Network Working Group Request for Comments: 792 ISI September 1981 Updates: RFCs 777, 760 Updates: IENs 109, 128 INTERNET CONTROL MESSAGE PROTOCOL DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION #### Introduction The Internet Protocol (IP) [1] is used for host-to-host datagram service in a system of interconnected networks called the Catenet [2]. The network connecting devices are called Gateways. These gateways communicate between themselves for control purposes via a Gateway to Gateway Protocol (GGP) [3,4]. Occasionally a gateway or destination host will communicate with a source host, for example, to report an error in datagram processing. For such purposes this protocol, the Internet Control Message Protocol (ICMP), is used. ICMP, uses the basic support of IP as if it were a higher level protocol, however, ICMP is actually an integral part of IP, and must be implemented by every IP module. ICMP messages are sent in several situations: for example, when a datagram cannot reach its destination, when the gateway does not have the buffering capacity to forward a datagram, and when the gateway can direct the host to send traffic on a shorter route. The Internet Protocol is not designed to be absolutely reliable. The purpose of these control messages is to provide feedback about problems in the communication environment, not to make IP reliable. There are still no guarantees that a datagram will be delivered or a control message will be returned. Some datagrams may still be undelivered without any report of their loss. The higher level protocols that use IP must implement their own reliability procedures if reliable communication is required. The ICMP messages typically report errors in the processing of datagrams. To avoid the infinite regress of messages about messages etc., no ICMP messages are sent about ICMP messages. Also ICMP messages are only sent about errors in handling fragment zero of fragemented datagrams. (Fragment zero has the fragment offeset equal zero). ## Message Formats ICMP messages are sent using the basic IP header. The first octet of the data portion of the datagram is a ICMP type field; the value of this field determines the format of the remaining data. Any field labeled "unused" is reserved for later extensions and must be zero when sent, but receivers should not use these fields (except to include them in the checksum). Unless otherwise noted under the individual format descriptions, the values of the internet header fields are as follows: Version 4 IHL Internet header length in 32-bit words. Type of Service 0 Total Length Length of internet header and data in octets. Identification, Flags, Fragment Offset Used in fragmentation, see [1]. Time to Live Time to live in seconds; as this field is decremented at each machine in which the datagram is processed, the value in this field should be at least as great as the number of gateways which this datagram will traverse. Protocol ICMP = 1 Header Checksum The 16 bit one's complement of the one's complement sum of all 16 bit words in the header. For computing the checksum, the checksum field should be zero. This checksum may be replaced in the future. [Page 2] September 1981 ## Source Address The address of the gateway or host that composes the ICMP message. Unless otherwise noted, this can be any of a gateway's addresses. ## Destination Address The address of the gateway or host to which the message should be sent. [Page 3] September 1981 RFC 792 0 3 2 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Code Checksum unused Internet Header + 64 bits of Original Data Datagram IP Fields: Destination Address The source network and address from the original datagram's data. ICMP Fields: Type 3 Code 0 = net unreachable; 1 = host unreachable; 2 = protocol unreachable; 3 = port unreachable; 4 = fragmentation needed and DF set; 5 = source route failed. Checksum The checksum is the 16-bit ones's complement of the one's complement sum of the ICMP message starting with the ICMP Type. For computing the checksum, the checksum field should be zero. This checksum may be replaced in the future. Internet Header + 64 bits of Data Datagram The internet header plus the first 64 bits of the original [Page 4] September 1981 RFC 792 datagram's data. This data is used by the host to match the message to the appropriate process. If a higher level protocol uses nort numbers, they are assumed to be in the first 64 data ## Description If, according to the information in the gateway's routing tables, the network specified in the internet destination field of a datagram is unreachable, e.g., the distance to the network is infinity, the gateway may send a destination unreachable message to the internet source host of the datagram. In addition, in some networks, the gateway may be able to determine if the internet destination host is unreachable. Gateways in these networks may send destination unreachable messages to the source host when the destination host is unreachable. If, in the destination host, the IP module cannot deliver the datagram because the indicated protocol module or process port is not active, the destination host may send a destination unreachable message to the source host. Another case is when a datagram must be fragmented to be forwarded by a gateway yet the Don't Fragment flag is on. In this case the gateway must discard the datagram and may return a destination unreachable message. Codes 0, 1, 4, and 5 may be received from a gateway. Codes 2 and 3 may be received from a host. [Page 5] September 1981 RFC 792 Time Exceeded Message # DOCKET # Explore Litigation Insights Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things. ## **Real-Time Litigation Alerts** Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend. Our comprehensive service means we can handle Federal, State, and Administrative courts across the country. ## **Advanced Docket Research** With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place. Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase. ## **Analytics At Your Fingertips** Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours. Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips. ## API Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps. #### **LAW FIRMS** Build custom dashboards for your attorneys and clients with live data direct from the court. Automate many repetitive legal tasks like conflict checks, document management, and marketing. #### **FINANCIAL INSTITUTIONS** Litigation and bankruptcy checks for companies and debtors. ## **E-DISCOVERY AND LEGAL VENDORS** Sync your system to PACER to automate legal marketing.