OTHER PUBLICATIONS

Frigola J et al. J. Med. Chem. 36(7), 801-10, 1993.
Nisato D and Frigerio M. J. Heterocycl. Chem. 22(4), 961-3, 1985.
Masuda K et al. Takeda Kenkyusho Ho. 31(4), 453-9, 1972.
Hirata M et al. Takeda Kenkyusho Ho. 31(2), 206-20, 1972.
Chen TY et al. Bull. Chem. Soc. Jap. 41(3), 712-6, 1968. Melloni P et al. J. Med. Chem. 22(2), 183-91, 1978. Bulleid \& Freedman, Nature 335, 649-651 (1988). "Defective co-translational formation of disulphide bonds in protein disulphideisomerase-deficient microsomes".
Koivu et al., J. Biol. Chem. 262, 6447-6449 (1987). "A Single Polypeptide Acts Both as the β Subunit of Prolyl 4-Hydroxylase and as a Protein Disulfide-Isomerase*".
Kane \& Havel in the Metabolic Basis of Inherited Disease, Sixth Edition, 1139-1164 (1989). "Disorders of the Biogenesis and Secretion of Lipoproteins Containing The B Apolipoproteins".
Schaefer et al., Clin. Chem. 34, B9-B12 (1988), "Genetics and Abnormalties in Metabolism of Lipoproteins".
Drayna et al., Nature 327, 632-634 (1987). "Cloning and sequencing of human cholesteryl ester transfer protein cDNA.".
Pihlajaniemi et al., EMBO J. 6, 643-649 (1987). "Molecular cloning of the β-subunit of human prolyl-4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene".
Yamaguchi et al., Biochem. Biophys. Res. Comm. 146, 1485-1492 (1987). "Sequence of Membrane-Associated Thyroid Hormone Binding Protein From Bovine Liver: Its Identity with Protein Disulphide Isomerase".
Edman et al., Nature 317, 267-270 (1985). Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin.
Kao et al., Connective Tissue Research 18, 157-174 (1988).
"Isolation of cDNA Clones and Genomic DNA Clones of β-Subunit of Chicken Proply1 4-Hydroxylase*".
Wetterau, J. et al., Biochem 30, 9728-9735 (1991). "Protein Disulfide Isomerase Appears Necessary To Maintain the Catalytically Active Structure of the Microsomal Triglyceride Transfer Protein".
(List continued on next page.)
Primary Examiner-Evelyn Huang
Attorney, Agent, or Firm-Burton Rodney

[57]

ABSTRACT

Compounds are provided which inhibit microsomal triglyceride transfer protein and thus are useful for lowering serum lipids and treating atherosclerosis and related diseases. The compounds have the structure

whercin R^{1} to $\mathrm{R}^{6}, \mathrm{Q}$, and X are as defined hercin.
15 Claims, No Drawings

OTHER PUBLICATIONS

Morton, R.E. et al., J. Biol. Chem. 256, 1992-1995 (1981), "A Plasma Inhibitor of Triglyceride and Chloesteryl Ester Transfer Activities".
Wetterau, J. et al., Biochem: 30, 4406-4412 (1991): "Structural Properties of the Microsomal Triglyceride-Transfer Protein Complex".
Wetterau, J. et al., J. Biol. Chem. 265, 9800-9807 (1990). "Protein Disulfide Isomerase Is a Component of the Microsomal Triglyceride Transfer Protein Complex".
Wetterau, J. and Zilversmit, D.B., Chem., and Phys. of Lipids 38, 205-22 (1985). "Purification and Characterization of Microsomal Triglyceride and Cholesteryl Ester Transfer Protein From Bovine Liver Microsomes".
Wetterau, J. and Zilversmit, D.B., Biochimicia et Biophysica Acta 875, 610-617 (1986). "Localization of intracellular triacylglycerol and cholesteryl ester transfer activity in rat tissues".
Wetterau, J. and Zilversmit, D.B., J. Biol. Chem. 259, 10863-10866 (1984) "A Triglyceride and Cholesteryl Ester Transfer Protein Associated with Liver Microsomes".

Wetterau, J., Grant Application entitled: "Intracellular Triglyceride Transport and Metabolism".

Presentation Materials, Aspen Bile Acid/Cholesterol Conference, Aug. 15, 1992.

Wetterau, J. R., et al., Science, vol. 258, 999-1001, Nov. 6, 1992, "Absence of Microsomal Triglyceride Transfer Protein in Individuals with Abetalipoproteinemia".

Archibald, J. L., et al., Journal of Medicinal Chemistry, vol. 14, No. 11, pp. 1054-1059.

Cortizo, L. et al., J. Med. Chem., 34, pp. 2242-2247, 1991.
Hall, I. H. et al., Pharmaceutical Research, vol. 9, No. 10, pp. 1324-1329, 1992.

Hall, I. H., et al., Pharmacological Research Communications, vol. 19, No. 12, pp. 839-858, 1987.

Murthy et al., Eur. J. Med. Chem.-Chim. Ther., vol. 20, No. 6, pp. 547-550, 1985.

INHIBITORS OF MICROSOMAL TRIGLYCERIDE TRANSFER PROTEIN AND METHOD

This application claims the benefit of the provisional application 60/017254, filed on May 10, 1996.

FIELD OF THE INVENTION

This invention relates to novel compounds which inhibit microsomal triglyceride transfer protein, and to methods for decreasing serum lipids and treating atherosclerosis employing such compounds.

BACKGROUND OF THE INVENTION

The microsomal triglyceride transfer protein (MTP) catalyzes the transport of triglyceride (TG), cholesteryl ester (CE), and phosphatidylcholine (PC) between small unilamellar vesicles (SUV). Wetterau \& Zilversmit, Chem. Phys. Lipids 38, 205-22 (1985). When transfer rates are expressed as the percent of the donor lipid transferred per time, MTP expresses a distinct preference for neutral lipid transport (TG and CE), relative to phospholipid transport. The protein from bovine liver has been isolated and characterized. Wetterau \& Zilversmit, Chem. Phys. Lipids 38, 205-22 (1985). Polyacrylamide gel electrophoresis (PAGE) analysis of the purified protein suggests that the transfer protein is a complex of two subunits of apparent molecular weights 58,000 and 88,000 , since a single band was present when purified MTP was electro-phoresed under nondenaturing condition, while two bands of apparent molecular weights 58,000 and 88,000 were identified when electrophoresis was performed in the presence of sodium dodecyl sulfate (SDS). These two polypeptides are hereinafter referred to as 58 kDa and 88 kDa , respectively, or the 58 kDa and the 88 kDa component of MTP, respectively, or the low molecular weight subunit and the high molecular weight subunit of MTP, respectively.

Characterization of the 58,000 molecular weight component of bovine MTP indicates that it is the previously characterized multifunctional protein, protein disulfide isomerase (PDI). Wetterau et al., J. Biol. Chem. 265, 9800-7 (1990). The presence of PDI in the transfer protein is supported by evidence showing that (1) the amino terminal 25 amino acids of the bovinc $58,000 \mathrm{kDa}$ component of MTP is identical to that of bovine PDI, and (2) disulfide isomerasc activity was exprcssed by bovinc MTP following the dissociation of the $58 \mathrm{kDa}-88 \mathrm{kDa}$ protein complex. In addition, antibodies raised against bovine PDI, a protein which by itself has no TG transfer activity, were able to immunoprecipitate bovine TG transfer activity from a solution containing purified bovine MTP.
PDI normally plays a role in the folding and assembly of newly synthesized disulfide bonded proteins within the lumen of the endoplasmic reticulum. Bulleid \& Freedman, Nature 335, 649-51 (1988). It catalyzes the proper pairing of cysteine residues into disulfide bonds, thus catalyzing the proper folding of disulfide bonded proteins. In addition, PDI has been reported to be identical to the beta subunit of human prolyl 4-hydroxylase. Koivu et al., J. Biol. Chem. 262, 6447-9 (1987). The role of PDI in the bovine transfer protein is not clear. It does appear to be an essential component of the transfer protein as dissociation of PDI from the 88 kDa component of bovine MTP by either low concentrations of a denaturant (guanidine HCl), a chaotropic agent (sodium perchlorate), or a nondenaturing detergent (octyl glucoside) results in a loss of transfer activity. Wet-
terau et al., Biochemistry 30, 9728-35 (1991). Isolated bovine PDI has no apparent lipid transfer activity, suggesting that either the 88 kDa polypeptide is the transfer protein or that it confers transfer activity to the protein complex.
The tissue and subcellular distribution of MTP activity in rats has been investigated. Wetterau \& Zilversmit, Biochem. Biophys. Acta 875, 610-7 (1986). Lipid transfer activity was found in liver and intestine. Little or no transfer activity was found in plasma, brain, heart, or kidney. Within the liver, MTP was a soluble protein located within the lumen of the microsomal fraction. Approximately equal concentrations were found in the smooth and rough microsomes.
Abetalipoproteinemia is an autosomal recessive disease characterized by a virtual absence of plasma lipoproteins which contain apolipoprotein B (apoB). Kane \& Havel in The Metabolic Basis of Inherited Disease, Sixth Edition, 1139-64 (1989). Plasma TG levels may be as low as a few $\mathrm{mg} / \mathrm{dL}$, and they fail to rise after fat ingestion. Plasma cholesterol levels are often only $20-45 \mathrm{mg} / \mathrm{dL}$. These abnormalities are the result of a genetic defect in the assembly and/or secretion of very low density lipoproteins (VLDL) in the liver and chylomicrons in the intestine. The molecular basis for this defect has not been previously determined. In subjects examined, triglyceride, phospholipid, and cholesterol synthesis appear normal. At autopsy, subjects are free of atherosclerosis. Schaefer et al., Clin. Chem. 34, B9-12 (1988). A link between the apoB gene and abetalipoproteinemia has been excluded in several families. Talmud et al., J. Clin. Invest. 82, 1803-6 (1988) and Huang et al., Am. J. Hum. Genet. 46, 1141-8 (1990).

Subjects with abetalipoproteinemia are afflicted with numerous maladies. Kane \& Havel, supra. Subjects have fat malabsorption and TG accumulation in their enterocytes and hepatocytes. Due to the absence of TG-rich plasma lipoproteins, there is a defect in the transport of fat-soluble vitamins such as vitamin E. This results in acanthocytosis of erythrocytes, spinocerebellar ataxia with degeneration of the fasciculus cuneatus and gracilis, peripheral neuropathy, degenerative pigmentary retinopathy, and ceroid myopathy. Treatment of abetalipoproteinemic subjects includes dietary restriction of fat intake and dietary supplementation with vitamins A, E and K .
In vitro, MTP catalyzes the transport of lipid molecules between phospholipid membranes. Presumably, it plays a similar role in vivo, and thus plays some role in lipid metabolism. The subcellular (lumen of the microsomal fraction) and tissue distribution (liver and intestine) of MTP have led to speculation that it plays a role in the assembly of plasma lipoproteins, as these are the sites of plasma lipoprotein assembly. Wetterau \& Zilversmit, Biochem. Biophys. Acta 875, 610-7 (1986). The ability of MTP to catalyze the transport of TG between membranes is consistent with this hypothesis, and suggests that MTP may catalyze the transport of TG from its site of synthesis in the endoplasmic reticulum (ER) membrane to nascent lipoprotein particles within the lumen of the ER.
Olofsson and colleagues have studied lipoprotein assembly in HepG2 cells. Bostrom et al., J. Biol. Chem. 263, 4434-42 (1988). Their results suggest small precursor lipoproteins become larger with time. This would be consistent with the addition or transfer of lipid molecules to nascent lipoproteins as they are assembled. MTP may play a role in this process. In support of this hypothesis, Howell and Palade, J. Cell Biol. 92, 833-45 (1982), isolated nascent lipoproteins from the hepatic Golgi fraction of rat liver. There was a spectrum of sizes of particles present with
varying lipid and protein compositions. Particles of high density lipoprotein (HDL) density, yet containing apoB, were found. Higgins and Hutson, J. Lipid Res. 25, 1295-1305 (1984), reported lipoproteins isolated from Golgi were consistently larger than those from the endoplasmic reticulum, again suggesting the assembly of lipoproteins is a progressive event.

Recent reports (Science, Vol. 258, page 999, 1992; D. Sharp et. al., Nature, Vol. 365, page 65, 1993) demonstrate that the defect causing abetalipoproteinemia is in the MTP gene, and as a result, the MTP protein. Individuals with abetalipoproteinemia have no MTP activity, as a result of mutations in the MTP gene, some of which have been characterized. These results indicate that MTP is required for the synthesis of apoB containing lipoproteins, such as VLDL, the precursor to LDL. It therefore follows that inhibitors of MTP would inhibit the synthesis of VLDL and LDL, thereby lowering VLDL levels, LDL levels, cholesterol levels, and triglyceride levels in animals and man.

Canadian Patent Application No. 2,091,102 published Mar. 2, 1994 (corresponding to U.S. application Ser. No. 117,362, filed Sep. 3, 1993 (file DC21b)), U.S. Pat. No. 5,595,872 reports MTP inhibitors which also block the production of apoB containing lipoproteins in a human hepatic cell line (HepG2 cells). This provides further support for the proposal that an MTP inhibitor would lower apoB containing lipoprotein and lipid levels in vivo. This Canadian patent application discloses a method for identifying the MTP inhibitors

which has the name 2-[1-(3, 3-diphenylpropyl)-4-piperidinyl]-2, 3-dihydro-3-oxo-1H-isoindole hydrochloride and

which has the name 1-[3-(6-fluoro-1-tetralanyl)methyl]-4-O-methoxyphenyl piperazine

EP 0643057A1 published Mar. 15, 1995, discloses MTP ${ }^{55}$ inhibitors of the structure

or

II

III
where
X is:

$\mathrm{R}^{8}, \mathrm{R}^{9}$ and R^{10} are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl;
Y is

where m is 2 or 3 ;
R^{1} is alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl (wherein alkyl has at least 2 carbons), diarylalkyl, arylalkenyl, diarylalkenyl, arylalkynyl, diarylalkynyl, diarylalkylaryl, heteroarylalkyl (wherein alkyl has at least 2 carbons), cycloalkyl, or cycloalkylalkyl (wherein alkyl has at least 2 carbons); all of the aforementioned \mathbf{R}^{1} groups being optionally substituted through available carbon atoms with 1,2 , or 3 groups selected from halo, haloalkyl, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkyl-mercapto, arylmercapto, cycloalkyl, cycloalkyl-alkyl, heteroaryl, fluorenyl, heteroarylalkyl, hydroxy or oxo; or
R^{1} is a group of the structure

R^{11} is a bond, alkylene, alkenylene or alkynylene of up to 6 carbon atoms, arylene (for example

or mixed arylene-alkylene (for example

where n is 1 to 6 ;
R^{12} is hydrogen, alkyl, alkenyl, aryl, heteroaryl, haloalkyl, arylalkyl, arylalkenyl, cycloalkyl, aryloxy, alkoxy, arylalkoxy, heteroarylalkyl or cycloalkylalkyl;
Z is a bond, $\mathrm{O}, \mathrm{S}, \mathrm{N}$-alkyl, N -aryl, or alkylene or alkenylene of from 1 to 5 carbon atoms;
$\mathrm{R}^{13}, \mathrm{R}^{14}, \mathrm{R}^{15}$, and R^{16} are independently hydrogen, alkyl, halo, haloalkyl, aryl, cycloalkyl, cycloheteroalkyl, alkenyl, alkynyl, hydroxy, alkoxy, nitro, amino, thio, alkylsulfonyl, arylsulfonyl, alkylthio, arylthio, carboxy, aminocarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylalkyl, heteroaryl, heteroarylalkyl, or aryloxy;
or R^{1} is

wherein p is 1 to 8 and R^{17} and R^{18} are each independently H, alkyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or cycloalkylalkyl, at least one of R^{17} and R^{18} being other than H ;
or R^{1} is

40
R^{20} is aryl or heteroaryl;
R^{21} is H, alkyl, aryl, alkylaryl, arylalkyl, aryloxy, arylalkoxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, cycloalkyl, cycloalkylalkyl or cycloalkylalkoxy;
$\mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ are independently hydrogen, halo, alkyl, haloalkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, hydroxy or haloalkyl;
R^{5} is alkyl of at least 2 carbons, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, polycycloalkyl, polycycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, polycycloalkenyl, polycycloalkenylalkyl, heteroarylcarbonyl, all of the 55 R^{5} and R^{6} substituents being optionally substituted through available carbon atoms with 1,2 , or 3 groups selected from hydrogen, halo, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloheteroalkyl, cycloheteroalky- 60 lalkyl, aryl, heteroaryl, arylalkyl, arylcyclo-alkyl, arylalkynyl, aryloxy, aryloxyalkyl, aryl-alkoxy, arylazo, heteroaryloxo, heteroarylalkyl, heteroarylalkenyl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino (wherein the amino
includes 1 or 2 substituents which are alkyl, or aryl or any of the other aryl compounds mentioned in the

definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkylcarbonyl, arylcarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkynylaminocarbonyl, alkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, alkylsulfonyl, arylsulfonylamino; with the proviso that when R^{5} is $\mathrm{CH}_{3}, \mathrm{R}^{6}$ is not H ; and where R^{5} is phenyl, the phenyl preferably includes an ortho hydrophobic substituent such as alkyl, haloalkyl, aryl, aryloxy or arylalkyl;
R^{6} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkenyl;
R^{7} is alkyl, aryl or arylalkyl wherein alkyl or the alkyl portion is optionally substituted with oxo; and
including pharmaceutically acceptable salts and anions thereof.
In the formula I compounds, where X is CH_{2} and $\mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} are each $\mathrm{H}, \mathrm{R}^{1}$ will be other than 3,3-diphenylpropyl.

In the formula III compounds, where one of $\mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} is 6 -fluoro, and the others are $\mathrm{H}, \mathrm{R}^{7}$ will be other than 4-O-methoxyphenyl.
U.S. application Ser. No. 472,067, filed Jun. 6, 1995 (file DC21e), U.S. Pat. No. 5,739,135 discloses compounds of the structure
5

or

or

where Q is

X is:
$\mathrm{R}^{8}, \mathrm{R}^{9}$ and R^{10} are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl;

Y is

$$
-\left(\mathrm{CH}_{2}\right)_{m}-\text { or }-\underset{{ }_{\mathrm{O}}}{-\mathrm{C}}
$$

wherein m is 2 or 3 ;
R^{1} is alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl wherein alkyl has at least 2 carbons, diarylalkyl, arylalkenyl, diarylalkenyl, arylalkynyl, diarylalkynyl, diarylalkylaryl, heteroarylalkyl wherein alkyl has at least 2 carbons, cycloalkyl, or cycloalkylalkyl wherein alkyl has at least 2 carbons, all optionally substituted through available carbon atoms with $1,2,3$ or 4 groups selected from halo, haloalkyl, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cyclo-alkylalkyl, heteroaryl, fluorenyl, heteroarylalkyl, hydroxy or oxo;
or R^{1} is a fluorenyl-type group of the structure

or

or

A

B 45

E

F

G

H

Z^{1} and Z^{2} are the same or different and are independently a bond, O, S,

with the proviso that with respect to B , at least one of Z^{1} and Z^{2} will be other than a bond; R^{11} is a bond, alkylene, alkenylene or alkynylene of up to 10 carbon atoms; arylene or mixed arylene-alkylene; R^{12} is hydrogen, alkyl, alkenyl, aryl, haloalkyl, trihaloalkyl, trihaloalkylalkyl, heteroaryl, heteroarylalkyl, arylalkyl, arylalkenyl, cyclo-alkyl, aryloxy, alkoxy, arylalkoxy or cycloalkyl-alkyl, with the provisos that
(1) when R^{12} is H, aryloxy, alkoxy or

or arylalkoxy, then Z^{2} is a bond and
(2) when Z^{2} is a bond, R^{12} cannot be heteroaryl or heteroarylalkyl;
Z is bond, $\mathrm{O}, \mathrm{S}, \mathrm{N}$-alkyl, N -aryl, or alkylene or alkenylene from 1 to 5 carbon atoms; $\mathrm{R}^{13}, \mathrm{R}^{14}, \mathrm{R}^{15}$, and R^{16} are independently hydrogen, alkyl, halo, haloalkyl, aryl, cycloalkyl, cyclo-heteroalkyl, alkenyl, alkynyl, hydroxy, alkoxy, nitro, amino, thio, alkylsulfonyl, arylsulfonyl, alkylthio, arylthio, aminocarbonyl, alkylcarbonyloxy, arylcarbonylamino, alkylcarbonylamino, arylalkyl, heteroaryl, heteroarylalkyl or aryloxy;
$\mathrm{R}^{15 a}$ and $\mathrm{R}^{16 a}$ are independently hydrogen, alkyl, halo, haloalkyl, aryl, cycloalkyl, cycloheteroalkyl, alkenyl, alkynyl, alkoxy, alkylsulfonyl, arylsulfonyl, alkylthio, arylthio, aminocarbonyl, alkylcarbonyloxy, arylcarbonylamino, alkylcarbonylamino, arylalkyl, heteroaryl, heteroarylalkyl, or aryloxy;
or R^{1} is a group of the structure

wherein p is 1 to 8 and R^{17} and R^{18} are each independently H , alkyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or cycloalkylalkyl at least one of R^{17} and R^{18} being other than H ;
or R^{1} is a group of the structure

wherein R^{19} is aryl or heteroaryl;
R^{20} is aryl or heteroaryl;
R^{21} is H, alkyl, aryl, alkylaryl, arylalkyl, aryloxy, arylalkoxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, cycloalkyl, cycloalkylalkyl or cycloalkylalkoxy;
$\mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ are independently hydrogen, halo, alkyl, 50 alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, hydroxy or haloalkyl;
R^{5} is independently alkyl, alkenyl, alkynyl, aryl, alkoxy, aryloxy, arylalkoxy, heteroaryl, arylalkyl, 55 heteroarylalkyl, cycloalkyl, cycloalkylalkyl, polycycloalkyl, polycycloalkylalkyl, cycloalkenyl, cycloheteroalkyl, heteroaryloxy, cycloalkenylalkyl, polycycloalkenyl, polycycloalkenylalkyl, heteroarylcarbonyl, amino, alkylamino, arylamino, 60 heteroarylamino, cycloalkyloxy, cycloalkylamino, all optionally substituted through available carbon atoms with 1,2,3 or 4 groups selected from hydrogen, halo, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloheteroalkyl, 65 cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, arylcycloalkyl, arylalkenyl, arylalkynyl, aryloxy,

including the piperidine N -oxide thereof or a pharmaceutically acceptable salt thereof, wherein Z is a bond, O or S ;
X^{1} and X^{2} are independently selected from H or halo;
x is an integer from 2 to 6 ;
R^{5} is heteroaryl, aryl, heterocycloalkyl or cycloalkyl, each R^{5} group being optionally substituted with $1,2,3$ or 45 substituents which may be the same or different.

SUMMARY OF THE INVENTION

In accordance with the present invention, novel compounds are provided which are inhibitors of MTP and have the structure

${ }^{\text {I }} 20$

25

II
where Q is

35

40
X is: CHR^{8},

$$
\begin{array}{cccc}
-\mathrm{C}- & -\mathrm{CH}-\mathrm{CH}- & \text { or } & -\mathrm{C}=\mathrm{C}-; \\
\text { II } & \mathrm{I} & \mathrm{I} \\
\mathrm{O} & \mathrm{R}^{9} & \mathrm{R}^{10} & \mathrm{R} \\
\mathrm{R}^{9} & \mathrm{R}^{10}
\end{array}
$$

45
n is 0 or $1 ; \mathrm{R}^{8}, \mathrm{R}^{9}$ and R^{10} are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl;
R^{1} is alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl (wherein alkyl preferably has at least 2 carbons, more preferably at least 3 carbons), diarylalkyl, arylalkenyl, 55 diarylalkenyl, arylalkynyl, diarylalkynyl, diarylalkylaryl, heteroarylalkyl (wherein alkyl preferably has at least 2 carbons, more preferably at least 3 carbons), cycloalkyl, or cycloalkylalkyl (wherein alkyl preferably has at least 2 carbons, more preferably at least 3 carbons); all of the aforementioned R^{1} groups being optionally substituted through available carbon atoms with 1, 2, 3 or 4 groups selected from halo, haloalkyl, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkyl-mercapto, arylmercapto, cycloalkyl, 65 cycloalkyl-alkyl, heteroaryl, fluorenyl, heteroarylalkyl, hydroxy or oxo; or

15

12
R^{1} is a fluorenyl-type group of the structure

F
R^{1} is an indenyl-type group of the structure

G

H
Z^{1} and Z^{2} are the same or different and are independently a bond, O, S,

with the proviso that with respect to B , at least one of Z^{1} and Z^{2} will be other than a bond;
R^{11} is a bond, alkylene, alkenylene or alkynylene of up to 10 carbon atoms, arylene (for example

or mixed arylene-alkylene (for example

where q is 1 to 6 ;
R^{12} is hydrogen, alkyl, alkenyl, aryl, haloalkyl, 15 trihaloalkyl, trihaloalkylalkyl, heteroaryl, heteroarylalkyl, arylalkyl, arylalkenyl, cyclo-alkyl, aryloxy, alkoxy, arylalkoxy or cycloalkyl-alkyl; with the provisos that (1) when R^{12} is H , aryloxy, alkoxy or arylalkoxy, then Z^{2} is

or a bond;
and (2) when Z^{2} is a bond, R^{12} cannot be heteroaryl or heteroarylalkyl;
Z is a bond, $\mathrm{O}, \mathrm{S}, \mathrm{N}$-alkyl, N -aryl, or alkylene or alkenylene of from 1 to 5 carbon atoms;
$\mathrm{R}^{13}, \mathrm{R}^{14}, \mathrm{R}^{15}$, and R^{16} are independently hydrogen, alkyl, halo, haloalkyl, aryl, cycloalkyl, cycloheteroalkyl, alkenyl, alkynyl, hydroxy, alkoxy, nitro, amino, thio, alkylsulfonyl, arylsulfonyl, alkylthio, arylthio, aminocarbonyl, alkylcarbonyloxy, arylcarbonylamino, 35 alkylcarbonylamino, arylalkyl, heteroaryl, heteroarylalkyl, or aryloxy;
$\mathrm{R}^{15 a}$ and $\mathrm{R}^{16 a}$ are independently any of the R^{15} or R^{16} groups except hydroxy, nitro, amino or thio;
or R^{1} is

wherein p is 1 to 8 and R^{17} and R^{18} are each independently H, alkyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or cycloalkylalkyl, at least one of R^{17} and R^{18} being other than H ; or R^{1} is

wherein R^{19} is aryl or heteroaryl;
R^{20} is aryl or heteroaryl;
R^{21} is H, alkyl, aryl, alkylaryl, arylalkyl, aryloxy, 60 arylalkoxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, cycloalkyl, cycloalkylalkyl or cycloalkylalkoxy;
$\mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ are independently hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, 65 arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, hydroxy or haloalkyl;
R^{5} is alkyl , alkenyl, alkynyl, aryl, alkoxy, aryloxy, arylalkoxy, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, cycloheteroalkyl, heteroaryloxy, cycloalkylalkyl, polycycloalkyl, polycycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, polycycloalkenyl, polycycloalkenylalkyl, heteroarylcarbonyl, amino, alkylamino, arylamino, heteroarylamino, cycloalkyloxy, cycloalkylamino, all of the R^{5} substituents and R^{6} substituents (set out hereinafter) being optionally substituted through available carbon atoms with $1,2,3$ or 4 groups selected from hydrogen, halo, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, arylcycloalkyl, arylalkenyl, arylalkynyl, aryloxy, aryloxyalkyl, arylalkoxy, arylazo, heteroaryloxo, heteroarylalkyl, heteroarylalkenyl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino (wherein the amino includes 1 or 2 substituents which are alkyl, aryl or heteroaryl, or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkylcarbonyl, arylcarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkynylaminocarbonyl, alkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, alkylsulfonyl, arylsulfonylamino, heteroarylcarbonylamino, heteroarylsulfinyl, heteroarylthio, heteroarylsulfonyl, or alkylsulfinyl. Where R^{5} is phenyl, aryl, heteroaryl or cycloalkyl; this group preferably includes an ortho hydrophobic substituent such as alkyl, haloalkyl (with up to 5 halo groups), alkoxy, haloalkoxy (with up to 5 halo groups), aryl, aryloxy or arylalkyl;
R^{6} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkenyl;

are the same or different and are independently selected from heteroaryl containing 5 - or 6 -ring members; and including N -oxides of the formulae I and II compounds, that is

including pharmaccutically acceptable salts thercof such as alkali metal salts such as lithium sodium or potassium, alkaline earth metal salts such as calcium or magnesium, as well as zinc or aluminum and other cations such as ammonium, choline, diethanolamine, ethylenediamine, t-butylamine, t-octylamine,
dehydroabietylamine, as well as pharmaceutically acceptable anions such as chloride, bromide, iodide, tartrate, acetate, methanesulfonate, maleate, succinate, glutarate, and salts of naturally occurring amino acids such as arginine, lysine, alanine and the like, and prodrug esters thereof.
In the formula I compounds, where X is CH_{2} and $\mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} are each $\mathrm{H}, \mathrm{R}^{1}$ will preferably be other than 3,3diphenylpropyl.
Thus, the compounds of formulae I and II of the invention encompass compounds of the structure

In addition, in accordance with the present invention, a method for preventing, inhibiting or treating atherosclerosis, pancreatitis or obesity is provided, wherein a compound of formula I or II as defined hereinbefore is administered in an amount which decreases the activity of microsomal triglyceride transfer protein.
Furthermore, in accordance with the present invention, a method is provided for lowering serum lipid levels, cholesterol and/or triglycerides, or inhibiting and/or treating hyperlipemia, hyperlipidemia, hyperlipoproteinemia, hypercholesterolemia and/or hypertriglyceridemia, wherein a compound of formula I or II is administered in an amount which decreases the activity of microsomal triglyceride transfer protein.

DETAILED DESCRIPTION OF THE INVENTION

The following definitions apply to the terms as used 65 throughout this specification, unless otherwise limited in specific instances.

The term "MTP" refers to a polypeptide or protein complex that (1) if obtained from an organism (e. g., cows, humans, etc.), can be isolated from the microsomal fraction of homogenized tissue; and (2) stimulates the transport of triglycerides, cholesterol esters, or phospholipids from synthetic phospholipid vesicles, membranes or lipoproteins to synthetic vesicles, membranes, or lipoproteins and which is distinct from the cholesterol ester transfer protein [Drayna et al., Nature 327, 632-634 (1987)] which may have similar catalytic properties. However, the MTP molecules of the present invention do not necessarily need to be catalytically active. For example, catalytically inactive MTP or fragments thereof may be useful in raising antibodies to the protein.

The phrase "stabilizing" atherosclerosis as used in the present application refers to slowing down the development of and/or inhibiting the formation of new atherosclerotic lesions.
The phrase "causing the regression of" atherosclerosis as used in the present application refers to reducing and/or eliminating atherosclerotic lesions.

Unless otherwise indicated, the term "lower alkyl", "alkyl" or "alk" as employed herein alone or as part of another group includes both straight and branched chain hydrocarbons, containing 1 to 40 carbons, preferably 1 to 20
25 carbons, more preferably 1 to 12 carbons, in the normal chain, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4dimethylpentyl, octyl, 2,2,4-trimethyl-pentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including 1 to 4 substituents such as halo, for example $\mathrm{F}, \mathrm{Br}, \mathrm{Cl}$ or I or CF_{3}, alkoxy, aryl, aryloxy, aryl(aryl) or diaryl, arylalkyl, arylalkyloxy, alkenyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyloxy, amino, hydroxy, acyl, heteroaryl, heteroaryloxy, heteroarylalkyl, heteroarylalkoxy, aryloxyalkyl, aryloxyaryl, alkylamido, alkanoylamino, arylcarbonylamino, nitro, cyano, thiol, haloalkyl, trihaloalkyl and/or alkylthio, as well as any of the other substituents as defined for R^{5} and R^{6}.
Unless otherwise indicated, the term "cycloalkyl" as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or 2 double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, including monocyclicalkyl, bicyclicalkyl and tricyclicalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 4 to 12 carbons, forming the ring and which may be fused to 1 or 2 aromatic rings as described for aryl, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, cyclohexenyl,

any of which groups may be optionally substituted with 1 to 4 substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol
and/or alkylthio, as well as any of the other substituents as defined for R^{5} or R^{6}.
The term "cycloalkenyl" as employed herein alone or as part of another group refers to cyclic hydrocarbons containing 5 to 20 carbons, preferably 6 to 12 carbons and 1 or 2 double bonds. Exemplary cycloalkenyl groups include cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclohexadienyl, and cycloheptadienyl, which may be optionally substituted as defined for cycloalkyl.
The term "polycycloalkyl" as employed herein alone or as part of another group refers to a bridged multicyclic group containing 5 to 20 carbons and containing 0 to 3 bridges, preferably 6 to 12 carbons and 1 or 2 bridges. Exemplary polycycloalkyl groups include [3.3.0]-bicyclo-octanyl, adamantanyl, [2.2.1]-bicycloheptanyl, [2.2.2]bicyclooctanyl and the like and may be optionally substituted as defined for cycloalkyl.
The term "polycycloalkenyl" as employed herein alone or as part of another group refers to a bridged multicyclic group containing 5 to 20 carbons and containing 0 to 3 bridges and containing 1 or 2 double bonds, preferably 6 to 12 carbons and 1 or 2 bridges. Exemplary polycyclo-alkyl groups include [3.3.0]-bicyclooctenyl, [2.2.1]-bicycloheptenyl, [2.2.2]-bicyclooctenyl and the like and may be optionally substituted as defined for cycloalkyl.

The term "aryl" or "Ar" as employed herein alone or as part of another group refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl) and may optionally include one to three additional rings fused to Ar (such as aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings) and may be optionally substituted through available carbon atoms with 1, 2, 3 or 4 groups selected from hydrogen, halo, haloalkyl, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkylalkyl, 35 cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, arylthio, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino or arylsulfonaminocarbonyl, or any of the substituents as defined for the R^{5} or R^{6} groups set out above.

The term "aralkyl", "aryl-alkyl" or "aryllower alkyl" as used herein alone or as part of another group refers to alkyl groups as discussed above having an aryl substituent, such as benzyl or phenethyl, or naphthylpropyl, or an aryl as defined above.

The term "lower alkoxy", "alkoxy", "aryloxy" or "aralkoxy" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to an oxygen atom.
The term "amino" as employed herein alone or as part of another group may optionally be substituted with one or two substituents such as alkyl and/or aryl.
The term "lower alkylthio", "alkylthio", "arylthio" or "aralkylthio" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to a sulfur atom.
The term "lower alkylamino", "alkylamino", "arylamino", or "arylalkylamino" as employed herein alone
,
 defined for R^{5} or R^{6}, and in addition, may have one of the
carbon atoms in the chain replaced with an oxygen atom, $\mathrm{N}-\mathrm{H}, \mathrm{N}$-alkyl or N -aryl. Examples of alkylene, alkenylene, alkynylene, $\left(\mathrm{CH}_{2}\right)_{q}$ and $\left(\mathrm{CH}_{2}\right)_{p}$ groups include

The term "halogen" or "halo" as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine as well as CF_{3}, with chlorine or fluorine being preferred.
The term "metal ion" refers to alkali metal ions such as sodium, potassium or lithium and alkaline earth metal ions such as magnesium and calcium, as well as zinc and aluminum.
The term "cycloheteroalkyl" as used herein alone or as part of another group refers to a 5 -, 6- or 7 -membered saturated or partially unsaturated ring which includes 1 to 2 hetero atoms such as nitrogen, oxygen and/or sulfur, linked

wherein u is selected from O, S, and $\mathrm{NR}^{7 a} ; \mathrm{R}^{7 a}$ is H , lower alkyl, aryl, $-\mathrm{C}(\mathrm{O}) \mathrm{R}^{7 b},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{7 b}$; ${ }^{R 7 b}$ is alkyl or aryl, and includes all possible N -oxide derivatives.
The heteroaryl groups including the above groups may optionally include 1 to 4 substituents such as any of the substituents listed for aryl, or those substituents indicated for R^{5} or R^{6} groups as defined above. In addition, any of the above rings can be fused to a cycloalkyl, aryl, heteroaryl or cycloheteroalkyl ring.
The term "cycloheteroalkylalkyl" as used herein alone or as part of another group refers to cycloheteroalkyl groups as defined above linked through a C atom or heteroatom to a $\left(\mathrm{CH}_{2}\right)_{p}$ chain.
The term "heteroarylalkyl" or "heteroarylalkenyl" as used herein alone or as part of another group refers to a heteroaryl

45
group as defined above linked through a C atom or heteroatom to a - $\left(\mathrm{CH}_{2}\right)_{p}$-chain, alkylene or alkenylene as defined above.
The term "fluorenyl" or "fluorenyl analog" or "fluorenyltype group" as employed herein refers to a group of the structure:

The term "indenyl-type group" as emplyed herein refers to a group of the structure

23

or

$\mathrm{Z}, \mathrm{Z}^{1}, \mathrm{Z}^{2}, \mathrm{R}^{11}, \mathrm{R}^{12}, \mathrm{R}^{13}, \mathrm{R}^{14}, \mathrm{R}^{15}, \mathrm{R}^{16}, \mathrm{R}^{15 a}$ and as used in the above groups A through H are as defined hereinbefore.

Preferred are compounds of formulae I and II wherein
R^{1} is arylalkyl, arylalkenyl, heteroarylalkyl, 35 heteroarylalkenyl,

or

(including where Z^{1} is a bond and R^{11} is alkylene or alkenylene and Z^{2} is

F

Scheme I.
Routes to Isoindolinone Azetidines

Scheme II.
Additional Routes to Isoindolinone Azetidines

$\mathrm{R}^{1 a}$ is R^{1} or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCO}$ [BOC]

(a) Mesylate Formation followed by Base Cyclization
or
(b) Mitsunobu Cycliztion

Base
$\xrightarrow{\text { Cyclization }}$

Scheme III.
Introduction of R^{1} by Alkylation or Arylation

Scheme IV.
Routes to Starting Materials IVb, IVc, IVd and IVe

Scheme (2). Routes to IVb and IVc

\downarrow Hydrogenolysis

30
\quad-continued
Scheme (2). Routes to IVb and IVc

IVa'

Scheme V.
General Routes to Starting Materials IVb

IVa
XIIa
\downarrow Hydrogenolysis

XIIc
XIIb

17 of 123

Scheme VIII
Preparation of Compounds $\mathrm{I}^{\mathrm{b}}, \mathrm{I}^{\mathrm{c}}$

\downarrow hydrogenation

Scheme LX
Preparation of Compounds $\mathrm{IA}^{1}-\mathrm{IA}^{2}$

deoxygenation
or
hydrogenolysis

R^{31} and R^{32} are independently selected from any of the R^{2}, R^{3}, or R^{4} radicals;
R^{33} and R^{34} are independently selected from any of the R^{1} radicals as well as aryloxy, alkoxy, arylalkoxy, heteroarylalkoxy and heteroaryloxy;
R^{35} can be any of the R^{1} radicals.

Scheme X
$\xrightarrow{\text { Preparation of Compound } l^{\text {a }}}$

Scheme XI
Preparation of Compound II
(Robotic Amide Coupling)

35

40

In the following Schemes XII et al, in the fluorenyl rings or fluorenyl analogs, the fused aryl groups:
45

50 Preparation of Compound II (Robotic Amide Coupling)

II
cerand
Scheme XI
may each optionally be replaced by a 5 - or 6 -membered heteroaryl ring as defined herein.

Scheme XII

LiAlH_{4} reduction

then Swern oxidation $\underbrace{}_{\text {XXX }} \underbrace{2}_{\text {(Y is CH }}$)
XXXI
$\bigvee_{\text {XXXII }}{ }^{\text {Phosphonate }} \begin{aligned} & \text { Wittig olefination }\end{aligned}$
$\mathrm{R}^{11 a}$ can be any of the R^{11} radicals.

$$
\left.\xrightarrow[\substack{\text { or DIBAL reduction } \\
\text { then hydrogenation } \\
\left(\mathrm{Q} \text { is }\left(\mathrm{CH}_{2}\right) 3\right)}]{\begin{array}{c}
\text { DIBAL reduction } \\
\left(\mathrm{Q} \text { is } \mathrm{CH}=\mathrm{CHCH}_{2}\right)
\end{array}}\right\rangle
$$

XXXII

$$
\begin{array}{lll}
\mathbf{3 9} & 5,885,983 & \mathbf{4 0} \\
\text {-continued } & &
\end{array}
$$

10

15
halogenation
sulfonation
20

35
XXXIIIA
Z^{3} is halo or Osulfonate

Scheme XIII
Preparation of Intermediates where Z^{2} is S, SO or SO_{2}

$\downarrow \underbrace{\begin{array}{l}\text { acid treatment } \\ \mathrm{R}^{12} \mathrm{SH}\end{array}}$
-continued
Scheme XIII
Preparation of Intermediates where \mathbf{Z}^{2} is S, SO or SO

xxxviI

1) strong base
2) $X^{1}-R^{11}-Y^{1}$ Alkylation

$\mathrm{X}^{1}, \mathrm{Y}^{1}$ are same or different halo or Osulfonate $\mathrm{n}^{\prime}=1$ or 2

-continued
Scheme XIVA
Preparation of A (Intermediates where Z^{2} is NHCO)

Scheme XIVB
Alternating Procedure for Preparing Intermediate XL
(Shown in Scheme XIVA)

XXXIXA

In carrying out the above reaction, bases such as n-butyllithiun, lithium bis(trimethylsilyl) amide and sodium bis(trimethylsilyl) amide may be employed in an aprotic solvent such as THF, at between $-78^{\circ} \mathrm{C}$. and $35^{\circ} \mathrm{C}$.

It is preferable to have the starting material and isocyanate
($\mathrm{R}^{12} \mathrm{~N}=\mathrm{C}-\mathrm{O}$) together in solvent, and then add the base, and optionally 45 add further excess isocyanate subsequently.

Scheme XV

50

55

60

65

XLII
5,885,983

45
-continued
Scheme XVI

XLV

35

45

50

55
5

10

15

30
\square
$\xrightarrow[\substack{\text { 2) } \mathrm{X}^{1}-\mathrm{R}^{12} \\ \mathrm{X}^{1}=\text { halo or Osulfonate }}]{\text { 1) strong base }}$

XLVII

-continued
Scheme XVI

XXXIIIF ($\mathrm{n}^{\prime}=1$) XXXIIIG ($\mathrm{n}^{\prime}=2$)

Scheme XVIA
Preparation of Ketones

5

10

15

20

25

30

35

$\begin{gathered}\text { 1) } \text { acid chloride formation } \\ \text { for } \mathrm{G}=\mathrm{Cl}(\mathrm{COCl})_{2} \\ \text { amide formation } \\ \text { for } \mathrm{G}=\mathrm{MeN}- \\ \text { | } \\ \text { OMe }\end{gathered}$

R
II

4

40

45

50

55

60

65
5

25

40

48
-continued
Scheme XVIA
$\xrightarrow{\text { Preparation of Ketones }}$

26 of 123
PENN EX. 2212
CFAD V. UPENN
IPR2015-01836
-continued
Scheme XVIB.
Preparation of Ketones (Preferred Route)

50
-continued
Scheme XVIB.
Preparation of Ketones (Preferred Route)
5

10

15

Scheme XVIIA
Preparation of Amide Linked Compounds

Scheme XVIIB
Preparation of Carbamate and Urea Linked Compounds

L

$\mathrm{Y}=\mathrm{CH}=\mathrm{CH}_{2}$

1) Ozone
2) NaBH_{4}

35

Scheme XVIIIA
Formation of Sulfonamides

IVb. XIII

Scheme XIXA
General Route to Final Product

Scheme XIXB
General Route to Final Products (I or II)

(Example of a protected nitrogen (PG-N) is the t - $\mathrm{BuOC}=\mathrm{ONH}$ (BOC amino) group, which can be deprotected under mild conditions, such as anhydrous HCl in dioxanc or ncat trifluoroacctic acid).

Scheme XX
Oxidation of sulfur at the end of the reaction sequence

Scheme XXI
$\xrightarrow{\text { Preparation of Halide Intermediates }}$

XXXIX

XL
For example: Palladium catalyst can be $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$, base can be NaH or bis(trimethylsilyl)acetamide, aprotic solvent can be THF or DMF or mixtures.
PG- can be organosilyl, such as $t-\mathrm{Bu}(\mathrm{Ph})_{2} \mathrm{Si}-$,
and deprotection conditions can be $\mathrm{n}-\mathrm{Bu} \mathrm{u}_{4} \mathrm{NF}$, THF

(3)

31 of $\mathbf{1 2 3}$
PENN EX. 2212
CFAD V. UPENN
IPR2015-01836

Scheme XXII
Preparation of N-Oxides of Formulae I and II Compounds

Oxidation

In the above Reaction Schemes XII through XXI, the starting fluorenyl-type acid XXVIII, alcohol XXXV, acids XXXIX and XLII, ketone XLIV, hydride XXXIXA, and amide XL groups may be substituted with corresponding acid, alcohol, ketone, hydride and amide containing fluorenyl type groups as set out in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D or indenyl-type groups as set out in E, F, G and/or H to provide an intermediate compound for use in preparing a compound of formula I or II of the invention as per Reaction Schemes I to XXII.
Phthalimide formation (Reaction Schemes I and IV) may be carried out by heating to about 80° to $150^{\circ} \mathrm{C}$. in an oil 25 bath optionally in an inert solvent or by various other procedures known in the art.

Reduction (Reaction Scheme I) may be carried out by treatment with such reducing agents as zinc in the presence of acetic acid or tin in the presence of hydrochloric acid under an inert atmoshphere (e.g., argon).

Isoindolone formation (Reaction Scheme I) may be carried out by heating in the range of about 50° to $150^{\circ} \mathrm{C}$. in an organic solvent (e.g., toluene, ethanol, dimethylformamide) optionally in the presence of a salt (e.g., potassium carbonate) or a tertiary amine base (e.g., 2,6-di-t-butyl-pyridine or triethylamine).

Amide formation (Reaction Schemes II, VI, VII, VIII, X, XI, XIVA, XV, XVI, XVIA, XVIB, XVIIA, XVIIB, XXI), may be carried out by a number of methods known in the art. For example, an amine substrate may be treated with (1) an acid halide $\mathrm{R}^{5} \mathrm{C}(\mathrm{O})$ halo or compound X or XA in an aprotic solvent, optionally in the presence of a tertiary amine base (e.g., triethylamine); (2) the acid halide in the presence of an aqueous base under Schotten-Baumann conditions; (3) a free carboxylic acid $\left(\mathrm{R}^{5} \mathrm{CO}_{2} \mathrm{H}\right)$ in the presence of a coupling agent such as dicyclohexylcarbodiimide (DCC), diisopropyl carbodiimide (DIC) or 1-(3-dimethylamino-propyl)-3ethylcarbodiimide hydrochloride (WSC), optionally in the presence of 1-hydroxybenzotriazole (HOBT); (4) the free acid in the presence of N, N-carbonyl-diimidazole in an aprotic organic solvent followed by the amine substrate; (5) trialkylaluminum (e.g., $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$) in an aprotic solvent, followed by an ester (e.g., $\mathrm{R}^{5} \mathrm{CO}_{2}$ alkyl or compound VIII) or (6) mixed anhydride formation, by reacting the acid with an acid chloride (e.g., isobutyl chloroformate or bis-(2-oxo-3-oxazolidinyl)-phosphinic chloride ($\mathrm{Bop}-\mathrm{Cl}$)) in the presence of a tertiary amine base (e.g., triethylamine) followed by treatment with the amine substrate.

Mesylate formation (Reaction Scheme II) may be carried out by treatment of the amine-alcohol substrate with methancsulfonyl chloride and tricthylamine or pyridine or in an aprotic solvent, such as dichloromethane.

Base cyclization (Reaction Schemes II, VIII, XXII) may be carried out by treatment with a base (e.g., potassium t-butoxide, lithium hexamethyl-disilazide $\left(\operatorname{LiN}(T M S)_{2}\right)$ or sodium hydride) in an inert solvent (e.g.,
dimethylformamide, tetrahydrofuran, dimethoxymethane, or toluene). Mitsunobu cyclization (Reaction Scheme II) may be carried out by procedures generally known in the art. See, e.g., R. K. Olsen, J. Org. Chem., 49, 3527 (1984);
5 Genin, M. J., et al., J. Org. Chem., 58, 2334-7 (1993).
Alternatively, a mixture of compounds IV and VIII can be converted to compound Ia in a single pot by heating the mixture in a protic solvent (e.g., water, methanol, ethenyl or isopropanol or mixtures thereof) at 100° to $200^{\circ} \mathrm{C}$. See, e.g., European patent application $81 / 26,749$, FR 2, 548,666 (1983).

Protection and deprotection (Reaction Schemes III, IV, V, XVI, XVIB, XIXB, XXI) may be carried out by procedures generally known in the art. See, for example, T. W. Greene, Protecting Groups in Organic Synthesis, Second edition, 1991. PG in Scheme V denotes a nitrogen-protecting group. One particularly useful group is tert-butoxy-carbonyl (BOC) which can be derived from the associated anhydride as shown in Scheme IV. BOC-protected amines may typically be deprotected by treatment with acid (e.g., trifluoroacetic acid or hydrochloric acid) in procedures well understood by those having ordinary skill in the art.

Hydrogenolysis (Reaction Schemes III, IV, V) may be carried out with H_{2} using a balloon apparatus or a Parr Shaker in the presence of a catalyst (e.g., pallladium on activated carbon).

Amine/Amide alkylation and arylation (Reaction Schemes III, IV, V, IX, XII, XIXA, XIXB) may be carried out by methods known in the art. Suitable procedures are described in Cortizo, L., J. Med. Chem. 34, 2242-2247 (1991). For example, the alkylation or arylation may be carried out by treating the amine substrate with a halide (e.g., R^{1}-halo) or an oxytosylate (e.g., R^{1}-O-tosylate) in an aprotic solvent (e.g., dimethylformamide), optionally in the presence of a tertiary amine (e.g., triethylamine), an inorganic base (e.g., potassium carbonate, NaH), or lithium hexamethyl-disilazide).

Reductive amination may be employed as an alternative to the foregoing amine alkylation and arylation procedures where W is H, H when $\mathrm{R}^{1}, \mathrm{R}^{6}$ or R^{7} is $\mathrm{R}^{9} \mathrm{R}^{10} \mathrm{CH}$ - and R^{9} and R^{10} are each independently hydrogen, alkyl, alkenyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl, or R^{9} and R^{10} together are alkylene (i.e., $\mathrm{R}^{9} \mathrm{R}^{10} \mathrm{CH}$ - forms a cycloalkyl group). Such reductive amination may be carried out by treating the amine with (a) a ketone or aldehyde $\left(\mathrm{R}^{9}-\mathrm{C}(\mathrm{O})-\mathrm{R}^{10}\right)$, (b) NaBH_{4}, $\mathrm{NaBH}_{3} \mathrm{CN}$ or $\mathrm{NaB}(\text { acetoxy })_{3} \mathrm{H}$, (c) a protic solvent (e.g., methanol) or a dipolar aprotic solvent (e.g., acetonitrile), and, optionally, (d) an acid (e.g., acetic acid, trifluoroacetic acid, hydrochloric acid, or titanium isopropoxide). When R^{1} is aryl or heteroaryl, transition metals (e. g., palladium or copper salts or complexes) may be used to promote the arylation reaction.

Alkylation of the isoindolone (Reaction Scheme X) may be carried out by treatment of the isoindolone with a strong base (i.e. sodium bis(trimethylsilyl)-amide or lithium diisopropylamide) followed by an alkyl halide (e.g. R^{8}-halo) or alkyl sulfonate (e.g. R^{8}-tosylate) in an inert solvent (e.g. tetrahydrofuran or dimethoxyethane). Alternatively, as seen in Scheme X, amine IVb can be treated under amide formation conditions with a ketone with the structure XB to provide a hydroxylactam XXV, which could be subjected to rcduction conditions with such reducing agents as zinc in acetic acid or triethylsilane in trifluoroacetic acid to give I^{a}.

Hydrazinolysis of phthalimides may be carried out by standard means known in the art. See, e.g., T. W. Greene, Protecting Groups in Organic Synthesis, Second edition, 1991.

Amide N-alkylation (Reaction Scheme VI) may be carried out by base treatment (e.g., $\mathrm{NaH}, \mathrm{KH}, \mathrm{KN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, P 4 -phosphazene base, or butyl lithium) in an aprotic organic solvent, followed by treatment with R^{6}-halo or $\mathrm{R}^{6}-\mathrm{O}$-tosylate. Use of P -phosphazene base is described in T. Pietzonka, D. Seebach, Angew. Chem. Int. Ed. Engl. 31, 1481, 1992.
Compound III can also be prepared from compound XX as described by Cortizo, L., J. Med. Chem. 34, 2242-2247 (1991).

Dehydration (Scheme VIII) may be carried out employing a strong acid such as hydrochloric acid, sulfuric acid or trifluoroacetic acid.
Hydrogenation (Scheme VIII) may be carried out in the presence of a conventional catalyst such as Pd / C or Pt or Rh under a H_{2} atmosphere.
The addition reaction shown in Scheme IX may be carried out by treating IA^{1} with an organometallic reagent XXIV, such as an organolithium or organic magnesium compound where organo is alkyl or aryl.
The deoxygenation or hydrogenation reaction (Scheme IX) is carried out in the presence of a strong acid such as trifluoroacetic acid or boron trifluoride etherate, in the presence of a hydride source such as triethyl silane or tris(trimethylsilyl)silane.
The alkylation in Schemes XII, XIII, XIV, XVI, XVIA, XVIB is carried out in the presence of base such as butyllithium or sodium bis(trimethylsilyl)-amide. It will be appreciated that R^{12} in $R^{12} Q$ may be any of the R^{12} groups as defined hereinbefore.
Alternatively, the alkylation in the above Schemes can be performed where either or both Z^{1} or Z^{2} is a bond, using a palladium catalyzed allylic alkylation procedure. In this reaction, the fluorenyl-type or indenyl-type precursors (compounds XXVIII, XXXVI, XXXVII, XXXIX, XL, XLVII) are reacted with a base (sodium hydride, sodium bis(trimethylsilyl)amide or bis(trimethylsilyl)acetamide), a palladium catalyst (for example $\mathrm{Pd}\left(\mathrm{Ph}_{3}\right)_{4}$) and an allylic acetate

$$
\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH} \longrightarrow \text { or } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)
$$

in an inert solvent (for example THF). This reaction is to introduce either $-\mathrm{R}^{12}$ (Scheme XII) or $-\mathrm{R}^{11}-\mathrm{X}^{1}$ (Schemes XIII, XIV, XVI, XVIA) or $-\mathrm{R}^{11}$-OPG (Scheme XVIB, Scheme XXI). The product of this reaction contains either an $-\mathrm{R}^{12}$ group or an $-\mathrm{R}^{11}-\mathrm{X}^{1}$ group (or an $-\mathrm{R}^{11}$-OPG group) which begins with

$$
-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH} \longrightarrow .
$$

Saturation of the alkene in R^{11} or R^{12} can be accomplished by standard catalytic hydrogenation conditions.
With respect to Scheme XII, the LiAlH_{4} reduction, Swern oxidation, Wittig olefination and halogenation/sulfonation reactions are conventional reactions well known to those skilled in the art.
The sulfur oxidation in Schemes XIII, XVI and XVIII is carried out as follows.
Sulfides of structurcs XXXVI, XXXVIII, XXXIIIE and I^{9} can be selectively oxidized to sulfoxides by 1 molar equivalent of reagents known in the art, such as $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaIO}_{4}$, and peracids (e.g., metachloroperbenzoic acid). The resulting sulfoxides can be further transformed to corresponding sulfones by another molar equivalent or excess of 30%
above may be administered in amounts of from about 5 to about 500 mg per day in single or divided doses of one to four times daily.
The following Examples represent preferred embodiments of the invention. All temperatures are in ${ }^{\circ} \mathrm{C}$. unless indicated otherwise.

EXAMPLE 1
N-(2,2,2-Trifluoroethyl)-9-[5-[3-[[[4'-(trifluoromethyl)[1, 1'-biphenyl]-2-yl]carbonyl]amino]-1-azetidinyl]pentyl]-9H-fluorene-9-carboxamide, monohydrochloride

A mixture of epichlorohydrin ($19.6 \mathrm{~mL}, 0.25 \mathrm{~mol}$), benzhydrylamine ($43.1 \mathrm{~mL}, 0.25 \mathrm{~mol}$) and methanol (100 mL) was stirred at RT for 3 days and then refluxed for 2 days. The methanol was removed (reduced pressure) and the residue was washed with acetone ($4 \times 150 \mathrm{~mL}$). After drying under high vacuum, a white solid was obtained ($37.4 \mathrm{~g}, 54 \%$). The product ($10 \mathrm{~g}, 41.7 \mathrm{mmol}$) was partitioned between ethyl ether and 1 N NaOH solution and removal of the solvent from the dried ethereal solution gave title compound $(8.5 \mathrm{~g}$, 97%) as a white solid (m.p. $108^{\circ}-110^{\circ} \mathrm{C}$.).

To a stirred solution of Part A compound $(5.0 \mathrm{~g}, 20.8$ mmol) and triethylamine ($4.61 \mathrm{~mL}, 33.3 \mathrm{mmol}$) in dichloromethane (35 mL) at $0^{\circ} \mathrm{C}$. was added dropwise a solution of methanesulfonyl chloride ($2.42 \mathrm{~mL}, 31.2 \mathrm{mmol}$) in dichloromethane (15 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$. for 10 min . The reaction was washed with water $(2 \times 10 \mathrm{~mL})$, brine ($2 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}. Evaporation gave title compound ($6.6 \mathrm{~g}, 100 \%$) as an off-white waxy solid.

c.

60
A mixture of Part B compound ($6.5 \mathrm{~g}, 20.4 \mathrm{mmol}$), 2 -propanol (40 mL) and ammonium hydroxidc ($30 \%, 24$ $\mathrm{mL}, 200 \mathrm{mmol}$) was heated at $70^{\circ} \mathrm{C}$. for 2 hr . The solvent was removed in vacuo, and the resulting solution was alkalinized with sodium carbonate and extracted with dichloromethane. Evaporation gave a yellow oil. Purification was performed by flash chromatography on silica gel
(500 g), loaded and eluted with 2% methanol in dichloromethane containing 0.5% ammonium hydroxide. Pure fractions were combined and evaporated to give title compound ($2.0 \mathrm{~g}, 41 \%$) as a pale yellow oil.

D.

A mixture of Part C compound ($320 \mathrm{mg}, 1.34 \mathrm{mmol}$), 4^{\prime}-(trifluoromethyl)-2-biphenylcarboxylic acid (392 mg , 1.47 mmol), 1-hydroxybenzotriazole hydrate ($181 \mathrm{mg}, 1.34$ mmol), ethyl-3-(3-dimethylamino)-propyl carbodiimide hydrochloride ($334 \mathrm{mg}, 1.74 \mathrm{mmol}$) and triethylamine $(\mathbf{0} .19$ $\mathrm{mL}, 1.34 \mathrm{mmol})$ in dichloromethane (10 mL) was stirred at RT overnight. The reaction was diluted with dichloromethane (30 mL) and the solution was washed with water $25(2 \times 15 \mathrm{~mL})$, saturated sodium bicarbonate ($2 \times 15 \mathrm{~mL}$), brine $(2 \times 15 \mathrm{~mL})$ and dried over MgSO_{4}. Purification was performed by flash chromatography on silica gel (50 g), loaded and eluted with 1.5% methanol in dichloromethane containing 0.2% ammonium hydroxide. Pure fractions were combined and evaporated to give title compound ($620 \mathrm{mg}, 95 \%$) as a white solid (m.p. $156^{\circ}-160^{\circ} \mathrm{C}$.).

E.
F.

To a solution of 9-fluorenecarboxylic acid ($10 \mathrm{~g}, 47.6$ $\mathrm{mmol})$ in THF (200 mL) at $0^{\circ} \mathrm{C}$. was added dropwise a solution of n-butyllithium ($2.5 \mathrm{M}, 42 \mathrm{~mL}, 105 \mathrm{mmol}$) in THF. The yellow reaction was stirred at $0^{\circ} \mathrm{C}$. for 30 min ., then

1,5-dibromopentane ($16.8 \mathrm{~mL}, 124 \mathrm{mmol}$) was added dropwise over 30 min . The reaction was stirred at $0^{\circ} \mathrm{C}$. for 30 min , then the reaction was warmed to RT for 30 h . The reaction was extracted with water ($3 \times 100 \mathrm{~mL}$) and the combined aqueous layers were extracted with ethyl ether $(2 \times 100 \mathrm{~mL})$. The aqueous layer was made acidic with 1 N HCl solution, then extracted with dichloromethane (3×150 mL). The combined organic layers were dried over MgSO_{4}. Evaporation gave a crude white solid (15.7 g). To a solution of the crude acid and DMF ($20 \mu \mathrm{~L}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}$) under argon at $0^{\circ} \mathrm{C}$. was added oxalyl chloride (35.7 mL , 2.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 71.4 \mathrm{mmol}$) dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$. for 10 min , then warmed to RT and stirred for 1.5 h . The reaction was concentrated in vacuo to give the crude acid chloride as a yellow oil. To a suspension of 2,2,2-trifluoroethylamine hydrochloride ($6.45 \mathrm{~g}, 47.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. under argon was added triethylamine ($14.5 \mathrm{~mL}, 105 \mathrm{mmol}$) followed by dropwise addition of a solution of the crude acid chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$. The reaction was stirred at $0^{\circ} \mathrm{C}$. for 1 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, and washed with water $(2 \times 100 \mathrm{~mL})$, $1 \mathrm{~N} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine ($2 \times 100 \mathrm{~mL}$), then dried over MgSO_{4}. Evaporation gave 17 g of a oil which was purified by flash chromatography on silica gel (1.5 kg). The crude product was loaded in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane, and eluted with 15% ethyl acetate/hexane. Pure fractions were combined and evaporated to give the title compound ($14.7 \mathrm{~g}, 72 \%$) as a white solid (m.p. $92^{\circ}-96^{\circ} \mathrm{C}$.).

Amixture of Part E compound ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$), Part F compound ($266 \mathrm{mg}, 0.63 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(95 \mathrm{mg}, 0.70$ $\mathrm{mmol})$ in DMF (5 mL) was stirred at $50^{\circ} \mathrm{C}$. for 16 h . The reaction was evaporated and the residue was partitioned between dichloromethane (60 mL) and water $(20 \mathrm{~mL})$. The organic layer was dried over sodium sulfate, then concentrated in vacuo to give a yellow oil, which was chromatographed (2.5% methanol in dichloromethane containing 0.5% ammonium hydroxide) on silica gel (40 g). Pure fractions were combined and evaporated to give a colorless oil ($125 \mathrm{mg}, 56 \%$). The product was dissolved in MeOH (2 $\mathrm{mL})$, then 1.1 M HCl in ethyl ether (1 mL) was added. The reaction was stirred at RT for 10 min . The solution was evaporated and dried under vacuum to give title compound $(125 \mathrm{mg}, 96 \%)$ as a white solid (m.p. $104^{\circ}-109^{\circ} \mathrm{C}$.).

MS (ES, +ions): m/z $680(\mathrm{M}+\mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}+1.5 \mathrm{HCl}+1.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, ${ }_{65}$ 60.52; H, 5.17; N, 5.57; Cl, 7.05 Found: C, 60.56; H, 5.05; N, 5.66; Cl, 7.24.

40

45

EXAMPLE 2

9-[5-[3-(Benzoylamino)-1-azetidinyl]pentyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, monohydrochloride

Following the procedure in Example 1 except substituting benzoic acid for 4^{\prime}-(trifluoromethyl)-2-biphenylcarboxylic acid, title compound was prepared as a white solid.

$$
\text { m.p. } 89^{\circ}-94^{\circ} \mathrm{C} . ; \text { MS (ES, +ions): m/z } 536(\mathrm{M}+\mathrm{H})
$$

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}+1.3 \mathrm{HCl}+1.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 61.77; H, 5.94; N, 6.97; F, 9.45; Cl, 7.65 Found: C, 61.66; H, 5.61; N, 6.92; F, 9.57; Cl, 7.81.

EXAMPLE 3

N -(2,2,2-Trifluoroethyl)-9-[4-[3-[[[[[4'-(trifluoromethyl)[1,

A mixture of Example 1 Part B compound ($5.0 \mathrm{~g}, 15.7$ mmol) and sodium cyanide ($3.85 \mathrm{~g}, 78.6 \mathrm{mmol}$) in DMSO was stirred at $60^{\circ} \mathrm{C}$. for 1 h . then warmed to $90^{\circ} \mathrm{C}$. Stirring was continued overnight. The reaction was cooled to RT. Dichloromethane (300 mL) was added and the solution was washed with water ($2 \times 50 \mathrm{~mL}$), brine ($2 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Evaporation gave a brown solid. Purification was performed by flash chromatography on silica gel, loaded and eluted with 15% ethyl acetate in hexane. Pure fractions were combined and evaporated to give title compound ($2.5 \mathrm{~g}, 66 \%$) as a white solid (m.p. $151^{\circ}-155^{\circ} \mathrm{C}$.).

B.

5

To a solution of Part A compound ($1.2 \mathrm{~g}, 4.82 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. was added dropwise 1.0 M lithium aluminum hydride in THF. After addition, the reaction was warmed to RT and stirring was continued overnight. A 15\% sodium hydroxide solution (15 mL) was added and the mixture was stirred at RT for 4 h . The resulting mixture was filtered through Celite and the filtrate was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The organic layer was washed with water $(2 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave title compound ($1.05 \mathrm{~g}, 86 \%$) as a colorless oil.

C.

Following the procedure in Example 1 Part D, Part B compound ($500 \mathrm{mg}, 1.98 \mathrm{mmol}$) was reacted with 4^{\prime} -(trifluoromethyl)-2-biphenylcarboxylic acid ($580 \mathrm{mg}, 2.1835$ mmol) to give title compound ($720 \mathrm{mg}, 73 \%$) as a white solid (m.p. $191^{\circ}-195^{\circ} \mathrm{C}$.).

Following the procedure in Example 1 Part E, Part C compound ($280 \mathrm{mg}, 1.44 \mathrm{mmol}$) was reacted to give title compound ($220 \mathrm{mg}, 46 \%$) as an off-white solid which was carried on without purification.

MS (ES, +ions): m/z $680(\mathrm{M}+\mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}+2.0 \mathrm{HCl}+2.0 \mathrm{H}_{2} \mathrm{O}$: C, 58.54 ; H, 5.17; N, 5.39; Cl, 9.09 Found: C, 58.61 ; H, 5.03 ; N, 5.29; Cl, 9.10.

EXAMPLE 4
9-[4-[3-[(Benzoylamino)methyl]-1-azetidinyl]butyl]-N-(2, 2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, monohydrochloride

To a solution of Example 3 Part B compound (500 mg , 1.98 mmol), tricthylaminc $0.4 \mathrm{~mL}, 2.97 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. was added dropwise a solution of benzoyl chloride in dichloromethane (1 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$. for 10 min . Ethyl acetate (50 mL) was added abd the solution was washed with water $(2 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave a yellow oil. Purification was performed by flash chromatography on silica gel, loaded and eluted with 2% methanol in dichloromethane. Pure fractions were combined and evaporated to give title compound $(420 \mathrm{mg}, 62 \%)$ as a colorless oil.

Following the procedure in Example 1 Part E, Part A compound ($420 \mathrm{mg}, 1.19 \mathrm{mmol}$) was reacted to give title compound ($200 \mathrm{mg}, 88 \%$) as a colorless oil which was carried on without purification.
C. 9-[4-[3-[(Benzoylamino)methyl]-1-azetidinyl]butyl]N -(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, monohydrochloride
Following the procedure in Example 1 Part G, Part B 60 compound ($161 \mathrm{mg}, 0.85 \mathrm{mmol}$) was reacted with Example 3 Part E compound ($361 \mathrm{mg}, 0.85 \mathrm{mmol}$) to give titlc compound ($150 \mathrm{mg}, 28 \%$) as a white solid (m.p. $91^{\circ}-96^{\circ}$ C.).

MS (ES, +ions): m/z $536(\mathrm{M}+\mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{HCl}+2.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.69$; H, 6.18; N, 6.85 Found: C, 61.09 ; H, 5.91 ; N, 6.35 .

Following the procedure in Example 5 except substituting benzoic acid for 4^{\prime}-(trifluoromethyl)-2-biphenylcarboxylic acid, title compound was prepared as a white solid.
m.p. $91^{\circ}-95^{\circ} \mathrm{C}$. MS (ES, +ions): m/z $522(\mathrm{M}+\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}+1.4 \mathrm{HCl}+1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 60.09; H, 5.78; N, 7.01; F, 9.50; Cl, 8.28 Found: C, 60.15 ; H, 5.59; N, 7.18; F, 9.13; Cl, 8.67.

Example 7

-continued
Example 8A:

72
-continued
Example 11:

10

15

20

25

30

35

40

45

50

55

60

65

. HCl

Example 12:

Example 9:

Example 10:

73

Example 17:

Example 18:

Example 19:
$\begin{array}{rr}45 & H \\ H & H\end{array}$

EXAMPLES 20 to 202

where $R^{1 x}$ is
$\begin{array}{rr} & \mathrm{H} \\ 50 & \mathrm{H} \\ & \mathrm{H}\end{array}$
$\begin{array}{cc} & \mathrm{H} \\ & \\ 55 & \\ \mathrm{SCH}_{3} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ & \\ & \\ & \\ & \mathrm{H}\end{array}$

H
35 F
F
H
40 H
$3-\mathrm{CF}_{3}$

(a)

b)

$\lll<\mathrm{C}_{6} \mathrm{H}_{5}$,
H
H
H
$\mathrm{CH} 3 \quad \mathrm{H}$

H	H
H	Cl
CH_{3}	H

35
$30\}-\mathrm{OCH}_{2}-\backslash$
H

$$
5,885,983
$$

Example 203

Example 204

Example 205

Example 206

Example 208

Example 209

Example 210

Example 211

79
 -continued
 Example 212

Example 213

Example 214

Example 215

Example 217

Example 218

Example 219

Example 220:

83 | -continued |
| :---: |
| Example 221: |

Example 222:

Example 223:

Example 224:

$85 \underset{\substack{\text {-continued } \\ \text { Example 225: }}}{ }$

Example 226:

Example 227:

Example 228:

Example 229:

$87 \begin{aligned} & \text {-continued } \\ & \text { Example 230: }\end{aligned}$
e 230 :

$\underline{\text { Example 231: }}$

Example 232:

Example 233:

Example 234:

> 89 | -continued |
| :---: |
| Example 235: |

Example 236:

Example 237

Example 239:

47 of $\mathbf{1 2 3}$

$91 \begin{array}{c}\text {-continued } \\ \text { Example 240: }\end{array}$

Example 241:

Example 242:

Example 243:

Example 244:

$93 \begin{gathered}\text {-continued } \\ \text { Example 245: }\end{gathered}$
$\underline{\text { Example 245: }}$

Example 246:

Example 247:

Example 249:

95
$\begin{array}{c}\text {-continued } \\ \text { Example 250: }\end{array}$

Example 251:

Example 252:

Example 253:

Example 254:

(continued

-continued
Example 259:

Example 260:

Example 262:

Example 263:

-continued
Example 264:

Example 265:

Example 266:

Example 267:

103 | $\substack{\text {-continued } \\ \text { Example 268: }}$ |
| :---: |

Example 269:

Example 270:

$\underline{\text { Example 271: }}$

$\underline{\text { Example 272: }}$

Example 277;

Example 278:

-continued
Example 279:

Example 280:

Example 281:
(Z)-N-[1-(5,5-Diphenyl-2-pentenyl)-2-azetidinyl]-2-phenoxybenzamide

Example 282:

Example 283:
2,3-Dihydro-2-[1-[3-phenyl-3-(4-propylphenyl)-propyl]-2-azetidinyl]-1H-isoindol-1-one, monohydrochloride

Example 284:

Example 285:

109 | -continued |
| ---: |
| Example 286: |

-continued
xample 286:

Example 287:

Example 288:

Example 289:

$$
\text { continued } 295
$$

-continued
Example 305:

Example 306:

Example 307:

Example 308:

-continued
Example 309:

Example 310:

Example 311:

Example 312:

Example 313:

121
-continued
Example 314:

Example 315:

Example 316:

-continued
Example 317:

$\underline{\text { Example 318: }}$

Example 319:

125
-continued
Example 320:

Example 321:

Example 323:

-continued
Example 324:

Example 325:

Example 326:

Example 327:

-continued
Example 328:

Example 329:

Example 330:

Example 331:

-continued
Example 332:

Example 333:

Example 334:

Example 335:

Additional compounds falling within the scope of the present invention are described by the following structures.

Substituents for each example are identified in the table following each structure.

where $\mathrm{R}^{1 \mathrm{x}}$ is (a), (b), (c), (d) or (e) as in Table A Examples of Q^{1}

135 -continued

71 of 123

73 of 123
PENN EX. 2212 CFAD V. UPENN

IPR2015-01836

74 of $\mathbf{1 2 3}$

PENN EX. 2212 CFAD V. UPENN

75 of 123
PENN EX. 2212
CFAD V. UPENN
IPR2015-01836

76 of $\mathbf{1 2 3}$

77 of $\mathbf{1 2 3}$
PENN EX. 2212
CFAD V. UPENN
IPR2015-01836

78 of $\mathbf{1 2 3}$

TABLE D

$\mathrm{X}^{2}=\mathrm{H}$ or F, n is 0 or 1
Example of R

TABLE F
componnds
$\underline{\text { Fluorenyl-Type Rings: } \mathrm{Z}=}$

TABLE F-continued

TABLE G

Indenyl-Type Rings: $\mathrm{Z}=$

TABLE G-continued

TABLE G-continued

R

TABLE H

EXAMPLE 337
EXAMPLE 339
cis-9-[4-[3-(2,3-Dihydro-1H-isoindol-2-yl)-1-azetidinyl] butyl]-N-propyl-9H-fluorene-9-carboxamide, N -oxide

EXAMPLE 338
2-[1-[4-[9-(Butylsulfonyl)-9H-fluoren-9-yl]butyl]-2-azetidinyl]-2,3-dihydro-1H-isoindol-1-one

65 9-[4-[[3-[(1,1-Dimethylethoxy)carbonyl]amino]-1-azetidinyl]butyl]-2,7-difluoro-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

EXAMPLE 340
9-[4-[3-[(2-Phenoxybenzoyl)amino]-1-azetidinyl]-butyl]N -(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, monohydrochloride

EXAMPLE 341
9-[4-[[3-(Benzoylamino)-1-azetidinyl]butyl]-2,7-difluoroN -(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

EXAMPLE 342
9-[4-[[3-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-azetidinyl]butyl]-2,7-difluoro-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

EXAMPLE 343
2,7-Difluoro-9-[4-[[3-[(2-phenoxybenzoyl)amino]-1-azetidinyl]butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9carboxamide

EXAMPLE 344

9-[4-[3-(Benzoylamino)-1-azetidinyl]butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, monohydrochloride

EXAMPLE 345
2,3-Dihydro-2-[1-[4-[9-(1-oxopentyl)-9H-fluoren-9-yl] butyl]-2-azetidinyl]-1H-isoindol-1-one, monohydrochloride

EXAMPLE 346
2,3-Dihydro-2-[1-(1-oxo-3,3-diphenylpropyl)-2-azetidinyl] -1 H -isoindol-1-one

EXAMPLE 347
[1-[4-[9-[(Propylamino)carbonyl]-9H-fluoren-9-yl]-butyl]2 -azetidinyl]carbamic acid, phenylmethyl ester, monohydrochloride

EXAMPLE 348

9-[4-[3-(2,3-Dihydro-1-oxo-1H-isoindol-2-yl)-1-azetidinyl] butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, hydrochloride salt

EXAMPLE 349
9-[4-[3-(2,3-Dihydro-1-oxo-1H-isoindol-2-yl)-1-azetidinyl] butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, hydrochloride salt

EXAMPLE 350
9-[4-[3-(Benzoylamino)-1-azetidinyl]butyl]-N-propyl-9H-fluorene-9-carboxamide

EXAMPLE 351
5
9-[4-[3-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-azetidinyl]-butyl]-N-propyl-9H-fluorene-9-carboxamide

EXAMPLE 352

9-[4-[3-(2,3-Dihydro-1-oxo-1H-isoindol-2-yl)-1-azetidinyl] butyl]-N-(2,2,3,3,4,4,4-heptafluoro-butyl)-9H-fluorene-9carboxamide, monohydrochloride

EXAMPLE 353
9-[4-[[3-[(1,1-Dimethylethoxy)carbonyl]amino]-115 azetidinyl]butyl]-3,6-difluoro-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

EXAMPLE 354
1-[4-[3-(1,3-Dihydro-1-oxo-2H-isoindol-2-yl)-1-azetidinyl] butyl]-2-methyl-N-(2,2,2-trifluoroethyl)-1H-indene-1carboxamide

EXAMPLE 355
9-[4-[3-(1,3-Dihydro-1-oxo-2H-isoindol-2-yl)-1-azetidinyl] butyl]-N-(2,2,3,3,3-pentafluoropropyl)-9H-fluorene-9carboxamide, monohydrochloride

EXAMPLE 356

1-[4-[3-(1,3-Dihydro-1-oxo-2H-isoindol-2-yl)-1-azetidinyl] butyl]-N-(2,2,2-trifluoroethyl)-1H-indene-1-carboxamide

EXAMPLE 357
9-[4-[3-(Benzoylamino)-1-azetidinyl]butyl]-3,6-difluoroN -(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

EXAMPLE 358
35 3,6-Difluoro-9-[4-[3-[(2-phenoxybenzoyl)amino]-1-azetidinyl]butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9carboxamide
Please note that in the Examples 359 to 475 for structures bearing only two single bonded substituents to nitrogen, the third substituent is always hydrogen, but it is not shown explicitly in the structures. Also, please note that in the Examples 359 to 475 for structures bearing oxygen and sulfurs with only one single bonded substituent, the second substituent is always hydrogen, but is not shown explicitly in the structures.

-continued

368

369

-continued

381

382

383

384

385

386

387

388

389

394

395

396

397

[^0]

404

荌

PENN EX. 2212 CFAD V. UPENN
-continued

407

409

411
410

412

-continued

420

421

422

423

424

425

426

429

[^1]

态

[^2]

466

469

231 -continued

EXAMPLE 476

9-[4-[3-[(Phenoxycarbonyl)amino]-1-azetidinyl]-butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, monohy- 35 drochloride

What is claimed is:

1. A compound which has the structure

where Q is

$$
\begin{equation*}
\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{C}}} \stackrel{\mathrm{O}}{\mathrm{O}} \underset{\mathrm{~S}}{\|} \text { or } \tag{50}
\end{equation*}
$$

R^{1} is a fluorenyl-type group of the structure

or

65

R^{1} is an indenyl-type group of the structure

or

30
Z^{1} and Z^{2} are the same or different and are independently ${ }^{40}$ a bond, O, S,

with the proviso that with respect to B , at least one of Z^{1} and Z^{2} will be other than a bond; R^{11} is alkylene, alkenylene or alkynylene of up to 10 carbon atoms; 50 arylene or mixed arylene-alkylene; R^{12} is hydrogen, alkyl, alkenyl, aryl, haloalkyl, trihaloalkyl, trihaloalkylalkyl, heteroaryl, heteroarylalkyl, arylalkyl, arylalkenyl, cyclo-alkyl, aryloxy, alkoxy, arylalkoxy or cycloalkyl-alkyl, with the provisos that
(1) when R^{12} is H , aryloxy, alkoxy or arylalkoxy, then Z^{2} is
or a bond and
5
R^{6} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkenyl; all optionally substituted with $1,2,3$ or 4 groups which may independently be any of the substituents listed in the definition of R^{5} set out above;

are the same or different and are independently selected from heteroaryl containing 5 - or 6 -ring members; or
an N -oxide

thereof; a stereoisomer thereof; or a pharmaceutically acceptable salt thereof.
2. The compound as defined in claim $\mathbf{1}$ having the formula

3. The compound as defined in claim $\mathbf{1}$ having the formula

4. The compound as defined in claim 1 wherein R^{1} is

30

20

B
where R^{11} is alkylene or alkenylene; R^{12} is H , alkyl, alkenyl, aralkyl, aralkenyl; and R^{13} is H or F ; and R^{15} is H or F ; Z is O, S or a bond.
$\mathrm{R}^{12}-\mathrm{Z}^{2}$ is

$\mathrm{R}^{12 a}$ is alkyl, fluorinated lower alkyl or polyfluorinated lower alkyl.
6. The compound as defined in claim 1 wherein R^{1} is

5. The compound as defined in claim 4 wherein R^{1} is

or

B

Z is a bond, O or S ;
$\mathrm{R}^{13}, \mathrm{R}^{14}, \mathrm{R}^{15}$ and R^{16} are each H or one of R^{15} and R^{16} and one of R^{13} and R^{14} are halogen;
z^{1} is a bond or $\mathrm{C}=\mathrm{O}$;
R^{11} is alkylene or alkenylene;

($\mathrm{a}=2,3$ or 4)

8. The compound as defined in claim 1 having the structure

E

5

G

30
H

35
10. The compound as defined in claim 8 having the structure

Z is a bond, O or S ;
where R^{5} is cycloalkyl, phenyl, aryl, heteroaryl, or cycloalkyl, phenyl, aryl or heteroaryl, independently substituted at the ortho position with alkyl, alkoxy, haloalkyl (optionally substituted with up to 5 halogens), trifluoro-methyl, aryl, aryloxy, haloalkoxy (optionally substituted with up to 5 halogens), arylalkyl or arylalkoxy;
R^{6} is H or CH_{3};
R^{13} and R^{15} are independently H or F ;
Z^{1} is a bond;
R^{11} is alkylene;
$\mathrm{R}^{12}-\mathrm{Z}^{2}$ is

where Q is

45

50
and R^{12} is trifluoromethylalkyl or alkyl.

55
11. The compound as defined in claim 8 having the structure

where R^{12} is alkyl.
12. The compound as defined in claim 1 having the structure

where Q is

where R^{5} is cycloalkyl, phenyl, aryl, heteroaryl, or cycloalkyl, phenyl, aryl or heteroaryl, independently substituted at the ortho position with alkyl, alkoxy, haloalkyl (optionally substituted with up to 5 halogens), trifluoromethyl, aryl, aryloxy, haloalkoxy (optionally substituted with up to 5 halogens), arylalkyl or arylalkoxy;
R^{o} is H or CH_{3};
R^{13} and R^{15} are independently H or F ;
Z^{1} is a bond;
R^{11} is alkylene;
$\mathrm{R}^{12}-\mathrm{Z}^{2}$ is

$\mathrm{R}^{12 a}$ is alkyl, fluorinated lower alkyl or polyfluorinated lower alkyl,
15 or Z^{2} is a bond and R^{12} is alkyl.
13. The compound as defined in claim 1 which is

N -(2,2,2-trifluoroethyl)-9-[5-[3-[[[4'-(trifluoromethy) $[1$, 1'-biphenyl]-2-yl]carbonyl]amino]-1-azetidinyl] pentyl]-9H-fluorene-9-carboxamide,
9-[5-[3-(benzoylamino)-1-azetidiny1]pentyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide,
N-(2,2,2-trifluoroethyl)-9-[4-[3-[[[[4'-(trifluoromethyl) [1,1'-biphenyl]-3-yl]carbonyl]-amino]methyl]-1-azetidinyl]butyl]-9H-fluorene-9-carboxamide,
9-[4-[3-[(benzoylamino)methyl]-1-azetidinyl]-butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide,
N -(2,2,2-trifluoroethyl)-9-[4-[3-[[[4'-(trifluoromethyl) $[1$, 1'-biphenyl]-2-yl]carbonyl]-amino]-1-azetidinyl]butyl] -9H-fluorene-9-carboxamide,
9-[4-[3-(benzoylamino)-1-azetidinyl]butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide,
or a pharmaceutically acceptable salt thereof.
14. A method for or treating atherosclerosis, pancreatitis 35 or obesity responsive to a decrease in MTP activity in a patient, which comprises administering to a patient in need of treatment a MTP activity decreasing amount of a compound as defined in claim 1.
15. A method of lowering serum lipid levels, cholesterol 40 and/or triglycerides, or treating hyperlipemia, hyperlipidemia, hyperlipoproteinemia, hypercholes-terolemia and/or hypertriglyceridemia responsive to a decreasing MTP activity in a patient, which comprises administering to a patient in need of treatment a MTP activity decreasing 45 amount of a compound as defined in claim 1.

[^0]: -continued

[^1]:

 436

[^2]:

 457

