. under a hydrogen pressure of about 1 bar on 2 g of palladium on animal carbon (5\%) in dioxane for about 40 h . The mixture is then filtered off with suction through a Seitz filter and washed with dioxane, and the filtrate is evaporated. The crude product is precipitated by
stirring with methanol at 60° C. and is filtered off with suction at $20^{\circ} \mathrm{C}$., washed with cold methanol and dried over phosphorus pentoxide in vacuo.

45

50

55

60

EXAMPLE 188

2-(R,S)-2-[4-(2,4-Dimetyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid [N-(1-(R,S)-1-phenyl-1-carboxy-methyl]-amide

The compound from Example No. 187 is reacted to give the title compound analogously to the procedure of Example No. 73.

135
EXAMPLE 189
1-1-(R,S)-2-hydroxy-phenyl-ethyl2-(R,S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-pheny1]-2-cyclopentyl-acetate

$1 \mathrm{~g}(2.42 \mathrm{mmol})$ of the compound from Example No. LXI is reacted with $1 \mathrm{ml}(7.27 \mathrm{mmol})$ of triethylamine and 206 $\mu \mathrm{l}(2.67 \mathrm{mmol})$ of mesyl chloride for 1 h in 30 ml of DMF at -30° C. A solution of 1-(R,S)-1-phenyl-2-hydroxythioethanol in 10 ml of DMF is then added dropwise at the temperature mentioned and the mixture is stirred for a further hour. For working up, the reaction mixture is stirred into ether and aqueous sodium hydrogen carbonate solution. The organic phase is washed with buffer $\mathrm{pH}=2$ and then $\mathrm{pH}=7$, dried with magnesium sulphate and evaporated. The crude product is purified on silica gel 60 (Merck/petroleum ether:ethyl acetate $5: 1$); yield: 660 mg .
$\mathrm{R}_{\mathrm{f}}=0.58$ (Petroleum ether:ethyl acetate $=2: 1$).
What is claimed is:

1. A cycloalkyl-indole and -azaindole derivative of the formula (I)

(I)
which
R^{1} and R^{2}, including the double bond connecting then, together form a ring of the formula

wherein
R^{8} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
R^{3} and R^{4}, including the double bond connecting them, 65 together form a phenyl ring or a 6 -membered cycloalkene radical,

136
the ring systems mentioned under R^{1} / \mathbf{R}^{2} and R^{3} / \mathbf{R}^{4} optionally being substituted 1 to 3 times by identical or different halogen, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms or by straight-chain or branched alkyl having up to 6 carbon atoms, which, for its part, can be substituted by hydroxyl or by straight-chain or branched alkoxy having up to 4 carbon atoms,
D represents hydrogen, cycloalkyl having 4 to 12 carbon atoms or straight-chain or branched alkyl having up to 12 carbon atoms,
E represents the - $\mathrm{CO}-$ or - CS - group,
L represents a group of the formula $-\mathrm{NR}^{9}$, wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl, optionally being substituted 1 to 3 times by identical or different nitro, carboxyl, halogen or cyano substituents or by straight-chain or branched alkenyl or alkoxycarbonyl each having up to 6 carbon atoms or by straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms, and/or optionally being substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
R^{10} denotes hydrogen or straight-chain or branched alkyl and alkenyl each having up to 6 carbon atoms,
R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms or straight-chain or branched acyl having up to 8 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$,
wherein
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 8 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 5 carbon atoms, or represents straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$, wherein
R^{15} denotes phenyl which is optionally substituted 1 to
3 times by identical or different halogen or hydroxyl substituents or by straight-chain or branched alkyl having up to 5 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 22
carbon atoms, each of which is optionally substituted
by a group of the formula - OR^{16},
wherein
R^{16} is hydrogen, benzyl, triphenylmethyl or straightchain or branched acyl having up to 6 carbon atoms,
R^{7} represents hydrogen or
R^{6} and R^{7} together represent the group of the formula $=0$,
if appropriate in an isomeric form, or a physiologically acceptable salt thereof.
2. A cycloalkyl-indole and -azaindole derivative of the formula according to claim 1 wherein

137
R^{1} and R^{2}, including the double bond connecting them, together form a ring of the formula

wherein
R^{8} denotes hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a cyclohexene radical, the ring systems mentioned under $\mathrm{R}^{1} / \mathrm{R}^{2}$ and $\mathrm{R}^{3} / \mathrm{R}^{4}$ optionally being substituted 1 to 2 times by identical or different fluorine, chlorine, bromine, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms or by straight-chain or branched alky having up to 4 carbon atoms, which, in turn, can be substituted by hydroxyl or by straight-chain or branched alkoxy having up to 3 carbon atoms,
D represents hydrogen, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 10 carbon atoms,
E represents the - CO - or - CS - group,
L represents a group of the formula $-\mathrm{NR}^{9}$, wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl which is optionally substituted 1 to 2 times by identical or different nitro, carboxyl, fluorine, chlorine, bromine or cyano substituents, by straight-chain or branched alkenyl or alkoxy carbonyl each having up to 4 carbon atoms or by straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, and/or optionally substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
R^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 4 carbon atoms,
R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms or denote straight-chain or branched acyl having up to 6 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$,
wherein
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 6 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 4 carbon atoms, or represents straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$, wherein
R^{15} denotes phenyl which is optionally substituted 1 to 3 times by identical or different fluorine, chlorine,

138

bromine or hydroxyl substituents or by straightchain or branched alkyl having up to 4 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 20 carbon atoms, each of which is optionally substituted by a group of the formula $-\mathrm{OR}^{16}$,

wherein

R^{16} is hydrogen, benzyl, triphenylmethyl or straight-chain or branched acyl having up to 5 carbon atoms,
R^{7} represents hydrogen or
R^{6} and R^{7} together represent the group of the formula $=0$,
if appropriate in an isomeric form, or a physiologically acceptable salt thereof.
3. A cycloalkano-indole and -aziandole derivative of the formula according to claim 1
wherein
R^{1} and R^{2}, including the double bond connecting them, together form a ring of the formula

wherein
R^{8} denotes hydrogen and methyl,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a cyclohexene radical, the ring systems mentioned under $\mathbf{R}^{1} / \mathbf{R}^{2}$ and R^{3} / \mathbf{R}^{4} optionally being substituted 1 to 2 times by identical or different fluorine, chlorine, bromine, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms or by straight-chain or branched alky having up to 4 carbon atoms, which, in turn, can be substituted by hydroxyl or by straight-chain or branched alkoxy having up to 3 carbon atoms,
D represents hydrogen, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 6 carbon atoms,
E represents the - CO - or - CS - group,
L represents a group of the formula $-\mathrm{NR}^{9}$,
wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl which is optionally substituted 1 to 2 times by identical or different nitro, carboxyl, fluorine, chlorine, bromine or cyano substituents, by straight-chain or branched alkenyl or alkoxy carbonyl each having up to 4 carbon atoms or by straightchain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 5 carbon atoms, and/or optionally substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
R^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 3 carbon atoms,
R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms or denote straight-chain or branched acyl having up to 5 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$,
wherein
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 5 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 3 carbon atoms,
or represents straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula - O - $\mathrm{CO}-\mathrm{R}^{15}$,
wherein
R^{15} denotes phenyl which is optionally substituted 1 to 3 times by identical or different straight-chain or branched alkyl having up to 325 carbon atoms,
or denotes straight-chain or branched alkyl or alkenyl each having up to 19 carbon atoms, each of which is optionally substituted by a group of the formula - OR^{16},
wherein
R^{16} denotes hydrogen, benzyl, triphenylmethyl or straight-chain or branched acyl having up to 4 carbon atoms,
R^{7} represents hydrogen or
R^{6} and R^{7} together represent the group of the formula $=0$,
if appropriate in an isomeric form, or a physiologically acceptable salt thereof.
4. A cycloalkano-indole and -azaindole derivative according to claim 1 wherein such compound is of the formula:

in form of their isomers, their racemic mixtures or a physiologically acceptable salt thereof.
5. Acycloalkano-indole and -azaindole derivative according to claim 1 wherein such compound is of the formula

in form of their enantiomers, their racemates or a physiologically acceptable salt thereof.
6. A composition for the treatment of atherosclerosis salt thereof according to claim 1 and a pharmacologically acceptable diluent.
7. A composition according to claim 1 wherein the salt is a pharmacologically acceptable salt.
8. A method of treating atherosclerosis in a patient in need

45 thereof comprising administering to such patient an effective amount therefor of a compound or salt thereof according to claim 1.

[^0]: $\mathrm{R}_{f}=0.41$ (mobile phase: BABA).

