
RPX Exhibit 1105
RPX v. AIT

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

and to transport and dynamically load interfaces that capture
enough application semantics to maintain sessions and give
adequate feedback.

Traditional interface development tools do not meet these re-

quirements. Interface builders are easy to use, but focus on low
level details and do not provide adequate support for exploring

designs and building customizable Uis [Szekely et al. 1993].
Furthermore, they do not support interface transport, which
requires a framework in which a U1 ciient can provide an inter-
face from a description sent over the network.

Currently, UI tools do not explicitly provide such a framework.

Tools supporting automatic generation of Uis from high-level

specifications provide enabling technology for interface trans-

port. However, most of those tools focus on menus and dialog
boxes (e.g., Mickey [Olsen 1989], Chisei [Singh and M.
1989], ITS [Wiecha et al. I990}, DON [Kim and Foley 1993],
TRIDENT [Vanderdonckt and Bodart 1993]}, thus limiting the

range of possible Uis. Also, most of the tools supporting
automatic generation typically translate the specification into
21 tom requiring compilation (e.g., MIKE [Olsen I986}, ADEPT
[Johnson et al. i993]) and are thus not suitable for dynamic

generation at run time.

HUMANOID [Szekciy et al. 1992] and time [Foley et al. I99 1,
Sukaviriya et al. l993]) use more sophisticated models. which

are interpreted at run time and support a wider range of interac-
tion styles. MASTERMIND [Neches et al. 1993, Szekely et ai.

1995} is an effort to build a comprehensive model-based envi-

ronment by integrating the HUMANOID and UIDE models and

building on their strengths; it is still in the design stage, but is
expected to provide both compiled and interpreted run-time Ul
support.

MUSE, presented in this paper, is based on the TACTICS model
[Kovacevic l992a, Kovacevie l992b, Kovacevic I994], which

is also derived from UIDE. TACTICS uses an application con-
ceptual rnodel comparable to I-IUMANOID and UIDE, but it also
has an explicit U] model and transformations for mapping the
application conceptual model into the U] model, as well as for

transforming Uis into a desired took and feel. TACTICS sup-

ports dynamic generation because it does not require compila-
tion of U1 structures. In addition, it instantiates the run-time UI

structure which then executes without interpreting the applica-
tion model, thus minimizing the run-time overhead compared to

the interpreted environments such as HUMANOID and UID E.

Standard Generalized Markup Language (SGML) standards
[Newcomb er al. [991] provide a framework for interface trans-
port based on a document paradigm. An SGML specification,

instead of describing formatting features directly, describes
document structure which a display engine can map to presenta-
tions. SGML standards have enabled development of HTML

{Hyper Text Markup Language) display engines, or browsers,

such as Mosaic and Netscape. Their growing popularity is due
to their case of use, simplicity, and effectiveness in presenting
information [Laufmann 1994].

Capabilities of user interface tools depend on their underlying

model, how expressive it is and how much application seman-

tics it captures. For instance, Web browsers also use a model,
which is what enabled their success, but theirs is a very simple
model, that of a hypertext document. Thus, these browsers are

limited to document browsing and forms-based display and in-
put. Graphical (direct) manipulation Uis are not supported,
because the browsers do not have the notion of objects to be
manipulated with semantics behind the manipulations.

These HTML browsers also lack the notion of a session and a

context history. If the order of interaction steps matters, the

interaction must be broken into a sequence of documents. Simi-
larly, a U1 in which what is available/enabledfpresented to a
user depends on a previous context is not directly supported but
requires additional helper applications acting as filters and ses-

sion managers. Such a U1 has to be captured in a set of docu-
ments. either predefined or dynamically generated. For in-
stance, updating a list of items based on the most recent selec-

tion requires fetching a new page and using either helper appli-
cations that can modify pages or separate, predefined pages for
each possible selection.

HTML browsers share some similarities with early User Inter-
face Management Systems (UlMSs}, which were limited in
terms of the feedback they could provide because of their lack of
knowledge about application semantics [Hayes et al. 1985,

Tanner and Buxton 1983]. Similarly, HTML browsers are lim-
ited to knowledge about document structure and hypertext links.

Because in the case of HTML browsers the separation is not
only conceptual but also physical, the internal interface may
become a real bottleneck, either toward the server providing

HTML pages that contain feedback for user selections, or to-
ward hclper applications managing semantics needed for pro-

viding the feedback.

An additional limitation of HTML browsers is that they do not

ailow dynamic changes to page contents; i.c., a whole page
must be replaced for any change. Some proposed extensions to
I~l’I'ML (e.g., the push and pull mechanism by Netscape
[Netscape l995]} allow limited changes by helper applications.

Hotlava [Sun I995] goes a step further, by allowing integrated
helper applications {“applets") that can also be shipped around
as documents. Hotlava is “programmable“ and can support

graphical interaction and allow packaging morelfunctionality
in a U] (not just browsing). However, it does not directly sup-

port dynamic creation of Uls, which is one of the Fundamental
requirements we have. On the other hand, the Java language can
provide a delivery platform for such a framework and we are
exploring using Java in MUSE.

S L O O P ’
SLOOP (the System for Learning Object-Oriented Paradigms) IS

an intelligent tutoring system. Currently, SLOOP provides
training for requirements modeling. Future SLOOP modules will
address analysis and design modeling.

SLOOP provides an intelligent coaching environment for prac-
ticing object-oriented modeling skills. Students perfonrt a
series of activities, or steps, to develop a requirements model

(implementation independent) of a proposed system, starting
from a problem set that consists of a high-level orientation
diagram and use case scenarios describing structural and dy-

I09

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

narnie information and exceptions {Hurley and Hughes 1994}.

At each step, SLOOP evaluates student responses and provides
feedback and different kinds of help. -

SLOOP Architecture

The early SLOOP prototype developed in 1994 was a mono-

iithic application, built in Kappa [lntcllicorp I993]. Based on

experience with this prototype and with a related intelligent
tutoring system, LEAP [Bloom ct al. I995], which is in a de-

ployment phase, we have decided to redesign SLOOP into a
clientlserver architecture with a long term goal of developing a

shell for intelligent tutoring systems.

In developing SLOOP, one of our goals was to leverage on ex-
isting, already available components; hence our decision to use

hyper-text transfer protocols (HTTP) and HTML browsers.
However, because of limitations of the current HTML-based

technology, we developed MUSE as an additional component
for handling interactions not supported by HTML browsers.

Figure 1 shows a simplified view of the SLOOP architecture.
We have abstracted details not pertinent to the focus of this

paper. For instance, the coach component of the SLDOP server
encapsulates representations of expert, instructional and stu-
dent knowledge, as well as a session manager that keeps track
of multiple active sessions and provides necessary information

for generating UI requests sent to the LII server. The UI server

prepares messages for the UI client, specifying what UI to load,

or how to change it. Depending on its interaction requirements,
the U1 can be loaded as an HTML page handled by the HTML

browser, or as a specification handled by MUSE. In both cases,
the specification is assembled dynamically, using a predefined
template and the current context data (c.g., information specific

to a student and a lesson being practiced).

I-ITTML Browser

(Netscape)

SLOOP Server

Figure 1 - SLOOP Architecture

The Web server manages the actual communications between
the SLOOP server and UI clients, and it consists of an HTTP
demon and additional communication programs. The U1 client

consists of a commercially available HTML browser (currently
Netscape), MUSE, and a client communication program [CCP)
that links the two.

Student requests are passed from the U1 client to the SLOOP
server, together with the relevant context. The context can be

as simple as a token identifying the type of request (e.g., re-

quests originating from a browser), or as complex as the appli-

cation context corresponding to the activity practiced. The U]

server parses the client requests and propagates necessary in-
formation to the coach.

Discussion of the HTML code generation and the relationship

between MUSE and the HTML browser is beyond the scope of
this paper. In the rest of the paper, we focus on how MUSE

handles UI specifications and generates Uls, and what underly-
ing model it uses.

MUSE - Ul DEVELOPMENT AND MANAGEMENT

MUSE is based on the TACTICS model, which supports the U1

development process shown in Figure 2. The bolded compo-
nents in the figure pertain to activities performed at run time by
MUSE and are discussed below in more detail. An interactive

authoring tool can be used to create an initial specification, as

well as to modify (transform) the application and its lll (while

preserving its functionality [Foley et al. 1991, Kovaccvic
l992b}), with changes being propagated back to the specifica-
tion. The authoring tool and links that are shaded are beyond

the scope of this paper.

2.‘ .
2. =

2' Interactive Author1nglCustom1zation Tool iin~...w.... wvawvvwwm.»...,... .W.. ._.. ..._,....w..._._......

High—Level
Specification

Conceptual
Mdel

generate ” '

Interface -
Figure 2 — UI development in MUSE.

A U1 [see Figure 2) is generated from a high-level specification
that describes application semantics and, optionally, details of

a desired look and feel. The high-level specification is first

parsed into an application conceptual model. Details of the

desired look and feel are associated with the corresponding
components of the application model as Ul hints. The applica-

tion rnodel defines application information requirements and a
U1 is generated to meet these requirements. The resulting Ul
also tries to achieve the desired look and feel, when possible,

by following the UI hints given. The generation process is
described in more details using an example based on the SLOOP
practice activity lderttrfiz Static Associations. It is a step in the
methodology for building an 00 model involving identifying
static relationships among entities. The real activity and its U1

are more complex, but we have simplified the example in order
to better focus on salient points of the generation process. The
specification for the activity is shown in Figure 3, and the re-

sulting UI in Figure 4. We now discuss how this graphical, di-
rect manipulation interface is produced from the given specifi-
Cation.

High-level Specification

'The specification typically consists of four parts describing the

I10

initial context (after “:init" keyword), data types (after “:data“

keyword), data model (after “:objects“ keyword), and control
model (after “:aetions” keyword). The initial context is speci-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

zapplication-header StaticAssoeiations
:ui (:po ((Dia1ogBox :namc "Identify Static Associations" :template Graphical znlenubar t)))

:init (zobjects ((noun-phrase (name consortium) (name banks) ...))

:data ((:data-type cardinality :enum (0 Many)))

zohjects ((:object noun-phrase :attributes ((:attr name :type :string)) :ui (zpo (nil)))
(zohject actor zui (zpo (Actor))

:attributes ((:attr name) (:attr cardinality :type cardinality)

(:attr external-properties :set-min 0 :set-max nil

:type (mbject-instance external-property))

(:attr noun-phrase ttype (zobjeet-instance noun-phrase))))

(zobject object-class ...)

{zobject external-property :attributes ((:attr name)
(:attr origin ttype (zobject-instance (actor object-class)))

_ _ _ (:attr target :type (:object-instance (actor object-class))))
nu (ma ((F:.xternal-Property zinclude {origin target)

:n1ap-pro perti es ((origin origin-obj) (target target-obj))))))))

zactions {(:action CoachAssistanoe :rnssg Mssg2Coach :parameters 0 zxform ((:confirm :implicit)
:ui (zitec (:select ((MenuItern :narne "Coach Assistance" zsubmenu Coach)))))

(:action CoachHint ...)

(:action identify-actor :rnssg sar-create-actor zxform (treusable (:visible always))
:pararneters ((:par noun-phrase :type (zobject-instance noun-phrase)

:ui (:itee ((ChoiceSe1ection:filter(:attributes name)

:prefix I :name "Noun Tenn"))))

(:par cardinality :ty pe cardinality»

:prec o ii iii ti 0 ns ((exist noun~phrase)))

(:action identify-object—class ...)

(: ac ti 0 ll identi fy-external-property trns s g sar—create-external-prop
zpararneters ((:par name ztype tstring)

(:par origin ztype (:object-instance (actor object-class))
: ui (: i tee ((MouseButton))))

(zpar target ztype (zobject-instance (actor object-ciass))
:ui (:itee ((MouseButton :action Re1ease)))))

:precondi tions ((exist (object-class actor) 2))
zpostconditions 0

txform (:reusable (:visihle always)))))

Figure 3 — A high-level specification.

fied in terms of instances to be created at start up time. The data

model concerns the application objects, their attributes and
relationships. The control model specifies application ac-
tions, their parameters, pre- and postconditions, and relation-
ships to other actions (task structure) and objects.

The specification provides four types of information: applica-
tion semantics, initial context, U1 hints, and design transfor-

mations. Only the first one is necessary, the other three are

optional. Application semantics are defined in terms of the
data and control models. The initial context can be defined

only at the application level, while Ul hints and design trans-
formations ean be defined at different levels. associated with

the application component as a whole, or with the lower level
components such as objects, actions and parameters.

The high-level specification is directly translated into an ap-
plication model, and then into a Ul, as is described in the fol-

lll

lowing subsections. It is in this sense that the high-level
specification serves as an external, persistent representation of
the application and its UI that can be stored and communicated
between the server and U1 clients, and as such it facilitates in-
terface transport. The specification fully defines the applica»
tion model, but not the UI model. It contains only those Ul
details that we do not want MUSE to decide for us.

Because the main role of the specification is to serve as an ex-

tental representation, we were concerned more with its content
than with its form. It is not intended to be directly created and
modified by UI designers, but through an interactive authoring
tool, which is why we did not try to make it more user friendly.

Without going into all the details of the specification syntax,
let us just say that each concept has a set of properties that can
be defined, and each property is specified as a keywordlvalue

pair “keyword value" where value can be a single token or a

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

"teach-

O

- Tdenti F5}.-ExtPro;':i' " .-

ns rtium-emwwtcmsteaegzs-.ns-e;a.imweae-an:w,tu
Figure 4 — UI generated for the specification in Figure 3

(5.!)

list of tokens. Keywords typically begin wit and are
shown bold in the examples. For instance, the top level of

specification corresponds to the application concept with key-
words (properties) :app|ieation-header (for application
name), :ui (U1 hints). :init (initialization information),

:data (user-defined data types), zobjects (data model defini-
tion}, and :actions (control model definition). The proper-
ties can be specified in any order.

The example shown in Figure 3 specifies that the application

Staticzlssociatioris has one user-defined data type (cardinality),

data model comprising of 4 object classes {norm-phrase, actor,
object-class, and exterrta!—properry), and control model with S

actions (Coachrlssistance, CoachHt'rtt, identtjjz-actor, ld€l'i!tfy—
object-class, identify’-externaI-property). Note that each object
in turn also represents a user-defined type and can be used when
defining object attributes and action parameters. For instance,

the actor object has attribute cardinality of (user-defined data)
type cardinality, as well as attribute external’-properties of

{user-defined object) type external-property. The object exter-

nal-properry also has attributes of object type, origin and tar-
get, which point to an instance of either object-class or actor
object class. Each external-property must have one and only
one value for attributes origin and target, which is the default

for any attribute and parameter. On the other hand, each object-
class or actor object class can have any number of relations,
indicated by “:set-max nil" (no upper limit on number of val-
ues).

UI hints are defined at several levels in our example: at the ap-
plication level they specify that the application will use for its
main window a dialog box template Graphical, which will be

named Izientifi: Static Associations and will have a top level
menu bar. Ul hints for object classes specify what presentation
objects to use and how to configure them. For actions, the
hints specify what window to use, if needed, and for action

parameters what interaction techniques to use and how to con-

figure them. For instance, the Choiceselection technique al-
lows specifying where to get items forming the list of choices

and how to present the items. in the case of the

parameter noun-p}tr'ttse of the action irt‘erttt')fv—
actor, the interaction technique knows (From
the parameter type) that choices are instances

of object class rtotttt—p;‘tt'a.s'e and the hint speci-

fies that these instances be presented using the
value of their attribute nature. For the action

identmr-exttztnal-_oropert_it, Ul hints specify
that both the origin and target parameters
should be selected using a mouse {Monsc»Battor.-

interaction]: to prevent ambiguities as to which
atti-ibute’s value is selected, hints specify that a

button release selects the target, and a button

pfis (a default button operation) selects the

origin.

Each practice activity in SLOOP can have a

number of requests for different kinds of coach
assistance and help. For simplicity, the exam-

ple has only two coach actions, Coach/lasts-
tartce and Coacltrltnt. which will both be placed
in a submcnu Coach in the main rnenubar.

Application Conceptual Model

The Ul is not generated directly from the specification, but from

the application conceptual model (or aplication model, AM)

instantiated based on the specification content. The AM pro-
vides internal representation of the information contained in

the specification and is used by the generation, transformation,
and consistency checking rules [Kovacevic 1992b].

Application |
Object Data

Type
Application '

Action

Action ' Action

Preconditions Postconditons

Figure 5 —- Application conceptual model.

 Attribute

Action
Parameter

 I.

Figure 5 shows the seven entity types of the AM and their rela-
tions. Objects can be connected to other objects through in-
heritance and part/whole relations. Parttwhole relations be-

tween actions can be used to define composite tasks. More

details on the AM can be found in [Kovaeevic 1992b]. Some of

the relations shown are not necessary for the generation proc-
ess, but provide information needed by the conceptual trans-
formations [Foley i987], which is why not all relations are
defined in the specification in Figure 3.

Whereas the AM could be created and modified interactively,

‘MUSE currently instantiates it solely from the specification.

112

The initial context is provided by the coach component at run

time, while the rest of the specification is defined at design
time.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

