(12) United States Patent Wetterau, II et al.
(10) Patent No.: US 6,492,365 B1
(45) Date of Patent:

Dec. 10, 2002
(54) MICROSOMAL TRIGLYCERIDE TRANSFER PROTEIN
(75) Inventors: John R. Wetterau, II, Langhorne, PA (US); Daru Young Sharp, Perrineville; Richard E. Gregg, Pennington, both of NJ (US)
(73)

Assignee: Bristol-Myers Squibb Company, New York, NY (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.: 08/486,929
(22) Filed: Jun. 7, 1995

Related U.S. Application Data
(60) Division of application No. $08 / 117,362$, filed on Sep. 3, 1993, now Pat. No. $5,595,872$, which is a continuation-inpart of application No. 08/015,449, filed on Feb. 22, 1993, now abandoned, which is a continuation-in-part of application No. 08/847,503, filed on Mar. 6, 1992, now abandoned.
(51) Int. Cl. ${ }^{7}$ \qquad C07D 261/06
(52) U.S. Cl. \qquad 514/247; 514/277
(58) Field of Search 514/247, 277

References Cited

U.S. PATENT DOCUMENTS

4,758,569 A * 7/1988 Swindell \qquad 514/222

```
5,302,613 A * 4/1994 Morris
``` \(\qquad\)
``` 514/451 514/278
```


OTHER PUBLICATIONS

Harrity et al., Circulation vol. 94(8): I-632, 1996.*
Wetterau et al., Science vol. 282: 751-754, 1998.*
Agrawal "Antisense Oligonucleotides: Towards Clinical Trials" Tibtech vol. 14, 376-387, Oct. 1996.*
Branch "A Good Antisense is Hard to Find" TIBS vol. 23:45-50, Feb. 1998.*

* cited by examiner

Primary Examiner-Sean McGarry
(74) Attorney, Agent, or Firm-Christopher A. Klein

ABSTRACI

Nucleic acid sequences, particularly DNA sequences, coding for all or part of the high molecular weight subunit of microsomal triglyceride transfer protein, expression vectors containing the DNA sequences, host cells containing the expression vectors, and methods utilizing these materials. The invention also concerns polypeptide molecules comprising all or part of the high molecular weight subunit of microsomal triglyceride transfer protein, and methods for producing these polypeptide molecules. The invention additionally concerns novel methods for preventing, stabilizing or causing regression of atherosclerosis and therapeutic agents having such activity. The invention concerns further novel methods for lowering serum liquid levels and therapeutic agents having such activity.

10 Claims, 8 Drawing Sheets

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 14

MICROSOMAL TRIGLYCERIDE TRANSFER PROTEIN

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional of U.S. Ser. No. 08/117,362, filed on Sep. 3, 1993 now U.S. Pat. No. 5,595,872.

This is a continuation-in-part of U.S. patent application Ser. No. 08/015,449 Filed Feb. 22, 1993 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/847,503, filed Mar. 6, 1992, now abandoned, each of which is hereby incorporated by reference.

FIELD OF THE INVENTION

This invention relates to microsomal triglyceride transfer protein, genes for the protein, expression vectors comprising the genes, host cells comprising the vectors, methods for producing the protein, methods for detecting inhibitors of the protein, and methods of using the protein and/or its inhibitors.

BACKGROUND OF THE INVENTION

The microsomal triglyceride transfer protein (MTP) catalyzes the transport of triglyceride (TG), cholesteryl ester (CE), and phosphatidylcholine (PC) between small unilamellar vesicles (SUV). Wetterau \& Zilversmit, Chem. Phys. Lipids 38, 205-22 (1985). When transfer rates are expressed as the percent of the donor lipid transferred per time, MTP expresses a distinct preference for neutral lipid transport (TG and CE), relative to phospholipid transport. The protein from bovine liver has been isolated and characterized. Wetterau \& Zilversmit, Chem. Phys. Lipids 38, 205-22 (1985). Polyacrylamide gel electrophoresis (PAGE) analysis of the purified protein suggests that the transfer protein is a complex of two subunits of apparent molecular weights 58,000 and 88,000 , since a single band was present when purified MTP was electrophoresed under nondenaturing condition, while two bands of apparent molecular weights 58,000 and 88,000 were identified when electrophoresis was performed in the presence of sodium dodecyl sulfate (SDS). These two polypeptides are hereinafter referred to as 58 kDa and 88 kDa , respectively, or the 58 kDa and the 88 kDa component of MTP, respectively, or the low molecular weight subunit and the high molecular weight subunit of MTP, respectively.

Characterization of the 58,000 molecular weight component of bovine MTP indicates that it is the previously characterized multifunctional protein, protein disulfide isomerase (PDI). Wetterau et al., J. Biol. Chem. 265, 9800-7 (1990). The presence of PDI in the transfer protein is supported by evidence showing that (1) the amino terminal 25 amino acids of the bovine $58,000 \mathrm{kDa}$ component of MTP is identical to that of bovine PDI, and (2) disulfide isomerase activity was expressed by bovine MTP following the dissociation of the $58 \mathrm{kDa}-88 \mathrm{kDa}$ protein complex. In addition, antibodies raised against bovine PDI, a protein which by itself has no TG transfer activity, were able to immunoprecipitate bovine TG transfer activity from a solution containing purified bovine MTP.

PDI normally plays a role in the folding and assembly of newly synthesized disulfide bonded proteins within the lumen of the endoplasmic reticulum. Bulleid \& Freedman, Nature 335, 649-51 (1988). It catalyzes the proper pairing of cysteine residues into disulfide bonds, thus catalyzing the proper folding of disulfide bonded proteins. In addition, PDI
has been reported to be identical to the beta subunit of human prolyl 4-hydroxylase. Koivu et al., J. Biol. Chem. 262, 6447-9 (1987). The role of PDI in the bovine transfer protein is not clear. It does appear to be an essential component of the transfer protein as dissociation of PDI from the 88 kDa component of bovine MTP by either low concentrations of a denaturant (guanidine HCl), a chaotropic agent (sodium perchlorate), or a nondenaturing detergent (octyl glucoside) results in a loss of transfer activity. Wetterau et al., Biochemistry 30, 9728-35 (1991). Isolated bovine PDI has no apparent lipid transfer activity, suggesting that either the 88 kDa polypeptide is the transfer protein or that it confers transfer activity to the protein complex.

The tissue and subcellular distribution of MTP activity in rats has been investigated. Wetterau \& Zilversmit, Biochem.
Biophys. Acta. 875, 610-7 (1986). Lipid transfer activity was found in liver and intestine. Little or no transfer activity was found in plasma, brain, heart, or kidney. Within the liver, MTP was a soluble protein located within the lumen of the microsomal fraction. Approximately equal concentrations were found in the smooth and rough microsomes.

Abetalipoproteinemia is an autosomal recessive disease characterized by a virtual absence of plasma lipoproteins which contain apolipoprotein B (apoB). Kane \& Havel in The Metabolic Basis of Inherited Disease, Sixth edition, 1139-64 (1989). Plasma TG levels may be as low as a few $\mathrm{mg} / \mathrm{dL}$, and they fail to rise after fat ingestion. Plasma cholesterol levels are often only $20-45 \mathrm{mg} / \mathrm{dL}$. These abnormalities are the result of a genetic defect in the assembly and/or secretion of very low density lipoproteins (VLDL) in the liver and chylomicrons in the intestine. The molecular basis for this defect has not been previously determined. In subjects examined, triglyceride, phospholipid, and cholesterol synthesis appear normal. At autopsy, subjects are free of atherosclerosis. Schaefer et al., Clin. Chem. 34, B9-12 (1988). A link between the apoB gene and abetalipoproteinemia has been excluded in several families. Talmud et al., J. Clin. Invest. 82, 1803-6 (1988) and Huang et al., Am. J. Hum. Genet. 46, 1141-8 (1990).

Subjects with abetalipoproteinemia are afflicted with numerous maladies. Kane \& IIavel, supra. Subjects have fat malabsorption and TG accumulation in their enterocytes and hepatocytes. Due to the absence of TG-rich plasma lipoproteins, there is a defect in the transport of fat-soluble vitamins such as vitamin E. This results in acanthocytosis of erythrocytes, spinocerebellar ataxia with degeneration of the fasciculus cuneatus and gracilis, peripheral neuropathy, degenerative pigmentary retinopathy, and ceroid myopathy. Treatment of abetalipopmteinemic subjects includes dietary restriction of fat intake and dietary supplementation with vitamins A, E and K.

To date, the physiological role of MTP has not been demonstrated. In vitro, it catalyzes the transport of lipid molecules between phospholipid membranes. Presumably, it plays a similar role in vivo, and thus plays some role in lipid metabolism. The subcellular (lumen of the microsomal fraction) and tissue distribution (liver and intestine) of MTP have led to speculation that it plays a role in the assembly of plasma lipoproteins, as these are the sites of plasma lipoprotein assembly. Wetterau \& Zilversmit, Biochem. Biophys. 60 Acta. 875, 610-7 (1986). The ability of MTP to catalyze the transport of TG between membranes is consistent with this hypothesis, and suggests that MTP may catalyze the transport of TG from its site of synthesis in the endoplasmic reticulum (ER) membrane to nascent lipoprotein particles within the lumen of the ER.

Olofsson and colleagues have studied lipoprotein assembly in HepG2 cells. Bostrom et al., J. Biol. Chem. 263,

4434-42 (1988). Their results suggest small precursor lipoproteins become larger with time. This would be consistent with the addition or transfer of lipid molecules to nascent lipoproteins as they are assembled. MTP may play a role in this process. In support of this hypothesis, Howell and Palade, J. Cell Biol. 92, 833-45 (1982), isolated nascent lipoproteins from the hepatic Golgi fraction of rat liver. There was a spectrum of sizes of particles present with varying lipid and protein compositions. Particles of high density lipoprotein (HDL) density, yet containing apoB, were found. Higgins and Hutson, J. Lipid Res. 25 1295-1305 (1984), reported lipoproteins isolated from Golgi were consistently larger than those from the endoplasmic reticulum, again suggesting the assembly of lipoproteins is a progressive event. However, there is no direct 1 evidence in the prior art demonstrating that MTP plays a role in lipid metabolism or the assembly of plasma lipoprotein.

SUMMARY OF THE INVENTION

The present invention concerns an isolated nucleic acid molecule comprising a nucleic acid sequence coding for all or part of the high molecular weight subunit of MTP and/or intron, 5^{\prime}, or 3^{\prime} flanking regions thereof. Preferably, the nucleic acid molecule is a DNA (deoxyribonucleic acid) molecule, and the nucleic acid sequence is a DNA sequence. Further preferred is a nucleic acid having all or part of the nucleotide sequence as shown in SEQ. ID. NOS. 1, 2, 5, 7, 8,1 together with 5,2 together with 7 , the first 108 bases of 2 together with 8 , the first 108 bases of 2 together with 7 and 8 , or 8 together with 31 and 32 .
The present invention also concerns a nucleic acid molecule having a sequence complementary to the above sequences and/or intron, 5^{\prime}, or 3^{\prime} flanking regions thereof.

The present invention further concerns expression vectors comprising a DNA sequence coding for all or part of the high molecular weight subunit of MTP.
The present invention additionally concerns prokaryotic or eukaryotic host cells containing an expression vector that comprises a DNA sequence coding for all or part of the high molecular weight subunit of MTP.
The present invention additionally concerns polypeptides molecules comprising all or part of the high molecular weight subunit of MTP. Preferably, the polypeptide is the high molecular weight subunit of human MTP or the recombinantly produced high molecular weight subunit of bovine MTP.
The present invention also concerns methods for detecting nucleic acid sequences coding for all or part of the high molecular weight subunit of MTP or related nucleic acid sequences.
The present invention further concerns methods for detecting inhibitors of MTP and, hence, anti-atherosclerotic and lipid lowering agents.
The present invention further concerns a novel method for treatment of atherosclerosis, or for lowering the level of serum lipids such as serum cholesterol, TG, PC, or CE in a mammalian species comprising administration of a therapeutically effective amount of an agent that decreases the activity or amount of MTP. Such agents would also be useful for treatment of diseases associated or affected by serum lipid levels, such as pancreatitis, hyperglycemia, obesity and the like. In particular, this invention concerns a method of treatment wherein the agent that decreases the activity of MTP is a compound of the formula

20

III
wherein:
R^{1} is alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl (all optionally substituted through available carbon atoms with 1 , 2, or 3 groups selected from halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl);
$\mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}$ are independently hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl;
R^{5} and R^{6} are independently hydrogen, alkyl, alkenyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl (all optionally substituted through available carbon atoms with 1,2 , or 3 groups selected from hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl; with the proviso that when R^{5} is $\mathrm{CH}_{3}, \mathrm{R}^{6}$ is not hydrogen.
R^{7} is alkyl (optionally substituted with oxo), aryl, or arylalkyl (wherein the alkyl portion is optionally substituted with oxo). Examples of such oxo-sustituted groups are described in Cortizo, L., J. Med. Chem. 34, 2242-2247 (1991).
Also in accordance with the present invention are novel compounds of formula I, wherein R^{1} is alkyl, alkenyl, aryl, heteroaryl, arylalkyl (wherein the alkyl comprises at least two carbon atoms), heteroarylalkyl (wherein the alkyl comprises at least two carbon atoms), cycloalkyl, or cycloalkylalkyl, all optionally substituted as described above.

The present invention further concerns novel compounds of formula II wherein R^{1} is arylalkyl or heteroarylalkyl, wherein the alkyl portion of each comprises at least two carbon atoms and wherein each is optionally substituted as described above.
Further still in accordance with the present invention are novel compounds of the formula

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows bovine cDNA clones. The five bovine cDNA inserts are illustrated. The continuous line at the top of the figure represents the total cDNA sequence isolated. Small, labeled bars above this line map peptide and probe sequences. The open reading frame is indicated by the second line, followed by ** corresponding to 3^{\prime} noncoding sequences. Clone number and length are indicated to the left of each line representing the corresponding region of the composite sequence. Clones 64 and 76 were isolated with probe 2 A , clones 22 and 23 with probe 37 A and clone 2 with probe 19A. Eco RI linkers added during the cDNA library construction contribute the Eco RI restriction sites at the 5^{\prime} and 3^{\prime} ends of each insert. The internal Eco RI site in inserts 22 and 76 is encoded by the cDNA sequence. The Nhe I restriction site was utilized in preparing probes for isolation of human cDNA clones (below). The arrows under each insert line indicate individual sequencing reactions.

FIG. 2 shows TG transfer activity in normal subjects. Protein-stimulated transfer of ${ }^{14} \mathrm{C}$-TG from donor SUV to acceptor SUV was measured in homogenized intestinal biopsies obtained from five normal subjects. The results are expressed as the percentage of donor TG transferred per hour as a function of homogenized intestinal biopsy protein.

FIG. 3 shows TG transfer activity in abetalipoproteinemic subjects. Protein-stimulated transfer of ${ }^{14} \mathrm{C}$-TG from donor SUV to acceptor SUV was measured in homogenized intestinal biopsies obtained from four abetalipoproteinemic subjects. The results are expressed as the percentage of donor TG transferred/hour as a function of homogenized intestinal biopsy protein.

FIG. 4 shows TG transfer activity in control subjects. Protein stimulated transfer of ${ }^{14} \mathrm{C}$-TG from donor SUV to acceptor SUV in homogenized intestinal biopsies were obtained from three control subjects, one with chylomicron retention disease (open circles), one with homozygous hypobetalipoproteinemia (solid circles), and one non-fasted (x). The results are expressed as the percentage of donor TG transferred/hour as a function of homogenized intestinal biopsy protein.

FIG. 5 shows western blot analysis of MTP in normal subjects. An aliquot of purified bovine MTP (lane 1) or the post $103,000 \times \mathrm{g}$ proteins following deoxycholate treatment of $23 \mu \mathrm{~g}$ of homogenized intestinal biopsies from 3 normal subjects (lanes 2-4) were fractionated by SDS-PAGE and then transferred to nitrocellulose. The blots were probed with anti- 88 kDa .

FIG. 6 shows western blot analysis of MTP in control subjects. An aliquot of purified bovine MTP (lane 1) or the post $103,000 \times \mathrm{g}$ proteins following deoxycholate treatment of $15 \mu \mathrm{~g}, 25 \mu \mathrm{~g}$, and $25 \mu \mathrm{~g}$ homogenized intestinal biopsies from a subject with chylomicron retention disease (lane 2), a subject with homozygous hypobetalipoproteinemia (lane 3), and a non-fasted subject (lane 4), respectively, were fractionated by SDS-PAGE and then transferred to nitrocellulose. The blots were probed with anti- 88 kDa .

FIG. 7 shows western blot analysis of MTP in normal subjects with affinity-purified antibodies. An aliquot of purified bovine MTP (lane 1) or the post $103,000 \times$ g proteins following deoxycholate treatment of $34 \mu \mathrm{~g}$ (lane 2) or $25 \mu \mathrm{~g}$
5 (lane 3) of homogenized intestinal biopsies from 2 normal subjects were fractionated by SDS-PAGE and then transferred to nitrocellulose. The blots were probed with affinity purified anti- 88 kDa .

FIG. 8 shows western blot analysis of MTP in abetalipo${ }^{0}$ proteinemic subjects. An aliquot of purified bovine MTP (lane 1) or post $103,000 \times$ g proteins following deoxycholate treatment of $18 \mu \mathrm{~g}$ (lane 2), $23 \mu \mathrm{~g}$ (lane 3), $23 \mu \mathrm{~g}$ (lane 4), $23 \mu \mathrm{~g}$ (lane 5) of homogenized intestinal biopsies from four different abetalipoproteinemic subjects were fractionated by SDS-PAGE and then transferred to nitrocellulose. In lanes 6 and $7,100 \mu \mathrm{~g}$ of the whole intestinal homogenate (subjects corresponding to lane 4 and 5) was fractionated by SDSPAGE and transferred to nitrocellulose. The blots were probed with anti- 88 kDa .

FIG. 9 shows a Southern blot analysis of a gene defect in an abetalipoproteinemic subject. Ten $\mu \mathrm{g}$ of genomic DNA from a control, the abetalipoproteinemic subject (proband), and from the subject's mother and father were cut to completion with Taq I, electrophoresed on 1% agarose and transferred to nitrocellulose. Southern hybridization was performed using exon 13 cDNA as a probe. Two hybridizing bands in the normal lane indicated the presence of a Taq I site in the normal exon 13. One hybridizing band in the abetalipoproteinemic subject lane demonstrated the absence of this restriction sequence in both alleles in exon 13, confirming a homozygous mutation in this subject. The heterozygous state in the mother and father is shown by the three hybridizing bands, corresponding to both the normal and the mutant restriction pattems.

FIG. 10 shows inhibition in MTP-catalyzed transport of TG from donor SUV to acceptor SUV by compound A described hereinafter. Compound A was dissolved in DMSO and then diluted into $15 / 40$ buffer. Aliquots were added to a lipid transfer assay to bring the compound to the indicated final concentrations. DMSO concentration in the assay never exceeded $2 \mu \mathrm{~L} / 600 \mu \mathrm{~L}$, a concentration that was independently determined to have minimal effect on the assay. MTP-catalyzed lipid transport was measured for 30 minutes at 37° C. TG transfer was calculated and compared to a control assay without inhibitor. Three independent assay conditions were used to demonstrate MTP inhibition by compound A. Assay conditions were: 8 nmol donor PC, 48 nmol acceptor PC, and 75 ng MTP (open circles); 24 nmol donor PC, 144 nmol acceptor PC, and 100 ng MTP (solid circles); 72 nmol donor PC, 432 nmol acceptor PC, and 125 ng MTP (open squares).

FIG. 11 shows the dose response of Compound A on ApoB, ApoAI and HSA secretion from HepG2 cells. HepG2 cells were treated with compound A at the indicated doses for 16 hours. The concentration in the cell culture media of apoB, apoAI and HSA after the incubation period was measured with the appropriate ELISA assay and normalized to total cell protein. The data shown are expressed as a percentage of the control (DMSO only).

FIG. 12 shows the effect of compound A on TG secretion from HepG2 cells. HepG2 cells were treated with Compound A at the indicated doses for 18 hours, the last two hours of which were in the presence of $5 \mu \mathrm{Ci} / \mathrm{mL}$ 3 H -glycerol. The concentration of radiolabelled triglycerides in the cell culture media was measured by quantitative extraction, followed by thin layer chromatography analysis
and normalization to total cell protein. The data shown are expressed as a percentage of the control (DMSO only).
FIG. 13 shows inhibition in MTP-catalyzed transport of TG from donor SUV to acceptor SUV by compound B described hereinafter. Compound B was dissolved in DMSO and then diluted into $15 / 40$ buffer. Aliquots were added to a lipid transfer assay to bring the compound to the indicated final concentrations. DMSO concentration in the assay never exceeded $2 \mu \mathrm{~L} / 600 \mu \mathrm{~L}$, a concentration that was independently determined to have minimal effect on the assay. MTP-catalyzed lipid transport was measured for 30 minutes at $37^{\circ} \mathrm{C}$. TG transfer was calculated and compared to a control assay without inhibitor. Two independent assay conditions were used to demonstrate MTP inhibition by compound B. Assay conditions were: 24 nmol donor PC, 144 nmol acceptor PC, and 100 ng MTP (open circles); 72 nmol donor PC, 432 nmol acceptor PC, and 125 ng MTP (solid circles).

FIG. 14 shows the dose response of compound B on $\mathrm{ApoB}, \mathrm{ApoAI}$ and HSA secretion from HepG2 cells. HepG2 cells were treated with compound B at the indicated doses for 16 hours. The concentration in the cell culture media of apoB, apoAI and HSA after the incubation period was measured with the appropriate ELISA assay and normalized to total cell protein. The data shown are expressed as a percentage of the control (DMSO only).

DETAILED DESCRIPTION OF THE INVENTION
 DEFINITION OF TERMS

The following definitions apply to the terms as used throughout this specification, unless otherwise limited in specific instances.

The term "MTP" refers to a polypeptide or protein complex that (1) if obtained from an organism (e.g., cows, humans, etc.), can be isolated from the microsomal fraction of homogenized tissue; and (2) stimulates the transport of triglycerides, cholesterol esters, or phospholipids from synthetic phospholipid vesicles, membranes or lipoproteins to synthetic vesicles, membranes, or lipoproteins and which is distinct from the cholesterol ester transfer protein [Drayna et al., Nature 327, 632-634 (1987)] which may have similar catalytic properties. However, the MTP molecules of the present invention do not necessarily need to be catalytically active. For example, catalytically inactive MTP or fragments thereof may be useful in raising antibodies to the protein.

The term "modified", when referring to a nucleotide or polypeptide sequence, means a nucleotide or polypeptide sequence which differs from the wild-type sequence found in nature.

The term "related", when referring to a nucleotide sequence, means a nucleic acid sequence which is able to hybridize to an oligonucleotide probe based on the nucleotide sequence of the high molecular weight subunit of MTP.

The phrase "control regions" refers to nucleotide sequences that regulate expression of MTP or any subunit thereof, including but not limited to any promoter, silencer, enhancer elements, splice sites, transcriptional initiation elements, transcriptional termination elements, polyadenylation signals, translational control elements, translational start site, translational termination site, and message stability elements. Such control regions may be located in sequences 5^{\prime} or 3^{\prime} to the coding region or in introns interrupting the coding region.

The phrase "stabilizing" atherosclerosis as used in the present application refers to slowing down the development 65 of and/or inhibiting the formation of new atherosclerotic lesions.

The phrase "causing the regression of" atherosclerosis as used in the present application refers to reducing and/or eliminating atherosclerotic lesions.

The terms "alkyl" and "alk" refer to straight and branched chain hydrocarbon radicals of up to 20 carbon atoms, with 1 to 12 carbon atoms preferred and 1 to 8 carbon atoms most preferred. Exemplary alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like.

The term "alkylene" refers to alkyl groups having single bonds for attachment to other groups at two different carbon atoms. Exemplary alkylene groups are - $\mathrm{CH}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}-,-\mathrm{CH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}-\mathrm{CH}-$, and the like.

The term "alkenyl" refers to both straight and branched chain hydrocarbon groups of up to 20 carbon atoms, with 1 to 12 carbon atoms preferred and 1 to 8 carbon atoms most preferred, having at least one double bond. The term "cisalkenyl" refers to alkenyl groups having a cis double bond orientation.

The term "alkenylene" refers to alkenyl groups having single bonds for attachment at two different carbon atoms. Exemplary alkenylene groups are $-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}_{2}-,-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$, and the like. The term "cis-alkenylene" refers to alkenylene groups having a cis double bond orientation.

The term "alkynyl" refers to both straight and branched chain hydrocarbon groups of up to 20 carbon atoms, with 1 to 12 carbon atoms preferred and 1 to 8 carbon atoms most preferred, having at least one triple bond.

The term "cycloalkyl" refers to saturated cyclic hydrocarbon groups containing 3 to 20 carbons, preferably 3 to 12 carbons. Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, and cyclododecyl.

The terms "aryl" or "ar" as employed herein refer to monocyclic or bicyclic aromatic groups containing from 6 to 10 carbon atoms in the ring portion, such as phenyl or napthyl, may be optionally substituted.

The term "heteroaryl" refers to (1) 5- or 6 -membered aromatic rings having 1 or 2 heteroatoms in the ring wherein the heteroatoms are selected from nitrogen, oxygen, and sulfur, (2) such rings fused to an aryl (e.g., benzothiophenyl, indolyl). Exemplary heteroaryl groups include pyrrolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, pyridyl, pyrimidinyl, and the like, and may be optionally substituted and/or fused to an aryl as in indolyl and benzothiophenyl.

Preferred Moities

For methods of use and novel compounds in accordance with the present invention, the following moities of formulae I and II are preferred:
R^{1} is $-\mathrm{R}^{\nu}-\mathrm{R}^{w}$ or

R^{ν} and R^{x} are each independently alkylene or cisalkenylene of up to 6 carbon atoms;
R^{w} is aryl or heteroaryl; and
R^{y} and R^{z} are each independently alkyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl.

For the methods of use and novel compounds of formulae I and $\mathrm{II}, \mathrm{R}^{y}$ and R^{z} are most preferred to be independently aryl, arylalkyl, heteroaryl, or heteroarylalkyl. Use and Utility
The nucleic acids of the present invention can be used in a variety of ways in accordance with the present invention. For example, they can be used as DNA probes to screen other cDNA and genomic DNA libraries so as to select by hybridization other DNA sequences that code for proteins related to the high molecular weight subunit of MTP. In addition, the nucleic acids of the present invention coding for all or part of the high molecular weight subunit of human or bovine MTP can be used as DNA probes to screen other cDNA and genomic DNA libraries to select by hybridization DNA sequences that code for MTP molecules from other organisms. The nucleic acids may also be used to generate primers to amplify cDNA or genomic DNA using polymerase chain reaction (PCR) techniques. The DNA sequences of the present invention can also be used to identify adjacent sequences in the cDNA or genome; for example, those that encode the gene, its flanking sequences and its regulatory elements.
The polypeptides of the present invention are useful in the study of the characteristics of MTP; for example, its structure, mechanism of action, and role in lipid metabolism or lipoprotein particle assembly.
Various other methods of using the nucleic acids, polypeptides, expression vectors and host cells are described in detail below.
In carrying out the methods of the present invention, the agents that decrease the activity or amount of MTP can be administered to various mammalian species, such as monkeys, dogs, cats, rats, humans, ect., in need of such treatment. These agents can be administered systemically, such as orally or parenterally.
The agents that decrease the activity or amount of MTP can be incorporated in a conventional systemic dosage form, such as a tablet, capsule, elixir or injectable formulation. The above dosage forms will also include the necessary physiologically acceptable carrier material, excipient, lubricant,
buffer, antibacterial, bulking agent (such as mannitol), antioxidants (ascorbic acid or sodium bisulfite) or the like. Oral dosage forms are preferred, although parenteral forms are quite satisfactory as well.
The dose administered must be carefully adjusted according to the age, weight, and condition of the patient, as well as the route of administration, dosage form and regimen, and the desired result. In general, the dosage forms described above may be administered in single or divided doses of one to four times daily.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Nucleic Acids

The present invention concerns an isolated nucleic acid molecule comprising a nucleic acid sequence coding for all or part of the high molecular weight subunit of MTP. Preferably, the nucleic acid molecule is a DNA molecule and the nucleic acid sequence is a DNA sequence. Further preferred is a nucleic acid sequence having the nucleotide sequence as shown in SEQ. ID. NOS. 1, 2, 5, 7, 8, 1 together with 5, 2 together with 7, the first 108 bases of 2 together with 8 , or the first 108 bases of 2 together with 7 and 8 , or 8 together with 31 and 32 or any part thereof, or a nucleic acid sequence complementary to one of these DNA sequences. In the case of a nucleotide sequence (e.g., a DNA sequence) coding for part of the high molecular weight subunit of MTP, it is preferred that the nucleotide sequence be at least about 15 sequential nucleotides in length, more preferably at least about 20 to 30 sequential nucleotides in length.
The following text shows a bovine cDNA nucleotide sequence (SEQ. ID. NO. 1), a human cDNA sequence (SEQ.
35 ID. NO. 2), a comparison of the human and bovine cDNA sequences, the bovine amino acid sequence(SEQ. ID. NO. 3), the human amino acid sequence (SEQ. ID. NO. 4), and a comparison of the human and bovine amino acid sequences. In the sequence comparisons, boxed regions represent perfect identity between the two sequences.

$\begin{gathered} \text { BOVINE CDNA SEQUENCE } \\ \text { (SEQ. ID. NO. 1) } \\ \hline \end{gathered}$					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
AAACTCACAT	ACTCCACTGA	AGTTTTTCTC	GATCGGGGCA	AAGGAAACCT	50
CCAAGACAGT	GTGGGCTACC	GAATTTCATC	CAATGTGGAT	GTCGCTTTAC	100
TGTGGAGGAG	TCCTGATGGT	GATGATAACC	AACTGATCCA	AATTACGATG	150
AAAGATGTAA	ACCTTGAAAA	TGTGAATCAA	CAGAGAGGAG	AGAAGAGCAT	200
TTTCAAAGGA	AAAAAGTCAT	CTCAAATCAT	AAGAAAGGAA	AACTTGGAAG	250
CAATGCAAAG	ACCTGTGCTC	CTTCATCTAA	TTCATGGAAA	GATCAAAGAG	300
TTCTACTCAT	ATCAAAATGA	ACCAGCAGCC	ATAGAAAATC	TCAAGAGAGG	350
CCTGGCTAGC	CTATTTCAGA	TGCAGTTAAG	CTCTGGAACT	ACCAATGAGG	400
TAGACATCTC	TGGAGATTGT	AAAGTGACCT	ACCAGGCTCA	TCAAGACAAA	450
GTGACCAAAA	TTAAGGCTTT	GGATTCATGC	AAAATAGAGA	GGGCTGGATT	500
TACGACCCCA	CATCAGGTCT	TGGGTGTCAC	TTCGAAAGCC	ACATCTGTCA	550

BOVINE CDNA SEQUENCE(SEQ. ID. NO. 1)					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
СТАССТАтAA	GATAGAAGAC	AGCTTTTGTTG	TAGCTGTGCT	CTCAGAAGAG	600
ATACGTGCTT	TAAGGCTCAA	TTTTCTACAA	TCAATAGCAG	GCAAAATAGT	650
ATCGAGGCAG	AAACTGGAGC	TGAAAACCAC	GGAAGCAAGC	GTGAGACTGA	700
AGCCAGGAAA	GCAGGTTGGCA	GCCATCATTA	AAGCAGTCGA	ttcanagtac	750
ACGGCCATTC	CCATtGTGGG	GCAGGTCTTC	CAGAGCAAGT	GCAAAGGATG	800
состтотстс	tcagagcact	gGcagtccat	caganalcac	CTGCAGCCtG	850
АСААССТСТС	CAAGGCTGAG	GCTGTCAGAA	GCTTCCTGGC	CTTCATCAAG	900
CACCTCAGGA	CGGcaAAGAA	AGAAGAGATC	CTCCAAATTC	taAAGGCAGA	950
AAACAAGGAA	GTaCtaccec	AGCTAGTGGA	TGCTGTCACC	TCTGCFCAGA	1000
CACCAGACTC	Attagacgcc	ATTTTGGACT	TTCTGGATTT	CAAAAGCACC	1050
gagagcgtta	tсСтсcagas	AAGGTtTTCTC	tatgcctatg	CATttgccta	1100
ACATCCTGAT	GAAGAACTCC	TGAGAGCCCT	CATTAGTAAG	TTCAAAGGTT	1150
CTTTTTGGAAG	CAATGACATC	AGAGAATCTG	tTATGATCAT	CATCGGGGCC	1200
CTTGGTCAGGA	AGTTGTGTCA	ganclanggc	tgcanactga	AAGGAGTAAT	1250
AgAAGCCAAA	AAGTtantct	TGGGAGGACT	TGAAAAAGCA	gaganamang	1300
AGGACATCGT	gatgtacctg	CTGGCTCTGA	AGAACGCCCCG	GCttccagat	1350
GGCATCCCCGC	TCCTTCTGAA	gTacacagag	ACAGGAGAAG	ggcceattag	1400
CCACCTtGCC	gccaccacac	tccagagata	TGATGTCCCT	tTCATAACTG	1450
ATGAGGtada	gadgactatg	aAcaggatat	ACCACCAGAA	tcgtanamta	1500
CATGAAAAAA	ctgtacgtac	tactacagct	gccatcattt	TAAAAAACAA	1550
TCCATCCTAC	AtGgangtan	AAAACATCCT	Gстстстatt	GGGGAACTTC	1600
CCAAAGAAAT	gantangtac	ATGCTCTCCA	TTGTCCAAGA	CATCCTACGT	1650
tttigaiacac	CTGCAAGCAA	AATGGTCCGT	CAAGTTCTGA	AGGAAATGGT	1700
cgctcatant	tacgatcgit	TCTCCAAGAG	TGGGTCCTCC	tctgcatata	1750
ctgectacgt	agancgeact	tcccattcge	Catctactta	cagccrtgac	1800
attctttact	CTGGTTCTGG	CATTCTAAGG	AgAAGTAATC	tgancatcti	1850
tcagtatatt	GAGAAAACTC	CTCTTCATGG	TATCCAGGTG	GTCATEGAAG	1900
CCCAAGGACT	GGAGGCATTA	AttGCAGCCA	СTССTGATGA	GGGGGAAGAG	1950
AACCTTGACT	CCTATGCTGG	CTTGTCACGT	СТССТСтtte	ATGTtCAGCT	2000
CAGACCTGTC	ACttttttica	ACGGGTACAG	TGATTTGATG	TCCAAAATGC	2050
tGTCAGCATC	TAGTGACCCT	ATGAGTGTGG	TGAAAGGACT	TCTTCEGCTA	2100
atagatcatt	CCCAGGAGCT	TCAGCTGCAA	tctggactta	aggccantat	2150
Ggatgttcan	GGTGGTCTAG	CTATtGATAT	TACAGGTGCC	ATGGAGTTTA	2200
gTCtatgeta	TCGTGAATCT	AAAACCCGAG	TGAAAAATCG	GGTAAGTGTG	2250
ttantanctg	gTggcatcal	GGTGGACTCC	tctittgiga	AAGCTGGCTT	2300
GGAAATTGGT	Gcagadacag	AAGCAGGCTT	GGAGTtTATC	TCCACGGTGC	2350
AGTITTCTCA	GTACCCATtT	tTAGTtTGTC	TGCAGATGGA	CAAGGAAGAT	2400

HUMAN CDNA SEQUENCE (SEQ. ID. NO. 2)					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
GTGACTCCTA	GCTGGGCACT	Ggatgcagtt	GAGGATTGCT	GGTCAATATG	50
Attcttctit	CTGTGCTtit	tetctactic	atttcctcat	ATTCAGCTTC	100
TGTTAAAGGT	CACACAACTG	GTCTCTCATT	AAATAATGAC	CGGCTGTACA	150
AGCTCACGTA	CTCCACTGAA	GTTCTTCTTG	ATCGGGGCAA	AGGAAAACTG	200
CAAGACAGCG	TGGGCTACCG	catttcetce	AACGTGGATG	TGGCCTTACT	250
ATGGAGGAAT	cotgatggtg	atgatgacca	GTtGAtccai	ATAACGATGA	300
AGGATGTAAA	tgttganat	gtgatcagc	AgAgaggaga	GAAGAGCATC	350
TTCAAAGGAA	AAAGCCCATC	TAAAATAATG	GGAAAGGAAA	ACTTGGAAGC	400
tctgcanaga	CCtacgctic	ttcatctant	CCATGGAAAG	GTCAAAGAGT	450
tctactcata	TCAAAATGAG	GCAGTGGCCA	TAGAAAATAT	CAAGAGAGGT	500
CTGGCTAGCC	TATTTCAGAC	ACAGTTAAGC	TCTGGAACCA	CCAATGAGGT	550
agatatctct	GGAAATTGTA	AAGTGACCTA	claggctcat	CAAGACAAAG	600
TGATCAAAAT	TAAGGCCTTG	GATTCATGCA	AAATAGCGAG	GTCTGGATTT	650
ACGACCCCAA	ATCAGGTCTT	GGGTGTCAGT	TCAAAAGCTA	CATCTGTCAC	700
CACCTATAAG	atagangaca	GCttrigttat	AGCTGTGCTT	GCTGAAGAAA	750
CACACAATTT	tggactgant	ttcctacana	CCATtAAGGG	GAAAATAGTA	800
TCGAAGCAGA	AATTAGAGCT	gatgacancc	GAAGCAGGCC	CAAGATTGAT	850
GTCTGGAAAG	CAGGCTGCAG	CCATAATCAA	AGCAGTTGAT	TCAAAGTACA	900
CGGCCATTCC	CATTGTGGGG	CAGGTCTTCC	AgAgccactg	TAAAGGATGT	950
ССtictetet	CGGAGCTCTG	GCGGTCCACC	AGGAAATACC	TGCAGCCTGA	1000
СААССтtticc	AAGGCTGAGG	CTGTCAGAAA	СTTCCTGGCC	TTCATTCAGC	1050

-continued					
HUMAN CDNA SEQUENCE (SEQ. ID. NO. 2)					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
ACCTCAGGAC	tGcgangana	GAAGAGATCC	tTCAAATACT	AAAGATGGAA	1100
AATAAGGAAG	татtacctca	GCTGGTGGAT	GCTGTCACCT	CTGCTCAGAC	1150
CTCAGACTCA	ttagaigcca	TtTtGgacti	tttggattic	AAAAGIGACA	1200
GCAGCATTAT	cctccaggag	AGGTTTCTCT	atgcctgtg	Atticctict	1250
CATCCCAATG	AAGAACTCCT	gagagcectc	Attagtang	TCAAAGGTTC	1300
TATTGGTAGC	agtgacatca	gaganactg	tatgatcatc	ACtgGgacac	1350
TTGTCAGAAA	GTtGTGTCAG	AATGAAGGCT	GCAAACTCAA	AgCagragt	1400
GAAGCTAAGA	AGTtantcct	GGGAGGACTT	gaAAAAGCAG	AgAAAAAAGA	1450
GGACACCAGG	Atgtatctac	TGGCTTTGAA	GAATGCCCTG	CTTCCAGAAG	1500
GCATCCCAAG	TCTTCTGAAG	TATGCAGAAG	CAGGAGAAGG	GCCCATCAGC	1550
CACCTGGCTA	CCACTGCTCT	CCAGAGATAT	GATCTCCCTT	TCATAACTGA	1600
TGAGGTGAAG	AAGACCTTAA	ACAGAATATA	CCACCAAAAC	CGTAAAGTTC	1650
ATGAAAAGAC	tgtgcgeact	gctacagcta	ctatcatttt	anatancant	1700
CCATCCTACA	TGGACGTCAA	GAACATCCTG	CTGTCTATTG	GGgAGctice	1750
CCAAGAAATG	Aatanataca	tgctccecat	tgttcangac	ATCCTACGTt	1800
TTGAAATGCC	TGCAAGCAAA	ATTGTCCGTC	gagttctgan	GGAAATGGTC	1850
gctcacant	ATGACCGTTT	CTCCAGGAGT	GGATCTTCTT	CTGCCIACAC	1900
TGGCTACATA	GAACGTAGTC	CCCGTTCGGC	ATCTACttac	AGCCTAGACA	1950
тTCTCTACTC	GGGTTCTGGC	ATTCTAAGGA	GAAGTAACCT	GAACAICTTT	2000
Cagtacattg	GGAAGGCTGG	tcttcacget	agccaggtgg	ttattgange	2050
CCAAGGACTG	gangccttan	tcgcagccal	ccctgacgag	GGGGAGGAGA	2100
ACCTTGACTC	Ctatgctgat	atgtcagcca	тсетстttga	tgitcagcte	2150
AGACCTGTCA	CCTTTTTCAA	CGGATACAGT	GATTTGATGT	CCAAAATGCT	2200
GTCAGCATCT	GgCgacccta	TCAGTGTGGT	GAAAGGACTT	Attctectan	2250
TAGATCATTC	TCAGGAACTT	CAGTTACAAT	CTGGACTAAA	AgCCAATATA	2300
GAGGTCCAGG	GTGGTCtagc	tattgatatt	TCAGGTGCAA	TGGAGIttag	2350
CTTGTGGTAT	CGTGAGTCTA	AAACCCGAGT	gaAAAATAGG	GTGACIGTGG	2400
tantanccac	tgacatcaca	GTGGACTCCT	CTtttgtgan	AGCTGGCCTG	2450
GAAACCAGTA	CAGAAACAGA	AGCAGGCTTG	GAGTTTATCT	CCACAGTGCA	2500
GTITTCTGAG	тасСсатt't	tagtttacat	GCAGATGGAC	AAGGATGAAG	2550
CTCCATTCAG	Gcanttigag	AAAAAGTACG	AAAGGCtGTC	CACAGGCAGA	2600
GGTTATGTCT	CTCAGAAAAG	AAAAGAAAGC	gtattagcag	gatgtanatt	2650
cccgetccat	CAAGAGAACT	CAgAgatgig	CAAAGTGGTG	TTTGCCCCTC	2700
agccgeatag	tacticcagc	GGATGGTTTT	GAAACTGACC	TGTGATATTT	2750
TACtTGAATT	TGTCTCCCCG	AAAGGGACAC	AATGTGGCAT	gactangtac	2800
TTGCTCTCTG	AgAgCacagc	gittacatat	ttacctgtat	tTAAGATTTT	2850

-continued

-continued

BOVINEHUMAN CDNA SEQUENCE COMPARISON		
BOVINE		1801
hUMAN		1950
bovine		1876
human		2025
bovine		${ }^{1951}$
human		2100
bovine		${ }_{2} 2026$
hUMAN		2175
bovine		
HUMAN		2250
bovine		${ }_{2} 2176$
hUMAN		2325
bovine		2251
hUMAN		2400
bovine		${ }^{2326}$
hUMAN		2475
bovine	A	401
hUMAN		2550
bovine		2476
hUMAN		2625
BOVINE		2551
hUMAN		2700
		2626
hUMAN		2775

-continued

BOVINE/HUMAN CDNA SEQUENCE COMPARISON		
BOVINE HUMAN		2700 2850
BOVINE HUMAN		$\begin{aligned} & 2774 \\ & 2922 \end{aligned}$
BOVINE HUMAN		2846 2995
BOVINE HUMAN		2900 3070
BOVINE HUMAN		2900 3145
BOVINE HUMAN	CCAAACACGTTCCCTAATCAGGAAAAAAAAAAAAAAAAAA	2900 3185

BOVINE PROTEIN SEQUENCE(SEQ. ID. NO. 3)					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
KLTYSTEVFL	DRGKGNLQDS	VGYRISSNVD	VALLWRSPDG	DDNQLIQITM	50
KDVNLENVNQ	QRGEKSIFKG	KKSSQIIRKE	NLEAMQRPVL	LHLIHGKIKE	100
FYSYQNEPAA	IENLKRGLAS	LFQMQLSSGT	TNEVDISGDC	KVTYQAHODK	150
VTKIKALDSC	KIERAGFTTP	HQVLGVTSKA	TSVTTYKIED	SFVVAVLSEE	200
IRALRLNFLQ	SIAGKIVSRQ	kLelktteas	VRLKPGKQVA	AIIKAVDSKY	250
TAIPIVGQVF	QSKCKGCPSL	SEHWQSIRKH	LQPDNLSKAE	AVRSFLAGIK	300
HLRTAKKEEI	LQILKAENKE	VLPQLVDAVT	SAQTPDSLDA	ILDFLDFKST	350
ESVILQERFL	YACAFASHPD	EELLRALISK	FKGSFGSNDI	RESVMIIIGA	400
LVRKLCQNOG	CKLKGVIEAK	KLILGGLEKA	EKKEDIVMYL	LALKNARLPE	450
GIPLLLKYTE	TGEGPISHLA	ATTLQRYDVP	FITDEVKKTM	NRIYHQNRKI	500
HEKTVRTTAA	AIILKNNPS ${ }^{\text {y }}$	MEVKNILLSI	GELPKEMNKY	MLSIVQDILR	550
FETPASKMVR	QVLKEMVAHN	YDRFSKSGSS	SAYTGYVERT	SHSASTYSLD	600
ILYSGSGILR	RSNLNIFQYI	EKTPLHGIQV	VIEAQGLEAL	IAATPDEGEE	650
NLDSYAGLSA	LLFDVQLRPV	TFFNGYSDLM	SKMLSASSDP	MSVVKGLLLL	700
IDHSQELQLQ	SGLKANMDVQ	GGLAIDITGA	MEFSLWYRES	KTRVKntVSV	750
LITGGITVDS	SFVKAGLEIG	AETEAGLEFI	STVQFSQYPF	LVCLQMDKED	800
VPYRQFETKY	ERLSTGRGYI	SRKRKESLIG	GCEFPLHQEN	SDMCKVVFAP	850
QPESSSSGWF	860				

HUMAN PROTEIN SEQUENCE (SEQ. ID. NO. 4)					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
Millavlfle	FISSYSASVK	Ghttclsinn	DRLYKLTYST	EVLLDRGKGK	50
LQDSVGYRIS	SNVDVALLWR	NPDGDDDQLI	QITMKDVNVE	NVNQQRGEKS	100
IFKGKSPSKI	MGKENLEALQ	RPTLLHLIHG	KVKEFYSYQN	EAVAIENIKR	150
GLASLFQTQL	SSGTTNEVDI	SGNCKVTYQA	HQDKVIKIKA	LDSCKIARSG	200
FTTPNQVLGV	SSKATSVTTY	KIEDSFVIAV	LAEETHNFGL	NFLQTIKGKI	250
VSKQKLELKT	TEAGPRLMSG	KQAAAIIKAV	DSKYTAIPIV	GQVFQSHCKG	300
CPSLSELQRS	TRKYLQPDNL	SKAEAVRNFL	AFIQHLRTAK	KEEILQILKM	350
ENKEVLPQLV	DAVTSAQTSD	SLEAILDFLD	FKSDSSIILQ	ERFLYACGFA	400
SHPNEELLRA	LISKFKGSIG	SSDIRETVMI	ITGTLVRKLC	QNEGCKLKAV	450
VEAKKLILGG	Lekaekredt	RMYLLALKNA	LLPEGIPSLL	KYaEAGEGPI	500
SHLATTALQR	ydupfitdev	KKTLNRIYHQ	NRKVHEKTVR	TAAAAIILNN	550
NPSYMDVKNI	LLSIGELPQE	MNKYMLAIVQ	DILRLEMPAS	KIVRRVLKEM	600
VAHNYDRFSR	SGSSSAYTGY	IERSPRSAST	YSLDILYSGS	GILRRSNLNI	650

-continued					
HUMAN PROTEIN SEQUENCE (SEQ. ID. NO. 4)					
10	20	30	40	50	
1234567890	1234567890	1234567890	1234567890	1234567890	
FQYIGKAGLH	GSQVVIEAQG	LEALIAATPD	EGEENLDSYA	GMSAILFDVQ	700
LRPVTFFNGY	SDLMSKMLSA	SGDPISVVKG	LILLIDHSQE	LQLQSGLKAN	750
IEVQGGLAID	ISGAMEFSLW	YRESKTRVKN	RVTVVIttid	TVDSSFVKag	800
LETSTETEAG	LEFISTVQFS	QYPFLVCMQM	DKDEAPFRQF	EKKYERLSTG	850
RGYVSQKRKE	SVLAGCEFPL	HQENSEMCKV	VFAPQPDSTS	TGWF	894

	BOVINE/HUMAN PROTEIN COMPARISON	
BOVINE HUMAN		$\begin{aligned} & 16 \\ & 50 \end{aligned}$
BOVINE HUMAN		66 100
BOVINE HUMAN		116 150
BOVINE HUMAN		166 200
BOVINE HUMAN		216 250
BOVINE HUMAN		266 300
BOVINE HUMAN		$\begin{aligned} & 316 \\ & 350 \end{aligned}$
BOVINE HUMAN		366 400
BOVINE HUMAN		$\begin{aligned} & 416 \\ & 450 \end{aligned}$
BOVINE HUMAN		466 500
BOVINE HUMAN		516 550
BOVINE HUMAN		$\begin{aligned} & 566 \\ & 600 \end{aligned}$
BOVINE HUMAN		$\begin{aligned} & 616 \\ & 650 \end{aligned}$
BOVINE HUMAN		666 700

-continued

BOVINE/HUMAN PROTEIN COMPARISON		
BOVINE HUMAN		$\begin{aligned} & 716 \\ & 750 \end{aligned}$
BOVINE HUMAN		766 800
BOVINE HUMAN		$\begin{aligned} & 816 \\ & 850 \end{aligned}$
BOVINE HUMAN		$\begin{aligned} & 860 \\ & 894 \end{aligned}$

The bovine cDNA is a 2900 base composite of the cDNA sequences of clones 2 and $\mathbf{2 2}$ and has an open reading frame between bases 1 and 2580 , predicting a translation product of 860 amino acids, followed by a TGA stop codon, 298 bases of 3 prime non-coding sequence, and a poly A region.
In the human CDNA, the 3185 bases predict an 894 amino acid translation product from bases 48 to 2729 , followed by a TGA stop codon, 435 bases of 3 prime non-coding sequence, and a poly A region.
In the cDNA comparison, there is about an 88% identity between overlapping sequences in the coding region (bovine bases 1-2583 and human bases $150-2732$). It is not necessary to introduce any gaps to attain this alignment within the coding region. The homology is somewhat weaker in the 3^{\prime} noncoding region, including the introduction of several gaps to obtain optimal alignment.

The bovine protein sequence (SEQ. ID. NO. 3) is the 860 amino acid translation product of the combined sequence of bovine cDNA clones 2 and 22. Sequences for the peptide fragments used to design oligonucleotide probes are as follows: peptide 19A is found between residues 37 and 51, peptide $\mathbf{3 7}$ A between residues 539 and $\mathbf{5 5 0}$, and peptide $\mathbf{2 A}$ between residues 565 and 572.
The human protein sequence (SEQ. ID. NO. 4) is the 894 amino acid translation product of human cDNA clone 693.

In the amino acid comparison, the bovine protein shows about 86% identity to the human translation product. When considering highly conserved substitutions at nonidentical residues, the two proteins are about 94% homologous.

The inventors extended their knowledge of the 5^{\prime} end of the foregoing bovine cDNA sequence with the sequence shown below, 5^{\prime} to 3^{\prime}. The top line shows the nucleotide sequence (SEQ. ID. NO. 5), and the bottom line the amino acid sequence (SEQ. ID. NO. 6). The new sequence obtained (83 bases) is underlined.
(SEQ. ID. NO. 8)

CATGTTCCCTTACAATGAAAACTGGATATGTGTCATTATCTTTATGCAGG	109
TCACACAACTGGTCTCTCATTAAATAATGACCGGCTGTACAAGCTCACGT	
ACTCCACTGAAGTTCTTCTTGATCGGGGCAAAGGAAAACTGCAAGACAGC	EXON 2
GTGGGCTACCGCATTTCCTCCAACGTGGATGTGGCCTTACTATGGAGGAA	
TCCTGATGGTGATGATGACCAGTTGATCCAAATAACOGTGGGCATTTTCT	296
ACCAGATAAATGCAAAGATTAGATATCAGAAGTTTTTGGAGAAGTGTACC	
ATTGGACAGCACTTGTATTGGGTTCCCGTTTATAATCCATTAGTTTCTTA	
TCTATCACTAAAACAAGCAGGTCTTTGTTTTAAGGTTTGGTGATGAAAG	\longrightarrow
TTATTTTAAGCCTAAAGTCACAGAGTTCTTTAAGTATTGCTATTTTTGCC	
TTATTAAAAAACCTAGTTTATAAATACCTTCTCCATTCTTTTAAAGTGAG	
TGGCAAGGTCCTATAAATCATGAATTGAAAAATGACAGAAGAAATTGTGG	
CCAACTCTTTCTGTTTCTTTATCATTTTATTTTCAGAGATACTCTGATGA	
AGACAGATATAGGAAGTTTTTTTTAACAGCTTTCTTTCTGTTACTCCAGA	297
TGAAGGATGTAAATGTTGAAAATGTGAATCAGCAGAGAGGAGAGAAGAGC	EXON 3
ATCTTCAAAGGAAAAAGCCCATCTAAAATAATGGGAAAGGAAAACTTGGA	
AGCTCTGCAAAGACCTACGCTCCTTCATCTAATCCATGGAAAGGTAAAGG	
GGCGTTTAGATTCCACAACTTTTTCTCCAACTTCATATTTTTCTTCCCTT	
CAGTAGATATTATTTTGAGGTAATCACATTGTAACTACTTTTATGGTAAA	
TGGAATTTCTTCAAGAACTAAAGAACAGAGGTTGTAAATTAAATGTTTCC	
AAACTGAATCAATGCCCTGAGTTCCCTTACATTTACTAGCCAATTTGTTT	
CCTATTTTTCTGGAAATCTTTATAGTGGAATGAAGTATTTATTTATTGAT	
GAAAGGCATTATTAAAAGGTAAATTTCTCATCAAATTATAAGGGATTACA	
AACATAATGTAACAAAGCAAGTCATCAAAGCATGATTGGATGAATTC	\longrightarrow
TCTGATAAATGATGCATTTTTGCTTCATTTGTGTTCTGTTCCCCTCTCCC	
CACCAGGTCAAAGAGTTCTACTCATATCAAAATGAGGCAGTGGCCATAGA	441
AAATATCAAGAGAGGTCTGGCTAGCCTATTTCAGACACAGTTAAGCTCTG	EXON 4
GAACCACCAATGAGGTACTTACCAATATTAATAAGGATTCAGCATCTCAA	548
TAAAATTTGTAAGGATTTCTACTTATACAATTTCAGTAGAAGAGTTACTA	
CTAAGGTAATGCTCAGAAAAGGTGACTTGTGTAG \longrightarrow	
TCCCCTATGGCCTATTAGAGACCTCAATTTTCAAGCCACTTCTCACTAGA	
ATTCAAATGGCCCACAAGGAATCCCAAGCATTATGCCCTTGCCTTTCTTT	
tTAGGTAGATATCTCTGGAAATTGTAAAGTGACCTACCAGGCTCATCAAG	549
ACAAAGTGATCAAAATTAAGGCCTTGGATTCATGCAAAATAGCGAGGTCT	EXON 5
GGATTTCAGACCCCAAATCAGGTATGATAGATGTCACTTTCTTTGAGGCA	665
TTAAAATAATTACATTTTGTAGAGACTAATTTA \longrightarrow	

-continued

```
AGAGAAAAAAGAGGACACCAGGATGTATCTGCTGGCTTTGAAGAATGCCC
    EXON 11
TGCTTCCAGAAGGCATCCCAAGTCTTCTGAAGTATGCAGAAGCAGGAGAA
GGGCCCATCAGCCACCTGGCTACCACTGCTCTCCAGAGATATGATCTCCC
TTTCATAACTGATGAG/GTAAAATCTCCAAGAATATTTGCAACATTTTACAG }150
AAGAAAAAAAAAAAGCATGCTGAACATGAGTCAAATGCAAATTCCGCTCA
AGTCACTCTGTATTTTCCCCAAATAGTCTTCTCTCCTGCTTAAAAATAAC
TCTTAAATTGCATTTGGGGCTATTCTAA
ATGTTTAATTTCTCAGGCTATGCCTAATGTGCATAAGGAAGTATGTGGTC
TGAAGTTCACTACAGTCATGGAAGAAAGAGATGGAGAAAGCCACCAGCTC
TTAACGGCCTCAGCCTAGAAGTGATCCTCATAGATTCTATCCATGGCGTA
TTAGCCAGAACTAGTCACGTGGCCCCCACCAAATCACAAAGGAATCTGGG
AAATGTAGTAACACATGTATATTTTTATGAACACTCACTATTCCTGCTAT
TCCTGCTGAAATGTCCATTTTAAAAATCTAGATGTGCACTAAGTTTGAAC
ATCTTATGAACAGGTGAAGAAGACCTTAAACAGAATATACCACCAAAACC 1605
GTAAAGTTCATGAAAAGACTGTGCGCACTGCTGCAGCTGCTATCATTTTA
AATAACAATCCATCCTACATGGACGTCAAGAACATCCTGCTGTCTATTGG EXON }1
GGAGCTTCCCCAAGAAATGAATAAATACATGCTCGCCATTGTTCAAGACA
TCCTACGTTTTGAAATGCCTGCAAGGTATAATACATTGCACATGTCTCTC 1816
TGTGTATTCAAGCTTATTTGTGTGTTCATGGGGTACCGATGTAGCTAATA
ATAATGATGTGGTCATTATGCAA
AGCTGGACACCCTTGCCTTGCTGTCATTTTGATAGCAAACTAAATTTCAA
ATATCTGAGTAATGAAGGGGCTAGCCCTAATCCTGATGCTACCACGCCAG
CTGGCACCACCCTGGCTCTTGGAAAGGCATGAGGAAAATTTGGCTTCCTC
TTTTTTCCACTGAGGATTTTTTTTITCCAAATTTGACTTGGGAAACAGTC
ATTACAATGAATGTGCAGCTTTTTTTTTCCTCATATGTTGCAGCAAAATT }181
GTCCGTCGAGTTCTGAAGGAAATGGTCGCTCACAATTATGACCGTTTCTC EXON 13
CAGGAGTGGATCTTCTTCTGCCTACACTGGCTACATAGAAdGTATGTACA 1914
CCAAAAAGAGGTTCTCCTTCCATACCCCACAACTTAGCATTGCTGGAACT
GCTATTAAATTACAGTTATTGTGTGTCATCAGGTAGTCCCCGTTCGGCAT 1915
EXON 14
AGTAACCTGAACATCTTTCAGTACATTGGGAAGGCTGGTCTTCACGGTAG
CCAGGTAACTCACTTCTCATGGATTTTGCTMAATAAAGTATGCAAGAAAT }203
CAGGCTGAGGTAAAATAAAACATATATGCTGTGGGTAATGCTATAGAATG
TATAAGTTAATGGTGGCTTCTGTCATATTTTGCCCATGATTTCCTPATCT
GTAAGAGGCTGTATGGTTTATAGTCACTCAGAGAAAGTTTCGAATTTGAA
CTTGAAACCTAAGTAATTTGATCCATTGAACTTGACAAATGTCCATT }
TGGCCCCTTGAGAAGTTCTAGCTGCAGCTCAGAAGCTTCACCATTATTTA
```

-continued
CAGAGCAGGCAGGGAGCTTGCGTCATGAACATTATATTGATTTTATCCAG
GTGGTTATTGAAGCCCAAGGACTGGAAGCCTTAATCGCAGCCACCCCTGA 203
CGAGGGGGAGGAGAACCTTGACTCCTATGCTGGTATGTCAGCCATCCTCT
TTGATGTTCAGCTCAGACCTGTCACCTTTTTCAACGGATACAGTGATTTG EXON 15
ATGTCCAAAATGCTGTCAGCATCTGGCGACCCTATCAGTGTGGTGAAAGG
ACTTATTCTGCTAATAGATCATTCTCAGGTAATTCANYCAGTCTGTGAGT 2264 ATTTATTGAGTCCCTAAACTACGCCAGGCACGTA \qquad ATCAACACAACTCAAATGGAATTATCTACAGCAGGAGGTCAAATGTNCCA TTGGAAAGGGGGTTAACTAAATTGTACTTATTATTTTTATAACTATTATT ATGCTTTTTTCTTCTAGGAACTTCAGTTACAATCTGGACTAAAAGCCAAT 2265 ATAGAGGTCCAGGGTGGTCTAGCTATTGATATTTCAGGTGCAATGGAGTT EXON 16 TAGCTTGTGGTATCGTGAGTCTAAAACCCGAGTGAAAAATAG|GTAAGTGT 2389

TTATGCATTATACATTTATGAATTACATATAAGACTATAT \longrightarrow CTTGGGTATTTCTGACCTGCTGAGAGGACCTGGGTTCCAAGAATGTTTTT CATTTTGGTCTTTGTTATGCCCATACGAAACAATGTAGTATCTTACAGAC ACTCCCCACATCTGCAACTGAAGGCAGGGGAGAGCTCAGGGGAAGGGCAA ACCTTCCCTGCCCAATATCTGAGACTCACCAGGCCCTGGTTACCAGCAGA ACTCTAAGCACATCCAGGTCACCTCTGAATCCCTTAAGTGTTTCCTTCCA GTCACTGGCATCATACGTTCAGACCCTGTAAAGTTACAGCTGTTAGTCCA ATACCATTAAATATAATATGAACAAGTTTTTTCTTTTTTTCTCAAATGTT TAGGGTGACTGTGGTAATAACCACTGACATCACAGTGGACTCCTCTTTTG 2390 TGAAAGCTGGCCTGGAAACCAGTACAGAAACAGAAGCAGGTTTGGAGTTT ATCTCCACAGTGCAGTTTTCTCAGTACCCATTCTTAGTTTGCATGCAGAT GGACAAGGATGAAGCTCCATTCAGGTAAGATGCAGCGTACAGGTCATGTT 2560 CCAGGACCATCCCCAGTGCACCAGGAACTTGCATTCAGTTTAGAACATTC

AGTTTCAGAATTAAAACAAAACAGTAGAAACCCAGGGAAAGATGAATTTT CTTTAAATGAGTAGAAGAATAATTGATAAGGCCAAAAAAAGTCAGTTTCT GGGATACCAAAAAAAAATCTAATGACTAGTTCATGTGATTCTGGAGATAG TTATCATATTCTAATCCAGAAACAATTT \qquad TGCTTTGGAACAGAAACTTCAAGTACATTCAGTAACTTGGCTGGAGAGGT ATAGGGTGACTTAACTGTGTGTGTAATTCTGTTAATGTTGCTGTTGTTGT

ACAGGCAATTTGAGAAAAAGTACGAAAGGCTGTCCACAGGCAGAGGTTAT 2561
GTCTCTCAGAAAAGAAAAGAAAGCGTATTAGCAGGATGTGAATTCCCGCT
CCATCAAGAGAACTCAGAGATGTGCAAAGTGGTGTTTGCCCCTCAGCCGG
ATAGTACTTCCAGCGGATGGTTTTGAAACTGACCTGTGATATTTTACTTG
AATTTGTCTCCCCGAAAGGGACACAATGTGGCATGACTAAGTACTTGCTC

TCTGAGAGCACAGCGTTTACATATTTACCTGTATTTAAGATTTTTGTAAA
-continued
AAGCTACAAAAAACTGCAGTTTGATCAAATTTGGGTATATGCAGTATGCT ACCCACAGCGTCATTTTTGAATCATCATGTGACGCTTTTCAACAACGTTCTT AGTTTACTTATACCTCTCTCAAATCTCATTTGGTACAGTCAGAATAGTTA TTCTCTAAGAGGAAACTAGTGTTTGTTTAAAAACAAAAATAAAAACAAAAC CACACAAGGAGAACCCAATTTTTGTTTCAACAATTTTTTCATCAATGTATAT GAAGCTCTTGATAGGACTTCCTTAAGCATGACGGGAAAACCAAACACGTT СССТАATCAGGAAAAAAAAAAAAAAAAAAGGTAGGACACAACCAACCCAT TTTTTTTCTCTTTTTTTGGACTTGGGGGCCCAGGGAGAAGGGACAAGACT TTTAAAAGACTTGTTAGCCAACTTCAAGAATTAATATTTATGTCTCTGTT ATTGTTAGTTTTAAGCCTTAAGGTAGAAGGCACATAGAAATAACATCTCA TCTTTCTGCTGACCATTTTAGTGAGGTTGTTCCAAAGACATTCAGGTCTC TACCTCCAGCCCTGCAAAAATATTGGACCTAGCACAGAGGAATCAGGAAA ATTAATTTCAGAAACTCCATTTGATTTTTCTITTGCTGTGTCTTTTTGGAG ACTGTAATATGGTACACTGTCCTCTAAGGGACATCCTCATTTTATCTCAC CTITTTGGGGGTGAGAGCTCTAGTTCATTTAACTGTACTCTGCACAATAG CTAGGATGACTAAGAGAACATTGCTTCAAGAAACTGGTGGATTTGGATTT CCAAAATATGAAATAAGGAAAAAAATGTTTTTATTTGTATGAATTAAAAG atccatgttgancatt tgcanatatttattantanacagatgtggtgata AACCCAAAACAAATGACAGGTCCTTATTTTTCCACTAAACACAGACACATG AAATGAAAGTTTAGCTAGCCCACTATTTGTTGTAAATTGAAAACGAAGTG tgatanantanatatgtaganatcatattgant c

CCCCTCTPAATCTCTTCCTAGAAATGAGATTCAGAAAGGACAGGACTGCA SEQ. ID. NO. 31 TCCAGCCTGTTTGGGAACTCAGACAAATGTGTGTTGTCACAGACACAAAT AGAGGTCTACTATGAAATAATTGGCTTGCTAGTGTGCTAATGACAGACAA TGCTGATTTGCTCCAACCTCATACAGTTTCACACATAAGGACAATCATCT ATGTTTCATGAAAGTTCTATCTACTTTAACATTATTTTGAAGTGATTGGT GgTGGTATGAATTAACAGTTTAAATTTAAATCCTAAAATTCAGTGTGAAT TTTTTATAATAGCATAAAAATTCAAAGATGTCCATACAAGAAAAATTAAA ATTTGGTTAGGTTTAGCAGAGTTTGAGAATCCTTACTACCCTCCCACATA GTATTGTAATGTGAATATAGGCAGTTACTATTACAGGCATAATGATGATT ATGTATTAAGCAGAAAGAAGTATCACCACCAGTTTTTTTCTTTGAATGCC CCTCAGTACTTCTGCATTTATAGGATGGTAGACTGGTTTGGTTTAGCTCT CAAAAGTGAAAACATTTAAAGTTTCCTCATTGGGTGAAAAAAATTAAAAA GAGTGAGAGACTGAAAACTGCAGCCCACCTACGTTTAATCATTAATAGTG AGCCCTTCAGTGAACTTAGGTCCTGATTTTGGAGTTTGGAGTCTGACCTT TCCCCAAAGATAAACATGATTGTTGCAGGTTCTGAAGAGGGTCACTCCCT
-continued
CACTGGCTGCCATTGAAAGAGTCCACTTCTCAGTGACTCCTAGCTGGGCA 1
CTGGATGCAGTTGAGGATTGCTGGTCAATATGATTCTTCTTGCTGTGCTT EXON
TTTCTCTGCTTCATTTCCTCATATTCAGCTTCTGTTAAAG|GTAAGTTTGT 108
GTTGCCTTTTGCTAAACTTTAATTTCCATCTTTGGAGTTGGAGGCAGATA

CGTGCGTGTGTGTGTGTTTGTGTGAGTGAATAGTGAAAGAGTTTCTGACT
AAACTATCTTCAAAACCATGTAACTTTGGAATGTTTGTGAAAGCATGGCT GAGTTGAAATGAAAACCAAATTCAAATCCCTACAAACATTAAGAAAACAG

ATATTTCTTTTAGTTTCAGTTCCTCAGACCAGTGTGTTCTTGCTTCAATT TCTCATTCATGGTCTGTTTTTAAAAGAAGGAAAAAAGATACCCACTATTG TTACCTGCTGTTGTTGGTCACATTGAATGCAGCTCCTTCATTTGAATTGT AAATGAGGATTTTTTTTAAAAACCGAGTTCTTAAATTTTCTTTTAGTTGC TTAGCAATGTGACCTCAAGAAGAATTAGACCCAATGAAAAAGGCATTTGA TTTGCCAAAGAATTATGAATGAAATGGCACAACATATATTTAATTCCGTT ACAATTAAAAAATGATA

The inventors have further determined the sequence of a 564 base pair region of intron 10 of the foregoing genomic DNA sequence. This region, shown below (SEQ. ID. NO. 32) has a CA repeat sequence with the structure

$$
(\mathrm{CA})_{4} \mathrm{AA}(\mathrm{CA})_{3} \mathrm{GA}(\mathrm{CA})_{4} \mathrm{TA}(\mathrm{CA})_{n} \mathrm{TACA}
$$

wherein (CA) $)_{n}$ varies from $\mathrm{n}=8$ to $\mathrm{n}=17$ in genes sequenced to date. Variation in this motif allows these sequences to be used as allelic markers for the MTP gene.
(1) the isolation of a double-stranded DNA sequence from genomic DNA or complementary DNA (cDNA) which contains the sequence;
(2) the chemical synthesis of the DNA sequence; and
(3) the synthesis of the DNA sequence by polymerase chain reaction (PCR).
In the first method, a genomic or cDNA library can be screened in order to identify a DNA sequence coding for all or part of the high molecular weight subunit of MTP. For example, bovine or human cDNA libraries can be screened

```
50 SEQ. ID. NO. }3
```

100
150
in order to identify a DNA sequence coding for all or part of MTP. Various cDNA libraries, for example, a bovine small intestine lambda gt10 library (Clontech Laboratories, Inc. Palo Alto, Calif.), a human liver lambda UNI-ZAP ${ }^{\mathrm{TM}}$ XR library (Stratagene Cloning Systems, La Jolla, Calif.), or a human intestine lambda gt10 library (Clontech), can be used.
Various techniques can be used to screen genomic DNA or cDNA libraries for target sequences that code for the high molecular weight subunit of MTP. This technique may, for
example, employ a labeled single-stranded DNA probe with a sequence complementary to a sequence that codes for the high molecular weight subunit of MTP. For example, DNA/ DNA hybridization procedures may be used to identify the sequence in the cloned copies of genomic DNA or cDNA which have been denatured to a single-stranded form. Suitable probes include cDNA for the high molecular weight subunit of MTP acquired from the same or a related species, synthetic oligonucleotides, and the like.

Agenomic DNA or cDNA library can also be screened for a genomic DNA or cDNA coding for all or part of the high molecular weight subunit of MTP using immunoblotting techniques.
In one typical screening method suitable for the hybridization techniques, a genomic DNA or cDNA library is first spread out on agarose plates, and then the clones are transferred to filter membranes, for example, nitrocellulose membranes. The genomic library is usually contained in a vector such as EMBL 3 or EMBL 4 or derivatives thereof (e.g., lambda DASH ${ }^{\mathrm{TM}}$). The cDNA library is usually contained in a vector such as $\lambda . g t 10, \lambda \mathrm{gt} 11$, or lambda ZAP. A DNA probe can then be hybridized to the clones to identify those clones containing the genomic DNA or cDNA coding for all or part of the high molecular weight subunit of MTP. Alternatively, appropriate E. coli strains containing vectors λ gt11 or lambda ZAP can be induced to synthesize fusion proteins containing fragments of proteins corresponding to the cDNA insert in the vector. The fusion proteins may be transferred to filter membranes, for example, nitrocellulose. An antibody may then be bound to the fusion protein to identify all or part of the high molecular weight subunit of MTP.

In the second method, the nucleic acids of the present invention coding for all or part of MTP can be chemically synthesized. Shorter oligonucleotides, such as 15 to 50 nucleotides, may be directly synthesized. For longer oligonucisotides, the DNA sequence coding for the high molecular weight subunit of MTP can be synthesized as a series of $50-100$ base oligonucleotides that can then be sequentially ligated (via appropriate terminal restriction sites) so as to form the correct linear sequence of nucleotides.
In the third method, the nucleic acids of the present invention coding for all or part of the high molecular weight subunit of MTP can be synthesized using PCR. Briefly, pairs of synthetic DNA oligonucleotides generally at least 15 bases in length (PCR primers) that hybridize to opposite strands of the target DNA sequence are used to enzymatically amplify the intervening region of DNA on the target sequence. Repeated cycles of heat denaturation of the template, annealing of the primers and extension of the 3'-termini of the annealed primers with a DNA polymerase results in amplification of the segment defined by the PCR primers. S White, T. J. et al., Trends Genet. 5, 185-9 (1989).

The nucleic acids of the present invention coding for all or part of MTP can also be modified (i.e., mutated) to prepare various mutations. Such mutations may change the amino acid sequence encoded by the mutated codon, or they may be silent and not change the amino acid sequence. These modified nucleic acids may be prepared, for example, by mutating the nucleic acid coding for the high molecular weight subunit of MTP so that the mutation results in the deletion, substitution, insertion, inversion or addition of one or more amino acids in the encoded polypeptide using various methods known in the art. For example, the methods of site-directed mutagenesis described in Taylor, J. W. et al., Nucl. Acids Res. 13, 8749-64 (1985) and Kunkel, J. A.,

Expression vectors of utility in the present invention are often in the form of "plasmids", which refer to circular double stranded DNA loops that, in their vector form, are not bound to the chromosome. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto. The expression vectors of the present invention may also be used to stably integrate the DNA sequence encoding the high molecular weight subunit of MTP into the chromosome of an appropriate host cell (e.g.,COS or HepG2 cells).

Expression vectors useful in the present invention typically contain an origin of replication, a promoter located 5^{\prime} to (i.e., upstream on the DNA sequence, followed by the DNA sequence coding for all or part of the high molecular weight subunit of MTP, transcription termination sequences, and the remaining vector. The expression vectors may also include other DNA sequences Known in the art, for example, stability leader sequences which provide for stability of the expression product, secretory leader sequences which provide for secretion of the expression product, sequences which allow expression of the structural gene to be modulated (e.g., by the presence or absence of nutrients or other inducers in the growth medium), marking sequences which are capable of providing phenotypic selection in transformed host cells, sequences which provide sites for cleavage by restriction endonucleases, and sequences which allow expression in various types of hosts, including but not limited to prokaryotes, yeasts, fungi, plants and higher eukaryotes. The characteristics of the actual expression vector used must be compatible with the host cell which is to be employed. For example, when expressing DNA
sequences in a mammalian cell system, the expression vector should contain promoters isolated from the genome of mammalian cells, (e.g., mouse metallothionien promoter), or from viruses that grow in these cells (e.g., vaccinia virus 7.5 K promoter). An expression vector as contemplated by the present invention is at least capable of directing the replication, and preferably the expression, of the nucleic acids of the present invention. Suitable origins of replication include, for example, the Col E1, the SV4O viral and the M13 orgins of replication. Suitable promoters include, for example, the cytomegalovirus promoter, the lac Z promoter, the gal 10 promoter and the Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) polyhedral promoter. Suitable termination sequences include, for example, the bovine growth hormone, SV40, lac Z and AcMNPV polyhedral polyadenylation signals. Examples of selectable markers include neomycin, ampicillin, and hygromycin resistance and the like. All of these materials are known in the art and are commercially available.

Suitable commercially available expression vectors into which the DNA sequences of the present invention may be inserted include the mammalian expression vectors pcDNAI or peDNA/Neo, the baculovimus expression vector pBlueBac, the prokaryotic expression vector pcDNAII and the yeast expression vector pYes 2 , all of which may be obtained from Invitrogen Corp., San Diego, Calif.
Suitable expression vectors containing the desired coding and control sequences may be constructed using standard recombinant DNA techniques known in the art, many of which are described in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory, Cold Spring Habor, N.Y. (1989).

Host Cells

The present invention additionally concerns host cells containing an expression vector which comprises a DNA sequence coding for all or part of the high molecular weight subunit of MTP. See, for example the host cells of Example 4 hereinbelow, which are preferred. The host cells preferably contain an expression vector which comprises all or part of the DNA sequence having the nucteotide sequence substantially as shown in SEQ. ID. NOS. 1, 2, 5, 7, 8, 1 together with 5,2 together with 7 , the first 108 bases of 2 together with 8 , the first 108 bases of 2 together with 7 and 8 , or 8 together with 31 and 32 . See, for example, the expression vector appearing in Example 4 hereinbelow, which is preferred. Further preferred are host cells containing an expression vector comprising one or more regulatory DNA sequences capable of directing the replication and/or the expression of and operatively linked to a DNA sequence coding for all or part of the high molecular weight subunit of MTP. Suitable host cells include both prokaryotic and eukaryotic cells. Suitable prokaryotic host cells include, for example, E. coli strains HB101, DH5a, XL1 Blue, Y1090 and JM101. Suitable eukaryotic host cells include, for example, Spodoptera frugiperda insect cells, $\mathrm{COS}-7$ cells, human skin fibroblasts, and Saccharomyces cerevisiae cells.

Expression vectors may be introduced into host cells by various methods known in the art. For example, transfection of host cells with expression vectors can be carried out by the calcium phosphate precipitation method. However, other methods for introducing expression vectors into host cells, for example, electroporation, liposomal fusion, nuclear injection, and viral or phage infection can also be employed.

Once an expression vector has been introduced into an appropriate host cell, the host cell may be cultured under conditions permitting expression of large amounts of the desired polypeptide, in this case a polypeptide molecule comprising all or part of the high molecular weight subunit of MTP.

Host cells containing an expression vector that contains a DNA sequence coding for all or part of the high molecular weight subunit of MTP may be identified by one or more of the following six general approaches: (a) DNA-DNA hybridization; (b) the presence or absence of marker gene functions; (c) assessing the level of transcription as measured by the production of mRNA transcripts encoding the high molecular weight subunit of MTP in the host cell; (d) detection of the gene product immunologically; (e) enzyme assay; and (f) PCR.
In the first approach, the presence of a DNA sequence coding for all or part of the high molecular weight subunit of MTP can be detected by DNA-DNA or RNA-DNA hybridization using probes complementary to the DNA sequence.
In the second approach, the recombinant expression vector host system can be identified and selected based upon the presence or absence of certain marker genc functions (c.g., thymidine kinase activity, resistance to antibiotics, etc.). A marker gene can be placed in the same plasmid as the DNA sequence coding for all or part of the high molecular weight subunit of MTP under the regulation of the same or a different promoter used to regulate the MTP coding sequence. Expression of the marker gene indicates expression of the DNA sequence coding for all or part of the high molecular weight subunit of MTP.
In the third approach, the production of mRNA transcripts encoding the high molecular weight subunit of MTP can be assessed by hybridization assays. For example, polyadenylated RNA can be isolated and analyzed by Northern blotting or a nuclease protection assay using a probe complementary to the RNA sequence. Alternatively, the total RNA of the host cell may be extracted and assayed for hybridization to such probes.
In the fourth approach, the expression of all or part of the high molecular weight subunit of MTP can be assessed immunologically, for example, by immunoblotting with antibody to MTP (Western blotting).
In the fifth approach, expression of the high molecular weight subunit of MTP can be measured by assaying for MTP enzyme activity using known methods. For example, the assay described herein below may be employed.
In the sixth approach, oligonucleotide primers homologous to sequences present in the expression system (i.e., expression vector sequences or MTP sequences) are used in a PCR to produce a DNA fragment of predicted length, indicating incorporation of the expression system in the host cell.
The DNA sequences of expression vectors, plasmids or DNA molecules of the present invention may be determined by various methods known in the art. For example, the dideoxy chain termination method as described in Sanger et al., Proc. Natl. Acad. Sci. USA 74, 5463-7 (1977), or the Maxam-Gilbert method as described in Proc. Natl. Acad. Sci. USA 74, 560-4 (1977) may be employed.

In order to express catalytically active MTP, it may be necessary to produce a protein complex containing both the high and low molecular weight subunits of MTP. The low molecular weight subunit of MTP is the previously characterized protein, protein disulfide isomerase (PDI). PDI cDNAs have been cloned from human [Pihlajaniemi et al., EMBO J. 6, 643-9 (1987)], bovine [Yamaguchi et al., Biochem. Biophys. Res. Comm. 146, 1485-92 (1987)], rat [Edman et al., Nature 317 267-70 (1985)] and chicken [Kao et al., Connective Tissue Research 18, 157-74 (1988)]. Various approaches can be used in producing a protein containing both the high and low molecular weight subunits
of MTP. For example, cDNA sequences encoding the subunits may be inserted into the same expression vector or different expression vectors and expressed in an appropriate host cell to produce the protein.

It should, of course, be understood that not all expression vectors and DNA regulatory sequences will function equally well to express the DNA sequences of the present invention. Neither will all host cells function equally well with the same expression system. However, one of ordinary skill in the art may make a selection among expression vectors, DNA regulatory sequences, and host cells using the guidance provided herein without undue experimentation and without departing from the scope of the present invention. Polypeptides

The present invention further concerns polypeptide molecules comprising all or part of the high molecular weight subunit of MTP, said polypeptide molecules preferably having all or part of the amino acid sequence as shown in SEQ. ID. NOS. 3, 4, or 3 together with 6 . In the case of polypeptide molecules comprising part of the high molecular weight subunit of MTP, it is preferred that potypeptide molecules be at least about 5 to 8 sequential amino acids in length, more preferably at least about 15 to 20 sequential amino acids in length. Also preferred are polypeptides at least about 180 sequential amino acids in length, which may approximate the size of a structural domain within the protein.

All amino acid sequences are represented herein by formulas whose left to right orientation is in the conventional direction of amino-terminus to carboxy-terminus.

The polypeptides of the present invention may be obtained by synthetic means, i.e., chemical synthesis of the polypeptide from its component amino acids, by methods known to those of ordinary skill in the art. For example, the solid phase procedure described by Houghton et at., Proc. Natl. Acad. Sci. 82, 5131-5 (1985) may be employed. It is preferred that the polypeptides be obtained by production in prokaryotic or eukaryotic host cells expressing a DNA sequence coding for all or part of the high molecular weight subunit of MTP, or by in vitro translation of the mRNA encoded by a DNA sequence coding for all or part of the high molecular weight subunit of MTP. For example, the DNA sequence of SEQ. ID. NOS. 1, 2, 5, 7, 8, 1 together with 5,2 together with 7 , the first 108 bases of 2 together with 8 , the first 108 bases of 2 together with 7 and 8,8 together with 31 and 32 or any part thereof may be synthesized using PCR as described above and inserted into a suitable expression vector, which in turn may be used to transform a suitable host cell. The recombinant host cell may then be cultured to produce the high molecular weight subunit of MTP. Techniques for the production of polypeptides by these means are known in the art, and are described herein.
The polypeptides produced in this manner may then be isolated and purified to some degree using various protein purification techniques. For example, chromatographic procedures such as ion exchange chromatography, gel filtration chromatography and immunoaffinity chromatography may be employed.

The polypeptides of the present invention may be used in a wide variety of ways. For example, the polypeptides may be used to prepare in a known manner polyclonal or monoclonal antibodies capable of binding the polypeptides. These antibodies may in turn be used for the detection of the polypeptides of the present invention in a sample, for example, a cell sample, using immunoassay techniques, for example, radioimmunoassay, enzyme immunoassay, or amino acid changes in the overall sequence, such as deletions, substitutions, insertions, inversions or addition of one or more amino acids in said sequence. Such changes may be advantageous in producing or using the polypeptides of the present invention; for example in isolation of MTP or the polypeptides by affinity purification. Amino acid substitutions may be made, for example, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphiphathic nature of the residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups or nonpolar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine, glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine. Other contemplated variations include salts and esters of the aforementioned polypeptides, as well as precursors of the aforementioned polypeptides, for example, precursors having N-terminal substituents such as methionine, N -formylmethionine and leader sequences. All such variations are included within the scope of the present invention.

Method For Detection of Nucleic Acids

The present invention further concerns a method for detecting a nucleic acid sequence coding for all or part of the high molecular weight subunit of MTP or a related nucleic acid sequence, comprising contacting the nucleic acid sequence with a detectable marker which binds specifically to at least a portion of the nucleic acid sequence, and detecting the marker so bound. The presence of bound marker indicates the presence of the nucleic acid sequence. Preferably, the nucleic acid sequence is a DNA sequence having all or part of the nucleotide sequence substantially as shown in SEQ. ID. NOS. 1, 2, 5, 7, 8, 1 together with 5,2 together with 7 , the first 108 bases of 2 together with 8 , the first 108 bases of 2 together with 7 and 8 , or 8 together with 31 and 32 , or is complementary thereto.

A DNA sample containing the DNA sequence can be isolated using various methods for DNA isolation which are well-known to those of ordinary skill in the art. For example, a genomic DNA sample may be isolated from tissue by rapidly freezing the tissue from which the DNA is to be isolated, crushing the tissue to produce readily digestible pieces, placing the crushed tissue in a solution of proteinase K and SDS, and incubating the resulting solution until most of the cellular protein is degraded. The genomic DNA is then deproteinized by successive phenol/chloroform/isoamyl alcohol extractions, recovered by ethanol precipitation, and dried and resuspended in buffer.

Also preferred is the method in which the nucleic acid sequence is an RNA sequence. Preferably, the RNA sequence is an mRNA sequence. Additionally preferred is
the method in which the RNA sequence is located in the cells of a tissue sample. An RNA sample containing the RNA sequence may be isolated using various methods for RNA isolation which are well-known to those of ordinary skill in the art. For example, an RNA sample may be isolated from cultured cells by washing the cells free of medium and then lysing the cells by placing them in a 4 M guanidinium solution. The viscosity of the resulting solution is reduced by drawing the lysate through a 20 -gauge needle. The RNA is then pelleted through a cesium chloride step gradient, and the supernatant fluid from the gradient carefully removed to allow complete separation of the RNA, found in the pellet, from contaminating DNA and protein.

The detectable marker useful for detecting a nucleic acid sequence coding for all or part of the high molecular weight subunit of MTP or a related nucleic acid sequence, may be a labeled DNA sequence, including a labeled cDNA sequence, having a nucleotide sequence complementary to at least a portion of the DNA sequence coding for all or part of the high molecular weight subunit of MTP.
The detectable marker may also be a labeled RNA having a sequence complementary to at least a portion of the DNA sequence coding for all or part of the high molecular weight subunit of MTP.
The detectable markers of the present invention may be labeled with commonly employed radioactive labels, such as ${ }^{32} \mathrm{P}$ and ${ }^{35} \mathrm{~S}$, although other labels such as biotin or mercury may be employed. Various methods well-known to those of ordinary skill in the art may be used to label the detectable markers. For example, DNA sequences and RNA sequences may be labeled with ${ }^{32} \mathrm{P}$ or ${ }^{35} \mathrm{~S}$ using the random primer method.

Once a suitable detectable marker has been obtained, various methods well-known to those of ordinary skill in the art may be employed for contacting the detectable marker with the sample of interest. For example, DNA-DNA, RNARNA and DNA-RNA hybridizations may be performed using standard procedures known in the art. In a typical DNA-DNA hybridization procedure for detecting DNA sequences coding for all or part of MTP in genomic DNA, the genomic DNA is first isolated using known methods, and then digested with one or more restriction enzymes. The resulting DNA fragments are separated on agarose gels, denatured in situ, and transferred to membrane filters. After prehybridization to reduce nonspecific hybridization, a radiolabeled nucleic acid probe is hybridized to the immobilized DNA fragments. The membrane is then washed to remove unbound or weakly bound probe, and is then autoradiographed to identify the DNA fragments that have hybridized with the probe.
The presence of bound detectable marker may be detected using various methods well-known to those of ordinary skill in the art. For example, if the detectable marker is radioactively labeled, autoradiography may be employed. Depending on the label employed, other detection methods such as spectrophotometry may also be used.

It should be understood that nucleic acid sequences related to nucleic acid sequences coding for all or part of the high molecular weight subunit of MTP can also be detected using the methods described herein. For example, a DNA probe that has conserved regions of the gene for the high molecular weight subunit of human or bovine MTP can be used to detect and isolate related DNA sequences (e.g., a
which has the name 2-[1-(3,3-diphenylpropyl)-4-piperdinyl]-2,3-dihydro-3-oxo-1H-isoindole hydrochloride (herein referred to as "compound A"). The foregoing procedure also identified the MTP inhibitor

which has the name 1-[3-(6-fluoro-1-tetralanyl)methyl]-4-O-methoxyphenyl piperazine (herein referred to as "compound B"). These compounds were identificd by the procedures described in the working examples hereinafter. The foregoing procedures further were used to identify the MTP inhibitors falling within Formulae I, II, and III.

Method of Preparation of Inhibitors

The compounds of formulae I, II, and III may be prepared by the exemplary processes described in the following reaction schemes. Exemplary reagents and procedures for these reactions appear hereinafter and in Examples 10 et seg.
Scheme 1
Routes to Isoindolinone Piperdines 1

Scheme II

X

Base
$\xrightarrow{\text { Cyclization }}$

Scheme III
$\underline{\text { Introduction of } R^{1} \text { by Alkylation or Arylation }}$

SCHEME IV
$\underline{\text { Routes to Starting Materials IVb and IVc }}$

$\stackrel{\text { Hydrazinolysis }}{4}$

Scheme V
General Routes to Starting Materials IVb

Deprotection

IVb
Scheme VI
Gencral Routes to II

Phthalimide formation (Reaction Schemes I, IV) may be carried out by heating to about 80 to $150^{\circ} \mathrm{C}$. in an oil bath optionally in an inert solvent or by varous other procedures known in the art. See, e.g., Example 13 hereinafter.

Reduction (Reaction Scheme I) may be carried out by treatment with such reducing agents as zinc in the presence
of acetic acid or tin in the presence of hydrochloric acid under an inert atmoshphere (e.g., argon).

Isoindolone formation (Reaction Scheme I) may be car-
65 ried out by heating in the range of about 50 to $150^{\circ} \mathrm{C}$. in an organic solvent (e.g., toluene, ethanol, dimethylformamide) optionally in the presence of a salt (e.g., potassium
carbonate) or a tertiary amine base (e.g., 2,6-di-tbutylpyridine or triethylamine).
Amide formation (Reaction Schemes II, VI, VII) may be carried out by a number of methods known in the art. For example, an amine substrate may be treated with (1) an acid halide $\mathrm{R}^{5} \mathrm{C}(\mathrm{O})$ halo or compound X in an aprotic solvent, optionally in the presence of a tertiary amine base (e.g., triethylamine); (2) the acid halide in the presence of an aqueous base under Schotten-Baumann conditions; (3) a free carboxylic acid $\left(\mathrm{R}^{5} \mathrm{CO}_{2} \mathrm{H}\right)$ in the presence of a coupling agent such as dicyclohexylcarbodiimide (DCC) or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (WSC), optionally in the presence of 1-hydroxybenzotriazole (HOBT); (4) the free acid in the presence of N, N-carbonyldiimidazole in an aprotic organic solvent followed by the amine substrate; (5) trialkylaluminum (e.g., $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$) in an aprotic solvent, followed by an ester (e.g., $\mathrm{R}^{5} \mathrm{CO}_{2}$ alkyl or compound VIII) or (6) mixed anhydride formation, by reacting the acid with an acid chloride (e.g., isobutyl chloroformate or bis-(2-oxo-3oxazolidinyl)phosphinic chloride (Bop-Cl)) in the presence of a tertiary amine base (e.g., treithylamine) followed by treatment with the amine substrate.

Mesylate formation (Reaction Scheme II) may be carried out by treatment of the amine-alcohol substrate with methanesulfonyl chloride and triethylamine or pyridine or in an aprotic solvent, such as dichloromethane.

Base cyclization (Reaction Scheme II) may be carried out by treatment with a base (e.g., potassium t-butoxide or sodium hydride) in an inert solvent (e.g., dimethylformamide, tetrahydrofuran, dimethoxymethane, or toluene). Mitsunobu cyclization (Reaction Scheme II) may be carried out by procedures generally known in the art. See, e.g., R. K. Olsen, J. Org. Chem., 49, 3527 (1984); Genin, M. J., et al., J. Org. Chem., 58, 2334-7 (1993).
Alternatively, a mixture of compounds IV and VIII can be converted to compound la in a single pot by heating the mixture in a protic solvent (e.g., water, methanol, ethenyl or isopropanol or mixtures thereof) at 100 to $200^{\circ} \mathrm{C}$. See, e.g., European patent application 81/26,749, FR 2, 548,666 (1983).

Protection and deprotection (Reaction Schemes III, IV, V) may be carried out by procedures generally known in the art. See, for example, T. W. Greene, Protecting Groups in Organic Synthesis. Second edition, 1991. PG in Scheme V denotes a nitrogen-protecting group. One particularly useful group is tert-butoxycarbonyl (BOC) which can be derived from the associated anhydride as shown in Scheme IV. BOC-protected amines may typically be deprotected by treatment with acid (e.g., trifluoroacetic acid or hydrochloric acid) in procedures well understood by those having ordinary skill in the art.

Hydrogenolysis (Reaction Schemes III, IV, V) may be carried out with H_{2} using a balloon apparatus or a Parr Shaker in the presence of a catalyst (e.g., palladium on activated carbon).
Amine alkylation and arylation (Reaction Schemes III, IV, VII) may be carried out by methods known in the art. Suitable procedures are described in Cortizo, L., J. Med. Chem. 34, 2242-2247(1991). For example, the alkylation or arylation may be carried out by treating the amine substrate with a halide (e.g., R^{1}-halo) or an oxytosylate (e.g., R^{1}-Otosylate) in an aprotic solvent (e.g., dimethylformamide), optionally in the presence of a tertiary amine (e.g., triethylamine) or an inorganic base (e.g., potassium carbonate).

Reductive amination may be employed as an alternative to the foregoing amine alkylation and arylation procedures when R^{1}, R^{6} or R^{7} is $R^{9} R^{10} C H$-and R^{9} and R^{10} are each independently hydrogen, alkyl, alkenyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl, or R^{9} and R^{10} together are alkylene (i.e., $\mathrm{R}^{9} \mathrm{R}^{10} \mathrm{CH}$ - forms a cycloalkyl group). Such reductive amination may be carried out by treating the amine with (a) a ketone or aldehyde ($\mathrm{R}^{9}-\mathrm{C}(\mathrm{O})-\mathrm{R}^{10}$), (b) $\mathrm{NaBH}_{4}, \mathrm{NaBH}_{3} \mathrm{CN}$ or NaB (acetoxy) ${ }_{3} \mathrm{H}$, (c) a protic solvent (e.g., methanol) or a dipolar aprotic solvent (e.g., acetonitrile), and, optionally, (d) an acid (e.g., acetic acid, trifluoroacetic acid, hydrochloric acid, or titanium isopropoxide).
When R^{1} is aryl or heteroaryl, transition metals (e. g., palladium or copper salts or complexes) may be used to promote the arylation reaction.
Hydrazinolysis of phthalimides may be carried out by standard means known in the art. See, e.g., T. W. Greene, Protecting Groups in Organic Synthesis, Second edition, 1991.

Amide N -alkylation (Reaction Scheme VI) may be carried out by base treatment (e.g., $\mathrm{NaH}, \mathrm{KH}, \mathrm{KN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, P 4 -phosphazene base, or butyl lithium) in an aprotic organic solvent, followed by treatment with R^{6}-halo or R^{6}-O-tosylate. Use of P -phosphazene base is described in T . Pietzonka, D. Seebach, Angew. Chem. Int. Ed. Engl. 31, 1481, 1992.
In Scheme VII, the Friedel-Crafts cyclization may be carried out with, for example, aluminum chloride, boron trifluoride or polyphosphoric acid and aprotic solvents such as nitrobenzene, nitromethane or carbon disulfide at about $-20^{\circ} \mathrm{C}$. to $80^{\circ} \mathrm{C}$. The esterification may be carried out with a common esterifying agent (e.g., sulfuric acid in methanol) with heating to reflux. Ketalization may be carried out by treatment with such reagents as ethylene glycol in an organic solvent (e.g., benzene) in the presence of an acid catalyst (e.g., p-toluenesulfonic acid). Reduction with lithium aluminum hydride (LAH) may be carried out in an organic solvent (e.g., tetrahydrofuran) from $0^{\circ} \mathrm{C}$. to $70^{\circ} \mathrm{C}$. Oxidation of alcohols may be carried out by Oppenauer oxidation, such as treatment with potassium t-butoxide and benzophenone, or by other procedures known in the art. The sulfonation may be carried out with $\mathrm{RSO}_{2} \mathrm{Cl}$ wherein R is alkyl, haloalkyl or aryl in an organic solvent (e.g., pyridine, dichloromethine) in an inert atmosphere (e.g., nitrogen) optionally in the presence of a tertiary amine base (e.g., triethylamine).

Compound III can also be prepared from compound XX as described by Cortizo, L., J. Med. Chem. 34, 2242-2247 (1991).

Methods of Treatment

The present invention also concerns a novel method for preventing, stabilizing or causing regression of atherosclerosis in a mammalian species comprising administration of a therapeutically effective amount of an agent which decreases the amount or activity of MTP.

The present invention further concerns a novel method for lowering serum lipid levels, such as cholesterol or TG levels, in a mammalian species, which comprises administration of a therapeutically effective amount of an agent which decreases the amount or activity of MTP.
The treatment of various other conditions or diseases using agents which decrease the amount of activity of MTP is also contemplated by the present invention. For example, agents which decrease the amount or activity of MTP and
therefore decrease serum cholesterol and TG levels, and TG, fatty acid and cholesterol absorption are likely to be useful in treating hypercholesterolemia, hypertriglyceridemia, hyperlipidemia, pancreatitis, hyperglycemia and obesity.
Compound III can also be prepared from compound XX as described by Cortizo, L., J. Med. Chem. 34, 2242-2247 (1991).

Various agents which effectively decrease the amount or activity of MTP can be used in practicing the methods of the present invention. MTP inhibitors can be isolated using the screening methodology described hereinabove and in Example 5 hereinbelow. Compounds such as A and B, which are identified as inhibitors of MTP (see Example 6 hereinbelow), are useful in specific embodiments of the foregoing methods of treatment.

Antisense molecules may be used to reduce the amount of MTP. [See, Toulme and Helene, Gene 72, 51-8 (1988); Inouye, Gene 72, 25-34 (1988); and Uhlmann and Peyman, Chemical Reviews 90, 543-584 (1990)]. MTP antisense molecules can be designed based on the foregoing genomic DNA and cDNA, corresponding 5^{\prime} and 3^{\prime} flanking control regions, other flanking sequences, or intron sequences. Such antisense molecules include antisense oligodeoxyribonucleotides, oligoribonucleotides, oligonucleotide analogues, and the like, and may comprise about 15 to 25 bases or more. Such antisense molecules may bind noncovalently or covalently to the DNA or RNA for the high molecular weight subunit of MTP. Such binding could, for example, cleave or faciltate cleavage of MTP DNA or RNA, increase degradation of nuclear or cytoplasmic mRNA, or inhibit transcription, translation, binding of transactivating factors, or pre-mRNA splicing or processing. All of these effects would decrease expression of MTP and thus make the antisense molecules useful in the foregoing methods of treatment.
Potential target sequences for an antisense approach include but are not limited to the DNA or RNA sequence encoding MTP, its 5^{\prime} and 3^{\prime} flanking control regions, other flanking sequences, and nonclassic Watson and Crick base pairing sequences used in formation of triplex DNA. Antisense molecules directed against tandem sequences for the high molecular weight subunit of MTP may be advantageous.

Antisense molecules may also contain additional functionalities that increase their stability, activity, transport into and out of cells, and the like. Such additional functionalities may, for example, bind or facilitate binding to target molecules, or cleave or facilitate cleavage of target molecules.

Vectors may be constructed that direct the synthesis of antisense DNA or RNA. In this case, the length of the antisense molecule may be much longer; for example, 400 bp.
Demonstration of Relationship Between MTP and Serum Cholesterol Levels, TG Levels, and Atherosclerosis
The methods of the present invention for lowering serum cholesterol or TG levels or preventing, stabilizing or causing regression of atherosclerosis are based in part on the discovery by the inventors that the genetic disease abetalipoproteinemia is caused by a lack of functional MTP. The inventors have demonstrated a gene defect in two abetalipoproteinemic subjects by the following methods.
Assay For TG Transfer Activity in Abetalipoproteinemic Subjects

A. MTP Assay

TG transfer activity was measured as the proteinstimulated rate of TG transfer from donor SUV to acceptor
remaining reactive sites on the affigel were blocked by the addition of 0.1 mL 1 M ethanolamine, pH 8.0 , per mL gel. Optical density measurements of eluted protein were performed according to the manufacturer's instructions and indicated that more than 90% of the MTP was coupled to the column. The column was washed with 50 mL 10 mM Tris, pH 7.5 followed by 50 mL 100 mM glycine, pH 2.5 , followed by 50 mL 10 mM Tris, pH 8.8 , followed by 50 mL 100 mM triethylamine, pH 11.5 , and finally the column was reequilibrated in 10 mM Tris, pH 7.5 .
The antibodies in the antiserum were partially purified by ammonium sulfate precipitation (226 mg ammonium sulfate per mL serum). The pellet was resuspended and dialyzed into 15 mM Tris, $\mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA, 0.02% sodium azide, and 150 mM sodium chloride. The partially purified antibodies were slowly applied to the MTP-affigel column over a two-hour period (the antibodies were cycled through the column three times). The column was washed with 100 mL 10 mM Tris, pH 7.5 , followed by 100 mL 10 mM Tris, pH $7.5,500 \mathrm{mM}$ sodium chloride, followed by 50 mL 100 mM glycine, pH 2.5 (this fraction was collected into 5 mL of 1 M Tris, pH 8.0), followed by 10 mM Tris, pH 8.8 until the column was at neutral pH , followed by 50 mL triethylamine pH 11.5 (this fraction was collected into 5 mL 1 M Tris, pH 8.0), and finally the column was reequilibrated with 10 mM Tris, pH 7.5 . Antibodies which eluted in the acidic wash were retained and used for immunoblot analysis of protein fractions.
C. Western Blot With anti-88 kDa Antibodies

To confirm the specificity of the antibodies and to detect the 88 kDa component of MTP in tissue homogenates, purified bovine MTP or the fraction to be tested were fractionated by SDS-PAGE [essentially as described by Laemmli, Nature 227, 680-5 (1970)] using a 0.75 mm Hoeffer Scientific Instrument Gel Apparatus (San Francisco, Calif.). The protein was then transferred to nitrocellulose by Western blotting using a BioRad Trans-blot cell (Bio-Rad, Richmond, Calif.). The blotting buffer (25 mM Tris, 192 mM glycine, $\mathrm{pH} 8.3,20 \%$ methanol) was precooled to $4^{\circ} \mathrm{C}$. The proteins were transferred for 100 minutes at 250 milliamperes at room temperature. The membranes were blocked 5-10 minutes with blocking buffer ($400 \mu \mathrm{~L}$ antifoam, about 10 mg of thimersal, and 200 g nonfat dry milk in 4 liters 50 mM Tris, $\mathrm{pH} 7.7,150 \mathrm{mM}$ sodium chloride). An aliquot of the antiserum (1:300 dilution) or affinity purified antibody (1:25 dilution of affinity-purified antibodies) was added and allowed to react overnight at room temperature. Following washing with blocking buffer, the secondary antibody, goat anti-rabbit IgG coupled to horseradish peroxidase (BioRad), was added at a dilution of 1:2000 and allowed to react for 3 hours at room temperature. Following a washing step, the secondary antibody was visualized with developer, 50 mg imidizale, 50 mg 3,3'diaminobenzidine tetrahydrochloride, and $50 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ (30% solution) in 50 mL blocking buffer.

D. MTP in Intestinal Biosoles

Intestinal biopsies from fasted control and disease state subjects were frozen and shipped to Bristol-Myers Squibb, Princeton on dry ice. Biopsies were homogenized with a polytron (Polytron PT3000, Brinkmann Instrument, Inc., Westbury, N.Y.) at $1 / 2$ maximal setting. Typically, one biopsy was homogenized in 0.25 mL homogenization buffer (50 mM Tris, $\mathrm{pH} 7.4,50 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM}$ EDTA, $5 \mu \mathrm{~g} / \mathrm{mL}$ leupeptin, and 2 mM PMSF). An aliquot of the protein was adjusted to 0.7 mL and 1.4% SDS and the protein concentration was measured by the method of Lowry et al., [J. Biol. Chem. 193, 265-75 (1951)]. The homogenate was diluted loss of activity demonstrates that the lipid transfer activity being measured was not from an intracellular form of the cholesteryl ester transfer protein (CETP), which is heatstable under these conditions. lhm et al.,J. Biol. Chem. 257, 4818-27 (1982).

Intestinal biopsies from four abetalipoproteinemic subjects were obtained, homogenized, and TG transfer activity was measured as desribed herein above. No transfer activity was recovered from the biopsies of any of the four subjects (FIG. 3). The lack of detectable TG transfer activity could have been related to an inability to release MTP from the microsomes of the abetalipoproteinemic biopsies by deoxycholate treatment. To test this possibility, the microsomes from one subject were sonicated in addition to being treated with detergent. Bath sonication independently releases TG transfer activity comparable to that of detergent treatment. Even under these conditions, no TG transfer activity was detectable.

The next possibility considered was that the lack of 55 detectable TG transfer activity was related to the inability to detect it in cells which contain large intracellular fat droplets such as those which occur in abetalipoproteinemia. To test this possibility, three controls were run. First, TG transfer activity was measured from a biopsy of a subject with chylomicron retention disease. Subjects with chylomicron retention desease have a defect in the assembly or secretion of chylomicrons and have large fat droplets in their enterocytes, analogous to abetalipoproteinemic subjects. In addition, TG transfer activity was measured from a biopsy taken from an individual who was not fasted prior to the biopsy and from a homozygous hypobetalipoproteinemic subject. Both these subjects also had fat-filled enterocytes.

In all three cases, TG transfer activity comparable to that of the normal subjects was found (FIG. 4), confirming that the presence of intracellular lipid droplets does not interfere with our ability to recover and detect TG transfer activity.
To establish the biochemical defect responsible for the absence of transfer activity, the soluble proteins following release of MTP from the microsomal fraction of the homogenized biopsy were analyzed by Western blot analysis with antibodies raised against the 88 kDa component of bovine MTP. When normal (FIG. 5) or control (FIG. 6) subjects were examined with a polyclonal anti- 88 kDa antibody, a band comparable to that of the 88 kDa component of bovine MTP was observed. In addition, additional proteins of increased mobility also cross-reacted with this antibody. To confirm the identity of the 88 kDa component of human MTP, the antibody was affinity-purified on an MTP affinity column. Following this treatment, only the protein of molecular weight comparable to that of the 88 kDa component of bovine MTP was immunoreactive (FIG. 7).
Western blot analysis of the soluble proteins following detergent treatment of the microsomes of all five normal subjects and three control subjects demonstrated the presence of the 88 kDa component of MTP (FIGS. 5 to 7). In contrast, no protein corresponding to the 88 kDa component of bovine MTP was apparent in the abetalipoproteinemic subjects (FIG. 8). In addition, a similar analysis was performed with $100 \mu \mathrm{~g}$ protein from the whole intestinal homogenates from two abetalipoproteinemic subjects. Again, no band corresponding to the 88 kDa component of MTP was apparent (FIG. 8). As a control, immunoblot analysis with anti-PDI antibodies demonstrated the presence of PDI in the latter two abetalipoproteinemic subjects. These results demonstrate that the biochemical basis for the absence of MTP activity in the abetalipoproteinemic subjects is the marked deficiency or the absence of the 88 kDa component of MTP.
Demonstration of a Gene Defect in an Abetalipoproteinemic Subject
Amplification of mRNA and DNA by PCR
Two intestinal biopsies were obtained from the duodenal mucosa of a 39 -year-old abetalipoproteinemic patient. Previous analysis demonstrated that neither MTP activity nor the 88 kDa component of MTP were detectable in intestinal biopsies taken from this subject. Each biopsy weighed 5-10 mg and was stored frozen at $-70^{\circ} \mathrm{C}$. To isolate total RNA, one frozen biopsy was placed into a microfuge tube containing 0.8 mL of cold RNAzol B (CinnaBiotecx labs, Friendswood, Tex.). The biopsy was homogenized immediately by polytron (Brinkmann, Westbury, N.Y.) for 6 strokes on setting 10. Chloroform ($80 \mu \mathrm{~L}$) was added and the mixture inverted gently 20 times. After a 5 -minute incubation on ice, the mixture was centrifuged at $14,000 \mathrm{rpm}$ in an Eppendorf microfuge 5415 (Brinkmann) for 15 minutes at $4^{\circ} \mathrm{C}$. Total RNA was precipitated by adding $350 \mu \mathrm{~L}$ isopropanol to the supernatant. The yield from the biospy was 20 $\mu \mathrm{g}$ of total RNA, or about $2 \mu \mathrm{~g}$ RNA per mg of tissue (0.2%).

RNA (50 ng) was reverse transcribed into first strand cDNA using $2.5 \mu \mathrm{M}$ random hexamer primers, 5 mM magnesium chloride, 1 mM each deoxynucleotide triphosphate (dNTP), $1 \mathrm{U} / \mu \mathrm{L}$ RNAsin, $2.5 \mathrm{U} / \mu \mathrm{L}$ Moloney Murine Leukemia Virus reverse transcriptase ((M-MLV-RT), and $1 \times$ PCR reaction buffer (Perkin-Elmer-Cetus RNA-PCR kit No. N808-0017). The $20 \mu \mathrm{~L}$ reaction was incubated at room temperature for 10 minutes to anneal the primers, and then at $42^{\circ} \mathrm{C}$. for 30 minutes to reverse transcribe the RNA. The reaction was terminated by heating to $99^{\circ} \mathrm{C}$. for 5 minutes and cooling to $5^{\circ} \mathrm{C}$. The first strand cDNA was added to a intestinal biopsy. The biopsy was placed into a microfuge tube containing 400μ L extraction buffer (10 mM Tris. Cl, pH 8.0, 0.1 M EDTA, 0.5% SDS, $20 \mu \mathrm{~g} / \mathrm{mL}$ RNAse 1) and homogenized immediately. Homogenization was by polytron for 5 strokes at setting 10 . Proteinase K was added to a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ and the reaction incubated at $50^{\circ} \mathrm{C}$. for 3 hours. The mixture was swirled periodically.
After cooling the reaction to room temperature, $400 \mu \mathrm{~L}$ Tris-saturated pheno/chloroform (pH 8.0) was added. The tube was inverted gently for 5 minutes and then centrifuged for 5 minutes at $14,000 \mathrm{rpm}$ at room temperature. 2 M sodium chloride ($35 \mu \mathrm{~L}$) and ethanol $(0.7 \mathrm{ml})$ were added to
the supernatant $(350 \mu \mathrm{~L})$ to precipitate the DNA. The DNA was centrifuged briefly, washed gently with 70% ethanol, dried briefly, and resuspended in $20 \mu \mathrm{~L}$ of deionized water $\left(\mathrm{dH}_{2} \mathrm{O}\right)$. The yield of DNA was $20 \mu \mathrm{~g}$, or about $2 \mu \mathrm{~g}$ DNA per mg tissue (0.2%).

Genomic DNA $(0.5 \mu \mathrm{~g})$ was heated to $95^{\circ} \mathrm{C}$. for 5 minutes and added immediately to a $100 \mu \mathrm{LPCR}$ reaction containing $0.15 \mu \mathrm{M}$ forward and reverse primers, 2 mM magnesium chloride, 0.2 mM each dNTP, and 2.5 U Taq polymerase in $1.25 \times$ PCR buffer (Perkin-Elmer-Cetus). Amplification was conducted in a Perkin-Elmer GeneAmp PCR System 9600 model thermal cycler for 3 cycles consisting of $97^{\circ} \mathrm{C}$. for 30 seconds, $50^{\circ} \mathrm{C}$. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 1 minute. An additional 32 cycles consisting of $94^{\circ} \mathrm{C}$. for 30 seconds, 50° C. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 1 minute were run. The reaction was then incubated at $72^{\circ} \mathrm{C}$. for 7 minutes.
Exon 2 of the gene encodes bases 109-296 of the 88 kDa component of MTP RNA. The primers (SEQ. ID. NOS. 18 and 19) used to amplify exon $\mathbf{2}$ of the gene encoding the 88 kDa component of MTP from subject genomic DNA are 20 shown below.

Primer Pair	SEQ.
CCCTTACAATGAAAACTGG	NO.
GGTACACTTCTCCAAAAACTT	18

4.5 units T4 DNA polymerase, 5 units T4 polynucleotide kinase in 50 mM Tris $\mathrm{HCl} \mathrm{pH} 7.5,10 \mathrm{mM}$ magnesium chloride, 1 mM dithiothreitol, and $50 \mu \mathrm{~g} / \mathrm{mL}$ BSA. Incubation was at $37^{\circ} \mathrm{C}$. for 1 hour. The DNA was then purified from the reaction mixture by GeneClean. The DNA was eluted in $10 \mu \mathrm{~L} \mathrm{dH} \mathrm{H}_{2} \mathrm{O}$. The blunt-ended DNA was ligated into pUC18 cut previously with Sma I and dephosphorylated (Pharmacia). Dh5 α cells ($100 \mu \mathrm{~L}$, Gibco-BRL) were transformed according to the protocol supplied by the manufacturer. Plasmid DNA was amplified and isolated by the alkaline lysis procedure described in Molecular Cloning (Sambrook, Fritsch, and Maniatis, eds.) Cold Spring Harbor Laboratory Press, 1.25-1.28 (1989). The plasmid clones were sequenced as described in Example 1.

Results

Direct sequence from three independent RNA-PCR reactions revealed a deleted cytosine at base 262 of the cDNA relative to the start site of translation in the abetalipoproteinemic subject. The one base deletion shifts the reading frame and leads to a stop codon (TGA) 21 bases downstream. Translation of the mutant RNA would terminate at amino acid residue 78. Below is a comparison of the normal and the abetalipoproteinemic subject's DNA and deduced amino acid sequences

Base	255							287				
	AGG	AAT	CCT	GAT	GGT	GAT	GAT	GAC	CAG	TTG	ATC	Normal
AA	R	N	P	D	G	D	D	D	Q	L	I	
Base	255										286	
	AGG	AAT	C-TG	ATG	GTG	ATG	ATG	ACC	AGT	TGA	A TG	Abeta
AA	R	N	L	M	V	M	M	T		STOP		

These primers were designed based on the normal human DNA sequence encoding the 88 kDa component of MTP. The primers are complementary to the introns flanking the 188 bp exon 2 so that the entire exon is amplified in the PCR reaction. The amplification product size, including the primers and flanking intronic regions, is 292 bp long.

B. Sequencing of PCR Products

The PCR products obtained from both RNA- and DNAPCR were electrophoresed on a 1.4% agarose gel in TAE buffer (40 mM Tris-acetate, 1 mM EDTA pH 8.0). The gel was stained for 5 minutes in $0.5 \mathrm{mg} / \mathrm{mL}$ ethidium bromide in water, and destained in water for 10 minutes. The DNA was visualized on an ultraviolet light box. The bands containing the desired PCR product were excised with a razor blade, and the DNA was purified by the GeneClean method (Bio 101, La Jolla, Calif.). The DNA was eluted from the silica matrix in $20 \mu \mathrm{~L}$ of distilled water. Each PCR reaction yielded approximately $1 \mu \mathrm{~g}$ of the desired DNA fragment. A portion of the purified DNA was sequenced directly by Taq polymerase cycle sequencing on an Applied Biosystems, Inc., 373 Automatic Sequencer, as described by Tracy and Mulcahy, Biotechniques, 11, 68 (1991).

The remaining DNA was prepared for cloning into a plasmid vector by producing blunt-ends with T4 DNA polymerase followed by phosphorylation with T4 poly- 6 nucleotide kinase. DNA (500 ng) was added to a $50 \mu \mathrm{~L}$ reaction mixture containing $20 \mu \mathrm{M}$ each dNTP, 1 mM ATP, The screening process was similar to that for the cDNA library screen in Example 1 except that the E. coli host strain
was PLK 17, hybridization and wash temperatures were at $60^{\circ} \mathrm{C}$., and the wash buffer was $1 \times$ SSC, 0.1% SDS. The probe for the genomic library screen was the 2.4 kb Eco RI fragment from the bovine cDNA clone no. 22, ${ }^{32} \mathrm{P}$-labeled exactly as in example 2. Putative positive clones (about 30 from each library) were rescreened and remained positive through two additional rounds of hybridization analysis. Following the tertiary screen, single, isolated positive plaques were excised from the agar plates and deposited into 1 mL of SM buffer with $50 \mu \mathrm{~L}$ chloroform. Phage titer was amplified for each phage stock following the "Small-scale liquid cultures" protocol from Sambrook, et al., supra, p 2.67. One hundred $\mu \mathrm{L}$ of the amplified stocks was mixed with $100 \mu \mathrm{~L}$ of prepared PLK 17 plating cells and $100 \mu \mathrm{~L}$ of 10 mM magnesium chloride, 10 mM calcium chloride and incubated at $37^{\circ} \mathrm{C}$. for 15 minutes. This mixture was then used to inoculate $50 \mathrm{~mL} 2 \times \mathrm{NZY}$ (Bethesda Research Laboratories) with 0.2% Casamino Acids (CAA, Fisher Scientific no. DF0288-01-2) and grown overnight at $37^{\circ} \mathrm{C}$. Lambda DNA was isolated from the lysed cultures using the Qiagen kit no. 12543 using Qiagen buffers and protocol.
Direct DNA sequencing of the genomic DNA inserts was performed as described in Example 1 using lambda DNA as template. Oligonucleotides of about 20 bases, complementary to human cDNA sequence, were used as primers for sequencing normal or abetalipoproteinemic genomic clones. Characterization and sequencing of abetalipoproteinemic and normal genomic clones were performed in parallel (see Example 9). Intron-exon boundaries were identified by comparing genomic and cDNA sequences. Sequencing primers were designed against intron sequences 5^{\prime} and 3^{\prime} to each exon and used to confirm intron/exon boundaries by resequencing the boundaries. In addition, the coding sequence of both DNA strands for each exon of at least one abetalipoproteinemia genomic clone was sequenced. DNA sequence analysis of exon 13 of the abetalipoproteinemic subject revealed a C-to-T point mutation at base 1830 of the human cDNA. This base change introduces a stop codon at a site that normally encodes the amino acid residue Arg_{595}.

The nucleotide sequence around base 1830 encodes a Taq I endonuclease restriction site (TCGA) in the normal DNA sequence but not in the abetalipoproteinemic subject's DNA sequence (TTGA). To confirm this nucleotide change and address homozygosity of this allele, Taq I digests were performed on genomic DNA from a normal control, the abetalipoproteinemic subject and both parents of the abetalipoproteinemic subject. Genomic DNA was isolated from blood from a normal control, the abetalipoproteinemic subject and the abetalipoproteinemic subject's mother and father as described above. Ten $\mu \mathrm{g}$ of genomic DNA from each sample was digested with 100 units of Taq I (Bethesda Research Laboratories) in $100 \mu \mathrm{~L} 1 \times$ REact buffer no. 2 (Bethesda Research Laboratories) at $65^{\circ} \mathrm{C}$. for 5 hours. Each digestion reaction was spun at $2,000 \mathrm{rpm}$ in an Ultrafree-MC 10,000 NMWL filter unit (no. UFC3 TGC 00 from Millipore) with a molecular weight cut-off of 10,000 , for 30 minutes to reduce the reaction volume to $50 \mu \mathrm{~L}$. The
restriction digest reactions were then subjected to agarose gel electrophoresis through a 1% gel in TEA buffer at 20 volts for 16 hours. The agarose gel was stained with ethidium bromide, photographed, and then transferred to a nitrocellulose membrane by the method of Southern. E. M. Southern, J. Mol. Biol. 98, 503-17 (1975).

The probe for the Southern hybridization was a PCR product containing exon 13 and some flanking intron sequences (see SEQ. ID NO.24, below). The PCR was performed using the GeneAmp Kit (Perkin-Elmer, Cetus Industries) components and protocol with $0.3 \mu \mathrm{~g}$ normal genomic DNA as template and 10 picomoles each of the forward and reverse primers in a $100 \mu \mathrm{~L}$ reaction volume. The reaction mix was incubated at $97^{\circ} \mathrm{C}$. for two minutes, then subjected to 30 cycles consisting of $94^{\circ} \mathrm{C}$. for 30 seconds, $45^{\circ} \mathrm{C}$. for 30 seconds, and $72^{\circ} \mathrm{C}$. for 1 minute, followed by one 7 -minute incubation at $72^{\circ} \mathrm{C}$. and storage at $4^{\circ} \mathrm{C}$. The amplified DNA was subjected to electrophoresis through agarose as in example I and the expected 302 bp fragment was excised and eluted from the gel. This exon 13 PCR product was then ${ }^{32} \mathrm{P}$-labeled labeled as in example 2 and used as a probe for the Southern hybridization. Hybridization and wash conditions were as in example 2. The blot was exposed to X-ray film at $-80^{\circ} \mathrm{C}$. for 5 days.
B. Results

A human genomic library was generated from DNA isolated from a second abetalipoproteinemic subject. Two million phage were probed with a bovine $\operatorname{cDN} \Lambda$ probe and thirty phage with human genomic DNA inserts homologous to the bovine MTP cDNA were characterized.

DNA sequence analysis of the genomic DNA inserts from the abetalipoproteinemic subject revealed a C-to-T point mutation at base 1830 in exon 13 of the human MTP gene (exon 13 corresponds to bases 1817 to 1914 of the human cDNA). This C-to-T point mutation changes the normal CGA arginine codon at residue 595 to a TGA translational stop signal, resulting in a 300 amino acid truncation of this protein. This nucleotide change was found on all four independent genomic DNA inserts characterized from this individual.

Shown below is the position of the C-to-T mutation in exon 13 of an abetalipoproteinemic subject. The 302 base DNA sequence of the normal exon $\mathbf{1 3}$ with flanking intron sequence is shown. DNA corresponding to the forward ($-->$) and reverse (<--) PCR primers used to make the probe for the Southern hybridization are indicated above the appropriate arrows. Horizontal lines represent the intron/exon boundaries. The Taq I recognition sequence is boxed. An asterisk (${ }^{*}$) designates base 1830 , the site of the C-to-T mutation.

ATTTGGCTTC	CTCTTTTTTC	CACTGAGGAT	TTTTTTTTCC	AAATtTGACT	50
TGGGAAACAG	TCATTACAAT	GAATGTGCAG	Cttttttttt	CCTCATATGT	100
TGCAgCAAAA INTRON	TTGTCCE ECG	AGTTCTGAAG	GAATGTGTCG	CTCACAATTA	150
tgaccetttc	tccaggagtg	GATCTTCTTC	TGCCTACACT	gGctacatag	200
$\begin{aligned} & \text { AAdGtatGta } \\ & \text { EXON INTRON } \end{aligned}$	CACCAAAAAG	AGGTTCTCCT	TCCATACCCC	ACAACTTAGC	250
Attgctgan	Ctgctattan	Attacagtia	TAGTGTGTCA	TCAGGTAGTC	300
CC					302

0

302

SEQ. ID. NO. 24.路

0

Clontech. 1×10^{6} independent recombinant phage plaques were screened for the cDNA corresponding to the 88 kDa component of bovine MTP.

An E. coli bacteria host, strain C600 (Clontech), was prepared for phage infection by growing overnight to saturation at $30^{\circ} \mathrm{C}$. in 50 mL of Luria Broth ($\mathrm{LB}=10 \mathrm{~g}$ sodium chloride, 10 g Bacto-Tryptone and 5 g Yeast Extract per liter) supplemented with 0.2% maltose and 10 mM magnesium sulfate. The cells were pelleted by low speed centrifugation, resuspended in 20 mL of 10 mM magnesium sulfate and stored at $4^{\circ} \mathrm{C}$. Twenty aliquots each of 50,000 phage and $300 \mu \mathrm{~L}$ of the C 600 cells were incubated at 37° C. for 15 minutes, mixed with $7 \mathrm{mLLB}+0.7 \%$ agarose and plated on 132 mm LB Plates. The plates were incubated for $7-10$ hours at $37^{\circ} \mathrm{C}$. until distinct phage plaques appeared, then transferred to $4^{\circ} \mathrm{C}$.

Duplicate plaque transfers to nitrocellulose membranes were performed for each plate as follows. A nitrocellulose membrane (Schleicher \& Schuell, Keene, N.H.) was placed directly on the phage for 1 minute (first transfer) or 3 minutes (second transfer). The phage DNA adhering to the membrane was then denatured for 1 minute in 0.5 N sodium hydroxide, 1.5 M sodium chloride, neutralized for 1 minute in 1 M Tris, $\mathrm{pH} 8.0,1.5 \mathrm{M}$ sodium chloride, and finally washed for 1 minute in $2 \times$ SSC $(1 \times \operatorname{SSC}=0.15 \mathrm{M}$ sodium chloride, 0.015 M sodium citrate, pH 7.0). The DNA was then permanently fixed onto the nitrocellulose membrane by baking in an $80^{\circ} \mathrm{C}$. vacuum oven for 2 hours.

The isolation of bovine MTP, including the 88 kDa component, has been previously described. See Wetterau and Zilversmit, Chem. Phys. Lipids 38, 205-72 (1985); Wetterau et al., J. Biol. Chem. 265, 9800-7 (1990). The sequences of internal peptides of the 88 kDa component were used to design oligonucleotides which would hybridize to cDNA that encodes the protein. See Lathe, R., J. Mol. Biol. 183, 1-12 (1985).

The procedures described herein employed probes having the following DNA sequences (listed 5^{\prime} to 3^{\prime}): understanding of the invention.

EXAMPLE 1

Isolation and DNA Sequence Analysis of cDNA Clones Encoding the 88 kDa Component of the Bovine MTP
A commercially available bacteriophage lambda gt10/ bovine small intestine cDNA library was purchased from
The normal nucleotide sequence surrounding the C at base 1830 (TCGA) encodes a Taq I restriction site. In this abetalipoproteinemic subject, the sequence at this site is mutated (TTGA). Therefore, Taq I should cut exon 13 at this site in normal DNA, but not in DNA which contains the mutation. There is only one Taq I site in the normal exon 13.
A Southern blot confirms this nucleotide change (FIG. 9). The genomic DNA isolated from a control subject, the abetalipopmteinemic subject, and the subject's mother and father was cut to completion with Taq I and probed with sequences from exon 13. The normal DNA is cut by Taq I into two pieces which hybridize to exon 13 ; the abetalipoproteinemia DNA is not cut with Taq I, evidenced by only one hybridizing band. This result confirms the lack of a Taq I recognition sequence. The DNA from both parents exhibits a mixed pattern, demonstrating the presence of one normal allele and one mutated allele.
C. Analysis

The foregoing results and the conclusions drawn from them can be summarized as follows.

MTP activity and protein are undetectable in the abetalipoproteinemic subjects studied. Mutations in the MTP gene fully explain the lack of protein and activity. Previous results demonstrate that abetalipoproteinemia is a monogenetic disease Kane \& Havel, supra. From these results, one can conclude that abetalipoproteinemia is caused by a loss of MTP activity.

These results demonstrate that MTP activity is required for the efficient assembly and secretion of lipoprotein particles which contain apolipoprotein B. Loss of MTP activity results in lower serum levels of cholesterol, triglycerides, phospholipids, and cholesterol esters. One can thus conclude that a decrease in the amount of activity of MTP will result in lower serum lipid levels.

Moreover, lower serum lipid levels are associated with prevention, stabilization, or regression of atherosclerosis. As discused above, loss of the amount or activity of MTP results in lower serum lipid levels. In addition, abetalipoproteinemic subjects lack atherosclerosis. Schaefer, supra; Dische and Porro, Am. J. Med. 49, 568-71 (1970); and Sobrevilla et al., Am. J. Med. 37, 821 (1964). One can thus also conclude that inhibition of MTP will result in the prevention, stabilization, or regression of atherosclerosis.

The following examples further illustrate the present invention. These examples are not intended to limit the

55

Probe	Sequence	no.	
2A	CTCTACCAGCGAGTATTAAT	25	
	T	G G G	
37A	ACGTAGGATGTCTGGACAATGGAGAGCATGTA	26	
19A	GATCAGTTGGTTATCATCACCATCAGGACT	27	

Probe 2A is a mixture of thirty-two twenty base oligonucleotides, each encoding the amino acid sequence of the peptide from which this probe was designed. Probe 37A 5 is a unique 33 base sequence and probe 19 A is a unique thirty-mer. These oligonucleotide sequences encode amino acid sequences that correspond to internal peptides.

Oligonucleotides were obtained from commercial sources as indicated herein or synthesized on a Milligen/Biosearch (Millipore Corp., Bedford, Mass.) 8700 DNA Synthesizer using beta-cyanoethyl phosphoramidite chemistry. Sequencing primers were desalted on NAP-10 columns (Pharmacia LKB Biotechnologies, Inc., Piscataway, N.J.) prior to use. Probes were purified on NENSORB Prep Resin (DuPont Company, NEN Research Products, Boston, Mass.).
Probe 2A was purchased from Genosys Biotechnologies, Inc. (The Woodlands, Tex.) and was labeled by incubating 1 $\mu \mathrm{g}$ of the oligonucleotide in 50 mM Tris- $\mathrm{Cl}, \mathrm{pH} 7.5,10 \mathrm{mM}$ magnesium chloride, 5 mM dithiothreitol (DTT), 0.1 mM ethylenediaminetetraacetate (EDTA), and 0.1 mM spermidine with 10 units T4 polynucleotide kinase and $120 \mu \mathrm{Ci}$ of gamma labeled ${ }^{32} \mathrm{P}$-ATP in a $50 \mu \mathrm{~L}$ reaction volume at 37° C. for 30 minutes followed by heat inactivation of the kinase at $68^{\circ} \mathrm{C}$. for 5 minutes. Unreacted ATP was removed utilizing a G-25 Sephadex spin column (Bochringer Mannheim Corp., Indianapolis, Ind.) following the manufacturer's instructions. The labeled oligonucleotide had a specific activity of approximately $2 \times 10^{8} \mathrm{dpm} / \mu \mathrm{g}$.
The nitrocellulose membranes were prehybridized for 2 hours at $37^{\circ} \mathrm{C}$. in 150 mL of hybridization buffer ($6 \times \mathrm{SSC}$, $20 \mathrm{mM} \mathrm{NaPO} 4,2 \times$ Denhardts, 0.1% SDS, and $100 \mu \mathrm{~L}$ salmon sperm DNA) (See, Sambrook et al., supra, p. B15 for Denhardts). The hybridization buffer was replaced and the labeled oligonucleotide probe 2 A was added and allowed to hybridize overnight at $37^{\circ} \mathrm{C}$. The membranes were washed in 1 liter of $2 \times$ SSC, 0.1% SDS at $40^{\circ} \mathrm{C}$., air-dried, and exposed to Kodak XAR-5 X-ray film for 5 days at $-80^{\circ} \mathrm{C}$., with a Dupont lightening plus intensifying screen (Dupont, NEN).

Putative positive clones (40) were rescreened with the same probe through two subsequent rounds of hybridization. Agar plugs corresponding to positive signals on the X-ray films were excised from the original plates and placed in 1 $\mathrm{mL} \mathrm{SM}+5 \% \mathrm{CHCl}_{3}$ ($\mathrm{SM}=5.8 \mathrm{~g}$ sodium chloride, 2.0 g magnesium sulfate, 50 mL 1 M Tris-ClpH 7.5 , and $5 \mathrm{~mL} 2 \%$ gelatin per liter). The phage were replated by mixing 0.001 $\mu \mathrm{L}$ of phage stock with $100 \mu \mathrm{~L} \mathrm{C} 600$ cells in 10 mM magnesium sulfate, incubating at $37^{\circ} \mathrm{C}$. for 15 minutes, adding $3 \mathrm{~mL} \mathrm{LB}+0.7 \%$ agarose and plating onto 82 mm LB plates. After overnight incubation at $37^{\circ} \mathrm{C}$. followed by 1 hour at $4^{\circ} \mathrm{C}$., the phage plaques were transferred to nitrocellulose, and reprobed as above to labeled oligonucleotide probe 2 A . Following the tertiary hybridization screen, 16 phage plaques were isolated.
The inserts of each of the 16 recombinant phage were amplified by PCR using the commercially available lambda gt10 amplimers (Clontech) and the GeneAmp Kit (PerkinElmer, Cetus Industries, Norwalk, Conn.) following the manufacturer's protocols exactly. The amplified DNA was subjected to electrophoresis through 1.2% agarose gels in Tris-EDTA-Acetate (TEA $=40 \mathrm{mM}$ Tris-Acetate, 1 mM EDTA) buffer, for $2-3$ hours at 100 volts. The agarose gels were then stained in ethidium bromide (EtBr), rinsed in water and photographed. The DNA was then transferred from the gel to a nitrocellulose membrane by the method of Southern. A Southern hybridization was performed using labeled oligonucleotide probe 2 A in 50 mL hybrdizaiton buffer (above) at $40^{\circ} \mathrm{C}$. overnight then washing at $45^{\circ} \mathrm{C}$., $48^{\circ} \mathrm{C}$. and $51^{\circ} \mathrm{C}$. Two amplified inserts, corresponding to phage no. 64 and no. 76 (FIG. 1), hybridized to probe 2A at $51^{\circ} \mathrm{C}$. in $2 \times$ SSC. Lambda DNA of these 2 clones was prepared following the plate lysate procedure (Sambrook, et al., supra, p. 2.118). One-tenth (5 mL of 50 ml) of the phage DNA was digested with 20 units of the restriction enzyme

Eco RI (New England Biolabs, Beverly, Mass.) in the manufacturer's buffer at $37^{\circ} \mathrm{C}$. for 2 hours and subjected to agarose gel electrophoresis. Upon EcoRI cleavage of these phage, no. 64 yielded a 1.0 kb insert fragment and the cDNA from phage no. 76 yielded two EcoRI pieces, of 0.9 kb and 0.4 kb . These bands were excised from the gel.

DNA was eluted from the agarose gel slices by first forcing the gel slices through a 21 gauge needle into 3 mL of $\mathrm{T}_{10} \mathrm{E}_{1} \mathrm{~N}_{3}(10 \mathrm{mM}$ Tris- $\mathrm{Cl} \mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA pH 8.0 and 0.3 M sodium chloride) and freezing at $-20^{\circ} \mathrm{C}$. overnight. The samples were then thawed at $37^{\circ} \mathrm{C}$. for 30 minutes, centrifuged to pellet the agarose, diluted 1:1 with water and passed through an Elu.Tip column (Schleicher \& Schuell) following the manufacture's protocol. The DNA samples were then ethanol precipitated, ethanol washed, and resuspended to an approximate concentration of $0.05 \mathrm{pmoles} / \mu \mathrm{L}$.
The plasmid vector bluescript SK+ (Stratagene) was prepared to receive the cDNA inserts by digestion with 20 units of the restriction endonuclease Eco RI (New England Biolabs) in the manufacturer's buffer at $37^{\circ} \mathrm{C}$. for 2 hours, followed by a 30 minute treatment with 1 unit of calf alkaline phosphatase (Boehringer-Mannheim) which is added directly to the Eco RI reaction. This DNA was then electrophoresed through a 1.2% agarose/TEA gel at 100 volts for 2 hours. The linear plasmid band was excised, eluted and resuspended as above.
cDNA insert fragments were ligated into the prepared bluescript plasmid vector by mixing 0.05 pmole of vector with 0.10 pmoles of cDNA insert in 50 mM Tris- Cl pH 7.4 , 10 mM magnesium chloride, 1 mM DTT, 1 mM ATP, and 40 units T4 DNA ligase (New England Biolabs). The $10 \mu \mathrm{~L}$ reaction was incubated at $15^{\circ} \mathrm{C}$. overnight. The ligation reaction was then mixed with $100 \mu \mathrm{~L}$ of transformation competent E. coli cells, strain DH5a (Bethesda Research Laboratories), and the plasmid DNA transformed into the E coli cells following the standard protocol of Sambrook et al., supra, p. 1.74. Transformed cells were plated on LB-agar plates containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and grown overnight at $37^{\circ} \mathrm{C}$.
Plasmid DNA was isolated from ampicillin resistant colonies following the alkaline lysis procedure of Birnboin and Doly [Nucleic Acids Res., 7, 1513-23 (1979)]. The purified plasmid DNA was digested with Eco RI as above, subjected to agarose gel electrophoresis and analyzed for the generation of the correct size Eco RI cDNA insert fragment. Cells from a unique colony positive for a cDNA insert were used to innoculate 100 mL of LB containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and grown to saturation at $37^{\circ} \mathrm{C}$. Plasmid DNA was extracted using a Qiagen plasmid isolation kit no. 12143 (Qiagen, Inc., Chatsworth, Calif.) following the manufacturer's protocol.
Sequencing of cDNA clones was performed with the Applied Biosystems, Inc. (ABI, Foster City, Calif.) 373 Automated DNA Sequencer utilizing either dye-labeled primers or dye-labeled dideoxynucleotides. Cycle sequencing with dye-labeled primers was performed with Taq Dye Primer Cycle Sequencing Kits (ABI part nos. 401121 and 401122). One $\mu \mathrm{g}$ of double-stranded DNA was used per reaction. Methods used for cycling and concentration of sequencing samples were as described in the Cycle Sequencing of DNA with Dye Primers manual (ABI part no. 901482). Alternatively, cycle sequencing with dye-labeled dideoxynucleotides was performed using the Taq Dye Deoxy ${ }^{\mathrm{TM}}$ Terminator Cycle Sequencing Kit (ABI part no. 401113). Typically, $1.25 \mu \mathrm{~g}$ of template with 4 pmol of primer was used per reaction. The template and primer concentrations were varied as necessary to optimize
sequencing reactions. Cycling of reactions was performed using a Perkin-Elmer Cetus thermal cycler (model 9810) as described in the Taq Dye Deoxy ${ }^{\text {TM }}$ Terminator Cycle Sequencing Protocol (ABI part no. 901497).
Following the cycle reactions, Centri-Sep ${ }^{\text {TM }}$ spin columns (Princeton Separations, Adelphia, N.J.) were used to remove excess dye terminators and primers. Spin column eluants were then precipitated and washed as described in the Taq Dye Deoxy ${ }^{\text {TM }}$ Terminator Cycle Sequencing Protocol (ABI part no. 901497). A 6% acrylamide denaturing gel was prepared as described in the ABI 373A DNA Sequencing System User's Manual. Just prior to running the gel, samples were resuspended in $5 \mu \mathrm{~L}$ of deionized formamide $/ 50 \mathrm{mM}$ EDTA (pH 8.0) $5 / 1(\mathrm{v} / \mathrm{v})$. Samples were denatured at $90^{\circ} \mathrm{C}$. for two minutes, cooled quickly on ice, then loaded onto a pre-run gel (gel was prerun for approximately 15-20 minutes). The gel was run for 12 hours at the following settings: 2500 volts, $40 \mathrm{amps}, 30$ watts, 40° C. Sequence analysis was performed with ABI 373A DNA Analysis software (version 1.0.2). Final sequence was obtained using ABI DNA Sequence Editor software seqEd ${ }^{\mathrm{TM}}$ (version 1.0) ABI, Inc.
The entire 1036 bp insert of clone no. 64 was sequenced. It encoded 936 bp of open reading frame continuing through the 3 prime end of the insert (corresponding to a polypeptide with a molecular weight of at least 34,000). Comparison of the sequence of this clone to available sequence in nucleotide sequence data banks revealed that the first 91 bases at the 5^{\prime} ' end of the clone corresponded to the bovine mitochondrial genome. Therefore, the 1036 bp insert of clone no. 64 resulted from the ligation of two independent cDNAs during the construction of this library.
The 400 bp EcoRI fragment of clone no. 76 was sequenced entirely indicating 81 bp of open reading frame followed by 298 bases of 3 prime untranslated sequence and a poly A region.
The lambda gt10 bovine small intestine cDNA library was rescreened with an oligonucleotide probe 37A, an exact 33 bp match to the 5 ' most peptide sequence encoded by clone no. 64. Two positive clones, no. 22 and no. 23 (FIG. 1) were isolated through tertiary screens, subcloned and sequenced as for clone no. 64.
Clones no. 22 and 23 contained 2.8 kb and 1.7 kb cDNA inserts respectively. The 2.8 kb cDNA insert of clone no. 22 predicted a continuous open reading frame of 835 amino acids between bases 2 and 2506 (corresponding to a 93.2 kDa polypeptide), followed by 298 base of 3^{\prime} untranslated sequences and a poly A region.

The lambda gt10 library was rescreened with probe 19A, an exact match to the sequence of clone no. 22 corresponding to the 5 '-most peptide encoded by that clone, and clone no. 2 was isolated as above. DNA sequence analysis of the 1 kb cDNA insert from clone no. $\mathbf{2}$ indicated it overlapped clone no. 22 and extended the 5^{\prime} end of the bovine cDNA by 100 bases. A composite of the DNA sequences of clones no. 2 and no. 22 and the predicted translation product is shown in SEQ. ID. NOS. 1 and 3, respectively.
In summary, sequencing of bovine small intestine cDNA clones corresponding to the 88 kDa component of MTP yielded 2900 bp of continuous sequence which encodes an open reading frame of 860 amino acids followed by a 298 bp 3^{\prime} noncoding region and a poly A region. The predicted protein product of this composite sequence is 96.1 kDa .

EXAMPLE 2

DNA Hybridization Analysis of Related Species
Southern hybridization analysis was performed on DNAs from cow, human, mouse, hamster (Chinese hamster ovary
and incubated at $37^{\circ} \mathrm{C}$. for 15 minutes. Top agar (6.5 mL) consisting of NZY broth (Bethesda Research Laboratories), 0.7% agarose (Bethesda Research Laboratories) preheated to $50^{\circ} \mathrm{C}$., was added to the bacteria and phage mixture, and then plated onto a 150 mm NZY plate. The top agar was allowed to solidify and the plates were incubated overnight at $37^{\circ} \mathrm{C}$.

The plates were then cooled to $4^{\circ} \mathrm{C}$. for 2 hours and the plaques were lifted onto nitrocellulose filters. Duplicate lifts were performed in which the alignment of the membranes relative to the plate were recorded by placing needle holes through the filter into the agar plate. The filters were incubated 1 minute in 0.5 N sodium hydroxide, 1.5 M sodium chloride, 1 minute in 1 M Tris, $\mathrm{pH} 8.0,3 \mathrm{M}$ sodium chloride, and 1 minute in $2 \times$ SSC. Filters were then baked at $80^{\circ} \mathrm{C}$. in a vacuum chamber for 2 hours. The filters were incubated for 2 hours at $60^{\circ} \mathrm{C}$. in 5 mL per filter of hybridization buffer $(6 \times \mathrm{SSC}, 20 \mathrm{mM} \mathrm{NaPO} 4,2 \times$ Dendardts, 0.1% SDS, and $100 \mu \mathrm{~g} / \mathrm{mL}$ salmon sperm DNA). The buffer was replaced with an equal volume of hybridization buffer containing the probe at a concentration of $3.5 \times 10^{6} \mathrm{cpm}$ per filter and incubated overnight at $60^{\circ} \mathrm{C}$. The filters were washed in $1 \times \mathrm{SSC}, 0.1 \%$ SDS first at room temperature and then at $50^{\circ} \mathrm{C}$. for 2 hours. Autoradiography revealed 56 positives.

A small plug of agarose containing each positive was incubated overnight at $4^{\circ} \mathrm{C}$. with 1 mL of SM buffer and a drop of chloroform. The positive phage were purified by replating at a low density (approximately $50-500$ per 100 mm plate), screening and isolating single positive plaques as described above.
When XL1 Blue cells are infected with the ZAP vector (Stratagene) and coinfected with a helper phage, the bluescript part of the vector is selectively replicated, circularized and packaged into a single stranded phagemid. This phagemid is converted to a double stranded plasmid upon subsequent infection into naive XL1 Blue cells. The cDNA insert of the resultant plasmid can be sequenced directly. Plasmids containing the positive human liver cDNA inserts were excised in this manner utilizing the helper phage provided by Stratagene according to the manufacturer's directions.

DNA from these clones was purified as follows. A single colony was inoculated into 2 mL of LB and incubated with shaking at $37^{\circ} \mathrm{C}$. overnight. 1.5 mL of this was centrifuged and resuspended in 50μ L of LB. 300μ L of TENS $(1 \times \mathrm{TE}, 0.1$ N sodium hydroxide, 0.5% SDS) was added and vortexed for 5 seconds. $150 \mu \mathrm{~L}$ of 3 M sodium acetate, pH 5.2 was added and vortexed for 5 seconds. The samples were then spun in a microfuge for 10 minutes. The supernatant was recovered, 0.9 mL of ethanol was added and the samples were spun in a microfuge for 10 minutes. The pellet was washed in 70% ethanol, dried, and resuspended in $20 \mu \mathrm{~L}$ of TE (10 mM Tris $\mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA pH 8).

The DNA from the clones was characterized as follows. Five $\mu \mathrm{L}$ of the DNA from each clone were digested with 10 units Eco RI, 10 units XhoI, and $10 \mu \mathrm{~g}$ RNAse, and then fractionated and visualized by electrophoresis through a 1% agarose, TBE (45 mM Tris-Borate, 1 mM EDTA), $0.5 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide gel. A Southern blot of the gel was performed as described in Sambrook et al., supra, p. 9.41. This Southern blot was probed with a fragment of the bovine cDNA near the 5^{\prime} end of the coding sequence. This 5^{\prime} probe was prepared by digesting $25 \mu \mathrm{~g}$ of bovine intestinal clone no. 2 above with 50 units EcoR1 and 50 units of NheI, isolating as above the 376 base pair fragment from a 2% low melting point agarose, TBE, $0.5 \mathrm{ug} / \mathrm{mL}$ ethidium bromide

The sequence of clone no. 693 reveals that it contained two inserts. The 5' 500 bp insert was homologous to haptoglobin and will not be discussed further. This was followed by a mutant XhoI and an EcoRI restriction site (the two sites used in the directional cloning). The 3^{\prime} insert was the cDNA of interest. It contained some 5^{\prime} untranslated sequence as indicated by the stop codons in all three reading frames. At bases 48-2729 there is an ATG-initiated open reading frame corresponding to 894 amino acids. The deduced amino acid sequence begins

MILLAVLFLCFI

(SEQ. ID. NO. 28). The stop codon is found at bases 2730-2732 followed by a 3^{\prime} untranslated region of 435 bases and a poly A region. The sequence of clone no. 681 confirmed the $3^{\prime} 1768$ bases of this clone, and clone no. 754 confirmed bases 1 through 442 .
B. Tissue Localization of the 88 kDa mRNA

A MultiTissue Northern Blot (Clontech) contained $2 \mu \mathrm{~g}$ per lane of polyA ${ }^{+}$RNA from human heart, brain, placenta, lung, liver, skeletal muscle, kidney or pancreas. Northern hybridization was performed as for the genomic Southern blot. Prehybridization was in 50 mL hybridization buffer at $37^{\circ} \mathrm{C}$. for 2 hours followed by an overnight hybridization in 20 mL fresh buffer at $60^{\circ} \mathrm{C}$. with $5.2 \times 10^{7} \mathrm{dpm}$ labeled 2.4 kb Eco RI fragment from the bovine intestinal clone no. 22 as above. The Northern blot was washed in $500 \mathrm{~mL} 0.2 \times$ SSC, 0.1% SDS at $60^{\circ} \mathrm{C} ., 1$ hour and subjected to autoradiography at $-80^{\circ} \mathrm{C}$. After a 20 hour exposure to X-ray film there is a predominant signal in the liver RNA lane at about 4.4 kb and no other detectable hybridization. Therefore, cross hybridization of the 2.4 kb fragment of the bovine cDNA detects a human liver RNA specifically. As liver and intestine are the only two tissues in which significant MTP activity has been reported, the cloning and northern blot analysis support the biochemical localization for MTP. Also, the results of the northern analysis extend this detection to include DNA:RNA hybrids as well as DNA:DNA interactions.

EXAMPLE 4

Expression of MTP in Human Fibroblast Cell Line

 I. MethodsAll standard molecular biology protocols were taken from Sambrook, supra, except where indicated below. All restriction enzymes used in this example were obtained from Bethesda Research Laboratories (BRL, Gaithersburg, Md.). A 3.2 kb fragment extending from nucleotide -64 to 3135 (relative to the translation start site with A of the translation start site ATG codon designated +1), was constructed from plasmids p754 (bases -64 to 384) and p693 (bases 385 to 3135) as follows. A 448 bp EcoRI-NcoI restriction endonuclease fragment and a 2750 bp NcoI-XhoI restriction endonuclease fragment were excised from p754 and p693, respectively. Following gel purification, the fragments were ligated into EcoRI-XhoI cut plasmid pBluescript-SK to yield plasmid $\mathrm{pBS} / \mathrm{hMTP}$. The entire hMTP fragment was isolated from $\mathrm{pBS} / \mathrm{hMTP}$ by restriction endonuclease digestion with

HindIII and XhoI and was subcloned into plasmid pcDNA/ Neo (Invitrogen,San Diego, Calif.) to yield plasmid pcDNA/ MTP. This places the full-length hMTP coding sequence under the transcriptional control of the highly active Cytomegalovirus promoter.
Plasmids were transfected into 1508 T [J. Biol. Chem. 267, 13229-38 (1992)] transformed human skin fibroblasts by the lipofectin reagent (BRL). Cells were split into 100 mm dishes at a density of 25% of confluency, 24 hours prior to transfection. At the time of transfection, $50 \mu \mathrm{~g}$ of plasmid per 100 mm plate were dissolved in 1.5 mL of serum-free Dulbecco's Modified Eagles Medium (DMEM) and added dropwise to a solution of $120 \mu \mathrm{~L}$ lipofectin reagent in 1.5 mL of serum free DMEM. After a 15 -minute incubation at room temperature, the transfection mixtures were added to the 1508 T cultures containing 7 mL of serum free DMEM. Twenty four hours later, the transfection mixtures were removed and 10 mL of fresh DMEM containing 10% fetal bovine serum was added for an additional 24 hours. Cells were scraped from the dish and washed twice with ice cold phosphate buffered saline (PBS). Cell extracts, MTP activity measurements and Western analyses were carried out as described in the foregoing "Assay for TG transfer activity in Abetalipoproteinemic subjects" herein.

II. Results

The cDNA containing the full coding sequence for MTP was subcloned into expression vector pcDNA/Neo, yielding construct pcDNA/MTP. This plasmid was transiently expressed in 1508T transformed human skin fibroblasts [J. Biol. Chem. 267, 13229-38 (1992)] by liposome mediated transfection. Forty-eight hours after transfection, TG transfer activity was readily detectable above background levels assayed in extracts from cells transfected with the parent plasmid, pcDNA/Neo. Western blot analysis showed the presence of the the 88 kDa component of MTP in cells transfected with pcDNA/MTP but not in cells transfected with pcDNA/Neo. A comparison of the protein mass and activity in the transfected cells to that found in HepG2 cells suggests that the expressed MTP was efficiently incoporated into an active transfer protein complex with PDI.

EXAMPLE 5

Screen for Identifying Inhibitors of MTP
In this screen, the rate of detectably labeled lipid (for example, NMR, ESR, radio or fluorescently labeled TG, CE, or PC) transfer from donor particles (e.g., donor membranes, vesicles, or lipoproteins) to acceptor particles (e.g., acceptor membranes, vesicles, or lipoproteins) in the presence of MTP is measured. A decrease in the observed transfer rate in the presence of an inhibitor of MTP (e.g., contained in a natural products extract or known compounds) may be used as an assay to identify and isolate inhibitors of MTP function. A variety of assays could be used for this purpose, for example, the synthetic vesicle assays previously published by Wetterau \& Zilversmit, J. Biol. Chem. 259, 10863-6 (1984) or Wetterau et al., J. Biol. Chem. 265, 9800-7 (1990) or the assay outlined hereinabove in the "Assay for TG transfer activity in Abetalipoproteinemic subjects." An example of one such assay is as follows.
A. Substrate Preparation

In a typical screen using labeled lipoproteins, labeling of lipoproteins with $\left[{ }^{3} \mathrm{H}\right]$-TG is accomplished by the lipid dispersion procedure described by Morton and Zilversmit [Morton, R. E. et al., J. Biol, Chem. 256, 1992-5 (1981)] using commercially available materials. In this preparation, $375 \mu \mathrm{Ci}$ of $\left[{ }^{3} \mathrm{H}\right]$ triolein (Triolein, $\left[9,10-{ }^{3} \mathrm{H}(\mathrm{N})\right]$-, NEN Research Products, cat. no. NET-431), 1.5 mg of egg phosphatidylcholine and $160 \mu \mathrm{~g}$ of unlabeled trolein in chloro-

Identification and Demonstration of the Activity of MTP Inhibitors
I. Methods

A. Identification of MTP Inhibitors

Using the method outlined in Example 5, MTP inhibitor compounds A and B were identified. The assay measured the bovine MTP-catalyzed rate of transport of radiolabeled TG from donor HDL to acceptor LDL. In this method, an inhibitor decreases the rate of radiolabeled TG transfer.

The MTP-inhibiting activity of these compounds was confirmed in an independent assay following the procedures outlined in the foregoing "Assay for TG transfer activity in abetalipoproteinemic subjects." That assay measured the bovine MTP-catalyzed transport of radiolabeled TG from donor to acceptor SUV.
B. Cell Culture

The human hepatoblastoma cell line, HepG2, was obtained from the American Type Culture Collection (Rockville, Md.; ATCC accession no. 8065). Cultures were maintained at $37^{\circ} \mathrm{C}$. in a 5% carbon dioxide atmosphere in T-75 culture flasks with 12 mL of RPMI 1640 medium containing 10% fetal bovine serum (all cell culture media and buffers were obtained from GIBCO Life Technologies, Gaithersburg, Md.). Cells were subcultured 1:4 once a week and fed fresh medium 3 times a week.

Experiments to measure the effects of compounds A and B on protein secretion were carried out in 48 -well plates. HepG2 cells were subcultured 1:2 and allowed to come to confluency at least 24 hours before drug treatment. Before commencement of drug treatment, culture medium was removed, the cells washed once with PBS and 1 mL of fresh medium was added quantitatively. Compound A was added to duplicate wells in $10 \mu \mathrm{~L}$ of dimethylsulfoxide (DMSO) to yield varying compound concentrations. DMSO alone (10 $\mu \mathrm{L}$) was used as the negative control. (Note: DMSO at this concentration has negligible effect on HepG2 cells.) After a 16 -hour incubation under standard cell culture conditions, the plates were centrifuged at $2,500 \mathrm{rpm}$ for 5 minutes at 4° C. to sediment any loose cells. The media were diluted with cell culture medium 10 times for the apolipoprotein B (apoB) and human serum albumin (HSA) assays, and 20 times for the apolipoprotein Al (apoAl) assays. The cells were washed twice with cold PBS, and 0.5 mL of homogenization buffer was then added (0.1 M sodium phosphate, $\mathrm{pH} 8.0 ; 0.1 \%$ Triton X-100). The cells were homogenized by trituration with a 1 mL micropipettor, and protein was measured using the Coomassie reagent (Pierce Chemical Co, Rockford, Ill.) as described by the manufacturer.

C. ELISA Assays for ApoB and ApoAl and HSA

The ELISA assays to measure protein mass were of the "sandwich" design. Microtiter plates were coated with a monoclonal antibody (primary antibody), specific for the protein of interest (Biodesigns International, Kennebunkport, Me.), followed by the antigen or sample, a polyclonal antibody (secondary antibody) directed to the protein of interest (Biodesigns International), and a third antibody conjugated to alkaline phosphatase directed to the secondary antibody (Sigma Biochemical, St.Louis, Mo.). The 96 -well microtiter plates (Corning no. 25801) were coated overnight at room temperature with $100 \mu \mathrm{~L}$ of diluted monoclonal antibody (final concentrations were $1 \mu \mathrm{~g} / \mathrm{mL}, 2$ $\mu \mathrm{g} / \mathrm{mL}$ and $4 \mu \mathrm{~g} / \mathrm{mL}$ for anti-apoB, apoAl and HSA, respectively, in 0.1 M sodium carbonate-sodium bicarbonate, pH 9.6 and $0.2 \mathrm{mg} / \mathrm{mL}$ sodium azide). Coating was carried out overnight at room temperature. After coating and between each subsequent incubation step, the plates were washed five times with 0.9% sodium chloride with 0.05% Tween 20. Duplicate aliquots ($100 \mu \mathrm{~L}$) of diluted culture media or standard (purified apoB, apoAl or HSA diluted to $0.3125-320 \mathrm{ng} / \mathrm{mL}$ with cell culture medium) were added to wells coated with monoclonal antibody. Following incubation for 1.5 hours at room temperature, the antigen or sample was removed and the wells washed. The secondary antibodies were diluted 1:500 in PBS+0.05\% Tween 20 (Buffer III), then $100 \mu \mathrm{~L}$ was added to each well and incubated for 1 hour at room temperature. The antibody was removed and the wells were washed. All secondary antibodics were polyclonal antisera raised in goat against the human proteins. A rabbit anti-goat IgG, conjugated to alkaline phosphatase, was diluted 1:1000 with Buffer III and 100 $\mu \mathrm{L}$ was added to each well. Following incubation for 1 hour at room temperature, the antibody was removed and wells washed eight times. The substrate p-nitrophenylphosphate
.
(Sigma Biochemical, St. Louis, Mo.) was added at $1 \mathrm{mg} / \mathrm{mL}$ in $0.05 \mathrm{M} \mathrm{NaCarbonate-NaBicarbonate} \mathrm{pH} 9.8+,1 \mathrm{mM}$ magnesium chloride. Following a 45 -minute reaction at room temperature, the assay was stopped and the color stabilized with the addition of $100 \mu \mathrm{~L}$ of 0.1 M Tris, pH 8.0+0.1 M EDTA. The microtiter plates were read at 405 nm in a V-Max 96 -well plate reader (Molecular Devices, Menlo Park, Calif.).
After subtraction of background, the standards were plotted on a semi-log graph and logarithmic regression was performed. The equation for the curve was used to calculate the concentration of apoB, apoAl and HSA. The protein concentration was normalized to total cell protein yielding concentrations with units of $\mathrm{ng} / \mathrm{ml} / \mathrm{mg}$ cell protein. Each drug treatment was performed in duplicate and the results were averaged. The apoB, apoAl, and HSA concentrations for each drug treatment were divided by the corresponding protein concentration in the DMSO control. The results were plotted as a percentage of control versus the drug concentration.

D. Lipid Analysis

HepG2 cells were subcultured into 6 -well dishes and allowed to come to confluency at least 24 hours before drug treatment. Prior to addition of the drug, culture media were removed, cells washed once with PBS, and 1 mL of fresh medium (RPMI $1640+10 \%$ FBS) was added quatitatively. Compound A was added to duplicate wells in $10 \mu \mathrm{~L}$ of DMSO to yield varying compound concentrations. DMSO alone ($10 \mu \mathrm{~L}$) was used as the negative control. After a 16 -hour incubation under standard cell culture conditions, the media were removed and 1 mL of labeling medium (RPMI $1640 ; 16.5 \mathrm{mg} / \mathrm{mL}$ fatty acid free BSA; 1 mM sodium oleate; 1 mM glycerol; $5 \mu \mathrm{Ci} / \mathrm{mL} 3 \mathrm{H}$-glycerol (Amersham, Arlington Heights, Ill., Catalog no. TRA.244) was added with a second addition of compound A . The cultures were incubated for 2 hours under standard cell culture conditions. Media (1 mL) were removed to $15-\mathrm{mL}$ glass tubes and immediately diluted with 2 mL of ice cold methanol and 1 mL of dH 2 O . Cells were washed once with PBS and were processed for total protein measurements as described in section I-B.
Total lipids were extracted from the media and analyzed as follows. After addition of 5.0 mL of chloroform and 0.2 mL of 2% acetic acid, the tubes were vortexed for 1 minute and centrifuged at $2,000 \mathrm{rpm}$ for 5 minutes to separate the aqueous and organic phases. The upper aqueous phase was removed and 3.6 mL of methanol:water (1:1) containing 0.1% acetic acid added. After briefly vortexing, the tubes were centrifuged as before and the aqueous phase again removed. The organic phase was quatitatively transferred to clean $15-\mathrm{mL}$ glass tubes and the solvent evaporated under nitrogen. Dried lipids were dissolved in 0.1 mL of chloroform and $30 \mu \mathrm{~L}$ of each sample were spotted onto silica gel $60 \mathrm{~A}, 19$ channel thin layer chromatography plates (Whatman). 5-10 $\mu \mathrm{g}$ of TG in $10 \mu \mathrm{~L}$ of chloroform were added as carrier and the plates were developed in hexane:diisopropyl ether:acetic acid (130:70:4, V/V). After drying, lipid was stained by exposing the plates to iodine. Bands corresponding to TG were scraped into scintillation vials. 0.5 mL of dH 2 O and 10 mL of EcoLite (ICN Biomedical) scintillation fluid were added and the samples vortexed vigorously. Raw data was normalized to cell protein and expressed as percent of DMSO control.
II. Results
A. Identification of MTP Inhibitors

The primary screen suggested that compound A inhibited the MTP-catalyzed transport of ${ }^{3} \mathrm{H}$-TG from HDL to LDL.

The ability of compound A to inhibit MTP-catalyzed lipid transport was confirmed in a second assay which measures the MTP-catalyzed transport of ${ }^{3} \mathrm{H}$-TG from donor SUV to acceptor SUV. The IC_{50} for compound A is about $1 \mu \mathrm{M}$ (FIG. 10).
B. Inhibition of apoB and TG Secretion

Compound A was administered to HepG2 cells in a twofold dilution series ranging from 0.156 to $20 \mu \mathrm{M}$. After a 16 -hour incubation under standard cell culture conditions, aliquots of the conditioned media were assayed by ELISA for apob, apoAl and HSA. ApoB secretion was inhibited in a dose-responsive manner with an IC_{50} of $5 \mu \mathrm{M}$ (FIG. 11). The secretion of apoAl and HSA was unaffected up to the maximum dose of $20 \mu \mathrm{M}$ confirming that the inhibition was specific for apoB. These data indicate that addition of an MTP inhibitor to a human liver cell line inhibits the secretion of lipoproteins which contain apoB.

HepG2 cells were treated with doses of compound A ranging from $1.25 \mu \mathrm{M}-20 \mu \mathrm{M}$ under conditions identical to those utilized for the apoB, apoAl and ISA secretion experiment. The intracellular pool of TG was radiolabelled for two hours with 3 H -glycerol in the presence of vehicle or varying doses of compound A . The accumulation of radiolabelled TG in the medium was measured by quantitative extraction, followed by thin layer chromatography analysis and normalization to total cell protein. DMSO alone was used as a control. TG secretion was inhibited by compound A in a dose-dependent manner. The IC_{50} was observed to be about $2.0 \mu \mathrm{M}$, which is similar to the IC_{50} for inhibition of apoB secretion (FIG. 12). The data confirm that compound A inhibits the secretion of TG-rich lipoproteins that contain apoB.
The foregoing procedures were repeated with compound B. Compound B inhibits MTP-catalyzed ${ }^{3} \mathrm{H}-\mathrm{TG}$ transport from donor SUV to acceptor SUV. The IC_{50} is about 4 to 6 $\mu \mathrm{M}$ (FIG. 13). The secretion of lipoproteins that contain apoB is also inhibited in HepG2 cells by compound B (FIG. 14).

EXAMPLE 7

Inhibition of MTP-catalyzed CE and PC Transport I. Methods

To measure the effect of compound A on bovine MTPcatalyzed transport of CE or PC between membranes, the lipid transfer assay which measures TG transfer between SUV was modified. The composition of the donor vesicles was the same, except $0.25 \mathrm{~mol} \%{ }^{14} \mathrm{C}$-CE or ${ }^{14} \mathrm{C}$-PC replaced the labeled TG. The composition of the acceptor vesicles were the same, except labeled PC and unlabeled TG were not included. Following precipitation of donor vesicles, the percentage of lipid transfer was calculated by comparing the ${ }^{14} \mathrm{C}-\mathrm{CE}$ or -PC in the acceptor vesicles in the supernatant following a transfer reaction to the total ${ }^{14} \mathrm{C}$-CE or -PC in the assay. The labeled lipid in the supernatant in the absence of MTP was subtracted from the labeled lipid in the presence MTP to calculate the MTP-catalyzed lipid transfer from donor SUV to acceptor SUV. The remainder of the assay was essentially as described previously.
II. Results

The ability of compound A to inhibit the MTP-catalyzed transport of radiolabeled CE and PC between membranes was also investigated. Compound A inhibited CE transfer in a manner comparable to its inhibition of TG transfer. Compound A inhibited PC transfer, but it was less effective at inhibiting PC transfer than CE and TG transfer. Approximately 40% of the PC transfer was inhibited at concentrations of inhibitor which decreased TG and CE transfer more than 80%.

EXAMPLE 8
Cloning of Bovine MTP-5' End
A bovine small intestinal cDNA library, packaged in lambda gt10, was obtained from Clontech (\#BL1010A). The
5 library was diluted in SM to contain 50,000 phage $/ 100 \mu \mathrm{~L}$ (a 1:100,000 dilution). The diluted phage ($100 \mu \mathrm{~L}$) were mixed with $300 \mu \mathrm{~L}$ E. Coli C600 cells (Clontech) and incubated for 15 minutes at $37^{\circ} \mathrm{C}$. After adding 7 mL of top agarose, the mixture was poured onto a 150 mm plate containing 75 mL of LB agarose. A total of 25 plates, each containing approximately 5×10^{4} phage, were prepared in this manner. The plates were incubated overnight at $37^{\circ} \mathrm{C}$.

To isolate phage DNA, 10 mLSM (no gelatin) was added to each plate. The plates were then rocked gently at room temperature for 2 hours. The eluted phage (approximately 8 $\mathrm{mL} /$ plate) were collected and pooled. E. Coli cells were sedimented by centrifugation for 10 minutes at $12,000 \times g$.
Lambda DNA was isolated from the supernatant using the QIAGEN tip-100 (midi) preparation according to the protocol supplied by the manufacturer. The purified DNA was resuspended in a total of $200 \mu \mathrm{~L}$ TE (10 mM Tris.Cl pH 8.0, 1 mM EDTA).
$1 \mu \mathrm{~g}$ lambda phage DNA (approximately 3×10^{7} molecules) was added to a $100 \mu \mathrm{~L}$ PCR reaction containing 2 mM magnesium chloride, 0.2 mM each deoxynucleotide triphosphate, $1.25 \times$ buffer, and 2.5 units Taq polymerase (Perkin-Elmer Cetus, kit \#N801-0555). The concentration of each primer was 0.15 mM . The sequence of the forward primer (SEQ. ID. NO. 29) was as follows:

41 66
 GGTCAATATGATTCTTCTTGCTGTGC .

The forward primers sequence was based on the human cDNA sequence encoding bases 41 to 66 of the 88 kDa component of MTP. The reverse primer (SEQ. ID. NO. 30) had the following sequence:

```
6 5 8 ~ 6 3 6 ~ ( b o v i n e ) ~
807 785 (human)
СССТССатаСТатTTTCCCTCCT
```

The reverse primer's sequence was based on the known bovine cDNA sequence encoding the 88 kDa component of MTP and hybridizes from base 658 to 636 of the bovine cDNA, which correspond to bases 807-785 of the human cDNA.
PCR-amplification was conducted in a Perkin-Elmer thermal cycler, model 9600 . After a two-minute incubation at $97^{\circ} \mathrm{C}$., the reaction was cycled at $94^{\circ} \mathrm{C}$. for 30 seconds, 50° C. for 30 seconds, and $72^{\circ} \mathrm{C}$. for one minute for 35 cycles. A final incubation at $72^{\circ} \mathrm{C}$. for 7 minutes was performed.
The PCR product was electrophoresed on a 1% agarose gel in TAE buffer as described previously. The yield of the desired 766 base pair fragment was approximatcly $2 \mu \mathrm{~g}$. The DNA was excised from the gel, purified using GeneClean (Bio101 La Jolla, Calif.), blunt-ended, cloned into pUC 18-Sma1 (Pharmacia), and sequenced as described previously.
The new sequence obtained from the bovine cDNA encoding the 5^{\prime} region of the 88 kDa component of MTP is shown in SEQ. ID. NO. 5 . The sequence adds 83 bases to the 5^{\prime} end of the bovine cDNA reported previously.

EXAMPLE 9
Sequencing of Human Genomic DNA For the 88 kDa Component of MTP

Sequencing of human genomic DNA was carried out by the procedures described in "Demonstration of a gene defect in a second abetalipoproteinemic subject" and in Example 1. The result of this procedure is the human genomic sequence SEQ. ID. NO. 8.

MTP INHIBITORS

EXAMPLE 10

N -[1-(3,3-Diphenylpropyl)-4-piperidinyl]benzamide monohydrochloride

A. [1-(Phenylmethyl)-4-piperidinyl]carbamic acid, 1,1-dimethylethyl ester

To a solution of 4-amino-1-benzylpiperidine ($20.0 \mathrm{~g}, 105$ $\mathrm{mmol})$ in dichloromethane (150 mL) was added dropwise a solution of di-tert-butyldicarbonate $(25.2 \mathrm{~g}, 116 \mathrm{mmol})$ in dichloromethane (50 mL) at $0^{\circ} \mathrm{C}$. After addition, the reaction was warmed to room temperature. The reaction was maintained at this temperature for 2 hours. The reaction was evaporated to dryness. The resulting residue was recrystallized from ethyl ether to give compound $\mathrm{A}(23.5 \mathrm{~g}, 76 \%)$ as a white solid (melting point $119-121^{\circ} \mathrm{C}$.).

B. 4-Piperidinylcarbamic acid, 1,1-dimethylethyl ester

A suspension of $64.94 \mathrm{~g}(0.224 \mathrm{~mol})$ of compound A and $25.6 \mathrm{~mL}(0.447 \mathrm{~mol})$ of acetic acid in 500 mL of absolute ethanol was warmed to dissolve all solids. After cooling, 6.5 $\mathrm{g}(1 \mathrm{wt} \%)$ of 10% palladium on charcoal was added and the mixture was shaken on a Parr apparatus under initial hydrogen pressure of 40 psi for 23 hours. The catalyst was removed by filtration and the solution was concentrated to a clear oil which was dissolved in 1.5 L of chloroform. The organics were washed with a 3 N KOH solution saturated with $\mathrm{NaCl}(2 \times 75 \mathrm{~mL})$. The aqueous layer was back extracted with chloroform $(5 \times 200 \mathrm{~mL})$. The combined organics were dried (sodium sulfate) and concentrated to provide 65 g of a white solid which was redissolved in 1.5 L of chloroform and washed with brine $(2 \times 200) \mathrm{mL}$ to remove residual acetate. The combined aqueous layers were back extracted and the combined organics were dried (sodium sulfate) and concentrated to provide $40.15 \mathrm{~g}(90 \%)$ of compound B as a white solid (melting point $156-159^{\circ} \mathrm{C}$.).

$$
\begin{aligned}
& \text { C. } \gamma \text {-Phenylbenzenepropanol, 4- } \\
& \text { methylbenzenesulfonate ester }
\end{aligned}
$$

To a solution of tosyl chloride ($4.94 \mathrm{~g}, 25.9 \mathrm{mmol}$) in dichloromethanc (10 mL) was added 3,3-diphenyl-1propanol ($5.00 \mathrm{~g}, 23.6 \mathrm{mmol}$) and pyridine ($2.86 \mathrm{~mL}, 35.4$ mmol) at room temperature. The reaction was stirred overnight at room temperature. Ethyl ether (200 mL) was added to dilute the reaction, and the organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL} \times 2)$, saturated sodium carbonate ($50 \mathrm{~mL} \times 2$),
brine ($50 \mathrm{~mL} \times 2$) and dried over MgSO_{4}. Purification was performed by flash chromatography, loaded and eluted with 25% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound C ($5.2 \mathrm{~g}, 60 \%$) as a 5 colorless oil.

D. [1-(3,3-Diphenylpropyl)-4-piperidinyl]carbamic acid, 1,1-dimethylethyl ester

To a solution of compound C $(1.83 \mathrm{~g}, 5.00 \mathrm{mmol})$ and compound B ($1.00 \mathrm{~g}, 5.00 \mathrm{mmol}$) in isopropanol (25 mL) was added potassium carbonate ($1.1 \mathrm{~g}, 8.00 \mathrm{mmol}$). The reaction was refluxed overnight. The reaction was cooled to room temperature and filtered, and the filtrate was evaporated to dryness. Purification was performed by flash chromatography, loaded and eluted with 2.5% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound $\mathrm{D}(1.5 \mathrm{~g}, 76 \%)$ as a colorless oil.

E. 1-(3,3-Diphenylpropyl)-4-piperidinamine, hydrochloride

To a stirred solution of $9.21 \mathrm{~g}(23.34 \mathrm{mmol})$ of compound D in 60 mL of dioxane was added $58 \mathrm{~mL}(0.223 \mathrm{~mol})$ of a 4.0 M HCl in dioxane solution. The mixture was stirred for 15 hours then concentrated to provide $8.45 \mathrm{~g}(100 \%)$ of compound E as a white solid containing $10 \mathrm{wt} \%$ of dioxane by ${ }^{1} \mathrm{H}$ NMR, melting point $123-126^{\circ} \mathrm{C}$. A dioxane-free sample of the hydrochloride salt has a melting point of $192-194^{\circ} \mathrm{C}$.

F. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] benzamide

To solution of compound $\mathrm{E}(100 \mathrm{mg}, 0.30 \mathrm{mmol})$ and triethylamine ($152 \mathrm{mg}, 0.33 \mathrm{mmol}$) in dichloromethane (2 mL) was added a solution of benzoyl chloride $(46.8 \mathrm{mg}, 0.33$ $\mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After addition, the reaction was stirred at $0^{\circ} \mathrm{C}$. for 10 minutes. The reaction was diluted with dichloromethane (50 mL), the organic layer was washed with saturated sodium bicarbonate solution (10 mL), water (10 mL) and dried over sodium sulfate. The solution was evaporated to dryness. The resulting residue was recrystallized from isopropanol to give compound F $(100 \mathrm{mg}, 84 \%)$ as a white solid (melting point $151-155^{\circ} \mathrm{C}$.).

G. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] benzamide, monohydrochloride

Compound F ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in ethanol (2 mL) and 1 N HCl in diethyl ether (0.5 mL) was added. The mixture was evaporated to give Example 10 (100 $\mathrm{mg}, 100 \%$) as a white solid, melting point $246-249^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O} .0 .2 \mathrm{H}_{2} \mathrm{O}$:
Calc'd C, 73.94; H, 7.22; N, 6.39; Cl, 8.08
Found: C, 73.90; H, 7.18; N, 6.40; Cl, 8.11

EXAMPLE 11

2-[1-(3,3-Diphenyl-2-propenyl)-4-piperidinyl]-2,3-dihydro- 1 H -isoindol-1-one, monohydrochloride

A. 2-(4-piperidinyl)-2,3-dihydro-1H-isoindol-1-one

To a solution of compound B from Example 13 (8.5 g , 26.4 mmol) in ethanol (65 mL) was added acetic acid (3.5 $\mathrm{mL}, 52.8 \mathrm{mmol}$), followed by 10% palladium on activated carbon (0.7 g) under argon. The slurry was purged with nitrogen and agitated under a pressure of 45 psi of hydrogen gas for 48 hours. The reaction mixture was filtered through Celite ${ }^{\circledR}$ and washed with ethanol. The filtrate was evaporated to dryness. The resulting residue was dissolved in 25 chloroform (100 mL) and washed with 1 N KOH saturated with sodium chloride $(2 \times 30 \mathrm{~mL})$ and dried over MgSO_{4}. The resulting clear solution was evaporated to dryness and azeotroped with toluene $(2 \times 30 \mathrm{~mL})$ to give compound $\mathrm{A}(5.0$ $\mathrm{g}, 77 \%$) as a white solid, melting point $137-140^{\circ} \mathrm{C}$.

B. 3,3-Diphenyl-2-propen-1-ol

To a solution of β-phenylcinnamaldehyde ($5.0 \mathrm{~g}, 24.0$ mmol) in toluene (100 mL) was added 1 M diisobutylaluminum hydride ($26.4 \mathrm{~mL}, 26.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$. for 15 minutes, and methanol $(5 \mathrm{~mL})$ was added slowly to quench the reaction. 1 M potassium sodium tartrate solution (150 mL) was added and the mixture was stirred at room temperature overnight. The reaction was diluted with ethyl ether (100 mL), and the organic layer was washed with brine (30 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation gave compound B $(3.95 \mathrm{~g}, 80 \%)$ as a pale yellow oil.

C. 1-Chloro-3,3-diphenyl-2-propene

To a solution of N -chlorosuccinimide ($1.52 \mathrm{~g}, 11.4 \mathrm{mmol}$) in dichloromethane (40 mL) was added dimethyl sulfide (1.1 $\mathrm{mL}, 14.5 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. under argon. The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 10 minutes then warmed to room temperature for 30 minutes. The white cloudy solution was recooled to $-40^{\circ} \mathrm{C}$., and a solution of compound B $(2.17 \mathrm{~g}$, $10.3 \mathrm{mmol})$ in dichloromethane (3 mL) was added dropwise. The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 2 hours and then diluted with hexane $(100 \mathrm{~mL})$. The organic layer was washed with water (50 mL), brine ($50 \mathrm{~mL} \times 2$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation gave compound $\mathrm{C}(1.9 \mathrm{~g}, 81 \%)$ as a colorless oil.

D. 2-[1-(3,3-Diphenyl-2-propenyl)-4-piperidinyl]-2, 3-dihydro- 1 H -isoindol-1-one

To a solution of compound $\mathrm{A}(1.63 \mathrm{~g}, 7.56 \mathrm{mmol})$ and compound $\mathrm{C}(1.90 \mathrm{~g}, 8.32 \mathrm{mmol})$ in dimethylformamidc (35 $\mathrm{mL})$, potassium carbonate ($1.10 \mathrm{~g}, 7.94 \mathrm{mmol}$) was added at room temperature. The reaction was stirred at $50^{\circ} \mathrm{C}$. overnight. The reaction was evaporated to dryness. The resulting residue was dissolved in dichloromethane (150 mL) and washed with water ($50 \mathrm{~mL} \times 2$), brine ($50 \mathrm{~mL} \times 2$) and dried
over MgSO_{4}. Evaporation gave a crude solid. Purification was performed by flash chromatography, loaded and eluted with 3% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound D (1.95 g , 563%) as a white solid, melting point $164-167^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O} .0 .3 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 81.24; H, 6.96; N, 6.77;
Found: C, 81.29; H, 6.88; N, 6.79.

$$
\begin{aligned}
& \text { E. 2-[1-(3,3-Diphenyl-2-propenyl)-4-piperidinyl]-2, } \\
& \text { 3-dihydro-1H-isoindol-1-one, monohydrochloride }
\end{aligned}
$$

To a solution of compound D ($200 \mathrm{mg}, 0.49 \mathrm{mmol}$) in 5 methanol (2 mL) was added 1 N HCl in ethyl ether (0.5 mL) at room temperature. The resulting salt was filtered and washed with cold methanol ($2 \times 0.5 \mathrm{~mL}$). After drying under high vacuum, Example 11 was obtained ($160 \mathrm{mg}, 80 \%$) as a white solid, melting point $231-235^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O} .0 .9 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 72.92 ; H, 6.73; Cl, 7.69; N, 6.07;
Found: C, 72.99; H, 6.91; Cl, 7.36; N, 6.06.

EXAMPLE 12

2-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2,3-dihydro- 1 H -isoindol-1-one, monohydrochloride

A. 2-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2,3-dihydro-1-1H-isoindol-1-one

To a solution of compound A from Example 11 (2.0 g , 9.26 mmol) and compound C from Example $10(3.40 \mathrm{~g}, 9.26$ mmol) in isopropanol (25 mL) was added potassium carbonate ($2.05 \mathrm{~g}, 14.8 \mathrm{mmol}$). The reaction was refluxed overnight. The reaction was cooled to room temperature and filtered, and the filtrate was evaporated to dryness. Purification was performed by flash chromatography, loaded and eluted with 2.5% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound A $(2.82 \mathrm{~g}, 74 \%)$ as a colorless oil.
B. 2-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-one, monohydrochloride

Compound A ($1.0 \mathrm{~g}, 2.44 \mathrm{mmol}$) was dissolved in metha$\mathrm{nol}(7.0 \mathrm{~mL}) .1 \mathrm{~N} \mathrm{HCl}$ in ethyl ether ($4.88 \mathrm{~mL}, 4.88 \mathrm{mmol}$) and stirred at room temperature overnight. The reaction was evaporated to dryness. The resulting residue was recrystallized from ethanol to give Example $12(700 \mathrm{mg}, 68 \%)$ as a white solid, melting point $237-241^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O} .0 .6 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 73.46; H, 7.09; N, 6.12;
Found: C, 73.32; H, 7.20; N, 5.96.

2,3-Dihydro-2-[1-(phenylmethyl)-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

A. 2-[1-(Phenylmethyl)-4-piperidinyl]-1H-isoindol-1,3(2H)-dione

A mixture of phthalic anhydride $(15.0 \mathrm{~g}, 101 \mathrm{mmol})$ and 4-amino-1-benzylpiperidine ($19.3 \mathrm{~g}, 101 \mathrm{mmol}$) was heated with stirring in an oil bath until the mixture melted (about $125^{\circ} \mathrm{C}$.). The reaction was kept at this temperature until the mixture solidified again (about 30 minutes). The reaction was cooled to room temperature. Purification was performed by flash chromatography on 1 kg silica gel, loaded and eluted with 30% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound $\mathrm{A}(25 \mathrm{~g}, 77 \%)$ as a white solid, melting point $151-154^{\circ} \mathrm{C}$.

B. 2,3-Dihydro-2-[1-(phenylmethyl)-4-piperidinyl]-1H-isoindol-1-one

To a solution of compound $\mathrm{A}(20.0 \mathrm{~g}, 62.5 \mathrm{mmol})$ in acetic $\operatorname{acid}(248 \mathrm{~mL})$ was added zinc dust $(28.6 \mathrm{~g}, 438 \mathrm{mmol})$ under argon. With mechanical stirring, the reaction was refluxed overnight. The reaction was filtered through Celite, then evaporated to dryness. Dichloromethane $(500 \mathrm{~mL})$ was added, and the organic layer was washed with saturated sodium bicarbonate $(2 \times 100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave a crude oil. The resulting residuc was azcotroped with tolucnc $(2 \times 30 \mathrm{~mL})$ to afford a white solid. The product was recrystallized from isopropanol to give compound B (16 g, 80\%) as a whitc solid (melting point $130-133^{\circ} \mathrm{C}$.).

C. 2,3-Dihydro-2-[1-(phenylmethyl)-4-piperidinyl]-
 1 H -isoindol-1-one, monohydrochloride

Compound $\mathrm{B}(200 \mathrm{mg}, 0.62 \mathrm{mmol})$ was dissolved in ethanol (3 mL) and 4 N HCl in dioxane $(1 \mathrm{~mL})$ was added. After 2 minutes at room temperature, a white solid precipitated. The solid was filtered and pumped under high vaccum to give Example $13(120 \mathrm{mg}, 60 \%)$ as a white solid, melting point $271-274^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OCl} .0 .8 \mathrm{H}_{2} \mathrm{O}$:

Calc'd. C, 67.22; H, 6.94; N, 7.84;
Calc'd: $\mathrm{C}, 71.24 ; \mathrm{H}, 7.34 ; \mathrm{N}, 7.55 ; \mathrm{Cl}, 9.56$;

Found: C, 70.96; H, 7.42; N, 7.60; Cl, 9.63.

EXAMPLE 15
2-[1-(5,5-Diphenylpentyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-one, monohydrochloride

-HCl

A. β-Phenylbenzenepropanal

To a solution of oxalyl chloride $(2.0 \mathrm{M}$ in dichloromethane, $1.53 \mathrm{~mL}, 30.7 \mathrm{mmol}$) in dichloromethane $(100 \mathrm{~mL})$ was added dropwise a solution of dimethyl sulfoxide ($4.35 \mathrm{~mL}, 61.4 \mathrm{mmol}$) in dichloromethane $(9 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$. After addition, the reaction was stirred at $-70^{\circ} \mathrm{C}$. for 30 minutes, then a solution of 3,3-diphenyl-1-propanol $(5.0 \mathrm{~g}, 23.6 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added dropwise. The reaction was stirred at $-70^{\circ} \mathrm{C}$. for 1 hour. Triethylamine ($27 \mathrm{~mL}, 141 \mathrm{mmol}$) was added and the reaction mixture was warmed to room temperature. Ethyl ether $(300 \mathrm{~mL})$ was added to dilute the reaction, the organic layer was washed with water $(2 \times 100 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 100$ $\mathrm{mL})$, saturated sodium bicarbonate solution $(2 \times 100 \mathrm{~mL})$, brine $(2 \times 100 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave compound $\mathrm{A}(5.0 \mathrm{~g}, 100 \%)$ as a yellowish oil.

B. (E)-5,5-Diphenyl-2-pentenoic acid, ethyl ester

To a suspension of sodium hydride ($1.14 \mathrm{~g}, 28.6 \mathrm{mmol}$) in tetrahydrofuran $(50 \mathrm{~mL})$ was added dropwise a solution of triethyl phosphonoacetate ($6.13 \mathrm{~mL}, 30.9 \mathrm{mmol}$) in tetrahydrofuran $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 20 minutes (the solution is clear) then recooled to $-78^{\circ} \mathrm{C}$. A solution of compound $\mathrm{A}(5.0 \mathrm{~g}, 23.8$ mmol) in tetrahydrofuran (5 mL) was added dropwise. The reaction was warmed to room temperature and quenched with saturated ammonium chloride solution (5 mL). Ethyl ether (200 mL) was added to dilute the reaction, and the organic layer was washed with water ($2 \times 50 \mathrm{~mL}$), brine ($2 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 250 g silica gel, loaded and eluted with 6% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound B ($5.0 \mathrm{~g}, 75 \%$) as a colorless oil.

C. (E)-5,5-Diphenyl-2-penten-1-ol

To a solution of compound $\mathrm{B}(4.97 \mathrm{~g}, 17.8 \mathrm{mmol})$ in toluene (30 mL) at $0^{\circ} \mathrm{C}$. was added dropwise diisobutyl aluminum hydride (1.0 M in tolucnc) $(39.1 \mathrm{~mL}, 39.1 \mathrm{mmol})$. The reaction was stirred at $0^{\circ} \mathrm{C}$. for 1 hour. The reaction was quenched with methanol (5 mL). Potassium sodium tartrate solution ($1 \mathrm{M}, 200 \mathrm{~mL}$) was added, and the reaction mixture was stirred for 3.5 hours. Ethyl ether (200 mL) was added, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$,
brine ($2 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 300 g silica gel, loaded and eluted with 20% ethyl acetate in hexane. Pure fractions were combined and evapobined and evaporated to give compound E (1.0 g, 62\%) as a white solid (melting point $136-141^{\circ} \mathrm{C}$.).

F. 2-[1-(5,5-Diphenylpentyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-one

To a solution of compound $\mathrm{E}(500 \mathrm{mg}, 1.36 \mathrm{mmol})$ in ethanol (10 mL) was added 10% palladium on activated carbon (50 mg) under argon at room temperature. A hydrogen balloon was connected to the solution. Hydrogenation was maintained overnight. The reaction was filtered through Celite, and the filtrate was evaporated to dryness. Purification was performed by flash chromatography on 100 g silica gel, loaded and eluted with 2.5% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound F ($400 \mathrm{mg}, 80 \%$) as a white solid, melting point $121-124^{\circ} \mathrm{C}$.

G. 2-[1-(5,5-Diphenylpentyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-one, monohydrochloride

Compound F ($400 \mathrm{mg}, 0.91 \mathrm{mmol}$) was dissolved in 20% methanol in ethyl ether (2 mL). A solution of 1 M HCl in ethyl ether ($4 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added. The HCl salt precipitated and was filtered and washed with ethyl ether. The resulting solid was dried under high vacuum at $60^{\circ} \mathrm{C}$. overnight to give Example $15(320 \mathrm{mg}, 80 \%)$ as a white solid (melting point $208-211^{\circ} \mathrm{C}$.).

Analysis for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{ClN}_{2} \mathrm{O}$:
Calc'd: C, 75.85; H, 7.43; N, 7.90; Cl, 7.46;
Found: C, 75.54; H, 7.54; N, 7.82; Cl, 7.56.

N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] cyclohexane-carboxamide, monohydrochloride

A. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] cyclohexanecarboxamide

To a stirred solution of $405 \mathrm{mg}(1.22 \mathrm{mmol})$ of compound E from Example 10 and 7 mg ($5 \mathrm{~mol} \%$) of 4-dimethylaminopyridine in 8 mL of methylene chloride at $0^{\circ} \mathrm{C}$. under argon was added $171 \mu \mathrm{~L}(1.28 \mathrm{mmol})$ of cyclohexylcarbonyl chloride. After warming to room temperature, the mixture was stirred for one hour and diluted with methylene chloride and water. The organics were separated, and the aqueous layer was basified with 1 M KOH and extracted with methylene chloride. The combined organics were dried (sodium sulfate) and concentrated to provide a yellow solid which was dried under high vacuum. The crude product was purified by flash chromatograghy on silica gel (80 g) eluted with 9:1 methylene chloride/ methanol. Pure fractions were combined and concentrated to yield 438 mg (88%) of compound A as a clear, glassy solid.

> B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] cyclohexane-carboxamide, monohydrochloride

To a solution of $430 \mathrm{mg}(1.06 \mathrm{mmol})$ of compound A in 4 mL of methylene chloride was added $2.12 \mathrm{~mL}(2.12 \mathrm{mmol})$ of a 1.0 M solution of hydrogen chloride in diethyl ether. The opaque white solution was concentrated and dried under vacuum to provide 375 mg (76%) of Example 16 as a white solid, melting point greater than $250^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{27} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{OCl}$:
Calcd.: C, 73.53 ; H, 8.46; N, 6.35;Cl, 8.04;
Found: C, 73.38; H, 8.52; N, 6.16; Cl, 7.97.

EXAMPLE 17

2-[1-(3-Butylheptyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-one, monohydrochloride

A. 3-Butyl-2-heptenoic acid, ethyl ester

To a suspension of sodium hydride (60% in mineral oil) $(1.01 \mathrm{~g}, 25.3 \mathrm{mmol})$ in tetrahydrofuran $(40 \mathrm{~mL})$ was added dropwise a solution of triethyl phosphonoacetate (5.44 mL ,
$27.4 \mathrm{mmol})$ in tetrahydrofuran $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirring was continued until the solution was clear. The reaction was recooled to $-78^{\circ} \mathrm{C}$., a solution of 5 -nonanone ($3.0 \mathrm{~g}, 21.1 \mathrm{mmol}$) in 5 tetrahydrofuran (5 mL) was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$. for 1 hour. The reaction was warmed to room temperature and quenched with saturated ammonium chloride (5 mL). Ethyl ether (200 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$ and dried over magnesium sulfate. Purification was performed by flash chromatography on 400 g silica gel, loaded and eluted with 15% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound $\mathrm{A}(1.63 \mathrm{~g}, 37 \%)$ as a colorless 15 oil.

B. 3-Butyl-2-hepten-1-ol

To a solution of compound A ($1.63 \mathrm{~g}, 7.69 \mathrm{mmol}$) in tolucnc (20 mL) at $0^{\circ} \mathrm{C}$. was added a solution of diisobutylaluminum hydride (1 M solution in toluene, 16.9 mL , 16.9 mmol). The reaction was stirred at room temperature for 10 minutes and quenched with methanol $(5 \mathrm{~mL})$. Potassium sodium tartrate solution ($1 \mathrm{M}, 100 \mathrm{~mL}$) was added, the mixture was stirred overnight. Ethyl ether (100 mL) was added, and the organic layer was washed with water $(2 \times 50$ mL), brine ($2 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. Evaporation gave compound B ($1.30 \mathrm{~g}, 99 \%$) as a colorless oil.

C. 3-Butyl-2-hepten-1-yl chloride

To a suspension of N -chlorosuccinimide $(1.12 \mathrm{~g}, 8.42$ mmol) in dichloromethane (20 mL) at $-40^{\circ} \mathrm{C}$. was added dropwise a solution of methyl sulfide ($0.79 \mathrm{~mL}, 10.7 \mathrm{mmol}$) in dichloromethane (1 mL). After addition, the reaction was warmed to room temperature for 30 minutes. The reaction was recooled to $-40^{\circ} \mathrm{C}$., and a solution of $3(1.3 \mathrm{~g}, 7.65$ mmol) in dichloromethane (2 mL) was added. The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 2 hours and warmed to room temperature. Hexane (150 mL) was added to dilute the reaction, and the organic layer was washed with water (2×50 mL), brine ($2 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. Evaporation gave compound C ($860 \mathrm{mg}, 60 \%$) as a cololess oil.

D. 2-[1-(3-Butyl-2-heptenyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-one

To a solution of compound A from Example 11 (974 mg , $4.51 \mathrm{mmol})$ in dimethylformamide (14 mL) was added a solution of compound C ($850 \mathrm{mg}, 4.51 \mathrm{mmol}$) in dimethylformamide (2 mL) followed by anhydrous potassium carbonate ($653 \mathrm{mg}, 4.74 \mathrm{mmol}$). The reaction was stirred at $50^{\circ} \mathrm{C}$. for 3 hours. The reaction was cooled to room temperature. Ethyl acetate $(100 \mathrm{~mL})$ was added to dilute the reaction, and the organic layer was washed with water (2×50 mL), brine ($2 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. Evaporation gave a crude oil. Purification was performed by flash chromatography on 100 g of silica gel, loaded and eluted with 2% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound $\mathrm{D}(1.13 \mathrm{~g}$, 68%) as a cololess oil.

E. 2-[1-(3-Butylheptyl)-4-piperidinyl]-2,3dihydro-
 1H-isoindol-1-one

To a solution of compound D ($500 \mathrm{mg}, 1.36 \mathrm{mmol}$) in ethanol (10 mL) was added 10% palladium on activated
carbon (50 mg) under argon at room temperature. Argon on the reaction was replaced by hydrogen. A hydrogen balloon was connected to the solution. Hydrogenation was maintained overnight. The reaction was filtered through Celite, and the filtrate was evaporated to dryness. Purification was performed by flash chromatography on 100 g silica gel, loaded and eluted with 2.5% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound F ($480 \mathrm{mg}, 95 \%$) as a waxy solid.

> F. 2-[1-(3-Butylheptyl)-4-piperidinyl]-2,3-dihydro1H-isoindol-1-one, monohydrochloride

Compound E ($480 \mathrm{mg}, 1.30 \mathrm{mmol}$) was dissolved in 20% methanol in ethyl ether (2 mL). A solution of 1 M HCl in ethyl ether ($4 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added. The HCl salt precipitated and was filtered and washed with ethyl ether. The resulting solid was dried under high vacuum at $60^{\circ} \mathrm{C}$. overnight to give Example $17(300 \mathrm{mg}, 62 \%)$ as a white solid (melting point $185-187^{\circ} \mathrm{C}$.).
Analysis for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{ClN}_{2} \mathrm{O}+0.5 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 69.29 ; H, 9.69 , N, 6.73 ; Cl, 8.52 ;
Found: C, 69.17; H, 9.75; N, 6.88; Cl, 8.91.

EXAMPLE 18

N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]benzene acetamide, monohydrochloride

A. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] benzeneacetamide

To a stirred solution of $420 \mathrm{mg}(1.27 \mathrm{mmol})$ of compound E from Example 10 in 8 mL of methylene chloride at $0^{\circ} \mathrm{C}$. under argon was added $308 \mu \mathrm{~L}(3.81 \mathrm{mmol})$ of pyridine and $176 \mu \mathrm{~L}(1.33 \mathrm{mmol})$ of phenylacetyl chloride. After warming to room temperature, the mixture was stirred for one hour and diluted with methylene chloride and water. The organics were separated, and the aqueous layer was basified with 1 M KOH and extracted with methylene chloride. The combined organics were dried (sodium sulfate) and concentrated to provide a yellow oil which was dried under high vacuum. The crude product was purified by flash chromatography on silica gel (80 g) eluted with 98:2 methylene chloride/ methanol. Pure product fractions were combined and concentrated to provide 366 mg of a yellow solid, which was further purified by recrystallization from methanol to afford $214 \mathrm{mg}(41 \%)$ of compound A as white needles, melting point $141-143^{\circ} \mathrm{C}$. (decomp.).

> B. N-[1-(3,3-Diphenylpropyl)piperidinyl]benzene acetamide, monohydrochloride

To a solution of $214 \mathrm{mg}(0.52 \mathrm{mmol})$ of compound A in 4 mL of methylene chloride was added $0.77 \mathrm{~mL}(0.77 \mathrm{mmol})$ of a 1.0 M solution of hydrogen chloride in diethyl ether. The opaque white solution was concentrated to a white solid
which was purified by recrystallization from methanol and dried under vacuum to provide 194 mg (83%) of Example 18 as a white solid, melting point $109-115^{\circ} \mathrm{C}$. (decomp.).

Analysis for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OCl}+0.94 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 72.19; H, 7.54; N, 6.01; Cl, 7.61;
Found: C, 72.03; H, 7.58; N, 6.17; Cl, 7.60.

EXAMPLE 19

$\mathrm{N}-[1-(3,3-D i p h e n y l p r o p y l)-4$-piperidinyl]pentamide, monohydrochloride

$$
\begin{aligned}
& \text { A. } \mathrm{N}-[1-(3,3-\text { Diphenylpropyl)-4-piperidinyl }] \\
& \text { pentamide }
\end{aligned}
$$

To a stirred solution of $385 \mathrm{mg}(1.16 \mathrm{mmol})$ of compound E from Example 10 and $7 \mathrm{mg}(5 \mathrm{~mol} \%)$ of 35 4-dimethylaminopyridine in 8 mL of methylene chloride at $0^{\circ} \mathrm{C}$. under argon was added $147 \mu \mathrm{~L}(1.22 \mathrm{mmol})$ of cyclohexylcarbonyl chloride. After warming to room temperature, the mixture was stirred for one hour and diluted with methylene chloride and water. The organic layers were separated, and the aqueous layer was basified with 1 M KOH and extracted with methylene chloride. The combined organic layers were dried (sodium sulfate) and concentrated to provide a yellow solid which was dried under high vacuum. The crude product was purified by flash chromatography on silica gel (75 g) cluted with 95:5 methylene chloride/methanol. Pure fractions were combined and concentrated to yield 334 mg (76%) of compound A as a clear, glassy solid, meting point $126-128^{\circ} \mathrm{C}$.

> B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl] pentamide, monohydrochloride

To a solution of $319 \mathrm{mg}(0.84 \mathrm{mmol})$ of compound A in 4 mL of methylene chloride was added $1.68 \mathrm{~mL}(1.68 \mathrm{mmol})$ of a 1.0 M solution of hydrogen chloride in diethyl ether and the heterogeneous mixture was stirred for thirty minutes. The resulting precipitate was filtered, washed with ether, and dried under vacuum to provide 327 mg (72%) of Example 19 as a yellow solid, melting point $189-191^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OCl}+0.3 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 71.41; H, 8.54; N, 6.66; Cl, 8.43;
Found: C, 71.56; H, 8.46; N, 6.51; Cl, 8.66.

EXAMPLE 20
(E)-2,3-Dihydro-2-[1-[3-(2-phenoxyphenyl)-2-propenyl]-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

15

A. 2-Phenoxybenzenemethanol

To a solution of 2-phenoxybenzoic acid $(5.0 \mathrm{~g}, 23.3$ $\mathrm{mmol})$ in tetrahydrofuran $(50 \mathrm{~mL})$ was added dropwise at 0° C. lithium aluminum hydride solution (1 M in tetrahydrofuran, $23.3 \mathrm{~mL}, 23.3 \mathrm{mmol}$). The reaction was warmed to room temperature and stirring was continued for 8 hours. The reaction was quenched with methanol (5 mL), and 1 M potassium sodium tartrate solution $(100 \mathrm{~mL})$ was added. The mixture was stirred at room temperature overnight. Ethyl ether (200 mL) was added, and the organic layer was washed with water ($2 \times 50 \mathrm{~mL}$), brine ($2 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. Evaporation gave compound A ($4.65 \mathrm{~g}, 99 \%$) as a colorless oil.

B. 2-Phenoxybenzaldehyde

To a solution of oxalyl chloride $(2.0 \mathrm{M}$ in dichloromethane, $15.1 \mathrm{~mL}, 30.3 \mathrm{mmol}$) in dichloromethane $(100 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$. was added dropwise a solution of 3 dimethyl sulfoxide ($4.25 \mathrm{~mL}, 60.6 \mathrm{mmol}$) in dichloromethane (5 mL). After addition, the reaction was stirred at $-70^{\circ} \mathrm{C}$. for 30 minutes, then a solution of compound $\mathrm{A}(4.65$ $\mathrm{g}, 23.3 \mathrm{mmol}$) in dichloromethane (10 mL) was added dropwise. The reaction was stirred at $-70^{\circ} \mathrm{C}$. for 1 hour. Triethylamine (27 mL) was added and the reaction mixture was warmed to room temperature. Ethyl ether (300 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 100 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated sodium bicarbonate solution $(2 \times 100 \mathrm{~mL})$ and brine $(2 \times 100 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave compound B as a yellowish oil ($4.63 \mathrm{~g}, 100 \%$).
C. (E)-3-(2-Phenoxyphenyl)-2-propenoic acid, ethyl ester
To suspension of sodium hydride $(1.12 \mathrm{~g}, 28.1 \mathrm{mmol})$ in tetrahydrofuran (50 mL) was added dropwise a solution of triethyl phosphonoacetate $(6.04 \mathrm{~mL}, 30.4 \mathrm{mmol})$ in tetrahydrofuran (5 mL) at $0^{\circ} \mathrm{C}$. Then the reaction was stirred at room temperature for 20 minutes (the solution was clear). 5 The reaction was recooled to $-78^{\circ} \mathrm{C}$., and a solution of compound A ($4.63 \mathrm{~g}, 23.4 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added dropwise. The reaction was warmed to room temperature and quenched with saturated ammonium chloride solution (5 mL). Ethyl ether (200 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brinc $(2 \times 50 \mathrm{~mL})$ and dricd over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 500 g silica gel, loaded and eluted with 10% ethyl acetate in hexane. Pure fractions were 65 combined and evaporated to give compound $\mathrm{C}(6.0 \mathrm{~g}, 96 \%)$ as a colorless oil.

To a solution of compound $\mathrm{C}(2.5 \mathrm{~g}, 9.33 \mathrm{mmol})$ in toluene at $0^{\circ} \mathrm{C}$. was added dropwise a diisobutyl aluminum 5 hydride (1.0 M in toluene) ($20.5 \mathrm{~mL}, 20.5 \mathrm{mmol}$) solution. The reaction was stirred at $0^{\circ} \mathrm{C}$. for 1 hour. The reaction was quenched with methanol (5 mL). 1 M potassium sodium tartrate solution (100 mL) was added, and the reaction mixture was stirred for 3.5 hours. Ethyl ether (200 mL) was added, and the organic layer was washed with water $(2 \times 50$ mL), brine ($2 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 300 g silica gel, loaded and eluted with 20% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound $\mathrm{D}(1.85 \mathrm{~g}, 88 \%)$ as a colorless oil.

E. (E)-1-(3-Chloro-1-propenyl)-2-phenoxybenzene

To a solution of N-chlorosuccinimide ($1.11 \mathrm{~g}, 8.33 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ was added dropwise methyl sulfide ($0.78 \mathrm{~mL}, 10.6 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 10 minutes then warmed to room temperature for 30 minutes. The reaction was recooled to $-40^{\circ} \mathrm{C}$., and a solution of compound D $(1.71 \mathrm{~g}, 7.57 \mathrm{mmol})$ in dichloromethane was added dropwise. The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 3 hours, then warmed to room temperature for 30 minutes. Hexane (100 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave compound $\mathrm{E}(1.72 \mathrm{~g}, 93 \%)$ as a colorless oil.

F. (E)-2,3-Dihydro-2-[1-[3-(2-phenoxyphenyl)-2-propenyl]-4-piperidinyl]-1H-isoindol-1-one

To a solution of compound A from Example $11(0.88 \mathrm{~g}$, 4.09 mmol) in dimethylformamide (10 mL) was added a solution of compound $\mathrm{E}(1.0 \mathrm{~g}, 4.09 \mathrm{mmol})$ in dimethylformamide (2 mL) followed by potassium carbonate (592 mg , 4.29 mmol). The reaction was stirred at $50^{\circ} \mathrm{C}$. for 14 hours. The reaction was cooled to room temperature. Ethyl ether $(100 \mathrm{~mL})$ was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 150 g silica gel, loaded and eluted with 2% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound $\mathrm{F}(1.1 \mathrm{~g}, 63 \%)$ as a colorless oil.

G. (E)-2,3-Dihydro-2-[1-[3-(2-phenoxyphenyl)-2-propenyl]-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

To a solution of compound F ($500 \mathrm{mg}, 1.15 \mathrm{mmol}$) in ethyl ether:methanol ($2 \mathrm{~mL}, 5: 1$) was added 1 M HCl in ethyl ether ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The HCl salt precipitated from the solution. The salt was filtered and dried at $60^{\circ} \mathrm{C}$. under vacuum to give Example $20(300 \mathrm{mg}, 55 \%)$ as a white solid, melting point $215-218^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{2}$:
Calc'd: C, $72.95 ; \mathrm{H}, 6.34, \mathrm{~N}, 6.08 ; \mathrm{Cl}, 7.69$;
Found: C, 72.49; H, 6.39; N, 6.04; Cl, 7.37.

101
EXAMPLE 21
2,3-Dihydro-2-[1-[3-(2-methoxyphenyl)propyl]-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

A. 2-Methoxybenzenepropanol

To a solution of 3-(2-methoxyphenyl)propionic acid (2.0 $\mathrm{g}, 11.1 \mathrm{mmol}$) in tetrahydrofuran (25 mL) was added dropwise at $0^{\circ} \mathrm{C}$. lithium aluminum hydride solution (1 M in tetrahydrofuran, $11.1 \mathrm{~mL}, 11.1 \mathrm{mmol}$). The reaction was warmed to room temperature and stirring was continued overnight. The reaction was quenched with methanol (5 mL), and 1 M potassium sodium tartrate solution (100 mL) was added. The mixture was stirred at room temperature overnight. Ethyl ether (200 mL) was added, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$ and dried over magnesium sulfate. Evaporation gave compound A ($1.5 \mathrm{~g}, 81 \%$) as a colorless oil.

B. 1-(3-Bromopropyl)-2-methoxybenzene

To a solution of compound A ($620 \mathrm{mg}, 3.73 \mathrm{mmol}$) and triphenylphosphine ($1.08 \mathrm{~g}, 4.11 \mathrm{mmol}$) in dichloromethane (10 mL) was added N -bromosuccinimide (731 mg , 4.11 $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$. for 2 hours. Dichloromethane (100 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Purification was performed by flash chromatography on 100 g silica gel, loaded and eluted with 10% dichloromethane in hexane. Pure fractions were combined and evaporation to give compound B ($582 \mathrm{mg}, 68 \%$) as a colorless oil.

C. 2,3-Dihydro-2-[1-[3-(methoxyphenyl)propyl]-4-piperidinyl]-1H-isoindol-1-one

To a solution of compound A from Example 11 (549 mg , $2.54 \mathrm{mmol})$ in dimethylformamide (10 mL) was added a solution of compound B ($582 \mathrm{mg}, 2.54 \mathrm{mmol}$) in dimethylformamide (1 mL) followed by potassium carbonate (386 $\mathrm{mg}, 2.80 \mathrm{mmol}$). The reaction was stirred at $50^{\circ} \mathrm{C}$. for 14 hours. The reaction was cooled to room temperature. Ethyl ether (100 mL) was added to dilute the reaction, and the organic layer was washed with water ($2 \times 50 \mathrm{~mL}$), brine $(2 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 150 g silica gel, loaded and eluted with 2% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound C ($560 \mathrm{mg}, 61 \%$) as a colorless oil.

$$
\begin{gathered}
\text { D. 2,3-Dihydro-2-[1-[3-(2-methoxyphenyl)propyl]- } \\
\text { 4-piperidinyl }]-1 \mathrm{H} \text {-isoindol-1-one, } \\
\text { monohydrochloride }
\end{gathered}
$$

To a solution of compound C ($500 \mathrm{mg}, 1.37 \mathrm{mmol}$) in methanol (2 mL) was added 1 M HCl in ethyl ether $(1.5 \mathrm{~mL}$, $1.5 \mathrm{mmol})$. The mixture was evaporated and dried at $70^{\circ} \mathrm{C}$. 6 under vacuum to give Example 21 ($300 \mathrm{mg}, 60 \%$) as a yellowish solid, melting point $191-195^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{2}+0.3 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, $67.98 ; \mathrm{H}, 7.34 ; \mathrm{N}, 6.89 ; \mathrm{Cl}, 8.72$;
Found: C, $67.92 ; \mathrm{H}, 7.63 ; \mathrm{N}, 6.75 ; \mathrm{Cl}, 8.54$

103
was heated to reflux for 20 minutes and concentrated in vacuo with dry benzene. The crude product was dissolved in 10 mL benzene, 70 mL skelly B was added and upon cooling in an ice bath, a crystalline solid formed. The crystals were collected by filtration and recrystallized in isopro- 5 panovskelly B to give compound D ($24.0 \mathrm{~g}, 61 \%$), melting point $55-57^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FO}_{3}$:
Calc'd: C, 63.46; H, 4.36;
Found: C, 63.92; H, 5.25.
E. 7-Fluoro-1,2,3,4-tetrahydro-4-oxo-2naphthalenecarboxylic acid

To 500 mL of nitrobenzene was slowly added AlCl_{3} ($30.66 \mathrm{~g}, 0.23 \mathrm{~mol}$) and compound $\mathrm{D}(23.85 \mathrm{~g}, 0.115 \mathrm{~mol})$ keeping the temperature between $20-25^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 67 hours and was poured into a mixture of 360 g ice and 170 mL concentrated HCl . The nitrobenzene was then removed by distillation. The crude product was crystallized in the ice bath and was recrystallized from benzene/skelly B to give compound E ($20.0 \mathrm{~g}, 84 \%$), melting point $146-147^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FO}_{3}$:
Calc'd: C, 63.46; H, 4.36
Found: C, 63.54, H, 4.48.

> F. 7-Fluoro-1,2,3,4-tetrahydro-4-oxo-2naphthalenecarboxylic acid, methyl ester

To a solution of compound $\mathrm{E}(5.0 \mathrm{~g}, 0.024 \mathrm{~mol})$ in 25 mL methanol was added 1 mL concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture heated to reflux for 40 hours. The reaction mixture was concentrated in vacuo and was partitioned between ethyl acetate and $5 \% \mathrm{NaHCO}_{3}$. The organic layer was washed further with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. The crude product was crystallized in a mixture of ethyl acetate and skelly B and was recrystallized in hot skelly B to give compound F (4.9 g , 92%), melting point $90-92^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FO}_{3}$:
Calc'd: C, 64.86; H, 4.99;
Found: C, 65.21; H, 5.21.
G. 6-Fluoro-3',4'-dihydrospiro[1,3-dioxolane-2,1'
(2'H)-naphthalene]-3'-carboxylic acid, methyl ester

To a solution of compound F ($103.4 \mathrm{~g}, 0.465 \mathrm{~mol}$) in 700 mL of dry benzene was added ethylene glycol $(78.5 \mathrm{~mL}$, 1.395 mol), followed by a catalytic amount of p-toluenesulfonic acid. The reaction was heated to reflux for 66 hours. The reaction mixture was concentrated in vacuo, and the crude product was crystallized in methanol to give compound G (82 g, 66\%), melting point $79-81^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FO}_{4}$:
Calc'd: C, 63.15; H, 5.67;
Found: C, 63.13; H, 5.82.
H. 6-Fluoro-3',4'-dihydrospiro[1,3-dioxolane-2,1' ($2^{\prime} \mathrm{H}$)-naphthalene]-3'-methanol
To a suspension of lithium aluminum hydride (11.25 g , 0.296 mol) in 700 mL of dry tetrahydrofuran was added a solution of compound G ($78.8 \mathrm{~g}, 0.296 \mathrm{~mol}$) in 300 mL tetrahydrofuran. The reaction was heated to reflux for 17 hours and $22.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and $18 \mathrm{~mL} 10 \% \mathrm{NaOH}$ was added with cooling. The reaction was stirred at room temperature
for 2 hours. The reaction mixture was filtered and the filtrate was concentrated in vacuo to give compound H (69.4 g , 78%).
Analysis for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{3}$
Calc'd: C, 65.53 ; H, 6.35
Found: C, 65.82; H, 6.72.
I. 6-Fluoro-3',4'-dihydrospiro[1,3-dioxolane-2,1' ($2^{\prime} \mathrm{H}$)-naphthalene]-3'-methanol, methanesulfonate ester

To a solution of compound $\mathrm{H}(61.1 \mathrm{~g}, 0.256 \mathrm{~mol})$ in 175 mL dry pyridine under nitrogen was added methanesulfonyl chloride ($27.15 \mathrm{~mL}, 0.358 \mathrm{~mol}$) maintaining the temperature between 10 and $15^{\circ} \mathrm{C}$. The reaction was stirred between $5-10^{\circ} \mathrm{C}$. for 30 minutes and room temperature for 2.5 hours. The reaction mixture was poured into ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was further washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. The crude product was further evaporated with toluene at $35^{\circ} \mathrm{C}$. under water pressure to give compound I (83.7 g , quant.).

J. 6-Fluoro-3,4-dihydro-3-[[4-(2-methoxyphenyl)-1-piperazinyl]-methyl]-1(2H)-naphthalenone

To a solution of compound I $(10.0 \mathrm{~g}, 0.0316 \mathrm{mmol})$ in 150 mL of 25% methyl isobutyl ketone in absolute ethanol was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.7 \mathrm{~g}, 0.0316 \mathrm{~mol})$ and $1-(2-$ methoxyphenyl)piperazine followed by a catalytic amount of KI. The reaction was heated to reflux for 25 hours and the mixture was filtered. The filtrate was concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. $15 \% \mathrm{HCl}(100 \mathrm{~mL})$ was added to the crude and stirred at room temperature for 4 hours. The solution was filtered and was extracted with ethyl ether. The aqueous solution was then basified and extracted with ethyl ether. The final ethyl ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. The crude product was recrystallized from methanol twice to give Example $22(6.57 \mathrm{~g}, 56 \%)$, melting point $111-113^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}$:
Calc'd: C, 71.72; H, 6.84; N, 7.60;
Found: C, 70.1 1; H, 7.06, N, 7.83.

EXAMPLE 23

3,4-Dihydro-3-[(4-phenyl-1-piperazinyl)methyl]-1$(2 \mathrm{H})$-naphthalenone, monohydrochloride

A. 2-Acetyl-2-(phenylmethyl)butanedioic acid, diethyl ester

This reaction procedure followed the procedure described in the preparation of compound B of Example 22. The reaction scale is as follows: Benzyl acetoacetate ($180 \mathrm{~g}, 0.86$ mol), ethyl chloroacetate ($105 \mathrm{~g}, 0.86 \mathrm{~mol}$), $58.6 \% \mathrm{NaH}$

105

($35.2 \mathrm{~g}, 0.86 \mathrm{~mol}$) and 300 mL of 10% dimethylformamide in dry benzene. The reflux time in this reaction was 3 hours and the crude product was purified by distillation at $148-159^{\circ} \mathrm{C} . / 0.3 \mathrm{mmHg}$ to give compound $\mathrm{A}(164.7 \mathrm{~g}, 63 \%)$.

B. 2-(Phenylmethyl)butanedioic acid

This reaction procedure followed the procedure described in the preparation of compound C of Example 22. The reaction scale is as follows: compound $\mathrm{A}(164.7 \mathrm{~g}, 0.54 \mathrm{~mol})$ and 1.5 L of 2 N NaOH . The reaction was reflux for 20 hours and gave compound $\mathrm{B}(95.8 \mathrm{~g}, 85 \%)$, melting point $152-156^{\circ} \mathrm{C}$.

C. 3,4-Dihydro-3-(phenylmethyl)-2,5-furandione

This reaction procedure was followed as described in the preparation of compound D of Example 22. 95.8 g of compound B gave $72 \mathrm{~g}(82 \%)$ of compound C , boiling point $156^{\circ} \mathrm{C} .(0.4 \mathrm{~mm})$, and the resulting solid was recrystallized from hot benzene, melting point $94-96^{\circ} \mathrm{C}$.

> D. 1,2,3,4-Tetrahydro-4-oxo-2naphthalenecarboxylic acid

This reaction procedure was followed as described in the preparation of compound E of Example 22. The reaction scale is as follows: compound C $(55.7 \mathrm{~g}, 0.29 \mathrm{~mol}), \mathrm{AlCl}_{3}$ $(80 \mathrm{~g}, 0.6 \mathrm{~mol})$ and 280 mL nitrobenzene. The nitrobenzene was removed by distillation and the aqueous was crystallized to give compound $\mathrm{D}(50.8 \mathrm{~g}, 91 \%)$, melting point $145-148^{\circ} \mathrm{C}$.

E. 1,2,3,4-Tetrahydro-4-oxo-2-

naphthalenecarboxylic acid, methyl ester
To a solution of N-nitro-N-methyl urea in 500 mL ether was added 135 mL of $40 \% \mathrm{KOH}$, followed by compound D $(50.8 \mathrm{~g}, 0.27 \mathrm{~mol})$, while cooling in an ice bath. The reaction was stirred at room temperature for 1 hour and acetic acid was added to react with excess diazomethane. The ethyl ether layer was washed with 200 mL of $5 \% \mathrm{NaOH}, 200 \mathrm{~mL}$ of dilute acetic acid, 200 mL of dilute NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. The crude product was isolated by distillation at $124^{\circ} \mathrm{C} . / 0.15 \mathrm{mmHg}$ to give compound E ($50.3 \mathrm{~g}, 91 \%$).

$$
\begin{aligned}
& \text { F. } 3^{\prime}, 4^{\prime} \text { '-Dihydrospiro[1,3-dioxolane- } 2,1^{\prime}\left(2^{\prime} \mathrm{H}\right) \text { - } \\
& \text { naphthalene]- } 3^{\prime} \text {-carboxylic acid, methyl ester }
\end{aligned}
$$

This reaction procedure was followed as described in the preparation of compound G of Example 22. The reaction scale is as follows: compound $\mathrm{E}(5.0 \mathrm{~g}, 0.025 \mathrm{~mol})$, ethylene glycol ($4.8 \mathrm{Ml}, 0.075 \mathrm{~mol}$), 40 mL dry benzene and a catatalytic amount p-toluenesulfonic acid. The reaction was reflux for 64 hours and was concentrated in vacuo to give compound F ($6.0 \mathrm{~g}, 95 \%$).

$$
\begin{aligned}
& \text { G. } \left.3^{\prime}, 4^{\prime} \text {-Dihydrospiro[1,3-dioxolane-2,1 } 1^{\prime} \mathrm{H}\right) \text { - } \\
& \text { naphthalene]-3'-methanol }
\end{aligned}
$$

This reaction procedure was followed as described in the preparation of compound H of Example 22. The reaction scale is as follows: compound $\mathrm{F}(7.3 \mathrm{~g}, 0.028 \mathrm{~mol})$, lithium aluminum hydride ($1.06 \mathrm{~g}, 0.028 \mathrm{~mol}$) and 50 mL dry tetrahydrofuran. The crude product was isolated by distillation at $152-153^{\circ} \mathrm{C} . / 0.15 \mathrm{mmHg}$ to give compound $\mathrm{G}(4.0 \mathrm{~g}$, 62%).
Analysis for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$:
Calc'd: C, 70.89; H, 7.32;

Found: C, 70.73; H 7.33.
H. 3', 4'-Dihydrospiro[1,3-dioxolane-2, $1^{\prime}\left(2^{\prime} \mathrm{H}\right)$ -naphthalene]-3'-methanol, Methanesulfonate Ester

This reaction procedure was followed as described in the preparation of compound I of Example 22. The reaction scale is as follows: compound G ($3.16 \mathrm{~g}, 0.144 \mathrm{~mol}$), methanesulfonyl chloride ($1.6 \mathrm{~mL}, 0.202 \mathrm{~mol}$) and 30 mL pyridine. The reaction was stirred at room temperature for 2 hours and the crude product was precipitated by pouring onto ice to give compound $\mathrm{H}(3.35 \mathrm{~g}, 78 \%)$, melting point $75-79^{\circ} \mathrm{C}$.

I. 3,4-Dihydro-3-[(4-phenyl-1-piperazinyl)methyl]-1-(2H)-naphthalenone, monohydrochloride

To a solution of compound $\mathrm{H}(1.43 \mathrm{~g}, 0.048 \mathrm{mmol})$ in 50 mL of a mixture of methyl isobutyl ketone and absolute ethanol was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.71 \mathrm{~g}, 0.048 \mathrm{~mol})$ and 1-phenylpiperazine ($1.77 \mathrm{~g}, 0.011 \mathrm{~mol}$). The reaction was heated to reflux for 20 hours and the particles was removed by filtration. The filtrate was concentrated in vacuo and dissolved in ethyl acetate. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{NaHCO}_{3}$ and was concentrated in vacuo to dryness. 100 mL of $10 \% \mathrm{HCl}$ was added to the crude and stirred at room temperature for 4 hours. The mixture was extracted with ethyl ether and the aqueous solution was then basified with concentrated $\mathrm{NH}_{4} \mathrm{OH}$ to pH 9 and extracted with ethyl ether. The ethyl ether layer was combined, washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was redissolved in 200 mL ethyl ether, saturated with HCl , and the solid precipitate was recrystallized from hot ethanol to give Example 23 $(0.43 \mathrm{~g}, 23 \%)$, melting point $243-246^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$. HCl :
Calc'd: C, 64.09 ; H, 6.67; N, 7.13; Cl, 9.95;
Found: C, 70.77; H, 7.10; N, 7.69; Cl, 10.69.

EXAMPLE 24

3,4-Dihydro-3-[[4-phenyl)-1-piperazinyl]carbonyl]-1 (2H)-naphthalenone, monohydrochloride

To a solution of compound D from Example 23 (1.4 g , $0.01 \mathrm{~mol})$ and tricthylaminc ($1.4 \mathrm{~mL}, 0.01 \mathrm{~mol}$) in 35 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added ethyl chloroformate ($0.98 \mathrm{~mL}, 0.01 \mathrm{~mol}$). The reaction was stirred at $70^{\circ} \mathrm{C}$. for 5 minutes and 1-phenylpiperzine ($1.62 \mathrm{~g}, 0.01 \mathrm{~mol}$) in $15 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was added. The reaction was stirred at room temperature for 18 hours. The reaction mixture was washed with $5 \% \mathrm{NaHCO}_{3}$, $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to dryness. The crude product was dissolved in 200 mL ethyl ether, bubbled with HCl , filtered and was recrystallized from hot ethanol acidified with concentrated HCl to give Example $24(2.73 \mathrm{~g}, 74 \%)$, melting point $188-191^{\circ} \mathrm{C}$.

3,4-Dihydro-3-[[4-(2-methoxyphenyl)-1-piperazinyl]-carbonyl]-1(2H)-naphthalenone, monohydrochloride

A. 1,2,3,4-Tetrahydro-4-oxo-2naphthalenecarboxylic acid
To a solution of $\mathrm{KOH}(6.7 \mathrm{~g}, 0.12 \mathrm{~mol})$ in $60 \mathrm{mLH}_{2} \mathrm{O}$ was added compound E from Example 23 ($10.0 \mathrm{~g}, 0.049 \mathrm{~mol}$). The reaction was warmed gently for 30 minutes and was then cooled to room temperature and was acidified with 1 N HCl . The crude product was filtered, washed with cold $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ to give compound $\mathrm{A}(8.68 \mathrm{~g}, 93 \%)$, melting point $148-150^{\circ} \mathrm{C}$.

B. 3,4-Dihydro-3-[[4-(2-methoxyphenyl)-1-

 piperazinyl]carbonyl]-1(2H)-naphthalenone, monohydrochlorideTo a solution of compound $\mathrm{A}(9.5 \mathrm{~g}, 0.05 \mathrm{mmol})$ and triethylamine ($8.38 \mathrm{~mL}, 0.05 \mathrm{~mol}$) in $125 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added isobutyl chloroformate ($6.58 \mathrm{~mL}, 0.05 \mathrm{~mol}$) at -10° C. The reaction was stirred at -5 to $-10^{\circ} \mathrm{C}$. for 10 minutes and was followed by 1-(2-methoxyphenyl)piperazine (9.61 $\mathrm{g}, 0.05 \mathrm{~mol})$ in $25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The ice bath was removed and the reaction was stirred at room temperature for 17 hours. The reaction mixture was washed with $5 \% \mathrm{NaHCO}_{3}$, $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was dissolved in ethyl ether, bubbled with HCl and was filtered to give Example $25(15.45 \mathrm{~g}, 85 \%)$, melting point $197-199^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$. HCl :
Calc'd: C, $65.89 ; \mathrm{H}, 6.28 ; \mathrm{N}, 6.99 ; \mathrm{Cl}, 8.85$;
Found: C, 66.27; H, 6.41; N, 7.35; Cl, 9.58 .
EXAMPLE 26
3,4-Dihydro-3-[[4-(2-methoxyphenyl)-1-piperazinyl] methyl]-1 $(2 \mathrm{H})$-naphthalenone, dihydrochloride

A. 1,2,3,4-Tetrahydro-3-[[4-(2-methoxyphenyl)-1-piperazinyl]methyl]-1-naphthalenol

To a solution of the free base of compound B of Example 6 $25(11.74 \mathrm{~g}, 0.0322 \mathrm{~mol})$ in 50 mL of dry tetrahydrofuran was added lithium aluminum hydride ($2.45 \mathrm{~g}, 0.0644 \mathrm{~mol}$)
in 50 mL of dry tetrahydrofuran. The reaction was heated to reflux for 22 hours. The reaction was mixed with $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, 4 mL of $10 \% \mathrm{NaOH}$ and was stirred at room temperature for 2 hours. The solids were removed by filtration, washed with
5 tetrahydrofuran and concentrated in vacuo to give compound A (10.1 g, 89\%).
Analysis for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} .2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 59.59; H, 7.27; N, 6.32; Cl, 15.99; KF, 4.06;
Found: C, $59.45 ; \mathrm{H}, 7.10 ; \mathrm{N}, 6.50 ; \mathrm{Cl}, 16.49$; KF, 4.36 .

B. 3,4-Dihydro-3-[[4-(2-methoxyphenyl)-1-piperazinyl]methyl]-1(2H)-naphthalenone, dihydrochloride

To a solution of compound $\mathrm{A}(4.91 \mathrm{~g}, 0.014 \mathrm{mmol})$ in 120 mL benzene was added potassium tert-butoxide (3.93 g , 0.035 mol) and benzophenone ($11.8 \mathrm{~g}, 0.065 \mathrm{~mol}$). The reaction was refluxed for 16 hours and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed further with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to dryness. The crude product was dissolved in ethyl ether, bubbled with HCl salt, recrystallized from methanol/ethyl ether to give Example 26 ($5.2 \mathrm{~g}, 87 \%$), melting point $218-219^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} .2 \mathrm{HCl}$
Calc'd: C, 62.41 ; H, 6.67 ; N, 6.62 ; Cl, 16.75;
Found: C, 62.61; H, 6.87; N, 6.37.

EXAMPLE 27

3-[[4-[(4-Chlorophenyl)phenylmethyl]-1-piperazinyl]methyl]-6-fluoro-3,4-dihydro-1(2H)naphthalenone, dihydrochloride

To a solution of compound I from Example 22 (10.10 g , 0.032 mmol) in 150 mL absolute ethanol was added $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(3.40 \mathrm{~g}, 0.032 \mathrm{~mol})$ and 1-[(4-chlorophenyl)phenylmethyl] piperazine $(9.18 \mathrm{~g}, 0.032 \mathrm{~mol})$, followed by a catalytic 50 amound of KI. The reaction was heated to reflux for 19 hours and the particles were removed by filtration. The filtrate was concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. 150 mL of $10 \% \mathrm{HCl}$
55 was added to the crude and stirred at room temperature for 4 hours. The residue was filtered and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude material was dissolved in 100 mL of absolute ethanol and 150 mL of $10 \% \mathrm{HCl}$ was added. The reaction mixture was concentrated in vacuo to half volume and extracted with a mixturc of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cthyl ether. The organic layer was concentrated in vacuo and dissolved in 100 mL ethanol which was then treated with concentrated $\mathrm{NH}_{4} \mathrm{OH}$ until basic. 400 mL of $\mathrm{H}_{2} \mathrm{O}$ was added and extracted with ethyl ether. The ethyl ether layer was then washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and bubbled
with HCl to give white solid. The HCl salt was collected by filtration and mixed with $\mathrm{H}_{2} \mathrm{O}$. The crude product was collected by filtration and was recrystallized from methanol to give Example $27(1.55 \mathrm{~g}, 9 \%)$, melting point $211-212^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OCl}_{3} \mathrm{~F}$:
Calc'd: C, 62.75; H, 5.64; N, 5.33; Cl, 19.85;
Found: C, 62.62; H, 5.99; N, 4.83; Cl, 19.78.
EXAMPLE 28
N -[1-(Phenylmethyl)-4-piperidinyl]-1H-indole-3-
acetamide

To a solution of indole-3-acetic acid ($2.87 \mathrm{~g}, 0.0164 \mathrm{~mol}$) in 50 mL dry tetrahydrofuran was added $1,1^{\prime}$ carbonyldiimidazole ($2.90 \mathrm{~g}, 0.018 \mathrm{~mol}$). The reaction was stirred at room temperature until CO_{2} evolution ceased and 1-phenylmethyl-4-aminopiperidine ($3.12 \mathrm{~g}, 0.0164 \mathrm{~mol}$) 25 was added. The reaction was stirred at room temperature for 16 hours, warmed to $50-55^{\circ} \mathrm{C}$. and allowed to cool to room temperature over 1 hour. The reaction mixture was concentrated in vacuo and partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} layer was further washed with $\mathrm{H}_{2} \mathrm{O}$ and concentrated in vacuo. The crude product was recrystallized from methanol/ $/ \mathrm{CH}_{3} \mathrm{CN}$ and collected by filtration to provide $3.93 \mathrm{~g}(69 \%)$ of Example 28, melting point $153-154^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}$:
Calc'd: C, 76.05; H, 7.25; N, 12.09;
Found: C, 75.86; H, 7.27; N, 12.08.

EXAMPLE 29

4-Methoxy- α-(4methoxyphenyl)-N-[1-(2-phenylethyl)-4-piperidinyl]benzeneacetamide, monohydrochloride

A. 1-(2-Phenylethyl)-4-piperidinone, oxime,
hydrochloride

To a solution of 1-phenylethyl-4-piperidone (24.8 g , 60 0.122 mol) in 125 mL absolute ethanol was added hydroxylaminc hydrochloride ($8.48 \mathrm{~g}, 0.122 \mathrm{~mol}$) with mechanically stirring. Additional of absolute ethanol was added and stirred for 1 hour. The reaction mixture was diluted with 300 mL ethyl ether and was collected by filtration to give 65 compound A ($26.1 \mathrm{~g}, 84 \%$) as a solid, melting point 236-237 ${ }^{\circ} \mathrm{C}$

110
B. 1-(2-Phenylethyl)-4-piperidinamine, dihydrochloride

To a solution of $\mathrm{LiAlH}_{4}(5.82 \mathrm{~g}, 0.154 \mathrm{~mol})$ in 250 mL $180-182^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{HCl}+0.5 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 69.10; H, 7.20; N, 5.56;
Found: C, 68.97; H, 7.12; N, 5.64.

111
EXAMPLE 30
α-Phenyl-N-[1-(phenylethyl)-4-piperidinyl]benzeneacetamide, monohydrochloride

This reaction followed the procedure described in Example 29, part D. The reaction scale was as follows: diphenylacetic acid ($2.1 \mathrm{~g}, 0.01 \mathrm{~mol}$); 1,1'carbonyldiimidazole ($1.78 \mathrm{~g}, 0.011 \mathrm{~mol}$) and the free amine derived from Example 29, part B hydrochloride ($2.04 \mathrm{~g}, 0.01$ mol). The reaction mixture was concentrated in vacuo and was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} layer was washed with diluted $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was dissolved in a mixture of methanol and ethyl ether and acidified with 5.6 N ethanolic HCl . More ethyl ether was added to increase precipitation which was then collected by filtration. The solid was recrystallized from methanol and ethyl ether to 30 give Example $30(1.05 \mathrm{~g}, 22 \%)$, melting point $263-264^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}+\mathrm{HCl}$:
Calc'd: C, 74.55; H, 7.18; N, 6.44;
Found: C, 74.85; H, 7.27; N, 6.39.

EXAMPLE 31

5-Chloro-2,3-dihydro-2-[1-(phenylmethyl)-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

A. 5-Chloro-1,3-isobenzofurandione

4-Chlorophthalic acid ($446.5 \mathrm{~g}, 2.23 \mathrm{~mol}$) was heated neat until $\mathrm{H}_{2} \mathrm{O}$ was no longer released to give compound $\mathrm{A}(415.9$ g , quantitative), melting point $138-140^{\circ} \mathrm{C}$.
B. 5-Chloro- 1 H -isoindole-1,3(2H)-dione

A solution of compound A ($415.9 \mathrm{~g}, 2.28 \mathrm{~mol}$) and 1000 mL of 28% ammonium hydroxide was heated at $300^{\circ} \mathrm{C}$. until $\mathrm{H}_{2} \mathrm{O}$ was no longer released to give compound B ($361.0 \mathrm{~g}, 89 \%$).
C. 5-Chloro-2-[1-(phenylmethyl)-4-piperidinyl]-1H-isoindolc-1,3(2H)-dionc
To a solution of compound B ($10.0 \mathrm{~g}, 55.2 \mathrm{mmol}$) in 100 mL amyl alcohol was added 4-amino-1-benzylpiperidine $(10.5 \mathrm{~g}, 55.2 \mathrm{mmol})$. The reaction was heated to reflux for 16 hours. The reaction mixture was concentrated in vacuo and dissolved in 250 mL CHCl 3 . The CHCl_{3} layer was

112

washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo. The crude product was dissolved in 400 mL isopropyl ether, treated with charcoal and filtered. The filtrate was acidified with 4 N HCl in dioxane to give 5 compound C ($19.0 \mathrm{~g}, 97 \%$) as a white solid, melting point $233-234.5^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}$. HCl :
Calc'd: C, 61.40; H, 5.16; N, 7.16;
Found: C, 62.04; H, 5.64; N, 7.31.
D. 5-Chloro-2,3-dihydro-2-[1-(phenylmethyl)-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride
To a solution of compound C $(5.5 \mathrm{~g}, 14.1 \mathrm{mmol})$ in 40 mL acetic acid and 8.25 mL concentrated HCl was added tin (4.2 $\mathrm{g}, 35.3 \mathrm{mmol}$). The reaction was heated at $95-100^{\circ} \mathrm{C}$. for 16 hours, treated with $5 \% \mathrm{NaOH}$ to pH greater than 9 , and extracted with CHCl_{3}. The organic layer was dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and was concentrated in vacuo to the dryness. The crude product was dissolved in $200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and treated with HCl in dioxane to give Example 31 ($4.64 \mathrm{~g}, 87 \%$), melting point $269-271^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}+0.8 \mathrm{HCl}+0.2 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, $64.29 ; \mathrm{H}, 5.99 ; \mathrm{N}, 7.50 ; \mathrm{Cl}, 17.08 ; \mathrm{H}_{2} \mathrm{O}, 0.96$;
Found: C, $64.19 ; \mathrm{H}, 6.05 ; \mathrm{N}, 7.54 ; \mathrm{Cl}, 16.96 ; \mathrm{H}_{2} \mathrm{O}, 0.95$.
EXAMPLE 32
2-[1-(3-Butyl-2-heptenyl)-4-piperidinyl]-2,3-dihydro- 1 H -isoindol-1-one, monohydrochloride

To a solution of Example 17, Part D aminc ($520 \mathrm{mg}, 1.41$ mmol) in ethyl ether/methanol ($2 \mathrm{~mL}, 5: 1$) was added 1 M HCl in ethyl ether ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The HCl salt precipitated from the solution. The salt was filtered and dried at $60^{\circ} \mathrm{C}$. under vacuum to give Example $32(300 \mathrm{mg}, 58 \%)$ as a white solid, melting point $147-152^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{ClN}_{2} \mathrm{O}+0.3 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, $70.23 ; \mathrm{H}, 9.23$; N, 6.83 ; Cl, 8.64 ;
Found: C, $70.31 ; \mathrm{H}, 9.17 ; \mathrm{N}, 6.96 ; \mathrm{Cl}, 8.50$.

EXAMPLE 33

2-[1-(5,5-Diphenyl-2-pentenyl)-4-piperidinyl]-2,3-dihydro- 1 H -isoindol-1-one, monohydrochloride

To a solution of Example 15, part E amine ($500 \mathrm{mg}, 1.15$ mmol) in ethyl ether/methanol (2 mL , 5:1) was added 1 M HCl in ethyl ether ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The HCl salt
precipitated from the solution. The salt was filtered and dried at $60^{\circ} \mathrm{C}$. under vacuum to give Example $33(300 \mathrm{mg}, 80 \%)$ as a white solid, melting point $127-134^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}+1.4 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 72.31 ; H, 7.24; N, 5.62; Cl, 7.12;
Found: C, 72.47; H, 7.49; N, 5.54; Cl, 7.33.
EXAMPLE 34

2,3-Dihydro-2-[1-[3-(2-phenoxyphenyl)propyl]-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

A. 2,3-Dihydro-2-[1-[3-(2-phenoxyphenyl)propyl]-
4-piperidinyl]-1H-isoindol-1-one

To a solution of compound F from Example $20(450 \mathrm{mg}$, $1.06 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ was added 10% palladium on activated carbon (45 mg) under argon at room temperature. Argon on the reaction was replaced by hydrogen. A hydrogen balloon was connected to the solution. Hydrogenation was maintained overnight. The reaction was filtered through Celite, and the filtrate was evaporated to dryness. Purification was performed by flash chromatography on 100 g silica gel, loaded and eluted with 1.5% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound A ($450 \mathrm{mg}, 100 \%$) as a colorless oil.

B. 2,3-Dihydro-2-[1-[3-(2-phenoxyphenyl)propyl] 4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

Compound A ($450 \mathrm{mg}, 1.06 \mathrm{mmol})$ was dissolved in 20% methanol in ethyl ether (2 mL). A solution of 1 M HCl in ethyl ether ($2 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added. The HCl salt precipitated and was filtered and washed with ethyl ether. Dichloromethane (80 mL) was added to dissolve the solid, and the organic layer was washed with saturated sodium bicarbonate solution $(2 \times 30 \mathrm{~mL})$. Evaporation gave a colorless oil. Purification was performed by flash chromatography, loaded and eluted with 1.5% methanol in dichloromethane. Pure fractions were combined and evaporated to give a colorless oil. The resulting oil was dissolved in 20% methanol in hexane. A solution of 1 M HCl in ethyl ether ($1 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was added. The HCl salt precipitated and was filtered and washed ethyl ether. The resulting solid was dried under high vacuum at $60^{\circ} \mathrm{C}$. overnight to give Example $34(160 \mathrm{mg}, 35 \%)$ as a white solid, melting point $199-202^{\circ} \mathrm{C}$.

Analysis. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{2}+0.5 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, $71.25 ; \mathrm{H}, 6.83$; N, 5.93;
Found: C, 71.13; H, 6.78; N, 5.93.

114

EXAMPLE 35
2,3-Dihydro-2-[1-(diphenylmethyl)-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride of compound A from Example $11(500 \mathrm{mg}, 2.31 \mathrm{mmol})$ in dimethylformamide (2 mL) followed by anhydrous potassium carbonate ($351 \mathrm{mg}, 2.54 \mathrm{mmol}$). The reaction was refluxed overnight. The reaction was cooled to room tem-
25 perature. Ethyl ether (100 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50$ mL), brine ($2 \times 50 \mathrm{~mL}$) and dried over magnesium sulfate. Evaporation gave a crude oil. Purification was performed by flash chromatography on 100 g of silica gel, loaded and cluted with 2% methanol in dichloromethanc. Pure fractions were combined and evaporated to give compound A (520 $\mathrm{mg}, 59 \%$) as a colorless oil.
B. 2,3-Dihydro-2-[1-(diphenylmethyl)-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

To a solution of compound A ($500 \mathrm{mg}, 1.31 \mathrm{mmol}$) in ethyl ether/methanol ($2 \mathrm{~mL}, 5: 1$) was added 1 M HCl in ethyl ether ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$). The mixture was evaporated to dryness. The result solid was dried at $70^{\circ} \mathrm{C}$. under vacuum to give Example $35(300 \mathrm{mg}, 60 \%)$ as a white solid, melting point $165-169^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}+1.0 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, 71.46; H, 6.69; N, 6.41;
Found: C, 71.52; H, 6.87, N, 6.35.

EXAMPLE 36

(Z)-2,3-Dihydro-2-[1-(5,5-diphenyl-2-pentenyl)-4-piperidinyl]-1H-isoindol-1-one, monohydrochloride

A. (Z)-5,5-Diphenyl-2-pentenoic acid, methyl ester

To a suspension of bis(2,2,2-trifluoroethyl)
(methoxycarbonylmethyl)phosphonate ($4.16 \mathrm{~g}, 13.1 \mathrm{mmol}$) and 18 -crown- $6(3.46 \mathrm{~g}, 13.1 \mathrm{mmol})$ in tetrahydrofuran (65 mL) at $0^{\circ} \mathrm{C}$. was added dropwise 0.5 M potassium bis

115

(trimethylsilyl)amide in toluene ($26.2 \mathrm{~mL}, 13.1 \mathrm{mmol}$). The reaction was stirred at $0^{\circ} \mathrm{C}$. for 15 minutes, then cooled to $-78^{\circ} \mathrm{C}$. A solution of compound A from Example $15(5.0 \mathrm{~g}$, 23.8 mmol) in tetrahydrofuran (5 mL) was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$. for 1 hour, then warmed to room temperature and quenched with saturated ammonium chloride solution (5 mL). Ethyl ether (200 mL) was added to dilute the reaction, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 250 g silica gel, loaded and eluted with 6% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound $\mathrm{A}(2.2 \mathrm{~g}, 70 \%)$ as a colorless oil.
B. (Z)-5,5-Diphenyl-2-penten-1-ol

To a solution of compound A ($2.2 \mathrm{~g}, 8.27 \mathrm{mmol}$) in toluene (20 mL) at $0^{\circ} \mathrm{C}$. was added dropwise diisobutylaluminum hydride (1.0 M in tolucnc, $18.2 \mathrm{~mL}, 18.2 \mathrm{mmol}$). The reaction was stirred at $0^{\circ} \mathrm{C}$. for 1 hour. The reaction was quenched with methanol (5 mL). Potassium sodium tartrate solution ($1 \mathrm{M}, 200 \mathrm{~mL}$) was added, and the reaction mixture was stirred for 3.5 hours. Ethyl ether (200 mL) was added, and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. Evaporation gave a crude oil. Purification was performed by flash chromatography on 300 g silica gel, loaded and eluted with 20% ethyl acetate in hexane. Pure fractions were combined and evaporated to give compound B as a colorless oil $(1.9 \mathrm{~g}, 97 \%)$.

C. (Z)-1-Chloro-5,5-diphenyl-2-pentene

To a solution of N -chlorosuccinimide $(0.56 \mathrm{~g}, 4.16 \mathrm{mmol})$ in dichloromethane (12 mL) at $-40^{\circ} \mathrm{C}$. was added dropwise methyl sulfide ($0.4 \mathrm{~mL}, 5.29 \mathrm{mmol}$). The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 10 minutes then warmed to room temperature for 30 minutes. The reaction was recooled to $-40^{\circ} \mathrm{C}$., and a solution of compound B ($0.9 \mathrm{~g}, 3.78 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise. The reaction was stirred at $-40^{\circ} \mathrm{C}$. for 2 hours then warmed to room temperature for 30 minutes. Hexane (300 mL) was added to dilute the reaction and the organic layer was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation gave compound C ($0.9 \mathrm{~g}, 93 \%$) as a colorless oil.
D. (Z)-2,3-Dihydro-2-[1-(5,5-diphenyl-2-pentenyl)-4-piperidinyl]-1H-isoindol-1-one

To a solution of compound A from Example 11 (756 mg , 3.50 mmol) in dimethylformamide (12 mL) was added compound C ($900 \mathrm{mg}, 3.50 \mathrm{mmol}$) followed by anhydrous potassium carbonate ($531 \mathrm{mg}, 3.85 \mathrm{mmol}$). The reaction was stirred at $50^{\circ} \mathrm{C}$. overnight. The reaction was cooled to room temperature. Ethyl ether (100 mL) was added to dilute the reaction, and the organic layer was washed with water (2×50 mL), brine ($2 \times 50 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation gave a crude oil. Purification was performed by flash chromatography on 100 g of silica gel, loaded and eluted with 2% methanol in dichloromethane. Pure fractions were combined and evaporated to give compound D ($950 \mathrm{mg}, 62 \%$) as a white solid, melting point $138-140^{\circ} \mathrm{C}$.

> E. (Z)-2,3-Dihydro-2-[1-(5,5diphenyl-2-pentenyl)-4piperidinyl]-1H-isoindol-1-one, monohydrochloride

To a solution of compound D ($500 \mathrm{mg}, 1.15 \mathrm{mmol}$) in methanol (2 mL) was added 1 M HCl in ethyl ether (1.5 mL ,

116
1.5 mmol). The mixture was evaporated to dryness. The resulting white solid was dried at $60^{\circ} \mathrm{C}$. under vacuum to give Example 36 ($300 \mathrm{mg}, 80 \%$) as a white solid, melting point $174-177^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}+1.2 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C, $72.84 ; \mathrm{H}, 7.21 ; \mathrm{N}, 5.66 ; \mathrm{Cl}, 7.17$;
Found: C, 72.74; H, 6.88; N, 5.70; Cl, 7.42 .

EXAMPLE 37

N-[1-(3,3-Diphenylpropyl)-4-piperidinyl) phenoxyacetamide, monohydrochloride

117
EXAMPLE 38
N -[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2methoxybenzamide, monohydrochloride

> A. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2methoxybenzamide

Compound A was prepared as described for compound A in Examplc 18, using $503 \mathrm{mg}(1.52 \mathrm{mmol})$ of compound E from Example 10, $370 \mu \mathrm{~L}(4.58 \mathrm{mmol})$ of pyridine, and 238 $\mu \mathrm{L}$ (1.59 mmol) of O-anisoyl chloride. The crude product was purified by flash chromatography on silica gel eluted with $98: 2$ ethyl acetate/methanol to provide 336 mg (56%) of compound Λ as a yellow solid, melting point $96-98^{\circ} \mathrm{C}$.
B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2methoxybenzamide, monohydrochloride

To a solution of $364 \mathrm{mg}(0.85 \mathrm{mmol})$ of compound A in 4 mL of methylene chloride was added a freshly prepared saturated solution of hydrogen chloride in diethyl ether. The opaque white mixture was concentrated and dried to provide 329 mg (83%) of Example 38 as an off-white solid, melting point $170-172^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+1.11 \mathrm{H}_{2} \mathrm{O}$:
Calcd. C, 69.34; H, 7.32; N, 5.78;
Found C, 69.41; H, 7.31; N, 5.71.

EXAMPLE 39

N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2methylbenzamide, monohydrochloride

To a stirred suspension of $199 \mathrm{mg}(1.62 \mathrm{mmol})$ of picolinic acid in 2.5 mL of methylene chloride at $0^{\circ} \mathrm{C}$. was added $225 \mu \mathrm{~L}(1.62 \mathrm{mmol})$ of triethylamine. After all the solids had dissolved, the solution was treated with 412 mg $(1.62 \mathrm{mmol})$ of bis(2-oxo-3-oxazolidinyl)phosphinic 45 chloride, and stirred for 30 minutes. A methylene chloride solution of $535 \mathrm{mg}(1.62 \mathrm{mmol})$ of compound E from Example 10 was converted to the free amine by washing with sodium bicarbonate and concentrating the organic layer to a brown oil which was redissolved in 1 mL of dry methylene chloride and added to the reaction mixture. After stirring at room temperature for 16 hours, the reaction was quenched with water and 4 M HCl and diluted with methylene chloride. The aqueous layer was basified with 1 N KOH and extracted two times. The combined organics were dried (sodium sulfate) and concentrated to provide 554 mg of a brown oil. The crude product was purificd by flash chromatography on silica gel cluted with 98:2 cthyl acctate/ methanol to provide 316 mg (58%) of compound A as a brown glass.
B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2pyridinamide, monohydrochloride

The hydrochloride salt of compound A was prepared by the procedure used for compound B in Example 38, using
Compound A was prepared as described for compound A 65 in Example 18, using $485 \mathrm{mg}(1.46 \mathrm{mmol})$ of compound E from Example 10, $336 \mu \mathrm{~L}(4.38 \mathrm{mmol})$ of pyridine, and 200

118

$\mu \mathrm{L}(1.54 \mathrm{mmol})$ of O-toluoyl chloride. The crude product was purified by flash chromatography on silica gel eluted with $98: 2$ ethyl acetate/methanol to provide 345 mg (67%) of compound A as a yellow solid.
B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2methylbenzamide, monohydrochloride
To a solution of $342 \mathrm{mg}(0.83 \mathrm{mmol})$ of compound A in 2 mL of methylene chloride was added a freshly prepared

A. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-2-

 methylbenzamide65 ford 336 mg (83%) of Example 40 as a yellow solid, melting point $109-116^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{OCl}+1.42 \mathrm{H}_{2} \mathrm{O}$
Cale'd: C 67.65, H 7.17, N 9.10;
Found: C $67.53, \mathrm{H} 7.10, \mathrm{~N} 9.22$.

EXAMPLE 41

$\mathrm{N}-[1-(3,3-$ Diphenylpropyl)-4-piperidinyl]-N(phenylmethyl)acetamide, monohydrochloride

${ }^{\bullet} \mathrm{HCl}$

A. 8-(3,3-Diphenylpropyl)spiro[1,3-dioxolane-2,4'piperidine]

Toluenesulfonyl chloride ($7.00 \mathrm{~g}, 36.7 \mathrm{mmol}$) was added to a solution of $7.09 \mathrm{~g}(33.4 \mathrm{mmol})$ of 3,3 -diphenyl-1propanol in dry pyridine (30 mL) at room temperature under argon. After 15 minutes, a precipitate began forming. The reaction was stirred at room temperature for a total of 7 hours, followed by addition of water $(10 \mathrm{~mL})$. The reaction was partitioned between diethyl ether (150 mL) and 1 M aqueous copper sulfate (50 mL). The organic layer was washed with 1 M aqueous copper sulfate ($2 \times 50 \mathrm{~mL}$), 1 N $\mathrm{HCl}(50 \mathrm{~mL})$, saturated sodium bicarbonate $(50 \mathrm{~mL})$, and brine (10 mL), then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation gave 10.1 g of an orange solid mass. ${ }^{1} \mathrm{H}$ NMR indicated approximately 10% remaining starting material.
A mixture of the crude tosylate prepared above, 1,4-dioxa-8-azaspiro[4.5]decane ($4.78 \mathrm{~g}, 33.4 \mathrm{mmol}$), and potassium carbonate ($6.91 \mathrm{~g}, 50.1 \mathrm{mmol}$) in isopropanol (70 mL) was maintained at reflux under argon for 8 hours, then cooled to room temperature. The reaction was filtered with the aid of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Evaporation gave 11 g of a thick orange oil, which was purified by flash chromatography on silica gel (300 g) eluting with 4% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $8.33 \mathrm{~g}(74 \%)$ of compound A as an orange oil.

B. 1-(3,3-Diphenylpropyl)]-4-piperidinone

A mixture of 7.36 g (21.8 mmol) of compound A and 100 mL of 6 N HCl was heated at reflux under argon for 30 minutes, then cooled to room temperature. The reaction was made basic by slow addition of 1 N KOH (about 650 mL), and the cloudy mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100$ $\mathrm{mL})$. Evaporation gave $6.13 \mathrm{~g}(97 \%)$ of compound B as an orange-brown solid.

> C. 1-(3,3-Diphenylpropyl)-N-(phenylmethyl)-4piperidinamine

To 750 mg ($2.6 \mathrm{mmol}, 1 \mathrm{eq}$) of compound B was added $279 \mu \mathrm{~L}(2.6 \mathrm{mmol}, 1 \mathrm{eq})$ of benzylamine followed by $951 \mu \mathrm{~L}$ ($3.2 \mathrm{mmol}, 1.25 \mathrm{eq}$) of titanium isopropoxide. To obtain a 65 homogeneous solution 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the reaction was stirred at room temperature for 2 hours. Metha-

120
nol (2 mL) was added to the reaction followed by 97 mg (2.6 $\mathrm{mmol}, 1 \mathrm{eq})$ of sodium borohydride. After 18 hours, the reaction was diluted with water (2 mL) and the resulting precipitate was removed by filtration and washed well with was dissolved in ethyl acetate. The resulting precipitate was again filtered and rinsed well with ethyl acetate. The ethyl acetate solution was concentrated to afford 1 g of a pale yellow oil which was chromatographed on silica gel (60 g) 10% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $960 \mathrm{mg}(96 \%)$ of compound C as a pale yellow oil.

D. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-N(phenylmethyl)acetamide

To a solution of $460 \mathrm{mg}(1.2 \mathrm{mmol}, 1 \mathrm{eq})$ of compound C in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. was added $145 \mu \mathrm{~L}(1.8 \mathrm{mmol}$, 1.5 eq) of pyridine followed by dropwise addition of $94 \mu \mathrm{~L}$ $(1.3 \mathrm{mmol}, 1.1 \mathrm{cq})$ of acctyl chloride over 1 minutc. The reaction was allowed to warm to room temperature. After 6 hours, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 N KOH . The organic layer was filtered through cotton and concentrated to afford 510 mg of an orange-brown oil which was chromatographed on silica gel (50 g) eluted with 2% methanol in t-butylmethylether to afford $490 \mathrm{mg}(96 \%)$ of compound D as a yellow oil.

E. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-N(phenylmethyl)acetamide, monohydrochloride

To a solution of $475 \mathrm{mg}(1.1 \mathrm{mmol}, 1 \mathrm{eq})$ of compound D in 5 mL of ether and 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added an excess of HCl as a saturated solution in ether and the resulting heterogeneous mixture was stirred for 20 minutes. The solid was isolated by filtration, rinsed well with ether, concentrated and the solvent remnants were removed in a vacuum oven at $52^{\circ} \mathrm{C}$. and full vacuum to afford $452 \mathrm{mg}(89 \%)$ of Example 41 as a white solid, melting point $102-105^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OCl}+0.67 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C 73.31, H 7.71, N 5.90, Cl 7.46
Found: C 73.23, H 7.78, N 5.98, Cl 7.44

EXAMPLE 42

N -[1-(3,3-Diphenylpropyl)-4-piperidinyl]-N(phenylmethyl)benzamide, monohydrochloride

A. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-N(phenylmethyl)benzamide
Compound A was prepared from 500 mg of compound C from Example $41(1.3 \mathrm{mmol}), 158 \mu \mathrm{~L}(2 \mathrm{mmol})$ of pyridine

121
and $166 \mu \mathrm{~L}(1.3 \mathrm{mmol})$ of benzoyl chloride following the procedure described for preparation of compound D in Example 41. Flash chromatography on silica gel (75 g) eluted with 1% methanol in t-butylmethylether afforded 626 $\mathrm{mg}(98 \%)$ of compound A as a yellow oil.

> B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-N(phenylmethyl)benzamide, monohydrochloride

Example 42 was prepared from 615 mg of compound A following the procedure described for compound E in ${ }^{1}$ Example 41 to afford $540 \mathrm{mg}(82 \%)$ of Example 42 as a pale yellow solid; melting point $115-120^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{OCl}+0.65 \mathrm{H}_{2} \mathrm{O}$:
Calc'd: C 76.07, H 7.19, N $5.22, \mathrm{Cl} 6.60$
Found: C 76.09, H 7.25, N 5.21, Cl 6.35
EXAMPLE 43
N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-Nmethylbenzamide, monohydrochloride

A. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-Nmethylamine
To a solution of $550 \mathrm{mg}(1.4 \mathrm{mmol}, 1 \mathrm{eq})$ of compound D from Example 10 in 5 mL of tetrahydrofuran at $0^{\circ} \mathrm{C}$. was added $8.4 \mathrm{~mL}(8.4 \mathrm{mmol}, 6 \mathrm{eq})$ of a 1 M solution of lithium aluminum hydride in tetrahydrofuran and the reaction was allowed to warm to room temperature. After 15 hours, the reaction was heated at $60^{\circ} \mathrm{C}$. for 4 hours, then quenched by slow addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. To the resulting heterogeneous mixture was added solid $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the mixture was stirred for 30 minutes. The solids were removed by filtration and rinsed well with ethyl acetate. Concentration of the organic filtrate afforded 400 $\mathrm{mg}(93 \%)$ of compound A as a viscous pale yellow oil which was used without further purification.

> B. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-Nmethylbenzamide

Compound B was prepared from 390 mg (1.3 mmol) of compound $\mathrm{A}, 158 \mu \mathrm{~L}(1.4 \mathrm{mmol})$ of pyridine and $166 \mu \mathrm{~L}(1.4$ mmol) of benzoyl chloride as described for compound D in Example 41. Flash chromatography on silica gel (75 g) eluted with 1.5% methanol in t-butylmethylether afforded $472 \mathrm{mg}(88 \%)$ of compound B as a pale yellow oil.

> C. N-[1-(3,3-Diphenylpropyl)-4-piperidinyl]-Nmethylbenzamide, monohydrochloride

Example 44 was prepared from 460 mg of compound B as described for compound E in Example 41 to afford 540 $\mathrm{mg}(82 \%)$ of Example 43 as a powdery white solid, melting 65 point $216-217^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{OCl}$:

H

H

H

H

H
H

H

H
H

TABLE B

20

25

30

35

40

45

50

55

60

65

Examples of X

TABLE B-continued

30

35

40

45

50

55

65

TABLE C-continued

Example of R^{1}

TABLE C-continued

Example of R^{1}

60
65

TABLE C-continued

Example of R^{1}

50

60

65
TABLE C-continued

10

15

20

25

30

35

40

45

15

TABLE C-continued

5
10

Example of R^{1}

35
40

SEQUENCE LISTING
(1) GENERAL INFORMATION:
(iii) NUMBER OF SEQUENCES: 32
(2) INFORMATION FOR SEQ ID NO: 1:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2900 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAACTCACAT ACTCCACTGA AGTTTTTCTC GATCGGGGCA AAGGAAACCT CCAAGACAGT 60
GTGGGCTACC GAATTTCATC CAATGTGGAT GTCGCTTTAC TGTGGAGGAG TCCTGATGGT 120
-continued

GATGATAACC	AACTGATCCA	AATTACGATG	AAAGATGTAA	ACCTTGAAAA	TGTGAATCAA	180
CAGAGAGGAG	AGAAGAGCAT	TTTCAAAGGA	AAAAAGTCAT	CTCAAATCAT	AAGAAAGGAA	240
AACTTGGAAG	CAATGCAAAG	ACCTGTGCTC	CITCATCTAA	TTCATGGAAA	GATCAAAGAG	300
TTCTACTCAT	ATCAAAATGA	ACCAGCAGCC	ATAGAAAATC	TCAAGAGAGG	CCTGGCTAGC	360
CTATTTCAGA	TGCAGTTAAG	CTCTGGAACT	ACCAATGAGG	TAGACATCTC	TGGAGATTGT	420
AAAGTGACCT	ACCAGGCTCA	TCAAGACAAA	GTGACCAAAA	TTAAGGCTTT	GGATTCATGC	480
AAAATAGAGA	GGGCTGGATT	TACGACCCCA	CATCAGGTCT	TGGGTGTCAC	TTCGAAAGCC	540
ACATCTGTCA	CTACCTATAA	GATAGAAGAC	AGCTTTGTTG	TAGCTGTGCT	CTCAGAAGAG	600
ATACGTGCTT	TAAGGCTCAA	TTTTCTACAA	TCAATAGCAG	gCAAAATAGT	ATCGAGGCAG	660
AAACTGGAGC	TGAAAACCAC	GGAAGCAAGC	GTGAGACTGA	AGCCAGGAAA	GCAGGTTGCA	720
GCCATCATTA	AAGCAGTCGA	TTCAAAGTAC	ACGGCCATTC	CCATTGTGGG	GCAGGTCTTC	780
CAGAGCAAGT	GCAAAGGATG	СССТТСТСТС	TCAGAGCACT	GGCAGTCCAT	CAGAAAACAC	840
CTGCAGCCTG	ACAACCTCTC	CAAGGCTGAG	GCTGTCAGAA	GCTTCCTGGC	CTTCATCAAG	900
CACCTCAGGA	CGGCAAAGAA	AGAAGAGATC	CTCCAAATTC	TAAAGGCAGA	AAACAAGGAA	960
GTACTACCCC	AGCTAGTGGA	TGCTGTCACC	TCTGCTCAGA	CACCAGACTC	ATTAGACGCC	1020
ATTTTGGACT	TTCTGGATTT	CAAAAGCACC	GAGAGCGTTA	TCCTCCAGGA	AAGGTTTCTC	1080
TATGCCTGTG	CATITGCCTC	ACATCCTGAT	GAAGAACTCC	TGAGAGCCCT	CATTAGTAAG	1140
TTCAAAGGTT	CTTITTGGAAG	CAATGACATC	AGAGAATCTG	TTATGATCAT	CATCGGGGCC	1200
CTTGTCAGGA	AGTTGTGTCA	GAACCAAGGC	TGCAAACTGA	AAGGAGTAAT	AGAAGCCAAA	1260
AAGTTAATCT	TGGGAGGACT	TGAAAAAGCA	GAGAAAAAAG	AGGACATCGT	GATGTACCTG	1320
CTGGCTCTGA	AGAACGCCCG	GCTTCCAGAA	GGCATCCCGC	TCCTTCTGAA	GTACACAGAG	1380
ACAGGAGAAG	GGCCCATTAG	CCACCTTGCC	GCCACCACAC	TCCAGAGATA	TGATGTCCCT	1440
TTCATAACTG	ATGAGGTAAA	GAAGACTATG	AACAGGATAT	ACCACCAGAA	TCGTAAAATA	1500
CATGAAAAAA	CTGTGCGTAC	TACTGCAGCT	GCCATCATTT	TAAAAAACAA	TCCATCCTAC	1560
ATGGAAGTAA	AAAACATCCT	GСTСТСТАTT	GGGGAACTTC	CCAAAGAAAT	GAATAAGTAC	1620
ATGCTCTCCA	TTGTCCAAGA	CATCCTACGT	TITGAAACAC	CTGCAAGCAA	AATGGTCCGT	1680
CAAGTTCTGA	AGGAAATGGT	CGCTCATAAT	TACGATCGTT	TCTCCAAGAG	TGGGTCCTCC	1740
TCTGCATATA	CTGGCTACGT	AGAACGGACT	TCCCATTCGG	CATCTACTTA	CAGCCTTGAC	1800
ATTCTTTACT	CTGGTTCTGG	CATTCTAAGG	AGAAGTAATC	TGAACATCTT	TCAGTATATT	1860
GAGAAAACTC	CTCTTCATGG	TATCCAGGTG	GTCATTGAAG	CCCAAGGACT	GGAGGCATTA	1920
ATTGCAGCCA	CTCCTGATGA	GGGGGAAGAG	AACCTTGACT	CCTATGCTGG	CTTGTCAGCT	1980
CTCCTCTTTG	ATGITCAGCT	CAGACCTGTC	ACTTTTTTCA	ACGGGTACAG	TGATTTGATG	2040
TCCAAAATGC	TGTCAGCATC	TAGTGACCCT	ATGAGTGTGG	TGAAAGGACT	TCTTCTGCTA	2100
ATAGATCATT	CCCAGGAGCT	TCAGCTGCAA	TCTGGACTTA	AGGCCAATAT	GGATGTTCAA	2160
GGTGGTCTAG	CTATTGATAT	TACAGGTGCC	ATGGAGTTTA	GTCTATGGTA	TCGTGAATCT	2220
AAAACCCGAG	TGAAAAATCG	GGTAAGTGTG	TTAATAACTG	GTGGCATCAC	GGTGGACTCC	2280
TCTTTTGTGA	AAGCTGGCTT	GGAAATTGGT	GCAGAAACAG	AAGCAGGCTT	GGAGTtTATC	2340
TCCACGGTGC	AGTTTTCTCA	GTACCCATTT	TTAGTTTGTC	TGCAGATGGA	CAAGGAAGAT	2400
GTTCCATACA	GGCAGTTTGA	GACAAAATAT	GAAAGGCTGT	CCACAGGCAG	AGGTTACATC	2460

-continued

-continued

GCATCCCAAG	tcttctgang	tatgcagang	CAGGAGAAGG	cccatcagc	cacctggeta	1560
CCACTGCTCT	CCAGAGATAT	GATCTCCCtT	TCATAACTGA	TGAGGTGAAG	AAGACCTTAA	1620
ACAGAATATA	CCACCAAAAC	CGTAAAGTTC	ATGAAAAGAC	TGTGCGCACT	gctacagcta	1680
Ctatcatttt	AAATAACAAT	CCATCCTACA	TGGACGTCAA	GAACATCCTG	ctgtctattg	1740
GGGAGCTTCC	CCAAGAAATG	antanataca	TGCTCGCCAT	TGTTCAAGAC	ATCCtacgit	1800
TTGAAATGCC	TGCAAGCAAA	ATTGTCCGTC	GAGTTCTGAA	GGAAATGGTC	gctcacantt	1860
ATGACCGTtT	CTCCAGGAGT	GGATCTTCTT	ctgcctacac	tGgctacata	gadicgtagtc	1920
CCCGTTCGGC	atctacttac	agcttagaca	ттстстастс	GgGttctige	ATtCtadaga	1980
GAAGTAACCT	gancatcttt	cagtacattg	GGAAGGCTGG	cttcacget	Agccaggtge	2040
TTATTGAAGC	CCAAGGACTG	gangccttan	cgcagccac	ccctalacgag	GGGGAGGAGA	2100
ACCtteacti	ctatgctggt	atgtcagcla	CCTCTtTGA	gttcagctc	agacctgtca	2160
CCTTTTTCAA	CGgatacagt	GATtTGATGT	CCAAAATGCT	GTCAGCATCT	gGcGAcceta	2220
TCAGTGTGGT	GAAAGGACTT	Attctgctan	tagatcattc	TCAGGAACTT	cagttacant	2280
CTGGACTAAA	agccabtata	GAGGTCCAGG	GTGGTCTAGC	tattgatait	TCAGGTGCAA	2340
TGGAGTtTAG	CTTGTGGTAT	CGTGAGTCTA	AAACCCGAGT	ganaiatagg	GTGACTGTGG	2400
tantanccac	tgacatcaca	GTGGACTCCT	CTTtTGTGAA	AGCTGGCCTG	gadaccagta	2460
CAGAAACAGA	AGCAGGCTtG	GAGTtTATCT	ccacagtgca	GTtтttctcag	тACCCATtCt	2520
tagtttgcat	gcagatggac	AAGGATGAAG	CTCCATTCAG	GCAATTTGAG	AAAAAGTACG	2580
AAAGGCTGTC	CACAGGCAGA	GGttatgtct	CTCAGAAAAG	AAAAGAAAGC	gTAttagcag	2640
GATGTGAATT	cccgctccat	CAAGAGAACT	CAGAGATGTG	CAAAGTGGTG	tTtGccecte	2700
agccgeatag	tacticcagc	GGATGGTtTT	GAAACTGACC	tGTGATATtT	TACTtGAATT	2760
TGTCTCCCCG	AAAGGGACAC	AATGTGGCAT	gactangtac	TTGCTCTCTG	AGAGCACAGC	2820
gtttacatat	ttacctgtat	TTAAGATTTT	TGTAAAAAGC	TACAAAAAAC	tGCAGTtTGA	2880
TCAAATTTGG	gtatatgcag	tatgctacce	ACAGCGTCAT	TTTGAATCAT	CATGTGACGC	2940
TTTCAACAAC	gttcttagtt	tacttatacc	TCTCTCAAAT	CTCATtTGGT	acagtcagat	3000
tagttattct	CTAAGAGGAA	actagtgttt	gTtadanaca	AAAATAAAAA	caAamccaca	3060
CAAGGAGAAC	CCAATtTtGt	TTCAACAATT	TtTGATCAAT	gtatatgang	Ctcttgatag	3120
GACTTCCTTA	AGCATGACGG	ganalccana	CACGTTCCCT	AATCAGGAAA	AAAAAAAAAA	3180
AAAAA						3185

(2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 860 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

(2) INFORMATION FOR SEQ ID NO: 4:
(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 107 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: $3 . .107$
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

(2) INFORMATION FOR SEQ ID NO: 6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Phe Leu Cys Phe Ile Ser Ser Tyr Ser Ala Ser Val Lys Gly His Thr
Thr Gly Leu Ser Leu Asn Asn Asp Arg Leu Tyr Lys Leu Thr Tyr Ser

$$
20 \begin{array}{lrrr}
& 25 & 30
\end{array}
$$

Thr Glu Val
(2) INFORMATION FOR SEQ ID NO:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 15 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AGAGTCCACT TCTCA
(2) INFORMATION FOR SEQ ID NO:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8067 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: $100 . .287$
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 450..451
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: 700..844
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1197.. 1198
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: 1253..1361
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: $1481 \ldots 1482$
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: $1586 \ldots 1702$
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 1764..1765
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: 1805.. 1945
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 2010..2011
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: 2049.. 2199
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 2281.. 2282
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: $2355 . .2512$
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 2565.. 2566
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: 2595.. 2763
(ix) FEATURE:
(A) NAME/KEY: -
(B) LOCATION: 2871.. 2872

```
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 2898..3005
(ix) FEATURE:
    (A) NAME/KEY: -
    (B) LOCATION: 3135..3136
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 3389..3601
(ix) FEATURE:
    (A) NAME/KEY: -
    (B) LOCATION: 3763..3764
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 4077..4288
(ix) FEATURE:
    (A) NAME/KEY: -
    B) LOCATION: 4386..4387
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 4630..4727
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 4819..4940
(ix) FEATURE:
    (A) NAME/KEY: -
    (B) LOCATION: 5183..5184
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 5284..5511
(ix) FEATURE:
    (A) NAME/KEY: -
    (B) LOCATION: 5567..5568
(ix) FEATURE:
    (A) NAME/KEY: exon
    B) LOCATION: 5685..5809
(ix) FEATURE:
    (A) NAME/KEY: -
    B) LOCATION: 5857..5858
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 6211..6381
(ix) FEATURE:
    (A) NAME/KEY: -
    (B) LOCATION: 6635..6636
(ix) FEATURE:
    (A) NAME/KEY: exon
    (B) LOCATION: 6740..8067
(ix) FEATURE:
    (A) NAME/KEY: repeat_region
    (B) LOCATION: 7347..7364
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
-continued

TATGGAGGAA	TCCTGATGGT	GATGATGACC	AgTtgatcla	AATAACGGTG	GGCATTTTCT	300
accagatana	TGCAAAGATT	Agatatcaga	AGTTTTTGGA	GAAGTGTACC	ATTGGACAGC	360
ACttgtattg	GGTTCCCGTT	tatantccat	tagttictta	тCttatcact	AAAACAAGCA	420
GGTCTITGTT	TTAAGGTTTG	GTGATGAAAG	ttattttang	CCTAAAGTCA	CAGAGTTCTT	480
tangtattgc	tattittgcc	ttattanaia	acctagttta	TAAATACCTT	CTCCATTCTT	540
TTAAAGTGAG	TGGCAAGGTC	Ctatanatca	tgattigana	AATGACAGAA	GAAATTGTGG	600
ССААСТСТTT	CTGTtTCttt	atcattttat	tttcagagat	ACTCTGATGA	agacagatat	660
AGGAAGTTTT	ttttancagc	тTтстtтет	ttactccaga	A	AAATGTtGAA	720
AATGTGAATC	AGCAGAGAGG	AgAgangagc	ATCTTCAAAG	GAAAAAGCCC	ATCTAAAATA	780
ATGGGAAAGG	AAAACTTGGA	AGCTCTGCAA	AgACCTACGC	TCCTTCATCT	AATCCATGGA	840
AAGGTAAAGG	GGCCtttaga	TTCCACAACT	TITTCTCCAA	Cttcatatt	TTCttccett	900
Cagtagatat	TATTTTGAGG	TAATCACATT	GTAACTACTT	tTATGGTAAA	TGGAATTTCT	960
TCAAGAACTA	AAGAACAGAG	GTtGTAAATT	AAATGTTTCC	AAACTGAATC	AATGCCCTGA	1020
GTTCCCTtac	ATtitactagc	CAATTTGTTT	ctattittc	TGGAAATCTT	TATAGTGGAA	1080
tGAAGTATTT	Attiattgat	GAAAGGCATT	ATTAAAAGGT	AAATTTCTCA	TCAAATTATA	1140
AGGGATTACA	AACATAATGT	AACAAAGCAA	GTCATCAAAG	CATGATTGGA	TGAATTCTCT	1200
gatanatgat	GCATTTTTGC	TTCATTTGTG	TTCTGTTCCC	СТСТССССАС	CAGGTCAAAG	1260
AGTtCtacte	atatcanant	GAGGCAGTGG	CCATAGAAAA	TATCAAGAGA	GGTCTGGCTA	1320
GCCTATtTCA	gacacagtta	AGCTCTGGAA	CCACCAATGA	GgTacttacc	AATATtAATA	1380
AGGATTCAGC	ATCTCAATAA	AATTTGTAAG	GATTTCTACT	TATACAATTT	CAGTAGAAGA	1440
Gttactacta	AGGTAATGCT	CAGAAAAGGT	GACTTGTGTA	GTCCCCTATG	GCCTATTAGA	1500
GACCTCAATT	TTCAAGCCAC	TTCTCACTAG	AATTCAAATG	GCCCACAAGG	AATCCCAAGC	1560
ATTATGCCCT	TGCCTTTCTT	TTTAGGTAGA	TATCTCTGGA	AATTGTAAAG	TGACCTACCA	1620
GGCTCATCAA	GACAAAGTGA	TCAAAATTAA	GGCCTTGGAT	TCATGCAAAA	TAGCGAGGTC	1680
TGGATTTACG	ACCCCAAATC	AGGTATGATA	GATGTCACTT	TCTTTGAGGC	ATTAAAATAA	1740
ttacatttig	tagagactaa	TTTACGATGA	TTACTTGTTA	TAAAGATGGC	TATtTATtTA	1800
TTTAGGTCTT	GGGTGTCAGT	TCAAAAGCTA	ATCTGTCAC	CACCTATAAG	ATAGAAGACA	1860
GCTtTGTtat	AGCTGTGCTT	GCTGAAGAAA	Cacacantt	TGGACTGAAT	tTCCTACAAA	1920
CCATTAAGGG	GAAAATAGTA	TCGAAGTAAG	ATAATGCTAA	AATTTTTATT	TTCTTTGCTA	1980
TTCTTTGTTA	tattattata	CTTGATTTGT	ATGATTATAA	TATAGCATTT	CCCTTTGGTA	2040
TTATGCAGGC	AGAAATTAGA	GCTGAAGACA	ACCGAAGCAG	GCCCAAGATT	GATGTCTGGA	2100
AAGCAGGCTG	CAGCCATAAT	CAAAGCAGTT	GATTCAAAGT	ACACGGCCAT	TCCCATTGTG	2160
GGGCAGGTCT	TCCAGAGCCA	CTGTAAAGGA	TGTCCTTCTG	TAAGTGCAGA	CAAATATGGG	2220
AATAATCATG	ACATCAGACT	CTGTTTTCAT	TTTGTCTCCA	GTGAAAGCAT	CAACTCATTC	2280
AGgagaicac	CCTITtGtaAA	tGTGgatgtt	CACAGTtatg	AGTGGGGTAT	gagcctacag	2340
TGTATGTTTT	GCAGCTCTCG	GAGCTCTGGC	GGTCCACCAG	GAAATACCTG	cagcctgaca	2400
ACCTTTCCAA	GGCTGAGGCT	GTCAGAAACT	TCCTGGCCTT	cattcagcac	CTCAGGACTG	2460
CGAAGAAAGA	AGAGATCCTT	CAAATACTAA	AgAtg k AAA	TAAGGAAGTA	TTGTAAGTTC	2520
CCCAACCTTT	GTGTGGGGTT	GTCTGTCAGA	AACATTTCTG	GAGTGGATAT	CCATGATtat	2580
GCCTTTTTTT	atagacctca	GCTGGTGGAT	GCTGTCACCT	CTGCTCAGAC	CTCAGACTCA	2640

-continued

-continued

(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ACGGCCATTC CCATTGTGGG GCAGGT
(2) INFORMATION FOR SEQ ID NO: 13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TGACACCCAA GACCTGATTT GGGGTC
(2) INFORMATION FOR SEQ ID NO: 14:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GCCTGCTTCG GTTGTCTTCA GCTCT
(2) INFORMATION FOR SEQ ID NO: 15:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CGCGGATCCT TCTGACAGCC TCAGCCTTGG A
(2) INFORMATION FOR SEQ ID NO: 16:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GGGAGATCAT ATCTCTGGAG AGCAGT
(2) INFORMATION FOR SEQ ID NO: 17:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

```
CGGCGGATCC AGCATAGGAG TCAAGGTTCT C
    31
(2) INFORMATION FOR SEQ ID NO:18:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

> СССТTACAAT GAAAACTGG
(2) INFORMATION FOR SEQ ID NO: 19:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
GGTACACTTC TCCAAAAACT T
(2) INFORMATION FOR SEQ ID NO:20:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: \(1 . .33\)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
agg ant cct gat ggt gat gat gac cag ttg atc
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Arg Asn Pro Asp Gly Asp Asp Asp Gln Leu Ile
(2) INFORMATION FOR SEQ ID NO:22:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: \(1 . .27\)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
AGG AAt CTG ATG GTG ATG ATG ACC AGT TGATG
Arg Asn Leu Met Val Met Met Thr Ser
1
(2) INFORMATION FOR SEQ ID NO:23:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
\(\underset{1}{\text { Arg Asn Leu Met Val Met Met Thr Ser }}\)
(2) INFORMATION FOR SEQ ID NO:24:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 302 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(ix) FEATURE:
(A) NAME/KEY: exon
(B) LOCATION: 106.. 203
(ix) FEATURE:
(A) NAME/KEY: mutation
(B) LOCATION: replace (119, "")
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
ATTTGGCTTC CTCTTTTTTTC CACTGAGGAT TITTTTTTTCC AAATTTGACT TGGGAAACAG 60
TCATTACAAT GAATGTGCAG CTTTTTTTTT CCTCATATGT TGCAGCAAAA TTGTCCGTCG 120
AGTTCTGAAG GAAATGGTCG CTCACAATTA TGACCGTTTC TCCAGGAGTG GATCTTCTTC 180
TGCCTACACT GGCTACATAG AAGGTATGTA CACCAAAAAG AGGTTCTCCT TCCATACCCC 240
ACAACTTAGC ATTGCTGGAA CTGCTATtAA ATtACAGTTA TAGTGTGTCA TCAGGTAGTC 300
CC 302
(2) INFORMATION FOR SEQ ID NO: 25 :
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
CTCTACCAGC GAGTATtAAT
(2) INFORMATION FOR SEQ ID NO:26:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
ACGTAGGATG TCTTGGACAA TGGAGAGCAT GTA
(2) INFORMATION FOR SEQ ID NO:27:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
GATCAGTTGG TTATCATCAC CATCAGGACT
(2) INFORMATION FOR SEQ ID NO:28:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
Met Ile Leu Leu Ala Val Leu Phe Leu Cys Phe Ile 1 10
(2) INFORMATION FOR SEQ ID NO:29:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
gGTCAATATG ATTCTTCTTG CTGTGC
(2) INFORMATION FOR SEQ ID NO: 30 :
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
GCCTCGATAC TATTTTGCCT GCT
(2) INFORMATION FOR SEQ ID NO:31:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1417 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(ix) FEATURE:
(A) NAME/KEY: exon(B) LOCATION: 783..890
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
CCCCTCTTAA TCTCTTCCTA GAAATGAGAT TCAGAAAGGA CAGGACTGCA TCCAGCCTGT ..... 60
tTGGGAACTC AGACAAATGT GTGTTGTCAC AGACACAAAT AGAGGTCTAC TATGAAATAA ..... 120
tTGGCTTGCT AGTGTGCTAA TGACAGACAA TGCTGATtTG CTCCAACCTC ATACAGTTTC ..... 180
acacatang acantcatct atgtttcatg anagttctat ctactttanc attattutga ..... 240
AGTGATTGGT GGTGGTATGA ATTAACAGTT TAAATTTAAA TCCTAAAATT CAGTGTGAAT ..... 300
TTTTTATAAT AGCATAAAAA TTCAAAGATG TCCATACAAG AAAAATTAAA ATTTGGTTAG ..... 360
GTTTAGCAGA GTTTGAGAAT CCTTACTACC CTCCCACATA GTATTGTAAT GTGAATATAG ..... 420
GCAGTTACTA TTACAGGCAT AATGATGATT ATGTATTAAG CAGAAAGAAG TATCACCACC ..... 480
AGTITTTTTC TTTGAATGCC CCTCAGTACT TCTGCATTTA TAGGATGGTA GACTGGTTTG ..... 540
GTTTAGCTCT CAAAAGTGAA AACATTTAAA GTTTCCTCAT TGGGTGAAAA AAATTAAAAA ..... 600
GAGTGAGAGA CTGAAAACTG CAGCCCACCT ACGTTTAATC ATTAATAGTG AGCCCTTCAG ..... 660
TGAACTTAGG TCCTGATTTT GGAGTTTGGA GTCTGACCTT TCCCCAAAGA TAAACATGAT ..... 720
TGTTGCAGGT TCTGAAGAGG GTCACTCCCT CACTGGCTGC CATTGAAAGA GTCCACTTCT ..... 780
CAGTGACTCC TAGCTGGGCA CTGGATGCAG TTGAGGATTG CTGGTCAATA TGATTCTTCT ..... 840
TGCTGTGCTT TTTCTCTGCT TCATTTCCTC ATATTCAGCT TCTGTTAAAG GTAAGTTTGT ..... 900
GTTGCCTTTT GCTAAACTTT AATTTCCATC TTTGGAGTTG GAGGCAGATA CGTGCGTGTG ..... 960
TGTGTGTTTG TGTGAGTGAA TAGTGAAAGA GTTTCTGACT AAACTATCTT CAAAACCATG ..... 1020
TAACTTTGGA ATGTTTGTGA AAGCATGGCT GAGTTGAAAT GAAAACCAAA TTCAAATCCC ..... 1080
TACAAACATT AAGAAAACAG ATATTTCTTT TAGTTTCAGT TCCTCAGACC AGTGTGTTCT ..... 1140
TGCTTCAATT TCTCATTCAT GGTCTGTTTT TAAAAGAAGG AAAAAAGATA CCCACTATTG ..... 1200
TTACCTGCTG TTGTTGGTCA CATTGAATGC AGCTCCTTCA TTTGAATTGT AAATGAGGAT ..... 1260
TTTTTTTAAA AACCGAGTTC TTAAATTTTC TTTTAGTTGC TTAGCAATGT GACCTCAAGA ..... 1320
AGAATTAGAC CCAATGAAAA AGGCATTTGA TTTGCCAAAG AATTATGAAT GAAATGGCAC ..... 1380
AACATATATT TAATTCCGTT ACAATTAAAA AATGATA ..... 1417
(2) INFORMATION FOR SEQ ID NO: 32:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 564 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(ix) FEATURE:
(A) NAME/KEY: repeat_region
(B) LOCATION: 286..347
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
ACTTTTCAAA TATGTTCTAC AATCAGAAAA GTCCTTTTGT CCTAGTCTGA GAAAAAGGGG

\section*{-continued}
\begin{tabular}{ll}
\hline GATTCTTTGT ATGACAGAGT CTAGGCTGAA AAATTTTTTTA AAAATAAAGG GTTTTAAGAT & 240 \\
CTAATTCATC CACAGGATTC ATAACCTCTG AAATTAGGCT ACAAGCACAC ACAAACACAC & 300 \\
AGACACACAC ATACACACAC ACACACACAC ACACACACAC ACATACATGG GGTTGGGGAG & 360 \\
AATGGATGAT ATGGGGAAGA GTGGAGAAGT ATTAACAAAA GCTCCCAATA GAAGGAAAGA & 420 \\
TGCTAAACAT CACACTTAAT CAGAGAAGTG ACATTTCTCA ACTATCAAAT TGGTGAAAAA & 480 \\
TTCAAAAGTT TGCTAACATA TTTTGTAGGT GAGACTATGG GGAAATAGGC CTTTTCATAA & 540 \\
ATTGCTGATG AAAGCCTAAA ATGG & 564 \\
\hline
\end{tabular}

What is claimed is:
1. A method for treating atherosclerosis in a mammalian species comprising administration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride transfer protein, wherein said agent is not a polynucleotide compound.
2. A method for decreasing serum lipid levels in a mammalian species, which comprises administration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride transfer 25 protein, wherein said agent is not a polynucleotide compound.
3. The method of claim 1 or 2 , wherein the agent is a compound of the formula

or a compound of the formula

or a compound of the formula

wherein:
\(\mathrm{R}^{1}\) is alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl (all optionally substituted through available carbon atoms with 1 , 2, or 3 groups selected from halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl);
\(R^{2}, R^{3}, R^{4}\) are independently hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, 65 arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl;
\(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) are independently hydrogen, alkyl, alkenyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl (all optionally substituted through available carbon atoms with 1,2 , or 3 groups selected from halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl; with the proviso that when \(\mathrm{R}^{5}\) is \(\mathrm{CH}_{3}, \mathrm{R}^{6}\) is not hydrogen,
\(\mathrm{R}^{7}\) is alkyl (optionally substituted with oxo), aryl, or arylalkyl (wherein the alkyl portion is optionally substituted with oxo).
4. The method of claim 3 , wherein the agent is a compound of the formula

or a compound of the formula

50
40

45
whercin:
\(\mathrm{R}^{1}\) is \(-\mathrm{R}^{\nu}-\mathrm{R}^{w}\) or

\(\mathrm{R}^{v}\) and \(\mathrm{R}^{x}\) are each independently alkylene or cisalkenylene of up to 6 carbon atoms;
\(\mathrm{R}^{w}\) is aryl or heteroaryl; and
\(\mathrm{R}^{y}\) and \(\mathrm{R}^{z}\) are each independently alkyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl.
5. The method of claim 4 , wherein \(\mathrm{R}^{y}\) and \(\mathrm{R}^{z}\) are each independently aryl, arylalkyl, heteroaryl, or hetcroarylalkyl.
6. A method for treating hyperglycemia in a mammalian species comprising administration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride transfer protein, wherein said agent is not a polynucleotide compound.

175
7. A method for treating hypertriglyceridemia in a mammalian species comprising administration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride transfer protein, wherein said agent is not a polynucleotide com- 5 pound.
8. A method for treating hypercholesterolemia in a mammalian species comprising administration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride transfer protein, wherein said agent is not a polynucleotide compound.
9. A method for treating hypertriglyceridemia and hypercholesterolemia in a mammalin species comprising admin-
istration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride protein, wherein said agent is not a polynucleotide compound.
10. A method of reducing gastrointestinal triglyceride, fatty acid cholesterol absorption in a mammalian species comprising administration of a therapeutically effective amount of an agent which decreases the amount or activity of microsomal triglyceride transfer protein, wherein said agent is not a polynucleotide compound.
* * * * *```

