

Find authenticated court documents without watermarks at <u>docketalarm.com</u>. (1 of 15)

Δ

US008618135B2

(12) United States Patent Rader

(54) METHODS FOR TREATING DISORDERS OR DISEASES ASSOCIATED WITH HYPERLIPIDEMIA AND HYPERCHOLESTEROLEMIA WHILE MINIMIZING SIDE EFFECTS

- (75) Inventor: Daniel J. Rader, Philadelphia, PA (US)
- (73) Assignee: The Trustees of the University of Pennsylvania, Philadelphia, PA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 13/046,118
- (22) Filed: Mar. 11, 2011

(65) Prior Publication Data

US 2012/0010243 A1 Jan. 12, 2012

Related U.S. Application Data

- (63) Continuation of application No. 10/591,923, filed as application No. PCT/US2005/007435 on Mar. 7, 2005, now Pat. No. 7,932,268.
- (60) Provisional application No. 60/550,915, filed on Mar.
 5, 2004.
- (51) Int. Cl. *A61K 31/445* (2006.01) *A61K 31/501* (2006.01) *A61K 31/52* (2006.01)
- (52) U.S. Cl. USPC . 514/321; 514/325; 514/252.03; 514/255.03; 514/263.22

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,983,140	Α	9/1976	Endo et al.
4,231,938	Α	11/1980	Monaghan et al.
4,346,227	Α	8/1982	Terahara et al.
4,448,784	Α	5/1984	Glamkowski et al.
4,450,171	Α	5/1984	Hoffman et al.
4,499,289	Α	2/1985	Baran et al.
4,613,610	Α	9/1986	Wareing
4,647,576	Α	3/1987	Hoefle et al.
4,686,237	Α	8/1987	Anderson
4,716,175	Α	12/1987	Hoefle et al.
4,871,721	Α	10/1989	Biller
4,924,024	Α	5/1990	Biller
5,015,644	Α	5/1991	Roth et al.
5,026,554	Α	6/1991	Bartizal et al.
5,117,080	Α	5/1992	Lee et al.
5,510,379	Α	4/1996	Lee et al.
5,595,872	A	1/1997	Wetterau, II et al.
5,684,014	Α	11/1997	Muller et al.
5,712,279	A	1/1998	Biller et al.
5,712,396	Α	1/1998	Magnin et al.
5,739,135	Α	4/1998	Biller et al.
5,760,246		6/1998	Biller et al.
5,767,115	Α	6/1998	Rosenblum et al.

DOCKE

RM

(10) Patent No.:

(45) Date of Patent: *Dec. 31, 2013

US 8,618,135 B2

5,786,361	Α	7/1998	Muller et al.
5,789,197	Α	8/1998	Wetterau, II et al.
5,811,429	Α	9/1998	Connell et al.
5,827,875	A	10/1998	Dickson, Jr. et al.
5,883,109	Α	3/1999	Gregg et al.
5,885,983	Α	3/1999	Biller et al.
5,952,498	Α	9/1999	Lenfers et al.
5,990,110	Α	11/1999	Firestone
6,034,115	Α	3/2000	Connell et al.
6,057,339	Α	5/2000	Gregg
6,066,650		5/2000	Biller et al.
6,066,653		5/2000	Gregg et al.
6,114,341	Α	9/2000	Muller et al.
6,121,283	Α	9/2000	Chang et al.
6,140,343	Α	10/2000	DeNinno et al.
6,194,454		2/2001	Dow
6,245,775		6/2001	Muller et al.
6,265,431	B1	7/2001	Muller et al.
6,297,233		10/2001	Stein et al.
6,344,450		2/2002	Bisacchi et al.
6,479,503		11/2002	Muller et al.
6,492,365	B1	12/2002	Wetterau, II et al.

(Continued)

FOREIGN PATENT DOCUMENTS

AU	727895	7/1998
CA	2091102	9/1993
	(6	

(Continued)

OTHER PUBLICATIONS

Visioli, "Microsomal Triglyceride Transfer Protein Inhibitors," Current Opinion in Cardiovascular, Pulmonary & Renal Investigational Drugs (2000), vol. 2, No. 3, pp. 292-293.

Teramoto et al. "Evaluating Utility[benefit] of Gradual Niceritrol (Perycit®) Titration to Hypercholesterolemia," in the Japan Atherosclerosis Society Journal: Atherosclerosis (1991), vol. 19, No. 2-3, pp. 199-208.

Fukushima et al. "Phase II Clinical Trial: Administration of Novel Antiepileptic Agent, Zonisamide (ZNA), to Epileptic Children," in *Japanese Journal of Pediatrics* (1987), vol. 40, No. 12, pp. 3389-3397.

Williams et al. "Novel Microsomal Triglyceride Transfer Protein Inhibitors," in *Expert Opinion on Therapeutic Patents* (2003), vol. 13, No. 4, pp. 479-488.

(Continued)

Primary Examiner — Kevin E Weddington (74) Attorney, Agent, or Firm — Goodwin Procter LLP

(57) ABSTRACT

The present invention provides methods and compositions for treating hyperlipidemia and/or hypercholesterolemia comprising administering to the subject an effective amount of an MTP inhibitor to inhibit hyperlipidemia and/or hypercholesterolemia in said subject, wherein said administration comprises an escalating series of doses of the MTP inhibitor. In some embodiments the method comprises administering at least three step-wise, increasing dosages of the MTP inhibitor to the subject. In some embodiments, the method further comprises the administration of one or more other lipid modifying compounds.

10 Claims, No Drawings

Find authenticated court documents without watermarks at <u>docketalarm.com</u>. (2 of 15)

(56)		Referen	nces Cited	EP EP	0325130	7/1989
	U.S.	PATENT	DOCUMENTS	EP	0705831 0779276	4/1996 6/1997
	0.0.			EP	0779279	6/1997
6,498	,156 B2	12/2002	Glombik et al.	EP	0799828	10/1997
6,582	,698 B1	6/2003	Dedrick et al.	EP	0802198	10/1997
	,821 B2	9/2003		EP EP	1099442 1181954	5/2001 2/2002
	,636 B2	9/2003		FR.	2596393	10/1987
	,351 B2 ,236 B1		Bertinato et al. Lenfers et al.	GB	2205837	12/1988
	,345 B2		Robl et al.	л	2002/220345	9/1990
	,836 B2		Hamann et al.	ЛР	2003-321424	11/2003
	,622 B2		Muller et al.	WO	WO-86/03488	6/1986
	,782 B2		Cheng et al.	WO WO	WO-86/07054 WO-96/26205	12/1986 8/1996
	,812 B2		Glombik et al. Chen et al.	WO	WO-96/26948 A1	9/1996
	,809 B2 ,813 B2		Atwal et al.	WŐ	WO-96/40640	12/1996
	,572 B2		Bertinato et al.	WO	WO-97/41111	11/1997
	,692 B2		Bertinato et al.	WO	WO-98/03069	1/1998
	,080 B2		Davis et al.	WO	WO-98/03174	1/1998
	,906 B2		Strony	wo WO	WO-98/23593 WO-98/27979	6/1998 7/1998
	,254 B2		Robl et al. Iwata et al.	wo	WO-98/31225	7/1998
	,501 B2 ,732 B2		Ye et al.	WO	WO-98/31366	7/1998
	,268 B2*		Rader	WO	WO-98/31367	7/1998
2002/003			Robl et al.	WO	WO-98/50028	11/1998
2002/004			Hussain et al.	WO	WO-00/38725	7/2000
2003/0069			Kosoglou et al.	wo wo	WO-01/08679 WO-2004/028544	2/2001 4/2004
2003/0109			Ogletree Dudlag at al	wo	WO-2004/028044 WO-2004/110368	12/2004
2003/0153 2003/0162			Dudley et al. Thomas et al.	wŏ	WO-2004/110375	12/2004
2003/018			Bertinato et al.	WO	WO-2005/000217	1/2005
2004/0014			Grutzmann et al.	WO	WO-2005/033100 A1	4/2005
2004/0058			Keller et al.	WO	WO-2005/051382	6/2005
2005/007:			Hagiwara et al.	wo wo	WO-2005/072740 WO-2005/085466	8/2005 9/2005
2005/0090			Blumberg	wo	WO-2005/087234	9/2005
2005/0101 2006/0069		5/2005	Lee et al.	wo	WO-2005/087324	9/2005
2006/013			Widder et al.	WO	WO-2005/094864	10/2005
2006/0153			Yamane et al.	WO	WO-2005/097131	10/2005
2006/0160			Fong et al.	WO	WO-2006/046623	5/2006
2006/0166			Grutzmann et al.	wo WO	WO-2006/062748 WO-2006/063128	6/2006 6/2006
2006/0201 2006/0211			Hagiwara et al. Farrer et al.	wŏ	WO-2006/108666	10/2006
2006/0211			Rongen et al.	WO	WO-2006/111238	10/2006
2006/0252		11/2006		WO	WO-2007/047724	4/2007
2006/0270			Swick et al.	WO	WO-2007/047880	4/2007
2007/0023			Ogawa et al.	WO WO	WO-2007/047880 A2 WO-2008/012056	4/2007 1/2008
2007/0032 2007/0088		2/2007		wo	WO-2008/012030 WO-2008/021353	2/2008
2007/0088			Wisler Wisler	wõ	WO-2008/030382	3/2008
2007/0093			Wisler	WO	WO-2008/072061	6/2008
2007/0098		5/2007	Borsadia	WO	WO-2008/075949	6/2008
2007/0099	9884 A1		Erondu et al.	WO	WO-2008/079398 A1	7/2008
2008/0016		1/2008		wo wo	WO-2008/090198 WO-2008/115574	7/2008 9/2008
2008/0033			Stamler			
2008/0053		5/2008	Schuckler Voltri		OTHER PUI	BLICATIONS
2008/0103 2008/0161			Wisler			
2008/0175			Ye et al.	Atzel, A	A., et al., "Mechanism of	Microsomal Triglyceride Transfer
2008/0241		10/2008		Protein	Catalyzed Lipid Trans	port", Biochemistry (1993), 32,
2008/0248		10/2008		10444-	10450.	
2008/0253	3985 A1	10/2008		Bakilla	h A. et al., "Decreased secr	etion of ApoB follows inhibition of
2008/0255		10/2008				antagonist", Biochemistry (Mosc),
2008/0280			Kunz et al.	(2000)	39(16):4892-4899.	
2009/0042		2/2009			, "Hyperlipidemia", NMI	
2009/0042		2/2009				linical Trials", Methods and Find-
2009/0054 2009/0093			Wisler Li et al.			Pharmacology, 24(1):2002, 37-55.
2009/0093		4/2009				or Dyslipidaemia—Current Thera-
2010/02/2	ina	10/2010	T . AVA #A	-	•	xpert Opin Phamacother, Nov.
	FOREIC	EN PATE	NT DOCUMENTS	2003;4((11):1901-38.	

FOREIGN PATENT DOCUMENTS

CA	2291471	6/2000
CA	2325201	5/2001
DE	19951022	4/2001
EP	0142146	5/1985
EP	0221025	5/1987

DOCKE

Α

RM

Δ

Capson, (PhD dissertation, Jun. 1987, Dept. Med. Chem. U. of Utah, Abstract).

Find authenticated court documents without watermarks at docketalarm.com. (3 of 15)

(56) **References** Cited

OTHER PUBLICATIONS

Catapano, Ezetimibe: a selective inhibitor of cholesterol absorption, European Heart Journal Supplements 2001 (3, Supplemental E):E6-E10).

Chang et al., "Microsomal Triglyceride Transfer Protein (MTP) Inhibitors: Discovery of Clinically Active Inhibitors Using High-Throughput Screening and Parallel Synthesis Paradigms", Current Opinion in Drug Discovery & Development, (2002) 5(4):562-70.

Corey and Volante, J. Am. Chem. Soc., (1976) 98:1291-93. de Montellano et al., "Inhibition of Squalene Synthetase by Farnesyl Pyrophosphate Analogues", J. Med. Chem., (1977) 20:243-49.

Earl et al., "Ezetimibe", Nature Reviews, 2003, 2:97-98.

Evans M. et al, "Medical Lipid-Regulating Therapy: Current Evidence, Ongoing Trials and Future Developments", Drugs: 2004; 64 (11): pp. 1181-1196.

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. National Cholesterol Education Program: Adult Treatment Panel III Report. Publication No. 01-3095, I-1-IX-11. 2001. Bethesda, MD, National Heart, Lung, and Blood Institute. Farrell., "Drugs and Steatohepatitis", Semin Liver Dis, (2002) 22(2):185-194.

Gagne, et al. "Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia", Circulation, (2002) 105 (21):2469-75.

International Search Report for Application No. PCT/US05/07435 dated Jul. 14, 2005 (7 pages).

International Search Report for Application No. PCT/US06/040637 dated Jun. 12, 2007 (8 pages).

International Search Report for Application No. PCT/US06/040639 dated Jun. 12, 2007 (9 pages).

International Search Report for Application No. PCT/US06/040640 dated May 23, 2007 (9 pages).

International Search Report for Application No. PCT/US06/040953

dated Mar. 3, 2007 (8 pages). Jamil et al., "An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells", Proc Natl Acad Sci U S A, (1996) 93(21):11991-11995.

Kastelein J., "What Future for Combination Therapies", Int J. Clin Pract. Suppl. Mar. 2003; (134): pp. 45-50. Kirkpatrick et al, "Market Indicators", Nature, 2003, 2:98.

Knopp RH, Drug treatment of lipid disorders. New England J. Med. 1999; 341(7): 498-511; electronic pp. 1-25.

Liao et al., "Blocking Microsomal Triglyceride Transfer Protein Interferes with apoB Secretion Without Causing Retention or Stress in the ER", Journal of Lipid Research, (2003) 44(5):978.

McClard et al., J.A.C.S., (1987) 109:5544.

Ritter et al., "Heterocyclic Ring Scaffolds as Small-Molecule Cholesterol Absorption Inhibitors", Org. Biomol. Chem., 2005, 3:3514-3523.

Robl et al, "A Novel Series of Highly Potent Benzimidazole-Based Microsomal Triglyceride Transfer Protein Inhibitors", Journal of Medicinal Chemistry, 2001, 44(6):851-856.

Shiomi et al, "MTP Inhibitor Decreases Plasma Cholesterol Levels in LDL Receptor-Deficient WHHL Rabbits by Lowering the VLDL Secretion", Euro. Journal of Pharma. 2001, 431:127-131.

Sorbera, L.A., et al., "Hypolipidemic Treatment of Atherosclerosis MTP Inhibitor ApoB Secretion Inhibitor", Drugs of the Future, (2000) 25(11):1138-1144.

Subhop et al., "Cholesterol absorption inhibitors for the treatment of hypercholesterolaemia", Drugs, 2002, 62(16):2333-2347.

Thomas et al., "Alleviation of MTP Inhibitor-Induced Hepatic Steatosis in Hyperlipidemic fa/fa Rats by Fenofibrate", Dept. of Metabolic Diseases and Dept. of Chemical Research, Boehringer Ingelheim Pharma GmbH & Co. KG, (2005).

Wetterau et al., "An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits", Science, (1998)282(5389):751-754.

Wetterau et al., "Microsomal triglyceride transfer protein", Biochim Biophys Acta, (1997) 1345(2):136-150.

DOCKE.

Wierzbicki A.S., "New Lipid-Lowering Agents", Expert Opinion on Emerging Drugs, Ashley Publications, GB, 8 (2):2003, 365-376. Aggarwal, et al; BMC Cardiovasc. Disord. 27;5(1):30 (2005).

Chandler, et al., J. Lipid. Res. 44(10):1887-901 (2003).

Cuchel et al., "Inhibition of Microsomal Triglyceride Transfer Protein in Familial Hypercholesterolemia," N Engl J Med., (2007); 356:148-156

Funatsu et al. "Atorvastatin Increases Hepatic Fatty Acid Beta-Oxidation in Sucrose-Fed Rats: Comparison with an MTP Inhibitor." Eur. J. Pharm. 2002 455:161-167.

Li, et al., "Discovery of Potent and Orally Active MTP Inhibitors as Potential Anti-Obesity Agents," Bioorganic & Medicinal Chemistry Letters, Oxford, GB, vol. 16, No. 11, Jun. 1, 2006, pp. 3039-3042.

Looije, Norbert A., et al., "Disodium Ascorbyl Phytostanyl Phosphates (FM-VP4) Reduces Plasma Cholesterol Concentration, Body Weight and Abdominal Fat Gain Within a Dietary-Induced Obese Mouse Model," Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, vol. 8, No. 3, 2005, pp. 400-408.

Samaha, et al., "Inhibition of Microsomal Triglyceride Transfer Protein Alone or With Ezetimibe in Patients With Moderate Hypercholesterolemia," Nature Clinical Practice, (2008), pp. 1-9.

Aguilar-Salinas et al. (2000) "Efficacy and Safety of Atorvastatin in Hyperlipidemic, Type 2 Diabetic Patients. A 34-Week, Multicenter, Open-Label Study," Atherosclerosis, 152:489-496.

Capuzzi et al. (2000) "Niacin Dosing: Relationship to Benefits and Adverse Effects," Current Atherosclerosis Reports, 2:64-71.

Orgogozo et al. (2002) "Efficacy and Safety of Memantine in Patients with Mild to Moderate Vascular Dementia: A Randomized, Placebo-Controlled Trial (MMM 300)," Stroke, 33:1834-839.

Parsons et al. (1999) "Memantine is a Clinically Well Tolerated N-Methyl-DAspartate (NMDA) Receptor Antagonist-A Review of Preclinical Data," Neuropharmacology, 38:735-767.

Hussain, M.M., et al., "Multiple Functions of Microsomal Triglyceride Transfer Protein," Nutrition & Metabolism, 2012, 9:14, pp. 1-16.

http://en.wikipedia.org/wiki/, Microsomal Triglyceride Transer Protein (Updated Mar. 17, 2013.).

van Dam, M.J., et al., "Efficacy and Safety of Implitapide (Bay 13 9952), A Microsomal Triglyceride Transfer Protein Inhibitor, in Patients with Primary Hypercholesterolemia," Chapter 2, Dissertation, (2001).

Excerpt from Clinical Trials.gov, "Implitapide in Patients with Hypertriglyceridemia (HTG) on Maximal, Concurrent Triglyceride-Lowering Therapy," received Mar. 23, 2004.

Excerpt from ClinicalTrial.gov, "Implitapide in Patients with Homozygous Familial Hypercholesterolemia (HoFH) on Maximal Concurrent Lipid-Lowering Therapy," received Mar. 17, 2004.

News Release: PPD presenting business; Jan. 15, 2004.

Inventor Presentation, Feb., 2004, available electronically Apr. 15, 2004.

Title: Pink Sheet, Feb. 16, 2004.

Gruetsmann, et al., "Implitapide (BAY 13/9952) Inhibits Secretion of apoB Associated Lipoproteins by Inhibition of the Microsomal Triglyceride Transfer Protein (MTP)", Eur Heart J. 2000, 21 (Suppl), Abst 3271.

Bischoff, et al., "BAY 13/9952 (Implitapide): Pharmacodynamic Effects of a New Microsomal Triglyceride Transfer Protein (MTP) Inhibitor on Plasma Lipids and Adipose Tissue in Animals," Eur Heart J 2000, 21 (Suppl), Abst P3501.

Zaiss, et al., "BAY 13/9952 (implitapide), An Inhibitor of the Microsomal Triglyceride Transfer Protein (MTP), Inhibits Atherosclerosis and Prolongs Lifetime in Apo-E Knockout Mice," Eur Heart J. 2000, 21 (Suppl), Abst 194.

CFAD Ex. 1001 (4 of 15)

Notice of Opposition to European Patent, Aug. 21, 2013.

* cited by examiner

Find authenticated court documents without watermarks at do

METHODS FOR TREATING DISORDERS OR DISEASES ASSOCIATED WITH HYPERLIPIDEMIA AND HYPERCHOLESTEROLEMIA WHILE MINIMIZING SIDE EFFECTS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 10/591, ¹⁰ 923, which is a national phase application under 35 U.S.C. §371 of PCT/US05/007435 filed Mar. 7, 2005 which in turn claims priority benefit of U.S. Ser. No. 60/550,915, filed Mar. 5, 2004, all of which are hereby incorporated by reference in their entireties. ¹⁵

FIELD OF THE INVENTION

The present invention generally relates to therapy for hypercholesterolemia and hyperlipidemia.

BACKGROUND OF THE INVENTION

Hypercholesterolemia is a well-known risk factor for ASCVD, the major cause of mortality in the Western world. 25 Numerous epidemiological studies have clearly demonstrated that pharmacological lowering of total cholesterol (TC) and Low-density Lipoprotein (LDL) Cholesterol (LDL-C) is associated with a significant reduction in clinical cardiovascular events. Hypercholesterolemia is often caused by 30 a polygenic disorder in the majority of cases and modifications in lifestyle and conventional drug treatment are usually successful in reducing cholesterol levels. However, in few cases, as in familial hypercholesterolemia (FH), the cause is a monogenic defect and the available treatment in homozygous 35 patients can be much more challenging and far from optimal because LDL-C levels remain extremely elevated despite aggressive use of combination therapy. Therefore, for this group of high-risk patients, effective medical therapy is urgently needed.

Triglycerides are common types of fats (lipids) that are essential for good health when present in normal amounts. They account for about 95 percent of the body's fatty tissue. Abnormally high triglyceride levels may be an indication of such conditions as cirrhosis of the liver, underactive thyroid 45 (hypothyroidism), poorly controlled diabetes, or pancreatitis (inflammation of the pancreas). Researchers have identified triglycerides as an independent risk factor for heart disease.

Higher-than-normal triglyceride levels are often associated with known risk factors for heart disease, such as low 50 levels of HDL ("good") cholesterol, high levels of LDL ("bad") cholesterol and obesity. Triglycerides may also contribute to thickening of artery walls—a physical change believed to be a predictor of atherosclerosis.

Therefore, high triglyceride levels are at least a warning 55 sign that a patient's heart health may be at risk. In response, physicians may be more likely to stress the importance of losing weight, getting enough exercise, quitting smoking, controlling diabetes and other strategies that patients can use to protect their own cardiovascular health. 60

A large number of genetic and acquired diseases can result in hyperlipidemia. They can be classified into primary and secondary hyperlipidemic states. The most common causes of the secondary hyperlipidemias are diabetes mellitus, alcohol abuse, drugs, hypothyroidism, chronic renal failure, 65 nephrotic syndrome, cholestasis and bulimia. Primary hyperlipidemias have also been classified into common hypercho-

DOCKE

lesterolemia, familial combined hyperlipidemia, familial hypercholesterolemia, remnant hyperlipidemia, chylomicronemia syndrome and familial hypertriglyceridemia.

A number of treatments are currently available for lowering serum cholesterol and triglycerides. However, each has its own drawbacks and limitations in terms of efficacy, sideeffects and qualifying patient population.

Bile-acid-binding resins are a class of drugs that interrupt the recycling of bile acids from the intestine to the liver; e.g.,
10 cholestyramine (Questran Light®, Bristol-Myers Squibb), and colestipol hydrochloride (Colestid®, The Upjohn Company). When taken orally, these positively-charged resins bind to the negatively charged bile acids in the intestine. Because the resins cannot be absorbed from the intestine, they
15 are excreted carrying the bile acids with them. The use of such resins, however, at best only lowers serum cholesterol levels by about 20%, and is associated with gastrointestinal side-effects, including constipation and certain vitamin deficiencies. Moreover, since the resins bind other drugs, other oral
20 medications must be taken at least one hour before or four to six hours subsequent to ingestion of the resin; thus, complicating heart patient's drug regimens.

The statins are cholesterol-lowering agents that block cholesterol synthesis by inhibiting HMGCoA reductase-the key enzyme involved in the cholesterol biosynthetic pathway. The statins, e.g., lovastatin (Mevacor®, Merck & Co., Inc.), simvastatin (Zocor®, Merck & Co., Inc.), atorvastatin (Lipitor®, Pfizer), rosuva (Crestor®, Astra Zeneca) and pravastatin (Pravachol®, Bristol-Myers Squibb Co.), and combinations thereof are sometimes used in combination with bileacid-binding resins. Statins significantly reduce serum cholesterol and LDL-serum levels, and slow progression of coronary atherosclerosis. However, serum HDL cholesterol levels are only moderately increased. The mechanism of the LDL lowering effect may involve both reduction of VLDL concentration and induction of cellular expression of LDLreceptor, leading to reduced production and/or increased catabolism of LDLs. Side effects, including liver and kidney dysfunction are associated with the use of these drugs (Phy-

o sicians Desk Reference, Medical Economics Co., Inc., Montvale, N.J., 2004; hereinafter "PDR"). The FDA has approved atorvastatin to treat rare but urgent cases of familial hypercholesterolemia.

Ezetimibe is a cholesterol absorption inhibitor which reduces the amount of cholesterol absorbed by the body. Ezetimibe is used to reduce the amount of total cholesterol, LDL cholesterol (by about 18%), and apolipoprotein B. Ezetimibe is often used with a low cholesterol diet and, in some cases, other cholesterol lowering medications.

Niacin, or nicotinic acid, is a water soluble vitamin B-complex used as a dietary supplement and antihyperlipidemic agent. Niacin diminishes production of VLDL and is effective at lowering LDL. In some cases, it is used in combination with bile-acid binding resins. NIASPAN® has been approved to prevent recurrent heart attacks in patients with high cholesterol. Niacin can increase HDL when used at adequate doses, however, its usefulness is limited by serious side effects when used at such high doses.

Fibric acid derivatives ("fibrates") are a class of lipidlowering drugs used to treat various forms of hyperlipidemia (i.e., elevated serum triglycerides) which may also be associated with hypercholesterolemia. Fibrates appear to reduce the VLDL fraction and modestly increase HDL. However, the effects of these drugs on serum cholesterol is variable. Fibrates are mainly used to lower high triglyceride levels.

Although fibrates typically do not appear as effective as statins in lowering total cholesterol and LDL cholesterol lev-

Find authenticated court documents without watermarks at <u>docketalarm.com</u>. (5 of 15)

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.