${ }_{(12)}$ United States Patent

Cheng et al.
(10) Patent No.: US 6,875,782 B2
(45) Date of Patent:

Apr. 5, 2005

WO	WO $97 / 00258$	$6 / 1996$
WO	WO $97 / 31907$ A1	$9 / 1997$
WO	WO $99 / 16770$	$9 / 1998$
WO	WO 99/46232 A1	$9 / 1999$
WO	WO 01/38325 A1	$9 / 2000$

Primary Examiner-Charanjit S. Aulakh
(74) Attorney, Agent, or Firm - Burton Rodney

ABSTRACT
Compounds are provided which are useful as antidiabetic agents and antiobesity agents and have the structure

wherein m is 0,1 or 2 ; n is 0,1 or 2 ;
Q is C or N ;
A is $\left(\mathrm{CH}_{2}\right)_{x}$ where x is 1 to 5 , or A is $\left(\mathrm{CH}_{2}\right)_{x}{ }^{1}$ where x^{1} is 1 to 5 with an alkenyl bond or an alkynyl bond embedded anywhere in the chain, or A is - $\left(\mathrm{CH}_{2}\right)_{x}{ }^{2}-$ $\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{x}^{3}$ - where x^{2} is 0 to 5 and x^{3} is 0 to 5 , provided that at least one of x^{2} and x^{3} is other than 0 ;
B is a bond or is $\left(\mathrm{CH}_{2}\right)_{x}^{4}$ where x^{4} is 1 to 5 ;
X is CH or N ;
X_{2} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{3} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{4} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{5} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{6} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
and $\mathrm{A}, \mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{2 a}, \mathrm{R}^{2 b}, \mathrm{R}^{2 c}, \mathrm{R}^{3}$ and Y are as defined herein.

15 Claims, No Drawings

SUBSTITUTED HETEROCYCLIC DERIVATIVES USEFUL AS ANTIDIABETIC AND ANTIOBESITY AGENTS AND METHOD

This application claims priority from U.S. Provisional Application 60/394,553, filed Jul. 9, 2002 which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to novel substituted heterocyclic derivatives which modulate blood glucose levels, triglyceride levels, insulin levels and non-esterified fatty acid (NEFA) levels, and thus are particularly useful in the treatment of diabetes and obesity, and to a method for treating diabetes, especially Type 2 diabetes, as well as hyperglycemia, hyperinsulinemia, hyperlipidemia, obesity, atherosclerosis and related diseases employing such substituted heterocyclic derivatives alone or in combination with another antidiabetic agent and/or a hypolipidemic agent and/or other therapeutic agents.

DESCRIPTION OF THE INVENTION

In accordance with the present invention, substituted heterocyclic derivatives are provided which have the structure I:

wherein m is 0,1 or $2 ; \mathrm{n}$ is 0,1 or 2 ;
Q is C or N ;
A is $\left(\mathrm{CH}_{2}\right)_{x}$ where x is 1 to 5 , or A is $\left(\mathrm{CH}_{2}\right)_{x}{ }^{1}$ where x^{1} is 1 to 5 with an alkenyl bond or an alkynyl bond embedded anywhere in the chain, or A is $-\left(\mathrm{CH}_{2}\right)_{x}{ }^{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{x}{ }^{3}-$ where x^{2} is 0 to 5 and x^{3} is 0 to 5 , provided that at least one of x^{2} and x^{3} is other than 0

B is a bond or is $\left(\mathrm{CH}_{2}\right)_{x}^{4}$ where X^{4} is 1 to 5 ;
X is CH or N ;
X_{2} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{3} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{4} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{5} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
X_{6} is $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or S ;
provided that at least one of $\mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4} \mathrm{X}_{5}$ and X_{6} is N ; and at least one of $\mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4} \mathrm{X}_{5}$ and X_{6} is C , and specifically excluding the structure(s) as shown below:

where $X_{2}=N, X_{3}=C, X_{4}=O$ or $S, Z=O$ or a bond
In each of X through X_{6}, as defined above, C may include CH.
R^{1} is H or alkyl;
R^{2} is H , alkyl, alkoxy, halogen, amino, substituted amino or cyano;
which are present in the compounds of the invention include, but are not limited to,

R^{3} is selected from H, alkyl, arylalkyl, aryloxycarbonyl, alkyloxycarbonyl, alkynyloxycarbonyl, alkenyloxycarbonyl, arylcarbonyl, alkylcarbonyl, aryl, heteroaryl, cycloheteroalkyl, heteroarylcarbonyl, heteroarylheteroarylalkyl, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, alkoxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, heteroaryl-heteroarylcarbonyl, alkylsulfonyl, alkenylsulfonyl, heteroaryloxycarbonyl, cycloheteroalkyloxycarbonyl, heteroarylalkyl, aminocarbonyl, substituted aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylalkenyl, cycloheteroalkylheteroarylalkyl; hydroxyalkyl, alkoxy, alkoxyaryloxycarbonyl, arylalkyloxycarbonyl, alkylaryloxycarbonyl, arylheteroarylalkyl, arylalkylarylalkyl, aryloxyarylalkyl, haloalkoxyaryloxycarbonyl, alkoxycarbonylaryloxycarbonyl, aryloxyaryloxycarbonyl, arylsulfinylarylcarbonyl, arylthioarylcarbonyl, alkoxycarbonylaryloxycarbonyl, arylalkenyloxycarbonyl, heteroaryloxyarylalkyl, aryloxyarylcarbonyl, aryloxyarylalkyloxycarbonyl, arylalkenyloxycarbonyl, arylalkylcarbonyl, aryloxyalkyloxycarbonyl, arylalkylsulfonyl, arylthiocarbonyl, arylalkenylsulfonyl, heteroarylsulfonyl, arylsulfonyl, alkoxyarylalkyl, heteroarylalkoxycarbonyl, arylheteroarylalkyl, alkoxyarylcarbonyl, aryloxyheteroarylalkyl, heteroarylalkyloxyarylalkyl, arylarylalkyl, arylalkenylarylalkyl, arylalkoxyarylalkyl, arylcarbonylarylalkyl, alkylaryloxyarylalkyl, arylalkoxycarbonylheteroarylalkyl, heteroarylarylalkyl, arylcarbonylheteroarylalkyl, heteroaryloxyarylalkyl, arylalkenylheteroarylalkyl, arylaminoarylalkyl, aminocarbonylarylarylalkyl;

Y is $\mathrm{CO}_{2} \mathrm{R}^{4}$ (where R^{4} is H or alkyl, or a prodrug ester) or Y is a C -linked 1-tetrazole, a phosphinic acid of the structure $\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{4 a}\right) \mathrm{R}^{5}$, (where $\mathrm{R}^{4 a}$ is H or a prodrug ester, R^{5} is alkyl or aryl) or a phosphonic acid of the structure $\mathrm{P}(\mathrm{O})$ $\left(\mathrm{OR}^{4 a}\right)_{2}$;
$\left(\mathrm{CH}_{2}\right)_{x},\left(\mathrm{CH}_{2}\right)_{x}{ }^{1},\left(\mathrm{CH}_{2}\right)_{x}{ }^{2},\left(\mathrm{CH}_{2}\right)_{x}^{3},\left(\mathrm{CH}_{2}\right)_{x}{ }^{4},\left(\mathrm{CH}_{2}\right)_{m}$, and $\left(\mathrm{CH}_{2}\right)_{n}$ may be optionally substituted with 1,2 or 3 substituents;
including all stereoisomers thereof, prodrug esters thereof, and pharmaceutically acceptable salts thereof.
Examples of

60
$\mathrm{R}^{2 a}, \mathrm{R}^{2 b}$ and $\mathrm{R}^{2 c}$ may be the same or different and are selected from H, alkyl, alkoxy, halogen, amino, substituted amino or cyano;
-continued

as well as the five-membered rings covered under the definition of heteroaryl set out hereinafter, preferably

Preferred are compounds of formula I of the invention having the structure IA:

where X is CH
More preferred are compounds of formula I of the invention having the structure IB:

IB

In the above compounds, it is most preferred that $\mathrm{R}^{2 a}, \mathrm{R}^{2 b}$ and $\mathrm{R}^{2 c}$ are each II; R^{1} is alkyl, preferably $\mathrm{CHI}_{3} ; \mathrm{x}^{2}$ is 1 to 55 3 ; R^{2} is H ; m is 0 or $\left(\mathrm{CH}_{2}\right)_{m}$ is CH_{2} or CHOH or CH -alkyl, $\mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$ and X_{6} represent a total of 1,2 or 3 nitrogens; $\left(\mathrm{CH}_{2}\right)_{n}$ is a bond or $\mathrm{CH}_{2}, \mathrm{R}^{3}$ is arylalkyloxycarbonyl, arylheteroarylalkyl, aryloxyarylalkyl, arylalkyl, aryloxycarbonyl, haloaryloxycarbonyl, alkoxyaryloxycar- 60 bonyl, alkylaryloxycarbonyl, aryloxyaryloxycarbonyl, heteroaryloxyarylalkyl, heteroaryloxycarbonyl, aryloxyarylcarbonyl, arylalkenyloxycarbonyl, cycloalkylaryloxycarbonyl, arylalkylarylcarbonyl, heteroaryl-heteroarylalkyl, cycloalkyloxyaryloxycarbonyl, heteroaryl-heteroarylcarbonyl, arylalkylsulfonyl, arylalkenylsulfonyl, alkoxyarylalkyl, arylthiocarbonyl,
cycloheteroalkylalkyloxycarbonyl, cycloheteroalkyloxycarbonyl, or polyhaloalkylaryloxycarbonyl, which may be optionally substituted, more preferably alkoxyaryloxycarbonyl.

Preferred compounds of the invention include the following:

PENN EX. 2139
-continued

50

55

60 In addition, in accordance with the present invention, a method is provided for treating diabetes, especially Type 2 diabetes, and related diseases such as Type I diabetes, insulin resistance, hyperglycemia, hyperinsulinemia, elevated blood levels of fatty acids or glycerol, hyperlipidemia, obesity,
65 hypertriglyceridemia, inflammation, Syndrome X, diabetic complications, dysmetabolic syndrome, atherosclerosis, and related diseases wherein a therapeutically effective amount

PENN EX. 2139
of a compound of structure I is administered to a patient in need of treatment.

In addition, in accordance with the present invention, a method is provided for treating early malignant lesions (such as ductal carcinoma in situ of the breast and lobular carcinoma in situ of the breast), premalignant lesions (such as fibroadenoma of the breast and prostatic intraepithelial neoplasia (PIN), liposarcomas and various other epithelial tumors (including breast, prostate, colon, ovarian, gastric and lung), irritable bowel syndrome, Crohn's disease, gastric ulceritis, and osteoporosis and proliferative diseases such as psoriasis, wherein a therapeutically effective amount of a compound of structure I is administered to a patient in need of treatment.

In addition, in accordance with the present invention, a method is provided for treating diabetes and related diseases as defined above and hereinafter, wherein a therapeutically effective amount of a combination of a compound of structure I and another type antidiabetic agent and/or a hypolipidemic agent, and/or lipid modulating agent and/or other type of therapeutic agent, is administered to a human patient in need of treatment.

In the above method of the invention, the compound of structure I will be employed in a weight ratio to the antidiabetic agent (depending upon its mode of operation) within the range from about $0.01: 1$ to about $100: 1$, preferably from about $0.5: 1$ to about 10:1.

The conditions, diseases, and maladies collectively referenced to as "Syndrome X" or Dysmetabolic Syndrome (as detailed in Johanson, J. Clin. Endocrinol. Metab., 1997, 82, 727-734, and other publications) include hyperglycemia and/or prediabetic insulin resistance syndrome, and is characterized by an initial insulin resistant state generating hyperinsulinemia, dyslipidemia, and impaired glucose tolerance, which can progress to Type II diabetes, characterized by hyperglycemia, which can progress to diabetic complications.

The term "diabetes and related diseases" refers to Type II diabetes, Type I diabetes, impaired glucose tolerance, obesity, hyperglycemia, Syndrome X, dysmetabolic syndrome, diabetic complications and hyperinsulinemia.

The conditions, diseases and maladies collectively referred to as "diabetic complications" include retinopathy, neuropathy and nephropathy, and other known complications of diabetes.

The term "other type(s) of therapeutic agents" as employed herein refers to one or more antidiabetic agents (other than compounds of formula I), one or more antiobesity agents, and/or one or more lipid-lowering agents, one or more lipid modulating agents (including antiatherosclerosis agents), and/or one or more antiplatelet agents, one or more agents for treating hypertension, one or more anti-cancer drugs, one or more agents for treating arthritis, one or more anti-osteoporosis agents, one or more anti-obcsity agents, onc or morc agents for trcating immunomodulatory diseases, and/or one or more agents for treating anorexia nervosa.

The term "lipid-modulating" agent as employed herein refers to agents which lower LDL and/or raise HDL and/or lower triglycerides and/or lower total cholesterol and/or other known mechanisms for therapeutically treating lipid disorders.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of the formula I of the present invention may be prepared according to the following general syn-
thetic schemes, as well as relevant published literature procedures that are used by one skilled in the art. Exemplary reagents and procedures for these reactions appear hereinafter and in the working Examples. Protection and deprotection in the Schemes below may be carried out by procedures generally known in the art (see, for example, T. W. Greene \& P. G. M. Wuts, Protecting Groups in Organic Synthesis, $3^{\text {rd }}$ Edition, 1999 [Wiley]).

Scheme 1 describes a general synthesis of the amino acids described in this invention. An alcohol $1\left(\mathrm{R}^{5}\left(\mathrm{CH}_{2}\right)_{x}^{2} \mathrm{OH}\right)$ is coupled with a hydroxy aryl- or heteroaryl-aldehyde 2 (preferably 3- or 4-hydroxybenzaldehyde) under standard Mitsunobu reaction conditions (e.g. Mitsunobu, O., Synthesis, 1981, 1). The resulting aldehyde 3 is then subjected to reductive amination using procedures known in the literature (e.g. Abdel-Magid et al, J. Org. Chem. 1996, 61, 3849) with an α-amino ester hydrochloride 4. PG in Scheme 1 denotes a preferred carboxylic acid-protecting group, such as a methyl or tert-butyl ester. The resulting secondary amino-ester 5 is then subjected to a second reductive amination using methods known in the literature (e.g. AbdelMagid et al, J. Org. Chem. 1996, 61, 3849) with an $\mathrm{R}^{3 a}$ aldehyde 6 . Final deprotection of the carboxylic acid ester under standard conditions known in the literature (reference: Greene et al supra) utilizing basic conditions (for methyl esters) or acidic conditions (for tert-butyl esters) then furnishes the desired amino acid products II.

An alternative route to the aldehyde 3 is shown in Scheme 1 A . Alcohol $1\left(\mathrm{R}^{5}\left(\mathrm{CH}_{2}\right)_{x} \mathrm{OH}\right)$ is treated with methanesulfonyl chloride to give the corresponding mesylate 7. The mesylate 7 is then alkylated under standard basic conditions with a hydroxyaryl or hydroxyheteroaryl aldehyde 2 to furnish the aldehyde 3.

A route to the amino acids III is shown in Scheme 2. The secondary amine-ester 5 is deprotected under standard conditions (basic conditions if the protecting group (PG) is methyl; acidic conditions if PG is tert-butyl; ref. Greene et al supra) to furnish the corresponding amino acid 8 . Reductive amination with aldehyde 9 under analogous conditions as described in Scheme 1 provides the desired tertiary amino acid products III.

Alternatively, as shown in Scheme 3, reaction of the secondary amine-ester 5 with an alkylating agent 10 (with an appropriate leaving group (LG) such as halide, mesylate, or tosylate) under standard conditions followed by deprotection of the carboxylic acid ester 11 provides the desired tertiary amino acids III.

As shown in Scheme 4, the tertiary amino acid III may also be assembled through reductive amination first of the $\mathrm{R}^{3 a}$ aldehyde 12 with an appropriate amine ester hydrochloride 4. The resulting secondary amine-ester 13 then is subjected to reductive amination with appropriate alkyl, aryl or heteroaryl aldehydes 3 (as in Scheme 1) followed by deprotection of the carboxylic acid ester to give the desired amino acid analogs III.

An alternative general synthesis of amino acid analogs II is shown in Scheme 5. A hydroxyaryl or heteroaryl aldehyde 2 is subjected to the usual reductive amination conditions with an appropriate amine-ester hydrochloride 4 . The resulting secondary amine-ester 14 is functionalized, in this case by a second reductive amination with aldehyde 6 to furnish the corresponding hydroxy tertiary amine-ester 15 . Phenol 15 now undergoes a Mitsunobu reaction with a preferred alcohol $1\left(\mathrm{R}^{5}-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OH}\right)$ which is followed by the deprotection of the product, ester 16 , to furnish the desired amino acid analogs II.

Scheme 6 illustrates the synthesis of the carbamate-acid analogs IV. The secondary amine-ester 5 can be reacted with appropriate chloroformates 17 under standard literature conditions (optimally in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} in the presence of a base such as $\mathrm{Et}_{3} \mathrm{~N}$) to furnish the corresponding carbamateesters. The requisite analogs IV are then obtained after deprotection of the carbamate-ester. Alternatively, the secondary amine-ester 5 can be reacted with phosgene to generate the corresponding carbamyl chloride 18 . This carbamyl chloride intermediate 18 can be reacted with $\mathrm{R}^{3 a}$ OH (19; optimally substituted phenols) to afford the corresponding carbamate-acids IV after deprotection.

The secondary amine-ester 5 can be functionalized with substituted aryl or aliphatic carboxylic acids 20 , under standard peptide coupling conditions, as illustrated in Scheme 7. The amide bond-formation reactions are conducted using standard peptide coupling procedures known in the art. Optimally, the reaction is conducted in a solvent such as DMF at $0^{\circ} \mathrm{C}$. to RT using 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC or EDCI or WSC), 1-hydroxybenzotriazole (HOBT) or 1-hydroxy-7-azabenzotriazole (HOAT) and a base, e.g. diisopropylethylamine, N -methyl morpholine or triethylamine. Deprotection of the amide-ester then furnishes the desired amide-acid analogs V .

The secondary amine-ester 5 can also be reacted with aliphatic or aryl isocyanates 21 to provide the corresponding urea-esters. Deprotection of this product provides the desired urea-acid analogs VI, as shown in Scheme 8. Alternatively, as shown in Scheme 9, the carbamyl chloride intermediate 18 described in Scheme 6 can be reacted with appropriate primary or secondary aliphatic or aryl amines 23 and 23 in the presence of a tertiary amine (e.g. $\mathrm{Et}_{3} \mathrm{~N}$) to furnish tri- or tetrasubstituted urea-acid analogs VII or VIII after deprotection of the ester.

The secondary amine-ester 5 can also be reacted with appropriate sulfonyl chlorides 24 under standard literature conditions (optimally in the presence of a base such as pyridine, either neat or using chloroform as a co-solvent), followed by deprotection, to provide the corresponding sulfonamide-acids IX, as shown in Scheme 10.

The different approaches to the preparation of the preferred racemic α-alkylbenzyl carbamate-acid and amino acid analogs X and XI respectively are exemplified in synthetic Schemes 11 and 12. In Scheme 11 a substituted aryl nitrile (with a suitable aromatic heterocycle R^{5} already appended) is treated with an appropriate organometallic reagent (e.g. a Grignard reagent $\mathrm{R}^{10} \mathrm{MgX} 26$ or an organolithium reagent $\mathrm{R}^{10} \mathrm{Li}$) under standard conditions to give the corresponding imine intermediate, which is immediately reduced (e.g. with $\mathrm{Li} \mathrm{NlH}_{4}$) to give the corresponding primary amine 27 . Amine 27 is then reacted with an appropriately substituted α-halo-ester 28 to provide the corresponding α-amine-ester 29 . It will be understood that in the amine-ester 29, the moiety

does not necessarily represent two repeating units.
Acylation of the amine-ester 29 with an appropriately substituted aryl or heteroaryl chloroformates 17 followed by deprotection provides the racemic carbamate-acid analogs X. Reductive amination of alkylbenzyl amine-ester 29 with aryl aldehyde 6 followed by deprotection provides the racemic amino-acid analogs XI. diately reduced (e.g. with LiAlH_{4}) to give the corresponding primary amine 31 . This amine is then reacted with an appropriately substituted α-halo-ester 28 to give the corresponding α-amine-ester 32 . This intermediate 32 can then be acylated with an appropriately substituted aryl or heteroaryl chloroformate 17 to provide the corresponding carbamateester, whose phenolic functionality is then deprotected to provide the key intermediate phenol 33. Alkylation of the phenol 33 with a halide or mesylate 7 followed by deprotection provides the racemic carbamate-acid analogs X. An analogous sequence, which involves reductive amination of the secondary amino-ester 32 with an aryl or heteroaryl aldehyde 6 , then selective phenol deprotection, alkylation with mesylate 7 and a final deprotection, provides the racemic amino acid analogs XI.
A synthesis of chiral carbamate analogs XII and amino acid analogs XIII is shown in Scheme 13. Asymmetric reduction (e.g. using the Corey oxazaborolidine reduction protocol; review: E. J. Corey \& C. Helal, Angew. Chem. Int. Ed. Engl., 1998, 37, 1986-2012) of the aryl-ketone 34 provides each of the two desired enantiomeric alcohols 35 (although only one enantiomer is represented in the scheme). Treatment of the chiral alcohol 35 with azide in a Mitsunobu-like reaction (ref: A. S. Thompson et. al., J. Org. Chem. 1993, 58, 5886-5888) gives the corresponding chiral azide (with inverted stereochemistry from the starting alcohol). This azide is then reduced to the amine 36 by standard methods (e.g. hydrogenation or $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$). Treatment of the chiral amine 36 with an α-halo-ester 28 provides the secondary amine-ester 37 . Acylation of aminoester 36 with an aryl or heteroaryl chloroformate 17 followed by deprotection provides the chiral carbamate-acid analogs XII (which may be either enantiomer depending upon the stereochemistry of 36). Reductive amination of alkyl amino-ester 37 with aryl aldehydes 6 followed by deprotection provides the chiral amino-acid analogs XIII (which may be either enantiomer depending upon the stereochemistry of 36).

An alternative synthesis of analogs XII and XIII is shown in Scheme 14. An appropriately protected oxyaryl ketone 38 undergoes asymmetric reduction to give the chiral alcohol 39. This is converted to the chiral amine 40 via the identical sequence as in Scheme 13 (via the chiral aride). Treatment of the chiral amine 40 with an ester 28 ($\mathrm{LG}=$ halogen or mesylate) gives the corresponding secondary amino-ester 41. Acylation of 41 with an aryl or heteroaryl chloroformate 17 provides the corresponding carbamate-ester. Selective deprotection furnishes the free phenol carbamate-ester 42. Alkylation of the phenol 42 with a halide or mesylate 7 followed by deprotection provides the chiral carbamate-acid analogs XII. An analogous scquence which involves reductive amination of the secondary amine-ester 41 with an aryl or heteroaryl aldehyde 6 , then selective deprotection, alkylation with 7 and a final deprotection, provides the chiral amino acid analogs XIII. It will be appreciated that either the (R)- or (S)-enantiomer of X or XI may be synthesized in Schemes 13 and 14 , depending upon the chirality of the reducing agent employed.

A preferred alternative asymmetric synthesis of carbamate-acids XII is shown in Scheme 15. Protection of a chiral amine 43 (with the phenol differently protected), preferably as a carbamate, provides intermediate 44 . Selec-
tive removal of the phenolic protecting group of 44 provides

Alternatively (as shown in Scheme 12), a protected aryl or heteroaryl nitrile 30 is treated with an appropriate organometallic reagent (e.g. a Grignard reagent $\mathrm{R}^{10} \mathrm{MgX} 26$) to give the corresponding imine intermediate, which is imme-
the free phenol 45 . Alkylation of phenol 45 with the mesylate 7 furnishes the protected amine 46. Deprotection of the amine of 45 then furnishes the key intermediate, the primary amine-ester 36 , which then undergoes alkylation with a α-halo-ester 28 in the presence of base to provide the secondary amine 37 . Reaction of amine 37 with a chloroformate 17 provides the chiral carbamate acid analogs XII.

A preferred asymmetric synthesis of analogs XIV and XV is shown in Scheme 16. The aldehyde 3 is subjected to standard Wittig reaction conditions (ref: Preparation of Alkenes, a Practical Approach, J. J. Williams, Ed., Chapter 2, pp 19-58) to furnish the alkene 47. Asymmetric aminohydroxylation according to known literature procedures (ref: O'Brien, P., Angew. Chem. Int. Ed., 1999, 38, 326 and Reddy, K. L., and Sharpless, K. B., J. Am. Chem. Soc., 1998, 120,1207) furnishes the desired amino-alcohol 48 as a single enantiomer. It is understood that this reaction can produce either enantiomer (of which only one is shown here). Selective protection of the amine 48 provides the alcohol 49. Alcohol 49 is then converted by standard methods to the intermediate 50 , which contains a suitable leaving group (either a halide or a mesylate) for the subsequent cuprate displacement reaction. Reaction of an appropriate higher-order cuprate 51 (ref: L. A. Paquette, Ed., Organic Reactions, 1992, Vol. 41, J. Wiley \& Sons) with the protected amine substrate 50 provides the coupled, protected amine 52 . Deprotection of the amine functionality of 52 , followed by reaction with an ester 28 ($\mathrm{LG}=$ halogen or mesylate), furnishes the corresponding secondary aminoester 53. Acylation of amine 53 with an aryl or heteroaryl chloroformate 17 provides the corresponding carbamateester, which is then deprotected to furnish the carbamateacid analogs XIV.

Alternatively, reductive amination of amine 53 with an aldehyde 6 followed by deprotection provides the tertiary amino acid analogs XV.

The synthesis of carbon-linked analogs are shown in Schemes 17-19. Scheme 17 describes a general synthesis of the acetylene-linked acids XVI and the alkyl-linked acids XVII. A halo-substituted aryl aldehyde 54 (preferably iodide or bromide) is subjected to reductive amination using procedures known in the literature (e.g. Abdel-Magid et al, J. Org. Chem. 1996, 61, 3849) with an α-amino acid ester hydrochloride V . The resulting secondary amino-ester 55 is then reacted with an aryl or heteroaryl chloroformate 17 in the presence of an appropriate base (e.g. pyridine or triethylamine) to furnish the corresponding halo-aryl carbamate-ester 56 . Aryl halide 56 is then reacted with an appropriate heteroaryl $\left(\mathrm{R}^{5}\right)$-substituted acetylene 57 in the presence of an appropriate palladium catalyst (e.g. $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$ ${ }_{2} \mathrm{PdCl}_{2} /$ and a copper (I) salt (e.g. CuI) in a Sonogashira coupling reaction (ref: Organocopper Reagents, a Practical Approach, R. J. K. Taylor, Ed., Chapter 10, pp 217-236, Campbell, I. B., Oxford University Press, 1994) to furnish the key intermediate, arylacetylenc 58 . The arylacetylenc ester 58 is deprotected to provide the corresponding arylacetylene acid analogs XVI. The acetylene moiety of 58 can be reduced by standard methods (e.g. hydrogenation, ref: M. Hudlicky, Reductions in Organic Chemistry, $2^{\text {nd }}$ Edition, ACS, 1996, Chapter 1) to furnish the corresponding fully saturated alkyl aryl carbamate esters, which are then deprotected to give the alkyl aryl carbamate acid analogs XVII.

Stereoselective reduction of the acetylene ester 58 by standard methods (e.g. Lindlar's catalyst; ref: Preparation of Alkenes, A Practical Approach, J. J. Williams, Ed., Chapter 6 , pp 117-136, Oxford University Press, 1996) can be achieved to provide the corresponding cis-alkenyl aryl
carbamate-ester, which is then deprotected to furnish the Z-alkenyl aryl carbamate acid analogs XVIII (Scheme 18). Alternatively, this sequence can be reversed, i.e. the initial step being the deprotection of acetylenic ester 58 to the acetylenic acid, followed by stereoselective reduction of the acetylene moiety to provide the Z-alkene-acid analogs XVIII.

The corresponding trans-alkenyl aryl carbamate acids XIX are synthesized according to the general route in Scheme 19. A heteroaryl $\left(\mathrm{R}^{5}\right)$-acetylene 57 is halogenated under standard conditions (ref: Boden, C. D. J. et al., J. Chem. Soc. Perkin Trans. I, 1996, 2417; or Lu, W. et. al., Tetrahedron Lett. 1998, 39, 9521) to give the corresponding halo-acetylene, which is then converted to the corresponding trans-alkenyl stannane 59 (ref: Boden, C. D. J., J. Chem. Soc., Perkin Trans. 1,1996, 2417). This aryl- or heteroarylsubstituted trans-alkenyl stannane 59 is then coupled with the halo-aryl carbamate ester 56 under standard Stille coupling conditions (ref: Farina, V. et. al., "The Stille Reaction", Organic Reactions, $1997,50,1)$ to furnish the corresponding trans-alkenyl aryl carbamate ester 60 . This carbamate-ester is then deprotected under standard conditions to give the desired trans-alkenyl aryl carbamate acid analogs XIX.

In Scheme 20, treatment of a suitably protected halo-aryl carbamate-ester 56 with a metallating agent (e.g. isopropyl magnesium bromide, reference: P. Knochel et al., Synthesis, 2002 , 565-569) furnishes the corresponding arylmagnesium reagent, which is then reacted with formaldehyde to provide benzyl alcohol 61. Treatment of alcohol 61 with mesylate VIII in the presence of base provides the corresponding ether-carbamate ester, which is then deprotected to furnish the ether-acid XX of the invention.

In Scheme 21, treatment of a suitably protected halo-aryl carbamate-ester 56 with an appropriate vinyl tin reagent (e.g. tributylvinyltin) under Stille coupling conditions (reference: Farina, V., Krishnamurthy, V., and Scott, W. J., Organic Reactions, 1997, 50, 1) provides the corresponding vinyl intermediate, which can then undergo hydroboration (e.g. borane-THF) to give the alcohol 62. Treatment of alcohol 62 with mesylate VIII in the presence of base provides the corresponding ether carbamate-ester, which is then deprotected to provide the ether acid XXI of the invention.

The synthesis of N -aryl acids XXII of the invention is shown in Scheme 22. Reductive amination of protected phenol-aldehyde 2 with an appropriate aniline 63 (or other heteroarylamine) provides the substituted aromatic amine intermediate 64 . N -alkylation of the aromatic amine 64 with an appropriate halo-substituted ester 65 in the presence of base (e.g. sodium hexamethyldisilazide) provides the N -aryl (or heteroaryl) ester 66. Deprotection of the phenol of amino-ester 66 provides free phenol 67 , which then undergoes Mitsunobu reaction (e.g. using cyanomethylene tributylphosphorane) With an appropriate alcohol 1 to provide the alkylated phenol N -aryl amino-ester 68. Deprotection of the ester 68 provides N -aryl (or N -heteroaryl) acids XXII of the invention. Alternatively, phenol 67 can be alkylated with mesylate 7 in the presence of base (e.g. $\mathrm{K}_{2} \mathrm{CO}_{3}$) followed by acid deprotection to also provide N -aryl (or N -heteroaryl) acids XXII of the invention.

13

14
-continued

15

PENN EX. 2139
8 of 57

15

Reductive Amination

5

16

15

Deprotect

II
20
Scheme 6

25

35

Scheme 5

40

IV

45

$(\mathrm{COCl})_{2}$

(14)

15

US 6,875,782 B2

17

Scheme 7

10

25

Scheme 8

30

35

40

VI
50

55

18

18
-continued

Scheme 9
VII

0

[^0]

18
$\xrightarrow[\text { 3) Deprotect }]{\text { XLV }}$
Sc

-

65

PENN EX. 2139

Scheme 11

Scheme 12

30

31

32

33
 1) $\xrightarrow[{\mathrm{R}^{5} \xrightarrow[\mathrm{x}^{2}]{ } \mathrm{OSO}_{2} \mathrm{CH}_{3} \text { (7) }}]{\text { 1) Base }}$
2) Deprotection

35
-continued

X

50 55

Scheme 13

-continued

Scheme 14

39

40

45

50

55

42

XII

23

20

Scheme 15

Scheme 16

48

PENN EX. 2139
13 of 57

25

51

$$
\left\lvert\, \begin{aligned}
& \text { 1) } \mathrm{R}^{3 \mathrm{a}}-\mathrm{OCOCl} \\
& (17) \\
& \text { 2) Deprotection }
\end{aligned}\right.
$$

(6)
reductive amination
Deprotection

XIV
-continued

$$
\text { 1) } \mathrm{R}^{33}-\mathrm{CHO}
$$ 2) Deprotection

Scheme 17

PENN EX. 2139

Scheme 18

PENN EX. 2139
15 of 57

(66)

(67)

(68)

(67)

Unless otherwise indicated, the term "lower alkyl", "alkyl" or "alk" as employed herein alone or as part of another group includes both straight and branched chain hydrocarbons, containing 1 to 20 carbons, preferably 1 to 10 carbons, more preferably 1 to 8 carbons, in the normal chain, and may optionally include an oxygen or nitrogen in the normal chain, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers above for "cycloalkyl".

The term "alkanoyl" as used herein alone or as part of another group refers to alkyl linked to a carbonyl group. Unless otherwise indicated, the term "lower alkenyl" or "alkenyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 1 to 8 carbons in the normal chain, which include one to six double bonds in the normal chain, and may optionally include an oxygen or nitrogen in the normal chain, such as vinyl, 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 5 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl, 4,8,12-tetradecatrienyl, and the like, and which
may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, hydroxy, heteroaryl, cycloheteroalkyl, alkanoylamino, alkylamido, arylcarbonylamino, nitro, cyano, thiol, alkylthio and/or any of the substituents for alkyl set out herein.

Unless otherwise indicated, the term "lower alkynyl" or "alkynyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one triple bond in the normal chain, and may optionally include an oxygen or nitrogen in the normal chain, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, heteroaryl, cycloheteroalkyl, hydroxy, alkanoylamino, alkylamido, arylcarbonylamino, nitro, cyano, thiol, and/or alkylthio, and/or any of the substituents for alkyl set out herein.

The terms "arylalkenyl" and "arylalkynyl" as used alone or as part of another group refer to alkenyl and alkynyl groups as described above having an aryl substituent.

Where alkyl groups as defined above have single bonds for attachment to other groups at two different carbon atoms, they are termed "alkylene" groups and may optionally be substituted as defined above for "alkyl".

Where alkenyl groups as defined above and alkynyl groups as defined above, respectively, have single bonds for attachment at two different carbon atoms, they are termed "alkenylene groups" and "alkynylene groups", respectively, and may optionally be substituted as defined above for "alkenyl" and "alkynyl".
$\left(\mathrm{CH}_{2}\right)_{x},\left(\mathrm{CH}_{2}\right)_{x}{ }^{1},\left(\mathrm{CH}_{2}\right)_{x}{ }^{2},\left(\mathrm{CH}_{2}\right)_{x}^{3}\left(\mathrm{CH}_{2}\right)_{x}^{4},\left(\mathrm{CH}_{2}\right)_{m}$ or $\left(\mathrm{CH}_{2}\right)_{n}$ includes alkylene, allenyl, alkenylene or alkynylene groups, as defined herein, each of which may optionally include an oxygen or nitrogen in the normal chain, which may optionally include 1,2 , or 3 substituents which include alkyl, alkenyl, halogen, cyano, hydroxy, alkoxy, amino, thioalkyl, keto, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, alkylcarbonylamino or alkylcarbonyloxy; the alkyl substituent may be an alkylene moiety of 1 to 4 carbons which may be attached to one or two carbons in the $\left(\mathrm{CH}_{2}\right)_{x},\left(\mathrm{CH}_{2}\right)_{x}{ }^{1},\left(\mathrm{CH}_{2}\right)_{x}{ }^{2},\left(\mathrm{CH}_{2}\right)_{x}{ }^{3}$, $\left(\mathrm{CH}_{2}\right)_{x}^{4},\left(\mathrm{CH}_{2}\right)_{x}^{3}\left(\mathrm{CH}_{2}\right)_{x}^{4}\left(\mathrm{CH}_{2}\right)_{n}$ group to form a cycloalkyl group therewith.

Examples of $\left(\mathrm{CH}_{2}\right)_{x},\left(\mathrm{CH}_{2}\right)_{x}{ }^{1},\left(\mathrm{CH}_{2}\right)_{x}{ }^{2},\left(\mathrm{CH}_{2}\right)_{x}{ }^{3}\left(\mathrm{CH}_{2}\right)_{x}^{4}$ $\left(\mathrm{CH}_{2}\right)_{m},\left(\mathrm{CH}_{2}\right)_{n}$, alkylene, alkenylene and alkynylene include:
 and may optionally include one to three additional rings fused to a carbocyclic ring or a heterocyclic ring (such as
aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings for example:

and may be optionally substituted through available carbon atoms with 1, 2, or 3 groups selected from hydrogen, halo, haloalkyl, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl-alkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, alkoxycarbonyl, arylcarbonyl, arylalkenyl, aminocarbonylaryl, arylthio, arylsulfinyl, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino or arylsulfonaminocarbonyl and/or any of the substituents for alkyl set out herein.

Unless otherwise indicated, the term "lower alkoxy", "alkoxy", "aryloxy" or "aralkoxy" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to an oxygen atom.

Unless otherwise indicated, the term "substituted amino" as employed herein alone or as part of another group refers to amino substituted with one or two substituents, which may be the same or different, such as alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloheteroalkyl, cycloheteroalkylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl or thioalkyl. These substituent may be further substituted with a carboxylic acid and/or any of the substituents for alkyl as set out above. In addition, the amino substituent may be taken together with the nitrogen atom to which they are attached to form

1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiamorpholinyl, 1-piperazinyl, 4-alkyl-1-piperazinyl, 4-arylalkyl-1-piperazinyl, 4-diarylalkyl-1-piperazinyl, 1-pyrrolidinyl, 1-piperidinyl, or 1-azepinyl, optionally substituted with alkyl, alkoxy, alkylthio, halo, trifluoromethyl or hydroxy.

Unless otherwise indicated, the term "lower alkylthio", "alkylthio", "arylthio" or "aralkylthio" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to a sulfur atom.
Unless otherwise indicated, the term "lower alkylamino", "alkylamino", "arylamino", or "arylalkylamino" as employed herein alone or as part of another group includes any of the above alkyl, aryl or arylalkyl groups linked to a nitrogen atom.
Unless otherwise indicated, the term "acyl" as employed herein by itself or part of another group, as defined herein, refers to an organic radical linked to a carbonyl

group; examples of acyl groups include any of the R^{3} groups attached to a carbonyl, such as alkanoyl, alkenoyl, aroyl, aralkanoyl, heteroaroyl, cycloalkanoyl, cycloheteroalkanoyl and the like.
Unless otherwise indicated, the term "cycloheteroalkyl" as used herein alone or as part of another group refers to a $5-, 6-$ or 7 -membered saturated or partially unsaturated ring which includes 1 to 2 hetero atoms such as nitrogen, oxygen and/or sulfur, linked through a carbon atom or a heteroatom, where possible, optionally via the linker $\left(\mathrm{CH}_{2}\right)_{p}$ (where p is 1,2 or 3), such as

and the like. The above groups may include 1 to 4 substituents such as alkyl, halo, oxo and/or any of of the substituent for alkyl or aryl set out herein. In addition, any of the cycloheteroalkyl rings can be fused to a cycloalkyl, aryl, heteroaryl or cycloheteroalkyl ring.

Unless otherwise indicated, the term "heteroaryl" as used herein alone or as part of another group refers to a 5 - or 6 -membered aromatic ring including

where Q is N , which includes $1,2,3$ or 4 hetero atoms such as nitrogen, oxygen or sulfur, and such rings fused to an aryl, cycloalkyl, heteroaryl or cycloheteroalkyl ring (e.g benzothiophenyl, indolyl), and includes possible N -oxides. The heteroaryl group may optionally include 1 to 4 substituents such as any of the the substituents for alkyl or aryl set out above. Examples of heteroaryl groups include the following:

and the like.
The term "cycloheteroalkylalkylyl" as used herein alone or as part of another group refers to cycloheteroalkyl groups as defined above linked through a C atom or heteroatom to a $\left(\mathrm{CH}_{2}\right)_{p}$ chain.

The term "heteroarylalkyl" or "heteroarylalkenyl" as used herein alone or as part of another group refers to a heteroaryl group as defined above linked through a C atom or heteroatom to a $-\left(\mathrm{CH}_{2}\right)_{p}$ - chain, alkylene or alkenylene as defined above.

The term "polyhaloalkyl" as used herein refers to an "alkyl" group as defined above which includes from 2 to 9 , preferably from 2 to 5 , halo substituents, such as F or Cl , preferably F , such as $\mathrm{CF}_{3} \mathrm{CH}_{2}, \mathrm{CF}_{3}$ or $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CH}_{2}$.

The term "polyhaloalkyloxy" as used herein refers to an "alkoxy" or "alkyloxy" group as defined above which includes from 2 to 9 , preferably from 2 to 5 , halo substituents, such as F or Cl , preferably F , such as $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CF}_{3} \mathrm{O}$ or $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{O}$.
'The term "prodrug esters" as employed herein includes prodrug esters which are known in the art for carboxylic and
phosphorus acid esters such as methyl, ethyl, benzyl and the like. Other prodrug ester examples of R^{4} include the following groups:
(1-alkanoyloxy)alkyl such as,
wherein R^{a} can be H , alkyl (such as methyl or t-butyl), arylalkyl (such as benzyl) or aryl (such as phenyl); R^{d} is H , alkyl, halogen or alkoxy, R^{e} is alkyl, aryl, arylalkyl or alkoxyl, and n_{1} is 0,1 or 2 .

Where the compounds of structure I are in acid form they may form a pharmaceutically acceptable salt such as alkali metal salts such as lithium, sodium or potassium, alkaline earth metal salts such as calcium or magnesium as well as zinc or aluminum and other cations such as ammonium, choline, diethanolamine, lysine (D or L), ethylenediamine, t-butylamine, t-octylamine, tris-(hydroxymethyl) aminomethane (TRIS), N-methyl glucosamine (NMG), triethanolamine and dehydroabietylamine.

All stereoisomers of the compounds of the instant invention are contemplated, either in admixture or in pure or substantially pure form. The compounds of the present invention can have asymmetric centers at any of the carbon atoms including any one or the R substituents. Consequently, compounds of formula I can exist in enantiomeric or diastereomeric forms or in mixtures thereof. The
processes for preparation can utilize racemates, enantiomers or diastereomers as starting materials. When diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods for example, chromatographic or fractional crystallization.

Where desired, the compounds of structure I may be used in combination with one or more hypolipidemic agents or lipid-lowering agents and/or one or more other types of therapeutic agents including antidiabetic agents, anti-obesity agents, antihypertensive agents, platelet aggregation inhibitors, and/or anti-osteoporosis agents, which may be administered orally in the same dosage form, in a separate oral dosage form or by injection.

The hypolipidemic agent or lipid-lowering agent which may be optionally employed in combination with the compounds of formula I of the invention may include 1,2,3 or more MTP inhibitors, HMG Co \wedge reductase inhibitors, squalene synthetase inhibitors, fibric acid derivatives, ACAT inhibitors, lipoxygenase inhibitors, cholesterol absorption inhibitors, ileal $\mathrm{Na}^{+} /$bile acid cotransporter inhibitors, upregulators of LDL receptor activity, bile acid sequestrants, and/or nicotinic acid and derivatives thereof.

MTP inhibitors employed herein include MTP inhibitors disclosed in U.S. Pat. Nos. 5,595,872, 5,739,135, 5,712,279, $5,760,246,5,827,875,5,885,983$ and U.S. application Ser. No. 09/175,180 filed Oct. 20, 1998, now U.S. Pat. No. $5,962,440$. Preferred are each of the preferred MTP inhibitors disclosed in each of the above patents and applications.

All of the above U.S. patents and applications are incorporated herein by reference.

Most preferred MTP inhibitors to be employed in accordance with the present invention include preferred MTP inhibitors as set out in U.S. Pat. Nos. 5,739,135 and 5,712, 279 , and 5,760,246.

The most preferred MTP inhibitor is $9-[4-[4-[[2-(2,2,2-$ Trifluoroethoxy)benzoyl]amino]-1-piperidinyl] butyl]-N-(2, 2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

The hypolipidemic agent may be an HMG CoA reductase inhibitor which includes, but is not limited to, mevastatin and related compounds as disclosed in U.S. Pat. No. 3,983, 140, lovastatin (mevinolin) and related compounds as disclosed in U.S. Pat. No. 4,231,938, pravastatin and related compounds such as disclosed in U.S. Pat. No. 4,346,227, simvastatin and related compounds as disclosed in U.S. Pat. Nos. $4,448,784$ and $4,450,171$. Other HMG CoA reductase inhibitors which may be employed herein include, but are not limited to, fluvastatin, disclosed in U.S. Pat. No. 5,354, 772, atorvastatin disclosed in U.S. Pat. Nos. 4,681,893, $5,273,995,5,385,929$ and $5,686,104$, itavastatin (Nissan/ Sankyo's nisvastatin (NK-104)) disclosed in U.S. Pat. No. 5,011,930, Shionogi-Astra/Zeneca visastatin (ZD-4522) disclosed in U.S. Pat. No. 5,260,440, and related statin compounds disclosed in U.S. Pat. No. 5,753,675, pyrazole as disclosed in, Drugs of the Future 24, 9-15 (1999), (Avasimibe); "The ACAT inhibitor, $\mathrm{Cl}-1011$ is effective in
the prevention and regression of aortic fatty streak area in hamsters", Nicolosi et al, Atherosclerosis (Shannon, Irel). (1998), 137(1), 77-85; "The pharmacological profile of FCE 27677: a novel ACAT inhibitor with potent hypolipidemic activity mediated by selective suppression of the hepatic secretion of ApoB100-containing lipoprotein", Ghiselli, Giancarlo, Cardiovasc. Drug Rev. (1998), 16(1), 16-30; "RP 73163: a bioavailable alkylsulfinyl-diphenylimidazole ACAT inhibitor", Smith, C., et al, Bioorg. Med. Chem. Lett. (1996), 6(1), 47-50; "ACAT inhibitors: physiologic mechanisms for hypolipidemic and anti-atherosclerotic activities in experimental animals", Krause et al, Editor(s): Ruffolo, Robert R., Jr.; Hollinger, Mannfred A., Inflammation: Mediators Pathways (1995), 173-98, Publisher: CRC, Boca Raton, Fla.; "ACAT inhibitors: potential anti-atherosclerotic agents", Sliskovic et al, Curr. Med. Chem. (1994), 1(3), 204-25; "Inhibitors of acyl-CoA:cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. 6. The first water-soluble ACAT inhibitor with lipid-regulating activity. Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). 7. Development of a series of substituted N -phenyl- N^{-}[(1phenylcyclopentyl)methyl]ureas with enhanced hypocholesterolemic activity", Stout et al, Chemtracts: Org. Chem. (1995), 8(6), 359-62, or TS-962 (Taisho Pharmaceutical Co. Ltd) as well as F-1394, CS-505, F-12511, HL-004, K-10085 and YIC-C8-434.

The hypolipidemic agent may be an upregulator of LDL receptor activity such as MD-700 (Taisho Pharmaceutical Co. Ltd) and LY295427 (Eli Lilly).

The hypolipidemic agent may be a cholesterol absorption inhibitor preferably Schering-Plough's SCH48461 (ezetimibe) as well as those disclosed in Atherosclerosis 115, 45-63 (1995) and J. Med. Chem. 41, 973 (1998).

The hypolipidemic agent may be an ileal Na^{+}bile acid cotransporter inhibitor such as disclosed in Drugs of the Future, 24, 425-430 (1999).

The lipid-modulating agent may be a cholesteryl ester transfer protein (CETP) inhibitor such as Pfizer's CP 529, 414 as well as those disclosed in WO/0038722 (i.e. (torcetrapib) and in EP 818448 (Bayer) and EP 992496 and Pharmacia's SC-744 and SC-795, as well as CETi-1 and JTT-705.

The ATP citrate lyase inhibitor which may be employed in the combination of the invention may include, for example, those disclosed in U.S. Pat. No. 5,447,954.

The other lipid agent also includes a phytoestrogen compound such as disclosed in WO 00/30665 including isolated soy bean protein, soy protein concentrate or soy flour as well as an isoflavone such as genistein, daidzein, glycitein or equol, or phytosterols, phytostanol or tocotrienol as disclosed in WO 2000/015,201; a beta-lactam cholesterol absorption inhibitor such as disclosed in EP 675714; an HDL upregulator such as an LXR agonist, a PPAR alpha agonist and/or an FXR agonist; a PPAR delta agonist (e.g. GW-501516, rcf: Oliver, Jr., W. R., ct. al, Proc. Nat. Acad. Sci. USA, 2001, 98, 5306-5311), an LDL catabolism promoter such as disclosed in EP 1022272; a sodium-proton exchange inhibitor such as disclosed in DE 19622222; an LDL-receptor inducer or a steroidal glycoside such as disclosed in U.S. Pat. No. $5,698,527$ and GB 2304106; an anti-oxidant such as beta-carotene, ascorbic acid, α-tocopherol or retinol as disclosed in WO 94/15592 as well as Vitamin C and an antihomocysteine agent such as folic acid, a folate, Vitamin B6, Vitamin B12 and Vitamin E; isoniazid as disclosed in WO 97/35576; a cholesterol absorption inhibitor, an HMG-CoA synthase inhibitor, or a lanosterol demethylase inhibitor as disclosed in WO may be employed together in the same oral dosage form or in separate oral dosage forms taken at the same time.

The compositions described above may be administered in the dosage forms as described above in single or divided doses of one to four times daily. It may be advisable to start a patient on a low dose combination and work up gradually to a high dose combination.

The preferred hypolipidemic agent is pravastatin, simvastatin, lovastatin, atorvastatin, fluvastatin or rosuvastatin as well as niacin and/or cholestagel.

The other antidiabetic agent which may be optionally employed in combination with the compound of formula I may be $1,2,3$ or more antidiabetic agents or antihyperglycemic agents including insulin secretagogues or insulin sensitizers, or other antidiabetic agents preferably having a mechanism of action different from the compounds of formula I of the invention, which may include biguanides, sulfonyl ureas, glucosidase inhibitors, PPAR γ agonists such as thiazolidinediones, PPAR α agonists such as fibric acid derivatives, PPAR δ agonists or antagonists, PPAR α / γ dual agonists, aP2 inhibitors, dipeptidyl peptidase IV (DP4) inhibitors, SGLT2 inhibitors, glycogen phosphorylase inhibitors, glucagon-like peptide-1 (GLP-1), PTP-1B (protein tyrosine phosphatase-1B) inhibitors, 11 β-HSD 1 (11β-hydroxy-steroid dehydrogenase 1) inhibitors and/or meglitinides, as well as insulin.

The other antidiabetic agent may be an oral antihyperglycemic agent preferably a biguanide such as metformin or phenformin or salts thereof, preferably metformin HCl .

Where the antidiabetic agent is a biguanide, the compounds of structure I will be employed in a weight ratio to biguanide within the range from about $0.001: 1$ to about $10: 1$, preferably from about $0.01: 1$ to about $5: 1$.

The other antidiabetic agent may also preferably be a sulfonyl urea such as glyburide (also known as glibenclamide), glimepiride (disclosed in U.S. Pat. No. $4,379,785$), glipizide, gliclazide or chlorpropamide, other known sulfonylureas or other antihyperglycemic agents which act on the ATP-dependent channel of the β-cells, with glyburide and glipizide being preferred, which may be administered in the same or in separate oral dosage forms.

The compounds of structure I will be employed in a weight ratio to the sulfonyl urea in the range from about $0.01: 1$ to about $100: 1$, preferably from about $0.02: 1$ to about 5:1.

The oral antidiabetic agent may also be a glucosidase inhibitor such as acarbose (disclosed in U.S. Pat. No. $4,904,769$) or miglitol (disclosed in U.S. Pat. No. 4,639, 436), which may be administered in the same or in a separate oral dosage forms.

The compounds of structure I will be employed in a weight ratio to the glucosidase inhibitor within the range from about $0.01: 1$ to about $100: 1$, preferably from about $0.05: 1$ to about 10:1.

The compounds of structure I may be employed in combination with a PPAR γ agonist such as a thiazolidinedione oral anti-diabetic agent or other insulin sensitizers (which has an insulin sensitivity cffect in NIDDM patients) such as rosiglitazone (Glaxo SmithKline), pioglitazone (Takeda), Mitsubishi's MCC-555 (disclosed in U.S. Pat. No. $5,594,016$), Glaxo-Welcome's GL-262570, englitazone (CP-68722, Pfizer) or darglitazone (CP-86325, Pfizer, isaglitazone (MIT/J\&J), JTT-501 (JPNT/P\&U), L-895645 (Merck), R-119702 (Sankyo/WL), NN-2344 or balaglitazone (Dr. Reddy/NN), or YM-440 (Yamanouchi), preferably rosiglitazone and pioglitazone.

The compounds of structure I will be employed in a weight ratio to the thiazolidinedione in an amount within the range from about $0.01: 1$ to about $100: 1$, preferably from about 0.05 to about 10:1.

The compounds of structure I may also be employed in combination with a antihyperglycemic agent such as insulin or with glucagon-like peptide-1 (GLP-1) such as GLP-1 (1-36) amide, GLP-1 (7-36) amide, GLP-1 (7-37) (as disclosed in U.S. Pat. No. 5,614,492 to Habener, the disclosure of which is incorporated herein by reference), as well as AC2993 (Amylin) and LY-315902 (Lilly), which may be administered via injection, intranasal, inhalation or by transdermal or buccal devices.

Where present, metformin, the sulfonyl ureas, such as glyburide, glimepiride, glipyride, glipizide, chlorpropamide and gliclazide and the glucosidase inhibitors acarbose or miglitol or insulin (injectable, pulmonary, buccal, or oral) may be employed in formulations as described above and in amounts and dosing as indicated in the Physician's Desk Reference (PDR).

Where present, metformin or salt thereof may be employed in amounts within the range from about 500 to about 2000 mg per day which may be administered in single or divided doses one to four times daily.
Where present, the thiazolidinedione anti-diabetic agent may be employed in amounts within the range from about 0.01 to about $2000 \mathrm{mg} /$ day which may be administered in single or divided doses one to four times per day.

Where present insulin may be employed in formulations, amounts and dosing as indicated by the Physician's Desk Reference.

Where present GLP-1 peptides may be administered in oral buccal formulations, by nasal administration or parenterally as described in U.S. Pat. No. 5,346,701 (TheraTech), U.S. Pat. Nos. 5,614,492 and $5,631,224$ which are incorporated herein by reference.

The other antidiabetic agent may also be a PPAR α / γ dual agonist such as AZ-242/tesaglitazar (Astra/Zeneca; as described: in B. Ljung et. al., J. Lipid Res., 2002, 43, 1855-1863), GW-409544 (Glaxo-Wellcome), KRP-297/ MK-767 (Kyorin/Merck; as described in: K. Yajima et. al., Am. J. Physiol. Endocrinol. Metab., 2003, 284: E966-E971) as well as those disclosed by Murakami et al, "A Novel Insulin Sensitizer Acts As a Coligand for Peroxisome Proliferation-Activated Receptor Alpha (PPAR alpha) and PPAR gamma. Effect on PPAR alpha Activation on Abnormal Iipid Metabolism in Iiver of Zucker Fatty Rats", Diabetes 47, 1841-1847 (1998) or the compounds (from Bristol-Myers Squibb) described in U.S. Pat. No. 6,414,002.
The antidiabetic agent may be an SGLT2 inhibitor such as disclosed in U.S. provisional application No. 60/158,773, filed Oct. 12, 1999 employing dosages as set out therein. Preferred are the compounds designated as preferred in the above application.
The antidiabctic agent may be an aP2 inhibitor such as disclosed in U.S. application Ser. No. 09/391,053, filed Sep. 7, 1999, and in U.S. provisional application No. 60/127,745, filed Apr. 5, 1999, employing dosages as set out herein. Preferred are the compounds designated as preferred in the above application.

The antidiabetic agent may be a DP4 (Dipeptidyl peptidase IV) inhibitor such as disclosed in Provisional Application 60/188,555 filed Mar. 10, 2000, WO99/38501, WO99/ 46272, WO99/67279 (PROBIODRUG), WO99/67278
(PROBIODRUG), WO99/61431 (PROBIODRUG), NVP-amino]acetyl]-2-cyano-(S)-pyrrolidine) (Novartis)

The sulfonyl urea and thiazolidinedione in amounts of less than about 150 mg oral antidiabetic agent may be incorporated in a single tablet with the compounds of structure I.
(preferred) as disclosed by Hughes et al, Biochemistry, 38(36), 11597-11603, 1999, TSL-225 (tryptophyl-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (disclosed by Yamada et al, Bioorg. \& Med. Chem. Lett. 8 (1998) 1537-1540, 2-cyanopyrrolidides and 4-cyanopyrrolidides as disclosed by Ashworth et al, Bioorg. \& Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996) employing dosages as set out in the above references.

The meglitinide which may optionally be employed in combination with the compound of formula I of the invention may be repaglinide, nateglinide (Novartis) or KAD1229 ($\mathrm{PF} / \mathrm{Kisse}$), with repaglinide being preferred.

The compound of formula I will be employed in a weight ratio to the meglitinide, PPAR γ agonist, PPAR α / γ dual agonist, aP2 inhibitor, DP4 inhibitor or SGLT2 inhibitor within the range from about $0.01: 1$ to about $100: 1$, preferably from about 0.05 to about 10:1.

The other type of therapeutic agent which may be optionally employed with a compound of formula I may be 1,2 , 3 or more of an anti-obesity agent including a melanocortin receptor (MC4R) agonist, a melanin-concentrating hormone receptor (MCHR) antagonist, a growth hormone secretagogue receptor (GHSR) antagonist, an orexin receptor antagonist, a CCK (cholecystokinin) agonist, a GLP-1 agonists, NPY1 or NPY5 antagonist, a corticotropin releasing factor (CRF) antagonist, a histamine receptor-3 (H3) modulator, a PPAR γ modulator, a PPAR δ modulator, a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, a erotonin receptor agonist (e.g. BVT-933), an aP2 inhibitor, a thyroid receptor agonist and/or an anorectic agent.

The beta 3 adrenergic agonist which may be optionally employed in combination with a compound of formula I may be AJ9677 (Takeda/Dainippon), L750355 (Merck), or CP331648 (Pfizer) or other known beta 3 agonists as disclosed in U.S. Pat. Nos. $5,541,204,5,770,615,5,491,134$, $5,776,983$ and $5,488,064$, with AJ9677, L750,355 and CP331648 being preferred.

The lipase inhibitor which may be optionally employed in combination with a compound of formula I may be orlistat or ATL-962 (Alizyme), with orlistat being preferred.

The serotonin (and dopoamine) reuptake inhibitor which may be optionally employed in combination with a compound of formula I may be sibutramine, topiramate (Johnson \& Johnson) or CNTF/axokine (Regeneron), with sibutramine and topiramate being preferred.

The thyroid receptor agonist which may be optionally employed in combination with a compound of formula I may be a thyroid receptor ligand as disclosed in WO97/ 21993 (U. Cal SF), WO99/00353 (KaroBio), GB98/284425 (KaroBio), and U.S. Provisional Application 60/183,223 filed Feb. 17, 2000, with compounds of the KaroBio applications and the above U.S. provisional application being preferred.

The anorectic agent which may be optionally employed in combination with a compound of formula I may bc fenfluramine, dexfenfluramine, fluxoxamine, fluoxetine, paroxetine, sertraline, chlorphentermine, clorofex, clortermine, picilorex, sibutramine, dexamphetamine, phentermine, phenylpropanolamine or mazindol. Other anorectic agents which may be optionally employed in combination with a compound of formula I include CNTF (ciliary neurotrophic factor)/Axokine (Regeneron), BDNF (brain-derived neurotrophic factor), leptin or cannabinoid receptor antagonists, such as SR-141716/rimonabant (Sanofi) or SLV-319 (Solvay).

The various anti-obesity agents described above may be employed in the same dosage form with the compound of
formula I or in different dosage forms, in dosages and regimens as generally known in the art or in the PDR.

The antihypertensive agents which may be employed in combination with the compound of formula I of the invention include ACE inhibitors, angiotensin II receptor antagonists, NEP/ACE inhibitors, as well as calcium channel blockers, β-adrenergic blockers and other types of antihypertensive agents including diuretics.

The angiotensin converting enzyme inhibitor which may be employed herein includes those containing a mercapto (-S-) moiety such as substituted proline derivatives, such as any of those disclosed in U.S. Pat. No. 4,046,889 to Ondetti et al mentioned above, with captopril, that is, 1-[(2S)-3-mercapto-2-methylpropionyl]-L-proline, being preferred, and mercaptoacyl derivatives of substituted prolines such as any of those disclosed in U.S. Pat. No. $4,316,906$ with zofenopril being preferred.

Other examples of mercapto containing ACE inhibitors that may be employed herein include rentiapril (fentiapril, Santen) disclosed in Clin. Exp. Pharmacol. Physiol. 10:131 (1983); as well as pivopril and YS980.

Other examples of angiotensin converting enzyme inhibitors which may be employed herein include any of those disclosed in U.S. Pat. No. 4,374,829 mentioned above, with N -(1-ethoxycarbonyl-3-phenylpropyl)-L-alanyl-L-proline, that is, enalapril, being preferred, any of the phosphonate substituted amino or imino acids or salts disclosed in U.S. Pat. No. 4,452,790 with (S)-1-[6-amino-2-[[hydroxy-(4-phenylbutyl)phosphinyl]oxy]-1-oxohexyl]-L-proline or (ceronapril) being preferred, phosphinylalkanoyl prolines disclosed in U.S. Pat. No. 4,168,267 mentioned above with fosinopril being preferred, any of the phosphinylalkanoyl substituted prolines disclosed in U.S. Pat. No. 4,337,201, and the phosphonamidates disclosed in U.S. Pat. No. 4,432, 971 discussed above.
Other examples of ACE inhibitors that may be employed herein include Beecham's BRL 36,378 as disclosed in European Patent Application Nos. 80822 and 60668; Chugai's MC-838 disclosed in C.A. 102:72588v and Jap. J. Pharmacol. 40:373 (1986); Ciba-Geigy's CGS 14824 (3-([1-ethoxycarbonyl-3-phenyl-(1S)-propyl]amino)-2,3,4,5-tetrahydro-2-oxo-1-(3S)-benzazepine-1 acetic acid HCl) disclosed in U.K. Patent No. 2103614 and CGS 16,617 (3(S)-[[(1S)-5-amino-1-carboxypentyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepine-1-ethanoic acid) disclosed in U.S. Pat. No. 4,473,575; cetapril (alacepril, Dainippon) disclosed in Eur. Therap. Res. 39:671 (1986); 40:543 (1986); ramipril (Hoechsst) disclosed in Euro. Patent No. 79-022 and Curr. Ther. Res. 40:74 (1986); Ru 44570 (Hoechst) disclosed in Arzneimittelforschung 34:1254 (1985), cilazapril (Hoffman-LaRoche) disclosed in J. Cardiovasc. Pharmacol. 9:39 (1987); R 31-2201 (HoffmanLaRoche) disclosed in FEBS Lett. 165:201 (1984); lisinopril (Merck), indalapril (delapril) disclosed in U.S. Pat. No. 4,385,051; indolapril (Schering) disclosed in J. Cardiovasc. Pharmacol. 5:643, 655 (1983), spirapril (Schcring) discloscd in Acta. Pharmacol. Toxicol. 59 (Supp. 5):173 (1986); perindopril (Servier) disclosed in Eur. J. clin. Pharmacol. 31:519 (1987); quinapril (Warner-Lambert) disclosed in U.S. Pat. No. 4,344,949 and CI925 (Warner-Lambert) ([3S$\left.\left[2\left[\mathrm{R}\left({ }^{*}\right) \mathrm{R}\left({ }^{*}\right)\right]\right] 3 \mathrm{R}\left({ }^{*}\right)\right]-2-[2-[[1-($ ethoxy-carbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4-tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid HCl)disclosed in Pharmacologist 26:243, 266 (1984), WY-44221 (Wyeth) disclosed in J. Med. Chem. 26:394 (1983).
Preferred ACE inhibitors are captopril, fosinopril, enalapril, lisinopril, quinapril, benazepril, fentiapril, ramipril and moexipril.

NEP/ACE inhibitors may also be employed herein in that they possess neutral endopeptidase (NEP) inhibitory activity and angiotensin converting enzyme (ACE) inhibitory activity. Examples of NEP/ACE inhibitors suitable for use herein include those disclosed in U.S. Pat. Nos. 5,362,727, 5,366, 973, 5,225,401, 4,722,810, 5,223,516, 4,749,688, 5,552,397, 5,504,080, 5,612,359, 5,525,723, European Patent Application 0599,444, 0481,522, 0599,444, 0595,610, European Patent Application 0534363A2, 534,396 and 534,492, and European Patent Application 0629627A2.

Preferred are those NEP/ACE inhibitors and dosages thereof which are designated as preferred in the above patents/applications which U.S. patents are incorporated herein by reference; most preferred are omapatrilat, BMS 189,921 ([S-($\left.\left.\mathrm{R}^{*}, \mathrm{R}^{*}\right)\right]$-hexahydro-6-[(2-mercapto-1-oxo-3-phenylpropyl)amino]-2,2-dimethyl-7-oxo-1H-azepine-1acetic acid (gemopatrilat)) and CGS 30440.

The angiotensin II receptor antagonist (also referred to herein as angiotensin II antagonist or AII antagonist) suitable for use herein includes, but is not limited to, irbesartan, losartan, valsartan, candesartan, telmisartan, tasosartan or eprosartan, with irbesartan, losartan or valsartan being preferred.

A preferred oral dosage form, such as tablets or capsules, will contain the ACE inhibitor or AII antagonist in an amount within the range from abut 0.1 to about 500 mg , preferably from about 5 to about 200 mg and more preferably from about 10 to about 150 mg .

For parenteral administration, the ACE inhibitor, angiotensin II antagonist or NEP/ACE inhibitor will be employed in an amount within the range from about $0.005 \mathrm{mg} / \mathrm{kg}$ to about $10 \mathrm{mg} / \mathrm{kg}$ and preferably from about $0.01 \mathrm{mg} / \mathrm{kg}$ to about $1 \mathrm{mg} / \mathrm{kg}$.

Where a drug is to be administered intravenously, it will be formulated in conventional vehicles, such as distilled water, saline, Ringer's solution or other conventional carriers.

It will be appreciated that preferred dosages of ACE inhibitor and AII antagonist as well as other antihypertensives disclosed herein will be as set out in the latest edition of the Physician's Desk Reference (PDR).

Other examples of preferred antihypertensive agents suitable for use herein include omapatrilat (Vanlev®) amlodipine besylate (Norvasc®), prazosin HCl (Minipress®), verapamil, nifedipine, nadolol, diltiazem, felodipine, nisoldipine, isradipine, nicardipine, atenolol, carvedilol, sotalol, terazosin, doxazosin, propranolol, and clonidine HCl (Catapres®).

Diuretics which may be employed in combination with compounds of formula I include hydrochlorothiazide, torasemide, furosemide, spironolactono, and indapamide.

Antiplatelet agents which may be employed in combination with compounds of formula I of the invention include aspirin, clopidogrel, ticlopidine, dipyridamole, abciximab, tirofiban, cptifibatide, anagrclide, and ifctroban, with clopidogrel and aspirin being preferred.

The antiplatelet drugs may be employed in amounts as indicated in the PDR. Ifetroban may be employed in amounts as set out in U.S. Pat. No. $5,100,889$.

Antiosteoporosis agents suitable for use herein in combination with the compounds of formula I of the invention include parathyroid hormone or bisphosphonates, such as MK-217 (alendronate) (Fosamax®). Dosages employed will be as set out in the PDR.

In carrying our the method of the invention, a pharmaceutical composition will be employed containing the compounds of structure I, with or without another therapeutic
$\mathrm{NaOH}=$ sodium hydroxide
$\mathrm{LiOH}=$ lithium hydroxide
$\mathrm{K}_{2} \mathrm{CO}_{3}=$ potassium carbonate
$\mathrm{NaHCO}_{3}=$ sodium bicarbonate
$\mathrm{H}_{2} \mathrm{SO}_{4}=$ sulfuric acid
$\mathrm{KHSO}_{4}=$ potassium hydrogen phosphate
DBU $=1,8$-diazabicyclo[5.4.0]undec-7-ene
EDC (or EDC.HCl) or EDCI (or EDCI.HCl) or EDAC=3-ethyl-3'-(dimethylamino)propyl-carbodiimide hydrochloride (or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride)
HOBT or HOBT. $\mathrm{H}_{2} \mathrm{O}=1$-hydroxybenzotriazole hydrate HOAT=1-Hydroxy-7-azabenzotriazole
BOP reagent=benzotriazol-1-yloxy-tris (dimethylamino) phosphonium hexafluorophosphate
$\mathrm{NaN}(\mathrm{TMS})_{2}=$ sodium hexamethyldisilazide or sodium bis (trimethylsilyl)amide
$\mathrm{Ph}_{3} \mathrm{P}=$ triphenylphosphine
$\mathrm{Pd}(\mathrm{OAc})_{2}=$ Palladium acetate
$\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}^{\circ}=$ tetrakis triphenylphosphine palladium
DEAD=diethyl azodicarboxylate
DIAD=diisopropyl azodicarboxylate
Cbz-Cl=benzyl chloroformate
CAN=ceric ammonium nitrate
$\mathrm{SiO}_{2}=$ silica gel
SAX=Strong Anion Exchanger
SCX=Strong Cation Exchanger
Ar=argon
$\mathrm{N}_{2}=$ nitrogen
min=minute(s)
h or $\mathrm{hr}=$ hour(s)
L=liter
$\mathrm{mL}=$ milliliter
$\mu \mathrm{L}=$ microliter
$\mu \mathrm{M}=$ micromolar
$\mathrm{g}=\mathrm{gram}(\mathrm{s})$
$\mathrm{mg}=$ milligram(s)
mol=moles
mmol=millimole(s)
meq=milliequivalent
RT=room temperature
sat or sat'd=saturated
aq. =aqueous
TLC=thin layer chromatography
HPLC=high performance liquid chromatography
LC/MS=high performance liquid chromatography/mass spectrometry
MS or Mass Spec=mass spectrometry
NMR=nuclear magnetic resonance
NMR spectral data: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{m}=$
multiplet; br=broad; t=triplet
$\mathrm{mp}=$ melting point
ee=enantiomeric excess

The following examples represent preferred embodiments of the invention.

To a $0^{\circ} \mathrm{C}$. solution of 4-methyl-2-phenyl-1,2,3 triazole5 -carboxylic acid (2.0 g ; 9.8 mmol) in anhydrous THF (30 mL) was added borane in THF (29.5 mL of a 1 M solution; 29.5 mmol) dropwise. The reaction was allowed to warm to RT and the clear solution was stirred at RT for 20 h , then poured into an ice $/ \mathrm{H}_{2} \mathrm{O}$ mixture. The mixture was extracted with EtOAc (100 mL). The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}), 1 \mathrm{~N}$ aqueous $\mathrm{NaOH}(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give Part A compound ($1.80 \mathrm{~g}, 100 \%$) as white crystals.

To a 0° C. solution of Part A compound ($300 \mathrm{mg} ; 1.71$ mmol), 4-hydroxybenzaldehyde ($232 \mathrm{mg} ; 1.90 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(524 \mathrm{mg} ; 2.0 \mathrm{mmol})$ in anhydrous THF $(15 \mathrm{~mL})$ was added DEAD ($400 \mu \mathrm{~L} ; 2.2 \mathrm{mmol}$) dropwise and the resulting solution was allowed to warm to RT and stirred overnight at RT. Volatiles were removed in vacuo and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from 3:1 to $1: 1$ hexane:EtOAc) to provide Part B compound ($440 \mathrm{mg} ; 88 \%$) as a solid.

A mixture of Part B compound (100 mg ; 0.34 mmol), $\mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{mg} ; 0.50 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at RT for 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. and NaBH_{4} ($18 \mathrm{mg} ; 0.50 \mathrm{mmol}$) was added portionwise (exothermic reaction). The reaction was allowed to warm to RT and 5 stirred at RT for 30 min , then partitioned between EtOAc and H 2 O . The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed
(SiO_{2}; stepwise gradient from $3: 1$ to $1: 1$ hexane: EtOAc) to give Part C compound ($72 \mathrm{mg} ; 66 \%$) as an oil.

A solution of Part C compound (10 mg ; 0.032 mmol), 4-methoxyphenyl chloroformate (6 mg ; 0.032 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L} ; 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this point. Volatiles were removed in vacuo and the residue was dissolved in THF (2 mL) and aqueous $\mathrm{LiOH}(0.5 \mathrm{~mL}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$ to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \% \mathrm{TFA}\right) ;(\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}$) for 10 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to give the title compound ($7 \mathrm{mg} ; 43 \%$) as a solid.
$[\mathrm{M}+\mathrm{II}]^{+}=503.2{ }^{1} \mathrm{II}$ NMR $\left(\mathrm{CIICl}_{3}\right): \delta 2.44$ (3II, s), 3.79 $(3 \mathrm{H}, \mathrm{s}), 4.04-4.56(2 \mathrm{H}, 2 \mathrm{~s}), 4.58-4.68(2 \mathrm{H}, 2 \mathrm{~s}), 5.19-5.21$ $(2 \mathrm{H}, 2 \mathrm{~s}), 6.85-6.92(2 \mathrm{H}, \mathrm{m}), 7.00-7.75(4 \mathrm{H}, \mathrm{m}), 7.25-7.38$ $(3 \mathrm{H}, \mathrm{m}), 7.44-7.48(2 \mathrm{H}, \mathrm{m}), 8.00-8.02(2 \mathrm{H}, \mathrm{m})$

EXAMPLE 2

A solution of Example 1 Part C compound ($10 \mathrm{mg} ; 0.032$ $\mathrm{mmol})$, benzoyl chloride ($5 \mathrm{mg} ; 0.032 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(200$ $\mu \mathrm{L} ; 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this point. Volatiles were removed in vacuo and the residue was dissolved in THF (2 mL) and aqueous $\mathrm{LiOH}(0.5 \mathrm{~mL}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \%$ B to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \%\right.$ TEA); $\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}$) for 10 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to give the title compound ($9 \mathrm{mg} ; 60 \%$) as a solid.

45

To a $0^{\circ} \mathrm{C}$. solution of Example 1 Part A compound (300 $\mathrm{mg} ; 1.71 \mathrm{mmol}$), 3-hydroxybenzaldehyde ($232 \mathrm{mg} ; 1.90$ $\mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(524 \mathrm{mg} ; 2.0 \mathrm{mmol})$ in THF (15 mL) was added DEAD ($400 \mu \mathrm{~L} ; 2.2 \mathrm{mmol}$) dropwise and the resulting solution was allowed to warm to RT and stirred overnight at RT. Volatiles were removed in vacuo and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from 3:1 to $1: 1$ hexane:EtOAc) to provide Part B compound ($390 \mathrm{mg} ; 77 \%$) as a solid.

A.

.

EXAMPLE 5

c.

A solution of Part B compound ($10 \mathrm{mg} ; 0.032 \mathrm{mmol}$), 4-methoxyphenyl chloroformate ($6 \mathrm{mg} ; 0.032 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L} ; 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this point. Volatiles were removed in vacuo and the residue was dissolved in THF (2 mL) and aqucous $\mathrm{LiOH}(0.5 \mathrm{~mL}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$ to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \% \mathrm{TFA}\right) ;(\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}$) for 10 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to give the title compound ($4 \mathrm{mg} ; 26 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=503.2{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.44(3 \mathrm{H}, \mathrm{s}), 3.78$ $(3 \mathrm{H}, \mathrm{s}), 4.07 ?(2 \mathrm{H}),, 4.63-4.72(2 \mathrm{H}),, 5.20-5.22(2 \mathrm{H}),$, $6.85-7.05(7 \mathrm{H}, \mathrm{m}), 7.26-7.32(2 \mathrm{H}, \mathrm{m}), 7.43-7.47(2 \mathrm{H}, \mathrm{m})$, 7.99-8.01 (2H, m)

EXAMPLE 4

A solution of Example 3 Part B compound ($10 \mathrm{mg} ; 0.032$ $\mathrm{mmol})$, benzoyl chloride ($5 \mathrm{mg} ; 0.032 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(200$ $\mu \mathrm{L} ; 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this point. Volatiles were removed in vacuo and the residue was dissolved in THF (2 mL) and aqueous $\mathrm{LiOH}(0.5 \mathrm{~mL}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$ to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \% \mathrm{TFA}\right) ;(\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H} 2 \mathrm{O}+0.1 \% \mathrm{TFA}$) for 10 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to give the title compound ($16 \mathrm{mg} ; 90 \%$) as a solid.

5

10

15 give Part C compound ($1.30 \mathrm{~g} ; 56 \%$) as a white solid.
D.

OH

5

To a $-78^{\circ} \mathrm{C}$. solution of Part C compound ($1.30 \mathrm{~g} ; 5.62$ $\mathrm{mmol})$ in THF (5 mL) was added dropwise a solution of LiAlH_{4} in THF (5.0 mL of a 1 M solution). The reaction mixture was allowed to warm to RT and stirred at RT for 2 h. At this point HPLC showed that all starting material had been consumed. The reaction was quenched by cautious dropwise addition of $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. The resulting white solid was filtered off and the filtrate was concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from $2: 1$ to $1: 1$ hexane:EtOAc) to give Part D compound $(1.0 \mathrm{~g} ; 88 \%)$ as a white solid.

To a 0° C. solution of Part D compound ($100 \mathrm{mg} ; 0.49$ mmol), 4-hydroxybenzaldehyde ($61 \mathrm{mg} ; 0.50 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(140 \mathrm{mg} ; 0.53 \mathrm{mmol})$ in anhydrous THF $(2 \mathrm{~mL})$ was added DEAD ($95 \mu \mathrm{~L} ; 0.60 \mathrm{mmol}$) dropwise and the resulting solution was allowed to warm to RT and stirred overnight at RT. Volatiles were removed in vacuo and the residue was chromatographed (SiO_{2}; stcpwisc gradient from 5:1 to 3:1 hexane:EtOAc) to provide Part E compound ($163 \mathrm{mg} ; 99 \%$) as a solid.

F.

A mixture of Part E compound ($100 \mathrm{mg} ; 0.33 \mathrm{mmol}$), glycine methyl ester hydrochloride ($50 \mathrm{mg} ; 0.40 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L} ; 0.50 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at RT for 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. and NaBH_{4} $(15 \mathrm{mg} ; 0.40 \mathrm{mmol})$ was added portionwise (exothermic reaction). The reaction was allowed to warm to RT and stirred at RT for 30 min , then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; stepwise gradient from 3:1 to $1: 1$ hexane:EtOAc) to give Part F compound (100 mg ; 80%) as an oil.

A solution of Part F compound (100 mg ; 0.26 mmol), 4-methoxyphenyl chloroformate ($56 \mathrm{mg} ; 0.30 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(42 \mu \mathrm{~L} ; 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this point. Volatiles were removed in vacuo and the residue was dissolved in THF (3 mL) and aqueous $\mathrm{LiOH}(1.0 \mathrm{~mL}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$ to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \%\right.$ TFA $) ;(\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}$) for 30 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $30 \times 250 \mathrm{~mm}$ column) to give the title compound ($54 \mathrm{mg} ; 40 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=517.3{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.40(3 \mathrm{H}, \mathrm{s})$, $3.17-3.20(2 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.02-4.03(2 \mathrm{H}, \mathrm{m})$, 4.26-4.30 ($2 \mathrm{H}, \mathrm{m}$), 4.55-4.60 ($2 \mathrm{H}, \mathrm{ss}$), 6.81-6.92 ($5 \mathrm{H}, \mathrm{m}$), $6.99-7.10(2 \mathrm{H}, \mathrm{m}), 7.20-7.31(2 \mathrm{H}, \mathrm{m}), 7.41-7.46(2 \mathrm{H}, \mathrm{m})$, 7.96-7.98 (2H, m).

EXAMPLE 6

To a 0° C. solution of Example 5 Part D compound (100 $\mathrm{mg} ; 0.49 \mathrm{mmol}$), 3-hydroxybenzaldehyde ($61 \mathrm{mg} ; 0.50$ $\mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(140 \mathrm{mg} ; 0.53 \mathrm{mmol})$ in anhydrous THF (2 $\mathrm{mL})$ was added DEAD $(95 \mu \mathrm{~L} ; 0.60 \mathrm{mmol})$ dropwise and the resulting solution was allowed to warm to RT and stirred overnight at RT. Volatiles were removed in vacuo and the residue was chromatographed (SiO_{2}; stepwise gradient from 5:1 to 3:1 hexane: EtOAc) to provide Part A compound (45 $\mathrm{mg} ; 30 \%$) as a solid.

PENN EX. 2139
B.

5

A mixture of Part A compound ($50 \mathrm{mg} ; 0.33 \mathrm{mmol}$), glycine methyl ester hydrochloride ($50 \mathrm{mg} ; 0.40 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L} ; 0.50 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at RT for 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. and NaBH_{4} ($15 \mathrm{mg} ; 0.40 \mathrm{mmol}$) was added portionwise (exothermic reaction). The reaction was allowed to warm to RT and stirred at RT for 30 min , then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; stepwise gradient from 3:1 to $1: 1$ hexane: EtOAc) to give Part F compound ($100 \mathrm{mg} ; 81 \%$) as an oil.

$[\mathrm{M}+\mathrm{H}]^{+}=517.3{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.41(3 \mathrm{H}, \mathrm{s})$, $3.18-3.20(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz})$, $4.28-4.32(2 \mathrm{H}, \mathrm{m}), 4.60-4.70(2 \mathrm{H}, \mathrm{ss}), 6.80-6.91(5 \mathrm{H}, \mathrm{m})$, $7.01-7.05(2 \mathrm{H}, \mathrm{m}), 7.25-7.31(2 \mathrm{H}, \mathrm{m}), 7.41-7.45(2 \mathrm{H}, \mathrm{m})$, 7.95-7.97 (2H, m)

A solution of Example 5 Part D compound (900 mg ; 4.43 $\mathrm{mmol})$ in $\mathrm{PBr}_{3}\left(5.0 \mathrm{~mL}\right.$ of a 1 M solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was stirred at RT for 30 min . At this point HPLC showed that all starting material had been consumed. Volatiles were removed in vacuo and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with saturated aqueous NaHCO_{3} and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; hexane: EtOAc$)$ to give the crude bromide ($427 \mathrm{mg} ; 36 \%$). A mixture of this material, KCN (290 mg ; 4.43 mmol) and 18-crown-6 (1.2 g ; $4.54 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was refluxed under an atmosphere of N_{2} for 2 h . The reaction mixture was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give Part A compound ($300 \mathrm{mg} ; 88 \%$) as an oil, which was used in the next step without further purification.

B.

A solution of Part A compound ($300 \mathrm{mg} ; 1.41 \mathrm{mmol}$) in concentrated $\mathrm{HCl}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(5 \mathrm{~mL})$ was heated at $85^{\circ} \mathrm{C}$. in a sealed tube for 3 h . The reaction was cooled to RT, then partitioned between EtOAc (20 mL) and excess aqueous 1 M NaOH and aqueous $1 \mathrm{M} \mathrm{NaHCO}_{3}$. The organic extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was treated with trimethylsilyldiazomethane (1 mL of a 2.0 M solution in hexanes; 2.0 $\mathrm{mmol})$ and $\mathrm{MeOH}(3 \mathrm{~mL})$ for 1 h at RT, after which volatiles were removed in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2} ; 4: 1\right.$ hexane: EtOAc) to give Part B compound (260 mg ; 99%) as a colorless oil.

To a 0° C. solution of Part B compound ($260 \mathrm{mg} ; 1.06$ $\mathrm{mmol})$ in THF (10 mL) was added dropwise a solution of LiAlH_{4} in THF (1.0 mL of a 1 M solution; 1.0 mmol). The reaction mixture was allowed to warm to KI^{\prime} and stirred at RT for 1 h . At this point TLC showed that reaction was

PENN EX. 2139
complete. The reaction was quenched at $0^{\circ} \mathrm{C}$. by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The solids were filtered off and the filtrate was concentrated in vacuo to give the crude alcohol as an oil. To a $0^{\circ} \mathrm{C}$. solution of this material and $\mathrm{Et}_{3} \mathrm{~N}(101 \mathrm{mg} ; 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added methanesulfonyl chloride ($121 \mathrm{mg} ; 1.0 \mathrm{mmol}$) dropwise. The reaction mixture was allowed to warm to RT and stirred at RT for 2 h , at which point TLC indicated that all starting material had been consumed. The mixture was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give Part C compound ($325 \mathrm{mg} ; 99 \%$) as an oil. This crude material was used in the next step without further purification.

A mixture of Part C compound ($150 \mathrm{mg} ; 0.51 \mathrm{mmol}$), 4-hydroxybenzaldehyde ($62 \mathrm{mg} ; 0.51 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(210 \mathrm{mg} ; 1.53 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$. in an oil bath for 2 h . At this point HPLC indicated that all starting material had been consumed. The reaction was cooled to RT and poured into ice-water (20 mL) and stirred for $\sim 10 \mathrm{~min}$. The solid precipitate was collected, dried under vacuum, and recrystallized from toluene/hexanes to provide Part D compound $(162 \mathrm{mg} ; 90 \%)$ as a solid.

A mixture of Part D compound ($174 \mathrm{mg} ; 0.543 \mathrm{mmol}$), glycine methyl ester hydrochloride ($68 \mathrm{mg} ; 0.54 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(72 \mu \mathrm{~L} ; 0.54 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at RT for 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. and NaBH_{4} ($20 \mathrm{mg} ; 0.54 \mathrm{mmol}$) was added portionwise (exothermic reaction). The reaction was allowed to warm to RT and stirred at RT for 30 min , then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; stepwise gradient from $3: 1$ to $1: 1$ hexane:EtOAc) to give Part E compound (176 mg ; 82%) as an oil.

D.
E. $(3 \mathrm{H}, \mathrm{s}), 2.88(2 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.05(4 \mathrm{H}, \mathrm{m}), 4.57-4.67$ $(2 \mathrm{H}, \mathrm{m}), 6.85-6.91(5 \mathrm{H}, \mathrm{m}), 7.02-7.08(2 \mathrm{H}, \mathrm{m}), 7.22-7.30$ $(2 \mathrm{H}, \mathrm{m}), 7.39-7.48(2 \mathrm{H}, \mathrm{m}), 7.95-7.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz})$

EXAMPLE 8 point. Volatiles were removed in vacuo and the residue was dissolved in THF (1 mL) and aqueous $\mathrm{LiOH}(100 \mu \mathrm{~L}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$ to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \% \mathrm{TFA}\right) ;(\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}$) for 30 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $30 \times 250 \mathrm{~mm}$ column) to give the title compound ($20 \mathrm{mg} ; 60 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=531.3{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.21(2 \mathrm{H}, \mathrm{m}), 2.33$
-

A mixture of Example 7 Part C compound ($150 \mathrm{mg} ; 0.51$ mmol), 3-hydroxybenzaldehyde ($62 \mathrm{mg} ; 0.51 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(210 \mathrm{mg} ; 1.53 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$. in an oil bath for 2 h . At this point HPLC indicated that all starting material had been consumed. The reaction was cooled to RT and poured into ice-water (20 mL) and stirred for $\sim 10 \mathrm{~min}$. The solid precipitate was collected, washed with cold water ($2 \times 5 \mathrm{~mL}$), dried under vacuum, and recrystallized from toluene/hexanes to provide to provide Part A compound ($174 \mathrm{mg} ; 90 \%$) as a solid.

60

A solution of Part E compound ($25 \mathrm{mg} ; 0.063 \mathrm{mmol}$), 4-methoxyphenyl chloroformate ($12 \mathrm{mg} ; 0.065 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(28 \mu \mathrm{~L} ; 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this

A mixture of Part A compound ($174 \mathrm{mg} ; 0.543 \mathrm{mmol}$), glycine methyl ester hydrochloride ($68 \mathrm{mg} ; 0.54 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(72 \mu \mathrm{~L} ; 0.54 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at RT for 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. and NaBH_{4} (20 mg ; 0.54 mmol) was added portionwise (exothermic reaction). The reaction was allowed to warm to RT and stirred at RT for 30 min , then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from 3:1 to $1: 1$ hexane:EtOAc) to ${ }^{10}$ give Part B compound ($180 \mathrm{mg} ; 84 \%$) as an oil.

A solution of Part B compound ($25 \mathrm{mg} ; 0.063 \mathrm{mmol}$), 4-methoxyphenyl chloroformate ($12 \mathrm{mg} ; 0.065 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(28 \mu \mathrm{~L} ; 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at RT for 30 min . The reaction was complete by TLC at this point. Volatiles were removed in vacuo and the residue was dissolved in THF (1 mL) and aqueous $\mathrm{LiOH}(100 \mu \mathrm{~L}$ of a 1 M solution) was added. The reaction was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$ to 0% $\mathrm{A}: 100 \% \mathrm{~B}\left(\mathrm{~A}=90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{MeOH}+0.1 \%\right.$ TFA); $\mathrm{B}=90 \%$ $\mathrm{MeOH} / 10 \% \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{TFA}$) for 30 min at $25 \mathrm{ml} / \mathrm{min}$; detection at 220 nm .; YMC ODS $30 \times 250 \mathrm{~mm}$ column) to give the title compound ($15 \mathrm{mg} ; 45 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=531.3{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.21(2 \mathrm{H}, \mathrm{m}), 2.33$ $(3 \mathrm{H}, \mathrm{s}), 2.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.03(4 \mathrm{H}, \mathrm{m})$, 4.57-4.67 (2H, m), 6.84-6.89 (5H, m), 7.01-7.05 ($2 \mathrm{H}, \mathrm{m}$), $7.29(2 \mathrm{H}, \mathrm{m}) 7.40-7.45(2 \mathrm{H}, \mathrm{m}), 7.94-7.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9$ $\mathrm{Hz})$

EXAMPLE 9
 was recrystallized from hexane:EtOAc to give pure Part D compound ($37.5 \mathrm{~g} ; 99 \%$) as white crystals.

To a solution of Part D compound (20 g ; 63.5 mmol) in DMF (127 mL) were successively added tertbutyldimethylsilyl chloride ($14.4 \mathrm{~g} ; 95 \mathrm{mmol}$) and imidazole ($6.50 \mathrm{~g} ; 95 \mathrm{mmol}$). The reaction was stirred at RT overnight, then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in THF (318 mL) and cooled to $0^{\circ} \mathrm{C}$.; a solution of lithium borohydride (76.2 mL of a 2 M solution in THF; 152 mmol) was added dropwise. After addition was complete, the reaction mixture was allowed to warm to RT and stirred at RT overnight, then quenched by slow addition of excess MeOH . Volatiles were removed in vacuo to provide crude Part E compound.

To a 0° C. solution of crude Part E compound (theoretically 63.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(212 \mathrm{~mL}$) were successively added $\mathrm{Et}_{3} \mathrm{~N}(8.9 \mathrm{~mL} ; 63.5 \mathrm{mmol})$ and methanesulfonyl chloride ($4.90 \mathrm{~mL} ; 63.5 \mathrm{mmol}$). The reaction was stirred at $0^{\circ} \mathrm{C}$. for 1 h , then was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous 1 N HCl . The organic phase was washed with brine, dried (MgSO4), then concentrated in vacuo to give the crude mesylate. This material was dissolved in acetone (212 mL) and lithium bromide ($9.0 \mathrm{~g} ; 104 \mathrm{mmol}$) was added. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$. overnight, then cooled to RT and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hexane to $100 \% \mathrm{EtOAc}$) to give Part F compound ($1.15 \mathrm{~g} ; 4 \%$ over 4 steps) as well as the deprotected phenol

$1.44 \mathrm{~g} ; 7 \%$ over 4 steps)
G.

To a -78° C. slurry of $\mathrm{CuCN}(650 \mathrm{mg} ; 7.26 \mathrm{mmol})$ in freshly distilled dry THF (24.2 mL) under argon was added

To a solution of the crude Part H compound from above (0.742 mmol theoretically) and $\mathrm{NaHCO}_{3}(125 \mathrm{mg} ; 1.48$ $\mathrm{mmol})$ in dioxane: $\mathrm{H}_{2} \mathrm{O}(7.4 \mathrm{~mL}$ of a $1: 1$ solution) was added 0 4-methoxyphenyl chloroformate ($220 \mu \mathrm{~L} ; 1.48 \mathrm{mmol}$) dropwise. The reaction was stirred at RT for 2 h , then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with aqueous 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude TBS-protected phenol product 5 was dissolved in THF (3 mL) and tetrabutylammonium fluoride (1 mL of a 1 M solution in THF) was added. The reaction was stirred at RT for 1 h , after which it was
partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was purified by preparative HPLC (continuous gradient from $70: 30 \mathrm{~A}: \mathrm{B}$ to $100 \% \mathrm{~B}$; $\mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA; $\mathrm{B}=90: 10: 0.1$ $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA; 12 min run @ $20 \mathrm{~mL} / \mathrm{min}$; detection at 220 nm ; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to provide Part I compound ($117 \mathrm{mg} ; 39 \%$ over 4 steps) as an oil.

To a 65° C. solution of Part I compound $(10 \mathrm{mg} ; 0.025$ $\mathrm{mmol})$, Part B compound ($10 \mathrm{mg} ; 0.05 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(16$ $\mathrm{mg} ; 0.063 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added dropwise diethyl azodicarboxylate $(10 \mu \mathrm{~L} ; 0.063 \mathrm{mmol})$. The reaction was stirred at $65^{\circ} \mathrm{C}$. for 2 days, then was partitioned between $\mathrm{EtOAc} / \mathrm{Hex}(1: 1)$ and water $(15 \mathrm{~mL}$ each). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (continuous gradient from $50: 50 \mathrm{~A}: \mathrm{B}$ to $100 \% \mathrm{~B}$; $\mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA; $\quad \mathrm{B}=90: 10: 0.1$ $\left.\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: T \mathrm{TFA}\right)$ to give Part J compound ($2.5 \mathrm{mg} ; 18 \%$) as a solid.

K.

Asolution of Part J compound ($2.5 \mathrm{mg} ; 0.0043 \mathrm{mmol}$) and LiOH. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{mg} ; 0.024 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O} /$ THF was stirred at RT overnight, after which volatiles were removed in vacuo. The residue was partitioned between EtOAc and excess aqueous 1 M HCl . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (using the same conditions as for the purification of Part J compound) to give the title compound $(0.5 \mathrm{mg} ; 21 \%)$ as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=558.2$
J. 10

15

40

45
c.

5

10 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ under argon was added dropwise $\mathrm{BBr}_{3}(30 \mathrm{~mL} ; 320 \mathrm{mmol})$. The reaction was allowed to slowly warm to RT and was stirred at RT for 2 h , then was cooled to $-78^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added, followed by slow dropwise addition of $\mathrm{MeOH}(30 \mathrm{~mL})$. After addition was complete, the mixture was allowed to warm slowly to RT, then cooled to $0^{\circ} \mathrm{C}$. Additional $\mathrm{MeOH}(100 \mathrm{~mL})$ was added cautiously, followed by 15% aqueous $\mathrm{HCl}(150 \mathrm{~mL})$. Organic solvents were removed in vacuo to give $\sim 150 \mathrm{~mL}$ of aqueous solution, which was cooled to $0^{\circ} \mathrm{C}$. and cautiously basified with excess concentrated ammonium hydroxide solution (until $\mathrm{pH} \sim 10$). The resultant white precipitate was washed successively with $\mathrm{H}_{2} \mathrm{O}$, THF and EtOAc and dried to give crude Part C compound $(9.0 \mathrm{~g} ; 54 \%)$ as a white solid.

D.

To a solution of Part C compound ($800 \mathrm{mg} ; 4.47 \mathrm{mmol}$) in THF/MeOH (20 mL of a $1: 1$ solution) were successively added $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL} ; 6.4 \mathrm{mmol})$ and methyl bromoacetate ($800 \mu \mathrm{~L} ; 8.5 \mathrm{mmol}$). The reaction mixture was stirred at RT for 2 h , at which point the reaction was -80% complete by analytical HPLC. Saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was then added, followed by dropwise addition of 4-methoxyphenyl chloroformate ($1.10 \mathrm{~mL} ; 7.4 \mathrm{mmol}$). The reaction was stirred at RT for 30 min , after which volatiles were removed in vacuo. The residue was partitioned between saturated aqueous NaHCO_{3} and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic phase was washed with aqueous 1 N HCl and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; continuous gradient from 100% hexane to 100% EtOAc) to give Part D compound ($400 \mathrm{mg} ; 27 \%$) as a white solid.

To a 65° C. solution of Part D compound (53 mg ; 0.13 mmol), Part A compound ($50 \mathrm{mg} ; 0.27 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(84$ $\mathrm{mg} ; 0.33 \mathrm{mmol})$ in toluene (6 mL) was added dropwise diethyl azodicarboxylate ($51 \mu \mathrm{~L} ; 0.33 \mathrm{mmol}$). The reaction was stirred at $65^{\circ} \mathrm{C}$. for 2 days, then was partitioned between $\mathrm{EtOAc} / \mathrm{Hex}$ ($1: 1$) and water (25 mL each). The 5 organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (as for the purification of Example 9 Part J compound) to give the ester intermediate. This material was subjected to lithium hydroxide-mediated hydrolysis (as for Example 9 30 compound) and the crude product was purified by preparative HPLC (as for Example 9 compound Part J compound) to provide the title compound ($30 \mathrm{mg} ; 36 \%$) as an oil.
$[\mathrm{M}+\mathrm{H}]^{+}=558.2$
EXAMPLE 11

A mixture of 4-phenyl imidazole ($1.15 \mathrm{~g} ; 8 \mathrm{mmol}$) and acetic anhydride $(1.85 \mathrm{~mL}, 20 \mathrm{mmol})$ in toluene $(6 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$. for 1.5 h . At this point a solution of iodomethane ($1.25 \mathrm{~mL} ; 20 \mathrm{mmol}$) in toluene (6 mL) was added and the reaction mixture was heated in a sealed tube at $140^{\circ} \mathrm{C}$. overnight. Volatiles were removed in vacuo \& the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The insoluble material was filtered off and the filtrate was concentrated in vacuo. The residue was chromatographed (SiO 2 ; continuous gradient from 99:1 to $\left.95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$ to give Part A compound ($650 \mathrm{mg} ; 51 \%$) as a yellow solid.
B.

To a -78° C. solution of Part A compound ($650 \mathrm{mg} ; 4.11$ mmol) in anhydrous THF (8.5 mL) was added dropwise $\mathrm{n}-\mathrm{BuLi}(1.9 \mathrm{~mL}$ of a 2.5 M solution in hexanes; 4.75 mmol$)$. The reaction was stirred at $-78^{\circ} \mathrm{C}$. for 15 min , after which ethylene oxide ($3 \mathrm{~mL} ; 580 \mathrm{mmol}$; liquefied by cooling in dry-ice/acetone) was added. The reaction mixture was gradually allowed to warm to RT and stirred at RT overnight, then partitioned between water and $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL}$ each $)$. The organic phase was washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\left.92: 8 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$ to provide Part B compound ($200 \mathrm{mg} ; 24 \%$) as a white solid.

To a 0° C. solution of Part B compound ($30 \mathrm{mg} ; 0.15 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(25 \mu \mathrm{~L} ; 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise methanesulfonyl chloride ($14 \mu \mathrm{~L} ; 0.18 \mathrm{mmol}$). The reaction was stirred at $0^{\circ} \mathrm{C}$. for 30 min , after which TLC (hexane:EtOAc 1:1) indicated that the reaction was complete. Volatiles were removed in vacuo to give Part C compound ($38 \mathrm{mg} ; 91 \%$) which was used in the next step without further purification.

A mixture of crude Part C compound ($38 \mathrm{mg} ; 0.14 \mathrm{mmol}$), Example 9 Part H compound ($10 \mathrm{mg} ; 0.025 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{mg} ; 0.05 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ was heated at reflux for 19 h . Volatiles were removed in vacuo and the residue was purified by preparative HPLC (from 50\% $\mathrm{A}: 50 \% \mathrm{~B}$ to $100 \% \mathrm{~B}\left(\mathrm{~A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}: \mathrm{TFA}\right.$; $\mathrm{B}=90: 10: 0.1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA $)$ for 12 min at $20 \mathrm{~mL} / \mathrm{min}$; detection at 220 nm ; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to give Part D compound ($9 \mathrm{mg} ; 61 \%$) as a syrup.
-
C. 0.10 mmol) and hydroxylamine hydrochloride $(6.95 \mathrm{~g} ; 0.10$ mmol) in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was carefully added $\mathrm{Na}_{2} \mathrm{CO}_{3}(5.3 \mathrm{~g}$; 0.05 mmol) while maintaining the reaction temperature at $\leqq 30^{\circ} \mathrm{C}$. The mixture was then stirred at $30^{\circ} \mathrm{C}$. for 15 min , then was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 80 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give Part A compound $(6.9 \mathrm{~g} ; 64 \%)$ as a white solid.
A.

PENN EX. 2139
CFAD V. UPENN
B. and $\mathrm{K}_{2} \mathrm{CO}_{3}(870 \mathrm{mg} ; 6.3 \mathrm{mmol})$ in acetone $(45 \mathrm{~mL})$ was added dropwise a solution of benzoyl chloride $(1.0 \mathrm{~mL} ; 9.0$ $\mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$. The reaction was allowed to warm to RT and stirred at RT for 30 min . Volatiles were removed in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give crude Part B compound $(1.50 \mathrm{~g} ; 76 \%)$ as a white solid.

A solution of crude Part B compound (1.50 g) in HOAc $(25 \mathrm{~mL})$ was heated to reflux for 1.5 h , after which volatiles were removed in vacuo. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$; the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO 2 ; continuous gradient from $4: 1$ to $7: 3$ hexane:EtOAc) to give Part C compound ($840 \mathrm{mg} ; 61 \%$) as a white solid.

A mixture of crude Part C compound ($20 \mathrm{mg} ; 0.10 \mathrm{mmol}$), Example 9 Part H compound ($8 \mathrm{mg} ; 0.02 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($5 \mathrm{mg} ; 0.03 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was heated at reflux for 1.5 h . Volatiles were removed in vacuo and the residue was purified by preparative HPLC (continuous gradient from $60: 40 \mathrm{~A}: \mathrm{B}$ to $100 \% \mathrm{~B} ; \mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}: T \mathrm{TFA}$; $\mathrm{B}=90: 10: 0.1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: T \mathrm{TFA} ; 12 \mathrm{~min}$ run @ $20 \mathrm{~mL} / \mathrm{min}$; detection at 220 nm ; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to give Part D compound ($8 \mathrm{mg} ; 72 \%$) as a syrup.
B.

5

10
D.

40

E.

A solution of Part D compound ($8 \mathrm{mg} ; 0.014 \mathrm{mmol}$) and LIOH. $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{mg} ; 0.07 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5$ mL) was stirred at RT for 24 h . The solution was acidified to pH 5 with aqueous 1 N HCl , then extracted with EtOAc $(3 x)$. The combined organic extracts were concentrated in vacuo and the residue was purified by preparative HPLC (same conditions as for Part D compound) to give the title compound ($6 \mathrm{mg} ; 77 \%$) as a colorless syrup.
$[\mathrm{M}+\mathrm{H}]^{+}=546.2$

EXAMPLE 13

To a RT mixture of (S)-1-(4-methoxyphenyl)-ethylamine ($5.45 \mathrm{~g}, 36 \mathrm{mmol}$) in THF (50 mL) and aqueous NaHCO_{3} (6.05 g in $25 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) was added dropwise benzyl chloroformate ($6.20 \mathrm{~mL} ; 43 \mathrm{mmol}$). The reaction was stirred at RT for 30 min ; the organic phase was isolated and concentrated in vacuo. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$ (100 mL each); the organic phase was washed with brine, $\operatorname{dried}\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to about 30 mL volume. An equivalent volume of hexane (30 mL) was added and Part A compound ($9.12 \mathrm{~g} ; 89 \%$) crystallized as colorless needles.

To a $-78^{\circ} \mathrm{C}$. solution of Part A compound $(2.50 \mathrm{~g} ; 8.8$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ was added dropwise a solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.4 \mathrm{~mL}$ of a 1.0 M solution; 11.4 mmol) over 25 min . The reaction was allowed to warm to $0^{\circ} \mathrm{C}$. and stirred at $0^{\circ} \mathrm{C}$. for 6 h , then quenched carefully at $-78^{\circ} \mathrm{C}$. by dropwise addition of excess $\mathrm{MeOH}(6 \mathrm{~mL})$. The solution was allowed to warm to $0^{\circ} \mathrm{C}$. and stirred at 0° C. for 5 min . The solution was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was washed successively with brine and 5% aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$ each), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from $4: 1$ to $1: 1$ hex:EtOAc) to furnish Part B compound ($1.30 \mathrm{~g} ; 63 \%$ yield based on $650 \mathrm{mg}(26 \%)$ of recovered unreacted Part A compound) as a white solid.

A mixture of tert-butyldimethylsilyl chloride (357 mg ; 2.36 mmol), Part B compound ($535 \mathrm{mg} ; 1.97 \mathrm{mmol}$) and imidazole ($161 \mathrm{mg} ; 2.36 \mathrm{mmol}$) in DMF (5 mL) was stirred at RT for 2 h . The reaction was partitioned between EtOAc $(20 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; hex: EtOAc $3: 1)$ to give Part C compound ($320 \mathrm{mg} ; 42 \%$) as an oil in addition to recovered starting phenol ($150 \mathrm{mg} ; 20 \%$).
 10% palladium on carbon $(30 \mathrm{mg})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was stirred under an atmosphere of H_{2} (balloon) at RT for 1 h , at which point the reaction was complete by HPLC. The catalyst was filtered off through Celite ${ }^{\circledR}$ and the filtrate was concentrated in vacuo to give Part D compound (230 mg) as a white solid which was used in the next step without further purification.
D.

50

55
5
B.

A solution of Part D compound (230 mg), methyl bromoacetate $(86 \mu \mathrm{~L} ; 0.91 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(127 \mu \mathrm{~L} ; 0.91$ $\mathrm{mmol})$ in THF (10 mL) was stirred at RT for 15 h . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc $(30 \mathrm{~mL})$ each. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from hex:EtOAc $9: 1$ to $1: 1$) to furnish Part E compound $(177 \mathrm{mg} ; 66 \%$ over 2 steps) as an oil.

F.

To a solution of Part E compound ($9.0 \mathrm{~g} ; 27.9 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(4.70 \mathrm{~g} ; 55.8 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}(240 \mathrm{~mL}$ of a $1: 1$ solution) was added a solution of 4-methoxyphenyl chloroformate ($5.0 \mathrm{~mL} ; 33.5 \mathrm{mmol}$) dropwise. The reaction was stirred at RT for 2 h , then was partitioned between EtOAc $(250 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic phase was washed with brine $(200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; stepwise gradient from $9: 1$ to $7: 3$ hexane:EtOAc) to provide pure Part F compound ($12.5 \mathrm{~g} ; 95 \%$).

0

G.
(100 ion of Part F compound $(12.5 \mathrm{~g} ; 26.4 \mathrm{mmol})$ in THF (100 mL) was added dropwise tetrabutylammonium fluoride (32 mL of a 1 M solution in THF; 32 mmol). The reaction was stirred at RT for 2 h , then was partitioned between $\mathrm{EtOAc}(250 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic phase was washed with brine $(200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; stepwise gradient from $9: 1$ to $3: 2 \mathrm{hex}: \mathrm{EtOAc}$) to provide Part G compound ($8.0 \mathrm{~g} ; 84 \%$) as a syrup.

PENN EX. 2139
H.

A mixture of crude Example 12 Part C compound (20 mg ; 0.10 mmol), Part G compound ($8 \mathrm{mg} ; 0.02 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3},(5 \mathrm{mg} ; 0.03 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was heated at reflux for 1.5 h . Volatiles were removed in vacuo and the residue was purified by preparative HPLC (same conditions as for Example 12 Part D compound) to give Part H compound ($8 \mathrm{mg} ; 72 \%$) as a syrup.

I.

A solution of Part H compound ($8 \mathrm{mg} ; 0.014 \mathrm{mmol}$) and LiOH. $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{mg} ; 0.07 \mathrm{mmol})$ in THF (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.5$ mL) was stirred at RT for 24 h . The solution was acidified to pH 5 with aqueous 1 N HCl , then extracted with EtOAc $(3 x)$. The combined organic extracts were concentrated in vacuo and the residue was purified by preparative HPLC (same conditions as for Example 12 Part D compound) to give the title compound ($6 \mathrm{mg} ; 77 \%$) as a colorless syrup.
$[\mathrm{M}+\mathrm{H}]^{+}=504.2$
EXAMPLE 14

5

To a $0^{\circ} \mathrm{C}$. solution of $\mathrm{LiAlH}_{4}(1.0 \mathrm{~mL}$ of a 1 M solution; 1 mmol) was added dropwise a solution of Part C compound
$(75 \mathrm{mg} ; 0.031 \mathrm{mmol})$ in THF. After 30 min at $0^{\circ} \mathrm{C}$., the rection was quenched cautiously with $\mathrm{H}_{2} \mathrm{O}$, followed by addition of aqueous NaOH (2 mL of a 3 N solution). Volatiles were removed in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 x)$. The combined organic extracts were concentrated in vacuo and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hexane to 100% EtOAc) to give Part D compound ($55 \mathrm{mg} ; 89 \%$) as a colorless oil.

E.

To a 0° C. solution of Part D compound ($20 \mathrm{mg} ; 0.098$ mmol), Example 13 Part G compound ($33 \mathrm{mg} ; 0.092 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(40 \mathrm{mg} ; 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a solution of DEAD ($31 \mu \mathrm{~L} ; 0.20 \mathrm{mmol}$)in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ dropwise. The reaction was allowed to warm to RT and stirred at RT overnight. Volatiles were removed in vacuo and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hexane to 100% EtOAc) to give Part E compound ($32 \mathrm{mg} ; 61 \%$) as a colorless oil.

A solution of Part E compound ($16 \mathrm{mg} ; 0.029 \mathrm{mmol}$) in aqueous $\mathrm{LiOH}(0.5 \mathrm{~mL}$ of a 2 N solution) and $\mathrm{MeOH} / \mathrm{THF}$ (0.5 mL each) was stirred at RT for 4 h . Organic solvents were removed in vacuo and the aqueous phase was acidified to pH 2 with aqueous 1 N HCl . The resultant white precipitate was collected by filtration and dried to give the title compound ($9 \mathrm{mg} ; 60 \%$) as a white solid.

A.

A mixture of Example 13 Part G compound ($3.5 \mathrm{~g} ; 9.75$ mmol), 1,2-dibromoethane ($4.2 \mathrm{~mL} ; 49 \mathrm{mmol}$) and KCO_{3} $(2.2 \mathrm{~g} ; 15.6 \mathrm{mmol})$ in $\mathrm{MeCN}(32.5 \mathrm{~mL})$ was heated at 90° C. for 15 h . The mixture was cooled to RT and volatiles were removed in vacuo. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc; the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; continuous gradient from 100% hexane to $1: 1$ hexane:EtOAc over 45 min ; then $1: 1$ hexane:EtOAc to 100% EtOAc over 10 min) to provide Part A compound ($2.0 \mathrm{~g} ; 44 \% ; 66 \%$ based on recovered starting material) as an oil.

B.

A mixture of Part A compound ($2.0 \mathrm{~g} ; 4.3 \mathrm{mmol}$) and tetrabutylammonium cyanide ($3.5 \mathrm{~g} ; 12.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (21.5 mL) was stirred at RT for 2.5 h . Volatiles were removed in vacuo, and the residue was chromatographed (SiO_{2}; continuous gradient from 100% hexane to $1: 1$ hex5 ane:EtOAc over 45 min , then $1: 1$ hexane:EtOAc to 100% EtOAc over 10 min) to provide Part B compound (1.49 g ; 84%) as an oil.
C.
 hydroxylamine (230 mg of a $50 \% \mathrm{wt} / \mathrm{wt}$ aqueous solution) in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (8.4 mL of a $2: 1$ solution) was heated ato 95° C. for 4 h . The reaction was cooled to RT and volatiles werc removed in vacuo. The residue was purified by preparative HPLC (continuous gradient from 70:30 A:B to $100 \% \mathrm{~B}$ for $25 \mathrm{~min} @ 25 \mathrm{ml} / \mathrm{min} ; \mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA; $\mathrm{B}=90: 10: 0.1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA; detection at 220 nm ; YMC ODS $30 \times 250 \mathrm{~mm}$ column; retention time $=17.1 \mathrm{~min}$) to provide Part C compound ($390 \mathrm{mg} ; 77 \%$) as an oil.

D.

To a solution of Part C compound ($43 \mathrm{mg} ; 0.097 \mathrm{mmol}$) in pyridine $(970 \mu \mathrm{~L})$ was added benzoyl chloride ($100 \mu \mathrm{~L}$; 0.86 mmol). The mixture was stirred in a sealed tube at 115° C. for 3 h , then was cooled to RT and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic phase was washed with H 2 O and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (continuous gradient from $60: 40 \mathrm{~A}: \mathrm{B}$ to $100 \% \mathrm{~B}$ for 25 min , then held at $100 \% \mathrm{~B}$ for 10 min at $25 \mathrm{~mL} / \mathrm{min} ; A=90: 10: 0.1$ $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}: T \mathrm{TFA} ; \mathrm{B}=90: 10: 0.1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA; detection at 220 nm ; YMC ODS $30 \times 250 \mathrm{~mm}$ column; retention time $=29.4 \mathrm{~min}$) to provide Part D compound ($12 \mathrm{mg} ; 23 \%$) as an oil.

5
D. ${ }^{35}$

40

45

A solution of Part D compound ($6 \mathrm{mg} ; 0.011 \mathrm{mmol}$) and $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(2.4 \mathrm{mg} ; 0.06 \mathrm{mmol})$ in THF (2 mL) and $\mathrm{H}_{2} \mathrm{O}(1$ mL) was stirred at RT overnight. EtOAc was added and the mixture was acidified to pH 2 with aqueous 1 N HCl ; the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (from 70:30 A:B to 100% B for 10 min , then held at $100 \% \mathrm{~B}$ for 5 min at $20 \mathrm{~mL} / \mathrm{min}$; $\mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA; $\quad \mathrm{B}=90: 10: 0.1$ $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA; detection at 220 nm ; YMC ODS 20×100 mm column; retention time $=11.2 \mathrm{~min}$) to give the title compound $(4.0 \mathrm{mg} ; 68 \%)$ as an oil.
$[\mathrm{M}+\mathrm{H}]^{+}=518.2$
EXAMPLES 16 to 17
The following phenyloxadiazole carbamate acids were synthesized according to the synthetic sequence described for Example 15:

To a solution of Example 13 Part E compound (3.60 g ; $11.1 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.21 \mathrm{~g} ; 14.4 \mathrm{mmol})$ in dioxane: $\mathrm{H}_{2} \mathrm{O}$ (75 mL of a $2: 1$ solution) was added isobutyl chloroformate ($1.87 \mathrm{~mL} ; 14.4 \mathrm{mmol}$) dropwise. The reaction was stirred at RT for 2 h , then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to provide the crude TBS-phenol carbamate. This material was dissolved in THF (50 mL) and tetrabutylammonium fluoride (4.17 mL of a 75% aqueous solution) was added. The reaction was stirred at RT for 40 min, after which volatiles were removed in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from $9: 1$ to $2: 3$ hexane:EtOAc over 40 min ; then $2: 3$ hexane: EtOAc to 100% EtOAc over 15 min) to provide Part A compound ($3.0 \mathrm{~g} ; 87 \%$ over 2 steps) as a solid.

A mixture of Part A compound (45 mg ; 0.146 mmol), Example 12 Part C compound ($\mathrm{XX} \mathrm{mg} ; 0.292 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(40 \mathrm{mg} ; 0.292 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$. overnight. After cooling to RT, the mixture was partitioned between EtOAc and $\mathrm{II}_{2} \mathrm{O}$. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by preparative HPLC (continuous gradient from $50: 50 \mathrm{~A}: \mathrm{B}$ to $100 \% \mathrm{~B}$; $\mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA; $\quad \mathrm{B}=90: 10: 0.1$ MeOII:II 2 O:TFA; 10 min run @ $20 \mathrm{~mL} / \mathrm{min}$ with 5 min hold time; detection at 220 nm ; YMC ODS $20 \times 100 \mathrm{~mm}$ column) to provide Part B compound as an oil.

A mixture of Example 18 Part A compound ($850 \mathrm{mg} ; 2.75$ $\mathrm{mmol})$ and α-chloroacetonitrile $(0.348 \mathrm{~mL} ; 5.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(760 \mathrm{mg} ; 5.50 \mathrm{mmol})$ in $\mathrm{CII}_{3} \mathrm{CN}(9.2 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$. for 3 h , then was cooled to RT and partitioned between $\operatorname{EtOAc}(95 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$. The organic phase was washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed (SiO_{2}; continuous gradient from 100% hex to 100% EtOAc) to give Part A compound ($910 \mathrm{mg} ; 95 \%$) as a colorless oil.

PENN EX. 2139

A mixture of Part A compound ($910 \mathrm{mg} ; 2.61 \mathrm{mmol}$) and hydroxylamine (517 mg of a 50% solution in water; 7.83 $\mathrm{mmol})$ in $\mathrm{MeOH}(11.6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5.8 \mathrm{~mL})$ was stirred at $95^{\circ} \mathrm{C}$. for 6 h , then was cooled to RT and stirred at RT for another 6 h , after which volatiles were removed in vacuo. The residue was partitioned between $\mathrm{EtOAc}(120 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(65 \mathrm{~mL})$. The organic phase was washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to provide crude Part B compound ($901 \mathrm{mg} ; 91 \%$) as an oil, which was used in the next step without further purification.

C.

A mixture of Part B compound ($56 \mathrm{mg} ; 0.147 \mathrm{mmol}$) and p-toluoyl chloride ($38.9 \mu \mathrm{~L} ; 0.294 \mathrm{mmol}$) in pyridine $(1.4$ mL) was shaken at $110^{\circ} \mathrm{C}$. for 14 h , after which the reaction mixture was cooled to RT and partitioned between EtOAc $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was washed with brine (20 mL), and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from $50: 50$ Solvent A :Solvent B to $100 \% \mathrm{~B}$ over 10 min was used, followed by 4 min hold at $100 \% \mathrm{~B}$) to give Part C compound ($12.6 \mathrm{mg} ; 18 \%$) as an oil.

A solution of Part C compound ($12.6 \mathrm{mg} ; 0.0262 \mathrm{mmol}$) and $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(30.8 \mathrm{mg} ; 0.735 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was stirred at RT for 15 h , after which the mixture was acidified to pH 2 with aqueous 1 N HCl . The mixture was partitioned between EtOAc $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$. The organic phase was washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from
D.

40:60 Solvent $\mathrm{A}:$ Solvent B to $100 \% \mathrm{~B}$ over 10 min was used, followed by 4 min hold at $100 \% \mathrm{~B}$) to give the title compound ($8.8 \mathrm{mg} ; 72 \%$) as an oil.
$[\mathrm{M}+\mathrm{H}]^{+}=468.0$
EXAMPLES 20-47
Examples 20-47 were prepared in a similar fashion to Example 19 (from Example 19 Part B compound) using a 0 variety of appropriate acid chlorides.

22

23

522.2
538.1

25

590.2

29

30

31

$482.1 \quad 40$
41

42
43

44
65

482.2
482.1
60
498.1
-continued

EXAMPLE 48

A mixture of Example 13 Part E compound (203 mg ; 0.628 mmol), methyl chloroformate (0.063 mL ; 0.817 $\mathrm{mmol})$ and $\mathrm{NaHCO},(69 \mathrm{mg} ; 0.817 \mathrm{mmol})$ in dioxane $: \mathrm{H}_{2} \mathrm{O}$ (3.14 mL of a $2: 1$ solution) was stirred at RT for 14 h , after which the reaction was partitioned between $\mathrm{EtOAc}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give crude Part A compound which was used in the next step without further purification.

5

B.

A solution of crude Part A compound and ($\mathrm{n}-\mathrm{Bu})_{4} \mathrm{NF}$ (237 $\mu \mathrm{L} ; 0.817 \mathrm{mmol})$ in THF (2 mL) was stirred at RT for 30 min , after which volatiles were removed in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 9:1 hex:EtOAc to 100% EtOAc) to give Part B compound ($124 \mathrm{mg} ; 74 \%$ for two steps) as a colorless oil.
C.

A mixture of Part B compound ($14.5 \mathrm{mg} ; 0.0543 \mathrm{mmol}$), Example 12 Part C compound ($(13.7 \mathrm{mg} ; 0.0706 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(9.8 \mathrm{mg} ; 0.0706 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was shaken at $88^{\circ} \mathrm{C}$. for 14 h , then was cooled to RT and partitioned between EtOAc $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was washed with brine (20 mL) and concentrated in vacuo to give crude Part C compound, which was used in the next step without further purification.
D.

A solution of crude Part C compound and LIOH. $\mathrm{H}_{2} \mathrm{O}$ (6.8 $\mathrm{mg} ; 0.163 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was stirred at RT for 16 h , after which the mixture was acidified to pH 2 with aqueous 1 N HCl . The mixture was partitioned between EtOAc (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from 40:60 Solvent A:Solvent B to 100% B over 10 min was used, followed by 4 min hold at 100% B) to give the title compound ($15.5 \mathrm{mg} ; 69 \%$ for two steps) as an oil.
$[\mathrm{M}+\mathrm{H}]^{+}=412.2$

EXAMPLES 49-53

Examples 49-53 were prepared using the same sequence as for the synthesis of Example 48 (from Example 13 part E compound) using appropriate chloroformates (instead of methyl chloroformate as for Example 48).
matographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hex to 100% EtOAc) to give Part A compound (868 mg ; 65%) as a colorless oil.
organic phase was washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chro-

5

50
440.3

51

52

53

481.2

EXAMPLE 54

A mixture of Example 18 Part A compound (1000 mg ; $3.24 \mathrm{mmol})$ and 1,2 -dibromoethane ($1.7 \mathrm{~mL} ; 19.4 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(896 \mathrm{mg} ; 6.48 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(9.2 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$. for 41 h , then was cooled to RT and partitioned between $\mathrm{EtOAc}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The

B.

A mixture of Part A compound ($868 \mathrm{mg} ; 2.09 \mathrm{mmol}$) and tetrabutylammonium cyanide ($1.68 \mathrm{~g} ; 6.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$ was stirred at RT for 15 h , after which volatiles were removed in vacuo; the residue was chromatographed (SiO_{2}; continuous gradient from 100% hex to 100% EtOAc) to give Part B compound (730 mg ; 96%) as a colorless oil.

A mixture of Part B compound ($730 \mathrm{mg} ; 2.02 \mathrm{mmol}$) and hydroxylamine (400 mg of a 50% solution in water; 6.06 $\mathrm{mmol})$ in $\mathrm{MeOH}(9.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ was stirred at $95^{\circ} \mathrm{C}$. for 4 h , after which volatiles were removed in vacuo. The residue was partitioned between EtOAc (120 mL) and $\mathrm{H}_{2} \mathrm{O}(65 \mathrm{~mL})$. The organic phase was washed with brine (70 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to provide crude Part C compound ($750 \mathrm{mg} ; 94 \%$) as an oil.
D.

To a solution of Part C compound ($50 \mathrm{mg} ; 0.127 \mathrm{mmol}$) in pyridine (1.3 mL) was added benzoyl chloride ($29.5 \mu \mathrm{~L}$; 0.254 mmol). The mixture was shaken at $110^{\circ} \mathrm{C}$. for 15 h , then was cooled to RT and partitioned between EtOAc (10 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was washed with brine (20 mL), and concentrated in vacuo to give crude Part D compound, which was used in the next step without further purification.

PENN EX. 2139

To a solution of crude Part D compound and LiOH. $\mathrm{H}_{2} \mathrm{O}$ (26.6 mg ; 0.635 mmol) in THF (0.8 mL) and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ was stirred at RT for 25 h , after which the mixture was acidified to pH 2 with aqueous 1 N HCl . The mixture was partitioned between EtOAc (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from 40:60 Solvent A:Solvent B to 100% B over 10 min was used, followed by 4 min hold at $100 \% \mathrm{~B}$) to give the title compound ($6.5 \mathrm{mg} ; 11 \%$ for two steps) as an oil.
$[\mathrm{M}+\mathrm{H}]^{+}=468.1$

EXAMPLES 55-65

Examples $55-65$ were prepared using the analogous sequence for the synthesis of Example 54 (starting from Example 54 Part C compound), but using a variety of appropriate acid chlorides instead of benzoyl chloride.

Example No.	R	$[\mathrm{M}+\mathrm{H}]^{+}$
55		

56

57

58

482.2

45

60

61

62

35
63

64

482.1

40

496.2

65

55
502.1

60

65

-continued

A mixture of 4-hydroxybenzaldehyde ($5.2 \mathrm{~g} ; 42.6 \mathrm{mmol}$), α-chloroacetonitrile ($4.0 \mathrm{~mL} ; 63.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.7 \mathrm{~g}$; $48.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(106.5 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$. for 5 h , then was cooled to RT and partitioned between EtOAc $(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(110 \mathrm{~mL})$. The organic phase was washed with brine (200 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to provide crude Part A compound, which was used in the next step without further purification.

A mixture of crude Part A compound and glycine methylester hydrochloride($5.9 \mathrm{~g} ; 46.9 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(6.5 \mathrm{~mL}$; 46.9 mmol) and 4A molecular sieves (2 g) in MeOH (142 mL) was stirred at RT for 13 h , after which $\mathrm{NaBH}_{4}(1.8 \mathrm{~g}$; 46.9 mmol) was slowly added. The mixture was stirred at RT for 1 h , after which volatiles were removed in vacuo. The residue was partitioned between EtOAc $(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(80 \mathrm{~mL})$. The organic phase was washed with brine (150 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give Part B compound ($6.0 \mathrm{~g} ; 60 \%$ for two steps) as a colorless oil.

A mixture of Part B compound ($2.1 \mathrm{~g} ; 8.97 \mathrm{mmol}$), isobutyl chloroformate ($1.52 \mathrm{~mL} ; 11.7 \mathrm{mmol}$) and NaHCO_{3} ($983 \mathrm{mg} ; 11.7 \mathrm{mmol}$) in dioxane: $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL}$ of a $2: 1$ solution) was stirred at RT for 2 h , then was partitioned between EtOAc (120 mL) and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$. The organic phase was washed with brine $(140 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2} ;\right.$ continuous gradient from 100% hex to $\left.100 \% \mathrm{EtOAc}\right)$ to give Part C compound ($2.84 \mathrm{~g} ; 95 \%$) as a colorless oil.

A mixture of Part C compound ($1.7 \mathrm{~g} ; 5.09 \mathrm{mmol})$ and 65 hydroxylamine (1.0 g of a 50% solution in water; 15.27 $\mathrm{mmol})$ in $\mathrm{MeOH}(22.6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(11.3 \mathrm{~mL})$ was stirred

Examples 67-75 were prepared using the same sequence as for the synthesis of Example 66 (starting from Example 66 Part D compound) using a variety of appropriate acid chlorides (instead of p-toluoyl chloride).
(

5

10

5
B.

To a solution of crude Part A compound in THF (28.9 mL) was added ($\mathrm{n}-\mathrm{Bu})_{4} \mathrm{NF}(9.54 \mathrm{~mL}$ of a 1 M solution in THF; 9.54 mmol). The mixture was stirred at RT for 45 min , then was partitioned between $\mathrm{EtOAc}(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$. The organic phase was washed with brine (140 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give Part B compound ($2.4 \mathrm{~g} ; 90 \%$ for 2 steps) as a colorless oil.
A mixture of (R)-(+)-\{1-[4-(tert-butyl-dimethyl-silyloxy)-phenyl]-ethylamino $\}$-acetic acid methyl ester [2.8 $\mathrm{g} ; 8.67 \mathrm{mmol}$; obtained from (R)-(+)-1-(4-methoxy-phenyl)ethylamine according to the procedure described for the synthesis of Example 13 Part E compound] and isobutyl chloroformate ($1.5 \mathrm{~mL} ; 11.3 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(0.95 \mathrm{~g}$; $11.3 \mathrm{mmol})$ in dioxane: $\mathrm{H}_{2} \mathrm{O}(58 \mathrm{~mL}$ of a $2: 1$ solution) was stirred at RT for 1 h , after which the reaction was partitioned between EtOAc (170 mL) and $\mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$. The organic phase was washed with brine $(140 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give crude Part A compound, which was used in the next step without further purification.

c.

PENN EX. 2139

A mixture of Part B compound (46 mg ; 0.149 mmol), Example 12 Part C compound ($(37.8 \mathrm{mg} ; 0.194 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(26.8 \mathrm{mg} ; 0.194 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$. for 16 h , after which the reaction mixture was cooled to RT and partitioned between EtOAc (18 mL) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. The organic phase was washed with brine $(20 \mathrm{~mL})$, and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from 50:50 Solvent A:Solvent B to 100% B over 10 min was used, followed by 4 min hold at $100 \% \mathrm{~B}$) to give Part C compound ($48.3 \mathrm{mg} ; 69 \%$) as an oil.
D.

A solution of Part C compound ($48.3 \mathrm{mg}, 0.103 \mathrm{mmol}$) and LIOH. $\mathrm{H}_{2} \mathrm{O}(18.8 \mathrm{mg} ; 0.447 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ was stirred at RT for 15 h , then was acidified to pH 2 with aqueous 1 N HCl . The mixture was partitioned between EtOAc (14 mL) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. The organic phase was washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from 40:60 Solvent A:Solvent B to 100% B over 10 min was used, followed by 4 min hold at 100% B) to give the title compound ($40.3 \mathrm{mg} ; 86 \%$) as an oil.
$[\mathrm{M}+\mathrm{H}]^{+}=454.0$

EXAMPLE 77

A.

A mixture of Example 76 Part B compound ($1.2 \mathrm{~g} ; 3.88$ $\mathrm{mmol}), \alpha$-chloroacetonitrile $(0.49 \mathrm{~mL} ; 7.76 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.07 \mathrm{~g} ; 7.76 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(12.9 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$. for 10 h , then was cooled to RT and

60
55

A solution of Part C compound ($5.3 \mathrm{mg} ; 0.011 \mathrm{mmol}$) and LiOH. $\mathrm{H}_{2} \mathrm{O}(17.6 \mathrm{mg} ; 0.42 \mathrm{mmol})$ in THF (0.80 mL) and $\mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~mL})$ was shaken at $50^{\circ} \mathrm{C}$. for 6 h , then was cooled to RT and acidified to pH 2 with aqueous 1 N HCl . The
D. in pyridine $(1.0 \mathrm{~mL})$ was added p-toluoyl chloride (32.5 mg ; $0.21 \mathrm{mmol})$. The mixture was shaken at $115^{\circ} \mathrm{C}$. for 6 h , then was cooled to RT and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from 40:60 Solvent A:Solvent B to 100% B over 10 min was used, followed by 4 min hold at 100% B) to give Part E compound $(5.3 \mathrm{mg} ; 10 \%)$ as an oil.

To a solution of Part B compound ($40 \mathrm{mg} ; 0.105 \mathrm{mmol}$) ——

partitioned between EtOAc $(95 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$. The organic phase was washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hex to 3:2 hex:EtOAc) to give Part A compound ($1.17 \mathrm{~g} ; 87 \%$) as a colorless oil.

B.

A solution of Part A compound ($1.17 \mathrm{~g} ; 3.36 \mathrm{mmol}$) and hydroxylamine (0.65 g of a 50% solution in water; 9.7 $\mathrm{mmol})$ in $\mathrm{MeOH}(17.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(8.6 \mathrm{~mL})$ was stirred at $95^{\circ} \mathrm{C}$. for 6 h , then was cooled to RT and concentrated in vacuo. The residue was partitioned between EtOAc (140 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$. The organic phase was washed with brine (80 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to provide crude Part B compound ($1.19 \mathrm{~g} ; 93 \%$) as an oil, which was used in the next step without further purification.

mixture was partitioned between EtOAc (10 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$. The organic phase was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; the residue was purified by preparative HPLC (as described for Example 15 Part E compound except that a continuous gradient from $40: 60$ Solvent A:Solvent B to 100% B over 10 min was used, followed by 4 min hold at $100 \% \mathrm{~B}$) to give the title compound ($2.9 \mathrm{mg} ; 56 \%$) as an oil.

$$
[\mathrm{M}+\mathrm{H}]^{+}=468.0
$$

EXAMPLES 78-83

79

80

81

82

83

55

A.

A mixture of methyl 4-chloroacetoacetate ($400 \mathrm{mg} ; 2.6$ mmol) and sodium azide ($136 \mathrm{mg} ; 2.1 \mathrm{mmol}$) in acetone (6 mL) was diluted with $\mathrm{H}_{2} \mathrm{O}(\sim 1 \mathrm{~mL})$ until the azide had dissolved. The mixture was heated at $50^{\circ} \mathrm{C}$. for 1 h , stirred overnight at RT, then was heated at $50^{\circ} \mathrm{C}$. for 2 h . The reaction was cooled to RT and the acetone was removed in vacuo. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hex to $3: 2$ hex:EtOAc) to give Part A compound ($237 \mathrm{mgs} ; 72 \%$).

B.

A mixture of Part A compound ($237 \mathrm{mg} ; 1.51 \mathrm{mmol}$) and dioxane (5 mJ) was shaken for 10 min at RT. Benzoyl chloride ($263 \mathrm{mg} ; 1.87 \mathrm{mmol}$) was then added and the reaction was heated at $75^{\circ} \mathrm{C}$. for 2 h , then cooled to RT and filtered. The filtrate was concentrated in vacuo and the 45 residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hex to $1: 1$ hex:EtOAc; compound was preloaded onto the column with Celite $($ ®) to give Part B compound ($95 \mathrm{mg} ; 28 \%$) as a pale yellow oil.

A solution of LiAlH_{4} in THF (2.0 mL of a 1 M solution; 2.0 mmol) was added dropwise to Part B compound (95 mg ; 0.44 mol) at RT. The reaction was stirred overnight at RT, then was cooled to $0^{\circ} \mathrm{C}$. and quenched cautiously with $\mathrm{H}_{2} \mathrm{O}$.
60 Aqueous 3 N NaOH was added and the mixture was concentrated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromato5 graphed (SiO_{2}; continuous gradient from 100% hex to 100% EtOAc ; compound preloaded onto column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide Part C compound ($100 \mathrm{mg} ; 100 \%$) as a colorless oil.

Part D compound was synthesized from (S)-1-(3-methoxyphenyl)-ethylamine using the identical sequence as for the synthesis of Example 13 Part G compound from (S)-1-(4-methoxyphenyl)-ethylamine.

A mixture of Part C compound ($20 \mathrm{mg} ; 0.106 \mathrm{mmol}$), Part D compound ($35 \mathrm{mg} ; 0.098 \mathrm{mmol}$) and cyanomethylene tributylphosphorane ($70 \mu \mathrm{~L} ; 0.29 \mathrm{mmol}$) in toluene (1.5 mL) at $70^{\circ} \mathrm{C}$. was shaken overnight, then was concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2} ;\right.$ continuous gradient from 100% hex to $2: 3$ hex:EtOAc) to give a $2: 1$ mixture of Part E compound and unreacted Part D compound ($37 \mathrm{mg} ; 55 \%$) as a yellow oil.

$$
[\mathrm{M}+\mathrm{H}]^{+}=531.3
$$

The mixture obtained in Part E ($37 \mathrm{mg} ; 0.052 \mathrm{mmol}$) in a $1: 1: 1$ mixture of 2 N solution of $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ and $\operatorname{THF}(1.5 \mathrm{~mL})$ was stirred at RT for 2 h , then was concentrated in vacuo. The resulting aqueous solution was acidified to $\mathrm{pH} \sim 3$ with 1 N aqueous HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 1 \mathrm{~mL})$. The combined organic extracts were concentrated in vacuo and the residue was purified by preparative HPLC (as for the purification of Example 26) to give the title compound ($10 \mathrm{mg} ; 26 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=517.20$
E.
D.

5

10

15

20

The title compound was obtained by the hydrolysis of the ${ }_{65}$ mixture obtained in part A $(30 \mathrm{mg})$ (as described in Example 84 Part F) to provide part B. compound ($13 \mathrm{mg}, 43 \%$).
$[\mathrm{M}+\mathrm{H}]^{+}=517.20$

To a $0^{\circ} \mathrm{C}$. solution of ethyl propionylacetate $(10.0 \mathrm{~g}, 69.4$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{Br}_{2}(3.6 \mathrm{~mL} ; 69.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$. for 0.5 h . The reaction was allowed to warm to RT and stirred at RT for 0.5 h . Air was then bubbled into the mixture for 1 h . Volatiles were then removed in vacuo to yield an oily residue to provide crude Part A compound ($15.3 \mathrm{~g},>95 \%$ yield) as an oil which was used in the next reaction without further purification.

A mixture of Part A compound ($400 \mathrm{mg} ; 1.79 \mathrm{mmol}$) and sodium azide ($136 \mathrm{mg} ; 2.09 \mathrm{mmol}$) in acetone (6 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was stirred at RT for 1 h , then at $50^{\circ} \mathrm{C}$. for 1 h. Analytical HPLC indicated that the starting material had been consumed at this point. The acetone was removed in vacuo and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo; the residue was chromatographed (SiO_{2}; continuous gradient from 100% hex to $1: 1$ hex:EtOAc) to give Part B compound ($280 \mathrm{mg} ; 85 \%$) as a pale yellow oil.

C.

A mixture of Part B compound ($100 \mathrm{mg} ; 0.54 \mathrm{mmol}$) and resin-bound $\mathrm{Ph}_{3} \mathrm{P}(540 \mathrm{mg}$ of $3 \mathrm{mmol} / \mathrm{g}$ resin; 1.62 mmol$)$ in dioxane (4 mL) was shaken for 10 min at RT. Benzoyl chloride ($84 \mathrm{mg} ; 0.60 \mathrm{mmol}$) was then added and the reaction was heated at $75^{\circ} \mathrm{C}$. for 2 h , then cooled to RT and filtered. The filtrate was concentrated in vacuo and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hex to $1: 1$ hex:EtOAc; the compound was 6 pre-loaded onto the column with Celite ${ }^{\circledR}$) to give Part C compound ($280 \mathrm{mg} ; 85 \%$) as a pale yellow oil. $\mathrm{mmol})$ in toluene $(500 \mu \mathrm{~L})$ at $70^{\circ} \mathrm{C}$. was shaken overnight, then was concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; continuous gradient from 100% hex to $2: 3$ hex:EtOAc) to give a $4: 1$ mixture of Part E compound and Example 84 Part D compound ($32 \mathrm{mg} ; 55 \%$) as a yellow oil.
$[\mathrm{M}+\mathrm{H}]^{+}=545.26$

The mixture obtained in Part E ($32 \mathrm{mg} ; 0.053 \mathrm{mmol}$) in a $1: 1: 1$ mixture of 2 N solution of $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ and THF (1.5 mL) was stirred at RT for 2 h , then was concentrated in vacuo. The resulting aqueous solution was acidified to $\mathrm{pH} \sim 3$ with 1 N aqueous HCl and extracted with DCM $(3 \times 1 \mathrm{~mL})$. The combined organic extracts were concentrated in vacuo and purified by preparative HPLC (as for the purification of Example 26) to give the title compound (22 $\mathrm{mg} ; 68 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=531.20$

EXAMPLE 87

A.

40 in DMF (20 mL) was added t-butyldimethylsilyl chloride $(2.9 \mathrm{~g} ; 19.6 \mathrm{mmol})$ and imidazole $(1.33 \mathrm{~g} ; 19.6 \mathrm{mmol})$ at RT. The solution was stirred for 2 h at RT, then was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and aqueous 1 N NaOH . The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2} ; 9: 1\right.$ hexane:EtOAc) to give Part A compound ($2.3 \mathrm{~g} ; 59 \%$) as an oil.

B.
B. 55

60

To a solution of Part A compound ($2.3 \mathrm{~g} ; 9.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added 3-trilluoromethoxy-aniline $(1.88 \mathrm{~g} ; 10.7 \mathrm{mmol}), \mathrm{NaBH}(\mathrm{OAc})_{3}(2.4 \mathrm{~g} ; 11.8 \mathrm{mmol})$ and glacial HOAc (2 mL) at RT. The solution was stirred for 3
h, then was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and saturated aqueous NaHCO_{3}. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give crude Part B compound, which was used in the next step without further 5 purification.

A mixture of crude Part B compound, methyl bromoacetate ($4.0 \mathrm{~g} ; 26 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.6 \mathrm{~g} ; 11.8 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was stirred for 18 h at $90^{\circ} \mathrm{C}$., then was cooled to RT and concentrated in vacuo. The residue was partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give crude Part C compound as a yellow residue, which was used in the next step without further purification.

A solution of crude Part C compound in THF (10 mL) and tetrabutylammonium fluoride (15 mL of a 1 M solution in THF; 15 mmol) was stirred at RT for 1 h and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2} ; 4: 1\right.$ hexane:EtOAc) to give Part D compound ($1.2 \mathrm{~g} ; 35 \%$) as an oil.
E.

A mixture of Part D compound ($20 \mathrm{mg} ; 0.05 \mathrm{mmol}$), Example 12 Part C compound ($21 \mathrm{mg} ; 0.11 \mathrm{mmol}$)

and $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{mg} ; 0.11 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was stirred for 12 h at $80^{\circ} \mathrm{C}$., then was cooled to RT and concentrated in vacuo to give the crude Part E compound, which was used in the next step without further purification.

A solution of crude Part E compound in MeOH (2 mL) and 1 N aqueous $\mathrm{KOH}(1 \mathrm{~mL})$; the solution was stirred for 2 h at RT, then was neutralized with 1 N aqueous HCl and concentrated in vacuo. The residue was purified by HPLC (YMC reverse-phase ODS $20 \times 100 \mathrm{~mm}$ column; flow rate $=$ $20 \mathrm{~mL} / \mathrm{min} ; 10 \mathrm{~min}$ continuous gradient from 30:70 B:A to $100 \% \mathrm{~B}+5 \mathrm{~min}$ hold-time at $100 \% \mathrm{~B}$, where solvent $\mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA and solvent $\mathrm{B}=90: 10: 0.1$ $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA) to give the title Compound ($4 \mathrm{mg} ; 14 \%$) as a solid.
$[\mathrm{M}+\mathrm{H}]^{+}=500.4$
EXAMPLE 88

A.

A mixture of Example 87 Part D compound ($0.1 \mathrm{~g} ; 0.28$ mmol), 1,2-dibromoethane ($5 \mathrm{~mL} ; 12.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.38 \mathrm{~g} ; 0.28 \mathrm{mmol}) \mathrm{n} \mathrm{MeCN}(20 \mathrm{~mL})$ was stirred for 20 h at $90^{\circ} \mathrm{C}$., then was cooled to RT and concentrated in vacuo. The residue was partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give crude Part A compound as a yellow oil, which was used in the next step without further purification.

B.

A solution of crude Part A compound and tetrabutylammonium nitrile (75 mg ; 0.28 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at RT for 18 h and concentrated in vacuo. The residue was chromatographed $\left(\mathrm{SiO}_{2} ; 9: 1\right.$ hexane: EtOAc) to give Part B compound ($70 \mathrm{mg} ; 61 \%$) as an oil.

c.

To a solution of Part B Compound (55 mg ; 0.13 mmol) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added hydroxylamine (17 mg of a 50% solution in water; 0.53 mmol) at RT. The solution was stirred for 18 h at RT and concentrated in vacuo. The residue partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give crude Part C compound as a yellow oil, which was used in the next step without further purification.
D.

To a solution of crude Part C compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added benzoyl chloride ($18 \mathrm{mg} ; 0.13 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(10 \mu \mathrm{~L})$. The solution was stirred for 2 h at RT and then concentrated in vacuo. The residue was dissolved in pyridine (5 mL) and stirred for 2 h at $80^{\circ} \mathrm{C}$., then was cooled to RT and concentrated in vacuo to give crude Part D compound, which was used in the next step without further purification.
E.

A solution of crude Part D compound in $\mathrm{MeOH}(2 \mathrm{~mL})$ and aqueous $1 \mathrm{~N} \mathrm{KOH}(1 \mathrm{~mL})$ was stirred for 2 h at RT and then was neutralized with aqueous 1 N HCl and concentrated in vacuo. The residue was purified by HPLC (YMC reverse-phase ODS $20 \times 100 \mathrm{~mm}$ column; flow rate $=20$ $\mathrm{mL} / \mathrm{min} ; 10 \mathrm{~min}$ continuous gradient from 30:70 B:A to $100 \% \mathrm{~B}+5 \mathrm{~min}$ hold-time at $100 \% \mathrm{~B}$, where solvent $\mathrm{A}=90: 10: 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}:$ TFA and solvent $\mathrm{B}=90: 10: 0.1$ $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA $)$ to give the title Compound ($5 \mathrm{mg} ; 7 \%$)
$[\mathrm{M}+\mathrm{H}]^{+}=514.5$

What is claimed is:

1. A compound which has the structure:

and wherein the term "heteroaryl" alone or as part of another group refers to a 5 - or 6 -membered aromatic ring which includes $1,2,3$ or 4 heteroatoms which is nitrogen, oxygen or sulfur, and such rings optionally fused to an aryl, cycloalkyl, heteroaryl or cycloheteroalkyl ring;
the term "cycloheteroalkyl" alone or as part of another group refers to a 5-, 6- or 7 -membered saturated or partially saturated ring which includes 1 to 2 heteroatoms which is nitrogen, oxygen or sulfur, and such rings optionally fused to a cycloalkyl, aryl, heteroaryl or cycloheteroalkyl ring;
and all stereoisomers thereof, a prodrug ester thereof, or a pharmaceutically acceptable salt thereof.
2. The compound as defined in claim $\mathbf{1}$ wherein B is a bond.
3. The compound as defined in claim $\mathbf{1}$ wherein:

4. The compound as defined in claim 1 wherein R^{3} is arylalkyloxycarbonyl, arylheteroarylalkyl, aryloxyarylalkyl, arylalkyl, aryloxycarbonyl, haloaryl-oxycarbonyl, alkoxyaryloxycarbonyl, alkylaryloxycarbonyl, aryloxyaryloxycarbonyl, heteroaryloxyarylalkyl, heteroaryloxycarbonyl, aryloxyarylcarbonyl, arylalkenyloxycarbonyl, cycloalkylaryloxycarbonyl, arylalkylarylcarbonyl, heteroaryl-heteroarylalkyl, cycloalkyloxyaryloxycarbonyl, heteroarylheteroarylcarbonyl, arylalkylsulfonyl, arylalkenylsulfonyl, alkoxyarylalkyl, arylthiocarbonyl, cycloheteroalkylalkyloxycarbonyl, cycloheteroalkyloxycarbonyl, or polyhaloalkylaryloxy-carbonyl, which may be optionally substituted.
5. The compound as defined in claim 1 which has the structure:

$\left(\mathrm{CH}_{2}\right)_{x},\left(\mathrm{CH}_{2}\right)_{x}{ }^{1},\left(\mathrm{CH}_{2}\right)_{x}{ }^{2},\left(\mathrm{CH}_{2}\right)_{x}^{3},\left(\mathrm{CH}_{2}\right) \mathrm{x}^{4},\left(\mathrm{CH}_{2}\right)_{m}$, and $\left(\mathrm{CH}_{2}\right)_{n}$ may be optionally substituted with 1,2 or 3 substituents selected from alkyl, alkenyl, halogen, cyano, hydroxy, alkoxy, amino, thioalkyl, keto, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, alkylcarbonylamino or alkylcarbonyloxy;
wherein m is 0,1 or $2 ; \mathrm{n}$ is 0,1 or 2 ;
Q is C;
A is $-\left(\mathrm{CH}_{2}\right)_{x}{ }^{2}-\mathrm{O}-$ where x^{2} is 0 to 5 ; B is a bond or is $-\left(\mathrm{CH}_{2}\right)_{x}^{4}$ where x^{4} is 1 to 5 ;
X is CH ;
 heteroarylcarbonyl, alkylsulfonyl, alkenylsulfonyl, heteroaryloxycarbonyl, cycloheteroalkyloxycarbonyl, heteroarylalkyl, aminocarbonyl, substituted aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylalkenyl, cycloheteroalkylheteroarylalkyl; hydroxyalkyl, alkoxy, alkoxyaryloxycarbonyl, arylalkyloxycarbonyl, alkylaryloxycarbonyl, arylheteroarylalkyl, arylalkylarylalkyl, aryloxyarylalkyl, haloalkoxyaryloxycarbonyl, alkoxycarbonylaryloxycarbonyl, aryloxyaryloxycarbonyl, arylsulfinylarylcarbonyl, arylthioarylcarbonyl, alkoxycarbonylaryloxycarbonyl, arylalkenyloxycarbonyl, heteroaryloxyarylalkyl, aryloxyarylcarbonyl, aryloxyarylalkyloxycarbonyl, arylalkylcarbonyl, aryloxyalkyloxycarbonyl, arylalkylsulfonyl, arylthiocarbonyl, arylalkenylsulfonyl, heteroarylsulfonyl, arylsulfonyl, alkoxyarylalkyl, heteroarylalkoxycarbonyl, arylheteroarylalkyl, alkoxyarylcarbonyl, aryloxyheteroarylalkyl, heteroarylalkyloxyarylalkyl, arylarylalkyl, arylalkenylarylalkyl, arylalkoxyarylalkyl, arylcarbonylarylalkyl, alkylaryloxyarylalkyl, arylalkoxycarbonylheteroarylalkyl, heteroarylarylalkyl, arylcarbonylheteroarylalkyl, heteroaryloxyarylalkyl, arylalkenylheteroarylalkyl, arylaminoarylalkyl, aminocarbonylarylarylalkyl;
Y is $\mathrm{CO}_{2} \mathrm{R}^{4}$ where R^{4} is H or alkyl;

109
6. The compound as defined in claim 1 which has the structure

7. The compound as defined in claim 6 wherein $\mathrm{R}^{2 a}, \mathrm{R}^{2 b}$ and $R^{2 c}$ are each $H ; R^{1}$ is alkyl, x^{2} is 1 to $3 ; R^{2}$ is $H ; m$ is 0 or $\left(\mathrm{CH}_{2}\right)_{m}$ is CH_{2} or CHOH or CH-alkyl, X is $\mathrm{C}, \mathrm{X}_{2}, \mathrm{X}_{3}$, $\mathrm{X}_{4}, \mathrm{X}_{5}$ and X_{6} represent a total of 1,2 or 3 nitrogens, $\left(\mathrm{CH}_{2}\right)_{n}$ 15 is a bond or CH_{2} and R^{3} is alkoxyaryloxycarbonyl.
8. The compound as defined in claim 7 wherein R^{1} is CH_{3} and R^{3} is methyloxyphenyloxycarbonyl.
9. The compound as defined in claim 1 wherein:

10. The compounds as defined in claim 1 having the structure

40

45

50

55

60

110

111

14. The combination as defined in claim $\mathbf{1 3}$ wherein the antidiabetic agent is $1,2,3$ or more of a biguanide, a sulfonyl urea, a glucosidase inhibitor, a PPAR γ agonist, a PPAR α / γ dual agonist, an SGLT2 inhibitor, a DP4 inhibitor, an aP2 inhibitor, an insulin sensitizer, a glucagon-like peptide-I (GLP-I), insulin and/or a meglitinide, the anti-obesity agent is a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, a thyroid receptor agonist, an aP2 inhibitor, a cannabinoid receptor-1 antagonist and/or an anorectic agent, the lipid lowering agent is an MTP inhibitor, an HMG CoA reductase inhibitor, a squalene synthetase inhibitor, a fibric acid derivative, an upregulator of LDL receptor activity, a lipoxygenase inhibitor, a farnesoid receptor (FXR) agonist, a liver X receptor (LXR) agonist, a CETP inhibitor or an ACAT inhibitor, the antihypertensive agent is an ACE inhibitor, angiotensin II receptor antagonist, NEP/ACE inhibitor, calcium channel blocker and/or β-adrenergic. blocker.
15. The combination as defined in claim 14 wherein the antidiabetic agent is $1,2,3$ or more of metformin, glyburide, glimepiride, glipyride, glipizide, chlorpropamide, gliclazide, acarbose, miglitol, pioglitazone, rosiglitazone, balaglitazone, insulin, Gl-262570, isaglitazone, JTT-501, NN-2344, L895645, YM-440, R-119702, AJ9677, repaglinide, nateglinide, KAD1129, AR-HO39242,

112
GW-409544, KRP297, AZ-242, AC2993, LY315902, P32/ 98 and/or NVP-DPP-728A, the anti-obesity agent is orlistat, ATL-962, AJ9677, L750355, CP331648, sibutramine, topiramate, axokinc, dexamphetaminc, phenterminc, 5 phenylpropanolamine, rimonabant (SR-141716) and/or mazindol, the lipid lowering agent is pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, itavastatin, visastatin, rosuvastatin, pitavastatin, fenofibrate, gemfibrozil, clofibrate, avasimibe, ezetimibe, TS-962, MD-700, cholestagel, niacin and/or LY295427, the antihypertensive agent is an ACE inhibitor which is captopril, fosinopril, enalapril, lisinopril, quinapril, benazepril, fentiapril, ramipril or moexipril; an NEP/ACE inhibitor which is 5 omapatrilat, $\left[\mathrm{S}\left[\left(\mathrm{R}^{*}, \mathrm{R}^{*}\right)\right]\right.$-hexahydro-6-[(2-mercapto-1-oxo-3-phenylpropyl)amino]-2,2-dimethyl-7-oxo-1H-azepine-1acetic acid (gemopatrilat) or CGS 30440;
an angiotensin II receptor antagonist which is irbesartan, losartan, telmisartan or valsartan;
amlodipine besylate, prazosin HCl , verapamil, nifedipine, nadolol, propranolol, carvedilol, or clonidine HCl , the platelet aggregation inhibitor is aspirin, clopidogrel, ticlopidine, dipyridamole or ifetroban.

[^0]: 15

