.

PRO/SB/05 (04-05)
Approved for use through 07/31/2006. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

U We-Baperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

18. \square If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in the first sentence of the specification following their title, or in an Application Sheet under 37° CFR 1.76 :

This collection of information is required by 37 CFR 1.53(b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. ime will vary depending upon the individual case. Any comments on the amount of time you require to complete this Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450. Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO:

1-SF/7343079.1

Effective on 12/08/2004. Fees pursuant to the Consolidated Appropriations Act, 2005 (H.R. 4818). FEE TRANSMITTAL For FY 2005		Complete if Known	
		Application Number	Not Yet Assigned
		Filing Date	February 16, 2006
		First Named Investor	Baker, Stephen J.
		Examiner Name	Not Yet Assigned
区 Applicant claims small entity status. See 37 CFR 1.27		Art Unit	Not Yet Assigned
Total Amount of Payment	(\$) 1100.00	Attorney Docket No.	64507-5014-US

METHOD OF PAYMENT (check all that apply)
\square Credit Card \square Money Order \square None \square Other (please identify): \qquad
Deposit Account Deposit Account Number 50-0310 Deposit Account Name: Morgan, Lewis \& Bockius LLP
For the above-identified deposit account, the Director is hereby authorized to: (check all that apply)
 Charge fee(s) indicated belowCharge fee(s) indicated below, except for the filing fee
Charge any additional fee(s) or underpayments of Credit any overpayments fee(s) under 37 CFR 1.16 and 1.17
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.
FEE CALCULATION

1. BASIC FILING, SEARCH, AND EXAMINATION FEES FILING FEES SEARCH FEES Small Entity

Application Type		Fee (\$)
Utility		300
Design		200
Plant	200	
Reissue		300
Provisional		200

	Fee (\$)	Small Entity	
	500	250	
	100	50	
	300	150	
100	500	250	
10	0	0	

EXAMINATION FEES	
	Small Entity
Fee (\$)	Fee(\$)
200	100
130	65
160	80
600	300
0	0

Fees Paid (\$)
\qquad
2. EXCESS CLAIM FEES

Fee Description
Each claim over 20 or, for Reissues, each claim over 20 and more than in the original patent
Each independent claim over 3 or, for Reissues, each independent claim more than in the original patent
Multiple dependent claims

Total Claims		Extra Claims	Fee (\$)		Fee Paid (\$)	Multiple	dent Claims
39	- 20 or $\mathrm{HP}=$	19	25	$=$	475	Fee (\$1)	Fee Paid (\$1)
HP = highest number of total claims paid for, if greater than 20							
Indep. Claims		Extra Claims	Fee (\$)		Fee Paid (\$)		

HP = = highest number of total claims paid for, if greater than 3
3. APPLICATION SIZE FEE

If the specification and drawings exceed 100 sheets of paper, the application size fee due is $\$ 250$ ($\$ 125$ for small entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. $41(a)(1)(G)$ and 37 CFR 1.16(s).

This collection of information is required by 37 CFR 1.136. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 30 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

$$
\text { If you need assistance in completing the form, call 1-800-PTO-9199 and select option } 2 .
$$.

PRO/SB/05 (04-05)
Approved for use through 07/31/2006. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

U We-Baperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

18. \square If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in the first sentence of the specification following their title, or in an Application Sheet under 37 CFR 1.76:

This collection of information is required by 37 CFR $1.53(\mathrm{~b})$. The information is required to oblain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. ime will vary depending upon the individual case. Any comments on the amount of time you require to complete this Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO:

1-SF/7343079.1

Effective on 12/08/2004. Fees pursuant to the Consolidated Appropriations Act, 2005 (H.R. 4818). FEE TRANSMITTAL For FY 2005		Complete if Known	
		Application Number	Not Yet Assigned
		Filing Date	February 16, 2006
		First Named Investor	Baker, Stephen J.
		Examiner Name	Not Yet Assigned
区 Applicant claims small entity status. See 37 CFR 1.27		Art Unit	Not Yet Assigned
Total Amount of Payment	(\$) 1100.00	Attorney Docket No.	64507-5014-US

METHOD OF PAYMENT (check all that apply)
\square Credit Card \square Money Order \square None \square Other (please identify): \qquad
Deposit Account Deposit Account Number 50-0310 Deposit Account Name: Morgan, Lewis \& Bockius LLP
For the above-identified deposit account, the Director is hereby authorized to: (check all that apply)
 Charge fee(s) indicated belowCharge fee(s) indicated below, except for the filing fee
Charge any additional fee(s) or underpayments of Credit any overpayments fee(s) under 37 CFR 1.16 and 1.17
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.
FEE CALCULATION

1. BASIC FILING, SEARCH, AND EXAMINATION FEES FILING FEES SEARCH FEES Small Entity

Application Type		Fee (\$)
Utility		300
Design		200
Plant	200	
Reissue		300
Provisional		200

	Fee (\$)	Small Entity	
	500	250	
	100	50	
	300	150	
100	500	250	
10	0	0	

EXAMINATION FEES	
	Small Entity
Fee (\$)	Fee(\$)
200	100
130	65
160	80
600	300
0	0

Fees Paid (\$)
\qquad
2. EXCESS CLAIM FEES

Fee Description
Each claim over 20 or, for Reissues, each claim over 20 and more than in the original patent
Each independent claim over 3 or, for Reissues, each independent claim more than in the original patent
Multiple dependent claims

Total Claims		Extra Claims	Fee (\$)		Fee Paid (\$)	Multiple	dent Claims
39	- 20 or $\mathrm{HP}=$	19	25	$=$	475	Fee (\$1)	Fee Paid (\$1)
HP = highest number of total claims paid for, if greater than 20							
Indep. Claims		Extra Claims	Fee (\$)		Fee Paid (\$)		

HP = = highest number of total claims paid for, if greater than 3
3. APPLICATION SIZE FEE

If the specification and drawings exceed 100 sheets of paper, the application size fee due is $\$ 250$ ($\$ 125$ for small entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. $41(a)(1)(G)$ and 37 CFR 1.16(s).

This collection of information is required by 37 CFR 1.136. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 30 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

$$
\text { If you need assistance in completing the form, call 1-800-PTO-9199 and select option } 2 .
$$

PATENT APPLICATION

BORON-CONTAINING SMALL MOLECULES

Inventor(s):
Stephen J. Baker, a citizen of the United Kingdom, residing at 1568 Begen Avenue, Mountain View, CA 94040
Tsutomu Akama, a citizen of Japan, residing at 832 Azure St, Sunnyvale, CA 94087
Carolyn Bellinger-Kawahara, a citizen of the USA, residing at 15 Landa Lane, Redwood City, CA 94061
Vincent S. Hernandez, a citizen of the USA, residing at 287 Gilchrist Ln, Watsonville, CA 95076
Karin M. Hold, a citizen of the USA, residing at 1908 Valdez Ave, Belmont, CA 94002

James J Leyden, a citizen of the USA, residing at 319 Applebrook Drive, Malvern, PA 19355
Kirk Maples, a citizen of the USA, residing at 1195 San Moritz Drive, San Jose, CA 95132
Jacob Plattner, a citizen of the USA, residing at 1016 Amito Ave., Berkeley, CA 94705
Virginia Sanders, a citizen of the USA, residing at 2895 Harrison St, Apt 4, San Francisco, CA 94110
Yong-Kang Zhang, a citizen of the United States, residing at 5151 Westmont Avenue, San Jose, CA 95130

Assignee: Anacor Pharmaceuticals 1060 East Meadow Circle
Palo Alto, CA 94303-4230
Entity: Small

Todd Esker	Correspondence
Reg. No. 46,690	
MORGAN	Address:
LEWIS AND	One Market
BocKIUS	Spear Street Tower
LLP	San Francisco
	California 94105
	Tel 415 442-1000

AS FILED WITH THE USPTO ON FEBRUARY 16, 2006

BORON-CONTAINING SMALL MOLECULES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is related to U.S. Provisional Patent Application 60/654,060 filed February 16, 2005, which is incorporated by reference in its entirety for all purposes.

BACKGROUND FOR THE INVENTION

[0002] Infections of the nail and hoof, known as ungual and/or periungual infections, pose serious problems in dermatology. These ungual and/or periungual can be caused by sources such as fungi, viruses, yeast, bacteria and parasites. Onychomycosis is an example of these serious ungual and/or periungual infections and is caused by at least one fungus. Current treatment for ungual and/or periungual infections generally falls into three categories: systemic administration of medicine; surgical removal of all or part of the nail or hoof followed by topical treatment of the exposed tissue; or topical application of conventional creams, lotions, gels or solutions, frequently including the use of bandages to keep these dosage forms in place on the nail or hoof. All of these approaches have major drawbacks. The following discussion is particularly directed to drawbacks associated with current treatment of ungual and/or periungual antifungal infections.
[0003] Long term systemic (oral) administration of an antifungal agent for the treatment of onychomycosis is often required to produce a therapeutic effect in the nail bed. For example, oral treatment with the antifungal compound ketoconozole typically requires administration of 200 to $400 \mathrm{mg} /$ day for 6 months before any significant therapeutic benefit is realized. Such long term, high dose systemic therapy can have significant adverse effects. For example, ketoconozole has been reported to have liver toxicity effects and reduces testosterone levels in blood due to adverse effects on the testes. Patient compliance is a problem with such long term therapies especially those which involve serious adverse effects. Moreover, this type of long term oral therapy is inconvenient in the treatment of a horse or other ruminants afflicted with fungal infections of the hoof. Accordingly, the risks associated with
parenteral treatments generate significant disincentive against their use and considerable patient non-compliance.
[0004] Surgical removal of all or part of the nail followed by topical treatment also has severe drawbacks. The pain and discomfort associated with the surgery and the undesirable cosmetic appearance of the nail or nail bed represent significant problems, particularly for female patients or those more sensitive to physical appearance. Generally, this type of treatment is not realistic for ruminants such as horses.
[0005] Topical therapy has significant problems too. Topical dosage forms such as creams, lotions, gels etc., can not keep the drug in intimate contact with the infected area for therapeutically effective periods of time. Bandages have been used to hold drug reservoirs in place in an attempt to enhance absorption of the pharmaceutical agent. However the bandages are thick, awkward, troublesome and generally lead to poor patient compliance.
[0006] Hydrophilic and hydrophobic film forming topical antifungal solutions have also been developed. These dosage forms provide improved contact between the drug and the nail, but the films are not occlusive. Topical formulations for fungal infection treatment have largely tried to deliver the drug to the target site (an infected nail bed) by diffusion across or through the nail.
[0007] Nail is more like hair than stratum corneum with respect to chemical composition and permeability. Nitrogen is the major component of the nail attesting to the nail's proteinaceous nature. The total lipid content of mature nail is $0.1-1.0 \%$, while the stratum corneum lipid is about $10 \% \mathrm{w} / \mathrm{w}$. The nail is $100-200$ times thicker than the stratum corneum and has a very high affinity and capacity for binding and retaining antifungal drugs. Consequently little if any drug penetrates through the nail to reach the target site. Because of these reasons topical therapy for fungal infections have generally been ineffective.
[0008] Compounds known as penetration or permeation enhancers are well known in the art to produce an increase in the permeability of skin or other body membranes to a pharmacologically active agent. The increased permeability allows an increase in the rate at which the drug permeates through the skin and enters the blood stream. Penetration enhancers have been successful in overcoming the
impermeability of pharmaceutical agents through the skin. However, the thin stratum corneum layer of the skin, which is about 10 to 15 cells thick and is formed naturally by cells migrating toward the skin surface from the basal layer, has been easier to penetrate than nails. Moreover, known penetration enhancers have not proven to be useful in facilitating drug migration through the nail tissue.
[0009] Antimicrobial compositions for controlling bacterial and fungal infections comprising a metal chelate of 8-hydroxyquinoline and an alkyl benzene sulfonic acid have been shown to be efficacious due to the increased ability of the oleophilic group to penetrate the lipoid layers of micro-cells. The compounds however, do not effectively increase the ability to carry the pharmaceutically active antifungal through the cornified layer or stratum corneum of the skin. U.S. Pat. No. 4,602,011, West et al., Jul. 22, 1986; U.S. Pat. No. 4,766,113, West et al., Aug. 23, 1988.
[0010] Therefore, there is a need in the art for compounds which can effectively penetrate the nail. There is also need in the art for compounds which can effectively treat ungual and/or periungual infections. These and other needs are addressed by the current invention.

SUMMARY OF THE INVENTION

[0011] In a first aspect, the invention provides a compound having a structure according to Formula I:

wherein B is boron. $R^{1 a}$ is a member selected from a negative charge, a salt counterion, H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M1 is a member selected from oxygen, sulfur and $N R^{2 a} . R^{2 a}$ is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J 1 is a member selected from $\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 \mathrm{a}}\right)_{\mathrm{n} 1}$ and $\mathrm{CR}^{5 \mathrm{a}} \cdot \mathrm{R}^{3 \mathrm{a}}, \mathrm{R}^{4 \mathrm{a}}$, and $\mathrm{R}^{5 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 1 is an integer selected from 0 to 2. W1 is a member selected from $C=O$ (carbonyl), $\left(C R^{6 a} R^{7 a}\right)_{m 1}$ and $C R^{8 a} . R^{6 a}, R^{7 a}$, and $\mathrm{R}^{8 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index ml is an integer selected from 0 and $1 . A 1$ is a member selected from $C R^{9 a}$ and N. D1 is a member selected from CR ${ }^{10 \mathrm{a}}$ and N . E1 is a member selected from $\mathrm{CR}^{11 \mathrm{a}}$ and N . G1 is a member selected from $\mathrm{CR}^{12 \mathrm{a}}$ and $\mathrm{N} . \mathrm{R}^{9 \mathrm{a}}, \mathrm{R}^{10 \mathrm{a}}, \mathrm{R}^{1 \mathrm{a} a}$ and $\mathrm{R}^{12 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (A1 + D1 + E1 $+G 1)$ is an integer selected from 0 to 3. A member selected from $R^{3 a}, R^{4 a}$ and $R^{5 a}$ and a member selected from $R^{6 a}, R^{7 a}$ and $R^{8 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{3 a}$ and $R^{4 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $\mathrm{R}^{6 \mathrm{a}}$ and $\mathrm{R}^{7 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{9 a}$ and $R^{10 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{10 a}$ and $R^{11 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{11 a}$ and $R^{12 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. The aspect has the proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is $0, J 1$ is a member selected from $\left(C R^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $1, \mathrm{Al}$ is $\mathrm{CR}^{9 \mathrm{a}}, \mathrm{D} 1$ is $\mathrm{CR}^{10 \mathrm{a}}, \mathrm{E} 1$ is $\mathrm{CR}^{11 a}, \mathrm{G} 1$ is $\mathrm{CR}^{12 \mathrm{a}}$, then $\mathrm{R}^{9 \mathrm{a}}$ is not halogen, methyl, ethyl, or optionally joined with $R^{10 a}$ to a form phenyl ring; $R^{10 a}$ is not unsubstituted phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, or optionally joined with $\mathrm{R}^{9 \mathrm{a}}$ to form a phenyl ring; $\mathrm{R}^{11 \mathrm{a}}$ is not halogen or optionally joined with $\mathrm{R}^{10 \mathrm{a}}$ to form a phenyl
ring; and $R^{12 a}$ is not halogen. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is $0, J 1$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{a}} \mathrm{R}^{7 \mathrm{a}}\right)_{\mathrm{ml}}$, wherein ml is $1, \mathrm{Al}$ is $\mathrm{CR}^{9 \mathrm{a}}, \mathrm{Dl}$ is $\mathrm{CR}^{10 \mathrm{a}}, \mathrm{El}$ is $\mathrm{CR}^{11 \mathrm{a}}, \mathrm{G} 1$ is $C R^{12 a}$, then neither $R^{6 a}$ nor $R^{7 a}$ are halophenyl. The aspect has the further proviso that when M 1 is oxygen, W 1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is 0 , J 1 is a member selected from $\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}$, wherein ml is $1, \mathrm{Al}$ is $\mathrm{CR}^{9 a}, \mathrm{D} 1$ is $C R^{10 a}$, $E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}$, and $R^{9 a}, R^{10 a}$ and $R^{11 a}$ are H, then $R^{6 a}, R^{7 a}$ and $R^{12 a}$ are not H. The aspect has the further proviso that when M1 is oxygen wherein n 1 is $1, \mathrm{~J} 1$ is a member selected from $\left(C R^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $0, A 1$ is $C R^{9 a}, D 1$ is $C R^{10 a}, E 1$ is $\mathrm{CR}^{11 a}, \mathrm{G1}$ is $\mathrm{CR}^{12 \mathrm{a}}, \mathrm{R}^{9 \mathrm{a}}$ is $\mathrm{H}, \mathrm{R}^{10 \mathrm{a}}$ is $\mathrm{H}, \mathrm{R}^{11 \mathrm{a}}$ is $\mathrm{H}, \mathrm{R}^{6 \mathrm{a}}$ is $\mathrm{H}, \mathrm{R}^{7 \mathrm{a}}$ is $\mathrm{H}, \mathrm{R}^{12 \mathrm{a}}$ is H , then W1 is not $\mathrm{C}=\mathrm{O}$ (carbonyl). The aspect has the further proviso that when M 1 is oxygen, W1 is $\mathrm{CR}^{5 a}, \mathrm{~J} 1$ is $\mathrm{CR}^{8 \mathrm{a}}, \mathrm{Al}$ is $\mathrm{CR}^{9 \mathrm{a}}, \mathrm{D} 1$ is $\mathrm{CR}^{10 \mathrm{a}}, \mathrm{E} 1$ is $\mathrm{CR}^{11 a}, \mathrm{G} 1$ is $\mathrm{CR}^{12 \mathrm{a}}, \mathrm{R}^{6 \mathrm{a}}, \mathrm{R}^{7 \mathrm{a}}$, $R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are H, then $R^{5 a}$ and $R^{8 a}$, together with the atoms to which they are attached, do not form a phenyl ring.
[0012] In a second aspect, the invention provides a pharmaceutical formulation comprising (a) a pharmaceutically acceptable excipient; and (b) a compound having a structure according to Formula II:

wherein B is boron. $R^{1 b}$ is a member selected from a negative charge, a salt counterion, H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M2 is a member selected from oxygen, sulfur and $N R^{2 b} . R^{2 b}$ is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}$ and $\mathrm{CR}^{5 b} \cdot R^{3 b}, R^{4 b}$, and $R^{5 b}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted
alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 2 is an integer selected from 0 to 2. W2 is a member selected from $C=O$ (carbonyl), $\left(C R^{6 b} R^{7 b}\right)_{m 2}$ and $C R^{8 b} . R^{6 b}, R^{7 b}$, and $\mathrm{R}^{8 \mathrm{~b}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 2 is an integer selected from 0 and 1. A2 is a member selected from $\mathrm{CR}^{9 \mathrm{~b}}$ and N . D2 is a member selected from $C R^{10 b}$ and N. E2 is a member selected from $C R^{11 \mathrm{~b}}$ and N. G2 is a member selected from $C R^{12 b}$ and $N . R^{9 b}, R^{10 b}, R^{11 b}$ and $R^{12 b}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (A2 + D2 + E2 +G 2) is an integer selected from 0 to 3 . A member selected from $\mathrm{R}^{3 \mathrm{~b}}, \mathrm{R}^{4 \mathrm{~b}}$ and $\mathrm{R}^{5 b}$ and a member selected from $R^{6 b}, R^{7 b}$ and $R^{8 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{3 b}$ and $R^{4 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $\mathrm{R}^{6 \mathrm{~b}}$ and $\mathrm{R}^{7 \mathrm{~b}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{9 b}$ and $R^{10 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{1 \mathrm{lb}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{11 b}$ and $R^{12 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring.
[0013] In another aspect, the invention provides a method of killing a microorganism, comprising contacting the microorganism with a therpeutically effective amount of a compound of the invention.
[0014] In another aspect, the invention provides a method of inhibiting microorganism growth, comprising contacting the microorganism with a therpeutically effective amount of a compound of the invention.
[0015] In another aspect, the invention provides a method of treating an infection in an animal, comprising administering to the animal a therpeutically effective amount of a compound of the invention.
[0016] In another aspect, the invention provides a method of preventing an infection in an animal, comprising administering to the animal a therpeutically effective amount of a compound of the invention.
[0017] In another aspect, the invention provides a method of treating a systemic infection or an ungual or periungual infection in a human, comprising administering to the animal a therpeutically effective amount of a compound of the invention.
[0018] In another aspect, the invention provides a method of treating onychomycosis in a human, comprising administering to the animal a therpeutically effective amount of a compound of the invention.
[0019] In another aspect, the invention provides a method of synthesizing a compound of the invention.
[0020] In another aspect, the invention provides a method of delivering a compound from the dorsal layer of the nail plate to the nail bed. The method comprises contacting said cell with a compound capable of penetrating the nail plate, under conditions sufficient to penetrate said nail plate, and thereby delivering the compound. The compound has a molecular weight of between about 100 and about 200 Da . The compound also has a $\log \mathrm{P}$ value of between about 1.0 and about 2.6 . The compound has a water solubility between about $0.1 \mathrm{mg} / \mathrm{mL}$ and $1.0 \mathrm{~g} / \mathrm{mL}$ octanol/saturated water.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 is a table of minimum inhibitory concentration (MIC) data of CBO against various fungi.
[0022] FIG. 2A displays minimum inhibitory concentration (MIC) for C10, ciclopirox, terbinafine, fluconazole and itraconazole (comparator drugs) against 19 test strains of fungi.
[0023]
FIG. 2B displays minimum fungicidal concentration (MFC) for C10, ciclopirox, terbinafine and itraconazole (comparator drugs) against 2 test strains of fungi.
[0024] FIG. 3 displays a comparison of Normalized C10 and Ciclopirox Equivalent in Each Part of Nail Plate Samples after 14-day Treatment.
[0025] FIG. 4 displays a comparison of $\mathbf{C 1 0}$ and Ciclopirox Equivalent in Cotton Ball Supporting Bed Samples after 14-day Treatment.
[0026] FIG. 5 displays the results of a placebo for C10 (50:50 propylene glycol and ethyl acetate) applied per day over five days. Full carpet growth of the organism T. rubrum was observed.
[0027] FIG. 6 displays the results of a $40 \mu \mathrm{~L} / \mathrm{cm}^{2}$ aliquot of $\mathbf{C 1 0} 10 \% \mathrm{w} / \mathrm{v}$ solution applied per day over five days. Zones of inhibition (in the order of the cells shown in the figure) of $100 \%, 67 \%, 46 \%, 57 \%, 38 \%$ and 71% were observed for the growth of T. rubrum. Green arrow indicates the measurement of zone of inhibition.
[0028] FIG. 7 displays the results of a $40 \mu \mathrm{~L} / \mathrm{cm}^{2}$ aliquot of $\mathbf{C 1 0} 10 \% \mathrm{w} / \mathrm{v}$ solution applied per day over five days. Zones of inhibition (in the order of the cells shown in the figure) of $74 \%, 86 \%, 100 \%, 82 \%, 100 \%$ and 84% were observed for the growth of T. rubrum.
[0029] FIG. 8 displays the results of a $40 \mu \mathrm{~L} / \mathrm{cm}^{2}$ aliquot of 8% ciclopirox in w / w commercial lacquer applied per day over five days. No zone of inhibition observed; full carpet growth of T. rubrum.
[0030] FIG. 9 displays the results of a $40 \mu \mathrm{~L} / \mathrm{cm}^{2}$ aliquot of 5% amorolfine w / v in commercial lacquer applied per day over five days. No zone of inhibition observed; full carpet growth of T. rubrum.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions and Abbreviations

[0031] The abbreviations used herein generally have their conventional meaning within the chemical and biological arts.
[0032] "Compound of the invention," as used herein refers to the compounds discussed herein, pharmaceutically acceptable salts and prodrugs of these compounds.
[0033] MIC, or minimum inhibitory concentration, is the point where compound stops more than 90% of cell growth relative to an untreated control.
[0034] Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., $-\mathrm{CH}_{2} \mathrm{O}$ - is intended to also recite $-\mathrm{OCH}_{2}$ -
[0035] The term "poly" as used herein means at least 2. For example, a polyvalent metal ion is a metal ion having a valency of at least 2 .
[0036] "Moiety" refers to the radical of a molecule that is attached to another moiety.
[0037] The symbol $\sim \sim \sim$, whether utilized as a bond or displayed perpendicular to a bond, indicates the point at which the displayed moiety is attached to the remainder of the molecule.
[0038] The term "alkyl," by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. $\mathrm{C}_{1}-\mathrm{C}_{10}$ means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, nbutyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, nheptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. The term "alkyl," unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as "heteroalkyl." Alkyl groups that are limited to hydrocarbon groups are termed "homoalkyl".
[0039] The term "alkylene" by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by -
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-, and further includes those groups described below as "heteroalkylene." Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A "lower alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
[0040] The terms "alkoxy," "alkylamino" and "alkylthio" (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
[0041] The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom. In an exemplary embodiment, the heteroatoms can be selected from the group consisting of $\mathrm{B}, \mathrm{O}, \mathrm{N}$ and S , and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) $\mathrm{B}, \mathrm{O}, \mathrm{N}$ and S may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{S}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}_{2},-\mathrm{S}(\mathrm{O})-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}(\mathrm{O})_{2}-\mathrm{CH}_{3},-\mathrm{CH}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-$ $\mathrm{CH}=\mathrm{N}-\mathrm{OCH}_{3}$, and $-\mathrm{CH}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3}$. Up to two heteroatoms may be consecutive, such as, for example, $-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{OCH}_{3}$. Similarly, the term "heteroalkylene" by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}$-. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula $-\mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\prime}$ - represents both $-\mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\prime}$ - and $-\mathrm{R}^{\prime} \mathrm{C}(\mathrm{O})_{2}-$.
[0042] The terms "cycloalkyl" and "heterocycloalkyl", by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl", respectively. Additionally, for heterocycloalkyl, a
heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, $1-(1,2,5,6-$ tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
[0043] The terms "halo" or "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl," are meant to include monohaloalkyl and polyhaloalkyl. For example, the term "halo($\mathrm{C}_{1}-\mathrm{C}_{4}$)alkyl" is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
[0044] The term "aryl" means, unless otherwise stated, a polyunsaturated, aromatic, substituent that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently. The term "heteroaryl" refers to aryl groups (or rings) that contain from one to four heteroatoms. In an exemplary embodiment, the heteroatom is selected from $\mathrm{B}, \mathrm{N}, \mathrm{O}$, and S , wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below.
[0045] For brevity, the term "aryl" when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term "arylalkyl" is meant to include those radicals in which an aryl
group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
[0046] Each of the above terms (e.g., "alkyl," "heteroalkyl," "aryl" and "heteroaryl") are meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
[0047] Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) are generically referred to as "alkyl group substituents," and they can be one or more of a variety of groups selected from, but not limited to: $-\mathrm{OR}^{\prime},=\mathrm{O},=\mathrm{NR}$ ', $=\mathrm{N}-\mathrm{OR}$ ', -NR'R', $-\mathrm{SR}^{\prime}$, halogen, $-\mathrm{OC}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{CO}_{2} \mathrm{R}^{\prime},-\mathrm{CONR}$ 'R", $-\mathrm{OC}(\mathrm{O}) \mathrm{NR}^{\prime} \mathrm{R}^{\prime},-\mathrm{NR}{ }^{\prime} \mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime}$, $-N R '-C(O) N R " R " ',-N R " C(O)_{2} R$ ', $-N R-C(N R ' R " R ' ")=N R " ",-N R-C(N R ' R ")=N R " '$, $-\mathrm{S}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{NRSO}_{2} \mathrm{R}^{\prime},-\mathrm{CN}$ and $-\mathrm{NO}_{2}$ in a number ranging from zero to $\left(2 m^{\prime}+1\right)$, where m^{\prime} is the total number of carbon atoms in such radical. R', R", R"' and R"'" each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R', R", R'" and R"" groups when more than one of these groups is present. When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, $-N R$ ' $R^{\prime \prime}$ is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., $-\mathrm{CF}_{3}$ and $-\mathrm{CH}_{2} \mathrm{CF}_{3}$) and acyl (e.g., $-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3},-\mathrm{C}(\mathrm{O}) \mathrm{CF}_{3}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{3}$, and the like).
[0048] Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are generically referred to as "aryl group substituents." The substituents are selected from, for example: halogen, $-\mathrm{OR}^{\prime},=\mathrm{O},=\mathrm{NR}^{\prime},=\mathrm{N}-\mathrm{OR}$ ',

NR'R", -SR', -halogen, -OC(O)R', -C(O)R', - $\mathrm{CO}_{2} \mathrm{R}^{\prime}$, -CONR'R", -OC(O)NR'R", NR"C(O)R', -NR'-C(O)NR"R"', -NR"C(O) $)_{2}{ }^{\prime},-N R-C(N R ' R " R ' ")=N R ' "$, $-N R-C\left(N R ' R^{\prime \prime}\right)=N R^{\prime \prime},-S(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{NRSO}_{2} \mathrm{R}^{\prime},-\mathrm{CN}$ and $-\mathrm{NO}_{2}$, $-\mathrm{R}^{\prime},-\mathrm{N}_{3},-\mathrm{CH}(\mathrm{Ph})_{2}$, fluoro $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkoxy, and fluoro $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R', R", R"' and R"'' are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each $\mathrm{R}^{\prime}, \mathrm{R} ", \mathrm{R}^{\prime \prime \prime}$ and R "'" groups when more than one of these groups is present.
[0049] Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)-(CRR' $)_{q}-U-$, wherein T and U are independently -NR-, -O-, -CRR'- or a single bond, and q is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -$\mathrm{A}-\left(\mathrm{CH}_{2}\right)_{\mathrm{r}}$-B-, wherein A and B are independently -CRR'-, -O-, -NR-, -S-, -S(O)-, $-\mathrm{S}(\mathrm{O})_{2}-,-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}$ '- or a single bond, and r is an integer of from 1 to 4 . One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula $(C R R ')_{s}-X-(C R " R ' ")_{d}$-, where s and d are independently integers of from 0 to 3 , and X is $-\mathrm{O}-,-\mathrm{NR}^{\prime}-,-\mathrm{S}-,-\mathrm{S}(\mathrm{O})-,-\mathrm{S}(\mathrm{O})_{2^{-}}$, or $-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime}$ '. The substituents R, R ', $\mathrm{R}^{\prime \prime}$ and R'" are preferably independently selected from hydrogen or substituted or unsubstituted ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkyl.
[0050] "Ring" as used herein means a substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. A ring includes fused ring moieties. The number of atoms in a ring is typically defined by the number of members in the ring. For example, a " 5 - to 7 -membered ring" means there are 5 to 7 atoms in the encircling arrangement. The ring optionally included a heteroatom. Thus, the term " 5 - to 7membered ring" includes, for example pyridinyl and piperidinyl. The term "ring"
further includes a ring system comprising more than one "ring", wherein each "ring" is independently defined as above.
[0051] As used herein, the term "heteroatom" includes atoms other than carbon (C) and hydrogen (H). Examples include oxygen (O), nitrogen (N) sulfur (S), silicon (Si), germanium (Ge), aluminum (Al) and boron (B).
[0052] The symbol " R " is a general abbreviation that represents a substituent group that is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl and substituted or unsubstituted heterocycloalkyl groups.
[0053] By "effective" amount of a drug, formulation, or permeant is meant a sufficient amount of a active agent to provide the desired local or systemic effect. A "Topically effective," "Cosmetically effective," "pharmaceutically effective," or "therapeutically effective" amount refers to the amount of drug needed to effect the desired therapeutic result.
[0054] "Topically effective" refers to a material that, when applied to the skin, nail, hair, claw or hoof produces a desired pharmacological result either locally at the place of application or systemically as a result of transdermal passage of an active ingredient in the material.
[0055] "Cosmetically effective" refers to a material that, when applied to the skin, nail, hair, claw or hoof, produces a desired cosmetic result locally at the place of application of an active ingredient in the material.
[0056] The term "pharmaceutically acceptable salts" is meant to include salts of the compounds of the invention which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic
functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., "Pharmaceutical Salts", Journal of Pharmaceutical Science 66: 1-19 (1977)). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
[0057] The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compounds in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents.
[0058] In addition to salt forms, the present invention provides compounds which are in a prodrug form. Prodrugs of the compounds or complexes described herein readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment.
[0059] Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
[0060] Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are encompassed within the scope of the present invention.
[0061] The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium $\left({ }^{3} \mathrm{H}\right)$, iodine- $125\left({ }^{125} \mathrm{I}\right)$ or carbon-14 $\left({ }^{14} \mathrm{C}\right)$. All isotopic variations of the compounds of the present invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.
[0062] The term "pharmaceutically acceptable carrier" or "pharmaceutically acceptable vehicle" refers to any formulation or carrier medium that provides the appropriate delivery of an effective amount of a active agent as defined herein, does not interfere with the effectiveness of the biological activity of the active agent, and that is sufficiently non-toxic to the host or patient. Representative carriers include water, oils, both vegetable and mineral, cream bases, lotion bases, ointment bases and the like. These bases include suspending agents, thickeners, penetration enhancers, and the like. Their formulation is well known to those in the art of cosmetics and topical pharmaceuticals. Additional information concerning carriers can be found in Remington: The Science and Practice of Pharmacy, 21 st Ed., Lippincott, Williams \& Wilkins (2005) which is incorporated herein by reference.
[0063] "Pharmaceutically acceptable topical carrier" and equivalent terms refer to pharmaceutically acceptable carriers, as described herein above, suitable for topical application. An inactive liquid or cream vehicle capable of suspending or dissolving the active agent(s), and having the properties of being nontoxic and non-inflammatory when applied to the skin, nail, hair, claw or hoof is an example of a pharmaceuticallyacceptable topical carrier. This term is specifically intended to encompass carrier materials approved for use in topical cosmetics as well.
[0064] The term "pharmaceutically acceptable additive" refers to preservatives, antioxidants, fragrances, emulsifiers, dyes and excipients known or used in the field of drug formulation and that do not unduly interfere with the effectiveness of the biological activity of the active agent, and that is sufficiently non-toxic to the host or
patient. Additives for topical formulations are well-known in the art, and may be added to the topical composition, as long as they are pharmaceutically acceptable and not deleterious to the epithelial cells or their function. Further, they should not cause deterioration in the stability of the composition. For example, inert fillers, antiirritants, tackifiers, excipients, fragrances, opacifiers, antioxidants, gelling agents, stabilizers, surfactant, emollients, coloring agents, preservatives, buffering agents, other permeation enhancers, and other conventional components of topical or transdermal delivery formulations as are known in the art.
[0065] The terms "enhancement," "penetration enhancement" or "permeation enhancement" relate to an increase in the permeability of the skin, nail, hair, claw or hoof to a drug, so as to increase the rate at which the drug permeates through the skin, nail, hair, claw or hoof. The enhanced permeation effected through the use of such enhancers can be observed, for example, by measuring the rate of diffusion of the drug through animal or human skin, nail, hair, claw or hoof using a diffusion cell apparatus. A diffusion cell is described by Merritt et al. Diffusion Apparatus for Skin Penetration, J of Controlled Release, 1 (1984) pp. 161-162. The term "permeation enhancer" or "penetration enhancer" intends an agent or a mixture of agents, which, alone or in combination, act to increase the permeability of the skin, nail, hair or hoof to a drug.
[0066] The term "excipients" is conventionally known to mean carriers, diluents and/or vehicles used in formulating drug compositions effective for the desired use.
[0067] The term "topical administration" refers to the application of a pharmaceutical agent to the external surface of the skin, nail, hair, claw or hoof, such that the agent crosses the external surface of the skin, nail, hair, claw or hoof and enters the underlying tissues. Topical administration includes application of the composition to intact skin, nail, hair, claw or hoof, or to an broken, raw or open wound of skin, nail, hair, claw or hoof. Topical administration of a pharmaceutical agent can result in a limited distribution of the agent to the skin and surrounding tissues or, when the agent is removed from the treatment area by the bloodstream, can result in systemic distribution of the agent.
[0068] The term "transdermal delivery" refers to the diffusion of an agent across the barrier of the skin, nail, hair, claw or hoof resulting from topical administration or
other application of a composition. The stratum corneum acts as a barrier and few pharmaceutical agents are able to penetrate intact skin. In contrast, the epidermis and dermis are permeable to many solutes and absorption of drugs therefore occurs more readily through skin, nail, hair, claw or hoof that is abraded or otherwise stripped of the stratum corneum to expose the epidermis. Transdermal delivery includes injection or other delivery through any portion of the skin, nail, hair, claw or hoof or mucous membrane and absorption or permeation through the remaining portion. Absorption through intact skin, nail, hair, claw or hoof can be enhanced by placing the active agent in an appropriate pharmaceutically acceptable vehicle before application to the skin, nail, hair, claw or hoof. Passive topical administration may consist of applying the active agent directly to the treatment site in combination with emollients or penetration enhancers. As used herein, transdermal delivery is intended to include delivery by permeation through or past the integument, i.e. skin, nail, hair, claw or hoof.

II. Introduction

[0069] The present invention provides novel boron compounds and methods for the preparation of these molecules. The invention further provides boron compounds as analogs comprising a functional moiety, such as a drug moiety and methods of use for said analogs.

III. The Compounds

[0070] In a first aspect, the invention provides a compound having a structure according to Formula I:

wherein B is boron. $\mathrm{R}^{1 \mathrm{a}}$ is a member selected from a negative charge, a salt counterion, H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M1 is a member selected from oxygen, sulfur and $N R^{2 a} . R^{2 a}$ is a member
selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$ and $C R^{5 a} . R^{3 a}, R^{4 a}$, and $R^{5 a}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index $n 1$ is an integer selected from 0 to 2. W1 is a member selected from $C=O$ (carbonyl), $\left(C R^{6 a} R^{7 a}\right)_{m 1}$ and $C R^{8 a} . R^{6 a}, R^{7 a}$, and $\mathrm{R}^{8 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 1 is an integer selected from 0 and 1. A1 is a member selected from $C R^{9 a}$ and N. D1 is a member selected from $\mathrm{CR}^{10 \mathrm{a}}$ and N. E1 is a member selected from $\mathrm{CR}^{11 \mathrm{a}}$ and N. G1 is a member selected from $\mathrm{CR}^{12 a}$ and $N . R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (A1 + D1 + E1 $+G 1)$ is an integer selected from 0 to 3 . A member selected from $R^{3 a}, R^{4 a}$ and $R^{5 a}$ and a member selected from $R^{6 a}, R^{7 a}$ and $R^{8 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{3 a}$ and $R^{4 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{6 a}$ and $R^{7 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{9 a}$ and $R^{10 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{10 a}$ and $R^{11 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $\mathrm{R}^{11 \mathrm{a}}$ and $\mathrm{R}^{12 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. The aspect has the proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is $0, J 1$ is a member selected from $\left(C R^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $1, A 1$ is $C R^{9 a}, D 1$ is $C R^{10 a}, E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}$, then $R^{9 a}$ is not halogen, methyl, ethyl, or optionally joined with $\mathrm{R}^{10 a}$ to a form phenyl ring; $\mathrm{R}^{10 \mathrm{a}}$ is not unsubstituted
phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, or optionally joined with $\mathrm{R}^{9 \mathrm{a}}$ to form a phenyl ring; $\mathrm{R}^{11 \mathrm{a}}$ is not halogen or optionally joined with $\mathrm{R}^{10 a}$ to form a phenyl ring; and $\mathrm{R}^{12 \mathrm{a}}$ is not halogen. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is $0, J 1$ is a member selected from $\left(C R^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $1, A 1$ is $C R^{9 a}, D 1$ is $C R^{10 a}, E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}$, then neither $R^{6 a}$ nor $R^{7 a}$ are halophenyl. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is 0 , $J 1$ is a member selected from $\left(C R^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $1, A 1$ is $C R^{9 a}, D 1$ is $C R^{10 a}$, $E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}$, and $R^{9 a}, R^{10 a}$ and $R^{11 a}$ are H, then $R^{6 a}, R^{7 a}$ and $R^{12 a}$ are not H. The aspect has the further proviso that when M1 is oxygen wherein $\mathrm{n} 1 \mathrm{is} 1, \mathrm{~J} 1$ is a member selected from $\left(\mathrm{CR}^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $0, A 1$ is $C R^{9 a}, D 1$ is $C R^{10 a}, E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}, R^{9 a}$ is $H, R^{10 a}$ is $H, R^{11 a}$ is $H, R^{6 a}$ is $H, R^{7 a}$ is $H, R^{12 a}$ is H, then W1 is not $\mathrm{C}=\mathrm{O}$ (carbonyl). The aspect has the further proviso that when M 1 is oxygen, W1 is $\mathrm{CR}^{5 a}, \mathrm{~J} 1$ is $\mathrm{CR}^{8 a}, \mathrm{Al}$ is $\mathrm{CR}^{9 a}, \mathrm{D} 1$ is $\mathrm{CR}^{10 a}, \mathrm{El}$ is $\mathrm{CR}^{11 \mathrm{a}}, \mathrm{G} 1$ is $\mathrm{CR}^{12 a}, \mathrm{R}^{6 a}, \mathrm{R}^{7 a}$, $R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are H, then $R^{5 a}$ and $R^{8 a}$, together with the atoms to which they are attached, do not form a phenyl ring.
[0071] In an exemplary embodiment, the compound has a structure according to Formula (Ia):

wherein B is boron. $R^{1 a}$ is a member selected from a negative charge, a salt counterion, H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. $\mathrm{R}^{6 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. $\mathrm{R}^{9 \mathrm{a}}, \mathrm{R}^{10 \mathrm{a}}, \mathrm{R}^{11 \mathrm{a}}$ and $\mathrm{R}^{12 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or
unsubstituted aryl, and substituted or unsubstituted heteroaryl. $\mathrm{R}^{9 \mathrm{a}}$ and $\mathrm{R}^{10 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{10 a}$ and $R^{11 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{11 a}$ and $R^{12 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. This embodiment has the proviso that $\mathrm{R}^{9 \mathrm{a}}$ is not halogen, methyl, ethyl, or optionally joined with $\mathrm{R}^{10 \mathrm{a}}$ to form a 4 to 7 membered ring. This embodiment has the proviso that $\mathrm{R}^{10 \mathrm{a}}$ is not unsubstituted phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, optionally joined with $\mathrm{R}^{9 \mathrm{a}}$ to form a 4 to 7 membered ring, or optionally joined with $R^{11 a}$ to form a 4 to 7 membered ring. This embodiment has the proviso that $R^{11 a}$ is not halogen or optionally joined with $R^{10 a}$ to form a 4 to 7 membered ring. This embodiment has the proviso that $\mathrm{R}^{12 \mathrm{a}}$ is not halogen.
[0072] In an exemplary embodiment, the compound has a structure according to Formula (Ib):

(Ib)
wherein B is boron. $R^{x 1}$ is a member selected from substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, substituted or unsubstituted $C_{1}-C_{5}$ heteroalkyl. $R^{y 1}$ and $R^{z 1}$ are members independently selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. $\mathrm{R}^{6 \mathrm{a}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}$, SH, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. $\mathrm{R}^{9 \mathrm{a}}$, $R^{10 a}, R^{11 a}$ and $R^{12 a}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. $\mathrm{R}^{11 \mathrm{a}}$ and $\mathrm{R}^{12 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. This embodiment has the proviso that when $R^{9 a}, R^{11 a}$ and $R^{12 a}$
are $H, R^{10 a}$ is not H, halogen, unsubstituted phenoxy or t-butyl. This embodiment has the further proviso that when $\mathrm{R}^{9 a}$ is $H, \mathrm{R}^{10 a}$ and $\mathrm{R}^{11 \mathrm{a}}$ together with the atoms to which they are attached, are not joined to form a phenyl ring. This embodiment has the further proviso that when $R^{11 a}$ is $H, R^{9 a}$ and $R^{10 a}$ together with the atoms to which they are attached, are not joined to form a phenyl ring.
[0073] In another aspect, the invention provides a compound having a structure according to Formula II:

wherein B is boron. $\mathrm{R}^{1 \mathrm{~b}}$ is a member selected from a negative charge, a salt counterion, H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M2 is a member selected from oxygen, sulfur and $N R^{2 b} . R^{2 b}$ is a member selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. $J 2$ is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n 2}$ and $C R^{5 b} . R^{3 b}, R^{4 b}$, and $R^{5 b}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 2 is an integer selected from 0 to 2. W2 is a member selected from $C=O$ (carbonyl), $\left(C R^{6 b} R^{7 b}\right)_{m 2}$ and $C R^{8 b} . R^{6 b}, R^{7 b}$, and $\mathrm{R}^{8 \mathrm{~b}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 2 is an integer selected from 0 and 1. A2 is a member selected from $C R^{9 b}$ and N. D2 is a member selected from $\mathrm{CR}^{10 \mathrm{~b}}$ and N . E2 is a member selected from $\mathrm{CR}^{11 \mathrm{~b}}$ and N. G2
is a member selected from $C R^{12 b}$ and $N . R^{9 b}, R^{10 b}, R^{11 b}$ and $R^{12 b}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (A2 $+\mathrm{D} 2+\mathrm{E} 2$ $+G 2$) is an integer selected from 0 to 3. A member selected from $R^{3 b}, R^{4 b}$ and $R^{5 b}$ and a member selected from $\mathrm{R}^{6 \mathrm{~b}}, \mathrm{R}^{7 \mathrm{~b}}$ and $\mathrm{R}^{8 \mathrm{~b}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{3 b}$ and $R^{4 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $\mathrm{R}^{6 \mathrm{~b}}$ and $\mathrm{R}^{7 \mathrm{~b}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{9 b}$ and $R^{10 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{10 b}$ and $R^{11 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{11 b}$ and $R^{12 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring.
[0074] In an exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W 2 is a member selected from $\left(\mathrm{CR}^{3 \mathrm{~b}} \mathrm{R}^{4 \mathrm{~b}}\right)_{\mathrm{n} 2}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E}$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G}$ is $\mathrm{CR}^{12 b}$, then $\mathrm{R}^{9 b}$ is not a member selected from halogen, methyl, ethyl, or optionally joined with $R^{10 b}$ to a form phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is a member selected from $\left(\mathrm{CR}^{3 b} R^{4 b}\right)_{n}$, wherein n 2 is 0 , J 2 is a member selected from $\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{\mathrm{m}}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 b}, \mathrm{E}^{2}$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{10 \mathrm{~b}}$ is not a member selected from unsubstituted phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, or optionally joined with $\mathrm{R}^{9 b}$ to form a phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{11 \mathrm{~b}}$ is not a member selected from halogen or optionally joined with $\mathrm{R}^{10 \mathrm{~b}}$ to form a phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n 2}$, wherein $n 2$ is 0 , $J 2$ is a member selected from $\left(C R^{6 b} R^{7 b}\right)_{m 2}$, wherein $m 2$ is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{12 \mathrm{~b}}$ is not halogen. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen,

W 2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 \mathrm{~b}}\right)_{\mathrm{n} 2}$, wherein n 2 is 0 , J 2 is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $C R^{12 b}$, then $R^{6 \mathrm{~b}}$ is not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n 2}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 \mathrm{~b}}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{1 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{7 \mathrm{~b}}$ is not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W 2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{\mathrm{n} 2}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{6 \mathrm{~b}}$ and $\mathrm{R}^{7 \mathrm{~b}}$ are not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n 2}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $C R^{10 b}, E 2$ is $C R^{11 b}, G 2$ is $C R^{12 b}$, and $R^{9 b}, R^{10 b}$ and $R^{11 b}$ are H, then $R^{6 b}, R^{7 b}$ and $R^{12 b}$ are not H . In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen wherein n 2 is 1 , J2 is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$, wherein m 2 is $0, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 b}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}, \mathrm{R}^{9 b}$ is $\mathrm{H}, \mathrm{R}^{10 \mathrm{~b}}$ is $\mathrm{H}, \mathrm{R}^{11 \mathrm{~b}}$ is H , $R^{6 b}$ is $H, R^{7 b}$ is $H, R^{12 b}$ is H, then $W 2$ is not $C=O$ (carbonyl). In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is $\mathrm{CR}^{5 b}, \mathrm{~J} 2$ is $\mathrm{CR}^{8 \mathrm{~b}}, \mathrm{~A} 2$ is $\mathrm{CR}^{9 \mathrm{~b}}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}, \mathrm{R}^{6 \mathrm{~b}}, \mathrm{R}^{7 \mathrm{~b}}, \mathrm{R}^{9 \mathrm{~b}}, \mathrm{R}^{10 \mathrm{~b}}, \mathrm{R}^{1 \mathrm{~b}}$ and $R^{12 b}$ are H, then $R^{5 b}$ and $R^{8 b}$, together with the atoms to which they are attached, do not form a phenyl ring.
[0075] In an exemplary embodiment, the compound with a structure according to Formula (IIa):

(IIa).
[0076] In another exemplary embodiment, the compound has a structure according to Formula (IIb):

wherein $\mathrm{R}^{7 \mathrm{~b}}$ is a member selected from H, methyl, ethyl and phenyl. $\mathrm{R}^{10 \mathrm{~b}}$ is a member selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, halogen, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio. $\mathrm{R}^{11 \mathrm{~b}}$ is a member selected from H , $\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, methyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio.
[0077] In another exemplary embodiment, R^{lb} is a member selected from a negative charge, H and a salt counterion. In another exemplary embodiment, $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ are H . In another exemplary embodiment, one member selected from $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ is H and the other member selected from $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ is a member selected from halo, methyl, cyano, methoxy, hydroxymethyl and p-cyanophenyloxy. In another exemplary embodiment, $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ are members independently selected from fluoro, chloro, methyl, cyano, methoxy, hydroxymethyl, and p-cyanophenyl. In another exemplary embodiment, $\mathrm{R}^{1 \mathrm{~b}}$ is a member selected from a negative charge, H and a salt counterion; $\mathrm{R}^{7 \mathrm{~b}}$ is $\mathrm{H} ; \mathrm{R}^{10 \mathrm{~b}}$ is F and $\mathrm{R}^{1 \mathrm{lb}}$ is H . In another exemplary embodiment, $\mathrm{R}^{11 \mathrm{~b}}$ and $\mathrm{R}^{12 \mathrm{~b}}$, along with the atoms to which they are attached, are joined to form a phenyl group. In another exemplary embodiment, $R^{1 b}$ is a member selected from a negative charge, H and a salt counterion; $\mathrm{R}^{7 \mathrm{~b}}$ is $\mathrm{H} ; \mathrm{R}^{10 \mathrm{~b}}$ is 4cyanophenoxy; and $\mathrm{R}^{11 \mathrm{~b}}$ is H .
[0078] In another exemplary embodiment, the compound has a structure according to Formula (IIc):

wherein $\mathrm{R}^{10 \mathrm{~b}}$ is a member selected from H , halogen, CN and substituted or
unsubstituted C_{1-4} alkyl. In another exemplary embodiment, the compound has a formulation which is a member selected from:

[0079] In another exemplary embodiment, the compound has a structure according to Formula (IId):

wherein B is boron. $R^{x 2}$ is a member selected from substituted or unsubstituted $C_{1}-C_{5}$ alkyl and substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ heteroalkyl. $\mathrm{R}^{\mathrm{y} 2}$ and R^{z2} are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
[0080] The compounds of Formulae (I) or (II) can form a hydrate with water, solvates with alcohols such as methanol, ethanol, propanol, and the like; adducts with amino compounds, such as ammonia, methylamine, ethylamine, and the like; adducts with acids, such as formic acid, acetic acid and the like; complexes with ethanolamine, quinoline, amino acids, and the like.

Preparation of boron-containing small molecules

[0081] The following exemplary schemes illustrate methods of preparing boroncontaining molecules of the present invention. These methods are not limited to producing the compounds shown, but can be used to prepare a variety of molecules such as the compounds and complexes described herein. The compounds of the present invention can also be synthesized by methods not explicitly illustrated in the schemes but are well within the skill of one in the art. The compounds can be prepared using readily available materials of known intermediates.
[0082] In the following schemes, the symbol X represents bromo or iodo. The symbol Y is selected from H , lower alkyl, and arylalkyl. The symbol Z is selected from H , alkyl, and aryl. The symbol PG represents protecting group. The symbols A , D, $E, G, R^{x}, R^{y}, R^{2}, R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}, R^{8}, R^{9}, R^{10}, R^{11}$, and R^{12} can be used to refer to the corresponding symbols in Formulae (I) or (II). For example, the symbol A can refer to A1 of Formula (I), or A2 of Formula (II), subject to the provisos of each Formula.

Preparation Strategy \#1

[0083] In Scheme 1, Step 1 and 2, compounds 1 or 2 are converted into alcohol 3. In step 1 , compound 1 is treated with a reducing agent in an appropriate solvent. Suitable reducing agents include borane complexes, such as borane-tetrahydrofuran, borane-dimethylsulfide, combinations thereof and the like. Lithium aluminum hydride, or sodium borohydride can also be used as reducing agents. The reducing agents can be used in quantities ranging from 0.5 to 5 equivalents, relative to compound 1 or 2 . Suitable solvents include diethyl ether, tetrahydrofuran, 1,4dioxane, 1,2-dimethoxyethane, combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; reaction completion times range from 1 to 24 h .
[0084] In Step 2, the carbonyl group of compound 2 is treated with a reducing agent in an appropriate solvent. Suitable reducing agents include borane complexes, such as borane-tetrahydrofuran, borane-dimethylsulfide, combinations thereof and the like. Lithium aluminum hydride, or sodium borohydride can also be used as reducing agents. The reducing agents can be used in quantities ranging from 0.5 to 5 equivalents, relative to compound 2 . Suitable solvents include lower alcohol, such as methanol, ethanol, and propanol, diethyl ether, tetrahydrofuran, 1,4-dioxane and 1,2dimethoxyethane, combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; reaction completion times range from 1 to 24 h .
[0085] In Step 3, the hydroxyl group of compound 3 is protected with a protecting group which is stable under neutral or basic conditions. The protecting group is typically selected from methoxymethyl, ethoxyethyl, tetrahydropyran-2-yl, trimethylsilyl, tert-butyldimethylsilyl, tributylsilyl, combinations thereof and the like.

In the case of methoxymethyl, compound 3 is treated with 1 to 3 equivalents of chloromethyl methyl ether in the presence of a base. Suitable bases include sodium hydride, potassium tert-butoxide, tertiary amines, such as diisopropylethylamine, triethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene, and inorganic bases, such as sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, combinations thereof and the like. The bases can be used in quantities ranging from 1 to 3 equivalents, relative to compound 3 . Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 0 and $40^{\circ} \mathrm{C}$; reaction completion times range from 1 to 48 h .
[0086] In the case of tetrahydropyran-2-yl, compound 3 is treated with 1 to 3 equivalents of 3,4-dihydro-2 H -pyran in the presence of 1 to $10 \mathrm{~mol} \%$ of acid catalyst. Suitable acid catalysts include pyridinium p-toluenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, hydrogen chloride, sulfuric acid, combinations thereof and the like. Suitable solvents include dichloromethane, chloroform, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, toluene, benzene, and acetonitrile combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 0 and $40^{\circ} \mathrm{C}$, and is complete in 1 to 48 h .
[0087] In the case of trialkylsilyl, compound 3 is treated with 1 to 3 equivalents of chlorotrialkylsilyane in the presence of 1 to 3 equivalents of base. Suitable bases include tertiary amines, such as imidazole, diisopropylethylamine, triethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene, combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 0 and $40^{\circ} \mathrm{C}$; reaction completion times range from 1 to 48 h .
[0088] In Step 4, compound 4 is converted into boronic acid (5) through halogen metal exchange reaction. Compound 4 is treated with 1 to 3 equivalents of alkylmetal reagent relative to compound 4 , such as n-butyllithium, sec-butyllithium, tertbutyllithium, or isopropylmagnesium chloride followed by the addition of 1 to 3 equivalents of trialkyl borate relative to compound 4, such as trimethyl borate, triisopropyl borate, or tributyl borate. Suitable solvents include tetrahydrofuran, ether, 1,4-dioxane, 1,2-dimethoxyethane, toluene, hexanes, combinations thereof and the like. Alkylmetal reagent may also be added in the presence of trialkyl borate. The addition of butyllithium is carried out at between -100 and $0^{\circ} \mathrm{C}$, preferably at between
-80 and $-40^{\circ} \mathrm{C}$. The addition of isopropylmagnesium chloride is carried out at between -80 and $40^{\circ} \mathrm{C}$, preferably at between -20 and $30^{\circ} \mathrm{C}$. After the addition of trialkyl borate, the reaction is allowed to warm to room temperature, which is typically between 15 and $30^{\circ} \mathrm{C}$. When alkylmetal reagent is added in the presence of trialkyl borate, the reaction mixture is allowed to warm to room temperature after the addition. Reaction completion times range from 1 to 12 h . Compound 5 may not be isolated and may be used for the next step without purification or in one pot.
[0089] In Step 5, the protecting group of compound 5 is removed under acidic conditions to give compound of Formulae (I) and (II). Suitable acids include acetic acid, trifluoroacetic acid, hydrochloric acid, hydrobromic acid, sulfuric acid, p toluenesulfonic acid and the like. The acids can be used in quantities ranging from 0.1 to 20 equivalents, relative to compound 5 . When the protecting group is trialkylsilyl, basic reagents, such as tetrabutylammonium fluoride, can also be used. Suitable solvents include tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, methanol, ethanol, propanol, acetonitrile, acetone, combination thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 10 and $40^{\circ} \mathrm{C}$; reaction completion times range from 0.5 to 48 h .

Preparation Strategy \#2

[0090] . In Scheme 2, Step 6, compound 2 is converted into boronic acid (6) via a transition metal catalyzed cross-coupling reaction. Compound 2 is treated with 1 to 3 equivalents of bis(pinacolato)diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane in the presence of transition metal catalyst, with the use of appropriate ligand and base as necessary. Suitable transition metal catalysts include palladium(II) acetate, palladium(II) acetoacetonate, tetrakis(triphenylphosphine)palladium, dichlorobis(triphenylphosphine)palladium, [1,1'-bis(diphenylphosphino)ferrocen] dichloropalladium(II), combinations thereof and the like. The catalyst can be used in quantities ranging from 1 to $5 \mathrm{~mol} \%$ relative to compound 2. Suitable ligands include triphenylphosphine, tri(o-tolyl)phosphine, tricyclohexylphosphine, combinations thereof and the like. The ligand can be used in quantities ranging from 1 to 5 equivalents relative to compound 2. Suitable bases include sodium carbonate, potassium carbonate, potassium phenoxide, triethylamine, combinations thereof and the like. The base can be used in quantities ranging from 1 to 5 equivalents relative to
compound 2. Suitable solvents include N, N-dimethylformamide, dimethylsufoxide, tetrahydrofuran, 1,4-dioxane, toluene, combinations thereof and the like. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and $150^{\circ} \mathrm{C}$; reaction completion times range from 1 to 72 h .
[0091] Pinacol ester is then oxidatively cleaved to give compound 6. Pinacol ester is treated with sodium periodate followed by acid. Sodium periodate can be used in quantities ranging from 2 to 5 equivalents relative to compound 6 . Suitable solvents include tetrahydrofuran, 1,4-dioxane, acetonitrile, methanol, ethanol, combinations thereof and the like. Suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 0 and $50^{\circ} \mathrm{C}$; reaction completion times range from 1 to 72 h .
[0092] In Step 7, the carbonyl group of compound 6 is treated with a reducing agent in an appropriate solvent to give a compound of Formulae (I) and (II). Suitable reducing agents include borane complexes, such as borane-tetrahydrofuran, boranedimethylsulfide, combinations thereof and the like. Lithium aluminum hydride, or sodium borohydride can also be used as reducing agents. The reducing agents can be used in quantities ranging from 0.5 to 5 equivalents, relative to compound 6 . Suitable solvents include lower alcohol, such as methanol, ethanol, and propanol, diethyl ether, tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane, combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; reaction completion times range from 1 to 24 h .

Scheme 2

Preparation Strategy \#3

[0093] In Scheme 3, Step 8, compounds of Formulae (I) and (II) can be prepared in one step from compound 3. Compound 3 is mixed with trialkyl borate then treated with alkylmetal reagent. Suitable alkylmetal reagents include n-butyllithium, secbutyllithium, tert-butyllithium combinations thereof and the like. Suitable trialkyl borates include trimethyl borate, triisopropyl borate, tributyl borate, combinations thereof and the like. The addition of butyllithium is carried out at between -100 and 0 ${ }^{\circ} \mathrm{C}$, preferably at between -80 and $-40^{\circ} \mathrm{C}$. The reaction mixture is allowed to warm to room temperature after the addition. Reaction completion times range from 1 to 12 h . The trialkyl borate can be used in quantities ranging from 1 to 5 equivalents relative to compound 3. The alkylmetal reagent can be used in quantities ranging from 1 to 2 equivalents relative to compound 3. Suitable solvents include tetrahydrofuran, ether, 1,4-dioxane, 1,2-dimethoxyethane, toluene, hexanes, combinations thereof and the like. Reaction completion times range from 1 to 12 h . Alternatively, a mixture of compound 3 and trialkyl borate can be refluxed for 1 to 3 h and the alcohol molecule formed upon the ester exchange can be distilled out before the addition of alkylmetal reagent.

Scheme 3

Preparation Strategy \#4

[0094] In Scheme 4, Step 10, the methyl group of compound 7 is brominated using N-bromosuccinimide. N-bromosuccinimide can be used in quantities ranging from 0.9 to 1.2 equivalents relative to compound 7. Suitable solvents include carbon tetrachloride, tetrahydrofuran, 1,4-dioxane, chlorobenzene, combinations thereof and the like. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and $150^{\circ} \mathrm{C}$; reaction completion times range from 1 to 12 h .
[0095] In Step 11, the bromomethylene group of compound 8 is converted to the benzyl alcohol 3. Compound 8 is treated with sodium acetate or potassium acetate. These acetates can be used in quantities ranging from 1 to 10 equivalents relative to
compound 8. Suitable solvents include tetrahydrofuran, 1,4-dioxane, $N, N-$ dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, combinations thereof and the like. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and 100 ${ }^{\circ} \mathrm{C}$; reaction completion times range from 1 to 12 h . The resulting acetate is hydrolyzed to compound 3 under basic conditions. Suitable bases include sodium hydroxide, lithium hydroxide, potassium hydroxide, combinations thereof and the like. The base can be used in quantities ranging from 1 to 5 equivalents relative to compound 8. Suitable solvents include methanol, ethanol, tetrahydrofuran, water, combinations thereof and the like. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and $100^{\circ} \mathrm{C}$; reaction completion times range from 1 to 12 h . Alternatively, compound 8 can be directly converted into compound 3 under the similar condition above.
[0096] Steps 3 through 5 convert compound 3 into a compound of Formulae (I) and (II).

Scheme 4

3

Preparation Strategy \#5

[0097] In Scheme 5, Step 12, compound 2 is treated with (methoxymethyl) triphenylphosphonium chloride or (methoxymethyl)triphenylphosphonium bromide in the presence of base followed by acid hydrolysis to give compound 9. Suitable bases include sodium hydride, potassium tert-butoxide, lithium diisopropylamide, butyllithium, lithium hexamethyldisilazane, combinations thereof and the like. The (methoxymethyl)triphenylphosphonium salt can be used in quantities ranging from 1 to 5 equivalents relative to compound 2 . The base can be used in quantities ranging
from 1 to 5 equivalents relative to compound 2. Suitable solvents include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, ether, toluene, hexane, N, N dimethylformamide, combinations thereof and the like. Reaction temperatures range from $0^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 0 and $30^{\circ} \mathrm{C}$; reaction completion times range from 1 to 12 h . The enolether formed is hydrolyzed under acidic conditions. Suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid, and the like. Suitable solvents include tetrahydrofuran, 1,2dimethoxyethane, 1,4-dioxane, methanol, ethanol, combination thereof and the like. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and $100^{\circ} \mathrm{C}$; reaction completion times range from 1 to 12 h .
[0098] Steps 2 through 5 convert compound 9 into a compound of Formulae (I) and (II).

Preparation Strategy \#6

[0099] In Scheme 6, compound (I) wherein R^{1} is H is converted into compound (I) wherein R^{1} is alkyl by mixing with the corresponding alcohol, $\mathrm{R}^{1} \mathrm{OH}$. The suitable solvents include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, toluene, combinations thereof and the like. The alcohol ($\mathrm{R}^{1} \mathrm{OH}$) can be used as the solvent as well. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and $100^{\circ} \mathrm{C}$; reaction completion times range from 1 to 12 h .

Scheme 6

Preparation Strategy \#7

[0100] In Scheme 7, compound (Ia) is converted into its aminoalcohol complex (Ib). Compound (Ia) is treated with HOR ${ }^{1} \mathrm{NR}^{1 a} \mathrm{R}^{1 \mathrm{~b}}$. The aminoalcohol can be used in quantities ranging from 1 to 10 equivalents relative to compound (Ia). Suitable solvents include methanol, ethanol, propanol, tetrahydrofuran, acetone, acetonitrile, 1,2-dimethoxyethane, 1,4-dioxane, toluene, N, N-dimethylformamide, water, combination thereof and the like. Reaction temperatures range from $20^{\circ} \mathrm{C}$ to the boiling point of the solvent used; preferably between 50 and $100^{\circ} \mathrm{C}$; reaction completion times range from 1 to 24 h .

Scheme 7

[0101] The compounds of Formulae (I) or (II) can be converted into hydrates and solvates by methods similar to those described above.

IV. Methods of Inhibiting Microorganism Growth or Killing Microorganisms

[0102] In another aspect, the invention provides a method of inhibiting the growth of a microorganism, or killing a microorganism, or both, comprising contacting the microorganism with a compound according to Formulae (I) or (II). Microorganisms are members selected from fungi, yeast, viruses, bacteria and parasites. In another exemplary embodiment, the microorganism is inside, or on the surface of an animal. In an exemplary embodiment, the animal is a member selected from human, cattle, deer, reindeer, goat, honey bee, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, camel, yak, elephant, ostrich, otter, chicken, duck, goose, guinea fowl, pigeon, swan, and turkey. In another exemplary embodiment, the animal is a human.
[0103] In an exemplary embodiment, the microorganism is a member selected from a fungus and a yeast. In another exemplary embodiment, the fungus or yeast is a member selected from Candida species, Trichophyton species, Microsporium species, Aspergillus species, Cryptococcus species, Blastomyces species, Cocciodiodes species, Histoplasma species, Paracoccidiodes species, Phycomycetes species,

Malassezia species, Fusarium species, Epidermophyton species, Scytalidium species, Scopulariopsis species, Alternaria species, Penicillium species, Phialophora species, Rhizopus species, Scedosporium species and Zygomycetes class. In another exemplary embodiment, the fungus or yeast is a member selected from Aspergilus fumigatus (A. fumigatus), Blastomyces dermatitidis, Candida Albicans (C. albicans, both fluconazole sensitive and resistant strains), Candida glabrata (C. glabrata), Candida krusei (C. krusei), Cryptococcus neoformans (C. neoformans), Candida parapsilosis (C. parapsilosis), Candida tropicalis (C. tropicalis), Cocciodiodes immitis, Epidermophyton floccosum (E. floccosum), Fusarium solani (F. solani), Histoplasma capsulatum, Malassezia furfur (M. furfur), Malassezia pachydermatis (M. pachydermatis), Malassezia sympodialis (M. sympodialis), Microsporum audouinii (M. audouinii), Microsporum canis (M. canis), Microsporum gypseum (M. gypseum), Paracoccidiodes brasiliensis and Phycomycetes spp, Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Trichophyton tonsurans (T. tonsurans). In another exemplary embodiment, the fungus or yeast is a member selected from Trichophyton concentricum, T. violaceum, T. schoenleinii, T. verrucosum, T. soudanense, Microsporum gypseum, M. equinum, Candida guilliermondii, Malassezia globosa, M. obtuse, M. restricta, M. slooffiae, and Aspergillus flavus. In another exemplary embodiment, the fungus or yeast is a member selected from dermatophytes, Trichophyton, Microsporum, Epidermophyton and yeast-like fungi.
[0104] In an exemplary embodiment, the microorganism is a bacteria. In an exemplary embodiment, the bacteria is a gram-positive bacteria. In another exemplary embodiment, the gram-positive bacteria is a member selected from Staphylococcus species, Streptococcus species, Bacillus species, Mycobacterium species, Corynebacterium species (Propionibacterium species), Clostridium species, Actinomyces species, Enterococcus species and Streptomyces species. In another exemplary embodiment, the bacteria is a gram-negative bacteria. In another exemplary embodiment, the gram-negative bacteria is a member selected from Acinetobacter species, Neisseria species, Pseudomonas species, Brucella species, Agrobacterium species, Bordetella species, Escherichia species, Shigelia species, Yersinia species, Salmonella species, Klebsiella species, Enterobacter species, Haemophilus species, Pasteurella species, Streptobacillus species, spirochetal
species, Campylobacter species, Vibrio species and Helicobacter species. In another exemplary embodiment, the bacterium is a member selected from Propionibacterium acnes; Staphylococcus aureus; Staphylococcus epidermidis, Staphylococcus saprophyticus; Streptococcus pyogenes; Streptococcus agalactiae; Streptococcus pneumoniae; Enterococcus faecalis; Enterococcus faecium; Bacillus anthracis; Mycobacterium avium-intracellulare; Mycobacterium tuberculosis, Acinetobacter baumanii; Corynebacterium diphtheria; Clostridium perfringens; Clostridium botulinum; Clostridium tetani; Neisseria gonorrhoeae; Neisseria meningitidis; Pseudomonas aeruginosa; Legionella pneumophila; Escherichia coli; Yersinia pestis; Haemophilus influenzae; Helicobacter pylori; Campylobacter fetus; Campylobacter jejuni; Vibrio cholerae; Vibrio parahemolyticus; Trepomena pallidum; Actinomyces israelii; Rickettsia prowazekii; Rickettsia rickettsii; Chlamydia trachomatis; Chlamydia psittaci; Brucella abortus; Agrobacterium tumefaciens; and Francisella tularensis.
[0105] In an exemplary embodiment, the microorganism is a bacteria, which is a member selected from acid-fast bacterium, including Mycobacterium species; bacilli, including Bacillus species, Corynebacterium species (also Propionibacterium) and Clostridium species; filamentous bacteria, including Actinomyces species and Streptomyces species; bacilli, such as Pseudomonas species, Brucella species, Agrobacterium species, Bordetella species, Escherichia species, Shigella species, Yersinia species, Salmonella species, Klebsiella species, Enterobacter species, Haemophilus species, Pasteurella species, and Streptobacillus species; spirochetal species, Campylobacter species, Vibrio species; and intracellular bacteria including Rickettsiae species and Chlamydia species.
[0106] In an exemplary embodiment, the microorganism is a virus. In an exemplary embodiment, the virus is a member selected from hepatitis A-B, human rhinoviruses, Yellow fever virus, human respiratory coronaviruses, Severe acute respiratory syndrome (SARS), respiratory syncytial virus, influenza viruses, parainfluenza viruses 1-4, human immunodeficiency virus 1 (HIV-1), human immunodeficiency virus 2 (HIV-2), Herpes simplex virus 1 (HSV-1), Herpes simplex virus 2 (HSV-2), human cytomegalovirus (HCMV), Varicella zoster virus, EpsteinBarr (EBV), polioviruses, coxsackieviruses, echoviruses, rubella virus, neurodermatropic virus, variola virus, papoviruses, rabies virus, dengue virus, West Nile virus
and SARS virus. In another exemplary embodiment, the virus is a member selected from picornaviridae, flaviviridae, coronaviridae, paramyxoviridae, orthomyxoviridae, retroviridae, herpesviridae and hepadnaviridae. In another exemplary embodiment, the virus is a member selected from a virus included in the following table:

Table A. Viruses

Virus Category	Pertinent Human Infections
RNA Viruses	
Picomaviridae	Polio Human hepatitis A Human rhinovirus
Togaviridae and Flaviviridae	Rubella-German measles Yellow fever
Coronaviridae	Human respiratory coronavirus (HCV) Severe acute respiratory syndrome (SAR)
Rhabdoviridae	Lyssavirus - Rabies
Paramyxoviridae	Paramyxovirus - Mumps Morbillvirus - measles Pneumovirus - respiratory syncytial virus
Orthomyxoviridae	Influenza A-C
Bunyaviridae	```Bunyavirus - Bunyamwera (BUN) Hantavirus - Hantaan (HTN) Nairevirus - Crimean-Congo hemorrhagic fever (CCHF) Phlebovirus - Sandfly fever (SFN) Uukuvirus - Uukuniemi (UUK) Rift Valley Fever (RVFN)```
Arenaviridae	Junin - Argentine hemorrhagic fever Machupo - Bolivian hemorrhagic fever Lassa - Lassa fever LCM - aseptic lymphocyctic choriomeningitis
Reoviridae	Rotovirus Reovirus Orbivirus
Retroviridae	$\begin{aligned} & \text { Human immunodeficiency virus } 1 \text { (HIV-1) } \\ & \text { Human immunodeficiency virus } 2 \text { (HIV-2) } \\ & \text { Simian immunodeficiency virus (SIV) } \\ & \hline \end{aligned}$
DNA Viruses	
Papovaviridae	Pediatric viruses that reside in kidney
Adenoviridae	Human respiratory distress and some deep-seated eye

Virus Category	Pertinent Human Infections
	infections
Parvoviridae	Human gastro-intestinal distress (Norwalk Virus)
Herpesviridae	Herpes simplex virus 1 (HSV-1) Herpes simplex virus 2 (HSV-2) Human cytomegalovirus (HCMV) Varicella zoster virus (VZV) Epstein-Barr virus (EBV) Human herpes virus 6 (HHV6)
	Orthopoxvirus is sub-genus for smallpox
	Hepatitis B virus (HBV) Hepatitis C virus (HCV)

[0107] In another exemplary embodiment, the microorganism is a parasite. In an exemplary embodiment, the parasite is a member selected from Plasmodium falciparum, P. vivax, P. ovale P. malariae, P. berghei, Leishmania donovani, L. infantum, L. chagasi, L. mexicana, L. amazonensis, L. venezuelensis, L. tropics, L. major, L. minor, L. aethiopica, L. Biana braziliensis, L. (V.) guyanensis, L. (V.) panamensis, L. (V.) peruviana, Trypanosoma brucei rhodesiense, T. brucei gambiense, T. cruzi, Giardia intestinalis, G. lambda, Toxoplasma gondii, Entamoeba histolytica, Trichomonas vaginalis, Pneumocystis carinii, and Cryptosporidium parvum.

V. Methods of Treating or Preventing Infections

[0108] In another aspect, the invention provides a method of treating or preventing an infection, or both. The method includes administering to the animal a therapeutically effective amount of the compound of the invention, sufficient to treat or prevent said infection. In an exemplary embodiment, the compound of the invention is according to Formulae (I) or (II). In another exemplary embodiment, the animal is a member selected from human, cattle, deer, reindeer, goat, honey bee, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, camel, yak, elephant, ostrich, otter, chicken, duck, goose, guinea fowl, pigeon, swan, and turkey. In another exemplary embodiment, the animal is a human. In another exemplary embodiment, the animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey. In another exemplary
embodiment, the infection is a member selected from a systemic infection, a cutaneous infection, and an ungual or periungual infection.

V. a) Methods of Treating of Preventing Ungual and/or Periungual Infections

[0109] In another aspect, the invention provides a method of treating or preventing an ungual and/or periungual infection. The method includes administering to the animal a therapeutically effective amount of the compound of the invention, sufficient to treat or prevent said infection. In another exemplary embodiment, the method includes administering the compound of the invention at a site which is a member selected from the skin, nail, hair, hoof, claw and the skin surrounding the nail, hair, hoof and claw.

V. a) 1) Onychomycosis

[0110] Onychomycosis is a disease of the nail caused by yeast, dermatophytes, or other molds, and represents approximately 50% of all nail disorders. Toenail infection accounts for approximately 80% of onychomycosis incidence, while fingernails are affected in about 20% of the cases. Dermatophytes are the most frequent cause of nail plate invasion, particularly in toenail onychomycosis. Onychomycosis caused by a dermatophyte is termed Tinea unguium. Trichophyton rubrum is by far the most frequently isolated dermatophyte, followed by T . mentagrophytes. Distal subungual onychomycosis is the most common presentation of tinea unguium, with the main site of entry through the hyponychium (the thickened epidermis underneath the free distal end of a nail) progressing in time to involve the nail bed and the nail plate. Discoloration, onycholysis, and accumulation of subungual debris and nail plate dystrophy characterize the disease. The disease adversely affects the quality of life of its victims, with subject complaints ranging from unsightly nails and discomfort with footwear, to more serious complications including secondary bacterial infections.
[0111] Many methods are known for the treatment of fungal infections, including the oral and topical use of antibiotics (e.g., nystatin and amphotericin B), imidazole anti-fungal agents such as miconazole, clotrimazole, fluconazole, econazole and sulconazole, and non-imidazole fungal agents such as the allylamine derivatives terbinafine and naftifine, and the benzylamine butenafine.
[0112] However, onychomycosis has proven to be resistant to most treatments. Nail fungal infections reside in an area difficult to access by conventional topical treatment and anti-fungal drugs cannot readily penetrate the nail plate to reach the infection sites under the nail. Therefore, onychomycosis has traditionally been treated by oral administration of anti-fungal drugs; however, clearly this is undesirable due to the potential for side effects of such drugs, in particular those caused by the more potent anti-fungal drugs such as itraconazole and ketoconazole. An alternative method of treatment of onychomycosis is by removal of the nail before treating with a topically active anti-fungal agent; such a method of treatment is equally undesirable. Systemic antimycotic agents require prolonged use and have the potential for significant side effects. Topical agents have usually been of little benefit, primarily because of poor penetration of the anti-fungal agents into and through the nail mass.
[0113] In an exemplary embodiment, the invention provides a method of treating or preventing onychomycosis. The method includes administering to the animal a therapeutically effective amount of a pharmaceutical formulation of the invention, sufficient to treat or prevent onychomycosis. In another exemplary embodiment, the method includes administering the pharmaceutical formulation of the invention at a site which is a member selected from the skin, nail, hair, hoof, claw and the skin surrounding the nail, hair, hoof and claw. In another exemplary embodiment, the pharmaceutical formulation includes a compound having a structure according to Formula (IIb). In another exemplary embodiment, $\mathrm{R}^{\mathbf{l b}}$ is H . In another exemplary embodiment, $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{1 \mathrm{lb}}$ are H . In another exemplary embodiment, one member selected from $R^{10 b}$ and $R^{11 b}$ is H and the other member selected from $R^{10 b}$ and $R^{11 b}$ is a member selected from halo, methyl, cyano, methoxy, hydroxymethyl and p-cyanophenyloxy. In another exemplary embodiment, $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ are members independently selected from fluoro, chloro, methyl, cyano, methoxy, hydroxymethyl, and p-cyanophenyl. In another exemplary embodiment, R^{lb} is $\mathrm{H} ; \mathrm{R}^{7 \mathrm{~b}}$ is $\mathrm{H} ; \mathrm{R}^{10 \mathrm{~b}}$ is F and $R^{11 b}$ are H. In another exemplary embodiment, $R^{11 b}$ and $R^{12 b}$, along with the atoms to which they are attached, are joined to form a phenyl group.

V. a) 2) Other Unugal and Periungual Infections

[0114] In an exemplary embodiment, the invention provides a method of treating or preventing an ungual or periungual infection in a mammal. This method comprising administering to the mammal a therapeutically effective amount of a
compound of the invention, thereby treating or preventing the ungual or periungual infection. In an exemplary embodiment, the ungual or periungual infection is a member selected from: chloronychia, paronychias, erysipeloid, onychorrhexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verrucosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), and dermatological diseases with an effect on the nails, such as psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphigoid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome, systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus.
[0115] The compounds and pharmaceutical formulations of the invention useful for ungual and periungual applications also find application in the cosmetics field, in particular for the treatment of irregularities of the nails, koilonychias, Beau's lines, longitudinal ridging, ingrown nails.
[0116] In an exemplary embodiment, the infection is of the skin, nail, hair, claw or hoof, hair, ear and eye and is a member selected from Sporotrichosis, Mycotic keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea Imbricata.

V. b) Methods of Treating Systemic Diseases

[0117] In another aspect, the invention provides a method of treating a systemic disease. The method involves contacting an animal with a compound of the invention. The method of delivery for treatment of systemic disesases can be oral, intravenous or transdermal.
[0118] In an exemplary embodiment, the infection is systemic and is a member selected from candidiasis, aspergillosis, coccidioidomycosis, cryptococcosis,
histoplasmosis, blastomycosis, paracoccidioidomycosis, zygomycosis, phaeohyphomycosis and rhinosporidiosis.

V.c) Methods of Treating Diseases Involving Viruses

[0119] The compounds of the invention are useful for the treatment of diseases of both animals and humans, involving viruses. In an exemplary embodiment, the disease is a member selected from hepatitis $\mathrm{A}-\mathrm{B}-\mathrm{C}$, yellow fever, respiratory syncytial, influenza, AIDS, herpes simplex, chicken pox, varicella zoster, and Epstein-Barr disease.

V. d) Methods of Treating Diseases Involving Parasites

[0120] The compounds of the invention are useful for the treatment of diseases of both animals and humans, involving parasites. In an exemplary embodiment, the disease is a member selected from malaria, Chagas' disease, Leishmaniasis, African sleeping sickness (African human trypanosomiasis), giardiasis, toxoplasmosis, amebiasis and cryptosporidiosis.

VI. Methods of Nail Penetration

[0121] It is believed that poor penetration of the active agent through the hoof or nail plate and/or excessive binding to keratin, (the major protein in nails and hair) are the reasons for the poor efficacy of 8% ciclopirox w / w in commercial lacquer and other topical treatments that have failed in clinical trials. In mild cases of onychomycosis, the pathogenic fungi reside in the nail plate only. In moderate to severe cases the pathogenic fungi establish a presence in the nail plate and in the nail bed. If the infection is cleared from the nail plate but not from the nail bed, the fungal pathogen can re-infect the nail plate. Therefore, to effectively treat onychomycosis, the infection must be eliminated from the nail plate and the nail bed. To do this, the active agent must penetrate and disseminate substantially throughout the nail plate and nail bed.
[0122] It is believed that in order for an active agent to be effective once disseminated throughout the infected area, it must be bioavailable to the fungal pathogen and cannot be so tightly and/or preferentially bound to keratin that the drug is rendered inactive.
[0123] An understanding of the morphology of the nail plate suggests certain physicochemical properties of an active agent that would facilitate penetration of the nail plate. The desired physicochemical properties are described throughout. The tested compounds of the present invention are able to penetrate the nail plate and were also active against Trichophyton rubrum and mentagrophytes and other species. In addition, the tested compounds are also active against Trichophyton rubrum in the presence of 5% keratin powder.
[0124] In another aspect, the invention provides a method of delivering a compound from the dorsal layer of the nail plate to the nail bed. This method comprises contacting the cell with a compound capable of penetrating the nail plate, under conditions sufficient to penetrate the nail. The compound has a molecular weight of between about 100 and about 200 Da . The compound also has a $\log \mathrm{P}$ value of between about 1.0 and about 2.6. The compound additionally has a water solubility between about $0.1 \mathrm{mg} / \mathrm{mL}$ and $1 \mathrm{~g} / \mathrm{mL}$ octanol/saturated water, thereby delivering said compound.
[0125] In a preferred embodiment, the physicochemical properties of the compound of the invention, described by quantities predictive for migration of the compound through the nail plate, including, but not limited to, molecular weight, $\log \mathrm{P}$ and solubility in water, and the like, are effective to provide substantial penetration of the nail plate.
[0126] Compounds with a molecular weight of less than 200 Da penetrate the nail plate in a manner superior to the commercially available treatment for onychomycosis. In one embodiment of the present invention the compound has a molecular weight of between 130 and 200. In another embodiment of this invention, the compound has a molecular weight of from about 140 to about 200 Da . In another embodiment of this invention, the compound has a molecular weight of from about 170 to about 200 Da . In another embodiment of this invention, the compound has a molecular weight of from about 155 to about 190 Da . In another embodiment of this invention, the compound has a molecular weight of from about 165 to about 185 Da . In another embodiment of this invention, the compound has a molecular weight of from about 145 to about 170 Da . In yet another embodiment the molecular weight is either 151.93 or 168.39 Da .
[0127] In one embodiment of the present invention the compound has a Log P value of between about -3.5 to about 2.5 . In another exemplary embodiment, the compound has a $\log \mathrm{P}$ value of from about -1.0 to about 2.5. In another exemplary embodiment, the compound has a $\log \mathrm{P}$ value of from about -1.0 to about 2.0. In another exemplary embodiment, the compound has a Log P value of from about -0.5 to about 2.5. In another exemplary embodiment, the compound has a $\log P$ value of from about -0.5 to about 1.5. In another exemplary embodiment, the compound has a $\log P$ value of from about 0.5 to about 2.5. In another exemplary embodiment, the compound has a Log P value of from about 1.0 to about 2.5. In yet another exemplary embodiment, the compound has a Log P value of 1.9 or 2.3.
[0128] Also contemplated by the present invention is a compound with a Log P value less then 2.5 , with a molecular weight less than 200 Da , that are still able to penetrate the nail plate.
[0129] In one embodiment of the present invention the compound has a water solubility between about $0.1 \mathrm{mg} / \mathrm{mL}$ to $1 \mathrm{~g} / \mathrm{mL}$ in octanol saturated water. In one embodiment of the present invention the compound has a water solubility of between $0.1 \mathrm{mg} / \mathrm{mL}$ and $100 \mathrm{mg} / \mathrm{mL}$. In another embodiment of this invention, the compound has a water solubility of from about $0.1 \mathrm{mg} / \mathrm{mL}$ and $10 \mathrm{mg} / \mathrm{mL}$. In another embodiment of this invention, the compound has a water solubility of from about 0.1 $\mathrm{mg} / \mathrm{mL}$ and $1 \mathrm{mg} / \mathrm{mL}$. In another embodiment of this invention, the compound has a water solubility of from about $5 \mathrm{mg} / \mathrm{mL}$ and $1 \mathrm{~g} / \mathrm{mL}$. In another embodiment of this invention, the compound has a water solubility of from about $10 \mathrm{mg} / \mathrm{mL}$ and 500 g / mL. In another embodiment of this invention, the compound has a water solubility of from about $80 \mathrm{mg} / \mathrm{mL}$ and $250 \mathrm{mg} / \mathrm{mL}$.
[0130] In an exemplary embodiment, the present invention provides a compound with a $\log P$ value selected from a range above, with a molecular weight selected from a range above, that are still able to penetrate the nail plate.
[0131] In an exemplary embodiment, the present invention provides compounds with a molecular weight selected from a range above, with a water solubility selected from a range above, that are still able to penetrate the nail plate.
[0132] In an exemplary embodiment, the present invention provides compounds with a $\log \mathrm{P}$ selected from a range above, with a water solubility selected from a range above, that are still able to penetrate the nail plate.
[0133] In an exemplary embodiment, the present invention provides compounds with a molecular weight selected from a range above, with a $\log P$ selected from a range above, and with a water solubility selected from a range above, that are still able to penetrate the nail plate.
[0134] Penetration of the nail by the active ingredient may be effected by the polarity of the formulation. However, the polarity of the formulation is not expected have as much influence on nail penetration as some of the other factors, such as the molecular weight or the $\log \mathrm{P}$ of the active ingredient. The presence of penetration enhancing agents in the formulation is likely to increase penetration of the active agent when compared to similar formulations containing no penetration enhancing agent
[0135] Some examples of molecules with optimal physicochemical properties are given in the table below.

Structure:	(compound 1)	(compound 2)
Formula:	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BFO}_{2}$	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BClO}_{2}$
Molecular weight (Da):	151.93	168.39
Plasma protein binding (\%):	66	83
LogP:	1.9	2.3
Water solubility $(\mu \mathrm{g} / \mathrm{mL}$):	>100	>100

[0136] Compound 3 below is an example of a compound similar in molecular weight to ciclopirox, and like ciclopirox, penetrates the nail plate poorly.

Structure:	(compound 3)
Formula:	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BFO}$
Molecular weight (Da):	212.03
Plasma protein binding (\%):	100
cLogP:	3.55
Water solubility $(\mu \mathrm{g} / \mathrm{mL}):$	not determined

[0137] In a preferred embodiment the topical formulations including a compound of Formulae (I) or (II) described structurally above has a total molecular weight of less than 200 Da , has a Log P of less than 2.5 , and a minimum inhibitory concentration against Trichophyton rubrum that is substantially unchanged in the presence of 5% keratin.
[0138] This invention is still further directed to methods for treating a viral infection mediated at least in part by dermatophytes, Trichophyton, Microsporum or Epidermophyton species, or a yeast-like fungi including Candida species, in mammals, which methods comprise administering to a mammal, that has been diagnosed with said viral infection or is at risk of developing said viral infection, a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of a compound described herein or mixtures of one or more of such compounds. In one embodiment the infection is onychomycosis.
[0139] Compounds contemplated by the present invention may have broad spectrum antifungal activity and as such may be candidates for use against other cutaneous fungal infections.
[0140] The methods provided in this aspect of the invention are useful in the penetration of nails and hoofs, as well as the treatment of ungual and periungual conditions.

VII. Pharmaceutical Formulations

[0141] In another aspect, the invention is a pharmaceutical formulation which includes: (a) a pharmaceutically acceptable excipient; and (b) a compound of the
invention. In another aspect, the invention is a pharmaceutical formulation which includes: (a) a pharmaceutically acceptable excipient; and (b) a compound having a structure according to Formula (I), (Ia), (Ib), (Ic), or (Id). In another aspect, the invention is a pharmaceutical formulation which includes: (a) a pharmaceutically acceptable excipient; and (b) a compound which has a structure according to Formula (II), (IIa), (IIb), (IIc), (IId).
[0142] In another aspect, the invention is a pharmaceutical formulation comprising: (a) a pharmaceutically acceptable excipient; and (b) a compound having a structure according to Formula II:

wherein B is boron. $R^{1 \mathrm{~b}}$ is a member selected from a negative charge, a salt counterion, H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M2 is a member selected from oxygen, sulfur and $\mathrm{NR}^{2 \mathrm{~b}} . \mathrm{R}^{2 \mathrm{~b}}$ is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{\mathrm{n} 2}$ and $\mathrm{CR}^{5 b} . \mathrm{R}^{3 b}, \mathrm{R}^{4 \mathrm{~b}}$, and $\mathrm{R}^{5 \mathrm{~b}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 2 is an integer selected from 0 to 2. W 2 is a member selected from $\mathrm{C}=\mathrm{O}$ (carbonyl), $\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$ and $\mathrm{CR}^{8 b} . R^{6 b}, R^{7 b}$, and $\mathrm{R}^{8 \mathrm{~b}}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 2 is an
integer selected from 0 and 1. A2 is a member selected from $\mathrm{CR}^{9 b}$ and $\mathrm{N} . \mathrm{D} 2$ is a member selected from $\mathrm{CR}^{10 b}$ and N . E2 is a member selected from $\mathrm{CR}^{11 \mathrm{~b}}$ and N . G2 is a member selected from $C R^{12 b}$ and $N . R^{9 b}, R^{10 b}, R^{11 b}$ and $R^{12 b}$ are members independently selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (A2 + D2 + E2 $+G 2$) is an integer selected from 0 to 3. A member selected from $R^{3 b}, R^{4 b}$ and $R^{5 b}$ and a member selected from $R^{6 b}, R^{7 b}$ and $R^{8 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{3 b}$ and $R^{4 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $\mathrm{R}^{6 \mathrm{~b}}$ and $\mathrm{R}^{7 \mathrm{~b}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{9 b}$ and $R^{10 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{10 b}$ and $R^{11 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. $R^{11 b}$ and $R^{12 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring.
[0143] In an exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W 2 is a member selected from $\left(\mathrm{CR}^{3 \mathrm{~b}} \mathrm{R}^{4 \mathrm{~b}}\right)_{\mathrm{n} 2}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E}$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G}$ is $C R^{12 b}$, then $R^{9 b}$ is not a member selected from halogen, methyl, ethyl, or optionally joined with $\mathrm{R}^{10 b}$ to a form phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{\mathrm{m}}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{10 \mathrm{~b}}$ is not a member selected from unsubstituted phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, or optionally joined with $\mathrm{R}^{9 b}$ to form a phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W 2 is a member selected from $\left(\mathrm{CR}^{3 b} R^{4 b}\right)_{n}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{1 \mathrm{lb}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{1 \mathrm{lb}}$ is not a member selected from halogen or optionally joined with $\mathrm{R}^{10 \mathrm{~b}}$ to form a phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 \mathrm{~b}}\right)_{\mathrm{n} 2}$, wherein n 2 is 0 , J 2 is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2
is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{12 \mathrm{~b}}$ is not halogen. In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{\mathrm{n} 2}$, wherein n 2 is 0 , J 2 is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{1 \mathrm{lb}}, \mathrm{G} 2$ is $C R^{12 b}$, then $R^{6 b}$ is not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n 2}$, wherein n 2 is $0, \mathrm{~J} 2$ is a member selected from $\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 b}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $\mathrm{R}^{7 \mathrm{~b}}$ is not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 \mathrm{~b}}\right)_{\mathrm{n} 2}$, wherein n 2 is 0 , J 2 is a member selected from $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$, wherein m 2 is $1, \mathrm{~A} 2$ is $\mathrm{CR}^{9 \mathrm{~b}}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}$, then $R^{6 b}$ and $R^{7 b}$ are not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from $\left(C R^{3 b} R^{4 b}\right)_{n 2}$, wherein n 2 is 0 , J 2 is a member selected from $\left(C R^{6 b} R^{7 b}\right)_{m 2}$, wherein $m 2$ is $1, A 2$ is $C R^{9 b}, D 2$ is $C R^{10 b}, E 2$ is $C R^{11 b}, G 2$ is $C R^{12 b}$, and $R^{9 b}, R^{10 b}$ and $R^{11 b}$ are H, then $R^{6 b}, R^{7 b}$ and $R^{12 b}$ are not H. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen wherein n 2 is $1, \mathrm{~J} 2$ is a member selected from $\left(C R^{6 b} R^{7 b}\right)_{m 2}$, wherein $m 2$ is $0, A 2$ is $C R^{9 b}, D 2$ is $C R^{10 b}, E 2$ is $C R^{11 b}, G 2$ is $C R^{12 b}, R^{9 b}$ is $H, R^{10 b}$ is $H, R^{11 b}$ is H, $R^{6 b}$ is $H, R^{7 b}$ is $H, R^{12 b}$ is H, then $W 2$ is not $C=O$ (carbonyl). In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is $\mathrm{CR}^{5 \mathrm{~b}}, \mathrm{~J} 2$ is $\mathrm{CR}^{8 \mathrm{~b}}, \mathrm{~A} 2$ is $\mathrm{CR}^{9 \mathrm{~b}}, \mathrm{D} 2$ is $\mathrm{CR}^{10 \mathrm{~b}}, \mathrm{E} 2$ is $\mathrm{CR}^{11 \mathrm{~b}}, \mathrm{G} 2$ is $\mathrm{CR}^{12 \mathrm{~b}}, \mathrm{R}^{6 \mathrm{~b}}, \mathrm{R}^{7 \mathrm{~b}}, \mathrm{R}^{9 \mathrm{~b}}, \mathrm{R}^{10 \mathrm{~b}}, \mathrm{R}^{11 \mathrm{~b}}$ and $R^{12 b}$ are H, then $R^{5 b}$ and $R^{8 b}$, together with the atoms to which they are attached, do not form a phenyl ring.
[0144] In an exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (IIa):

(IIa).
[0145] In another exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (IIb):

wherein $\mathrm{R}^{7 \mathrm{~b}}$ is a member selected from H, methyl, ethyl and phenyl. $\mathrm{R}^{10 \mathrm{~b}}$ is a member selected from $\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, halogen, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio. $\mathrm{R}^{11 \mathrm{~b}}$ is a member selected from H , $\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, methyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio.
[0146] In another exemplary embodiment, $\mathrm{R}^{1 \mathrm{~b}}$ is a member selected from a negative charge, H and a salt counterion. In another exemplary embodiment, $R^{10 \mathrm{~b}}$ and $R^{11 b}$ are H. In another exemplary embodiment, one member selected from $R^{10 b}$ and $\mathrm{R}^{11 \mathrm{~b}}$ is H and the other member selected from $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ is a member selected from halo, methyl, cyano, methoxy, hydroxymethyl and p-cyanophenyloxy. In another exemplary embodiment, $\mathrm{R}^{10 \mathrm{~b}}$ and $\mathrm{R}^{11 \mathrm{~b}}$ are members independently selected from fluoro, chloro, methyl, cyano, methoxy, hydroxymethyl, and p-cyanophenyl. In another exemplary embodiment, $R^{1 b}$ is a member selected from a negative charge, H and a salt counterion; $\mathrm{R}^{7 b}$ is $H ; \mathrm{R}^{10 b}$ is F and $R^{11 b}$ is H. In another exemplary embodiment, $\mathrm{R}^{11 \mathrm{~b}}$ and $\mathrm{R}^{12 \mathrm{~b}}$, along with the atoms to which they are attached, are joined to form a phenyl group. In another exemplary embodiment, $\mathrm{R}^{1 \mathrm{~b}}$ is a member selected from a negative charge, H and a salt counterion; $\mathrm{R}^{7 \mathrm{~b}}$ is $\mathrm{H} ; \mathrm{R}^{10 \mathrm{~b}}$ is 4cyanophenoxy; and $\mathrm{R}^{11 \mathrm{~b}}$ is H .
[0147] In another exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (IIc):

wherein $\mathrm{R}^{10 \mathrm{~b}}$ is a member selected from H , halogen, CN and substituted or unsubstituted C_{1-4} alkyl. In another exemplary embodiment, the compound has a formulation which is a member selected from:

[0148] In another exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (IId):

wherein B is boron. $R^{x 2}$ is a member selected from substituted or unsubstituted $C_{1}-C_{5}$ alkyl and substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ heteroalkyl. $\mathrm{R}^{\mathrm{y} 2}$ and R^{22} are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
[0149] The pharmaceutical formulations of the invention can take a variety of forms adapted to the chosen route of administration. Those skilled in the art will recognize various synthetic methodologies that may be employed to prepare non-toxic pharmaceutical formulations incorporating the compounds described herein. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable solvents that may be used to prepare solvates of the compounds of the invention, such as water, ethanol, propylene glycol, mineral oil, vegetable oil and dimethylsulfoxide (DMSO).
[0150] The compositions of the invention may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. It is further understood that the best method of administration may be a combination of methods. Oral administration in the form of a pill, capsule, elixir, syrup, lozenge,
troche, or the like is particularly preferred. The term parenteral as used herein includes subcutaneous injections, intradermal, intravascular (e.g., intravenous), intramuscular, spinal, intrathecal injection or like injection or infusion techniques.
[0151] The pharmaceutical formulations containing compounds of the invention are preferably in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.
[0152] Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical formulations, and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.
[0153] Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
[0154] Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; and dispersing or wetting agents, which may be a
naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
[0155] Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
[0156] Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
[0157] Pharmaceutical formulations of the invention may also be in the form of oil-in-water emulsions and water-in-oil emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth; naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol; anhydrides, for example sorbitan monooleate; and condensation products of
the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
[0158] Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, and flavoring and coloring agents. The pharmaceutical formulations may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents, which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
[0159] The composition of the invention may also be administered in the form of suppositories, e.g., for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.
[0160] Alternatively, the compositions can be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.
[0161] For administration to non-human animals, the composition containing the therapeutic compound may be added to the animal's feed or drinking water. Also, it will be convenient to formulate animal feed and drinking water products so that the animal takes in an appropriate quantity of the compound in its diet. It will further be convenient to present the compound in a composition as a premix for addition to the
feed or drinking water. The composition can also added as a food or drink supplement for humans.
[0162] Dosage levels of the order of from about 5 mg to about 250 mg per kilogram of body weight per day and more preferably from about 25 mg to about 150 mg per kilogram of body weight per day, are useful in the treatment of the aboveindicated conditions. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the condition being treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 500 mg of an active ingredient.
[0163] Frequency of dosage may also vary depending on the compound used and the particular disease treated. However, for treatment of most disorders, a dosage regimen of 4 times daily or less is preferred. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.
[0164] Preferred compounds of the invention will have desirable pharmacological properties that include, but are not limited to, oral bioavailability, low toxicity, low serum protein binding and desirable in vitro and in vivo half-lives. Penetration of the blood brain barrier for compounds used to treat CNS disorders is necessary, while low brain levels of compounds used to treat peripheral disorders are often preferred.
[0165] Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco-2 cell monolayers. Toxicity to cultured hepatocyctes may be used to predict compound toxicity. Penetration of the blood brain barrier of a compound in humans may be predicted from the brain levels of laboratory animals that receive the compound intravenously.
[0166] Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcova, et al. (Journal of Chromatography B (1996) volume 677, pages 1-27).
[0167] Compound half-life is inversely proportional to the frequency of dosage of a compound. In vitro half-lives of compounds may be predicted from assays of microsomal half-life as described by Kuhnz and Gieschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).
[0168] The amount of the composition required for use in treatment will vary not only with the particular compound selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will ultimately be at the discretion of the attendant physician or clinician.

VII. a) Topical formulations

[0169] In a preferred embodiment, the methods of the invention can be used employed through the topical application of the compounds described herein.
[0170] The compositions of the present invention comprises fluid or semi-solid vehicles that may include but are not limited to polymers, thickeners, buffers, neutralizers, chelating agents, preservatives, surfactants or emulsifiers, antioxidants, waxes or oils, emollients, sunscreens, and a solvent or mixed solvent system. The solvent or mixed solvent system is important to the formation because it is primarily responsible for dissolving the drug. The best solvent or mixed solvent systems are also capable of maintaining clinically relevant levels of the drug in solution despite the addition of a poor solvent to the formulation. The topical compositions useful in the subject invention can be made into a wide variety of product types. These include, but are not limited to, lotions, creams, gels, sticks, sprays, ointments, pastes, foams, mousses, and cleansers. These product types can comprise several types of carrier systems including, but not limited to particles, nanoparticles, and liposomes. If desired, disintegrating agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar or alginic acid or a salt thereof such as sodium alginate. Techniques for formulation and administration can be found in Remington: The Science and Practice of Pharmacy, supra. The formulation can be selected to maximize delivery to a desired target site in the body.
[0171] Lotions, which are preparations that are to be applied to the skin, nail, hair, claw or hoof surface without friction, are typically liquid or semi-liquid preparations in which finely divided solid, waxy, or liquid are dispersed. Lotions will typically contain suspending agents to produce better dispersions as well as compounds useful
for localizing and holding the active agent in contact with the skin, nail, hair, claw or hoof, e.g., methylcellulose, sodium carboxymethyl-cellulose, or the like.
[0172] Creams containing the active agent for delivery according to the present invention are viscous liquid or semisolid emulsions, either oil-in-water or water-in-oil. Cream bases are water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase is generally comprised of petrolatum or a fatty alcohol, such as cetyl- or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation, as explained in Remington: The Science and Practice of Pharmacy, supra, is generally a nonionic, anionic, cationic or amphoteric surfactant.
[0173] Gel formulations can also be used in connection with the present invention. As will be appreciated by those working in the field of topical drug formulation, gels are semisolid. Single-phase gels contain organic macromolecules distributed substantially uniformly throughout the carrier liquid, which is typically aqueous, but also may be a solvent or solvent blend.
[0174] Ointments, which are semisolid preparations, are typically based on petrolatum or other petroleum derivatives. As will be appreciated by the ordinarily skilled artisan, the specific ointment base to be used is one that provides for optimum delivery for the active agent chosen for a given formulation, and, preferably, provides for other desired characteristics as well, e.g., emolliency or the like. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing. As explained in Remington: The Science and Practice of Pharmacy, 19th Ed. (Easton, Pa.: Mack Publishing Co., 1995), at pages 1399-1404, ointment bases may be grouped in four classes: oleaginous bases; emulsifiable bases; emulsion bases; and water-soluble bases. Oleaginous ointment bases include, for example, vegetable oils, fats obtained from animals, and semisolid hydrocarbons obtained from petroleum. Emulsifiable ointment bases, also known as absorbent ointment bases, contain little or no water and include, for example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum. Emulsion ointment bases are either water-in-oil (W/O) emulsions or oil-in-water (O/W) emulsions, and include, for example, cetyl alcohol, glyceryl monostearate, lanolin and stearic acid. Preferred water-soluble ointment bases are prepared from polyethylene glycols of varying molecular weight;
again, reference may be had to Remington: The Science and Practice of Pharmacy, supra, for further information.
[0175] Useful formulations of the invention also encompass sprays. Sprays generally provide the active agent in an aqueous and/or alcoholic solution which can be misted onto the skin, nail, hair, claw or hoof for delivery. Such sprays include those formulated to provide for concentration of the active agent solution at the site of administration following delivery, e.g., the spray solution can be primarily composed of alcohol or other like volatile liquid in which the drug or active agent can be dissolved. Upon delivery to the skin, nail, hair, claw or hoof, the carrier evaporates, leaving concentrated active agent at the site of administration.
[0176] The topical pharmaceutical compositions may also comprise suitable solid or gel phase carriers. Examples of such carriers include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
[0177] The topical pharmaceutical compositions may also comprise a suitable emulsifier which refers to an agent that enhances or facilitates mixing and suspending oil-in-water or water-in-oil. The emulsifying agent used herein may consist of a single emulsifying agent or may be a nonionic, anionic, cationic or amphoteric surfactant or blend of two or more such surfactants; preferred for use herein are nonionic or anionic emulsifiers. Such surface-active agents are described in "McCutcheon's Detergent and Emulsifiers," North American Edition, 1980 Annual published by the McCutcheon Division, MC Publishing Company, 175 Rock Road, Glen Rock, N.J. 07452, USA.
[0178] Preferred for use herein are high molecular weight alcohols such as cetearyl alcohol, cetyl alcohol, stearyl alcohol, emulsifying wax, glyceryl monostearate. Other examples are ethylene glycol distearate, sorbitan tristearate, propylene glycol monostearate, sorbitan monooleate, sorbitan monostearate (SPAN 60), diethylene glycol monolaurate, sorbitan monopalmitate, sucrose dioleate, sucrose stearate (CRODESTA F-160), polyoxyethylene lauryl ether (BRIJ 30), polyoxyethylene (2) stearyl ether (BRIJ 72), polyoxyethylene (21) stearyl ether (BRIJ 721), polyoxyethylene monostearate (Myrj 45), polyoxyethylene sorbitan monostearate (TWEEN 60), polyoxyethylene sorbitan monooleate (TWEEN 80),
polyoxyethylene sorbitan monolaurate (TWEEN 20) and sodium oleate. Cholesterol and cholesterol derivatives may also be employed in externally used emulsions and promote w/o emulsions.
[0179] Especially suitable nonionic emulsifying agents are those with hydrophilelipophile balances (HLB) of about 3 to 6 for w/o system and 8 to 18 for o / w system as determined by the method described by Paul L. Lindner in "Emulsions and Emulsion", edited by Kenneth Lissant, published by Dekker, New York, N.Y., 1974, pages 188-190. More preferred for use herein are one or more nonionic surfactants that produce a system having HLB of about 8 to about 18 .
[0180] Examples of such nonionic emulsifiers include but are not limited to "BRIJ 72", the trade name for a polyoxyethylene (2) stearyl ether having an HLB of 4.9; "BRIJ 721 ", the trade name for a polyoxyethylene (21) stearyl ether having an HLB of 15.5, "Brij 30", the trade name for polyoxyethylene lauryl ether having an HLB of 9.7; "Polawax", the trade name for emulsifying wax having an HLB of 8.0; "Span 60", the trade name for sorbitan monostearate having an HLB of 4.7; "Crodesta F-160", the trade name for sucrose stearate" having an HLB of 14.5. All of these materials are available from Ruger Chemicals Inc.; Croda; ICI Americas, Inc.; Spectrum Chemicals; and BASF. When the topical formulations of the present invention contain at least one emulsifying agent, each emulsifying agent is present in amount from about 0.5 to about $2.5 \mathrm{wt} \%$, preferably 0.5 to 2.0%, more preferably 1.0% or 1.8%. Preferably the emulsifying agent comprises a mixture of steareth 21 (at about 1.8%) and steareth 2 (at about 1.0%).
[0181] The topical pharmaceutical compositions may also comprise suitable emollients. Emollients are materials used for the prevention or relief of dryness, as well as for the protection of the skin, nail, hair, claw or hoof. Useful emollients include, but are not limited to, cetyl alcohol, isopropyl myristate, stearyl alcohol, and the like. A wide variety of suitable emollients are known and can be used herein. See e.g., Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 32-43 (1972), and U.S. Pat. No. 4,919,934, to Deckner et al., issued Apr. 24, 1990, both of which are incorporated herein by reference in their entirety. These materials are available from Ruger Chemical Co, (Irvington, NJ).
[0182] When the topical formulations of the present invention contain at least one emollient, each emollient is present in an amount from about 0.1 to 15%, preferably 0.1 to about 3.0 , more preferably $0.5,1.0$, or $2.5 \mathrm{wt} \%$. Preferably the emollient is a mixture of cetyl alcohol, isopropyl myristate and stearyl alcohol in a $1 / 5 / 2$ ratio. The emollient may also be a mixture of cetyl alcohol and stearyl alcohol in a $1 / 2$ ratio.
[0183] The topical pharmaceutical compositions may also comprise suitable antioxidants, substances known to inhibit oxidation. Antioxidants suitable for use in accordance with the present invention include, but are not limited to, butylated hydroxytoluene, ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbic palmitate, butylated hydroxyanisole, 2,4,5-trihydroxybutyrophenone, 4-hydroxymethyl-2,6-di-tert-butylphenol, erythorbic acid, gum guaiac, propyl gallate, thiodipropionic acid, dilauryl thiodipropionate, tert-butylhydroquinone and tocopherols such as vitamin E, and the like, including pharmaceutically acceptable salts and esters of these compounds. Preferably, the antioxidant is butylated hydroxytoluene, butylated hydroxyanisole, propyl gallate, ascorbic acid, pharmaceutically acceptable salts or esters thereof, or mixtures thereof. Most preferably, the antioxidant is butylated hydroxytoluene. These materials are available from Ruger Chemical Co, (Irvington, NJ).
[0184] When the topical formulations of the present invention contain at least one antioxidant, the total amount of antioxidant present is from about 0.001 to $0.5 \mathrm{wt} \%$, preferably 0.05 to about $0.5 \mathrm{wt} \%$, more preferably 0.1%.
[0185] The topical pharmaceutical compositions may also comprise suitable preservatives. Preservatives are compounds added to a pharmaceutical formulation to act as an anti-microbial agent. Among preservatives known in the art as being effective and acceptable in parenteral formulations are benzalkonium chloride, benzethonium, chlorohexidine, phenol, m-cresol, benzyl alcohol, methylparaben, propylparaben, chlorobutanol, o-cresol, p-cresol, chlorocresol, phenylmercuric nitrate, thimerosal, benzoic acid, and various mixtures thereof. See, e.g., Wallhausser, K.-H., Develop. Biol. Standard, 24:9-28 (1974) (S. Krager, Basel). Preferably, the preservative is selected from methylparaben, propylparaben and mixtures thereof. These materials are available from Inolex Chemical Co (Philadelphia, PA) or Spectrum Chemicals.
[0186] When the topical formulations of the present invention contain at least one preservative, the total amount of preservative present is from about 0.01 to about 0.5 $\mathrm{wt} \%$, preferably from about 0.1 to 0.5%, more preferably from about 0.03 to about 0.15 . Preferably the preservative is a mixture of methylparaben and proplybarben in a $5 / 1$ ratio. When alcohol is used as a preservative, the amount is usually 15 to 20%.
[0187] The topical pharmaceutical compositions may also comprise suitable chelating agents to form complexes with metal cations that do not cross a lipid bilayer. Examples of suitable chelating agents include ethylene diamine tetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and 8-Amino-2-[(2-amino-5-methylphenoxy)methyl]-6-methoxyquinoline$\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N^{\prime}-tetraacetic acid, tetrapotassium salt (QUIN-2). Preferably the chelating agents are EDTA and citric acid. These materials are available from Spectrum Chemicals.
[0188] When the topical formulations of the present invention contain at least one chelating agent, the total amount of chelating agent present is from about 0.005% to 2.0% by weight, preferably from about 0.05% to about $0.5 \mathrm{wt} \%$, more preferably about 0.1% by weight.
[0189] The topical pharmaceutical compositions may also comprise suitable neutralizing agents used to adjust the pH of the formulation to within a pharmaceutically acceptable range. Examples of neutralizing agents include but are not limited to trolamine, tromethamine, sodium hydroxide, hydrochloric acid, citric acid, and acetic acid. Such materials are available from are available from Spectrum Chemicals (Gardena, CA).
[0190] When the topical formulations of the present invention contain at least one neutralizing agent, the total amount of neutralizing agent present is from about 0.1 wt to about $10 \mathrm{wt} \%$, preferably $0.1 \mathrm{wt} \%$ to about $5.0 \mathrm{wt} \%$, and more preferably about $1.0 \mathrm{wt} \%$. The neutralizing agent is generally added in whatever amount is required to bring the formulation to the desired pH .
[0191] The topical pharmaceutical compositions may also comprise suitable viscosity increasing agents. These components are diffusible compounds capable of increasing the viscosity of a polymer-containing solution through the interaction of the agent with the polymer. CARBOPOL ULTREZ 10 may be used as a viscosity-
increasing agent. These materials are available from Noveon Chemicals, Cleveland, OH .
[0192] When the topical formulations of the present invention contain at least one viscosity increasing agent, the total amount of viscosity increasing agent present is from about 0.25% to about 5.0% by weight, preferably from about 0.25% to about 1.0 wt $\%$, and more preferably from about 0.4% to about 0.6% by weight.
[0193] The topical pharmaceutical compositions may also comprise suitable nail penetration enhancers. Examples of nail penetration enhancers include mercaptan compounds, sulfites and bisulfites, keratolytic agents and surfactants. Nail penetration enhancers suitable for use in the invention are described in greater detail in Malhotra et al., J. Pharm. Sci., 91:2, 312-323 (2002), which is incorporated herein by reference in its entirety.
[0194] The topical pharmaceutical compositions may also comprise one or more suitable solvents. The ability of any solid substance (solute) to dissolve in any liquid substance (solvent) is dependent upon the physical properties of the solute and the solvent. When solutes and solvents have similar physical properties the solubility of the solute in the solvent will be the greatest. This gives rise to the traditional understanding that "like dissolves like." Solvents can be characterized in one extreme as non-polar, lipophilic oils, while in the other extreme as polar hydrophilic solvents. Oily solvents dissolve other non-polar substances by Van der Wals interactions while water and other hydrophilic solvents dissolve polar substances by ionic, dipole, or hydrogen bonding interactions. All solvents can be listed along a continuum from the least polar, i.e. hydrocarbons such as decane, to the most polar solvent being water. A solute will have its greatest solubility in solvents having equivalent polarity. Thus, for drugs having minimal solubility in water, less polar solvents will provide improved solubility with the solvent having polarity nearly equivalent to the solute providing maximum solubility. Most drugs have intermediate polarity, and thus experience maximum solubility in solvents such as propylene glycol or ethanol, which are significantly less polar than water. If the drug has greater solubility in propylene glycol (for example $8 \%(\mathrm{w} / \mathrm{w})$) than in water (for example $0.1 \%(\mathrm{w} / \mathrm{w})$), then addition of water to propylene glycol should decrease the maximum amount of drug solubility for the solvent mixture compared with pure propylene glycol. Addition of a poor
solvent to an excellent solvent will decrease the maximum solubility for the blend compared with the maximum solubility in the excellent solvent.
[0195] When compounds are incorporated into topical formulations the concentration of active ingredient in the formulation may be limited by the solubility of the active ingredient in the chosen solvent and/or carrier. Non-lipophilic drugs typically display very low solubility in pharmaceutically acceptable solvents and/or carriers. For example, the solubility of some compounds in the invention in water is less than $0.00025 \% \mathrm{wt} / \mathrm{wt}$. The solubility of the same compounds in the invention can be less than about $2 \% \mathrm{wt} / \mathrm{wt}$ in either propylene glycol or isopropyl myristate. In one embodiment of the present invention, diethylene glycol monoethyl ether (DGME) is the solvent used to dissolve the compounds of Formula (I) of Formula (II). The compounds in the invention useful in the present formulation are believed to have a solubility of from about $10 \% \mathrm{wt} / \mathrm{wt}$ to about $25 \% \mathrm{wt} / \mathrm{wt}$ in DGME. In another embodiment a DGME water cosolvent system is used to dissolve the compounds of Formula (I) of Formula (II). The solvent capacity of DGME drops when water is added; however, the DGME/water cosolvent system can be designed to maintain the desired concentration of from about 0.1% to about $5 \% \mathrm{wt} / \mathrm{wt}$ active ingredient. Preferably the active ingredient is present from about 0.5% to about $3 \% \mathrm{wt} / \mathrm{wt}$, and more preferably at about $1 \% \mathrm{wt} / \mathrm{wt}$, in the as-applied topical formulations. Because DGME is less volatile than water, as the topical formulation evaporates upon application, the active agent becomes more soluble in the cream formulation. This increased solubility reduces the likelihood of reduced bioavailability caused by the drug precipitating on the surface of the skin, nail, hair, claw or hoof.
[0196] Liquid forms, such as lotions suitable for topical administration or suitable for cosmetic application, may include a suitable aqueous or nonaqueous vehicle with buffers, suspending and dispensing agents, thickeners, penetration enhancers, and the like. Solid forms such as creams or pastes or the like may include, for example, any of the following ingredients, water, oil, alcohol or grease as a substrate with surfactant, polymers such as polyethylene glycol, thickeners, solids and the like. Liquid or solid formulations may include enhanced delivery technologies such as liposomes, microsomes, microsponges and the like.
[0197] Additionally, the compounds can be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art.
[0198] Topical treatment regimens according to the practice of this invention comprise applying the composition directly to the skin, nail, hair, claw or hoof at the application site, from one to several times daily.
[0199] Formulations of the present invention can be used to treat, ameliorate or prevent conditions or symptoms associated with bacterial infections, acne, inflammation and the like.
[0200] In an exemplary embodiment, the pharmaceutical formulation includes a simple solution. In an exemplary embodiment, the simple solution includes an alcohol. In an exemplary embodiment, the simple solution includes alcohol and water. In an exemplary embodiment, the alcohol is ethanol, ethylene glycol, propanol, polypropylene glycol, isopropanol or butanol. In another exemplary embodiment, the simple solution is a member selected from about 10% polypropylene glycol and about 90% ethanol; about 20% polypropylene glycol and about 80% ethanol; about 30% polypropylene glycol and about 70% ethanol; about 40% polypropylene glycol and about 60\% ethanol; about 50\% polypropylene glycol and about 50% ethanol; about 60% polypropylene glycol and about 40% ethanol; about 70% polypropylene glycol and about 30% ethanol; about 80% polypropylene glycol and about 20% ethanol; about 90% polypropylene glycol and about 10% ethanol.
[0201] In an exemplary embodiment, the pharmaceutical formulation is a lacquer. Please see Remington's, supra, for more information on the production of lacquers.
[0202] In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about 0.5% to about 15%. In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about 0.1% to about 12.5%. In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about 1% to about 10%. In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about 1% to about 5%. In an exemplary embodiment, the compound is present in said
pharmaceutical formulation in a concentration of from about 2% to about 8%. In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about 4% to about 9%.

VII. b) Additional Active Agents

[0203] The following are examples of the cosmetic and pharmaceutical agents that can be added to the topical pharmaceutical formulations of the present invention. The following agents are known compounds and are readily available commercially.
[0204] Anti-inflammatory agents include, but are not limited to, bisabolol, mentholatum, dapsone, aloe, hydrocortisone, and the like.
[0205] Vitamins include, but are not limited to, Vitamin B, Vitamin E, Vitamin A, Vitamin D, and the like and vitamin derivatives such as tazarotene, calcipotriene, tretinoin, adapalene and the like.
[0206] Anti-aging agents include, but are not limited to, niacinamide, retinol and retinoid derivatives, AHA, Ascorbic acid, lipoic acid, coenzyme Q 10, beta hydroxy acids, salicylic acid, copper binding peptides, dimethylaminoethyl (DAEA), and the like.
[0207] Sunscreens and or sunburn relief agents include, but are not limited to, PABA, jojoba, aloe, padimate-O, methoxycinnamates, proxamine HCl , lidocaine and the like. Sunless tanning agents include, but are not limited to, dihydroxyacetone (DHA).
[0208] Psoriasis-treating agents and/or acne-treating agents include, but are not limited to, salicylic acid, benzoyl peroxide, coal tar, selenium sulfide, zinc oxide, pyrithione (zinc and/or sodium), tazarotene, calcipotriene, tretinoin, adapalene and the like.
[0209] Agents that are effective to control or modify keratinization, including without limitation: tretinoin, tazarotene, and adapalene.
[0210] The compositions comprising an compound/active agent of Formula (I) of Formula (II), and optionally at least one of these additional agents, are to be administered topically. In a primary application, this leads to the compounds of the invention and any other active agent working upon and treating the skin, nail, hair,
claw or hoof. Alternatively, any one of the topically applied active agents may also be delivered systemically by transdermal routes.
[0211] In such compositions an additional cosmetically or pharmaceutically effective agent, such as an anti-inflammatory agent, vitamin, anti-aging agent, sunscreen, and/or acne-treating agent, for example, is usually a minor component (from about 0.001% to about 20% by weight or preferably from about 0.01% to about 10% by weight) with the remainder being various vehicles or carriers and processing aids helpful for forming the desired dosing form.

VII. c) Testing

[0212] Preferred compounds for use in the present topical formulations will have certain pharmacological properties. Such properties include, but are not limited to, low toxicity, low serum protein binding and desirable in vitro and in vivo half-lives. Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco- 2 cell monolayers. Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcova et al. (1996, J. Chromat. B677: 1-27). Compound half-life is inversely proportional to the frequency of dosage of a compound. In vitro half-lives of compounds may be predicted from assays of microsomal half-life as described by Kuhnz and Gleschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).
[0213] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD_{50} and $E D_{50}$. Compounds that exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED_{50} with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. The exact
formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g. Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1, p. 1).

VII. d) Administration

[0214] For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays, as disclosed herein. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the EC_{50} (effective dose for 50% increase) as determined in cell culture, i.e., the concentration of the test compound which achieves a half-maximal inhibition of bacterial cell growth. Such information can be used to more accurately determine useful doses in humans.
[0215] In general, the compounds prepared by the methods, and from the intermediates, described herein will be administered in a therapeutically or cosmetically effective amount by any of the accepted modes of administration for agents that serve similar utilities. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination, the severity of the particular disease undergoing therapy and the judgment of the prescribing physician. The drug can be administered from once or twice a day, or up to 3 or 4 times a day.
[0216] Dosage amount and interval can be adjusted individually to provide plasma levels of the active moiety that are sufficient to maintain bacterial cell growth inhibitory effects. Usual patient dosages for systemic administration range from 0.1 to $1000 \mathrm{mg} /$ day, preferably, $1-500 \mathrm{mg} /$ day, more preferably $10-200 \mathrm{mg} /$ day, even more preferably 100-200 mg/day. Stated in terms of patient body surface areas, usual dosages range from $50-91 \mathrm{mg} / \mathrm{m}^{2} /$ day.
[0217] The amount of the compound in a formulation can vary within the full range employed by those skilled in the art. Typically, the formulation will contain, on a weight percent ($\mathrm{wt} \%$) basis, from about 0.01-10 wt\% of the drug based on the total formulation, with the balance being one or more suitable pharmaceutical excipients.

Preferably, the compound is present at a level of about 0.1-3.0 wt\%, more preferably, about $1.0 \mathrm{wt} \%$.
[0218] The invention is further illustrated by the Examples that follow. The Examples are not intended to define or limit the scope of the invention.

EXAMPLES

[0219] Proton NMR are recorded on Varian AS 300 spectrometer and chemical shifts are reported as δ (ppm) down field from tetramethylsilane. Mass spectra are determined on Micromass Quattro II.

EXAMPLE 1

Preparation of 3 from 1

1.1 Reduction of Carboxylic Acid

[0220] To a solution of $\mathbf{1}(23.3 \mathrm{mmol})$ in anhydrous THF (70 mL) under nitrogen was added dropwise a $\mathrm{BH}_{3} \mathrm{THF}$ solution ($1.0 \mathrm{M}, 55 \mathrm{~mL}, 55 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred overnight at room temperature. Then the mixture was cooled again with ice bath and $\mathrm{MeOH}(20 \mathrm{~mL})$ was added dropwise to decompose excess BH_{3}. The resulting mixture was stirred until no bubble was released and then $10 \% \mathrm{NaOH}(10 \mathrm{~mL})$ was added. The mixture was concentrated and the residue was mixed with water (200 mL) and extracted with EtOAc. The residue from rotary evaporation was purified by flash column chromatography over silica gel to give 20.7 mmol of 3 .

1.2 Results

[0221] Exemplary compounds of structure 3 prepared by the method above are provided below.
1.2.a 2-Bromo-5-chlorobenzyl Alcohol
[0222] ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 7.57(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50-7.49 (m, $1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.46(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

1.2.b 2-Bromo-5-methoxybenzyl Alcohol

[0223] ${ }^{\mathrm{l}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77\left(\mathrm{dd}, J_{1}=3 \mathrm{~Hz}, \mathrm{~J}_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.43(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$.

EXAMPLE 2

Preparation of 3 from 2

2.1. Reduction of Aldehyde

[0224] To a solution of $2(\mathrm{Z}=\mathrm{H}, 10.7 \mathrm{mmol})$ in methanol $(30 \mathrm{~mL})$ was added sodium borohydride (5.40 mol), and the mixture was stirred at room temperature for 1 h. Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 9.9 mmol of 3 .

2.2 Results

[0225] Exemplary compounds of structure $\mathbf{3}$ prepared by the method above are provided below.

2.2.a 2-Bromo-5-(4-cyanophenoxy)benzyl Alcohol

[0226] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 6.88$ (dd, $J=8.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

2.2.b 2-Bromo-4-(4-cyanophenoxy)benzyl Alcohol

[0227] ${ }^{1} H$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.83$ (d, 2H), $7.58(\mathrm{~d}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H})$, $7.18(\mathrm{dd}, 1 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}), 5.48(\mathrm{t}, 1 \mathrm{H})$ and $4.50(\mathrm{~d}, 2 \mathrm{H}) \mathrm{ppm}$.

2.2.c 5-(4-Cyanophenoxy)-1-Indanol

[0228] M.p. $50-53^{\circ} \mathrm{C}$. MS (ESI +): $\mathrm{m} / \mathrm{z}=252(\mathrm{M}+1)$. HPLC: 99.7% purity at 254 nm and 99.0% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.80(\mathrm{~d}, 2 \mathrm{H}), 7.37(\mathrm{~d}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, 1 \mathrm{H}), 5.03(\mathrm{q}, 1 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 1 \mathrm{H})$, 2.75-2.64 (m, 1H), 2.39-2.29 (m, 1H) and 1.85-1.74 (m, 1H) ppm.

2.2.d 2-Bromo-5-(tert-butyldimethylsiloxy)benzyl Alcohol

[0229] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.20(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 4.67$ (br $\mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H})$.
[0230] Additional examples of compounds which can be produced by this method include 2-bromo-4-(3-cyanophenoxy)benzyl alcohol; 2-bromo-4-(4chlorophenoxy)benzyl alcohol; 2-bromo-4-phenoxybenzyl alcohol; 2-bromo-5-(3,4-
dicyanophenoxy)benzyl alcohol; 2-(2-bromo-5-fluorophenyl)ethyl alcohol; 2-bromo-5-fluorobenzyl alcohol; and 1-bromo-2-naphthalenemethanol.

EXAMPLE 3

Preparation of 4 from 3

3.1 Protective Alkylation

[0231] Compound 3 (20.7 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ with ice bath. To this solution under nitrogen were added in sequence N, N-diisopropyl ethyl amine ($5.4 \mathrm{~mL}, 31.02 \mathrm{mmol}, 1.5 \mathrm{eq}$) and chloromethyl methyl ether ($2 \mathrm{~mL}, 25.85 \mathrm{mmol}, 1.25 \mathrm{eq}$). The reaction mixture was stirred overnight at room temperature and washed with NaHCO_{3}-saturated water and then NaCl -saturated water. The residue after rotary evaporation was purified by flash column chromatography over silica gel to give 17.6 mmol of 4 .

3.2 Results

[0232] Exemplary compounds of structure 4 prepared by the method above are provided below.

3.2.a 2-Bromo-5-chloro-l-(methoxymethoxymethyl)benzene

[0233] ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 7.63(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50(\mathrm{dd}$, $\mathrm{J}=2.4 \& 0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=8.4 \& 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$ and $3.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
3.2.b 2-Bromo-5-fluoro-1-[1-(methoxymethoxy)ethyl]benzene
[0234] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 4.55(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $(\mathrm{m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})$.
3.2.c 2-Bromo-5-fluoro-1-[2-(methoxymethoxy)ethyl]benzene [0235] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.04(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{td}, J=8.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}$, $J=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})$.

3.2.d 2-Bromo-4,5-difluoro-1-(methoxymethoxymethyl)benzene

[0236] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.42(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 2 \mathrm{H})$.
3.2.e 2-Bromo-5-cyano-1-(methoxymethoxymethyl)benzene
[0237] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.43(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}$, $2 \mathrm{H}), 7.43(\mathrm{dd}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
3.2.f 2-Bromo-5-methoxy-1-(methoxymethoxymethyl)benzene
[0238] ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 7.48\left(\mathrm{dd}, \mathrm{J}_{1}=1.2 \mathrm{~Hz}, \mathrm{~J}_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $7.05(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83\left(\mathrm{dd}, \mathrm{J}_{1}=3 \mathrm{~Hz}, \mathrm{~J}_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.69(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.5(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
3.2.g 1-Benzyl-1-(2-bromophenyl)-1-(methoxymethoxy)ethane
[0239] ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$): $\delta 7.70-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 6 \mathrm{H})$, 6.96-6.93 (m, 2H), 4.61 (d, 1H), $4.48(\mathrm{~d}, 1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$ and $1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

3.2.h 2-Bromo-6-fluoro-1-(methoxymethoxymethyl)benzene

[0240] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.43(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H})$.
3.2.i 2-Bromo-4-(4-cyanophenoxy)-1-(methoxymethoxymethyl)benzene
[0241] ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$): $\delta 7.84(\mathrm{~d}, 2 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H})$, 7.19-7.12 (m, 3H), $4.69(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H})$ and $3.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
3.2.j 2-Bromo-5-(tert-butyldimethylsiloxy)-1(methoxymethoxymethyl)benzene
[0242] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 3.43$ (s, $3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=8.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$.
3.2.k 2-Bromo-5-(2-cyanophenoxy)-1-(methoxymethoxymethyl)benzene
[0243] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.41(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}$, $2 \mathrm{H})$, 6.8-6.9 (m, 2H), $7.16(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.8,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}$, $1 \mathrm{H})$.
3.2.l 2-Bromo-5-phenoxy-1-(methoxymethoxymethyl)benzene
[0244] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.40(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}$, $2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.8,2.9 \mathrm{hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{~d}, J=2.9 \mathrm{hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$.
[0245] Additional examples of compounds which can be produced by this method include 2-bromo-l-(methoxymethoxymethyl)benzene; 2-bromo-5-methyl-1(methoxymethoxymethyl)benzene; 2-bromo-5-(methoxymethoxymethyl)-1(methoxymethoxymethyl)benzene; 2-bromo-5-fluoro-1-
(methoxymethoxymethyl)benzene; 1-bromo-2-(methoxymethoxymethyl)naphthalene; 2-bromo-4-fluoro-1-(methoxymethoxymethyl)benzene; 2-phenyl-1-(2-bromophenyl)-1-(methoxymethoxy)ethane; 2-bromo-5-(4-cyanophenoxy)-1-(methoxymethoxy methyl)benzene; 2-bromo-4-(3-cyanophenoxy)-1-(methoxymethoxymethyl)benzene; 2-bromo-4-(4-chlorophenoxy)-1-(methoxymethoxymethyl)benzene; 2-bromo-4-phenoxy-1-(methoxymethoxymethyl)benzene; 2-bromo-5-(3,4-dicyanophenoxy)-1(methoxymethoxymethyl)benzene.

EXAMPLE 4

Preparation of 1 from 4 via 5

4.1 Metallation and boronylation
[0246] To a solution of $4(17.3 \mathrm{mmol})$ in anhydrous THF (80 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen was added dropwise tert-BuLi or $\mathrm{n}-\mathrm{BuLi}(11.7 \mathrm{~mL})$ and the solution became brown colored. Then, $\mathrm{B}(\mathrm{OMe})_{3}(1.93 \mathrm{~mL}, 17.3 \mathrm{mmol})$ was injected in one portion and the cooling bath was removed. The mixture was warmed gradually with stirring for 30 min and then stirred with a water bath for 2 h . After addition of 6 N HCl (6 mL), the mixture was stirred overnight at room temperature and about 50% hydrolysis has happened as shown by TLC analysis. The solution was rotary evaporated and the residue was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $6 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL})$. The solution was refluxed for 1 h and the hydrolysis was completed as indicated by TLC analysis. Rotary evaporation gave a residue which was dissolved in EtOAc, washed with water, dried and then evaporated. The crude product was purified by flash column chromatography over silica gel to provide a solid with 80% purity. The solid was further purified by washing with hexane to afford 7.2 mmol of \mathbf{I}.
[0247] Analytical data for exemplary compounds of structure I are provided below.
4.2.a 5-Chloro-1,3-dihydro-l-hydroxy-2,1-benzoxaborole (C1)
[0248] M.p. $142-150^{\circ} \mathrm{C}$. MS (ESI): $\mathrm{m} / \mathrm{z}=169(\mathrm{M}+1$, positive) and $167(\mathrm{M}-1$, negative). HPLC (220 nm): 99% purity. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 9.30$ (s, $1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.96(\mathrm{~s}, 2 \mathrm{H})$ ppm.
4.2.b 1,3-Dihydro-1-hydroxy-2,1-benzoxaborole (C2)
[0249] M.p. $83-86^{\circ} \mathrm{C}$. MS (ESI): $\mathrm{m} / \mathrm{z}=135$ (M+1, positive) and 133 (M-1, negative). HPLC (220 nm): 95.4% purity. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 9.14$ (s , $1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ ($\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}$) and $4.97(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
4.2.c 5-Fluoro-1,3-dihydro-1-hydroxy-3-methyl-2,1-benzoxaborole (C3) [0250] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm} 1.37$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 5.17 (q, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.2$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H})$.
4.2.d 6-Fluoro-1-hydroxy-1,2,3,4-tetrahydro-2,1-benzoxaborine (C4)
[0251] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 2.86(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H})$.
4.2.e 5,6-Difluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C5)
[0252] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 4.94(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=10.7$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (dd, $J=9.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H})$.
4.2.f 5-Cyano-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C6)
[0253] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 5.03(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 9.53$ (s, 1 H).

4.2.g 1,3-Dihydro-1-hydroxy-5-methoxy-2,1-benzoxaborole (C7)

[0254] M.p. $102-104^{\circ} \mathrm{C}$. MS ESI: $\mathrm{m} / \mathrm{z}=165.3(\mathrm{M}+1)$ and $162.9(\mathrm{M}-1) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $_{6}$): $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
4.2.h 1,3-Dihydro-1-hydroxy-5-methyl-2,1-benzoxaborole (C8)
[0255] M.p. $124-128^{\circ} \mathrm{C}$. MS ESI: $\mathrm{m} / \mathrm{z}=148.9(\mathrm{M}+1)$ and $146.9(\mathrm{M}-1) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
4.2.i 1,3-Dihydro-1-hydroxy-5-hydroxymethyl-2,1-benzoxaborole (C9)
[0256] MS: $\mathrm{m} / \mathrm{z}=163$ (M-1, ESI-). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 9.08$ (s , $1 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H}), 5.23(\mathrm{t}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, 2 \mathrm{H})$ ppm.
4.2.j 1,3-Dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole (C10)
[0257] M.p. $110-114^{\circ} \mathrm{C}$. MS ESI: $\mathrm{m} / \mathrm{z}=150.9(\mathrm{M}-1) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.73\left(\mathrm{dd}, \mathrm{J}_{1}=6 \mathrm{~Hz}, \mathrm{~J}_{2}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~m}$, $1 \mathrm{H}), 4.95$ (s, 2H) ppm.
4.2.k 1,3-Dihydro-2-oxa-1-cyclopenta[x́]naphthalene (C11)
[0258] M.P. $139-143^{\circ} \mathrm{C}$. MS ESI: $\mathrm{m} / \mathrm{z}=184.9(\mathrm{M}+1) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.28\left(\mathrm{dd}, \mathrm{J}_{1}=6.9 \mathrm{~Hz}, \mathrm{~J}_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
4.2.l 7-Hydroxy-2,1-oxaborolano[5,4-c]pyridine (C12)
[0259] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta \mathrm{ppm} 5.00(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.57(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS m/z $134(\mathrm{M}-\mathrm{H})^{-}$, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BNO}_{2}=135$.
4.2.m 1,3-Dihydro-6-fluoro-1-hydroxy-2,1-benzoxaborole (C13)
[0260] M.p. $110-117.5^{\circ} \mathrm{C}$. MS (ESI): $\mathrm{m} / \mathrm{z}=151$ ($\mathrm{M}-1$, negative). $\operatorname{HPLC}(220 \mathrm{~nm})$: 100% purity. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.29(\mathrm{td}, 1 \mathrm{H})$ and $4.95(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
4.2.n 3-Benzyl-1,3-dihydro-1-hydroxy-3-methyl-2,1-benzoxaborole (C14)
[0261] MS (ESI): $\mathrm{m} / \mathrm{z}=239(\mathrm{M}+1$, positive). HPLC: 99.5% purity at 220 nm and 95.9% at $254 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H})$, 7.25-7.19 (m, 1H), 7.09-7.05 (m, 3H), 6.96-6.94 (m, 2H), 3.10 (d, 1H), 3.00 (d, 1H) and $1.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
4.2.0 3-Benzyl-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C15)
[0262] MS (ESI +): $\mathrm{m} / \mathrm{z}=225(\mathrm{M}+1)$. HPLC: 93.4% purity at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{dd}, 1 \mathrm{H}), 7.43(\mathrm{t}, 1 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 7 \mathrm{H})$, $5.38(\mathrm{dd}, 1 \mathrm{H}), 3.21(\mathrm{dd}, 1 \mathrm{H})$ and $2.77(\mathrm{dd}, 1 \mathrm{H}) \mathrm{ppm}$.
4.2.p 1,3-Dihydro-4-fluoro-1-hydroxy-2,1-benzoxaborole (C16)
[0263] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.26$ (ddd, $J=9.7$, $7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H})$.
4.2.q 5-(4-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C17)
[0264] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 4.95$ (s, 2H), 7.08 (dd, $J=7.9,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.
4.2.r 6-(4-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C18)
[0265] M.p. $148-151^{\circ} \mathrm{C}$. $\mathrm{MS}: \mathrm{m} / \mathrm{z}=252$ (M+1) (ESI+) and $m / z=250$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 98.7% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, 2 \mathrm{H}), 7.50(\mathrm{~d}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}), 7.26(\mathrm{dd}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H})$ and 4.99 (s, 2H) ppm
4.2.s 6-(3-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C19)
[0266] M.p. $146-149^{\circ} \mathrm{C}$. MS: $\mathrm{m} / \mathrm{z}=252(\mathrm{M}+1)(\mathrm{ESI}+)$ and $\mathrm{m} / \mathrm{z}=250$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 97.9% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, 1 \mathrm{H})$ and $4.98(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
4.2.t 6-(4-Chlorophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C20)
[0267] M.p.119-130 ${ }^{\circ} \mathrm{C}$. MS: $\mathrm{m} / \mathrm{z}=261(\mathrm{M}+1)(\mathrm{ESI}+)$ and $\mathrm{m} / \mathrm{z}=259$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 98.9% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}), 7.19(\mathrm{dd}, 1 \mathrm{H}), 7.01(\mathrm{~d}, 2 \mathrm{H})$ and $4.96(\mathrm{~s}$, 2H) ppm.
4.2.u 6-Phenoxy-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C21)
[0268] M.p. $95-99^{\circ} \mathrm{C} . \mathrm{MS}: \mathrm{m} / \mathrm{z}=227(\mathrm{M}+1)(\mathrm{ESI}+)$ and $\mathrm{m} / \mathrm{z}=225$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 98.4% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H})$ and $4.96(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
4.2.v 5-(4-Cyanobenzyloxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C22)
[0269] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}) 4.90(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 6.98$ (dd, $J=7.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H})$.
4.2.w 5-(2-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C23)
[0270] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 4.95(\mathrm{~s}, 2 \mathrm{H}), 7.0-7.2(\mathrm{~m}, 3 \mathrm{H})$, $7.32(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=9.1,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$).

4.2.x 5-Phenoxy-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C24)

[0271] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 4.91(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.96$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H})$.
4.2.y 5-[4-(N,N-Diethylcarbamoyl)phenoxy]-1,3-dihydro-I-hydroxy-2,1benzoxaborole (C25)
[0272] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 1.08(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 3.1-3.5(\mathrm{~m}, 4 \mathrm{H})$, $4.93(\mathrm{~s}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.15$ ($\mathrm{s}, 1 \mathrm{H}$).
4.2.z 1,3-Dihydro-1-hydroxy-5-[4-(morpholinocarbonyl)phenoxy]-2,1benzoxaborole (C26)
[0273] ${ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})$ 3.3-3.7 (m, 8H), $4.93(\mathrm{~s}, 2 \mathrm{H})$, 7.0-7.1 (m, 4H), 7.44 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H})$.
4.2.aa 5-(3,4-Dicyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C27)
[0274] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 4.97(\mathrm{~s}, 2 \mathrm{H}), 7.13$ (dd, $J=7.9$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H})$.
4.2.ab 6-Phenylthio-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C28)
[0275] M.p.121-124 ${ }^{\circ} \mathrm{C} . \mathrm{MS}: \mathrm{m} / \mathrm{z}=243$ (M+1) (ESI +) and $\mathrm{m} / \mathrm{z}=241$ (M-1) (ESI-). HPLC: 99.6% purity at 254 nm and 99.6% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}): $\delta 9.25$ (s, 1H), 7.72 (dd, 1H), 7.48 (dd, 1H), 7.43 (dd, 1H), 7.37-7.31 (m, 2H), 7.29$7.23(\mathrm{~m}, 3 \mathrm{H})$, and $4.98(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.

4.2.ac 6-(4-trifluoromethoxyphenoxy)-1,3-dihydro-1-hydroxy-2,1benzoxaborole (C29)

[0276] M.p.97-101 ${ }^{\circ} \mathrm{C}$. MS: $\mathrm{m} / \mathrm{z}=311$ (M+1) (ESI +) and $\mathrm{m} / \mathrm{z}=309$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 100% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}), 7.21(\mathrm{dd}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H})$, and 4.97 (s, 2H) ppm.

4.2.ad 5-(N-Methyl-N-phenylsulfonylamino)-1,3-dihydro-1-hydroxy-2,1benzoxaborole (C30)

[0277] M.p.85-95 ${ }^{\circ} \mathrm{C}$. MS: $\mathrm{m} / \mathrm{z}=304$ (M+1) (ESI+) and $\mathrm{m} / \mathrm{z}=302$ (M-1) (ESI-). HPLC: 96.6% purity at 254 nm and 89.8% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSOd_{6}): $\delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, 2 \mathrm{H}), 7.50(\mathrm{~d}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$ and $3.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
4.2.ae 6-(4-Methoxyphenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C31) [0278] M.p. $126-129^{\circ} \mathrm{C} . \mathrm{MS}: \mathrm{m} / \mathrm{z}=257$ (M+1) (ESI +) and $\mathrm{m} / \mathrm{z}=255$ (M-1) (ESI-). HPLC: 98.4% purity at 254 nm and 98.4% at $220 \mathrm{~nm} .{ }^{\mathrm{t}} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, 1 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}), 4.93$ $(\mathrm{s}, 2 \mathrm{H})$ and $3.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

4.2.af 6-(4-Methoxyphenylthio)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C32)

[0279] M.p. $95-100^{\circ} \mathrm{C} . \mathrm{MS}: \mathrm{m} / \mathrm{z}=272(\mathrm{M}+$), $273(\mathrm{M}+1)(\mathrm{ESI}+)$ and $\mathrm{m} / \mathrm{z}=271$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 99.2% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $_{6}$): $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, 2 \mathrm{H}), 4.93$ $(\mathrm{s}, 2 \mathrm{H})$ and $3.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

4.2.ag 6-(4-Methoxyphenylsulfonyl)-1,3-dihydro-1-hydroxy-2,1benzoxaborole (C33)

[0280] M.p.180-192 ${ }^{\circ} \mathrm{C}$. MS: $\mathrm{m} / \mathrm{z}=305$ (M+1) (ESI +) and $\mathrm{m} / \mathrm{z}=303$ (M-1) (ESI-). HPLC: 96.8% purity at 254 nm and 95.5% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}), 7.85(\mathrm{~d}, 2 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}), 5.02$ $(\mathrm{s}, 2 \mathrm{H})$ and $3.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

4.2.ah 6-(4-Methoxyphenylsulfinyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C34)

[0281] ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $_{6}$): $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}), 7.71(\mathrm{dd}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, 2 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H})$ and $3.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
4.2.ai 5-Trifluoromethyl-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C35)
[0282] M.p.113-118 ${ }^{\circ} \mathrm{C} . \mathrm{MS}: \mathrm{m} / \mathrm{z}=203(\mathrm{M}+1)(\mathrm{ESI}+)$ and $\mathrm{m} / \mathrm{z}=201$ (M-1) (ESI-). HPLC: 100% purity at 254 nm and 100% at $220 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H})$ and $5.06(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
4.2.aj 4-(4-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C36)
[0283] For coupling reaction between 4-fluorobenzonitrile and substituted phenol to give starting material 2, see Igarashi, S.; et al. Chemical \& Pharmaceutical Bulletin (2000), 48(11), 1689-1697.
[0284] ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}) (ppm) 4.84 ($\mathrm{s}, 2 \mathrm{H}$), 7.08 (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$).
4.2.ak 5-(3-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C37)
[0285] For coupling between 3-fluorobenzonitrile and substituted phenol to give starting material 2: Li, F. et al., Organic Letters (2003), 5(12), 2169-2171.
[0286] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)(\mathrm{ppm}) 4.93(\mathrm{~s}, 2 \mathrm{H}), 7.0-7.1$ (m, 2H), 7.3$7.4(\mathrm{~m}, 1 \mathrm{H}), 7.5-7.7(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
4.2.al 5-(4-Carboxyphenoxy)-1-hydroxy-2,1-benzoxaborole (C38)
[0287] To a solution of 5-(4-cyanophenoxy)-1-hydroxy-2,1-benzoxaborole obtained in C17 ($430 \mathrm{mg}, 1.71 \mathrm{mmol}$) in ethanol $(10 \mathrm{~mL})$ was added $6 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide (2 mL), and the mixture was refluxed for 3 hours. Hydrochloric acid (6 $\mathrm{mol} / \mathrm{L}, 3 \mathrm{~mL}$) was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate) followed by trituration with diisopropyl ether to give the target compound ($37 \mathrm{mg}, 8 \%$).
[0288] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 4.94(\mathrm{~s}, 2 \mathrm{H}), 7.0-7.1$ (m, 4H), 7.76 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H}), 12.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
4.2.am 1-Hydroxy-5-[4-(tetrazole-1-yl)phenoxy]-2,1-benzoxaborole (C39)
[0289] A mixture of 5-(4-cyanophenoxy)-1-hydroxy-2,1-benzoxaborole (200 mg , 0.797 mmol), sodium azide ($103 \mathrm{mg}, 1.59 \mathrm{mmol}$), and ammonium chloride (85 mg , 1.6 mmol) in N, N-dimethylformamide (5 mL) was stirred at $80^{\circ} \mathrm{C}$ for two days.

Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate) followed by trituration with ethyl acetate to give the target compound ($55 \mathrm{mg}, 23 \%$).
[0290] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 4.95(\mathrm{~s}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H})$, 7.23 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 9.18 (br s, $1 \mathrm{H})$.

EXAMPLE 5

Preparation of I from 2 via 6

5.1 Catalytic Boronylation, Reduction and Cyclization

[0291] A mixture of $2(10.0 \mathrm{mmol})$, bis(pinacolato)diboron $(2.79 \mathrm{~g}, 11.0 \mathrm{mmol})$, PdCl_{2} (dppf) ($250 \mathrm{mg}, 3 \mathrm{~mol} \%$), and potassium acetate $(2.94 \mathrm{~g}, 30.0 \mathrm{mmol})$ in $1,4-$ dioxane (40 mL) was stirred at $80^{\circ} \mathrm{C}$ for overnight. Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure. The crude product was dissolved in tetrahydrofuran (80 mL), then sodium periodate ($5.56 \mathrm{~g}, 26.0 \mathrm{mmol}$) was added. After stirring at room temperature for 30 $\min , 2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature for overnight. Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was treated with ether to afford 6.3 mmol of the corresponding boronic acid. To the solution of the obtained boronic acid (0.595 mmol) in methanol (5 mL) was added sodium borohydride (11 $\mathrm{mg}, 0.30 \mathrm{mmol}$), and the mixture was stirred at room temperature for 1 h . Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to give 0.217 mmol of \mathbf{I}.

5.2 Results

[0292] Analytical data for exemplary compounds of structure I are provided below.
5.2.a 1,3-Dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole (C10)
[0293] Analytical data for this compound is listed in 4.2.j.

EXAMPLE 6

Preparation of 1 from 3

6.1 One-pot Boronylation and Cyclization

[0294] To a solution of $\mathbf{3}(4.88 \mathrm{mmol})$ and triisopropyl borate ($1.35 \mathrm{~mL}, 5.86$ mmol) in tetrahydrofuran (10 mL) was added n-butyllithium ($1.6 \mathrm{~mol} / \mathrm{L}$ in hexanes; $6.7 \mathrm{~mL}, 10.7 \mathrm{mmol}$) dropwise over 15 min at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the mixture was stirred for 2 h while allowing to warm to room temperature. The reaction was quenched with 2 N HCl , and extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography and treated with pentane to give 0.41 mmol of \mathbf{I}.

6.2 Results

[0295] Analytical data for exemplary compounds of structure I are provided below.

6.2.a 1,3-Dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole (C10)

[0296] Analytical data for this compound is listed in 4.2.j.

EXAMPLE 7

Preparation of 1 from 3

7.1 One-pot Boronylation and Cyclization with Distillation

[0297] To a solution of $\mathbf{3}(4.88 \mathrm{mmol})$ in toluene (20 mL) was added triisopropyl borate ($2.2 \mathrm{~mL}, 9.8 \mathrm{mmol}$), and the mixture was heated at reflux for 1 h . The solvent, the generated isopropyl alcohol and excess triisopropyl borate were removed under reduced pressure. The residue was dissolved in tetrahydrofuran (10 mL) and cooled to $-78^{\circ} \mathrm{C}$. n-Butyllithium ($3.2 \mathrm{~mL}, 5.1 \mathrm{mmol}$) was added dropwise over 10 min , and the mixture was stirred for 1 h while allowing to warm to room temperature. The reaction was quenched with 2 N HCl , and extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to give 1.54 mmol of \mathbf{I}.

7.2 Results

[0298] Analytical data for exemplary compounds of structure I are provided below.
7.2.a 1,3-Dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole (C10)
[0299] Analytical data for this compound is listed in 4.2.j.

EXAMPLE 8

Preparation of 8 from 7

8.1 Bromination

[0300] To a solution of 7 (49.5 mmol) in carbon tetrachloride (200 mL) were added N -bromosuccinimide ($8.81 \mathrm{~g}, 49.5 \mathrm{mmol}$) and N, N-azoisobutylonitrile (414 mg , $5 \mathrm{~mol} \%$), and the mixture was heated at reflux for 3 h . Water was added, and the mixture was extracted with chloroform. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the crude methyl-brominated intermediate 8.

EXAMPLE 9

Preparation of 3 from 8

9.1 Hydroxylation

[0301] To crude 8 (49.5 mmol) were added dimethylformamide (150 mL) and sodium acetate ($20.5 \mathrm{~g}, 250 \mathrm{mmol}$), and the mixture was stirred at $80^{\circ} \mathrm{C}$ for overnight. Water was added, and the mixture was extracted with ether. The organic layer was washed with water and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure. To the residue was added methanol $(150 \mathrm{~mL})$ and 1 N sodium hydroxide (50 mL), and the mixture was stirred at room temperature for 1 h . The reaction mixture was concentrated to about a third of volume under reduced pressure. Water and hydrochloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography followed by trituration with dichloromethane to give 21.8 mmol of 3 .

9.2
 Results

[0302] Exemplary compounds of structure 3 prepared by the method above are provided below.

9.2.a 2-Bromo-5-cyanobenzyl Alcohol

[0303] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 4.51(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
[0304] Additional examples of compounds which can be produced by this method include 2-bromo-5-(4-cyanophenoxy)benzyl alcohol.

EXAMPLE 10

Preparation of 9 from 2

10.1 Reaction

[0305] A mixture of 2 (20.0 mmol), (methoxymethyl)triphenylphosphonium chloride ($8.49 \mathrm{~g}, 24.0 \mathrm{mmol}$), and potassium tert-butoxide ($2.83 \mathrm{~g}, 24.0 \mathrm{~mol}$) in $N, N-$ dimethylformamide (50 mL) was stirred at room temperature for overnight. The reaction was quenched with 6 N HCl , and the mixture was extracted with ethyl acetate. The organic layer was washed with water (x 2) and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced. To the residue were added tetrahydrofuran (60 mL) and 6 N HCl , and the mixture was heated at reflux for 8 h . Water was added, and the mixture was extracted with ether. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 16.6 mmol of 9 .

EXAMPLE 11

Preparation Method of Step 13

11.1 Reaction

[0306] A solution of I in an appropriate alcohol solvent ($\mathrm{R}^{1}-\mathrm{OH}$) was refluxed under nitrogen atmosphere and then distilled to remove the alcohol to give the corresponding ester.

EXAMPLE 12

Preparation of Ib from Ia

12.1 Reaction
[0307] To a solution of Ia in toluene was added amino alcohol and the participated solid was collected to give Ib.

12.2 Results

[0308] ($500 \mathrm{mg}, 3.3 \mathrm{mmol}$) was dissolved in toluene (37 mL) at $80^{\circ} \mathrm{C}$ and ethanolamine ($0.20 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was added. The mixture was cooled to room temperature, then ice bath, and filtered to give C40 as a white powder (600.5 mg , 94\%).
$12.2 a \quad$ (C40)
[0309] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}) 2.88(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 5.77(\mathrm{br}, 2 \mathrm{H}), 6.85-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}$, 1 H).

EXAMPLE 13

Formulations

[0310] Compounds of the present invention can be administered to a patient using a therapeutically effective amount of a compound of Formulae (I) or (II) in any one of the following three lacquer formulations and one solvent formulation. The lacquer formulation provides good durability while the solvent formulation provides good ease of use. These compounds can also be applied using a spray formulation, paint-on lacquer, drops, or other.

1. 20% propylene glycol; 70% ethanol; 10% compound of invention;
2. 70% ethanol; 20% poly(vinyl methyl ether-alt-maleic acid monobutyl ester); 10% compound of the invention;
3. 56\% ethanol; 14% water; 15% poly(2-hydroxyethyl methacrylate); 5\% dibutyl sebacate; 10% compound of the invention;
4. 55% ethanol; 15% ethyl acetate; 15% poly(vinyl acetate); 5% dibutyl sebacate; 10% compound of the invention.
[0311] The preparation of these formulations is well known in the art and is found in references such as Remington: The Science and Practice of Pharmacy, supra.

EXAMPLE 14

Antifungal MIC Testing

[0312] All MIC testing followed the National Committee for Clinical Laboratory Standards (NCCLS) guidelines for antimicrobial testing of yeasts and filamentous fungi (Pfaller et al., NCCLS publication M38-A - Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. Wayne, PA: NCCLS; 2002 (Vol. 22, No. 16) except the Malassezia species which was incubated in a urea broth (Nakamura et al., Antimicrobial Agents And Chemotherapy, 2000, 44(8) p. 2185-2186). Results of the MIC testing is provided in FIG.1.

EXAMPLE 15

Keratin Assay

[0313] Many antifungal agents strongly bind to keratin which not only reduces their antifungal potency but also may restrict their penetration into the nail. The affinities of the compounds for keratin powder was determined by a method described in Tatsumi, Antimicrobial Agents and Chemotherapy, 46(12):3797-3801 (2002).
[0314] A comparison of MIC data for several compounds of the invention against T. rubrum, with and without the presence of 5% keratin, is provided in FIG. 1.

EXAMPLE 16

(C10) Antifungal Spectrum of Activity

[0315] (C10) is a novel compound in development for use as a topical antifungal treatment. The purpose of this study was to determine the minimum inhibitory concentration (MIC) for (C10) against 19 test strains of fungi including: Aspergilus fumigatus (A. fumigatus), Candida Albicans (C. albicans, both fluconazole sensitive and resistant strains), Candida glabrata (C. glabrata), Candida krusei (C. krusei), Cryptococcus neoformans (C. neoformans), Candida parapsilosis (C. parapsilosis), Candida tropicalis (C. tropicalis), Epidermophyton floccosum (E. floccosum), Fusarium solani (F. solani), Malassezia furfur (M. furfur), Malassezia pachydermatis (M. pachydermatis), Malassezia sympodialis (M. sympodialis), Microsporum audouinii (M. audouinii), Microsporum canis (M. canis), Microsporum gypseum (M. gypseum), Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum
(T. rubrum), Trichophyton tonsurans (T. tonsurans). Fungal growth was evaluated after exposure to different concentrations of (C10). In addition, the MIC for (C10) against T. rubrum in the presence of 5% keratin powder and the minimum fungicidal concentration (MFC) for (C10) against T. rubrum and T. mentagrophytes were also determined. Ciclopirox and/or terbinafine and/or fluconazole and/or itraconazole were used as comparators and tested in a similar manner. These studies were conducted at NAEJA Pharmaceutical, Inc.

Materials and Methods
[0316] (C10) was obtained from Anacor Pharmaceuticals, Inc. (Palo Alto, CA, USA). ATCC strains were obtained from ATCC (Manassas, VA, USA). Ciclopiroxolamine was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Terbinafine, fluconazole and itraconazole were synthesized at NAEJA Pharmaceutical Inc. (Edmonton, $\mathrm{AB}, \mathrm{Canada}$), experimental procedures and analytical data for these standards are stored in NAEJA archives.
[0317] All MIC testing followed the National Committee for Clinical Laboratory Standards (NCCLS) guidelines for antimicrobial testing of yeasts and filamentous fungi (Pfaller et al., 2002) except the Malassezia species which were incubated in a urea broth (Nakamura et al., 2000). The microbroth dilution method was used to test the in vitro activity of (C10) against 19 test strains of fungi. Briefly, compounds were dissolved in DMSO and diluted in sterile water to give a working stock. Two-fold serial dilutions of the working stock were prepared in 96-well plates and media was added. Media was RPMI, RPMI + MOPS, modified RPMI, or modified Urea broth. The plates were inoculated with the fungal suspensions to give a final inoculum size of 0.5-2.5 $\times 10^{3}$ cells $/ \mathrm{mL}$ for yeasts or $0.4-5 \times 10^{4} \mathrm{CFU} / \mathrm{mL}$ for filamentous fungi and then incubated for $24-168 \mathrm{~h}$ at $35^{\circ} \mathrm{C}$. The final concentration of DMSO did not exceed 5%. The MIC was defined as the lowest concentration that resulted in over 90% reduction of growth, as compared to a drug-free control. The MFC was defined as the lowest concentration that killed over 90% of the fungi, as compared to a drugfree control.

Results and Conclusions

[0318] The results for the MIC of (C10) and reference compounds against 19 strains of fungi are shown in FIG. 2. The results for the MFC of AN2690 against 2
strains of fungi are shown in Table 2. (C10) had MIC values ranging from 0.25-2 $\mu \mathrm{g} / \mathrm{mL}$ against all fungi tested. Addition of 5% keratin powder to the media did not effect the MIC against T. rubrum. (C10) had fungicidal activity against T. rubrum and T. mentagrophytes with MFC values of 8 and $16 \mu \mathrm{~g} / \mathrm{mL}$, respectively. Reference compounds had MIC values in the range defined by NCCLS.

EXAMPLE 17

The Solubility, Stability and Log P Determination of compounds of the present invention by LC/MS/MS

[0319] The solubility, room temperature stability and $\log \mathrm{P}$ of $\mathbf{C 1 0}$ was determined by the following methodology.

Reagents and Standards:

[0320] Ethanol: 200 proof ACS Grade (EM Science, Gibbstown, NJ, USA);
Octanol: Octyl alcohol (EM Science, Gibbstown, NJ, USA); Acetonitrile: HPLC Grade (Burdick \& Jackson, Muskegon, MI, USA); Ammonium Acetate: lot 3272X49621 (Mallinckrodt, Phillipsburg, NJ, USA); C10: lot A032-103 (Anacor Pharmaceuticals, Palo Alto, CA, USA); p-Nitrophenol (PNP): lot OGNO1 (TCI America, Portland, OR, USA); Water: Deionized water (from Millipore systems, Billerica, MA, USA)

Solubility

[0321] N-Octanol and water were mutually pre-saturated by vigorously stirring a mixture of both solvents for up to 12 h and the mixture was allowed to separate. Solubility in each solvent was determined by adding $10 \mu \mathrm{~L}$ of $20,40,200,1000$ and $5000 \mu \mathrm{~g} / \mathrm{mL}$ of $\mathbf{C 1 0}$ in DMSO to the pre-saturated n-octanol or water. After the sample was vortexed for 10 sec , the sample was centrifuged for 10 min at ca. 3000 rpm. A visual inspection was made to determine if the sample was clear or if a pellet had formed on the bottom of the tube.

$\log P$

[0322] $\mathbf{C 1 0}(10 \mu \mathrm{~L}$ of $5000 \mu / \mathrm{mL})$ at 2X the final concentration was added to 0.5 mL pre-saturated n -octanol and mixed. An equal volume (0.5 mL) of pre-saturated water was added, vortex mixed and then mixed on a rotating shaker for one hour and 24 h in triplicate at ca. $25^{\circ} \mathrm{C}$. The organic and aqueous layers were separated by
centrifugation for 5 min at ca. 2000 rpm . Twenty five $\mu \mathrm{L}$ of the octanol (top) layer were removed and placed in a pre-labeled tube. Twenty five $\mu \mathrm{L}$ of the aqueous layer (bottom) were removed, taking care to avoid octanol contamination, and placed in a pro-labeled tube.

Stability at Room Temperature

[0323] $\quad \mathbf{C 1 0}(10 \mu \mathrm{~L}$ of $5000 \mu \mathrm{~g} / \mathrm{mL})$ was added both to 0.5 mL n-octanol and 0.5 mL water in triplicate. Samples were mixed. At 0 h and 24 h samples were stored at ca. $-20^{\circ} \mathrm{C}$. Twenty five $\mu \mathrm{L}$ of sample was used for analysis.

Extraction Procedure C10

[0324] For the octanol sample, $25 \mu \mathrm{~L}$ of ethanol, $25 \mu \mathrm{~L}$ of water and $300 \mu \mathrm{~L}$ of acetonitrile containing the internal standard was added. For the water sample, $25 \mu \mathrm{~L}$ of ethanol, $25 \mu \mathrm{~L}$ of octanol and $300 \mu \mathrm{~L}$ of acetonitrile containing the internal standard [60 mL of acetonitrile add $6 \mu \mathrm{~L}$ of PNP ($1000 \mu \mathrm{~g} / \mathrm{mL}$)] was added. For the calibrators $25 \mu \mathrm{~L}$ of octanol, $25 \mu \mathrm{~L}$ of water and 300 pL of acetonitrile containing the internal standard was added. The sample was vortexed for 10 seconds. Two hundred $\mu \mathrm{L}$ of the organic layer were transferred into a clean deactivated autosampler vial.

Calculations

[0325] A 1/concentration weighted linear regression was used for the quantitation of C10. All integration were performed with peak areas using Analyst version 1.3, Applied Biosystems. For C10, peak area ratios analyte to internal standard PNP were used for all quantitation.
[0326] The partition coefficient (P) was calculated according to the equation detailed below:
$\mathrm{P}=$ [Sample concentration $_{\text {octanol }} /[\text { Sample concentration }]_{\text {water }}$
$\log P=\log _{10}$ (partition coefficient)

Results:

[0327] As shown in Table 17A the solubility of C10 in both octanol and water is very good over the concentration range tested.

Table 17A. Solubility of $\mathbf{C 1 0}$ in water and octanol

Targeted Conc $(\mu \mathrm{g} / \mathbf{m L})$	Water Visual	Octanol Visual
0.800	Clear	Clear
4.00	Clear	Clear
20.0	Clear	Clear
100	Clear	Clear

[0328] Table 17B shows the results of the $\log \mathrm{P}$ determination after 1 h and 24 h for C10. The mean $\log \mathrm{P}$ after 1 h was $1.97(\mathrm{n}=3)$. After 24 h the concentrations in both the octanol and water layer remained the same. The mean $\log \mathrm{P}$ after 24 h was $1.93(\mathrm{n}=3)$.

Table 17B. Log P of $\mathbf{C 1 0}$

Sample	Conc. in Water $(\boldsymbol{\mu g} / \mathbf{m L})$	Conc. in Octanol $(\boldsymbol{\mu g} / \mathbf{m L})$	$\log \mathbf{P}$
$1 \mathrm{~h}-1$	1.26	108	1.93
$1 \mathrm{~h}-2$	1.21	103	1.93
$1 \mathrm{~h}-3$	1.05	115	2.04
$24 \mathrm{~h}-1$	1.27	104	1.91
$24 \mathrm{~h}-2$	1.17	109	1.97
$24 \mathrm{~h}-3$	1.28	99.0	1.89

[0329] A stability study for $\mathbf{C 1 0}$ was initiated at room temperature over 24 h without continuous mixing. Table 17C shows that $\mathbf{C 1 0}$ in pure water and octanol is stable over 24 h .

Table 17C. Water and Octanol stability for $\mathbf{C 1 0}$ at room temperature after 24 h .

Sample	Mean $(\mu \mathrm{g} / \mathbf{m L})$	SD	Percent Remaining 24 h versus 0 g
Water-0h	82.5	3.72	
Water-24h	95.0	21.4	
Octanol-0h	115	3.06	93
Octanol-24h	107	6.11	

EXAMPLE 18

Determination of Penetration of C10 into the Human Nail

[0330] Two nail penetration studies were performed based on the protocol in Hui et al., Journal of Pharmaceutical Sciences, 91(1): 189-195 (2002) ("Hui protocol"). The purpose of this study was to determine and compare the penetration and distribution of $\mathbf{C 1 0}$ in vehicle into the human nail plate in vitro relative to 8% ciclopirox w / w in commercial lacquer ($\mathrm{Penlac}^{(8)}$).

MATERIALS AND METHODS

Test Article and Dosage Formulation

[0331] 8\% ciclopirox w/w in commercial lacquer was manufactured by Dermick (Berwyn, PA). The radiochemical purity and specific activity of the chemical was determined as $>95 \%$ and $12.5 \mathrm{mCi} / \mathrm{mmol}$, respectively.
[0332] The study was composed of two groups. The compositions (weight \%) of the dosage formulations are as follows:

Active radiolabeled compound in four groups.

Groups*	Dosing (x 14 days)	Test Chemical $(\%)$	Radioactivity $($ per $10 \mu \mathrm{~L})$
A (C10)	qd	10	$0.19 \mu \mathrm{Ci}$
C (Ciclopirox)	qd	8	$0.22 \mu \mathrm{Ci}$

* $\mathrm{A}=\mathbf{C 1 0}$ group, $\mathrm{C}=$ Ciclopiriox group

Human Nails

[0333] Healthy human finger nail plates were collected from adult human cadavers and stored in a closed container at $0-4^{\circ} \mathrm{C}$. Before the experiment, the nail plates were gently washed with normal saline to remove any contamination, then rehydrated by placing them for three hours on a cloth wetted with normal saline. The nail samples were randomly selected into four groups.

Dosing and Surface Washing Procedures

Dose preparation:
[0334] Radioactivity of each group is approximately 0.19 ± 0.01 and 0.22 ± 0.03 $\mu \mathrm{Ci} / 10 \mu \mathrm{~L}$ solutions respectively, for ${ }^{14} \mathrm{C}-\mathrm{C} 10$ (group A), and ${ }^{14} \mathrm{C}$-ciclopirox (group C).

Experiment Procedure:

Study	Group A			Group C		
Day	wash	dose	sample	wash	dose	sample
l		D			D	
2	W	D		W	D	
3	W	D	C	W	D	C
4	W	D		W	D	
5	W	D		W	D	
6	W	D	C	W	D	C
7	W	D		W	D	
8	W	D		W	D	
9	W	D	C	W	D	C
10	W	D		W	D	
11	W	D		W	D	
12	W	D	C	W	D	C
13	W	D		W	D	
14	W	D		W	D	
15	W		C, N	W		C, N

$\mathrm{W}=$ once per day before dosing ($9 \sim 10 \mathrm{AM}$).
$\mathrm{D}=$ once per day ($9 \sim 10 \mathrm{AM}$).
$\mathrm{C}=$ changing/sampling cotton ball after surface washing before topical dosing.
$\mathrm{N}=$ Nail sampling.

Washing procedure

[0335] Surface washing was started in morning 10 min prior to next dosing, the surface of the nail was washed with cotton tips in a cycle, as follows:
a tip wetted with absolute ethanol, then
a tip wetted with absolute ethanol, then
a tip wetted with 50% IVORY liquid soap, then
a tip wetted with distilled water, then
a final tip wetted with distilled water.
[0336] The washing samples from each cycle of each nail were pooled and collected by breaking off the cotton tip into scintillation glass vials. Aliquots of 3.0 mL methanol were added into each vial to extract test material. The radioactivity of each sample was measured in a liquid scintillation counter.

Incubation System was used to hold each nail. To approximate physiological conditions, a small cotton
ball wetted with 0.1 mL normal saline was placed in the chamber to serve as a nail bed and provide moisture for the nail plate. Every 3 days, 0.1 mL normal saline was injected through the inlet into the chamber to keep the cotton ball wet. The nail plate was placed on a ledge inside the receptor (1.0 cm in diameter and 0.5 cm high). The ventral (inner) surface of the nail was placed face down and rested on the wet cotton ball. The cells were placed on a platform in a large glass holding tank filled with saturated sodium phosphate solution to keep the cells at a constant humidity of 40%.

Sampling Instrument

[0338] The nail sampling instrument had two parts, a nail sample stage and a drill. The nail sampling stage consists of a copper nail holder, three adjustments, and a nail powder capture. Three adjustments allow movement in vertical direction. The first coarse adjustment (on the top) was for changing the copper cell and taking powder samples from the capture. The other two adjustments (lower) were for sampling process. The second coarse adjustment allowed movement of 25 mm and the fine adjustment provides movement of 0.20 mm . The nail powder capture was located between the copper cell and the cutter. The inner shape of the capture was inverted funnel and the end of funnel connects to a vacuum. By placing a circle filter paper inside of the funnel, the nail powder samples were captured on the filter paper during the sampling process.

Sampling Procedure

[0339] After completion of the incubation phase, the nail plate was transferred from the diffusion cell to a clean copper nail holder for sampling process. The nail plate was inverted so that the ventral (nail bed) surface now faced up and the dorsal (outer) dosed surfaced faced down. The copper nail holder has an opening as it sits on top of the stage. When the sampling process initiated, the coarse adjustment was adjusted to move the position of the stage until the nail plate was just touching the tip of the cutter. Then the drill was turned on and the fine adjustment was turned to push the stage closer to the drill, removing a nail core sample. After the above process, approximate $0.40-0.50 \mathrm{~mm}$ in depth and 7.9 mm in diameter nail pulverized samples were harvested from the center of the ventral (nail bed) surface of the nail.
[0340] The powdered nail samples were collected into a glass scintillation vial and weighted. Aliquots of 5.0 mL Packard soluene- 350 (Packard Instrument

Company, Meriden, CT) was added to the scintillation vial to dissolve the powder. The upper part, the intermediate and dorsal layers of the center of the nail, including the area of application of the dose was cut in the same diameter as the sampled area and was then placed into a glass scintillation vial with 5.0 mL packard soluene- 350 . The rest of the nail was also placed in a glass scintillation vial with 5.0 mL packard soluene-350.
[0341] The amount of nail sample removed was measured by the difference in weight of the nail plate before and after drilling, and collecting the core of powder.

Radioactivity Measurement

[0342] All radioactivity measurements were conducted with a Model 1500 Liquid Scintillation Counter (Packard Instrument Company, Downer Grove, IL). The counter was audited for accuracy using sealed samples of quenched and unquenched standards as detailed by the instrument manual. The ${ }^{14} \mathrm{C}$ counting efficiency is equal to or greater than 95%. All nail samples pre-treated with packard soluene- 350 were incubated at $40^{\circ} \mathrm{C}$ for 48 hours followed by the addition of 10 mL scintillation cocktail (HIONIC-FLUOR, Packard Instrument Company, Meriden, CT). Other samples (standard dose, surface washing, and bedding material) were mixed directly with Universal ES scintillation cocktail (ICN Biomedicals, Costa Mesa, CA). Background control and test samples were counted for 3 minutes each for radioactivity.

Data Analysis

[0343] All sample counts (expressed as dpm) were transcribed by hand to a computerized spreadsheet (Microsoft Excel). The individual and mean (\pm S.D.) amount of test chemical equivalent in nail, bedding material, and wash samples are presented as dpm, $\mu \mathrm{Ci}$, percent administered dose, and mg equivalent at each time point. The concentration of ${ }^{14} \mathrm{C}$-labeled test chemicals were calculated from the value based on the specific activity of each $\left[{ }^{14} \mathrm{C}\right]$-test chemical. The information of concentration of non-labeled test chemical in the topical formulation was obtained from the manufactures. Total concentration of test chemical equivalent is the sum of the concentration of ${ }^{14} \mathrm{C}$-labeled test chemical and the concentration of non-labeled test chemical. The value of total amount of test chemical equivalent in each nail sample was calculated from those values based on radioactivity of the sample and the
ratio of total mg test chemical equivalent and radioactivity of the test chemical. The data was further normalized by dividing with the weight of the sample. Statistical significant of nail samples from every two groups was analyzed by student t-test.

Terminology

[0344] Ventral / intermediate center: Powdered nail sample drilled from the center of the inner surface (facing the nail bed) approximately $0.3-0.5 \mathrm{~mm}$ in depth to the surface. The area is beneath the dosed site of the nail place but does not include dosed surface (dorsal nail surface).
[0345] Dorsal / intermediate center: Immediate area of dosed site.
[0346] Remainder nail: The remaining part of the nail that has not been dosed.
[0347] Supporting bed: The cotton ball placed within the Teflon chamber of the diffusion cell to provide moisture to the nail plate and also to receive chemicals penetrating through the nail plate.
[0348] Surfacing washing: Ethanol (or other organic solvents) and soap/water washing on the surface of the dosed site.
[0349] Ring: A plastic ring placed on the top of the nail plate to prevent leakage from the dose site onto rest of the nail plate or inside of the cell chamber.
[0350] Cell washing: Ethanol (or other organic solvents) and soap / water wash of the inside of the diffusion cell.

RESULTS

Characteristics of Nail Samples
[0351] For both groups (Group A group and Group C) the thickness of whole nail plate, the depth of the ventral surface core sample removed by cutter, the percentage of the whole nail thickness, and the actual weight of powdered nail sample were collected. No statistical difference is found between two groups ($\mathrm{P}>0.05$).

Weight Normalized C10 and Ciclopirox Equivalent in Nail

[0352] FIG. 3 shows summarized normalized drug equivalents in each part
(layer) of nail samples. After weight normalization, the concentration of C10 equivalent in dorsal/intermediate center, ventral/intermediate center, and remainder nail samples was significantly higher than that of ciclopirox equivalent ($p \leq 0.002$).

C10 and Ciclopirox Equivalent in Cotton Ball Nail Supporting Bed

[0353] FIG. 4 shows summarized C10 and ciclopirox equivalent in supporting bed cotton ball samples. Similar to weight normalized C10 equivalent in the nail plate samples, absolute amount of $\mathbf{C 1 0}$ equivalent per cotton ball sample in group A (after 14 day dosing) was significantly higher than that of ciclopirox in group C ($p \leq$ 0.004). The difference of these two test chemicals was 250 times.

Mass Balance of Radioactivity of [$\left.{ }^{14} \mathrm{C}\right]-\mathrm{C} 10$ and [$\left.{ }^{14} \mathrm{C}\right]$-Ciclopirox after 14-day Treatment
[0354] Table 5 shows summarized radioactive recovery from washing, nail samples, and supporting bed cotton ball samples. Cumulative radioactivity recoveries of carbon- 14 were 88 ± 9.21, and 89 ± 1.56 percent of applied dose in group A, and group C , respectively. 88% of the radiolabeled material was accounted for.

CONCLUSION

[0355] In this study, penetration rate of [$\left.{ }^{14} \mathrm{C}\right]-\mathrm{C} 10$ in Anacor topical formulation and $\left[{ }^{14} \mathrm{C}\right]$-ciclopirox ($8 \% \mathrm{w} / \mathrm{w}$ in commercial lacquer) into human nail with four different dosing and washing methods was studied.
[0356] Results show that much more amount of [$\left.{ }^{14} \mathrm{C}\right]-\mathrm{C} 10$ penetrating into the deeper parts of the nail when compared with [$\left.{ }^{14} \mathrm{C}\right]$-ciclopirox. Tables 3 and 4 show that the amount of $\left[{ }^{14} \mathrm{C}\right]-\mathrm{C} 10$ equivalent in ventral/intermediate center of the nail layer and cotton ball supporting bed in the group A was statistically higher ($p \leq 0.002$) than group C after a 14-day dosing period.

EXAMPLE 19

Determination of Penetration of C10 into the Human Nail

[0357] The aim of the current study was to assess and compare the perungual absorption of C10 in a simple vehicle using MedPharm's TurChub ${ }^{\circledR}$ model (see http://www.medpharm.co.uk; specifically http://www.medpharm.co.uk/downloads/ Skin\%20and\%20nail\%20dec\%202003.pdf; viewed February 14, 2006). in a full scale experiment. Six replicates involving C10 were conducted and Formulations Y (8\% ciclopirox w / w in commercial lacquer) and Z (Loceryl, 5\% amorolfine w / v in commercial lacquer) were used as the reference formulations.
[0358] The following materials were used in these experiments. These materials were used without any modifications.
[0359] A dose of $40 \mu \mathrm{~L} / \mathrm{cm}^{2}$ of the test compound C10 in 50:50 propylene glycol:ethyl acetate was applied to a full thickness nail sample each day over a total duration of five days. Both the reference formulations were also applied at the same dose.

TurChub ${ }^{\circledR}$ Zone of Inhibition Experiment

[0360] Placebo, test item C10 in vehicle and the reference formulations Y and Z were tested for their inhibition of Trichophyton rubrum (T. rubrum) growth after penetration through a full thickness human nail using a zone of inhibition measurement.

Formulation efficacy testing

[0361] FIGs. 5-9 show the results obtained from the TurChub zone of inhibition assays. It can be observed that $\mathbf{C 1 0}$ is a potent antifungal agent, which can penetrate through a full thickness nail to elicit its effect against the target organism T. rubrum. No zones of inhibition were observed with reference formulations Y and Z or with the placebo for C10. The experiment using C10 was repeated for a second time to confirm the result and it can be observed from FIGs. 6 and 7 that C10 shows zones of inhibition of $100 \%, 67 \%, 46 \%, 57 \%, 38 \%$ and 71% in the first experiment and 74%, $86 \%, 100 \%, 82 \%, 100 \%$ and 84% in the second experiment. The measurement was taken from the nail to the first point of growth observed.
[0362] From the results obtained using MedPharm's TurChub zone of inhibition assay as a test system, the test item C10 was found to be a powerful antifungal agent and demonstrated superior results vs. the commercial reference formulations Y and Z . From these experiments it appears that the compound is permeating through a full thickness nail barrier to exhibit the antifungal activity.

EXAMPLE 20

Determination of Penetration of C 10 into the Human Nail: Dose Response

[0363] The optimal dose-response range for penetration into the human nail was determined to be between 1% and 15%. The experiments to determine the optimal dose-response was conducted as follows.
[0364] Tests at different test compound concentrations were conducted on nails derived from the same cadaver. Cadaver nails were hydrated overnight, cut into 4 equally sized squares and placed onto individual poloxomer supports. Test articles were formulated in a lacquer at $1 \%, 2.5 \%, 5 \%, 7.5 \%, 10 \%$ and $15 \% \mathrm{w} / \mathrm{v}$. A 40 $\mu \mathrm{L} / \mathrm{cm}^{2}$ dose is applied to the center of the nail piece and the nails are left for 24 hrs . Nails are removed from the poloxomer support. Poloxomer support is analyzed for quantity of compound using LC/MS/MS.
[0365] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

WHAT IS CLAIMED IS:

1. A compound having a structure according to Formula I:

wherein
B is boron;
$R^{1 a}$ is a member selected from a negative charge, a salt counterion, H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
M1 is a member selected from oxygen, sulfur and $N R^{2 a}$;
wherein
$R^{2 a}$ is a member selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
J 1 is a member selected from $\left(\mathrm{CR}^{3 \mathrm{a}} \mathrm{R}^{4 \mathrm{a}}\right)_{\mathrm{nl}}$ and $\mathrm{CR}^{5 \mathrm{a}}$
wherein
$R^{3 a}, R^{4 a}$, and $R^{5 a}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and
n 1 is an integer selected from 0 to 2 ;
W1 is a member selected from $C=O$ (carbonyl), $\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 \mathrm{a}}\right)_{\mathrm{m} 1}$ and $\mathrm{CR}^{8 a}$;
$R^{6 a}, R^{7 a}$, and $R^{8 a}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted
or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; ml is an integer selected from 0 and 1 ;

A1 is a member selected from $\mathrm{CR}^{9 \mathrm{a}}$ and N ;
D1 is a member selected from $C R^{10 a}$ and N;
E 1 is a member selected from $\mathrm{CR}^{11 \mathrm{a}}$ and N ;
G 1 is a member selected from $\mathrm{CR}^{12 \mathrm{a}}$ and N ;
wherein
$R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are members independently selected from H, $\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
the combination of nitrogens $(\mathrm{A} 1+\mathrm{D} 1+\mathrm{E} 1+\mathrm{G} 1)$ is an integer selected from 0 to 3 ;
wherein a member selected from $\mathrm{R}^{3 \mathrm{a}}, \mathrm{R}^{4 \mathrm{a}}$ and $\mathrm{R}^{5 \mathrm{a}}$ and a member selected from $R^{6 a}, R^{7 a}$ and $R^{8 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; $R^{3 a}$ and $R^{4 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; $R^{6 a}$ and $R^{7 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; $R^{9 a}$ and $R^{10 a}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; $\mathrm{R}^{10 \mathrm{a}}$ and $\mathrm{R}^{11 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring;
$\mathrm{R}^{11 \mathrm{a}}$ and $\mathrm{R}^{12 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring;
with the proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is $0, J 1$ is a member selected from $\left(C R^{6 a} R^{7 a}\right)_{m 1}$, wherein $m 1$ is $1, A 1$ is $C R^{9 a}, D 1$ is $C R^{10 a}, E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}$, then $R^{9 a}$ is not halogen, methyl, ethyl, or optionally joined
with $\mathrm{R}^{10 \mathrm{a}}$ to a form phenyl ring; $\mathrm{R}^{10 \mathrm{a}}$ is not unsubstituted phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, or optionally joined with $\mathrm{R}^{9 \mathrm{a}}$ to form a phenyl ring; $\mathrm{R}^{11 \mathrm{a}}$ is not halogen or optionally joined with $\mathrm{R}^{10 \mathrm{a}}$ to form a phenyl ring; and $\mathrm{R}^{12 \mathrm{a}}$ is not halogen;
with the further proviso that when M1 is oxygen, W1 is a member selected from $\left(C R^{3 a} R^{4 a}\right)_{n 1}$, wherein $n 1$ is 0 , J 1 is a member selected from $\left(\mathrm{CR}^{6 \mathrm{a}} \mathrm{R}^{7 \mathrm{a}}\right)_{\mathrm{ml}}$, wherein ml is $1, \mathrm{~A} 1$ is $\mathrm{CR}^{9 \mathrm{a}}$, D 1 is $\mathrm{CR}^{10 \mathrm{a}}, \mathrm{E} 1$ is $\mathrm{CR}^{11 \mathrm{a}}$, G 1 is $C R^{12 a}$, then neither $R^{6 a}$ nor $R^{7 a}$ are halophenyl;
with the further proviso that when M 1 is oxygen, W 1 is a member selected from $\left(\mathrm{CR}^{3 \mathrm{a}} \mathrm{R}^{4 \mathrm{a}}\right)_{\mathrm{nl}}$, wherein nl is $0, \mathrm{~J} 1$ is a member selected from $\left(\mathrm{CR}^{6 \mathrm{a}} \mathrm{R}^{7 \mathrm{a}}\right)_{\mathrm{m} 1}$, wherein ml is $1, \mathrm{Al}$ is $\mathrm{CR}^{9 \mathrm{a}}$, D 1 is $\mathrm{CR}^{10 \mathrm{a}}, \mathrm{E} 1$ is $\mathrm{CR}^{11 \mathrm{a}}$, G 1 is $C R^{12 a}$, and $R^{9 a}, R^{10 a}$ and $R^{11 a}$ are H, then $R^{6 a}, R^{7 a}$ and $R^{12 a}$ are not H; with the further proviso that when M 1 is oxygen n 1 is $1, \mathrm{~J} 1$ is a member selected from $\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{\mathrm{m} 1}$, wherein m 1 is $0, A 1$ is $C R^{9 a}$, $D 1$ is $C R^{10 a}$, $E 1$ is $C R^{11 a}, G 1$ is $C R^{12 a}, R^{9 a}$ is $H, R^{10 a}$ is $H, R^{11 a}$ is $H, R^{6 a}$ is $H, R^{7 a}$ is $H, R^{12 a}$ is H, then $W 1$ is not $C=O$ (carbonyl);
with the further proviso that when M 1 is oxygen, W 1 is $\mathrm{CR}^{5 \mathrm{a}}, \mathrm{n} 1$ is $1, \mathrm{~J} 1$ is $\mathrm{CR}^{8 \mathrm{a}}, \mathrm{m} 1$ is $1, \mathrm{~A} 1$ is $\mathrm{CR}^{9 \mathrm{a}}, \mathrm{D} 1$ is $\mathrm{CR}^{10 \mathrm{a}}, \mathrm{E} 1$ is $\mathrm{CR}^{11 \mathrm{a}}, \mathrm{Gl}$ is $\mathrm{CR}^{12 \mathrm{a}}, \mathrm{R}^{6 \mathrm{a}}$, $R^{7 a}, R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are H, then $R^{5 a}$ and $R^{8 a}$, together with the atoms to which they are attached, do not form a phenyl ring.
2. The compound of claim 1, having a structure according to

Formula (Ia):

wherein
$R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and
wherein
$\mathrm{R}^{9 \mathrm{a}}$ and $\mathrm{R}^{10 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; $\mathrm{R}^{10 \mathrm{a}}$ and $\mathrm{R}^{11 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; and $\mathrm{R}^{11 \mathrm{a}}$ and $\mathrm{R}^{12 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring with the proviso that $R^{9 a}$ is not halogen, methyl, ethyl, or optionally joined with $\mathrm{R}^{10 \mathrm{a}}$ to form a 4 to 7 membered ring; with the proviso that $\mathrm{R}^{10 \mathrm{a}}$ is not unsubstituted phenoxy, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, halogen, CF_{3}, methoxy, ethoxy, optionally joined with R^{9} to form a 4 to 7 membered ring, or optionally joined with R^{11} to form a 4 to 7 membered ring;
with the proviso that $\mathrm{R}^{11 \mathrm{a}}$ is not halogen or optionally joined with R^{10} to form a 4 to 7 membered ring;
with the proviso that $\mathrm{R}^{12 \mathrm{a}}$ is not halogen.
wherein
B is boron;
$\mathrm{R}^{\mathrm{x} 1}$ is a member selected from substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ heteroalkyl;
$R^{y 1}$ and $R^{z 1}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
$R^{6 a}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl,
substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and
$R^{9 a}, R^{10 a}, R^{11 a}$ and $R^{12 a}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and
wherein $\mathrm{R}^{11 \mathrm{a}}$ and $\mathrm{R}^{12 \mathrm{a}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring with the proviso that when $R^{9 a}, R^{11 a}$ and $R^{12 a}$ are $H, R^{10 a}$ is not H, halogen, unsubstituted phenoxy or t-butyl
with the further proviso that when $R^{9 a}$ is $H, R^{10 a}$ and $R^{11 a}$ together with the atoms to which they are attached, are not joined to form a phenyl ring; with the further proviso that when $R^{11 a}$ is $H, R^{9 a}$ and $R^{10 a}$ together with the atoms to which they are attached, are not joined to form a phenyl ring.
4. A pharmaceutical formulation comprising:
(a) a pharmaceutically acceptable excipient; and
(b) a compound having a structure according to Formula II:

wherein
B is boron;
$R^{1 b}$ is a member selected from a negative charge, a salt counterion, H,
substituted or unsubstituted alkyl, substituted or unsubstituted
heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
M 2 is a member selected from oxygen, sulfur and $\mathrm{NR}^{2 \mathrm{~b}}$
wherein
$R^{2 b}$ is a member selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
J 2 is a member selected from $\left(\mathrm{CR}^{3 \mathrm{~b}} \mathrm{R}^{4 \mathrm{~b}}\right)_{\mathrm{n} 2}$ and $\mathrm{CR}^{5 \mathrm{~b}}$
wherein $R^{3 b}, R^{4 b}$, and $\mathrm{R}^{5 b}$ are members independently selected from H, OH, $\mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
n 2 is an integer selected from 0 to 2 ;
W 2 is a member selected from $\mathrm{C}=\mathrm{O}$ (carbonyl), $\left(\mathrm{CR}^{6 \mathrm{~b}} \mathrm{R}^{7 \mathrm{~b}}\right)_{\mathrm{m} 2}$ and $\mathrm{CR}^{8 \mathrm{~b}}$ wherein $R^{6 b}, R^{7 b}$, and $R^{8 b}$ are members independently selected from $H, O H$, NH_{2}, SH , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; m 2 is an integer selected from 0 and 1 ;
A 2 is a member selected from $\mathrm{CR}^{9 \mathrm{~b}}$ and N ;
D 2 is a member selected from $\mathrm{CR}^{10 \mathrm{~b}}$ and N ;
$E 2$ is a member selected from $C R^{11 b}$ and N;
G 2 is a member selected from $\mathrm{CR}^{12 \mathrm{~b}}$ and N ; wherein

$$
R^{9 b}, R^{10 b}, R^{11 b} \text { and } R^{12 b} \text { are members independently selected from } H,
$$ $\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}$, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or

unsubstituted heteroaryl;
the combination of nitrogens (A2 + D2 + E2 +G2) is an integer selected from 0 to 3 ;
a member selected from $R^{3 b}, R^{4 b}$ and $R^{5 b}$ and a member selected from $R^{6 b}, R^{7 b}$ and $R^{8 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring; $R^{3 b}$ and $R^{4 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring;
$R^{6 b}$ and $R^{7 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring;
$R^{9 b}$ and $R^{10 b}$, together with the atoms to which they are attached, are
optionally joined to form a 4 to 7 membered ring;
$R^{10 b}$ and $R^{1 l \mathrm{~b}}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring;
$R^{11 b}$ and $R^{12 b}$, together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring.
5. The pharmaceutical formulation of claim 4, wherein said compound has a structure according to Formula (IIa):

(IIa).
6. The pharmaceutical formulation of claim 4, wherein said compound has a structure according to Formula (IIb):

wherein
$\mathrm{R}^{7 \mathrm{~b}}$ is a member selected from H, methyl, ethyl and phenyl;
$R^{10 b}$ is a member selected from H, halogen, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or
unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio; and
$\mathrm{R}^{1 \mathrm{lb}}$ is a member selected from H, OH, methyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio.
7. The pharmaceutical formulation of claim 4, wherein said compound has a structure according to Formula (IIc):

wherein
$\mathrm{R}^{10 \mathrm{~b}}$ is a member selected from H , halogen, CN and substituted or unsubstituted C_{1-4} alkyl.
8. The pharmaceutical formulation of claim 4, wherein said compound has a structure which is a member selected from:

9. The pharmaceutical formulation of claim 6 , wherein $R^{1 b}$ is a member selected from a negative charge, H and a salt counterion.
10. The pharmaceutical formulation of claim 9 , wherein $R^{10 b}$ and $\mathrm{R}^{11 \mathrm{~b}}$ are H .
11. The pharmaceutical formulation of claim 6, wherein one member selected from $R^{10 b}$ and $R^{11 b}$ is H and the other member selected from $R^{10 b}$ and $R^{11 b}$ is a member selected from halo, methyl, cyano, methoxy, hydroxymethyl and p-cyanophenyloxy.
12. The pharmaceutical formulation of claim 6 , wherein $R^{10 b}$ and $\mathrm{R}^{11 \mathrm{~b}}$ are members independently selected from fluoro, chloro, methyl, cyano, methoxy, hydroxymethyl, and p-cyanophenyl.
13. The pharmaceutical formulation of claim 6 , wherein $R^{1 b}$ is a member selected from a negative charge, H and a salt counterion; $R^{7 b}$ is $H ; R^{10 b}$ is F and $\mathrm{R}^{11 \mathrm{~b}}$ is H .
14. The pharmaceutical formulation of claim 6 , wherein R^{Ib} is a member selected from a negative charge, H and a salt counterion; $R^{7 b}$ is $H ; R^{10 b}$ is 4cyanophenoxy and $\mathrm{R}^{11 \mathrm{~b}}$ is H .
15. The pharmaceutical formulation of claim 4, wherein R^{116} and $\mathrm{R}^{12 \mathrm{~b}}$, along with the atoms to which they are attached, are joined to form a phenyl group.
16. The pharmaceutical formulation of claim 4, wherein said compound has a structure according to Formula (IId):
 wherein

B is boron;
$\mathrm{R}^{\mathrm{x} 2}$ is a member selected from substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl and substituted or unsubstituted $\mathrm{C}_{1}-\mathrm{C}_{5}$ heteroalkyl;
$R^{y 2}$ and $R^{z 2}$ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
17. The pharmaceutical formulation of claim 4, wherein said excipient is a pharmaceutically acceptable topical carrier.
18. The pharmaceutical formulation of claim 4, wherein said compound is present in said pharmaceutical formulation in a concentration of from about 1% to about 10%.
19. A method for killing a microorganism or inhibiting the growth of a microorganism, comprising contacting said microorganism with a therapeutically effective amount of a compound according to claim 1.
20. The method of claim 19 , wherein said microorganism is a fungus.
21. The method of claim 19 , wherein said fungus is a member selected from Candida species, Trichophyton species, Microsporium species, Aspergillus species, Cryptococcus species, Blastomyces species, Cocciodiodes species, Histoplasma species, Paracoccidiodes species, Phycomycetes species, Malassezia species, Fusarium species, Epidermophyton species, Scytalidium species, Scopulariopsis species, Alternaria species, Penicillium species, Phialophora species, Rhizopus species, Scedosporium species and Zygomycetes class.
22. The method of claim 19 , wherein said fungus is a member selected from dermatophytes, Trichophyton, Microsporum, Epidermophyton and yeast-like fungi.
23. A method for killing a microorganism or inhibiting the growth of a microorganism, comprising contacting said microorganism with a therapeutically effective amount of a pharmaceutical formulation according to claim 4.
24. The method of claim 23, wherein said microorganism is a fungus.
25. The method of claim 23, wherein said fungus is a member selected from Candida species, Trichophyton species, Microsporium species, Aspergillus species, Cryptococcus species, Blastomyces species, Cocciodiodes species, Histoplasma species, Paracoccidiodes species, Phycomycetes species, Malassezia species, Fusarium species, Epidermophyton species, Scytalidium species,

Scopulariopsis species, Alternaria species, Penicillium species, Phialophora species, Rhizopus species, Scedosporium species and Zygomycetes class.
26. The method of claim 23 , wherein said fungus is a member selected from dermatophytes, Trichophyton, Microsporum, Epidermophyton and yeast-like fungi.
27. A method of treating or preventing an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of the compound according to claim $\mathbf{1}$.
28. The method of claim 27 , wherein said infection is a member selected from a systemic infection, a cutaneous infection, and an ungual or periungual infection.
29. The method of claim 27 , wherein said infection is a member selected from chloronychia, paronychias, erysipeloid, onychorrhexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verrucosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), dermatological diseases, psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphigoid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome, systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus, Sporotrichosis, Mycotic keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea Imbricata.
30. The method of claim 27, wherein said infection is onychomycosis.
31. The method of claim 27 , wherein said animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey.
32. A method of treating or preventing an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of the pharmaceutical formulation according to claim 4.
33. The method of claim 32 , wherein said infection is a member selected from a systemic infection and an ungual or periungual infection.
34. The method of claim 32, wherein said infection is a member selected from chloronychia, paronychias, erysipeloid, onychorrhexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verrucosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), dermatological diseases, psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphigoid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome, systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus, Sporotrichosis, Mycotic keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea Imbricata.
35. The method of claim 32 , wherein said infection is onychomycosis.
36. The method of claim 32 , wherein said animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey.
37. A method for synthesizing the compound of claim 1.
38. A method for synthesizing the pharmaceutical formulation of claim 4.
39. A method of delivering a compound from the dorsal layer of the nail plate to the nail bed, said method comprising: contacting said cell with a compound capable of penetrating the nail plate, under conditions sufficient to penetrate said nail plate, wherein said compound has a molecular weight of between about 100 and about 200 Da ; said compound has a $\log \mathrm{P}$ value of between about 1.0 and about 2.6; said compound has a water solubility greater than about $0.1 \mathrm{mg} / \mathrm{mL}$ octanol/saturated water
thereby delivering said compound.

BORON-CONTAINING SMALL MOLECULES

ABSTRACT OF THE DISCLOSURE

This invention relates to compounds useful for treating fungal infections, more specifically topical treatment of onychomycosis and/or cutaneous fungal infections. This invention is directed to compounds that are active against fungi and have properties that allow the compound, when placed in contact with a patient, to reach the particular part of the skin, nail, hair, claw or hoof infected by the fungus. In particular the present compounds have physiochemical properties that facilitate penetration of the nail plate.

1-SF/7342918.1

FIGURE 1A

	MIC (ug/mL)							
	$\text { C. albicans ATCC } 90028$			A. fumigatus ATCC 13073			T. rubrum F296	T. rubrum F296 w/ 5\% keratin
C1	1	2	2	1	2	0.5	1	1
C 2	2	0.5	1	2	4		8	8
C3	16	32	32	16	16	4	32	
C4	64	64	> 64	32	32	8	32	
C5	4	8	2	2	4	0.25	4	
C6	8	16	8	16	16	64	16	
C7	> 64	>64	>64	>64	32	4	64	
C8	2	2	8	2	4	2	8	
C9	> 64	> 64	> 64	>64	64	>64	64	

BEST AVAILABLE COPY

FIGURE 1B

C10	0.5	0.5	0.25	0.25	≤ 0.5	<0.06	1	2
C11	32	32	32	32	2	2	4	
C12	256					>64		
C13	16					2	16	
C16	32					8	16	
C17	64	64	64	16	4	16	8	
C18						2		
C19						0.5	8	
C20						8		
C21						4		
C22						>64		
C23						>64		

FIGURE 1C

EXAMPLE 2A

Fungus	Broth used	MIC ($\mu \mathrm{g} / \mathrm{mL}$)				
		$\underset{U}{0}$		硔		
A. fumigatus ATCC 13073	RPMI	0.25	nt	nt	>64	0.25
C. albicans ATCC 90028	RPMI	1	0.5	nt	0.25	≤ 0.12
C. albicans F56	RPMI	0.5	nt	nt	>64	0.25
C. glabrata ATCC 90030	RPMI + MOPS	≤ 0.5	≤ 0.5	64	nt	≤ 0.5
C. krusei ATCC 44507	RPMI + MOPs	1	≤ 0.5	64	nt	≤ 0.5
C. neoformans F285	RPMI	0.25	nt	nt	2	≤ 0.12
C. parapsilosis ATCC 22019	RPMI + MOPs	≤ 0.5	≤ 0.5	≤ 0.5	nt	≤ 0.5
C. tropicalis ATCC 13803	RPMI + MOPs	≤ 0.5	≤ 0.5	256	nt	1
E. floccosum ATCC 52066	RPMI + MOPs	≤ 0.5	≤ 0.5	≤ 0.5	nt	≤ 0.5
F. solani ATCC 36031	RPMI + MOPs	≤ 0.5	4	64	nt	>256
M. furfur ATCC 44344	Urea	1	≤ 0.5	2	nt	≤ 0.5
M. pachydermatis ATCC 96746	Urea	1	≤ 0.5	≤ 0.5	nt	≤ 0.5
M. sympodialis ATCC 44031	Urea	1	≤ 0.5	≤ 0.5	nt	≤ 0.5
M. audouinii ATCC 42558	RPMI + MOPs	2	1	≤ 0.5	nt	≤ 0.5
M. canis ATCC 10214	RPMI + MOPs	2	≤ 0.5	≤ 0.5	nt	≤ 0.5
M. gypseum ATCC 24103	RPMI + MOPs	2	≤ 0.5	≤ 0.5	nt	≤ 0.5
T. mentagrophytes F311	RPMI + MOPs	1	0.5	≤ 0.5	32	≤ 0.12
T. rubrum F296	RPMI + MOPs	1	1	≤ 0.5	1	≤ 0.12
T. rubrum F296	RPMI + MOPS + 5\% keratin powder	2	1	nt	1	nt
T. tonsurans ATCC 28942	RPMI + MOPs	2	≤ 0.5	≤ 0.5	nt	≤ 0.5

nt $=$ not tested

5/12

EXAMPLE 2B

Fungus	Broth used*	MFC ($\mu \mathrm{g} / \mathrm{mL}$)			
		$\stackrel{\hat{E}}{\underline{U}}$		気	皆
T. mentagrophytes F311	RPMI + MOPs	16	1	≤ 0.5	4
T. rubrum F296	RPMI + MOPs	8	2	≤ 0.5	4

FIGURE 3

Nail Samples	Radioactivity as mg Equivalent/g Nail Samples		
	$\begin{array}{c}\text { Group A } \\ (\mathbf{C 1 0})\end{array}$	$\begin{array}{c}P \text { value } \\ (t \text {-test) }\end{array}$	
	25.65 ± 8.80	7.40 ± 3.47	0.0008
(Ciclopirox)			

* The data represents the mean \pm S.D. of each group $(\mathrm{n}=6)$.

FIGURE 4

Sampling day	Radioactivity as mg Equivalent/Samples*		P-value (t-test)
	Group A (C10)	Group C (Ciclopirox)	
Day 3	0.0609 ± 0.0605	0.0011 ± 0.0020	0.0043
Day 6	0.1551 ± 0.1314	0.0013 ± 0.0027	0.0022
Day 9	0.3892 ± 0.3714	0.0018 ± 0.0030	0.0022
Day 12	0.6775 ± 0.6663	0.0014 ± 0.0019	0.0022
Day 15	0.9578 ± 0.6106	0.0033 ± 0.0041	0.0022
Total	2.2405 ± 1.7325	0.0089 ± 0.0131	0.0022

* The data represents the mean \pm S.D. of each group $(\mathrm{n}=6$).

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
\square BLACK BORDERS
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
\square FADED TEXT OR DRAWING
\square BLURRED OR ILLEGIBLE TEXT OR DRAWING
\square SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
\square GRAY SCALE DOCUMENTS
\square LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
\square OTHER:
IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

-If the diference is column 1 is less than zero, enter " 0 - in column 2.

OTHER THAN

PATE (3)	FEE (9)
N/A	300.00
N/A.	\$500
N/A	\$200
$\times \$ 50$	
$\times 200$	-
	\therefore
$+360=$	
TOTAL	

SMALL ENTITY	
RATE (S)	ADDHTIONAL FEE ($\$$
X $5.25=$	
$\times 100=$	
$+180=$	
TOTAL ADDL FEE	

OR
OTHER THAN
SMALL ENTITY

RATE (\$)	ADDATIONAL FEE (S)
$\times 550=$	
$\times 200=$	
$+360=$	
TOTAL ADO'L FEE	

- If the entry in column 1 is less than the entry in column 2, write " 0 " in column 3.
- If the "Highest Number Previousty Paid For" IN THIS SPACE is less than 20, enter "20".
\cdots It the Highest Number Previousty Paid For IN THIS SPACE is less than 3, enter "30.
The Highest Number Previously Paid For (Total or Independent) is the highest number found in the appropriate box in, column 1.
This collection of hiformation is required by 37. CFR 1.16. The hformation is required to obtain or retain a benefi! by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated ta take 12 minutes to complete, inctuding gathering. preparing, and submitting the completed application form to. the USPTO. Time will vary depending upon the indivjdual case. Aniy comments and Trademark Office U.S. Department of Commerce, P. O. Box 1450. Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS. TO THIS ADORESS. SEND TO: Commissioner for Patents, P.O. Box 1460, Alexandria, VA 22313-1450.

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

02/23/2006 HDEFESSS 0000004150031011357687

$01 \mathrm{FC}: 2011$	150.00 DA
02 FC 2111	250.00 DA
$03 \mathrm{FC}: 2311$	100.00 DA
04 FC 2202	475.00 DA
$05 \mathrm{FC}: 2081$	125.00 DA

PTO-1556
(5/87) :

Application Data Sheet

Application Information

Application number::
Filing Date::
Application Type::
Subject Matter::

February 16, 2006
Regular
Utility

Suggested classification::
Suggested Group Art Unit::
CD-ROM or CD-R??::
Number of CD disks::
Number of copies of CDs::
Sequence Submission::
Computer Readable Form (CRF)?::
Number of copies of CRF::
Title::
Attorney Docket Number::
Request for Early Publication::
BORON-CONTAINING SMALL MOLECULES
64507-5014-US

Request for Non-Publication::
No

Suggested Drawing Figure::
Total Drawing Sheets::
12
Small Entity?::
YES
Latin name::
Variety denomination name::
Petition included?:: . No
Petition Type::
Licensed US Govt. Agency::
Contract or Grant Numbers One::
Secrecy Order in Parent Appl.:: No

Applicant Information

Applicant Authority Type::	Inventor
Primary Citizenship Country::	Great Britain
Status::	Full Capacity
Given Name::	Stephen
Middle Name::	J.
Family Name::	Baker
Name Suffix::	
City of Residence::	Mountain View
State or Province of Residence::	CA
Country of Residence::	US
Street of Mailing Address::	1568 Begen Avenue
City of Mailing Address::	Mountain View
State or Province of mailing address::	CA
Country of mailing address::	US
Postal or Zip Code of mailing address::	94040
Applicant Authority Type::	Inventor
Primary Citizenship Country::	Japan
Status::	Full Capacity
Given Name::	Tsutomu
Middle Name::	
Family Name::	Akama
Name Suffix::	
City of Residence::	Sunnyvale
State or Province of Residence::	CA
Country of Residence::	US
Street of Mailing Address::	832 Azure Street
City of Mailing Address::	Sunnyvale
State or Province of mailing address::	CA
Country of mailing address::	US
1-SF7343068.1 Pa	age 2

Middle Name::
Family Name::
Baker
Name Suffix::
City of Residence:: Mountain View
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address::
1568 Begen Avenue
City of Mailing Address:: Mountain View
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 94040

Middle Name::
Family Name::
Akama

Sunnyvale
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 832 Azure Street
City of Mailing Address::
Sunnyvale
State or Province of mailing address:: CA
Country of mailing address::

Postal or Zip Code of mailing address:: 94087

Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name:: Carole
Middle Name::
Family Name:: Bellinger-Kawahara
Name Suffix::
City of Residence:: Redwood City
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 15 Landa Lane
City of Mailing Address:: Redwood City
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 94061

Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name::
Full Capacity
Vincent
Middle Name::
Family Name::
S.

Name Suffix::
City of Residence::
State or Province of Residence::
Watsonville

Country of Residence::
CA

Street of Mailing Address::
US

City of Mailing Address::
287 Gilchrist Lane

State or Province of mailing address:: CA

Country of mailing address::	US
Postal or Zip Code of mailing address::	95076
Applicant Authority Type::	Inventor
Primary Citizenship Country::	US
Status::	Full Capacity
Given Name::	Karin
Middle Name::	M.
Family Name::	Hold
Name Suffix:	
City of Residence::	Belmont
State or Province of Residence::	CA
Country of Residence::	US
Street of Mailing Address::	1908 Valdez Avenue
City of Mailing Address::	Belmont
State or Province of mailing address::	CÁ
Country of mailing address::	US
Postal or Zip Code of mailing address::	94002
Applicant Authority Type::	Inventor
Primary Citizenship Country:	US
Status::	Full Capacity
Given Name::	James
Middle Name::	J.
Family Name::	Leydon
Name Suffix::	
City of Residence::	Malvern
State or Province of Residence::	PA
Country of Residence::	US
Street of Mailing Address::	319 Applebrook Drive
City of Mailing Address::	Malvern

State or Province of mailing address:: PA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 19355
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name::Full Capacity
Middle Name:: R.Kirk
Family Name::
Name Suffix::
City of Residence:: San Jose
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 1195 San Moritz Drive
City of Mailing Address::San Jose
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 95132
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status:
Given Name::
Middle Name::
Family Name::
Full CapacityJacobJ.Plattner
Name Suffix::
City of Residence:: Berkeley
State or Province of Residence::
Country of Residence:: US
Street of Mailing Address::CA
1016 Amito Avenue
City of Mailing Address: Berkeley
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 94705
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name::Full Capacity
Middle Name::
Family Name:: Sanders
Name Suffix::
City of Residence:: San Francisco
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 2895 Harrison St., Apt. 4
City of Mailing Address::
State or Province of mailing address::
San Francisco
Country of mailing address: US
Postal or Zip Code of mailing address:: 94110
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name::
Full Capacity
Yong-Kang
Middle Name::
Family Name:: Zhang
Name Suffix::
City of Residence::
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 5151 Westmont Avenue
City of Mailing Address:: San Jose
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 95130
Correspondence Information
Correspondence Customer Number:: 043850
Representative Information
Representative Customer Number:: 043850
Domestic Priority Information
Application:: Continuity Type:: Parent Application:: Parent Filing Date::
This application An application claiming the benefit 60/654,060 02/16/05 under 35 USC 119(e)
Foreign Priority Information
Country:: Application number:: Filing Date::
Assignee Information
Assignee Name::
Street of mailing address::
City of mailing address::
State or Province of mailing address::
Country of mailing address::
Postal or Zip Code of mailing address::

Under the Papenwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Date Mailed: 04/03/2006

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

Items Required To Avoid Abandonment:

An application number and filing date have been accorded to this application. The item(s) indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The oath or declaration is missing. A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above Application Number and Filing Date, is required.
Note: If a petition under 37 CFR 1.47 is being filed, an oath or declaration in compliance with 37 CFR 1.63 signed by all available joint inventors, or if no inventor is available by a party with sufficient proprietary interest, is required.

The applicant needs to satisfy supplemental fees problems indicated below.
The required item(s) identified below must be timely submitted to avoid abandonment:

- To avoid abandonment, a surcharge (for late submission of filing fee, search fee, examination fee or oath or declaration) as set forth in 37 CFR $1.16(f)$ of $\$ 65$ for a small entity in compliance with 37 CFR 1.27 , must be submitted with the missing items identified in this letter.

SUMMARY OF FEES DUE:

Total additional fee(s) required for this application is $\$ 65$ for a Small Entity

- \$65 Surcharge.

Replies should be mailed to: Mail Stop Missing Parts

Commissioner for Patents
P.O. Box 1450

Alexandria VA 22313-1450

A copy of this notice MUST be returned with the reply.
$\frac{\text { Office of Initial Patent Examination (571) 272-4000, or 1-800-PTO-9199, or 1-800-972-6382 }}{\text { PART 3-OFFICE COPY }}$

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

07/03/2006 LHONDIMI OOO00040 $500310 \quad 11357687$

01 FC:2051
65.00 DA

FILED UNDER 37 CFR 1.53(b)
Filing Date Granted
--
-

Items Required To Avoid Abandonment:

An application number and filing date have been accorded to this application. The items) indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The oath or declaration is missing. A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above Application Number and Filing Date, is required. Note: If a petition under 37 CFR 1.47 is being filed, an oath or declaration in compliance with 37 CFR 1.63 signed by all available joint inventors, or if no inventor is available by a party with sufficient proprietary interest, is required.

The applicant needs to satisfy supplemental fees problems indicated below.
The required items) identified below must be timely submitted to avoid abandonment:

- To avoid abandonment, a surcharge (for late submission of filing fee, search fee, examination fee or oath or declaration) as set forth in 37 CF 1.16 (f) of $\$ 65$ for a small entity in compliance with 37 CF 1.27 , must be submitted with the missing items identified in this letter.

SUMMARY OF FEES DUE:

Total additional fees) required for this application is $\$ 65$ for a Small Entity

- \$65 Surcharge.

Replies should be mailed to: Mail Stop Missing Parts

Commissioner for Patents
P.O. Box 1450

Alexandria VA 22313-1450

A copy of this notice MUST be returned with the reply.

DECLARATION (37 CFR 1.63) FOR UTILITY OR DESIGN APPLICATION USING AN APPLICATION DATA SHEET (37 CFR 1.76)

Title: BORON-CONTAINING SMALL MOLECULES

As the below named inventor(s), I/we declare that:
This declaration is directed to:The attached application, or
A Application No. 11/357,687, filed on February 16, 2006,
\square as amended on \qquad (if applicable);

1/we believe that 1/we am/are the original and first inventor(s) of the subject matter which is claimed and for which a patent is sought;

I/ we have reviewed and understand the contents of the above-identified application, including the claims, as amended by any amendment specifically referred to above;

I/we acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me/us to be material to patentability as defined in 37 CFR 1.56 , including material information which became available between the filing date of the prior application and the National or PCT International filing date of the continuation-in-part application, if applicable; and

All statements made herein of my/own knowledge are true, all statements made herein on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001, and may jeopardize the validity of the application or any patent issuing thereon.

Burden Hour Statement: This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.63. The information is used by the public to file (and the PTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This form is estimated to take 1 minute to complete. This time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

Burden Hour Statement: This collection of information is required by 35 U.S.C. 115 and 37 CFR 1.63. The information is used by the public to file (and the PTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This form is estimated to take 1 minute to complete. This time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for
Patents, Washington, DC 20231.

Application Data Sheet

Application Information

Application number::
Filing Date::
Application Type::
Subject Matter::
Suggested classification::
Suggested Group Art Unit::
CD-ROM or CD-R??::
Number of CD disks::
Number of copies of CDs::
Sequence Submission::
Computer Readable Form (CRF)?::
Number of copies of CRF::
Title::
Attorney Docket Number::
Request for Early Publication::
Request for Non-Publication::
Suggested Drawing Figure::
Total Drawing Sheets::
Small Entity?::
YES
Latin name::
Variety denomination name::
Petition included?::
Petition Type::
Licensed US Govt. Agency::
Contract or Grant Numbers One::
Secrecy Order in Parent Appl.:: No

Applicant Information

Applicant Authority Type::	Inventor
Primary Citizenship Country::	Great Britain
Status::	Full Capacity
Given Name::	Stephen
Middle Name::	J.
Family Name::	Baker
Name Suffix::	
City of Residence::	Mountain View
State or Province of Residence::	CA
Country of Residence::	US
Street of Mailing Address::	1568 Begen Avenue
City of Mailing Address::	Mountain View
State or Province of mailing address::	CA
Country of mailing address::	US
Postal or Zip Code of mailing address::	94040

Applicant Authority Type::
Primary Citizenship Country::
Status::
Given Name::
Middle Name::
Family Name::
Name Suffix::
City of Residence::
State or Province of Residence::
Country of Residence::
Street of Mailing Address::
City of Mailing Address::
State or Province of mailing address::
Country of mailing address::
Inventor
Japan
Full Capacity
Tsutomu

Akama

Sunnyvale
CA
US
832 Azure Street
Sunnyvale
CA
US

Postal or Zip Code of mailing address:: 94087

Applicant Authority Type::	Inventor
Primary Citizenship Country::	US
Status::	Full Capacity
Given Name::	Carolyn Carole
Middle Name::	Bellinger-Kawahara
Family Name::	
Name Suffix::	Redwood City
City of Residence::	CA
State or Province of Residence::	US
Country of Residence::	15 Landa Lane
Street of Mailing Address::	Redwood City
City of Mailing Address::	US
State or Province of mailing address::	CA
Country of mailing address::	
Postal or Zip Code of mailing address::	94061
	Inventor
Applicant Authority Type::	US
Primary Citizenship Country::	Full Capacity
Status::	Vincent
Given Name::	S.
Middle Name::	Hernandez
Family Name::	Watsonville
Name Suffix::	CA
City of Residence::	Watsonville
State or Province of Residence::	CA
Country of Residence::	
Street of Mailing Address::	City of Mailing Address::
State or Province of mailing address::	

Country of mailing address:: US
Postal or Zip Code of mailing address:: 95076
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status:: Full Capacity
Given Name:: Karin
Middle Name:: M.
Family Name:: Hold
Name Suffix::
City of Residence:: Belmont
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 1908 Valdez Avenue
City of Mailing Address:: Belmont
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 94002
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name::Full Capacity
Middle Name:: J.James
Family Name::
Name Suffix::
City of Residence::
Malvern
State or Province of Residence:: PA
Country of Residence:: US
Street of Mailing Address:: 319 Applebrook Drive
City of Mailing Address::
Malvern
State or Province of mailing address:: PA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 19355
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status:: Full Capacity
Given Name:: Kirk
Middle Name:: R.
Family Name:: Maples
Name Suffix::
City of Residence::
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address:: 1195 San Moritz Drive
City of Mailing Address:: San Jose
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 95132
Applicant Authority Type:: InventorStatus::Given Name::
Primary Citizenship Country:: US
Full Capacity
Jacob
Middle Name:: J.
Family Name:Plattner
Name Suffix::
City of Residence::Berkeley
State or Province of Residence:: CA
Country of Residence:: US
Street of Mailing Address::
City of Mailing Address:: Berkeley
State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 94705
Applicant Authority Type:: Inventor
Primary Citizenship Country:: US
Status::
Given Name::Full CapacityVirginia
Middle Name:
Family Name:: Sanders
Name Suffix::
City of Residence::
State or Province of Residence:: CA
San Francisco
Country of Residence:: US
Street of Mailing Address:: 2895 Harrison St., Apt. 4
City of Mailing Address::
State or Province of mailing address::
San Francisco
Country of mailing address:: US
Postal or Zip Code of mailing address:: 94110
Applicant Authority Type::Primary Citizenship Country::
Status::
Given Name::Inventor
US
Full Capacity
Yong-Kang
Middle Name::
Family Name::
Zhang
Name Suffix::
City of Residence::
State or Province of Residence:: CASan Jose
Country of Residence:: US
Street of Mailing Address::City of Mailing Address::State or Province of mailing address:: CA
Country of mailing address:: US
Postal or Zip Code of mailing address:: 95130
Correspondence Information
Correspondence Customer Number:: 043850
Representative Information
Representative Customer Number:: 043850
Domestic Priority Information

Application::	Continuity Type::	Parent Application::	Parent Filing Date::
This application	An application claiming the benefit under 35 USC $119(e)$	$60 / 654,060$	$02 / 16 / 05$

Foreign Priority Information
Country:: Application number:: Filing Date::
Assignee Information
Assignee Name::
Street of mailing address::
City of mailing address::
State or Province of mailing address::
Country of mailing address::
Postal or Zip Code of mailing address::

PTO/SB/81 (02-01)
Approved for use through 10/31/2002. OMB 0651-0035 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

POWER OF ATTORNEY OR AUTHORIZATION OF AGENT	Application Number	11/357,687
	Filing Date	February 16, 2006
	First Named Inventor	Baker, Stephen J.
	Title	Boron-Containing Small Molecules
	Group Art Unit	1626
	Examiner Name	Not Yet Assigned
	Attorney Docket Number	64507-5014-US

[^0]
STATEMENT UNDER 37 CFR 3.73(b)

Stephen J. Baker, Tsutomu Akama, Carolyn Bellinger-Kawahara, Vincent S. Hernandez. Karin M. Hold, James J. Levdon, Kirk R. Maples, Jacob J. Platner, Virginia Sanders, Yong-Kang Zhang

Application No./Patent No.: 11/357,687
Filed/Issue Date: February 16, 2006
Entitled: BORON-CONTAINING SMALL MOLECULES
Anacor Pharmaceuticals, Inc.
(Name of Assignee)
a Delaware corporation
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)
states that it is:

1. \boxtimes the assignee of the entire right, title, and interest; or
2. \square an assignee of an undivided part interest
in the patent application/patent identified above by virtue of either:
A. \boxtimes An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.

OR
B. \square
\square A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as shown below:

1. From: \qquad To \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
2. From: \qquad To : \qquad
The document was recorded in the United States Patent and Trademark Office at
Ree! \qquad Frame \qquad or for which a copy thereof is attached.
3. From: \qquad To \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.Additional documents in the chain of title are listed on a supplemental sheet.Copies of assignments or other documents in the chain of title are attached. [NOTE: A separate copy (i.e., the original assignment document or a true copy of the original document) must be submitted to Assignment Division in accordance with 37 CFR Part 3, if the assignment is to be recorded in the records of the USPTO. See MPEP 302.8]

The undersigned (whose title is supplied below) is empowered to sign this statement on behalf of the assignee.

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

ASSIGNMENT OF PATENT APPLICATION

JOINT
WHEREAS, Stephen J. Baker of 1568 Begen Avenue, Mountain View, CA, 94040; Tsutomu Akama of 832 Azure Street, Sunnyvale, CA, 94087; Carolyn Bellinger-Kawahara of 15 Landa Lane, Redwood City, CA, 94061 ; Vincent S. Hernandez of 287 Gilchrist Lane, Watsonville, CA, 95076; Karin M. Hold of 1908 Valdez Avenue, Belmont, CA, 94002; James J. Leyden of 319 Applebrook Drive, Malvern, CA, 19355; Kirk R. Maples of 1195 San Moritz Drive, San Jose, CA 95132; Jacob J. Plattner of 1016 Amito Avenue, Berkeley, CA 94705; Virginia Sanders of 2895 Harrison Street, Apt. 4, San Francisco, CA, 94110; and Yong-Kang Zhang of 5151 Westmont Avenue, San Jose, CA, 95130, hereinafter referred to as "Assignors," are the inventors of the invention described and set forth in the below-identified patent application:

Title of Invention:
Filing Date:
Application No.:

BORON-CONTAINING SMALL MOLECULES

February 16, 2006
11/357,687; and

WHEREAS, Anacor Pharmaceuticals, Inc., located at 1060 East Meadow Circle, Palo Alto, CA 94303, hereinafter referred to as "ASSIGNEE," is desirous of acquiring an interest in the invention and application and in any U.S. Letters Patent and Registrations which may be granted on any patent application claiming priority from the same;

For good and valuable consideration, receipt of which is hereby acknowledged by Assignors, Assignors have assigned, and by these presents does assign to Assignee all right, title and interest in and to the invention and application and to all foreign counterparts (including patent, utility model and industrial designs), and in and to any Letters Patent and Registrations which may hereafter be granted on any patent application claiming priority from the same in the United States and all countries throughout the world, and to claim the priority from the application as provided by the Paris Convention. The right, title and interest is to be held and enjoyed by Assignee and Assignee's successors and assigns as fully and exclusively as it would have been held and enjoyed by Assignors had this Assignment not been made, for the full term of any Letters Patent and Registrations which may be granted thereon, or of any division, renewal, continuation in whole or in part, substitution, conversion, reissue, prolongation or extension thereof.

Assignors further agree that Assignors will, without charge to Assignee, but at Assignee's expense, (a) cooperate with Assignee in the prosecution of U.S. Patent applications and foreign counterparts on the invention and any improvements, (b) execute, verify, acknowledge and deliver all such further papers, including applications and instruments of transfer, and (c) perform such other acts as Assignee lawfully may request to obtain or maintain Letters Patent and Registrations for the invention and improvements in any and all countries, and to vest title thereto in Assignee, or Assignee's successors and assigns.

Assignors hereby authorize and request Morgan, Lewis \& Bockius LLP, One Market, Spear Street Tower, San Francisco, CA 94105, to insert herein above the application number and filing date of said application when known.

Assignment
Attomey Docket No.: 064507-5014-US
Page 2

IN TESTIMONY WHEREOF, Assignors have signed his/her names on the dates indicated.
Dated: \qquad

STEPHEN J. BAKER

STATE OF CALIFORNIA)
 COUNTY of Santa Clara, ss.

on Puri 28, ate of ore me, Duielle u. (quétepersonally appeared
STEPHEN J. BAKER, personally known to me for proved to men on the basion satisfatery-evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/ske executed the same in his/hgt authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

Dated: \qquad

TSUTOMU AKAMA

STATE OF CALIFORNIA

COUNTY OF Saute Clara)
onfopil $\because 8,204$, before me, Brielle u. Equithersonally appeared
TSUTOMU AKAMA, personally known to me (or proved to me on the basis of satisfactory-ovidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that hesper executed the same in his/hor authorized capacity, and that by his/hdr signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.
my Commission Expires: July 12,2007

Assignment
Attorney Docket No.: 064507-5014-US
Page 3
Dated: $4 / 28 / 06$

STATE OF CALIFORNIA)

COUNTY OFSautaClara) ss.
 CAROLYN BELLINGER-KAWAHARA, personally known to me for proved tome on the basis of satectory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

STATE OF CALIFORNIA
)
COUNTY OF Sur tel Clara) ss.
onfpail 38,200 pare monnielte M. Equithersonally appeared
VINCENT S. HERNANDEZ, personally known to me fer prove mean bacis-of satisfactory evidence to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/het signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: Dele 2,0007

Assignment
Attorney Docket No.: 064507-5014-US
Page 4
Dated: \qquad

KARIN. HOLD

STATE OF CALIFORNIA COUNTY OF Salta (lara)

ss.
on April 28,9006 before me Donielle M. Equité

personally appeared KARIN M. HOLD, personally known to me (ar basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in b/s/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

Dated: \qquad
JAMES J. LEYDON

STATE OF

COUNTY OF

) ss.
On \qquad , before me, \qquad personally appeared JAMES J. LEYDON, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: \qquad

Assignment

Attorney Docket No.: 064507-5014-US
Page 4

Dated: \qquad
KARIN M. HOLD

STATE OF CALIFORNIA

COUNTY OF

```
)
ss.

On \(\qquad\) , before me, \(\qquad\) personally appeared KARIN M. HOLD, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: \(\qquad\)

Dated:


STATE OF
)
) ss.
COUNTY OF
)
On \(\qquad\) , before me, \(\qquad\) personally appeared JAMES J. LEYDEN, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: \(\qquad\)

Assignment
Attorney Docket No.: 064507-5014-US
Page 5
Dated: 4/28/06

\section*{MeR.mph}

KIRK R. MAPLES

\section*{STATE OF CALIFORNIA
COUNTY OF Saute (lana) ss.}
on April 28, OOW before me, Donielle M Equites personally appeared KIRK R. MAPLES, personally known to me for proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/sbe executed the same in his/hdra authorized capacity, and that by his/hgr signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.


\section*{STATE OF CALIFORNIA}
county of SautaClara.)
onfteril \(\partial 8^{2}\) Zoldefore metonielle M. Equith personally appeared JACOB J. PLATTNER, personally known to me (or proved to me -on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/sbe executed the same in his/hof authorized capacity, and that by his/hot signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.


My Commission Expires: \(\mathrm{Re}(\mathrm{y} 12,0007\)

Assignment
Attomey Docket No.: 064507-5014-US
Page 6

Dated: \(\qquad\)


VIRGINIA SANDERS

VIRGINIA SANDERS, personally known to me -for proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in bis/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNTESS mu hand and official seal.


Dated: \(\qquad\) 4-28-2006

\section*{STATE OF CALIFORNIA} to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hqt authorized capacity, and that by his/hot signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.


1-SF/7364295.1

Untied States Patent and Trademark Office
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline APPL NO. & \[
\begin{aligned}
& \text { FILING OR } 371 \\
& \text { (c) DATE } \\
& \hline
\end{aligned}
\] & \({ }_{\text {ART UNIT }}\) & FIL FEE REC'D & ATTY.DOCKET NO & DRAWNGS & TOT CLMS & IND CLMS \\
\hline 11/357,687 & 02/16/2006 & \(\sqrt{1626}\) & 1100 & 64507-5014-US & 12 & 39 & 3 \\
\hline
\end{tabular}

043850
MORGAN, LEWIS \& BOCKIUS LLP (SF)
2 PALO ALTO SQUARE 3000 EI Camino Real, Suite 700 PALO ALTO, CA 94306

CONFIRMATION NO. 4964
FILING RECEIPT

4

Date Mailed: 04/03/2006

Receipt is acknowledged of this regular Patent Application. It will be considered in its order and you will be notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION when inquiring about this application. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please mail to the Commissioner for Patents P.O. Box 1450 Alexandria Va 22313-1450. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections (if appropriate).

\section*{Applicant(s)}

Stephen J. Baker, Mountain View, CA; \({ }^{\gamma^{+}}\)
Tsutonu Akama, Sunnyvale, CA;
Carole Bellinger-Kawahara, Redwood City, CA; Carolyn
Karin M. Hold, Belmont, CA;
James J Leydon Malvern, PA, Leyd en
Kirk R. Maples, San Jose, CA; \({ }^{\text {, }}\)
Jacob J. Plattner, Berkeley, CA;
Virginia Sanders, San Francisco, CA;
Yong-Kang Zhang, San Jose, CA; \({ }^{\text {V }}\)
Assignment For Published Patent Application
Anacor Pharmaceuticals, Palo Alto, CA
Power of Attorney: None
Domestic Priority data as claimed by applicant
This appIn claims benefit of 60/654,060 02/16/2005 \(\downarrow\)
Foreign Applications

If Required, Foreign Filing License Granted: 03/30/2006
The country code and number of your priority application, to be used for filing abroad under the Paris

\author{
Convention, is US \(11 / 357,687\) \\ Projected Publication Date: To Be Determined - pending completion of Missing Parts \\ Non-Publication Request: No \\ Early Publication Request: No \\ ** SMALL ENTITY ** \\ Title \\ Boron-containing small molecules \\ Preliminary Class \\ 514
}

\section*{PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES}

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER
Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 \& 5.15

\section*{GRANTED}

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14 .

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War ( 22 CFR 121-128) ; the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign Assets Control, Department of Treasury ( 31 CFR Parts 500+) and the Department of Energy.

\section*{NOT GRANTED}

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. Baker, et al.
Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
The references cited on attached form \(\mathrm{PTO} / \mathrm{SB} / 8 \mathrm{~A}\) are being called to the attention of the Examiner. Copies of the references are enclosed. It is respectfully requested that the cited references be expressly considered during the prosecution of this application, and the references be made of record therein and appear among the "references cited" on any patent to issue therefrom.

As provided for by \(37 \mathrm{CFR} 1.97(\mathrm{~g})\) and \((\mathrm{h})\), no inference should be made that the information and references cited are prior art merely because they are in this statement and no representation is being made that a search has been conducted or that this statement encompasses all the possible relevant information.

Stephen J. Baker, et al.
PATENT Application No.: 11/357,687
Page 2
Applicant believes that no fee is required for submission of this statement, since it is being submitted prior to the first Office Action. However, if a fee is required, the Commissioner is authorized to deduct such fee from the undersigned's Deposit Account No. 500310. Please deduct any additional fees from, or credit any overpayment to, the above-noted Deposit Account.


MORGAN, LEWIS \& BOCKIUS LLP
Two Palo Alto Square
3000 El Camino Real, Ste. 700
Palo Alto, CA 94306
Tel. (415) 442-1000
Direct Dial: (415) 442-1304
eFAX: (650) 843-4001
e-mail: tesker@morganlewis.com
ATTACHMENTS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS+} \\
\hline & & Document Number & & & \\
\hline Examiner Initials* & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\] & Number Kind Code \({ }^{2}\) (if known) & Publication Date MM-DD-YYYY & Name of Patentee or Applicant of Cited Document & \begin{tabular}{l}
Pages, Columns, Lines, Where \\
Relevant Passages or Relevant Figures Appear
\end{tabular} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline Examiner & & Date & \\
Signature & & Considered & \\
\hline
\end{tabular}

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to::


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. Baker, et al.
Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
The references cited on attached form \(\mathrm{PTO} / \mathrm{SB} / 8 \mathrm{~A}\) are being called to the attention of the Examiner. Copies of the references are enclosed. Also enclosed is a copy of the Search/Examination report corresponding to the International Application No. PCT/US06/05542. It is respectfully requested that the cited references be expressly considered during the prosecution of this application, and the references be made of record therein and appear among the "references cited" on any patent to issue therefrom.

As provided for by \(37 \mathrm{CFR} 1.97(\mathrm{~g})\) and (h), no inference should be made that the information and references cited are prior art merely because they are in this statement and no representation is being made that a search has been conducted or that this statement encompasses all the possible relevant information.

Applicant believes that no fee is required for submission of this statement, since it is being submitted within three months of the date that the International Search Report was mailed. However, if a fee is required, the Commissioner is authorized to deduct such fee from the undersigned's Deposit Account No. 50-0310. Please deduct any additional fees from, or credit any overpayment to, the above-noted Deposit Account.


Reg. No. 46,690
MORGAN, LEWIS \& BOCKIUS LLP
Two Palo Alto Square
3000 El Camino Real, Ste. 700
Palo Alto, CA 94306
Tel. (415) 442-1000
Direct Dial: (415) 442-1304
eFAX: (650) 843-4001
e-mail: tesker@morganlewis.com
ATTACHMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline  & & & & \multicolumn{3}{|c|}{Complete if Known} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & Application Number & 11/440,839 & \\
\hline INFO & & & & Filing Date & February 16, 2006 & \\
\hline STA & & & & First Named Inventor & Baker, Stephen J. & \\
\hline & & & & Art Unit & 1626 & \\
\hline & & & & Confirmation No. & 4964 & \\
\hline & \multicolumn{3}{|l|}{(use as many sheets as necessary)} & Examiner Name & Balasubramanian, V. & \\
\hline Sheet \({ }^{\text {' }}\) & 1 & of & 1 & Attorney Docket Number & 64507-5014-US & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS+} \\
\hline & & Document Number & & & \\
\hline Examiner Initials* & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\] & Number Kind Coder \({ }^{2}\) (if known) & Publication Date MM-DD-YYYY & Name of Patentee or Applicant of Cited Document & Pages, Columns, Lines, Where Relevant Passages or Relevan Figures Appear \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

(19) World Intellectual Property

Organization
International Bureau
(43) International Publication Date 17 February 2005 (17.02.2005)


PCT
(51) International Patent Classification?: C07F 5/02
(21) International Application Number:

PCT/US2004/018765
(22) International Filing Date: 15 June 2004 (15.06.2004)
(25) Filing Language:

English
English
(30) Priority Data 60/478,921

16 June 2003 (16.06.2003)
US
(71) Applicant (for all designated States except US): ANACOR PHARMACEUTICALS, INC. [US/US]; 1060 East Meadow Circle, Pall Alto, CA 94303 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): LEE, Ving [US/US]; 1335 Carvo Court, Los Altos, CA 94024 (US). PLATTNER, Jacob, J. [US/US]; 1016 Amito Avenue, Berkeley, CA 94705 (US). BENKOVIC, Stephen, J. [US/US]; 771 Teaberry Lane, State College, PA 16803 (US). BAKER, Stephen, J. [GB/GB]; 1568 Begen Avenue, Mountain View, CA 94040 (US). MAPLES, Kirk, R. [USJUS]; 1195 San Moritz Drive, San Jose, CA 95132 (US). BELLINGER-KAWAHARA, Carolyn [US/US]; 15 Lands Lane, Redwood City, CA 94061 (US). AKAMA, Tsutomu [JP/US]; 832 Azure Street, Sunnyvale, CA 94087 (US). ZHANG, Yong-Kang [USNUS]; 5151 Westmont Avenue, San Jose, CA 95130 (US). SINGH, Rajeshwar [CA/CA]; 1435 Loewe Court, Edmonton, Alberta T6R 2Y1 (CA). SAURO, VIttorio, A. [CA/CA]; 3843 24th Street, Edmonton, Alberta T6T 1K6 (CA).

A61K 31/69

\section*{(10) International Publication Number WO 2005/013892 A3 \\ }
(74) Agent: LENTINL, David, P.; Foley \& Lardn
Page Mill Road, Palo Alto, CA 94304 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): \(\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}\), AT, AU, AZ, BA, BB, HG, BR, BF, BY, BK, CA, CH, ZN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, ER, EG, ES, FL, GB, GD, GE, GL, GM, HR, MU, ID, IL, IN, IS, JP, KR, KG, KP, KR, KY, LC, MK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MY, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TU, TM, TN, TR, TR, TX, JA, VG, US, UK, VC, VA, YO, KA, TM, KW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KB, LS, MW, MR, NA, SD, SL, SZ, TX, UG, TM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, MU, IE, IT, LU, MC, NL, PL, PT, RD, SE, SI, SK, TR), OAPI (BF, BI, CF, CG, CI, CM, GA, GN, GQ, GU, ML, MR, NE, SN, TD, TE).

Published:
- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
(88) Date of publication of the international search report:

16 June 2005
(15) Information about Correction: Previous Correction: see PCT Gazette No. 15/2005 of 14 April 2005, Section II

For two-letter codes and other abbreviations, refer to the "Guid ance Notes on Codes and Abbreviations" appearing at the beginming of each regular issue of the PCT Gazette.

\title{
HYDROLYTICALLY-RESISTANT BORONCONTAINING THERAPEUTICS AND METHODS OF USE
}

This application claims priority of U.S. Provisional Application Serial No. 60/478,921, filed 16 June 2003, the disclosure of which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to novel compounds and compositions which have selective therapeutic activities, processes for making such compounds, synthetic intermediates employed in these processes and a method for treating human or other mammal in need of medical treatments.

\section*{BACKGROUND OF THE INVENTION}

Many advances in medicine in the \(20^{\text {th }}\) century have been due to the discovery of new classes of small molecular weight effectors for various therapeutic needs. Herein we disclose the diverse, but selective pharmacologically active boron-containing entities.

One hallmark of the modern era of medicine has been the decline in morbidity and mortality associated with bacterial and fungal infections.

However, misuse of conventional antibiotics and natural selection of the infectious bacterial population has resulted in the development of varying degrees of drug resistance by most bacterial infectious agents to most antibiotic agents. In severe cases, such as MRSA (Multidrug-Resistant Staph \(\underline{A}\) ), one or only a few antibiotics are currently effective. In addition, the existence of immunodeficiency syndromes results in additional incidences of opportunistic infections requiring intensive antibiotic treatment.

Viruses are implicated in a variety of animal and human disease. Numerous approaches have been proposed to combat these pathogens which include, but are not limited to herpesviruses 1 and 2 (HSV-1 and HSV-2), influenza viruses \(A, B\) and \(C\), parainfluenza viruses 1-4, syncytial virus, EpsteinBarr virus, minoviruses, human immunodeficiency viruses (HIV), polioviruses, coxsackieviruses, echoviruses, rubella virus, varicella-zoster virus, neurodermatropic virus, variola virus, cytomegalovirus, hepatitis A, B and C viruses, papoviruses, rabies virus, yellow fever virus, dengue virus, West Nile virus and SARS virus.

One approach in the development of antiviral compounds has been to identify compounds which interfere with the normal viral metabolism and replication in infected host cells. During the screening of new borinic ester compounds, we have found that certain of these compounds show antiviral activity in cell culture assay systems. Many existing compounds currently in use for treating viral diseases are subject to resistance mechanisms, are expensive to make, do not adequately treat patients or have adverse side effects. Therefore, there is a continuing need for new compounds which act to kill viruses, to inhibit viral replication or to block.the pathogenic action of viruses.
\begin{tabular}{|c|c|}
\hline Virus Category & Pertinent Human Infections \\
\hline \multicolumn{2}{|r|}{RNA Viruses} \\
\hline Picomaviridee & \begin{tabular}{l}
Polio \\
Human hepattis A Human minovinus
\end{tabular} \\
\hline Togaviridae and Flaviviridae & Rubella - German measles Yellow fever \\
\hline Coronaviridae & \begin{tabular}{l}
Human respiratory coronavirus (HCV) \\
Severe acute respiratory syndrome (SAR)
\end{tabular} \\
\hline Rhabdoviridae & Lyssavinu - Rables \\
\hline Paramyxoviridae & \begin{tabular}{l}
Paramyxovinus - Mumps \\
Morbillvinus - measles \\
Pneumovinus - resplratory syncytial virus
\end{tabular} \\
\hline Orthomyxoviridas & Influenza A-C \\
\hline Bunyaviridae & ```
Bunyavirus - Bunyamwera (BUN)
Hantavinus - Hantaan (HTN)
Nairevinus - Crimean-Congo hemornagic fever (CCHF)
Phlebovinus - Sandfy fover (SFN)
Uukuvirus - Uukunjem( (UUK)
Rift Valley Fover (RVFN)
``` \\
\hline Arenaviridae & Junin - Argentine hemorrhagic fever Machupo - Bolivian hemorthagic fever Lassa - Lassa faver LCM - aseptic lymphocyctic choriomeningitis \\
\hline Reovindae & Rotovinus Reovirus Orbivins \\
\hline Retroviridae & \begin{tabular}{l}
Human immunodeficlency virus 1 (HIV-1) \\
Human immunodeficiency virus 2 (HIV-2) \\
Simian immunodeficiency vins (SIV)
\end{tabular} \\
\hline \multicolumn{2}{|r|}{DNA Viruses} \\
\hline Papovavinidae & Pediatric viruses that reside in kidney \\
\hline Adenovinidae & Human respiratory distress and some deep-seated eye infections \\
\hline Panvoviridae & Human gastro-intestinal distress (Norwalk Vrus) \\
\hline Herpesvindae & \begin{tabular}{l}
Herpes simplex virus 1 (HSV-1) \\
Herpes simplex virus 2 (HSV-2) \\
Human cytomegalovirus (HCMV). \\
Varicella zoster virus (VZV) \\
Epstein-Barr vinus (EBV) \\
Human herpes virus \(\mathbf{6}\) (HHV6)
\end{tabular} \\
\hline Poxviridae & Orthopoxvirus is sub-genus for smallpox \\
\hline Hepadnaviridae & Hepatitis B virus (HBV) Hepatitls C virus (HCV) \\
\hline
\end{tabular}

Boron containing compounds have received increasing attention as therapeutic agents over the past few years as technology in organic synthesis 5 has expanded to include this atom. [Boron Therapeutics on the horizon,

Groziak, M.P.; American Journal of Therapeutics (2001) 8, 321-328] The most notable boron containing therapeutic is the boronic acid bortezomib which was recently launched for the treatment of multiple myeloma. This breakthrough demonstrates the feasibility of using boron containing compounds as pharmaceutical agents. Boron containing compounds have been shown to have various biological activities including herbicides [Organic boron compounds as herbicides. Barnsley, G.E.; Eaton, J.K.; Airs, R.S.; (1957), DE 1016978 19571003], boron neutron capture therapy [Molecular Design and Synthesis of B-10 Carriers for Neutron Capture Therapy. Yamamoto, Y.; Pure Appl. Chem., (1991) 63, 423-426], serine protease inhibition [Borinic acid inhibitors as probes of the factors involved in binding at the active sites of subtilisin Carisberg and \(\alpha\)-chymotrypsin. Simpelkamp, J.; Jones, J.B.; Bioorganic \& Medicinal Chemistry Letters, (1992), 2(11), 1391-4], [Design, Synthesis and Biological Evaluation of Selective Boron-containing Thrombin Inhibitors. Weinand, A.; Ehrhardt, C.; Metternich, R.; Tapparelli, C.; Bioorganic and Medicinal Chemistry, (1999), 7, 1295-1307], acetylcholinesterase inhibition [New, specific and reversible bifunctional alkylborinic acid inhibitor of acetylcholinesterase. Koehler, K.A.; Hess, G.P.; Biochemistry (1974), 13, 5345-50] and as antibacterial agents [BoronContaining Antibacterial Agents: Effects on Growth and Morphology of Bacteria Under Various Culture Conditions. Bailey, P.J.; Cousins, G.; Snow, G.A.; and White, A.J.; Antimicrobial Agents and Chemotherapy, (1980), 17, 549-553]. The boron containing compounds with antibacterial activity can be sub-divided into two main classes, the diazaborinines, which have been known since the 1960's, and dithienylborinic acid complexes. This latter class has been expanded to include many different diarylborinic acid complexes with potent antibacterial activity [Preparation of diarylborinic acid esters as DNA methyl transferase inhibitors. Benkovic, S.J.; Shapiro, L.; Baker, S.J.; Wahnon, D.C.; Wall, M.; Shier, V.K.; Scott, C.P.; Baboval, J.; PCT Int. Appl. (2002), WO 2002044184]. Synthetic developments described in Benkovic et al. enabled creation of a much more diverse class of unsymmetrical disubstituted borinic acid complexes not possible before.

Thus, there continues to be a need in the medical arts for novel, more effective, antibiotic compounds, especially for treating infectious diseases, that are resistant to currently available therapies.

In one aspect, the present invention relates to therapeutic compounds, which are boron-containing. These compounds include structures that encompass benzoxaboroles, benzazaboroles, benzthiaboroles and related analogs.

These compounds are also provided as phamaceutical compositions that can be administered to an animal, most preferably a human, for treatment of a disease having either bacterial, fungal or viral etiology, most preferably a human, in an immunologically compromised or debilitated state of health.

In preferred embodiments, the compounds of the invention are those having the structures given by Formula 1, with preferred substituents as disclosed herein.

The invention also provides methods for preparing these therapeutic compounds and pharmaceutical compositions thereof, and methods of using said compounds therapeutically. Kits and packaged embodiments of these compounds and pharmaceutical compositions of the invention are also contemplated.

The invention also relates to methods of treating various medical conditions, using the compounds disclosed herein.

\section*{DETAILED DESCRIPTION OF THE INVENTION}

This invention provides therapeutic agents, and specifically antibacterial, antifungal, or antiviral compounds, useful in treating and/or preventing conditions due to these pathogens.

The invention comprises a compound having the following structures

Formula 1
wherein \(B\) is boron, \(M\) is selected from oxygen, sulfur and \(N R^{* *}\)
wherein \(R^{*}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{\star *}\) is \(H\), alkyl, alkyloxy, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroary,
and wherein \(A\) is \(C H, C R 1\), or \(N\)
and wherein D is \(\mathrm{CH}, \mathrm{CR}^{2}\), or N
and wherein E is \(\mathrm{CH}, \dot{C R}^{3}\), or N
and wherein G is \(\mathrm{CH}, \mathrm{CR}^{4}\), or N
and the combination of nitrogens \((A+D+E+G)\) is 0-3
and wherein J is \(\left(\mathrm{CH}_{2}\right)_{n}(n=0\) to 2\()\) or \(\mathrm{CHR}^{5}\)
and wherein W is \(\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}\left(\mathrm{m}=0\right.\) to 1), \(\mathrm{C}=\mathrm{O}\) (carbonyl) or \(\mathrm{CHR}^{6}\)
wherein \(R^{1}, R^{2}, R^{3}\) and \(R^{4}\) are each independently selected from the group consisting of hydrogen, haloalkyl, alkyl, cycloalkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{p}} \mathrm{OH}(\mathrm{p}=\)

1 to 3), halogen, \(\mathrm{CHO}, \mathrm{CH}=\mathrm{NOH}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\)-alkyl, S-alkyl, \(\mathrm{SO}_{2}\)-alkyl, Saryl, \(\left(\mathrm{CH}_{2}\right)_{q} N R^{18} \mathrm{R}^{19}\) (wherein \(\mathrm{R}^{18}\) and \(\mathrm{R}^{19}\) are independently selected from hydrogen, alkyl, and alkanoyl)(q \(=0\) to 2), alkoxy, \(\mathrm{CF}_{3}, \mathrm{SCF}_{3}, \mathrm{NO}_{2}, \mathrm{SO}_{3} \mathrm{H}\), OH , substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, fused substituted or unsubstituted aryl, fused substituted or unsubstituted heteroaryl,
wherein \(R^{5}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{6}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl (\(C_{3}-C_{7}\)), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
including salts thereof, especially all pharmaceutically acceptable salts.

In preferred embodiments of Formula 1, \(M\) is oxygen, or \(M\) is sulfur, or \(M\) is \(N R^{* *}\). Further preferred embodiments of any of these three are any of the following.

In a preferred embodiment of Formula 1, \(\mathrm{R}^{*}\) is a substituted or unsubstituted alkyl \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\).

In a preferred embodiment of Formula \(1, R^{*}\) is a substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\).

In a preferred embodiment of Formula \(1, \mathrm{R}^{*}\) is a substituted or unsubstituted alkenyl. In a further preferred embodiment thereof, the substituted alkenyl has the structure

wherein \(R^{7}, R^{8}\), and \(R^{9}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{r}} \mathrm{OH}\) (where \(\mathrm{r}=1\) to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selècted from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).

In a preferred embodiment of Formula \(1, R^{*}\) is a substituted or unsubstituted alkynyl. In a further preferred embodiment thereof the substituted alkynyl has the structure

wherein \(\mathrm{R}^{7}\) is defined as before.

In a preferred embodiment of Formula 1, \(\mathrm{R}^{*}\) is a substituted or unsubstituted aryl. In a further preferred embodiment thereof the substituted aryl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, (\(\left.\mathrm{CH}_{2}\right)_{\mathrm{s}} \mathrm{OH}\) (where \(\mathrm{s}=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, \(\mathrm{CON}(\text { alkyl })_{2}, \mathrm{OH}\), alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right) \mathrm{tNR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen, alkyl, and alkanoyl)(\(\mathbf{t}=0\) to 2),
\(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\) alkyl, \(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\text { alkyl) })_{2}\), oxazolidin-2yl, or alkyl substituted oxazolidin-2-yl.

In a preferred embodiment of Formula 1, \(\mathrm{R}^{*}\) is a substituted or unsubstituted aralkyl. In a further preferred embodiment thereof the substituted aralkyl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are defined as before.

In a preferred embodiment of Formula 1, \(\mathrm{R}^{*}\) is a substituted or unsubstituted heteroaryl. In a further preferred embodiment thereof the heteroaryl has the structure

wherein \(X=C H=C H, N=C H, N{ }^{17}\) (wherein \(R^{17}=H\), alkyl, aryl or benzyl), O, or S
and wherein \(\mathrm{Y}=\mathrm{CH}\) or N
and wherein \(\mathbf{R}^{15}\) and \(\mathbf{R}^{16}\) are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{u} \mathrm{OH}\) (where \(u=1,2\) or 3), \(\left(\mathrm{CH}_{2}\right)_{v} \mathrm{NR}^{24} \mathrm{R}^{25}\) (wherein \(\mathrm{R}^{24}\) and \(\mathrm{R}^{25}\) are independently selected from hydrogen, alkyl and alkanoyl)(v = 0 to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), S-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).

The structures of the invention also permit solvent interactions that may afford structures (Formula 1B) that include atoms derived from the solvent
encountered by the compounds of the invention during synthetic manipulations and therapeutic uses. Structures \(1 B\) arise from formation of a dative bond between the solvent(s) with the Lewis acidic boron center. Thus, such solvent complexes 1B could be stable entities with comparative bioactivities. Such structures are expressly contemplated by the present invention where \(\mathrm{R}^{* * *}\) is H or alkyl.

Formula 1B

As used herein, the following terms have the stated meaning:
By "alkyl", "lower alkyl", and \({ }^{\text {a }} \mathrm{C}_{1}-\mathrm{C}_{6}\) alkyl" in the present invention is meant straight or branched chain alkyl groups having 1-6 carbon atoms, such as, methyl, ethyl, propyl, isopropyl; n-butyl, sec-butyl, tert-butyl, pentyl, 2pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl.

By "alkanoyl" in the present invention is meant straight or branched chain alkanoyl groups having 1-6 carbon atoms, such as, acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, isobutanoyl, 3-methylbutanoyl, and 4methylpentanoyl.

By "alkoxy", "lower alkoxy", and " \(\mathrm{C}_{1}-\mathrm{C}_{6}\) alkoxy" in the present invention is meant straight or branched chain alkoxy groups having 1-6 carbon atoms, such as, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, secbutoxy, tert-butoxy, pentoxy, 2-pentyl, isopentoxy, neopentoxy, hexoxy, 2 hexoxy, 3-hexoxy, and 3-methylpentoxy.

By the term "halogen" in the present invention is meant fluorine, bromine, chlorine, and iodine.

By "cycloalkyl", e.g., \(\mathrm{C}_{3}-\mathrm{C}_{7}\) cycloalkyl, in the present invention is meant cycloalkyl groups having 3-7 atoms such as, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl. In the \(\mathrm{C}_{3}-\mathrm{C}_{7}\) cycloalkyl groups, preferably in the \(\mathrm{C}_{5}-\mathrm{C}_{7}\) cycloalkyl groups, one or two of the carbon atoms forming the ring can optionally be replaced with a hetero atom, such as sulfur, oxygen or nitrogen. Examples of such groups are piperidinyl, piperazinyl, morpholinyl, pyrrolidinyl, imidazolidinyl, oxazolidinyl, perhydroazepinyl, perhydrooxazapinyl, oxepanyl, perhydrooxepanyl, tetrahydrofuranyl, and tetrahydropyranyl. \(\mathrm{C}_{3}\) and \(\mathrm{C}_{4}\) cycloalkyl groups having a member replaced by nitrogen or oxygen include aziridinyl, azetidinyl, oxetanyl; and oxiranyl.

By "aryl" is meant an aromatic carbocyclic group having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple condensed rings in which at least one is aromatic, (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl, anthryl, or phenanthryl), which is optionally mono-, di-, or trisubstituted with, e.g., halogen, lower alkyl, lower alkoxy, lower alkylthio, trifluoromethyl, lower acyloxy, aryl, heteroaryl, and hydroxy. Preferred aryl groups include phenyl and naphthyl, each of which is optionally substituted as defined herein.

By "heteroaryl" is meant one or more aromatic ring systems of 5 -, 6 -, or 7-membered rings containing at least one and up to four heteroatoms selected from nitrogen, oxygen, or sulfur. Such heteroaryl groups include, for example, thienyl, furanyl, thiazolyl, imidazolyl, (is)oxazolyl, pyridyl, pyrimidinyl, (iso)quinolinyl, napthyridinyl, benzimidazolyl, and benzoxazolyl. Preferred heteroaryls are thiazolyl, pyrimidinyl, preferably pyrimidin-2-yl, and pyridyl. Other preferred heteroaryl groups include 1-imidazolyl, 2-thienyl, 1-(or 2)quinolinyl, 1-(or 2-) isoquinolinyl, 1-(or 2-)tetrahydroisoquinolinyl, and 2-(or 3)furanyl.

The invention also provides embodiments of the compounds disclosed herein as pharmaceutical compositions. The pharmaceutical compositions of
the present invention can be manufactured in a manner that is itself known, e.g., by means of a conventional mixing, dissolving, granulating, drageemaking, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

Pharmaceutical compositions for use in accordance with the present invention thus can be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations that can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.

Non-toxic pharmaceutical salts include salts of acids such as hydrochloric, phosphoric, hydrobromic, sulfuric, sulfinic, formic, toluenesulfonic, methanesulfonic, hydroxyethanesulfonic, nitric, benzoic, citric, tartaric, maleic, hydroiodic, alkanoic such as acetic, \(\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{CH}_{3}\) where n is \(0-4\), and the like. Non-toxic pharmaceutical base addition salts include salts of bases such as sodium, potassium, calcium, ammonium, and functional equivalents. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable addition salts.

For injection, the compounds of the invention can be formulated in appropriate aqueous solutions, such as physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal and transcutaneous administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries,
suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils; liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions can take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetra-fluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin
for use in an inhaler, can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multidose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension can also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Altematively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use. The compounds can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds can also be formulated as a depot preparation. .Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic
materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The cosolvent system can be the VPD co-solvent system. VPD is a solution of \(3 \%\) \(\mathrm{w} / \mathrm{v}\) benzyl alcohol, \(8 \% \mathrm{w} / \mathrm{v}\) of the nonpolar surfactant polysorbate 80 , and \(65 \% \mathrm{w} / \mathrm{v}\) polyethylene glycol 300 , made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted \(1: 1\) with a \(5 \%\) dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system can be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components can be varied: for example, other low-toxicity nonpolar surfactants can be used instead of polysorbate 80; the fraction size of polyethylene glycol can be varied; other biocompatible polymers can replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides can substitute for dextrose.

Alternatively, other delivery systems for hydrophobic pharmaceutical compounds can be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethyl sulfoxide also can be employed, although usually at the cost of greater toxicity. Additionally, the compounds can be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules can, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the
therapeutic reagent, additional strategies for protein and nucleic acid stabilization can be employed.

The pharmaceutical compositions also can comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.

The compounds of the invention can be provided as salts with pharmaceutically compatible counterions. Pharmaceutically compatible salts can be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, phosphoric, hydrobromic, sulfinic, formic, toluenesulfonic, methanesulfonic, nitic, benzoic, citric, tartaric, maleic, hydroiodic, alkanoic such as acetic, \(\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{CH}_{3}\) where \(n\) is \(0-4\), and the like. Salts tend to be more soluble in aqueous or other protonic solvents that are the corresponding free base forms. Non-toxic pharmaceutical base addition salts include salts of bases such as sodium, potassium, calcium, ammonium, and the like. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable addition salts.

Pharmaceutical compositions of the compounds of the present invention can be formulated and administered through a variety of means, including systemic, localized, or topical administration. Techniques for formulation and administration can be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA. The mode of administration can be selected to maximize delivery to a desired target site in the body. Suitable routes of administration can, for example, include oral, rectal, transmucosal, transcutaneous, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal,
direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.

Alternatively, one can administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a specific tissue, often in a depot or sustained release formulation.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays, as disclosed herein. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the \(\mathrm{EC}_{50}\) (effective dose for \(50 \%\) increase) as determined in cell culture, i.e., the concentration of the test compound which achieves a half-maximal inhibition of bacterial cell growth. Such information can be used to more accurately determine useful doses in humans.

It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination, the severity of the particular disease undergoing therapy and the judgment of the prescribing physician.

For administration to animals, the drug or a pharmaceutical composition containing the drug may also be added to the animal feed or drinking water. It will be convenient to formulate animal feed and drinking water products with a predetermined dose of the drug so that the animal takes in an appropriate quantity of the drug along with its diet. It will also be convenient to add a premix containing the drug to the feed or drinking water approximately immediately prior to consumption by the animal.

Preferred compounds of the invention will have certain phamacological properties. Such properties include, but are not limited to oral bioavailability, low toxicity, low serum protein binding and desirable in vitro and in vivo half-lives. Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco-2 cell monolayers. Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcová et al. (1996, J. Chromat. B 677: 1-27). Compound half-life is inversely proportional to the frequency of dosage of a compound. In vitro halflives of compounds may be predicted from assays of microsomal half-life as described by Kuhnz and Gieschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the \(\mathrm{LD}_{50}\) (the dose lethal to \(50 \%\) of the population) and the \(E D_{50}\) (the dose therapeutically effective in \(50 \%\) of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between \(L D_{50}\) and \(E D_{50}\). Compounds that exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the \(\mathrm{ED}_{50}\) with little or no toxicity. The dosage can vary within this
range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g. Fingl ot al., 1975, in "The Pharmacological Basis of Therapeutics", Ch.1, p.1).

Dosage amount and interval can be adjusted individually to provide plasma levels of the active moiety that are sufficient to maintain bacterial cell growth inhibitory effects. Usual patient dosages for systemic administration range from 100-2000 mg/day. Stated in terms of patient body surface areas, usual dosages range from \(50-910 \mathrm{mg} / \mathrm{m}^{2} /\) day. Usual average plasma levels should be maintained within \(0.1-1000 \mu \mathrm{M}\). In cases of local administration or selective uptake, the effective local concentration of the compound cannot be related to plasma concentration.

The compounds of the invention are useful as antibiotics for the treatment of diseases of both animals and humans, including but not limited to actinomycosis, anthrax, bacterial dysentery, botulism, brucellosis, cellulitis, cholera, conjunctivitis, cystitis, diphtheria, bacterial endocarditis, epiglottitis, gangerene, gastroenteritis, glanders, gonorrhea, Legionnaire's disease, leptospirosis, bacterial meningitis, plague, bacterial pneumonia, otitis media, puerperal sepsis, pyronephritis, rheumatic fever, Rocky Mountain spotted fever, scarlet fever, sinusitis, streptococcal pharyngitis, syphilis, tetanus, toxic shock syndrome, tuberculosis, tularemia, typhoid fever, typhus, and pertussis.

The compounds of the invention comprise a novel class of selective therapeutics. As antibacterial therapeutics, they inhibit medically-important bacterial species include gram-positive bacteria, including cocci such as Staphylococcus species and Streptococcus species; acid-fast bacterium, including Mycobacterium species; bacilli, including Bacillus species, Corynebacterium species (also Propionibacterium) and Clostridium species; filamentous bacteria, including Actinomyces species and Streptomyces
species; gram-negative bacteria, including cocci such as Neisseria species and Acinetobacter species; bacilli, such as Pseudomonas species, Brucella species, Agrobacterium species, Bordetella species, Escherichia species, Shigella species, Yersinia species, Salmonella species, Klebsiella species, 5 Enterobacter species, Haemophilus species, Pasteurella species, and Streptobacillus species; spirochetal species, Campylobacter species, Vibrio species; and intracellular bacteria including Rickettsiae species and Chlamydia species.

Specific bacterial species that are targets for the antibiotics of the invention include Propionibacterium acnes, Staphylococcus aureus; Staphylococcus epidermidis, Staphylococcus saprophyticus; Streptococcus pyogenes; Streptococcus agalactiae; Streptococcus pneumoniae; Enterococcus faecalis; Enterococcus faecium; Bacillus anthracis; Mycobacterium avium-intracellulare, Mycobacterium tuberculosis, Acinetobacter baumannii; Corynebacterium diphtheria; Clostridium perfingens; Clostridium botulinum; Clostridium tetani; Neisseria gonormoeae; Neisseria meningitidis; Pseudómonas aeruginosa; Legionella pneumophila; Escherichia coli; Yersinia pestis; Haemophilus influenzae; Helicobacter pylori, Campylobacter fetus; Campylobacter jejuni, Vibrio choleraө; Vibrio parahemolyticus; Trepomena pallidum; Actinomyces israelii; Rickettsia prowazekii; Rickettsia nickettsii; Chlamydia trachomatis; Chlamydia psittaci; Brucella abortus; Agrobacterium tumefaciens; and Francisella tularensis:

Medically-relevant fungal and yeast species that provide appropriate targets for the antifungal activity of the inhibitors of this invention include Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, Microsponium canis, Aspergillus spp., Cryptococcus neoformans, Blastomyces dermatitidis, Cocciodiodes immitis, Histoplasma capsulatum, Paracoccidiodes brasiliensis and Phycomycetes spp.

The compounds of the invention are useful as antivirals for the treatment of diseases of both animals and humans, including but not limited to hepatitis A-C, yellow fever, respiratory syncytial virus, influenza, human immunodeficiency virus 1 and 2, adenoviruses, Norwalk virus, herpes simplex virus 1 and 2, cytomegalovirus (HCMV), varicella zoster, Epstein-Barr virus, and herpes viruses.

The disclosures in this application of all articles and references, including patents, are incorporated herein by reference.

In carrying out the procedures of the present invention it is of course to be understood that reference to particular buffers, media, reagents, cells, culture conditions and the like are not intended to be limiting, but are to be read so as to include all related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another and still achieve similar, if not identical, results. Those skill in the art will have sufficient knowledge of such systems and methodologies so as to be able, without undue experimentation, to make such substitutions as will optimally serve their purposes in using the methods and procedures disclosed herein.

The invention is described in more detail in the following non-limiting examples. It is to be understood that these methods and examples in no way limit the invention to the embodiments described herein and that other embodiments and uses will no doubt suggest themselves to those skilled in the art.

The compounds of this invention are evaluated for their antibacterial activity as per the guidelines and procedures prescribed by the National Committee for Clinical Laboratory Standards (NCCLS) (cf., NCCLS Document M7-A3, 1993 -Antimicrobial Susceptibility Testing).

\section*{Protocol for MIC Determination}

A useful protocol for MIC determination is as follows:
1. Approximately 2.5 mg of the compounds to be tested was weighed into cryovials.
2. \(5 \mathrm{mg} / \mathrm{ml}\) stock solutions were made by adding DMSO to the samples accordingly.
3. \(256 \mu \mathrm{~g} / \mathrm{ml}\) working solutions were made by using the \(5 \mathrm{mg} / \mathrm{ml}\) stock solutions and adding sterile distilled water accordingly.
4. A Beckman 2000 Automated Workstation was programmed to load 96 well plates with broth and compounds as follows:
\(-100 \mu\) of the appropriate broth was added to columns 1-11
\(-200 \mu\) of the appropriate broth was added to column 12
\(-100 \mu \mathrm{l}\) of compounds at the \(256 \mu \mathrm{~g} / \mathrm{ml}\) working solution were added to column 1 (one compound per row)
-Two-fold serial dilutions were done from column 1 to 10 -Column 11 served as the growth control
5. The 10 organism panel was plated from stock vials stored at \(-80^{\circ} \mathrm{C}\) and incubated for 24 hours at \(34^{\circ} \mathrm{C}\). The organisms were then sub-cultured and incubated for 24 hours at \(34^{\circ} \mathrm{C}\).
-The inoculums were first prepared in sterile distilled water with a target of 0.09-0.11 absorbance at 620 nm wavelength -A \(1 / 100\) dilution was made into the appropriate broth \(-100 \mu\) lof broth with organism was added to columns 1-11 -Column 12 served as the blank control
6. The completed 96 well plates were incubated for 24 hours at \(34^{\circ} \mathrm{C}\). The 96 well plates were then read using a Beckman Automated Plate Reader at 650 nm wavelength. The MIC was determined through calculations involving the growth control (column 11) and blank control (column 12).

\section*{Calculations}

The absorbance readings from the Biomek Automated Plate Reader are used to determine the percent inhibition for each test well. The formula used is as follows:
\% Inhibition \(=\left[1-\left(A B S_{\text {test }}-A B S_{\text {blank }}\right) /\left(A B S_{\text {mean growth }}-A B S_{\text {blank }}\right)\right] x\)
\(\mathrm{ABS}_{\text {test: }} \quad\) Absorbance of the test well
\(\mathrm{ABS}_{\text {blank: }} \quad\) Absorbance of the blank well in the same row as the test well (column 12)
\(\mathrm{ABS}_{\text {mean growth: }}\) Mean absorbance of the growth control wells (column
The minimum inhibitory concentration (MIC) is found at the lowest concentration of compound where percent inhibition is greater than or equal to 80\%.

These procedures were used to obtain the representative microbiological data for the compounds 10 to 19 shown in Table 1 as MIC (Minimum Inhibitory Concentration) with the values expressed as micrograms per ml.

The compounds of this invention are evaluated for their antiviral activity as per the guidelines and procedures prescribed.

\section*{Protocols for Antiviral Determination}

Yellow Fever (YFV) antiviral assay was performed with HeLa cells which were used in order to allow for a 7 day assay endpoint. HeLa cells were passaged in T-75 flasks. On the day preceding the assay, the cells were trypsinized, pelleted, counted and resuspended at \(1 \times 10^{4} /\) well in tissue culture medium in 96 -well flat bottom tissue culture plates in a volume of \(100 \mu \mathrm{l}\) per well. One day following plating of cells, the wells were washed and the medium was replaced with complete medium (\(2 \%\) serum) containing various concentrations of test compound diluted in medium in a half-log series. A pretitered aliquot of 17D strain YFV virus was removed from the freezer \(\quad\left(-80^{\circ} \mathrm{C}\right)\) just before each experiment. The virus was diluted into tissue culture medium such that the amount of virus added to each well would give complete cell killing at 7 days post-infection.

HepG2 2.15 Antiviral Evaluation Assay - HepG2 2.2.15 cells, which produce HBV ayw1 strain, were plated in 96 -well collagencoated microtiter plates at a density of \(2.5 \times 10^{4} /\) well with DMEM medium supplemented with \(2 \%\) fetal bovine serum. One day following plating of cells, the wells were washed and the medium was replaced with complete medium containing the test compound diluted in the medium in a half-log series.

The medium was replaced once with the fresh medium containing the freshly diluted compound three days post the initial addition of the lamivudine, a positive control compound. Cell viability was determined using CellTiter 96® Reagent (Promega, Madison, WI) according to the manufacturer's protocol, using a Vmax plate reader (Molecular Devices, Sunnyvale, CA). The mixture is metabolized by the mitochondrial enzymes of metabolically active cells to a soluble formazan product, allowing the rapid quantitative analysis of cell numbers. The media was removed and replaced with \(100 \mu\) of fresh media and \(10 \mu \mathrm{l}\) of Cell Titer 96.. Plates were reincubated for 4 hours at \(37^{\circ} \mathrm{C}\) and read spectrophotometrically at 490
and 650 nm with a Molecular Devices Vmax plate reader. Percent cell viability of compound treated wells compared to no compound controls was calculated using an in-house computer program which graphs the percent reduction in viral cytopathic effects and the cell numbers at each drug concentration relative to control values. The program interpolates the inhibitory concentration of drug that reduces cytopathic effects by \(50 \%\) (IC50) and the toxic concentration that kills \(50 \%\) of cells (TC50).

HCV RNA Replicon Antiviral Evaluation Protocol
\[
\begin{aligned}
& \text { Ef }
\end{aligned}
\]

The cell line ET (luc-ubi-neo/ET), a new HCV RNA replicon that contains a stable luciferase (LUC) reporter, was used. The composition of the replicon is shown diagrammatically above (ref, Krieger, N., V. Lohmann, and R. Bartenschlager. 2001. Enhancement of hepatitis C virus RNA replicon replication by cell culture-adaptive mutations. J. Virol. 75:4614 4624). The HCV RNA replicon ET contains the \(5^{\prime}\) NTR (IRES) of HCV (5') which drives the production of a firefly luciferase (Luc), ubiquitin (Ubiq), and neomycin phosphotransferase (Neo) fusion protein. Ubiquitin cleavage releases the LUC and Neo genes. The EMCV IRES element (EI) controls the translation of the HCV structural proteins NS3-NS5.

The NS3 protein cleaves the HCV polyprotein to release the mature NS3, NS4A, NS4B, NS5A and NS5B proteins that are required for HCV replication. At the \(3^{\prime}\) end of the replicon is the authentic \(3^{\prime}\) NTR of HCV. The LUC reporter is used as an indirect measure of HCV replication. The activity of the LUC reporter is directly proportional to HCV RNA levels and positive control antiviral compounds behave comparably using either LUC
or RNA endpoints. The use of the LUC endpoint is more economical than HCV RNA and can be used for high-throughput applications to screen libraries of compounds.

5 The HCV RNA replicon antiviral evaluation assay examines the effects of compounds at five half-log concentrations each. Human interferon alpha-2b is included in each run as a positive control compound. Subconfluent cultures of the ET line are plated out into 96 -well plates that are dedicated for the analysis of cell numbers (cytotoxicity) or antiviral activity and the next day drugs are added to the appropriate wells. Cells are processed 72 hr later when the cells are still subconfluent. Compound IC50 and IC90 values are derived from HCV RNA levels assessed as either HCV RNA replicon-derived LUC activity or as HCV RNA using TaqMan RT-PCR. Compound TC50 and TC90 values are calculated using a colorimetric assay as an indicator of cell numbers and cytotoxicity when the LUC assay system is employed, while ribosomal (rRNA) levels determined via TaqMan RTPCR are used as an indication of cell numbers in the RNA-based assay. Compound TI50 and TI90 values are calculated from spreadsheets.

\section*{ANTIBACTERIAL ACTIVITY}

Representative antibacterial data for the compounds 11 to 24 are shown in Table 1. The antibacterial activity of ciprofloxacin, cloxacillin, imipenem, ceftriaxone, meropenem, erythromycin and penicilling G, pertinent antibacterialspecific biological standards, are included as positive controls.

\section*{BENZOXABOROLE ANTIVIRALS}

This procedure was used to obtain the results in the following tables. Representative antiviral data for the compounds 11 to 22 are shown in Tables 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Table 2. In vitro Antiviral Activity} \\
\hline & \multicolumn{3}{|r|}{Anti-Yellow Fover Activity} & \multicolumn{3}{|r|}{Anti-Hepatitis B Activity} \\
\hline Compound & IC50 (\(\mu \mathrm{M}\)) & TC50 (\(\mu\) M) & Antiviral Index & IC50 (\(\mu \mathrm{M}\)) & TC50 (\(\mu \mathrm{M}\)) & Antiviral Index \\
\hline 11 & 0.65 & 4.14 & 6.38 & 2.47 & 3.20 & 1.30 \\
\hline 13 & 1.39 & 6.22 & 4.48 & NA & NA & NA \\
\hline 14 & 0.44 & 6.53 & 14.91 & NA & NA & NA \\
\hline 15 & 1.19 & 6.60 & 5.53 & NA & NA & NA \\
\hline 17 & 1.58 & 6.42 & 4.11 & NA & NA & NA \\
\hline 18 & 0.74 & 6.60 & 8.91 & NA & NA & NA \\
\hline 19 & NA & 17.1 & NA & NA & NA & NA \\
\hline 20 & 1.62 & 21.0 & 12.98 & NA & NA & NA \\
\hline 21 & 2.36 & 15.8 & 6.72 & NA & NA & NA \\
\hline 22 & NA & 21.1 & NA & NA & NA & NA \\
\hline IFN-alpha & 3.20 IU & \(>1000 \mathrm{IU}\) & \(>312.5\) & NA & NA & NA \\
\hline lamivudine & NA & NA & NA & 0.0093 & >1.0 & >107.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Table 3. In vitro Anti-Hepatitis Activity (Replicon Assay) } \\
\hline Compound & IC50 (\(\mu \mathrm{M})\) & TC50 (\(\mu \mathrm{M} / \mathrm{I})\) & Selectivlty Index \\
\hline 11 & 12.96 & 1.29 & 1.5 \\
\hline 12 & 30.6 & 12.7 & 2.4 \\
\hline 13 & 3.93 & 0.37 & 11 \\
\hline 14 & 2.86 & 1.14 & 2.5 \\
\hline 15 & 6.01 & 0.54 & 11 \\
\hline 17 & 8.59 & 0.26 & 33 \\
\hline 18 & 1.94 & NA & NA \\
\hline 19 & 3.73 & 0.27 & 14 \\
\hline 20 & 19.53 & 5.99 & 3.2 \\
\hline 21 & 5.48 & 0.69 & 7.9 \\
\hline IFN-alpha2b & \(>5.00(\mathrm{IU} / \mathrm{ml})\) & \(0.08(\mathrm{IU} / \mathrm{ml})\) & \(>62.5\) \\
\hline
\end{tabular}

\section*{BORON-CONTAINING THERAPEUTICS}

The synthesis of the compounds of the invention is accomplished in several formats. Scheme \#1 demonstrates an efficient synthesis of the benzoxaboroles, with broad range of substituents, including analogs (\(M=O\), \(\mathrm{S}, \mathrm{NR}^{* *}\)) and the larger ring analogs. This is in contrast to the procedure of Haynes and Snyder [J. Org. Chem., 29, pp. 3229 - 3233 (1964) which is limited in scope. Intermediate 1, after transmetallation by either Grignard exchange (isopropylmagnesium bromide) or an organolithium (preferably secbutyllithium or tert-butyllithium), is reacted with a trialkyl borate. Subsequent acidic hydrolysis affords an intermediates boronic acid 2. Conversion of 2 to the ethylene glycol boronate \(\underline{3}\) is achieved in high yields. Other diols such as 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4butanediol, or pinacol alcohol can be employed. Boronate esters \(\underline{3}\) are reacted with the appropriate organometallic donor of substituent \(\mathbf{R}^{*}\), followed by acidic hydrolysis to afford the desired benzoxaboroles \(\underline{5}\).

While we demonstrate the use of the methoxymethyl (MOM) protecting group in the examples, other suitable protecting groups can be employed; exemplary are trialkylsilyl, alkyldiarylsilyl, tetrahydropyranyl, trialkylsilylalkoxy, trityl and substituted trityls, and tert-butyl.

The corresponding benzoazaboroles \(\underline{\underline{Z}}\) and benzothiaboroles \(\underline{9}\) were similarly obtained from suitably protected precursors.

In certain situations, compounds of the invention may contain one or more asymmetric carbon atoms, so that the compounds can exist in different stereoisomeric forms. These compounds can be, for example, racemates or optically active forms. In these situations, the single enantiomers, i.e., optically active forms, can be obtained by asymmetric synthesis or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral HPLC column.

Representative compounds of the present invention include, but are not limited to the compounds disclosed herein and their pharmaceutically acceptable acid and base addition salts. In addition, if the compound of the invention is obtained as an acid addition salt, the free base can be obtained
by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. In a preferred embodiment, the compounds of the invention comprise any of compounds 11 -24 (Tables 1 to 3), and variants thereof.

The present invention also encompasses the acylated prodrugs of the compounds of the invention. Those skilled in the art will recognize various synthetic methodologies which may be employed to prepare non-toxic pharmaceutically acceptable addition salts and acylated prodrugs of the inventive compounds.

\section*{EXAMPLES}

Proton NMR are recorded on Varian AS 400 spectrometer and chemical shifts are reported as \(\delta\) (ppm) down field from tetramethylsilane. Mass spectra are determined on Micromass Quattro II.

\section*{1-(3-Chlorophenyl)-5-fiuoro-1,3-dihydrobenzo[c][1,2]oxaborole (11)}

a) 2-(3-Chlorophenyl)-[1,3,2]-dioxaborolane: 3-Chlorophenylboronic acid (\(3.041 \mathrm{~g}, 19.4 \mathrm{mmol}\)) was dissolved in 75 mL of dry THF under \(\mathrm{N}_{2}\). Ethylene glycol (\(1.323 \mathrm{~g}, 21.3 \mathrm{mmol}\)) was added and the solution refluxed for 18 hours. The solution was allowed to cool and the THF removed under vacuum. The residue was further dried under high vacuum (\(<1 \mathrm{mmHg}\)) with occasional heating to remove excess ethylene glycol and THF. This gave pure 2-(3-
chlorophenyl)-[1,3,2]-dioxaborolane \((3.55 \mathrm{~g}, 100 \%\)) as a brown oil that solidified upon cooling in the freezer: \({ }^{1} \mathrm{H}\) NMR \(\delta 4.39(\mathrm{~s}, 4 \mathrm{H}), 7.32(\mathrm{t}, 1 \mathrm{H}), 7.44\) (ddd, 1H), 7.67 (d,1H), 7.78 (d,1H).
b) 2-Bromo-5-fluorobenzyl alcohol: 2-Bromo-5-fluorobenzaldehyde (2.05 g , 10.1 mmol) was dissolved in 20 mL of warm absolute ethanol. Upon cooling to room temperature, sodium borohydride \((0.19 \mathrm{~g}, 5.0 \mathrm{mmol})\) was slowly added to the ethanol solution. The solution was stirred at room temperature for 18 hours. 1 mL of \(\mathrm{H}_{2} \mathrm{O}\) was added to the solution and the ethanol removed under vacuum. The white residue was then partitioned between 30 mL of \(\mathrm{H}_{2} \mathrm{O}\) and 50 mL of diethyl ether. The ether was separated and the aqueous solution extracted twice more with ether (\(2 \times 50 \mathrm{~mL}\)). The ether extracts were combined, dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give pure 2-bromo-5fluorobenzyl alcohol as a white solid (1.98g, 96\%): \({ }^{1} \mathrm{H}\) NMR \(\delta 1.98(\mathrm{t}, 1 \mathrm{H}), 4.72\) (d,2H), 6.89 (dt, 1H), 7.27 (dd,1H), 7.48 (dd,1H).
c) 1-Bromo-4-fluoro-2-((methoxymethoxy)methyl)benzene: Sodium hydride (\(60 \%\) dispersion in mineral oil, \(0.225 \mathrm{~g}, 5.6 \mathrm{mmol}\)) was placed in a 250 mL round bottom flask under \(\mathrm{N}_{2}\). The NaH was washed with dry hexanes \((5 \mathrm{~mL})\). The hexanes were removed via cannula, and the process repeated twice (2 x 5 mL). The NaH was dried under vacuum until a free flowing powder resulted and placed under \(\mathrm{N}_{2}\). (2-Bromo-5-fluorophenyl)methanol (\(0.97 \mathrm{~g}, 4.7 \mathrm{mmol}\)) was dissolved in 20 mL of dry THF and added dropwise to the solid NaH . Once \(\mathrm{H}_{2}\) evolution had ceased, the solution was refluxed for 1.5 hours. The solution was allowed to cool to room temperature then cooled to \(0^{\circ} \mathrm{C}\) in an ice bath. Chloromethyl methyl ether (\(0.36 \mathrm{~mL}, 4.2 \mathrm{mmol}\)) was then added and the solution allowed to warm to room temperature. The solution was stirred at room temperature for 18 hours then filtered through a 1 cm column of Celite. The Celite was washed with THF (\(2 \times 10 \mathrm{~mL}\)). The THF filtrates were combined and evaporated under vacuum to give pure 1-bromo-4-fluoro-2((methoxymethoxy)methyl)benzene as an oil (1.05g, 99\%): \({ }^{1} \mathrm{H}\) NMR б 3.49 (s,3H), 4.63 (s,2H), 4.78(s,2H), 6.88 (dt, 1H), 7.26 (dd, 1H), 7.49 (dd, 1H).
d) (3-Chlorophenyl)(4'-fluoro-(2'-(methoxymethoxy)methyl)phenyl)borinic acid: 1-Bromo-4-fluoro-2-((methoxymethoxy)methyl)benzene (\(1.06 \mathrm{~g}, 4.2 \mathrm{mmol}\)) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(-78^{\circ} \mathrm{C}\). \(t\)-BuLi (1.7 M in pentane) \((5.3 \mathrm{~mL}, 9.0 \mathrm{mmol})\) was slowly added to the solution. After stirring for 10 minutes at \(-78^{\circ} \mathrm{C}\), 2-(3-chlorophenyl)-[1,3,2]-dioxaborolane in 10 mL of dry THF was added and the solution stirred for a further 0.5 hours. The solution was then allowed to warm to room temperature and stirred for 18 hours. The THF was removed under vacuum and the residue partitioned between 40 ml of \(\mathrm{H}_{2} \mathrm{O}\) and 80 mL of diethyl ether. The solution was vigorously stirred for several minutes then neutralized (pH 7) with 6 N HCl . The ether was separated and the aqueous solution extracted again with ether (\(2 \times 80 \mathrm{~mL}\)). The ether extracts were combined, dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a yellow oil (1.22g). \({ }^{1} \mathrm{H}\) NMR of the product shows that the desired borinic acid was formed. This was used for the next step without purification.

Note: The borinic acid could be purified by flash column chromatography on silica gel using 3:1 hexanes: ethyl acetate as eluent. However, this leads to significant loss of desired product. Subsequent reactions showed that purification at this step was not necessary. \({ }^{1} \mathrm{H}\) NMR \(\delta 3.45(\mathrm{~s}, 3 \mathrm{H}), 4.65\) (s,2H), 4.66(s,2H), 7.06-7.12 (2H), 7.34 (t,1H), 7.44 (ddd, 1H), 7.52 (dd, 1H), 7.63 (td,1H), 7.73 (d,1H), 8.00 (s,1H).
e) 1-(3-Chlorophenyl)-5-fiuoro-1,3-dihydrobenzo[c][1,2]oxaborole: The MOM protected borinic acid \((0.70 \mathrm{~g}, 2.3 \mathrm{mmol})\) was dissolved in 46 mL of THF and 4 mL of concentrated HCl . The solution was stirred at room temperature for 12 hours. 10 mL of \(\mathrm{H}_{2} \mathrm{O}\) was then added and the THF removed under vacuum. This gave a solid suspension. The solid was filtered under vacuum and washed with water \((10 \mathrm{~mL})\) then with hexanes \((5 \mathrm{~mL})\) and dried. This gave titled compound as a white solid (\(0.334 \mathrm{~g}, 59 \%\)): \({ }^{1} \mathrm{H}\) NMR \(\delta 5.38(\mathrm{~s}, 2 \mathrm{H}), 7.14\) \(7.19(2 \mathrm{H}), 7.43(\mathrm{t}, 1 \mathrm{H}), 7.52(\mathrm{td}, 1 \mathrm{H}), 8.00(\mathrm{~d}, 1 \mathrm{H}), 8.08(\mathrm{~d}, 1 \mathrm{H}), 8.13(\mathrm{dd}, 1 \mathrm{H}) ;\)

MS(ES) 247.08, 249.03 (3:1); HPLC [ret. Time (\% area)] 14.346 min (97.1\%).

1-(3-Chlorophenyl)-1,3-dihydrobenzo[c][1,2]oxaborole (12)

5

This was prepared as per the procedure in Example 11, from 2-(3-chlorophenyl)-[1,3,2]-dioxaborolane and 1-bromo-2- ((methoxymethoxy)methyl)benzene to afford white crystalline product.

5-Chloro-1-(3-Fiuorophenyl)-1,3-dihydrobenzo[c]-[1,2]oxaborole (13)

This was prepared as per the procedure in Example 11, from 2-(3-
15 fluorophenyl)-[1,3,2]-dioxaborolane and 1-bromo-4-chloro-2- ((methoxymethoxy)methyl)-benzene to afford white crystalline product.

\section*{3-(Benzo[c][1,2]oxaborol-1(3H)-yl)benzonitrile (14)}

This was prepared as per the procedure in Example 11, from 2-(3-cyanophenyl)-[1,3,2]-dioxaborolane and 1-bromo-2((methoxymethoxy)methyl)benzene to afford white crystalline product.

\section*{1-(3-Chlorophenyl)-6-fluoro-1,3-dihydrobenzo[c][1,2]oxaborole (15) \\ }
a) 2-Bromo-4-fluorobenzyl alcohol: 2-Bromo-4-fluorobenzoic acid \({ }^{(7.908 g}\), 36.1 mmol) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(0^{\circ} \mathrm{C}\). \(\mathrm{BH}_{3}\)-THF (1 M in THF) (\(72 \mathrm{~mL}, 72 \mathrm{mmol}\)) was added dropwise with stirring. Once the vigorous effervescence had subsided, the solution was stirred for a further 0.5 hours at \(0^{\circ} \mathrm{C}\) then allowed to warm to room temperature. The solution was stirred at room temperature for 18 hours. The THF was removed under vacuum and the residue dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})\). Methanol was slowly added to the solution until no bubbling could be observed and the solution was stirred for a further 15 minutes. The solvents were removed under vacuum and the residue re-dissolved in methanol (100 mL). The solution was stired for 10 minutes then the solvent was removed under vacuum. The residue was further dried for several hours under high vacuum (\(<1 \mathrm{mmHg}\)). This gave pure 2-bromo-4-fluorobenzyl alcohol as a pale yellow solid (7.33g, 99\%): \({ }^{1} \mathrm{H}\) NMR \(\delta 1.99\) (s,1H), 4.72 (s,3H), 7.05 (dt,1H), 7.31 (dd, 1H), 7.46 (dd,1H).
b) 2-Bromo-4-fluoro-1-((methoxymethoxy)methyl')benzene: Sodium hydride (\(60 \%\) dispersion in mineral oil, \(0.39 \mathrm{~g}, 9.7 \mathrm{mmol}\)) was placed in a 250 mL round bottom flask under \(\mathbf{N}_{2}\). The NaH was washed with dry hexanes \((5 \mathrm{~mL})\). The hexanes were removed via cannula, and the process repeated twice (\(2 \times\) 5 mL). The NaH was dried under vacuum until a free flowing powder resulted and placed under \(\mathrm{N}_{2}\). (2-Bromo-4-fluorophenyl)methanol (\(1.61 \mathrm{~g}, 7.8 \mathrm{mmol}\)) was dissolved in 30 mL of dry THF and added dropwise to the solid NaH . Once \(\mathrm{H}_{2}\) evolution had ceased, the solution was refluxed for 1 hour. The solution was allowed to cool to room temperature then cooled to \(0^{\circ} \mathrm{C}\) in an ice bath. Chloromethyl methyl ether (\(0.6 \mathrm{~mL}, 7.9 \mathrm{mmol}\)) was then added and the solution allowed to warm to room temperature. The solution was stirred at
room temperature for 18 hours then filtered through a 1.5 cm column of Celite. The Celite was washed with THF (\(2 \times 10 \mathrm{~mL}\)). The THF filtrates were combined and evaporated under vacuum to give pure 2-bromo-4-fluoro-1((methoxymethoxy)methyl)benzene as an oil (\(1.700 \mathrm{~g}, 87 \%\)): \({ }^{1} \mathrm{H}\) NMR ठ 3.43 (s,3H), 4.63 (s,2H), 4.75 (s,2H), 7.04 (dt,1H), 7.31 (dd,1H), 7.46 (dd,1H).
d) (3-Chlorophenyl)(5'-fluoro-(2'-(methoxymethoxy)methyl)phenyl)borinic acid: 2-Bromo-4-fluoro-1-((methoxymethoxy)methyl)benzene (\(1.70 \mathrm{~g}, 6.8 \mathrm{mmol}\)) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(-78^{\circ} \mathrm{C}\). \(t\)-BuLi (1.7 M in pentane) \((8.5 \mathrm{~mL}, 14.5 \mathrm{mmol})\) was slowly added to the solution. After stirring for 15 minutes at \(-78^{\circ} \mathrm{C}, 2\)-(3-chlorophenyl)-[1,3,2]-dioxaborolane in 10 mL of dry THF was added and the solution stirred for a further 0.5 hours. The solution was then allowed to warm to room temperature and stirred for 18 hours. The THF was removed under vacuum and the residue partitioned between 50 mL of \(\mathrm{H}_{2} \mathrm{O}\) and 80 mL of diethyl ether. The solution was vigorously stirred for several minutes then neutralized (\(\mathrm{pH}=7\)) with 6 N HCl . The ether was separated and the aqueous solution extracted again with ether (2 x 50 mL). The ether extracts were combined, dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give an orange oil \((\mathbf{2} 27 \mathrm{~g}) .{ }^{1} \mathrm{H}\) NMR of the product showed that the desired borinic acid was formed. This was used for the next step without purification.
e) 1-(3-Chlorophenyl)-6-fluoro-1,3-dihydrobenzo[c][1,2]oxaborole: The crude MOM protected borinic acid \((2.27 \mathrm{~g})\) was dissolved in 46 mL of THF and 4 mL of concentrated HCl . The solution was stirred at room temperature for 12 hours. 10 mL of \(\mathrm{H}_{2} \mathrm{O}\) was then added and the THF removed under vacuum. The aqueous solution was extracted with diethyl ether \((3 \times 50 \mathrm{~mL})\). The ether extracts were combined and washed with brine until neutral. The ether was dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give an orange oil. The crude product was purified by column chromatography on silica gel using 5:1 hexanes: ethyl acetate as eluent. After removal of the solvents, titled compound (\(\mathrm{Rf}=0.63\)) was obtained as a white solid \((0.515 \mathrm{~g}, 2.1 \mathrm{mmol} .33 \%\);
two steps): \({ }^{1} \mathrm{H}\) NMR \(\delta 5.39\) (s,2H), 7.24-7.29 (2H), 7.42-7.48 (2H), 7.53 (ddd,1H), 7.78 (dd,1H), 7.99 (d,1H), 8.07 (d,1H); MS(ES) 290.95, 292.97 (3:1) [Note: \(\mathrm{M}^{-}+\)formic acid]; HPLC [ret. Time (\% area)] 14.162 min (97.6\%). 1-(3-Chlorophenyl)-1,3-dihydro-3,3-dimethylbenzo[c][1,2]oxaborole (16)

a) 2-(2-Bromophenyl)propan-2-ol: Methyl-2-bromobenzoate (3.403g, 15.8 mmol) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(0^{\circ} \mathrm{C}\). Methyl magnesium iodide (3 M in diethyl ether) (\(11 \mathrm{~mL}, 33 \mathrm{mmol}\)) was added and the solution allowed to warm to room temperature followed by reflux for 1 hour. 50 mL of saturated ammonium chloride was added and the solution filtered under vacuum. The separated solids were washed with THF. The THF filtrates were combined and the solvent was removed under vacuum. The residue was partitioned between 40 mL of \(\mathrm{H}_{2} \mathrm{O}\) and 60 mL of diethyl ether with stirring. The ether was separated and the aqueous solution was extracted twice more with ether (\(2 \times 60 \mathrm{~mL}\)). The ether extracts were combined and washed with brine until neutral. The ether was dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a yellow oil. The crude product was purified by colùmn chromatography on silica gel using \(\mathrm{CHCl}_{3}\) as eluent. After removal of the solvent, pure 2-(2-bromo-phenyl)propan-2-ol \((\mathrm{Rf}=0.33)\) was obtained as a yellow oil (2.55g, 75\%): \({ }^{1} \mathrm{H}\) NMR \(\delta 1.75\) (s,6H), 2.79 (s,1H), 7.10 (dt,1H), 7.30 (dt, 1H), 7.58 (dd, 1H), 7.66 (dd, 1H).
b) 1-Bromo-2-(2-(methoxymethoxy)propan-2-yl)benzene: Sodium hydride (\(60 \%\) dispersion in mineral oil, \(0.576 \mathrm{~g}, 14.4 \mathrm{mmol}\)) was placed in a 250 mL round bottom flask under \(\mathrm{N}_{2}\). The NaH was washed with dry hexanes \((10 \mathrm{~mL})\). The hexanes were removed via cannula, and the process repeated twice (2 x 10 mL). The NaH was dried under vacuum until a free flowing powder resulted and placed under \(\mathrm{N}_{2}\). 2-(2-bromophenyl)propan-2-ol (\(2.55 \mathrm{~g}, 11.8 \mathrm{mmol}\)) was
dissolved in 50 mL of dry THF and added dropwise to the solid NaH . Once \(\mathrm{H}_{2}\) evolution had ceased, the solution was refluxed for 1.5 hours. The solution was allowed to cool to room temperature then cooled to \(0^{\circ} \mathrm{C}\) in an ice bath. Chloromethyl methyl ether (\(0.82 \mathrm{~mL}, 10.8 \mathrm{mmol}\)) was then added and the solution allowed to warm to room temperature. The solution was stirred at room temperature for 18 hours then filtered through a 1 cm column of Celite. The Celite was washed with THF (\(2 \times 15 \mathrm{~mL}\)). The THF filtrates were combined and evaporated under vacuum to give a brown oil. The crude product was purified by column chromatography on silica gel using 2:1 hexanes: ethyl acetate as eluent. After removal of the solvents, pure 1-bromo-2-(2-(methoxymethoxy)propan-2-yl)benzene (\(\mathrm{Rf}=0.82\)) was obtained as a yellow oil (\(1.70 \mathrm{~g}, 55 \%\)): \({ }^{1} \mathrm{H}\) NMR \(\delta 1.77\) (\(\left.\mathrm{s}, 6 \mathrm{H}\right), 3.14(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H})\), 7.10 (dt, 1H), 7.28 (dt, 1H), \(7.50(\mathrm{dd}, 1 \mathrm{H}), 7.62(\mathrm{dd}, 1 \mathrm{H})\).
c) (3-Chlorophenyl)(2-(2-(methoxymethoxy)propan-2-yl)phenylborinic acid: 2-Bromo-2-(2-(methoxymethoxy)propan-2-yl)benzene (\(1.700 \mathrm{~g}, 6.5 \mathrm{mmol}\)) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(-78^{\circ} \mathrm{C}\). \(t\)-BuLi (1.7 M in pentane)(\(8.4 \mathrm{~mL}, 14.3 \mathrm{mmol}\)) was slowly added to the solution. After stirring for 15 minutes at \(-78^{\circ} \mathrm{C}, 2\)-(3-chlorophenyl)-[1,3,2]dioxaborolane in 10 mL of dry THF was added and the solution stirred for a further 0.5 hours. The solution was then allowed to warm to room temperature and stirred for 18 hours. The THF was removed under vacuum and the residue partitioned between 50 mL of \(\mathrm{H}_{2} \mathrm{O}\) and 80 mL of diethyl ether. The solution was vigorously stirred for several minutes then neutralized (pH7) with 6 N HCl . The ether was separated and the aqueous solution extracted again with ether (\(2 \times 50 \mathrm{~mL}\)). The combined ether extracts were combined, dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give an orange oil \((2.13 \mathrm{~g})\). The crude product was purified by column chromatography on silica gel using 3:1 hexanes: ethyl acetate as eluent. After removal of the solvents, pure borinic acid (\(R f=0.80\)) was obtained as a yellow oil (\(0.87 \mathrm{~g}, 42 \%\)): \({ }^{1} \mathrm{H}\) NMR \(\delta 1.61\) (s, 6 H\(), 3.39\) (\(\mathrm{s}, 3 \mathrm{H}\)), 4.57 (s,2H), 7.19-7.55 (5H), 8.02-8.11 (3H).
e) 1-(3-Chlorophenyl)-1,3-dihydro-3,3-dimethylbenzo[c][1,2]oxaborole: The crude MOM protected borinic acid (\(0.87 \mathrm{~g}, 2.7 \mathrm{mmol}\)) was dissolved in 46 mL of THF and 4 mL of concentrated HCl . The solution was stired at room temperature for 12 hours. 10 mL of \(\mathrm{H}_{2} \mathrm{O}\) was then added and the THF removed under vacuum. The aqueous solution was extracted with diethyl ether (\(3 \times 60 \mathrm{~mL}\)). The ether extracts were combined and washed with brine until neutral. The ether was dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give a yellow oil. The crude product was purified by column chromatography on silica gel using 5:1 hexanes: ethyl acetate as eluent. After removal of the solvents, titled compound (\(\mathrm{Rf}=0.67\)) was obtained as a yellow oil \((0.29 \mathrm{~g}\), \(41 \%):{ }^{1} \mathrm{H}\) NMR \(\delta 1.64(\mathrm{~s}, 6 \mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}), 7.40-7.45(2 \mathrm{H}), 7.48-7.55(2 \mathrm{H})\), 8.03 (td, 1H), 8.07-8.11 (2H); MS(ES) 301.01, 303.02 (3:1) [Note: \(\mathrm{M}^{-}+\)formic acid] ; HPLC [ret. Time (\% area)] 15.847 min (92.2\%).

\section*{1-(4-Chiorophenyl)-1,3-dihydrobenzo[c][1,2]oxaborole (17)}

This was prepared as per the procedure in Example 11, from 2-(4-chlorophenyl)-[1,3,2]-dioxaborolane and 1-bromo-2((methoxymethoxy)methyl)benzene to afford white crystalline product.

\section*{4-(Benzo[c][1,2]oxaborol-1(3H)-yl)benzonitrile (18)}

This was prepared as per the procedure in Example 11, from 2-(4-cyanophenyl)-[1,3,2]-dioxaborolane and . 1-bromo-2-((methoxymethoxy)methyl)-benzene to afford white crystalline product.

4-(5-Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)benzonitrile (19)

This was prepared as per the procedure in Example 11, from 2-(4-cyanophenyl)-[1,3,2]-dioxaborolane and 1-bromo-4-fluoro-2-
((methoxymethoxy)methyl)benzene to afford white crystalline product.
5

\section*{3-(5-Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)benzonitrile}
(20)

This was prepared as per the procedure in Example 11, from 2-(3) cyanophenyl)-[1,3,2]-dioxaborolane and 1-bromo-4-fluoro-2((methoxymethoxy)methyl)benzene to afford white crystalline product.

\section*{3-(6-Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)benzonitrile (21)}

This was prepared as per the procedure in Example 11, from 2-(3-cyanophenyl)-[1,3,2]-dioxaborolane and 1-bromo-5-fluoro-2((methoxymethoxy)methyl)benzene to afford white crystalline product.

\section*{1-(3-Cyanophenyl)-5,6-dimethoxy-1,3-dihydrobenzo[c][1,2]-oxaborole (22)}

This was prepared as per the procedure in Example 11, from 2-(3-chlorophenyl)-[1,3,2]-dioxaborolane and 1-bromo-4,5-dimethoxy-2-((methoxymethoxy)methyl)-benzene to afford white crystalline product.

\section*{5 (4-(5-(Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)phenylmethanamine (23)}

a) N,N-Bis(methoxymethyl)-4-bromobenzylamine: To a solution of 4 bromobenzylamine hydrochloride (\(4.54 \mathrm{~g}, 20.0 \mathrm{mmol}\)) in methanol (200 mL) were added \(37 \%\) formaldehyde (25 mL) and potassium carbonate (4.28 g ,
b) 1-Bromo-4-fluoro-2-((methoxymethoxy)methyl)benzene: To a solution of 2-bromo-5-fluorobenzoic acid (\(10.3 \mathrm{~g}, 45.3 \mathrm{~g}\)) in tetrahydrofuran (50 mL) was added borane-tetrahydrofuran complex (1 M in tetrahydrofuran; 92 mL) at \(0^{\circ} \mathrm{C}\) under nitrogen atmosphere, and the mixture was stirred at room temperature overnight. Water was carefully added, and the mixture was concentrated under reduced pressure to about 50 mL . Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 2-bromo-5-fluorobenzyl alcohol, which was converted into its methoxymethyl ether in a similar manner to Example11, step (a) to afford 1-bromo-4-fluoro-2-((methoxymethoxy)methyl)benzene (9.64
g. \(85 \%\) in 2 steps): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 3.43\) (s, 3 H), 4.62 (\(\mathrm{s}, 2 \mathrm{H}\)), \(4.78(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{td}, J=8.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48\) (dd, J=8.8, \(5.3 \mathrm{~Hz}, 1 \mathrm{H}\)).
c) 5-Fluoro-2-(methoxymethoxymethyl)phenyl]-[1,3,2]-dioxaborolane: This was obtained from the above intermediate: \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.42\) \((\mathrm{s}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 4 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{td}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})\), 7.26 (dd, \(J=10.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}\)), 7.83 (dd, \(J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}\)).
d) (4-(5-(Fluorobenzo[c][1,2]oxaboro人-1(3H)-yl)phenylmethanamine: The title compound was obtained from \(\mathrm{N}, \mathrm{N}\)-bis(methoxymethyl)-4-bromobenzylamine and \(\quad 5\)-fluoro-2-[(methoxymethoxymethyl)phenyl]-[1,3,2]-dioxaboralane: \({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO-d \(\mathrm{d}_{6}\) ठ 3.72 (s, 2H), 5.29 (s, 2H), \(7.15(\mathrm{~m}, 1 \mathrm{H}), ~ 7.3-7.5\) \((\mathrm{m}, 3 \mathrm{H}), 7.96\) (d, \(J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11\) (dd, \(J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})\) : ESI-MS \(\mathrm{m} / \mathrm{z}\) 242 (positive); \(\mathrm{C}_{14} \mathrm{H}_{13}\) BFNO \(=241\).

\section*{(3-(5-(Fluorobenzo[c][1,2]oxaborol-1(3H)-yi)-phenyImethanamine (24)}

The title compound was obtained from 3-bromobenzylamine hydrochloride in a similar sequence as Example 23: \({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO- \(d_{8}\)) \(\delta 3.74\) (s , \(2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 7.1-7.5(\mathrm{~m}, 4 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 8.12\) (dd, \(J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}\)): ESI-MS \(m / 2242\) (positive); \(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BFNO}=241\).
(4-(5-(Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)phenyl)methanol (25)

The title compound was obtained from 4-bromobenzyl alcohol in a similar sequence described in Examples 11 and 23: \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\)) \(\delta\) \(4.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H})\), 7.4-7.5 (m, 3H), \(8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.22\) (dd, \(J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})\) : ESI-

\section*{(3-(5-(Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)phenyl)methanol (26)}

The title compound was obtained from 3-bromobenzyl alcohol in a sequence

\section*{3-(6-Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)phenol (27)}

The title compound was obtained from 3-bromophenol and 2-bromo-4 fluorobenzoic acid in a similar manner to Examples 11 and 23: \({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO-d \(d_{6}\)) \(\delta 5.30(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz} ; 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J\) \(=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}\)), 7.73 (d, \(J=8.8 \mathrm{~Hz}, 1 \mathrm{H}\)), 9.31 (s, 1H): ESI-MS m/z 227 (negative); \(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BFO}_{2}=228\).

\section*{3-(5-Fluorobenzo[c][1,2]oxaborol-1(3H)-yl)pyridine (28)}

43

To a solution of 3-bromopyridine (\(731 \mathrm{mg}, 4.63 \mathrm{mmol}\)) in tetrahydrofuran was added isopropylmagnesium chloride (\(1 \mathrm{~mol} / \mathrm{L} ; 2.3 \mathrm{~mL}\)) at room temperature under nitrogen atmosphere, and the mixture was stirred for 1 h . To the mixture was added 5 -fluoro-2-[(methoxymethoxymethyl)phenyl]-[1,3,2]dioxaborolane obtained in Example 23, step (c) (\(1.11 \mathrm{~g}, 4.63 \mathrm{mmol}\)) in tetrahydrofuran \((4 \mathrm{~mL})\), and the mixture was stirred at room temperature for overnight. Water was added and the pH was adjusted to pH 7 with 1 M hydrochloric acid. Then the mixture was extracted with ethyl acetate. The solvent was removed under reduced pressure, and the residue was dissolved in tetrahydrofuran (30 mL). To the mixture was added 1 M hydrochloric acid (10 mL), and the mixture was refluxed for overnight. The pH was adjusted to 7 with saturated sodium bicarbonate and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was recrystallized from diisopropyl ether to afford the title compound (\(76 \mathrm{mg}, 7.7 \%\)): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}\)) \(\delta 4.94\) (s, 2H), 6.9-7.1 (\(\mathrm{m}, 2 \mathrm{H}\)), 7.36 (br s, 1H), 7.66 (dd, \(J=6.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}\)), 8.19 (d, \(J=6.7 \mathrm{~Hz}, 1 \mathrm{H}\)), 8.24 (br s, 1H), 8.64 (d, J=5.3 Hz, 1H): ESI-MS m/z 214 (positive); \(\mathrm{C}_{12} \mathrm{H}_{9} B F N O=\) 213.

\section*{(2-(Benzo[c][1,2]oxaborol-1(3H)-yl)phenyl)methanol (29)}

a) 1-Bromo-2-((methoxymethoxy)methyl)benzene: To solution of 2bromobenzyl alcohol (\(10.0 \mathrm{~g}, 53.5 \mathrm{mmol}\)) and diisopropylethylamine (11 mL , 64 mmol) in dichloromethane (150 mL) was added chloromethyl methyl ether \(\left(4.5 \mathrm{~mL}, 59 \mathrm{mmol}\right.\)) at \(0^{\circ} \mathrm{C}\) under nitrogen atmosphere, and the mixture was stirred at room temperature for 15 h . Water was added, and the mixture was extracted with chloroform. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced
pressure, and the residue was purified by silica gel column chromatography (12:1 hexane/ethyl acetate) to give 1-bromo-2((methoxymethoxy)methyl)benzene (\(11.7 \mathrm{~g}, 95 \%\)); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) б \(3.44(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{td}, \mathrm{J}=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32\) (td, \(J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.2,1.2\) \(\mathrm{Hz}, 1 \mathrm{H}\)).
b) 2-[(Methoxymethoxy)methyl]phenylboronic acid: 1-Bromo-2-(methoxymethoxy)methylbenzene (\(2.50 \mathrm{~g}, 10.8 \mathrm{mmol}\)) in tetrahydrofuran \((25 \mathrm{~mL})\) was added sec-butyllithium (\(1.4 \mathrm{~mol} / \mathrm{L}\) in cyclohexane; 9.3 mL) at \(-78^{\circ} \mathrm{C}\) under nitrogen atmosphere. After stirring for 15 min , trimethyl borate (\(2.5 \mathrm{~mL}, 22\) \(\mathrm{mol})\) was added dropwise, and the mixture was stirred at room temperature for 16 h . Water and 1M hydrochloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (2:1 hexane/ethyl acetate) to give desired boronic acid (\(1.47 \mathrm{~g}, 69 \%\)).
c) 2-[(Methoxymethoxymethyl)pheny]-[1,3,2]-dioxaborolane: Mixture of 2-[(methoxymethoxy)methyl]phenylboronic acid (\(1.47 \mathrm{~g}, 7.50 \mathrm{mmol})\), ethylene glycol (\(466 \mathrm{mg}, 7.50 \mathrm{mmol}\)), and toluene (50 mL) was heated at reflux in a Dean-Stark apparatus for 3 h . The solvent was removed under reduced pressure to give desired boronate ester (\(1.59 \mathrm{~g}, 95 \%\)): \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\mathrm{CDCl}_{3}\)) \(\delta 3.42\) (s, 3H), 4.37 (s, 4H), 4.75 (s, 2H), 4.87 (s, 2H), 7.30 (td, \(J=7.3\), \(2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.5\) (m, 2H), 7.84 (d, \(J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\)).
d) Bis[2-(methoxymethoxymethyl)phenyl]borinic acid: A solution of 1-bromo-2((methoxymethoxy)methyl)benzene obtained in step (a) (\(1.65 \mathrm{~g}, 7.16 \mathrm{mmol}\)) in tetrahydrofuran (14 mL) was added sec-butylithium (1.4 M in cyclohexane; 6.2 mL) at \(-78^{\circ} \mathrm{C}\) under nitrogen atmosphere. After stirring for 15 min , a solution of 2-[(Methoxymethoxymethyl)pheny]-[1,3,2]-dioxaborolane obtained in step (c) \((1.59 \mathrm{~g}, 7.16 \mathrm{mmol})\) in tetrahydrofuran \((7 \mathrm{~mL})\) was added, and the mixture
was stirred at room temperature for 1 h . Water and 1 M hydrochloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford desired borinic acid (\(1.82 \mathrm{~g}, 77 \%\)).
e) (2-(Benzo[c][1,2]oxaborol-1(3H)-yl)phenyl)methanol: To a solution of the above compound (\(1.38 \mathrm{~g}, 4.18 \mathrm{mmol}\)) in tetrahydrofuran \((60 \mathrm{~mL})\) was added 1 M hydrochloric acid (20 mL), and the mixture was refluxed for 5 h . The mixture was concentrated under reduced pressure to about half volume. The precipitates formed were collected by filtration to afford the title compound (\(610 \mathrm{mg}, 65 \%\)): \({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO- \(_{6}\)) \(\delta 4.98(\mathrm{~s}, 4 \mathrm{H})\), 7.1-7.4 (m, 8H); ESI-MS m/z 223 (negative); \(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BO}_{2}=224\)

\section*{(2-(Benzo[c][1,2]oxaborol-1(3H)-yl)phenyl)-N,N-dimethylmethanamine} (30)

To a solution of (2-(benzo[c][1,2]oxaborol-1(3H)-yl)phenyl)methanol (300 mg , 1.34 mmol) in dichloromethane (10 mL) were added sequentially triethylamine (\(0.373 \mathrm{~mL}, 2.7 \mathrm{mmol}\)) and methanesulfonyl chloride (\(0.125 \mathrm{~mL}, 1.60 \mathrm{mmol}\)) at \(0^{\circ} \mathrm{C}\). After stirring for 30 min , dimethylamine (2 M in tetrahydrofuran; 3 mL) was added, and the mixture was sirred for another 30 min . Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (1:2 hexane/ethyl acetate) followed by recrystallization from diisopropyl ether/hexane to give the title compound (185 \(\mathrm{mg}, 55 \%\)): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\)) \(\delta 2.25\) (\(\mathrm{s}, 3 \mathrm{H}\)), 2.41 (s, 3H), 4.09 (br \(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-7.3\) (\(\mathrm{m}, 8 \mathrm{H}\)); ESI-MS \(\mathrm{m} / \mathrm{z} 252\) (positive); \(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BNO}=251\)
(2-(Benzo[c][1,2]oxaborol-1(3H)-yl)-5-chlorophenyl)-N,N-dimethylmethanamine (31)

a) 2-Bromo-5-chlorobenzyl bromide: A mixture of 2-bromo-5-chlorotoluene (\(12.0 \mathrm{~g}, 56.6 \mathrm{mmol}\)), \(N\)-bromosuccinimide (\(11.1 \mathrm{~g}, 62.3 \mathrm{mmol}\)), and 2,2'-azobisiso-butyronitrile (\(464 \mathrm{mg}, 2.83 \mathrm{mmol}\)) in carbon tetrachloride (220 mL) was stirred at \(50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}\), and reflux for 30 min each. After cooling down to room temperature, water was added, and the mixture was extracted with chloroform. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 2-bromo-5-chlorobenzyl bromide (17.1 g): \({ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) \(\delta 4.53\) (s, 2H), 7.15 (dd, \(J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}\), \(J=8.8 \mathrm{~Hz}, 1 \mathrm{H})\).
b) 1-Bromo-2-(dimethylamino)methyl-4-chlorobenzene: To a solution of the above compound (\(5.00 \mathrm{~g}, 17.6 \mathrm{mmol}\)) in tetrahydrofuran (10 mL) was added dimethylamine (2 M in tetrahydrofuran; 20 mL), and the mixture was stirred at room temperature for 2 h . Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 1-bromo-2-(dimethylamino)methyl-4-chlorobenzene (\(2.32 \mathrm{~g}, 53 \%\)): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 2.30(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{dd}, \mathrm{J}=7.9,2.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})\).
c) (2-(Benzo[c][1,2]oxaborol-1(3H)-yl)-5-chlorophenyl)-N,Ndimethylmethanamine To a solution of 1-bromo-2-(dimethylamino)methyl-4chlorobenzene (\(1.00 \mathrm{~g}, 4.02 \mathrm{mmol}\)) in tetrahydrofuran (8 mL) was added secbutyllithium (1.4 M in cyclo-hexane; 3.6 mL) at \(-78^{\circ} \mathrm{C}\) under nitrogen
atmosphere. After stirring for 15 min , to the mixture was added 2 -[(methoxymethoxymethyl)phenyl]-[1,3,2]dioxa-borolane (\(892 \mathrm{mg}, 4.02 \mathrm{mmol}\)) in tetrahydrofuran (4 mL), and the mixture was stirred for overnight while warming up to room temperature. Water was added, and the mixture was washed with ethyl acetate. The pH was adjusted to pH 7 with 1 M hydrochloric acid, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was dissolved in tetrahydrofuran (60 mL) and \(1 \mathrm{~mol} / \mathrm{L}\) hydrochloric acid (20 mL) was added. The mixture was refluxed for 2 h . After cooling down to room temperature, water and saturated sodium bicarbonate were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (2:3 to 1:2 hexane/ethyl acetate) followed by trituration with diisopropyl ether to give the title compound (\(356 \mathrm{mg}, 31 \%\) in 2 steps): \({ }^{1} \mathrm{H}\) NMR \((300 \mathrm{MHz}\), DMSO- \(_{6}\)) \(\delta 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.88\) (d, \(J=\) \(14.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-7.3(\mathrm{~m}, 7 \mathrm{H})\) : ESI-MS m/z 288, 286 (positive); \(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~B}^{35} \mathrm{CINO}=285\)

\section*{(2-(Benzo[c][1,2]oxaborol-1(3H)-yl)-5-chlorophenyl)methanol (32)}

a) 2-Bromo-5-chlorobenzyl alcohol: Solution of 2-bromo-5-chlorobenzyl bromide (\(12.1 \mathrm{~g}, 42.6 \mathrm{mmol}\)), sodium acetate (16.4 g, 200 mmol), and dimethylformamide (120 mL) was stirred at \(70^{\circ} \mathrm{C}\) for overnight. After cooling down to room temperature, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was dissolved in methanol (160 mL). To the mixture was
added 1 M sodium hydroxide (40 mL), and the mixture was refluxed for 2 h . The mixture was concentrated under reduced pressure to about half volume. Then water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. 5 The solvent was removed under reduced pressure and the residue was triturated with hexane to give desired alcohol (\(5.00 \mathrm{~g}, 53 \%\) in 2 steps): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\)) \(\delta 4.47(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})\), 7.26 (dd, \(J=8.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}\), \(1 \mathrm{H})\).

a) Bis[4-chloro-2-(methoxymethoxymethyl)phenyllborinic acid: To a solution of 1-bromo-4-chloro-2-((methoxymethoxy)methyl)benzene (\(3.62 \mathrm{~g}, 13.6 \mathrm{mmol}\)) in tetrahydrofuran (27 mL) was added sec-butyllithium (\(1.4 \mathrm{~mol} / \mathrm{L}\) in cyclohexane; 12 mL) at \(-78^{\circ} \mathrm{C}\) under nitrogen atmosphere. After stirring for

15 min , to the mixture was added trimethyl borate (\(706 \mathrm{mg}, 6.8 \mathrm{mmol}\)) in tetrahydrofuran (5 mL) and the mixture was stirred at room temperature for overnight. Water and \(1 \mathrm{~mol} / \mathrm{L}\) hydrochloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine

10 b) (5-Chloro-2-(5-chlorobenzo[c][1,2]oxaborol-1(3H)-yl)phenyl)methanol: The title compound was obtained from the above compound in a similar manner to Example 11, step (e) after purification by silica gel column chromatography (\(9: 1\) chloroform/methanol): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\)) \(\delta 4.93\) (s, 4H), 7.18 \((\mathrm{m}, 4 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H})\) : ESI-MS \(\mathrm{m} / \mathrm{z} 295,293,291\) (negative); \(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~B}^{35} \mathrm{C}_{2} \mathrm{O}_{2}\) \(15=292\).

\section*{(5-Chloro-2-(5-chlorobenzo[c][1,2]oxaborol-1(3H)-yl)phenyl-N,N-} dimethyl-methanamine (34)

Title compound was obtained from (5-chloro-2-(5-chlorobenzo[c]-[1,2]oxaborol-1(3H)-yl)phenyl)methanol: \({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO-d \(\mathrm{d}_{6}\)) \(\mathbf{0 . 2 6}\) (s, 3H), 2.42 (\(\mathrm{s}, 3 \mathrm{H}\)), 4.11 (d, \(J=2.9 \mathrm{~Hz}, 2 \mathrm{H}\)), \(4.86(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03\) (d; \(J=14.3 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\)), 7.1-7.2 (\(\mathrm{m}, 3 \mathrm{H}\)), 7.2-7.3 (\(\mathrm{m}, 2 \mathrm{H}\)): ESI-MS m/z 324, 322, 320 (positive); \(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~B}^{35} \mathrm{Cl}_{2} \mathrm{NO}=319\).

\section*{1-(4-chloro-2-methoxyphenyl)-1,3-dihydrobenzo[c][1,2]benzoxaborole} (35)

a) 4-Chloro-2-methoxyphenylboronic acid ethylene glycol ester. To a solution of 2-bromo-5-chloroanisole (\(4.43 \mathrm{~g}, 20 \mathrm{mmol}\)) in dry THF (100 mL) at \(-78^{\circ} \mathrm{C}\) was added dropwise t-BuLi (\(14.1 \mathrm{~mL}, 1.7 \mathrm{M}, 23.97 \mathrm{mmol}\)). The mixture was stirred for 10 min at \(-78^{\circ} \mathrm{C}\) and trimethyl borate (\(2.23 \mathrm{~mL}, 20 \mathrm{mmol}\)) was added. The cooling bath was removed and the mixture was stirred for 30 min from \(-78^{\circ} \mathrm{C}\) to room temperature and then for 3 h with a water bath. Hydrochloric acid (\(6 \mathrm{~N}, 8 \mathrm{~mL}\)) and brine were added. The mixture was extracted with ethyl acetate, dried and evaporated to give 4-chloro-2methoxyphenylboronic acid as a brown solid (\(\mathbf{3 . 3 3} \mathrm{g}, 17.88 \mathrm{mmol}\)) in \(89.4 \%\) yield. This boronic acid was mixed with ethylene glycol (\(1.1 \mathrm{~g}, 17.88 \mathrm{mmol}\)) and toluene (150 mL). The mixture was refluxed for 2 h under \(\mathrm{N}_{2}\) with the help of a Dean-Stark trap to remove water generated. After being cooled to room temperature, the solution was transfered to another dry flask and rotary evaporated to provide 4-Chloro-2-methoxyphenylboronic acid ethylene glycol ester as a brown liquid (\(\mathbf{3 . 6} \mathrm{g}, 16.97 \mathrm{mmol}\)) in \(84.8 \%\) yield.
b) 1-(4-chloro-2-methoxyphenyl)-1,3-dihydrobenzo[c][1,2]benzoxaborole: To a solution of 2-(methoxymethoxymethyl) phenyl bromide (\(3.929 \mathrm{~g}, 17 \mathrm{mmol}\)), which was obtained as described in Example 11(a), in dry THF (\(150-200 \mathrm{~mL}\)) at \(-78^{\circ} \mathrm{C}\) was added dropwise t -BuLi (\(12 \mathrm{~mL}, 1.7 \mathrm{M}, 20.4 \mathrm{mmol}\)). The mixture was stirred for 10 min at \(-78^{\circ} \mathrm{C}\) and a solution of 4-chloro-2methoxyphenylboronic acid ethylene glycol ester (\(3.6 \mathrm{~g}, 17 \mathrm{mmol}\)) in THF (30 mL) was added resulting in a viscous mixture. The cooling bath was removed and the mixture was stirred for 30 min from \(-78^{\circ} \mathrm{C}\) to room temperature and then for 3 h with a water bath. Hydrochloric acid (\(6 \mathrm{~N}, 12 \mathrm{~mL}\)) was added and the mixture was stirred briefly for 5 min . The aqueous layer was removed and the THF layer was rotary evaporated. The residue was mixed with THF (50 mL), methanol (50 mL) and \(6 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})\) giving a homogeneous solution
that was stirred for 30 min at room temperature. Organic solvents were rotary evaporated and the residue was extracted with ethyl acetate \((3 \times 80 \mathrm{~mL})\). The combined ethyl acetate solution was washed with brine, dried and evaporated. The residue was purified by flash column chromatography eluted with a mixed solvent of hexanes and ethyl acetate (\(6: 1, \mathrm{v} / \mathrm{v}\)) to provide 1,3-dihydro-1-(4-chloro-2-methoxyphenyl)-2,1-benzoxaborole as a white solid (AN-2551, \(2.63 \mathrm{~g}, 10.17 \mathrm{mmol}\)) in \(59.8 \%\) yield. M.p. \(66-68^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (DMSO-d \({ }_{6}, 300 \mathrm{MHz}\)): \(\delta 8.05(\mathrm{dm}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=\right.\) \(2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{dt}\), \(\left.J_{1}=8.1 \mathrm{~Hz}, \mathrm{~J}_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.34(\mathrm{~s}, 2 \mathrm{H})\) and \(3.904 \& 3.898(\mathrm{~s} \& \mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).

\section*{2-(Benzo[c][1,2]oxaboral-1(3H)-yl)-5-chlorophenol (36)}

To a solution of 1,3-dihydro-1-(4-chloro-2-methoxyphenyl)-2,1-benzoxaborole as a white solid (AN-2551, \(0.5 \mathrm{~g}, 1.93 \mathrm{mmol}\)) in anhydrous methylene chloride (25 mL) at \(-78^{\circ} \mathrm{C}\) was added dropwise a solution of boron tribromide in methylene chloride (\(1.0 \mathrm{M}, 1.93 \mathrm{~mL}, 1.93 \mathrm{mmol}\)) under nitrogen. The mixture was stirred at \(-78^{\circ} \mathrm{C}\) for 1 h and at room temperature for 4 h . Then the reaction flask was re-cooled to \(-78^{\circ} \mathrm{C}\) and methanol (10 mL) was added. The reaction mixture was warmed to room temperature and \(6 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})\) was added. The mixture was evaporated to give a residue that was mixed with ethyl acetate. The organic layer was washed with brine, dried and evaporated. The residue was purified by flash column chromatography eluted with a mixed solvent of hexanes and ethyl acetate (\(4: 1, \mathrm{v} / \mathrm{v}\)) to provide the desired compound 1,3-dihydro-1-(4-chloro-2-hydroxyphenyl)-2,1-benzoxaborole as a white solid (\(0.32 \mathrm{~g}, 1.31 \mathrm{mmol}\)) in \(67.8 \%\) yield. M.p. \(96-98^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (MeOH-d4, 300 \(\mathrm{MHz}): \delta 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 2 \mathrm{H})\), 7.43-7.38(m, 1H), 6.96-6.91 (m, 1H), 6.89-6.88(m, 1H) and \(5.41(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).

\section*{2-(3-(Benzo[c][1.2]oxaborol-1(3H)-yl)phenoxy)-5-chlorophenol (37)}

a) 3-(4-Chloro-2-methoxyphenoxy)phenyl bromide: To a three-necked flask equipped with a thermometer, a condenser-topped Dean-Stark trap and a rubber septa were added 4-chloro-2-methoxyphenol (\(10 \mathrm{~g}, 63.05 \mathrm{mmol}\)), 1,3dibromobenzene (\(14.88 \mathrm{~g}, 63.05 \mathrm{mmol}\)), copper powder (\(0.4 \mathrm{~g}, 6.3 \mathrm{mmol}\)) and potassium hydroxide (\(5 \mathrm{~g}, 75.7 \mathrm{mmol}\)). Under nitrogen atmosphere, the mixture was stirred and heated slowly to \(220-230^{\circ} \mathrm{C}\) and kept at this temperature for 1 h . After being cooled to room temperature, methylene chloride was added and the mixture was filtered. The filtrate was washed with \(10 \% \mathrm{NaOH}(2 \times 200 \mathrm{~mL})\), dried and evaporated. The residue was purified by flash column chromatography over silica gel eluted with a mixed solvent of hexanes and EtOAc (6:1, \(v / v\)) to provide 3-(4-chloro-2methoxyphenoxy)phenyl bromide as a liquid-solid mixed form (\(3.09 \mathrm{~g}, 9.85\) mmol) in \(15.6 \%\) yield. \({ }^{1} \mathrm{H}\) NMR (DMSO-d \({ }_{6}, 300 \mathrm{MHz}\)): \(\delta\) 7.29-7.20 (\(\mathrm{m}, 3 \mathrm{H}\)), \(7.12\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H})\) and 3.75 (s, 3 H) ppm.
b) 3-(4-Chloro-2-hydroxyphenoxy)phenyt bromide: The demethylation procedure used in Example 37 was adapted for the synthesis of 3-(4-chloro-2hydroxyphenoxy)phenyl bromide from 3-(4-chloro-2-methoxyphenoxy)phenyl bromide. The crude product was purified by flash column chromatography eluted with a mixed solvent of hexanes and EtOAc (6:1, v/v) to give 3-(4-chloro-2-hydroxyphenoxy)phenyl bromide as a white solid in \(100 \%\) yield. M.p. \(63-65^{\circ} \mathrm{C}\); MS (ESI, negative): \(\mathrm{m} / \mathrm{z}=299\) (\(\mathrm{M}-1\)); \({ }^{1} \mathrm{H}\) NMR (DMSO-d \({ }_{6}, 300 \mathrm{MHz}\)): \(\delta 10.21\) (s, 1H), 7.28-7.19 (m, 2H), 7.05 (\(\mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.97\) (\(\mathrm{m}, 2 \mathrm{H}\)) and 6.89-6.82 (\(\mathrm{m}, 2 \mathrm{H}\)) ppm.
c) 3-(4-Chloro-2-methoxymethoxyphenoxy)phenyl bromide: The methoxymethyl protection procedure used in Example 11(a) was adapted for
the synthesis of 3-(4-chloro-2-methoxymethoxyphenoxy)phenyl bromide from 3-(4-chloro-2-hydroxyphenoxy)phenyl bromide. The crude product was purified by flash column chromatography eluted with a mixed solvent of hexanes and ethyl acetate (5:1, v/v) to afford 3-(4-chloro-2- methoxymethoxyphenoxy)phenyl bromide as a coloriess oil in \(84.5 \%\) yield. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) (DMSO-d \(\mathrm{d}_{6}, 300 \mathrm{MHz}\)): 8 7.33-7.01 (m, 6H), 6.89-6.85 (m, 1H), 5.18 (s, 2H) and 3.21 (s, 3H) ppm.
d): 2-(3-(Benzo[c][1.2]oxaborol-1(3H)-y/)phenoxy)-5-chlorophenol The

The title compound was obtained from (3-(5-(fluorobenzo[c][1,2]oxaborol\(1(3 H)\)-yl)phenyl)methanol obtained in Example 27 and morpholine. It was dissolved in ether and treated solution of 0.25 M fumaric acid in methanol. 5 The solvent was removed under reduced pressure and the residue was triturated with diisopropyl ether to afford the title compound as fumarate salt: \({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO-d \(\mathrm{d}_{6}\) ठ \(2.41(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 6.60\) (s, 1H); 7.23 (t, \(J=9.1 \mathrm{~Hz}, 1 \mathrm{H}\)), 7.3-7.5 (m, 3H), \(7.94(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{dd}, J=\) \(7.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}\)): ESI-MS \(m / z 312\) (positive); \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BFNO}_{2}=311\). quinoline-2-carboxylate (39)

8-hydroxy-

A mixture of (3-(5-(fluorobenzo[c][1,2]oxaborol-1(3H)-yl)-phenyl)methanol from Example 27 (\(100 \mathrm{mg}, 0.413 \mathrm{mmol}\)), 8-hydroxyquinoline-2-carboxylic acid (\(156 \mathrm{mg}, 0.826 \mathrm{mmol}\)), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (159 \(\mathrm{mg}, 0.826 \mathrm{mmol}\)), 1-hydroxybenzotriazole (\(112 \mathrm{mg}, 0.826 \mathrm{mmol}\)), and 4-N,Ndimethylaminopyridine (\(101 \mathrm{mg}, 0.826 \mathrm{mmol}\)) in dimethylformamide \((3 \mathrm{~mL})\) was stirred at room temperature for ovemight. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (\(1: 1\) hexane/ethyl acetate) followed by recrystallization from ethyl acetate/hexane to give the title compound (\(92 \mathrm{mg}, 54 \%\)): \({ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.36\) (dd, \(J=\) \(9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.6(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}\),
\(1 \mathrm{H}), 8.1-8.2(\mathrm{~m}, 3 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.0(\mathrm{~s}, 1 \mathrm{H})\) : ESI-MS \(\mathrm{m} / 2414\) (positive), 412 (negative); \(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BFNO}_{4}=413\).

\section*{1-(3-Chlorophenyl)-2,3-dihydro-2-(methoxymethy)-1H-benzo[c][1,2]aza-} borole (40)

a) \(\mathrm{N}, \mathrm{N}\)-Bis(methoxymethyl)-2-bromobenzylamine: A solution of 2-bromobenzyl-amine hydrochloride (\(4.85 \mathrm{~g}, 20.7 \mathrm{mmol}\)) in methanol (200 mL) was added \(37 \%\) formaldehyde \((25 \mathrm{~mL})\) and potassium carbonate \((4.28 \mathrm{~g}, 31.0\) \(\mathrm{mmol})\), and the mixture was stirred at room temperature ovemight. The mixture was evaporated under reduced pressure to a third of volume. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford \(\mathrm{N}, \mathrm{N}\) -bis(methoxymethyl)-2-bromobenzylamine (5.76 g , quant): \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right)\) ठ \(3.28(\mathrm{~s}, 6 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 4 \mathrm{H}), 7.12(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.28(\mathrm{td}, J=7.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.9\), 1.2 Hz, 1H).
b) 3-Chlorophenyl 2-[N,N-bis(methoxymethyl)aminomethyl]phenylborinic acid. To a solution of the above compound (\(2.74 \mathrm{~g}, 10.0 \mathrm{mmol}\)) in tetrahydrofuran (20 mL) was added sec-butyllithium (\(1.4 \mathrm{~mol} / \mathrm{L}\) in cyclohexane; 10 mL) at - 78 \({ }^{\circ} \mathrm{C}\) under nitrogen atmosphere. After stirring for 15 min , to the mixture was added 3 -chlorophenyl-[1,3,2]-dioxaborolane (\(1.82 \mathrm{~g}, 10.0 \mathrm{mmol}\)) in tetrahydrofuran (8 mL), and the mixture was stirred at room temperature for 2 h. Water and 1 M hydro-chloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced
pressure to afford 3-chlorophenyl 2-[N,N- bis(methoxymethyl)aminomethyllphenylborinic acid (\(2.57 \mathrm{~g}, 77 \%\)).
c)

1-(3-Chlorophenvl)-2,3-dihydro-2-(methoxymethy)-1H-
benzofcl[1,2]azaborole: To a solution of the above compound (\(1.00 \mathrm{~g}, 4.18\) mmol) in ethanol (27 mL) was added conc. hydrochloric acid (3 mL), and the mixture was refluxed for overnight. Saturated sodium bicarbonate was added and the mixture was extracted with ethyl aceate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (\(9: 1\) chloroform/methanol) to give the title compound (\(550 \mathrm{mg}, 68 \%\)): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}\)) \(\delta 3.03(\mathrm{~s}, 3 \mathrm{H}\)), 3.9-4.2 (m, 2H), 5.94 (br s, 2H), 7.0-7.3 (m, 7H).

1-(3-Chlorophenyl)-1,3,4,5-tetrahydrobenzo-[c][1,2]-oxaborepine (41)

a) 3-(2-Bromophenyl)propan-1-ol: 3-(2-Bromophenyl)propionic acid (4.989g, 21.8 mmol) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(0^{\circ} \mathrm{C}\). \(\mathrm{BH}_{3}-\mathrm{THF}\) (1 M in THF) \((40 \mathrm{~mL}, 40 \mathrm{mmol}\)) was added dropwise with stirring. Once the vigorous effervescence had subsided, the solution was stired for a further 0.5 hours at \(0^{\circ} \mathrm{C}\) then allowed to warm to room temperature. The solution was stirred at room temperature for 18 hours. The THF was removed under vacuum and the residue dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})\). Methanol was slowly added to the solution until no bubbling could be observed and the solution was stirred for a further 15 minutes. The solvents were removed under vacuum and the residue re-dissolved in methanol (100 mL). The solution was stirred for 10 minutes then the solvent was removed under vacuum. The residue was further dried for several hours under high vacuum
(<1mmHg). This gave pure 3-(2-bromophenyl)-propan-1-ol as a yellow oil (4.54g, 97\%): \({ }^{1} \mathrm{H}\) NMR ס \(1.90(\mathrm{tt}, 2 \mathrm{H}), 2.84(\mathrm{t}, 2 \mathrm{H}), 3.71(\mathrm{t}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 1 \mathrm{H})\), \(7.24(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H})\).
b) 1-Bromo-2-(2-(methoxymethoxy)propyl)benzene: 3-(2-Bromophenyl)propan-1-0l (\(2: 123 \mathrm{~g}, 9.9 \mathrm{mmol}\)) was dissolved in 50 mL of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). at room temperature under \(\mathrm{N}_{2}\). Diisopropylethylamine (\(1.9 \mathrm{~mL}, 10.9 \mathrm{mmol}\)) and chloromethyl methyl ether (\(0.82 \mathrm{~mL}, 10.8 \mathrm{mmol}\)) were then added and the solution was stirred at room temperature for 18 hours. The reaction mixture was poured into a separatory funnel and extracted with \(\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})\) followed by brine (\(1 \times 20 \mathrm{~mL}\)). The \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) was dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated under vacuum to give pure 1-bromo-2-(2(methoxymethoxy)propyl)benzene as a yellow oil (\(2.45 \mathrm{~g}, 96 \%\)): \({ }^{1} \mathrm{H}\) NMR \(\delta\) \(1.92(\mathrm{tt}, 2 \mathrm{H}), 2.83(\mathrm{t}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H})\), \(7.24(m, 2 H), 7.53(\mathrm{~d}, 1 \mathrm{H})\).
c) 1-(3-Chlorophenyl)-1,3,4,5-tetrahydrobenzo[c][1,2]oxaborepine: 2-Bromo-2-(3-methoxymethoxypropyl)benzene (\(1.212 \mathrm{~g}, 4.7 \mathrm{mmol}\)) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(-78^{\circ} \mathrm{C}\). \(t\)-BuLi (1.7M in pentane) \((6.0 \mathrm{~mL}\), 10.2 mmol) was slowly added to the solution. After stirring for 15 minutes at \(78^{\circ} \mathrm{C}, 2\)-(3-chloro-phenyl)-[1,3,2]dioxaborolane was added and the solution stirred for a further 0.5 hours. The solution was then allowed to warm to room temperature and stirred for 18 hours. 5 ml of concentrated HCl was then added and the solution stirred at room temperature for a further 24 hours. 10 mL of \(\mathrm{H}_{2} \mathrm{O}\) was then added and the THF removed under vacuum. The aqueous solution was extracted with diethyl ether (\(3 \times 50 \mathrm{~mL}\)). The ether extracts were combined and washed with brine until neutral. The ether was dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give an orange oil. The crude product was purified by column chromatography on silica gel using \(5: 1\) hexanes: ethyl acetate as eluent. After removal of the solvents, titled compound \((R f=0.82)\) was obtained as a yellow oil \((0.480 \mathrm{~g}, 40 \%)\) : \({ }^{1} \mathrm{H}\) NMR \(\delta\) \(2.18(\mathrm{tt}, 2 \mathrm{H}), 2.81(\mathrm{t}, 2 \mathrm{H}), 4.11(\mathrm{t}, 2 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}), 7.29-7.36(2 \mathrm{H}), 7.40-7.49\)
(3H), 7.73 (td, 1H), \(7.84(\mathrm{~m}, 1 \mathrm{H})\); MS(ES) no molecular ion observed; HPLC [ret. Time (\% area)] 15.573 min (\(96.9 \%\)).

\section*{1-(3-Chlorophenyl)-3,4-dihydro-1H-benzo[c][1,2]-oxaborinine (42)}

a) 2-(3-Chlorophenyl)-[1,3,2]dioxaborolane: 3-Chlorophenyl boronic acid (\(3.041 \mathrm{~g}, 19.4 \mathrm{mmol}\)) was dissolved in 75 mL of dry THF under \(\mathrm{N}_{2}\). Ethylene glycol (\(1.323 \mathrm{~g}, 21.3 \mathrm{mmol}\)) was added and the solution refluxed for 18 hours. The solution was allowed to cool and the THF removed under vacuum. The residue was further dried under high vacuum (\(<1 \mathrm{mmHg}\)) with occasional heating to remove excess ethylene glycol and THF. This gave pure 2-(3-chlorophenyl)-[1,3,2]dioxaborolane \((3.55 \mathrm{~g}, 100 \%)\) as a brown oil that solidified upon cooling in the freezer. \({ }^{1} \mathrm{H}\) NMR \(\delta 4.39(\mathrm{~s}, 4 \mathrm{H}), 7.32(\mathrm{t}, 1 \mathrm{H}), 7.44\) (ddd, 1H), 7.67 (d,1H), 7.78 (d,1H).
b) 1-Bromo-2-(2-(methoxymethoxy)ethyl)benzene: Sodium hydride (60\% dispersion in mineral oil, \(0.966 \mathrm{~g}, 24.1 \mathrm{mmol}\)) was placed in a 250 mL round bottom flask under \(\mathrm{N}_{2}\). The NaH was washed with dry hexanes \((10 \mathrm{~mL})\). The hexanes were removed via cannula, and the process repeated twice (2 x 10 mL). The NaH was dried under vacuum until a free flowing powder resulted and placed under \(\mathrm{N}_{2}\). 2-(2-bromophenyl)ethanol (\(4.016 \mathrm{~g}, 20 \mathrm{mmol}\)) was dissolved in 60 mL of dry THF and added dropwise to the solid NaH . Once \(\mathrm{H}_{2}\) evolution had ceased, the solution was refluxed for 1 hour. The solution was allowed to cool to room temperature then cooled to \(0^{\circ} \mathrm{C}\) in an ice bath. Chloromethyl methyl ether (\(1.52 \mathrm{~mL}, 20 \mathrm{mmol}\)) was then added and the solution allowed to warm to room temperature. The solution was stirred at room temperature for 18 hours then filtered through a 1.5 cm column of Celite. The Celite was washed with THF (\(2 \times 15 \mathrm{~mL}\)). The THF filtrates were combined and evaporated under vacuum to give pure methoxymethoxy ether
as an oil (4.64g, 95\%): \({ }^{1} \mathrm{H}\) NMR \(\delta 3.06(\mathrm{t}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, 2 \mathrm{H}), 4.62\) (s,2H), 7.08 (dt, 1H), \(7.26(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, 1 \mathrm{H})\).
c) (3-Chlorophenyl)(2'-(2-(methoxymethoxy)ethyl)phenyl)borinic acid: 1- Bromo-2-(2-(methoxymethoxy)ethyl)benzene (\(2.21 \mathrm{~g}, 9.0 \mathrm{mmol}\)) was dissolved in 50 mL of dry THF under \(\mathrm{N}_{2}\) and cooled to \(-78^{\circ} \mathrm{C}\). \(t\)-BuLi (1.7 M in pentane)(\(11.7 \mathrm{~mL}, 19.9 \mathrm{mmol}\)) was slowly added to the solution. After stirring for 15 minutes at \(-78^{\circ} \mathrm{C}, 2\)-(3-chlorophenyl) \(-[1,3,2]\) dioxaborolane in 10 mL of dry THF was added and the solution stirred for a further 0.5 hours. The solution was then allowed to warm to room temperature and stirred for 18 hours. The THF was removed under vacuum and the residue partitioned between 50 mL of \(\mathrm{H}_{2} \mathrm{O}\) and 80 mL of diethyl ether. The solution was vigorously stirred for several minutes then neutralized (\(\mathrm{pH}=7\)) with 6 N HCl . The ether was separated and the aqueous solution extracted again with ether (2 x 50 mL). The ether extracts were combined, dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give an orange oil (2.83g). \({ }^{1} \mathrm{H}\) NMR of the product showed that the desired borinic acid was formed. This was used for the next step without purification.
d) 1-(3-Chlorophenyl)-3,4-dihydro-1H-benzo[c][1,2]oxaborinine: The crude MOM protected borinic acid \((\mathbf{2} .83 \mathrm{~g})\) was dissolved in 46 mL of THF and 4 mL of concentrated HCl . The solution was stirred at room temperature for 12 hours. 10 mL of \(\mathrm{H}_{2} \mathrm{O}\) was then added and the THF removed under vacuum. The aqueous solution was extracted with diethyl ether \((3 \times 50 \mathrm{~mL})\). The ether extracts were combined and washed with brine until neutral. The ether was dried with \(\mathrm{MgSO}_{4}\), filtered and evaporated to give an orange oil (2.5 g). The crude product was purified by column chromatography on silica gel using 5:1 hexanes: ethyl acetate as eluent. After removal of the solvents, pure product \((\mathrm{Rf}=0.66)\) was obtained as a yellow oil \((0.600 \mathrm{~g}, 27 \%\); two steps): 1 H NMR \(\delta\) \(3.03(\mathrm{t}, 2 \mathrm{H}), 4.35(\mathrm{t}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 1 \mathrm{H}), 7.32-7.39(2 \mathrm{H}), 7.44-7.50(2 \mathrm{H}), 7.75\) (d,1H), \(7.79(\mathrm{~d}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 1 \mathrm{H}):\) MS(ES) 243.01; HPLC [ret. time(\% area)] 14.623 min (\(96.8 \%\)).

\section*{WHAT IS CLAIMED IS:}
1. A compound having the structure of Formula 1

Formula 1
wherein \(B\) is boron, \(M\) is selected from oxygen, sulfur and \(N R^{* *}\)
wherein \(R^{*}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{* *}\) is \(H\), alkyl, alkyloxy, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl,
and wherein \(A\) is \(C H, C R^{1}\), or \(N\)
and wherein D is \(\mathrm{CH}, C R^{2}\), or N
and wherein E is \(\mathrm{CH}, \mathrm{CR}^{3}\), or N
and wherein G is \(\mathrm{CH}, \mathrm{CR}{ }^{4}\), or N
and the combination of nitrogens \((A+D+E+G)\) is 0-3
and wherein \(J\) is \(\left(\mathrm{CH}_{2}\right)_{n}(n=0\) to 2\()\) or \(\mathrm{CHR}^{5}\)
and wherein \(W\) is \(\left(\mathrm{CH}_{2}\right)_{m}(\mathrm{~m}=0\) to 1\(), \mathrm{C}=\mathrm{O}\) (carbonyl) or \(\mathrm{CHR}^{6}\)
wherein \(R^{1}, R^{2}, R^{3}\) and \(R^{4}\) are each independently selected from the group consisting of hydrogen, haloalkyl, alkyl, \(\left(\mathrm{CH}_{2}\right)_{p} \mathrm{OH}(p=1\) to 3\()\), halogen, \(\mathrm{CHO}, \mathrm{CH}=\mathrm{NOH}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\)-alkyl, S-alkyl, \(\mathrm{SO}_{2}\)-alkyl, S-aryl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{q}} \mathrm{NR}^{18} \mathrm{R}^{19}\) (wherein \(\mathrm{R}^{18}\) and \(\mathrm{R}^{19}\) are independently selected from hydrogen, alkyl, and alkanoyl)(q \(=0\) to 2), alkoxy, \(\mathrm{CF}_{3}, \mathrm{SCF}_{3}, \mathrm{NO}_{2}, \mathrm{SO} 3 \mathrm{H}, \mathrm{OH}\), substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, fused substituted or unsubstituted aryl, fused substituted or unsubstituted heteroaryl,
wherein \(R^{5}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{6}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
including salts thereof, especially all pharmaceutically acceptable salts.
2. The compound of claim 1 wherein \(M\) is oxygen.
3. The compound of claim 1 wherein \(M\) is sulfur.
4. The compound of claim 1 wherein \(M\) is \(N R^{* *}\).
5. The compound of claim 1 wherein \(R^{*}\) is a substituted or unsubstituted alkyl \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\).
6. The compound of claim \(I\) wherein \(R^{*}\) is a substituted or unsubstituted cycloalkyl (\(\mathrm{C}_{3}-\mathrm{C}_{7}\)).
7. The compound of claim 1 wherein \(R^{*}\) is a substituted or unsubstituted alkenyl.
8. The compound of claim 7 wherein said alkenyl has the structure

wherein \(R^{7}, R^{8}\), and \(R^{9}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{r}} \mathrm{OH}\) (where rl to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\) - alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
9. The compound of claim 1 wherein \(R^{*}\) is a substituted or unsubstituted alkynyl.
10. The compound of claim 9 wherein said alkynyl has the structure

wherein \(\mathrm{R}^{\mathbf{7}}\) is selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{O}} \mathrm{OH}\) (where r \(=I\) to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3} \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
11. The compound of claim ! wherein \(R^{*}\) is a substituted or unsubstituted aryl.
12. The compound of claim 11 wherein said aryl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}\) (where \(s=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, \(\mathrm{CON}(\text { alkyl })_{2}\), OH , alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl,
\(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right) \mathrm{NR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{22}\) and \(\mathrm{R}^{23}\) are independently selected from hydrogen, alkyl, and alkanoyl)(\(\mathrm{t}=0\) to 2), \(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NHalkyl}^{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\text { alkyl })_{2}\), oxazolidin-2yl , or alkyl substituted oxazolidin-2-yl.
13. The compound of claim 1 wherein \(R^{*}\) is a substituted or unsubstituted aralkyl.
14. The compound of claim 13 wherein said aralkyl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}\) (where \(\mathrm{s}=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, CON(alkyl) \(2_{2}, \mathrm{OH}\), alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right)_{t} \mathrm{NR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{22}\) and \(\mathrm{R}^{23}\) are independently selected from hydrogen, alkyl, and alkanoyl) (\(\mathrm{t}=0\) to 2), \(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NHalkyl}^{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\text { alkyl })_{2}\), oxazolidin-2yl , or alkyl substituted oxazolidin-2-yl.
15. The compound of claim 1 wherein \(R^{*}\) is a substituted or unsubstituted heteroaryl.
16. The compound of claim 15 wherein said heteroaryl has the structure

or

64
SUBSTITUTE SHEET (RULE 26)
wherein \(X=\mathrm{CH}=\mathrm{CH}, \mathrm{N}=\mathrm{CH}, \mathrm{NR}^{17}\) (wherein \(\mathrm{R}^{17}=\mathrm{H}\), alkyl, aryl or benzyl), O, or S
and wherein \(Y=\mathrm{CH}\) or N
and wherein \(R^{15}\) and \(R^{16}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{u}} \mathrm{OH}\) (where \(\mathrm{u}=\mathrm{I}\) to 3), \(\left(\mathrm{CH}_{2}\right) \mathrm{vR}^{24} \mathrm{R}^{25}\) (wherein \(\mathrm{R}^{24}\) and \(\mathrm{R}^{25}\) are independently selected from hydrogen alkyl and alkanoyl, \(\mathrm{v}=0\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), S-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
17. A compound having the structure of compound \(11,12,13,14,15\), \(16,17,18,19,20,21,22,23\) or 24.
18. A composition comprising a compound of claim 1 in a pharmaceutically acceptable carrier.
19. A composition comprising a compound of claim 17 in a pharmaceutically acceptable carrier.
20. A method for inhibiting microbial growth comprising contacting a bacterium with a compound having the structure of Formula 1

Formula 1
wherein B is boron, M is selected from oxygen, sulfur and \(N R^{* *}\)
wherein \(R^{*}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{* *}\) is \(H\), alkyl, alkyloxy, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl,
and wherein \(A\) is \(C H, C R^{1}\), or \(N\)
and wherein \(D\) is \(C H, C A^{2}\), or \(N\)
and wherein \(E\) is \(C H, C R^{3}\), or \(N\)
and wherein G is \(\mathrm{CH}, \mathrm{CR}^{4}\), or N
and the combination of nitrogens \((A+D+E+G)\) is \(0-3\)
and wherein J is \(\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{n}=0\) to 2\()\) or \(\mathrm{CHR}^{5}\)
and wherein W is \(\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}(\mathrm{m}=0\) to 1\(), \mathrm{C}=\mathrm{O}\) (carbonyl) or \(\mathrm{CHR}^{6}\)
wherein \(R^{1}, R^{2}, R^{3}\) and \(R^{4}\) are each independently selected from the group consisting of hydrogen, haloalkyl, alkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{p}} \mathrm{OH}(\mathrm{p}=1\) to 3\()\), halogen, \(\mathrm{CHO}, \mathrm{CH}=\mathrm{NOH}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\)-alkyl, S-alkyl, \(\mathrm{SO}_{2}\)-alkyl, S-aryl, \(\left(\mathrm{CH}_{2}\right)_{q} \mathrm{NR}^{18} \mathrm{R}^{18}\) (wherein \(R^{18}\) and \(R^{19}\) are independently selected from hydrogen, alkyl, and alkanoyl) (\(q=0\) to 2), atkoxy, \(\mathrm{CF}_{3} . \mathrm{SCF}_{3}, \mathrm{NO}_{2}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{OH}\), substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, fused substituted or unsubstituted aryl, fused substituted or unsubstituted heteroaryl,
wherein \(R^{5}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl,
wherein \(R^{6}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl, including salts thereof, especially all pharmaceutically acceptable salts.
21. The method of claim 20 wherein \(M\) is oxygen.
22. The method of claim 20 wherein \(M\) is sulfur.
23. The method of claim 20 wherein \(M\) is \(N R^{* *}\).
24. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\).
25. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted cycloalkyl (\(C_{3}-C_{7}\)).
26. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted alkenyl.
27. The method of claim 26 wherein said alkenyl has the structure

wherein \(\mathbf{R}^{\mathbf{7}}, \mathbf{R}^{\mathbf{8}}\), and \(\mathbf{R}^{9}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right) \mathrm{OH}\) (where \(\mathrm{r}=1\) to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
28. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted alkynyl.
29. The method of claim 28 wherein said alkynyl has the structure

67
wherein \(\mathrm{R}^{7}\) is selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{r}} \mathrm{OH}\) (where r \(=1\) to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
30. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted aryl.
31. The method of claim 30 wherein said aryl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{s} \mathrm{OH}\) (where \(s=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, \(\mathrm{CON}(\text { alkyl })_{2}, \mathrm{OH}\), alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S -aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right) \mathrm{NR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{22}\) and \(\mathrm{R}^{23}\) are independently selected from hydrogen, alkyl, and alkanoyl) (\(\mathrm{t}=0\) to 2), \(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NHalkyl}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\text { alkyl) })_{2}\), oxazolidin-2yl , or alkyl substituted oxazolidin-2-yl.
32. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted aralkyl.
33. The method of claim 32 wherein said aralkyl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{s}} \mathrm{OH}\) (where \(\mathrm{s}=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, \(\mathrm{CON}(\text { alkyl })_{2}, \mathrm{OH}\), alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right)_{1} \mathrm{NR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{22}\) and \(\mathrm{R}^{22}\) are independently selected from hydrogen, alkyl; and alkanoyl)(t \(=0\) to 2), \(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\) alkyl, \(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) (alkyl), oxazolidin-2yl, or alkyl substituted oxazolidin-2-yl.
34. The method of claim 20 wherein \(R^{*}\) is a substituted or unsubstituted heteroaryl.
35. The method of claim 34 wherein said heteroaryl has the structure

wherein \(X=\mathrm{CH}=\mathrm{CH}, \mathrm{N}=\mathrm{CH}, \mathrm{NR}^{17}\) (wherein \(\mathrm{R}^{17}=\mathrm{H}\), alkyl, aryl or benzyl), \(O\), or \(S\)
and wherein \(Y=\mathrm{CH}\) or N
and wherein \(R^{15}\) and \(R^{16}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{u} \mathrm{OH}\) (where \(u=\) to 3), \(\left(\mathrm{CH}_{2}\right)_{v} \mathrm{NR}^{24} \mathrm{R}^{25}\) (wherein \(\mathrm{R}^{24}\) and \(R^{25}\) are independently selected from hydrogen, alkyl and alkanoyl, \(v=0\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
36. The method of claim 18 wherein said compound has the structure of compound \(11,12,13,14,15,16,17,18,19,20,21,22,23\) or 24.
37. The method of claim 18 wherein said contacting occurs in vivo.
38. A method for treating a microbial-caused disease in a patient afflicted therewith comprising administering to said patient a therapeutically effective amount of a compound of claim 1.
39. The method of claim 38 wherein said microbe is a bacterium.
40. The method of claim 39 wherein said bacterium is a gram positive bacterium.
41. The method of claim 40 wherein said gram positive bacterium is a member selected from the group consisting of Staphylococcus species, Streptococcus species, Bacillus species, Mycobacterium species, Corynebacterium species (Propionibacterium species), Clostridium species, Actinomyces species, Enterococcus species, and Streptomyces species;
42. The method of claim 39 wherein said bacterium is a gram negative bacterium.
43. The method of claim 42 wherein said gram negative bacterium is a member selected from the group consisting of Acinetobacter species, Neisseria species, Pseudomonas species, Brucella species, Agrobacterium species, Bordetella species, Escherichia species, Shigella species, Yersinia species, Salmonella species, Klebsiella species, Enterobacter species, Haemophilus species, Pasteurella species, Streptobacillus species, spirochetal species, Campylobacter species, Vibrio species, and Helicobacter species.
44. The method of claim 39 wherein said bacterium is a member selected from the group consisting of Propionibacterium acnes, Staphylococcus aureus; Staphylococcus epidermidis, Staphylococcus saprophyticus; Streptococcus pyogenes; Streptococcus agalactiae; Streptococcus pneumoniae; Enterococcus faecalis; Enterococcus faecium; Bacillus anthracis; Mycobacterium avium-intracellulare; Mycobacterium tuberculosis, Acinetobacter baumanii; Corynebacterium diphtheria; Clostridium perfringens; Clostridium botulinum; Clostridium tetani; Neisseria gonormoeae; Neisseria meningitidis; Pseudomonas aeruginosa; Legionella pneumophila; Escherichia coli; Yersinia pestis; Haemophilus influenzae; Helicobacter pylori; Campylobacter fetus; Campylobacter jejuni; Vibrio cholerae; Vibrio parahemolyticus; Trepomena pallidum; Actinomyces israelij; Rickettsia prowazekii; Rickettsia rickettsii; Chlamydia trachomatis; Chlamydia psittaci; Brucella abortus; Agrobacterium tumefaciens; and Francisella tularensis.
45. The method of claim 38 wherein said compound has the structure of compound 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24.
46. A method for inhibiting viral multiplication comprising contacting, a virus with a compound having the structure of Formula 1

Formula 1
wherein \(B\) is boron, \(M\) is selected from oxygen, sulfur or \(N R^{* *}\)
wherein \(R^{*}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl (\(\mathrm{C}_{3}-\mathrm{C}_{7}\)), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{* *}\) is \(H\), alkyl, alkyloxy, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl;
- and wherein \(A\) is \(C H, C R^{1}\), or \(N\)
and wherein \(D\) is \(C H, C R^{2}\), or \(N\)
and wherein E is \(\mathrm{CH}, \mathrm{CR}^{3}\), or N
and wherein G is \(\mathrm{CH}, \mathrm{CR}^{4}\), or N
and the combination of nitrogens \((A+D+E+G)\) is \(0-3\) and wherein \(J\) is \(\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{n}=0\) to 2\()\) or \(\mathrm{CHR}^{5}\)
and wherein W is \(\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}(\mathrm{m}=0\) to 1\(), \mathrm{C}=\mathrm{O}\) (carbonyl) or \(\mathrm{CHR}^{6}\)
wherein \(R^{1}, R^{2}, R^{3}\) and \(R^{4}\) are each independently selected from the group consisting of hydrogen, haloalkyl, alkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{p}} \mathrm{OH}(p=1\) to 3\()\), halogen, \(\mathrm{CHO}, \mathrm{CH}=\mathrm{NOH}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\)-alkyl, S-alkyl, \(\mathrm{SO}_{2}\)-alkyl, S-aryl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{NR}^{18} \mathrm{R}^{19}\) (wherein \(\mathrm{R}^{18}\) and \(\mathrm{R}^{19}\) are independently selected from hydrogen, alkyl, and alkanoyl)(q \(=0\) to 2), alkoxy, \(\mathrm{CF}_{3}, \mathrm{SCF}_{3}, \mathrm{NO}_{2}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{OH}\), substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, fused substituted or unsubstituted aryl, fused substituted or unsubstituted heteroaryl,
wherein \(R^{5}\) is selected from substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\), substituted or unsubstituted cycloalkyl (\(C_{3}-C_{7}\)), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl,
wherein \(R^{8}\) is selected from substituted or unsubstituted alkyl \(\left(C_{i}^{\prime}-C_{4}\right)\), substituted or unsubstituted cycloalkyl \(\left(C_{3}-C_{7}\right)\), substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
including salts thereof, especially all pharmaceutically acceptable salts.
47. The method of claim 46 wherein \(M\) is oxygen.
48. The method of claim 46 wherein \(M\) is sulfur.
49. The method of claim 46 wherein \(M\) is \(N R^{* *}\).
50. The method of claim 46 wherein \(R^{*}\) is a substituted or unsubstituted alkyl \(\left(C_{1}-C_{4}\right)\).
51. The method of claim 46 wherein \(R^{*}\) is a substituted or unsubstituted cycloalkyl (\(\mathrm{C}_{3}-\mathrm{C}_{7}\)).
52. The method of claim 46 wherein \(R^{*}\) is a substituted or unsubstituted alkenyl.
53. The method of claim 52 wherein said alkenyl has the structure

wherein \(R^{7}, R^{8}\), and \(R^{9}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right), \mathrm{OH}\) (where \(\mathrm{r}=1\) to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
54. The method of claim 46 wherein \(R^{*}\) is a substituted or unsubstituted alkynyl.
55. The method of claim 54 wherein said alkynyl has the structure

wherein \(R^{7}\) is selected from the group consisting of nydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{\mathrm{r}} \mathrm{OH}\) (where r \(=1\) to 3), \(\mathrm{CH}_{2} \mathrm{NR}^{20} \mathrm{R}^{21}\) (wherein \(\mathrm{R}^{20}\) and \(\mathrm{R}^{21}\) are independently selected from hydrogen and alkyl), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
56. The method of claim 46 wherein \(R^{*}\) is a substituted or unsubstituted aryl.
57. The method of claim 56 wherein said aryl has the structure

wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted araikyl, \(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}\) (where \(\mathrm{s}=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, \(\mathrm{CON}(\text { alkyl })_{2}, \mathrm{OH}\), alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right) \mathrm{NR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{22}\) and \(\mathrm{R}^{23}\) are independently selected from hydrogen, alkyl, and alkanoyl)(t = 0 to 2), \(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NHalkyl}^{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\) (alkyl) \()_{2}\), oxazolidin-2yl , or alkyl substituted oxazolidin-2-yl.
58. The method of claim 46 wherein \(R^{\star}\) is a substituted or unsubstituted aralkyl.
59. The method of claim 58 wherein said aralkyl has the structure

74

\section*{SUBSTITUTE SHEET (RULE 26)}
wherein \(R^{10}, R^{11}, R^{12}, R^{13}\) and \(R^{14}\) are each independently selected from the group consisting of hydrogen, alkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{s} \mathrm{OH}\) (where \(\mathrm{s}=1\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}\), CONHalkyl, \(\mathrm{CON}(\text { alkyl })_{2}, \mathrm{OH}\), alkoxy, aryloxy, \(\mathrm{SH}, \mathrm{S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}, \mathrm{NO}_{2},\left(\mathrm{CH}_{2}\right)_{i} \mathrm{NR}^{22} \mathrm{R}^{23}\) (wherein \(\mathrm{R}^{22}\) and \(\mathrm{R}^{23}\) are independently selected from hydrogen, alkyl, and alkanoyl)(\(\mathrm{t}=0\) to 2), \(\mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NHalkyl}^{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\text { alkyl) })_{2}\), oxazolidin-2yl , or alkyl substituted oxazolidin-2-yl.
60. The method of claim 46 wherein \(R^{*}\) is a substituted or unsubstituted heteroaryl.
61. The method of claim 60 wherein said heteroaryl has the structure

or
wherein \(X=C H=C H, N=C H, N R^{17}\) (wherein \(R^{17}=H\), alkyl, aryl or benzyl), O, or S
and wherein \(\mathrm{Y}=\mathrm{CH}\) or N
and wherein \(R^{15}\) and \(R^{16}\) are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, aryl, substituted aryl, aralkyl, substituted aralkyl, \(\left(\mathrm{CH}_{2}\right)_{u} \mathrm{OH}\) (where \(u=1\) to 3), \(\left(\mathrm{CH}_{2}\right) \mathrm{NR}^{24} \mathrm{R}^{25}\) (wherein \(\mathrm{R}^{24}\) and \(\mathrm{R}^{25}\) are independently selected from hydrogen, alkyl and alkanoyl, \(\mathrm{v}=0\) to 3), \(\mathrm{CO}_{2} \mathrm{H}, \mathrm{CO}_{2}\) alkyl, \(\mathrm{CONH}_{2}, \mathrm{~S}\)-alkyl, S-aryl, \(\mathrm{SO}_{2}\) alkyl, \(\mathrm{SO}_{3} \mathrm{H}, \mathrm{SCF}_{3}, \mathrm{CN}\), halogen, \(\mathrm{CF}_{3}\) and \(\mathrm{NO}_{2}\).
62. The method of claim 46 wherein said compound has the structure of compound \(11,12,13,14,15,16,17,18,19,20,21,22,23\) or 24.
63. The method of claim 46 wherein said contacting occurs in vivo.
64. The method of claim 46 wherein said virus is a member selected from the group consisting of hepatitis \(A-B\), yellow fever, respiratory syncytial virus, influenza, human immunodeficiency virus 1 and 2 , adenoviruses, Norwalk virus, herpes simplex virus 1 and 2, cytomegalovirus (HCMV), varicella zoster, Epstein- Barr virus, and other herpes viruses.
65. A method for treating a viral-caused disease in a patient afflicted therewith comprising administering to said patient a therapeutically effective amount of a compound of claim 46.
66. The method of claim 65 wherein said virus is a member selected from the group consisting of hepatitis \(A-B\), yellow fever, respiratory syncytial virus, influenza, human immunodeficiency virus 1 and 2, adenoviruses, Norwalk virus, herpes simplex virus 1 and 2, cytomegalovirus (HCMV), varicella zoster, Epstein- Barr virus, and other herpes viruses.
67. The method of claim 65 wherein said compound has the structure of compound 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24.
68. A method for synthesizing a compound of claim 1.
69. A method for synthesizing a compound of claim 17.

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electronic Business Center on:

Dated: \(\qquad\)
Signed: C. Rubal caba-Rima

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. Baker, et al
Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
Applicants request the status of the above-identified U.S. patent application. An Information Disclosure Statement was filed on June 19, 2007 and received by the PTO on June 21, 2007. The last communication we received from the PTO was an official Filing Receipt which was mailed on April 3, 2006.

Respectfully submitted,

Todd Esker
Reg. No. 46,690

MORGAN, LEWIS \& BOCKIUS, LLP
Two Palo Alto Square
3000 El Camino Real, Ste. 700
Palo Alto, CA 94306
Tel. (415) 442-1000
Direct Dial: (415) 442-1000
eFAX: (650) 843-4001
e-mail: tesker@morganlewis.com

\section*{Payment information:}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{7}{|l|}{ Submitted with Payment } & no \\
\hline File Listing: \\
\hline \begin{tabular}{c}
Document \\
Number
\end{tabular} & Document Description & File Name & \begin{tabular}{c}
File Size(Bytes) \\
/Message Digest
\end{tabular} & \begin{tabular}{c}
Multi \\
Part /.zip
\end{tabular} & \begin{tabular}{c}
Pages \\
(if appl.)
\end{tabular} \\
\hline 1 & Request for status of Application & StatusInquiry.pdf & & 10573 & no
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria Virg
www uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

\section*{-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --} Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 1 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133) Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

\section*{Status}
1) \(\boxtimes\) Responsive to communication(s) filed on 16 February 2006.

2a) This action is FINAL. \(2 b) \boxtimes\) This action is non-final. Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

\section*{Disposition of Claims}
4) \(\boxtimes\) Claim(s) \(1-39\) is/are pending in the application.

4a) Of the above claim(s) \(\qquad\) is/are withdrawn from consideration.
5)Claim(s) \(\qquad\) is/are allowed.
6) \(\square\)

Claim(s) \(\qquad\) is/are rejected.
7) \(\square\) Claim(s) \(\qquad\) is/are objected to.
8) \(\boxtimes\) Claim(s) \(1-39\) are subject to restriction and/or election requirement.

\section*{Application Papers}
9)The specification is objected to by the Examiner.
10)The drawing(s) filed on \(\qquad\) is/are: a) \(\square\) accepted or b) \(\square\) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

\section*{Priority under 35 U.S.C. § 119}
12)

Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f)
a) \(\square\)None of:
1. \(\square\) Certified copies of the priority documents have been received.
2. \(\square\) Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. \(\square\) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

\section*{Attachment(s)}Notice of References Cited (PTO-892)
Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) \(\square\) Information Disclosure Statement(s) (PTO/SB/08
\(\qquad\) Paper No(s)/Mail DateInterview Summary (PTO-413) Paper No(s)/Mail Date
5) \(\square\)Notice of Informal Patent Application
\(\square\) Other: \(\qquad\)

Art Unit: 1626

\section*{DETAILED ACTION}
1. Claims 1-39 are pending in the application.

\section*{Election/Restriction}
2. The Markush group set forth in the claims includes both independent and distinct inventions, and patentably distinct compounds (or species) within each invention. However, this application discloses and claims a plurality of patentably distinct inventions far too numerous to list individually. Moreover, each of these inventions contains a plurality of patentably distinct compounds, also far too numerous to list individually. For these reasons provided below, restriction to one of the following Groups is required under 35 U.S.C. 121, wherein a Group is a set of patentably distinct inventions of a broad statutory category (e.g.

Compounds, Methods of Use, Methods of Making, etc.):
I. Claims 1-2 and 4-18, in part, drawn to compounds/compositions of formula (I) or (la), wherein the variable A1 represents \(\mathrm{CR}^{9 \mathrm{a}}\), D1 represents \(C R^{10 a}\), \(E 1\) represents \(C R^{11 a}\) and \(G 1\) represents \(C R^{12 a}\) and \(R^{9 a}, R^{10 a}, R^{11 a}\), \(R^{12 a}\) independently does not represents heteroaryl or heterocycloalkyl thereof, \(R^{9 a}, R^{10 a}, R^{11 a}, R^{12 a}\) independently is not substituted with heteroaryl or heterocycloalkyl thereof; the variable M1 represents oxygen thereof; the variable J 1 represents \(\left(C R^{3 a} R^{4 a}\right)_{n 1}\) and \(n 1\) is 0 ; the variables \(R^{1 a}-R^{12 \mathrm{a}}\) independently does not represents heteroaryl or heterocycloalkyl thereof, \(R^{1 a}-R^{12 a}\) independently is not substituted with heteroaryl or
heterocycloalkyl thereof, any two of the variables \(R^{1 a}-R^{12 a}\) together with the atoms to which they are attached do not form a ring thereof, classified in class 514/549 with various subclasses. If this group is elected, applicants are requested to elect a single species for the search purpose.
II. Claims 1, 3 and 4-18, in part, drawn to compounds/compositions of formula (I) or (Ib), wherein the variable A1 represents \(C R^{9 a}\), D1 represents \(C R^{10 a}\), \(E 1\) represents \(C R^{11 a}\) and \(G 1\) represents \(C R^{12 a}\) and \(R^{9 a}, R^{10 a}, R^{11 a}\), \(R^{12 a}\) independently does not represents heteroaryl or heterocycloalkyl thereof, \(R^{9 a}, R^{10 a}, R^{11 a}, R^{12 a}\) independently is not substituted with heteroaryl or heterocycloalkyl thereof; the variable M1 represents oxygen thereof; the variable J 1 represents \(\left(C R^{3 a} R^{4 a}\right)_{n 1}\) and \(n 1\) is 0 ; the variables \(R^{1 a}-R^{12 a}\) independently does not represents heteroaryl or heterocycloalkyl thereof, \(R^{1 a}-R^{12 a}\) independently is not substituted with heteroaryl or heterocycloalkyl thereof, any two of the variables \(R^{1 a}-R^{12 a}\) together with the atoms to which they are attached do not form a ring thereof, classified in class 514/548/549 with various subclasses. If this group is elected, applicants are requested to elect a single species for the search purpose.
III. Claims 1-18, in part, drawn to compounds/compositions of formula (I), containing compounds not encompassed in Groups I-II, classified in class
\(514 / 544 / 546 / 548 / 549\) with various subclasses. If this group is elected, applicants are requested to elect a single species for the search purpose. This group is subject further restriction if it is elected.
IV. Claims 19-26, drawn to methods of use (i.e., killing microorganism), classified in class 514/540/544/546/548/549 with various subclasses. If this group is elected, applicants are requested to elect a single species for the search purpose. This group is subject further restriction if it is elected.
V. Claims 27-36, drawn to methods of use (i.e., treating infection), classified in class 514/540/544/546/548/549 with various subclasses. If this group is elected, applicants are requested to elect a single species for the search purpose. This group is subject further restriction if it is elected.
VI. Claims 37-38, drawn to processes of making, classified in class 514/540/544/546/548/549 with various subclasses. If this group is elected, applicants are requested to elect a single species for the search purpose. This group is subject further restriction if it is elected.
VII. Claim 39, drawn to methods of use (i.e., delivering a compound), classified in class 514/540/544/546/548/549 with various subclasses. If
this group is elected, applicants are requested to elect a single species for the search purpose. This group is subject further restriction if it is elected.

In accordance with the decisions in In re Harnisch, 631 F.2d 716, 206 USPQ 300 (CCPA 1980); and Ex parte Hozumi, 3 USPQ2d 1059 (Bd. Pat. App. \& Int. 1984), restriction of a Markush group is proper where the compounds within the group either (1) do not share a common utility, or (2) do not share a substantial structural feature disclosed as being essential to that utility. In addition, a Markush group may encompass a plurality of independent and distinct inventions where two or more members are so unrelated and diverse that a prior art reference anticipating the claim with respect to one of the members would not render the other member(s) obvious under 35 U.S.C. 103.

Where an election of any one of Groups I-VII is made, an election of a single compound or species is further required. Moreover, an election of a single compound is further required including an exact definition of each substitution on the base molecule, i.e., the formula (I), wherein a single member at each substituent group or moiety is selected. For example, if a base molecule has a substituent group \(R^{1 a}\), wherein \(R^{1 a}\) is recited to be hydrogen or alkyl, etc., then applicant must select a single substituent of \(R^{1 a}\), for example hydrogen and each subsequent variable position. Should applicant traverse on the ground that the compounds are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing the compounds to be obvious
variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the inventions unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C 103(a) of the other.

All compounds falling outside the class(es) and subclass(es) of the selected compound and any other subclass encompassed by the election above will be directed to nonelected subject matter and will be withdrawn from consideration under 35 U.S.C. 121 and 37 C.F.R. 1.142(b). Applicant may reserve the right to file divisional applications on the remaining subject matter. The provisions of 35 U.S.C. 121 apply with regard to double patenting covering divisional applications.

Applicant is reminded that upon cancellation of claims to a non-elected invention, the inventors must be amended in compliance with 37C.F.R. 1.48(b) if one of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a petition under 37 C.F.R. 1.48(b) and by the fee required under 37CFR 1.17(i). If desired upon election of a single compound, applicants can review the claims and disclosure to determine the scope of the invention and can set forth a group of compounds which are so similar within the same inventive concept and reduction to practice. Markush claims must be provided with support in the disclosure for each member of the Markush group. See MPEP 608.01(p). Applicant should exercise caution in making a selection of a single
member for each substituent group on the base molecule to be consistent with the written description.

\section*{Rationale Establishing Patentable Distinctiveness Within Each Group}

Each invention set listed above is directed to or involves the use or making of compounds which are recognized in the art as being distinct from one another because of their diverse chemical structure, their different chemical properties, modes of action, different effects and reactive conditions (MPEP 806.04, MPEP 808.01). Additionally, the level of skill in the art is not such that one invention would be obvious over either of the other inventions, i.e. they are patentable over each other. Chemical structures which are similar are presumed to function similarly, whereas chemical structures that are not similar are not presumed to function similarly. The presumption even for similar chemical structures though is not irrebuttable, but may be overcome by scientific reasoning or evidence showing that the structure of the prior art would not have been expected to function as the structure of the claimed invention. Note that in accordance with the holdings of Application of Papesch, 50 CCPA 1084, 315 F.2d 381, 137 USPQ 43 (CCPA 1963) and In re Lalu, 223 USPQ 1257 (Fed. Cir. 1984), chemical structures are patentably distinct where the structures are either not structurally similar, or the prior art fails to suggest a function of a claimed compound would have been expected from a similar structure.

\section*{The above Groups represent general areas wherein the inventions are independent and distinct, each from the other because of the following reasons:}

Restriction for examination purposes as indicated is proper because all these inventions listed in this action are independent or distinct for the reasons given above and there would be a serious search and examination burden if restriction were not required because one or more of the following reasons apply:
(a) the inventions have acquired a separate status in the art in view of their different classification;
(b) the inventions have acquired a separate status in the art due to their recognized divergent subject matter;
(c) the inventions require a different field of search (for example, searching different classes/subclasses or electronic resources, or employing different search queries); (d) the prior art applicable to one invention would not likely be applicable to another invention;
(e) the inventions are likely to raise different non-prior art issues under 35 U.S.C. 101 and/or 35 U.S.C. 112, first paragraph.

\section*{Applicant is advised that the reply to this requirement to be complete}
must include (i) an election of a invention to be examined even though the requirement may be traversed (37 CFR 1.143) and (ii) identification of the claims encompassing the elected invention.

The election of an invention may be made with or without traverse. To reserve a right to petition, the election must be made with traverse. If the reply does not distinctly and specifically point out supposed errors in the restriction requirement, the election shall be treated as an election without traverse. Traversal must be presented at the time of election in order to be considered timely. Failure to timely traverse the requirement will result in the loss of right to
petition under 37 CFR 1.144. If claims are added after the election, applicant
must indicate which of these claims are readable on the elected invention.
If claims are added after the election, applicant must indicate which of these claims are readable upon the elected invention. Should applicant traverse on the ground that the inventions are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing the inventions to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the inventions unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C. 103(a) of the other invention.

\section*{Advisory of Rejoinder}
3. The following is a recitation of M.P.E.P. §821.04, Rejoinder:

Where product and process claims drawn to independent and distinct inventions are presented in the same application, applicant may be called upon under 35 U.S.C. 121 to elect claims to either the product or process. See MPEP § 806.05(f) and § 806.05(h). The claims to the nonelected invention will be withdrawn from further consideration under 37 CFR 1.142. See MPEP \(\S 809.02\) (c) and \(\S 821\) through \(\S 821.03\). However, if applicant elects claims directed to the product, and a product claim is subsequently found allowable, withdrawn process claims which depend from or otherwise include all the limitations of the allowable product claim will be rejoined.

Where product and process claims are presented in a single application and that application qualifies under the transitional restriction practice pursuant to 37 CFR 1.129(b), applicant may either (1) elect the invention to be searched and examined and pay the fee set forth in 37 CFR 1.17(s) and have the additional inventions searched and examined under 37 CFR 1.129(b)(2), or (2) elect the invention to be searched and examined and not pay the additional fee (37 CFR \(1.129(b)(3)\)). Where no additional fee is paid, if the elected invention is directed to the product and the claims directed to the product are subsequently found patentable, process claims which either depend from or include all the limitations of the allowable product will be rejoined. If applicant chooses to pay the fees to have the additional inventions searched and examined pursuant to 37 CFR 1.129(b)(2), even if the product is found allowable, applicant would not be entitled to a refund of the fees paid under 37 CFR 1.129 (b) by arguing that the process claims could have been rejoined. 37 CFR 1.26 states that "money paid by actual mistake or in excess will be refunded, but a mere change of purpose after the payment of money...will not entitle a party to demand such a return..." The fees paid under 37 CFR 1.129(b) were not paid by actual mistake nor paid in excess, therefore, applicant would not be entitled to a refund.

\title{
In the event of rejoinder, the rejoined process claims will be fully examined for patentability in accordance with 37 CFR 1.104-1.106. Thus, to be allowable, the rejoined claims must meet all criteria for patentability including the requirements of 35 U.S.C. 101, 102, 103, and 112. If the application containing the rejoined claims is not in condition for allowance, the subsequent Office action may be made final, or, if the application was already under final rejection, the next Office action may be an advisory action. \\ The following is a recitation from paragraph five, "Guidance on Treatment of Product and Process Claims in light of In re Ochiai, In re Brouwer and 35 U.S.C. §103(b)" (1184 TMOG 86(March 26, 1996)): \\ "However, in the case of an elected product claim, rejoinder will be permitted when a product claim is found allowable and the withdrawn process claim depends from or otherwise includes all the limitations of an allowed product claim. Withdrawn process claims not commensurate in scope with an allowed product claim will not be rejoined." (emphasis added) \\ Therefore, in accordance with M.P.E.P. §821.04 and In re Ochiai, 71 F.3d 1565, 37 USPQ 1127 (Fed. Cir. 1995), rejoinder of product claims with process claims commensurate in scope with the allowed product claims will occur following a finding that the product claims are allowable. Until, such time, a restriction between product claims and process claims is deemed proper. Additionally, in order to retain the right to rejoinder in accordance with the above policy, Applicant is advised that the process claims should be amended during prosecution to maintain either dependency on the product claims or to otherwise include the limitations of the product claims. Failure to do so may result in a \\ \\ loss of the right to rejoinder.
} \\ \\ loss of the right to rejoinder.
}

\section*{Conclusion}

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Rei-Tsang Shiao whose telephone number is
(571) 272-0707. The examiner can normally be reached on 8:30 AM - 5:00 PM. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Joseph K. McKane can be reached on (571) 272-0699. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pairdirect.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (tollfree). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-7869199 (IN USA OR CANADA) or 571-272-1000.

P.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto.gov

\section*{BIB DATA SHEET}

CONFIRMATION NO. 4964

\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c}
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Extension -2 months with \(\$ 0\) paid & 2252 & 1 & 230 & 230 \\
\hline Miscellaneous: & Total in USD (\$) & 305 \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \(\$ 305\) \\
\hline RAM confirmation Number & 2096 \\
\hline Deposit Account & 500310 \\
\hline Authorized User & \\
\hline \multicolumn{2}{|l|}{ The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: } \\
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes) /Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Fee Worksheet (PTO-06)} & \multirow{2}{*}{Trans.pdf} & 268321 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & \begin{tabular}{l}
e6c00b352d397t4a8ffc758056be64c6e
97 aa 233 \\
97 aa233
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Extension of Time} & \multirow{2}{*}{EOT.pdf} & 229997 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & f6eca9c1857ae829810fa45b420d169e 3caa6c5b & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{3} & \multirow[t]{2}{*}{} & \multirow{2}{*}{RESPONSRR.pdf} & 760125 & \multirow{2}{*}{yes} & \multirow{2}{*}{7} \\
\hline & & & & & \\
\hline & \multicolumn{5}{|c|}{Multipart Description/PDF files in .zip description} \\
\hline & \multicolumn{2}{|c|}{Document Description} & Start & \multicolumn{2}{|r|}{End} \\
\hline & \multicolumn{2}{|l|}{Response to Election / Restriction Filed} & 1 & \multicolumn{2}{|r|}{1} \\
\hline & \multicolumn{2}{|c|}{Claims} & 2 & \multicolumn{2}{|r|}{5} \\
\hline & \multicolumn{2}{|l|}{Applicant Arguments/Remarks Made in an Amendment} & 6 & \multicolumn{2}{|r|}{7} \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{4} & \multirow{2}{*}{Fee Worksheet (PTO-06)} & \multirow{2}{*}{fee-info.pdf} & 8308 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & \begin{tabular}{l}
d9bc3a68b6348fc2e3b4ad 3263983636 \\
08abb659
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{1266751} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.
herchy cenify thal this correspondence, including listed enclosures is being electronically transmilled in Porable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and
Tradernark Office's Patent Electronic Business Center on:
Dated: \(\qquad\) \(6 / 6108\)
signod: C. Rubaliaba-Riren

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. BAKER, et al.
Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
RESPONSE TO RESTRICTION REQUIREMENT

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In response to the Restriction Requirement dated March 6, 2008, please enter the following amendments and remarks.

Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.

Remarks/Arguments begin on page 7 of this paper.

\section*{Amendments to the Claims:}

This listing of claims will replace all prior versions, and listings of claims in the application.

\section*{Listing of Claims:}
1. (Cancelled).
2. (Cancelled).
3. (Cancelled).
4. (Cancelled).
5. (Cancelled).
6. (Cancelled).
7. (Cancelled).
8. (Cancelled).
9. (Cancelled).
10. (Cancelled).
11. (Cancelled).
12. (Cancelled).
13. (Cancelled).
14. (Cancelled).
15. (Cancelled).
16. (Cancelled).
17. (Cancelled).
18. (Cancelled).
19. (Cancelled).
20. (Cancelled).
21. (Cancelled).
22. (Cancelled).
23. (Cancelled).
24. (Cancelled).
25. (Cancelled).
26. (Cancelled).
27. (Currently amended) A method of treating or preventing an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof or a prodrug thereof. the compound necording to claim \(\mathbf{t}\).
28. (Original) The method of claim 27, wherein said infection is a member selected from a systemic infection, a cutaneous infection, and an ungual or periungual infection.
29. (Original) The method of claim 27, wherein said infection is a member selected from chloronychia, paronychias, erysipeloid, onychorrhexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verrucosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), dermatological diseases, psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy

Appl. No. 11/357,687
PATENT
Amdt. dated June 6, 2008
Response to Restriction Requirement dated March 6, 2008
atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphigoid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome, systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus, Sporotrichosis, Mycotic keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea Imbricata.
30. (Original) The method of claim 27, wherein said infection is onychomycosis.
31. (Original) The method of claim 27, wherein said animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey.
32. (Cancelled).
33. (Cancelled).
34. (Cancelled).
35. (Cancelled).
36. (Cancelled).
37. (Cancelled).
38. (Cancelled).
39. (Cancelled).
40. (New) The method of claim 30, wherein said onychomycosis is Tinea unguium.

Appl. No. 11/357,687
Amdt. dated June 6, 2008
Response to Restriction Requirement dated March 6, 2008
41. (New) The method of claim 27, wherein said method is a method of treating an infection in an animal.
42. (New) The method of claim 27, wherein said animal is a human.

\section*{REMARKS/ARGUMENTS}

\section*{I. Status of the Claims}

Claims 1-39 are filed in the original application. Claims 1-39 are subject to a Restriction Requirement. After entry of this Response, claims 27-31 and 40-42 are pending. Claims 40-42 are new. Claims 27-31 and 40-42 are elected for prosecution on the merits. Claim 27 is amended. No new matter has been added.

Claims 1-26 and 32-39 are cancelled without prejudice. Applicants reserve the right to pursue these claims in another application, such as a continuation or a divisional.

\section*{II. Support for the amended claims and new claims}

Support for amended claim 27 is provided in paragraphs 15-18, 32, 108 and 257. Support for new claim 40 is provided in paragraph 110. Support for new claim 41 is provided in paragraph 15. Support for new claim 42 is provided in paragraph 108. No new matter has been added.

\section*{II. Response to the Restriction Requirement}

The Examiner has restricted the pending claims into the following seven groups:
\begin{tabular}{cl}
Group \# & Claim Numbers \\
I. & portions of 1-2 and 4-18 \\
II. & portions of 1,3 and 4-18 \\
III. & portions of 1-18 \\
IV. & \(19-26\) \\
V. & \(27-36\) (and new claims 40-42) \\
VI. & \(37-38\) \\
VII. & 39
\end{tabular}

The claims are restricted into seven groups. Applicants elect Group V for prosecution on the merits. Each of claims 27-31 and 40-42 fall within Group V.

Appl. No. 11/357,687
PATENT
Amdt. dated June 6, 2008
Response to Restriction Requirement dated March 6, 2008

\section*{a.) Election of Species}

Applicants have been asked to elect one compound as a starting point from which the Examiner will search the prior art. Applicants elect 1,3-dihydro-5-fluoro-1-hydroxy-2,1benzoxaborole.

\section*{CONCLUSION}

In view of the foregoing, Applicants believe all claims now pending in this Application are in condition for allowance. The issuance of a formal Notice of Allowance at an early date is respectfully requested.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 415-442-1000.

Respectfully submitted,

Todd Esker
Reg. No. 46,690
MORGAN. LEWIS \& BOCKIUS LLP
One Market
Spear Street Tower
San Francisco, CA 94105
Tel: 415-442-1000
Fax: 415-442-1001
1.SF77711553.1

\begin{tabular}{|c|c|}
\hline PETITION FOR EXTENSION OF TIME UNDER 37 CFR
\(1.136(\mathrm{a})\)
FY 2008 & Docket Number (Optional)
\(064507-5014-\mathrm{US}\) \\
\hline Application Number 11/357,687 & Filed 02/16/2006 \\
\hline \multicolumn{2}{|l|}{For BORON-CONTAINING SMALL MOLECULES} \\
\hline Art Unit 1626 & Examiner SHIAO, Rei Tsang \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
This is a request under the provisions of 37 CFR 1.136(a) to extend the period for filing a reply in the above iden application. \\
The requested extension and fee are as follows (check time period desired and enter the appropriate fee below):
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant claims small entity status. See 37 CFR 1.27.
A check in the amount of the fee is enclosed.
Payment by credit card. Form PTO-2038 is attached.
The Director has already been authorized to charge fees in this application to a Deposit Account. \\
The Director is hereby authorized to charge any fees which may be required, or credit any overpayment, to Deposit Account Number 500310. I have enclosed a duplicate copy of this sheet. \\
WARNING: Information on this form may become public. Credit card information should not be included on this form. \\
Provide credit card information and authorization on PTO-2038. \\
I am the applicant/inventor.
assignee of record of the entire interest. See 37 CFR 3.71. \\
Statement under 37 CFR 3.73(b) is enclosed (Form PTO/SB/96). \\
attorney or agent of record. Registration Number 46,690
attorney or agent under 37 CFR 1.34. \\
Registration number if acting under 37 CFR 1.34 \(\qquad\) \\
June 6, 2008
\end{tabular}} \\
\hline \begin{tabular}{l}
Signature \\
Todd Esker \\
\hline
\end{tabular} & 415-442-1304 Dat \\
\hline Typed or printed name
NOTE: Signatures of all the inventors or assignees of record of the entire interest or
signature is required. see below.
Total of 1 forms are submitted. & Telephone Number \\
\hline
\end{tabular}

This collection of information is required by 37 CFR 1.136 (a). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 6 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any commenis on the amount of time you reguire to complete this form and/or suggestions for reducing this burden. should be sent to the Chief information Officer, U.S. Patent and Trademark Office. U.S. Deparment of Commerce. P.O. Box 1450 . Alexandria. VA 22313 -1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450. Alexandria, VA 22313-1450.
\[
\text { If you need assistance in completing the form, call 1-800-PTO-9 } 99 \text { and select option } 2 .
\]

Under the Papenwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria Virg
www uspto.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

\section*{-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --} Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133) Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

\section*{Status}
1) \(\boxtimes\) Responsive to communication(s) filed on 06 June 2008

2a \(\qquad\) This action is FINAL.

2b) \(\boxtimes\) This action is non-final.
3) \(\square\) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

\section*{Disposition of Claims}
4) \(\boxtimes\) Claim(s) 27-31 and 40-42 is/are pending in the application.

4a) Of the above claim(s) \(\qquad\) is/are withdrawn from consideration.
5) \(\square\) Claim(s) \(\qquad\) is/are allowed.
6) \(\boxtimes\) Claim(s) 27-31 and 40-42 is/are rejected.
7)Claim(s) \(\qquad\) is/are objected to.
8) Claim(s) \(\qquad\) are subject to restriction and/or election requirement.

\section*{Application Papers}
9) \(\square\) The specification is objected to by the Examiner.
10) \(\boxtimes\) The drawing(s) filed on 16 February 2006 is/are: a) \(\boxtimes\) accepted or b) \(\square\) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119
12) \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \(\square\) All b) \(\square\) Some * c) \(\square\) None of:
1. \(\square\) Certified copies of the priority documents have been received.
2. \(\square\) Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. \(\square\) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

\section*{Attachment(s)}
1) \(\boxtimes\) Notice of References Cited (PTO-892)
2) \(\square\) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) \(\boxtimes\) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 5/07/07,6/21/07.
4)Interview Summary (PTO-413) Paper No(s)/Mail Date
5) Notice of Informal Patent Application
6) Other: \(\qquad\)

Application/Control Number: 11/357,687
Art Unit: 1626

\section*{DETAILED ACTION}
1. This application claims benefit of the provisional application:

60/654,060 with a filing date 02/16/2005.
2. Amendment of claims 27, cancellation of claims 1-26 and 32-39, and addition of claims 40-42 in the amendment filed on June 06, 2008 is acknowledged. Claims 27-31 and 40-42 are pending in the application. No new matter is found. Since the newly added claims 40-42 are commensurate with the scope of the invention, claims 27-31 and 40-42 are prosecuted in the case.

\section*{Information Disclosure Statement}
3. Applicant's Information Disclosure Statements, filed on May 07, 2007 and June 21, 2007 has been considered. Please refer to Applicant's copies of the 1449's submitted herein.

\section*{Responses to Election/Restriction}
4. Applicant's election of Group \(V\) claims 27-36 (now are 27-31 and 40-42) in the reply filed on June 06, 2008 is acknowledged. Election of a species, i.e., 1, 3-dihydro-5-fluoro- 1-hydroxy-2, 1-benzoxaborole, is also acknowledged. Because applicant did not distinctly and specifically point out the supposed errors in the restriction requirement, the election has been treated as an election without traverse (MPEP § 818.03(a)).

Claims 27-31 and 40-42 are pending in the application. The scope of the invention of the elected subject matter is as follows.

Claims 27-31 and 40-42 are drawn to methods of use using a compound 1, 3-dihydro-5-fluoro- 1-hydroxy-2, 1-benzoxaborole.

Claims 27-31 and 40-42 are prosecuted in the case.

The requirement is still deemed proper and therefore is made FINAL.

\section*{Claim Rejections - 35 USC § 112}
5. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

\subsection*{5.1 Claims 27-31 and 40-42 are rejected under 35 U.S.C. 112, first paragraph,} because the specification, while being enabling for using the instant compound for treating fungal infection, it does not reasonably provide enablement for using the instant compound for preventing infection, see claim 27. The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make the invention commensurate in scope with these claims.

Dependent claims 28-31 and 40-42 are also rejected along with claim 27 under 35
U.S.C. 112, first paragraph.

In In re Wands, 8 USPQ2d 1400 (1988), factors to be considered in determining whether a disclosure meets the enablement requirement of 35 U.S.C. 112 , first paragraph, have been described. They are:
1. the nature of the invention,

Application/Control Number: 11/357,687
Art Unit: 1626
2. the state of the prior art,
3. the predictability or lack thereof in the art,
4. the amount of direction or guidance present,
5. the presence or absence of working examples,
6. the breadth of the claims,
7. the quantity of experimentation needed, and
8. the level of the skill in the art.

In the instant case:

\section*{The nature of the invention}

The nature of the invention of claims 27-31 and 40-42 is drawn to intent methods of use using the instant compound for treating or preventing infection without limitation (I.e., no named infection), see claim 27.

\section*{The state of the prior art and the predictability or lack thereof in the art}

The state of the prior art is that the pharmacological art involves screening in vitro and in vivo to determine which compounds exhibit the desired pharmacological activities (i.e. what compounds can treat which specific diseases by what mechanism). There is no absolute predictability even in view of the seemingly high level of skill in the art. The existence of these obstacles establishes that the contemporary knowledge in the art would prevent one of ordinary skill in the art from accepting any therapeutic or preventive regimen on its face.

The instant claimed invention is highly unpredictable as discussed below:
It is noted that the pharmaceutical art is unpredictable, requiring each embodiment to be individually assessed for physiological activity. In re Fisher, 427 F.2d 833,166 USPQ 18 (CCPA 1970) indicates that the more unpredictable an area is, the more specific enablement is necessary in order to satisfy the statute. Adams et al. US 6,083,903 disclose similar boron compounds for treating HIV infection. Applicants are claiming intent methods of use using the instant compound effective to "treating or preventing infection" without limitation. As such, the specification fails to enable the skilled artisan to use the compounds of claims 27-31 and 40-42 effective to "treating or preventing infection" without limitation.

In addition, there is no established correlation between in vitro activity and accomplishing treatment of "treating or preventing disorders in vitro or in vivo "treating or preventing infection" without limitation, in vivo, and those skilled in the art would not accept allegations in the instant specification to be reliable predictors of success, and those skilled in the ad would not be able to use the instant compound since there is no description of an actual method wherein "treating or preventing infection" without limitation in a host is treated or prevented.

Hence, one of skill in the art is unable to fully predict possible results from the administration of the compounds of claims 27-31 and 40-42 due to the unpredictability of the "treating or preventing infection" without limitation. The treating or preventing infection" without limitation is known to have many obstacles that would prevent one of ordinary skill in the art from accepting treating or preventing regimen on its face.

\section*{The amount of direction or guidance present and the presence or absence of working examples}

The only direction or guidance present in the instant specification is the listing of exemplary assays of inhibiting fungal growth, , see Fig. 1 - Fig. 9 There are no in vivo working examples present for the prevention of infection by the administration of compounds of the instant invention.

\section*{The breadth of the claims}

The breadth of the claims is methods of use using the instant compound effective to "treating or preventing infection" without limitation.

\section*{The quantity of experimentation needed}

The quantity of experimentation needed is undue experimentation. One of skill in the art would need to determine what "treating or preventing infection" without limitation would be benefited (i.e., prevented) by the administration of the instant compounds of the instant invention and would furthermore then have to determine which of the claimed methods of use would provide prevention of infection, if any.

\section*{The level of the skill in the art}

The level of skill in the art is high. However, due to the unpredictability in the pharmaceutical art, it is noted that each embodiment of the invention is required to be individually assessed for physiological activity by in vitro and in vivo screening to
determine which methods of use exhibit the desired pharmacological activity and which diseases would benefit from this activity. Thus, the specification fails to provide sufficient support of the broad use of the pharmaceutical compounds of the instant claims 27-31 and 40-42 for the "treating or preventing infection". As a result necessitating one of skill to perform an exhaustive search for which "treating or preventing infection", can be treated or prevented by what pharmaceutical compounds of the instant claims in order to practice the claimed invention.

Genentech Inc. v. Novo Nordisk A/S (CA FC) 42 USPQ2d 1001, states that "a patent is not a hunting license. It is not a reward for search, but compensation for its successful conclusion" and "patent protection is granted in return for an enabling disclosure of an invention, not for vague intimations of general ideas that may or may not be workable".

Therefore, in view of the Wands factors and In re Fisher (CCPA 1970) discussed above, to practice the claimed invention herein, a person of skill in the art would have to engage in undue experimentation, with no assurance of success. This rejection can be overcome by incorporation of the limitation "fungal infection" into claim 27 and deletion of the limitation "preventing" from claim 27 respectively, would obviate the rejection.
5.2. Claims 27-31 and 40-42 are rejected under 35 U.S.C. 112, first paragraph, because the specification, while being enabling for pharmaceutically acceptable salts of the instant compound of claim 27, 1,3-dihydro-5-fluoro- 1-hydroxy-2,1-benzoxaborole, does not reasonably provide enablement for the prodrug of the instant compound of
claim 27, see claim 27 . The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make the invention commensurate in scope with these claims. Dependent claims 28-31 and 40-42 are also rejected along with claim 27 under 35 U.S.C. 112, first paragraph.

In In re Wands, 8 USPQ2d 1400 (1988), factors to be considered in determining whether a disclosure meets the enablement requirement of 35 U.S.C. 1 12, first paragraph, have been described. They are:
1. the nature of the invention,
2. the state of the prior art,
3. the predictability or lack thereof in the art,
4. the amount of direction or guidance present,
5. the presence or absence of working examples,
6. the breadth of the claims,
7. the quantity of experimentation needed, and
8. the level of the skill in the art.

\section*{The nature of the invention}

The nature of the invention is the intent method of use using the compound of claim 27, i.e., 1,3-dihydro-5-fluoro- 1-hydroxy-2,1-benzoxaborole , their prodrugs or pharmaceutically acceptable salts thereof.

\section*{The state of the prior art and the predictability or lack thereof in the art}

The state of the prior art is that pro-drugs are inactive substances that are converted to a drug within the body by enzymes or other chemicals. Prodrugs can be formed by various mechanisms and vary depending on the functional groups present in the parent compound, i.e. different prodrugs would arise from parent compounds containing varying functional groups, such as a carboxylic acid, ester, an alcohol or an amine, all of which would require differing mechanism.

\section*{The amount of direction or guidance present and the presence or absence of working examples}

The only direction or guidance present in the instant specification is the Compound of claim 27 and their pharmaceutically acceptable salts of the compounds. There is no data present in the instant specification for the preparation of constitutional prodrugs of the instant compound of claim 27.

\section*{The breadth of the claims}

The instant breadth of the rejected claims is broader than the disclosure, specifically, the instant claims include any prodrugs, i.e. any compound of claim 27 with various functional groups, no matter what the chain length and any covalently bonded compound that would release the active parent compound.

The quantity or experimentation needed and the level of skill in the art While the level of the skill in the pharmaceutical arts is high, it would require
undue experimentation of one of ordinary skill in the art to prepare any prodrug of claim 27 as instantly claimed since a pro-drug of the compounds of claim 27 can have varying functional groups in varying positions. It would also require undue experimentation to prepare any covalently bonded compound that would release the active parent drug since pro-drugs are formed by varying mechanisms and depend on the functional groups of the parent compound. The only guidance present in the instant specification is for the compounds of claim 27 and their pharmaceutically acceptable salts thereof. There is no guidance or working examples present for constitutional prodrugs of claim 27. Therefore, the claims lack enablement for all prodrugs of the compounds of claim 27. This rejection can be overcome by deleting the limitation "prodrug" from the instant claims.

\section*{Claim Rejections - 35 USC § 103}
6. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459
(1966), that are applied for establishing a background for determining obviousness under 35
U.S.C. 103(a) are summarized as follows:
1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(f) or (g) prior art under 35 U.S.C. 103(a).

Claims 27-31 and 40-42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Austin et al. CAS: 124:234024 or see US 5,880,188 in view of fungicide: definition from Answre.com.

Applicants claim methods of use (i.e., treating infection) in an animal using 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, see claim 27.

\section*{Determination of the scope and content of the prior art (MPEP \$2141.01)}

Austin et al. disclose 5- and 6-fluoro or bromo-1,3-dihydro-1-hydroxy-2,1benzoxaborole as fungicide for agriculture, see Austin et al. CAS: 124:234024.

\section*{Determination of the difference between the prior art and the claims (MPEP}

\section*{§2141.02)}

The difference between instant claims and Austin et al. is that the Austin et al. using 5- and 6-fluoro or bromo-1,3-dihydro-1-hydroxy-2,1-benzoxaborole, while the instant claim is 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole.

Fungicide: definition from Answre.com discloses fungicide can be used for agriculture or pharmaceutical industry, i.e., for human fungal infections. Austin et al. methods of use and teachings of fungicide: definition from Answre.com inherently overlap with the instant invention.

\section*{Finding of prima facie obviousness-rational and motivation (MPEP \$2142-2143)}

One having ordinary skill in the art would find the claims 27-31 and 40-42 prima facie obvious because one would be motivated to employ the methods of use of Austin et al. and teachings of fungicide: definition from Answre.com to obtain instant methods of use using 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole for treating infection (i.e., fungal infection) in animals. Dependent claims 28-31 and 40-42 are also rejected along with claim 27 under 35 U.S.C. 103(a).

The motivation to make the claimed compounds derived from the known compounds as fungicide of Austin et al. and teachings of Answre.com would possess similar activity (i.e., treating fungal infection) to that which is claimed in the reference.

Application/Control Number: 11/357,687

\section*{Double Patenting}
7. The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. See In re Goodman, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225

USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and In re Thorington, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent is shown to be commonly owned with this application. See 37 CFR 1.130(b).

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with37 CFR 3.73(b).

Claim 27-31 and 40-42 are provisionally rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claims 53-54 and 58 of Baker et al. co-pending application No. 11/505,591. Although the conflicting claims are not identical, they are not patentably distinct from each other and reasons are as follows.

Applicants claim methods of use (i.e., treating infection) using 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, see claims 27.

Baker et al. et al. ‘591 claim methods of use (i.e., treating microorganism) using compounds of formula (I) or s compound 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, see claim 54 or 58 .

The difference between the instant claims and Baker et al. et al. is that the instant claims are using a compound 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, while Baker et al. using compound of formula (I) or a compound 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole. Baker et al. methods of use inherently overlap with the instant invention.

One having ordinary skill in the art would find the instant claims 27-31 and 40-42 prima facie obvious because one would be motivated to employ the methods of use of BAker et al. ‘591 to obtain the instant methods of use using a compound 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole or its pharmaceutical salt .

The motivation to obtain the claimed catalyst derives from known Baker et al. methods of use would possess similar activity (i.e., treating fungus) to that which is claimed in the reference.

This is a provisional obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

\section*{Conclusion}

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Rei-Tsang Shiao whose telephone number is (571) 2720707. The examiner can normally be reached on 8:30 AM - 5:00 PM. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Joseph K. McKane can be reached on (571) 272-0699. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from The Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

\title{
/REI-TSANG SHIAO /
}

Rei-Tsang Shiao, Ph.D. Primary Patent Examiner Art Unit 1626

August 21, 2008
\begin{tabular}{|c|l|l|l|}
\hline \multirow{3}{*}{ Notice of References Cited } & \begin{tabular}{l}
Application/Control No. \\
\(11 / 357,687\)
\end{tabular} & \begin{tabular}{l}
Applicant(s)/Patent Under \\
Reexamination \\
BAKER ET AL.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Examiner \\
REI-TSANG SHIAO
\end{tabular} & \begin{tabular}{l}
Art Unit \\
1626
\end{tabular} & Page 1 of 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|l|c|}
\hline\(*\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & & Name \\
\hline\(*\) & A & US-5,880,188 & \(03-1999\) & Austin et al. & Classification \\
\hline\(*\) & B & US-6,083,903 & \(07-2000\) & Adams et al. & \(524 / 109\) \\
\hline & C & US- & & & \(514 / 2\) \\
\hline & D & US- & & & \\
\hline & E & US- & & & \\
\hline & F & US- & & & \\
\hline & G & US- & & & \\
\hline & H & US- & & & \\
\hline & & US- & & & \\
\hline & J & US- & & & \\
\hline & K & US- & & & \\
\hline & L & US- & & & \\
\hline & M & US- & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(*\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & & \\
\hline & S & & & & & \\
\hline & T & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS

\section*{BIB DATA SHEET}

CONFIRMATION NO. 4964
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SERIAL NUMBER
\[
11 / 357,687
\]} & \[
\begin{array}{r}
\text { FILING o } \\
\text { DAT } \\
02 / 16 / \\
\text { RUL }
\end{array}
\] & 371(c)
\[
06
\] & \begin{tabular}{l}
CLASS \\
514
\end{tabular} & & UNIT & & \begin{tabular}{l}
RRNEY DOCKET NO. \\
507-5014-US
\end{tabular} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
APPLICANTS \\
Stephen J. Baker, Mountain View, CA; \\
Tsutomu Akama, Sunnyvale, CA; \\
Carolyn Bellinger-Kawahara, Redwood City, CA; \\
Vincent S. Hernandez, Watsonville, CA; \\
Karin M. Hold, Belmont, CA; \\
James J. Leyden, Malvern, PA; \\
Kirk R. Maples, San Jose, CA; \\
Jacob J. Plattner, Berkeley, CA; \\
Virginia Sanders, San Francisco, CA; \\
Yong-Kang Zhang, San Jose, CA;
\end{tabular}} \\
\hline Foreign Priority claim 35 USC 119(a-d) con Verified and Acknowledged & \begin{tabular}{l}
ned \\
ditions m /REI-TS Examine
\end{tabular} & & \(\underset{\substack{\text { Met } \\ \text { Allow } \\ \text { A.S. } \\ \text { Rntials }}}{\text { Rem }}\) & \begin{tabular}{l}
STATE OR COUNTRY \\
CA
\end{tabular} & & & AL MS & \begin{tabular}{l}
INDEPENDENT CLAIMS \\
3
\end{tabular} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
ADDRESS \\
MORGAN, LEWIS \& BOCKIUS LLP (SF) \\
One Market, Spear Street Tower, Suite 2800 \\
San Francisco, CA 94105 \\
UNITED STATES
\end{tabular}} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
TITLE \\
Boron-containing small molecules
\end{tabular}} \\
\hline \multirow{6}{*}{FILING FEE RECEIVED 1240} & \multicolumn{5}{|l|}{\multirow{6}{*}{\begin{tabular}{l}
FEES: Authority has been given in Paper \\
No. \(\qquad\) to charge/credit DEPOSIT ACCOUNT \\
No. \(\qquad\) for following:
\end{tabular}}} & \multicolumn{3}{|c|}{\(\square\) All Fees} \\
\hline & & & & & & \multicolumn{3}{|l|}{1.16 Fees (Filing)} \\
\hline & & & & & & \multicolumn{3}{|l|}{1.17 Fees (Processing Ext. of time)} \\
\hline & & & & & & \multicolumn{3}{|l|}{\(\square 1.18\) Fees (Issue)} \\
\hline & & & & & & \multicolumn{3}{|c|}{\(\square\) Other} \\
\hline & & & & & & \multicolumn{3}{|c|}{\(\square\) Credit} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS+} \\
\hline & & Document Number & & & \\
\hline Examiner Initials* & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }{ }^{1}
\end{aligned}
\] & Number Kind Code \({ }^{2}\) (if known) & Publication Date MM-DD-YYYY & Name of Patentee or Applicant of Cited Document & Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Examiner \\
Signature
\end{tabular} & Mei Tsang Shizol \((08 / 20 / 2008)\) & \begin{tabular}{l}
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Examiner \\
Signature
\end{tabular} & Rei Tsang Shiao/(08/20/2008) & \begin{tabular}{l}
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}

\footnotetext{
1-SF7/56883ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /RS/
}

EAST Search History
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref
\[
\#
\] & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline L2 & 523 & (514/64).CCLS. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2008 / 08 / 21 \\
& 14: 05
\end{aligned}
\] \\
\hline L3 & 141 & \[
\begin{aligned}
& \text { (558/288). } \\
& \text { CCLS. }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2008 / 08 / 21 \\
& 14: 06
\end{aligned}
\] \\
\hline
\end{tabular}

8/21/2008 2:06:23 PM
\(\mathrm{C}: \backslash\) Documents and Settings \(\backslash\) rshiao My Documents EAST\\default.wsp

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electronic Business Center on

Dated: \(\qquad\)
signed: C. Rubulule-Rivem

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. BAKER, et al.
Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In view of McKesson Information Solutions v. Bridge Medical (Fed. Cir. 2007), Applicants wish to inform the Examiner (as required under MPEP 2001.06(b)) that this case is related to:
U.S. Application Serial No. 10/868,268, filed June 15, 2004;
U.S. Application Serial No. 12/270,636, filed November 13, 2008;
U.S. Application Serial No. 11/743,665, filed May 2, 2007;
U.S. Application Serial No. 11/505,591, filed August 16, 2006;
U.S. Application Serial No. 11/676,120, filed February 16, 2007;
U.S. Application Serial No. 11/762,038, filed June 12, 2007;
U.S. Application Serial No. 11/153,010, filed June 14, 2005;
U.S. Application Serial No. 11/865,725, filed October 1, 2007;

Appl. No. 11/357,687
PATENT
Statement of Relatedness
U.S. Application Serial No. 12/142,692, filed June 19, 2008;

The Examiner is encouraged to review the art made of record, any Office Action, and any Notice of Allowance in the above-mentioned related application. Applicants assume that due to the ease of review on PAIR by the Examiner, Applicant need not submit copies of the individual Office Actions and/or Notices of Allowance. Applicants assume that the Examiner is aware that prosecution is ongoing in the above-referenced case, and that the Examiner will continue to evaluate this case as needed.

The Examiner is invited to contact the undersigned at (415) 442-1000.

Date: December 4, 2008

Todd Esker, Reg. No. 46,690
MORGAN, LEWIS \& BOCKIUS LLP
One Market, Spear Street Tower
San Francisco, California 94105
(415) 442-1000

DB2/20925053.1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 4407336 \\
\hline Application Number: & 11357687 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4964 \\
\hline Title of Invention: & Boron-containing small molecules \\
\hline First Named Inventor/Applicant Name: & Stephen J. Baker \\
\hline Customer Number: & 43850 \\
\hline Filer: & Jeffry S. Mann \\
\hline Filer Authorized By: & \\
\hline Attorney Docket Number: & 064507-5014US \\
\hline Receipt Date: & 05-DEC-2008 \\
\hline Filing Date: & 16-FEB-2006 \\
\hline Time Stamp: & 20:29:16 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Submitted w & yment & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline 1 & Miscellaneous Incoming Letter & 5014USStatementofRelatednes s.pdf & & no & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

\section*{New Applications Under 35 U.S.C. 111}

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

\section*{National Stage of an International Application under 35 U.S.C. 371}

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

\section*{New International Application Filed with the USPTO as a Receiving Office}

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electronic Business Center on:

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

In re application of:
Stephen J. BAKER, et al.
Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
RESPONSE TO FIRST OFFICE ACTION

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In response to the First Office Action dated August 26, 2008, please enter the following amendments and remarks.

Amendments to the Claims are reflected in the listing of claims which begins on page \(\mathbf{2}\) of this paper.

Remarks/Arguments begin on page 4 of this paper.

\section*{Amendments to the Claims:}

This listing of claims will replace all prior versions, and listings of claims in the application.

\section*{Listing of Claims:}
1. - 26. (Cancelled).
27. (Currently amended) A method of treating or preventing an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof er a prodrug thereof., sufficient to treat said infection.
28. (Original) The method of claim 27, wherein said infection is a member selected from a systemic infection, a cutaneous infection, and an ungual or periungual infection.
29. (Original) The method of claim 27, wherein said infection is a member selected from chloronychia, paronychias, erysipeloid, onychorrhexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verrucosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), dermatological diseases, psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphigoid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome, systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus, Sporotrichosis, Mycotic keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea Imbricata.

Appl. No. 11/357,687
PATENT
Amendment dated January 23, 2009
Response to Office Action dated August 26, 2008
30. (Original) The method of claim 27, wherein said infection is onychomycosis.
31. (Original) The method of claim 27, wherein said animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey.
32.-39. (Cancelled).
40. (Currently amended) The method of claim 30, wherein said onychomycosis is Tine unguitm tinea unguium.
41. (Cancelled).
42. (Previously presented) The method of claim 27, wherein said animal is a human.
43. (New) The method of claim 27, wherein the administering is at a site which is a member selected from the skin, nail, hair, hoof and claw.
44. (New) The method of claim 43, wherein said skin is the skin surrounding the nail, hair, hoof or claw.
45. (New) The method of claim 27, wherein said infection is a fungal infection.
46. (New) A method of treating onychomycosis in a human, said method comprising administering to the human a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof, sufficient to treat said onychomycosis.
47. (New) A method of inhibiting the growth of a fungus in a human, said method comprising administering to the human a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof.

\section*{REMARKS/ARGUMENTS}

\section*{I. Status of the Claims}

After entry of this Response, claims 27-31, 40 and 42-47 are pending. Claims 126, 32-39 and 41 are cancelled without prejudice. Claims 43-47 are new. Claims 27-31 and 40 and 42-47 are currently presented. Claim 27 is amended. No new matter has been added.
II. Support for the amended claims and new claims

Claim 27 is amended to add the phrase "sufficient to treat said infection". Support for this amendment is provided in paragraph 108.

Support for new claim 43 is provided in paragraphs 108 and 109.
Support for new claim 44 is provided in paragraph 109.
Support for new claim 45 is provided in paragraphs 102, 103 and 108-116 and Fig. 2.

Support for new claim 46 is provided in paragraphs 108, 109 and 258.
Support for new claim 47 is provided in paragraphs 102, 103, 317, 320-323, 324334, 335-371, 372-381.

No new matter has been added.

\section*{III. Response to the reiections}

\section*{35 U.S.C. § 112, first paragraph, enablement (5.1)}

Claims 27-31 and 40-42 are rejected for lacking enablement because the specification, while being enabling for using the compounds of claim 27 for treating fungal infections, allegedly does not reasonably provide enablement for using the compounds of claim 27 for preventing infection.

Solely to expedite prosecution, Applicants have amended claim 27 to remove the phrase 'or preventing'. Applicants reserve the right to pursue this subject matter in another application, such as a continuation or a divisional.

In light of this amendment, Applicants respectfully request withdrawal of the rejection.

\section*{35 U.S.C. § 112, first paragraph, enablement (5.2)}

Claims 27-31 and 40-42 are rejected for lacking enablement because the specification, while being enabling for pharmaceutically acceptable salts of the compounds of claim 27, allegedly does not reasonably provide enablement for prodrugs of the compounds of claim 27.

Solely to expedite prosecution, Applicants have amended claim 27 to remove the term 'or a prodrug thereof'. Applicants reserve the right to pursue this subject matter in another application, such as a continuation or a divisional.

In light of this amendment, Applicants respectfully request withdrawal of the rejection.

\section*{35 U.S.C. § \(103(a)\)}

\section*{Over Austin in view of Answers.com}

Claims 27-31 and 40-42 are rejected under 35 U.S.C. § 103(a) as allegedly being unpatentable over Austin et al., CAPlus Document No. 124:234024 (Accession No. 1996:181598) or US Patent 5,880,188 ("Austin") in view of "Fungicide," Answers.com.

Reference to "Answers.com" herein refers to Exhibit A, showing the record accessed December 17, 2008, for "fungicide" on Answers.com.

Austin in view of Answers.com does not teach or suggest the invention as claimed. Austin states that "The present invention relates to the use of oxaboroles and salts thereof as industrial biocides..." Col. 1, lines 6-8. A previous citation in the literature (FR 7329370) "discloses that an oxaborole is . . . useful in inhibiting the growth of micro organisms in aviation fuels." Col. 1, lines 39-45. Austin suggests that the disclosed compounds "containing an oxaborole ring are particularly effective against . . . fungi, especially fungi which cause degradation of plastics materials." Col. 1, lines 46-50.

Austin contemplates using oxaboroles for "the protection of a medium susceptible to microbial attack." Col. 1, lines \(54 \& 55\). Examples of a "medium" according to Austin include "solvent-based paint", col. 5, line 8; "a plastics material", col. 5, line 11; "an aqueous medium" col. 5, line 15. Austin suggests use of oxaboroles in systems such as
liquid, particularly aqueous, systems such as cooling water liquors, paper mill liquors, metal working fluids, geological drilling
lubricants, polymer emulsions and especially surface coating compositions such as paints, varnishes and lacquers and more especially solid materials such as wood, plastics materials[,] leather[, and] plastics materials such as plasticised PVC and urethanes[.]

Col. 8, lines 1-10. Further, 5 -fluoro substituted benzoxaboroles are taught to provide "particularly useful effects . . . in plastics materials and paint films." Col. 4, lines 50-54. Austin therefore is specifically directed to industrial uses of benzoxaboroles.

In contrast, claim 27 recites a method of treating an infection in an animal comprising administering to an animal a specific compound recited in the claim. Applicants submit that one of skill in the art would not presumptively consider a compound to be suitable for administration to an animal, especially a human, merely because a compound has been shown to have antifungal effects in paint or aviation fuel. In fact, Answers.com, cited by the Examiner, teaches away from presuming that any antifungal compound can be administered to an animal.

For example, Answers.com, page 3, states that
Most fungicides can cause acute toxicity, and some cause chronic toxicity as well. Hexachlorobenzene, now banned or severely restricted in most parts of the world, has been associated with human poisoning from contaminated seed grain and poisoning of infants from misuse in laundry solutions. Metam sodium and other thiocarbanates are skin irritants that can cause reactive airway disease at low doses and severe toxicity and even death at high doses. The ethylene bis dithiocarbamates (EBCDs) are suspected human carcinogens and are tightly regulated in the United States.

Answers.com, page 4 teaches that "some fungicides are dangerous to human health, such as vinclozolin, which has now been removed from use [citation to Hrelia et al., The genetic and non-genetic toxicity of the fungicide Vinclozolin. Mutagenesis 1996, 11, 445-453]." Certain fungicides, such as captafol, pentachlorophenol, pentachlorophenate sodium, fentin, cycloheximide, chlorobenzilate, and copper arsenate hydroxide, are banned in Thailand because of their adverse effects on humans. See http://thailand.ipminfo.org/pesticides/pesticides banned.htm. Thus, the art teaches that compounds that are useful for killing or inhibiting fungi may also harm animals. Austin, cited by the Examiner, teaches the use of oxaboroles in treating plastics and materials and in other industrial settings, and there is no
reason why, in view of Answers.com, one of skill in the art would extrapolate such use for treating animals given the potential harm that may occur.

Answers.com thus does not provide a motivation to modify the teachings of Austin to use any particular oxaborole to treat an animal, and in fact teaches away from such modification. The Examiner has not established a prima facie case of obviousness. Withdrawal of the rejection is therefore respectfully requested.

\section*{Double Patenting}

The Examiner has provisionally rejected claims 27-31 and 40-42 as allegedly being unpatentable over claims 53, 54 and 58 of Application No. 11/505,591 on the ground of nonstatutory obviousness-type double patenting. Claims 53,54 and 58 have been canceled in Application No. 11/505,591, as shown in the accompanying restriction requirement response filed on December 3, 2008 (Exhibit B). As the claims at issue from Application No. 11/505,591 are no longer pending, Applicants respectfully request withdrawal of the rejection.

\section*{CONCLUSION}

In view of the foregoing, Applicants believe all claims now pending in this Application are in condition for allowance. The issuance of a formal Notice of Allowance at an early date is respectfully requested.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 415-442-1000.

Respectfully submitted,

Todd Esker
Reg. No. 46,690
MORGAN, LEWIS \& BOCKIUS LLP
One Market, Spear Street Tower
San Francisco, CA 94105
Tel: 415-442-1000
Fax: 415-442-1001
DB2/20981166.1

CFAD v. Anacor, IPR2015-01776, CFAD EXHIBIT 1070 - Page 322 of 558

\section*{Answers.com \({ }^{\circ}\)}

\section*{fungicide}

Dictionary:

\section*{fungicide}
(fŭn'jī-sĭd', fŭng'gì-) 时
n.

A chemical substance that destroys or inhibits the growth of fungi.
fungicidal fun'gi•cid'al (-sid'l) adj.
fungicidally fun'gi•cid'al•ly \(a d v\).
Encyclopedia of Public Health: Fungicides

Fungicides are a class of pesticides that are marketed specifically for the purpose of killing or inhibiting the growth of fungus. Fungus are defined under the Federal Insecticide, Fungicide, and Rodenticide Act as "any non-chlorophyllbearing thallophyte (that is, any non-chlorophyllbearing plant of a lower order than mosses and

Table 1

\section*{Classes of Fungicides, with Examples}

Class of Fungicide
Substituted Benzenes
Thiocarbamates
Ethylene Bis Dithiocarbamates (EBDC's)
Thiophthalimides
Copper compounds
Organomercury compounds
Organotin compounds
Cadmium compounds
Miscellaneous organic fungicides
sOURCE: Courtesy of author.
liverworts), as, for example, rust, smut, mildew, mold, yeast, and bacteria, except those on or in
living man or other animals and those on or in processed food, beverages, or pharmaceuticals." Although the United States statutory definition excludes fungi that would grow on food, beverages, and pharmaceuticals, biologically these are fungi. Thus, in the United States, products designed to kill fungi are regulated by the U.S. Environmental Protection Agency as pesticides and/or by the Food and Drug Administration under food and drug law (a chemical may fall under the purview of both agencies).

The benefits of fungicide use have been many. In agriculture, fungicides control pests that may rob water and nutrients from crop plants or may cause food spoilage as the products are brought to market. Fungicides may also prevent the growth of fungi that produce toxins, such as aflatoxins. Fungicides also have important industrial applications and are important in preserving the purity and safety of certain pharmaceutical agents.

In 1997 there were an estimated \(\$ 0.8\) billion in sales of fungicides in the United States, about 7 percent of the total pesticide market. In 1997, worldwide, 5.7 billion pounds of pesticides were used, of which 0.5 billion were fungicides. Of the 1.2 billion pounds of conventional pesticides used in the United States in 1997, a total of 81 million pounds of fungicides were used; 79 percent of the use was in agriculture. Generally, the United States has experienced a downward trend in total fungicide use since 1970.

There are numerous classes of fungicides, with different modes of action as well as different potentials for adverse effect on health and the environment (see Table 1). Most fungicides can cause acute toxicity, and some cause chronic toxicity as well. Hexachlorobenzene, now banned or severely restricted in most parts of the world, has been associated with human poisoning from contaminated seed grain and poisoning of infants from misuse in laundry solutions. Metam sodium and other thiocarbanates are skin irritants that can cause reactive airway disease at low doses and severe toxicity and even death at high doses. The ethylene bis dithiocarbamates (EBCDs) are suspected human carcinogens and are tightly regulated in the United States.

Organic mercurials have caused severe acute and chronic toxicity. Worldwide, there have been a number of incidents of treated seed grain fed to people, with disastrous consequences in terms of acute poisoning and damage to fetuses. Phenyl mercuric acetate is no longer used as a paint preservative in the United States because it off-gases elemental mercury into the air, with the potential for causing toxicity to young children. Organotin compounds also have serious human toxicity and are very toxic to the environment; their use is banned or severely restricted in most of the world. Likewise, due to human toxicity concerns, cadmium is no longer used as a fungicide in the United States.
(SEE ALSO: Mercury; Pesticides; Toxic Substances Control Act; Toxicology)
Bibliography
Reigart, J. R., and Roberts, J. R. (1999). Recognition and Management of Pesticide Poisoning, 5th edition. Washington, DC: U.S. Environmental Protection Agency.

Sine, C., ed. (1998). Farm Chemicals Handbook. Willoughby, OH: Meister.
- LYNN R. GOLDMAN

\section*{Britannica Concise Encyclopedia: fungicide}

Any toxin used to kill or inhibit growth of fungi (see fungus) that cause economic damage to crop
or ornamental plants (including rusts in cereals, blight in potatoes, mildew in fruits) or endanger the health of domestic animals or humans. Most are applied as sprays or dusts; seed fungicides are applied as a protective coating to seeds before germination. Copper compounds, especially copper sulfate mixed with lime and water (Bordeaux mixture), and sulfur have long been used for this purpose, but now synthetic organic compounds are commonly used. Many antifungal substances occur naturally in plant tissues.

For more information on fungicide, visit Britannica. com.
Architecture: fungicide
A substance that is poisonous to fungi; retards or prevents the growth of fungi.

\section*{Columbia Encyclopedia: fungicide}
(fŭn'josīd', fŭng'gr-) , any substance used to destroy fungi. Some fungi are extremely damaging to crops (see diseases of plants), and others cause diseases in humans and other animals (see fungal infection).

Surface fungicides, which keep harmful fungi from penetrating the tissues of a plant, include inorganic and organic compounds. Sulfur compounds, long used on plants, have been supplemented for some time by other chemicals, especially by compounds of copper, such as Bordeaux mixture. After 1945, organic salts of iron, zinc, and mercury were synthesized as fungicides. Most post-1965 fungicides are systemic, acting directly on fungal cells. Antifungal drugs, such as miconazole and terbinafine, are used for human fungal infections.

Plant fungicides are usually applied by spraying or dusting, but some types are applied to seeds and soil for the destruction of vegetative spores. Fungicides used on wood, including creosote, prevent dry rot, and certain compounds are used to make fabrics resistant to mildews. Most agricultural fungicides are preventive; those applied after infection are called eradicant, or contact, fungicides.

In the United States, fungicides are governed by the 1972 federal Environmental Protection and Control Act. They must be registered with the Environmental Protection Agency and must conform to specifications. They must control the disease without injuring the plant and must leave no poisonous residue on edible crops. Antifungal drugs are approved by the Food and Drug Administration.

See also pesticide.

\section*{Veterinary Dictionary: fungicide}

An agent that destroys fungi.

\section*{Gardener's Dictionary: fungicide}

A compound that inhibits the growth of fungal organisms. Fungicides rarely kill fungi and are more useful as a preventive than as a cure.

\author{
Wikipedia: Fungicide
}

Fungicides are chemical compounds or biological organisms used to kill or inhibit fungi or fungal spores. Fungi are capable of causing serious damage in agriculture, resulting in critical losses of yield, quality and profit. Although similar, oomycetes are not fungi. However, they use the same mechanisms to infect plants. \({ }^{[1]}\) Consequently, in the study of plant disease (phytopathology), chemicals used to control oomycetes are also referred to as fungicides. As well as in agriculture, fungicides are used to fight fungal infections in animal tissue.

Fungicides can either be contact or systemic. A contact fungicide kills fungi when sprayed on its surface; a systemic fungicide has to be absorbed by the plant.

The majority of fungicides that can be bought retail are sold in a liquid form. The most common active ingredient is sulfur, running at \(0.08 \%\) for the weaker concentrates, and has high as \(0.5 \%\) for the more potent fungicides. In powdered form, the concentration is usually around \(90 \%\), and the product is very toxic.

Other active ingredients in different brands include neem oil, rosemary oil, jojoba oil, and the bacterium Bacillus subtilis.

Fungicide residues have been found on food for human consumption, mostly from post-harvest treatments. \({ }^{[2]}\) Some fungicides are dangerous to human health, such as vinclozolin, which has now been removed from use. \({ }^{[3]}\)

\section*{Contents}
[hide]
- 1 Natural fungicides
- 2 Fungicide resistance
- 2.1 Fungicide resistance management
- 3 See also
- 4 External links
- 5 References

\section*{Natural fungicides}

Plants and other organisms over time have developed chemical defenses, (via natural selection), which give them an advantage against microorganisms such as fungi. Some of these compounds can be used as fungicides.
- Tea tree oil
- Cinnamaldehyde \({ }^{[4]}\)
- Cinnamon essential oil \({ }^{[5]}\)
- Jojoba oil is fungicide, and can be used for controlling mildew. \({ }^{[6]}\)
- Neem oil
- Rosemary oil

Whole live or dead organisms that are efficient at killing or inhibiting fungi can sometimes be used as fungicides:
- The bacterium Bacillus subtilis
- Kelp (powdered dried kelp is fed to cattle to protect them from fungi in grass)

\section*{Fungicide resistance}

Pathogens respond to the use of fungicides by evolving resistance. In the field several mechanisms of resistance have been identified. The evolution of fungicide resistance can be gradual or sudden. In qualitative or discrete resistance a mutation (normally to a single gene) produces a race of a fungus with a high degree of resistance. Such resistant varieties also tend to show stability, persisting after the fungicide has been removed from the market. For example sugar beet leaf blotch remains resistant to azoles years after they were no longer used for control of the disease. This is because such mutations often have a high selection pressure when the fungicide is used, but there is low selection pressure to remove them in the absence of the fungicide.

In instances where resistance occurs more gradually a shift in sensitivity in the pathogen to the fungicide can be seen. Such resistance is polygenic - an accumulation of many mutation in different genes each having a small additive effect. This type of resistance is known as quantitative or continuous resistance. In this kind of resistance the pathogen population will revert back to a sensitive state if the fungicide is no longer applied.

Little is known about how variations in fungicide treatment affect the selection pressure to evolve resistance to that fungicide. Evidence shows that the doses that provide the most control of the disease also provide the largest selection pressure to acquire resistance, and that lower doses decreased the selection pressure. \({ }^{[7]}\)

In some cases when a pathogen evolves resistance to one fungicide it automatically obtains resistance to others - a phenomenon known as cross resistance. These additional fungicides are normally of the same chemical family or have the same mode of action, or can be detoxified by the same mechanism. Sometimes negative cross resistance occurs, where resistance to one chemical class of fungicides leads to an increase in sensitivity to a different chemical class of fungicides. This has been seen with carbendazim and diethofencarb.

There are also recorded incidences of pathogens evolving multiple drug resistance - resistance to two chemically different fungicides by separate mutation events. For example Botrytis cinerea is resistant to both azoles and dicarboximide fungicides.

There are several routes by which pathogens can evolve fungicide resistance. The most common mechanism appears to be alternation of the target site, particular as a defence against single site of action fungicides. For example Black Sigatoka, an economically important pathogen of banana, is resistant to the Qol fungicides, due to a single nucleotide change resulting one amino acid (glycine) being replaced by another (alanine) in the target protein of the Qol fungicides, cytochrome \(b .{ }^{[8]}\) This presumably disrupts the binding of the fungicide to the protein, rendering the fungicide ineffective.

Upregulation of target genes can also render the fungicide ineffective. This is seen in DMI resistant strains of Venturia inaequalis.[9]

Resistance to fungicides can also be developed by efficient efflux of the fungicide out of the cell. Septoria tritici has developed multiple drug resistance using this mechanism. The pathogen had 5 ABC type transporters with overlapping substrate specificities that together work to effectively pump toxic chemicals out of the cell. \({ }^{[10]}\)

In addiction to the mechanisms outlined above, fungi may also develop metabolic pathways that circumvent the target protein, or acquire enzymes that enable metabolism of the fungicide to a harmless substance.

\section*{Fungicide resistance management}

The fungicide resistance action committee (FRAC) has several recommended practices to try to avoid the development of fungicide resistance, especially in at-risk fungicides including Strobilurins such as azoxystrobin.

Products should not be used in isolation but rather as mixture, or alternate sprays, with another fungicide with a different mechanism of action. The likelihood of the pathogen developing resistance is greatly decreased by the fact that any resistant isolates to one fungicide will hopefully be killed by the other - in other words two mutations would be required rather than just one. The effectiveness of this technique can be demonstrated by Metalaxyl. When used as the sole product in Ireland to control potato blight (Phytophthora infestans) resistance developed within one growing season. However in countries like the UK where it was only ever marketed as a mixture resistance problems were not seen.

Fungicides should only be applied when absolutely.necessary, especially if they are in an at-risk group. Lowering the amount of fungicide in the environment lowers the selection pressure for resistance to develop.

Manufacturers' doses should always be followed. These doses are normally designed to give the right balance between controlling the disease and limiting the risk of resistance development. Higher doses increase the selection pressure for single site mutations that confer resistance, as all strains but those that carry the mutation will be eliminated, and thus the resistant strain will propagate. Lower doses greatly increase the risk of polygenic resistance, as strains that are slightly less sensitive to the fungicide may survive.

It is also recommended that where possible fungicides are only used in a protective manner, rather than to try to cure already infected crops. Far fewer fungicides have curative/eradicative ability than protectant. Thus fungicide preparations advertised as having curative action may only have one active chemical; a single fungicide acting in isolation increases the risk of fungicide resistance.

It is better to use an integrative pest management approach to disease control, rather than relying on fungicides alone. This involves the use of resistant varieties and hygienic practises, such as the removal of potato discard piles and stubble on which the pathogen can overwinter, greatly reduce the titre of the pathogen and thus the risk of fungicide resistance development.

\section*{See also}
- Antifungal drug
- List of fungicides
- Pesticide application
- Phytopathology
- Plant disease forecasting

\section*{External links}
- Fungicide Resistance Action Group
- General Pesticide Information - National Pesticide information Center

\section*{References}

This article needs additional citations for verification.
Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (January 2008)
1. 乞 Latijnhouwers M, de Wit PJ, Govers F. Oomycetes and fungi: similar weaponry to attack plants. Trends in Microbiology Volume 11 462-469
2. \(\simeq\) Pesticide Chemistry and Bioscience edited by G.T Brooks and T.R Roberts. 1999. Published by the Royal Society of Chemistry
3. \(\simeq\) Hrelia et al. 1996-The genetic and non-genetic toxicity of the fungicide Vinclozolin. Mutagenesis Volume 11 445-453
4. ^ "Cinnamaldehyde Use". PAN Pesticides Database. Retrieved on 2007-10-23.
5. ^ López P, Sánchez C, Batlle R, Nerin C (August 2005). "Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodbome bacterial and fungal strains". J. Agric. Food Chem. 53 (17): 6939-46. doi:10.1021/jf050709y. PMID 16104824.
6. AS Patent 6174920 Method of controlling powdery mildew infections of plants using jojoba wax
7. \(\hat{A}\) Metcalfe, R.J. et al. (2000) The effect of dose and mobility on the strength of selection for DMI fungicide resistance in inoculated field experiments. Plant Pathology 49: 546-557
8. \(\simeq\) Sierotzki, Helge (2000) Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates Pest Management Science 56:833-841
9. \(\hat{_}\)Schnabel, G., and Jones, A. L. 2001. The 14a-demethylase (CYP51A1) gene is overexpressed in V. inaequalis strains resistant to myclobutanil. Phytopathology 91:102110.
10. \(\hat{-}\) Zwiers, L. H. et al. (2003) ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds Molecular Genetics and Genomics 269:499-507

This entry is from Wikipedia, the leading user-contributed encyclopedia. It may not have been reviewed by professional editors (see full disclaimer)

Donate to Wikimedia
Shopping: fungicide
fungicide

Join the WikiAnswers Q\&A community. Post a question or answer questions about "fungicide" at WikiAnswers.

I hereby certify that this correspondence, including listed enclosures is

Dated: \(\qquad\)
Signed: \(\qquad\)

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. BAKER, et al.
Application No.: 11/505,591
Filed: August 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 5739
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
RESPONSE TO RESTRICTION
REQUIREMENT

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In response to the Restriction Requirement dated July 3, 2008, please enter the following amendments and remarks.

Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.

Remarks/Arguments begin on page 7 of this paper.

\section*{Amendments to the Claims:}

This listing of claims will replace all prior versions, and listings of claims in the application.

\section*{Listing of Claims:}
1.-120. (Cancelled)
121. (Currently amended) A unit dosage pharmaceutical formulation, comprising:
(a) 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a salt thereof; and

\section*{(b) a pharmaceutically acceptable excipient}
wherein said pharmaceutical formulation is for topical administration to an animal
suffering from an infection by a microorganism.
of an mount of a compound effective to inhibit conversion-of a \(A\) RNA molecule into a eharged tRNA molecule by a mieroorganism by inhibiting an editing domain of a tRNA synthetase.
122. - 192. (Cancelled).
193. (New) The formulation of claim 121, wherein said formulation is a member selected from a lacquer, lotion, cream, gel, ointment and spray.
194. (New) The formulation of claim 121, wherein said formulation is a lacquer.
195. (New) The formulation of claim 121 , wherein said formulation further comprises one or more members selected from an emulsifier, emollient, antioxidant, perservative, chelating agent, neutralizing agent, viscosity increasing agent, nail penetration enhancer, anti-inflammatory agent, vitamin, anti-aging agent, sunscreen and acne-treating agent.
196. (New) The formulation of claim 121, wherein said formulation comprises one or more members selected from ethanol and propylene glycol.
197. (New) The formulation of claim 121, comprising: about propylene glycol:ethanol in a ratio of about 1:4, and about \(1: 10 \mathrm{wt}\) / volume of said 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole.
198. (New) The formulation of claim 121, comprising: about \(70 \%\) ethanol; about \(20 \%\) poly(vinyl methyl ether-alt-maleic acid monobutyl ester) and about \(10 \%\) of said \(1,3-\) dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole.
199. (New) The formulation of claim 121, comprising: about \(56 \%\) ethanol; about \(14 \%\) water; about \(15 \%\) poly(2-hydroxyethyl methacrylate); about \(5 \%\) dibutyl sebacate and about \(10 \%\) of said 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole.
200. (New) The formulation of claim 121, comprising: about \(55 \%\) ethanol; about \(15 \%\) ethyl acetate; about \(15 \%\) poly(vinyl acetate); about \(5 \%\) dibutyl sebacate and about 10\% 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole.
201. (New) The formulation of claim 121, wherein said 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole is present in said formulation in a concentration from about \(0.5 \%\) to about \(15 \% \mathrm{w} / \mathrm{v}\).
202. (New) The formulation of claim 121, wherein said 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or salt thereof, is present in a form which is a member selected from a hydrate with water, a solvate with an alcohol, an adduct with an amino compound, and an adduct with an acid.
203. (New) The formulation of claim 121, wherein said formulation is in a cosmetically effective amount.
204. (New) The formulation of claim 121, wherein a site of said topical administration is skin or nail or hair or skin surrounding the nail or skin surrounding the hair.
205. (New) The formulation of claim 121 , wherein the microorganism is a fungus or a yeast.
206. (New) The formulation of claim 205, wherein said fungus or yeast is a member selected from Candida species, Trichophyton species, Microsporium species, Aspergillus species, Cryptococcus species, Blastomyces species, Cocciodiodes species, Histoplasma species, Paracoccidiodes species, Phycomycetes species, Malassezia species, Fusarium species, Epidermophyton species, Scytalidium species, Scopulariopsis species, Alternaria species, Penicillium species, Phialophora species, Rhizopus species, Scedosporium species and Zygomycetes species.
207. (New) The formulation of claim 205, wherein said fungus or yeast is a member selected from Aspergilus fumigatus, Blastomyces dermatitidis, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, Candida parapsilosis, Candida tropicalis, Cocciodiodes immitis, Epidermophyton floccosum, Fusarium solani, Histoplasma capsulatum, Malassezia furfur, Malassezia pachydermatis, Malassezia sympodialis, Microsporum audouinii, Microsporum canis, Microsporum gypseum, Paracoccidiodes brasiliensis, Trichophyton mentagrophytes, Trichophyton rubrum and Trichophyton tonsurans.
208. (New) The formulation of claim 205, wherein said fungus or yeast is a member selected from Trichophyton concentricum, Trichophyton violaceum, Trichophyton schoenleinii, Trichophyton verrucosum, Trichophyton soudanense, Microsporum gypseum, Microsporum equinum, Candida guilliermondii, Malassezia globosa, Malassezia obtuse, Malassezia restricta, Malassezia slooffiae and Aspergillus flavus.
209. (New) The formulation of claim 205, wherein said fungus or yeast is a dermatophyte.
210. (New) The formulation of claim 205, wherein said fungus or yeast is a member selected from Tinea unguium, Trichophyton rubrum and Trichophyton mentagrophytes.
211. (New) The formulation of claim 121, wherein the infection is a cutaneous infection.

Appl. No. 11/505,591
PATENT
Amdt. dated December 3, 2008
Response to Restriction Requirement dated July 3, 2008
212. (New) The formulation of claim 121, wherein the infection is a member selected from an ungual, periungual and subungual infection.
213. (New) The formulation of claim 121, wherein the infection is onychomycosis.
214. (New) The formulation of claim 121, wherein the animal is a human.

Response to Restriction Requirement dated July 3, 2008

\section*{REMARKS/ARGUMENTS}

\section*{I. Status of the Claims}

Claims 1-192 are filed in the original application. Claims 1-192 are subject to a Restriction Requirement. After entry of this Response, claims 121, 193-214 are pending and elected for prosecution on the merits. Claims 193-214 are new. Claim 121 is amended. No new matter has been added.

Claims 1-120, 122-192 are cancelled without prejudice. Applicants reserve the right to pursue these claims in another application, such as a continuation or a divisional.

\section*{II. Support for the amended and new claims}

Support for amended claim 121 is provided in paragraphs 279-280, 286, 326, 355, 367, 377-410, 465, and Example 46.

Support for new claim 193 is provided in paragraphs 374 and 379-383. Support for new claim 194 is provided in paragraph 374. Support for new claim 195 is provided in paragraphs 385-401 and 411-419. Support for new claims 196-200 is provided in paragraph 374. Support for new claim 201 is provided in paragraph 410. Support for new claim 202 is provided in paragraph 348. Support for claim 203 is provided in paragraph 423. Support for claim 204 is provided in paragraph 288. Support for new claims 205-209 are provided in paragraphs 280281. Support for new claim 210 is provided in paragraph 289. Support for new claim 211 is provided in paragraph 286. Support for new claim 212 is provided in paragraphs 286-295. Support for new claim 213 is provided in paragraph 323. Support for new claim 214 is provided in paragraph 280.

No new matter has been added.

\section*{III. Response to the Restriction Requirement}

The Examiner has restricted the pending claims into the following twenty groups:
\begin{tabular}{cl}
Group \# & Claim Numbers \\
I. & portions of 1-11 \\
II. & portions of 1-11 \\
III. & portions of 12-21
\end{tabular}

Page 6 of 8

Appl. No. 11/505,591
PATENT
Amdt. dated December 3, 2008
Response to Restriction Requirement dated July 3, 2008
\begin{tabular}{ll}
IV. & portions of \(12-21\) \\
V. & portions of \(22-45\) \\
VI. & portions of \(22-45\) \\
VII. & \(46-52\) \\
VIII. & \(53-60\) \\
IX. & \(61-78\)
\end{tabular}
\(X . \quad 79-92\)
XI. 93-104
XII. \(\quad 105-120\)
XIII. \(121-136\)
XIV. 137-145
XV. 146-152
XVI. 153-160
XVII. 161-168
XVIII. 169-174
XIX. 175-186
XX. 187-192

Applicants elect Group XIII for prosecution on the merits. Each of claims 121, 193-213 fall within Group XIII.

\section*{a.) Election of Species}

Applicants have been asked to elect one compound as a starting point from which the Examiner will search the prior art. Applicants elect 1,3-dihydro-5-fluoro-1-hydroxy-2,1benzoxaborole.

Page 7 of 8

Appl. No. 11/505,591
PATENT
Amdt. dated December 3, 2008
Response to Restriction Requirement dated July 3, 2008

\section*{CONCLUSION}

In view of the foregoing, Applicants believe all claims now pending in this Application are in condition for allowance. The issuance of a formal Notice of Allowance at an early date is respectfully requested.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 415-442-1000.

MORGAN, LEWIS \& BOCKIUS LLP
One Market, Spear Street Tower
San Francisco, CA 94105
Tel: 415-442-1000
Fax: 415-442-1001
DB2/20921328.1

\footnotetext{
NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more than one signature is required, see below.
}
\(\square\) Total of 1 forms are submitted.
This collection of information is required by 37 CFR 1.136(a). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 6 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Electronic Patent Application Fee Transmittal} \\
\hline Application Number: & \multicolumn{4}{|l|}{11357687} \\
\hline Filing Date: & \multicolumn{4}{|l|}{16-Feb-2006} \\
\hline Title of Invention: & \multicolumn{4}{|l|}{Boron-containing small molecules} \\
\hline First Named Inventor/Applicant Name: & \multicolumn{4}{|l|}{Stephen J. Baker} \\
\hline Filer: & \multicolumn{4}{|l|}{Jeffry S. Mann/Candida Rubalcaba-Rivera} \\
\hline Attorney Docket Number: & \multicolumn{4}{|l|}{064507-5014US} \\
\hline \multicolumn{5}{|l|}{Filed as Small Entity} \\
\hline \multicolumn{5}{|l|}{Utility under 35 USC 111 (a) Filing Fees} \\
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline \multicolumn{5}{|l|}{Extension-of-Time:} \\
\hline Extension-2 months with \$0 paid & 2252 & 1 & 245 & 245 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c}
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Miscellaneous: \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{ll}
& Total in USD (\$)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 4665595 \\
\hline Application Number: & 11357687 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4964 \\
\hline Title of Invention: & Boron-containing small molecules \\
\hline First Named Inventor/Applicant Name: & Stephen J. Baker \\
\hline Customer Number: & 43850 \\
\hline Filer: & Jeffry S. Mann/Candida Rubalcaba-Rivera \\
\hline Filer Authorized By: & Jeffry S. Mann \\
\hline Attorney Docket Number: & 064507-5014US \\
\hline Receipt Date: & 23-JAN-2009 \\
\hline Filing Date: & 16-FEB-2006 \\
\hline Time Stamp: & 14:38:42 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \(\$ 245\) \\
\hline RAM confirmation Number & 9045 \\
\hline Deposit Account & 500310 \\
\hline Authorized User & \\
\hline \begin{tabular}{r}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi
Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & & \multirow{2}{*}{ResponseOA.pdf} & 931402 & \multirow{2}{*}{yes} & \multirow{2}{*}{24} \\
\hline & & & \begin{tabular}{l}
b6dfb83e32096ae828868f1fb51396f8194a \\
be03
\end{tabular} & & \\
\hline \multicolumn{6}{|c|}{Multipart Description/PDF files in .zip description} \\
\hline & \multicolumn{2}{|c|}{Document Description} & Start & \multicolumn{2}{|r|}{End} \\
\hline & \multicolumn{2}{|l|}{Amendment/Req. Reconsideration-After Non-Final Reject} & 1 & \multicolumn{2}{|r|}{1} \\
\hline & \multicolumn{2}{|c|}{Claims} & 2 & \multicolumn{2}{|r|}{3} \\
\hline & \multicolumn{2}{|l|}{Applicant Arguments/Remarks Made in an Amendment} & 4 & \multicolumn{2}{|r|}{7} \\
\hline & \multicolumn{2}{|c|}{Rule 130,131 or 132 Affidavits} & 8 & \multicolumn{2}{|r|}{15} \\
\hline & \multicolumn{2}{|c|}{Rule 130,131 or 132 Affidavits} & 16 & \multicolumn{2}{|r|}{24} \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Extension of Time} & \multirow{2}{*}{EOT.pdf} & 61249 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & 849e1be1d27f1aa7741b7e30c9ddf31664b
\(5 f 660\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{3} & \multirow{2}{*}{Fee Worksheet (PTO-06)} & \multirow{2}{*}{fee-info.pdf} & 30141 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & b77933fa88d7957caeaf8d20ab03082884d
65990 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{1022792} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

\section*{New Applications Under 35 U.S.C. 111}

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

\section*{National Stage of an International Application under 35 U.S.C. 371}

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

\section*{New International Application Filed with the USPTO as a Receiving Office}

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\author{
\(43850 \quad 7590\) 04/22/2009 \\ MORGAN, LEWIS \& BOCKIUS LLP (SF) \\ One Market, Spear Street Tower, Suite 2800 \\ San Francisco, CA 94105
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{2}{|c|}{SHIAO, REI TSANG} \\
\hline ART UNIT & PAPER NUMBER \\
\hline \multicolumn{2}{|l|}{1626} \\
\hline \multicolumn{2}{|l|}{DATE MAILED: 04/22/2009} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 11/357,687 & 02/16/2006 & Stephen J. Baker & 064507-5014US & 4964 \\
\hline
\end{tabular}

TITLE OF INVENTION: BORON-CONTAINING SMALL MOLECULES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(\((\mathbf{S})\) DUE & DATE DUE \\
\hline nonprovisional & YES & \(\$ 755\) & \(\$ 300\) & \(\$ 0\) & \(\$ 1055\) & \(07 / 22 / 2009\)
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

\section*{HOW TO REPLY TO THIS NOTICE:}
I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and \(1 / 2\) the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.
IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3
PTOL-85 (Rev. 08/07) Approved for use through 08/31/2010.

\section*{PART B - FEE(S) TRANSMITTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.
\(43850 \quad 7590\) 04/22/2009
MORGAN, LEWIS \& BOCKIUS LLP (SF)
One Market, Spear Street Tower, Suite 2800
San Francisco, CA 94105

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.
\begin{tabular}{|r|r|r|}
\hline & & (Depositor's name) \\
\hline & & (Signature) \\
\hline & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline
\end{tabular}

TITLE OF INVENTION: BORON-CONTAINING SMALL MOLECULES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & YES & \$755 & \$300 & \$0 & \$1055 & 07/22/2009 \\
\hline & & ART UNIT & CLASS-SUBCLASS & & & \\
\hline SHIAO & SANG & 1626 & 514-064000 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
\(\square\) Change of correspondence address (or Change of Correspondence Address form \(\mathrm{PTO} / \mathrm{SB} / 122\)) attached. \\
"Fee Address" indication (or "Fee Address" Indication form PTO/SB \(/ 47\); Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attorneys or agents OR, alternatively,
\end{tabular}} & \(\begin{array}{cc}\text { ys } & 1 \\ \text { a } & 2 \\ \text { to } & \\ \text { is } & 3\end{array}\) & \\
\hline
\end{tabular}
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \(\square\) Individual \(\square\) Corporation or other private group entity \(\square\) Government
\begin{tabular}{|c|c|}
\hline 4a. The following fee(s) are submitted: & 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \\
\hline \(\square\) Issue Fee & \(\square\) A check is enclosed. \\
\hline Publication Fee (No small entity discount permitted) & Payment by credit card. Form PTO-2038 is attached. \\
\hline Advance Order - \% of Copies & \(\square\) The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number \(\qquad\) (enclose an extra copy of this form). \\
\hline \multicolumn{2}{|l|}{5. Change in Entity Status (from status indicated above)} \\
\hline \(\square\) a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. & \(\square\) b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2). \\
\hline NOTE: The Issue Fee and Publication Fee (if required) will not be acc interest as shown by the records of the United States Patent and Traden & ted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in rk Office. \\
\hline
\end{tabular}
b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)解 enclosed.
Payment by credit card. Form PTO-2038 is attached.
\(\square\) The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number ___ (enclose an extra copy of this form).

Change in Entity Status (from status indicated above)

OTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.
\begin{tabular}{ll}
Authorized Signature & Date __ \\
Typed or printed name \(\quad\) Registration No. __
\end{tabular}

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS Address: COMB 1450

Alexandria, Virginia 22313-1450
wWw.uspto.gov
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 11/357,687 & \multirow[t]{2}{*}{02/16/2006} & \multirow[t]{2}{*}{Stephen J. Baker} & 064507-5014US & 4964 \\
\hline 438507590 04/22 & & & \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{3}{|l|}{MORGAN, LEWIS \& BOCKIUS LLP (SF)} & \multicolumn{2}{|c|}{SHIAO, REI TSANG} \\
\hline \multicolumn{3}{|l|}{One Market, Spear Street Tower, Suite 2800} & ART UNIT & PAPER NUMBER \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{San Francisco, CA 94105}} & \multicolumn{2}{|l|}{1626} \\
\hline & & & DATE MAILED: 04/22/200 & \\
\hline
\end{tabular}

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 267 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 267 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{ Notice of Allowability } & \multicolumn{2}{|l|}{ Application No. } & \multicolumn{1}{l|}{ Applicant(s) } \\
& \(11 / 357,687\) & BAKER ET AL. \\
\cline { 2 - 4 } & Examiner & Art Unit & \\
& REI-TSANG SHIAO & 1626 & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to amendment filed on \(1 / 23 / 2009\).
2. \(\boxtimes\) The allowed claim(s) is/are 27-31, 40, and 42-47, now are 1-12.
3. \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)
\(\square\) All b) Some*Non of the:
1. Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) _.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
5.CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a) \(\square\) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
1) \(\square\) hereto or 2) \(\square\) to Paper No./Mail Date \(\qquad\) -.
(b)including changes re
\(\qquad\) _.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment(s)}
1. \(\square\) Notice of References Cited (PTO-892)
2. \(\square\) Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\square\) Information Disclosure Statements (PTO/SB/08),
Paper No./Mail Date \(\overline{\text { Examiner's Comment Regarding Requirement for Deposit }}\)
4. \(\square\) of Biological MaterialNotice of Informal Patent Application
Notice of References Cited (PTO-892)
6.Interview Summary (PTO-413), Paper No./Mail Date \(\qquad\)
7. \(\square\) Examiner's Amendment/Comment
8. \(\boxtimes\) Examiner's Statement of Reasons for Allowance
9. \(\qquad\)
\(\qquad\) -.

Application/Control Number: 11/357,687
Art Unit: 1626

\section*{DETAILED ACTION}
1. This application claims benefit of the provisional application:

60/654,060 with a filing date 02/16/2005.
2. Amendment of claims 27 and 40, cancellation of claims 1-26 and 32-39, 41, and addition of claims 43-47 in the amendment filed on January 23, 2009 is acknowledged. Claims 27-31, 40, and 42-47 are pending in the application. No new matter is found. Since the newly added claims 43-47 are commensurate with the scope of the invention, claims 27-31, 40, and 42-47 are prosecuted in the case.

\section*{Reasons for Allowance}
3. The rejection of claims \(27-31,40\) and 42 under 35 U.S.C. 112 , first paragraph has been overcome in the amendment filed on January 23, 2009.
4. Applicant's arguments regarding the rejection of claims \(27-31,40\), and 42 under 35 U.S.C. 103(a) over Austin et al. '024 in view of Answre.com filed on January 23, 2009 have been fully considered and they are persuasive. Since Austin et al. '024 or Answre.com does not disclose the instant invention of methods of use for treating infection in an animal, therefor the instant invention is distinct from Austin et al. The rejection of claims 27-31, 40, and 42 under 35 U.S.C. 103(a) over Austin et al. '024 in view of Answre.com has been withdrawn herein. Since claim 41 has been canceled, the rejection of claim 41 under 35 U.S.C. 103(a) is obviated herein.
5. Since claims \(53-54\) and 58 of Baker et al. co-pending application No. 11/505,591 have been canceled, the provisional rejection of claims 27-31, 40, and 42 under the
obviousness-type double patenting over Baker et al. co-pending application No. 11/505,591 has been withdrawn herein.
6. Claims 27-31, 40, and 42-47 are neither anticipated nor rendered obvious over the art of record, and therefore are allowable. A suggestion for modification of above reference to obtain the instant methods of use has not been found. Claims 27-31, 40, and 42-47 are allowed.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance".

\section*{Conclusion}

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Rei-tsang Shiao whose telephone number is (571) 2720707. The examiner can normally be reached on 8:30 AM - 5:00 PM. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Joseph K. McKane can be reached on (571) 272-0699. The fax phone number for the organization where this application or proceeding is assigned is 571-2738300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

April 20, 2009

\begin{tabular}{|c|c|c|}
\hline Issue Classification & Application/Control No. 11/357,687 & \begin{tabular}{l}
Applicant(s)/Patent under Reexamination \\
BAKER ET AL.
\end{tabular} \\
\hline & Examiner REI-TSANG SHIAO & \[
\begin{aligned}
& \text { Art Unit } \\
& 1626
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{BIB DATA SHEET}

CONFIRMATION NO. 4964
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SERIAL NUMBER
11/357,687} & \[
\begin{array}{r}
\text { FILING o } \\
\text { DA7 } \\
02 / 16 / \\
\text { RUL }
\end{array}
\] & \[
\begin{aligned}
& 371(c) \\
& 06
\end{aligned}
\] & \begin{tabular}{l}
CLASS \\
514
\end{tabular} & & & & \[
\begin{aligned}
& \text { ORNEY DOCKET } \\
& \text { NO. } \\
& 4507-5014 \text { US }
\end{aligned}
\] \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
APPLICANTS \\
Stephen J. Baker, Mountain View, CA; \\
Tsutomu Akama, Sunnyvale, CA; \\
Carolyn Bellinger-Kawahara, Redwood City, CA; \\
Vincent S. Hernandez, Watsonville, CA; \\
Karin M. Hold, Belmont, CA; \\
James J. Leyden, Malvern, PA; \\
Kirk R. Maples, San Jose, CA; \\
Jacob J. Plattner, Berkeley, CA; \\
Virginia Sanders, San Francisco, CA; \\
Yong-Kang Zhang, San Jose, CA;
\end{tabular}} \\
\hline Foreign Priority claim 35 USC 119(a-d) con Verified and Acknowledged & \begin{tabular}{l}
ned \\
ditions m /REI-TS Examin
\end{tabular} & \[
\begin{aligned}
& \text { Yes } \boldsymbol{\nabla}_{\mathrm{No}} \\
& \text { Yes } \boldsymbol{\nabla} \text { No } \\
& \text { SHIAO } / \\
& \text { gnature }
\end{aligned}
\] & \(\underbrace{\text { R }}_{\substack{\text { Met Alow } \\ \text { R.S. } \\ \text { Intials }}}\) & STATE OR COUNTRY CA & & \[
\begin{gathered}
\text { TO } \\
\text { CLA } \\
\cdots
\end{gathered}
\] & AL MS
\(\qquad\) & INDEPENDENT CLAIMS 3 \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
ADDRESS \\
MORGAN, LEWIS \& BOCKIUS LLP (SF) \\
One Market, Spear Street Tower, Suite 2800 \\
San Francisco, CA 94105 \\
UNITED STATES
\end{tabular}} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
TITLE \\
Boron-containing small molecules
\end{tabular}} \\
\hline \multirow{6}{*}{FILING FEE RECEIVED 1240} & \multicolumn{5}{|l|}{\multirow{6}{*}{\begin{tabular}{l}
FEES: Authority has been given in Paper \\
No. \(\qquad\) to charge/credit DEPOSIT ACCOUNT \\
No. \(\qquad\) for following:
\end{tabular}}} & \multicolumn{3}{|c|}{\(\square\) All Fees} \\
\hline & & & & & & \multicolumn{3}{|l|}{\(\square 1.16\) Fees (Filing)} \\
\hline & & & & & & \multicolumn{3}{|l|}{\(T\) - \(\square .17\) Fees (Processing Ext. of time)} \\
\hline & & & & & & \multicolumn{3}{|l|}{\(\square 1.18\) Fees (Issue)} \\
\hline & & & & & & \multicolumn{3}{|c|}{\(\square\) Other} \\
\hline & & & & & & \multicolumn{3}{|c|}{\(\square\) Credit} \\
\hline
\end{tabular}

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref \# & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline L1 & 302 & (514/64).CCLS. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2009 / 04 / 20 \\
& 11: 35
\end{aligned}
\] \\
\hline L2 & 127 & \[
\begin{aligned}
& \text { (558/288). } \\
& \text { CCLS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2009 / 04 / 20 \\
& 11: 35
\end{aligned}
\] \\
\hline
\end{tabular}

4/20/2009 11:35:23 AM

\section*{PART B - FEE(S) TRANSMITTAL Complete and send this form, together with applicable fee(s), to: Mail \\ Commissioner for Patents P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks I through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block I for any change of address)
\(43850 \quad 7590\) 04/22/2009
MORGAN, LEWIS \& BOCKIUS LLP (SF)
One Market, Spear Street Tower, Suite 2800
San Francisco, CA 94105

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, musi have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKE「 NO. & CONFIRMATION NO. \\
\hline 11/357,687 & 02/16/2006 & Stephen J. Baker & 064507-5014US & 4964 \\
\hline
\end{tabular}

TITLE OF INVENTION: BORON-CONTAINING SMALL MOLECULES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE dUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & Date due \\
\hline nonprovisional & YES \({ }^{-}\)NO & \$755 & \$300 & \$0 & \$1055 & 07/22/2009 \\
\hline & & ART UNIT & Class-SUBCLASS & & & \\
\hline SHIAO & TSANG & 1626 & 514-064000 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
\(\square\) Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. \\
\(\square\) "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attorneys or agents OR, alternatively, \\
(2) the name of a single firm (having as a member a registered attomey or agent) and the names of up to 2 registered patent attomeys or agents. If no name is listed, no name will be printed.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Morgan, Lewis \&
\(\qquad\) \\
Bockius, LLP \\
2.
\end{tabular}} \\
\hline
\end{tabular}
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
Anacor Pharmaceuticals, Inc. Palo Alto, CA

Please check the appropriate assignce category or categories (will not be printed on the patent): \(\square\) Individual \(\quad\) Corporation or other private group entity \(\square\) Government
\begin{tabular}{ll}
4a. The following fee(s) are submitted: & 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \\
Issue Fee & \(\square\) a check is enclosed. \\
Publication Fee (No small entity discount permitted) & \(\square\) Payment by credit card. Form PTO-2038 is attached. \\
Advance Order - \# of Copies & The Director is hereby authorized to charge the reguired fee (s), any deficiency, or credit any \\
overpayment, to Deposit Account Number 50 -
\end{tabular}
5. Change in Entity Status (from status indicated above)
\(\square\) a. Applicant claims SMALL ENTITY status. See 37 CFR I.27. \(\quad\) b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27 (g)(2)
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United8hates Patent and Trademark Office.

Date \(\frac{07 / 21 / 2009}{\text { Registration No. } 46,690}\)

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR I. 14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Electronic Patent Application Fee Transmittal} \\
\hline Application Number: & \multicolumn{4}{|l|}{11357687} \\
\hline Filing Date: & \multicolumn{4}{|l|}{16-Feb-2006} \\
\hline Title of Invention: & \multicolumn{4}{|l|}{BORON-CONTAINING SMALL MOLECULES} \\
\hline First Named Inventor/Applicant Name: & \multicolumn{4}{|l|}{Stephen J. Baker} \\
\hline Filer: & \multicolumn{4}{|l|}{Jeffry S. Mann/Candida Rubalcaba-Rivera} \\
\hline Attorney Docket Number: & \multicolumn{4}{|l|}{064507-5014US} \\
\hline \multicolumn{5}{|l|}{Filed as Large Entity} \\
\hline \multicolumn{5}{|l|}{Utility under 35 USC 111 (a) Filing Fees} \\
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Utility Appl issue fee & 1501 & 1 & 1510 & 1510 \\
\hline Publ. Fee- early, voluntary, or normal & 1504 & 1 & 300 & 300 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c}
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Extension-of-Time: & & \\
\hline Miscellaneous: & Total in USD (\$) & 1810 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 5744760 \\
\hline Application Number: & 11357687 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4964 \\
\hline Title of Invention: & BORON-CONTAINING SMALL MOLECULES \\
\hline First Named Inventor/Applicant Name: & Stephen J. Baker \\
\hline Customer Number: & 43850 \\
\hline Filer: & Jeffry S. Mann/Candida Rubalcaba-Rivera \\
\hline Filer Authorized By: & Jeffry S. Mann \\
\hline Attorney Docket Number: & 064507-5014US \\
\hline Receipt Date: & 21-JUL-2009 \\
\hline Filing Date: & 16-FEB-2006 \\
\hline Time Stamp: & 20:18:53 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \(\$ 1810\) \\
\hline RAM confirmation Number & 4841 \\
\hline Deposit Account & 500310 \\
\hline Authorized User & \\
\hline \begin{tabular}{l}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
\(\quad\)\begin{tabular}{l}
Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees) \\
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi
Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Issue Fee Payment (PTO-85B)} & \multirow{2}{*}{IssueFee.pdf} & 48654 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Fee Worksheet (PTO-875)} & \multirow{2}{*}{fee-info.pdf} & 31901 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{80555} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

Bib Data Sheet
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c}
SERIAL NUMBER \\
\(11 / 357,687\)
\end{tabular}} & \begin{tabular}{c}
FILING OR 371(c) \\
DATE \\
02/16/2006 \\
RULE
\end{tabular} & CLASS & GROUP ART UNIT & \begin{tabular}{c}
ATTORNEY \\
DOCKET NO. \\
DUR
\end{tabular} \\
\hline
\end{tabular}

APPLICANTS
Stephen J. Baker, Mountain View, CA;
Tsutomu Akama, Sunnyvale, CA;
Carolyn Bellinger-Kawahara, Redwood City, CA;
Vincent S. Hernandez, Watsonville, CA;
Karin M. Hold, Belmont, CA;
James J. Leyden, Malvern, PA;
Kirk R. Maples, San Jose, CA;
Jacob J. Plattner, Berkeley, CA;
Virginia Sanders, San Francisco, CA;
Yong-Kang Zhang, San Jose, CA;
** CONTINUING DATA
This appln claims benefit of 60/654,060 02/16/2005
* FOREIGN APPLICATIONS ********************

IF REQUIRED, FOREIGN FILING LICENSE GRANTED
** 03/30/2006

\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{FILING FEE RECEIVED 1540} & \multirow{6}{*}{FEES: Authority has been given in Paper No. \(\qquad\) to charge/credit DEPOSIT ACCOUNT No. \(\qquad\) for following:} & \(\square\) All Fees \\
\hline & & 1.16 Fees (Filing) \\
\hline & & 1.17 Fees (Processing Ext. of time) \\
\hline & & 1.18 Fees (Issue) \\
\hline & & \(\square\) Other \\
\hline & & \(\square\) Credit \\
\hline
\end{tabular}

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www.uspto.gov
\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLICATION NO. & & ISSUE DATE & PATENT NO. & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \multicolumn{2}{|l|}{11/357,687} & 09/01/2009 & 7582621 & 064507-5014US & 4964 \\
\hline 43850 & 7590 & 08/12/200 & & & \\
\hline \begin{tabular}{l}
MORGAN, L \\
One Market, San Francisco
\end{tabular} & \[
\begin{aligned}
& \text { VIS } \\
& \text { ar } \mathrm{S} \\
& \text { A } 94
\end{aligned}
\] & KKIUS LLP ower, Suite & & & \\
\hline
\end{tabular}

\section*{ISSUE NOTIFICATION}

The projected patent number and issue date are specified above.

\section*{Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)}
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 267 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Stephen J. Baker, Mountain View, CA;
Tsutomu Akama, Sunnyvale, CA;
Carolyn Bellinger-Kawahara, Redwood City, CA;
Vincent S. Hernandez, Watsonville, CA;
Karin M. Hold, Belmont, CA;
James J. Leyden, Malvern, PA;
Kirk R. Maples, San Jose, CA;
Jacob J. Plattner, Berkeley, CA;
Virginia Sanders, San Francisco, CA;
Yong-Kang Zhang, San Jose, CA;

PTO/SB/17p (07-09)
Approved for use through 07/31/2012. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

\title{
PETITION FEE \\ Under 37 CFR 1.17(f), (g) \& (h) TRANSMITTAL \\ (Fees are subject to annual revision)
}

Send completed form to: Commissioner for Patents P.O. Box 1450, Alexandria, VA 22313-1450
\begin{tabular}{|l|l|}
\hline Application Number & \(11 / 357,687\) \\
\hline Filing Date & February 16, 2006 \\
\hline First Named Inventor & BAKER, Stephen J. \\
\hline Art Unit & 1626 \\
\hline Examiner Name & SHIAO, Rei Tsang \\
\hline Attorney Docket Number & \(064507-5014\)-US \\
\hline
\end{tabular}

Enclosed is a petition filed under 37 CFR 1.18(e) that requires a processing fee (37CFR 1.17(f), \((\mathrm{g})\), or (h)). Payment of \(\$ 200\) is enclosed.
This form should be included with the above-mentioned petition and faxed or mailed to the Office using the appropriate Mail Stop (e.g., Mail Stop Petition), if applicable. For transmittal of processing fees under 37 CFR 1.17(i), see form PTO/SB/17i.

Payment of Fees (small entity amounts are NOT available for the petition fees)
\(\checkmark\) The Commissioner is hereby authorized to charge the following fees to Deposit Account No. \(\qquad\) 50-0310 \(\checkmark\) petition fee under 37 CFR \(1.17(\mathrm{f})\), (g) or (h) \(\quad \checkmark\) any deficiency of fees and credit of any overpaymentsCheck in the amount of \$ \(\qquad\) is enclosed.Payment by credit card (Form PTO-2038 or equivalent enclosed). Do not provide credit card information on this form.

\section*{Petition Fees under 37 CFR 1.17(f): Fee \(\$ 400\) Fee Code 1462}

For petitions filed under:
§ 1.36(a) -for revocation of a power of attorney by fewer than all applicants
§ 1.53 (e) - to accord a filing date.
§ 1.57(a) - to accord a filing date.
§ 1.182 - for decision on a question not specifically provided for.
§ 1.183 - to suspend the rules.
§ 1.378(e) - for reconsideration of decision on petition refusing to accept delayed payment of maintenance fee in an expired patent. § 1.741(b) - to accord a filing date to an application under \(\S 1.740\) for extension of a patent term

\section*{Petition Fees under 37 CFR 1.17(g): Fee \(\$ 200\) Fee Code 1463}

For petitions filed under:
§ 1.12 - for access to an assignment record.
§ 1.14 - for access to an application.
§ 1.47 - for filing by other than all the inventors or a person not the inventor.
§ 1.59 - for expungement of information.
§ 1.103(a) - to suspend action in an application.
§ 1.136(b) - for review of a request for extension of time when the provisions of section 1.136(a) are not available.
§ 1.295 - for review of refusal to publish a statutory invention registration.
§ 1.296 - to withdraw a request for publication of a statutory invention registration filed on or after the date the notice of intent to publish issued.
§ 1.377 - for review of decision refusing to accept and record payment of a maintenance fee filed prior to expiration of a patent.
\(\$ 1.550\) (c) - for patent owner requests for extension of time in ex parte reexamination proceedings.
§ 1.956 - for patent owner requests for extension of time in inter partes reexamination proceedings.
§ 5.12 - for expedited handling of a foreign filing license.
§ 5.15 - for changing the scope of a license.
§ 5.25 - for retroactive license.
Petition Fees under 37 CFR 1.17(h): Fee \(\$ 130\) Fee Code 1464
For petitions filed under:
§ \(1.19(\mathrm{~g})\) - to request documents in a form other than that provided in this part.
§ 1.84 - for accepting color drawings or photographs.
§ 1.91 - for entry of a model or exhibit.
§ 1.102(d) - to make an application special.
§ 1.138(c) - to expressly abandon an application to avoid publication.
§ 1.313 - to withdraw an application from issue.
§ 1.314 - to defer issuance of a patent.

Typed or printed name
Registration No., if applicable
This collection of information is required by 37 CFR 1.17. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 5 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electronic Business Center on:
Dated: Septembe 25,2009
signai \(\frac{\text { Vennift O.Blach }}{}\)

In re application of:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006

\section*{For: BORON-CONTAINING SMALL MOLECULES}

Customer No.: 43850

Attorney Docket No.: 064507-5014-US \\ \title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
} \\ \title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In response to the issuance of U.S. Pat. No. 7,582,621 on September 1, 2009, Applicants submit a petition for reconsideration of patent term adjustment (PTA). In this petition, Applicants request the addition of 197 (one hundred and ninty-seven) days to the patent term.

For your consideration, enclosed are the following:
1. Fee set forth under 1.18(e) (see Fee Transmittal Form);
2. Statement of the Facts Involved as described in 37 CFR 1.705(b); and
3. Copy of Patent Term Adjustment History (attached as Exhibit A)

In view of the reasons set forth in the Statement of Facts, Applicants respectfully request that the patent term be corrected by adding 197 additional days to the term of the patent issuing from the above-identified application for a total of 464 (four hundred and sixty-four) days to the term of U.S. Pat. No. 7,582,621.

If there are any additional fees due in connection with the filing of this response, please charge the fees to our Deposit Account No. 50-0310.

If the Examiner believes a telephone conference would expedite this request for reconsideration, please telephone the undersigned at 415-442-1000.

Respectfully submitted,

Todd Esker
Reg. No. 46,690
MORGAN, LEWIS \& BOCKIUS LLP
One Market, Spear Street Tower
San Francisco, CA 94105
Tel: 415-442-1000
Fax: 415-442-1001
DB2/21336942. 1

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electronic Business Center on:

Dated: \(\qquad\)
Signed:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006

\section*{For: BORON-CONTAINING SMALL MOLECULES}

Customer No.: 43850
1. This statement is respectfully submitted in support of the Petition For Patent Term Adjustment Under 37 C.F.R. § 1.705(d) for the above-referenced patent. In view of the following, it is respectfully requested that Patentees be granted a final patent term adjustment of 464 days and not 267 as calculated by the Patent Office.

\section*{37 C.F.R. § 1.705 (b)(2)(i)}
2. The patent term adjustment shown on the Determination of Patent Term Adjustment Under 35 U.S.C. § 154(b) that was attached to the Notice of Allowance dated April 22,2009 , is 267 days. Applicants believe, based on their understanding of the rules governing patent term adjustment, that this determination is in error, due to the Office's improper interpretation of the PTA provisions as discussed in Wyeth et al. v. Dudas, No. 07-1492 (D.D.C. September 30,2008). Specifically, the Office improperly limited PTA to either the PTA as calculated under 35 U.S.C. § 154(b)(1)(A) or as calculated under 35 U.S.C. § 154(b)(1)(B), but not both. 69 Fed. Reg. 34238 (June 21, 2004). However, as discussed in Wyeth et al. v. Dudas, the statute requires that PTA may comprise contributions from both 35 U.S.C. § 154(b)(1)(A)
and 35 U.S.C. § 154(b)(1)(B), and the Office's interpretation of the statute was erroneous to the extent that it considered any delays within the first three years after filing the application to "overlap" with delays under § 154(b)(1)(B) after three years from the filing of the application. According to the Court, no delay accumulated within the first three years after the filing date can be said to "overlap" with delays under \(\S 154(\mathrm{~b})(1)(\mathrm{B})\), which by definition do not arise until after three years from the filing date. It is respectfully submitted that the correct patent term adjustment under 37 C.F.R. § 1.702, as calculated under the analysis of Wyeth et al. v. Dudas, is

\section*{464 days.}

\section*{37C.F.R. § 1.705 (b)(2)(ii)}
3. Applicants seek adjustment to the PTA based on the analysis laid out in Wyeth et al. v. Dudas, as contrasted with the Office's analysis laid out in 69 Fed. Reg. 34238 (June 21, 2004). Accordingly, the net PTA comprises accumulated PTA arising from both 35 U.S.C. § 154(b)(1)(A) and (B), excluding actual overlap (35 U.S.C. § 154(b)(2)(A)), and deducting any periods of time in which Applicants failed to engage in reasonable efforts to conclude prosecution (35 U.S.C. §154(b)(2)(C)).
A. Applicants do not presently dispute any aspect of the PTA determination other than the issue raised in Wyeth et al. v. Dudas. Accordingly, for the purposes of this request to modify PTA, Applicants accept the calculations provided by the USPTO on PAIR (a copy of which is attached as Exhibit A) indicating that there was a delay of 325 days by the USPTO (35 U.S.C. § 154(b)(1)(A)) in sending out the first action, and that Applicant subsequently incurred a delay of 58 days during the course of the prosecution (35 U.S.C. §154(b)(2)(C)). The resulting net PTA is \(\underline{267}\) days, in agreement with the PTA provided on the Determination of Patent Term Adjustment Under 35 U.S.C. § 154(b) that was attached to the Notice of Allowance dated April 22, 2009.
B. With regard to the "three year guarantee" provisions of 37 C.F.R.
§§ 1.702(b) and 1.703(b), the application was filed on February 16, 2006, and thus PTA began to accrue the day after February 16, 2009. The issuance of the patent on September 1, 2009 cutoff any further accumulation of PTA under 37 C.F.R. § 1.702(b). The period of February 16, 2006 through February 16, 2009 (inclusive) is 197 days (35 U.S.C. § 154(b)(1)(B)).
C. Under the analysis of Wyeth et al.v. Dudas, this 197 day period under 37 C.F.R. § 1.702 (b) is added to the previously calculated 267 day period based on 37 C.F.R. \(\S 1.702(\mathrm{a})\). However, the total examination delay must then be reduced by any actual overlap between the two delays. 37 C.F.R. § 1.703(f). Since Applicants' last communication to place the application in condition for allowance was on January 23, 2009, prior to the invocation of the delay under 35 U.S.C. \(\S 154(\mathrm{~b})(1)(\mathrm{B})\) on February 16,2009 , there is no overlap between the two delays.
D. The resulting PTA is \(267+197=464\) days.
E. Accordingly, Applicants request that the calculated 267 day PTA be adjusted to \(\mathbf{4 6 4}\) days.

\section*{37 C.F.R. § 1.705 (b)(2)(iii)}
4. The present application is not subject to a Terminal Disclaimer.

\section*{37 C.F.R. § 1.705 (b)(2)(iv)}
5. Circumstances set forth in 37 C.F.R. § 1.704 are described in Section 3(A) of this paper and in the attached printout of the Patent Term Adjustments tab from PAIR.

In view of the foregoing, it is respectfully requested that this Petition for Patent Term Adjustment Under 37 C.F.R. § 1.705 (d) be favorably considered and that a corrected determination of Patent Term Adjustment be issued to reflect a PTA of \(\mathbf{4 6 4}\) days.

MORGAN, LEWIS \& BOCKIUS LLP
One Market, Spear Street Tower
San Francisco, CA 94105
Tel: 415-442-1000
Fax: 415-442-1001

EXHIBIT A
\begin{tabular}{lll}
\hline \(11 / 357,687\) & BORON－CONTAINING SMALL MOLECULES & 09－22－ \\
\hline
\end{tabular}

\section*{Patent Term Adjustments}

Patent Term Adjustment（PTA）for Application Number：11／357，687
\begin{tabular}{lllr}
Filing or \(371(c)\) Date： & \(02-16-2006\) & USPTO Delay（PTO）Delay（days）： & 325 \\
Issue Date of Patent： & \(09-01-2009\) & Three Years： & - \\
Pre－Issue Petitions（days）： & +0 & Applicant Delay（APPL）Delay（days）： & 58 \\
Post－Issue Petitions（days）： & +0 & Total PTA（days）： & 267 \\
USPTO Adjustment（days）： & +0 & Explanation Of Calculations &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Patent Term Adjustment History} \\
\hline Date & Contents Description & PTO（Days） & APPL（Days） \\
\hline 08－12－2009 & PTA 36 Months & & \\
\hline 09－01－2009 & Patent Issue Date Used in PTA Calculation & & \\
\hline 07－24－2009 & Dispatch to FDC & & \\
\hline 07－23－2009 & Application Is Considered Ready for Issue & & \\
\hline 07－21－2009 & Issue Fee Payment Verified & & \\
\hline 07－21－2009 & Statement Filed Indicating a Loss of Entitlement to Small Entity Status & & \\
\hline 07－21－2009 & Issue Fee Payment Received & & \\
\hline 04－22－2009 & Mail Notice of Allowance & & \\
\hline 04－21－2009 & Document Verification & & \\
\hline 04－21－2009 & Notice of Allowance Data Verification Completed & & \\
\hline 02－18－2009 & Date Forwarded to Examiner & & \\
\hline 01－23－2009 & Response after Non－Final Action & & 58 \\
\hline 01－23－2009 & Request for Extension of Time－Granted & & 合 \\
\hline 12－05－2008 & Miscellaneous Incoming Letter & & 令 \\
\hline 08－26－2008 & Mail Non－Final Rejection & & － \\
\hline 08－25－2008 & Non－Final Rejection & & \\
\hline 06－21－2007 & Information Disclosure Statement considered & & \\
\hline 05－07－2007 & Information Disclosure Statement considered & & \\
\hline 06－30－2008 & Date Forwarded to Examiner & & \\
\hline 06－06－2008 & Response to Election／Restriction Filed & & \\
\hline 06－06－2008 & Request for Extension of Time－Granted & & \\
\hline 01－11－2008 & Miscellaneous Incoming Letter & & \\
\hline 03－06－2008 & Mail Restriction Requirement & 325 & \\
\hline 02－28－2008 & Requirement for Restriction／Election & ＊ & \\
\hline 06－21－2007 & Information Disclosure Statement（IDS）Filed & ＋ & \\
\hline 06－21－2007 & Information Disclosure Statement（IDS）Filed & 会 & \\
\hline 05－07－2007 & Information Disclosure Statement（IDS）Filed & 管 & \\
\hline 05－07－2007 & Information Disclosure Statement（IDS）Filed & 爯 & \\
\hline 03－22－2007 & Case Docketed to Examiner in GAU & 草 & \\
\hline 12－28－2006 & IFW TSS Processing by Tech Center Complete & 介 & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(07-11-2006\) & Application Dispatched from OIPE \\
\(07-11-2006\) & Application Is Now Complete \\
\(06-30-2006\) & Additional Application Filing Fees \\
\(06-30-2006\) & \begin{tabular}{l}
A statement by one or more inventors satisfying the \\
requirement under 35 USC 115, Oath of the Applic
\end{tabular} \\
\(04-03-2006\) & \begin{tabular}{l}
Notice Mailed--Application Incomplete--Filing Date \\
Assigned
\end{tabular} \\
\(03-27-2006\) & Cleared by L\&R (LARS) \\
\(03-20-2006\) & Referred to Level 2 (LARS) by OIPE CSR \\
\(03-18-2006\) & IFW Scan \& PACR Auto Security Review \\
\(02-16-2006\) & Initial Exam Team nn
\end{tabular}

Close Window
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Electronic Patent Application Fee Transmittal} \\
\hline Application Number: & \multicolumn{4}{|l|}{11357687} \\
\hline Filing Date: & \multicolumn{4}{|l|}{16-Feb-2006} \\
\hline Title of Invention: & \multicolumn{4}{|l|}{BORON-CONTAINING SMALL MOLECULES} \\
\hline First Named Inventor/Applicant Name: & \multicolumn{4}{|l|}{Stephen J. Baker} \\
\hline Filer: & \multicolumn{4}{|l|}{Jeffry S. Mann/Jennifer Black} \\
\hline Attorney Docket Number: & \multicolumn{4}{|l|}{064507-5014US} \\
\hline \multicolumn{5}{|l|}{Filed as Small Entity} \\
\hline \multicolumn{5}{|l|}{Utility under 35 USC 111 (a) Filing Fees} \\
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline Petition fee- 37 CFR 1.17(g) (Group II) & 1463 & 1 & 200 & 200 \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Extension-of-Time: & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c}
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Miscellaneous: \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{ll}
& Total in USD (\$)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 6151753 \\
\hline Application Number: & 11357687 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4964 \\
\hline Title of Invention: & BORON-CONTAINING SMALL MOLECULES \\
\hline First Named Inventor/Applicant Name: & Stephen J. Baker \\
\hline Customer Number: & 43850 \\
\hline Filer: & Jeffry S. Mann/Jennifer Black \\
\hline Filer Authorized By: & Jeffry S. Mann \\
\hline Attorney Docket Number: & 064507-5014US \\
\hline Receipt Date: & 25-SEP-2009 \\
\hline Filing Date: & 16-FEB-2006 \\
\hline Time Stamp: & 19:02:34 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \(\$ 200\) \\
\hline RAM confirmation Number & 4839 \\
\hline Deposit Account & 500310 \\
\hline Authorized User & \\
\hline \begin{tabular}{l}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi
Part /.zip & Pages (if appl.) \\
\hline \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{Patent Term Adjustment Petition} & \multirow[b]{2}{*}{064507-5014US_Petition.pdf} & 334725 & \multirow[b]{2}{*}{no} & \multirow[b]{2}{*}{9} \\
\hline & & & easi83341522505fibes9729442ectatarn & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Fee Worksheet (PTO-875)} & \multirow{2}{*}{fee-info.pdf} & 30379 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{365104} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

\section*{MAILED}

MORGAN, LEWIS \& BOCKIUS LIP (SF)
One Market, Spear Street Tower, Suite 2800
San Francisco CA 94105

APR 232010
OFFICE OF PETITIONS

In re Patent of Baker et al. : DECISION ON REQUEST FOR
Patent No. 7,582,621
Issue Date: September 1, 2009
Application No. 11/357,687
Filed: February 16, 2006
Atty. Docket No. 064507-5014US
: RECONSIDERATION OF
: PATENT TERM ADJUSTMENT
: AND NOTICE OF INTENT TO ISSUE
CERTIFICATE OF CORRECTION

Atty. Docket No. 064507-5014US

This is a decision on the petition filed September 25, 2009, which is being treated as a petition under 37 CFR 1.705 (d) requesting the patent term adjustment indicated on the above-identified patent be corrected to indicate that the term of the above-identified patent is extended or adjusted by four hundred sixty-four (464) days.

The petition to correct the patent term adjustment indicated on the above-identified patent to indicate that the term of the above-identified patent is extended or adjusted by four hundred sixty-four (464) days is GRANTED.

The Office acknowledges submission of the \(\$ 200.00\) fee set forth in 37 CFR 1.18(e). No additional fees are required.

The application is being forwarded to the Certificates of Correction Branch for issuance of a certificate of correction. The Office will issue a certificate of correction indicating that the term of the above-identified patent is extended or adjusted by four hundred sixty-four (464) days.

Telephone inquiries specific to this matter should be directed to the undersigned at (571) 2723230.

\section*{Sheen Nullity bradley}

Shirene Willis Brantley
Senior Petitions Attorney
Office of Petitions
Enclosure: Copy of DRAFT Certificate of Correction

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT : 7,582,621 B2
DATED : September 1,2009 DRAFT
INVENTOR(S) : Baker et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the cover page,
[*] Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 267 days

Delete the phrase "by 267 days" and insert - by 464 days--

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

\section*{Certificate of Correction Branch \\ Commissioner for Patents \\ P.O. Box 1450 \\ Alexandria, Virginia 22313-1450}

Sir:
It is respectfully requested that a Certificate under 37 C.F.R. § 1.324 be issued to remove two inventors, Carolyn Bellinger-Kawahara and Kirk R. Maples, from the abovereferenced patent. This request corrects errors in naming inventors that occurred without deceptive intention on the part of either Carolyn Bellinger-Kawahara or Kirk R. Maples.

Pursuant to 37 C.F.R. § 1.324(b)(2), statements from the currently named inventors, Stephen J. Baker, Tsutomu Akama, Vincent S. Hernandez, Karin M. Hold, James J. Leyden, Jacob J. Plattner, Virginia Sanders, Yong-Kang Zhang, Carolyn Bellinger-Kawahara, and Kirk R. Maples, agreeing to the change of inventorship, are attached hereto.

Anacor Pharmaceuticals, Inc. is the assignee of the entire interest of the abovereferenced patent. Pursuant to 37 C.F.R. § 1.324(b)(3), a statement from Anacor
U.S. Pat. No. 7,582,621

PATENT
Issue Date: September 1, 2009
Petition to Correct Inventorship Under 37 C.F.R. § 1.324
Pharmaceuticals, Inc. agreeing to the above-described change of inventorship for the abovereferenced patent is enclosed.

The fee according to § 1.20(a) for submission of this Petition is estimated to be \(\$ 130.00\). A copy of this Petition is enclosed. Please charge all fees to Deposit Account No. 500310. If there are any additional fees due in connection with the filing of this response, please charge the fees to our Deposit Account No. 50-0310 (Order No. 064507-5014-US).

MORGAN, LEWIS \& BOCKIUS LLP
One Market, Spear Street Tower
San Francisco, CA 94105
Tel: 415-442-1000
Fax: 415-442-1001
E-mail: tesker@morganlewis.com

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS -Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's PAtent Elecyonic Business Center on:
Dated:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Reit Tang
Art Unit: 1626
STATEMENT OF ANACOR PHARMACEUTICALS, INC, ASSIGNEE, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324 (b)(3)

Anacor Pharmaceuticals, Inc. is the assignee of the above-referenced patent.
Anacor Pharmaceuticals, Inc. agrees that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

\section*{David Perry}

Chief Executive Office, Anacor Pharmaceuticals

1020 East Meadow Circle
Pablo Alto, CA 94303-4230
Address of Anacor Pharmaceuticals

1 hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electrgnic Business Center on:

Dated: \(\qquad\)

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

I, Stephen Baker, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

DB2/21404688.I

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and
Trademark Office's Patent Electrpnic Business Center on:
Dacd \(5 / 20 / 200\)
siened: C. Rubulaba divera

Attorney Docket No.: 064507-5014-US

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF TSUTOMU AKAMA, INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324(b)(2)

I, Tsutomu Akama, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.
Tsutomu Akama
Name of Inventor
933 Berkshire Avenue, Sunnyvale, CA 94087
\[
\frac{3 / 30 / 2010}{\text { Date }}
\]

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Electronic Business Center on:

Dated

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Reit Tang
Art Unit: 1626
STATEMENT OF VINCENT S. HERNANDEZ, INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324 (b)(2)

I, Vincent Hernandez, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and
Trademark Office's Patent Electronic Business Center on:
Dated:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF KARIN M. HOLD, INVENTOR, IN SUPPORT OF PETITION
TO CORRECT INVENTORSHIP UNDER 37 C.F.R. \& 1.324(b)(2)

I, Karin Hold, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Pafent Electronic Business Center on:

Dated:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF JAMES J. LEYDEN, INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324(b)(2)

I, James J. Leyden, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

\section*{James J. Leyden}

Name of Inventor

319 Applebrook Drive, Malvern, Pennsylvania 19355

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's fatent Eleqtronic Business Center on:

Dated:

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF JACOB J. PLATTNER, INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. \& 1.324(b)(2)

\footnotetext{
I, Jacob Plattner, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.
}

IN TESTIMONY HEREOF, I have hereunto set my hand.

CERTIFICATE OF ELECTRONIC TRANSMISSION
I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's fatent Elfctronic Business Center on:

Dated:
Signed:

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF VIRGINIA SANDERS, INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324(b)(2)

I, Virginia Sanders, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

Virginia Sanders
Name of Inventor

2895 Harrison St, Apt 4, San Francisco, CA 94110

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and
Trademark Office's Patfnt Electrofic Business Center on:

Dated:
Signed:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:

Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL
MOLECULES
Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF YONG-KANG ZHANG, INVENTOR, IN SUPPORT OF PETITION
TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324(b)(2)

I, Yong-Kang Zhang, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and

Dated:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Rei Tsang
Art Unit: 1626
STATEMENT OF CAROLYN BELLINGERKAWAHARA, CURRENTLY NAMED INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. § 1.324(b)(2)

\footnotetext{
I, Carolyn Bellinger-Kawahara, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.
}

IN TESTIMONY HEREOF, I have hereunto set my hand.

\author{
Carolyn Bellinger-Kawahara \\ Name of Currently Named Inventor \\ 15 Landa Lane, Redwood City, CA 94061
}

Address of Currently Named Inventor

I hereby certify that this correspondence, including listed enclosures is being electronically transmitted in Portable Document Form (PDF) through EFS-Web via Hyper Text Transfer Protocol to the United States Patent and Trademark Office's Patent Eleftronic Business Center on:

Dated:

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent to:
Stephen J. BAKER, et al.
Patent No.: 7,582,621
Issued: September 1, 2009
Issued from Application No.: 11/357,687
Filed: February 16, 2006
For: BORON-CONTAINING SMALL MOLECULES

Customer No.: 43850

Confirmation No.: 4964
Examiner: SHIAO, Reit Tang
Art Unit: 1626
STATEMENT OF KIRK R. MAPLES, CURRENTLY NAMED INVENTOR, IN SUPPORT OF PETITION TO CORRECT INVENTORSHIP UNDER 37 C.F.R. \& 1.324(b)(2)

I, Kirk Maples, agree that the inventorship of the above-referenced patent should be corrected to delete both Carolyn Bellinger-Kawahara and Kirk Maples as inventors.

IN TESTIMONY HEREOF, I have hereunto set my hand.

Kirk R. Maples
Name of Currently Named Inventor

1195 San Moritz Drive, San Jose, CA 95132
Address of Currently Named Inventor

DB2/21514066.1
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Electronic Patent Application Fee Transmittal} \\
\hline Application Number: & \multicolumn{4}{|l|}{11357687} \\
\hline Filing Date: & \multicolumn{4}{|l|}{16-Feb-2006} \\
\hline Title of Invention: & \multicolumn{4}{|l|}{BORON-CONTAINING SMALL MOLECULES} \\
\hline First Named Inventor/Applicant Name: & \multicolumn{4}{|l|}{Stephen J. Baker} \\
\hline Filer: & \multicolumn{4}{|l|}{Jeffry S. Mann/Candida Rubalcaba-Rivera} \\
\hline Attorney Docket Number: & \multicolumn{4}{|l|}{064507-5014US} \\
\hline \multicolumn{5}{|l|}{Filed as Large Entity} \\
\hline \multicolumn{5}{|l|}{Utility under 35 USC 111 (a) Filing Fees} \\
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline Petition fee- 37 CFR 1.17(h) (Group III) & 1464 & 1 & 130 & 130 \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Extension-of-Time: & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c}
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Miscellaneous: & Total in USD (\$) & 130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 7656745 \\
\hline Application Number: & 11357687 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4964 \\
\hline Title of Invention: & BORON-CONTAINING SMALL MOLECULES \\
\hline First Named Inventor/Applicant Name: & Stephen J. Baker \\
\hline Customer Number: & 43850 \\
\hline Filer: & Jeffry S. Mann/Candida Rubalcaba-Rivera \\
\hline Filer Authorized By: & Jeffry S. Mann \\
\hline Attorney Docket Number: & 064507-5014US \\
\hline Receipt Date: & 20-MAY-2010 \\
\hline Filing Date: & 16-FEB-2006 \\
\hline Time Stamp: & 19:01:46 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \(\$ 130\) \\
\hline RAM confirmation Number & 5179 \\
\hline Deposit Account & 500310 \\
\hline Authorized User & \\
\hline \begin{tabular}{r}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi
Part /.zip & \begin{tabular}{l}
Pages \\
(if appl.)
\end{tabular} \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Petition for review by the Office of Petitions.} & \multirow{2}{*}{Petition.pdf} & 35487 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow[t]{2}{*}{Consent of Assignee accompanying the declaration.} & \multirow{2}{*}{Statements.pdf} & 251445 & \multirow{2}{*}{no} & \multirow{2}{*}{11} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{3} & \multirow{2}{*}{Fee Worksheet (PTO-875)} & \multirow{2}{*}{fee-info.pdf} & 30276 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{317208} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE \\ CERTIFICATE OF CORRECTION
}

PATENT NO
: 7,582,621 B2
Page 1 of 1
APPLICATION NO. : 11/357687
DATED
: September 1, 2009
INVENTOR (S)
: Baker et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page
Item [*] Notice: \(\quad\) Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 267 days

Delete the phrase "by 267 days" and insert -- by 464 days --

First Day of June, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

\author{
David Perry \\ Anacor Pharmaceuticals 1020 East Meadow Circle
}

Palo Alto, CA 94303-4230

Date: December 30, 2011
Application No. 11/357,687
Filed: February 16, 2006
ON PETITION
Subject: BORON-CONTAINING SMALL MOLECULES

Receipt is acknowledged of the petition filed on May 20, 2010 under 37 CFR 1.324 for correction of inventorship. The petition has been GRANTED.

In view of the papers filed, it has been found that during the prosecution of the instant application a restriction was required and therefore, not all of the inventors contributed to the invention as now claimed. Accordingly, this application has been changed by the deletion of the inventor Carolyn Bellinger-Kawahara and Kirk R. Maples. The application will be forwarded to the Office of Initial Patent Examination (OIPE) for issuance of a corrected filing receipt, and correction of the file jacket and PTO PALM data to reflect the inventorship as corrected.

\author{
 \\ United States Patent mnd Trademank Office \\ Technobogy Center 1600 \\ SPE, ART UNIT 1628 \\ Rembers 5Cb9 \\ \(571-272-2919\)
}

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE} Certificate

\section*{Patent No. 7,582,621 B2}

Patented: September 1, 2009
On petition requesting issuance of a certificate for correction of inventorship pursuant to 35 U.S.C. 256, it has been found that the above identified patent, through error and without any deceptive intent, improperly sets forth the inventorship.
Accordingly, it is hereby certified that the correct inventorship of this patent is: Stephen J. Baker, Mountain View, CA (OS); Tsutomu Akama, Sunnyvale, CA (US); Vincent S. Hemandez, Watsonville, CA (US); Karin M. Hold, Belmont, CA (US); James J. Leyden, Malvern, PA (US); Jacob J. Plattner, Berkeley, CA (US); Virginia Sanders, San Francisco, CA (US); and Yong-Kang Zhang, San Jose, CA (US).
Signed and Sealed this Sixteenth Day of July 2013.

Technology Center 1600

\section*{IN THE U.S. PATENT AND TRADEMARK OFFICE}

APPLICATION NUMBER : \(11 / 357,687\)
PATENT NUMBER : 7,582,621
FILING DATE : February 16,2006
ISSUE DATE : September 1,2009
INVENTOR(S) : Baker et al.
Commissioner for Patents
P.O. Box 1450

Alexandria VA 22313-1450
Mail Stop: Hatch-Waxman PTE

\title{
APPLICATION FOR EXTENSION OF THE TERM OF \\ U.S. PATENT NO. 7,582,621 UNDER 35 U.S.C. \& 156
}

\section*{FOR KERYDIN \({ }^{\text {TM }}\) (TAVABOROLE)}

TOPICAL SOLUTION, 5\%

Dear Ms. Till:
Pursuant to 35 U.S.C. § 156 (d) and 37 C.F.R. §§ 1.710 et seq., Anacor Pharmaceuticals, Inc. ("Anacor") hereby submits this application for an extension of the term of U.S. Patent No. 7,582,621 ("the ' 621 patent," attached as Exhibit A). The ' 621 patent, entitled BORONCONTAINING SMALL MOLECULES, issued on September 1, 2009 to Stephen J. Baker, Tsutomu Akama, Carolyn Bellinger-Kawahara, Vincent S. Hernandez, Karin M. Hold, James J. Leyden, Kirk R. Maples, Jacob J. Plattner, Virginia Sanders, and Yong-Kang Zhang. Anacor is the marketing applicant for KERYDIN (tavaborole) topical solution, 5\% ("KERYDIN product" or "KERYDIN"), which received marketing approval from the U.S. Food and Drug Administration ("FDA") on July 7, 2014. See KERYDIN product label attached as Exhibit B \& KERYDIN approval letter attached as Exhibit C.

Anacor represents that it is the owner of the entire right, title, and interest in and to the ' 621 patent. Anacor is the owner of the ' 621 patent by virtue of an assignment by all named inventors, Stephen J. Baker, Tsutomu Akama, Carolyn Bellinger-Kawahara, Vincent S. Hernandez, Karin M. Hold, James J. Leyden, Kirk R. Maples, Jacob J. Plattner, Virginia Sanders, and Yong-Kang Zhang (recorded at Reel 017885, Frame Nos. 0979-0989). See Statement Under 37 C.F.R. § 3.73(b) and Assignment Record, attached as Exhibit D.

An extension of 408 days is requested based on the regulatory review period of the KERYDIN product as set forth below. The undersigned is authorized to represent Anacor in this application. See Power of Attorney (attached as Exhibit E).

Paragraphs (1) through (15) below correspond to paragraphs (1) through (15) of 37 C.F.R. § \(1.740(\mathrm{a})\).
(1) The approved product is tavaborole, a 5\% topical solution, and it is approved for marketing as KERYDIN for the topical treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. The chemical name for tavaborole is 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, having the chemical formula \(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BFO}_{2}\), a molecular weight of 151.93 and the following chemical structure:

See KERYDIN product label § 11.
KERYDIN for topical treatment contains the active ingredient, tavaborole \(5 \%(\mathrm{w} / \mathrm{w})\), in an alcohol-based solution. Each mL of KERYDIN contains 43.5 mg of tavaborole. Inactive ingredients include alcohol, edetate calcium disodium and propylene glycol. See KERYDIN product label, § 11.

The KERYDIN (tavaborole 5\% topical solution) product is indicated for topical treatment of onychomycosis of the toenails and the recommended application of KERYDIN is to the entire toenail surface and under the tip of each toenail being treated, once daily for 48 weeks. See KERYDIN product label, § 2.
(2) Regulatory review of KERYDIN (tavaborole 5\% topical solution) for topical treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes occurred under section 505(b) of the Federal Food, Drug and Cosmetic Act, codified at 21 U.S.C. § 355(b).
(3) KERYDIN (tavaborole 5\% topical solution) received permission for commercial marketing or use under Section 505(b) of the Federal Food, Drug and Cosmetic Act on July 7 , 2014. It was approved for use in the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes.
(4) The only active ingredient of KERYDIN for topical treatment is tavaborole. Tavaborole, or any pharmaceutically acceptable salt thereof, has not previously been approved for commercial marketing or use under the Federal Food, Drug and Cosmetic Act, the Public Health Service Act, or the Virus-Serum-Toxin Act. KERYDIN was approved for use in the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes pursuant to section 505(b) of the Federal Food, Drug and Cosmetic Act, codified at 21 U.S.C. § 355(b).
(5) This application is being submitted within the sixty day period permitted for its submission pursuant to 37 C.F.R. § 1.720 (f). The last day on which this application could be submitted is September 4, 2014.
(6) The patent for which an extension is being sought is as follows:

Inventors: Stephen J. Baker, Tsutomu Akama, Vincent S. Hernandez, Karin M. Hold, James J. Leyden, Jacob J. Plattner, Virginia Sanders, and Yong-Kang Zhang (Inventorship corrected on July 16, 2013. See Exhibit A.)

Patent No.: 7,582,621
Issue date: September 1,2009
Expiration: May 26, 2027 (includes 464 days of patent term adjustment)
(7) A copy of the ' 621 patent is attached hereto as Exhibit A.
(8) No terminal disclaimer or reexamination certificate has been issued. Fourth year maintenance fees have been paid, receipts for which are attached as Exhibit F. Certificates of correction that have been issued in connection with the ' 621 patent are attached hereto as part of Exhibit A.
(9) The ' 621 patent claims certain methods of using the KERYDIN product. Provided below are the applicable patent claims and the manner in which each claim reads on the method of using the approved product.

Claim 1:
Claim 1 reads as follows:
1. A method of treating an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1benzoxaborole, or a pharmaceutically acceptable salt thereof, sufficient to treat said infection.

The KERYDIN product is tavaborole, a 5\% topical solution. See KERYDIN product label, § 1. The chemical name for tavaborole is 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole. The KERYDIN product is indicated for the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. See KERYDIN product label, §§ 1 \& 11. Trichophyton rubrum and Trichophyton mentagrophytes are fungi, and the onset of onychomycosis due to these fungi constitutes a fungal infection. KERYDIN administered to patients in the amounts and manner described on the product label has been shown in clinical trials to be therapeutically effective in treating onychomycosis. See KERYDIN product label, \(\mathbb{I}\) 14. Claim 1 therefore reads on the approved use of the approved KERYDIN product.

\section*{Claim 2:}

Claim 2 reads as follows:
2. The method of claim 1, wherein said infection is a member selected from a systemic infection, a cutaneous infection, and an ungual or periungual infection.

For the reasons described above, Claim 1 reads on the approved use of the approved KERYDIN product. Further, the KERYDIN product label indicates that KERYDIN is indicated for the treatment of onychomycosis of the toenails, which is an ungual or periungual infection. See KERYDIN label, § 1. Claim 2 therefore reads on the approved use of the approved KERYDIN product.

\section*{Claim 4:}

Claim 4 reads as follows:
4. The method of claim 1 , wherein said infection is onychomycosis.

For the reasons described above, Claim 1 reads on the approved use of the approved KERYDIN product. The KERYDIN product label specifically states that KERYDIN is indicated for the treatment of onychomycosis of the toenails. See KERYDIN label, § 1. Claim 4 therefore reads on the approved use of the approved KERYDIN product.

\section*{Claim 5:}

Claim 5 reads as follows:
5. The method of claim 1, wherein said animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey.

For the reasons discussed above, Claim 1 reads on the approved use of the approved KERYDIN product. KERYDIN is indicated for the treatment of onychomycosis of the toenails in humans. Claim 5 therefore reads on the approved use of the approved KERYDIN product.

Claim 6:
Claim 6 reads as follows:
6. The method of claim 4 , wherein said onychomycosis is tinea unguium.

For the reasons discussed above, Claim 4 reads on the approved use of the approved KERYDIN product. Tinea unguium is a type of onychomycosis caused by a dermatophyte, which includes Trichophyton rubrum and Trichophyton mentagrophytes. The approved KERYDIN product is indicated for the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes, and Claim 6 therefore reads on the approved use of the approved KERYDIN product.

Claim 7:
Claim 7 reads as follows:
7. The method of claim 1 , wherein said animal is a human.

For the reasons discussed above, Claim 1 reads on the approved use of the approved KERYDIN product. KERYDIN is approved for the treatment of onychomycosis of the toenails in humans. Claim 7 therefore reads on the approved use of the approved KERYDIN product.

\section*{Claim 8:}

Claim 8 reads as follows:
8. The method of claim 1, wherein the administering is at a site which is a member selected from the skin, nail, hair, hoof and claw.

For the reasons discussed above, Claim 1 reads on the approved use of the approved KERYDIN product. KERYDIN is approved for the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. Section 2 of the approved product label instructs patients to apply KERYDIN to the affected toenails. Claim 8 therefore reads on the approved use of the approved KERYDIN product.

Claim 9:
Claim 9 reads as follows:
9. The method of claim 8 , wherein said skin is the skin surrounding the nail, hair, hoof or claw.

For the reasons discussed above, Claim 8 reads on the approved use of the approved KERYDIN product. According to the approved product label, KERYDIN should be applied to the entire toenail surface and under the tip of each toenail being treated. See KERYDIN product label, § 2. Claim 9 therefore reads on the approved use of the approved KERYDIN product.

Claim 10 reads as follows:
10. The method of claim 1, wherein said infection is a fungal infection.

For the reasons discussed above, Claim 1 reads on the approved use of the approved KERYDIN product. KERYDIN is approved for the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. Trichophyton rubrum and Trichophyton mentagrophytes are fungi, and the onset of onychomycosis due to these fungi constitutes a fungal infection. Claim 10 therefore reads on the approved use of the approved KERYDIN product.

Claim 11:
Claim 11 reads as follows:
11. A method of treating onychomycosis in a human, said method comprising administering to the human a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof, sufficient to treat said onychomycosis.

The KERYDIN product is tavaborole, a \(5 \%\) topical solution. See KERYDIN product label, § 1. The chemical name for tavaborole is 1,3 -dihydro- 5 -fluoro-1-hydroxy-2,1-benzoxaborole. The KERYDIN product is indicated for the treatment of a human having onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. See KERYDIN product label, § 11. KERYDIN, when administered in the manner and amount specified in the product label, has been demonstrated in human clinical trials to be therapeutically effective in treating onychomycosis in humans. See the KERYDIN product label at § 14. Claim 11 therefore reads on the approved use of the approved KERYDIN product.

Claim 12:
Claim 12 reads as follows:
12. A method of inhibiting the growth of a fungus in a human, said method comprising administering to the human a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof.

The KERYDIN product is tavaborole, a \(5 \%\) topical solution. The KERYDIN product is indicated for the treatment of humans having onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. See KERYDIN product label, § 1. The chemical name for tavaborole is 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole. See KERYDIN product label, § 11. Trichophyton rubrum and Trichophyton mentagrophytes are fungi, and the onset of onychomycosis due to these fungi constitutes a fungal infection. KERYDIN, when administered in the manner and amount specified in the product label, has been proven in human clinical trials to be therapeutically effective in inhibiting the growth of the fungi that cause onychomycosis. See KERYDIN product label at § 14. Claim 12 therefore reads on the approved use of the approved KER YDIN product.
(10) The relevant dates and information pursuant to 35 U.S.C. § \(156(\mathrm{~g})\) in order to enable the Secretary of Health and Human Services to determine the applicable regulatory review period are:

IND number:
IND effective date:
NDA number:
NDA submission date: July 26, 2013
NDA approval date: July 7,2014
(11) As a brief description of the significant activities undertaken by the marketing applicant Anacor during the applicable regulatory review period with respect to the approved KERYDIN product and the significant dates applicable to such activities, attached hereto is Exhibit G.
Throughout the regulatory review period, Anacor conducted clinical trials and analyses of the KERYDIN product. Exhibit G provides a chronology of the IND No. 71,206 and NDA No. 204427, including significant communications with the FDA during the regulatory review period culminating with the approval of the KERYDIN product on July 7, 2014.
(12) In the opinion of the applicant, the ' 621 patent is eligible for patent term extension under 35 U.S.C. § 156. An extension of 408 days is claimed. The eligibility for and length of the claimed extension were determined as follows:
(a) 35 U.S.C. § 156(a)

The ' 621 patent claims methods of treatment using the approved KERYDIN product.
(b) 35 U.S.C. § \(156(\mathrm{a})(1)\)

The term of the ' 621 patent is due to expire on May 26, 2027, and therefore has not expired before the submission of this application.
(c) 35 U.S.C. § 156(a)(2)

The term of the ' 621 patent has never been extended under 35 U.S.C. § 156(e)(1).
(d) 35 U.S.C. § 156(a)(3)

The application for extension is submitted by the owner of the ' 621 patent, Anacor.
(e) 35 U.S.C. § 156(a)(4)

The product (the active ingredient, including any salt or ester of the active ingredient) in the KERYDIN product has been subjected to a regulatory review period before its commercial marketing or use.
(f) 35 U.S.C. § 156(a)(5)(A)

The permission for the commercial marketing or use of the KERYDIN product after the regulatory review period referred to in subsection (e) above is the first permitted commercial marketing or use of the product under section 505(b) of the Federal Food Drug and Cosmetic Act.
(g) 35 U.S.C. § 156(c)(4)

No patent has been extended under 35 U.S.C. § 156(e)(1) for the regulatory review period that forms the basis for this application for extension of the term of U.S. Patent No. 7,582,621.

The length of extension of the patent term of the ' 621 patent claimed by applicant is 408 days, until July 7,2028 . The length of the extension was determined pursuant to 37 C.F.R. § 1.775 as follows:

\begin{tabular}{|c|c|c|}
\hline & & date the application (NDA) was initially submitted for such product under that subsection (July 26, 2013) (see 37 C.F.R. § 1.775 (c)(1)). \\
\hline (b) & 347 & The number of days in the period beginning on the date the application was initially submitted for the approved product under subsection (b) of section 505 of the Federal Food, Drug, and Cosmetic Act (July 26, 2013) and ending on the date such application was approved under such section (July 7, 2014) (see 37 C.F.R. § \(1.775(\mathrm{c})(2)\)). \\
\hline (c) & 3112 & The sum of (a) and (b). This is the regulatory review period. (37 C.F.R. § \(1.775(\mathrm{c})\)). \\
\hline (d) & 1341 & The number of days in the regulatory review period of (a) which were on and before the date on which the ' 621 patent issued. (37 C.F.R. §
\[
1.775(\mathrm{~d})(\mathrm{l})(\mathrm{i}))
\] \\
\hline (e) & 1424 & Subtract (d) from (a) for the days remaining in the regulatory review period of (a). (37 C.F.R. § 1.775(d)(1)(i)). \\
\hline (f) & 0 & The number of days in the regulatory review period during which it is determined under 35 U.S.C. § 156(d)(2)(B) by the Secretary of Health and Human Services that applicant did not act with due diligence. \({ }^{1}\) (37 C.F.R. § 1.775(d)(1)(ii)). \\
\hline (g) & 347 & Subtract (f) from (b). (37 C.F.R. § 1.775(d)((1)(ii)). \\
\hline (h) & 1424 & Subtract (f) from (e). (37 C.F.R. § 1.775(d)((1)(ii)). \\
\hline (i) & 712 & Subtract from (h) one half of the days calculated in (h); half days will be ignored for the purposes of subtraction. (37 C.F.R. § \(1.775(\mathrm{~d})(1)(\mathrm{iii})\)). \\
\hline (j) & 1059 & The sum of (g) and (i). (37 C.F.R. § 1.775(d)(1)(iii)). \\
\hline (k) & 05/26/2027 & The original term of the ' 621 patent, shortened by any terminal disclaimer. \\
\hline (1) & 4/19/2030 & The original term of the patent as shortened by any terminal disclaimer plus the number of days in (j). (37 C.F.R. § \(1.775(\mathrm{~d})(2)\)). \\
\hline (m) & 07/07/2028 & The date of approval of the application under section 351 of the Public Health Service Act, or subsection (b) of section 505 or section 507 of the Federal Food, Drug and Cosmetic Act plus 14 years. (37 C.F.R. § 1.775(d)(3)). \\
\hline
\end{tabular}

\footnotetext{
1 There has been no such determination. The applicant is not aware of a lack of diligence during the regulatory review period.
}
\begin{tabular}{|c|c|l|}
\hline (n) & \(07 / 07 / 2028\) & The earlier of (l) and (m). (37 C.F.R. § 1.775(d)(4)). \\
\hline (o) & \(05 / 26 / 2032\) & (k) plus 5 years. (37 C.F.R. § 1.775(d)(5)(i)). \\
\hline (p) & 0 \begin{tabular}{l}
\(07 / 07 / 2028\) \\
\hline
\end{tabular} & The earlier of (n) and (o). (37 C.F.R. § 1.775(d)(5)(ii)). \\
\hline
\end{tabular}
(13) The applicant acknowledges a duty to disclose to the Director of the United States Patent and Trademark Office and the Secretary of Health and Human Services or the Secretary of Agriculture any information which is material to the determination of entitlement to the extension sought.
(14) Please charge the required fee \((\$ 1,120.00)\) pursuant to 37 C.F.R. § \(1.20(\mathrm{j})\) for receiving and acting upon this Application for Patent Term Extension of the ' 621 patent to deposit account 03-1721.
(15) Please address inquiries and correspondence to the undersigned.

An original and two copies of these application papers are hereby submitted.

Respectfully submitted,
Dated: August of, 2014
Andrea L.C. Reid, Reg. No. 47,902
Attorney for Anacor Pharmaceuticals, Inc.

Choate, Hall \& Stewart LLP
2 International Place
Boston, MA 02110
(617) 248-5000 (telephone)
(617) 248-4000 (facsimile)

\section*{EXHIBIT A}

\section*{\({ }^{(12)}\) United States Patent Baker et al.}
(54) BORON-CONTAINING SMALL MOLECULES

Inventors: Stephen J. Baker, Mountain View, CA (US); Tsutomu Akama, Sunnyvale, CA (US); Carolyn Bellinger-Kawahara, Redwood City, CA (US); Vincent S. Hernandez, Watsonville, CA (US); Karin M. Hold, Belmont, CA (US); James J. Leyden, Malvern, PA (US); Kirk R. Maples, San Jose, CA (US); Jacob J. Plattner, Berkeley, CA (US); Virginia Sanders, San Francisco, CA (US); Yong-Kang Zhang, San Jose, CA (US)
(73) Assignee: Anacor Pharmaceuticals, Inc., Palo Alto, CA (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 267 days.
(21) Appl. No.: 11/357,687
(22) Filed: Feb. 16, 2006
(65)

Prior Publication Data
US 2006/0234981 A1 Oct. 19, 2006

\section*{Related U.S. Application Data}
(60) Provisional application No. 60/654,060, filed on Feb. 16, 2005.
(51) Int. Cl.

A61K 31/69 (2006.01)
C07F 5/04
(2006.01)
(52)
U.S. Cl.
(58)

Field of Classification Search 5 514/64
See application file for complete search history
(10) Patent No.: US 7,582,621 B2
(45) Date of Patent:
(56) References Cited
U.S. PATENT DOCUMENTS
\(5,880,188\) A * \(3 / 1999\) Austin et al.524/109
\(6,083,903\) A * \(7 / 2000\) Adams et al. \(514 / 2\) FOREIGN PATENT DOCUMENTS
wo wo 2005/013892 A3 2/2005
OTHER PUBLICATIONS
Austin et al., 1996, CAS: 124:234024.*
fungicide: definition from Answre.com, 1998.*
Sudaxshina Murdan, "Drug Delivery to the Nail Following Topical Application," International Journal of Pharmaceutics, 236:1-26 (2002).
S. J. Baker, et al., "Progress on New Therapeutics for Fungal Nail Infections,"Annual Reports in Medicinal Chemistry, 40:323-335 (2005).
* cited by examiner

Primary Examiner-Rei-tsang Shiao
(74) Attorney, Agent, or Firm-Morgan, Lewis \& Bockius, LLP

\section*{(57) ABSTRACT}

This invention relates to compounds useful for treating fungal infections, more specifically topical treatment of onychomycosis and/or cutaneous fungal infections. This invention is directed to compounds that are active against fungi and have properties that allow the compound, when placed in contact with a patient, to reach the particular part of the skin, nail, hair, claw or hoof infected by the fungus. In particular the present compounds have physiochemical properties that facilitate penetration of the nail plate.

12 Claims, 12 Drawing Sheets

FIGURE 1A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{MIC (ug/mL)} \\
\hline & & \[
\begin{aligned}
& \text { io } \\
& \text { i山 } \\
& 0 \\
& \stackrel{n}{\tilde{0}} \\
& \stackrel{0}{0} \\
& \dot{0} \\
& \dot{0} \\
& \hline
\end{aligned}
\] & C. neoformans F285 & \[
\text { A. fumigatus ATCC } 13073
\] & T. mentagrophytes F311 & & T. rubrum F296 & T. rubrum F296 w/5\% keratin \\
\hline C1 & 1 & 2 & 2 & 1 & 2 & 0.5 & 1 & 1 \\
\hline C2 & 2 & 0.5 & 1 & 2 & 4 & & 8 & 8 \\
\hline C3 & 16 & 32 & 32 & 16 & 16 & 4 & 32 & \\
\hline C4 & 64 & 64 & > 64 & 32 & 32 & 8 & 32 & \\
\hline C5 & 4 & 8 & 2 & 2 & 4 & 0.25 & 4 & \\
\hline C6 & 8 & 16 & 8 & 16 & 16 & 64 & 16 & \\
\hline C7 & \(>64\) & > 64 & > 64 & > 64 & 32 & 4 & 64 & \\
\hline C8 & 2 & 2 & 8 & 2 & 4 & 2 & 8 & \\
\hline C9 & \(>64\) & \(>64\) & > 64 & \(>64\) & 64 & >64 & 64 & \\
\hline
\end{tabular}

FIGURE 1B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline C10 & 0.5 & 0.5 & 0.25 & 0.25 & \(\leq 0.5\) & <0.06 & 1 & 2 \\
\hline \({ }_{C 11}\) & 32. & 32 & 32 & 32 & 2 & 2 & 4 & \\
\hline C12 & 256 & & & & & \(>64\) & & \\
\hline C13 & 16 & & & & & 2 & 16 & \\
\hline C16 & 32 & & & & & 8 & 16 & \\
\hline C17 & 64 & 64 & 64 & 16 & 4 & 16 & 8 & \\
\hline C18 & & & & & & 2 & & \\
\hline C19 & & & & & & 0.5 & 8 & \\
\hline C20 & & & & & & 8 & & \\
\hline C 21 & & & & & & 4 & & \\
\hline C22 & & & & & & \(>64\) & & \\
\hline C23 & & & & & & \(>64\) & & \\
\hline
\end{tabular}

\section*{FIGURE 1C}
\begin{tabular}{|l|l|l|l|l|l|l|l|l}
\hline & & & & & & & & \\
\hline C24 & & & & & & & \\
\hline C25 & & & & & & & & \\
\hline & & & & & & & \\
\hline C26 & & & & & & & & \\
\hline & & & & & & \\
\hline C27 & & & & & & & \\
\hline C28 & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

EXAMPLE 2A
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fungus} & \multirow[b]{2}{*}{Broth used} & \multicolumn{5}{|l|}{MIC (\(\mu \mathrm{g} / \mathrm{mL}\))} \\
\hline & & \[
\underset{U}{2}
\] & & & & \\
\hline A. fumigatus ATCC 13073 & RPMI & 0.25 & nt & nt & \(>64\) & 0.25 \\
\hline C. albicans ATCC 90028 & RPMI & 1 & 0.5 & nt & 0.25 & \(\leq 0.12\) \\
\hline C. albicans F56 & RPMI & 0.5 & nt & nt & \(>64\) & 0.25 \\
\hline C. glabrata ATCC 90030 & RPMI + MOPs & \(\leq 0.5\) & \(\leq 0.5\) & 64 & nt & \(\leq 0.5\) \\
\hline C. krusei ATCC 44507 & RPMI + MOPs & 1 & \(\leq 0.5\) & 64 & nt & \(\leq 0.5\) \\
\hline C. neoformans F285 & RPMI & 0.25 & nt & nt & 2 & \(\leq 0.12\) \\
\hline C. parapsilosis ATCC 22019 & RPMI + MOPs & \(\leq 0.5\) & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline C. tropicalis ATCC 13803 & RPMI + MOPs & \(\leq 0.5\) & \(\leq 0.5\) & 256 & nt & 1 \\
\hline E. floccosum ATCC 52066 & RPMI + MOPs & \(\leq 0.5\) & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline F. solani ATCC 36031 & RPMI + MOPs & \(\leq 0.5\) & 4 & 64 & nt & \(>256\) \\
\hline M. furfur ATCC 44344 & Urea & 1 & \(\leq 0.5\) & 2 & nt & \(\leq 0.5\) \\
\hline M. pachydermatis ATCC 96746 & Urea & 1 & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline M. sympodialis ATCC 44031 & Urea & 1 & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline M. audouinii ATCC 42558 & RPMI + MOPs & 2 & 1 & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline M. canis ATCC 10214 & RPMI + MOPs & 2 & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline M. gypseum ATCC 24103 & RPMI + MOPs & 2 & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline T. mentagrophyles F311 & RPMI + MOPs & 1 & 0.5 & \(\leq 0.5\) & 32 & \(\leq 0.12\) \\
\hline T: rubrum F296 & RPMI + MOPs & 1 & 1 & \(\leq 0.5\) & 1 & \(\leq 0.12\) \\
\hline T. rubrum F296 & RPMI + MOPS + \(5 \%\) keratin powder & 2 & 1 & nt & 1 & nt \\
\hline T. tonsurans ATCC 28942 & RPMI + MOPs & 2 & \(\leq 0.5\) & \(\leq 0.5\) & nt & \(\leq 0.5\) \\
\hline
\end{tabular}
\(\mathrm{nt}=\) not tested

\section*{EXAMPLE 2B}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fungus} & \multirow[b]{2}{*}{Broth used*} & \multicolumn{4}{|c|}{MFC (\(\mu \mathrm{g} / \mathrm{mL}\))} \\
\hline & & \[
\hat{E}
\] & & & \\
\hline T. mentagrophytes F311 & RPMI + MOPs & 16 & 1 & \(\leq 0.5\) & 4 \\
\hline T. rubrum F296 & RPMI + MOPs & 8 & 2 & \(\leq 0.5\) & 4 \\
\hline
\end{tabular}

\section*{FIGURE 3}
\begin{tabular}{l|ccc}
\hline \multicolumn{1}{c|}{ Nail Samples } & \multicolumn{2}{|c}{\begin{tabular}{l}
Radioactivity as mg Equivalent/g Nail Samples
\end{tabular}} & \begin{tabular}{c}
\(P\) value \\
(\(t\)-test)
\end{tabular} \\
& \begin{tabular}{c}
Group A \\
(C10)
\end{tabular} & \begin{tabular}{c}
Group C \\
(Ciclopirox)
\end{tabular} & \(7.40 \pm 3.47\) \\
\hline Dorsal/intermediate center & \(25.65 \pm 8.80\) & \(3.09 \pm 2.07\) & 0.0008 \\
Ventral/intermediate center & \(20.46 \pm 4.72\) & \(4.38 \pm 2.73\) & 0.0022 \\
\hline Remainder nail & \(26.06 \pm 12.41\) & & \\
\hline
\end{tabular}
* The data represents the mean \(\pm\) S.D. of each group \((n=6)\).

FIGURE 4
\begin{tabular}{l|ccc}
\hline \multirow{2}{*}{ Sampling day } & \multicolumn{2}{|c}{ Radioactivity as mg Equivalent/Samples* } & -value (t-test) \\
& Group A (C10) & Group C (Ciclopirox) & 0.0043 \\
\hline Day 3 & \(0.0609 \pm 0.0605\) & \(0.0011 \pm 0.0020\) & 0.0022 \\
Day 6 & \(0.1551 \pm 0.1314\) & \(0.0013 \pm 0.0027\) & 0.0022 \\
Day 9 & \(0.3892 \pm 0.3714\) & \(0.0018 \pm 0.0030\) & 0.0022 \\
Day 12 & \(0.6775 \pm 0.6663\) & \(0.0014 \pm 0.0019\) & 0.0022 \\
Day 15 & \(0.9578 \pm 0.6106\) & \(0.0033 \pm 0.0041\) & 0.0022 \\
Total & \(2.2405 \pm 1.7325\) & \(0.0089 \pm 0.0131\) & \\
\hline
\end{tabular}
* The data represents the mean \(\pm\) S.D. of each group \((n=6)\).

\section*{FIGURE 5}

\section*{FIGURE 6}

\section*{FIGURE 7}

\section*{FIGURE 8}

FIGURE 9

\section*{BORON-CONTANING SMALL MOLECULES}

\section*{CROSS-REFERENCE TO RELATED APPLICATIONS}

The present application is related to U.S. Provisional Patent Application 60/654,060 filed Feb. 16, 2005, which is incorporated by reference in its entirety for all purposes.

\section*{BACKGROUND FOR THE INVENTION}

Infections of the nail and hoof, known as ungual and/or periungual infections, pose serious problems in dermatology. These ungual and/or periungual can be caused by sources such as fungi, viruses, yeast, bacteria and parasites. Onychomycosis is an example of these serious ungual and/or periungual infections and is caused by at least one fungus. Current treatment for ungual and/or periungual infections generally falls into three categories: systemic administration of medicine; surgical removal of all or part of the nail or hoof followed by topical treatment of the exposed tissue; or topical application of conventional creams, lotions, gels or solutions, frequently including the use of bandages to keep these dosage forms in place on the nail or hoof. All of these approaches have major drawbacks. The following discussion is particularly directed to drawbacks associated with current treatment of ungual and/or periungual antifungal infections.

Long term systemic (oral) administration of an antifungal agent for the treatment of onychomycosis is often required to produce a therapeutic effect in the nail bed. For example, oral treatment with the antifungal compound ketoconozole typically requires administration of 200 to \(400 \mathrm{mg} /\) day for 6 months before any significant therapeutic benefit is realized. Such long term, high dose systemic therapy can have significant adverse effects. For example, ketoconozole has been reported to have liver toxicity effects and reduces testosterone levels in blood due to adverse effects on the testes. Patient compliance is a problem with such long term therapies especially those which involve serious adverse effects. Moreover, this type of long term oral therapy is inconvenient in the treatment of a horse or other ruminants afflicted with fungal infections of the hoof. Accordingly, the risks associated with parenteral treatments generate significant disincentive against their use and considerable patient non-compliance.

Surgical removal of all or part of the nail followed by topical treatment also has severe drawbacks. The pain and discomfort associated with the surgery and the undesirable cosmetic appearance of the nail or nail bed represent significant problems, particularly for female patients or those more sensitive to physical appearance. Generally, this type of treatment is not realistic for ruminants such as horses.

Topical therapy has significant problems too. Topical dosage forms such as creams, lotions, gels etc., can not keep the drug in intimate contact with the infected area for therapeutically effective periods of time. Bandages have been used to hold drug reservoirs in place in an attempt to enhance absorption of the pharmaceutical agent. However the bandages are thick, awkward, troublesome and generally lead to poor patient compliance.

Hydrophilic and hydrophobic film forming topical antifungal solutions have also been developed. These dosage forms provide improved contact between the drug and the nail, but the films are not occlusive. Topical formulations for fungal infection treatment have largely tried to deliver the drug to the target site (an infected nail bed) by diffusion across or through the nail.

Nail is more like hair than stratum comeum with respect to chemical composition and permeability. Nitrogen is the major component of the nail attesting to the nail's proteinaceous nature. The total lipid content of mature nail is \(0.1-\) \(51.0 \%\), while the stratum corneum lipid is about \(10 \% \mathrm{w} / \mathrm{w}\). The nail is \(100-200\) times thicker than the stratum corneum and has a very high affinity and capacity for binding and retaining antifungal drugs. Consequently little if any drug penetrates through the nail to reach the target site. Because of these 10 reasons topical therapy for fungal infections have generally been ineffective.

Compounds known as penetration or permeation enhancers are well known in the art to produce an increase in the permeability of skin or other body membranes to a pharmais cologically active agent. The increased permeability allows an increase in the rate at which the drug permeates through the skin and enters the blood stream. Penetration enhancers have been successful in overcoming the impermeability of pharmaceutical agents through the skin. However, the thin stratum 20 corneum layer of the skin, which is about 10 to 15 cells thick and is formed naturally by cells migrating toward the skin surface from the basal layer, has been easier to penetrate than nails. Moreover, known penetration enhancers have not proven to be useful in facilitating drug migration through the 25 nail tissue

Antimicrobial compositions for controlling bacterial and fungal infections comprising a metal chelate of 8-hydroxyquinoline and an alkyl benzene sulfonic acid have been shown to be efficacious due to the increased ability of the 30 oleophilic group to penetrate the lipoid layers of micro-cells. The compounds however, do not effectively increase the ability to carry the pharmaceutically active antifungal through the cornified layer or stratum corneum of the skin. U.S. Pat. No. 4,602,011, West et al., Jul. 22, 1986; U.S. Pat. No. 4,766, 113 ,
35

Therefore, there is a need in the art for compounds which can effectively penetrate the nail. There is also need in the art for compounds which can effectively treat ungual and/or periungual infections. These and other needs are addressed by 40 the current invention.

\section*{SUMMARY OF THE INVENTION}

In a first aspect, the invention provides a compound having 45 a structure according to Formula I:

(1)
whercin \(B\) is boron. \(\mathrm{R}^{1 a}\) is a member selected from a negative charge, a salt counterion, H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or 60 unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M1 is a member selected from oxygen, sulfur and \(\mathrm{NR}^{2 a}\). \(\mathrm{R}^{2 a}\) is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted bet-
enoaryl. J1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\) and \(\mathrm{CR}^{5 a}\). \(\mathrm{R}^{3 a}, \mathrm{R}^{4 a}\), and \(\mathrm{R}^{5 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index nl is an integer selected from 0 to 2 . W1 is a member selected from \(\mathrm{C}=\mathrm{O}\) (carbonyl), \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\) and \(\mathrm{CR}^{8 a} . \mathrm{R}^{6 a}, \mathrm{R}^{7 a}\), and \(\mathrm{R}^{8 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}_{3} \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index ml is an integer selected from 0 and 1 . Al is a member selected from \(\mathrm{CR}^{9 a}\) and N . Dl is a member selected from \(\mathrm{CR}^{10 a}\) and N . E 1 is a member selected from \(\mathrm{CR}^{11 a}\) and \(\mathrm{N} . \mathrm{G} 1\) is a member selected from \(\mathrm{CR}^{12 a}\) and \(\mathrm{N} . \mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (\(\mathrm{A} 1+\mathrm{D} 1+\mathrm{E} 1+\mathrm{G} 1\)) is an integer selected from 0 to 3. A member selected from \(\mathrm{R}^{3 a}, \mathrm{R}^{4 a}\) and \(\mathrm{R}^{5 a}\) and a member selected from \(\mathrm{R}^{6 a}, \mathrm{R}^{7 a}\) and \(\mathrm{R}^{8 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{3 a}\) and \(\mathrm{R}^{4 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{6 a}\) and \(\mathrm{R}^{7 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{9 a}\) and \(\mathrm{R}^{10 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{10 a}\) and \(\mathrm{R}^{11 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. The aspect has the proviso that when M1 is oxygen, W1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{m 1}\), wherein nl is \(0, \mathrm{~J} 1\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein ml is \(1, \mathrm{Al}\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{11 a}\) E 1 is \(\mathrm{CR}^{11 a}, \mathrm{Gl}\) is \(\mathrm{CR}^{12 a}\), then \(\mathrm{R}^{9 a}\) is not halogen, methyl, ethyl, or optionally joined with \(\mathrm{R}^{10 a}\) to a form phenyl ring; \(\mathrm{R}^{10 a}\) is not unsubstituted phenoxy, \(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\), halogen, \(\mathrm{CF}_{3}\), methoxy, ethoxy, or optionally joined with \(\mathrm{R}^{9 a}\) to form a phenyl ring; \(\mathrm{R}^{11 a}\) is not halogen or optionally joined with \(\mathrm{R}^{10 a}\) to form a phenyl ring; and \(\mathrm{R}^{12 a}\) is not halogen. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\), wherein nl is \(0, \mathrm{~J} 1\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein ml is \(1, \mathrm{~A} 1\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{10 a}, \mathrm{E}_{1}\) is \(\mathrm{CR}^{11 a}, \mathrm{G1}\) is \(\mathrm{CR}^{12 a}\), then neither \(\mathrm{R}^{6 a}\) nor \(\mathrm{R}^{7 a}\) are halophenyl. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\), wherein nl is \(0, \mathrm{~J} 1\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein ml is \(1, \mathrm{~A} 1\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{10 a}, \mathrm{El}\) is \(\mathrm{CR}^{11 a}, \mathrm{G}\) is \(\mathrm{CR}^{12 a}\), and \(\mathrm{R}^{9 a}, \mathrm{R}^{10 a}\) and \(\mathrm{R}^{11 a}\) are H , then \(\mathrm{R}^{6 a}\), \(\mathrm{R}^{7 a}\) and \(\mathrm{R}^{12 a}\) are not H . The aspect has the further proviso that when M1 is oxygen wherein n 1 is \(1, \mathrm{~J} 1\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein \(m 1\) is \(0, \mathrm{Al}\) is \(\mathrm{CR}^{9 a}\), D 1 is \(\mathrm{CR}^{1 a}\), E 1 is \(\mathrm{CR}^{11 a}\), G 1 is \(\mathrm{CR}^{12 a}, \mathrm{R}^{9 a}\) is \(\mathrm{H}, \mathrm{R}^{10 a}\) is \(\mathrm{H}, \mathrm{R}^{11 a}\) is \(\mathrm{H}, \mathrm{R}^{6 a}\) is \(\mathrm{H}, \mathrm{R}^{7 a}\) is \(\mathrm{H}, \mathrm{R}^{12 a}\) is H , then W1 is not \(\mathrm{C}=\mathrm{O}\) (carbonyl). The aspect has the further proviso that when M1 is oxygen, W1 is \(\mathrm{CR}^{5 a}, \mathrm{~J} 1\) is \(\mathrm{CR}^{8 a}, \mathrm{Al}\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{10 a}, \mathrm{E} 1\) is \(\mathrm{CR}^{11 a}, \mathrm{Gl}\) is \(\mathrm{CR}^{2 a}, \mathrm{R}^{6 a}, \mathrm{R}^{7 a}, \mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\) are H , then \(\mathrm{R}^{5 a}\) and \(\mathrm{R}^{8 a}\), together with the atoms to which they are attached, do not form a phenyl ring.

In a second aspect, the invention provides a pharmaceutical formulation comprising (a) a pharmaceutically acceptable excipient; and (b) a compound having a structure according to Formula II:

(II)
wherein B is boron. \(\mathrm{R}^{1 b}\) is a member selected from a negative charge, a salt counterion, H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M2 is a member selected from oxygen, sulfur and \(\mathrm{NR}^{2 b} . \mathrm{R}^{2 b}\) is a member selected from \(H\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{m 2}\) and \(\mathrm{CR}^{5 b}\). \(\mathrm{R}^{3 b}, \mathrm{R}^{4 b}\), and \(\mathrm{R}^{5 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 2 is an integer selected from 0 to 2 . W2 is a member selected from \(\mathrm{C}=\mathrm{O}\) (carbonyl), \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\) and \(\mathrm{CR}^{8 b} \cdot \mathrm{R}^{6 b}, \mathrm{R}^{7 b}\), and \(\mathrm{R}^{8 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 2 is an integer selected from 0 and 1. A2 is a member selected from \(\mathrm{CR}^{9 b}\) and N . D2 is a member selected from \(\mathrm{CR}^{10 b}\) and N . E 2 is a member selected from \(\mathrm{CR}^{11 b}\) and \(\mathrm{N} . \mathrm{G} 2\) is a member selected from \(\mathrm{CR}^{12 b}\) and \(\mathrm{N} . \mathrm{R}^{9 b}, \mathrm{R}^{10 b}, \mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (\(\mathrm{A} 2+\mathrm{D} 2+\mathrm{E} 2+\mathrm{G} 2\)) is an integer selected from 0 to 3 . A member selected from \(\mathrm{R}^{3 b}, \mathrm{R}^{4 b}\) and \(\mathrm{R}^{5 b}\) and a member selected from \(\mathrm{R}^{6 b}, \mathrm{R}^{7 b}\) and \(\mathrm{R}^{8 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{3 b}\) and \(\mathrm{R}^{4 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{6 b}\) and \(\mathrm{R}^{7 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{9 b}\) and \(\mathrm{R}^{10 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring.

In another aspect, the invention provides a method of killing a microorganism, comprising contacting the microorganism with a therapeutically effective amount of a compound of the invention.

In another aspect, the invention provides a method of inhibiting microorganism growth, comprising contacting the microorganism with a therapeutically effective amount of a compound of the invention.

In another aspect, the invention provides a method of treating an infection in an animal, comprising administering to the animal a therapeutically effective amount of a compound of the invention.

In another aspect, the invention provides a method of preventing an infection in an animal, comprising administering to the animal a therapeutically effective amount of a compound of the invention.

In another aspect, the invention provides a method of treating a systemic infection or an ungual or periungual infection in a human, comprising administering to the animal a therapeutically effective amount of a compound of the invention.

In another aspect, the invention provides a method of treating onychomycosis in a human, comprising administering to the animal a therapeutically effective amount of a compound of the invention.

In another aspect, the invention provides a method of synthesizing a compound of the invention.
In another aspect, the invention provides a method of delivering a compound from the dorsal layer of the nail plate to the nail bed. The method comprises contacting said cell with a compound capable of penetrating the nail plate, under conditions sufficient to penetrate said nail plate, and thereby delivering the compound. The compound has a molecular weight of between about 100 and about 200 Da . The compound also has a \(\log \mathrm{P}\) value of between about 1.0 and about 2.6 . The compound has a water solubility between about \(0.1 \mathrm{mg} / \mathrm{mL}\) and \(1.0 \mathrm{~g} / \mathrm{mL}\) octanol/saturated water.

\section*{BRIEF DESCRIPTION OF THE DRAWINGS}

FIG. 1 is a table of minimum inhibitory concentration (MIC) data of CBO against various fungi.

FIG. 2A displays minimum inhibitory concentration (MIC) for C10, ciclopirox, terbinafine, fluconazole and itraconazole (comparator drugs) against 19 test strains of fungi

FIG. 2B displays minimum fungicidal concentration (MFC) for C10, ciclopirox, terbinafine and itraconazole (comparator drugs) against 2 test strains of fungi.

FIG. 3 displays a comparison of Normalized C10 and Ciclopirox Equivalent in Each Part of Nail Plate Samples after 14-day Treatment.
FIG. 4 displays a comparison of Cl 0 and Ciclopirox Equivalent in Cotton Ball Supporting Bed Samples after 14-day Treatment.

FIG. 5 displays the results of a placebo for C10 (50:50 propylene glycol and ethyl acetate) applied per day over five days. Full carpet growth of the organism T. rubrum was observed.
FIG. 6 displays the results of a \(40 \mu \mathrm{~L} / \mathrm{cm}^{2}\) aliquot of C 10 \(10 \% \mathrm{w} / \mathrm{v}\) solution applied per day over five days. Zones of inhibition (in the order of the cells shown in the figure) of \(100 \%, 67 \%, 46 \%, 57 \%, 38 \%\) and \(71 \%\) were observed for the growth of \(T\). rubrum. Green arrow indicates the measurement of \%one of inhibition.
FIG. 7 displays the results of a \(40 \mu \mathrm{~L} / \mathrm{cm}\) aliquot of C10 \(10 \% \mathrm{w} / \mathrm{v}\) solution applied per day over five days. Zones of
inhibition (in the order of the cells shown in the figure) of \(74 \%, 86 \%, 100 \%, 82 \%, 100 \%\) and \(84 \%\) were observed for the growth of T. rubrum.

FIG. 8 displays the results of a \(40 \mu \mathrm{~L} / \mathrm{cm}^{2}\) aliquot of \(8 \%\) 5 ciclopirox in w/w commercial lacquer applied per day over five days. No zone of inhibition observed; full carpet growth of T. rubrum.

FlG. 9 displays the results of a \(40 \mu \mathrm{~L} / \mathrm{cm}^{2}\) aliquot of \(5 \%\) amorolfine \(w / v\) in commercial lacquer applied per day over five days. No zone of inhibition observed; full carpet growth of T. rubrum.

DETAILED DESCRIPTION OF THE INVENTION

\section*{I. Definitions and Abbreviations}

The abbreviations used herein generally have their conventional meaning within the chemical and biological arts.
"Compound of the invention," as used herein refers to the 20 compounds discussed herein, pharmaceutically acceptable salts and prodrugs of these compounds.

MIC, or minimum inhibitory concentration, is the point where compound stops more than \(90 \%\) of cell growth relative to an untreated control.

Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., \(-\mathrm{CH}_{2} \mathrm{O}-\) is intended to also recite \(-\mathrm{OCH}_{2}\)-.

The term "poly" as used herein means at least 2. For example, a polyvalent metal ion is a metal ion having a valency of at least 2.
"Moiety" refers to the radical of a molecule that is attached \({ }_{5}\) to another moiety.

The symbol \(\sim \Omega \Omega \Omega\), whether utilized as a bond or displayed perpendicular to a bond, indicates the point at which the displayed moiety is attached to the remainder of the molecule.
The term "alkyl," by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. \(\mathrm{C}_{1}-\mathrm{C}_{10}\) means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1, 5 4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. The term "alkyl," unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as "heteroalkyl." Alkyl groups that are limited to hydrocarbon groups are 0 termed "homoalkyl".

The term "alkylene" by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\), and further includes those groups described below as "heteroalkylene." 65 Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A "lower
alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
The terms "alkoxy," "alkylamino" and "alkylthio" (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
The term "heteroalkyl", by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom. In an exemplary embodiment, the heteroatoms can be selected from the group consisting of \(\mathrm{B}, \mathrm{O}, \mathrm{N}\) and S , and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) B, O, N and S may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\) \(\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3}, \quad-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3}\), \(-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}_{2},-\mathrm{S}(\mathrm{O})-\mathrm{CH}_{3}\),
\(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}(\mathrm{O})_{2}-\mathrm{CH}_{3}\),
\(-\mathrm{CH}=\mathrm{CH}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3}\), \(\mathrm{CH}_{3}\). Up to two heteroatoms may be consecutive, such as, for example, \(-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{OCH}_{3}\). Similarly, the term "heteroalkylene" by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\) and \(-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\). For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula \(-\mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\prime}\) - represents both \(-\mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\prime}-\) and \(-\mathrm{R}^{\prime} \mathrm{C}\) (O) \({ }_{2}\) -

The terms "cycloalkyl" and "heterocycloalkyl", by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl", respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloakyl include, but are not limited to, 1-1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3 -piperidinyl,-4-morpholinyl, 3-morpholinyl, tetrahydrofu-ran-2-y1, tetrahydrofuran-3-y1, tetrahydrothien-2-y1, tetrahy-drothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
The terms "halo" or "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl," are meant to include monohaloalkyl and polyhaloalkyl. For example, the term "halo(\(\left.C_{1}-C_{4}\right)\) alkyl" is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4 -chlorobutyl, 3-bromopropyl, and the like.
The term "aryl" means, unless otherwise stated, a polyunsaturated, aromatic, substituent that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently. The term "heteroaryl" refers to aryl groups (or rings) that contain from one to four heteroatoms. In an exemplary embodiment, the heteroatom is selected from \(\mathrm{B}, \mathrm{N}, \mathrm{O}\), and S , wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non-limit-
ing examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below.

For brevity, the term "aryl" when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term "arylalkyl" is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).

Each of the above terms (e.g., "alkyl," "heteroalkyl," "aryl" and "heteroaryl") are meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.

Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) are generically referred to as "alkyl group substituents," and they can be one or more of a variety of groups selected from, but not limited to: \(-\mathrm{OR}^{\prime},=\mathrm{O},=\mathrm{NR}^{\prime},=\mathrm{N}-\mathrm{OR}^{\prime},-\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime}\), \(-\mathrm{SR}^{\prime},-\) halogen, \(-\mathrm{OC}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{CO}_{2} \mathrm{R}^{\prime}\), -CONR'R", -OC(O)NR'R", -NR"C(O)R', -NR'-C(O) NR"R"', -NR"C(O) \()_{2} \mathrm{R}^{\prime}\), -NR-C(NR'R"R'")=NR"", \(-\mathrm{NR}-\mathrm{C}\left(\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime}\right)=\mathrm{NR}^{\prime \prime},-\mathrm{S}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2}\) \(\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{NRSO}_{2} \mathrm{R}^{\prime},-\mathrm{CN}\) and - \(\mathrm{NO}_{2}\) in a number ranging from zero to \(\left(2 m^{\prime}+1\right)\), where \(m^{\prime}\) is the total number of carbon atoms in such radical. \(\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime}\) and \(\mathrm{R}^{\prime \prime \prime}\) each preferably independently refer to hydrogen, substituted or unsubstituted beteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. When a compound of the invention includes more than one R group, for example, each of the Rgroups is independently selected as are each \(R^{\prime}, R^{\prime \prime}, R^{\prime \prime \prime}\), and \(R^{\prime \prime \prime}\) groups when more than one of these groups is present. When \(R^{\prime}\) and \(R^{\prime \prime}\) are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5 -, 6-, or 7 -membered ring. For example, -NR'R" is meant to include, but not be limited to, 1 -pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., \(-\mathrm{CF}_{3}\) and \(-\mathrm{CH}_{2} \mathrm{CF}_{3}\)) and acyl (e.g., - \(\mathrm{C}(\mathrm{O})\) \(\mathrm{CH}_{3},-\mathrm{C}(\mathrm{O}) \mathrm{CF}_{3},-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{3}\), and the like).

Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are generically referred to as "aryl group substituents." The substituents are selected from, for example: halogen, \(-\mathrm{OR}^{\prime},=\mathrm{O},=\mathrm{NR}\), \(=\mathrm{N}-\mathrm{OR}^{\prime},-\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{SR}^{\prime}\), -halogen, -OC(O)R', - \(\mathrm{C}(\mathrm{O})\) \(\mathrm{R}^{\prime},-\mathrm{CO}_{2} \mathrm{R}^{\prime},-\mathrm{CONR}^{\prime} \mathrm{R}^{\prime},-\mathrm{OC}(\mathrm{O}) \mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime}\), -NR"C(O)R', \(-\mathrm{NR}^{\prime}-\mathrm{C}(\mathrm{O}) \mathrm{NR} \mathrm{N}^{\prime \prime} \mathrm{R}^{\prime \prime}, \quad-\mathrm{NR}{ }^{\prime \prime} \mathrm{C}(\mathrm{O})_{2} \mathrm{R}\) ', -NR-C (\(\left.\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}\right)=\mathrm{NR}^{\prime \prime \prime}\), \(-\mathrm{NR}-\mathrm{C}\left(\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime}\right)=\mathrm{NR}^{\prime \prime},-\mathrm{S}(\mathrm{O}) \mathrm{R}^{\prime}\), \(-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\prime \prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{NRSO}_{2} \mathrm{R}^{\prime},-\mathrm{CN}\) and \(-\mathrm{NO}_{2}\), \(-\mathrm{R}^{\prime},-\mathrm{N}_{3},-\mathrm{CH}(\mathrm{Ph})_{2}\), fluoro \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) alkoxy, and fluoro \(\left(\mathrm{C}_{1}\right.\) -
\(\mathrm{C}_{4}\))alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where \(\mathrm{K}^{\prime}, \mathrm{R}^{\prime \prime}\), \(\mathrm{R}^{\prime \prime \prime}\) and \(\mathrm{R}^{\prime \prime \prime}\) are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. When a compound of the invention includes more than one R group, for example, each of the \(R\) groups is independently selected as are each \(\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}\) and \(\mathrm{R}^{\prime \prime \prime}\) groups when more than one of these groups is present.

Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - \(\mathrm{T}-\mathrm{C}(\mathrm{O})-\left(\mathrm{CRR}^{\prime}\right)_{q}-\mathrm{U}-\), wherein T and U are independently \(-\mathrm{NR}-,-\mathrm{O}-,-\mathrm{CRR}^{\prime}-\) or a single bond, and \(q\) is an integer of from 0 to 3 . Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - \(\mathrm{A}-\left(\mathrm{CH}_{2}\right)_{r}-\mathrm{B}-\), wherein A and B are independently -CRR'-, -O-, \(-\mathrm{NR}-,-\mathrm{S}-,-\mathrm{S}(\mathrm{O})-\), \(-\mathrm{S}(\mathrm{O})_{2}-,-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime}\) - or a single boud, and r is an integer of from 1 to 4 . One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - \(\left(\mathrm{CRR}^{\prime}\right)_{s}-\mathrm{X}-\left(\mathrm{CR}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}\right)_{d}\), where \(s\) and d are independently integers of from 0 to 3 , and X is - O -\(-\mathrm{NR}^{\prime}-,-\mathrm{S}-,-\mathrm{S}(\mathrm{O})-,-\mathrm{S}(\mathrm{O})_{2}-\), or \(-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime}-\). The substituents \(R, R^{\prime}, R^{\prime \prime}\) and \(R^{\prime \prime \prime}\) are preferably independently selected from hydrogen or substituted or unsubstituted (\(\mathrm{C}_{1}-\mathrm{C}_{6}\))alkyl.
"Ring" as used herein means a substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. A ring includes fused ring moieties. The number of atoms in a ring is typically defined by the number of members in the ring. For example, a " 5 - to 7 -membered ring" means there are 5 to 7 atoms in the encircling arrangement. The ring optionally included a heteroatom. Thus, the term " 5 - to 7 -membered ring" includes, for example pyridinyl and piperidinyl. The term "ring" further includes a ring system comprising more than one "ring", wherein each "ring" is independently defined as above

As used herein, the term "heteroatom" includes atoms other than carbon (C) and hydrogen (H). Examples include oxygen (O), nitrogen (N) sulfur (S), silicon (Si), germanium (Ge), aluminum (A!) and boron (B)

The symbol " \(R\) " is a general abbreviation that represents a substituent group that is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl and substituted or unsubstituted heterocycloalkyl groups.

By "effective" amount of a drug, formulation, or permeant is meant a sufficient amount of a active agent to provide the desired local or systemic effect. A "Topically effective," "Cosmetically effective," "pharmaceutically effective," or "therapeutically effective" amount refers to the amount of drug needed to effect the desired therapeutic result.
"Topically effective" refers to a material that, when applied to the skin, nail, hair, claw or hoof produces a desired pharmacological result either locally at the place of application or systemically as a result of transdermal passage of an active ingredient in the material
"Cosmetically effective" refers to a material that, when applied to the skin, nail, hair, claw or hoof, produces a desired cosmetic result locally at the place of application of an active ingredient in the material.

The term "pharmaceutically acceptable salts" is meant to include salts of the compounds of the invention which are preparod with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (sce, for example, Berge et al., "Pharmaceutical Salts", Journal of Pharmaceutical Science 66: 1-19 (1977)). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.

The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compounds in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents.

In addition to salt forms, the present invention provides compounds which are in a prodrug form. Prodrugs of the compounds or complexes described herein readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment.

Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.

Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are encompassed within the scope of the present invention.

The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (\({ }^{3} \mathrm{H}\)), iodine- \(125\left({ }^{125} \mathrm{I}\right)\) or carbon- 14 (\({ }^{14} \mathrm{C}\)). All isotopic variations of the compounds of the present
invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.

The term "pharmaceutically acceptable carrier" or "pharmaceutically acceptable vehicle" refers to any formulation or carrier medium that provides the appropriate delivery of an effective amount of a active agent as defined herein, does not interfere with the effectiveness of the biological activity of the active agent, and that is sufficiently non-ioxic to the host or patient. Representative carriers include water, oils, both vegetable and mineral, cream bases, lotion bases, ointment bases and the like. These bases include suspending agents, thickeners, penetration enhancers, and the like. Their formulation is well known to those in the art of cosmetics and topical pharmaceuticals. Additional information concerning carriers can be found in Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams \& Wilkins (2005) which is incorporated herein by reference.
"Pharmaceutically acceptable topical carrier" and equivalent terms refer to pharmaceutically acceptable carriers, as described herein above, suitable for topical application. An inactive liquid or cream vehicle capable of suspending or dissolving the active agent(s), and having the properties of being nontoxic and non-inflammatory when applied to the skin, nail, hair, claw or hoof is an example of a pharmaceuti-cally-acceptable topical carrier. This term is specifically intended to encompass carrier materials approved for use in topical cosmetics as well.

The term "pharmaceutically acceptable additive" refers to preservatives, antioxidants, fragrances, emulsifiers, dyes and excipients known or used in the field of drug formulation and that do not unduly interfere with the effectiveness of the biological activity of the active agent, and that is sufficiently non-toxic to the host or patient. Additives for topical formulations are well-known in the art, and may be added to the topical composition, as long as they are pharmaceutically acceptable and not deleterious to the epithelial cells or their function. Further, they should not cause deterioration in the stability of the composition. For example, inert fillers, antiirritants, tackifiers, excipients, fragrances, opacifiers, antioxidants, gelling agents, stabilizers, surfactant, emollients, coloring agents, preservatives, buffering agents, other permeation enhancers, and other conventional components of topical or transdermal delivery formulations as are known in the art.

The terms "enhancement," "penetration enhancement" or "permeation enhancement" relate to an increase in the permeability of the skin, nail, hair, claw or hoof to a drug, so as to increase the rate at which the drug permeates through the skin, nail, hair, claw or hoof. The enhanced permeation effected through the use of such enhancers can be observed, for example, by measuring the rate of diffusion of the drug through animal or human skin, nail, hair, claw or hoof using a diffusion cell apparatus. A diffusion cell is described by Merritt et al. Diffusion Apparatus for Skin Penetration, J of Controlled Release, 1 (1984) pp. 161-162. The term "permeation enhancer" or "penetration enhancer" intends an agent or a mixture of agents, which, alone or in combination, act to increase the permeability of the skin, nail, hair or hoof to a drug.
The term "excipients" is conventionally known to mean carriers, diluents and/or vehicles used in formulating drug compositions effective for the desired use.

The term "topical administration" refers to the application of a pharmaceutical agent to the external surface of the skin, nail, hair, claw or hoof, such that the agent crosses the external surface of the skin, nail, hair, claw or hoof and enters the underlying tissues. Topical administration includes application of the composition to intact skin, nail, hair, claw or hoof, or to an broken, raw or open wound of skin, nail, hair, claw or hoof. Topical administration of a pharmaceutical agent can
result in a limited distribution of the agent to the skin and surrounding tissues or, when the agent is removed from the treatment area by the bloodstream, can result in systemic distribution of the agent.

The term "transdermal delivery" refers to the diffusion of an agent across the barrier of the skin, nail, hair, claw or hoof resulting from topical administration or other application of a composition. The stratum corneum acts as a barrier and few pharmaceutical agents are able to penetrate intact skin. In contrast, the epidermis and dermis are permeable to many solutes and absorption of drugs therefore occurs more readily through skin, nail, hair, claw or hoof that is abraded or otherwise stripped of the stratum corncum to expose the epidermis. Transdermal delivery includes injection or other delivery through any portion of the skin, nail, hair, claw or hoof or mucous membrane and absorption or permeation through the remaining portion. Absorption through intact skin, nail, hair, claw or hoof can be enhanced by placing the active agent in an appropriate pharmaceutically acceptable vehicle before application to the skin, nail, hair, claw or hoof. Passive topical administration may consist of applying the active agent directly to the treatment site in combination with emollients or penetration enhancers. As used herein, transdermal delivery is intended to include delivery by permeation through or past the integument, i.e. skin, nail, hair, claw or hoof.

\section*{II. Introduction}

The present invention provides novel boron compounds and methods for the preparation of these molecules. The invention further provides boron compounds as analogs comprising a functional moiety, such as a drug moiety and methods of use for said analogs.

\section*{III. The Compounds}

In a first aspect, the invention provides a compound having a structure according to Formula I:

(1)
wherein B is boron. \(\mathrm{R}^{1 a}\) is a member selected from a negative charge, a salt counterion, \(H\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M1 is a member selected from oxygen, sulfur and \(\mathrm{NR}^{2 a} . \mathrm{R}^{2 a}\) is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J 1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\) and \(\mathrm{CR}^{5 a}\). \(\mathrm{R}^{3 a}, \mathrm{R}^{4 a}\), and \(\mathrm{R}^{5 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index \(n 1\) is an integer selected from 0 to 2 . W1 is a member selected from \(\mathrm{C}=\mathrm{O}\) (carbonyl), \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\) and \(\mathrm{CR}^{8 a} . \mathrm{R}^{6 a}, \mathrm{R}^{7 a}\), and \(\mathrm{R}^{8 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsub-
stituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index ml is an integer selected from 0 and 1 . Al is a member selected from \(\mathrm{CR}^{9 a}\) and N . Dl is a member selected from \(\mathrm{CR}^{10 a}\) and N . El is a member selected from \(\mathrm{CR}^{11 a}\) and \(\mathrm{N} . \mathrm{Gl}\) is a member selected from \(\mathrm{CR}^{12 a}\) and \(\mathrm{N} . \mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (\(\mathrm{A} 1+\mathrm{D} 1+\mathrm{E} 1+\mathrm{G} 1\)) is an integer selected from 0 to 3 . A member selected from \(\mathrm{R}^{3 a}, \mathrm{R}^{4 a}\) and \(\mathrm{R}^{5 a}\) and a member selected from \(\mathrm{R}^{6 a}, \mathrm{R}^{7 a}\) and \(\mathrm{R}^{8 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{3 a}\) and \(\mathrm{R}^{4 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{6 a}\) and \(\mathrm{R}^{7 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{9 a}\) and \(\mathrm{R}^{10 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{10 a}\) and \(\mathrm{R}^{11 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. The aspect has the proviso that when M1 is oxygen, W1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\), wherein n 1 is \(0, \mathrm{~J} 1\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein ml is \(1, \mathrm{Al}\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{10 a}\), E 1 is \(\mathrm{CR}^{1 a}\), \(\mathrm{G1}\) is \(\mathrm{CR}^{12 a}\), then \(\mathrm{R}^{9 a}\) is not halogen, methyl, ethyl, or optionally joined with \(\mathrm{R}^{10 a}\) to a form phenyl ring; \(\mathrm{R}^{10 a}\) is not unsubstituted phenoxy, \(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\), halogen, \(\mathrm{CF}_{3}\), methoxy, ethoxy, or optionally joined with \(\mathrm{R}^{9 a}\) to form a phenyl ring; \(\mathrm{R}^{11 a}\) is not halogen or optionally joined with \(\mathrm{R}^{10 a}\) to form a phenyl ring; and \(\mathrm{R}^{12 a}\) is not halogen. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\), wherein nl is \(0, \mathrm{Jl}\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein m 1 is \(1, \mathrm{~A} 1\) is \(\mathrm{CR}^{9 a}, \mathrm{Dl}\) is \(\mathrm{CR}^{10 a}, \mathrm{E} 1\) is \(\mathrm{CR}^{11 a}, \mathrm{G1}\) is \(\mathrm{CR}^{12 a}\), then neither \(\mathrm{R}^{6 a}\) nor \(R^{7 a}\) are halophenyl. The aspect has the further proviso that when M1 is oxygen, W1 is a member selected from \(\left(\mathrm{CR}^{3 a} \mathrm{R}^{4 a}\right)_{n 1}\), wherein n 1 is \(0, \mathrm{~J} 1\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein ml is \(1, \mathrm{Al}\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{10 a}, \mathrm{El}\) is \(\mathrm{CR}^{11 a}, \mathrm{Gl}^{1}\) is \(\mathrm{CR}^{12 a}\), and \(\mathrm{R}^{9 a}, \mathrm{R}^{10 a}\) and \(\mathrm{R}^{11 a}\) are H , then \(\mathrm{R}^{6 a}\), \(\mathrm{R}^{7 a}\) and \(\mathrm{R}^{12 a}\) are not H . The aspect has the further proviso that when M1 is oxygen wherein nl is \(1, \mathrm{Jl}\) is a member selected from \(\left(\mathrm{CR}^{6 a} \mathrm{R}^{7 a}\right)_{m 1}\), wherein \(m 1\) is \(0, \mathrm{Al}_{1}\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{CR}^{10 a}\), E 1 is \(\mathrm{CR}^{11 a}, \mathrm{G} 1\) is \(\mathrm{CR}^{12 a}, \mathrm{R}^{9 a}\) is \(\mathrm{H}, \mathrm{R}^{10 a}\) is \(\mathrm{H}, \mathrm{R}^{11 a}\) is \(\mathrm{H}, \mathrm{R}^{6 a}\) is \(\mathrm{H}, \mathrm{R}^{7 a}\) is \(\mathrm{H}, \mathrm{R}^{12 a}\) is H , then W1 is not \(\mathrm{C}=\mathrm{O}\) (carbonyl). The aspect has the further proviso that when M 1 is oxygen, W 1 is \(\mathrm{CR}^{5 a}, \mathrm{~J} 1\) is \(\mathrm{CR}^{8 a}, \mathrm{Al}\) is \(\mathrm{CR}^{9 a}, \mathrm{D} 1\) is \(\mathrm{C}^{10 a}, \mathrm{E} 1\) is \(\mathrm{CR}^{11 a}, \mathrm{Gl}\) is \(\mathrm{CR}^{12 a}, \mathrm{R}^{6 a}, \mathrm{R}^{7 a}, \mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a^{\prime}}\) are H , then \(\mathrm{R}^{5 a}\) and \(R^{8 a}\), together with the atoms to which they are attached, do not form a phenyl ring.

In an exemplary embodiment, the compound has a structure according to Formula (Ia):

wherein B is boron. \(\mathrm{R}^{1 a}\) is a member selected from a negative charge, a salt counterion, \(H\), substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. \(\mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. \(\mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. This號 has the proviso that when \(\mathrm{R}^{9 a}, \mathrm{R}^{11 a}\) and \(\mathrm{R}^{12 a}\) are \(\mathrm{H}, \mathrm{R}^{10 a}\) is not H , halogen, unsubstituted phenoxy or t-butyl. This embodiment has the further proviso that when \(\mathrm{R}^{9 a}\) is H ,
\(\mathrm{R}^{10 a}\) and \(\mathrm{R}^{11 a}\) together with the atoms to which they are attached, are not joined to form a phenyl ring. This embodiment has the further proviso that when \(\mathrm{R}^{11 a}\) is \(\mathrm{H}, \mathrm{R}^{9 a}\) and \(\mathrm{R}^{10 a}\) together with the atoms to which they are attached, are not joined to form a phenyl ring.

In another aspect, the invention provides a compound having a structure according to Formula II:

wherein B is boron. \(\mathrm{R}^{1 b}\) is a member selected from a negative charge, a salt counterion, H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M2 is a member selected from oxygen, sulfur and \(\mathrm{NR}^{2 b} . \mathrm{R}^{2 b}\) is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}\) and \(\mathrm{CR}^{5 b}\). \(\mathrm{R}^{3 b}, \mathrm{R}^{4 b}\), and \(\mathrm{R}^{5 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 2 is an integer selected from 0 to 2. W2 is a member selected from \(\mathrm{C}=\mathrm{O}\) (carbonyl), \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\) and \(\mathrm{CR}^{8 b} \cdot \mathrm{R}^{6 b}, \mathrm{R}^{7 b}\), and \(\mathrm{R}^{8 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 2 is an integer selected from 0 and 1. A2 is a member selected from \(C R^{9 b}\) and N.D2 is a member selected from \(C R^{10 b}\) and \(N\). E 2 is a member selected from \(\mathrm{CR}^{11 b}\) and \(\mathrm{N} . \mathrm{G} 2\) is a member selected from \(\mathrm{CR}^{12 b}\) and \(\mathrm{N} \cdot \mathrm{R}^{9 b}, \mathrm{R}^{10 b}, \mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (A2+D2+E2+G2) is an integer selected from 0 to 3. A member selected from \(\mathrm{R}^{3 b}, \mathrm{R}^{4 b}\) and \(\mathrm{R}^{5 b}\) and a member selected from \(\mathrm{R}^{6 b}, \mathrm{R}^{7 b}\) and \(\mathrm{R}^{8 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{3 b}\) and \(\mathrm{R}^{4 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{6 b}\) and \(\mathrm{R}^{7 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{9 b}\) and \(\mathrm{R}^{10 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring. \(R^{11 b}\) and \(R^{12 b}\), together with the atoms to which they are attached, are optionally joined to form a 4 to 7 membered ring.

In an exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from
\(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{n 2}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E}\) is \(\mathrm{CR}^{11 b}, \mathrm{G}\) is \(\mathrm{CR}^{12 b}\), then \(\mathrm{R}^{9 b}\) is not a member selected from halogen, methyl, ethyl, or optionally joined with \(\mathrm{R}^{10 b}\) to a form phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{5 b} \mathrm{R}^{7 b}\right)_{m}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E}_{2}\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}\), then \(\mathrm{R}^{11 b}\) is not a member selected from unsubstituted phenoxy, \(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\), halogen, \(\mathrm{CF}_{3}\), methoxy, ethoxy, or optionally joined with \(\mathrm{R}^{96}\) to form a phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E}_{2}\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}\), then \(\mathrm{R}^{10 b}\) is not a member selected from halogen or optionally joined with \(\mathrm{R}^{10 b}\) to form a phenyl ring. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 a}\right)_{n 2}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E} 2\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12}\), then \(\mathrm{R}^{12 b}\) is not halogen. In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{2}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}\), E 2 is \(\mathrm{CR}^{11 b}, \mathrm{G}^{2}\) is \(\mathrm{CR}^{12 b}\), then \(\mathrm{R}^{6 b}\) is not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E} 2\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}\), then \(\mathrm{R}^{7 b}\) is not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{m 2}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E} 2\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}\), then \(\mathrm{R}^{6 b}\) and \(\mathrm{R}^{7 b}\) are not halophenyl. In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W 2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}\), wherein n 2 is \(0, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m_{2}}\), wherein m 2 is \(1, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E}_{2}\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}\) and \(\mathrm{R}^{9 b}, \mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) are H , then \(\mathrm{R}^{6 b}, \mathrm{R}^{7 b}\) and \(\mathrm{R}^{12 b}\) are not \(H\). In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen wherein n 2 is \(1, \mathrm{~J} 2\) is a member selected from \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\), wherein m 2 is \(0, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E} 2\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}, \mathrm{R}^{9 b}\) is \(\mathrm{H}, \mathrm{R}^{10 b}\) is \(H, R^{11 b}\) is \(\mathrm{H}, \mathrm{R}^{6 b}\) is \(\mathrm{H}, \mathrm{R}^{7 b}\) is \(\mathrm{H}, \mathrm{R}^{12 b}\) is H , then W 2 is not \(\mathrm{C}=\mathrm{O}\) (carbonyl). In another exemplary embodiment, the aspect has the proviso that when M2 is oxygen, W2 is \(\mathrm{CR}^{5 b}\), J 2 is \(\mathrm{CR}^{8 b}, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E} 2\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is \(\mathrm{CR}^{12 b}, \mathrm{R}^{6 b^{\prime}}, \mathrm{R}^{7 b}, \mathrm{R}^{9 b}, \mathrm{R}^{10 b}, \mathrm{R}^{11 b}\) and \(\mathrm{R}^{1^{\prime 2 b}}\) are H , then \(\mathrm{R}^{5 b}\) and \(\mathrm{R}^{8 b}\), together with the atoms to which they are attached, do not form a phenyl ring.

In an exemplary embodiment, the compound with a structure according to Formula (IIa):

(III)

In another exemplary embodiment, the compound has a structure according to Formula (Ilb):

In another exemplary embodiment, the compound has a structure according to Formula (Ild):
\(\qquad\) unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio. \(\mathrm{R}^{11 b}\) is a member selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), methyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio.

In another exemplary embodiment, \(\mathrm{R}^{1 b}\) is a member selected from a negative charge, H and a salt counterion. In another exemplary embodiment, \(\mathrm{R}^{106}\) and \(\mathrm{R}^{116}\) are \(H\). In another exemplary embodiment, one member selected from \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) is H and the other member selected from \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) is a member selected from halo, methyl, cyano, methoxy, hydroxymethyl and p-cyanophenyloxy. In another exemplary embodiment, \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) are members independently selected from fluoro, chloro, methyl, cyano, methoxy, hydroxymethyl, and p-cyanophenyl. In another exemplary embodiment, \(\mathrm{R}^{1 b}\) is a member selected from a negative charge, H and a salt counterion; \(\mathrm{R}^{7 b}\) is \(\mathrm{H} ; \mathrm{R}^{10 b}\) is F and \(\mathrm{R}^{11 b}\) is H. In another exemplary embodiment, \(\mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\), along with the atoms to which they are attached, are joined to form a phenyl group. In another exemplary embodiment, \(\mathrm{R}^{16}\) is a member selected from a negative charge, H and a salt counterion; \(\mathrm{R}^{7 b}\) is \(\mathrm{H} ; \mathrm{R}^{10 b}\) is 4 -cyanophenoxy; and \(\mathrm{R}^{11 b}\) is H .

In another exemplary embodiment, the compound has a structure according to Formula (IIc):

(ilc) preparing boron-containing molecules of the present invention. These methods are not limited to producing the compounds shown, but can be used to prepare a variety of molecules such as the compounds and complexes described herein. The compounds of the present invention can also be synthesized by methods not explicitly illustrated in the schemes but are well within the skill of one in the art. The compounds can be prepared using readily available materials of known intermediates.

In the following schemes, the symbol \(X\) represents bromo or iodo. The symbol \(Y\) is selectod from H , lower alkyl, and arylakyl. The symbol \(Z\) is selected from H , alkyl, and aryl. The symbol PG represents protecting group. The symbols A , \({ }^{5} \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{R}^{x}, \mathrm{R}^{y}, \mathrm{R}^{2}, \mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}, \mathrm{R}^{5}, \mathrm{R}^{6}, \mathrm{R}^{7}, \mathrm{R}^{8}, \mathrm{R}^{9}, \mathrm{R}^{10}, \mathrm{R}^{11}\) and \(\mathrm{R}^{12}\) can be used to refer to the corresponding symbols in Formulae (I) or (II). For example, the symbol A can refer to A1 of Formula (I), or A2 of Formula (II), subject to the provisos of each Formula.
Preparation Strategy \#1
In Scheme 1, Step 1 and 2, compounds 1 or 2 are converted into alcohol 3. In step 1, compound 1 is treated with a reducing agent in an appropriate solvent. Suitable reducing agents 5 include borane complexes, such as borane-tetrahydrofuran, borane-dimethylsulfide, combinations thereof and the like. Lithium aluminum hydride, or sodium borohydride can also be used as reducing agents. The reducing agents can be used in quantities ranging from 0.5 to 5 equivalents, relative to 60 compound 1 or 2 . Suitable solvents include diethyl ether, tetrahydrofuran, 1,4 -dioxane, 1,2 -dimethoxyethane, combinations thereof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; reaction completion times range from 1 to 24 h .
65
wherein \(B\) is boron. \(R^{x 2}\) is a member selected from substituted or unsubstituted \(C_{1}-C_{5}\) alkyl and substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{5}\) heteroalkyl. \(\mathrm{R}^{y_{2}}\) and \(\mathrm{R}^{z 2}\) are members independently selected from \(H\); substituted or unsubstituted alkyl, substituted or unsübstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
The compounds of Formulae (I) or (II) can form a hydrate with water, solvates with alcohols such as methanol, ethanol, propanol, and the like; adducts with amino compounds, such as ammonia, methylamine, ethylamine, and the like; adducts with acids, such as formic acid, acetic acid and the like; complexes with ethanolamine, quinoline, amino acids, and the like.

\section*{eparation of Boron-Containing Small Molecules}
\(\qquad\)

furan, borane-dimethylsulfide, combinations thereof and the like. Lithium aluminum hydride, or sodium borohydride can also be used as reducing agents. The reducing agents can be used in quantities ranging from 0.5 to 5 equivalents, relative to compound 2 . Suitable solvents include lower alcohol, such as methanol, ethanol, and propanol, diethyl ether, tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane, combinations thercof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; reaction completion times range from 1 to 24 h .

In Step 3, the hydroxyl group of compound 3 is protected with a protecting group which is stable under neutral or basic conditions. The protecting group is typically selected from methoxymethyl, ethoxyethyl, tetrahydropyran-2-yl, trimethylsilyl, tert-butyldimethylsilyl, tributylsilyl, combinations thereof and the like. In the case of methoxymethyl, compound 3 is treated with 1 to 3 equivalents of chloromethyl methyl ether in the presence of a base. Suitable bases include sodium bydride, potassium tert-butoxide, tertiary amines, such as diisopropylethylamine, triethylamine, 1,8-diazabicyclo[5,4, 0]undec-7-ene, and inorganic bases, such as sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, combinations thereof and the like. The bases can be used in quantities ranging from 1 to 3 equivalents, relative to compound 3. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 0 and \(40^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 48 h .

In the case of tetrahydropyran-2-yl, compound 3 is treated with 1 to 3 equivalents of 3,4-dihydro-2H-pyran in the presence of 1 to \(10 \mathrm{~mol} \%\) of acid catalyst. Suitable acid catalysts include pyridinium p-toluenesulfonic acid, p -toluenesulfonic acid, camphorsulfonic acid, hydrogen chloride, sulfuric acid combinations thereof and the like. Suitable solvents include dichloromethane, chloroform, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, toluene, benzene, and acetonitrile combinations thereof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 0 and \(40^{\circ} \mathrm{C}\)., and is complete in 1 to 48 h .

In the case of trialkylsilyl, compound 3 is treated with 1 to 3 equivalents of chlorotrialkylsilyane in the presence of 1 to 3 equivalents of base. Suitable bases include tertiary amines, such as imidazole, diisopropylethylamine, triethylamine, 1,8 -diazabicyclo[5,4,0]undec-7-ene, combinations thereof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 0 and \(40^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 48 h .

In Step 4, compound 4 is converted into boronic acid (5) through halogen metal exchange reaction. Compound 4 is treated with 1 to 3 equivalents of alkylmetal reagent relative to compound 4, such as n-butyllithium, sec-butyllithium, tertbutyllithium, or isopropylmagnesium chloride followed by the addition of 1 to 3 equivalents of trialkyl borate relative to compound 4, such as trimethyl borate, triisopropyl borate, or tributyl borate. Suitable solvents include tetrahydrofuran, ether, 1,4-dioxane, 1,2-dimethoxyethane, toluene, hexanes, combinations thereof and the like. Alkylmetal reagent may also be added in the presence of trialkyl borate. The addition of butyllithium is carried out at between -100 and \(0^{\circ} \mathrm{C}\)., preferably at between -80 and \(-40^{\circ} \mathrm{C}\). The addition of isopropylmagnesium chloride is carried out at between -80 and \(40^{\circ} \mathrm{C}\)., preferably at between -20 and \(30^{\circ} \mathrm{C}\). After the addition of trialkyl borate, the reaction is allowed to warm to room temperature, which is typically between 15 and \(30^{\circ} \mathrm{C}\). When alkylmetal reagent is added in the presence of trialkyl borate, the reaction mixture is allowed to warm to room temperature after the addition. Reaction completion times range from 1 to
eparation Strategy \#2
In Scheme 2, Step 6, compound 2 is converted into boronic acid (6) via a transition metal catalyzed cross-coupling reaction. Compound 2 is treated with 1 to 3 equivalents of bis 5 (pinacolato)diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane in the presence of transition metal catalyst, with the use of appropriate ligand and base as necessary. Suitable transi-
tion metal catalysts include palladium(II) acetate, palladium (II) acetoacetonate, tetrakis(triphenylphosphine)palladium, dichlorobis(triphenylphosphine)palladium, [1,1'-bis(diphenylphosphino)ferrocen]dichloropalladium(II), combinations thereof and the like. The catalyst can be used in quantities ranging from 1 to \(5 \mathrm{~mol} \%\) relative to compound 2 . Suitable ligands include triphenylphosphine, tri(o-tolyl)phosphine, tricyclohexylphosphine, combinations thereof and the like. The ligand can be used in quantities ranging from 1 to 5 equivalents relative to compound 2. Suitable bases include sodium carbonate, potassium carbonate, potassium phenox ide, triethylamine, combinations thereof and the like. The base can be used in quantities ranging from 1 to 5 equivalents relative to compound 2 . Suitable solvents include \(\mathrm{N}, \mathrm{N}\)-dimethylformamide, dimethylsulfoxide, tetrahydrofuran, 1,4-dioxane, toluene, combinations thereof and the like. Reaction temperatures range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(150^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 72 h .

Pinacol ester is then oxidatively cleaved to give compound 6. Pinacol ester is treated with sodium periodate followed by acid. Sodium periodate can be used in quantities ranging from 2 to 5 equivalents relative to compound 6 . Suitable solvents include tetrahydrofuran, 1,4-dioxane, acctonitrile, methanol, ethanol, combinations thereof and the like. Suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid combinations thereof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 0 and \(50^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 72 h .
In Step 7, the carbonyl group of compound 6 is treated with a reducing agent in an appropriate solvent to give a compound of Formulae (I) and (II). Suitable reducing agents include borane complexes, such as borane-tetrahydrofuran, boranedimethylsulfide, combinations thereof and the like. Lithium aluminum hydride, or sodium borohydride can also be used as reducing agents. The reducing agents can be used in quantities ranging from 0.5 to 5 equivalents, relative to compound 6. Suitable solvents include lower alcohol, such as methanol, ethanol, and propanol, diethyl ether, tetrahydrofuran, 1,4dioxane and 1,2-dimethoxyethane, combinations thereof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; reaction completion times range from 1 to 24 h .
 hexanes, combinations thereof and the like. Reaction completion times range from 1 to 12 h . Alternatively, a mixture of compound 3 and trialkyl borate can be refluxed for 1 to 3 h and the alcohol molecule formed upon the ester exchange can be distilled out before the addition of alkylmetal reagent.

Scheme 3

\section*{Preparation Strategy \#4}

In Scheme 4, Step 10, the methyl group of compound 7 is 5 brominated using N -bromosuccinimide. N -bromosuccinimide can be used in quantities ranging from 0.9 to 1.2 equivalents relative to compound 7 . Suitable solvents include carbon tetrachloride, tetrahydrofuran, 1,4-dioxane, chlorobenzene, combinations thereof and the like. Reaction temperatures 0 range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(150^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 12 h .

In Step 11, the bromomethylene group of compound 8 is converted to the benzyl alcohol 3 . Compound 8 is treated with sodium acetate or potassium acetate. These acetates can be used in quantities ranging from 1 to 10 equivalents relative to compound 8 . Suitable solvents include tetrahydrofuran, \(1,4-\) dioxane, \(\mathrm{N}, \mathrm{N}\)-dimethylformamide, \(\mathrm{N}, \mathrm{N}\)-dimethylacetamide, N -methylpyrrolidone, dimethylsulfoxide, combinations thereof and the like. Reaction temperatures range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(100^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 12 h . The resulting acetate is hydrolyzed to compound 3 under basic conditions. Suitable bases include sodium hydroxide, lithium hydroxide, potassium hydroxide, combinations thereof and the like. The base can be used in quantities ranging from 1 to 5 equivalents relative to compound 8 . Suitable solvents include methanol, ethanol, tetrahydrofuran, water, combinations thereof and the like. Reaction temperatures range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(100^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 12 h . Alternatively, compound 8 can be directly converted into compound 3 under the similar condi65 t tion above.

Steps 3 through 5 convert compound 3 into a compound of Formulae (I) and (II).

Preparation Strategy \#5
In Scheme 5, Step 12, compound 2 is treated with (methoxymethyl) triphenylphosphonium chloride or (methoxymethyl)triphenylphosphonium bromide in the presence of base followed by acid hydrolysis to give compound 9. Suitable bases include sodium hydride, potassium tert-butoxide, lithium diisopropylamide, butyllithium, lithium hexamethyldisilazane, combinations thereof and the like. The (methoxymethyl)triphenylphosphonium salt can be used in quantities ranging from 1 to 5 equivalents relative to compound 2 . The base can be used in quantities ranging from 1 to 5 equivalents relative to compound 2 . Suitable solvents include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, ether, toluene, hexane, \(\mathrm{N}, \mathrm{N}\)-dimethylformamide, combinations thereof and the like. Reaction temperatures range from \(0^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 0 and \(30^{\circ} \mathrm{C}\).; reaction completion times range from I to 12 h . The enolether formed is hydrolyzed under acidic conditions. Suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid, and the like. Suitable solvents include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, methanol, ethanol, combination thereof and the like. Reaction temperatures range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(100^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 12 h .

Steps 2 through 5 convert compound 9 into a compound of Formulae (I) and (II).

Schemes

2

I or II, \(\mathrm{R}^{1}=\mathrm{H}\)

\section*{Preparation Strategy \#6}

In Scheme 6, compound (I) wherein \(\mathrm{R}^{1}\) is H is converted into compound (l) wherein \(R^{1}\) is alkyl by mixing with the corresponding alcohol, \(\mathrm{R}^{1} \mathrm{OH}\). The suitable solvents include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, toluene, combinations thereof and the like. The alcohol (\(\mathrm{R}^{1} \mathrm{OH}\)) can be used as the solvent as well. Reaction temperatures range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(100^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 12 h .

\section*{Preparation Strategy \#7}

In Scheme 7, compound (la) is converted into its aminoalcohol complex (lb). Compound (la) is treated with HOR \({ }^{1} \mathrm{NR}^{1 a} \mathrm{R}^{1 b}\). The aminoalcohol can be used in quantities ranging from 1 to 10 equivalents relative to compound (la). Suitable solvents include methanol, ethanol, propanol, tetrahydrofuran, acetone, acetonitrile, 1,2-dimethoxyethane, 1,4-dioxane, toluene, \(\mathrm{N}, \mathrm{N}\)-dimethylformamide, water, combination thereof and the like. Reaction temperatures range from \(20^{\circ} \mathrm{C}\). to the boiling point of the solvent used; preferably between 50 and \(100^{\circ} \mathrm{C}\).; reaction completion times range from 1 to 24 h .

The compounds of Formulae (I) or (II) can be converted into hydrates and solvates by methods similar to those described above.

\section*{IV. Methods of Inhibiting Microorganism Growth or Killing Microorganisms}

In another aspect, the invention provides a method of inhibiting the growth of a microorganism, or killing a microorganism, or both, comprising contacting the microorganism with a compound according to Formulae (I) or (II). Microorganisms are members selected from fungi, yeast, viruses, bacteria and parasites. In another exemplary embodiment, the microorganism is inside, or on the surface of an animal. In an exemplary embodiment, the animal is a member selected from human, cattle, deer, reindeer, goat, honey bee, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, camel, yak, elephant, ostrich, otter, chicken, duck, goose, guinea fowl, pigeon, swan, and turkey. In another exemplary embodiment, the animal is a human.

In an exemplary embodiment, the microorganism is a member selected from a fungus and a yeast. In another exemplary embodiment, the fungus or yeast is a member selected from Candida species, Trichophyton species, Microsporium species, Aspergillus species, Cryptococcus species, Blastomyces species, Cocciodiodes species, Histoplasma species, Paracoccidiodes species, Phycomycetes species, Malassezia species, Fusarium species, Epidermophyton species, Scytalidium species, Scopulariopsis species, Alternaria species, Penicillium species, Phialophora species, Rhizopus species, Scedosporium species and Zygomycetes class. In another exemplary embodiment, the fungus or yeast is a member selected from Aspergilus fumigatus (A. fumigatus), Blastomyces dermatitidis, Candida Albicans (C. albicans, both fluconazole sensitive and resistant strains), Candida glabrata (C. glabrata), Candida krusei (C. krusei), Cryptococcus neo-formans-(C. neoformans), Candida parapsilosis (C. parapsilosis), Candida tropicalis (C. tropicalis), Cocciodiodes immitis, Epidermophyton floccosum (E. floccosum), Fusarium solani (F. solani), Histoplasma capsulatum, Malassezia furfur (M. furfur), Malassezia pachydermatis (M. pachydermatis), Malassezia sympodialis (M. sympodialis), Microsporum audouinii (M. audouinii), Microsporum canis (M. canis), Microsporum gypseum (M. gypseum), Paracoccidiodes brasiliensis and Phycomycetes spp, Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Trichophyton tonsurans (T. tonsurans). In another exemplary embodiment, the fungus or yeast is a member sclected from Trichophyton concentricum, T. violaceum, T. schoenleinii, T. verrucosum, T. soudanense, Microsporum gopseum, M. equinum, Candida guilliermondii, Malassezia globosa, M. obtuse, M. restricta, M. slooffiae, and Aspergillus flavus. In another exemplary embodiment, the fungus or yeast is a member selected from dermatophytes, Trichophyton, Microsporum, Epidermophyton and yeast-like fungi

In an exemplary embodiment, the microorganism is a bacteria. In an exemplary embodiment, the bacteria is a grampositive bacteria. In another exemplary embodiment, the gram-positive bacteria is a member selected from Staphylococcus species, Streptococcus species, Bacillus species, Mycobacterium species, Corynebacterium species (Propionibacterium specjes), Clostridium species, Actinomyces species, Enterococcus species and Streptomyces species. In another exemplary embodiment, the bacteria is a gram-negative bacteria. In another exemplary embodiment, the gramnegative bacteria is a member selected from Acinetobacter species, Neisseria species, Pseudomonas species, Brucella ment, the virus is a member selected from picornaviridae, flaviviridae, coronaviridae, paramyxoviridae, orthomyxoviridae, retroviridae, herpesviridae and hepadnaviridae. In another exemplary embodiment, the virus is a member selected from a virus included in the following table: TABLE A

Virus Category Pertinent Human Infections
RNA Viruses

Picomaviridae
Polio
Human hepatitis A
Human minovirus
Togaviridae and
Flaviviridae rochetal species, Campylobacter species, Vibrio species and Helicobacter species. In another exemplary embodiment, the bacterium is a member selected from Propionibacterium acnes; Staphylococcus aureus; Staphylococcus epidermidis, Staphylococcus saprophyticus; Streptococcus pyogenes; Streptococcus agalactiac; Streptococcus pneumoniae; Enterococcus faecalis; Enterococcus faecium; Bacillus anthracis; Mycobacterium avium-intracellulare; Mycobacterium tuberculosis, Acinetobacter baumanii; Corynebacterium diphtheria; Clostridium perfringens; Clostridium botulinum; Clostridium tetani; Neisseria gonorrhoeae; Neisseria meningitidis; Pseudomonas aeruginosa; Legionella pneumophila; Escherichia coli; Yersinia pestis; Haemophilus influenzae; Helicobacter pylori; Campylobacter fetus; Campylobacter jejuni; Vibrio cholerae; Vibrio parahemolyticus; Trepomena pallidum; Actinomyces israelii; Rickettsia prowazekii; Rickettsia rickettsii; Chlamydia trachomatis; Chlamydia psittaci; Brucella abortus; Agrobacterium tumefaciens; and Francisella tularensis.

In an exemplary embodiment, the microorganism is a bacteria, which is a member selected from acid-fast bacterium, including Mycobacterium species; bacilli, including Bacillus species, Corynebacterium species (also Propionibacterium) and Clostridium species; filamentous bacteria, including Actinomyces species and Streptomyces species; bacilli, such as Pseudomonas species, Brucella species, Agrobacterium species, Bordetella species, Escherichia species, Shigella species, Yersinia species, Salmonella species, Klebsiella spe.cies, Enterobacter species, Haemophilus species, Pasteurella species, and Streptobacillus species; spirochetal species, Campylobacter species, Vibrio species; and intracellular bacteria including Rickettsiae species and Chlamydia species.

In an exemplary embodiment, the microorganism is a virus. In an exemplary embodiment, the virus is a member selected from hepatitis A-B, human rhinoviruses, Yellow fever virus, human respiratory coronaviruses, Severe acute respiratory syndrome (SARS), respiratory syncytial virus, influenza viruses, parainfluenza viruses 1-4, human immunodeficiency virus 1 (HIV-1), human immunodeficiency virus 2 (HIV-2), Herpes simplex virus 1 (HSV-1), Herpes simplex virus 2 (HSV-2), human cytomegalovirus (HCMV), Varicella zoster virus, Epstein-Barr (EBV), polioviruses, coxsackieviruses, echoviruses, rubella virus, neuroderma-tropic virus, variola virus, papoviruses, rabies virus; dengue virus, West variola virus, papoviruses, rabies virus, dengue virus, We Vinises
\begin{tabular}{r}
Virus Category \\
\hline
\end{tabular}

Rubella - German measles
species, Aymbacterium species, Bordetella species, Escherichia species, Shigelia species, Yersinia species, Salmonella species, Klebsiella species, Enterobacter spocies, Haemophilus species, Pasteurella species, Streptobacillus species, spi-

TABLE A-continued
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{Vinus Caiegory} & Viruses \\
\hline & Pertinent Human Infections \\
\hline \multirow[t]{2}{*}{Coronaviridae} & Human respiratory coronavirus (HCV) \\
\hline & Severe acute respiratory syndrome (SAR) \\
\hline Rhabdoviridae & Lyssavirus - Rabies \\
\hline \multirow[t]{3}{*}{Paramyxoviridae} & Paramyxovins - Mumps \\
\hline & Morbiltvirus - theasles \\
\hline & Pneumovirus - respiratory syncytial virus \\
\hline Orthomyxoviridae & Influenza A-C \\
\hline \multirow[t]{7}{*}{Bunyaviridae} & Bunyavins - Bunyamwera (BUN) \\
\hline & Hantavirus - Hantaan (HTN) \\
\hline & Nairevirus - Crimean-Congo hemorrbagic \\
\hline & fever (CCHF) \\
\hline & Phlebovirus - Sandfly fever (SFN) \\
\hline & Uukuvisus - Uukuniemi (UUK) \\
\hline & Rift Valiey Fever (RVFN) \\
\hline \multirow[t]{4}{*}{Arenaviridae} & Junin - Argentine hemorrhagic fever \\
\hline & Machupo-Bolivian hemorrhagic fever \\
\hline & Lassa - Lassa fever \\
\hline & LCM - aseptic lymphocyctic choriomeningitis \\
\hline \multirow[t]{3}{*}{Reoviridae} & Rotovins \\
\hline & Reovirus \\
\hline & Orbivirus \\
\hline \multirow[t]{4}{*}{Retroviridae} & Hurnan immunodeficiency virus 1 (HIV-1) \\
\hline & Human immunodeficiency virus 2 (HIV-2) \\
\hline & Simian immunodeficiency virus (SIV) \\
\hline & DNA Viruses \\
\hline \multirow[t]{2}{*}{Papovaviridae Adenoviridae} & Pediatric viruses that reside in kidney \\
\hline & Human respiratory distress and some deep-seated eye infections \\
\hline \multirow[t]{7}{*}{Parvoviridae Herpesviridae} & Human gastro-intestinal distress (Norwalk Virus) \\
\hline & Herpes simplex virus 1 (HSV-1) \\
\hline & Herpes simplex virus 2 (HSV-2) \\
\hline & Human cytomegalovirus (HCMV) \\
\hline & Varicella zoster virus (VZV) \\
\hline & Epstein-Bart virus (EBV) \\
\hline & Human herpes virus 6 (HHV6) \\
\hline Poxviridae & Orthopoxvirus is sub-genus for smallpox \\
\hline \multirow[t]{2}{*}{Hepadnaviridae} & Hepatitis B vinus (HBV) \\
\hline & Hepatitis C virus (HCV) \\
\hline
\end{tabular}

In another exemplary embodiment, the microorganism is a parasite. In an exemplary embodiment, the parasite is a member selected from Plasmodium falciparum, \(P\). vivax, \(P\). ovale P. malariae, P. berghei, Leishmania donovani, L. infantum; \(L\). chagasi, L. mexicana, L. amazonensis, L. venezuelensis, L. tropics, L. major, L. minor, L. aethiopica, L. Biana braziliensis, L. (V.) guyanensis, L. (V) panamensis, L. (V.) peruviana Trypanosoma brucei rhodesiense, T. brucei gambiense, T. cruzi, Giardia intestinalis, G. lambda, Toxoplasma gondii, Entamoeba histolytica, Trichomonas vaginalis, Pneumocystis carinii, and Cryptosporidium parvum.

\section*{V. Methods of Treating or Preventing Infections}

In another aspect, the invention provides a method of treating or preventing an infection, or both. The method includes administering to the animal a therapeutically effective amount of the compound of the invention, sufficient to treat or prevent said infection. In an exemplary embodiment, the compound of the invention is according to Formulae (I) or
(II). In another exemplary embodiment, the animal is a member selected from human, cattle, deer, reindeer, goat, honey bee, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, camel, yak, elephant, ostrich, otter, chicken, duck, goose, guinea fowl, pigeon, swan, and turkey. In another exemplary embodiment, the animal is a human. In another exemplary embodiment, the animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, a topically active anti-fungal agent; such a method of treatment is equally undesirable. Systemic antimycotic agents require prolonged use and have the potential for significant side effects. Topical agents have usually been of little benefit, 0 primarily because of poor penetration of the anti-fungal agents into and through the nail mass.

In an exemplary embodiment, the invention provides a method of treating or preventing onychomycosis. The method includes administering to the animal a therapeutically effec5 tive amount of a pharmaceutical formulation of the invention, sufficient to treat or prevent onychomycosis. In another exemplary embodiment, the method includes administering the
pharmaceutical formulation of the invention at a site which is a member selected from the skin, nail, hair, hoof, claw and the skin surrounding the nail, hair, hoof and claw. In another exemplary embodiment, the pharmaceutical formulation includes a compound having a structure according to Formula (IIb). In another exemplary embodiment, \(\mathrm{R}^{1 b}\) is H . In another exemplary embodiment, \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) are H . In another exemplary embodiment, one member selected from \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) is H and the other member selected from \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) is a member selected from halo, methyl, cyano, methoxy, bydroxymethyl and p-cyanophenyloxy. In another exemplary embodiment, \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) are members independently selected from fluoro, chloro, methyl, cyano, methoxy hydroxymethyl, and p-cyanophenyl. In another exemplary embodiment, \(\mathrm{R}^{1 b}\) is \(\mathrm{H} ; \mathrm{R}^{7 b}\) is \(\mathrm{H} ; \mathrm{R}^{10 b}\) is F and \(\mathrm{R}^{11 b}\) are H . In another exemplary embodiment, \(\mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\), along with the atoms to which they are attached, are joined to form a phenyl group.
V. a) 2) Other Unugal and Periungual Infections

In an exemplary embodiment, the invention provides a method of treating or preventing an ungual or periungual infection in a mammal. This method comprising administering to the mammal a therapeutically effective amount of a compound of the invention, thereby treating or preventing the ungual or periungual infection. In an exemplary embodiment, the ungual or periungual infection is a member selected from chloronychia, paronychias, erysipeloid, onychonthexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verrucosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), and dermatological diseases with an effect on the nails, such as psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphigoid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome, systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus.
The compounds and pharmaceutical formulations of the invention useful for ungual and periungual applications also find application in the cosmetics field, in particular for the treatment of irregularities of the nails, koilonychias, Beau's lines, longitudinal ridging, ingrown nails.

In an exemplary embodiment, the infection is of the skin, nail, hair, claw or hoof, hair, ear and eye and is a member selected from Sporotrichosis, Mycotic keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea Imbricata.

\section*{V. b) Methods of Treating Systemic Diseases}

In another aspect, the invention provides a method of treat ing a systemic disease. The method involves contacting an animal with a compound of the invention. The method of delivery for treatment of systemic diseases can be oral, intravenous or transdermal.

In an exemplary embodiment, the infection is systemic and is a member selectod from candidiasis, aspergillosis, coccid-
ioidomycosis, cryptococcosis, histoplasmosis, blastomycosis, paracoccidividomycosis, zygomycosis, phaeohyphomycosis and rhinosporidiosis.
V. c) Methods of Treating Diseases Involving Viruses

The compounds of the invention are useful for the treatment of diseases of both animals and humans, involving viruses. In an exemplary embodiment, the disease is a member selected from hepatitis A-B-C, yellow fever, respiratory syncytial, influenza, AIDS, herpes simplex, chicken pox, varicella zoster, and Epstein-Barr disease.
V. d) Methods of Treating Diseases Involving Parasites

The compounds of the invention are useful for the treatment of diseases of both animals and humans, involving parasites. In an exemplary embodiment, the disease is a member selected from malaria, Chagas' disease, Leishmaniasis, African sleeping sickness (African human trypanosomiasis), giardiasis, toxoplasmosis, amebiasis and cryptosporidiosis.

\section*{VI. Methods of Nail Penetration}

It is believed that poor penetration of the active agent through the hoof or nail plate and/or excessive binding to keratin, (the major protein in nails and hair) are the reasons for the poor efficacy of \(8 \%\) ciclopirox \(w / w\) in commercial lacquer and other topical treatments that have failed in clinical trials. In mild cases of onychomycosis, the pathogenic fungi reside in the nail plate only. In moderate to severe cases the pathogenic fungi establish a presence in the nail plate and in the nail bed. If the infection is cleared from the nail plate but not from the nail bed, the fungal pathogen can re-infect the nail plate. Therefore, to effectively treat onychomycosis, the infection must be eliminated from the nail plate and the nail bed. To do this, the active agent must penetrate and disseminate substantially throughout the nail plate and nail bed.

It is believed that in order for an active agent to be effective once disseminated throughout the infected area, it must be bioavailable to the fungal pathogen and cannot be so tightly and/or preferentially bound to keratin that the drug is rendered inactive.

An understanding of the morphology of the nail plate suggests certain physicochemical properties of an active agent that would facilitate penetration of the nail plate. The desired physicochemical properties are described throughout. The tested compounds of the present invention are able to penetrate the nail plate and were also active against Trichophytonrubrum and mentagrophytes and other species: In addition, the tested compounds are also active against Trichophyton rubrum in the presence of \(5 \%\) keratin powder.
In another aspect, the invention provides a method of delivering a compound from the dorsal layer of the nail plate to the nail bed. This method comprises contacting the cell with a compound capable of penetrating the nail plate, under conditions sufficient to penetrate the nail. The compound has a molecular weight of between about 100 and about 200 Da . The compound also has a \(\log \mathrm{P}\) value of between about 1.0 and about 2.6. The compound additionally has a water solubility between about \(0.1 \mathrm{mg} / \mathrm{mL}\) and \(1 \mathrm{~g} / \mathrm{mL}\) octanol/saturated water, thereby delivering said compound.

In a preferred embodiment, the physicochemical properties of the compound of the invention, described by quantities predictive for migration of the compound through the nail plate, including, but not limited to, molecular weight, \(\log \mathrm{P}\) and solubility in water, and the like, are effective to provide substantial penetration of the nail plate.

Compounds with a molecular weight of less than 200 Da penetrate the nail plate in a manner superior to the commer-
cially available treatment for onychomycosis. In one embodiment of the present invention the compound has a molecular weight of between 130 and 200. In another embodiment of this invention, the compound has a molecular weight of from about 140 to about 200 Da . In another embodiment of this invention, the compound has a molecular weight of from about 170 to about 200 Da . In another embodiment of this invention, the compound has a molccular weight of from about 155 to about 190 Da . In another embodiment of this invention, the compound has a molecular weight of from about 165 to about 185 Da . In another embodiment of this invention, the compound has a molecular weight of from about 145 to about 170 Da . In yet another embodiment the molecular weight is either 151.93 or 168.39 Da .

In one embodiment of the present invention the compound has a \(\log \mathrm{P}\) value of between about -3.5 to about 2.5 . In another exemplary embodiment, the compound has a \(\log P\) value of from about -1.0 to about 2.5 . In another exemplary embodiment, the compound has a Log \(P\) value of from about -1.0 to about 2.0. In another exemplary embodiment, the compound has a Log \(P\) value of from about -0.5 to about 2.5 . In another exemplary embodiment, the compound has a Log \(P\) value of from about -0.5 to about 1.5. In another exemplary embodiment, the compound has a \(\log P\) value of from about 0.5 to about 2.5. In another exemplary embodiment, the compound has a Log \(P\) value of from about 1.0 to about 2.5. In yet another exemplary embodiment, the compound has a \(\log P\) value of 1.9 or 2.3 .
Also contemplated by the present invention is a compound with a \(\log \mathrm{P}\) value less then 2.5 , with a molecular weight less than 200 Da , that are still able to penetrate the nail plate.
In one embodiment of the present invention the compound has a water solubility between about \(0.1 \mathrm{mg} / \mathrm{mL}\) to \(1 \mathrm{~g} / \mathrm{mL}\) in octanol saturated water. In one embodiment of the present invention the compound has a water solubility of between 0.1 \(\mathrm{mg} / \mathrm{mL}\) and. \(100 \mathrm{mg} / \mathrm{mL}\). In another embodiment of this invention, the compound has a water solubility of from about \(0.1 \mathrm{mg} / \mathrm{mL}\) and \(10 \mathrm{mg} / \mathrm{mL}\). In another embodiment of this invention, the compound has a water solubility of from about \(0.1 \mathrm{mg} / \mathrm{mL}\) and \(1 \mathrm{mg} / \mathrm{mL}\). In another embodiment of this invention, the compound has a water solubility of from about \(5 \mathrm{mg} / \mathrm{mL}\) and \(1 \mathrm{~g} / \mathrm{mL}\). In another embodiment of this invention, the compound has a water solubility of from about 10 \(\mathrm{mg} / \mathrm{mL}\) and \(500 \mathrm{~g} / \mathrm{mL}\). In another embodiment of this invention, the compound has a water solubility of from about 80 \(\mathrm{mg} / \mathrm{mL}\), and \(250 \mathrm{mg} / \mathrm{mL}\).
In an exemplary embodiment, the present invention provides a compound with a Log P value selected from a range above, with a molecular weight selected from a range above, that are still able to penetrate the nail plate.

In an exemplary embodiment, the present invention provides compounds with a molecular weight selected from a range above, with a water solubility selected from a range above, that are still able to penetrate the nail plate.
In an exemplary embodiment, the present invention provides compounds with a log \(P\) selected from a range above, with a water solubility selected from a range above, that are still able to penetrate the nail plate.
In an exemplary embodiment, the present invention provides compounds with a molecular weight selected from a range above, with a \(\log P\) selected from a range above, and with a water solubility selected from a range above, that are still able to penetrate the nail plate.

Penetration of the nail by the active ingredient may be effected by the polarity of the formulation. However, the polarity of the formulation is not expected have as much influence on nail penctration as some of the other factors, viral infection medjated at least in part by dermatophytes, Trichophyton, Microsporum or Epidermophyton species, or a yeast-like fungi including Candida species, in mammals, which methods comprise administering to a mammal, that has been diagnosed with said viral infection or is at risk of developing said viral infection, a pharmaceutical composition comprising a pharmaceutically acceptable diluent and a therapeutically effective amount of a compound described herein or mixtures of one or more of such compounds. In one embodiment the infection is onychomycosis.
Compounds contemplated by the present invention may have broad spectrum antifungal activity and as such may be candidates for use against other cutancous fungal infections.

The methods provided in this aspect of the invention are useful in the penetration of nails and hoofs, as well as the treatment of ungual and periungual conditions.

\section*{VII. Pharmaceutical Formulations}

In another aspect, the invention is a pharmaceutical formulation which includes: (a) a pharmaceutically acceptable excipient; and (b) a compound of the invention. In another aspect, the invention is a pharmaceutical formulation which includes: (a) a pharmaceutically acceptable excipient; and (b) a compound having a structure according to Formula (I), (Ia), (lb), (Ic), or (Id). In another aspect, the invention is a pharmaceutical formulation which includes: (a) a pharmaceutically acceptable cxcjpient; and (b) a compound which has a 15 structure according to Formula (II), (Ila), (IIb), (IIc), (IId).
In another aspect, the invention is a pharmaceutical formulation comprising: (a) a pharmaceutically acceptable excipient; and (b) a compound having a structure according to Formula 11:

(II)
wherein B is boron. \(\mathrm{R}^{1 b}\) is a member selected from a negative charge, a salt counterion, \(H\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. M2 is a member selected from oxygen, sulfur and \(\mathrm{NR}^{2 b} . \mathrm{R}^{2 b}\) is a member selected from H , substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. J2 is a member selected from \(\left(\mathrm{CR}^{3 b} \mathrm{R}^{4 b}\right)_{n 2}\) and \(\mathrm{CR}^{5 b}\). \(\mathrm{R}^{3 b}, \mathrm{R}^{4 b}\), and \(\mathrm{R}^{5 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl; substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index n 2 is an integer selected from 0 to 2.W2 is a member selected from \(\mathrm{C}=\mathrm{O}\) (carbonyl), \(\left(\mathrm{CR}^{6 b} \mathrm{R}^{7 b}\right)_{m 2}\) and \(\mathrm{CR}^{8 b} . \mathrm{R}^{6 b}, \mathrm{R}^{7 b}\), and \(\mathrm{R}^{8 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The index m 2 is an integer selected from 0 and 1. A2 is a member selected from \(\mathrm{CR}^{9 b}\) and N. D2 is a member selected from \(\mathrm{CR}^{10 b}\) and N . E 2 is a member selected from \(\mathrm{CR}^{11 b}\) and N. G2 is a member selected from \(\mathrm{CR}^{12 b}\) and \(\mathrm{N}, \mathrm{R}^{9 b}: \mathrm{R}^{10 b}, \mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\) are members independently selected from \(\mathrm{H}, \mathrm{OH}_{3} \mathrm{NH}_{2}, \mathrm{SH}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. The combination of nitrogens (\(\mathrm{A} 2+\mathrm{D} 2+\mathrm{E} 2+\mathrm{G} 2\)) is an integer selected from 0 to 3 . A member selected from \(\mathrm{R}^{3 b}, \mathrm{R}^{4 b}\) and - (carbonyl). In another exemplary embodiment, the aspect has the proviso that when M 2 is oxygen, W 2 is \(\mathrm{CR}^{5 b}\), J 2 is \(\mathrm{CR}^{8 b}, \mathrm{~A} 2\) is \(\mathrm{CR}^{9 b}, \mathrm{D} 2\) is \(\mathrm{CR}^{10 b}, \mathrm{E} 2\) is \(\mathrm{CR}^{11 b}, \mathrm{G} 2\) is
\(\mathrm{CR}^{12 b}, \mathrm{R}^{6 b}, \mathrm{R}^{7 b}, \mathrm{R}^{9 b}, \mathrm{R}^{10 b}, \mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\) are H , then \(\mathrm{R}^{5 b}\) and \(\mathrm{R}^{8 b}\), together with the atoms to which they are attached, do not form a phenyl ring.

In an exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (IIa):

In another exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (\(\Pi\)) :
(IIb)

wherein \(\mathrm{R}^{7 b}\) is a member selected from H , methyl, ethyl and phenyl. \(\mathrm{R}^{10 b}\) is a member selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), halogen, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio. \(\mathrm{R}^{11 b}\) is a member selected from \(\mathrm{H}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\), methyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenylalkyloxy, substituted or unsubstituted phenylthio and substituted or unsubstituted phenylalkylthio.

In another exemplary embodiment, \(\mathrm{R}^{16}\) is a member selected from a negative charge, H and a salt counterion. In another exemplary embodiment, \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) are H . In another exemplary embodiment, one member selected from \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{115}\) is H and the other member selected from \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) is a member selected from halo, methyl, cyano, methoxy, hydroxymethyl and p-cyanophenyloxy. In another exemplary embodiment, \(\mathrm{R}^{10 b}\) and \(\mathrm{R}^{11 b}\) are members independently selected from fluoro, chloro, methyl, cyano, methoxy, hydroxymethyl, and p-cyanophenyl. In another exemplary embodiment, \(\mathrm{R}^{16}\) is a member selected from a negative charge, H and a salt counterion; \(\mathrm{R}^{7 b}\) is \(\mathrm{H} ; \mathrm{R}^{10 b}\) is F and \(\mathrm{R}^{11 h}\) is H . In another exemplary embodiment, \(\mathrm{R}^{11 b}\) and \(\mathrm{R}^{12 b}\), along with the atoms to which they are attached, are joined to form a phenyl group. In another exemplary embodiment, \(\mathrm{R}^{1 b}\) is a member selected from a negative charge, \(H\) and a salt counterion; \(\mathrm{R}^{7 b}\) is \(\mathrm{H} ; \mathrm{R}^{10 b}\) is 4-cyanophenoxy; and \(\mathrm{R}^{11 b}\) is H .

In another exemplary embodiment, the pharmaceutical formulation has a compound with a structure according to Formula (IIc):

(ilc)
wherein B is boron. \(\mathrm{R}^{x 2}\) is a member selected from substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkyl and substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{5}\) heteroalkyl. \(\mathrm{R}^{y 2}\) and \(\mathrm{R}^{y 2}\) are members independently selected from \(H\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.

The pharmaceutical formulations of the invention can take a variety of forms adapted to the chosen route of administration. Those skilled in the art will recognize various synthetic methodologies that may be employed to prepare non-toxic pharmaceutical formulations incorporating the compounds described herein. Those skilled in the art will recognize a wide variety of non-toxic pharmaceutically acceptable solvents that may be used to prepare solvates of the compounds of the invention, such as water, ethanol, propylene glycol, mineral oil, vegetable oil and dimethylsulfoxide (DMSO).

The compositions of the invention may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. It is further understood that the best method of administration may be a combination of methods. Oral administration in the form of a pill, capsule, elixir, syrup, lozenge, troche, or the tike is particularly preferred. The term parenteral as used herein includes subcutancous injections, intradermal, intravascular (e.g., intravenous), intramuscular, spinal, intrathecal injection or like injection or infusion techniques.

The pharmaceutical formulations containing compounds of the invention are preferably in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard 65 or soft capsules, or syrups or elixirs.

Compositions intended for oral use may be prepared according to any method known in the art for the manufacture
of pharmaceutical formulations, and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; and dispersing or wetting agents, which may be a naturallyoccurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcobol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
Pharmaceutical formulations of the invention may also be in the form of oil-in-water emulsions and water-in-oil emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mincral oil, for example liquid
paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth; naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol; anhydrides, for example sorbitan monooleate; and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, and flavoring and coloring agents. The pharmaceutical formulations may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents, which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The composition of the invention may also be administered in the form of suppositories, e.g., for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.
Alternatively, the compositions can be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.

For administration to non-human animals, the composition containing the therapeutic compound may be added to the animal's feed or drinking water. Also, it will be convenient to formulate animal feed and drinking water products so that the animal takes in an appropriate quantity of the compound in its diet. It will further be convenient to present the compound in a composition as a premix for addition to the feed or drinking water. The composition can also added as a food or drink supplement for humans.

Dosage levels of the order of from about 5 mg to about 250 mg per kilogram of body weight per day and more preferably from about 25 mg to about 150 mg per kilogram of body weight per day, are useful in the treatment of the aboveindicated conditions. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the condition being treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 500 mg of an active ingredient.

Frequency of dosage may also vary depending on the compound used and the particular disease treated. However, for treatment of most disorders, a dosage regimen of 4 times daily or less is preferred. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, gencral health, sex,
diet, time of administration, route of administration and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

Preferred compounds of the invention will have desirable pharmacological properties that include, but are not limited to, oral bioavailability, low toxicity, low serum protein binding and desirable in vitro and in vivo half-lives. Penctration of the blood brain barrier for compounds used to treat CNS disorders is necessary, while low brain levels of compounds used to treat peripheral disorders are often preferred.

Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco- 2 cell monolayers. Toxicity to cultured hepatocyctes may be used to predict compound toxicity. Penetration of the blood brain barrier of a compound in humans may be predicted from the brain levels of laboratory animals that receive the compound intravenously.

Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcova, et al. (Journal of Chromatography B (1996) volume 677, pages 1-27).

Compound half-life is inversely proportional to the frequency of dosage of a compound. In vitro half-lives of compounds may be predicted from assays of microsomal half-life as described by Kuhnz and Gieschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).

The amount of the composition required for use in treatment will vary not only with the particular compound selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will ultimately be at the discretion of the attendant physician or clinician.

\section*{VII. a) Topical Formulations}

In a preferred embodiment, the methods of the invention can be used employed through the topical application of the compounds described herein.

The compositions of the present invention comprises fluid or semi-solid vehicles that may include but are not limited to polymers, thickeners, buffers, neutralizers, chelating agents, preservatives, surfactants or emulsifiers, antioxidants, waxes or oils, emollients, sunscreens, and a solvent or mixed solvent system. The solvent or mixed solvent system is important to the formation because it is primarily responsible for dissolving the drug. The best solvent or mixed solvent systems are also capable of maintaining clinically relevant levels of the drug in solution despite the addition of a poor solvent to the formulation. The topical compositions useful in the subject invention can be made into a wide variety of product types. These include, but are not limited to, lotions, creams, gels, sticks, sprays, ointments, pastes, foams, mousses, and cleansers. These product types can comprise several types of carrier systems including, but not limited to particles, nanoparticles, and liposomes. If desired, disintegrating agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar or alginic acid or a salt thereof such as sodium alginate. Techniques for formulation and administration can be found in Remington: The Science and Practice of Pharmacy, supra. The formulation can be selected to maximize delivery to a desired target site in the body.
Lotions, which are preparations that are to be applied to the skin, nail, hair, claw or hoof surface without friction, are typically liquid or semi-liquid preparations in which finely divided solid, waxy, or liquid are dispersed. Lotions will typically contain suspending agents to produce better dispersions as well as compounds useful for localizing and holding
the active agent in contact with the skin, nail, hair, claw or hoof, e.g., methylcellulose, sodium carboxymethyl-cellulose, or the like.

Creams containing the active agent for delivery according 5 to the present invention are viscous liquid or semisolid emulsions, either oil-in-water or water-in-oil. Cream bases are water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase is generally comprised of petrolatum or a fatty alcohol, such as cetyl-or stearyl alcohol; 0 the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier ina cream formulation, as explained in Remington: The Science and Practice of Pharmacy, supra, is generally a nonionic, anionic, cationic or amphoteric surfac5 tant.

Gel formulations can also be used in connection with the present invention. As will be appreciated by those working in the field of topical drug formulation, gels are semisolid. Single-phase gels contain organic macromolecules distrib0 uted substantially uniformly throughout the carrier liquid, which is typically aqueous, but also may be a solvent or solvent blend.

Ointments, which are semisolid preparations, are typically based on petrolatum or other petroleum derivatives. As will be 5 appreciated by the ordinarily skilled artisan, the specific ointment base to be used is one that provides for optimum delivery for the active agent chosen for a given formulation, and, preferably, provides for other desired characteristics as well, e.g., emolliency or the like. As with other carriers or vehicles, 0 an ointment base should be inert, stable, nonirritating and non-sensitizing. As explained in Remington: The Science and Practice of Pharmacy, 19th Ed. (Easton, Pa.: Mack Publishing Co., 1995), at pages 1399-1404, ointment bases may be grouped in four classes: oleaginous bases; emulsifiable bases; 5 emulsion bases; and water-soluble bases. Oleaginous ointment bases include, for example, vegetable oils, fats obtained from animals, and semisolid hydrocarbons obtained from petroleum. Emulsifiable ointment bases, also known as absorbent ointment bases, contain little or no water and include, for 0 example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum. Emulsion ointment bases are either water-in-oil (W/O) emulsions or oil-in-water (O/W) emulsions, and include, for example, cetyl alcohol, glyceryl monostearate, lanolin and stearic acid. Preferred water5 soluble ointment bases are prepared from polyethylene glycols of varying molecular weight; again, reference may be had to Remington: The Science and Practice of Pharmacy, supra, for further information.
Useful formulations of the invention also encompass 0 sprays. Sprays generally provide the active agent in an aqueous and/or alcoholic solution which can be misted onto the skin, nail, hair, claw or hoof for delivery. Such sprays include those formulated to provide for concentration of the active agent solution at the site of administration following delivery, \(s\) e.g., the spray solution can be primarily composed of alcohol or other like volatile liquid in which the drug or active agent can be dissolved. Upon delivery to the skin, nail, hair, claw or hoof, the carrier evaporates, leaving concentrated active agent at the site of administration.
The topical pharmaceutical compositions may also comprise suitable solid or gel phase carriers. Examples of such carriers include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
The topical pharmaceutical compositions may also comprise a suitable emulsifier which refers to an agent that enhances or facilitates mixing and suspending oil-in-water or
water-in-oil. The emulsifying agent used herein may consist of a single emulsifying agent or may be a nonionic, anionic, cationic or amphoteric surfactant or blend of two or more such surfactants; preferred for use herein are nonionic or anionic emulsifiers. Such surface-active agents are described in "McCutcheon's Detergent and Emulsifiers," North American Edition, 1980 Annual published by the McCutcheon Division, MC Publishing Company, 175 Rock Road, Glen Rock, N.J. 07452, USA.
Preferred for use herein are high molecular weight alcohols such as cetearyl alcohol, cetyl alcohol, stearyl alcohol, emulsifying wax, glyceryl monostearate. Other examples are ethylene glycol distearate, sorbitan tristearate, propylene glycol monostearate, sorbitan monooleate, sorbitan monostearate (SPAN 60), diethylene glycol monolaurate, sorbitan monopalmitate, sucrose dioleate, sucrose stearate (CRODESTA \(\mathrm{F}-160\)), polyoxyethylene lauryl ether (BRIJ 30), polyoxyethylene (2) stearyl ether (BRIJ 72), polyoxyethylene (21) stearyl ether (BRIJ 721), polyoxyethylene monostearate (Myrj 45), polyoxyethylene sorbitan monostearate (TWEEN 60), polyoxyethylene sorbitan monooleate (TWEEN 80), polyoxyethylene sorbitan monolaurate (TWEEN 20) and sodium oleate. Cholesterol and cholesterol derivatives may also be employed in externally used emulsions and promote w/o emulsions.
Especially suitable nonionic emulsifying agents are those with hydrophile-lipophile balances (HLB) of about 3 to 6 for w/o system and 8 to 18 for o/w system as determined by the method described by Paul L. Lindner in "Emulsions and Emulsion", edited by Kenneth Lissant, published by Dekker, New York, N.Y., 1974, pages 188-190. More preferred for use herein are one or more nonionic surfactants that produce a system having HLB of about 8 to about 18.

Examples of such nonionic emulsifiers include but are not limited to "BRIJ 72", the trade name for a polyoxyethylene (2) stearyl ether having an HLB of 4.9; "BRJJ 721", the trade name for a polyoxyethylene (21) stearyl ether having an HLB of 15.5, "Brij 30", the trade name for polyoxyethylene lauryl ether having an HLB of 9.7; "Polawax", the trade name for emulsifying wax having an HLB of 8.0; "Span 60", the trade name for sorbitan monostearate having an HLB of 4.7; "Crodesta F-160", the trade name for sucrose stearate" having an HLB of 14.5. All of these materials are available from Ruger Chemicals Inc.; Croda; ICl Americas, Inc.; Spectrum Chemicals; and BASF. When the topical formulations of the present invention contain at least one emulsifying agent, each emulsifying agent is present in amount from about 0.5 to about \(2.5 \mathrm{wt} \%\), preferably 0.5 to \(2.0 \%\), more preferably \(1.0 \%\) or \(1.8 \%\). Preferably the emulsifying agent comprises a mixture of steareth 21 (at about \(1.8 \%\)) and steareth 2 (at about \(1.0 \%\)).
The topical pharmaceutical compositions may also comprise suitable emollients. Emollients are materials used for the prevention or relief of dryness, as well as for the protection of the skin, nail, hair, claw or hoof. Useful emollients include, but are not limited to, cetyl alcohol, isopropyl myristate, stearyl alcohol, and the like. A wide variety of suitable emollients are known and can be used herein. See e.g., Sagarin, Cosmetics, Science and Technology, 2nd Edjtion, Vol. 1, pp. 32-43 (1972), and U.S. Pat. No. 4,919,934, to Deckner et al., issued Apr. 24, 1990, both of which are incorporated herein by reference in their entirety. These materials are available from Ruger Chemical Co, (Irvington, N.J.).
When the topical formulations of the present invention contain at least one emollient, each emollient is present in an amount from about 0.1 to \(15 \%\), preferably 0.1 to about 3.0 , more preferably \(0.5,1.0\), or \(2.5 \mathrm{wt} \%\). Preferably the emollient
is a mixture of cetyl alcohol, isopropyl myristate and stearyl alcohol in a \(1 / 5 / 2\) ratio. The emollient may also be a mixture of cetyl alcohol and stcaryl alcohol in a \(1 / 2\) ratio.

The topical pharnaceutical compositions may also com5 prise suitable antioxidants, substances known to inhibit oxidation. Antioxidants suitable for use in accordance with the present invention include, but are not limited to, butylated bydroxytoluene, ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbic palmitate, butylated hydroxyanisole, 2,4, 5-trihydroxybutyrophenone, 4-hydroxymethyl-2,6-di-tertbutylphenol, erythorbic acid, gum guaiac, propyl gallate, thiodipropionic acid, dilauryl thiodipropionate, tert-butylhydroquinone and tocopherols such as vitamin E , and the like, including pharmaceutically acceptable salts and esters of these compounds. Preferably, the antioxidant is butylated hydroxytoluene, butylated hydroxyanisole, propyl gallate, ascorbic acid, pharmaceutically acceptable salts or esters thereof, or mixtures thereof. Most preferably, the antioxidant is butylated hydroxytoluene. These materials are available 20 from Ruger Chemical Co, (Irvington, N.J.).

When the topical formulations of the present invention contain at least one antioxidant, the total amount of antioxidant present is from about 0.001 to \(0.5 \mathrm{wt} \%\), preferably 0.05 to about \(0.5 \mathrm{wt} \%\), more preferably \(0.1 \%\).

The topical pharmaceutical compositions may also comprise suitable preservatives. Preservatives are compounds added to a pharmaceutical formulation to act as an antimicrobial agent. Among preservatives known in the art as being effective and acceptable in parenteral formulations are benzalkonium chloride, benzethonium, chlorohexidine, phenol, m-cresol, benzyl alcohol, methylparaben, propylparaben, chlorobutanol, o-cresol, p-cresol, chlorocresol, phenylmercuric nitrate, thimerosai, benzoic acid, and various mixtures thereof. See, e.g., Wallhausser, K.-H., Develop Biol. Standard, 24:9-28 (1974)(S. Krager, Basel). Preferably, the preservative is selected from methylparaben, propylparaben and mixtures thereof. These materials are available from Inolex Chemical Co (Philadelphia, Pa.) or Spectrum Chemicals.

When the topical formulations of the present invention contain at least one preservative, the total amount of preservative present is from about 0.01 to about \(0.5 \mathrm{wt} \%\), preferably from about 0.1 to \(0.5 \%\), more preferably from about 0.03 to about 0.15 . Preferably the preservative is a mixture of meth ylparaben and proplybarben in a \(5 / 1\) ratio. When alcohol is used as a preservative, the amount is usually 15 to \(20 \%\).

The topical pharmaceutical compositions may also comprise suitable chelating agents to form complexes with metal cations that do not cross a lipid bilayer. Examples of suitable chelating agents include ethylene diamine tetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)- \(\mathrm{N}, \mathrm{N}, \mathrm{N}\), N --tetraacetic acid (EGTA) and 8-Amino-2-[(2-amino-5-me-thylphenoxy)methyl]-6-methoxyquinoline-N,N, \(\mathrm{N}^{\prime}, \mathrm{N}^{\prime}\)-tetraacetic acid, tetrapotassium salt (QUIN-2). Preferably the chelating agents are EDTA and citric acid. These materials are available from Spectrum Chemicals.
When the topical formulations of the present invention contain at least one chelating agent, the total amount of chelating agent present is from about \(0.005 \%\) to \(2.0 \%\) by weight, preferably from about \(0.05 \%\) to about \(0.5 \mathrm{wt} \%\), more preferably about \(0.1 \%\) by weight.
The topical pharmaceutical compositions may also comprise suitable neutralizing agents used to adjust the pH of the 5 formulation to within a pharmaceutically acceptable range. Examples of neutralizing agents include but are not limited to trolamine, tromethamine, sodium hydroxide, hydrochloric
acid, citric acid, and acetic acid. Such materials are available from are available from Spectrum Chemicals (Gardena, Calif.).

When the topical formulations of the present invention contain at least one neutralizing agent, the total amount of neutralizing agent present is from about 0.1 wt to about 10 wt \(\%\), preferably \(0.1 \mathrm{wt} \%\) to about \(5.0 \mathrm{wt} \%\), and more preferably about \(1.0 \mathrm{wt} \%\). The neutralizing agent is gencrally added in whatever amount is required to bring the formulation to the desired pH .

The topical pharmaceutical compositions may also comprise suitable viscosity increasing agents. These components are diffusible compounds capable of increasing the viscosity of a polymer-containing solution through the interaction of the agent with the polymer. CARBOPOL ULTREZ 10 may be used as a viscosity-increasing agent. These materials are available from Noveon Chemicals, Cleveland, Ohio.

When the topical formulations of the present invention contain at least one viscosity increasing agent, the total amount of viscosity increasing agent present is from about \(0.25 \%\) to about \(5.0 \%\) by weight, preferably from about \(0.25 \%\) to about \(1.0 \mathrm{wt} \%\), and more preferably from about \(0.4 \%\) to about \(0.6 \%\) by weight.

The topical pharmaceutical compositions may also comprise suitable nail penetration enhancers. Examples of nail penetration enhancers include mercaptan compounds, sulfites and bisulfites, keratolytic agents and surfactants. Nail penctration enhancers suitable for use in the invention are described in greater detail in Malhotra et al., J. Pharm. Sci., 91:2, 312-323 (2002), which is incorporated herein by reference in its entirety.
The topical pharmaceutical compositions may also comprise one or more suitable solvents. The ability of any solid substance (solute) to dissolve in any liquid substance (solvent) is dependent upon the physical properties of the solute and the solvent. When solutes and solvents have similar physical properties the solubility of the solute in the solvent will be the greatest. This gives rise to the traditional understanding that "like dissolves like." Solvents can be characterized in one extreme as non-polar, lipophilic oils, while in the other extreme as polar hydrophilic solvents. Oily solvents dissolve other non-polar substances by Van der Wals interactions while water and other hydrophilic solvents dissolve. polar sụbstances by ionic, dipole, or hydrogen bonding interactions. All solvents can be listed along a continuum from the least polar, i.e. hydrocarbons such as decane, to the most polar solvent being water. A solute will have its greatest solubility in solvents having equivalent polarity. Thus, for drugs having minimal solubility in water, less polar solvents will provide improved solubility with the solvent having polarity nearly equivalent to the solute providing maximum solubility. Most drugs have intermediate polarity, and thus experience maximum solubility in solvents such as propylene glycol or ethanol, which are significantly less polar than water. If the drug has greater solubility in propylene glycol (for example \(8 \%\) (\(\mathrm{w} / \mathrm{w}\))) than in water (for example \(0.1 \%(\mathrm{w} / \mathrm{w})\)), then addition of water to propylene glycol should decrease the maximum amount of drug solubility for the solvent mixture compared with pure propylene glycol. Addition of a poor solvent to an excellent solvent will decrease the maximum solubility for the blend compared with the maximum solubility in the excellent solvent.

When compounds are incorporated into topical formulations the concentration of active ingredient in the formulation may be limited by the solubility of the active ingredient in the chosen solvent and/or carrier. Non-lipophilic drugs typically display very low solubility in pharmaceutically acceptable
solvents and/or carriers. For example, the solubility of some compounds in the invention in water is less than \(0.00025 \%\) \(\mathrm{wt} / \mathrm{wt}\). The solubility of the same compounds in the invention can be less than about \(2 \% \mathrm{wt} / \mathrm{wt}\) in either propylene glycol or isopropyl myristate. In one embodiment of the present invention, diethylene glycol monoethyl ether (DGME) is the solvent used to dissolve the compounds of Formula (1) of Formula (II). The compounds in the invention useful in the present formulation are believed to have a solubility of from about \(10 \% \mathrm{wt} / \mathrm{wt}\) to about \(25 \% \mathrm{wt} / \mathrm{wt}\) in DGME. In another embodiment a DGME water cosolvent system is used to dissolve the compounds of Formula (I) of Formula (11). The solvent capacity of DGME drops when water is added; however, the DGME/water cosolvent system can be designed to maintain the desired concentration of from about \(0.1 \%\) to about \(5 \% \mathrm{wt} / \mathrm{wt}\) active ingredient. Preferably the active ingre-- dient is present from about \(0.5 \%\) to about \(3 \% \mathrm{wt} / \mathrm{wt}\), and more preferably at about \(1 \% \mathrm{wt} / \mathrm{wt}\), in the as-applied topical formulations. Because DGME is less volatile than water, as the topical formulation evaporates upon application, the active agent becomes more soluble in the cream formulation. This increased solubility reduces the likelihood of reduced bioavailability caused by the drug precipitating on the surface of the skin, nail, hair, claw or hoof.
Liquid forms, such as lotions suitable for topical administration or suitable for cosmetic application, may include a suitable aqueous or nonaqueous vehicle with buffers, suspending and dispensing agents, thickeners, penctration enhancers, and the like. Solid forms such as creams or pastes or the like may include, for example, any of the following ingredients, water, oil, alcohol or grease as a substrate with surfactant, polymers such as polyethylene glycol, thickeners, solids and the like. Liquid or solid formulations may include enhanced delivery technologies such as liposomes, microsomes, microsponges and the like.

Additionally, the compounds can be delivered using a sus-tained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art.
Topical treatment regimens according to the practice of this invention comprise applying the composition directly to the skin, nail, hair, claw or hoof at the application site, from one to several times daily.

Formulations of the present invention can be used to treat, ameliorate or prevent conditions or symptoms associated with bacterial infections, acne, inflammation and the like.

In an exemplary embodiment, the pharmaceutical formulation includes a simple solution. In an exemplary embodiment, the simple solution includes an alcohol. In an exemplary embodiment, the simple solution includes alcohol and water. In an exemplary embodiment, the alcohol is ethanol, ethylene glycol, propanol, polypropylene glycol, isopropanol or butanol. In another exemplary embodiment, the simple solution is a member selected from about \(10 \%\) polypropylene glycol and about \(90 \%\) ethanol; about \(20 \%\) polypropylene glycol and about \(80 \%\) ethanol; about \(30 \%\) polypropylene glycol and about 70\% ethanol; about \(40 \%\) polypropylene glycol and about \(60 \%\) ethanol; about \(50 \%\) polypropylene glycol and about \(50 \%\) ethanol; about \(60 \%\) polypropylene glycol and about \(40 \%\) ethanol; about \(70 \%\) polypropylene glycol and about \(30 \%\) ethanol; about \(80 \%\) polypropylene glycol and about \(20 \%\) ethanol; about \(90 \%\) polypropylene glycol and about \(10 \%\) ethanol.
In an exemplary embodiment, the pharmaceutical formulation is a lacquer. Please see Remington's, supra, for more information on the production of lacquers.

In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about \(0.5 \%\) to about \(15 \%\). In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about \(0.1 \%\) to about \(12.5 \%\). In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about \(1 \%\) to about \(10 \%\). In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about \(1 \%\) to about \(5 \%\). In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about \(2 \%\) to about \(8 \%\). In an exemplary embodiment, the compound is present in said pharmaceutical formulation in a concentration of from about \(4 \%\) to about \(9 \%\).

\section*{VII. b) Additional Active Agents}

The following are examples of the cosmetic and pharmaceutical agents that can be added to the topical pharmaceutical formulations of the present invention. The following agents are known compounds and are readily available commercially.
Anti-inflammatory agents include, but are not limited to, bisabolol, mentholatum, dapsone, aloe, hydrocortisone, and the like.
Vitamins include, but are not limited to, Vitamin B, Vita\(\min E, V i t a m i n ~ A, ~ V i t a m i n ~ D, ~ a n d ~ t h e ~ l i k e ~ a n d ~ v i t a m i n ~ d e r i v a-~\) tives such as tazarotene, calcipotriene, tretinoin, adapalene and the like.
Anti-aging agents include, but are not limited to, niacinamide, retinol and retinoid derivatives, AHA, Ascorbic acid, lipoic acid, coenzyme Q 10, beta hydroxy acids, salicylic acid, copper binding peptides, dimethylaminoethyl (DAEA), and the like.
Sunscreens and or sunburn relief agents include, but are not limited to, PABA, jojoba, aloe, padimate-O, methoxycinnamates, proxamine HCl , lidocaine and the like. Sunless tanning agents include, but are not limited to, dihydroxyacetone (DHA).

Psoriasis-treating agents and/or acne-treating agents include, but are not limited to, salicylic acid, benzoyl peroxide, coal tar, selenium sulfide, zinc oxide, pyrithione (zinc and/or sodjum), tazarotene, calcipotriene, tretinoin, adapalene and the like.
Agents that are effective to control or modify keratinization, including without limitation: tretinoin, tazarotene, and adapalene.

The compositions comprising an compound/active agent of Formula (I) of Formula (II), and optionally at least one of these additional agents, are to be administered topically. In a primary application, this leads to the compounds of the invention and any other active agent working upon and treating the skin, nail, hair, claw or hoof. Alternatively, any one of the topically applied active agents may also be delivered systemically by transdermal routes.
In such compositions an additional cosmetically or pharmaceutically effective agent, such as an anti-inflammatory agent, vitamin, anti-aging agent, sunscreen, and/or acnetreating agent, for example, is usually a minor component (from about \(0.001 \%\) to about \(20 \%\) by weight or preferably from about \(0.01 \%\) to about \(10 \%\) by weight) with the remainder being various vehicles or carriers and processing aids helpful for forming the desired dosing form.

\section*{VII. c) Testing}

Preferred compounds for use in the present topical formulations will have certain pharmacological properties. Such properties include, but are not limited to, low toxicity, low
serum protein binding and desirable in vitro and in vivo half-lives. Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco-2 cell monolayers. Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcova et al. (1996, J. Chromat. B677: 1-27). Compound half-life is inversely proportional to the frequency of dosage of a compound. In vitro half-lives of compounds may be predicted from assays of microsomal half-life as described by Kuhnz and Gleschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).
Toxicity and therapeutic efficacy of such compounds can 15 be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the doselethal to \(50 \%\) of the population) and the \(\mathrm{ED}_{50}\) (the dose therapeutically effective in \(50 \%\) of the population) The dose ratio between toxic and therapeutic effects is the 0 therapeutic index and it can be expressed as the ratio between \(\mathrm{LD}_{50}\) and \(\mathrm{ED}_{50}\). Compounds that exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the \(\mathrm{ED}_{50}\) with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be 0 chosen by the individual physician in view of the patient's condition. (See, e.g. Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1, p. 1).
VII. d) Administration

For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays, as disclosed herein. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the \(E C_{50}\) (effective dose for \(50 \%\) increase) as determined in cell culture, i.e., the concentration of the test compound which achieves a half-maximal inhibition of bacterial cell growth. Such information can be used to more accurately determine useful doses in humans.

In general, the compounds prepared by the methods, and s from the intermediates, described herein will be administered in a therapeutically or cosmetically effective amount by any of the accepted modes of administration for agents that serve similar utilities. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination, the severity of the particular disease undergoing therapy and the judgment of the prescribing physician. The drug can be administered from once or twice a day, or up to 3 or 4 times a day.

Dosage amount and interval can be adjusted individually to provide plasma levels of the active moiety that are sufficient to maintain bacterial cell growth inhibitory effects. Usual patient dosages for systemic administration range from 0.1 to \(1000 \mathrm{mg} /\) day, preferably, \(1-500 \mathrm{mg}\) /day, more preferably \(10-200 \mathrm{mg} /\) day, even more preferably \(100-200 \mathrm{mg} /\) day. Stated in terms of patient body surface areas, usual dosages range from \(50-91 \mathrm{mg} / \mathrm{m}^{2} /\) day .
The amount of the compound in a formulation can vary within the full range employed by those skilled in the art. Typically, the formulation will contain, on a weight percent
(wt \%) basis, from about 0.01-10 wt \% of the drug based on the total formulation, with the balance being one or more suitable pharmaceutical excipients. Preferably, the compound is present at a level of about \(0.1-3.0 \mathrm{wt} \%\), more preferably: about \(1.0 \mathrm{wt} \%\).
The invention is further illustrated by the Examples that follow. The Examples are not intended to define or limit the scope of the invention.

\section*{EXAMPLES}

Proton NMR are recorded on Varian AS 300 spectrometer and chemical shifts are reported as \(\delta(\mathrm{ppm})\) down field from tetramethylsilane. Mass spectra are determined on Micromass Quattro II.

\section*{Example 1}

\section*{Preparation of 3 from 1}

\subsection*{1.1 Reduction of Carboxylic Acid}

To a solution of \(1(23.3 \mathrm{mmol})\) in anhydrous THF (70 mL) under nitrogen was added dropwise a \(\mathrm{BH}_{3}\) THF solution (1.0 \(\mathrm{M}, 55 \mathrm{~mL}, 55 \mathrm{mmol}\)) at \(0^{\circ} \mathrm{C}\). and the reaction mixture was stirred overnight at room temperature. Then the mixture was cooled again with ice bath and \(\mathrm{MeOH}(20 \mathrm{~mL}\)) was added dropwise to decompose excess \(\mathrm{BH}_{3}\). The resulting mixture was stirred until no bubble was released and then \(10 \% \mathrm{NaOH}\) (10 mL) was added. The mixture was concentrated and the residue was mixed with water (200 mL) and extracted with EtOAc. The residue from rotary evaporation was purified by flash column chromatography over silica gel to give 20.7 mmol of 3 .
1.2 Results

Exemplary compounds of structure 3 prepared by the method above are provided below.
1.2.a 2-Bromo-5-chlorobenzyl Alcohol
\({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}\right.\), DMSO- \(\left.\mathrm{d}_{6}\right): \delta 7.57(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.50-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})\) and \(4.46(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}\).
1.2.b 2-Bromo-5-methoxybenzyl Alcohol
\({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO-d): \(\delta 7.42(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.09(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77\left(\mathrm{dd}, \mathrm{J}_{1}=3 \mathrm{~Hz}, \mathrm{~J}_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.43\) \((\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})\).

\section*{Example 2}

Preparation of 3 from 2
2.1. Reduction of Aldehyde

To a solution of \(2(\mathrm{Z}=\mathrm{H}, 10.7 \mathrm{mmol})\) in methanol \((30 \mathrm{~mL})\) was added sodium borohydride (5.40 mol), and the mixture was stirred at room temperature for 1 h . Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 9.9 mmol of 3 .

\footnotetext{
2.2 Results

Exemplary compounds of structure 3 prepared by the method above are provided below.
}
2.2.a 2-Bromo-5-(4-cyanophenoxy)benzyl Alcohol
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 2.00(\mathrm{brs}, \mathrm{JH}), 4.75\) \((\mathrm{s}, 2 \mathrm{H}), 6.88(\mathrm{dd}, \mathrm{J}=8.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})\),
\(57.26(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.8\) \(\mathrm{Hz}, 2 \mathrm{H})\).

\section*{2.2.b 2-Bromo-4-(4-cyanophenoxy)benzyl Alcohol}
\({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO- \(\mathrm{d}_{6}\)): \(\delta 7.63(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(607.50(\mathrm{dd}, \mathrm{J}=2.4 \& 0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=8.4 \& 2.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.71(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})\) and \(3.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
3.2.b 2-Bromo-5-fluoro-1-[](methoxymethoxy)ethyl/benzene
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.43(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}\), \(3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}\),
\(1 \mathrm{H}), 5.07(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=9.7,2.6\) \(\mathrm{H} \%, 1 \mathrm{H}), 7.46(\mathrm{dd}, \mathrm{J}=8.8,5.3 \mathrm{H} 九, 1 \mathrm{H})\).

\author{
3.2.c 2-Bromo-5-fluoro-1-[2-(methoxymethoxy) ethyl]benzene
}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.04(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}\), \(2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{td}\), \(\mathrm{J}=8.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}\), \(\mathrm{J}=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})\).

\section*{3.2.d 2-Bromo-4,5-difluoro-1-(methoxymethoxymethyl)benzene}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.42(\mathrm{~s}, 3 \mathrm{H}), 4.57\) \((\mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 2 \mathrm{H})\).
3.2.e 2-Bromo-5-cyano-1-
(methoxymethoxymethyl)benzene
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.058 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.43(\mathrm{~s}, 3 \mathrm{H}), 4.65\) (\(\mathrm{s}, 2 \mathrm{H}\)), \(4.80(\mathrm{~s}, 2 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{J}=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}\), \(\mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H})\).
3.2f 2-Bromo-5-methoxy-1(methoxymethoxymethyl)benzene
\({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO- \(\mathrm{d}_{6}\)): \(\delta 7.48\left(\mathrm{dd}, \mathrm{J}_{1}=1.2 \mathrm{~Hz}\right.\), \(\left.\mathrm{J}_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.05(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83\left(\mathrm{dd}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{~J}_{2}=3\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.5(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}\), \(3 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}\).

> 3.2.g 1-Benzyl-1-(2-bromophenyl)-1-(methoxymethoxy)ethane
\({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO- \(\mathrm{d}_{6}\)): \(\delta 7.70-7.67(\mathrm{~m}, 1 \mathrm{H})\), 7.25-7.09 (m, 6H), 6.96-6.93(m, 2H), 4.61 (d, 1H), 4.48(d, \(1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})\) and \(1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
3.2.h 2-Bromo-6-fluoro-1(methoxymethoxymethyl)benzene
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.43(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~s}\), 2 H), 4.76 (\(\mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.05 (t, J=9.1 Hz, 1 H), 7.18 (td , \(\mathrm{J}=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})\).
3.2.1 2-Bromo-4-(4-cyanophenoxy)-1-(methoxymethoxymethyl)benzene
\({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO- \(\mathrm{d}_{6}\)): \(\delta 7.84(\mathrm{~d}, 2 \mathrm{H}), 7.56(\mathrm{~d}\), \(1 \mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}\), 2 H) and \(3.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
3.2j 2-Bromo-5-(tert-butyldimethylsiloxy)-1-(methoxymethoxymethyl)benzene
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}\), \(9 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=8.5\), \(2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})\).

\section*{3.2.k 2-Bromo-5-(2-cyanophenoxy)-1-(meth- \\ oxymethoxymethyl)benzene}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.41(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}\) \(2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{td}, \mathrm{J}=7.6,0.9 \mathrm{~Hz}\),

NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\)) : \(\delta 9.14\) (\(\mathrm{s}, 1 \mathrm{H}\)), 7.71 (\(\mathrm{d}, \mathrm{J}=7.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32\) \((\mathrm{I}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})\) and \(4.97(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).

> 4.2.c 5-Fluoro-1,3-dihydro-1-hydroxy-3-methyl-2,1benzoxaborole (C3)
\({ }^{1} \mathrm{H}-\operatorname{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left.{ }_{6}\right) \delta \mathrm{ppm} 1.37(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}\), \(3 \mathrm{H}), 5.17(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=9.7,2.3\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, \mathrm{J}=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H})\).
4.2.d 6-Fluoro-1-hydroxy-1,2,3,4-tetrahydro-2,1benzoxaborine (C4)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO- \(\left.\mathrm{d}_{6}\right) \delta \mathrm{ppm} 2.86(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 15\) \(2 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, \mathrm{J}=8.2\), \(7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H})\).

\section*{4.2.e 5,6-Difluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C5)}

20
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left._{6}\right) \delta \mathrm{ppm} 4.94\) (s, 2H), 7.50 (dd, \(\mathrm{J}=10.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.62(\mathrm{dd}, \mathrm{J}=9.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~s}\), 1 H).
4.2.f 5-Cyano-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C6)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm} 5.03(\mathrm{~s}, 2 \mathrm{H}), 7.76\) (d. J=8.2 Hz, 1H), \(7.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}) ; 9.5330\) (\(\mathrm{s}, 1 \mathrm{H}\)).
4.2.g 1,3-Dihydro-1-hydroxy-

5-methoxy-2,1-benzoxaborole (C7)
M.p. \(102-104^{\circ} \mathrm{C}\). MS ESI: \(\mathrm{m} / \mathrm{z}=165.3(\mathrm{M}+1)\) and 162.9 (M-1). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\)) : \(\delta 8.95(\mathrm{~s}, 1 \mathrm{H}\)), 7.60 (d. J=8.1 Hz, 1H), \(6.94(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91\) \((\mathrm{s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
4.2.h 1,3-Dihydro-1-hydroxy-

5-methyl-2,1-benzoxaborole (C8)
M.p. 124-128 \({ }^{\circ}\) C. MS ESI; \(m / z=148.9(\mathrm{M}+1)\) and 146.9 (M-1). \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}\right.\), DMSO- \(\left.\mathrm{d}_{6}\right): \delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.5845\) \((\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91\) \((\mathrm{s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
4.2.i 1,3-Dihydro-1-hydroxy-5-hydroxymethyl-2,1-
benzoxaborole (C9)
MS: \(m / z=163\) (M-1, ESI-). \({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO\(\left.\mathrm{d}_{6}\right): 89.08(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H})\), \(5.23(\mathrm{t}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, 2 \mathrm{H}) \mathrm{ppm}\).

> 4.2.j 1,3-Dihydro-5-fluoro-1-hydroxy-
> 2,1-benzoxaborole (C10)
M.p. \(110-114^{\circ} \mathrm{C}\). MS ESI: \(\mathrm{m} / \mathrm{z}=150.9(\mathrm{M}-1) .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.73\left(\mathrm{dd}, \mathrm{J}_{1}=6 \mathrm{~Hz}, \mathrm{~J}_{2}=660\right.\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).
4.2.k 1,3-Dihydro-2-oxa-1-
cyclopenta[á]naphthalene (C11)
M.P. 139-143 \({ }^{\circ} \mathrm{C}\). MS ESI: \(\mathrm{m} / \mathrm{z}=184.9(\mathrm{M}+1) .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{dd}, \mathrm{J}=6.9 \mathrm{~Hz}\),

5
\(\left.\mathrm{J}_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).
4.2.1 7-Hydroxy-2,1-
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.\)): \(\delta \mathrm{ppm} 5.00(\mathrm{~s}, 2 \mathrm{H}), 7.45\) \((\mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 9.57\) (s, 1H). ESI-MS m/z \(134(\mathrm{M}-\mathrm{H})^{-}, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BNO}_{2}=135\).
4.2.m 1,3-Dihydro-6-fluoro-1-hydroxy-

2,1-benzoxaborole (C13)
M.p. 110-117.5 \({ }^{\circ} \mathrm{C}\). MS (ESI): \(\mathrm{m} / \mathrm{z}=151\) (\(\mathrm{M}-1\), negative). 5 HPLC (220 nm): \(100 \%\) purity. \({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO\(\left.\mathrm{d}_{6}\right): \delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{td}, 1 \mathrm{H})\) and 4.95 (\(\mathrm{s}, 2 \mathrm{H}\)) ppm.
4.2.n 3-Benzyl-1,3-dihydro-1-hydroxy-3-methyl-2,1benzoxaborole (C14)

MS (ESI): \(\mathrm{m} / \mathrm{z}=239\) (\(\mathrm{M}+1\), positive). HPLC: \(99.5 \%\) purity at 220 nm and \(95.9 \%\) at \(254 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO\(\left.\mathrm{d}_{6}\right): \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H})\), \(257.09-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, 1 \mathrm{H}), 3.00(\mathrm{~d}\), \(1 \mathrm{H})\) and \(1.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
4.2.0 3-Benzyl-1,3-dihydro-1-hydroxy-

2,1-benzoxaborole (C15)
MS (ESI+): \(\mathrm{m} / \mathrm{z}=225(\mathrm{M}+1)\). HPLC: \(93.4 \%\) purity at 220 nm. \({ }^{1}\) H NMR (300 MHz , DMSO-d \({ }_{6}\)): \(\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{dd}\), \(1 \mathrm{H}), 7.43(\mathrm{t}, 1 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 7 \mathrm{H}), 5.38(\mathrm{dd}, 1 \mathrm{H}), 3.21(\mathrm{dd}\), 1 H) and 2.77 (dd, 1 H\() \mathrm{ppm}\).
4.2.p 1,3-Dihydro-4-fluoro-1-hydroxy-

2,1-benzoxaborole (C16)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO- \(\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}) 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.26\) 40 (ddd, \(\mathrm{J}=9.7,7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, \mathrm{J}=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.55(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H})\).
4.2.q 5-(4-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2, 1-benzoxaborole (C17)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left.{ }_{6}\right) 8 \mathrm{ppm} 4.95\) (s, 2 H\(), 7.08\) (dd, J=7.9, \(2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=2.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.22\) (\(\mathrm{s}, 1 \mathrm{H}\)).
4.2.r 6-(4-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2, 1 -benzoxaborole (C18)
M.p. \(148-151^{\circ}\) C. MS: \(\mathrm{m} / \mathrm{z}=252\) (M+1) (ESI +) and \(98.7 \%\) at \(220 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO- \(\mathrm{d}_{6}\)): \(\delta 9.26\) (s, \(1 \mathrm{H}), 7.82(\mathrm{~d}, 2 \mathrm{H}), 7.50(\mathrm{~d}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}), 7.26(\mathrm{dd}, 1 \mathrm{H})\), 7.08 (d, 2H) and 4.99 (s, 2H) ppm

\section*{4.2.s 6-(3-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2, 1-benzoxaborole (C19)}
M.p. \(146-149^{\circ}\) C. MS: \(m / z=252\) (M+1) (ESI+) and \(\mathrm{m} / \mathrm{z}=250\) (M-1) (ESI-). HPLC: \(100 \%\) purity at 254 nm and \(6597.9 \%\) at 220 nm . \({ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 9.21\) (s, \(1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}\), \(2 \mathrm{H}), 7.23(\mathrm{dd}, 1 \mathrm{H})\) and \(4.98(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).
4.2.1 6-(4-Chlorophenoxy)-1,3-dihydro-1-hydroxy-2, 1-benzoxaborole (C20)
M.p. \(119-130^{\circ} \mathrm{C}\). MS: \(m / z=261(\mathrm{M}+1)\) (ESI +) and \(\mathrm{m} / \mathrm{z}=259\) (M-1) (ESI-). HPLC: \(100 \%\) purity at 254 nm and 5 \(98.9 \%\) at \(220 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO-d \({ }_{6}\)): \(\delta 9.18\) (s \(1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}), 7.19(\mathrm{dd}, 1 \mathrm{H}), 7.01(\mathrm{~d}\), \(2 \mathrm{H})\) and \(4.96(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).
4.2.u 6-Phenoxy-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C21)
M.p. \(95-99^{\circ} \mathrm{C}\). MS: \(\mathrm{m} / \mathrm{z}=227\) (M+1) (ESI +) and \(\mathrm{m} / \mathrm{z}=225\) (M-1) (ESI-). HPLC: \(100 \%\) purity at 254 nm and \(98.4 \%\) at \(220 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO-d \(\mathrm{d}_{6}\)): \(\delta 9.17\) (\(\mathrm{s}, 1 \mathrm{H}\)), 7.43-7.35 (m, 3H), \(7.28(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}\), \(2 \mathrm{H})\) and \(4.96(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).
4.2.v 5-(4-Cyanobenzyloxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C22)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left._{6}\right) \delta(\mathrm{ppm}) 4.90(\mathrm{~s}, 2 \mathrm{H}), 5.25\) \((\mathrm{s}, 2 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=7.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.62(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.5\) \(\mathrm{Hz}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H})\).
4.2.w 5-(2-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C23)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left.{ }_{6}\right) 6(\mathrm{ppm}) 4.95(\mathrm{~s}, 2 \mathrm{H})\), \(7.0-7.2(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{td}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68\) (ddd, \(\mathrm{J}=9.1\), \(7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91\) (dd, J=7.9, 1.8 \(\mathrm{Hz}, 1 \mathrm{H})\).

> 4.2.x 5-Phenoxy-1,3-dihydro-1 -hydroxy-
> 2,1-benzoxaborole (C24)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO- \(\mathrm{d}_{6}\)) \(\delta(\mathrm{ppm}) 4.91\) (s, 2H), 6.94 \((\mathrm{s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17\) (t, J=7.3 Hz, 1H), \(7.41(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H})\).
4.2.y 5-[4-(N,N-Diethylcarbamoyl)phenoxy]-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C25)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left._{6}\right) \delta(\mathrm{ppm}) 1.08(\mathrm{br} \mathrm{s}, 6 \mathrm{H})\), 3.1-3.5 (m, 4H), 4.93(s, 2H), 7.0-7.1 (m, 4H), 7.37 (d, J=8.5 \(\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H})\).
4.2.z 1,3-Dihydro-1-hydroxy-5-[4-(morpholinocar-bonyl)phenoxy]-2,1-benzoxaborole (C26)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO- \(\mathrm{d}_{6}\)) \(\delta(\mathrm{ppm})\) 3.3-3.7 (m, 8H), 4.93 (s, 2H), \(7.0-7.1\) (\(\mathrm{m}, 4 \mathrm{H}\)), 7.44 (d, J=8.8 Hz, 2H), 7.73 (d, \(\mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H})\).
4.2.aa 5-(3,4-Dicyanophenoxy)-1,3-dihydro-1-hy-
droxy-2,1-benzoxaborole (C27)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}) 4.97(\mathrm{~s}, 2 \mathrm{H}), 7.13\) (dd, J=7.9, \(2.1 \mathrm{~Hz}, 1 \mathrm{H}\)), 7.21 (d, J=1.5 Hz, 1 H), 7.43 (dd, \(\mathrm{J}=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}\), \(1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H})\).
4.2.ab 6-Phenylthio-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C28)
M.p. \(121-124^{\circ} \mathrm{C}\). MS: \(\mathrm{m} / \mathrm{z}=243(\mathrm{M}+1)(\mathrm{ESI}+)\) and \(\mathrm{m} / \mathrm{z}=241\) (M-1) (ESI-). HPLC: \(99.6 \%\) purity at 254 nm and \(99.6 \%\) at \(220 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\)): \(\delta 9.25\) (s,
\(1 \mathrm{H}), 7.72(\mathrm{dd}, 1 \mathrm{H}), 7.48(\mathrm{dd}, 1 \mathrm{H}), 7.43(\mathrm{dd}, 1 \mathrm{H}), 7.37-7.31\) \((\mathrm{m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H})\), and \(4.98(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).
4.2.ac 6-(4-trifluoromethoxyphenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C29)
M.p. \(97-101^{\circ} \mathrm{C}\). MS: \(\mathrm{m} / \mathrm{z}=311(\mathrm{M}+1)\) (ESI +) and \(\mathrm{m} / \mathrm{z}=309\) (M-1) (ESI-). HPLC: \(100 \%\) purity at 254 nm and \(100 \%\) at \({ }_{0} 220 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\)): \(\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.45\) \((\mathrm{d}, 1 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}), 7.21(\mathrm{dd}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H})\), and \(4.97(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}\).

> 4.2.ad 5-(N-Methyl-N-phenylsulfonylamino)-1,3dihydro-1-hydroxy-2,1-benzoxaborole (C30)
M.p. \(85-95^{\circ}\) C. MS: \(\mathrm{m} / \mathrm{z}=304(\mathrm{M}+1)\) (\(\mathrm{ESI}+\)) and \(\mathrm{m} / \mathrm{z}=302\) (M-1) (ESI-). HPLC: \(96.6 \%\) purity at 254 nm and \(89.8 \%\) at \(220 \mathrm{~nm} .{ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO-d \(\mathrm{d}_{6}\) : \(\delta 9.23(\mathrm{~s}, 1 \mathrm{H})\), 7.72-7.63 (m, 2H), 7.56 (t, 2H), \(7.50(\mathrm{~d}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})\), \(7.03(\mathrm{~d}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})\) and \(3.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}\).
4.2.ae 6-(4-Methoxyphenoxy)-1,3-dihydro-1-hy-droxy-2,1-benzoxaborole (C31)
\(1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H})\) and \(5.06(\mathrm{~s}, 2 \mathrm{H})\) ppm.
4.2.aj 4-(4-Cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (C36)

For coupling reaction between 4 -fluorobenzonitrile and substituted phenol to give starting material 2, see Igarashi, S.; et al. Chemical \& Pharmaceutical Bulletin (2000), 48(11), 1689-1697.
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \({ }_{6}\)) (ppm) 4.84 (s, 2H), 7.08 \((\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})\).
4.2.ak 5-(3-Cyanophenoxy)-1,3-dihydro-1-hydroxy-

2,1-benzoxaborole (C37)
For coupling between 3 -fluorobenzonitrile and substituted phenol to give starting material 2: Li, F. et al., Organic Letters (2003), 5(12), 2169-2171.
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \({ }^{\text {G }}\)) (ppm) 4.93 (s, 2H), 7.0\(7.1(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 1 \mathrm{H}), 7.5-7.7(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.2\) \(\mathrm{Hz}, 1 \mathrm{H})\).

> 4.2.al 5-(4-Carboxyphenoxy)-1-hydroxy-
> 2,1-benzoxaborole (C38)

To a solution of 5-(4-cyanophenoxy)-1-hydroxy-2,1-benzoxaborole obtained in C17 (\(430 \mathrm{mg}, 1.71 \mathrm{mmol}\)) in ethanol \((10 \mathrm{~mL})\) was added \(6 \mathrm{~mol} / \mathrm{L}\) sodium hydroxide (2 mL), and the mixture was refluxed for 3 hours. Hydrochloric acid (6 \(\mathrm{mol} / \mathrm{L}, 3 \mathrm{~mL}\)) was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate) followed by trituration with diisopropyl ether to give the target compound (37 \(\mathrm{mg}, 8 \%\)).
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}) 4.94(\mathrm{~s}, 2 \mathrm{H})\), \(7.0-7.1(\mathrm{~m}, 4 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}\), \(2 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H}), 12.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H})\).

\section*{4.2.am 1-Hydroxy-5-[4-(tetrazole-1-yl)phenoxy]-2,}

1-benzoxaborole (C39)
A mixture of 5-(4-cyanophenoxy)-1-hydroxy-2,1-benzoxaborole (\(200 \mathrm{mg}, 0.797 \mathrm{mmol}\)), sodium azide (\(103 \mathrm{mg}, 1.59\) mmol), and ammonium chloride (\(85 \mathrm{mg}, 1.6 \mathrm{mmol}\)) in \(\mathrm{N}, \mathrm{N}\) dimethylformamide (5 mL) was stirred at \(80^{\circ} \mathrm{C}\). for two days. Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate) followed by trituration with ethyl acetate to give the target compound (\(55 \mathrm{mg}, 23 \%\)).
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO- \(\mathrm{d}_{6}\)) \(\delta(\mathrm{ppm}) 4.95(\mathrm{~s}, 2 \mathrm{H})\), \(7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H})\).

Example 5
Preparation of I from 2 Via 6
5.1 Catalytic Boronylation, Reduction and Cyclization A mixture of 2 (10.0 mmol), bis(pinacolato)diboron (2.79 \(\mathrm{g}, 11.0 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf})(250 \mathrm{mg}, 3 \mathrm{~mol} \%)\), and potassium acetate (\(2.94 \mathrm{~g}, 30.0 \mathrm{mmol}\)) in 1,4 -dioxane (40 mL) was stirred at \(80^{\circ} \mathrm{C}\). for overnight. Water was added, and the
7.1 One-Pot Boronylation and Cyclization with Distillation

To a solution of \(3(4.88 \mathrm{mmol})\) in toluene \((20 \mathrm{~mL})\) was added triisopropyl borate (\(2.2 \mathrm{~mL}, 9.8 \mathrm{mmol}\)), and the mix5 ture was heated at reflux for 1 h . The solvent, the generated isopropyl alcohol and excess triisopropyl borate were removed under reduced pressure. The residue was dissolved
in tetrahydrofuran \((10 \mathrm{~mL})\) and cooled to \(-78^{\circ} \mathrm{C}\). n -Butyllithium (\(3.2 \mathrm{~mL}, 5.1 \mathrm{mmol}\)) was added dropwise over 10 min , and the mixture was stirred for 1 h while allowing to warm to room temperature. The reaction was quenched with 2 N HCl , and extracted with ethyl acetate. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to give 1.54 mmol of l .

\subsection*{7.2 Results}

Analytical data for exemplary compounds of structure I are provided below.

> 7.2.a 1,3-Dihydro-5-fluoro-1-hydroxy-
> 2,1-benzoxaborole (C10)

Analytical data for this compound is listed in 4.2.j.
Example 8
Preparation of 8 from 7

\subsection*{8.1 Bromination}

To a solution of \(7(49.5 \mathrm{mmol})\) in carbon tetrachloride (200 mL) were added N -bromosuccinimide (\(8.81 \mathrm{~g}, 49.5 \mathrm{mmol}\)) and \(\mathrm{N}, \mathrm{N}\)-azoisobutylonitrile (\(414 \mathrm{mg}, 5 \mathrm{~mol} \%\)), and the mixture was heated at reflux for 3 h . Water was added, and the mixture was extracted with chloroform. The organic layer was washed with brine and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the crude methyl-brominated intermediate 8 .

\section*{Example 9}

Preparation of 3 from 8

\subsection*{9.1 Hydroxylation}

To crude 8 (49.5 mmol) were added dimethylformamide \((150 \mathrm{~mL})\) and sodium acetate (\(20.5 \mathrm{~g}, 250 \mathrm{mmol}\)), and the mixture was stirred at \(80^{\circ} \mathrm{C}\). for overnight. Water was added, and the mixture was extracted with ether. The organic layer was washed with water and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure. To the residue was added methanol (150 mL) and 1 N sodium hydroxide (50 mL), and the mixture was stirred at room temperature for 1 h . The reaction mixture was concentrated to about a third of volume under reduced pressure. Water and hydrochloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, and dried on anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography followed by trituration with dichloromethane to give 21.8 mmol of 3 .

\subsection*{9.2 Results}

Exemplary compounds of structure 3 prepared by the method above are provided below.

\section*{9.2.a 2-Bromo-5-cyanobenzyl Alcohol}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.\), DMSO-d \(\left.{ }_{6}\right) \delta \mathrm{ppm} 4.51(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}\), \(2 \mathrm{H}), 5.67(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80\) \((\mathrm{s}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})\).
2. \(70 \%\) ethanol; \(20 \%\) poly(vinyl methyl ether-alt-maleic acid monobutyl ester); \(10 \%\) compound of the invention
3. \(56 \%\) cthanol; \(14 \%\) water; \(15 \%\) poly(2-hydroxyethyl methacrylate); \(5 \%\) dibutyl sebacate; \(10 \%\) compound of the invention;
4. \(55 \%\) ethanol; \(15 \%\) ethyl acetate; \(15 \%\) poly(vinyl acetate); \(5 \%\) dibutyl sebacate; \(10 \%\) compound of the invention.
The preparation of these formulations is well known in the art and is found in references such as Remington: The Science and Practice of Pharmacy, supra.

\section*{Example 14}

\section*{Antifungal MIC Testing}

All MIC testing followed the National Committee for Clinical Laboratory Standards (NCCLS) guidelines for antimicrobial testing of yeasts and filamentous fungi (Pfaller et al., NCCLS publication M38-A-Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. Wayne, Pa.: NCCLS; 2002 (Vol. 22, No. 16) except the Malassezia species which was incubated in a urea broth (Nakamura et al., Antimicrobial Agents And Chemotherapy, 2000, 44(8) p. 2185-2186). Results of the MIC testing is provided in FIG. 1.

Example 15

\section*{Keratin Assay}

Many antifungal agents strongly bind to keratin which not only reduces their antifungal potency but also may restrict their penetration into the nail. The affinities of the compounds for keratin powder was determined by a method described in Tatsumi, Antimicrobial Agents and Chemotherapy, 46(12): 3797-3801 (2002).
A comparison of MIC data for several compounds of the invention against \(T\). rubrum, with and without the presence of \(5 \%\) keratin, is provided in FIG. 1.

\section*{Example 16}
(C10) Antifungal Spectrum of Activity
(C10) is a novel compound in development for use as a topical antifungal treatment. The purpose of this study was to determine the minimum inhibitory concentration (MIC) for (C10) against 19 test strains of fungi including: Aspergilus fumigatus (A. fumigatus), Candida Albicans (C. albicans, both fluconazole sensitive and resistant strains), Candida glabrata (C. glabrata), Candida krusei (C. krusei), Cryptococcus neoformans (C. neoformans), Candida parapsilosis (C. parapsilosis), Candida tropicalis (C. tropicalis), Epidermophyton floccosum (E. floccosum), Fusarium solani (F. solani), Malassezia furfur (M. furfur), Malassezia pachydermatis (M. pachydermatis), Malassezia sympodialis (M. sympodialis), Microsporum audouinii (M. audouinii), Microsporum canis (M. canis), Microsporum gypseum (M. gypseum), Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Trichophyton tonsurans (T. tonsurans) Fungal growth was evaluated after exposure to different concentrations of (C10). In addition, the MIC for (C10) against \(T\). rubrum in the presence of \(5 \%\) keratin powder and the minimum fungicidal concentration (MFC) for (C10) against \(T\). rubrum and T. mentagrophytes were also determined. Ciclopirox and/or terbinafine and/or fluconazole and/or itracona-
zole were used as comparators and tested in a similar manner. These studies were conducted at NAEJA Phamaceutical, Inc.

Materials and Methods
(C10) was obtained from Anacor Pharmaceuticals, Inc. (Palo Alto, Calif., USA). ATCC strains were obtained from ATCC (Manassas, Va., USA). Ciclopirox-olamine was obtained from Sigma-Aldrich Co. (St. Louis, Mo., USA). Terbinafine, fluconazole and itraconazole were synthesized at NAEJA Pharmaceutical Inc. (Edmonton, AB, Canada), experimental procedures and analytical data for these standards are stored in NAEJA archives.

All MIC testing followed the National Committee for Clinical Laboratory Standards (NCCLS) guidelines for antimicrobial testing of yeasts and filamentous fungi (Pfaller et al., 2002) except the Malassezia species which were incubated in a urea broth (Nakamura et al., 2000). The microbroth dilution method was used to test the in vitro activity of (C 10) against 19 test strains of fungi. Briefly, compounds were dissolved in DMSO and diluted in sterile water to give a working stock. Two-fold serial dilutions of the working stock were prepared in 96 -well plates and media was added. Media was RPMI, RPMI+MOPS, modified RPMI, or modified Urea broth. The plates were inoculated with the fungal suspensions to give a final inoculum size of \(0.5-2.5 \times 10^{3}\) cells \(/ \mathrm{mL}\) for yeasts or \(0.4-5 \times 10^{4} \mathrm{CFU} / \mathrm{mL}\) for filamentous fungi and then incubated for \(24-168 \mathrm{~h}\) at \(35^{\circ} \mathrm{C}\). The final concentration of DMSO did not exceed \(5 \%\). The MIC was defined as the lowest concentration that resulted in over \(90 \%\) reduction of growth, as compared to a drug-free control. The MFC was defined as the lowest concentration that killed over \(90 \%\) of the fungi, as compared to a drug-free control.
Results and Conclusions
The results for the MIC of (C 10) and reference compounds against 19 strains of fungi are shown in FlG. 2. The results for the MFC of AN2690 against 2 strains of fungi are shown in Table 2. (Cl0) had MIC values ranging from \(0.25-2 \mu \mathrm{~g} / \mathrm{mL}\) against all fungi tested. Addition of \(5 \%\) keratin powder to the media did not effect the MIC against T. rubrum. (C10) had fungicidal activity against \(T\). rubrum and T. mentagrophytes with MFC values of 8 and \(16 \mu \mathrm{~g} / \mathrm{mL}\), respectively. Reference compounds had MIC values in the range defined by NCCLS.

Example 17
The Solubility, Stability and Log P Determination of Compounds of the Present Invention by LC/MS/MS

The solubility, room temperature stability and Log P of C10 was determined by the following methodology.
Reagents and Standards:
Ethanol: 200 proof ACS Grade (EM Science, Gibbstown, N.J., USA); Octanol: Octyl alcohol(EM Science, Gibbstown, N.J., USA); Acetonitrile: HPLC Grade (Burdick \& Jackson, Muskegon, Mich., USA); Ammonium Acetate: lot 3272X49621 (Mallinckrodt, Phillipsburg, N.J., USA); C10: lot A032-103 (Anacor Pharmaceuticals, Palo Alto, Calif., USA); p-Nitrophenol (PNP): lot OGNO1 (TCI America, Portland, Oreg., USA); Water: Deionized water (from Millipore systems, Billerica, Mass., USA)

Solubility
N-Octanol and water were mutually pre-saturated by vigorously stirring a mixture of both solvents for up to 12 h and the mixture was allowed to separate. Solubility in each solvent was determined by adding \(10 \mu \mathrm{~L}\) of \(20,40,200,1000\) and \(5000 \mu \mathrm{~g} / \mathrm{mL}\) of C10 in DMSO to the pre-saturated n -octanol
or water. After the sample was vortexed for 10 sec , the saumple was centrifuged for 10 min at ca. 3000 rpm . A visual inspoction was made to determine if the sample was clear or if a pellet had formed on the bottom of the tube
\(\log P\)
\(\mathrm{C} 10(10 \mu \mathrm{~L}\) of \(5000 \mu / \mathrm{mL})\) at \(2 \times\) the final concentration was added to 0.5 mL pre-saturated n -octanol and mixed. An equal volume (0.5 mL) of pre-saturated water was added, vortex mixed and then mixed on a rotating shaker for one hour and 24 h in triplicate at ca. \(25^{\circ} \mathrm{C}\). The organic and aqueous layers were separated by centrifugation for 5 min at ca .2000 rpm . Twenty five \(\mu \mathrm{L}\) of the octanol (top) layer were removed and placed in a pre-labeled tube. Twenty five \(\mu \mathrm{L}\) of the aqueous layer (bottom) were removed, taking care to avoid octanol contamination, and placed in a pro-labeled tube.
Stability at Room Temperature
\(\mathrm{C} 10(10 \mu \mathrm{~L}\) of \(5000 \mu \mathrm{~g} / \mathrm{mL})\) was added both to 0.5 mL n -octanol and 0.5 mL water in triplicate. Samples were mixed. At 0 h and 24 h samples were stored at ca. \(-20^{\circ} \mathrm{C} .20\) Twenty five \(\mu L\) of sample was used for analysis.

Extraction Procedure C10
For the octanol sample, \(25 \mu \mathrm{~L}\) of ethanol, \(25 \mu \mathrm{~L}\) of water and \(300 \mu \mathrm{~L}\) of acetonitrile containing the internal standard was added. For the water sample, \(25 \mu \mathrm{~L}\) of ethanol, \(25 \mu \mathrm{~L}\) of octanol and \(300 \mu \mathrm{~L}\) of acetonitrile containing the internal standard [60 mL of acetonitrile add \(6 \mu \mathrm{~L}\) of PNP (1000 \(\mu \mathrm{g} / \mathrm{mL}\))] was added. For the calibrators \(25 \mu \mathrm{~L}\) of octanol, 25 \(\mu \mathrm{L}\) of water and \(300 \mu \mathrm{~L}\) of acetonitrile containing the internal standard was added. The sample was vortexed for 10 seconds. Two hundred \(\mu \mathrm{L}\) of the organic layer were transferred into a clean deactivated autosampler vial.

\section*{Calculations}

A 1/concentration weighted linear regression was used for the quantitation of C10. All integration were performed with peak areas using Analyst version 1.3, Applied Biosystems. For C10, peak area ratios analyte to intemal standard PNP were used for all quantitation.

The partition coefficient (P) was calculated according to the equation detailed below:
\[
\begin{aligned}
& P=[\text { Sample concentration }]_{\text {ocamod }} /[\text { Sample } \\
& \quad \text { concentration }]_{\text {warer }} \\
& \log P=\log _{10} \text { (partition coefficient) }
\end{aligned}
\]

Results:
As shown in Table 17A the solubility of C10 in both octanol and water is very good over the concentration range tested.

TABLE 17A
\begin{tabular}{ccc}
\hline \multicolumn{3}{c}{ Solubility of C10 in water and octanol } \\
\cline { 2 - 3 } & & \\
Targeted & Water & Octanol \\
Conc & Vag/mL) & Visual
\end{tabular}

Table 17 B shows the results of the \(\log \mathrm{P}\) determination after 1 h and 24 h for C 10 . The mean \(\log \mathrm{P}\) after 1 h was \(1.97(\mathrm{n}=3)\). After 24 h the concentrations in both the octanol and water layer remained the same. The mean \(\log \mathrm{P}\) after 24 h was 1.93 (\(\mathrm{n}=3\)).

55

60

TABLE 173

A stability study for C 10 was initiated at room temperature 15 over 24 h without continuous mixing. Table 17C shows that C 10 in pure water and octanol is stable over 24 h .

TABLE 17C
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\xrightarrow{\begin{array}{l}\text { Water and Octanol stability for } \mathrm{Cl} 10 \text { at room temperature } \\ \text { after } 24 \mathrm{~h} .\end{array}}\)} \\
\hline Sample & \[
\begin{gathered}
\text { Mean } \\
(\mu \mathrm{g} / \mathrm{mL})
\end{gathered}
\] & SD & \[
\begin{gathered}
\text { Percent } \\
\text { Remaining } 24 \mathrm{~h} \\
\text { versus } 0 \mathrm{~g}
\end{gathered}
\] \\
\hline Water-0 h & 82.5 & 3.72 & 115 \\
\hline Water-24 h & 95.0 & 21.4 & \\
\hline Octanol-0 h & 115 & 3.06 & 93 \\
\hline Octanol-24 h & 107 & 6.11 & \\
\hline
\end{tabular}

Example 18
Determination of Penetration of C10 into the Human Nail

Two nail penetration studies were performed based on the protocol in Hui et al., Journal of Pharmaceutical Sciences, 91(1): 189-195 (2002) ("Hui protocol"). The purpose of this study was to determine and compare the penetration and distribution of C 10 in vehicle into the human nail plate in vitro relative to \(8 \%\) ciclopirox \(w / w\) in commercial lacquer (Penlac(B).
Materials and Methods
Test Article and Dosage Formulation
\(8 \%\) ciclopirox w/w in commercial lacquer was manufactured by Dermick (Berwyn, Pa.). The radiochemical purity and specific activity of the chemical was determined as \(>95 \%\) and \(12.5 \mathrm{mCi} / \mathrm{mmol}\), respectively.
The study was composed of two groups. The compositions (weight \%) of the dosage formulations are as follows:
Active radiolabeled compound in four groups.
\begin{tabular}{|c|c|c|c|}
\hline Groups* & \[
\begin{aligned}
& \text { Dosing } \\
& (\times 14 \text { days })
\end{aligned}
\] & \begin{tabular}{l}
Test Chemical \\
(\%)
\end{tabular} & Radioactivity (per \(10 \mu \mathrm{~L}\)) \\
\hline A (C10) & qd & 10 & \(0.19 \mu \mathrm{Ci}\) \\
\hline C (Ciclopirox) & qd & 8 & \(0.22 \mu \mathrm{Ci}\) \\
\hline
\end{tabular}

Human Nails
Healthy human finger nail plates were collected from adult 5 human cadavers and stored in a closed container at \(0-4^{\circ} \mathrm{C}\). Before the experiment, the nail plates were gently washed with normal saline to remove any contamination, then re-
hydrated by placing them for three hours on a cloth wetted with normal saline. The nail samples were randomly selected into four groups.
Dosing and Surface Washing Procedures
Dose Prcparation:
Radioactivity of each group is approximately \(0.19 \pm 0.01\) and \(0.22 \pm 0.03 \mu \mathrm{Ci} / 10 \mu \mathrm{~L}\) solutions respectively, for \({ }^{14} \mathrm{C}-\mathrm{Cl} 0\) (group A), and \({ }^{14} \mathrm{C}\)-ciclopirox (group C).

Experiment Procedure:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Study } \\
\text { Day }
\end{gathered}
\]} & \multicolumn{3}{|c|}{Group A} & \multicolumn{3}{|c|}{Group C} \\
\hline & wash & dose & sample & wash & dose & sample \\
\hline 1 & & D & & & D & \\
\hline 2 & w & D & & w & D & \\
\hline 3 & w & D & c & w & D & c \\
\hline 4 & w & D & & W & D & \\
\hline 5 & w & D & & w & D & \\
\hline 6 & w & D & C & w & D & c \\
\hline 7 & w & D & & w & D & \\
\hline 8 & w & D & & w & D & \\
\hline 9 & w & D & c & w & D & c \\
\hline 10 & w & D & & w & D & \\
\hline 11 & w & D & & w & D & \\
\hline 12 & w & D & c & w & D & c \\
\hline 13 & w & D & & w & D & \\
\hline 14 & w & D & & w & D & \\
\hline 15 & w & & C, N & w & & C, N \\
\hline
\end{tabular}
\(\mathrm{W}=\) once per day before dosing (\(9 \sim 10 \mathrm{AM}\)).
\(\mathrm{D}=\) once per day (\(9 \sim 10 \mathrm{AM}\)).
\(\mathrm{C}=\) changing/sampling cotton ball after surface washing before topical dos-
ing.
\(\mathrm{N}=\) Nail sampling.

\section*{Washing Procedure}

Surface washing was started in morning 10 min prior to next dosing, the surface of the nail was washed with cotton tips in a cycle, as follows:
tip wetted with absolute ethanol, then
tip wetted with absolute ethanol, then
tip wetted with \(50 \%\) IVORY liquid soap, then
tip wetted with distilled water, then
final tip wetted with distilled water.
The washing samples from each cycle of each nail were pooled and collected by breaking off the cotton tip into scintillation glass vials. Aliquots of 3.0 mL methanol were added into each vial to extract test material. The radioactivity of each sample was measured in-a liquid scintillation counter.

\section*{Incubation System}

A Teflon one-chamber diffusion cell (PermeGear, Inc., Hellertown, Pa.) was used to hold each nail. To approximate physiological conditions, a small cotton ball wetted with 0.1 mL normal saline was placed in the chamber to serve as a nail bed and provide moisture for the nail plate. Every 3 days, 0.1 mL normal saline was injected through the inlet into the chamber to keep the cotton ball wet. The nail plate was placed on a ledge inside the receptor (1.0 cm in diameter and 0.5 cm high). The ventral (inner) surface of the nail was placed face down and rested on the wet cotton ball. The cells were placed on a platform in a large glass holding tank filled with saturated sodium phosphate solution to keep the cells at a constant humidity of \(40 \%\).

\section*{Sampling Instrument}

The nail sampling instrument had two parts, a nail sample stage and a drill. The nail sampling stage consists of a copper nail holder, three adjustments, and a nail powder capture.

\section*{Sampling Procedure}

After completion of the incubation phase, the nail plate was transferred from the diffusion cell to a clean copper nail holder for sampling process. The nail plate was inverted so that the ventral (nail bed) surface now faced up and the dorsal (outer) dosed surfaced faced down. The copper nail holder has an opening as it sits on top of the stage. When the sampling process initiated, the coarse adjustment was adjusted to move the position of the stage until the nail plate was just touching the tip of the cutter. Then the drill was turned on and the fine adjustment was turned to push the stage closer to the drill, removing a nail core sample. After the above process, 5 approximate \(0.40-0.50 \mathrm{~mm}\) in depth and 7.9 mm in diameter nail pulverized samples were harvested from the center of the ventral (nail bed) surface of the nail.
The powdered nail samples were collected into a glass scintillation vial and weighted. Aliquots of 5.0 mL Packard soluene-350 (Packard Instrument Company, Meriden, Conn.) was added to the scintillation vial to dissolve the powder. The upper part, the intermediate and dorsal layers of the center of the nail, including the area of application of the dose was cut in the same diameter as the sampled area and was then placed 5 into a glass scintillation vial with 5.0 mL packard soluene350. The rest of the nail was also placed in a glass scintillation vial with 5.0 mL packard soluene- 350 .

The amount of nail sample removed was measured by the difference in weight of the nail plate before and after drilling,

\section*{Radioactivity Measurement}

All radioactivity measurements were conducted with a Model 1500 Liquid Scintillation Counter (Packard Instrument Company, Downer Grove, Ill.). The counter was audited 5 for accuracy using sealed samples of quenched and unquenched standards as detailed by the instrument manual. The \({ }^{14} \mathrm{C}\) counting efficiency is equal to or greater than \(95 \%\). All nail samples pre-treated with packard soluene- 350 were incubated at \(40^{\circ} \mathrm{C}\). for 48 hours followed by the addition of 10 0 mL scintillation cocktail (HIONIC-FLUOR, Packard Instrument Company, Meriden, Conn.). Other samples (standard dose, surface washing, and bedding material) were mixed directly with Universal ES scintillation cocktail (ICN Biomedicals, Costa Mesa, Calif.). Background control and test samples were counted for 3 minutes each for radioactivity.

\section*{Data Analysis}

All sample counts (expressed as dpm) were transcribed by hand to a computerized spreadsheet (Microsoft Excel). The 0 individual and mean (\(\pm\) S.D.) amount of test chemical equivalent in nail, bedding material, and wash samples are presented as \(\mathrm{dpm}, \mu \mathrm{Ci}\), percent administered dose, and mg equivalent at each time point. The concentration of \({ }^{14} \mathrm{C}\)-labeled test chemicals were calculated from the value based on the specific 5 activity of each [\(\left.{ }^{14} \mathrm{C}\right]\)-test chemical. The information of concentration of non-labeled test chemical in the topical formulation was obtained from the manufactures. Total concentra-
tion of test chemical equivalent is the sum of the concentration of \({ }^{14} \mathrm{C}\)-labeled test chemical and the concentration of non-labeled test chemical. The value of total amount of test chemical equivalent in each nail sample was calculated from those values based on radioactivity of the sample and the ratio of total mg test chemical equivalent and radioactivity of the test chemical. The data was further normalized by dividing with the weight of the sample. Statistical significant of nail samples from every two groups was analyzed by student \(t\)-test.

\section*{Terminology}

Ventral/intermediate center: Powdered nail sample drilled from the center of the inner surface (facing the nail bed) approximately \(0.3-0.5 \mathrm{~mm}\) in depth to the surface. The area is beneath the dosed site of the nail place but does not include dosed surface (dorsal nail surface).

Dorsal/intermediate center: Immediate area of dosed site.
Remainder nail: The remaining part of the nail that has not been dosed.

Supporting bed: The cotton ball placed within the Teflon chamber of the diffusion cell to provide moisture to the nail plate and also to receive chemicals penetrating through the 25 nail plate.

Surfacing washing: Ethanol (or other organic solvents) and soap/water washing on the surface of the dosed site.

Ring: A plastic ring placed on the top of the nail plate to prevent leakage from the dose site onto rest of the nail plate or inside of the cell chamber.

Cell washing: Ethanol (or other organic solvents) and soap/ water wash of the inside of the diffusion cell.

\section*{Results}

Characteristics of Nail Samples
For both groups (Group A group and Group C) the thickness of whole nail plate, the depth of the ventral surface core sample removed by cutter, the percentage of the whole nail thickness, and the actual weight of powdered nail sample were collected. No statistical difference is found between two groups (\(\mathrm{P}>0.05\)).

Weight Normalized C10 and Ciclopirox Equivalent in Nail
FIG. 3 shows summarized normalized drug equivalents in each part (layer) of nail samples. After weight normalization, the concentration of C10 equivalent in dorsal/intermediate center, ventral/intermediate center, and remainder nail samples was significantly higher than that of ciclopirox equivalent (\(p \leqq 0.002\)).
C10 and Ciclopirox Equivalent in Cotton Ball Nail Supporting Bed

FIG. 4 shows summarized C10 and ciclopirox equivalent in supporting bed cotton ball samples. Similar to weight normalized C10 equivalent in the nail plate samples, absolute amount of C 10 equivalent per cotton ball sample in group A (after 14 day dosing) was significantly higher than that of ciclopirox in group \(\mathrm{C}(\mathrm{p} \leqq 0.004)\). The difference of these two 60 test chemicals was 250 times.

Mass Balance of Radioactivity of [\(\left.{ }^{14} \mathrm{C}\right]\)-C10 and [\(\left.{ }^{14} \mathrm{C}\right]\)-Ciclopirox after 14-Day Treatment

Table 5 shows summarized radioactive recovery from washing, nail samples, and supporting bed cotton ball samples. Cumulative radioactivity recoveries of carbon-14
were \(88 \pm 9.21\), and \(89 \pm 1.56\) percent of applied dose in group A, and group C, respecively. \(88 \%\) of the radiolabeled material was accounted for.

\section*{CONCLUSION}

In this study, penetration rate of \(\left[{ }^{14} \mathrm{C}\right]-\mathrm{C} 10\) in Anacor topical formulation and \(\left[{ }^{14} \mathrm{C}\right]\)-ciclopirox (\(8 \% \mathrm{w} / \mathrm{w}\) in commercial lacquer) into human nail with four different dosing and washing methods was studied.

Results show that much more amount of [\(\left.{ }^{14} \mathrm{C}\right]-\mathrm{C} 10\) penetrating into the deeper parts of the nail when compared with [\(\left.{ }^{14} \mathrm{C}\right]\)-ciclopirox. Tables 3 and 4 show that the amount of [\(\left.{ }^{14} \mathrm{C}\right]-\mathrm{Cl} 0\) equivalent in ventral/intermediate center of the nail layer and cotton ball supporting bed in the group \(A\) was statistically higher (\(p \leqq 0.002\)) than group \(C\) after a 14 -day dosing period.

\section*{Example 19}

Determination of Penetration of C 10 into the Human Nail

The aim of the current study was to assess and compare the perungual absorption of C 10 in a simple vehicle using MedPharm's TurChub \({ }^{(8)}\) model (see http://www.medpharm.co.uk; specifically http://www.medpharm.co.uk/downloads/ Skin\%20and\%20nail\%20dec\%202003.pdf; viewed Feb. 14, 2006). in a full scale experiment. Six replicates involving C10 were conducted and Formulations Y (\(8 \%\) ciclopirox w/w in commercial lacquer) and \(Z\) (Loceryl, \(5 \%\) amorolfine w/v in commercial lacquer) were used as the reference formulations.

The following materials were used in these experiments. These materials were used without any modifications.

A dose of \(40 \mu \mathrm{~L} / \mathrm{cm}^{2}\) of the test compound C10 in \(50: 50\) propylene glycol:ethyl acetate was applied to a full thickness nail sample each day over a total duration of five days. Both the reference formulations were also applied at the same dose.

\section*{TurChub \({ }^{\circledR}\) Zone of Inhibition Experiment}

Placebo, test item \(\mathrm{Cl0}\) in vehicle and the reference formulations Y and Z were tested for their inhibition of Trichophyton rubrum (\(T\). rubrum) growth after penetration through a full thickness human nail using a zone of inhibition measurement.

Formulation Efficacy Testing
FIGS. 5-9 show the results obtained from the TurChub zone of inhibition assays. It can be observed that C10 is a potent antifungal agent, which can penetrate through a full thickness nail to elicit its effect against the target organism \(T\). rubrum. No zones of inhibition were observed with reference formulations Y and Z or with the placebo for C 10 . The experiment using C10 was repeated for a second time to confirm the result and it can be observed from FIGS. 6 and 7 that C 10 shows zones of inhibition of \(100 \%, 67 \%, 46 \%, 57 \%, 38 \%\) and \(71 \%\) in the first experiment and \(74 \%, 86 \%, 100 \%, 82 \%, 100 \%\) and \(84 \%\) in the second experiment. The measurement was taken from the nail to the first point of growth observed.

From the results obtained using MedPharm's TurChub zone of inhibition assay as a test system, the test item C10 was found to be a powerful antifungal agent and demonstrated superior results vs. the commercial reference formulations Y
and Z. From these experiments it appears that the compound is permeating through a full thickness nail barrier to exhibit the antifungal activity.

Example 20
Determination of Penetration of C 10 into the Human Nail

\author{
Dose Response
}

The optimal dose-response range for penetration into the human nail was determined to be between \(1 \%\) and \(15 \%\). The experiments to determine the optimal dose-response was conducted as follows.
Tests at different test compound concentrations were conducted on nails derived from the same cadaver. Cadaver nails were hydrated overnight, cut into 4 equally sized squares and placed onto individual poloxomer supports. Test articles were formulated in a lacquer at \(1 \%, 2.5 \%, 5 \%, 7.5 \%, 10 \%\) and \(15 \%\) \(w / v . A 40 \mu \mathrm{~L} / \mathrm{cm}^{2}\) dose is applied to the center of the nail piece and the nails are left for 24 hrs . Nails are removed from the poloxomer support. Poloxomer support is analyzed for quantity of compound using LC/MS/MS.
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

What is claimed is:
1. A method of treating an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2, 1-benzoxaborole, or a pharmaceutically acceptable salt thereof, sufficient to treat said infection.
2. The method of claim 1, wherein said infection is a member selected from a systemic infection, a cutaneous infection, and an ungual or periungual infection.
3. The method of claim 1 , wherein said infection is a member selected from chloronychia, paronychias, erysipeloid, onychorrhexis, gonorrhea, swimming-pool granuloma, larva migrans, leprosy, Orf nodule, milkers' nodules, herpetic
whitlow, acute bacterial perionyxis, chronic perionyxis, sporotrichosis, syphilis, tuberculosis verncosa cutis, tularemia, tungiasis, peri- and subungual warts, zona, nail dystrophy (trachyonychia), dermatological diseases, psoriasis, pustular psoriasis, alopecia aerata, parakeratosis pustulosa, contact dermatosis, Reiter's syndrome, psoriasiform acral dermatitis, lichen planus, idiopathy atrophy in the nails, lichin nitidus, lichen striatus, inflammatory linear verrucous epidermal naevus (ILVEN), alopecia, pemphigus, bullous pemphig0 oid, acquired epidermolysis bullosa, Darier's disease, pityriasis rubra pilaris, palmoplantar keratoderma, contact eczema, polymorphic erythema, scabies, Bazex syndrome; systemic scleroderma, systemic lupus erythematosus, chronic lupus erythematosus, dermatomyositus, Sporotrichosis, Mycotic 15 keratitis, Extension oculomycosis, Endogenous oculomycosis, Lobomycosis, Mycetoma, Piedra, Pityriasis versicolor, Tinea corporis, Tinea cruris, Tinea pedis, Tinea barbae, Tinea capitis, Tinea nigra, Otomycosis, Tinea favosa, Chromomycosis, and Tinea lmbricata.
4. The method of claim 1, wherein said infection is onychomycosis.
5. The method of claim 1, wherein said animal is a member selected from a human, cattle, goat, pig, sheep, horse, cow, bull, dog, guinea pig, gerbil, rabbit, cat, chicken and turkey.
6. The method of claim 4, wherein said onychomycosis is tinea unguium.
7. The method of claim 1 , wherein said animal is a human.
8. The method of claim 1 , wherein the administering is at a site which is a member selected from the skin, nail, hair, hoof and claw.
9. The method of claim 8 , wherein said skin is the skin surrounding the nail, hair, hoof or claw.
10. The method of claim 1 , wherein said infection is a fungal infection.
11. A method of treating onychomycosis in a human, said method comprising administering to the human a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2, 1-benzoxaborole, or a pharmaceutically acceptable salt thereof, sufficient to treat said onychomycosis.
12. A method of inhibiting the growth of-a fungus in a human, said method comprising administering to the human a therapeutically effective amount of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof.

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : 7,582,621 B2
Page 1 of 1
APPLICATION NO. : \(11 / 357687\)
DATED : September 1, 2009
INVENTOR(S) : Baker et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page
Item [*] Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 267 days

Delete the phrase "by 267 days" and insert -- by 464 days --

Signed and Sealed this
First Day of June, 2010

David J. Kappos

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE} Certificate

Patent No. 7,582,621 B2
Patented: September 1, 2009
On petition requesting issuance of a certificate for correction of inventorship pursuant to 35 U.S.C. 256, it has been found that the above identified patent, through error and without any deceptive intent, improperly sets forth the inventorship.
Accordingly, it is hereby certified that the correct inventorship of this patent is: Stephen J. Baker, Mountain
View, CA (OS); Tsutomu Akama, Sunnyvale, CA (US); Vincent S. Hemandez, Watsonville, CA (US); Karin M. Hold, Belmont, CA (US); James J. Leyden, Malvern, PA (US); Jacob J. Plattner, Berkeley, CA (US); Virginia Sanders, San Francisco, CA (US); and Yong-Kang Zhang, San Jose, CA (US).
Signed and-Sealed this Sixteenth Day of July 2013.

\section*{EXHIBIT B}

HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use KERYDIN safely and effectively. See full prescribing information for KERYDIN.

KERYDIN \({ }^{\text {TM }}\) (tavaborole) topical solution, \(5 \%\)
Initial U.S. Approval: 2014
KERYDIN is an oxaborole antifungal indicated for the topical teatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes. (1)
-DOSAGE AND ADMINISTRATION
- Apply KER YDIN to affected toenails once daily for 48 weeks. (2)
- KERYDIN should be applied to the entire toenail surface and under the tip of each toenail being treated. (2)
- For topical use only. (2)
- Not for oral, ophthalmic, or intravaginal use. (2)

Solution, 5\%. (3)
None. (4)

Common adverse reactions occurring in \(\geq 1 \%\) in subjects treated with KERYDIN included application site exfoliation, ingrown toenail, application site erythema, and application site dermatitis. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Anacor Pharmaceuticals at 1-844-4ANACOR [1-844-426-2267] or FDA at 1-800-FDA-1088 or www.fdagov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION and FDAAapproved patient labeling.

Revised: 07/2014

\section*{FULL PRESCRIBING INFORMATION: CONTENTS*}

\section*{INDICATIONS AND USAGE}

DOSAGE AND ADMINISTRATION
DOSAGE.FORMS AND STRENGTHS
CONTRAINDICATIONS
6 ADVERSE REACTIONS
6.1 Clinical Trials Experience

7 DRUG INTERACTIONS
8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
8.3 Nursing Mothers
8.4 Pediatric Use
8.5 Geriatric Use

11 DESCRIPTION

12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
12.4 Microbiology

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

14 CLINICAL STUDIES
16 HOW SUPPLIED/STORAGE AND HANDLING
16.1 How Supplied
16.2 Storage and Handling

17 PATIENT COUNSELING INFORMATION
* Sections or subsections omitted from the full prescribing information are not listed.

\section*{FULL PRESCRIBING INFORMATION}

\section*{1 INDICATIONS AND USAGE}

KERYDIN (tavaborole) topical solution, \(5 \%\) is an oxaborole antifungal indicated for the treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes.

\section*{2 DOSAGE AND ADMINISTRATION}

Apply KERYDIN to affected toenails once daily for 48 weeks.
KERYDIN should be applied to the entire toenail surface and under the tip of each toenail being treated.
KERYDIN is for topical use only and not for oral, ophthalmic, or intravaginal use.

3 DOSAGE FORMS AND STRENGTHS
KERYDIN topical solution, \(5 \%\) is a clear, colorless alcohol-based solution. Each milliliter of solution contains \(43.5 \mathrm{mg}(5 \% \mathrm{w} / \mathrm{w})\) of tavaborole.

\section*{4 CONTRAINDICATIONS}

None.

\section*{6 ADVERSE REACTIONS}

\subsection*{6.1 Clinical Trials Experience}

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In two clinical trials, 791 subjects were treated with KERYDIN. The most commonly reported adverse reactions are listed below (Table 1).

Table 1: Adverse Reactions Occurring in \(\geq 1 \%\) of KERYDIN Topical Solution, 5\%-Treated Subjects and at a Greater Frequency than Observed with Vehicle
\begin{tabular}{|l|c|c|}
\hline & \begin{tabular}{c}
KERYDIN \\
\(\mathbf{N}=\mathbf{7 9 1}\) \\
\(\mathbf{n}(\%)\)
\end{tabular} & \begin{tabular}{c}
Vehicle \\
\(\mathbf{N}=\mathbf{3 9 5}\) \\
\(\mathbf{n}(\%)\)
\end{tabular} \\
Preferred Term & \(21(2.7 \%)\) & \(1(0.3 \%)\) \\
\hline Application site exfoliation & \(20(2.5 \%)\) & \(1(0.3 \%)\) \\
\hline Ingrown toenail & \(13(1.6 \%)\) & \(0(0 \%)\) \\
\hline Application site erythema & \(10(1.3 \%)\) & \(0(0 \%)\) \\
\hline Application site dermatitis & \\
\hline
\end{tabular}

A cumulative irritancy study revealed the potential for KERYDIN to cause skin irritation. There was no evidence that KERYDIN causes contact sensitization.

\section*{7 DRUG INTERACTIONS}

In vitro studies have shown that tavaborole, at therapeutic concentrations, neither inhibits nor induces cytochrome P450 (CYP450) enzymes.

\section*{8 USE IN SPECIFIC POPULATIONS \\ 8.1 Pregnancy \\ Pregnancy Category C}

There are no adequate and well-controlled studies with KERYDIN in pregnant women. KERYDIN should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Systemic embryofetal development studies were conducted in rats and rabbits and a dermal embryofetal development study was conducted in rabbits.

\section*{Oral administration:}

In an oral embryofetal development study in rats, oral doses of 30,100 , and \(300 \mathrm{mg} / \mathrm{kg} /\) day tavaborole were administered during the period of organogenesis (gestational days 6-19) to pregnant female rats. In the presence of maternal toxicity, embryofetal toxicity (increased embryofetal resorption and/or deaths) and drug-related skeletal malformations and variations suggestive of delayed development (i.e., a delay in ossification) were noted in fetuses at \(300 \mathrm{mg} / \mathrm{kg} /\) day tavaborole [570 times the Maximum Recommended Human Dose (MRHD) based on Area Under the Curve (AUC) comparisons]. No developmental toxicity was noted in rats at \(100 \mathrm{mg} / \mathrm{kg} /\) day tavaborole (26 times the MRHD based on AUC comparisons).

In an oral embryofetal development study in rabbits, oral doses of 15,50 , and \(150 \mathrm{mg} / \mathrm{kg} /\) day tavaborole were administered during the period of organogenesis (gestational days 7-19) to pregnant female rabbits. In the presence of maternal toxicity, excessive embryofetal mortality due to post-implantation loss was noted at \(150 \mathrm{mg} / \mathrm{kg} /\) day tavaborole. No drug related malformations were noted in rabbits at \(150 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\) tavaborole (155 times the MRHD based on AUC comparisons). No embryofetal mortality was noted in rabbits at \(50 \mathrm{mg} / \mathrm{kg} /\) day tavaborole (16 times the MRHD based on AUC comparisons).

\section*{Topical administration:}

In a dermal embryofetal development study in rabbits, topical doses of \(1 \%, 5 \%\), and \(10 \%\) tavaborole solution were administered during the period of organogenesis (gestational days 6-28) to pregnant female rabbits. A dose dependent increase in dermal irritation at the treatment site was noted at \(5 \%\) and \(10 \%\) tavaborole solution. A decrease in fetal bodyweight was noted at \(10 \%\) tavaborole solution. No drug related malformations were noted in rabbits at \(10 \%\) tavaborole solution (36 times the MRHD based on AUC comparisons). No embryofetal toxicity was noted in rabbits at \(5 \%\) tavaborole solution (26 times the MRHD based on AUC comparisons).

\section*{Nonteratogenic effects:}

In an oral pre- and post-natal development study in rats, oral doses of 15,60 , and \(100 \mathrm{mg} / \mathrm{kg} /\) day tavaborole were administered from the beginning of organogenesis (gestation day 6) through the end of lactation (lactation day 20). In the presence of minimal maternal toxicity, no embryofetal toxicity or effects on postnatal development were noted at \(100 \mathrm{mg} / \mathrm{kg} /\) day (29 times the MRHD based on AUC comparisons).

\subsection*{8.3 Nursing Mothers}

It is not known whether tavaborole is excreted in human milk following topical application of KERYDIN. Because many drugs are excreted in human milk, caution should be exercised when KERYDIN is administered to a nursing woman.

\subsection*{8.4 Pediatric Use}

Safety and effectiveness in pediatric patients have not been established.

\subsection*{8.5 Geriatric Use}

In clinical trials of 791 subjects who were exposed to KERYDIN, \(19 \%\) were 65 years of age and over, while \(4 \%\) were 75 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity of some older individuals cannot be ruled out.

\section*{11 DESCRIPTION}

KERYDIN (tavaborole) topical solution, \(5 \%\) contains tavaborole, \(5 \%(\mathrm{w} / \mathrm{w})\) in a clear, colorless alcoholbased solution for topical use. The active ingredient, tavaborole, is an oxaborole antifungal with the chemical name of 5 fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole. The chemical formula is \(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BFO}_{2}\), the molecular weight is 151.93 and the structural formula is:

Tavaborole is a white to off-white powder. It is slightly soluble in water and freely soluble in ethanol and propylene glycol.

Each mL of KERYDIN contains 43.5 mg of tavaborole. Inactive ingredients include alcohol, edetate calcium disodium, and propylene glycol.

\section*{12 CLINICAL PHARMACOLOGY}

\subsection*{12.1 Mechanism of Action}

KERYDIN is an oxaborole antifungal [see Clinical Pharmacology (12.4)].

\subsection*{12.2 Pharmacodynamics}

At therapeutic doses, KERYDIN is not expected to prolong QTc to any clinically relevant extent.

\subsection*{12.3 Pharmacokinetics}

Tavaborole undergoes extensive metabolism. Renal excretion is the major route of elimination.

In a clinical pharmacology trial of six healthy adult male volunteers who received a single topical application of \(5 \%{ }^{14} \mathrm{C}\)-tavaborole solution, tavaborole conjugates and metabolites were shown to be excreted primarily in the urine.

The pharmacokinetics of tavaborole was investigated in 24 subjects with distal subungual onychomycosis involving at least 4 toenails (including at least 1 great toenail) following a single dose and a 2 -week daily topical application of \(200 \mu \mathrm{~L}\) of a \(5 \%\) solution of tavaborole to all ten toenails and 2 mm of skin surrounding each toenail. Steady state was achieved after 14 days of dosing. After a single dose, the mean (\(\pm\) standard deviation) peak concentration (\(\mathrm{C}_{\max }\)) of tavaborole was \(3.54 \pm 2.26 \mathrm{ng} / \mathrm{mL}\) (\(\mathrm{n}=21\) with measurable concentrations, range \(0.618-10.2 \mathrm{ng} / \mathrm{mL}, \mathrm{LLOQ}=0.5 \mathrm{ng} / \mathrm{mL}\)), and the mean \(\mathrm{AUC}_{\text {last }}\) was \(44.4 \pm 25.5\) ng *hr/mL \((\mathrm{n}=21)\). After 2 weeks of daily dosing, the mean \(\mathrm{C}_{\text {max }}\) was \(5.17 \pm 3.47 \mathrm{ng} / \mathrm{mL}(\mathrm{n}=24\), range \(1.51-\) \(12.8 \mathrm{ng} / \mathrm{mL}\)), and the mean \(\mathrm{AUC}_{\tau}\) was \(75.8 \pm 44.5 \mathrm{ng}^{*} \mathrm{hr} / \mathrm{mL}\).

\subsection*{12.4 Microbiology \\ Mechanism of Action}

The mechanism of action of tavaborole is inhibition of fungal protein synthesis. Tavaborole inhibits protein synthesis by inhibition of an aminoacyl-transfer ribonucleic acid (tRNA) synthetase (AARS).

\section*{Activity in vitro and in clinical infections}

Tavaborole has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections [see Indications and Usage (1)]:

\section*{Trichophyton rubrum}

\section*{Trichophyton mentagrophytes}

\section*{Mechanism of Resistance}

Trichophyton mentagrophytes and Trichophyton rubrum strains from isolates collected in the clinical trials have not demonstrated resistance following repeated exposure to tavaborole.

\section*{13 NONCLINICAL TOXICOLOGY}

\subsection*{13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility}

In an oral carcinogenicity study in Sprague-Dawley rats, oral doses of \(12.5,25\), and \(50 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\) tavaborole were administered to rats once daily for 104 weeks. No drug related neoplastic findings were noted at oral doses up to \(50 \mathrm{mg} / \mathrm{kg} /\) day tavaborole (14 times the MRHD based on AUC comparisons).

In a dermal carcinogenicity study in CD-1 mice, topical doses of 5\%, 10\%, and \(15 \%\) tavaborole solution were administered to mice once daily for 104 weeks. No drug related neoplastic findings were noted at topical doses up to 15\% tavaborole solution (89 times the MRHD based on AUC comparisons).

Tavaborole revealed no evidence of mutagenic or clastogenic potential based on the results of two in vitro genotoxicity tests (Ames assay and Human lymphocyte chromosomal aberration assay) and one in vivo genotoxicity test (rat micronucleus assay).

No effects on fertility were observed in male and female rats that were administered oral doses up to 300 \(\mathrm{mg} / \mathrm{kg} /\) day tavaborole (107 times the MRHD based on AUC comparisons) prior to and during early pregnancy.

\section*{14 CLINICAL STUDIES}

The efficacy and safety of KERYDIN was evaluated in two multicenter, double-blind, randomized, vehiclecontrolled trials. KERYDIN or vehicle was applied once daily for 48 weeks in subjects with \(20 \%\) to \(60 \%\) clinical involvement of the target toenail, without dermatophytomas or lunula (matrix) involvement.

A total of 1194 subjects (795 KERYDIN, 399 Vehicle) 18 to 88 years of age, \(82 \%\) male, \(84 \%\) white, participated in these two trials. Efficacy assessments were made at 52 weeks following a 48 -week treatment period.

The Complete Cure efficacy endpoint included negative mycology (negative KOH wet mount and negative fungal culture) and Completely Clear Nail (no clinical evidence of onychomycosis as evidenced by a normal toenail plate, no onycholysis, and no subungual hyperkeratosis). Efficacy results from the two trials are summarized in Table 2.

Table 2: Efficacy Outcomes
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{3}{*}{ Efficacy Variable } & \multicolumn{2}{|c|}{ Trial 1 } & \multicolumn{2}{c|}{ Trial 2 } \\
\cline { 2 - 5 } & \begin{tabular}{c}
KERYDIN \\
\(\mathbf{N}=\mathbf{3 9 9}\) \\
\(\mathbf{n (\%)}\)
\end{tabular} & \begin{tabular}{c}
Vehicle \\
\(\mathbf{N}=\mathbf{1 9 4}\) \\
\(\mathbf{n}(\%)\)
\end{tabular} & \begin{tabular}{c}
KERYDIN \\
\(\mathbf{N}=\mathbf{3 9 6}\) \\
\(\mathbf{n (\%)}\)
\end{tabular} & \begin{tabular}{c}
Vehicle \\
\(\mathbf{N}=\mathbf{2 0 5}\) \\
\(\mathbf{n}(\%)\)
\end{tabular} \\
\hline Complete Cure \(^{\mathbf{n}}\) & \(26(6.5 \%)\) & \(1(0.5 \%)\) & \(36(9.1 \%)\) & \(3(1.5 \%)\) \\
\hline Complete or Almost Complete Cure \(^{\mathrm{b}}\) & \(61(15.3 \%)\) & \(3(1.5 \%)\) & \(71(17.9 \%)\) & \(8(3.9 \%)\) \\
\hline Mycologic Cure \(^{\mathbf{c}}\) & \(124(31.1 \%)\) & \(14(7.2 \%)\) & \(142(35.9 \%)\) & \(25(12.2 \%)\) \\
\hline
\end{tabular}
a. Complete cure defined as \(0 \%\) clinical involvement of the target toenail plus negative KOH and negative culture.
b. Complete or almost complete cure defined as \(\leq 10 \%\) affected target toenail area involved and negative KOH and culture
c. Mycologic cure defined as negative KOH and negative culture.

\section*{16 HOW SUPPLIED/STORAGE AND HANDLING}

\subsection*{16.1 How Supplied}

KERYDIN (tavaborole) topical solution, \(5 \%\) is a clear, colorless solution supplied in a \(12-\mathrm{mL}\) amber glass bottle with a screw cap. At initial use, the screw cap is replaced with the dropper assembly.

KERYDIN (tavaborole) topical solution, \(5 \%\) is supplied in the following presentation:

NDC 55724-111-11: One bottle containing 10 mL of solution with one glass pointed-tip dropper

\subsection*{16.2 Storage and Handling}

Store at \(20-25^{\circ} \mathrm{C}\left(68-77^{\circ} \mathrm{F}\right)\); excursions permitted to \(15-30^{\circ} \mathrm{C}\left(59-86^{\circ} \mathrm{F}\right)\) [see USP Controlled Room
Temperature].
CAUTION: Flammable. Keep away from heat and flame.
Discard product within 3 months after insertion of the dropper.
Keep bottle tightly closed. Keep out of reach of children.

\section*{17 PATIENT COUNSELING INFORMATION}

See FDA-approved patient labeling (Patient Information and Instructions for Use)

The patient should be told the following:
- Use KERYDIN as directed by a health care professional.
- KERYDIN is for external use only. Avoid contact with eyes, mouth, or vagina. Avoid contact with skin other than skin immediately surrounding the treated nail(s). Wipe away excess solution from surrounding skin.
- Clean and dry nails prior to KERYDIN use. KERYDIN should be applied to completely cover the nail surface and also applied under the tip of each nail being treated. Allow solution to dry following application.
- Inform a health care professional if the area of application shows signs of persistent irritation (for example, redness, itching, swelling).
- Forty-eight (48) weeks of daily application with tavaborole is considered the full treatment for toenail onychomycosis.
- Do not use KERYDIN for any disorder other than that for which it is prescribed.
- Product is flammable. Avoid use near heat or open flame.

Manufactured for:
Anacor Pharmaceuticals, Inc.
1020 East Meadow Circle
Palo Alto, CA 94303

Issue: 07/2014
ANACOR
KERYDIN \({ }^{T M}\) is a trademark of Anacor Pharmaceuticals, Inc.
(C) 2014 Anacor Pharmaceuticals, Inc.
U.S. Patent Nos. 7,767,657 and 7,582,621

\title{
Instructions for Use \\ KERYDIN \({ }^{\text {TM }}\) (ker' i din) \\ (tavaborole) Topical Solution, 5\%
}

Important information: KERYDIN is for use on toenails only. Do not use KERYDIN in your mouth, eyes, or vagina.

Read the Instructions for Use that comes with KERYDIN before you start using it. Talk to your healthcare provider if you have any questions.

\section*{How to apply KERYDIN:}

Your toenails should be clean and dry before you apply KERYDIN.
Step 1: Before you apply KERYDIN to your affected toenail for the first time, remove the cap from the KERYDIN bottle (See Figure A). Throw away the cap.
Step 2: Remove the wrapping from the dropper that comes with KERYDIN. Insert the dropper into the KERYDIN bottle. (See Figure B)

Figure A
Figure \(B\)
Only apply KERYDIN using the provided dropper. Do not use the dropper for any other purpose.

Step 3: With the dropper inserted into the KERYDIN, squeeze the bulb and then release the bulb to draw KERYDIN into the dropper.
Step 4: Remove the dropper from the bottle and hold the dropper tip over your affected toenail.
Step 5: Slowly squeeze the bulb to apply KERYDIN to your toenail. Apply enough solution to completely cover your toenail. You may need to use more than one drop. (See Figure C)

Figure C
Step 6: Use the dropper tip to gently spread KERYDIN to cover the entire toenail up to the edges of the toenail. (See Figure D)

Figure D
Step 7: In addition to the top of the toenail, also apply KERYDIN under the tip of the toenail. Use the dropper tip to gently spread KERYDIN under the entire tip of the toenail. (See Figures E and F)

Figure E
Figure F

Step 8: Repeat Steps 3 to 7 to apply KERYDIN to each affected toenail.
Step 9: Let the KERYDIN dry completely. This may take a couple of minutes.
If KERYDIN comes in contact with surrounding skin, use a tissue to wipe any excess solution from the surrounding skin. Do not wipe KERYDIN off of your toenails.
Step 10: After applying KERYDIN to your toenails, insert the dropper back into the bottle and screw it on tightly.
Step 11: Wash your hands with soap and water after applying KERYDIN.

This Patient Information and Instructions for Use has been approved by the U.S. Food and Drug Administration.

Manufactured for: Anacor Pharmaceuticals, Inc., 1020 East Meadow Circle, Palo Alto, CA, 94303 Issued: 07/2014

\section*{EXHIBIT C}

NDA 204427
NDA APPROVAL

Anacor Pharmaceuticals, Inc.
Attention: Carmen Rodriguez, MSc
Vice President, Regulatory Affairs and Quality
1020 East Meadow Circle
Palo Alto, CA 94309-4320

Dear Ms. Rodriguez:
Please refer to your New Drug Application (NDA) dated July 26, 2013, received July 29, 2013, submitted under section 505(b) of the Federal Food, Drug, and Cosmetic Act (FDCA) for Kerydin (tavaborole) topical solution, \(5 \%\).

We acknowledge receipt of your amendments dated August 9, 14 and 19, October 18, 23 and 30, November 18 and 25, and December 19 and 27, 2013: January 16, 21 and 31, April 1, 4 and 18, May 5, 13 and 20, and June 2, 11 and 23, 2014.

This new drug application provides for the use of Kerydin (tavaborole) topical solution, \(5 \%\) for the topical treatment of onychomycosis of the toenails due to Trichophyton rubrum or Trichophyton mentagrophytes.

We have completed our review of this application, as amended. It is approved, effective on the date of this letter, for use as recommended in the enclosed agreed-upon labeling text.

\section*{CONTENT OF LABELING}

As soon as possible, but no later than 14 days from the date of this letter, submit the content of labeling [21 CFR 314.50(1)] in structured product labeling (SPL) format using the FDA automated drug registration and listing system (eLIST), as described at http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm. Content of labeling must be identical to the enclosed labeling (text for the package insert, text for the patient package insert). Information on submitting SPL files using eLIST may be found in the guidance for industry SPL Standard for Content of Labeling Technical Qs and As, available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/U CM072392.pdf.

The SPL will be accessible via publicly available labeling repositories.

\section*{CARTON AND IMMEDIATE CONTAINER LABELS}

Submit final printed carton and immediate container labels that are identical to the enclosed carton and immediate container labels, as soon as they are available, but no more than 30 days after they are printed. Please submit these labels electronically according to the guidance for industry Providing Regulatory Submissions in Electronic Format - Human Pharmaceutical Product Applications and Related Submissions Using the eCTD Specifications (June 2008). Alternatively, you may submit 12 paper copies, with 6 of the copies individually mounted on heavy-weight paper or similar material. For administrative purposes, designate this submission "Final Printed Carton and Container Labels for approved NDA 204427." Approval of this submission by FDA is not required before the labeling is used.

Marketing the product(s) with FPL that is not identical to the approved labeling text may render the product misbranded and an unapproved new drug.

\section*{ADVISORY COMMITTEE}

Your application for (tavaborole) topical solution, \(5 \%\) was not referred to an FDA advisory committee because outside expertise was not necessary; there were no controversial issues that would benefit from advisory committee discussion.

\section*{REQUIRED PEDIATRIC ASSESSMENTS}

Under the Pediatric Research Equity Act (PREA) (21 U.S.C. 355c), all applications for new active ingredients, new indications, new dosage forms, new dosing regimens, or new routes of administration are required to contain an assessment of the safety and effectiveness of the product for the claimed indications in pediatric patients unless this requirement is waived, deferred, or inapplicable.

We are waiving the pediatric study requirement for ages 0 to 11 years and 11 months because necessary studies are impossible or highly impracticable. This is because onychomycosis due to Trichophyton rubrum or Trichophyton mentagrophytes is not prevalent in the population younger than 12 years of age.

We are deferring submission of your pediatric study for ages 12 to 17 years and 11 months for this application because this product is ready for approval for use in adults and the pediatric study has not been completed.

Your deferred pediatric study required by section 505B(a) of the FDCA is a required postmarketing study. The status of this postmarketing study must be reported annually according to 21 CFR 314.81 and section \(505 B(a)(3)(B)\) of the Federal Food, Drug, and Cosmetic Act. This required study is listed below.

PMR 2154-1 Pharmacokinetic/safety study of tavaborole topical solution, 5\% in 40 pediatric subjects age 12 to 17 years and 11 months with onychomycosis of the toenails.

Pharmacokinetic assessments will be done in at least 16 evaluable subjects under maximal use conditions.
\begin{tabular}{ll}
Final Protocol Submission: & \(12 / 2014\) \\
Study Completion: & \(12 / 2018\) \\
Final Report Submission: & \(06 / 2019\)
\end{tabular}

Submit the protocol(s) to your IND 071206, with a cross-reference letter to this NDA.
Reports of this required pediatric postmarketing study must be submitted as a new drug application (NDA) or as a supplement to your approved NDA with the proposed labeling changes you believe are warranted based on the data derived from these studies. When submitting the reports, please clearly mark your submission "SUBMISSION OF REQUIRED PEDIATRIC ASSESSMENTS" in large font, bolded type at the beginning of the cover letter of the submission.

\section*{PROMOTIONAL MATERIALS}

You may request advisory comments on proposed introductory advertising and promotional labeling. To do so, submit, in triplicate, a cover letter requesting advisory comments, the proposed materials in draft or mock-up form with annotated references, and the package insert to:

Food and Drug Administration
Center for Drug Evaluation and Research
Office of Prescription Drug Promotion
5901-B Ammendale Road
Beltsville, MD 20705-1266
As required under 21 CFR \(314.81(\mathrm{~b})(3)(\mathrm{i})\), you must submit final promotional materials, and the package insert, at the time of initial dissemination or publication, accompanied by a Form FDA 2253. Form FDA 2253 is available at http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM083570.pdf. Information and Instructions for completing the form can be found at http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM375154.pdf. For more information about submission of promotional materials to the Office of Prescription Drug Promotion (OPDP), see http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm090142.htm.

\section*{REPORTING REOUIREMENTS}

We remind you that you must comply with reporting requirements for an approved NDA (21 CFR 314.80 and 314.81).

\section*{MEDWATCH-TO-MANUFACTURER PROGRAM}

The MedWatch-to-Manufacturer Program provides manufacturers with copics of serious adverse event reports that are received directly by the FDA. New molecular entities and important new biologics qualify for inclusion for three years after approval. Your firm is eligible to receive copies of reports for this product. To participate in the program, please see the enrollment instructions and program description details at http://www.fda.gov/Safety/MedWatch/HowToReport/ucm166910.htm.

\section*{POST APPROVAL FEEDBACK MEETING}

New molecular entities and new biologics qualify for a post approval feedback meeting. Such meetings are used to discuss the quality of the application and to evaluate the communication process during drug development and marketing application review. The purpose is to learn from successful aspects of the review process and to identify areas that could benefit from improvement. If you would like to have such a meeting with us, call the Regulatory Project Manager for this application.

\section*{PDUFA V APPLICANT INTERVIEW}

FDA has contracted with Eastern Research Group, Inc. (ERG) to conduct an independent interim and final assessment of the Program for Enhanced Review Transparency and Communication for NME NDAs and Original BLAs under PDUFA V ('the Program'). The PDUFA V Commitment Letter states that these assessments will include interviews with applicants following FDA action on applications reviewed in the Program. For this purpose, first-cycle actions include approvals, complete responses, and withdrawals after filing. The purpose of the interview is to better understand applicant experiences with the Program and its ability to improve transparency and communication during FDA review.

ERG will contact you to schedule a PDUFA V applicant interview and provide specifics about the interview process. Your responses during the interview will be confidential with respect to the FDA review team. ERG has signed a non-disclosure agreement and will not disclose any identifying information to anyone outside their project team. They will report only anonymized results and findings in the interim and final assessments. Members of the FDA review team will be interviewed by ERG separately. While your participation in the interview is voluntary, your feedback will be helpful to these assessments.

NDA 204427
Page 5

If you have any questions, call Cristina Attinello, Senior Regulatory Project Manager, at (301) 796-3986.

Sincerely,
\{See appended electronic signature page\}
Amy G. Egan, MD, MPH
Deputy Director (acting)
Office of Drug Evaluation III
Center for Drug Evaluation and Research

\footnotetext{
Enclosures:
Content of Labeling
Carton and Container Labeling
}

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.
/s/

AMY G EGAN
07/07/2014

\section*{EXHIBIT D}

This collection of information is required by 37 CFR 3.73 (b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, U.S.
Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: COmmissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A. record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

On this 26th day of August, 2014, I certify that the attached document is a true, exact, complete, and unaltered copy (12 pages) made by me from our files of a Certified Copy of an Assignment from the inventors to Anacor Pharmaceuticals, Inc.

\(\square\) PATENT ASSIGNMENT

Electronic Version v1.1
Stylesheet Version v1.1
\begin{tabular}{|l|l|}
\hline SUBMISSION TYPE: & NEW ASSIGNMENT \\
\hline \hline NATURE OF CONVEYANCE: & ASSIGNMENT \\
\hline
\end{tabular}

CONVEYING PARTY DATA
\begin{tabular}{|l|l|}
\hline & \multicolumn{1}{c|}{ Name } \\
\hline Stephen J. Baker & Execution Date \\
\hline \hline Tsutomu Akama & \(04 / 28 / 2006\) \\
\hline Carolyn Bellinger-Kawahara & \(04 / 28 / 2006\) \\
\hline \hline Karin M. Hold & \(04 / 28 / 2006\) \\
\hline James J. Leyden & \(04 / 28 / 2006\) \\
\hline Kirk R. Maples & \(06 / 19 / 2006\) \\
\hline Jacob J. Plattner & \(04 / 28 / 2006\) \\
\hline Virginia Sanders & \(04 / 28 / 2006\) \\
\hline Yong-Kang Zhang & \(04 / 28 / 2006\) \\
\hline Vincent S. Hernandez & \(04 / 28 / 2006\) \\
\hline
\end{tabular}

\section*{RECEIVING PARTY DATA}
\begin{tabular}{|l|l|}
\hline Name: & Anacor Pharmaceuticals, Inc. \\
\hline Street Address: & 1060 East Meadow Circle \\
\hline City: & Palo Alto \\
\hline State/Country: & CALIFORNIA \\
\hline Postal Code: & 94303 \\
\hline
\end{tabular}

PROPERTY NUMBERS Total: 1
\begin{tabular}{||l|l|}
\hline Property Type & Number \\
\hline \hline Application Number: & 11357687 \\
\hline
\end{tabular}

\section*{CORRESPONDENCE DATA}

Fax Number:
(650)843-4001

Correspondence will be sent via US Mail when the fax attempt is unsuccessful.
Phone:
415-442-1749
Email: kdegliantoni@morganlewis.com
Correspondent Name: Jeffry S. Mann
Address Line 1: MLB, LLP, Two Palo Alto Square
500121215
\begin{tabular}{|ll|l||}
\hline \begin{tabular}{ll}
Address Line 2: \\
Address Line 4:
\end{tabular} & \begin{tabular}{l}
3000 El Camino Real, Suite 700 \\
Palo Alto, CALIFORNIA 94306
\end{tabular} \\
\hline ATTORNEY DOCKET NUMBER: & Jeffry S. Mann \\
\hline NAME OF SUBMITTER: \\
\hline \begin{tabular}{l}
Total Attachments: 9 \\
source=A5014US\#page1.tif \\
source=A5014US\#page2.tif \\
source=A5014US\#page3.tif \\
source=A5014US\#page4.tif \\
source=A5014US\#page5.tif \\
source=A5014US\#page6.tif \\
source=A5014US\#page7.tif \\
source=A5014US\#page8.tif \\
source=A5014US\#page9.tif
\end{tabular} \\
\hline
\end{tabular}

Attorney Docket No. 64507-5014-US

Form PTO-1595
Recordation Form Cover Sheet
Patents Only
Page 2
1. Additional name(s) of conveying party(ies): (Continued from Page 1)

Vincent S. Hernandez
Karin M. Hold
James J. Leyden
Kirk R. Maples
Jacob J. Plattner
Virginia Sanders
Yong-Kang Zhang
2. Additional name(s) and address(es) of receiving party(ies):
(Continued from Page 1)
3. Additional application number(s) or patent number(s):
(Continued from Page 1)
A. Patent Application No.(s)
B. Patent No. (s)

\section*{ASSIGNMENT OF PATENT APPLICATION}

\section*{JOINT}

WHEREAS, Stephen J. Baker of 1568 Begen Avenue, Mountain View, CA, 94040; Tsutomu Akama of 832 Azure Street, Sunnyvale, CA, 94087; Carolyn Bellinger-Kawahara of 15 Landa Lane, Redwood City, CA, 94061 ; Vincent S. Hernandez of 287 Gilchrist Lane, Watsonville, CA, 95076; Karin M. Hold of 1908 Valdez Avenue, Belmont, CA, 94002; James J. Leyden of 319 Applebrook Drive, Malvern, CA, 19355; Kirk R. Maples of 1195 San Moritz Drive, San Jose, CA 95132; Jacob J. Plattner of 1016 Amito Avenue, Berkeley, CA 94705; Virginia Sanders of 2895 Harrison Street, Apt. 4, San Francisco, CA, 94110 ; and Yong-Kang Zhang of 5151 Westmont Avenue, San Jose, CA, 95130, hereinafter referred to as "Assignors," are the inventors of the invention described and set forth in the below-identified patent application:

Title of Invention:
Filing Date:
Application No.:

BORON-CONTANING SMALL MOLECULES
February 16, 2006
11/357,687; and

WHEREAS, Anacor Pharmaceuticals, Inc., located at 1060 East Meadow Circle, Palo Alto, CA 94303, hereinafter referred to as "ASSIGNEE," is desirous of acquiring an interest in the invention and application and in any U.S. Letters Patent and Registrations which may be granted on any patent application claiming priority from the same;

For good and valuable consideration, receipt of which is hereby acknowledged by Assignors, Assignors have assigned, and by these presents does assign to Assignee all right, title and interest in and to the invention and application and to all foreign counterparts (including patent, utility model and industrial designs), and in and to any Letters Patent and Registrations which may hereafter be granted on any patent application claiming priority from the same in the United States and all countries throughout the world, and to claim the priority from the application as provided by the Paris Convention. The right, title and interest is to be held and enjoyed by Assignee and Assignee's successors and assigns as fully and exclusively as it would have been held and enjoyed by Assignors had this Assignment not been made, for the full term of any Letters Patent and Registrations which may be granted thereon, or of any division, renewal, continuation in whole or in part, substitution, conversion, reissue, prolongation or extension thereof.

Assignors further agree that Assignors will, without charge to Assignee, but at Assignee's expense, (a) cooperate with Assignee in the prosecution of U.S. Patent applications and foreign counterparts on the invention and any improvements, (b) execute, verify, acknowledge and deliver all such further papers, including applications and instruments of transfer, and (c) perform such other acts as Assignee lawfully may request to obtain or maintain Letters Patent and Registrations for the invention and improvements in any and all countries, and to vest title thereto in Assignee, or Assignee's successors and assigns.

Assignors hereby authorize and request Morgan, Lewis \& Bockius LLP, One Market, Spear Street Tower, San Francisco, CA 94105, to insert herein above the application number and filing date of said application when known.

Assignment
Attorney Docket No.: 064507-5014-US
Page 2
IN TESTIMONY WHEREOF, Assignors have signed his/her names on the dates indicated.
Dated:

STEPHEN J. BAKER

\section*{STATE OF CALIFORNIA) \\ county of Sauta Clara) ss. \\ } STEPHEN J. BAKER, personally known to me for proved to me no the basion satisfoetory-ovidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hgt authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WTTNESS my hand and official seal.

Dated:

\section*{STATE OF CALIFORNIA}
county of Squeal Clara)
on f TSUTOMU AKAMA, personally known to me (or proved to me on the basis of satisfactovidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/sple executed the same in his/hot authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

1-SF/7364295.1

Assignment
Attomey Docket No.: 064507-5014-US
Page 3
Dated: \(\qquad\)

\section*{STATE OF CALIFORNIA}
)
ss. county of Saute Clara)

\section*{} CAROLYN BELLINGER-KAWAHARA, personally known to me for proved to me on the basis of -a ceryeverice) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

STATE OF CALIFORNIA

\section*{county of Sente Clara) s.}
om April 28,200 before mo Do nielle M. Equitfersonally appeared VINCENT S. HERNANDEZ, personally known to me proved to me tho basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hyr authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expiressuey 12,2007

\section*{Assignment}

Attorney Docket No.: 064507-5014-US
Page 4
Dated: \(\qquad\)

KARMA. HOLD

onfaril 28, gat lo before me Donnie \(1(e\) M. Equitó personally appeared KARIN M. HOLD, personally known to me (or prove basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in \(\mathrm{b} / \mathrm{s} / \mathrm{her}\) authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

Dated: \(\qquad\)
JAMES J. LEYDON

\section*{STATE OF}

COUNTY OF
```

) ss.

```

On \(\qquad\) before me, \(\qquad\) personally appeared JAMES J. LEYDON, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: \(\qquad\)

Assignment
Attorney Docket No.: 064507-5014-US
Page 4
Dated: \(\qquad\)
KARIN M. HOLD
STATE OF CALIFORNIA
COUNTY OF
```

) ss.

``` )

On \(\qquad\) before me, \(\qquad\) personally appeared KARIN M. HOLD, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

NOTARY PUBLIC
My Commission Expires: \(\qquad\)

Dated:

STATE OF
COUNTY OF
)
) ss.

On \(\qquad\) , before me, \(\qquad\) personally appeared JAMES J. LEYDEN, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

NOTARY PUBLIC
My Commission Expires: \(\qquad\)

Assignment
Attomey Docket No.: 064507-5014-US
Page 5
Dated: \(\qquad\)
4/28/06
\(\underset{\text { KIRK R. MAPLES }}{7 G R}\)

\section*{STATE OF CALIFORNIA}
)
COUNTY OFSauta Clara) ss.
On April 28, gown before me Danielle U Equity personally appeared KIRK R. MAPLES, personally known to me for proved to me -on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/spe executed the same in his/hfr authorized capacity, and that by his/hfr signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

STATE OF CALIFORNIA J. PLATTNER, personally known to me for proved to me-on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hgf authorized capacity, and that by his/hor signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: ReLy ,D,D007

Assignment
Attorney Docket No.: 064507-5014-US
Page 6

Dated: \(\qquad\)

STATE OF CALIFORNIA
)

\section*{COUNTY OF Sputa (lana)}
on feral - 28.20 before mestonielte \(M\). Equittpersonally appeared
VIRGINIA SANDERS, personally known to me (or proved to me the basis of satisfactory ene to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in his/her authorized capacity, and that by bris/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WIFNESS my hand and official seal.

Dated: \(\qquad\) 4-28-2006

STATE OF CALIFORNIA
) COUNTY OF Surta(lara) ss.
 YONG-KANG ZHANG, personally known to me (or proved to me on the basis of satisfory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/gre executed the same in his/hqf authorized capacity, and that by his/hef signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

1-SF/7364295.1

\section*{EXHIBIT E}

\section*{POWER OF ATTORNEY
OR
REVOCATION OF POWER OF ATTORNEY
WITH A NEW POWER OF ATTORNEY
AND
CHANGE OF CORRESPONDENCE ADDRESS}
\begin{tabular}{|l|l|}
\hline Application Number & \(11 / 357,687\) \\
\hline Filing Date & February 16, 2006 \\
\hline First Named Inventor & Baker, Stephen J. \\
\hline Title & BORON-CONTAINING SMALL MOLECULES \\
\hline Art Unit & 1626 \\
\hline Examiner Name & Shiao, Rei Tsang \\
\hline Attorney Docket Number & \(064507-5014 \mathrm{US}\) \\
\hline
\end{tabular}

I hereby revoke all previous powers of attomey given in the above-identified application.
A Power of Attomey is submitted herewith.
OR

I hereby appoint Practitioner(s) associated with the following Customer Number as my/our attorney(s) or agent(s) to prosecute the application identified above, and to transact all business in the United States Patent
 and Trademark Office connected therewith:
ORI hereby appoint Practitioner(s) named below as my/our attomey(s) or agent(s) to prosecute the application identified above, and to transact all business in the United States Patent and Trademark Office connected therewith:
\begin{tabular}{|c|c|}
\hline Practitioner(s) Name & Registration Number \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Please recognize or change the correspondence address for the above-identified application to:
\(X\) The address associated with the above-mentioned Customer Number.
\begin{tabular}{|c|c|c|c|c|}
\hline OR
The address ass OR & ociated with Customer Number: & & & \\
\hline Firm or Individual Name & & & & \\
\hline Address & \multicolumn{4}{|l|}{} \\
\hline City & & State & & Zip \\
\hline Country & \multicolumn{4}{|l|}{} \\
\hline Telephone & & Email & & \\
\hline \begin{tabular}{l}
I am the:
Applicant/lnventor OR \\
Assignee of reco Statement under
\end{tabular} & d of the entire interest. See 37 37 CFR 3.73 (b) (Form PTO/SB & or filed & & \\
\hline \multicolumn{5}{|c|}{SIGNATURE of Applicant or Assignee of Record} \\
\hline Signature & \multicolumn{3}{|l|}{} & 8/28/2014 \\
\hline Name & \multicolumn{2}{|l|}{Ryan Walsh} & Telephone & 650-543-7531 \\
\hline Title and Company & \multicolumn{4}{|l|}{Chief IP \& Litigation Counsel - Anacor Pharmaceuticals, Inc.} \\
\hline
\end{tabular}

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more than one signature is required, see below".
\(X\) *Total of 1 forms are submitted.
This collection of information is required by 37 CFR 1.31, 1.32 and 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete. including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an Intemational Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{EXHIBIT F}

\section*{MAINTENANCE FEE STATEMENT}

According to the records of the U.S.Patent and Trademark Office (USPTO), the maintenance fee and any necessary surcharge have been timely paid for the patent listed below. The "PYMT DATE" column indicates the payment date (i.e., the date the payment was filed).

The payment shown below is subject to actual collection. If the payment is refused or charged back by a financial institution, the payment will be void and the maintenance fee and any necessary surcharge unpaid.

Direct any questions about this statement to: Mail Stop M Correspondence, Director of the USPTO, P.O.Box 1450, Alexandria, VA 22313-1450.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PATENT NUMBER & FEE AMT & \begin{tabular}{l}
SUR \\
CHARGE
\end{tabular} & \begin{tabular}{l}
PYMT \\
DATE
\end{tabular} & \begin{tabular}{l}
U.S. \\
APPLICATION NUMBER
\end{tabular} & PATENT ISSUE DATE & \begin{tabular}{l}
APPL \\
FILING DATE
\end{tabular} & PAYMENT YEAR & \begin{tabular}{l}
ENTITY \\
STATUS
\end{tabular} & ATTY DKT NUMBER \\
\hline 7582621 & \$1,150.00 & \$0.00 & 10/22/12 & 11357687 & 09/01/09 & 02/16/06 & 04 & LARGE & 064507-5014US \\
\hline
\end{tabular}

\section*{EXHIBIT G}

\section*{Best Available Copy}

IND 71,206: AN2690 Solution for Onychomycosis
FDA Communications Chronology
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline \[
\begin{array}{r}
423 / 2014 \\
4
\end{array}
\] & Sübmission & SNO150 & PROTOCOLTAMENDMENT- NEWINVESTIGATOR (Study TAV-ONYC-206) \\
\hline \[
4 / 03 / 2014
\] & Sübmission & \[
=\mathrm{SNO} 0149
\] & PROTOCOL AMENDMENI - NEWINVESTIGATOR (Stüdy TAV-ONYC-206) Youngswick, Noroyyän, Marshàll, Dodson. \\
\hline \[
3 / 1772014
\] & \(\qquad\) & SNO148 & PROTOCOLEAMENDMENT F NEWINVESTIGAFOR (Study TAV-ONYC-206)
Caponisso, Brill, Sigal \\
\hline \(3 / 10 / 2014\) & - Suibission: & SNO147 & PROTOCOLAMENDMENT:F NEWINVESTIGATOR (STUdy TAV-ONYC-206) Weisfeld, Ashton; Penny, Surprenant, Kasper, Dumne, Reyzelman \\
\hline \(3103 / 2014\) & Suibmission & SNOP146 & PROTOCOL AMENDMENT - NEW INVESTIGATOR (Study TAV-ONYC-206)
Agnew Hori, Pollak: \\
\hline 2714/2014 & Subinission & - SN0145 & Protocol Amendment New Protocol (TAVOONY(G-206) and New Investigator Information Amendment-Clinical (Updated IB) Infomation Amendment-CMG (Investigational Label) \\
\hline \[
\begin{aligned}
& 11 / 27 / 2013 \\
& 18 \\
& 8 \\
& 8
\end{aligned}
\] & Sübmission
Fi,
F & \[
\begin{array}{r}
\text { SNO144 } \\
\\
x^{2}+2
\end{array}
\] & \begin{tabular}{l}
ANNUAL REPORT: \\
INFORMATION AMENDMENT, CLINICAL F FinalClinicai Study Reports for Study AN2690-ONYC-301 repoif 002 -GL CL \(008-01\)) and Study AN \(2690-0 N Y G-302\) (reportoon 4 NCH 00901)
\end{tabular} \\
\hline 09/24/2013 & Email & - & FDA Correspondence \\
\hline 09/16/2013 & Call & - & Teleconference with FDA \\
\hline 09/13/2013 & Letter & - & FDA Correspondence \\
\hline \[
07 / 2412013
\] & Sublissiont & SN0143. & CL-007-01) For study AN \(2690-0 N Y C-103\) \\
\hline 07/18/2013 & Call & - & Teleconference with FDA \\
\hline 0718182013 & Submission & SN0142 & INFORMATION AMENDMENT - PHARMACOLOGY/TOXCOLOGY: FInal nonclifical Study Reports: 002-NCE PP-017-01 \& 002-NGL PP-018-04 \\
\hline 07717/2013 & Submission & SN0141 & INFORMATIONAMENDMENT-CLINIGAE Clinical Sididy Report Enata , \% \\
\hline \[
0717 / 2043
\] & \[
\begin{array}{r}
\text { Sibmission } \\
-
\end{array}
\] & SNO140 & INFORMATION AMENDMENT - PHARMACOLOGYKOXICOLOGYFINAI Nonctinical Study Repors:002-NEL PK-069-01 \& 002 NCL PK-070-01 \\
\hline \(07 / 1612013\) & - Subbnission & SNO139 & INFORMATION AMENDMENT - CLINIGAL OHinical Study Report Erata ro \\
\hline \[
071032013
\] & Submission & SNO 138 & \\
\hline 06/26/2013 & Letter & - & FDA Correspondence \\
\hline 06/25/2013 & Submission Sample & - & Electronic Submission Sample: eCTD. Submitted to agency from Omnicia. \\
\hline 06/17/2013 & Email & .- & FDA Correspondence \\
\hline 06/14/2013 & Email & - & FDA Correspondence \\
\hline 06/14/2013 & Letter & - & FDA Correspondence \\
\hline 06/13/2013 & Telephone Call & - & Teleconference with FDA \\
\hline 06/10/2013 & Email & - & FDA Correspondence \\
\hline 06/10/2013 & Telephone Call & - & Teleconference with FDA \\
\hline 06/10/2013 & Telephone Call & - & Teleconference with FDA \\
\hline 06/07/2013 & Letter & - & FDA Correspondence \\
\hline 06/07/2013 & Telephone Call & - & Teleconference with FDA \\
\hline 06/04/2013 & Email & - & FDA Correspondence \\
\hline 06/03/2013 & Email & - & FDA Correspondence \\
\hline 05/24/2013 & Email & - & FDA Correspondence \\
\hline
\end{tabular}

Page 1 of 11
6234424 vl

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 405／2412013 & S．Sibmission & SNOT3才 & \\
\hline 05／24／2013 & Email & － & FDA Correspondence \\
\hline 05／23／2013 & Email & － & FDA Correspondence \\
\hline 05／22／2013 & Telephone Call & － & Teleconference with FDA \\
\hline 05／21／2013 & Email & － & FDA Correspondence \\
\hline 05／21／2013 & Email & － & FDA Correspondence \\
\hline 05／16／2013 & Telephone Call & － & Teleconference with FDA \\
\hline 05／14／2013 & Fax & － & FDA Correspondence \\
\hline 05／13／2013 & Telephone Call & － & Teleconference with FDA \\
\hline 05／08／201．3 & Email & － & FDA Correspondence \\
\hline 05／03／2013 & Letter & － & FDA Correspondence \\
\hline 苞04/2420:13, & Subnission, & SNOAB6, & RROTOGOL AMENDMENT NEWINVESTIGATOR（UPdated EOMS FDA 1572 for Stidy－AN2690ON YC＝302） \\
\hline 04／18／2013 & Letter & － & FDA Correspondence \\
\hline 04／18／2013 & Email & － & FDA Correspondence \\
\hline 04／18／2013 & Telephone Call & － & Teleconference with FDA \\
\hline 04／15／2013 & Email & － & FDA Correspondence \\
\hline 04／12／2013 & Email & － & FDA Correspondence \\
\hline & Stitubmission & －SN0135 \({ }^{\text {a }}\) & \\
\hline 4／11／2013 & Telephone Call & － & Teleconference with F．DA \\
\hline & \[
{ }^{2} \mid
\] & \[
{ }^{\operatorname{SNSOP} \mathrm{S}^{2}}
\] & \(002 N G L E 07202\) \\
\hline 04／04／2013 & Letter & － & FDA Correspondence \\
\hline 04／01／2013 & Letter & － & FDA Correspondence \\
\hline 03／29／2013 & Email & － & FDA Correspondence \\
\hline 共03/29/2013 & & KSNO133 & 022 CENCD06－01 \\
\hline & S- Submisionever & SisNOT32 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 03／19／2013 & Email & － & FDA Correspondence \\
\hline 03／19／2013 & Email & － & FDA Correspondence \\
\hline \[
\begin{gathered}
03 / 48 / 2013 \\
4
\end{gathered}
\] & Wibinision Se & & Tavarivinis favaborote） \\
\hline 03／08／2013 & Email & － & FDA Correspondence \\
\hline 03／08／2013 & Telephone & － & Teleconference with FDA \\
\hline 03／04／2013 & Email & －F & FDA Correspondence \\
\hline 02／28／2013 & Email & － & FDA Correspondence \\
\hline 02／26／2013 & Letter／Submission & N／A & FDA Correspondence \\
\hline 02／25／2013 & Email & － & FDA Correspondence \\
\hline & & \[
\mid
\] & Studes AN26900NYC 301 and AN26900NYG 302 ） \\
\hline E0215／2013＋1 & Situbision & SN0129 & \\
\hline 0214／2013 & Email & － & FDA Correspondence \\
\hline 02／14／2013 & Letter & － & FDA Correspondence \\
\hline 02／12／2013 & Letter & － & FDA Correspondence \\
\hline
\end{tabular}

Page 2 of 11

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 0020712013 & & SN0128is & \\
\hline 02/05/2013 & Email & - & FDA Correspondence \\
\hline 02/04/2013 & Letter & - & FDA Correspondence \\
\hline 02/04/2013 & Email & - & FDA Correspondence \\
\hline 02/01/2013 & Letter & - & FDA Correspondence \\
\hline 801130120137 & Subinsion, re & SN01279 & \\
\hline & Sobinission reve & SN0126 & ONMC301 \\
\hline \[
01121120139
\] & Submission yet & SNOT255 & Studies-AN 2690 ONYC 301 and AN 26900 ONYC 302) \\
\hline 01/04/2013 & Call & - & Teleconference with FDA \\
\hline \[
120 / 2012
\] & E, Submission & \[
\mathrm{SNO} 24
\] & PROTOCOLAMENDMENT - NEWINVESTIGATOR UPdated FomS FDA 1572 for Studies AN2690 ONYC-301 and AN2690ONYC 302) \\
\hline \[
112 / 72012
\] & In Stibmision, We & SNO123 & INF ORMATION AMENDMENTSCESICAL Statstical Analysis Plans for Stides AN2690-ONY 102 and AN26900NYC 103 \\
\hline 12/14/2012 & Email & - & FDA Correspondence \\
\hline 12/13/2012 & Email & - & FDA Correspondence \\
\hline 12/10/2012 & Telephone Call & - & Teleconference with FDA \\
\hline 12/10/2012 & Email & - & FDA Correspondence \\
\hline 1205/2012 & Letter & - & FDA Correspondence \\
\hline 1204/2012 & Letter & - & FDA Correspondence \\
\hline 12/04/2012 & Call & - & Teleconference with FDA \\
\hline 12/04/2012 & Email & - & FDA Correspondence \\
\hline 12/03/2012 & Email & - & FDA Correspondence \\
\hline F130120129 & 等S Subisision may & CSNOM2 & \\
\hline \[
\text { E12 } 1280124
\] & & & \\
\hline 11/27/2012 & Email & - & FDA Correspondence \\
\hline 412712012 & & RSNO12094 & Studes AN2690 ONO 301 and AN2690 ONYC 302 \\
\hline \[
11 / 2712012
\] & & HSN0199 & \\
\hline 11/20/2012 & Email & - & FDA Cortespondence \\
\hline 11/20/2012 & Letter & - & FDA Correspondence \\
\hline \[
111622012=
\] & & SNOP18 & INEORMAONANENONEGEMISHE \\
\hline H116/10012ag & Vivibission & SNO117V量 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 11/14/2012 & Email & - & FDA Correspondence \\
\hline 11/14/2012 & Email & - & FDA Correspondence \\
\hline 11/14/2012 & Email & - & FDA Correspondence \\
\hline 11/14/2012 & Email & - & FDA Correspondence \\
\hline 11/13/2012 & Email & - & FDA Correspondence \\
\hline 11/13/2012 & Email & - & FDA Correspondence \\
\hline 11/13/2012 & Email & - & FDA Correspondence \\
\hline 11/12/2012 & Email & - & FDA Correspondence \\
\hline
\end{tabular}

Page 3 of 11

\section*{Best Available Copy}

Page 4 of 11

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline \[
\begin{gathered}
\hline 4 / 26 / 2012 \& \\
5 / 6 / 2012 \\
\hline
\end{gathered}
\] & Email & － & FDA Correspondence \\
\hline & & & \begin{tabular}{l}
PROTOCOLAMENBMENT REVISEDRROTOCOLA Randomized CROSOVE M \\
 Moxifloxacinin HealtyySubects＇（SudyAN2690EONYC102）（1QT）： \\
 Studies AN2690ONY 301 and AN2690：ONYC－302）
\end{tabular} \\
\hline 5 \(5 / 1 / 2012\) & S Sutimissiont & SN0097， & EROTOGOE AMENBMENT－NEW RROTECOL Study AN2690ONYC－103RRIPTE \\
\hline \[
54 / 2712012
\] & Submission & SSNO096第 & liformataöntAmendment．\(M C\)（CMC summany sample drug abels， CoA ） Informan Amendmentelinal（updadedAN26901B） \\
\hline 4／25／2012 & Letter & － & FDA Correspondence \\
\hline \[
4472012
\] & \[
\text { Submission } \mathrm{S}
\] & SNOO95 & Erontocol Amendment New Protocol（AN2600－0NYC－102 TOT）and New Investigator \\
\hline 4－312712012 & －Submission & SSN0094 & Protocol＇Amendment Néw lnvestightor（updated 1572s），＋1， \\
\hline \[
\text { 㤠 } 312122012 \mathrm{x}
\] & Whabmionty & SN0093 & Informationtamendment clinical \\
\hline Wix 21292012 & Wmbumisson， & STNOO92\％ & Protacolianendmbent New hve tigato updated 1572s） \\
\hline 2／29／2012 & Email & － & FDA Correspondence \\
\hline 2／29／2012 & Email／Official Correspondence & － & FDA Correspondence \\
\hline 2／28／2012 & Email & － & FDA Correspondence \\
\hline \[
\begin{gathered}
2 / 27- \\
2 / 28 / 2012
\end{gathered}
\] & Email & － & FDA Correspondence \\
\hline 2／24／2012 & Email & － & FDA Correspondence \\
\hline & & STN009119 & \\
\hline 211／2012 & Email & － & FDA Correspondence \\
\hline 軖211/2012 & & PSNOO90 \({ }^{\text {P }}\) & Type emeeting Bieftrg Book Subinission \\
\hline 1／4／2012 & Email & － & FDA Correspondence \\
\hline 127／2011 & Email & － & FDA Correspondence \\
\hline & Subinistion ind & & \\
\hline Wivironir & & & \\
\hline W1301201120 & & WhNo087． & Anmal Report \\
\hline 11／3／2011 & Email & － & FDA Correspondence \\
\hline & Reppeat：Submission & & \begin{tabular}{l}
Resumitted SN0086 dưe to submission being sento incorectaddress Three INE \\
 \\
 \\
 ROCKVIE ME 208503202 US：
\end{tabular} \\
\hline \[
101919014=
\] & & FTSN0086 & Protoconmendmetw \\
\hline 9／19／2011 & Letter from FDA & － & FDA Correspondence \\
\hline P9／19／20117 & & & \\
\hline 9／13／2011 & Email from FDA & － & FDA Correspondence \\
\hline 痏9/13/2011 & RETibission & SND084 & \\
\hline 9／8／2011 & \[
\begin{aligned}
& \text { Email to and from } \\
& \text { FDA }
\end{aligned}
\] & － & FDA Correspondence \\
\hline 28／120011 & ray Subision & \[
\text { SN0083 }{ }^{4}
\] & \\
\hline 8／1／2011 & Email to and from FDA & － & FDA Correspondence \\
\hline 26／29720911 & Submission \({ }_{\text {P }}\) ， & SN0082 & \\
\hline
\end{tabular}

Page 5 of 11
6234424vl

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline F* & +4- & & \\
\hline -6/15/20142 & Submission & SN0081b & Sent 3 desk Copies'of SN0081toratterition of Cristina-Athinello. \\
\hline 6/15/2011 & Email to FDA & - & FDA Correspondence \\
\hline 6/15/2011 & Email from FDA & - & FDA Correspondence \\
\hline 6/12/2011 & Email to FDA & - & FDA Correspondence \\
\hline 等6/10/2011 & \[
n_{t,} \text { Submission }
\] & SN0081 & Protactal Amendent New Protocoland info Amendment Clinical Ther? \\
\hline 6/6/12017 & - Submission? & SNOO80 & ProboolAmendment New nvestagaty \\
\hline 5/9/2011 & Email from FDA & - & FDA Correspondence \\
\hline 5/5/2011 & Email to FDA & - & FDA Correspondence \\
\hline 55/3/2011, & Submission: & SN0079 & \\
\hline 4/25/2011 & Submission & SN0078 & Protocol Amendment New lnvestigator \\
\hline E4i1/2011 & Subionsion & SN0077 & Protocol Amendment New lavestigator aren \(^{2}\) \\
\hline 3/17/2011 & FDA Letter & - & FDA Correspondence \\
\hline \%31420119 & Submission & SN0076 & \\
\hline \% 228812011 F & - Submision & SNOO75 & Piobocolamendent New livestgator: \\
\hline & Ety Sumisior & SNN0074: & \\
\hline 9119/20111 & F-Siumissiont & SN0073 & \\
\hline 紫2123/2010] & C. Subinilion & SN0072 & Response to FA Request fornformaiont Spat \\
\hline Whar2010 & Wabisione, & & \\
\hline 11/23/2010 & FDA phone call & - & Teleconference with FDA \\
\hline 11/22/2010 & FDA voice mail & - & Teleconference with FDA \\
\hline & & & \begin{tabular}{l}
 Coresp (lransfe of Sponsor Conac lifomato \\
Updated lB (August 22010)
\end{tabular} \\
\hline 11/10/2010 & FDA Letter & - & FDA Correspondence \\
\hline & & ESSN0069 & \\
\hline 99130/2010 & Fry Subitissiont & SSN0068: & \\
\hline 9/13/2010 & FDA Letter & - F & FDA Correspondence \\
\hline 5mid2010 & Sibmission & SSNT0067 & \\
\hline 8/10/2010 & FDA Phone cail & - & Teleconference with FDA \\
\hline E \(81 / 9 / 2010\) & Submission & SSNOOO66 & Sent 4 extra desk copies of SSNOO66 to the attention of Chinstine Attinel̄o \\
\hline 8/6/2010 & Email from FDA & - & FDA Correspondence \\
\hline & Submisslont & SSN0066 & Requestifor SPA reviewof Phase 3 protocol , \\
\hline \[
8
\] & Submisson, & SSNNOO65 & \\
\hline 7/22/2010 & FDA Letter & - & FDA Correspondence \\
\hline 616112010, & 7\% Sibmision & SSN0064 & \\
\hline & F \(^{*}\) Submission & SSN0063 & Gent Cotresp - Transter and Acceptañice of IND Ownership \\
\hline 5/24/2010 & : Submission & SSN0062 & Protocol Amendment-New Investigator \\
\hline
\end{tabular}

Page 6 of 11

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 519／2010 & Subibission & SSN0061： & InfomationAmendment Nonclinical Phandox－－ \\
\hline \％ & & & \\
\hline & & & \\
\hline 4／29／2010 & Sübmision & \[
\sin \operatorname{SNO} 06
\] & Information Amendment Noncinical Pharm／tox \\
\hline & 4 & \[
1{ }_{5,2}+
\] & \\
\hline \[
4 / 20 / 2010=
\] & isssion & SSNOO59 & Infomatoon Amendent \(=\) Nöncelinical Phanam／tox \\
\hline 12／23／2010 & Email from FDA & － & FDA Correspondence \\
\hline \[
12 / 20 / 2009
\] & \begin{tabular}{l}
Súbmision \\

\end{tabular} & & lifomationAmendmêt－Noncinical Phámex \\
\hline & 3 淮江 & & ＋ \\
\hline 12／17／2009 & Email from FDA & － & FDA Correspondence \\
\hline 11／29／2009－ & Submission & SSNOO57 & Annual Report for INQ 71， 206 for AN2690 Solution \\
\hline 11148／2009 & Subimission & SSN0056 & Information＇Amendment－Clinical \\
\hline 11／10／2009 & FDA Letter & － & FDA Correspondence \\
\hline 117152009： & Subinis & SNOO55： & \\
\hline 274／4／2009 & Submision & SSN0054． & Genl Cortesp \\
\hline 70126／2009 & Sticubuission & PSSN0053 & \\
\hline 1710／2372009： & Subumision & SSN0052 & \\
\hline 2901222009 & Stabinission？ & SSN00516 & \\
\hline 10／21／2009 & FDA Letter & & FDA Correspondence \\
\hline & W+ & SSN0050 & \begin{tabular}{l}
Protocol Amendment Change Piotocol P00118 amendment 2 and P06118 \\

\end{tabular} \\
\hline 9，9／23／2009 & Subinission & ESSN0049 & Gēn＇l Comesp－End of．Phase 2 Meeting Briefing Book \\
\hline 9／1442009 & Sibuision & WSNOO48 & \\
\hline 9／11／2009 & \(\therefore\) Subision & ESSN0047 & Information Amendment－Clinical－ \\
\hline －8721／2009 & \({ }^{5}\) Submissiont & \({ }^{5} 5\) SSNOO46 & Response Cold \\
\hline 688／6／2009t． & Yesubmission & ESSNO045 & \\
\hline 7／2／2009 & FDA Letter & & FDA Correspondence \\
\hline －61512009 & & SSSNOO44 & \\
\hline 6\％1212009 & FSublismion & SSNOO43 & Type B Meling Request Endot Phase 2 Meedig \\
\hline 512172009 & Submision & SSSNOO42 & \\
\hline 3／26／2009 & FDA Letter & － & FDA Correspondence \\
\hline & \[
\stackrel{i s i c}{00}
\] & & \\
\hline 530102009， & ubrisste & SSSN0040 & IntomationAmendment toxicology \\
\hline 食t－at？ & & & \\
\hline \[
x=\quad \theta
\] & & & \\
\hline －210／2009 & Submission & SSNC039 & InfomatônAmendment Toxicologys \\
\hline 1／27／2009 & Submission & SSN0038 & Protocol Ameñdment Change n Profocol（P05577） \\
\hline 1／5／2009 & Email from the FDA & － & FDA Correspondence \\
\hline 124／2008 & Submission & SSN0037． & ProtocolAmendimeñt New Prötocol（P05577）and Information Ameñdment－CMC \\
\hline 1112512008 & Subimision & SSSNOO36 & Annual Repoit for Investigational＇New Erug（IND）Application Number 71，206 for \\
\hline \(\square\) & & 䡤 \(-7+\) & AN2690 Solution－tere， \\
\hline 11118／2008 & Subinission & SSN0035 & InformationAmendment Clinical Ex－ \\
\hline 11／13／2008 & Subnission & SSN0034 & Transfer of Sponsor Contact Infomation（from Lisa Fravis to Baihara Gunther） \\
\hline 9／8／2008 & Email from the FDA & － & FDA Correspondence \\
\hline \(8122 / 2008\) & Submission & SSN0033 & Genl Comesp－Transfer andAcceptance of IND Ownership Ex \\
\hline 81572008 & Leeter to EDA & & Acceptance of IND Ownersipy： \\
\hline 8／13／2008 & Email from the FDA & － & FDA Correspondence \\
\hline
\end{tabular}

Page 7 of 11
6234424vl

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 8/13/2008 & Telephone Report & - & Teleconference with FDA \\
\hline 8/122008 & Telephone Report & - & Teleconference with FDA \\
\hline 8/12/2008 & Fax from the FDA & - & FDA Correspondence \\
\hline 8/11/2008 & Telephone Report & - & Teleconference with FDA \\
\hline 87/12008 & Email to the FDA & - & FDA Correspondence \\
\hline -8/5/2008 & Sibmissione & -SSN0032 & \\
\hline -8i112008. & Súbuission - & -SSNOO31. & hnformation Amendment clinicas, \\
\hline 7,7/10/2008 & Suibmission, & SSN0030 & Gen'l Coinesp End of Phase 2 Meefing Binefing Book \\
\hline 771212008 & Sutbisission \({ }^{\text {con }}\) & SSN0029 & \\
\hline 6/26/2008 & Sübmission & SSN0028 & Information Amendment-Clinical \\
\hline \(61 / 5 / 2008\) & Subimission & SSN0027: & Iñformation Amendment-Toxicology \\
\hline 4/2/2008 & Submissioñ & SSNO026 & Type B.Meefing Request End'of Phase 2 Meeting \%ernat \\
\hline 1/7/2008 & Email from FDA & - & FDA Correspondence \\
\hline 121212007 & Submissionn & SSN0025: & Transfer of Sponsor Contact information from Todd Paporelo to lisa Travis. 1 \\
\hline W1130/2007. & Submission & SSNOO24 & Gent Goresp t Request for Medical ReviewTeam Comment onanail development plans \\
\hline 11/29/2007 & Email to the FDA & - & FDA Correspondence \\
\hline 11/26/2007 & Telephone Report & - & Teleconference with FDA \\
\hline 坔 & Submission ? & \[
\begin{gathered}
\text { SSN0023 } \\
2
\end{gathered}
\] & Annual Report for Investigationalinew Brug (iND) Application Number 71206 for AN260 Solution: a tur whe \\
\hline 11/21/2007 & Email to the FDA & - & FDA Correspondence \\
\hline 11/5/2007 & \[
\begin{aligned}
& \text { FDA Fax } \\
& \text { (via SP) }
\end{aligned}
\] & - & FDA Correspondence \\
\hline \[
513 / 20077^{2}
\] & Submission & SSNOO22 & \\
\hline 6/29/2007 & Email From FDA & - & FDA Correspondence \\
\hline 6/29/2007 & FDA Letter & - & FDA Correspondence \\
\hline 6/8/2007 & FDA Fax (via SP) & - & FDA Correspondence \\
\hline 6/5/2007 & Email to the FDA & - & FDA Correspondence \\
\hline 5512312007 & Subission \%ay & SSN0020 & Final Clinical Reportor AN2690:ONYC-101E24-Day Cumulative finition Test, \\
\hline \[
5 / 15 / 2007
\] & Subinission青 & SSNOO21 & Additional End of PhasedliBriefing Bookreguested by FBA sent by Schering tyt t Plough: \\
\hline 5/14/2007 & Email from FDA & - & FDA Correspondence \\
\hline 5/11/2007 & Email to the FDA & - & FDA Correspondence \\
\hline 5/11/2007 & Email to the FDA & - & FDA Correspondence \\
\hline F5/11/2007. & Subiomission & - SSNOO20 & End of Phase ll Briefing Book submited to the FDA by Schering Plough \\
\hline & Súbimission & \[
\begin{aligned}
& \text { SSNO019 } \\
& \text { (Designate } \\
& \text { SP as:Agent }
\end{aligned}
\] & Letter to the EDA appointing Schering-Plough as an agent for IND:71; 206 \\
\hline 5/9/2007 & Fax to the FDA & - & FDA Correspondence \\
\hline & Subinissionion & \[
\begin{gathered}
\text { SSNOO } \\
\text { (New } \\
\text { Protocol) }
\end{gathered}
\] & Néw Protocol for Investigationall:New Dưg (INDTApplication Number 71,206 foi AN2590 Vehicle Appliedas a7.5\% Solution for the Treatment of Onychomycosis (AN2690-ONYC-205)- \\
\hline 2213/20072 & Submision, & SSNOO17
(Annual
Report) & Añual Report for livestigationalNe Dưg (ND) Application Number 71, 206 for AN2690 Sólution \\
\hline 2/5/2007 & FDA Letter & - & FDA Correspondence \\
\hline
\end{tabular}

Page 8 of 11

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 1／24／2007 & Subimission & \[
\begin{aligned}
& \text { SSNCOT6 } \\
& \text { (New, } \\
& \text { Protocol) }
\end{aligned}
\] & New Protocol for lnvestigational Neving（ND）Application Number 71,206 for AN 2690 Veficle \(2.5 \% \%\) and \(7.5 \%\) Torithe freatment of Onyctiomycosis （AN2690－ONYC－101）： \\
\hline 1／11／2007 & Fax to the FDA & － & FDA Correspondence \\
\hline \[
\begin{array}{r}
212006 \\
\hline
\end{array}
\] & \begin{tabular}{l}
Submission \\
\％\％琞童 -
\end{tabular} & SSNOOTS
Amendment）
Amend & Protocol Amendment 2 for the AN2690－ONYC－200A clinical trial \\
\hline \[
\begin{array}{r}
121920066 \\
\\
\hline
\end{array}
\] & Subission & \[
\begin{aligned}
& \text { SSNOO14 } \\
& \text { (hvestigator' } \\
& \text { sinfor): }
\end{aligned}
\] & Fom 1572 sand signed curnculumivitaefor each investigator thatare involved in the AN 2690 ONYC－200A and AN2690－ONYC－203 stidies
\(\qquad\) \\
\hline 11／29／2006 & FDA Fax & － & FDA Correspondence \\
\hline \[
1176 / 2006
\] & Submission & SSN0013 & AN2690 for the treatment of Onychomycosis． \\
\hline 11／6／2006 & Fax to the FDA & － & FDA Correspondence \\
\hline \(11 / 3 / 2006\) & Súbmission & SSNOO12 & Response tó FDA Fax of 11／206 with answers to questions posed by the FDA regarding the CAC submission \\
\hline 11／3／2006 & Fax to the FDA & － & FDA Correspondence \\
\hline 11／3／2006 & Fax to the FDA & － & FDA Correspondence \\
\hline 10／31／2006 & Fax from the FDA & － & FDA Correspondence \\
\hline & & & \begin{tabular}{l}
 ANP690 following demalapplication to mice for y years be evaluated by the Execuive Carcinogenicity Assessment Commite（CAC） \\

\end{tabular} \\
\hline 9／14／2006 & Fax to the FDA & － & FDA Correspondence \\
\hline 9／14／2006 & Fax to the FDA & － & FDA Correspondence \\
\hline \[
\begin{array}{|c|}
8 / 28 / 2006 \\
\text { Pr } \\
\text { R } \\
\hline
\end{array}
\] & & & Finalized veision of TX repoits previously submitted as QRAFTSTiñubmission 0006 and additionalTX reports that were recenty finalized \\
\hline & \begin{tabular}{l}
Sübmission \(=\) \(=1\) \\
Y ＋ \\
4都＝
\end{tabular} & & Response to the FDAS fax ofelloo with comments on the Clineale Ghemistryand Clibical Micoobiology of AN2690． \\
\hline 8／24／2006 & Telephone Report & － & Teleconference with FDA \\
\hline 8／17／2006 & Fax to the FDA & － & FDA Correspondence \\
\hline 8／2／2006 & Telephone Report & － & Teleconference with FDA \\
\hline 8／1／2006 & Telephone Report & － & Teleconference with FDA \\
\hline 8／1／2006 & FDA Fax & － & FDA Correspondence \\
\hline & & SSNOO08
（Double Bind
ProtocoI）
Fen & New ClinicalProtocol；entitled AN2690， Vebicle－Controlled，Müti－Center Study to Evaluate the Sáéfy and Efficacy of Topically Appled AN2690．25\％5．0\％and 7．5\％Solutions vs．Vehicle for the Treatment of Adult Subjects with Onychomycosis of the Great Tonaip for Irvestigational New Drig（INDIApplicatioñ Number 71206：fó AN 2690 Solution \\
\hline \[
6 / 1672006
\] & Subinission & SSNOOO7 & Response bo Cancinogenicity Special Protocol Assessment Requést Finalcac Report \\
\hline 6／15／2006 & FDA Fax & － & FDA Correspondence \\
\hline
\end{tabular}

Page 9 of 11

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline & & SSNOOO6
Open Label
Protocol)
\& & New Clinial Pivtocol, entitled An Open Label, Mult-Center Study to Evaluate the Safety and Efficacy of Topically Applied AN \(269010 \%\) and \(5 \%\) Solations forthe Treatment of Adult Subjects With Onychomycosis of the Girat Toenarl for Investigational New Driug (INQ) Application Numbe 71,206 for AN2690 Solution
\(\qquad\) \\
\hline 6/9/2006 & Fax to the FDA & - & FDA Correspondence \\
\hline 5/19/2006 & Telephone Report & - & Teleconference with FDA \\
\hline 5/12/2006 & Fax to the FDA & - & FDA Correspondence \\
\hline 5/12/2006 & Fax to the FDA & - & FDA Correspondence \\
\hline \(511 / 2006\)
-7 & Subrnission \(\qquad\) \(\stackrel{y}{=}\) & SSN0005 & Requestfor Special ProlocolAssessment Two-Year Carcinogenicity Study of AN2690'Administered by the Gral Route in Rats, \\
\hline 5/6/2006 & Telephone Report & - & Teleconference with FDA \\
\hline \[
5
\] & \begin{tabular}{l}
Fax to the EDA. \\

\end{tabular} & & Girk Maples sent fax to Kalyani Bhatuwith letter of intenito submit carcinagenic assessiment prötocoisfor AN2690\% \\
\hline & & \begin{tabular}{l}
SSNOOO4 \\
Revised \\
Absorption \\
Protocil)
\end{tabular} & Revisedversion of tie absortionstudy clincal protocol submitted lastiDecember submitted to the FBA \\
\hline & Submission & SSNODO
(Final:
Repotsto
Replace Draft
Reports
Subitied to
ThelND) & \begin{tabular}{l}
Final Reponts toreplace datiteports submited tothe initialiNo \\
+3 4
\end{tabular} \\
\hline 3/12/2006 & Telephone Report & - & FDA Correspondence \\
\hline & & SSN0002
Rhamiox
Reviewers
Comments) & Resporse to coments mäde by the DAveviewe s. eganding the Phamacoloy th and Toxioologin the einial INDSubmission. \\
\hline 218/2006 & Email to the FDA & - & FDA Correspondence \\
\hline \(27 / 12006\) & FDA Letter & - & FDA Correspondence \\
\hline 12/31/2005 & N/A & - & Effective Date of IND \\
\hline \[
\left|\begin{array}{c}
122272005 \\
2+2 \\
2
\end{array}\right|
\] & TSub解siontar & TSSNOOO1 Respoinse to Commens fromEA Reviewers) & Response to comments made by the FDA revewers in a petercrom kalyan Bhatt on. 1220205 \\
\hline 12/27/2005 & Fax to the FDA & - & FDA Correspondence \\
\hline 12/22/2005 & FDA Fax & - & FDA Correspondence \\
\hline 12/22/2005 & FDA Fax & - & FDA Correspondence \\
\hline 12/6/2005 & Telephone Report & - & Teleconference with FDA \\
\hline 12/6/2005 & Email to the FDA & - & FDA Correspondence \\
\hline 12/1/2005 & Receipt & - & FDA Receives IND Submission \\
\hline
\end{tabular}

Page 10 of 11

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline & \[
\mid
\] & & Tite of Openabel Muliple eose Study of the Absortinand Systemicyst Thamacokinetic of AN2690Applied as \(7.5 \%\) Solution to Al Toenails of Adulfy Patients with Moderate to severe Onychomycosis of Ge Great Toenail \\
\hline 11/22/2005 & Telephone Report & - & Teleconference with FDA \\
\hline 11/3/2005 & FDA Fax & - & FDA Correspondence \\
\hline 11/2/2005 & FDA Letter & - & FDA Correspondence \\
\hline \%10/28/20059 & - Submissionvis & & \\
\hline 9/30/2005 & FDA Fax & - & Fax from with FDA: Draft Reviewer's Comments on Pre-IND Briefing Package Submitted on 8/31/05 \\
\hline & Fisibnissionta & Prenng
Brefingook
ETackage & \\
\hline 7/5/2005 & FDA Letter & - & FDA Correspondence \\
\hline & & Type Berce
ND Meeting:
fond requestact & \\
\hline 6/16/2005 & Telephone Report & - & Teleconference with FDA \\
\hline 5/25/2005 & FDA Letter & - & FDA Correspondence \\
\hline & & & \begin{tabular}{l}
 Canceld by (Mon 10605 \\

\end{tabular} \\
\hline
\end{tabular}

\section*{Best Available Copy}

\section*{NDA 204427: AN2690 (Tavaborole) Solution for Onychomycosis FDA Communications Chronology}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline & Ficmall & \% & \begin{tabular}{l}
NDAEA'PRROVAL \\
 \\

\end{tabular} \\
\hline 66232004 & Suibmission & SNOO22 & \\
\hline 6/23/2014 & Telephone Contact & - & Teleconference with FDA \\
\hline 6/20/2014 & Telephone Contact & - & Teleconference with FDA \\
\hline 6/20/2014 & Email & - & FDA Correspondence \\
\hline 6/19/2014 & Email \(\cdot\) - & - & FDA Correspondence \\
\hline 6/18/2014 & Telephone Call & - & Teleconference with FDA \\
\hline C66142039 \({ }^{\text {c }}\) & Sibiomisiont & SN002] & \\
\hline 6/11/2014 & Email & - & FDA Correspondence \\
\hline 6/10/2014 & Email & - & FDA Correspondence \\
\hline 6/6/2014 & Email & - & FDA Correspondence \\
\hline & & 2SNOO22] & \\
\hline 6/212014 & Email & - & FDA Correspondence \\
\hline 5/3012014 & Email & - & FDA Correspondence \\
\hline 5/28/2014 & Email & - & FDA Correspondence \\
\hline 5/2712014 & Telephone Call & - & Teleconference with FDA \\
\hline 5/23/2014 & Email & - & FDA Correspondence \\
\hline 壁51202014 & & 7SN0919 & \\
\hline 5/15/2014 & Email & - & FDA Correspondence \\
\hline 5/15/2014 & Email & - & FDA Correspondence \\
\hline 5/15/2014 & Email & - & FDA Correspondence \\
\hline 5/14/2014 & Email & - & FDA Correspondence \\
\hline \[
5
\] & & & \\
\hline 5/13/2014 & Telephone Call & - & Teleconference with FDA \\
\hline 5/1312014 & Email & - & FDA Correspondence \\
\hline 5/122014 & Email & - & FDA Correspondence \\
\hline 5/122014 & Email & - & FDA Correspondence \\
\hline & subinision & SNOM17s & \\
\hline 5/5/2014 & Email & - & FDA Correspondence \\
\hline 5/5/2014 & Email & - & FDA Correspondence \\
\hline 5/1/2014 & Email & - & FDA Correspondence \\
\hline 5/1/2014 & Email & - & FDA Correspondence \\
\hline 4/3/202014 & Email & - & FDA Correspondence \\
\hline 4/29/2014 & Email & - & FDA Correspondence \\
\hline 4/25/2014 & Email & - & FDA Correspondence \\
\hline 4/25/2014 & Email & - & FDA Coriespondence \\
\hline 4/24/2014 & Email & - & FDA Correspondence \\
\hline
\end{tabular}

Page 1 of 4

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 4 \(418 / 2014\) & Sinmission & \[
=\text { SNOO } 6
\] & Amendmentrespanseto FeArequestrevised rafteroposed labeling Documents \\
\hline 4/15/2014 & Email & - & FDA Correspondence \\
\hline 4/14/2014 & Email & - & FDA Correspondence \\
\hline 4/4/2014 & Letter & - & FDA Correspondence \\
\hline \[
\begin{array}{r}
40420142 \\
\hline
\end{array}
\] & Subinssion & SNOOM & Documents \\
\hline 4/02/2014 & Email & - & FDA Correspondence \\
\hline - 410172044 & - Subision - & SNOOTA & \\
\hline 4/01/2014 & Email & - & FDA Correspondence \\
\hline 4/01/2014 & Meeting & - & Conference with FDA \\
\hline 3/27/2014 & Email & - & FDA Correspondence \\
\hline 3/26/2014 & Letter & - & FDA Correspondence \\
\hline 3/25/2014 & Email & - & FDA Correspondence \\
\hline 3/21/2014 & Email & - & FDA Correspondence \\
\hline 3/19/2014 & Letter & - & FDA Correspondence \\
\hline 3/10/2014 & Email & - & FDA Correspondence \\
\hline & & SNOOTS & \begin{tabular}{l}
 Cation Eabels \\
\(x=4\) \\

\end{tabular} \\
\hline 01/30/2014 & Phone Call & - & Teleconference with FDA \\
\hline \[
\begin{aligned}
& \hline 01 / 30 / 2014 \\
& \text { (letter dated } \\
& 01 / 23 / 2014 \text {) }
\end{aligned}
\] & Letter & - & FDA Correspondence \\
\hline \[
\begin{aligned}
& \hline 01 / 30 / 2014 \\
& \text { (letter dated } \\
& 01 / 23 / 2014 \text {) }
\end{aligned}
\] & Letter & - & FDA Correspondence \\
\hline 01/30/2014 & Email & - & FDA Correspondence \\
\hline 01/29/2014 & Phone Call & - & Teleconference with FDA \\
\hline 01/29/2014 & Email & - & FDA Correspondence \\
\hline 01/29/2014 & Email & - & FDA Correspondence \\
\hline 01/28/2014 & Email & - & FDA Correspondence \\
\hline 01/23/2014 & Email & - & FDA Correspondence \\
\hline 01/22/2014 & Email & - & FDA Correspondence \\
\hline & 8- Subisition & SNOO2 & \\
\hline \[
0
\] & Submission & \[
=\text { SNOQRT }
\] & proposed propnetayiname \\
\hline 01/15/2014 & Voicemail & - & Teleconference with FDA \\
\hline 01/15/2014 & Email & - & Cristina Attinello provided the FDA attendee list for the Mid Cycle Communication meeting on \(1 / 15 / 2014\). \\
\hline 01/15/2014 & Teleconference & - & Teleconference with FDA \\
\hline 01/13/2014 & Email & - & FDA Correspondence \\
\hline 01/09/2014 & Email & - & FDA Correspondence \\
\hline 01/08/2014 & Email & - & FDA Correspondence \\
\hline 422742093: & Sumision & SNOO'H0' & \\
\hline 12/24/2013 & Letter & - & FDA Correspondence \\
\hline 12/20/2013 & Letter & - & FDA Correspondence \\
\hline
\end{tabular}

Page 2 of 4

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline (122020 \({ }^{3}\) & F Suibision - & SN0099: & \\
\hline 12/18/2013 & Email & - & FDA Correspondence \\
\hline 12/12/2013 & Email & \(\rightarrow\) & FDA Correspondence \\
\hline 12/05/2013 & Email & - & FDA Correspondence \\
\hline 12/04/2013 & Email & - & FDA Correspondence \\
\hline 11/27/2013 & Email & - & FDA Correspondence \\
\hline 11/27/2013 & Email & - & FDA Correspondence \\
\hline 11/26/2013 & Email & - & FDA Correspondence \\
\hline & 7, Summission & SNOOC8: & Amendment \({ }^{\text {Nood }}\) \\
\hline 41/48/2003 & S Subitston & S SNOOOT & \\
\hline 11/17/2013 & Email & -- & FDA Correspondence \\
\hline 11/13/2013 & Letter & -- & FDA Correspondence \\
\hline 11/12/2013 & Email & - & FDA Correspondence \\
\hline 11/12/2013 & EmailPhone & - & FDA Correspondence \\
\hline 11/05/2013 & Email & - & FDA Correspondence \\
\hline & & FSNO06 & \\
\hline 10/29/2013 & Call & - & Teleconference with FDA \\
\hline 10/23/2013 & Email & - & FDA Correspondence \\
\hline & Whamission & SN0005 & \\
\hline 10/18/2013 & Email & - & FDA Correspondence \\
\hline 10/88013 & Tr Sumission & S SiN0004 & \\
\hline 10/11/2013 & Fax & - & FDA Correspondence \\
\hline 10/10/2013 & Letter and Email & - & FDA Correspondence \\
\hline 10/10/2013 & Letter and Email & - & FDA Correspondence \\
\hline 09/26/2013 & Letter
(Recd 10/02/2013) & -- & FDA Correspondence \\
\hline 10/01/2013 & Phone call & - & Teleconference with FDA \\
\hline 09/22/2013 & Letter & - & FDA Correspondence \\
\hline 09/06/2013 & Email & - & FDA Correspondence \\
\hline 08/22/2013 & Phone Call & - & Teleconference with FDA \\
\hline 08/20/2013 & Email & - & FDA Correspondence \\
\hline 08/19/2013 & Email & - & FDA Correspondence \\
\hline 08/920 & (exisisumision & SSN0003 & \\
\hline 08/16/2013 & Email & - & FDA Correspondence \\
\hline 08/16/2013 & Email & - & FDA Correspondence \\
\hline 08/16/2013 & Email & - & FDA Correspondence \\
\hline 08/16/2013 & Email & - & FDA Correspondence \\
\hline 7081460 & E Stbrision & SN0002 & \\
\hline 08/13/2013 & Email & - & FDA Correspondence \\
\hline 08/12/2013 & Email & - & FDA Correspondence \\
\hline 08/09/2013 & Email & - & FDA Correspondence \\
\hline \%809920i3 & Subuisicon & SNOOOT & \\
\hline
\end{tabular}

Page 3 of 4

\section*{Best Available Copy}
\begin{tabular}{|c|c|c|c|}
\hline Date & Type of Communication & SSN & Description \\
\hline 08/09/2013 & Email & - & FDA Correspondence \\
\hline 08/06/2013 & Email & - & FDA Correspondence \\
\hline 08/01/2013 & Email & - & FDA Correspondence \\
\hline 08/01/2013 & Email & - & FDA Correspondence \\
\hline 07/31/2013 & Email & - & FDA Correspondence- \\
\hline 07/31/2013 & Email & - & FDA Correspondence \\
\hline 07/26/2013 & Email & - & FDA Correspondence \\
\hline W07126/2093 & & - 000000 & Sübivisionofinew Dioglapplication \\
\hline 07/19/2013 & Email & - - & FDA Correspondence \\
\hline 07/16/2013 & Letter & - & FDA Correspondence \\
\hline
\end{tabular}

\title{
This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record
}

\section*{BEST AVAILABLE IMAGES}

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
\(\square\) BLACK BORDERS
\(\square\) IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
\(\square\) FADED TEXT OR DRAWING
\(\square\) BLURRED OR ILLEGIBLE TEXT OR DRAWING
\(\square\) SKEWED/SLANTED IMAGES
\(\square\) COLOR OR BLACK AND WHITE PHOTOGRAPHS
\(\square\) GRAY SCALE DOCUMENTS
区 LINES OR MARKS ON ORIGINAL DOCUMENT
区 REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
\(\square\) OTHER:

\section*{IMAGES ARE BEST AVAILABLE COPY. As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.}

\section*{Certificate of Express Mailing Under 37 CFR 1.10}

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail, Airbill No. EM 720077060 US in an envelope addressed to:

Mail Stop: Hatch-Waxman PTE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
on \(\qquad\) -
RECEIVED
AUG 292014
PATENT EXTENSION
OPLA

Allison M. Broderick
Typed or printed name of person signing Certificate
NrA
\(\quad \frac{614-248-4054}{\text { Telephone Number }}\)

Note: Each paper must have its own certificate of mailing, or this certificate must identify each submitted paper.
1. Patent Term Extension Application 35 U.S.C. § 156, including Exhibits A through G (\(\underline{\mathbf{3}}\) copies, \(\underline{118}\) pages each);
2. Certificate of Express Mailing (\(\mathbf{1}\) page); and
3. Return Receipt Postcard (1 page).
U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ TRANSMITTAL LETTER } & \multicolumn{2}{l|}{\begin{tabular}{l}
Docket Number: \\
\(064507-5014 U S\)
\end{tabular}} \\
\hline Application Number & Filing Date & Examiner & Art Unit \\
\(11 / 357,687\) & February 16, 2006 & Shiao, Rei Tsang & 1626 \\
\hline Patent Number & Issue Date & & \\
\(7,582,621\) & September 1, 2009 & & \\
\hline Invention Title & Inventor(s) \\
Boron-Containing Small Molecules & Baker et al. \\
\hline
\end{tabular}

Address to:
Commissioner for Patents

\section*{RECEIVED}

PO Box 1450
Alexandria, Virginia 22313-1450
Mail Stop: Hatch-Waxman PTE
AUG 292014
PATENT EXTENSION OPLA
Dear Ms. Till:

\section*{PATENT TERM EXTENSION APPLICATION UNDER 35 U.S.C. § 156}

Please find enclosed the following documents filed in connection with the abovereferenced patent:
1. Application for Extension of Patent Term Under 35 U.S.C. § 156 (original and two copies);
2. Statement under 37 C.F.R. § 3.73(b) and Assignment Record; and
3. Power of Attorney by Owner of Entire Interest.

As set forth under 37 C.F.R. § \(1.20(\mathrm{j})\), please charge the sum of \(\$ 1,120.00\) to Deposit Account No. 03-1721. Please charge any underpayment or any additional fees that may be required, or credit any overpayment, to Deposit Account No. 03-1721.

Respectfully submitted,
Dated: August de, 2014

Choate, Hall \& Stewart LLP
2 International Place
Boston, MA 02110
(617) 248-5000 (telephone)
(212) 248-4000 (facsimile)

Attorney for Anacor Pharmaceuticals, Inc.
Customer No. 24280
06/10/2015 GARIAS

B1 FC: 14571120.08 DA

Office of Management Food and Drug Administration
10001 New Hampshire Ave.,
Hillandale Campus RM 3180
Silver Spring, MD 20993

\section*{Attention: Beverly Friedman}

The attached application for patent term extension of U.S. Patent.No. 7,582,621 was filed on August 29, 2014, under 35 U.S.C. § 156.

The assistance of your Office is requested in confirming that the product identified in the application, KERYDIN® (tavaborole), has been subject to a regulatory review period within the meaning of 35 U.S.C. \(\S 156(\mathrm{~g})\) before its first commercial marketing or use and that the application for patent term extension was filed within the sixty-day period beginning on the date the product was approved. Since a determination has not been made whether the patent in question claims a product which has been subject to the Federal Food, Drug and Cosmetic Act, or a method of manufacturing or use of such a product, this communication is NOT to be considered as notice which may be made in the future pursuant to 35 U.S.C. § 156(d)(2)(A).

Our review of the application to date indicates that the subject patent would be eligible for extension of the patent term under 35 U.S.C. § 156.

Inquiries regarding this communication should be directed to the undersigned at (571) 272-7755 (telephone) or (571) 273-7755 (facsimile).

\author{
cc: Andrea L.C. Reid \\ Choate Hall \& Stewart LLP \\ 2 International Place \\ Boston, MA 02110
}

Under the Paperwork Reduction Act of " 595 , no persons are required to respond to a covertor of frymaticn winess t dispays a valic ovs schtrol rumber.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
POWER OF ATTORNEY OR \\
REVOCATION OF POWER OF ATTORNEY WITH A NEW POWER OF ATTORNEY AND \\
CHANGE OF CORRESPONDENCE ADDRESS
\end{tabular}} & Application Rlumbuer & 11/357,687 \\
\hline & Filing Date & February 16, 2006 \\
\hline & Finst Namad imventor & Eaker, Stephen d. \\
\hline & Tble & BORON-CONTAINING SMALI MOLECUULES \\
\hline & Art Unit & 1625 \\
\hline & Exammer गame & Sweo, Re Tsarg \\
\hline & Atherney Docket Nuenber & 684677.609419 \\
\hline
\end{tabular}

Please recognize or change the correspondence address for the above-identified application to:

orThe address associated with Customer Number: OR

I am the:
\(\square\) Applicanfinventor.
OR
X Assignee of record of the entire interest. See 37 CFR 3.71 .
Statement under 37 CFR 3.75 (0) (Form PTOSBMG6) submited herewith or fled on \(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SIGNATURE of Applicant or Assignee of Record} \\
\hline Signature & \(23 \mathrm{Br} \mathrm{H}^{2}\) & Date & Wraser \\
\hline Name & Ryan Waish & Telephone & \% - - - - \% \% \\
\hline Title and Company & \multicolumn{3}{|l|}{Chief IP \& Litigation Counsel - Anacor Pharmaceuticals, Inc.} \\
\hline \multicolumn{4}{|l|}{NOTE: Signateses of at the inventers or assigrees of record of the entife isterest or their representailve(s) are required. Submit multiple forms if more than one stgature is required, see beiow*.} \\
\hline X +rotat of & __forms are submitted. & & \\
\hline
\end{tabular}

This zollection of information ssequired by 37 CFR 4.31 .1 .32 and 1.33 . The information is reguires to octan cr retain a seneft ay the publlo which is to fite (anc by the
 indiedng gathering preparing. end suomiting the completed application form to the USPTO. Tirte will vary depending upon the individual case. Ary comments on the amount of sme you requite to complete this form andior sliggestors far reducing th's buncen, should be sent to the Chige linformation Officer. U.S. Patent and Tademack Offce. U.S. Depardnent of Commerce, P.D. Box i450. Alexamdia, VA \(22343-1450\). DO NOT SEND FEES OR COMPIETED FORMS TO THIS ADCRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2 (b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an Intemational Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. \(122(\mathrm{~b})\) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{STATEMENT UNDER 37 CFR 3.73(b)}

AppicantPatent Owner: Baker et al.
Appication No.Paterit No.: 11/357,687 Filed/lssue Date: February 16, 2006
Thed:

\section*{BORON-CONTAINING SMALL MOLECULES}

Anacor Pharmaceuticals, Inc.
a Corporation
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership university, government agency etc.
states that it is:
1. \(X\) the assignee \(c^{f}\) the entire rigit, title, and interest in;
2. \(\square\) ar assignee of less than the entre right, title, and interest in (The extent (by percentage) of its ownership interest is \%), or
3. \(\square\) the assigree of an undiviced interest in the entrety of a complete assignment from one of the soint inventors was made)
the patent appleaticn/patent identifed above, by virdie of either:
A. \(X\) An assignment from the mentoris) of the patent appligatonipatert identified above. The assignment was recorcec in the Sithed States Patent and Trademark Otice at Reel 017685 Frame 0979 , of for which a
OR copy therefore is atsached.
B. \(\qquad\) A chain of title from the inventor(s), of the patent application/patent identified abcve, to the current assignee as follows:
1. From: \(\qquad\) To: \(\qquad\)
The document was recorded in the United States Patent and Trademark Office at
\(\qquad\) Frame \(\qquad\) or for which a copy thereof is attached.
2. From: \(\qquad\) To: \(\qquad\)
The document was recorded in the United States Patent and Trademark Office at Reel \(\qquad\) Frame or for which a copy thereof is attached.
3. From: \(\qquad\) 70: \(\qquad\)
The document was recorded in the United States Patent and Trademark Office at Reel \(\qquad\) , Frame \(\qquad\) , or for which a copy thereot is atached.Additional cocuments in the chain of tifte are listed on a supplemental sheet(s).
\(X\) As required by 37 CFR \(3.73(b)(1)(t)\), the documertary eviderce of the chain of title from the original owner to the assignee was, or conourrently is seing, submitted for recordation pursuant to 37 CCP 3.11.
[NOTE: A separate coby (ie., a true copy of the original assignment documentis) must be submitted to Assignment Division in acoordance with 37 CFR Part 3; to record the assignment in the recorcs of the USPTO. See MPEP 302.08]
The undersigned (whoge title is supplied below) is authorized to act on behalf of the assignee.
\begin{tabular}{|c|c|}
\hline -rی & \[
y \tan
\] \\
\hline Sismatare & Qate \\
\hline Ryan Walsh & Chief IP \& Litigation Counsel \\
\hline Printed or Typed Name & Title \\
\hline
\end{tabular}

 gatheing, areparing, and submiting the ocmpleted apptication form to the USPTO. Time wh van depending uporithe individual case. Acy somments on the amount of time you require to compete this form andor suggestons for reducing this burcen, should se sent to the Chiet tnformation Offcer. U.S. Patert and Trademark Office, U.S.
 Deparmert of Commerce. P.O. Box 1450, Asexancra, VA
for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the secord.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. \(122(b)\) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

On this 26th day of August, 2014, I certify that the attached document is a true, exact, complete, and unaltered copy (12 pages) made by me from our files of a Certified Copy of an Assignment from the inventors to Anacor Pharmaceuticals, Inc.

Carmen M. Constantinescu Notary Public
Commonwealth of Massachusetts My Commission Expires February 13, 2015

Electronic Version v1.1
Stylesheet Version v1.1
\begin{tabular}{|l|l|l||}
\hline SUBMISSION TYPE: & NEW ASSIGNMENT \\
\hline \hline NATURE OF CONVEYANCE: & ASSIGNMENT & \\
\hline \hline CONVEYING PARTY DATA & Execution Date \\
\hline \begin{tabular}{||l|l||}
\hline & Name \\
\hline Stephen J. Baker & \(04 / 28 / 2006\) \\
\hline Tsutomu Akama & \(04 / 28 / 2006\) \\
\hline Carolyn Bellinger-Kawahara & \(04 / 28 / 2006\) \\
\hline Karin M. Hold & \(04 / 19 / 2006\) \\
\hline James J. Leyden & \(04 / 28 / 2006\) \\
\hline Kirk R. Maples & \(04 / 28 / 2006\) \\
\hline Jacob J. Plattner & \(04 / 28 / 2006\) \\
\hline Virginia Sanders & \(04 / 28 / 2006\) \\
\hline Yong-Kang Zhang & \\
\hline Vincent S. Hernandez & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

RECEIVING PARTY DATA
\begin{tabular}{||l|l|}
\hline Name: & Anacor Pharmaceuticals, Inc. \\
\hline Street Address: & 1060 East Meadow Circle \\
\hline City: & Palo Alto \\
\hline State/Country: & CALIFORNIA \\
\hline Postal Code: & 94303 \\
\hline
\end{tabular}

PROPERTY NUMBERS Total: 1
\begin{tabular}{||c|c|}
\hline Property Type & Number \\
\hline \hline Application Number: & 11357687 \\
\hline
\end{tabular}

\section*{CORRESPONDENCE DATA}

Fax Number:
(650)843-4001

Correspondence will be sent via US Mail when the fax attempt is unsuccessful.
Phone: 415-442-1749
Email: kdegliantoni@morganlewis.com
Correspondent Name: Jeffry S. Mann
Address Line 1: MLB, LLP, Two Palo Alto Square
500121215
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{ll}
Address Line 2: & 3000 El Camino Real, Suite 700 \\
Address Line 4: & Palo Alto, CALIFORNIA 94306
\end{tabular}} \\
\hline ATTORNEY DOCKET NUMBER: & 64507-5014-US \\
\hline NAME OF SUBMITTER: & Jeffry S. Mann \\
\hline \[
\begin{aligned}
& \text { Total Attachments: } 9 \\
& \text { source=A5014US\#page1.tif } \\
& \text { source=A5014US\#page2.tif } \\
& \text { source=A5014US\#page3.tif } \\
& \text { source=A5014US\#page4.tif } \\
& \text { source=A5014US\#page5.tif } \\
& \text { source=A5014US\#page6.tif } \\
& \text { source=A5014US\#page7.tif } \\
& \text { source=A5014US\#page8.tif } \\
& \text { source=A5014US\#page9.tif }
\end{aligned}
\] & \\
\hline
\end{tabular}

4. Application number(s) or patent number(s):

If this document is being filed together with a new application, the execution date of the application is:
A. Patent Application No(s): 11/357,687
B. Patent No(s):

Additional numbers attached? \(\square\) Yes \(\boxtimes\) No
5. Name and address of party to whom correspondence concerning document should be mailed:
Name: Jeffry S. Mann, Ph.D.
Morgan, Lewis \& Bockius LLP
Two Palo Alto Square
3000 El Camino Real, Ste. 700
Palo Alto, CA 94306
Tel. (415) 442-1000
Direct Dial: (415) 442-1119
eFAX: (650) 843-4001
e-mail: jmann@morganlewis.com
6. Total number of applications and patents involved 1
7. Total fee (37 CFR 3.41): \(\qquad\)Enclosed
Authorized to be charged to deposit account
8. Deposit account number: \(\mathbf{5 0 - 0 3 1 0}\)
(Attach duplicate copy of this page if paying by deposit account)

\section*{DO NOT USE THIS SPACE}
9. Statement and signature.

To the best of my knowledge and belief, the foregoing information is true and correct and any attached copy is a true copy of the original document.

Mail documents to be recorded with required cover sheet information to:
Mail Stop Assignment Recordation Sewices
Director of the U.S. Patent and Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

Form PTO-1595
Recordation Form Cover Sheet
Patents Only
Page 2
1. Additional name(s) of conveying party(ies): (Continued from Page 1)

Vincent S. Hernandez
Karin M, Hold
James J. Leyden
Kirk R. Maples
Jacob J. Plattner
Virginia Sanders
Yong-Kang Zhang
2. Additional name(s) and address(es) of receiving party(ies):
(Continued from Page 1)
3. Additional application number(s) or patent number(s) (Continued from Page 1)
A. Patent Application No.(s)
B. Patent No.(s)

REEL: 017855 FRAME: 0982

\section*{ASSIGNMENT OF PATENT APPLICATION}

\author{
JOINT
}

WHEREAS, Stephen J. Baker of 1568 Begen Avenue, Mountain View, CA, 94040; Tsutomu Akama of 832 Azure Street, Sunnyvale, CA, 94087; Carolyn Bellinger-Kawahara of 15 Landa Lane, Redwood City, CA, 94061; Vincent S. Hernandez of 287 Gilchrist Lane, Watsonville, CA, 95076; Karin M. Hold of 1908 Valdez Avenue, Belmont, CA, 94002; James J. Leyden of 319 Applebrook Drive, Malvern, CA, 19355; Kirk R. Maples of 1195 San Moritz Drive, San Jose, CA 95132; Jacob J. Plattner of 1016 Amito Avenue, Berkeley, CA 94705; Virginia Sanders of 2895 Harrison Street, Apt. 4, San Francisco, CA, 94110; and Yong-Kang Zhang of 5151 Westmont Avenue, San Jose, CA, 95130, hereinafter referred to as "Assignors," are the inventors of the invention described and set forth in the below-identified patent application:

Title of Invention: BORON-CONTAINING SMALL MOLECULES
Filing Date: \(\quad\) February 16, 2006
Application No.: 11/357,687; and
WHEREAS, Anacor Pharmaceuticals, Inc., located at 1060 East Meadow Circle, Palo Alto, CA 94303, hereinafter referred to as "ASSIGNEE," is desirous of acquiring an interest in the invention and application and in any U.S. Letters Patent and Registrations which may be granted on any patent application claiming priority from the same;

For good and valuable consideration, receipt of which is hereby acknowledged by Assignors, Assignors have assigned, and by these presents does assign to Assignee all right, title and interest in and to the invention and application and to all foreign counterparts (including patent, utility model and industrial designs), and in and to any Letters Patent and Registrations which may hereafter be granted on any patent application claiming priority from the same in the United States and all countries throughout the world, and to claim the priority from the application as provided by the Paris Convention. The right, title and interest is to be held and enjoyed by Assignee and Assignee's successors and assigns as fully and exclusively as it would have been held and enjoyed by Assignors had this Assignment not been made, for the full term of any Letters Patent and Registrations which may be granted thereon, or of any division, renewal, continuation in whole or in part, substitution, conversion, reissue, prolongation or extension thereof.

Assignors further agree that Assignors will, without charge to Assignee, but at Assignee's expense, (a) cooperate with Assignee in the prosecution of U.S. Patent applications and foreign counterparts on the invention and any improvements, (b) execute, verify, acknowledge and deliver all such further papers, including applications and instruments of transfer, and (c) perform such other acts as Assignee lawfully may request to obtain or maintain Letters Patent and Registrations for the invention and improvements in any and all countries, and to vest title thereto in Assignee, or Assignee's successors and assigns.

Assignors hereby authorize and request Morgan, Lewis \& Bockius LLP, One Market, Spear Street Tower, San Francisco, CA 94105, to insert herein above the application number and filing date of said application when known.

Assignment
Attorney Docket No.: 064507-5014-US
Page 2
IN TESTIMONY WHEREOF, Assignors have signed his/her names on the dates indicated.
Dated: \(\qquad\)

\section*{STATE OF CALIFORNIA county of Sauta Clara) \\ } STEPHEN J. BAKER, personally known to me (or proved to me an the basis af indene) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hdr authorized capacity, and that by his/hyd signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

Dated: \(\qquad\) \(+128106\)

\section*{STATE OF CALIFORNIA}
county of Salta (lara)
 TSUTOMU AKAMA, personally known to me (or proved to me-on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/sple executed the same in his/hgf authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

1-SF/7364295.1

Assignment
Attorney Docket No.: 064507-5014-US
Page 3
Dated: \(4 / 26 / 06\)

STATE OF CALIFORNIA
COUNTY OF SdubtaClara)
 CAROLYN BELLINGER-KAWAHARA, personally known to me freprovect to me on the basis of satisfetoryevidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

\section*{STATE OF CALIFORNIA} that he/she executed the same in his/her authorized capacity, and that by his/hef signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires HeO

Assignment
Attorney Docket No.: 064507-5014-US
Page 4
Dated: \(\qquad\)

KARINA. HOLD

\section*{STATE OF CALIFORNIA}) ss.

\section*{county of Santa Clara)}

onfaril \(28,20 X 0\), before me, Doniele M. EUUUTó personally appeared KARIN M. HOLD, personally known to me (or-prod men the bis satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that be/she executed the same in \(\mathrm{b/s} / \mathrm{her}\) authorized capacity, and that by Khis/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

Dated: \(\qquad\)
JAMES J. LEYDON

\section*{STATE OF}
)
) ss.
COUNTY OF
)
On \(\qquad\) , before me, \(\qquad\) personally appeared JAMES J. LEYDON, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: \(\qquad\)

Assignment
Attorney Docket No.: 064507-5014-US
Page 4

Dated: \(\qquad\)
KARIN M. HOLD

\section*{STATE OF CALIFORNIA}

COUNTY OF
)
) ss.
)

On \(\qquad\) , before me, \(\qquad\) personally appeared KARIN M. HOLD, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

NOTARY PUBLIC
My Commission Expires: \(\qquad\)

Dated:

STATE OF
)
ss.
COUNTY OF
On \(\qquad\) , before me, \(\qquad\) personally appeared JAMES J. LEYDEN, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/her authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

My Commission Expires: \(\qquad\)

Assignment
Attorney Docket No.: 064507-5014-US
Page 5
Dated: \(\qquad\)

\section*{}

\section*{STATE OF CALIFORNIA)}

COUNTY OF Saute Clara) ss.
on April 28, DOUC before me, Donielle \(M\) EquAte personally appeared KIRK R. MAPLES, personally known to me for proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/sple executed the same in his/hfr authorized capacity, and that by his/h/r signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

fAO I. PLATTNER

\section*{STATE OF CALIFORNIA \\ county ofsautaclara)}

J. PLATTNER, personally known to me (for proved to me -on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hof authorized capacity, and that by his/hor signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

my Commission Expires. ReC C D, 2007

Assignment
Attorney Docket No.: 064507-5014-US
Page 6

Dated: \(\qquad\)

STATE OF CALIFORNIA
COUNTY OF Saute (l ana) ss.
On feal \(\partial \delta, Z 0\) before mesnielle \(M\). Equitfpersonally appeared VIRGINIA SANDERS, personally known to me-(or-proved to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in bis/her authorized capacity, and that by bis/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITANESS pay hand and official seal.

Dated: \(\qquad\)

\section*{STATE OF CALIFORNIA
COUNTY OFSurta(lava) ss.}
\[
\text { on trail } 28, ~ \partial 0 \% \text { before mexDonie(k An.Equith 'personally appeared }
\]

YONG-KANG ZHANG, personally known to me (or proved to me the basis of sat er to be the person whose name is subscribed to the within instrument, and acknowledged to me that he/she executed the same in his/hpr authorized capacity, and that by his/her signature on the instrument the person, or the entity upon behalf of which the person acted, executed the instrument.

WITNESS my hand and official seal.

1-SF/7364295.1

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

Inventors: Baker et al.

Application No.: 11/357,687
Filed: February 16, 2006
Patent No.: 7,582,621
Issued: September 1, 2009
For: BORON-CONTAINING SMALL MOLECULES

Confirmation No.: 4964
Art Unit: 1626
Examiner: Shiao, Rei Tsang

\section*{TRANSMITTAL LETTER}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Dear Commissioner:
Applicant submits herewith a Statement Under 37 CFR 3.73(b) and an executed Power of Attorney document in connection with the above-referenced patent.

The Statement and Power of Attorney are being re-submitted after previously being filed on August 28, 2014, with the Patent Term Extension Application filed under 35 U.S.C. § 156.

Applicant respectfully requests acknowledgement of the documents submitted herewith and acceptance of Power of Attorney.

Dated: September 14, 2015 Respectfully submitted,
KKevin M. Henry/
Kevin M. Henry, PhD, JD
Registration No.: 65,647
CHOATE, HALL \& STEWART LLP
Two International Place
Boston, Massachusetts 02110
(617) 248-5159

Attorney for Applicant
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 23485271 \\
\hline Application Number: & 11357687 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4964 \\
\hline Title of Invention: & BORON-CONTAINING SMALL MOLECULES \\
\hline First Named Inventor/Applicant Name: & Stephen J. Baker \\
\hline Customer Number: & 43850 \\
\hline Filer: & Kevin M. Henry/Kayla Pitney \\
\hline Filer Authorized By: & Kevin M. Henry \\
\hline Attorney Docket Number: & 064507-5014US \\
\hline Receipt Date: & 14-SEP-2015 \\
\hline Filing Date: & 16-FEB-2006 \\
\hline Time Stamp: & 16:40:32 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Submitted with Payment} & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Power of Attorney} & \multirow{2}{*}{2011549_0002_POA.pdf} & 644743 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{2} & \multirow[t]{2}{*}{Assignee showing of ownership per 37 CFR 3.73} & \multirow{2}{*}{2011549_0002_ROA.pdf} & 1386515 & \multirow{2}{*}{no} & \multirow{2}{*}{15} \\
\hline & & & 1b348664b1ab0c994b03dcd21e09c28d0d & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{3} & \multirow{2}{*}{Transmittal Letter} & \multirow{2}{*}{2011549_0002_Transmittal.pdf} & 92041 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{2}{|c|}{2123299} & \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

United States Patent and Trademark Office
\begin{tabular}{|c|c|c|c|}
\hline APPLICATION NTMBER & FILING OR 371(C) DATE & FIRST NAMED APPLICANT & ATTY. DOCKET NO./TTTLE \\
\hline \multirow[t]{2}{*}{11/357,687} & \multirow[t]{2}{*}{02/16/2006} & \multirow[t]{2}{*}{Stephen J. Baker} & 064507-5014US \\
\hline & & & CONFIRMATION NO. 4964 \\
\hline \multicolumn{2}{|l|}{24280} & \multicolumn{2}{|r|}{POA ACCEPTANCE LETTER} \\
\hline \multicolumn{4}{|l|}{CHOATE, HALL \& STEWART LLP} \\
\hline \multicolumn{2}{|l|}{TWO INTERNATIONAL PLACE} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline BOSTON, MA 02110 & & & \\
\hline
\end{tabular}

\section*{NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 09/14/2015.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33 .

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.

United States Patent and Trademark Office
\begin{tabular}{l|c|c|c|}
\hline \multicolumn{1}{|c|}{ APPLICATION NIMBER } & FILING OR 371(C) DATE & FIRST NAMED APPLICANT & ATTY. DOCKET NO./TTTLE \\
\multicolumn{1}{|c|}{\(11 / 357,687\)} & \(02 / 16 / 2006\) & Stephen J. Baker & \(064507-5014 \mathrm{US}\) \\
CONFIRMATION NO. 4964 \\
43850 & POWER OF ATTORNEY NOTICE \\
MORGAN, LEWIS \& BOCKIUS LLP (SF) \\
One Market, Spear Street Tower, Suite 2800 \\
San Francisco, CA 94105
\end{tabular}
\begin{tabular}{l|c|c|c|}
\hline \multicolumn{1}{|c|}{ APPLICATION NIMBER } & FILING OR 371(C) DATE & FIRST NAMED APPLICANT & ATTY. DOCKET NO./TTTLE \\
\multicolumn{1}{|c|}{\(11 / 357,687\)} & \(02 / 16 / 2006\) & Stephen J. Baker & \(064507-5014 \mathrm{US}\) \\
CONFIRMATION NO. 4964 \\
43850 & POWER OF ATTORNEY NOTICE \\
MORGAN, LEWIS \& BOCKIUS LLP (SF) \\
One Market, Spear Street Tower, Suite 2800 \\
San Francisco, CA 94105
\end{tabular} www:uspto goy

Date Mailed: 09/22/2015

\section*{NOTICE REGARDING CHANGE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 09/14/2015.
- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

Questions about the contents of this notice and the requirements it sets forth should be directed to the Office of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888-786-0101.

The Honorable Michelle K. Lee
Under Secretary of Commerce for Intellectual Property
Director of the United States Patent and Trademark Office
Mail Stop Hatch-Waxman PTE
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{Dear Director:}

This is concerning the application for patent term extension for U.S. Patent No. 7,582,621 filed by Anacor Pharmaceuticals, Inc., under 35 U.S.C. 156. The human drug product claimed by the patent is KERYDIN (tavaborole), which was assigned new drug application (NDA) No. 204427.

A review of the Food and Drug Administration's official records indicates that this product was subject to a regulatory review period before its commercial marketing or use, as required under 35 U.S.C. 156(a)(4). Our records also indicate that it represents the first permitted commercial marketing or use of the product, as defined under 35 U.S.C. 156(f)(1).

The NDA was approved on July 7, 2014, which makes the submission of the patent term extension application on August 29, 2014, timely within the meaning of 35 U.S.C. 156(d)(1).

Should you conclude that the subject patent is eligible for patent term extension, please advise us accordingly. As required by 35 U.S.C. 156(d)(2)(A) we will then determine the applicable regulatory review period, publish the determination in the Federal Register, and notify you of our determination.

Please let me know if we can be of further assistance.
Sincerely yours,

fo Jane A. Axelrad
Center for Drug Evaluation and Research
```

***
Kerydin
Patent No. 7,582,621
Page 2
cc: Andrea L.C. Reid
Choate, Hall \& Stewart LLP
2 International Place
Boston, MA 02110

```

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE
}

BEFORE THE PATENT TRIAL AND APPEAL BOARD

\section*{COALITION FOR AFFORDABLE DRUGS X LLC, Petitioner,}
v.

ANACOR PHARMACEUTICALS, INC., Patent Owner.

Case IPR2015-01776
Patent 7,582,621 B2

Before MICHAEL P. TIERNEY, GRACE KARAFFA OBERMANN, and TINA E. HULSE, Administrative Patent Judges.

HULSE, Administrative Patent Judge.

\section*{DECISION}

Institution of Inter Partes Review
37 C.F.R. § 42.108

IPR2015-01776
Patent 7,582,621 B2

\section*{I. INTRODUCTION}

Coalition for Affordable Drugs X LLC ("Petitioner") filed a Petition requesting an inter partes review of claims \(1-12\) of U.S. Patent No. 7,582,621 B2 (Ex. 1001, "the '621 patent"). Paper 1 ("Pet."). Anacor Pharmaceuticals, Inc. ("Patent Owner") filed a Preliminary Response to the Petition. Paper 17 ("Prelim. Resp.").

We have jurisdiction under 35 U.S.C. § 314, which provides that an inter partes review may not be instituted "unless . . . there is a reasonable likelihood that the petitioner would prevail with respect to at least 1 of the claims challenged in the petition." 35 U.S.C. § 314(a). Upon considering the Petition and Preliminary Response, we determine that Petitioner has established a reasonable likelihood that it would prevail in showing the unpatentability of claims 1-12. Accordingly, we institute an inter partes review of those claims.

\section*{A. Related Proceedings}

Petitioner has filed concurrently two other petitions for inter partes review of related U.S. Patent No. 7,767,657 B2 in IPR2015-01780 and IPR2015-01785. Pet. 5.

\section*{B. The '621 Patent}

The ' 621 patent relates to boron-containing compounds useful for treating fungal infections, including infections of the nail and hoof known as ungual and/or periungual infections. Ex. 1001, Abstract, 1:12-13. One type of ungual and/or periungual fungal infection is onychomycosis. Id. at 1:1517. According to the Specification, current treatment for ungual and/or periungual infections generally falls into three categories: systemic administration of medicine; surgical removal of the nail or hoof followed by

IPR2015-01776
Patent 7,582,621 B2
topical treatment of the exposed tissue; or topical application of medicine with bandages to keep the medication in place on the nail or hoof. Id. at 1:17-24.

Each of the approaches has major drawbacks. Systemic administration of medicine typically requires long-term, high-dose therapy, which can have significant adverse effects on, for example, the liver and testosterone levels. Id. at 1:28-45. Surgical treatment is painful and undesirable cosmetically (or not realistic for animals such as horses). Id. at 1:46-52. And topical dosage forms cannot keep the drug in contact with the infected area for therapeutically effective periods of time and, because of the composition of the nail, topical therapy for fungal infections have generally been ineffective. Id. at 1:53-2:11. Accordingly, the Specification states that "there is a need in the art for compounds which can effectively penetrate the nail. There is also need in the art for compounds which can effectively treat ungual and/or periungual infections." Id. at 2:36-39.

The '621 patent claims a method of treating an infection using 1,3-dihydro-5-fluoro-1-hydroxy-2, 1-benzoxaborole, which is referred to as either compound 1 (see id. at 32:10-17) or compound C10 (see id. at 51:55\(61)\) in the Specification, and has the following chemical structure:

IPR2015-01776
Patent 7,582,621 B2

\section*{C. Illustrative Claim}

Petitioner challenges claims \(1-12\) of the ' 621 patent. Claim 1 is illustrative and is reproduced below:
1. A method of treating an infection in an animal, said method comprising administering to the animal a therapeutically effective amount of 1,3-dihydro-5-fluoro-l-hydroxy-2, 1benzoxaborole, or a pharmaceutically acceptable salt thereof, sufficient to treat said infection.
D. The Asserted Grounds of Unpatentability

Petitioner challenges the patentability of claims 1-12 of the '621 patent on the following grounds:
\begin{tabular}{|l|l|l|}
\hline References & Basis & Claim(s) challenged \\
\hline Austin \(^{1}\) and Brehove & \\
\hline Austin and Freeman & \(\S 103\) & \(1-12\) \\
\hline Austin, Freeman, and Sun & & \(\S 103\) \\
\hline & \(\S 103\) & 9 \\
\hline
\end{tabular}

Petitioner also relies on the Declarations of Stephen Kahl Ph.D. ("Kahl Decl.," Ex. 1006) and S. Narasimha Murthy Ph.D. ("Murthy Decl.," Ex. 1008).

\footnotetext{
\({ }^{1}\) Austin et al., WO 95/33754, published Dec. 14, 1995 (Ex. 1002).
\({ }^{2}\) Brehove, US 2002/0165121 A1, published Nov. 7, 2002 (Ex. 1003).
\({ }^{3}\) Freeman et al., WO 03/009689 A1, published Feb. 6, 2003 (Ex. 1004).
\({ }^{4}\) Sun et al., US 6,042,845, issued Mar. 28, 2000 (Ex. 1005).
}

IPR2015-01776
Patent 7,582,621 B2

\section*{II. ANALYSIS \\ A. Person of Ordinary Skill in the Art}

Petitioner asserts that a person of ordinary skill in the art at the time the '621 patent was filed would have had an advanced degree (Master's or Ph.D.) or equivalent experience in chemistry, pharmacology, or biochemistry, and at least two years of experience with the research, development, or production of pharmaceuticals. Pet. 23 (citing Ex. 1006【 21; Ex. 1008 § 34). Patent Owner largely agrees with Petitioner’s definition, further adding that a skilled artisan must also have knowledge and experience with developing potential drugs candidates for treating onychomycosis and ungual and other infections. Prelim. Resp. 15-16.

We need not decide at this time whether one skilled in the art would have possessed the additional knowledge identified by Patent Owner for purposes of this Decision. Moreover, Patent Owner acknowledges that Petitioner's declarants purport to have experience in the additional fields (Prelim. Resp. 16), and the prior art itself is sufficient to demonstrate the level of skill in the art at the time of the invention. See Okajimav. Bourdeau, 261 F.3d 1350, 1355 (Fed. Cir. 2001) (holding the absence of specific findings on "level of skill in the art does not give rise to reversible error 'where the prior art itself reflects an appropriate level and a need for testimony is not shown'") (quoting Litton Indus. Prods., Inc. v. Solid State Sys. Corp., 755 F.2d 158, 163 (Fed. Cir. 1985)).

\section*{B. Claim Construction}

In an inter partes review, the Board interprets claim terms in an unexpired patent according to the broadest reasonable construction in light of the specification of the patent in which they appear. 37 C.F.R. § 100(b); In re Cuozzo Speed Techs., LLC, 793 F.3d 1268, 1278-79 (Fed. Cir. 2015),

IPR2015-01776
Patent 7,582,621 B2
cert. granted sub nom. Cuozzo Speed Techs., LLC v. Lee, 84 U.S.L.W. 3218 (U.S. Jan. 15, 2016) (No. 15-446). Under that standard, and absent any special definitions, we give claim terms their ordinary and customary meaning, as would be understood by one of ordinary skill in the art at the time of the invention. See In re Translogic Tech., Inc., 504 F.3d 1249, 1257 (Fed. Cir. 2007). Any special definitions for claim terms must be set forth with reasonable clarity, deliberateness, and precision. See In re Paulsen, 30 F.3d 1475, 1480 (Fed. Cir. 1994).
1. "1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole"

Independent claims 1, 11, and 12 recite the compound 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole. 1,3-dihydro-5-fluoro-1-hydroxy-2,1benzoxaborole has the following structure:

The parties agree that the claimed compound may also be referred to as "5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole." Pet. 11; Prelim. Resp. 17-18. Patent Owner further notes that the claimed compound is also known as "tavaborole." Prelim. Resp. 18.

We determine that the broadest reasonable interpretation of 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole includes "5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole" and "tavaborole." Accordingly, for ease of reference, we refer to the claimed compound as "tavaborole" in this Decision.

\section*{2. Remaining Claim Terms}

At this stage of the proceeding, we determine that it is unnecessary to expressly construe the remaining claim terms for purposes of this Decision. See Wellman, Inc. v. Eastman Chem. Co., 642 F.3d 1355, 1361 (Fed. Cir. 2011) ("[C]laim terms need only be construed 'to the extent necessary to resolve the controversy." (quoting Vivid Techs., Inc. v. Am. Sci. \& Eng'g, Inc., 200 F.3d 795, 803 (Fed. Cir. 1999)).

\section*{C. Obviousness over Austin and Brehove}

Petitioner asserts that claims \(1-12\) are unpatentable as obvious over Austin and Brehove. Pet. 23-42. Patent Owner opposes Petitioner's assertion. Prelim. Resp. 19-45. Based on the current record, we determine that Petitioner has established a reasonable likelihood that it would prevail in showing claims 1-12 are unpatentable as obvious over Austin and Brehove.
1. Austin (Ex. 1002)

Austin relates to the use of oxaboroles as industrial biocides, and especially as fungicides for the protection of plastic materials. Ex. 1002, Abstract. The Abstract further states that "[p]referred compounds are 5- and 6-fluoro or bromo-1,3-dihydro-1-hydroxy-2,1-benzoxaborole including O esters thereof." Id. Austin notes that it has been found that compounds containing an oxaborole ring are "particularly effective against microorganisms such as bacteria, algae, yeasts and particularly fungi, especially fungi which cause degradation of plastics materials." Id. at 1:35-38.

Along with a number of different preferred oxaboroles, Austin discloses tavaborole as Example 64, as well as the results of a study showing tavaborole has effective antifungal activity against five different fungi: Aspergillus niger, Aureobasidium pullulans, Candida albicans, Gliocladium roseum, and Penicillium pinophylum. Id. at 37 (Table 9).

IPR2015-01776
Patent 7,582,621 B2
2. Brehove (Ex. 1003)

Brehove relates to the topical treatment of nail infections such as onychomycosis caused by bacteria, fungi, and other pathogens. Ex. 1003 I 3. Brehove explains that onychomycosis is a nail disease typically caused by Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum, or Epidermpophyton floccusum. Id. \(\mathbb{1} 5\). Brehove states that Candida albicans is the most common pathogen causing onychomycosis. Id. \(\mathbb{I} 18\). Brehove teaches that to be effective for onychomycosis, the topical treatment should exhibit a powerful potency for pathogens, be permeable through the nail barrier, and be safe for patient use. Id. © 6. According to Brehove, " \([t]\) here exists a need in the art for a topical application that combines these traits in high degree." Id.

Brehove states that the "safety and non-toxicity of organo-boron compounds has been questioned." Id. ๆ 13. On the one hand, Brehove describes one reference that states that boron compounds are "very toxic," while on the other hand, Brehove describes references that found the toxicity of a certain boron-containing compound to be "very low" and another industrial fungicide compound called Biobor \({ }^{\circledR} \mathrm{JF}\) to cause "mild irritation." Id. Tी IT14-15.

Biobor \({ }^{\circledR}\) JF contains a combination of 2,2'-(1-methyltrimethylene dioxy) bis-(4-methyl-1, 3, 2-dioxaborinane) (referred to by Brehove as "S1") and 2,2'-oxybis (4, 4, 6-trimethyl-1, 3, 2-dioxaborinane) (referred to by Brehove as "S2"). Ex. 1003 बी 15, 30. Brehove describes the results of both in vitro and in vivo testing of the antifungal activity of S1 and S2 against Candida albicans. Id. \(\mathbb{1 T}\) 30-38.

\section*{3. Analysis}

Petitioner argues that claims \(1-12\) are unpatentable as obvious over the combination of Austin and Brehove. Through claim charts and Dr. Murthy's testimony, Petitioner asserts that the combination teaches each limitation of the claims. Pet. 38-42; Ex. 1008 § \(\|\) 87-92, 107-15. Having reviewed the arguments and evidence, we are persuaded that Petitioner has shown sufficiently that each limitation of the challenged claims is taught by the combination of Austin and Brehove.

Petitioner then provides a detailed explanation supported by the testimony of its two declarants as to why a person of ordinary skill in the art would have administered Austin's tavaborole in Brehove's method of treating onychomycosis with a reasonable expectation of success. Pet. 3138. Specifically, Petitioner asserts that a person of ordinary skill in the art would have combined Austin and Brehove because:
(1) both references teach the use of boron-based compounds as fungicides; (2) both references also disclose the use of boronbased compounds to specifically inhibit Candida albicans, which is one of the fungi responsible for onychomycosis; and (3) Austin discloses boron-based compounds that have lower molecular weight than the successful compounds of Brehove and are therefore likely to effectively penetrate the nail barrier.

\section*{Pet. 31 (citing Ex. 1006 T\| 33-34, 36; Ex. 1008 \$T 86, 93-96, 116).}

In its Preliminary Response, Patent Owner does not appear to challenge that the combination of references teaches each limitation of the claims. Instead, Patent Owner argues that Petitioner has failed to meet its burden to show that a person of ordinary skill in the art would have combined Austin and Brehove in the manner recited in the claims with a reasonable expectation of success.

IPR2015-01776
Patent 7,582,621 B2
First, Patent Owner argues that a skilled artisan would not have started with a compound selected from Austin because Austin discloses a biocide, which is a toxic poison designed to kill living organisms. Prelim. Resp. 21. The parties, however, dispute the toxicity of boron-containing compounds. For example, Petitioner's declarant, Dr. Kahl, testifies that "[b]oroncontaining compounds are generally considered safe."5 Ex. 1006 \$ 30. And Brehove identifies at least one article that states that the toxicity of the dioxiborinane tested was "very low." Ex. 1003 § 15. Thus, at this stage of the proceeding, we are persuaded that Petitioner has made a sufficient showing that a person of ordinary skill in the art would not have been dissuaded from starting with Austin because it teaches boron-containing compounds.

Patent Owner also argues that a person of ordinary skill in the art would not have selected tavaborole from the millions of compounds disclosed in Austin. Prelim. Resp. 23-29. It is well settled that a reference may be relied upon for all that it would have reasonably suggested to one having ordinary skill in the art. Merck \& Co., Inc. v. Biocraft Labs., Inc., 874 F.2d 804, 807 (Fed. Cir. 1989). Here, Austin discloses 5-fluoro benzoxaboroles as preferred fungicides in the Abstract, and tavaborole is one of three preferred compounds tested that effectively inhibits Candida albicans, which is a cause of onychomycosis. Pet. 31-32 (citing Ex. 1006

\footnotetext{
\({ }^{5}\) We acknowledge Patent Owner's argument challenging Dr. Kahl's credibility regarding the toxicity of boron-containing compounds. Prelim. Resp. 4 (citing a paper by Dr. Kahl (Ex. 2002) allegedly emphasizing the toxicity of boron-containing compounds). At this stage of the proceeding, however, we decline to comment on this issue until the record has been developed further during trial.
}

IPR2015-01776
Patent 7,582,621 B2
IT 34,38 ; Ex. 1008 T 1 61, 64, 67-71, 90). Accordingly, evaluating Austin for all that it teaches, we conclude on the present record that one of ordinary skill in the art would have recognized that tavaborole is a preferred fungicide for inhibiting Candida albicans, which is a cause of onychomycosis.

Patent Owner then asserts that Petitioner has not provided a credible reason to combine the tavaborole of Austin with the method of treating onychomycosis in Brehove with a reasonable expectation of success.

Prelim. Resp. 29-38. Patent Owner argues that Brehove would not supply a reasonable expectation of success because a skilled artisan would not be convinced that dioxaborinanes are not toxic, particularly given the lack of data in Brehove. Id. at 30-32, 37-38. Patent Owner also argues that a skilled artisan would not combine the references given the structural differences between tavaborole and dioxaborinanes. Id. at 32-35. Petitioner, however, offers the testimony of its declarant, Dr. Murthy, who states that both Austin and Brehove disclose boron heterocycles, and that a person of ordinary skill in the art would have expected that compounds that share similar structural features would likely share similar functional features, such as the inhibition of additional fungi responsible for oncyhomycosis. Ex. 1008 \$T100-01. As to the lack of in vivo data in Brehove, we note the specificity of the examples and reported results of those examples. Ex. 1003 वी 34-38. Moreover, citing the examples, Dr. Murthy testifies that "the topical application of the [Brehove] compositions . . . effectively treated the onychomycosis with '[n]o skin irritation . . . and no [evidence of] side effects." Ex. 108 ๆ 71 (citing Ex. 1003 ๆी 22, 30, 3438). Thus, although we acknowledge Patent Owner's arguments to the contrary, on this record and at this stage of the proceeding, we determine that Petitioner has set forth sufficient evidence to show that a person of

IPR2015-01776
Patent 7,582,621 B2
ordinary skill in the art would have had a reason to apply Austin's tavaborole to Brehove's method of treating onychomycosis with a reasonable expectation of success. See Pet. 31-51.

Accordingly, we determine that Petitioner has established a reasonable likelihood that it would prevail in showing claims \(1-12\) are unpatentable as obvious over Austin and Brehove.

\section*{D. Obviousness over Austin and Freeman}

Petitioner argues that claims \(1-12\) are unpatentable as obvious over Austin and Freeman. Pet. 43-56. Patent Owner opposes. Prelim. Resp. 4558. Based on the current record, we determine that Petitioner has established a reasonable likelihood that it would prevail in showing claims 1-12 are unpatentable over Austin and Freeman. We incorporate here our earlier findings and discussion regarding the disclosure of Austin.
1. Freeman (Ex. 1004)

Freeman discloses phenyl boronic acid and related boronic acid compounds that are used for treating fungal infections such as onychomycosis. Ex. 1004, Abstract, 『1 1. Freeman identifies Trichophyton rubrum ("T. rubrum") as one of the most common dermatophyte causes of onychomycosis. Id. 『 8 . Freeman also identifies non-dermatophytes, "especially Candida \(S p\).," as another cause of onychomycosis. Id. According to Freeman, phenyl boronic acids "have been found to be particularly useful in treating nail fungal infections." Id. \$ 22.

Freeman also discloses results of in vitro testing of the fungicidal activity of phenyl boronic acid. Id. \{ || 31-34. In particular, Freeman notes that phenyl boronic acid exhibited fungicidal effect on T. rubrum. Id. \(\mathbb{\$ 1} 34\). Freeman also notes that the compounds tested had a fungicidal effect on Candida parapsylosis at \(10 \mathrm{mg} / \mathrm{ml}\). Id.

IPR2015-01776
Patent 7,582,621 B2

\section*{2. Analysis}

Petitioner asserts that the combination of Austin and Freeman render the subject matter of claims 1-12 obvious. Pet. 43-56. Through claim charts and Dr. Murthy's testimony, Petitioner asserts that the combination teaches each limitation of the claims. Pet. 51-56; Ex. 1008 ITI 119-24, 13846. Having reviewed the arguments and evidence, we are persuaded that Petitioner has shown sufficiently that each limitation of the challenged claims is taught by the combination of Austin and Freeman.

Petitioner also asserts that a person of ordinary skill in the art would have had a reason to combine Austin's tavaborole with Freeman's method of treating onychomycosis with a reasonable expectation of success. Pet. 45-
51. Specifically, Petitioner asserts:
(1) both references teach the use of boron-based compounds as fungicides; (2) both references disclose the use of boron-based compounds to specifically inhibit Candida albicans or \(T\). rubrum, which are fungi responsible for onychomycosis; and (3) Austin discloses boron-based compounds that have structural similarity to Freeman's preferred compounds for treating and inhibiting onychomycosis in humans.

Id. at 45-46 (citing Ex. 1008 9T6 65, 74, 77, 125-27). Patent Owner challenges Petitioner's assertions, making similar arguments as described above with the combination of Austin and Brehove.

For example, Patent Owner again argues that a person of ordinary skill in the art would not have selected tavaborole from Austin. Prelim. Resp. 46-47. Patent Owner also argues a person of ordinary skill in the art would not combine Austin and Freeman because a skilled artisan would expect Austin's benzoxaboroles to be toxic. Id. at 47-48. Finally, Patent Owner asserts that a person of ordinary skill in the art would not combine

IPR2015-01776
Patent 7,582,621 B2
the references given the differences in structure and function of tavaborole and Freeman's phenyl boronic acid. Id. at 48-54.

For similar reasons stated above with respect to the challenge over Austin and Freeman, we determine that Petitioner has made a sufficient showing as to why a person of ordinary skill in the art would combine Austin and Freeman with a reasonable expectation of success. For example, in light of the dispute over the toxicity of boron-containing compounds, we are not persuaded, on this record, that the alleged toxicity of benzoxaboroles would deter a skilled artisan from looking to Austin and recognizing that tavaborole is a preferred fungicide for inhibiting Candida albicans.
Moreover, although Austin describes the fungicidal activity against Candida albicans and Freeman describes the fungicidal activity against T. rubrum, Freeman also teaches that its compounds are effective against a different species of Candida (Candida parapsylosis). See Ex. 1004 IT 34. Petitioner's declarant, Dr. Murthy, explains that "Freeman links Candida Sp., also a common target of Austin and Brehove, to onychomycosis and further recognizes, consistent with the knowledge of a [person of ordinary skill in the art] before February 16, 2005, that the 'dermatophyte species that most often causes onychomycosis in North America' includes 'T. rubrum." Ex. 1008 व 74. Thus, Petitioner offers evidence to show that Austin and Freeman's disclosure of Candida as a cause of onychomycosis would give a skilled artisan a reason to combine the references.

Regarding the structural and functional similarities of the compounds, Dr. Murthy testifies that because tavaborole and the compounds of Freeman are boron-based cyclic compounds, a skilled artisan would expect the compounds to share functional features, such as the inhibition of additional fungi responsible for onychomycosis. Id. \(\mid \mathbb{\|}\) 132-33. Thus, while we

\section*{IPR2015-01776}

Patent 7,582,621 B2
acknowledge Patent Owner's arguments to the contrary, we are persuaded that Petitioner has set forth sufficient evidence at this stage of the proceeding to show that a person of ordinary skill in the art would have had a reason to combine Austin and Freeman with a reasonable expectation of success.

Accordingly, we determine that Petitioner has established a reasonable likelihood that it would prevail in showing claims \(1-12\) are unpatentable as obvious over Austin and Freeman.

\section*{E. Remaining Challenge}

Petitioner also asserts that claim 9 is unpatentable as obvious over Austin, Freeman, and Sun. Pet. 56-59. In light of our findings above with respect to Austin and Brehove and Austin and Freeman, we exercise our discretion not to institute an inter partes review on this ground. See 37 C.F.R. § 42.108(a).

\section*{III. CONCLUSION}

We conclude that Petitioner has established a reasonable likelihood of prevailing on its assertions that claims \(1-12\) of the ' 621 patent are unpatentable as obvious.

At this stage of the proceeding, the Board has not made a final determination as to the patentability of any challenged claim or the construction of any claim term.

\section*{IV. ORDER}

In consideration of the foregoing, it is hereby:
ORDERED that pursuant to 35 U.S.C. § 314(a), an inter partes review is hereby instituted on the following grounds:
A. Claims 1-12 as obvious over Austin and Brehove; and
B. Claims 1-12 as obvious over Austin and Freeman;

IPR2015-01776
Patent 7,582,621 B2
FURTHER ORDERED that no other proposed grounds of unpatentability are authorized.

FURTHER ORDERED that, pursuant to 35 U.S.C. § 314(c) and 37 C.F.R. \(\S 42.4\), notice is hereby given of the institution of a trial commencing on the entry date of this decision.

\section*{PETITIONER:}

Jeffrey Blake
jblake@merchantgould.com
Kathleen Ott
kott@merchantgould.com

\section*{PATENT OWNER:}

Andrea Reister
areister@cov.com
Enrique Longton
elongton@cov.com```

[^0]: Burden Hour Statement: This form is estimated to take 3 minutes to complete. Time will vary depending upon the needs of the individual case. Any Comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office. Washington. DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

