United States Patent

Müller et al.
[54] CYCLOALKANO-INDOLE AND -AZAINDOLE DERIVATIVES
[75] Inventors: Ulrich Müller, Wuppertal, Germany; Richard Connell, Trumbull, Conn.;
Siegfried Goldmann, Wuppertal; Rudi Grützmann, Solingen, both of Germany; Martin Beuck, Nilford, Conn.; Hilmar Bischoff; Dirk Denzer, both of Wuppertal, Germany; Anke Domdey-Bette, Hückeswagen; Stefan Wohlfeil, Hilden, both of Germany
[73] Assignee: Bayer Aktiengesellschaft, Leverkusen, Germany
[21] Appl. No.: 535,698
[22] Filed:
Sep. 28, 1995
[30] Foreign Application Priority Data
Oct. 4, 1994 [DE] Germany \qquad 4435477.0
[51] Int. $\mathrm{Cl}^{6}{ }^{6}$ \qquad A61K 31/44; C07D 471/02; C07D 471/04
[52] U.S. Cl. \qquad 514/292; 546/86; 546/87
[58] Field of Search \qquad 546/86; 87; 514/292

References Cited
U.S. PATENT DOCUMENTS

3,632,807	$1 / 1972$	Maurer et al.$~$	$546 / 345$
$4,775,680$	10/1988	Gillard et al.		
$514 / 411$				
FOREIGN PATENT DOCUMENTS				

0234708 A1	$9 / 1987$	European Pat. Off.
0300676 A2	$1 / 1989$	European Pat. Off.
0310179 A2	$4 / 1989$	European Pat. Off.
0496237 A2	$7 / 1992$	European Pat. Off.
0509359	101992	European Pat. Off.
0617035 A1	$9 / 1994$	Eropean Pat. Off. .

Heterocycles, vol. 22, No. 10, 1984 (pp. 2277-2279).
Primary Examiner-Alan L. Rotman
Attorney, Agent, or Firm-Sprung Kramer Schaefer \& Briscoe

[57]
 ABSTRACT

Cycloalkano-indole and -azaindole derivatives are prepared by reaction of appropriately substituted carboxylic acids with amines. The cycloalkano-indole and -azaindole derivatives are suitable as active compounds for medicaments, preferably antiatherosclerotic medicaments.

11 Claims, No Drawings

1

CYCLOALKANO-INDOLE AND -AZAINDOLE DERIVATIVES

The present invention relates to cycloalkano-indole and -azaindole derivatives, processes for their preparation and their use as medicaments, in particular as antiatherosclerotic medicaments.

It is known that increased blood levels of triglycerides (hypertriglyceridaemia) and cholesterol (hypercholesterolaemia) are associated with the genesis of atherosclerotic vessel wall changes and coronary heart diseases.

A distinctly increased risk of the development of coronary heart disease is moreover present if these two risk factors occur in combination, which is accompanied, in turn, with an overproduction of apolipoprotein B-100. There is therefore, as before, a great need to make available effective medicaments for the control of atherosclerosis and coronary heart diseases.

The present invention relates to cycloalkano-indole and -azaindole derivatives of the general formula (I)

in which
\mathbf{R}^{1} and \mathbf{R}^{2}, including the double bond connecting them, together form a phenyl or pyridyl ring or a ring of the formula

wherein
R^{8} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a 4 to 8 -membered cycloalkene or oxocycloalkene radical,
all ring systems mentioned under $\mathrm{R}^{1} / \mathrm{R}^{2}$ and $\mathrm{R}^{3} / \mathrm{R}^{4}$ optionally being substituted up to 3 times by identical or different halogen, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 6 carbon atoms or by straight-chain or branched alkyl having up to 6 carbon atoms, which, for its part, can be substituted by hydroxyl or by straight-chain or branched alkoxy having up to 4 carbon atoms,
D represents hydrogen, cycloalkyl having 4 to 12 carbon atoms or straight-chain or branched alkyl having up to 12 carbon atoms,
E represents the - CO - or - CS - group,
L represents an oxygen or sulphur atom or a group of the formula - $\mathbf{N R}^{9}$,
wherein
\mathbf{R}^{9} denotes hydrogen or straight-chain or branched 65 alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or phenyl, methanesulphonic acid, ethanesulphonic acid, toluenesulphonic acid, benzenesulphonic acid, naphthalenedisulphonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid or benzoic acid.

Physiologically acceptable salts can also be metal or ammonium salts of the compounds according to the invention which have a flee carboxyl group. Particularly preferred
salts are, for example, sodium, potassium, magnesium or calcium salts, and also ammonium salts which are derived from ammonia, or organic amines, such as, for example ethylamine, di- or triethylamine, di- or triethanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine, ethylenediamine or 2-phenylethylamine.
Including the double bond of parent structure, the cycloalkene radical $\left(\mathrm{R}^{3} / \mathrm{R}^{4}\right)$ in the context of the invention in general represents a 4 - to 8 -membered hydrocarbon radical, preferably a 5 - to 8 -membered hydrocarbon radical, for example a cyclobutene, cyclopentene, cyclohexene, cycloheptene or cyclooctene radical. The cyclopentene, cyclohexene, cyclooctene or cycloheptene radicals are preferred
Heterocycle (R^{5}) in the context of the invention in general represents a saturated or unsaturated 5 - to 7 -membered heterocycle, preferably a 5 - to 6 -membered heterocycle, which can contain up to 3 heteroatoms from the series consisting of S, N and/or O . Examples which may be mentioned are: pyridyl, thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, imidamlyl, morpholinyl or piperidyl. Pyridyl and thienyl are preferred.
The compounds according to the invention can exist in stereoisomeric forms which either behave as image and mirror image (enantiomers), or do which do not behave as image and mirror image (diastereomers). The invention relates both to the enantiomers and diastereomers and their respective mixtures. These mixtures of the enantiomers and diastereomers can be separated in a known manner into the stereoisomerically uniform constituents.

Preferred compounds of the general formula (I) are those in which
\mathbf{R}^{1} and \mathbf{R}^{2}, including the double bond connecting them, together form a phenyl or pyridyl ring or a ring of the formula

wherein
\mathbf{R}^{8} denotes hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
\mathbf{R}^{3} and \mathbf{R}^{4}, including the double bond connecting them, together form a phenyl ring or a cyclopentene, cyclohexene, cycloheptene, cyclooctene, oxocyclopentene, oxocyclohexene, oxocycloheptene or oxocyclooctene radical,
all ring systems mentioned under R^{1} / R^{2} and R^{3} / R^{4} optionally being substituted up to 2 times by identical or different fluorine, chlorine, bromine, trifluoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms or by straight-chain or branched alkyl having up to 4 carbon atoms, which, in turn, can be substituted by hydroxyl or by straight-chain or branched alkoxy having up to 3 carbon atoms,
D represents hydrogen, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 10 carbon atoms,
E represents the - CO - or - CS - group,
L represents an oxygen or sulphur atom or represents a group of the formula $-\mathrm{NR}^{\mathcal{s}}$,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 4 carbon atoms, or represents straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula - $\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$, wherein
R^{15} denotes phenyl which is optionally substituted up to 3 times by identical or different fluorine, chlorine, bromine or hydroxyl substituents or by straightchain or branched alkyl having up to 4 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 20 carbon atoms, each of which is optionally substituted by a group of the formula $-\mathrm{OR}^{16}$,
wherein
\mathbf{R}^{16} is hydrogen, benzyl, triphenylmethyl or straightchain or branched acyl having up to 5 carbon atoms,
R^{7} represents hydrogen or
\mathbf{R}^{6} and \mathbf{R}^{7} together represent the group of the formula $=0$,
if appropriate in an isomeric form, and their salts.
Particularly preferred compounds of the general formula
(1) are those in which
\mathbf{R}^{1} and \mathbf{R}^{2}, including the double bond connecting them, together form a phenyl or pyridyl ring or a ring of the formula

wherein
R^{8} denotes hydrogen or methyl,
R^{3} and R^{4}, including the double bond connecting them, together form a phenyl ring or a cyclopentene, cyclohexene, cycloheptene, cyclooctene, oxocyclopentene, oxocyclohexene, oxocycloheptene or oxocyclooctene radical,
all ring systems mentioned under R^{1} / R^{2} and R^{3} / R^{4} optionally being substituted up to 2 times by identical or different fluorine, chlorine, bromine, triffuoromethyl, carboxyl or hydroxyl substituents, by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 3 carbon atoms or by straight-chain or branched alkyl having up to 3 carbon atoms, which, for its part, can be substituted by hydroxyl, methoxy or ethoxy,
D represents hydrogen, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 6 carbon atoms,
E represents the - CO - or - CS - group,
L represents an oxygen or sulphur atom or represents a group of the formula $-\mathrm{NR}^{9}$,
wherein
\mathbf{R}^{9} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl, pyridyl or thienyl, each of which is optionally substituted up to 2 times by identical or different nitro, carboxyl, fluorine, chlorine, bromine or cyano substituents, by straight-chain or branched alkenyl or aikoxycarbonyl each having up to 3 carbon atoms or by straight-chain or branched alkyl having, up to 4 carbon atoms, which is optionally substituted by hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms, and/or the cycles are optionally substituted by a group of the formula - OR^{16} or $-\mathrm{NR}^{11} \mathrm{R}^{12}$, wherein
\mathbf{R}^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 3 carbon atoms, R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms or denote straight-chain or branched acyl having up to 5 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$,
wherein
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 5 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 3 carbon atoms, or represents straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{CO}-\mathrm{R}^{15}$,
wherein
R^{15} denotes phenyl which is optionally substituted up to 3 times by identical or different straight-chain or branched alkyl having up to 3 carbon atoms, or denotes straight-chain or branched alkyl or alkegyl each having up to 19 carbon atoms, each of which is optionally substituted by a group of the formula $-\mathrm{OR}^{16}$,
wherein
R^{16} denotes hydrogen, benzyl, triphenylmethyl or straight-chain or branched acyl having up to 4 carbon atoms,
\mathbf{R}^{7} represents hydrogen or
R^{6} and R^{7} together represent the group of the formula $=0$,
if appropriate in an isomeric form, and their salts.
A process for the preparation of the compounds of the general formula (I) according to the invention has additionally been found, characterized in that
carboxylic acids of the general formula (II)

in which
$\mathbf{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ and D have the meaning indicated,
are amidated using compounds of the general formula (III)

in which
R^{5} has the meaning indicated and
R^{17} has the indicated meaning of R^{6}, but does not represent carboxyl,
in an inert solvent and in the presence of bases and/or auxiliaries,
and, if appropriate, functional groups are varied by hydrolysis, esterification or reduction.
The process according to the invention can be illustrated by the following reaction scheme:

Suitable solvents for the amidation are in this case inert organic solvents which do not change under the reaction conditions. These include ethers, such as diethyl ether or tetrahydrofuran, halogenohydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane, trichloroethane, tetrachloroethane, 1,2-dichloroethane or trichloroethylene, hydrocarbons such as benzene, xylene, toluene, hexane, cyclohexane or petroleum fractions, nilromethane, dimethylformamide, acetone, acetonilrile or hexamethylphosphoramide. It is also possible to employ mixtures of the solvents. Dichloromethane, tetrahydrofuran, acetone and dimethylformamide are particularly preferred.

Bases which can, be employed for the process according to the invention are in general inorganic or organic bases. These preferably include alkali metal hydroxides such as, for example, sodium hydroxide or potassium hydroxide, alkaline earth metal hydroxides, such as, for example, barium hydroxide, alkali metal carbonates such as sodium carbonate or potassium carbonate, alkaline earth metal carbonates such as calcium carbonate, or alkali metal alkoxides such as
sodium or potassium methoxide, sodium or potassium ethoxide or potassium tert-butoxide, or organic amines 50 (trialkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ amines) such as triethylamine, or heterocycles such as 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), pyridine, diaminopyridine, methylpiperidine or morpholine. It is also possible to employ alkali metals such as sodium and their hydrides such as sodium hydride as bases. Sodium and potassium carbonate and triethylamine are preferred.

The base is employed in an amount from 1 mol to 5 mol , preferably from 1 mol to 3 mol , relative to 1 mol of the compound of the general formula (II).
The reaction is in general carried out in a temperature range from $0^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$., preferably from $+20^{\circ} \mathrm{C}$. to $+110^{\circ} \mathrm{C}$.
The reaction can be carried out at normal, increased or reduced pressure (e.g. 0.5 to 5 bar). In general, the reaction 65 is carried out at normal pressure.

The amidation can optionally proceed via the activated stage of the acid halides, which can be prepared from the
corresponding acids by reaction with thionyl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus tribromide or oxalyl chloride.

The abovementioned bases can optionally also be employed for the amidation as acid-binding auxiliaries.

Suitable auxiliaries are also dehydrating reagents. These include, for example, carbodiimides such as diisopropylcarbodiimide, dicyclohexylcarbodiimide and N -(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride or carbonyl compounds such as carbonyldiimidazole or 1,2 -oxazolium compounds such as 2 -ethyl-5-phenyl-1,2-oxazolium-3-sulphonate or propanephosphonic anhydride or iso-butyl chloroformate or benzotriazolyloxy-tris-(dimethylamino)phosphonium hexafluorophosphate or diphenyl phosphoramidate or methanesulphonyl chloride, if appropriate in the presence of bases such as triethylamine or N -ethylmorpholine or N -methylpiperidine or dicyclohexylcarbodiimide and N -hydroxysuccinimide.

The acid-binding agents and dehydrating reagents are in general employed in an mount from 0.5 to 3 mol , preferably from 1 to 1.5 mol , relative to 1 mol of the corresponding carboxylic acids.

The variation of functional groups, for example hydrolysis, esterification and reduction, and also separation of isomers and salt formation is carried out by customary methods.

The carboxylic acids of the general formula (II) are new and can be prepared by reacting
compounds of the general formula (IV)

in which
D has the meaning indicated,
T represents a typical leaving group, for example chlorine, bromine, iodine, tosylate or mesylate, preferably bromine, and
R^{18} represents ($\mathrm{C}_{1}-\mathrm{C}_{4}$) -alkyl
with compounds of the general formula (V)

in which
$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} have the meaning indicated, in inert solvents, if appropriate in the presence of a base.

Suitable solvents for the process are the customary organic solvents which do change under the reaction conditions. These preferably include ethers such as diethyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether, or hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane or petroleum fractions, or halogenohydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane, dichloroethylene, trichloroethylene or chlorobenzene, or ethyl acetate, triethylamine, pyridine, dimethyl sulphoxide, dimethylformamide, hexamethylphosphoramide, acetonitrile, acetone or nitromethane. It is also possible to use mixtures of the solvents mentioned. Dimethylformamide and tetrahydrofuran are preferred.

The bases employed for the process according to the invention can in general be inorganic or organic bases. These preferably include alkali metal hydroxides, for example, sodium hydroxide or potassium hydroxide, alkaline earth metal hydroxides, for example, barium hydroxide, alkali metal carbonates such as sodium carbonate or potassium carbonate, alkaline earth metal carbonates such as calcium carbonate, or alkali metal alkoxides such as sodium or potassium methoxide, sodium or potassium ethoxide or potassium tert-butoxide, or organic amines (trialkyl $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ amines) such as triethylamine, or heterocycles such as 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), pyridine, diaminopyridine, methylpiperidine . or morpholine. It is also possible to employ alkali metals such as sodium or their hydrides such as sodium hydride as bases. Sodium hydride, potassium carbonate, triethylamine, pyridine and potassium tertbutoxide, DBU or DABCO are preferred.
In general, the base is empioyed in an amount from 0.05 mol to 10 mol , preferably from 1 mol to 2 mol , relative to 1 mol of the compound of the formula (IV).

The process according to the invention is in general carried out in a temperature range from $-30^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$., preferably from $-10^{\circ} \mathrm{C}$. to $+60^{\circ} \mathrm{C}$.

The process according to the invention is in general carried out at normal pressure. However, it is also possible to carry out the process at elevated pressure or at reduced pressure (e.g. in a range from 0.5 to 5 bar).

The compounds of the general formula (III) are known per se.
The compounds of the general formula (IV) are known or 30 can be prepared in analogy to known methods.

The compounds of the general formula (V) are known or can be prepared in analogy to known methods.

The compounds of the general formula (I) according to the invention have an unforeseeable spectrum of pharmacological action.

They can be used as active compounds in medicamnents for the reduction of changes to vessel walls and for the treatment of coronary heart disorders, cardiac insufficiency, brain power disorders, ischaemic brain disorders, apoplexy, circulatory disorders, disorders of the microcirculation and thromboses.

Furthermore, the proliferation of smooth muscle cells plays a decisive part in the occlusion of vessels. The compounds according to the invention are suitable for inhibiting this proliferation and thus preventing atherosclerotic processes.
The compunds according to the invention are distinguished by a lowering of the ApoB-100-associated lipoproteins (VLDL and its degradation products, e.g. LDL), of ApoB-100, of triglycerides and of cholesterol. They thus have useful, superior pharmacological properties in comparison with the prior art.

Surprisingly, the action of the compounds according to the invention consists first in a decrease or complete inhibition of the formation and/or the release of ApoB-100-associated lipoproteins from liver cells, which results in a lowering of the VLDL plasma level. This lowering of VLDL must be accompanied by a lowering of the plasma level of ApoB100, LDL, triglycerides and cholesterol; a number of the abovementioned risk factors which are involved in vessel wall changes are thus simultaneously decreased.

The compounds according to the invention can therefore be employed, for the prevention and treatment of atherosclerosis, obesity, pancreatitis and constipation.

I. Inhibition of the Release of ApoB-100-associated Lipoproteins

The test for detecting the inhibition of the release of ApoB-100-associated lipoproteins from liver cells was car-
ried out in vitro using cultured liver cells, preferably using cells of the human line HepG2. These cells are cultured under standard conditions in medium for the culture of eukaryotic cells, preferably in RPMI 1640 with 10% foetal calf serum. HepG2 cells synthesize and secrete into the culture supenatant ApoB-100-associated lipoprotein particles which in principle are built up in a similar manner to the VLDL and LDL particles which are to be found in the plasma.
These particles can be detected using an immunoassay for human LDL. This immunoassay is carried out using antibodies which have been induced against human LDL in rabbits under standard conditions. The anti-LDL antibodies (rabbit anti-LDL Ab) were purified by affinity chromatagraphy on an immunosorbent using human LDL. These purified rabbit anti-LDL Ab are adsorbed on the surface of plastic. Expediently, this adsorption is carried out on the plastic surface of microtitre plates having 96 wells, preferably on MaxiSorp plates. If ApoB-100-associated particles are present in the supernatant of Hep-G2 cells, they can be bound to the insolubilized rabbit anti-LDL Ab , and an immune complex results which is bound to the plastic surface. Unbound proteins are removed by washing. The immune complex located on the plastic surface is detected using monoclonal antibodies which have been induced against human LDL and purified according to standard conditions. These antibodies were conjugated with the enzyme peroxidase. Peroxidase converts the colourless substrate TMB into a coloured product in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. After acidification of the reaction mixture with $\mathrm{H}_{2} \mathrm{SO}_{4}$, the specific light absorption at 450 nm is determined, which is a measure of the amount of ApoB-100-associated particles which have been secreted into the culture supernatant by the HepG2 cells.
Surprisingly, the compounds according to the invention inhibit the release of the ApoB-100-associated particles. The IC_{50} value indicates at which substance concentration the light absorption is inhibited by 50% in comparison with the control (solvent control without substance).

Ex. No.	$\mathrm{IC}_{\mathbf{3 0}}\left[10^{\circ} \mathrm{mol} / \mathrm{l}\right]$
1	28
5	1.1
31	170
50	29

2. Determination of the VLDL Secretion in vivo in the Hamster

The effect of the test substances on VLDL secretion in vivo is investigated in the hamster. To do this, golden hamsters are anaesthetized with Ketaset ($83 \mathrm{mg} / \mathrm{kg}$ s.c.) and Nembutal ($50 \mathrm{mg} / \mathrm{kg}$ i.p.) after premedication with atriopine $(83 \mathrm{mg} / \mathrm{kg}$ s.c.). When the animals have become reflex-free, the jugular vein is exposed and cannulated. $0.25 \mathrm{ml} / \mathrm{kg}$ of a 20% strength solution of Triton WR-1339 in physiological saline solution is then administered. This detergent inhibits the lipoprotein lipase and thus leads to a rise in the triglyceride level as a result of a lack of catabolism of secreted VLDL particles. This triglyceride rise can be used as a measure of the VLDL secretion rate.
Blood is taken from the animals before and also one and two hours after administration of the detergent by puncture of the retroorbital venous plexus. The blood is incubated for two hours at room temperature, and then overnight at $4^{\circ} \mathrm{C}$.,
in order to end clotting completely. It is then centrifuged at $10,000 \mathrm{~g}$ for 5 minutes. The triglyceride concentration in the serum thus obtained is determined with the aid of a modified commercially available enzyme test (Merckotest® triglyceride No. 14354). 100μ of serum are treated with $100 \mu \mathrm{l}$ of test reagent in 96 -hole plates and incubated at room temperature for 10 minutes. The optical density is then determined at a wavelength of 492 nM in an automatic platereading apparatus (SLT Spectra). Serum samples having an excessively high triglyceride concentration are diluted with physiological saline solution. The triglyceride concentration contained in the samples is determined with the aid of a standard curve measured in parallel. In this model, test substances are administered intravenously either immediately before administration of the detergent or orally or subcutaneously before initiation of anaesthesia.

Ex. No.	$\mathrm{ED}_{50}[\mathrm{mg} / \mathrm{kg}]$ p.o.
2	$10-15$
5	$3-6$
7	$10-20$

3. Inhibition of Intestinal Triglyceride Absorption in vivo (Rats)

The substances which are to be investigated for their triglyceride absorption-inhibiting action in vivo are administered orally to male Wistar rats having a body weight of between 170 and 230 g . For this purpose, the animals are divided into groups of 6 animals 18 hours before substance administration and food is then withdrawn from them. Drinking water is available to the animals ad libitum. The animals of the control groups receive an aqueous tragacanth suspension or a tragacanth suspension which contains olive oil. The tragacanth-olive oil suspension is prepared using an Ultra-Turrax. The substances to be investigated are suspended in an appropriate tragacanth-olive oil suspension likewise using the Ultra-Turrax, directly before substance administration.
To determine the basal serum triglyceride content, blood is taken from each rat by puncture of the retroorbital venous plexus before stomach tube application. The tragacanth suspension, the tragacanth-olive oil suspensions without substance (control animals) or the substances suspended in an appropriate tragacanth-olive oil suspension are then administered to the fasting animals using a stomach tube. Further taking of blood to determine the postprandial serum triglyceride rise is caxried out, as a rule, 1,2 and 3 hours after stomach tube application.
The blood samples are centrifuged and, after recovering the serum, the triglycerides are determined photometrically using an EPOS analyzer 5060 (Eppendorf Geratebau, Netheler \& Hinz GmbH, Hamburg). The determination of the triglycerides is carried out completely enzymatically using a standard commercial UV test.
The postprandial serum triglyceride rise is determined by subtraction of the triglyceride preliminary value of each animals from its corresponding postprandial triglyceride concentrations (1,2 and 3 hours after administration).
The differences (in $\mathrm{mmol} / \mathrm{l}$) at each point in time (1,2 and 3 hours) are averaged in the groups, and the mean values of the scrum triglyccride rise ($\Delta \mathrm{TG}$) of the substance-treated animals is compared with the animals which only received the tragacanth-oil suspension.

The serum triglyceride course of the control animals which only received tragacanth is also calculated. The
substance effect at each point in time (1,2 and 3 hours) is determined as follows and indicated in $\Delta \%$ of the oilloaded control.

$$
\Delta \% \text { Triglyceride rise }=\frac{\Delta T G_{\text {smbnance }}-\Delta T G_{\text {magocank eontral }}}{\Delta T G_{\text {oil looding }}-\Delta T G_{\text {tragocomeh conrol }}}
$$

Effect of 10 mg of test substance $/ \mathrm{kg}$ of body weight p.o. on the triglyceride rise ($\Delta \%$) 2 h afer a triglyceride loading in the serum of fasting rats. The serum triglyceride rise of fat-loaded control animals relative to the serum triglyceride level of tragacanth control animals cormponds to $100 \% \mathrm{n}=6$ animals per group.

	Serum triglyceride rise in $\%(2 \mathrm{~h} \mathrm{pp})$
Triglyceride loading	100
Tragacanth control	0
Substance $10 \mathrm{mg} / \mathrm{kg}$ of body weight p.o.	
Ex No. 10	
Ex. No. 66	34
Ex. No. 54	67
Ex. No. 71	54
Ex. No. 5	18
Ex. No. 20	-16

Statistical evaluation is carried out using Student's t test after preliminary checking of the variances for homogeneity.

Substances which at one point in time statistically significantly ($\mathrm{p}<0.05$) decrease the postprandial serum triglyceride rise by at least 30% compared with the untreated control group are regarded as pharmacolocally active.

4. Inhibition of VLDL Secretion in vivo (Rats)

The action of the test substances on VLDL secretion is likewise investigated in the rat. To do this, $500 \mathrm{mg} / \mathrm{kg}$ of body weight ($2.5 \mathrm{mg} / \mathrm{kg}$) of Triton WR-1339, dissolved in physiological saline solution, is administered intravenously into the tail vein of rats. Triton WR-1339 inhibits lipoprotein lipase and thus leads to an increase in the triglyceride and cholesterol level by inhibition of the VLDL catabolism. These rises can be used as a measure of the VLDL secretion rate.
Blood is taken from the animals by puncture of the retroorbital venous plexus before and also one and two hours after administration of the detergent. The blood is incubated at room temperature for 1 h for cloning and the serum is obtained by centrifugation at $10,000 \mathrm{~g}$ for 20 s . The triglycerides are then photometrically determined by means of a standard commercial coupled enzyme test (Sigma Diagnostics(2), No. 339) at a wavelength of 540 nm . Measurement is carried out with the aid of a likewise coupled enzyme test (Boehring Mannheim (®, No. 1442350) at a wavelength of 546 nm . Samples with triglyceride or cholesterol concentrations which exceed the measuring range of the methods are diluted with physiological saline solution. The determination of the respective serum concentrations is carried out with the aid of standard series measured in parallel. Test substances are administered orally, intravenously or subcutaneously immediately after the Tritoninjection.

The invention additionally relates to the combination of cycloalkano-indole and-azaindole derivatives of the general formula (I) with glucosidase and/or amylase inhibitor for the treatment of familial hyperlipidaemia, obesity (adiposity)
and diabetes mellitus. Glucosidase and/or amylase inhibitors in the context of the invention are, for example, acarbose, adiposine, voglibase, miglitol, emiglitate, MDL 25637 , camiglibase (MDL 73945), tendamistat, AI-3688, trestatin, 5 pradimilin-Q and salbostatin.

Combination of acarbose, miglitol, emiglitate or voglibase with one of the abovementioned compounds of the general formula (\mathbf{I}) according to the invention is preferred.
The new active compounds can be converted in a knovm ${ }^{0}$ manner into the customary formulations, such as tablets, coated tablets, pills, granules, aerosols, syrups, emulsions, suspensions and solutions, using inert, non-toxic, pharmaceutically suitable excipients or solvents. In this case, the therapeutically active compound should in each case be present in a concentration of approximately 0.5 to 90% by weight of the total mixture, i.e. in amounts which are sufficient in order to achieve the dosage range indicated.
The formulations are prepared, for example, by extending the active compounds with solvents and/or excipients, if appropriate using emulsifiers and/or dispersants, it optionally being possible, e.g. in the case of the use of water as a diluent, to use organic solvents as auxiliary solvents.
Administration is carried out in a customary manner, preferably orally or parenterally, in particular perlingually or intravenously.

In the case of parenteral administration, solutions of the active compound can be employed using suitable liquid vehicles.
In general, it has proved advantageous in the case of intravenous adminstration to administer amounts of approximately 0.001 to $1 \mathrm{mg} / \mathrm{kg}$ of body weight, preferably approximately 0.01 to $0.5 \mathrm{mg} / \mathrm{kg}$ of body weight, to achieve effective results, and in the case of oral administration the dose is approximately 0.01 to $20 \mathrm{mg} / \mathrm{kg}$ of body weight preferably 0.1 to $10 \mathrm{mg} / \mathrm{kg}$ of body weight.

In spite of this, it may optionally be necessary to depart from the amounts mentioned, namely depending on the body weight or on the type of administration route, on individual 0 behaviour towards the medicament, the manner of its formulation and the time or interval at which administration takes place. Thus, in some cases it may be adequate to manage with less than the abovementioned minimum amount, while in other cases the upper limit mentioned must 5 be exceeded. In the case of the administration of larger amounts, it may be advisable to divide these into several individual doses over the course of the day.
Definition of the Isomer Types:
4 dia=mixture of the four possible diastereomers in the case of two centres of asymmetry in the molecule
dia $A=$ diastereomer having the large R_{f} value
dia $B=$ diastereomer having the smaller $\mathrm{R}_{\text {, }}$, value
ent=enantiomer
2 ent dia=mixture of two enantiomerically pure diastereomers
ent dia $\mathrm{A}=$ =enantiomerically pure diastereomer having the larger $R_{\text {g }}$ value
ent dia $\mathbf{B}=$ =enantiomerically pure diastereomer having the
smaller R_{f} value
o $R=R$ enantiomer
rac=racemate
rac dia $A=$ racermic diastereomer having the larger R_{f} value rac dia $B=$ racemic diastercomer having the smaller R_{f} value
$\mathrm{S}=\mathrm{S}$ enantiomer
65 Abbreviations Used:
$\mathrm{Ac}=$ acetyl
$\mathrm{Bn}=$ benzyl

Bz=benzoyl
iB=isobutyl
$\mathrm{nBu}=$ normal butyl
$\mathrm{sBu}=$ secondary buty1
$\mathrm{tBu}=$ tertiary butyl
DDQ $=$ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
cDec $=$ cyclo-decyl
DMF $=\mathrm{N}, \mathrm{N}$-dimethylformamide
DMSO=dimethyl sulphoxide
cDodec=cyclo-dodecyl
$\mathrm{Et}=\mathrm{ethyl}$
cHept=cyclo-heptyl
cHex=cyclo-hexyl
HOBT=1-hydroxy- 1H-benzotriazole
$\mathrm{Me}=$ methyl
Mes=mesyl
cNon=cyclo-nonyl
cOct=cyclo-octyl
cPent=cyclo-pentyl
nPent=normal pentyl
Ph=phenyl
cPr=cyclo-propyl
nPr=normal propyl
iPr=isopropy1
THF=tetrahydrofuran
TMS=tetramethylsilane
pTol=para-tolyl
pTos=para-tosy1
cUndec=cyclo-undecyl

Solvent	Symbol
Dichloromethane:methanol $=$ 20:1	A
Dichloromethane:methanol $=50: 1$	B
Dichloromethane:ethanol = 20:1	C
Dichloromethane:ethanol = 50:1	D
Petroleum etherethyl acetate $=1: 1$	E
Dicloromethane:methanol:acetic acid $=90: 10: 2$	F
Petroleum etherethyl acetate $=2: 1$	G
Petroleum etherethyl acetate $=10: 1$	H
Toluene	
Toluene:ethyl acetate = 1:1	K
Petroleum ether.ethyl acetate $=5: 1$	L
Dichloromethane	M
Petroleum etherethyl acetate $=20: 1$	N
Dichloromethane:methanol 10:1	0
Cyclobexane:ethyl acetate $=1: 1$	P
Toluene:ethyl acetate $=9: 1$	Q
Toluepe;ethyl acetate $=8: 1$	R
Petroleum etherethyl acetate $=1: 2$	S
Dichloromethane:ethanol = 5:1	T
Dichloromethane:ethanol $=10: 1$	U

Preparation Procedure for the TLC Mobile Phase BABA:
87.9 ml of an aqueous 0.06667 molar potassium dihydrogen phosphate solution and 12.1 ml of an aqueous 0.06667 molar disodium hydrogen phosphate solution are mixed. 60 ml of the solution prepared in this way are shaken with 200 ml of n-butyl acetate, 36 ml of n -butanol and 100 ml of glacial acetic acid and the aqueous phase is removed. The organic phase is the mobile phase BABA.

16

Starting Compounds
EXAMPLE I
1-Allyloxy-2-chloromethylbenzene

17
for 15 h while warming to room temperature (about $25^{\circ} \mathrm{C}$.). The solution is largely freed from the solvent in vacuo, mixed with 31 of dichloromethane and 1.51 of water and adjusted to $\mathrm{pH}=9.5$ while cooling ($<20^{\circ} \mathrm{C}$.) with concentrated aqueous ammonia solution. The separated organic phase is dried with sodium sulphate, first concentrated in vacuo on a rotary evaporator and then distilled through a Vigreux column:

Fraction 1) B.p. $=47^{\circ}-49^{\circ} \mathrm{C} .(12 \mathrm{~mm} \mathrm{Hg}), 603 \mathrm{~g}$
Fraction 2) B.p. $=82^{\circ}-85^{\circ} \mathrm{C} .(12 \mathrm{~mm} \mathrm{Hg}), 612 \mathrm{~g}$ (about 88% crude)
$\mathrm{R}_{\mathrm{f}}=0.39$ (petroleum ether: ethyl acetate $=10: 1$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} 200 \mathrm{MHz}, \mathrm{TMS}\right): \delta=2.28$ (S, 3H), 2.47 (S, 3H), $6.88(\mathrm{~S}, \mathbf{1 H}), 6.96(\mathrm{~S}, 1 \mathrm{H}) \mathrm{ppm}$.
The crude product, which may contain small amounts of 6 -methoxy-2,4-lutidine, is reacted further without further purification.

EXAMPLE IV

6-Hydrazino-2,4-lutidine (4,6-dimethyl-2-hydrazinopyridine)

$580 \mathrm{~g}(4.10 \mathrm{~mol})$ of the compound from Example III are dissolved in 800 ml of diethylene glycol and the solution is stirred with 1050 ml of hydrazine hydrate for 48 h at a bath temperature of about $140^{\circ} \mathrm{C}$. The cooled mixture is poured into 4.51 of ether and 4.51 of water and the organic phase is extracted twice with 2.31 of dichloromethane each time. The combined organic phases are dried with sodium sulphate and evaporated in vacuo. 784 g of solvent-containing crude product are obtained, which is reacted further without working up.

$$
\mathrm{R}_{\mathrm{f}} \approx 0.37 \text { (dichlommethane:methanol }=10: 1 \text {) }
$$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d_{6}-DMSO, 250 MHz , TMS): $\delta=2.13$ (S, 3H), 2.22 (S, 3H), 4.02 (S, 2H), 6.26 (S, 1H), $6.35(\mathrm{~S}, 1 \mathrm{H}), 7.11$ (S, 1H) ppm.

2-Hydrazino-4-picoline (2-hydrazino-4 methylpyridine)

In analogy to the procedure of Example IV, 2-hydrazino4 -picoline is prepared from 2-chloro-4-picoline.
$\mathrm{R}_{f}=0.06$ (dichloromethane:methanol $=10: 1$)
EXAMPLE VI
2,4-Dimethyl-5,6,7,8-tetrahydro- α-carboline

78 g (at most 0.49 mol) of crude compound from Example IV are reacted with $59 \mathrm{ml}(0.56 \mathrm{~mol})$ of cyclohexanone at room temperature (about $25^{\circ} \mathrm{C}$.), whereon the internal tenmperature rises. After 2 h , the starting material has disappeared (TLC checking dichloromethane:methanol= $10: 1$). The mixture is taken up in 40 ml of diethylene glycol 30 and reacted under reflux, constituents having a boiling point lower than the solvent (e.g. water of reaction and excess cyclohexanone) being removed by distillation (water separator). After 3 h , the intermediate hydrazone has disappeared (TLC checking petroleum ether: ethyl acetate $=1: 1$); the reaction mixture is cooled to room temperature and stirred with acetone. The precipitate obtained is filtered off with suction, washed with acetone and dried in vacuo (34.4 g). The largely solvent-free mother liquors are again treated with acetone, a further 9.3 g of product being obtained (total yield over three stages: $43.7 \mathrm{~g} / 0.22 \mathrm{~mol} / 47 \%$).

M.p.: $248^{\circ} \mathrm{C}$. (uncorrected)

$\mathrm{R}=0.41$ (dichloromethane:methanol=20:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d_{6}-DMSO, $200 \mathrm{MHz}, \mathrm{TMS}$): $\delta=1.78$ (M, 4H),
2.40 ($\mathrm{S}, 3 \mathrm{H}$), 2.48 ($\mathrm{S}, 3 \mathrm{H}$), 2.64 (M, 2H), 2.82 (M, 2H), 6.57
(S, 1H), $10.84(\mathrm{~S}, 1 \mathrm{H}) \mathrm{ppm}$.
The compounds of Table I are prepared analogously to the procedure of Example VI.

TABLE I
No. Ex.

TABLE I-continued

XI

$$
0.06 \text { (L) }
$$

XII

0.41 (E)

XIII

xIV

$$
0.59(\mathrm{O})
$$

xv

XVI

XVII

0.59 (G)

TABLE I-continued
No. Ex.

EXAMPLE XIX
2,4-Dimethyl- α-carboline

$100 \mathrm{~g}(499 \mathrm{mmol})$ of the compound from Example VI are reacted under reflux with 164 ml (1 mol) of diethyl furnarate on 52 g of palladium (5% on carbon) in 700 ml of diethylene glycol. A small amount of ethanol distils off at the high internal temperature (if desired use a water separator). After about 8 h , the starting material has disappeared (TLC checking petroleum ether:ethyl acetate $=1: 1$, detection in an iodine chamber). The cooled mixture is treated with 31 of acetone, boiled, filtered off hot with suction through a clarifying filter (Seitz) and washed with 11 of hot acetone. On cooling a precipitate is obtained which yields 58.3 g of product after filtering with suction, rinsing with cold acetone and drying in vacuo. The mother liquor is largely freed from acetone in vacuo, the precipitate which is deposited being worked up as above (9.4 g). The filtrate is again freed from acetone; after addition of n-pentane, product precipitates a further time ($3.1 \mathrm{~g} /$ working up see above); total yield 72%.
M.p. $220^{\circ}-221^{\circ} \mathrm{C}$. (uncorrected) $\mathrm{R}_{\mathrm{f}}=0.47$ (petroleum etherethyl acetate $=1: 1$) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{d}_{6}\right.$-DMSO, 200 MHz , TMS): $\delta=2.54(\mathbf{S}, 3 H), 2.75(\mathrm{~S}, 3 \mathrm{H}), 6.89(\mathrm{~S}, 1 \mathrm{H}), 7.20(\mathrm{M}$, $1 \mathrm{H}), 7.40(\mathrm{M}, 1 \mathrm{H}), 7.48(\mathrm{DD}, 1 \mathrm{H}), 8.05(\mathrm{DD}, 1 \mathrm{H}), 11.61(\mathrm{~S}$, 1H)

EXAMPLE XX

tert-Butyl 4-methylphenyl-acetate

$450 \mathrm{~g}(3 \mathrm{~mol})$ of 4-methylphenyl-acetic acid (Aldrich), $1.131(12 \mathrm{~mol})$ of tert-butanol and $90 \mathrm{~g}(0.74 \mathrm{~mol})$ of 4-(N, N-dimethylamino) pyridine are dissolved in 21 of dichloromethane. After addition of 680 g (3.3 mol of 65 dicyclohexylcarbodimide, dissolved in 400 ml of dichloromethane, the mixture is stirred at $25^{\circ} \mathrm{C}$. for 20 h , the

15
precipitated urea is filtered off with suction and washed with 200 ml of dichloromethane, and the organic phase is washed twice each with 500 ml of 2 M hydrochloric acid and water. The organic phase is concentrated and distilled.

Yield: 408 g (66% of theory) Boiling point: $73^{\circ}-78^{\circ}$ C. $/ 0.2 \mathrm{~mm}$

EXAMPLE XXI
tert-Buty1 2-Cyclopentyl-2-(4-methylphenyl)acetate

33.5 g (0.3 mol of potassium tert-butoxide are initially introduced into 100 ml of anhydrous DMF at $0^{\circ} \mathrm{C}$., and 51.6 $\mathrm{g}(0.25 \mathrm{~mol})$ of the compound from Example XX in 250 ml of anhydrous DMF are added dropwise. The mixture is stirred at $0^{\circ} \mathrm{C}$. for 30 min and $32.2 \mathrm{ml}(0.3 \mathrm{~mol})$ of cyclopentyl bromide in 150 ml of anhydrous DMF are added dropwise at $5^{\circ}-15^{\circ} \mathrm{C}$. and the mixture is stirred at $25^{\circ} \mathrm{C}$. for 20 h . After concentrating, the residue is partitioned between water and diethyl ether, and the ether phase is dried over sodium sulphate and concentrated. The product crystallizes out.

Yield: 67 g (97.5% of theory)
Solidification point: $51^{\circ}-53^{\circ} \mathrm{C}$.
The compounds of Table II are prepared in analogy to the procedure of Example XXI:

TABLE II

55					
60	Ex. No.	D	R^{19}	$\mathrm{R}_{\text {f }}$ (solvent)	Starting material*
	XXII	cHex	tBu	0.71 (I)	Ex. No. XX
	XXIII	cHept	tBu	0.32 (1)	Ex. No. XX
	xxIy	${ }_{i P r}$	CH_{3}	0.86 (Q)	sigma
	XXV	iBu	$\mathrm{tBu}^{\text {a }}$	0.84 (R)	Ex. No. XX
	XXVI	cPent	CH_{3}	0.59 (H)	sigma
65	XXVII	cHept	CH_{3}	0.57 (I)	sigma

EXAMPLE XXVIII
tert-Butyl 2-(4-bromomethyl-phenyl)-2-cyclopentylacetate

5

10
$27.4 \mathrm{~g}(0.1 \mathrm{~mol})$ of the compound from Example XXI are dissolved in 200 ml of tetrachloromethane and the solution is heated to boiling. After addition of 0.82 g of 15 azobisisobutyronitrile, $18.7 \mathrm{~g}(0.105 \mathrm{~mol})$ of N -bromosuccinimide are added in portions and the mixture is then refluxed for 1 h , cooled to $0^{\circ} \mathrm{C}$. and succinimide is filtered off. After concentrating the filtrate the product precipitates. It is washed with petroleum ether $(40 / 60)$ and 20 dried.

Yield: 20 g (57% of theory)
M.p.: $73^{\circ}-76^{\circ} \mathrm{C}$.

The compounds of Table III are prepared analogously to the procedure of Example XXVIII:

TABLE III

Ex. No.	D	R^{19}	R_{f} (solvent)	Starting material* (Syn. from Ex. No.)
XXIX	cHex	$\mathrm{tBu}^{\text {a }}$	0.58 (H)	Ex. No. XXII
XXX	cHept	$\mathrm{tBu}^{\text {a }}$	0.84 (M)	Ex. No. XXIII
XXXI	iPr	CH_{3}	0.78 (M)	Ex. No. XXIV
XXXII	iBu	$\mathrm{tBu}^{\text {a }}$	0.86 (M)	Ex. No. XXY
XXXIII	cPent	CH_{3}	0.63 (H)	Ex No. XXVI
XXXIV	chept	CH_{3}	0.59 (I)	Ex. No. XXVII

24

EXAMPLE XXXV
tert-Butyl 2(R,S)-2-cyclopentyl-2-[4-(2,4-dimethyl-α-carbolin-9-yl)methyl]phenyl-acetate

73.6 g (375 mmol) of the compound from Example XIX are reacted at $25^{\circ} \mathrm{C}$. for 30 min with $42.13 \mathrm{~g}(375 \mathrm{mmol})$ of potassium tert-butoxide in 700 ml of anhydrous $\mathrm{N}, \mathrm{N}-$ dimethylformamide and the mixture is then treated with 161.7 g (375 mmol) of the compound from Example XXVIII, dissolved in 680 ml of anhydrous N, N dimethylfonnamide. The reaction is complete after 1 h (TLC checking petroleum ether:ethyl acetate $=10: 1$). For working up, 21 of buffer solution ($\mathrm{pH}=4 / \mathrm{Merck}$) and 21 of water are added, the precipitate which is deposited is filtered off, washed with water and again filtered off rapidly. The moderately damp solid is then stirred successively with petroleum ether and methanol and filtered off with suction. Vacuum drying over phosphorus pentoxide yields 139.8 g ($298 \mathrm{mmol} / 79 \%$) of product.
M.p.: $160^{\circ}-161^{\circ} \mathrm{C}$. (uncorrected).
$\mathrm{R}_{f}=0.39$ (petroleum ether:ethyl acetate $=10: 1$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}, \mathrm{TMS}\right): \delta=0.91(\mathrm{M}, 1 \mathrm{H})$, $1.18-1.68(\mathrm{M}, 6 \mathrm{H}), 1.87(\mathrm{M}, 1 \mathrm{H}), 1.47(\mathrm{~S}, 9 \mathrm{H}), 2.42(\mathrm{M}$, $1 \mathrm{H}), 2.66(\mathrm{~S}, 3 \mathrm{H}), 2.83(\mathrm{~S}, 3 \mathrm{H}), 3.09(\mathrm{D}, 1 \mathrm{H}), 5.67(\mathrm{~S}, 2 \mathrm{H})$, $6.88(\mathrm{~S}, 1 \mathrm{H}), 7.13-7.41(\mathrm{M}, 7 \mathrm{H}), 8.09(\mathrm{D}, 1 \mathrm{H}) \mathrm{ppm}$.
The compounds of Tables IV and V are prepared analogously to the procedure of Example XXXV:

TABLE IV
Ex. No.

TABLE IV-continued

| Ex. No. | D | Starting material
 (Syn. from Ex. No.) |
| :--- | :--- | :--- | :--- |
| XXXVII | Benzyl bromide:
 Ex. No. XXX
 Heterocycle: Ex. No. XIX | |

XXVIII

cHept 0.54 (L)
Benzyl bromide:
Ex. No. XXX
Heterocycle: Ex. No. VII

XXXIX

cHept $0.27(H)$
Benzyl bromide:
Ex. No. XXX
Heterocycle: Ex. No. VI

XI

cPent 0.59 (D)
Benzyl bromide:
Ex. No. XXVIII
Heterocycle: Ex No. VIII

XLI

cHept $0.29(\mathrm{H})$
Benzyl bromide: Ex. No. XXX Heterocycle: Ex. No. VIII

XIII

cPent 0.70 (M)
Benzyl bromide:
Ex. No. XXVIII
Heterocycle: Ex. No. IX

XLIII

cHept $0.36(\mathrm{H})$
Benzyl bromide:
Ex. No. XXX
Hetrocycle: Ex. No. IX

TABLE IV-continued

TABLE IV-continued

Ex. No.				
LII		cHex	$0.57 \text { (B) }$	Benzyl bromide: Ex. No. XXIX Heterocycle: Ex. No. XIX
LIII		cPent	$\text { M.p. }=189-190^{\circ} \mathrm{C} .$	Benzyl bromide: Ex. No. XXVIII Heterocycle: a) C. Herdeis et al., Heterocycles 22, 2277 (1984).
LIV			$\begin{aligned} & 0.49(\mathrm{M}) \\ & \text { M.p.: } 142^{\circ} \mathrm{C} . \\ & \text { MS (CINH } \left.{ }^{2}\right) \\ & 457(100 \%) \end{aligned}$	Benzyl bromide: c) Ex. No. XXXII Heterocycle: c) Ex . No. XIX

TABLE V
Ex. No .

TABLE V-continued
Ex. No .

40

EXAMPLE LXI

2-(R,S)-2-Cyclopentyl-2-[4-(2,4-dimethyl- α -carbolin-9-yl)methyl]phenyl-acetic acid hydrochloride

139.8 g (298 mmol) of the compound from Example XXXV are dissolved in 11 of 1,4-dioxane and the solution is stirred at $70^{\circ} \mathrm{C}$. for 3 h with 240 ml of concentrated
hydrochloric acid (37% strength). After reaction is complete (TLC checking petroleum ether:ethyl acetate $=10: 1$), the mixture is cooled to about $15^{\circ} \mathrm{C}$. and then poured in portions sodium hydroxide solution, and the precipitate obtained is filtered off with suction through a paper filter and washed with water until the washing water has a $\mathrm{pH}>4$. The rapidly filtered off solid is stirred with 11 of petroleum ether (boiling
 range $60^{\circ}-80^{\circ} \mathrm{C}$.), filtered off with suction again and dried over phosphorus pentoxide in vacuo.

Yield: 130.3 g ($290 \mathrm{mmol} / 97 \%$)
M.p.: $260^{\circ}-262^{\circ} \mathrm{C}$. (uncorrected)
$\mathrm{R}_{f}=0.51$ (dichloromethane:ethanol $=20: 1$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{d}_{6}\right.$-DMSO, 200 MHz, TMS $): \delta=0.88(\mathrm{M}, 1 \mathrm{H})$, $1.09-1.67(\mathrm{M}, 6 \mathrm{H}), 1.79(\mathrm{M}, \mathbf{1 H}), 2.38(\mathrm{M}, 1 \mathrm{H}), 2.68(\mathrm{~S}$, 3H), $2.84(\mathrm{~S}, \mathbf{3 H}), 3.16(\mathrm{D}, 1 \mathrm{H}), 4.7-5.9(1 \mathrm{H}) 5.80(\mathrm{~S}, 2 \mathrm{H})$, $7.12-7.26(\mathrm{M}, 5 \mathrm{H}), 7.32(\mathrm{M}, 1 \mathrm{H}), 7.49(\mathrm{M}, 1 \mathrm{H}), 7.59(\mathrm{D}$, $1 \mathrm{H}), 8.17(\mathrm{D}, 1 \mathrm{H}) \mathrm{ppm}$.

The compounds of Table VI are prepared analogously to the procedure of Example LXI:
TABLE VI
Ex. No.

LXIV

LXV

cHept 0.27 (D)
Ex. No. XXXIX

LXVI

cPent 0.37 (C)
Ex. No. XL

LXVII

cHept 0.15 (C)
Ex. No. XLI

LXVIII

cPent 0.43 (A)
Ex. No. XLII

EXAMPLE LXXXI

2-(R,S)-2-[4-(2-Methyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cylcoheptyl-acetic acid

$1.5 \mathrm{~g}(3.37 \mathrm{mmol})$ of the compound from Example LIX are reacted with 20 ml of 1 M methanolic sodium hydroxide sor is h. The alkaline aqueous phase is component is evaporated. The alkaline aqueous phase is extracted several times with ether, freed from residues of organic solvent in vacuo and adjusted to a pH of about 2 at $0^{\circ}-5^{\circ} \mathrm{C}$. using aqueous 1 M hydrochloric acid. The precipitate which is deposited in this process is filtered off with suction, thoroughly washed with water and dried over phosphorus pentoxide in a high vacuum.

Yield: 1.18 g

The reaction can be accelerated using potassium hydroxide instead of sodium hydroxide and with addition of 1,4 , $7,10,13,16$-hexaoxacyclooctadecane.

60
$\mathrm{R}_{\mathrm{f}}=0.39$ (petroleum ether:ethyl acetate $=2: 1$)
The compounds of Table VII are prepared in analogy to the procedure of Example LXXXI:

TABLE VII

EXAMPLE LXXXII can also be prepared by method 2^{50} which follows:
2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-(prop-2-yl)-acetic acid

$1.11 \mathrm{~g}(2.77 \mathrm{mmol})$ of the compound from Example No. LV are boiled under reflux for 18 hours in 45 ml of methanol and 3 ml of 2 M aqueous sodium hydroxide solution. As the reaction is incomplete according to TLC (dichloromethane:methanol $=20: 1$), 30 ml of tetrahydrofuran 55 and a further 3 ml of 2 M aqueous sodium hydroxide solution are added, a clear solution being obtained. After boiling under reflux for four hours, the reaction is complete (TLC, see above). The mixture is cooled, diluted with water and neutralized with 2 M aqueous hydrochloric acid. The pre60 cipitate which is obtained in this process is filtered off with suction, washed with water and dried over phosphorus pentoxide in vacuo.

Yield: 0.597 g
M.p. $=225^{\circ} \mathrm{C}$.
$65 \quad \mathrm{R}_{\boldsymbol{f}}=0.28$ (dichloromethane:methanol $=20: 1$)
The compounds of Table VIII are prepared analogously to the procedure of EXAMPLE XXXV:

TABLE VIII

*Ex. No. XXVIII was employed as the benzyl bromide.
The compounds of Table IX are prepared analogously to ${ }^{30}$ the procedure of Example LXI:

TABLE IX

43
EXAMPLE XCI
2-Hydrazino-5-trifluoromethylpyridine

In analogy to the procedure of Example No. IV, 2-hydrazino-5-trifluommethylpyddine is prepared from 2-chloro-5-trifluommethylpyridine.
$\mathrm{R}_{f}=0.37$ (BABA)
EXAMPLE XCII
5-Oxo-5,6,7-tetrahydro- α-carboline

44
(1959)) are initially introduced into 43 ml of tetrahydrofuran while stirring at $0^{\circ} \mathrm{C}$. and the mixture is treated dropwise with a solution of $15.5 \mathrm{~g}(68.2 \mathrm{mmol})$ of DDQ in 277 ml of tetrahydrofuran and 31 ml of water. The reaction mixture is
5 stirred at $0^{\circ} \mathrm{C}$. for 5 minutes and at $20^{\circ} \mathrm{C}$. for 2 hours, then treated with a buffer of $\mathrm{pH}=10$ (Merck) and extracted with diethyl ether. The evaporated organic phase yields a crude product which is purified by chromatography (silica gel 60 ,
${ }_{10}$ Merck, first petroleum ether:ethyl acetate $=1: 1$, then dichlommethane methanol=20:1). The fractions thus obtained are precipitated by stirring with acetone, and the product is filtered off with suction and freed from the solvent in vacuo.
15

Yield: 0.92 g
20
$\mathrm{R}_{f}=0.17$ (petroleum ether:ethyl acetate $=1: 4$).

25 The compounds of Table \mathbf{X} are prepared analogously to the procedure of Example VI:
$3.3 \mathrm{~g}(19.2 \mathrm{mmol})$ of $5,6,7,8$-tetrahydro- α-carboline (Lit.: S. Okuda and M. M. Robinson, J. Am. Chem. Soc. 81, 740

TABLE X

Ex. No.		M.p. (${ }^{\circ} \mathrm{C}$.) R_{f} (solvent)	MS (EI)	Starting material from Ex. No.
XCIII				

TABLE XI

Ex. No.	$-\mathrm{Z}-$	M.p. (${ }^{\circ} \mathrm{C}$.) R_{f} (solvent)	MS (EI)

TABLE XI-continued

Ex. No.	M.p. (${ }^{\circ} \mathrm{C}$.) R_{f} (solvent)	MS (EI)

XCVII

XCVIII $\quad \mathrm{Me} \quad 0.3$ (E) XCIII

The compounds of Table XII are prepared analogously to ${ }^{25}$ the procedure of Example XXXV:

TABLE XII

Ex. No.	\mathbf{Z}	M.p. [${ }^{\circ} \mathrm{C}$.] R_{f} (solvent)	Starting material from Ex. No.
IC			

C

с

CII

CIII

Benzyl bromide:
Ex. No. XXYIII Heterocycle: Ex. No. XCVII
TABLE XII-continued

Ex. No.	Z		M.p. [${ }^{\circ} \mathrm{C}$.] R_{f} (solvent)
CIV	Starting material from Ex. No.		
Benzyl bromide:			
Ex. No. XXVIII			
Heterocycle: Ex. No. XCVIII			

*racemic
20

The compounds of Table XIII are prepared analogously to the procedure of Example LXI:

*racemic

EXAMPLE NO. CXI
1-(R,S)-1-Phenyl-2-triphenylmethyloxy-ethanol

13 g (94 mmol) of 1-(R,S)-1-Phenyl-2-hydroxy-ethanol are reacted at $20^{\circ} \mathrm{C}$. with $15.6 \mathrm{ml}(113 \mathrm{mmol})$ of triethylamine and $23.6 \mathrm{~g}(84.6 \mathrm{mmol})$ of triphenylmethyl 5 chloride in 200 ml of DMF. After 20 h , the mixture is poured into buffer of $\mathrm{pH}=4$ (Merck), the phases are separated, and the organic phase is dried with magnesium sulphate and evaporated to dryness. The crude product is purified by chromatography on silica gel 60 (Merck/petroleum ether:ethyl acetate $=20: 1$ later $10: 1$);
yield 27 g .
$\mathrm{R}_{f}=0.36$ (petroleum ether:ethyl acetate $=5: 1$)
EXAMPLE NO. CXII
6-Chloro-5-methyl-3-nitro-2-(2-oxo-cyclohexyl)pyridine

20 g (95.7 mmol) of 2,6-dichloro-5-methyl-3-nitropyridine are reacted with $13.3 \mathrm{ml}(95.7 \mathrm{mmol})$ of triethylamine and $14.5 \mathrm{~g}(95.7 \mathrm{mmol})$ of freshly distilled 1-pyrrolidino-cyclopentene at $20^{\circ} \mathrm{C}$. in 200 ml of DMF under argon as a protective gas. After the starting material has disappeared according to thin-layer chromatography (silica gel/petroleum ether:ethyl acetate=4:1), 200 ml of 1 M hydrochloric acid are added and the mixture is diluted with about 600 ml of water. The precipitate which is deposited is filtered off with suction, dried over phosphorus pentoxide in a high vacuum and purified by chromatography (silica gel 60/Merck/petroleum ether:ethyl acetate=2:1).
$\mathrm{R}_{f}=0.69$ (petroleum ether:ethyl acetate-4:1)
EXAMPLE NO. CXIII
2-Methyl-5,6,7,8-tetrahydro- δ-carboline

$2.8 \mathrm{~g}(10.4 \mathrm{mmol})$ of the compound from Example CXII are reacted on 0.5 g of palladium (5%)/carbon in 30 ml of

THF under a hydrogen pressure of 3 bar for 18 h . The catalyst is then filtered off with suction and washed several times with methanol and dichloromethane. The flitrate is evaporated and dried in a high vacuum; in analogy to the procedure of Example No. XIX:

TABLE XIV
45
Ex. No .

1-Chloro-5,7-dimethyl- β-carboline

10.2 g (49 mmol) of the compound from Example No. CXV are reacted at $125^{\circ} \mathrm{C}$. for 24 h with 222 ml (2.4 mol) of phosphorus oxychloride and $155 \mu \mathrm{l}$ of N, N-dimethylaniline. The mixture is poured into 11 of ice water after cooling, then neutralized with aqueous sodium carbonate solution and extracted several times with ethyl acetate. The organic phase is dried with magnesium sulphate, evaporated and freed from the residual solvent in a high vacuum The crude product is purified by chromatography on silica gel 60 (Merck/dichioromethane);
yield: 4.3 g .
$\mathrm{R}_{f}=0.39$ (dichloromethane:ethanol $=20: 1$)

EXAMPLE NO. CXIX

5,7-Dimethyl- β-carboline

45
3.8 g (16.5 mmol) of the compound from Example CXVIII are reacted with 1.3 g of sodium hydrogen carbonate on 700 mg of palladium $(10 \%) /$ carbon at a hydrogen pressure of about 3 bar and $20^{\circ} \mathrm{C}$. for 10 d in 40 ml of THF, 300 mg of palladium $(10 \%) /$ carbon and 5 ml of methanol being added on every second day. The catalyst is then filtered off with suction through kieselguhr, washed with THF, boiled in methanol and dichloromethane and again filtered off with suction. The combined organic solutions are evaporated, and the residue is precipitated by stirring with ether and filtered off with suction. After vacuum drying, 3 g of product are obtained.

40

5,6-Dimethyl-1-(pyrid-2-yl)-1H-benzotriazole

$14.85 \mathrm{~g}(103 \mathrm{mmol})$ of 5,6 -dimethyl-1H-benzolriazole are ${ }^{20}$ dissolved in 150 ml of anhydrous DMSO, reacted with 5 g $(104 \mathrm{mmol})$ of 50% strength sodium hydride ($+40 \%$ paraffin oil) at $20^{\circ} \mathrm{C}$. until evolution of hydrogen is complete, treated with $10 \mathrm{~g}(103 \mathrm{mmol})$ of 2-fluoro-pyridine and the mixture is boiled under reflux for 18 h . After cooling to $20^{\circ} \mathrm{C}$., the mixture is made up to a volume of about 11 with water, and the resulting precipitate is filtered off with suction and washed with water. The substance, which is dried over phosphorus pentoxide in a high vacuum, is purified by chromatography on silica gel 60 (Merck/dichloromethane to dichloromethane:ethanol $=100: 1$);
yield: 10.6 g .
$\mathrm{R}_{\boldsymbol{J}}=0.38$ (dichloromethane:ethanol $=50: 1$)

EXAMPLE NO. CXXI

6,7-Dimethyl- α-carboline

$8.9 \mathrm{~g}(39.7 \mathrm{mmol})$ of the compound from Example No. CXX are slowly heated to $165^{\circ} \mathrm{C}$. in 140 g of polyphosphoric acid under argon, the mixture being poured into 1.5 1 of water and adjusted to $\mathrm{pH}=6-7$ with 1 M aqueous sodium hydroxide solution before disappearance of the starting material (TLC checking/dichloromethane:ethanol=20:1). The precipitate obtained is filtered off with suction, washed with water, rapidly filtered off with suction, then washed 60 with petroleum ether and filtered off with suction again. After vacuum drying 1.8 g of product are obtained.

R, 0.32 (dichlommethane:ethanol $=20: 1$)

TABLE XV

20
25
30
35
The compounds in Table XVI are prepared in analogy to 40

TABLE XVI the procedure of Example No. XXVIII:

TABLE XVII

(

TABLE XVII-continued

Ex. No.	Z		(1) D	R^{10}	R_{f} (solvent)	MS	Starting material Ex. No.
CXXXVII		p	rac Me	${ }_{\text {tBu }}$	0.43 (L)		XIX
CxXXVIII		p	rac Et	tBu	0.51 (L)		XIX
CXXXIX		p	rac nPent	Et			XIX and CXXVII
CXL			rac	Et			XIX and CXXVI

TABLE XVIII
Ex. No.

CXLII

p rac ePent
0.14 (G)

CXXIX
LXXXI

TABLE XVIII-continued

TABLE XVIII-continued

PREPERATION EXAMPLES

Examples 1, 2 and 3
2-(S)- and 2-(R)-2-[4-(2,4-Dimethyl-5,6,7,8-tetrahydro- α-carbolin- 9 -yl)-methyl-phenyl]-2-cyclopentyl-acetic acid $\mathrm{N}-[(\mathrm{R})$ phenylglycinolamide]

3.00 g (7.2 mmol of the compound from Example LXII are dissolved in 70 ml of dichloromethane with $0.99 \mathrm{~g}(7.2$ mmol) of (\mathbf{R})-phenylglycinol (Aldrich), and the solution is treated successively at $0^{\circ} \mathrm{C}$. with $1.07 \mathrm{~g}(7.9 \mathrm{mmol})$ of 1-hydroxy-1H-benzotriazole hydrate (Aldrich), 1.58 g (8.3 mmol) of N^{\prime}-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (Aldrich) and 2 ml of triethylamine and then stirred at room temperature for 20 hours. The organic
solution is extracted with aqueous ammonium chloride solution, with aqueous sodium hydrogen carbonate solution and with a buffer of $\mathrm{pH}=4$ (ready-to-use buffer solution, \mathbf{E}. Merck, Darmstadt), dried with solid anhydrous sodium sulphate and evaporated.
Yield of the diastereomer mixture: 3.50 g (Example 1).
The product mixture is separated by chromatography (silica gel, dichloromethane : ethanol $=50: 1$): Example No. 2:
45 Diastereomer A [2(S)<diastereomer]: 1.23 g
R0.18 (dichloromethane:ethanol=50:1)
$\mathrm{c}^{1} \mathrm{H}-\mathrm{NMR}$ (d-DMSO, 250 MHz , TMS): $\delta=0.87$ (M, 1H), $1.19-1.63(\mathrm{M}, 6 \mathrm{H}), 1.72(\mathrm{M}, 1 \mathrm{H}), 2.45(\mathrm{M}, 1 \mathrm{H}), 2.58(\mathrm{~S}$, $3 \mathrm{H}), 2.79(\mathrm{~S}, 3 \mathrm{H}, 3.26(\mathrm{D}, 1 \mathrm{H}), 3.44-3.53(\mathrm{M}, 2 \mathrm{H})$,
50 4.21-4.31 (M, 2H, 5.63(S, 2H), 6.97-7.11 (M, 8H), $7.20-7.28(\mathrm{M}, 3 \mathrm{H}) 7.41(\mathrm{M}, 1 \mathrm{H}) 7.54(\mathrm{D}, 1 \mathrm{H}), 8.12(\mathrm{D}, 1 \mathrm{H})$, 8.24 (D, 1H)ppm

Example No. 3:
Diastereomer B [2CR)-diastereomer]: 1.12 g
$55 \mathrm{R}_{f}=0.16$ (dichloromethane: ethanol $=50: 1$)
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d-DMSO, $250 \mathrm{MHz}, \mathrm{TMS}$): $\delta=0.84$ (M, 1H, $1.07-1.59$ (M, 7H, 2.34 (M, 1H), 2.61 (S, 3H), 2.80 (S, 3H), $3.25(\mathrm{D}, 1 \mathrm{H}), 3.43(\mathrm{M}, 2 \mathrm{H}), 4.63-4.72$ (M, 2H, 5.66 (S, 2H), $6.98(\mathrm{~S}, 1 \mathrm{H}), 7.13(\mathrm{M}, 2 \mathrm{H}), 7.20-7.30(\mathrm{M}, 8 \mathrm{H}), 7.43(\mathrm{M}$, $001 \mathrm{H}), 7.57(\mathrm{D}, 1 \mathrm{H}), 8.12(\mathrm{D}, 1 \mathrm{H}), 8.36(\mathrm{D}, 1 \mathrm{H}) \mathrm{ppm}$.

The absolute configurations of the enantiomerically pure carboxylic acids 2-(S)- and 2-(R)-2-\{4-[(quinolin-2-yl) methoxy]phenyl\}-2-cyclopentyl-acetic acid [cf. EP 509 359] are known, so the absolute configurations of the amides $65 \mathrm{Ex} . \mathrm{No} . \mathrm{C} 1$ and Ex. No. C2 prepared therefrom analogously to the procedure of Examples 1 and 2 can be derived. The ${ }^{1} \mathrm{H}$-NMR spectra of the two diastereomeric products (200
$\mathrm{MHz}, \mathrm{d}_{6}$-DMSO, TMS for Example No. Cl and 250 MHz , d_{6}-DMSO, TMS for Example No. C2/FIG. 1) have significant differences in the aromatic region: the H signals of the phenyl radical of Ex. No. C1 are at about 7.1 ppm (3H) and $7.3 \mathrm{ppm}(2 \mathrm{H})$ and the H signals of Ex. No. C2 are at about
$7.3 \mathrm{ppm}(5 \mathrm{H})$. This finding is applicable to the compounds of Examples 2 and 3 (FIG 2) and also to many other derivatives of this type.

The examples mentioned in Tables 1,2 and 3 are prepared in analogy to the procedure of Examples 1,2 and 3:

TABLE 1

| Ex. No. | Z | $\mathrm{D} \quad 1$ | R_{f} (solvent) | Starting material*
 (Ex. No.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | | cPent rac $0.41 / 0.46$ (E) | LXI | |

5

6

7

8

9

cHept R 0.26 (D)
LXIII

11

12

13

14

15

16

TABLE 1-continued

18
$\begin{array}{lll}\text { cHept } S & 0.38 \text { (C) } \quad \text { LXVII }\end{array}$

19

20

21

22

23

cHept R 0.23 (D) \quad LXIX
25

26

27

28

29

30

31

LXXIII

TABLE 1-continued

33

cPent S 0.48 (C) LXXIV

34

35

36

37

38

*(R)-Phenylglycinol is commercially available from Aldrich.

TABLE 2

*(S)-Phenylglycinol is commercially available from Aldrich.

TABLE 3

TABLE 3-continued

48

49

cPent H
cPent H
cPent H
cHept \mathbf{H}
cHept H
cHept H
rac
0.45 (C)

Carboxylic acid: Ex. No. LXIX
Amine from Aldrich

TABLE 3-continued

TABLE 3-continued

${ }^{*}$ Resolution of enantiomers is carried out by means of HPLC (Chiralpak $A D$, length 250 mm , diameter 4.6 mm , particle size 10μ, elvent: 95% n-heptane + 5% ethanol (the latter containing 1% water and 0.2% trifuoroacetic acid)).

EXAMPLE 69
2-(R,S)-2-[4-(2,4-Dimethyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cycloheptyl-acetic acid N -(2-hydroxybenzy) amide

0.60 g of the compound from Example 58 are boiled under reflux for 22 hours with 33 mg of palladium (10% on animal carbon) and 33 mg of para-toluenesulphonic acid monohydrate in 3 ml of methanol and 0.6 ml of water under argon as a protective gas. If reaction is incomplete (TLC checking dichloromethane:ethanol $=50: 1$), 33 mg of palladium (10% on animal carbon) and 33 mg of paratoluenesulphonic acid monohydrate are added once more and the mixture is boiled under reflux for a further 24 hours. The catalyst is filtered off hot with suction and washed with plenty of hot methanol, and the filtrate is evaporated. After drying in a high vacuum over phosphorus pentoxide, 0.52 g of product are obtained.
$\mathrm{R}_{f}=0.33$ (dichloromethane:ethanol=50:1)
EXAMPLE 70
2-(R,S)-2-[4-(3-Hydroxymethyl- β-carbolin-9-yl)-methyl-phenyl]-2-cyclo-pentyl-acetic acid N -(R)phenylglycinolamide

500 mg (0.868 mmol) of the compound from Example 31 are treated dropwise with $1.737 \mathrm{ml}(1.737 \mathrm{mmol})$ of a 1 M lithium aluminium hydride solution in tetrahydrofuran under argon at $0^{\circ} \mathrm{C}$. in 5 ml of anhydrous tetrahydrofuran and stirred at about $20^{\circ} \mathrm{C}$. for 4 h . The reaction mixture is treated cautiously with 5 ml of water and adjusted to a pH of about 2 using 2 M aqueous hydrochloric acid. The aqueous phase is extracted several times with diethyl ether and dichloromethane, dried with sodium sulphate and evaporated. The crude product is purified by chromatography on
silica gel 60 (Merck, dichloromethane to dichloromethane:methanol=50:1).

Yield: 0.12 g
$\mathrm{R}_{f}=0.26$ (dichloromethane:ethanol $=20: 1$) out 4 using 1 M hydrochloric acid, and the precipitate which is deposited is filtered off with suction, washed with water and petroleum ether:diethyl ether=5:1 and freed from the residual solvents in a high vacuum over phosphorus pentoxide.

Yield: 0.154 g
$\mathrm{R}_{f}=0.50$ (dichloromethane:methanol:acetic acid=90:10:2)

2-(R,S)-2-[4-(2,4-Dimethyl-5,6,7,8-tetrahydro- α -carbolin-9-yl)-methyl-phenyl]-2-cycloheptyl-acetic acid N -(3-carboxybenzyl)amide

10

15
5

20

25

30
The title compound can be prepared from the compound of Example 59 analogously to the procedure of Example 73.

$$
\mathrm{R}_{f}=0.27 \text { (dichloromethane:ethanol }=20: 1 \text {) }
$$

The compounds shown in Tables 5, 6, 7, 8, 9 and 10 are prepared in analogy to the procedure of Example 1:

TABLE 5

35 $40 \underbrace{80}_{\text {tracemic }}$

TABLE 7
45

60

Ex. No.	1	$-\mathrm{R}^{20}$	R_{f} (solvent)	Starting material
81	rac	0.10 (P)	Acid: Ex. No. LXXXXX Amine from Aldrich	
82	Cac		0.28 (P)	Acid: Ex. No. LXXIX Amine from Aldrich

TABLE 8

Ex. No.	1 X	Y	$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C} .\right) \\ & \mathrm{R}_{\mathrm{f}} \text { (solvent) } \end{aligned}$	MS (FAB)	Starting material a) Reference b) Distributor c) Synthesis from Ex. No.
83	rac $3-\mathrm{OCH}_{3}$	$4-\mathrm{OCH}_{3}$	$\begin{aligned} & 179 \\ & 0.50(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & 562(100 \%) \\ & 154(80 \%) \end{aligned}$	Carboxylic acid: c) Ex. No. LXI Amine from Aldrich
84					
	$\mathrm{rac} 3-\mathrm{CH}_{3}$	$5-\mathrm{CH}_{3}$	$\begin{aligned} & 212 \\ & 0.60 \text { (B) } \end{aligned}$	530 (100\%)	Carboxylic acid:
					c) Ex. No. LXI
					Amine from Emka-Chemie.
85	rac 3-Cl	$5-\mathrm{Cl}$	0.18 (M)	570 (100\%)	Carboxylic acid:
				196 (50\%)	c) Ex. No. LXI
86					Amine from Maybridge.
	rac 3-OH	4-OH	137	534 (100\%)	Carboxylic acid:
			0.39 (A)	307 (60\%)	c) Ex. No. LXI
					Amine from Aldrich.
87	$\mathrm{rac} 3-\mathrm{OCH}_{3}$	4-OH	135	548 (80\%)	Carboxylic acid:
			0.65 (A)	154 (100\%)	c) Ex. No. LXI
					Amine from Aldrich.

35

TABLE 9

40

45

50
Starting material*
a) Reference

Ex.			M.p. ($\left.{ }^{\circ} \mathrm{C}.\right)$	MS	b) Distributor
No.	1	D	R $_{\mathrm{f}}$ (solvent)	(FAB)	c) Synthesis from Ex. No.

88	rac iPr	$\begin{aligned} & 210 \\ & 0.37 / 0.31(\mathrm{~A}) \end{aligned}$	$\begin{gathered} 506 \\ (100 \%) \\ 154 \\ (60 \%) \end{gathered}$	Carboxylic acid: Ex. No. LXXXII
89	rac iBu	$0.30 \text { (A) }$	$\begin{gathered} 520 \\ (100 \%) \\ 154 \\ (50 \%) \end{gathered}$	Carboxylic acid: Ex. No. LXXXX

*(R)-Phenylglycinol is commercially available from Aldrich.

$*_{\text {racemic }}$

The compounds of Table 11 are prepared analogously to the procedure of Example Nos. 1, 2 and 3:

TABLE11

TABLE11-continued

101

$\begin{array}{lll}\operatorname{iPr} & R & 204^{\circ} \mathrm{C} .\end{array}$ $506(100 \%)$
$154(40 \%)$
108

CVII

TABLE11-continued

110

111

CVIII

112

CDX

113

cPent rac 0.37 C
CX

114

115

116

(FABLE11-continued

The compounds of Table 12 are prepared analogously to the procedure of Example Nos. 1, 2 and 3:

TABLE 12

(C)

The compounds of Table 13 are prepared analogously to the procedure of Example No. 73:

TABLE 13
132
132

The compounds of Table 14 are prepared analogously to the procedure of Example No. 70:

TABLE 14

10

15

20

Part A)
$0.60 \mathrm{~g}(1.10 \mathrm{mmol})$ of the compound from Example No. 137 is treated with 192μ (3.29 mmol) of triethylamine in 10 ml of dichloromethane and then reacted at $0^{\circ} \mathrm{C}$. with $70 \mu \mathrm{l}$ (0.99 mmol) of acetyl chloride. After a stirring time of 3 hours, in which the reaction temperature rises to $20^{\circ} \mathrm{C}$., the mixture is shaken successively with 1 M hydrochloric acid, 0.1 M aqueous sodium hydroxide solution and water, and the organic phase is dried with magnesium sulphate and evaporated.
Part B)
The crude product thus obtained shows a double acetylation ($631,57 \% \mathrm{M}^{+}+\mathrm{H} / 653,6 \%, \mathrm{M}^{+}+\mathrm{Na}$) in the mass spectrum (FAB). It is therefore reacted with 2 M sodium hydroxide solution at $20^{\circ} \mathrm{C}$. for one hour in 6 ml of methanol. The pH is then adjusted to 2 using 1 M hydrochloric acid and the mixture obtained is extracted with ethyl acetate. The organic phase is washed with water until neutral, dried with magnesium sulphate and evaporated in vacuo. Drying in a high vacuum yields 0.28 g of product.
$\mathrm{R}_{f}=0.17$ (Dichloromethane:ethanol=20:1)
EXAMPLE NO. 139
2-(R,S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid N -[1-(R,S)-1-(4-acetamido-phenyl)-2-acetoxy-ethyl]amide

If the compound from Example No. 137 is reacted with 4 equivalents each of triethylamine and acetyl chloride analo-

105
106
EXAMPLE NO. 142
gously to Part A of the procedure from Example No. 138, the title compound is obtained.

$$
\mathrm{R}_{f}=0.56 \text { (Dichloromethane:ethanol=20:1) }
$$

The compounds of Table 15 are prepared analogously to the procedure of Example No. 138:

TABLE 15

10
5

15

$4.5 \mathrm{~g}(8.46 \mathrm{mmol})$ of the compound No. 2 are suspended in 300 ml of dichloromethane, treated with 2.05 ml (25.4 $\mathrm{mmol})$ of pyridine and $1.82 \mathrm{ml}(25.4 \mathrm{mmol})$ of acetyl chloride in 30 ml of dichloromethane and reacted at $20^{\circ} \mathrm{C}$. 25 for 20 hours. The mixture is extracted with buffer (Merck) of $\mathrm{pH}=2$ and water, dried with sodium sulphate and evaporated. After precipitating by stirring with methanol and subsequently drying in a high vacuum over phosphorus pentoxide, 3.6 g of product are obtained.
$\mathrm{R}=0.62$ (Petroleum ether:ethyl acetate $=1: 1$)
The compounds of Table 16 are prepared analogously to the procedure of Example No. 142:

TABLE 16
(

2-(S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-thioaceticacid N -[1-(R)-1-
phenyl-2-acetoxy-ethyl]amide

$1.5 \mathrm{~g}(2.6 \mathrm{mmol})$ of the compound from Example No. 142 are treated with 1.27 g (3.13 mmol) of 2,4-bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4disulphide (Lawesson's reagent) in 50 ml of dioxane and boiled under reflux for 5 hours. The reaction mixture is evaporated to dryness in vacuo and purified by chromatography on silica gel MATREX ${ }^{T R}$ silica Si (Amicon, Grace Company/ $20 \mu /$ MPLC column/dichloromethane:ethanol= 100:1); yield: 665 mg .
$\mathrm{R}_{\mathrm{j}}=0.53$ (Petroleum ether:ethyl acetate $=2: 1$)
MS (FAB): m/e $=612\left(4 \%[\mathrm{M}+\mathrm{Na}]^{+}\right), 590\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 529 ($19 \%, \mathrm{M}^{+}-\mathrm{ACOH}$).

EXAMPLE NO. 152

> 2-(S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methylphenyl]-2-cyclopentyl-acetic acid N-[1-(R)-1phenyl-2-[2-hydroxy-acet)-oxy-]-ethyl]amide

$\mathrm{R}_{\mathrm{f}}=0.24$ (Dichloromethane:ethanol $=50: 1$)

EXAMPLE NO. 154

$$
\begin{aligned}
& \text { 2-[4-(2,4-Dimethyl- } \alpha \text {-carbolin-9-yl)-methyl-phenyl] } \\
& \text {-2-cyclopentyl-acetic acid N-[1-(thien-2-yl)-1- } \\
& \text { methoxycarbonyl-methyl]-amide }
\end{aligned}
$$

The title compound is prepared from the compound of Example No. LXII and (R,S)-(thien-2-yl)-glycine methyl ester analogously to the synthesis procedure of Example Nos. 1, 2 and 3.
$\mathrm{R}_{\mathrm{f}}=0.67$ (Dichloromethane:ethanol $=20: 1$)

EXAMPLE NO. 157

$$
\begin{gathered}
\text { 1-(R,S)-1-Phenyl-2-triphenylmethyloxy-ethyl 2-(R, } \\
\text { S)-2-[4-(2,4-dimethyl- } \alpha \text {-carbolin-9-yl)-methyl- } \\
\text { phenyl]-2-cyclopentyl-acetate }
\end{gathered}
$$

10

The title compound is prepared from the compound of Example No. 154 analogously to the synthesis procedure of Example No. 70.
$\mathrm{R}_{f}=0.21$ (Dichloromethane:ethanol $=50: 1$)

EXAMPLE NO. 156

2-(S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic acid N -[1-(R)-1-phenyl-2-(2,4,6-trimethyl-benzoyl-oxy)-ethyl]-amide

The compound is prepared from Example No. 2 is reacted to give the title compound analogously to the procedure of Example No. 142.
$\mathrm{R}_{f}=0.26$ (Mobile phase D)
$1.0 \mathrm{~g}(2.42 \mathrm{mmol})$ of the compound from Example LXI is reacted with 1 ml (7.27 mmol of triethylamine and $206 \mu \mathrm{l}$ (2.67 mmol) of mesyl chloride in 30 ml of DMF at $-30^{\circ} \mathrm{C}$. for 2 h , then treated dropwise with a solution of $1.1 \mathrm{~g}(2.9$ mmol) of the compound from Example No. CXI and 296 mg (2.42 mmol) of DMAP in 10 ml of DMF and stirred for about 20 h while gradually warming to $20^{\circ} \mathrm{C}$. For working up, the mixture is stirred into ether/water, the phases are separated, and the organic phase is extracted with aqueous $\mathbf{1 M}$ sodium hydroxide solution and washed with water. The organic phase is dried with magnesium sulphate and evaporated-finally in a high vacuum; yield: 1.0 g .
$\mathrm{R}_{f}=0.44$ (Petroleum ether:ethyl acetate $=5: 1$)
EXAMPLES 158 and 159
1-(R,S)-1-Phenyl)-2-triphenylmethyloxy-ethyl [2-(R,S)-2-[4-(2,4-dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetate

1.0 g (1.29 mmol) of the compound from Example No. 157 is stirred with 5 ml of trifluoroacetic acid in 10 ml of THF and 5 ml of water at $20^{\circ} \mathrm{C}$. for 48 h . The mixture is then stirred with 300 ml of ether and 200 ml of aqueous sodium hydrogen carbonate solution, the phases are separated after evolution of carbon dioxide has subsided and the organic
65 phase is extracted with buffer of $\mathrm{pH}=7$ (Merck) and dried with magnesium sulphate. After evaporating the solvents, a crude product is obtained which is purified by chromatog-
raphy on silica gel (Merck/petroleum ether:ethyl acetate= 5:1) and separated into the diastereomers.
Racemic diastereomer A)
Yield: 300 mg
$\mathrm{R}_{\boldsymbol{f}}=0.54$ (Petroleum ether:ethyl acetate=2:1)

Racemic diastereomer B) Yield: 320 mg
$\mathrm{R}_{\mathrm{f}}=0.42$ (Petroleum ether:ethyl acetate $=2: 1$)
The compounds of Table 17 are prepared analogously to the procedure of Example Nos. 1, 2 and 3:

TABLE 17
(

TABLE 17-continued

181

diaB nPent
CLII

EXAMPLE NO. 185

2-(R,S)-2,4-(2,4-Dimethyl- α-carbolin-9yl)-methylphenyl]-2-cyclopentyl-acetic acid [N-benzyl, N-benzoyl]-amide

$2.0 \mathrm{~g}(4.8 \mathrm{mmol})$ of the compound from Example No. LXI
40 are reacted with $0.74 \mathrm{ml}(5.3 \mathrm{mmol})$ of triethylamine and $0.41 \mathrm{ml}(5.3 \mathrm{mmol})$ of mesyl chloride at $-30^{\circ} \mathrm{C}$. in anhydrous DMF for 1 h . A solution of $1.07 \mathrm{~g}(5.1 \mathrm{mmol})$ of N -benzyl-benzamide and $1.42 \mathrm{ml}(10.2 \mathrm{mmol})$ of triethy- at $-30^{\circ} \mathrm{C}$. and stirred for 16 h while gradually warming to $20^{\circ} \mathrm{C}$. The reaction mixture is stirred with ether and water, the phases are separated and the aqueous phase is washed after setting a pH of 4 and 7 in each case. The combined solutiom are evaporated and purified by chromatography on silica gel 60 (Merck/first dichloromethane:ethanol $=60: 1$; then petroleum ether:ethyl acetate-4:1).

55
$\mathrm{R}_{f}=0.58$ (Petroleum ether:ethyl acetate $=2: 1$)

119
EXAMPLE NO. 186

2-(R, S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetic [N -benzoyl]amide

$2.0 \mathrm{~g}(3.3 \mathrm{mmol})$ of the compound from Example No. 185 are reacted at $20^{\circ} \mathrm{C}$. under a hydrogen pressure of about 1 bar on 2 g of palladium on animal carbon (5\%) in dioxane for about 40 h . The mixture is then filtered off with suction through a Seitz filter and washed with dioxane, and the flitrate is evaporated. The crude product is precipitated by stirring with methanol at $60^{\circ} \mathrm{C}$. and is filtered off with suction at $20^{\circ} \mathrm{C}$., washed with cold methanol and dried over phosphorus pentoxide in vacuo.
$\mathrm{R}_{f}=0.49$ (Petroleum ether:ethyl acetate $=2: 1$)

EXAMPLE NO. 187
(R,S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methylphenyl]-2-cyclopentyl-acetic acid [N -(1-(R,
S)-1-phenyl-1-ethoxycarbonyl-methyl]-amide

The compound from Example No. LXI is reacted to give 65 the title compound analogously to the procedure of Example Nos. 1, 2 and 3.

The compound from Example No. 187 is reacted to give
No. 73.

EXAMPLE NO. 189

1-1-(R,S)-2-hydroxy-phenyl-ethyl2-(R,S)-2-[4-(2,4-Dimethyl- α-carbolin-9-yl)-methyl-phenyl]-2-cyclopentyl-acetate

$1 \mathrm{~g}(2.42 \mathrm{mmol})$ of the compound from Example No. LXI is reacted with $1 \mathrm{ml}(7.27 \mathrm{mmol})$ of triethylamine and 206 $\mu \mathrm{L}(2.67 \mathrm{mmol})$ of mesyl chloride for 1 h in 30 ml of DMF at $-30^{\circ} \mathrm{C}$. A solution of $1-(\mathrm{R}, \mathrm{S})$-1-phenyl-2-hydroxy-
55 thioethanol in 10 ml of DMF is then added dropwise at the temperature mentioned and the mixture is stirred for a further hour. For working up, the reaction mixture is stirred into ether and aqueous sodium hydrogen carbonate solution. The organic phase is washed with buffer $\mathrm{pH}=2$ and then
$60 \mathrm{pH}=7$, dried with magnesium sulphate and evaporated. The crude product is purified on silica gel 60 (Merck/petroleum ether:ethyl acetate $=5: 1$); yield: 660 mg
$\mathrm{R}_{\mathrm{f}}=0.58$ (Petroleum ether:ethyl acetate $=2: 1$)

We claim:

1. A cycloalkyl-indole or -azaindole derivative of the formula

R^{3} and R^{4}, including the double bond connecting them, form a phenyl ring or a 6 -membered cycloalkene ring each of which are optionally substituted 1 to 3 times by identical or different substituents,
wherein said substituents on the pyridyl, phenyl or cycloalkene ring are selected from the group consisting of halogen, trifluoromethyl, carboxyl hydroxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxycarbonyl, or an optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl wherein the substituents on the alkyl 25 group are hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms,
D represents hydrogen, cycloalkyl having 4 to 12 carbon atoms or straight-chain or branched alkyl having up to 12 carbon atoms,
E represents the -CO - or - CS group,
L represents a group of the formula $-\mathrm{NR}^{9}$ wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl which is optionally substituted 1 to 3 times by identical or different substituents selected from the group consisting of nitro, carboxyl, halogen, cyano, straight-chain or branched $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxycarbonyl or optionally substituted $\mathrm{C}_{1}-\mathrm{C}_{6}$ straight-chain or branched alkyl wherein the substituents on the alkyl are hydroxyl, carboxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxycarbonyl
or said phenyl ring is further optionally substituted by a group of the formula -OR or $-\mathrm{NR}^{11} \mathrm{R}^{12}$, wherein
\mathbf{R}^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms, R^{11} and R^{14} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms or straight-chain or branched acyl having up to 8 carbon atoms, which is optionally substituted by a group of the formula $-\mathbf{N R} \mathbf{R}^{14}$,
wherein
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 8 carbon atoms,
\mathbf{R}^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 5 carbon atoms, or represents straight-chain or branched alkyl having up 65 to 6 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$,
wherein
\mathbf{R}^{15} denotes phenyl which is optionally substituted up to 3 times by identical or different halogen or hydroxyl substituents or by straight-chain or branched alkyl having up to 5 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 22 carbon atoms, each of which is optionally substituted by a group of the formula $-\mathrm{OR}^{16}$,
wherein
R^{16} is hydrogen, benzyl, triphenylmethyl or straightchain or branched acyl having up to 6 carbon atoms,
\mathbf{R}^{7} represents hydrogen or
\mathbf{R}^{6} and \mathbf{R}^{7} together represent the group of the formula $=\mathrm{O}$, or its isomeric form or a salt thereof.
2. A cycloalkylano-indole or azaindole derivative according to claim 1 , wherein
R^{1} and R^{2} form a pyridyl ring which is optionally substituted 1 to 2 times by identical or different substituents;
R^{3} and R^{4}, including the double bond connecting them, form a phenyl ring or a 6 -membered cycloalkene ring each of which are optionally substituted 1 to 2 times by identical or different substituents,
wherein said substituents on the pyridyl, phenyl or cycloalkene ring are selected from the group consisting of fluorine, chlorine, bromine, trifluoromethyl, carboxyl,hydroxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxycarbonyl or optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl wherein the substituents on the alkyl group are hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms,
D represents hydrogen, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 10 carbon atoms,
E represents the $-\mathrm{CO}-$ or $-\mathrm{CS}-$ group,
L represents a group of the formula $-\mathrm{NR}^{9}$, wherein

- \mathbf{R}^{9} denotes hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
\mathbf{R}^{5} represents phenyl, which is optionally substituted up to 2 times by identical or different substituents selected from the group consisting of nitro, carboxyl, fluorine, chlorine, bromine, cyano, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkenyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxycarbonyl or optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl wherein the substituents on alkyl group are hydroxyl, carboxyl or by straight-chain or branched alkoxy or alkoxycarbonyl each having up to 5 carbon atoms,
or said phenyl ring is optionally further substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
\mathbf{R}^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 4 carbon atoms, R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms or denote straight-chain or branched acyl having up to 6 carbon atoms, which is optionally substituted by a group of the formula $-N R^{13} R^{14}$,
wherein
\mathbf{R}^{13} and \mathbf{R}^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 6 carbon atoms,
R^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 4 carbon atoms, or represents straight-chain or branched alkyl having up to 5 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$, wherein
R^{15} denotes phenyl which is optionally substituted up to 3 times by identical or different fluorine, chlorine, bromine or hydroxyl substituents or by straightchain or branched alkyl having up to 4 carbon atoms, or straight-chain or branched alkyl or alkenyl each having up to 20 carbon atoms, each of which is optionally substituted by a group of the formula $-\mathrm{OR}^{16}$,
wherein
\mathbf{R}^{16} is hydrogen, benzyl, triphenylmethyl or straightchain or branched acyl having up to 5 carbon atoms,
\mathbf{R}^{7} represents hydrogen or
\mathbf{R}^{6} and \mathbf{R}^{7} together represent the group of the formula $=\mathrm{O}$, or its isomeric form or a salt thereof.

3. A cycloalkano-indole or -azaindole derivative according to claim 1 , wherein
\mathbf{R}^{1} and \mathbf{R}^{2} form a pyridyl ring which is optionally substituted 1 to 2 times by identical or different substituents;
\mathbf{R}^{3} and \mathbf{R}^{4}, including the double bond connecting them, form a phenyl ring or a 6 -membered cycloalkene ring each of which are optionally substituted 1 to 2 times by identical or different substituents,
wherein said substituents on the pyridyl, phenyl or cycloalkene ring are selected from the group consisting of fluorine, chlorine, bromine, trifluoromethyl, carboxyl, hydroxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxycarbonyl or optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, wherein the substituents or the alkyl groups are hydroxyl, methoxy or ethoxy,
D represents hydrogen, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl or straight-chain or branched alkyl having up to 6 carbon atoms,
E represents the - CO - or - CS - group,
\mathbf{L} represents a group of the formula $-\mathrm{NR}^{9}$, wherein R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
\mathbf{R}^{5} represents phenyl, which is optionally substituted up to 2 times by identical or different substituents selected from the group consisting of nitro, carboxyl, fluorine, chlorine, bromine, cyano, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkenyl, straightchain or branched $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxycarbonyl or optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl wherein the substituents are hydroxyl, carboxyl, straight-chain or branched alkoxy or alkoxycarbonyl each having up to 4 carbon atoms,
or said phenyl ring is optionally further substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{12}$,
wherein
\mathbf{R}^{10} denotes hydrogen or straight-chain or branched
alkyl or alkenyl each having up to 3 carbon atoms,
R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms or denote straight-chain or branched acyl having up to 5 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$,
wherein
\mathbf{R}^{13} and \mathbf{R}^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 5 carbon atoms,
\mathbf{R}^{6} represents hydrogen, carboxyl or straight-chain or branched alkoxycarbonyl having up to 3 carbon atoms, or represents straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl or by a group of the formula $-\mathrm{O}-\mathrm{CO}-\mathrm{R}^{15}$, wherein
R^{15} denotes phenyl which is optionally substituted up to 3 times by identical identical or different straightchain or branched alkyl having up to 3 carbon atoms, or denotes straight-chain or branched alkyl or alkenyl each having up to 19 carbon atoms, each of which is optionally substituted by a group of the formula - $\mathbf{O R}^{16}$, wherein
R^{16} denotes hydrogen, benzyl, triphenylmethyl or straight-chain or branched acyl having up to 4 carbon atoms,
R^{7} represents hydrogen or
\mathbf{R}^{6} and \mathbf{R}^{7} together represent the group of the formula $=0$,
or its isomeric form or a salt thereof.
4. A cycloalkane-indole or -azaindole derivative according to claim 1 , wherein
R^{1} and R^{2} form a pyridyl ring which is optionally substituted 1 to 3 times by identical or different substituents;
R^{3} and R^{4}, including the double bond connecting them, form a phenyl ring or a 6 -mernbered cycloalkene ring each of which are optionally substituted 1 to 3 times by identical or different substituents,
wherein said substituents on the pyridyl, phenyl or cycloalkene ring are selected from the group consisting of fluorine, chlorine, bromine, trifiuoromethyl, carboxyl, hydroxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, straight-chain or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxycarbonyl optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl wherein the substituents on the alkyl group are hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms,
D represents hydrogen, cycloalkyl having 4 to 12 carbon atoms or straight-chain or branched alkyl having up to 12 carbon atoms,
E represents the - CO - or - CS group,
L represents a group of the formula $-\mathrm{NR}^{9}$
wherein
\mathbf{R}_{9} denotes hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl which is optionally substituted 1 to 3 times by identical or different substituents selected from the group consisting of nitro, carboxyl, halogen, cyano straight-chain or branched $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxycarbonyl or optionally substituted $\mathrm{C}_{1}-\mathrm{C}_{6}$ straight-chain or branched alkyl wherein the substituents on the alkyl are
hydroxyl, carboxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxycarbonyl
or said phenyl ring is further optionally substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathrm{R}^{11}$, wherein
\mathbf{R}^{10} denotes hydrogen or straight-chain or branched alkyl or alkenyl each having up to 6 carbon atoms,
R^{11} and R^{12} are identical or different and denote phenyl, hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms or straight-chain or branched acyl having up to 8 carbon atoms, which is optionally substituted by a group of the formula $-\mathrm{NR}^{13} \mathrm{R}^{14}$,
wherein
R^{13} and R^{14} are identical or different and denote hydrogen or straight-chain or branched acyl having up to 8 carbon atoms,
\mathbf{R}^{6} represents hydrogen or a straight-chain or branched alkyl having up to 6 carbon atoms which is optionally substituted by hydroxyl,
\mathbf{R}^{7} represents hydrogen
or its isomeric or a salt thereof.
5. A cycloalkane-indole or -azaindole derivative according to claim 1 , wherein
\mathbf{R}^{1} and \mathbf{R}^{2} form a pyridyl ring which is optionally substituted 1 to 3 times by identical or different substituents;
\mathbf{R}^{3} and \mathbf{R}^{4}, including the double bond connecting them, form a phenyl ring or a 6 -membered cycloalkene ring each of which are optionally substituted 1 to 3 times by identical or different substituents,
wherein said substituents on the pyridyl, phenyl or cycloalkene ring are selected from the group consisting of fluorine, chlorine, bromine, trifiuoromethyl, carboxyl,hydroxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, straight-chain or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxycarbonyl optionally substituted straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl wherein the substituents on the alkyl group are hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms,
D represents hydrogen, cycloalkyl having 4 to 12 carbon atoms or straight-chain or branched alkyl having up to 12 carbon atoms,
E represents the - CO - or - CS group,
L represents a group of the formula $-\mathrm{NR}^{9}$ wherein
R^{9} denotes hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl or phenyl,
R^{5} represents phenyl which is optionally substituted 1 to 3 times by identical or different substituents selected from the group consisting of nitro, carboxyl, halogen, cyano or straight-chain or branched $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, straight-chain or branched $\mathrm{C}_{1-c 6}$ alkoxycarbonyl or optionally substituted $\mathrm{C}_{1}-\mathrm{C}_{6}$ straight-chain or branched alkyl wherein the substituents on the alkyl are hydroxyl, carboxyl, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, straight-chain or branched $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxycarbonyl
or said phenyl ring is further optionally substituted by a group of the formula $-\mathrm{OR}^{10}$ or $-\mathrm{NR}^{11} \mathbf{R}^{12}$,
wherein
represents straight-chain or branched alkyl having up to 665 carbon atoms which is substituted by hydroxyl, or its isomeric or salt thereof.
or an isomer, racemic mixture or salt thereof.
6. The compound according to claim $\mathbf{1}$, wherein such compound is

128
or an isomer, racemic mixture or salt thereof.
10. A composition for the treatment of atherosclerosis 5 comprising an amount effective therefor of a compound or salt thereof according to claim 1 and a pharmacologically acceptable diluent.

10
11. The method of treating atherosclerosis in a patient in need thereof which comprises administering to such patient an amount effective therefor of a compound or salt thereof according to claim 1.

15

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

```
PATENT NO. : 5,684,014
DATED : November 4, }199
INVENTOR(S) : Muller, et al.
```

 Page 1 of 2
 It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby corrected as shown below:
Col. 121, line 49 After " -OR " insert -- 10 _-
Col. 121, line 53 Delete " R^{14} " and substitute -- R^{12}--
Col. 121, line 58 Delete " $-\mathrm{NR}^{-} \mathrm{R}^{14}$ " and substitute -- NR ${ }^{13} R^{14}$--

Col. 122, line 52 Delete " $C_{1}-C_{4}$ " and substitute $-C_{1}-C_{5}^{--}$

Col. 124, line 18 Delete " identical " (second occurrence)
Col. 125, line 5 Delete " $-\mathrm{NR}^{11} \mathrm{R}^{11}$ " and substitute -- $-N R^{11} R^{12}$--

Col. 125, line 56 Delete " $\mathrm{C}_{1}{ }^{-} \mathrm{c}_{6}$ " and substitute -- $C_{1}-C_{6}-$

UNITED STATES PATENT AND TRADEMARK OFFICE

 CERTIFICATE OF CORRECTION```
PATENT NO. : 5,684,014
Page 2 of 2
DATED : November 4, 1997
INVENTOR(S): Muller, et al.
```

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Col. 125, line 65 Before " represents " insert -- $\mathrm{R}^{6}$--

Signed and Sealed this Thirteenth Day of October 1998

Attest:
 bruce lehman

