
1 ARISTA 1107

EP1128609A2

Européiisches Patentamt

European Patent Office(19) 9)
Office européen des brevets

(11) EP 1 128 609 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
29.03.2001 Bulletin 2001/35

(21) Application number: 00310753.!)

(22) Date of filing: 04.12.2000

(51) |ntC|.7: H04L 12/56

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR

Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 13.12.1999 US 459448

(71) Applicant: ASCEND COMMUNICATIONS, INC.
Alameda, CA 94502 (US)

(54) Packet classification engine

(57) Packet classification apparatus includes a rule
memory and a criterion memory. One type of rule mem-
ory entry contains an operator and a pointerto a criterion
memory entry. The operator defines a comparison op-
eration to be performed, such as EQUAL (exact match)
or LESS THAN. The criterion memory entry contains
one or more values to be used as comparands on one
side of the comparison, where corresponding values
from a received packet appear on the other side of the
comparison. Control logic responds to packet classifi-
cation requests to retrieve a rule memory entry from the

(72) Inventors:
- Hebb, Andrew T.

Hudson, Massachusetts 01749 (US)
- Cherian, Sanjay G.

Brrokline, New Hampshire 03033 (US)

(74) Representative:
Watts, Christopher Malcolm Kelway, Dr.
Lucent Technologies (UK) Ltd,
5 Mornington Road
Woodford Green Essex, IG8 OTU (GB)

rule memory, retrieve the criterion memory entry identi-
fied by the criterion memory pointer in the rule memory
entry, and perform the operation specified by the oper-
ator in the rule memory entry on the values in the crite-
rion memory entry and corresponding values included
in the classification request. This procedure is repeated
for a sequence of rule memory entries until an ending
condition is encountered, whereupon a packet classifi-
cation result is generated reflecting the result of the clas-
sification operations. This result is provided to a packet
processor to take the appropriate action based on the
classification result.

‘T’ 'l

T0/FROM
IOP 26

TO/FROM
QUEUES

70,72
TO/FROM

IOP 26
FROM

REQUEST
QUEU E 70

CRITERION 3,,MEMORY —

Printed by Jouve, 75001 PARIS (FR)

EP 1 128 609 A2

Description

BACKGROUND OF THE INVENTION

[0001] The present invention is related to the field of data communication networks.
[0002] In data communication networks, network devices such as switches are used to route packets through the
network. Each switch typically has a number of line interfaces, each connected to a different network segment. When
a packet is received at a given line interface, fonlvarding logic determines which line interface the packet should be
transmitted from, and the packet is transferred to the appropriate outgoing line interface to be sent toward its destination
in the network.

[0003] It is known to perform packet filtering in network devices such as switches. Packet filtering can be used to
achieve various network management goals, such as traffic monitoring and security goals. Filtering criteria are estab-
lished by network administrators, and provided to the switches or other devices that carry out the filtering operation.
Packets received by the switches are examined to determine whether their characteristics match the criteria for any
of the established filters. For packets that satisfy the criteria for one or more filters, predetermined actions associated
with those filters are carried out. For example, under certain circumstances it may be desirable that packets originating
from a given network node be discarded rather than being fowvarded in the network. A filter can be defined in which
the criterion is that a packet source address exactly match a specific value, which is the address of the node whose
packets are to be discarded. The action associated with the filter is the discarding of the packet. When a packet is
received whose source address satisfies this criterion, it is discarded rather than being fonrvarded in the normal fashion.
[0004] There are a number of different kinds of criteria that may be used to filter packets. These criteria include exact
matches as well as range checking, i.e., checking whether a value in a packet falls in some range of values. Numerous
packet parameters can be used as criteria, such as source address, destination address, port identifiers, type of service,
and others. To be useful, packet filtering processes must allow filters to be flexibly defined using different combinations
of these and other criteria.

[0005] Because of this complexity inherent in packet filtering, it has traditionally been performed largely or exclusively
in software within switches or other network devices supporting packet filtering. Software-based filtering, however,
presents a bottleneck when high packet fonlvarding performance is required. Network administrators have had to make
undesirable tradeoffs between network responsiveness and network security, for example, because previous systems
have not been capable of robust packet filtering at line rates.

BRIEF SUMMARY OF THE INVENTION

[0006] In accordance with the present invention, packet processing logic in a network device is disclosed that provides
high-speed packet classification for packet filtering purposes. The architecture of the classification apparatus provides
substantial flexibility in the definition of complex filter criteria. Robust filtering can be performed at a sufficiently high
rate to avoid degrading packet forwarding performance.
[0007] The packet classification apparatus includes a rule memory and a criterion memory. One type of rule memory
entry contains an operator and a pointer to a criterion memory entry. The operator defines a comparison operation to
be performed, such as EQUAL (exact match) or LESS THAN. The criterion memory entry contains one or more values
to be used as comparands on one side of the comparison, where corresponding values from a received packet appear
on the other side of the comparison. For example, one comparand from criterion memory may represent a source
address. This value is compared with the value appearing in the source address field of received packets.
[0008] Control logic responds to packet classification requests to retrieve a rule memory entry from the rule memory,
retrieve the criterion memory entry identified by the criterion memory pointer in the rule memory entry, and perform the
operation specified by the operator in the rule memory entry on the values in the criterion memory entry and corre-
sponding values included in the classification request. This procedure is repeated for a sequence of rule memory
entries until a certain ending condition is encountered, whereupon a packet classification result is generated reflecting
the result of the classification operations. This result is provided to a packet processor to take the appropriate action
based on the classification result.

[0009] Other aspects, features, and advantages of the present invention are disclosed in the detailed description
that follows.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

[0010] Figure 1 is a block diagram of a network switch incorporating a packet classification engine in accordance
with the present invention;

EP 1 128 609 A2

Figure 2 is a block diagram of a line interface in the network s witch of Figure 1;
Figure 3 is a block diagram of a packet fonivarding engine on the line interface of Figure 2;
Figure 4 is a block diagram of a packet header distributor application-specific integrated circuit (ASIC) in the for-
warding engine of Figure 3;
Figure 5 is a block diagram of a route and classification engine in the packet header distributor ASIC of Figure 4;
Figure 6 is a diagram of the structure of a route and classification request passed to the route and classification
engine of Figure 5;
Figure 7 is a diagram of the structure of a route and classificat ion result provided by the route and classification
engine of Figure 5;
Figure 8 is a diagram of the structure of a status indication provided by the route and classification engine of Figure
5;

Figure 9 is a block diagram ofa packet classification engine (P CE) in the route and classification engine of Figure 5;
Figure 10 is a diagram of the structure of entries in a rule memory in the packet classification engine of Figure 9;
Figure 11 is a diagram of the structure of entries in a first criteri on memory in the packet classification engine of
Figure 9;
Figure 12 is a diagram of the structure of entries in a second criterion memory in the packet classification engine
of Figure 9;
Figure 13 is a diagram of the structure of entries in a third criter ion memory in the packet classification engine of
Figure 9;
Figure 14 is a block diagram of a comparison logic block for a b ank of criterion memory in the packet classification
engine of Figure 9;
Figure 15 is a block diagram of a comparator logic block used i n the comparison logic block of Figure 14; and
Figure 16 is a diagram illustrating how packet filtering information is created, distributed, and used by different
processing elements in the switch of Figure 1.

DETAILED DESCRIPTION OF THE INVENTION

[0011] In Figure 1, a network switch 10 is shown as including a number of line interfaces 12 connected to respective
network segments 14. The line interfaces 12 are connected to a switch fabric 16 used to provide connections among
the line interfaces 12 for packet forwarding. The overall operation of the switch 10, including the dynamic configuration
of the switch fabric 16, is controlled by a switch control 18. In general, the various network segments 14 may be of
different types. For example, certain of the network segments 14 may be optical links operating at any of a variety of
standard signalling rates, such as OC-3/STM-1 and OC-12/STM-4. Others of the network segments 14 may be non-
optical links employing coaxial cable, for example, and carrying signals of different formats.
[0012] Each line interface 12 is of course designed for operation with the specific type of network segment 14 to
which it connects. The primary tasks of each line interface 12 are to transfer packets or frames received from an
attached network segment 14 to another line interface 12 via the switch fabric 16 for fonivarding on a network segment
14 attached to the other line interface 12, and to receive packets from the other line interfaces 12 via the switch fabric
16 for fonivarding on the attached network segment 14.
[0013] Figure 2 shows the structure of one type of line interface 12. This interface contains four separate optical
interface ports, each including physical input/output and framing circuitry 20 and a fonwarding engine 22. The fonivarding
engines 22 are all connected to switch fabric interface logic 24, which interfaces with the switch fabric 16 of Figure 1.
The fonivarding engines also interface with a line interface I/O processor (IOP) 26. Timing control logic 28 and DC
power circuitry 30 are also included.
[0014] Each fonivarding engine 22 provides a bidirectional data path between a connected physical I/O block 20 and
the switch fabric interface 24. Received packets are segmented into multiple fixed-size ATM-like cells for transfer
through the switch fabric 16 of Figure 1 to another line interface 12. Cells received from the switch fabric 16 via the
switch fabric interface 24 are reassembled into packets for outgoing transfer to the connected physical I/O block 20.
[0015] The IOP 26 is a general-purpose processor that performs background functions, i.e. functions that support
the fonivarding of packets that are not carried out on a per-packet basis. One function performed by the IOP 26 is
receiving packet fonivarding information and packet filtering information from the switch control 18 of Figure 1, and
distributing the information to the forwarding engines 22. This process is described below.
[0016] Figure 3 shows a block diagram of a forwarding engine 22. An inbound segmentation-and-reassembly (SAR)
logic block 40 provides a data path from a physical I/O block 20 to the switch fabric 16 of Figure 2, and an outbound
SAR logic block 42 provides a data path from the switch fabric 16 to the respective physical I/O block 20. Each SAR
40, 42 is coupled to a respective control memory 44, 46 and packet memory 48, 50 used in performing the segmentation
or reassembly function.
[0017] The SAR devices 40 and 42 are both connected to a packet header distributor (PHD) application-specific

EP 1 128 609 A2

integrated circuit (ASIC) 52 via a 64-bit PCI bus 54. As described in more detail below, the PHD ASIC 52 provides
FIFO queue interfaces between the PCI bus 54 and a separate 64-bit bus 56. The bus 56 connects the PHD ASIC 52
with a fonivarding processor (FP) 58 and fonivarding processor memory 60. The PHD ASIC 52 is also connected to the
IOP 26 of Figure 2 by a separate bus 62.
[0018] Figure 4 shows the structure of the PHD 52 of Figure 3. A set of receive queues or RX queues 64 is used for
temporary buffering of packet headers and other messages bound for the FP 58. As shown, there are four RX queues
64, two queues for high-priority traffic and two queues for low-priority traffic. An example of high-priority traffic is traffic
having a high Quality of Service (QOS) guarantee, such as a committed rate. Low-priority traffic is traffic having a lower
QOS or no QOS guarantee, such as best-efforts. For each priority level, there is one queue (labeled "0") for traffic
originating from the inbound SAR 40, and another queue (labeled "1") for traffic originating from the outbound SAR 42.
A set of transmit queues or TX queues 66 is used for temporary buffering of packet headers and other messages bound
for the SARs 40, 42 from the FP 58. A route and classification engine 68 performs a route lookup and various packet
filtering checks on behalf of the FP 58. The packet filtering operation is described below. The route and classification
engine 68 receives status information from the queues 64, 66 via signal lines 69, and makes this information available
to the FP 58 in a manner described below.

[0019] The overall operation of a forwarding engine 22 will be described with reference to Figure 3 and Figure 4.
Packets are received by the inbound SAR 40 from the associated physical-layer circuitry 20 of Figure 2, and are stored
in the packet memory 48. The inbound SAR 40 transfers the packet headers to an appropriate one of the RX queues
64 in the PHD 52. The FP 58 polls the PHD 52 to determine queue status, and retrieves the packet headers from the
RX queues 64 as appropriate. As part of the header processing, the FP 58 sends certain information elements from
each header to the route and classification engine 68 in a route and classification request. The route and classification
engine 68 performs a route lookup and various packet filtering checks against the header elements in the request, and
places the results of these checks into a result queue (described below). The FP 58 obtains the route lookup and
classification results from the result queue, and uses these results to create a new header for the packet. The new
header is transferred back to the PHD 52 via one of the TX queues 66, along with information identifying the internal
circuit on which the packet should be fonIvarded after segmentation. The inbound SAR 40 retrieves the new header,
places it in the packet memory 48 with the payload portion of the received packet, segments the new packet and
transfers the resulting cells to the switch fabric 16 of Figure 1 on the internal circuit specified by the FP 58.
[0020] In the outbound direction, the outbound SAR 42 receives packets from the switch fabric 16 of Figure 1, and
reassembles these packets into the packet memory 50. Packet headers are sent to the PHD 52, and retrieved from
the PHD 52 by the FP 58. For most packets, the route lookup and filtering checks will have already been performed
during inbound processing, so these operations are not repeated. Some protocols, however, do require lookups and
filtering for both inbound and outbound packets, and therefore these operations are optionally performed by the FP 58
in conjunction with the route and classification engine 68. If appropriate, the FP 58 formulates a new header for the
packet, based in part on the identity of the internal circuit on which the segmented outbound packet is received. This
new header is written to the PHD 52, along with transmit circuit information. The PHD 52 transfers the new header to
the outbound SAR 42. The outbound SAR 42 places the new header in the packet memory 50 along with the packet
payload, and transmits the packet to the associated physical layer interface 20 of Figure 2.
[0021] Figure 5 shows the structure of the route and classification engine 68. Requests from the FP 58 of Figure 3
are placed into a single request queue 70, and results are returned in a single result queue 72. Each queue 70 and 72
holds up to 16 request/result entries. A route lookup engine (RLE) 74 performs route lookups, typically based on a
destination address (DA) included in the header. A packet classification engine (PCE) 76 performs packet filtering
checks, based on specified information included in the packet header. The operation of the PCE 76 is described in
more detail below. Input FIFO buffers 78 are placed between the request queue 70 and the RLE 74 and PCE 76, and
output FIFO buffers 80 are placed between the RLE 74 and PCE 76 and the result queue 72. The FIFOs 78 and 80
provide a measure of decoupling between the processing performed by the RLE 74 and the processing performed by
the PCE 76. A multiplexer 81 enables the FP 58 to read either the result queue 72, or status information including
status from the request queue 70, the result queue 72, and the status appearing on the signal lines 69 of Figure 4. The
structure of these entries is described below.

[0022] Figure 6 shows the structure of the route and classification request that is passed to the PCE 76 and RLE 74
via the request queue 70 of Figure 5. The size of the request is four 64-bit words. The various fields are defined as
follows:

FIELD NAME DESCRIPTION

RLE Entry type: 0=Node, 1=Leaf

EP1128609A2

(continued)

FIELD NAME DESCRIPTION

Ind. RLE Indirect route:

1=Indirect, 0=Direct

Res. Unused reserved bit

Order No. of DA bits to add to RLE pointer

RLE Ptr. Base address of RLE entry to which DA is added (based on Order)

PCE Root 0 Starting address for PCE rule 0

PCE Root 1 Starting address for PCE rule 1

Set to zero, used for alignment checking

Req. ID Request identifier, copied to result to enable matching with request

IP TOS The contents of the Type of Service (TOS) field of the received packet

IP Protocol The contents of the Protocol field of the received packet

TCP Flags The contents of the TCP Flags field of the received packet

IP Source Address The IP Source Address of the received packet

IP Dest. Addr. The IP Destination Address of the received packet

TCP/UDP Source Port The identifier of the TCP/UDP port on which the packet was received

TCP/UDP Dest. Port The identifier of the TCP/UDP port for which the received packet is destined

Reserved Unused reserved bits

[0023] As shown in the above table, there is a provision for two separate sets of classification checks, one beginning
at an address labeled "PCE Root 0" and the other as "PCE Root 1". The significance of these separate starting ad-
dresses is described below.

[0024] As previously noted, the appropriate fields of the request are provided to the respective input F|FOs 78 for
the RLE 74 and PCE 76 of Figure 5. Some of the fields, such as the Req. ID and the IP Dest. Addr., are provided to
both the RLE 74 and the PCE 76. Other fields are provided to only one or the other. The use of the fields routed to the
PCE in particular is described below.
[0025] Figure 7 and Figure 8 show the respective structures of the two different types of entries that are read from
the route and classification engine 68 of Figure 4. Figure 7 shows a result entry, which is obtained from the result queue
72 of Figure 5 and conveys the result of a classification search. Figure 8 shows a status entry used to convey status
information to the FP 58 of Figure 3.
[0026] The fields of the result entry shown in Figure 7 are defined as follows:

FIELD NAME DESCRIPTION

Type: 0 = PCE Result, 1 = PCE Status
Req. ID Request Identifier (from the request)

PCE Match NOT Found:

0 = Match Found, 1 = Match NOT Found

RLE Indirect Route:

0 = Normal, 1 = Indirect

RLE Long Search: 0 = Short, 1 = Long

Error indicator: 0 = Normal, 1 = Error

Zero padding

Match in PCE Root 1 (valid only if P = 0): 0 = Match in root 0, 1 = Match in root1

Depth of route Iookup search

EP 1 128 609 A2

(continued)

FIELD NAME DESCRIPTION

PCE Match Addr. Address of last rule checked in PCE

RLE Flags Flags from RLE table entry

RLE Next Hop Ptr. Pointer from RLE table entry

[0027] The fields of the status entry shown in Figure 8 are defined as follows:

FIELD NAME DESCRIPTION

Zero Unused, set to zero

TX Message Remaining space in forwarding-processor-to-IOP message queue

RCE Results Number of pending entries in result queue 72. Normally zero, because status inserted only when
queue is empty.

RCE Requests Number of empty entries in request queue 70

Tx-O 1 Number of empty entries

Tx- 1 J in TX queues 66.

Hi-0 1

Hi-1 | Number of empty entries in

Lo-0 | RX queues 64.
Lo-1 J

[0028] The general operation of the route and classification engine 68 will be described with reference to Figure 5
through Figure 8. The FP 58 of Figure 3 writes lookup and classification requests to the request queue 70. When a
request reaches the front of the request queue 70, different information elements from the request are written simul-
taneously into the respective input F|FOs 78 for the RLE 74 and the PCE 76. The RLE 74 and PCE 76 operate on the
separate pieces of each request independently, and in general finish their respective processing operations for a given
request at different times. The results of these operations are written to the output FlFOs 80. When both sets of results
for a given packet have reached the front of the output F|FOs 80, a single combined result is written to the result queue
72. The combined results are read by the FP 58 and used to formulate new packet headers and circuit information for
the SARs 40 and 42 of Figure 3, as discussed above.
[0029] More particularly, the FP 68 uses the route and classification engine 68 in a batch fashion. When there is
sufficient room in the request queue 70, a burst of requests are

1.4 result entries

2.3 result entries followed by 1 status entry
3.2 result entries followed by 2 status entries
4.1 result entry followed by 3
5.4 status entries

[0030] The FP 58 will generally issue read commands until the result queue 72 is empty, which is inferred whenever
one or more status entries are included in the result block. The FP 58 then uses these results while the route and

classification engine 68 processes the next batch of requests. The FP 58 uses the status information to manage the
flow of requests, so that the RLE 74 and PCE 76 are kept busy and the queues 70 and 72 and F|FOs 78 and 80 are
prevented from overflowing.
[0031] It will be noted that in the illustrated embodiment, there is only one status entry that can be read, and the
multiple status entries in a result block represent multiple reads of this single entry. In alternative embodiments it may
be useful to provide additional, lower-priority information in the second through fourth status entries, for example for
statistics gathering purposes or other background processing.
[0032] One significant advantage of appending status information to results is improved efficiency in using the FP
bus 56. Whenever the FP 58 issues a read for results, either useful results or useful status information is returned.

EP 1 128 609 A2

Additionally, the result block is returned in burst fashion, so that overhead associated with reading is reduced. Also,
the FP 58 obtains information about the queues around the RLE 74 and PCE 76, and about the RX queues 64 and TX
queues 66, in a single read transaction.
[0033] Figure 9 shows the structure of the PCE 76 of Figure 5. Data representing filters and bindings (discussed
below) are stored in a rule memory (RM) 82 and a criterion memory (CM) 84. The CM 84 includes three commonly
addressed memories CMO 86, CM1 88 and CM2 90. Three comparison logic blocks 92, 94 and 96 are associated with
respective ones of the criterion memories 86, 88 and 90. Addressing and control logic 98 decodes requests received
from the request queue 70 of Figure 5, generates addresses for the RM 82 and the CM 84, sequences through multiple
rules as required by each request, and generates results that are passed back to the result queue 72 of Figure 5. The
addressing and control logic 98 also interfaces to the IOP 26 of Figure 2 to enable the reading and writing of the RM
82 and CM 84 by the IOP 26. Bus transceivers 100 provide the necessary data path between the IOP 26 and the RM
82 and CM 84. An AND gate 102 provides a single MATCH signal when corresponding MATCHn outputs from the
comparison logic blocks 92, 94 and 96 are all true.
[0034] Rule sets for packet filtering are typically originated by a Network Management Station (NMS), but can also
be dynamically assigned by the FP 58 based on identified flows. Part or all of the following information is provided by
the NMS or FP 58 for filters: IP Destination Address with mask; IP Source Address with mask; IP protocol identifier;
TCP/UDP Source Port and Destination Port identifiers; IP Type of Service identifier and mask, and miscellaneous flags.
The various information elements from a filter are compared with corresponding elements from each received packet
in order to determine whether the packet matches the filter criteria. If so, some specific action for the filter is taken,
such as intentionally discarding a packet. If not, some default action is typically taken, such as allowing the packet to
proceed toward its destination.
[0035] Traditionally, packet filters are represented as an ordered list of comparison sets that are searched linearly.
In the PCE 76, the filter elements are divided into criteria-(the comparison values) and rules (the list itself and the
operators to be used for each comparison). This separation of rules and criteria is reflected in the use of separate rule
memory (RM) 82 and criterion memory (CM) 84. The memories 82 and 84 are separately optimized for their respective
functions, thus enhancing efficiency and performance. Also, entries within the CM 84 can be referred to by multiple
rules in the RM 82, further enhancing storage efficiency.
[0036] The RM 82 contains an array of rule memory entries, each of which may be one of two types. A first type
contains a set of operators and a pointer to a row of CM 84 that stores comparands for a corresponding filter. A second
type contains a pointerto another rule memory entry. These entries are used to performjumps between non-contiguous
Also, entries within the CM 84 can be referred to by multiple rules in the RM 82, further enhancing storage efficiency.
[0037] The RM 82 contains an array of rule memory entries, each of which may be one of two types. A first type
contains a set of operators and a pointer to a row of CM 84 that stores comparands for a corresponding filter. A second
type contains a pointerto another rule memory entry. These entries are used to performjumps between non-contiguous
segments in a set of rules being searched sequentially. In the illustrated embodiment, the RM 82 can contain up to
16K entries.

[0038] The CM 84 is segmented into three separate memories CMO 86, CM1 88 and CM2 90, each of which can
contain up to 4K entries in the illustrated embodiment. The organization ofthe CM 84 exploits a hierarchy that is inherent
in IP packet classification. Because filtering on certain fields is usually accompanied by filtering based on other fields

as well, it is reasonable to restrict which fields are stored in the separate memories CM0’ CM1, and CM2. These
restrictions further enhance storage efficiency. The most commonly filtered fields, Source Address and Destination
Address, are supported in all three memories CMO 86, CM1 88 and CM2 90. As described below, other fields are
supported only in CM1 88 and/or CM2 90. This architecture maximizes the flexibility with which space in the CM 84
can be allocated, while at the same time enabling powerful parallel searches. The structure and use of CM 84 are
described in more detail below.

[0039] Figure 10 shows the structure ofthe entries in the RM 82 of Figure 9, which are also referred to as rule memory
entries. Each 39-bit entry has a 1-bit Type field. If this field is 1, then bits 13-0 of the entry contain a pointer to another
location in the RM 82, i.e., a pointer to another rule memory entry. If this field is 0, the entry contains information for
performing a filter check. In this case, bits 11-0 contain an address of a row of CM 84 where operands for the check
are to be found, and bits 35-12 contain encodings of operations to be performed on respective operands and fields
from the request. These operations are described in more detail below. Bit 36 is a Carry bit used to form compound
rules, for example to perform range checking. If the carry bit is zero, the rule is evaluated by itself. If the carry bit is
one, the rule evaluates as true only if the next rule also evaluates as true. Bit 37 is a Done bit indicating that the last
of a string of rules to be checked as part of a request has been reached.
[0040] The criterion operator field contains eight 3-bit logical operator codes. Each operator code specifies an op-
eration to be performed on corresponding comparands selected from the request and the criterion memory entry. The
fields of the criterion memory entry are described below. The assignment of criterion operator bits to comparands is
as follows:

EP 1 128 609 A2

35-33 CMO SA/DAfie|d

32-30 CM1 Protocol field

CM1 Source Port field

CM1 SA/DA or DP field

CM2 Protocol field

CM2 TOS or TOS with mask field

CM2 Source port or Flags with mask field

14-12 CM2 SA/DA or SP or DP field

[0041] The operator code specifies a comparison to be performed, where the comparand from the request is on the
lefl of the operator and the comparand from the criterion memory entry is on the right. For example, if the operator is

then the expression evaluated is (request data > criterion data). The operator codes are as follows:

Greater than

Less than

Not Equal

Don't care (i.e. force TRUE regardless of comparand values)

[0042] The criterion operators are used to configure logic within the comparison logic blocks 92, 94, and 96 in a
manner described below.

[0043] Figure 11 shows the structure of the entries in CMO 86 of Figure 9. Each entry is 38 bits wide. A single bit,
bit 37, is used to distinguish between two possible configurations for the entry, as either a 32-bit source address (SA)
or a 32-bit destination address (DA). Bits 31-0 contain an SA or DA value as required by a corresponding filter. Bits
36-32 contain a 5-bit encoded mask value that is used to limit the extent of the comparison between the SA/DA in the
entry and the SA/DA of the request. The use of the mask is described in more detail below.
[0044] Figure 12 shows the structure of the entries in CM1 88 of Figure 9. Each entry is 47 bits wide. Four different
configurations are possible, as indicated by bits 46-45. The PTCL field identifies an IP protocol in all four configurations.
The 16-bit SP and DP fields in configurations 2 and 3 represent source port and destination port identifiers, respectively.
The contents of bits 36-32 are undefined in configurations 2 and 3.
[0045] Figure 13 shows the structure of the entries in CM2 90 of Figure 9. Each entry is 51 bits wide. Eight different
configurations are possible, as indicated by bits 50-48. The TOS field of configurations 2 through 7 identifies an IP
Type of Service. In configurations 3 through 7, the TOS Mask field contains an 8-bit mask used to limit the extent of
the TOS comparison, as described below. The 8-bit FLAGS field contains flag values to be compared against corre-
sponding flag bits from TCP/UDP packets. The 8-bit FLGS MSK field is used to limit the extent of the FLAGS compar-
ison, as described below.
[0046] Figure 14 shows the general structure of the comparison logic blocks 92, 94 -and 96. Two or more blocks of
comparator logic 104-1 104-n are used to perform multiple comparisons in parallel, where each comparison is be-
tween a given field of a request and a corresponding field of a criterion memory entry. In the comparison logic 92 for
CMO 86, for example, two comparator logic blocks 104 are employed, one for the Source Address field of the request
and one for the Destination Address field of the request. The comparison logic 94 for CM1 88 contains comparator
logic blocks 104 for Source Address, Destination Address, IP Protocol, Source Port and Destination Port. The com-
parison logic 96 for CM2 90 contains comparator logic blocks 104 for Source Address, Destination Address, IP Protocol,
Source Port, Destination Port, Type of Service without mask, Type of Service with mask, and Flags.
[0047] The outputs from the comparator logic blocks 104 include indications for NOT EQUAL (#), EQUAL (=), LESS
THAN (<) and GREATER THAN (>). These signals are provided to the inputs of respective selectors 106-1, 106-n,
along with a logic "1" which is used to implement a DON'T CARE function. The selectors 106 receive the operators
from an operator-type rule memory entry as control inputs. These operators reside within bits 35-12 of the rule memory
entry, as described above.
[0048] The respective outputs of the selectors 106 are provided to another selector 108, which selects from among
different combinations of the outputs of the selectors 106 based on the configuration bits from the criterion memory

EP 1 128 609 A2

entry. For example, in the comparison logic 92 for CMO, the configuration selector 108 selects between a SA comparison
result and a DA comparison result based on the value of bit 37 of the criterion memory entry. The configuration selectors
108 in the other comparison logic blocks 94 and 96 operate similarly. The output signal MATCH from the configuration
selector 108 indicates whether the data in the request satisfies the criteria from the respective criterion memory 86,
88 or 90. As shown in Figure 9, the MATCH outputs from the comparison blocks 92, 94 and 96 are ANDed together
by an AND gate 10, to provide a single MATCH indication to the addressing and control logic 98 for controlling the
classification operation.
[0049] Figure 15 shows the general structure of a comparator logic block 104. An EQUAL comparator 110 determines
whether two comparands are equal, a LESS THAN comparator 112 determines whether one of the comparands is less
than the other comparand, and a GREATER THAN comparator 114 determines whether the one comparand is greater
than the other comparand. The output from the EQUAL comparator 110 is inverted by an inverter 116 to obtain the
NOT EQUAL indication.

[0050] The inputs to each comparator 110, 112, and 114 are a comparand from the CM 84 (shown as "CM com-
parand") and a possibly masked comparand from the request (shown as REQ comparand). Masking logic is used for
those fields having associated masks. AND gates 118 implement bit-by-bit masking. The multi-bit mask (shown as
"CM mask") may be used directly, as in the case of the Flags Mask, or it may be decoded or expanded by expander
logic 120, as in the case of the SA/DA Mask. The expander logic 120 generates a 32-bit value having zeroes in a
number of trailing bit positions as indicated by the 5-bit encoded mask value, and ones elsewhere. For example, if the
mask value is 01011 binary, which is equivalent to 11 decimal, the decoded mask is FFFFF800 hexadecimal, which
has ones in the leading 21 positions and zeros in the trailing 11 positions. This mask indicates that only the most
significant 21 bits of the SA/DA should affect the comparison result.
[0051] The operation of the packet classification engine (PCE) 76 proceeds generally as follows:

1. The RM 82 and the CM 84 are initialized by the IOP 26 of Figure 2. This happens at power-up, and during
operation either by dynamic assignment or by a Network Management Station (NMS) (discussed below).
2. A packet classification request submitted by the FP 58 is retrieved from the request queue 70 of Figure 5.
3. The RM 82 is indexed by the contents of the root 0 address of the request to retrieve the first rule memory entry
of the search. If the entry is a pointer type, then this step is repeated for the rule memory address in the retrieved
entry. It is possible for this step to repeat multiple times.
4. If the retrieved rule memory entry is an operator type, then a criterion memory entry is retrieved at the location
specified by the CM address in the rule memory entry. Selected comparands from the CM 84 are compared with
corresponding fields of the request, according to the operator in the rule memory entry. Various fields may be
masked as described above.

5. The rule memory address increments by one until either an entry having a DONE bit set to one is reached, or
a match condition is found (i.e. the result of the comparison operation is TRUE). A rule may have its CARRY bit
set, which requires that the next rule also evaluate as TRUE before a match is declared.
6. If any rule memory entry encountered in the search is a pointer type of entry, it points to another rule memory
entry rather than to a criterion memory entry. In this case, sequential rule evaluation continues beginning at the
pointed-to rule memory entry.
7. The above process is performed once beginning at the root 0 address in the request. If DONE is reached for
the filters associated with root 0, then the process is repeated beginning at the root 1 address. When a match is
found, the result indicates whether it has been found using root 0 or root 1 rules.
8. When the search terminates, either by encountering a match or by encountering DONE in the root 1 search, a
result is written back to the result queue 72 indicating the results of the filtering check. The result contains the
address of the last rule checked, and whether or not a match has been found. If a match has been found, the
address is used by the FP 58 to index into an action table, which initiates an action appropriate to the result. For
example, if the match is for a rule indicating that all packets having a DA of less than a certain value should be
dropped, then the action table points to a routine that causes the packet to be intentionally discarded.

[0052] As described above, the CM 84 can be used in a variety of different configurations. Each of the three memories
CMO 86, CM1 88 and CM2 90 can be used in different modes to realize the different configurations. The following truth
table presents the different comparisons that can be performed using the different configuration modes of the criteria
memories 86, 88 and 90. A "1" indicates that a comparison can be performed using a given configuration mode, and
a "0" indicates that the comparison cannot be performed.

CNFIG SA& Mask DA 8. Mask PTCL TOS & Mask FLAG 3. Mask
1 0 0 0 0 0 0 0

EP1128609A2

(continued)

SA& Mask DA 8. Mask TOS & Mask FLAG & Mask

[0053] Thus for example, an SA comparison can be performed using any of CMO-0, CM1-0, and CM2-0. A FLAGS
comparison can be performed using any of CM2-4 through CM2-7. The ability to perform a given comparison using
any of a variety of configuration modes provides desirable flexibility in organizing CM 84, which in turn enhances
efficiency. The allocation of criterion memory space is described in some detail below.
[0054] It may be possible in alternative embodiments to achieve greater storage efficiency by using different methods
of encoding the criterion memory configuration information. It will be noted that in the illustrated embodiment, 30 bits
are used to store the configuration memory for each criterion memory entry. These 30 bits include 24 bits of operator
codes in a rule memory entry, 1 bit in a CMO entry, 2 bits in a CM1 entry, and 3 bits in a CM2 entry. This scheme
simplifies decoding within CM0, CM1 and CM2. However, it can be shown that the number of all possible configurations
of comparands and operations for a criterion memory entry is on the order of 3.3 x 105, and can thus be represented
using only 22 bits. Thus it may be possible, for example, to use a single 22 bit configuration field in each rule memory
entry, from which the operator and comparand information is decoded. However, the decoding required in such em-
bodiments are generally more complicated than in the illustrated embodiment, due to the lack of one-to-one corre-
spondence between each configuration bit and a respective section of CM 84.
[0055] Figure 16 shows the manner in which packet filtering information is managed and utilized in the switch 10 of
Figure 1. Generally, the source of packet filtering information is a network management station (NMS), which is typically
located apart from the switch 10 of Figure 1. The NMS communicates with a central processor (CP) residing within the
switch control 18 of Figure 1 using a network management protocol such as Simple Network Management Protocol
(SNMP). The CP receives the filtering information from the NMS, and is responsible for distributing it to the IOP 26 of
each line interface 12. Additionally, the CP maintains the information in non-volatile (NV) storage, so that the switch
10 is able to operate during periods when the NMS may be unavailable.
[0056] The filter information sent from the CP to the IOP 26 includes (1) filters, each of which specifies up to a small
number of criteria that can be applied to received packets, (2) bindings, that is, information associating different groups
of the filters with different ports and/or circuits in the switch 10, and (3) actions, having associations with the filters,
which are to be performed when filter criteria are satisfied.
[0057] In operation, when an IOP 26 is initialized, the CP retrieves an existing filtering table and binding database
from the NV storage and downloads them to the IOP 25 of each line interface 12. When the NMS adds, deletes or
modifies a filter or binding, it issues an SNMP action request to pass the new information to the CP. In turn, the CP
posts the change to each IOP 26.
[0058] The IOP 26 receives the filtering information from the CP and instantiates local copies of the filters, bindings
and actions into its memory. The IOP 26 updates these local copies whenever the CP sends new information. The IOP
26 programs the FP memory 60 in each forwarding engine 22 of Figure 2 with a table of different actions that can be
taken for the various filters. The IOP 26 also creates RM entries and CM entries corresponding to the filters and bindings,
and programs the RM 82 and CM 84 (Figure 9) of the PCE 76 (Figure 5) with these entries. Whenever the IOP 26
receives new filtering information from the CP, RM and CM entries are deleted, added, or changed as necessary.

EP 1 128 609 A2

[0059] The FP 58 is responsible for processing packets with the assistance of the PCE 76. Using the information
provided by the IOP 26, the FP 58 maps the port and circuit identities of each received packet into root 0 and root 1
addresses, creates a PCE request using these addresses, and writes the request to the PCE 76 via the request queue
70 (Figure 5). As mentioned above, the FP 58 generally attempts to operate the PCE 76 in a batch fashion by writing
a burst of multiple requests if possible. The PCE processes the requests in the manner described above. The FP 58
polls the PCE 76 to obtain results, which are returned by the PCE 76 in blocks as described above. For each result in
which a match is indicated, the PCE match address from the result is used as an index into the action table established
by the IOP 26 to ascertain which action to take for the packet. The FP 58 then performs the indicated action.
[0060] As previously mentioned, both the RM 82 and the CM 84 are relatively small memories implemented on a
single IC in order to achieve high performance. It is important that the limited space in these memories be efficiently
managed. The IOP 26 is responsible for the allocation of space in the CM 84 for filter criteria, and the allocation of
space in the RM 82 for rule sets. These operations are described in turn below.
[0061] Filters may be one of two types, either stand-alone or compound. Stand-alone filters can be realized using
only one rule. Compound filters require multiple rules. Although there can be different types of compound filters, the
only compound filters employed in the illustrated embodiment are range filters. A range filter requires one rule to check
for an upper bound of a range and another rule to check for a lower bound of the range. Thus, the first step in adding
a filter is to determine whether the filter is a standalone filter or a range filter. If the filter is a standalone filter, only one
criterion memory configuration is required, whereas two configurations are required for range filters. The contents of
CM 84 are then searched and/or evaluated to determine how to best represent the filter in the CM 84. Once a config-
uration is chosen, the filter information is added as an update to the CM 84. These processes are described in more
detail below.

[0062] There are many types of configurations of a criterion memory entry that can be used to realize a given filter.
These are organized into seven CM configurations depending on which of the criterion memories 86, 88 and 90 are
used. The following table shows several of the more commonly used configuration types, arranged according to CM
configuration:

TYPE CM CONFIG CMO MODE CM1 MODE CM2 MODE

6 (CMO,CM1,CM2) 0:SA 2:PTCL,SP,DP,TOS

5_1 (CM1,CM2) 2:PTCL,SP,DP,TOS
5_2 2:PTCL,SP,DP,TOS
5_3 1:DA,PTCL

4_’l (CMO,CM2) 2:PTCL,SP,DP,TOS
4,2 2:PTCL,SP,DP,TOS

4_3 1:DA,PTCL

(CMO,CM1) 2:PTCL,SP,DP
2:PTCL,SP,DP
1:DA,PTCL

0:SA,PTCL

1:DA,PTCL
2:PTCL,SP,DP,TOS

1_1 (CM1) 0:SA,PTCL
L2 1:DA,PTCL

1_3 2:PTCL,SP,DP

0; (CMO) 0:SA
0_2 1-DA

[0063] The CM configurations are ranked from most expensive to least expensive in terms of resource consumption.
For many filters, any of a variety of configurations may be used, but the goal is to use the least expensive, or "minimum",
configuration in order to maximize the efficiency of memory use. For example, a filter needing only an (SA, SA Mask)
comparison can be implemented using any CM configuration, and the minimum configuration is (CMO). As another
example, a filter needing (SA, SP, and PTCL) can be implemented using any of the four configurations (CMO,CM1),
(CMO,CM2), (CM1, CM2), and (CM0, CM1, CM2); the minimum configuration is (CM0, CM1).
[0064] The minimum configuration is used as the starting point in a search for the minimum available configuration.

EP 1 128 609 A2

If the minimum configuration is available, then it is used. Othenzvise, configurations that are successively more expen-
sive are considered until an available one is found. In the above example, the configurations are searched in the
following order: (CM0, CM1), (CM0, CM2), (CM1, CM2), and (CM0, CM1, CM2). The configuration search employs a
collection of linked lists of free criterion memory locations, wherein each list represents a particular set of free columns
in a single row, e.g. (CM0), (CM0, CM1), etc. Based on the type of comparisons required by the filter, the IOP 26
searches all eligible lists in a predetermined sequence looking for the first one with an available entry.
[0065] If the selected criterion memory configuration is larger than the minimum required configuration for a given
filter, then the remainder portion is made available for use by otherfilters. Thus in the above example, if the configuration
(CM0, CM1, CM2) is used when only (CMO,CM1)is required, then one unit of (CM2) is made available for use by other
filters.

[0066] Once a configuration has been chosen, the various elements of the filters are allocated to the different sections
of CM 84 as appropriate. Continuing with the example of a filter requiring (SA, SP, and PTCL), and assuming that the
configuration (CMO,CM1)is chosen, then the SA and the SA Mask are allocated to CMO, and the SP and PTCL are
allocated to CM1. This allocation corresponds to the configuration type 3 1 from the above table. CMO 86 is configured
in mode 0, and CM1 88 is configured in mode 2. Once this allocation is complete, the entry (or entries for range filters)
for CM 84 are generated (see Figure 11 - Figure 13 and accompanying description). Also, the data for the criterion
operators (bits 35-12) for a corresponding rule memory entry (see Figure 10 and accompanying description) are also
generated. The rest of the rule memory entry is generated during filter binding, discussed below.
[0067] When a filter is deleted, the CM configuration used for the deleted filter is made available for re-use. Available
configurations are concatenated if possible to make larger configurations. These can be used later in whole or in part
as described above. For example, if a unit of(CMO) is freed by deletion of a filter, and a unit of(CM1) is available in the
same row of CM 84, then a unit of (CMO, CM1) is created.
[0068] As previously mentioned, the IOP 26 is also responsible for maintaining rule sets that represent "bindings“ of
filters, or associations between sets of one or more filters with logical ports or circuits. This process involves the allo-
cation and programming of the RM 82. When a binding is to be added, the size of the binding to be added is first
evaluated. The size is dictated by the number of filters used with the logical port or circuit, and the mixture of range
filters and non-range filters. Once the size of the binding is known, space in the RM 82 is allocated. In the illustrated
embodiment, rule memory space is allocated in segments whose sizes are powers of two. Free segments are main-
tained on respective free lists until allocated to a binding, and segments from deleted bindings are returned to the free
lists for re-use. The segments are chained together using singly linked lists. For example, each free list is a singly
linked list of non-allocated segments of the same size. Each binding is a singly linked list of generally different-size
segments.
[0069] Consider a binding requiring 21 rule memory entries. For this binding, segments of sizes 16, 4, 2 and 2 are
preferably allocated. The 16-entry segment stores 15 rules and a pointer to the 4-entry segment. The 4-entry segment
stores three rules and a pointer to one of the 2-entry segments, which in turn stores one rule and a pointer to the other
2-entry segment. The last segment stores two rules. During allocation, if a segment of a desired size is not available,
a larger segment is utilized. Unused space in a segment can simply remain unused, or alternatively can be made
available for allocation to other bindings, in a manner similar to that discussed above for allocation of criterion memory
configurations.
[0070] Once the memory allocation is complete, the entries for the RM 82 are created and written into the RM 82.
During this process, each operator type rule is programmed with the address of the corresponding criterion memory
entry that should be used with the rule, and the operators are programmed with appropriate values based on the filter
represented by the rule/criteria pair. The rules are arranged in logical sequence in the RM 82 in accordance with the
desired sequence in which the filters should be checked. Within a segment of RM 82, the rules are arranged sequentially.
For bindings spanning multiple segments, the segments are chained together such that the rules are evaluated in the
desired sequence.
[0071] Various apparatus and methods related to packet classification have been described. Although the present
invention has been described primarily with reference to Internet Protocol (IP) packets or messages, it will be apparent
that the techniques described may be used for other types of messages. It will also be apparent to those skilled in the
art that other modifications to and variations of the above-described technique are possible.
Accordingly, the invention should be viewed as limited solely by the appended claims.

Claims

1. Packet classification apparatus, comprising:

input interface logic operative to receive a packet classification request including information from a packet

EP 1 128 609 A2

being processed by a packet classification requestor;
a rule memory operative to store rule memory entries, each rule memory entry containing an operator and a
criterion memory pointer;
a criterion memory operative to store criterion memory entries, each criterion memory entry containing a cri-
terion;

output interface logic operative to provide a packet classification result to the packet classification requestor;
and

control logic operative in response to the received packet classification request to:

(i) retrieve a rule memory entry from the rule memory;
(ii) retrieve a criterion memory entry from the criterion memory at a location specified by the criterion
memory pointer in the retrieved rule memory entry;
(iii) perform an operation specified by the operator in the retrieved rule memory entry, the operation being
carried out on the packet information from the packet classification request and the criterion from the
retrieved criterion memory entry; and
(iv) generate a packet classification result reflecting the result of performing the operation.

2. Packet classification apparatus according to claim 1, wherein:

the rule memory is operative to store both first-type and second-type rule memory entries, each first-type rule
memory entry containing an operator and a criterion memory pointer, and each second-type rule memory entry
containing a rule memory pointer; and
the control logic is operative in response to the received packet classification request to:

(i) determine whether the retrieved rule memory entry is a first-type entry or a second-type entry;
(ii) retrieve the criterion memory entry and perform the specified operation if the retrieved rule memory
entry is a first-type entry;
(iii) if the retrieved rule memory entry is a second-type entry, then retrieve another rule memory entry at
a location specified by the rule memory pointer contained in the second-type entry, and repeat the pre-
ceding steps for the newly retrieved rule memory entry; and
(iv) generate a packet classification result reflecting the results of performing the respective operations
specified by all retrieved first-type entries.

Packet classification apparatus according to claim 1, wherein the control logic is further operative to repeat steps
(i)-(iii)for additional rule memory entries until an indication of completion is reached.

Packet classification apparatus according to claim 3, wherein the indication of completion is an asserted DONE
bit in a retrieved rule memory entry.

Packet classification apparatus according to claim 3, wherein the indication of completion is the satisfaction of a
condition specified by the operator in a retrieved rule memory entry.

Packet classification apparatus according to claim 3, wherein the additional rule memory entries are retrieved by
sequentially accessing successive locations in the rule memory.

Packet classification apparatus according to claim 3, wherein the additional rule memory entries are retrieved by
accessing locations specified in rule memory pointers contained in retrieved rule memory entries.

Packet classification apparatus according to claim 1, wherein the control logic is operative to retrieve the rule
memory entry based on a rule memory address included in the received packet classification request.

Packet classification apparatus according to claim 1, wherein the rule memory entry retrieved by the control logic
is a first rule memory entry, the control logic being operative to select the first rule memory entry based on a first
rule memory address included in the received packet classification request, and wherein the control logic is further
operative to select a second rule memory entry based on a second rule memory address also included in the
received packet classification request, and to repeat steps (i)-(iii) for the second rule memory entry.

10. Packet classification apparatus according to claim 1, wherein the rule memory entry contains a CARRY indicator

EP 1 128 609 A2

indicating whether the rule memory entry is a first rule memory entry forming a compound rule with a second rule
memory entry, and wherein the control logic is operative to repeat steps (i) - (iii) for the second rule memory entry
and to generate the packet classification result in step (iv) such that the packet classification result reflects the
results of the operations for both the first and second rule memory entries.

. Packet classification apparatus according to claim 1, wherein the criterion in the criterion memory entry and the
information in the request are network addresses.

. Packet classification apparatus according to claim 11, wherein the addresses are destination addresses.

. Packet classification apparatus according to claim 1, wherein each criterion memory entry contains configuration
information indicating a manner in which the criterion memory entry is configured, and the control logic is operative
to (i) interpret the configuration information of the retrieved criterion memory entry to determine which of multiple
fields in the criterion memory entry are to be used in the operation, and (ii) perform the operation using only the
appropriate fields of the criterion memory and corresponding information from the packet classification request
based on the determined configuration.

. Packet classification apparatus according to claim 1, wherein each criterion memory entry contains configuration
information indicating a manner in which the criterion memory entry is configured, and the control logic is operative
to (i) interpret the configuration information of the retrieved criterion memory entry to determine which information
from the packet classification request is to be used in the operation, and (ii) perform the operation using only the
appropriate information from the packet classification request and corresponding information in the criterion mem-
ory entry based on the determined configuration.

. Packet classification apparatus according to claim 1 , wherein the criterion memory is organized into major divisions
such that each criterion memory entry includes different fields associated respectively with the different major
divisions, each field being configurable to hold different types of criteria according to configuration information
contained in the criterion memory entry, and wherein the control logic is operative for each major division to select
information from the packet classification request for use in the operation with the respective field of the criterion
memory entry based on the configuration information contained in the criterion memory entry.

. Packet classification apparatus according to claim 15, wherein the criterion memory includes three major divisions
such that each criterion memory entry contains a first field configurable as either a source or destination address,
a second field configurable as either a source address, a destination address, or as a set of port identifier infor-
mation, and a third field configurable as either a source address, a destination address, a set of port identifier
information, or a set of flag information.

. A method of managing space in a set of criterion memories used to hold search criteria in a hardware search
engine, comprising:

maintaining an ordering of different configurations of the criterion memories, the configurations being ordered
according to the total amount of criterion memory storage space required to store criterion memory entries
using the respective configuration;
maintaining a set of lists indicating the availability of space in the criterion memory for storing criterion memory
entries according to the different configurations;
determining, for a given search to be performed, which of the configurations is a minimum configuration re-
quiring the minimum amount of criterion memory storage space to store a criterion memory entry required for
the search;

searching for a minimum available configuration as indicated by the lists, the searching beginning with the
minimum configuration and proceeding in the order of increasing consumption of criterion memory space until
the first available configuration is found; and
allocating the minimum available configuration to store the criterion memory entry required for the search, and
updating the availability lists to indicate that the allocated configuration is no longer available.

18. A method according to claim 17, further comprising determining, if a configuration other than the minimum config-
uration is allocated, whether an unneeded portion of the allocated configuration can be used as a different config-
uration allocable to another criterion memory entry, and further comprising updating the availability lists to indicate
the availability of the different configuration.

EP 1 128 609 A2

SWITCH CONTROL E

SWITCH FABRIC E

LINE LINE LINE LINE LINE LINE

INTFC INTFC INTFC INTFC INTFC INTFC

12 E 12 12 E _2

CT}

NETWORK SEGMENTS

14

FIG. 1

EP 1 128 609 A2

TIMING

CONVERSION

AND

DISTRIBUTION

PHY I/O, FORWARDING

& ' ENGINE #1

FRAMING
22-1

FORWARDING

ENGINE #2

22-.2
SWITCH

FABRIC

FORWARDING

ENGINE #3

E

FORWARDING

ENGINE #4

E

CONTROL

MEMORY

EP 1 128 609 A2

PACKET

MEMORY

INBOUND

SAR

OUTBOUND

CONTROL

MEMORY

16

SAR

PACKET

MEMORY

5.0

TOWROM

IOP26

62

PACKETHEADER

DBTRBUTOR

(PHD) 52

FP

MEMORY

59

EP 1 128 609 A2

TO/FROM

FP 58

FIG. 4

TO/FROM

IOP 26

ROUTE AND

CLASSIFICATION

ENGINE

65

EP 1 128 609 A2

ROUTE

LOOKUP

ENGINE (RCE)

PACKET

CLASSIFICATION

ENGINE (PCE)

STATUS

Tx, Rx
STATUS

REQUEST STATUS RESULT
QUEUE ENTRY QUEUE

TO/FROM

FP BUS 56

FIG. 5

EP 1 128 609 A2

RLE Ptr. (24) PCE Root0

(16)

IP TOS IP Protocol TCP IP Source

(8) Flags (8) Address (32)(8)

IP Destination Address (32) TCP/UDP TCP/UDP
Source Destination

Port (16) Port (16)

3 Reserved (64)

EEEEIE

(1) (7) (1)(1)(1)(1) (4) (1) (9) address(14) fiags(8) Pointer(16)

T Zero TX RCE RCE Tx-0

(1) message results request

%

2A9068211D.E

N_._o._.<_2
>m_o2m__2

3

F.zm_~_.m%::::::::::::::::1}.
~59.sao_oS

E05:Sam.m8<so

2msmscBmnamm20$8n6.s_oE§NH2.mmsmsos_oE§8n5.s_oE\E

EP 1 128 609 A2

38 37 - 0

TYPE OPERATOR/POINTER

o: DONE (37)

CARRY (36)

CRITERION OPERATORS (35-12)

CRITERION ADDRESS (11-0)

RULE ADDRESS (13-0)

FIG. 10

37 36 - 32 31 - 0

CONFIG MASK SAIDA

So: MASK SA
1: MASK DA

FIG. 11

46-4544-3736-32 31 - 0

CONFIG PTCL MASK SA/DA/SPIDP

PTCL SA MASK SA

PTCL DA MASK DA

0 :

1 :

2 : PTCL - SP (31-16), DP (15-0)

3 : PTCL - SP (31-16), DP (15-0)

FIG. 12

MNGE3...:ha.63:ao<.::5.EVa:mo:a9Va<:mo:3.2na_aEN.ao<.:.5-5Va:mo:mo»Va<:a9.3:ha_aEN.85”..3-EVa:mo:mo»Va<:mop3.3ha.83:moi”..3-EVa:8:mopVa<:a9$2.05.329a2:Va:mobea:no.329.amopdz.3an-weVa<:E.65<aan-weVa<:Va.65ao<._uEe.a\<n_\<aao:Va<:Va<::oEOEZOO

2A906821|IID.E

I Ov-c~l<‘O<l'|-0(Ol\

EP 1 128 609 A2

RM

OPS BITS

CM

CONFIG BITS CONFIG SELECT‘VIIIIIIIIIIIIIV

103 MATCH

A FIG. 14

REQ CM CM

COMPARAND MASK COMPARAND

N_M_$

Enables user to create

filters and bindings to

ports and circuits;
tranfers info to CP.

EB

Maps incoming port and

circuit for packets into

PCE roots; creates requests
and issues them to PCE.

Uses index from each

response to identify
action to be taken.

EP 1 128 609 A2

FIG. 16

GB

Accepts info from NMS;
instantiates local NV

records; downloads
info to IOP.

|0_P

instantiates local filters

and bindings; programs

actions into FP memory;

programs rules and criteria
into PCE.

Pi

Accepts rule and criteria

update requests from IOP;

updates RM and CM.

Accepts classification

requests from FP;

performs searches using

RM and CM; return results.

