Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines

Ashok R. Amin^{a,b,c,d,*}, Rajesh N. Patel^a, Geeta D. Thakker^a, Charles J. Lowenstein^c, Mukundan G. Attur^a, Steven B. Abramson^{a,b}

^aDepartment of Rheumatology and Medicine, Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003, USA

^bDepartment of Medicine, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA

^oDepartment of Pathology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA ^dKaplan Cancer Research Center, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA

^oDepartment of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

iment of Medicine, Johns Hopkins Oniversity School of Medicine, Ballimore, MD 21.

Received 8 May 1997

Abstract Chemically modified tetracyclines [CMT-3 (IC₅₀ $\sim 6-13 \ \mu M = \sim 2.5-5 \ \mu g/ml$) and CMT-8 (IC₅₀ $\sim 26 \ \mu M =$ 10 µg/ml), but not CMT-1, -2 or -5], which lack anti-microbial activity, inhibited nitrite production in LPS-stimulated macrophages. Unlike competitive inhibitors of L-arginine which inhibited the specific activity of inducible nitric oxide synthase (iNOS) in cell-free extracts, CMTs exerted no such direct effect on the enzyme. CMTs could, however, be shown to inhibit both iNOS mRNA accumulation and protein expression in LPSstimulated cells. Tetracyclines (doxycycline and CMT-3) unlike hydrocortisone had no significant effect on murine macrophages transfected with iNOS promoter (tagged to a luciferase reporter gene) in the presence of LPS. However, doxycycline and CMT-3 augmented iNOS mRNA degradation, in LPS-stimulated murine macrophages. These studies show a novel mechanism of action of tetracyclines which harbours properties to increase iNOS mRNA degradation and decrease iNOS protein expression and nitric oxide production in macrophages. This property of tetracyclines may have beneficial effects in the treatment of various diseases where excess nitric oxide has been implicated in the pathophysiology of these diseases.

© 1997 Federation of European Biochemical Societies.

Key words: Nitric oxide; Macrophages; Tetracycline; Chemically modified tetracyclines (CMT); Collagenase; RNA

1. Introduction

Nitric oxide (NO), first identified as an endothelium-derived relaxation factor, is now recognized to regulate the functions of many mammalian cells and tissues [1]. NO is produced by the ubiquitous enzyme, nitric oxide synthase (NOS). The overexpression of inducible NOS (iNOS) in a variety of inflammatory tissues had led many to conclude that the modulation of NO synthesis and action could represent a new approach to treatment of inflammatory and autoimmune diseases [2,3], including osteoarthritis (OA) [4] and rheumatoid arthritis (RA) [5].

*Corresponding author. Fax: (1) (212) 598 6168.

Various studies have shown that among the tetracycline group of broad-spectrum antibiotics, doxycycline and minocycline exert biological effects independent of their anti-microbial activity [6-9]. Such effects include inhibition of activity of matrix metalloproteases (MMPs), including collagenase (MMP-1), gelatinase (MMP-2) and stromelysin (MMP-3), and prevention of pathogenic tissue destruction [6]. Recent studies have also indicated that tetracyclines and inhibitors of MMPs block tumor progression [10], bone resorption [11] and angiogenesis [12]. In view of these diverse effects of tetracyclines, we have also observed that doxycycline and minocycline inhibit iNOS expression in murine macrophages [13]. The present study shows that: (a) some chemically modified tetracyclines (CMT-3 and CMT-8, but not CMT-1 or CMT-5) share the ability to inhibit iNOS expression in a similar fashion as observed with doxycycline and minocycline; (b) CMT-3 and doxycycline augment iNOS mRNA degradation and have no significant influence on iNOS gene transcription.

2. Materials and methods

Murine macrophage cells (RAW 264.7) were obtained from ATCC (Rockville, MD, USA). An anti-murine iNOS antibody was obtained from Transduction Laboratories (Lexington, KY, USA). Doxycycline, minocycline, hydrocortisone, N-acetyl imidazole (NAI), and lipopoly-saccharide (LPS) were obtained from Sigma (St. Louis, MO, USA). The CMTs (designated as CMT-1, -2, -3, -5 and -8) were a generous gift from CollaGenex (Newtown, PA, USA).

Equal amounts of protein (25-50 μ g) estimated by BCA reagent (Pierce, Rockford, IL, USA) were loaded onto SDS-PAGE gels and stained to verify the concentrations of various protein fractions by examining the intensities of the protein bands on the gels. Western blot analysis was carried out from the same cell extracts. The Western blot was probed with a specific anti-iNOS murine mAb as specified by Transduction Laboratories. Membranes with bound antibodies (e.g., iNOS) were stripped by submersion in stripping buffer (100 mM 2-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl, pH 6.7) and incubating at 50°C for 30 min with occasional agitation. Membranes were then washed twice for 10 min at RT using large volumes of wash buffer. The same blot was also probed with an anti-actin antibody generously provided by Dr. James L. Lessard (Children's Hospital Medical Center, Cincinnati, OH, USA) using the standard protocol. Blots were developed using the ECL Western blot system (Amersham, Arlington Heights, IL, USA). Quantitation of the bands was performed using a densitometer from Molecular Dynamics (Sunnyville, CA, USA).

Total RNA was isolated using TRI Reagent (MRC, Cincinnati, OH, USA). Northern blot analysis was carried out as described earlier [14,15]. Briefly, 20 μ g of RNA was subjected to electrophoresis in 1% agarose formaldehyde gel, and the

0014-5793/97/\$17.00 © 1997 Federation of European Biochemical Societies. All rights reserved. PII S 0 0 1 4 - 5 7 9 3 (97) 0 0 6 0 5 - 4

Dr. Reddy's Laboratories, Ltd., et al. v. Galderma Laboratories, Inc.

Abbreviations: CMT, chemically modified tetracycline; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LPS, lipopolysaccharide; MMP, matrix metalloprotease; NO, nitric oxide; NOS, nitric oxide synthase; iNOS, inducible nitric oxide synthase; OA, osteoarthritis; RA, rheumatoid arthritis

Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines

Ashok R. Amin^{a,b,c,d,*}, Rajesh N. Patel^a, Geeta D. Thakker^a, Charles J. Lowenstein^e, Mukundan G. Attur^a, Steven B. Abramson^{a,b}

^aDepartment of Rheumatology and Medicine, Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003, USA

^bDepartment of Medicine, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA

^cDepartment of Pathology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA

^dKaplan Cancer Research Center, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA

^eDepartment of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Received 8 May 1997

Abstract Chemically modified tetracyclines [CMT-3 (IC₅₀ $\sim 6-13 \ \mu M = \sim 2.5-5 \ \mu g/ml$) and CMT-8 (IC₅₀ $\sim 26 \ \mu M =$ 10 µg/ml), but not CMT-1, -2 or -5], which lack anti-microbial activity, inhibited nitrite production in LPS-stimulated macrophages. Unlike competitive inhibitors of L-arginine which inhibited the specific activity of inducible nitric oxide synthase (iNOS) in cell-free extracts, CMTs exerted no such direct effect on the enzyme. CMTs could, however, be shown to inhibit both iNOS mRNA accumulation and protein expression in LPSstimulated cells. Tetracyclines (doxycycline and CMT-3) unlike hydrocortisone had no significant effect on murine macrophages transfected with iNOS promoter (tagged to a luciferase reporter gene) in the presence of LPS. However, doxycycline and CMT-3 augmented iNOS mRNA degradation, in LPS-stimulated murine macrophages. These studies show a novel mechanism of action of tetracyclines which harbours properties to increase iNOS mRNA degradation and decrease iNOS protein expression and nitric oxide production in macrophages. This property of tetracyclines may have beneficial effects in the treatment of various diseases where excess nitric oxide has been implicated in the pathophysiology of these diseases.

© 1997 Federation of European Biochemical Societies.

Key words: Nitric oxide; Macrophages; Tetracycline; Chemically modified tetracyclines (CMT); Collagenase; RNA

1. Introduction

Nitric oxide (NO), first identified as an endothelium-derived relaxation factor, is now recognized to regulate the functions of many mammalian cells and tissues [1]. NO is produced by the ubiquitous enzyme, nitric oxide synthase (NOS). The overexpression of inducible NOS (iNOS) in a variety of inflammatory tissues had led many to conclude that the modulation of NO synthesis and action could represent a new approach to treatment of inflammatory and autoimmune diseases [2,3], including osteoarthritis (OA) [4] and rheumatoid arthritis (RA) [5].

Various studies have shown that among the tetracycline group of broad-spectrum antibiotics, doxycycline and minocycline exert biological effects independent of their anti-microbial activity [6-9]. Such effects include inhibition of activity of matrix metalloproteases (MMPs), including collagenase (MMP-1), gelatinase (MMP-2) and stromelysin (MMP-3), and prevention of pathogenic tissue destruction [6]. Recent studies have also indicated that tetracyclines and inhibitors of MMPs block tumor progression [10], bone resorption [11] and angiogenesis [12]. In view of these diverse effects of tetracyclines, we have also observed that doxycycline and minocycline inhibit iNOS expression in murine macrophages [13]. The present study shows that: (a) some chemically modified tetracyclines (CMT-3 and CMT-8, but not CMT-1 or CMT-5) share the ability to inhibit iNOS expression in a similar fashion as observed with doxycycline and minocycline; (b) CMT-3 and doxycycline augment iNOS mRNA degradation and have no significant influence on iNOS gene transcription.

2. Materials and methods

Murine macrophage cells (RAW 264.7) were obtained from ATCC (Rockville, MD, USA). An anti-murine iNOS antibody was obtained from Transduction Laboratories (Lexington, KY, USA). Doxycycline, minocycline, hydrocortisone, *N*-acetyl imidazole (NAI), and lipopoly-saccharide (LPS) were obtained from Sigma (St. Louis, MO, USA). The CMTs (designated as CMT-1, -2, -3, -5 and -8) were a generous gift from CollaGenex (Newtown, PA, USA).

Equal amounts of protein (25-50 µg) estimated by BCA reagent (Pierce, Rockford, IL, USA) were loaded onto SDS-PAGE gels and stained to verify the concentrations of various protein fractions by examining the intensities of the protein bands on the gels. Western blot analysis was carried out from the same cell extracts. The Western blot was probed with a specific anti-iNOS murine mAb as specified by Transduction Laboratories. Membranes with bound antibodies (e.g., iNOS) were stripped by submersion in stripping buffer (100 mM 2-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl, pH 6.7) and incubating at 50°C for 30 min with occasional agitation. Membranes were then washed twice for 10 min at RT using large volumes of wash buffer. The same blot was also probed with an anti-actin antibody generously provided by Dr. James L. Lessard (Children's Hospital Medical Center, Cincinnati, OH, USA) using the standard protocol. Blots were developed using the ECL Western blot system (Amersham, Arlington Heights, IL, USA). Quantitation of the bands was performed using a densitometer from Molecular Dynamics (Sunnyville, CA, USA).

Total RNA was isolated using TRI Reagent (MRC, Cincinnati, OH, USA). Northern blot analysis was carried out as described earlier [14,15]. Briefly, 20 μ g of RNA was subjected to electrophoresis in 1% agarose formaldehyde gel, and then transferred via capillary action

0014-5793/97/\$17.00 © 1997 Federation of European Biochemical Societies. All rights reserved.

^{*}Corresponding author. Fax: (1) (212) 598 6168.

Abbreviations: CMT, chemically modified tetracycline; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LPS, lipopolysaccharide; MMP, matrix metalloprotease; NO, nitric oxide; NOS, nitric oxide synthase; iNOS, inducible nitric oxide synthase; OA, osteoarthritis; RA, rheumatoid arthritis

onto a nylon membrane (Zeta Probe, Bio-Rad Laboratories, Melville, NY, USA). The membrane was hybridized with [³²P]dCTP-labelled iNOS cDNA (4 kb *SmaI* fragment), a kind gift from Dr. James Cunningham (Harvard Medical School, Boston, MA, USA). After hybridization, the blot was exposed to Kodak X-ray film (Kodak, Rochester, NY, USA) for 24-48 h with intensifying screens at -70°C. The GAPDH probe was purchased from ClonTech (Palo Alto, CA, USA) and probed as described above. Quantitation of the intensity of the iNOS and GAPDH bands was performed using a Personal Densitometer SI (Molecular Dynamics).

Specific activity of iNOS was determined in cell-free extracts by monitoring the conversion of L-[3H]arginine to L-[3H]citrulline as described [15,16]. RAW 264.7 cells were induced with LPS (100 ng/ml) in the presence and absence of minocycline, CMTs or hydrocortisone for 14-20 h. Following induction, the cells were pelleted at 4°C and resuspended in Tris buffer (10 mM, pH 7.4) containing 10 µg/ml each chymostatin, antipain, leupeptin and pepstatin, 1 mM DTT and 1 mM PMSF [15]. Cells were lysed in a Polytron PT1200 homogenizer (Kinematica, Switzerland) after 3 cycles of rapid freeze-thawing. The lysate was centrifuged at 16000 rpm for 60 min at 4°C, and the supernatants were used as cell-free extracts. The protein was measured by BCA assay reagent using BSA as standard [17]. The reaction mixture for iNOS assay consists of Tris 50 mM (pH 7.8); BSA 1 mg/ml; DTT 1 mM; CaCl₂ 2 mM; FAD 10 µM; BH₄ 10 µM; L-arginine 30 µM; NADPH 1 mM. The reaction mixture was spiked with 1 µl (250 nM) of L-[3H]arginine (Du Pont NEN, Boston, USA, MA) (1 mCi/ ml = 37.0 MBq/ml). After 20 min the assays were terminated by heating the reaction mixture at 90°C for 5 min; 10 μ l (\simeq 100000 cpm) of the supernatant was spotted on activated Avicel TLC plates (Analtech, Newark, DE, USA). The TLC plates were developed in a solvent system consisting of ethanol/water/ammonia (80:16:4). Quantitation of the spot for L-[3H]citrulline was performed by a Bioscan System 200 Imaging Scanner.

RNA stability analysis was carried out as previously described [18]. Briefly, cells were stimulated with 100 ng/ml of LPS (\pm tetracycline) followed by addition of actinomycin D (5 µg/ml) 4 h post-stimulation. Total RNA was prepared at different time periods and analyzed by Northern blot analysis as described above. The data are represented as percentage of iNOS mRNA degraded after normalizing the values with GAPDH.

RAW 264.7 cells were transfected with the 1.7 kb murine iNOS promoter linked to a luciferase reporter gene [19] using the DEAE-dextran method as previously described [20]; 10 μ g of the plasmid DNA was added to 10⁷ cells in 1.0 ml of DMEM (without serum) containing DEAE-dextran (250 μ g/ml) and 50 mM Tris (pH 7.4). The suspension was further incubated at 37°C for 60 min followed by a 1.0 min shock with 10% DMSO at room temperature. These cells were incubated for 45 min with the respective drugs and stimulated with 100 ng/ml LPS 24 h post-transfection. The cells were finally harvested 24 h after LPS stimulation and assayed for luciferase activity as described by the manufacturer's instructions (Promega, Madison, WI, USA).

3. Results and discussion

Our recent studies show that doxycycline and minocycline inhibit iNOS expression at the level of iNOS mRNA accumulation in murine macrophages stimulated with LPS [13]. In view of these observations, we examined if chemically modified tetracyclines as shown in Fig. 1 and which lack anti-microbial activity as previously reported [21], could also modulate iNOS expression. We therefore compared the effects of CMTs and minocycline on nitrite accumulation in LPS-stimulated murine macrophages as shown in Fig. 2. CMT-3 >CMT-8 (but not CMT-1, -2, or -5) inhibited nitrite accumulation in a dose-dependent manner. The IC₅₀ level of CMT-3 was $< 2.5 \,\mu$ g/ml ($< 6 \,\mu$ M) while that of CMT-8 was $\sim 10 \,\mu$ g/ ml ($\sim 26 \mu$ M). CMT-2 and CMT-5 at concentrations of 10 µg/ml did not show a significant effect on nitrite accumulation (Fig. 2), whereas a marginal effect (inhibition) was seen with minocycline and CMT-1 at similar concentrations. These ex-

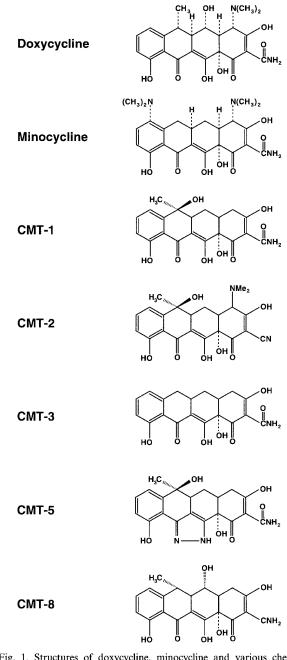


Fig. 1. Structures of doxycycline, minocycline and various chemically modified tetracyclines used in this study (provided by Collagenex, Inc.).

periments demonstrate that CMT-3 is more effective in its ability to inhibit nitrite accumulation than doxycycline, minocycline [13], and other CMTs tested in these studies.

We further examined the effects of CMT-3 and CMT-8 on the enzyme activity of iNOS. Cells were stimulated with LPS in the presence of equal amounts of CMT-3 or -8 for 16 h. The medium was assayed for nitrite and iNOS enzyme in cell extracts in an L-arginine-to-L-citrulline conversion assay. As expected, CMT-3 and hydrocortisone inhibited nitrite accumulation significantly more than CMT-8. These data were substantiated by a significant decrease in specific enzyme ac-

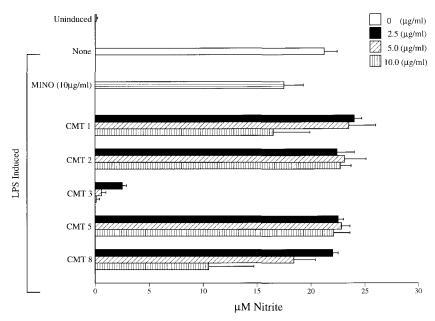


Fig. 2. Effect of CMTs on nitrite accumulation in murine macrophages stimulated with LPS. Murine macrophages (RAW 264.7 cells) were stimulated with LPS (100 ng/ml) in the presence of 10 μ g/ml minocycline (MINO) and various concentrations of CMTs in triplicate for 48 h. The levels of nitrite were estimated by the modified Griess method [31]. Data are expressed as μ M nitrite accumulated of triplicate determinants (n=3). Statistics were derived using unpaired Student's *t*-test. Data represent 1 of 3 similar experiments.

tivity of iNOS in the intact cells, as shown in Table 1. These experiments demonstrated that the decrease in nitrite accumulation by the CMTs could be partially to the decrease in iNOS enzyme activity within the cells.

Various investigators have shown that tetracyclines inhibit collagenase activity via direct effects on the enzyme [22-24]. Another mechanism proposed for this phenomenon is that procollagenase is reduced to inactive fragments upon activation in the presence of doxycycline [23]. We have recently shown that acetylating agents such as aspirin and N-acetyl imidazole [15], as well as competitive inhibitors of L-arginine (NMA), inhibit iNOS catalytic activity in cell-free extracts. In view of these observations, we examined the direct effect of CMTs on the ability of iNOS to convert radiolabelled L-[³H]arginine to L-citrulline in cell-free extracts in vitro. RAW 264.7 cells were stimulated with LPS for 16 h and cell-free extracts were made. Separate aliquots of equal amounts of enzyme were preincubated with various concentrations of CMTs (6-24 µM), NMA (200 µM) or NAI (1 mM) for 20 min before the enzyme reaction was initiated after the addition of co-factors. As expected, NMA and NAI showed

75 and 45% inhibition of iNOS enzyme activity, respectively, but there was no significant effect (< 5% inhibition) by the CMTs (data not shown). These experiments demonstrate that the action of these CMTs, like the doxycycline and minocycline [13], seems to be distinct from those reported for MMPs such as procollagenase at similar concentrations [22,23,25]. In view of the above observation and our previous experiments which indicate that iNOS protein is decreased by doxycycline and minocycline [13], we tested the effects of CMT-3 and -8at various concentrations on iNOS protein expression. RAW 264.7 cells were stimulated with LPS in the presence and absence of CMTs for 16 h; cell-free extracts were prepared and examined for iNOS expression by Western blot analysis. Fig. 3 shows that, like minocycline [13], CMT-3 > CMT-8 inhibited 133 kDa iNOS expression. The effect of CMT-3 at 2.5 µg/ ml was similar to that observed with 20 µg/ml of minocycline. The inhibition in the accumulation of nitrite in the same experiment was substantiated with the data shown in the Western blot analysis. Hydrocortisone, as expected, inhibited iNOS expression as previously reported [15]. Furthermore, there was no significant difference in the constitutively expressed pro-

 Table 1

 Effect of CMTs on the specific activity of iNOS

Modulating agent	Nitrite released		Specific activity	
	μM	% inhibition	pmol/min per mg protein	% inhibition
Control (uninduced)	< 0.1	N/A	<5	N/A
LPS induced	22.9	N/A	90.8	N/A
CMT-3 (10 µg/ml)	12.2	47	37.6	58.6
CMT-8 (10 µg/ml)	17.0	26	79.2	12.7
Hydrocortisone (10 µM)	11.8	49	51.5	43.3

Murine macrophage cells were stimulated with 100 ng/ml of LPS in the presence of CMTs or hydrocortisone for 16 h. The nitrite accumulated in the medium was examined and the enzyme activity assayed from cell-free extracts. Percent inhibition of nitrite/specific activity was calculated after comparing the values with LPS-stimulated cells. 10 μ g/ml of CMT-3/8 was equivalent to 27 μ M. The data represent one of two similar experiments. N/A, not applicable.

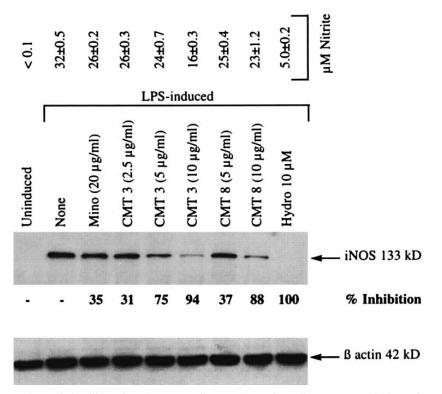


Fig. 3. Western blot analysis of iNOS in RAW 264.7 cells exposed to minocycline, CMTs and hydrocortisone in the presence of LPS for 16 h. Mino: represents minocycline (20 µg/ml equivalent to 40 µM). Hydro: represents hydrocortisone (10 µM equivalent to 3.4 µg/ml). CMT-3 (2.5, 5 and 10 µg/ml equivalent to 27, 13 and 6 µM, respectively) and CMT-8 (5 and 10 µg/ml equivalent to 27 and 13 µM, respectively). Cell-free extracts were prepared and aliquots were blotted and probed with a specific α -iNOS mAb. The percent inhibition of iNOS expression was compared to LPS-stimulated cells, as determined by a densitometer scan, after normalizing the values with β-actin in the same blot. The upper panel shows the representative nitrite values in this particular experiment. The data represent 1 of 2 similar experiments.

teins (such as β -actin) when the same blot was reprobed with anti- β -actin antibodies (Fig. 3). These experiments indicate that the decrease in NOS activity could be due to a decrease in the expression of iNOS protein.

Based on our previous studies with doxycycline and minocycline, we tested the ability of CMTs to inhibit iNOS mRNA accumulation in RAW 264.7 cells stimulated with LPS for 16 h. Fig. 4 shows a dose-dependent inhibition of iNOS mRNA accumulation by CMT-3. CMT-8 at 5 and 10 μ g/ml showed a significant decrease in iNOS mRNA accumulation as compared to LPS-stimulated cells, whereas CMT-1 at 10 μ g/ml showed no significant effect when the values were normalized with the respective GAPDH signals. The effect of hydrocortisone in this particular experiment was relatively less when the

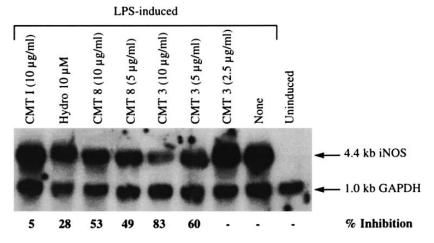


Fig. 4. Northern blot analysis of iNOS mRNA expression in RAW 264.7 cells stimulated with LPS in the presence of CMTs at 16 h. Total RNA was extracted and analyzed by Northern blot using α -iNOS and α -GAPDH probes. The iNOS/GAPDH signal was quantitated using a phosphoimager. The percent inhibition of iNOS mRNA expression was normalized with the GAPDH signal and compared with the values of the LPS-stimulated cells. Data represent 1 of 2 similar experiments.

Find authenticated court documents without watermarks at docketalarm.com.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.