12

EUROPEAN PATENT APPLICATION

Application number: 86810470.4

2 Date of filing: 21.10.86

(s) Int. Cl.4: C 07 D 207/337

C 07 D 307/54,

C 07 D 333/24, A 61 K 31/34, A 61 K 31/38, A 61 K 31/40

(30) Priority: 25.10.85 US 791198 07.01.86 US 816664

Date of publication of application: 06.05.87 Bulletin 87/19

Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE

Applicant: SANDOZ AG Lichtstrasse 35 CH-4002 Basel (CH)

Designated Contracting States:
BE CH ES FR GB GR IT LI LU NL SE

(7) Applicant: SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-7850 Lörrach (DE)

(84) Designated Contracting States: DE

Applicant: SANDOZ-ERFINDUNGEN
 Verwaltungsgesellschaft m.b.H.
 Brunner Strasse 59
 A-1235 Wien (AT)

84 Designated Contracting States: AT

(2) inventor: Wareing, James Richard 402 Millbrook Avenue Randolph, N.J. 07801 (US)

> Damon, Robert Edson 23156 West View Wharton, N.J. 07885 (US)

Heterocyclic analogs of mevalonolactone and derivatives thereof, processes for their production and their use as pharmaceuticals.

(57) Compounds of formula

I

wherein

Ra is a group -X-Z. Rb is R2, Rc is R3, Rd is R4 and Y is a group -N- or

Ra is R1, Rb is a group -X-Z, Rc is R2, Rd is R3 and Y is O, S or a group -N-;

 $R_1,\,R_2,\,R_3,\,$ and R_4 independently are $C_{1\text{-}6}$ alkyl not containing an asymmetric carbon atom, $C_{3\text{-}7}$ cycloalkyl or a ring

or in the case of $\ensuremath{R_3}$ and $\ensuremath{R_4}$ additionally hydrogen, or for $\ensuremath{R_3}$ when Y is O or S

$$R_{17}^{C} = C_{R_{19}}^{R_{18}}$$

whereby R₁₇ is hydrogen or C₁₋₃alkyl and R₁₈ and R₁₉ are independently hydrogen C₁₋₃alkyl or phenyl; each R₅ is independently hydrogen. C₁₋₃alkyl, n-butyl, i-butyl, t-butyl, C₁₋₃alkoxy, n-butoxy, i-butoxy, trifluoromethyl, fluoro, chloro, bromo, phenyl, phenoxy or benzyloxy; each R₆ is independently hydrogen. C₁₋₃alkyl, C₁₋₃alkoxy, trifluoromethyl, fluoro, chloro, bromo, phenoxy or benzyloxy, and each R₇ is independently hydrogen, C₁₋₂alkyl, C₁₋₂alkoxy, fluoro or chloro.

Bundesdruckerei Berlin

EP

with the proviso that there may only be one each of trifluoromethyl, phenoxy or benzyloxy in each ring A present. X is $(CH_2)_m$ or $\{CH_2\}_qCH=CH-(CH_2)_q$. m is 0, 1, 2 or 3 and both q's are 0 or one is 0 and the other is 1.

wherein R₉ is hydrogen or C₁₋₃alkyl. In free acid form, or in the form of an ester or δ -lactone thereof or in salt form as appropriate, which compounds are indicated for use as pharmaceuticals in particular as hypolipoproteinemic and anti-atherosclerotic agents.

Description

HETEROCYCLIC ANALOGS OF MEVALONOLACTONE AND DERIVATIVES THEREOF, PROCESSES FOR THEIR PRODUCTION AND THEIR USE AS PHARMACEUTICALS

The present invention concerns heterocyclic analogs of mevalonolactone and derivatives thereof, processes for their preparation, pharmaceutical compositions containing them and their use as pharmaceuticals especially as agents for treating hyper-lipoproteinemia and atherosclerosis.

More particularly the invention concerns compounds of formula !

Ι

wherein

10

15

20

45

55

ൈ

Ra is a group -X-Z, Rb is R2, Rc is R3, Rd is R4 and Y is a group -N- or

Ra is R₁, Rb is a group -X-Z, Rc is R₂, Rd is R₃ and Y is O, S or a group -N-; $\frac{1}{R_4}$

R₁, R₂, R₃ and R₄ independently are C₁₋₆alkyl not containing an asymmetric carbon atom, C₃₋₇cycloalkyl or a

or in the case of R₃ and R₄ additionally hydrogen, or for R₃ when Y is O or S

$$_{35}$$
 $_{R_{17}}^{C}$ = $\zeta_{R_{19}}^{R_{18}}$

whereby R₁₇ is hydrogen or C₁₋₃alkyl and R₁₈ and R₁₉ are independently hydrogen C₁₋₃alkyl or phenyl; each Rs is independently hydrogen, C1-3alkyl, n-butyl, i-butyl, t-butyl, C1-3alkoxy, n-butoxy, i-butoxy, trifluoromethyl, fluoro, chloro, bromo, phenyl, phenoxy or benzyloxy; each Re is independently hydrogen, C1-3alkyl, C1-3alkoxy, trifluoromethyl, fluoro, chloro, bromo, phenoxy or benzyloxy, and each R7 is independently hydrogen, C1-2alkyl, C1-2alkoxy, fluoro or chloro, with the proviso that there may only be one each of trifluoromethyl, phenoxy or benzyloxy in each ring A present, X is $(CH_2)_m$ or $(CH_2)_qCH = CH - (CH_2)_q$, m is 0, 1, 2 or 3 and both q's are 0 or one is 0 and the other is 1,

wherein R₉ is hydrogen or C₁₋₃alkyl,

in free acid form, or in the form of an ester or δ -lactone thereof or in salt form as appropriate.

Suitable esters include physiologically acceptable esters e.g. physiologically hydrolysable and -acceptable

By the term "physiologically-hydrolysable and -acceptable ester is meant an ester of a compound in accordance with the invention in which the carboxyl moiety if present is esterified, and which is hydrolysable under physiological conditions to yield an alcohol which is itself physiologically acceptable, e.g. non-toxic at desired dosage levels. For the avoidance of doubt, throughout this specification it is the right hand side of the X radical that is attached to the Z group. Preferred such acids, esters and salt forms as Z can be represented together with the free acid by formula a

wherein

R₉ is hydrogen or C₁₋₃alkyl and

 R_{10} is hydrogen, a physiologically acceptable ester forming group (R_{11}) or a pharmaceutically acceptable cation (M).

5

10

25

30

40

45

50

60

When Z is in lactone form it forms a $\delta\text{-lactone}$ of formula b

and reference to "lactone" hereinafter refer to δ -lactones.

Salts of the compounds of the invention, e.g. of the compounds of formula I, include in particular their pharmaceutically acceptable salts. Such pharmaceutically acceptable salts include e.g. alkali metal salts such as the sodium and potassium salts and salts with ammonium.

References to compounds of formulae I and IA-ID and subscopes thereof are intended to cover all forms unless otherwise stated.

Depending on the nature of the various substituents the compounds of formula I may be divided into four main groups, namely

These four groups may be further divided into two sub-groups each depending on the significance of Z as either a group of formula II in other than lactone form (sub-group "a") or a group of formula b (sub-group "b"). The resulting eight sub-groups are designated as formulae IAa, IAb, IBa, IBb, ICa, ICb, IDa, IDb respectively.

As is self-evident to those skilled in the art, each compound of formula I (and every sub-group and species thereof) has at least two centres of asymmetry (e.g. the two carbon atoms bearing the hydroxy groups in the group of formula a and the carbon atom bearing the hydroxy group and the carbon atom having the free valence in the group of formula b) and these lead (e.g. with two centres) to four stereoisomic forms (enantiomers) of each compound (two racemates or pairs of diasteroisomers). In preferred compounds having only two such centres of asymmetry these four stereoisomers may be designated as the R,R; R,S; S,R; and S,S enantiomers, all four stereoisomers being within the scope of this invention. Depending on the nature of substituents further asymmetric carbon atoms may be present and the resulting isomers and mixtures thereof also form part of the invention. Compounds containing only two centres of asymmetry (four menmentioned stereoisomers) are preferred.

Preferably in compounds IA-ID one of R₁ and R₂ is C₁₋₆alkyl not containing an asymmetric carbon atom and the other is a Ring A. Also preferably in compounds IB and IC, one of R₃ and R₄ is a Ring A and the other is hydrogen or C₁₋₈alkyl not containing an asymmetric carbon atom, preferably hydrogen or C₁₋₂alkyl and most preferably hydrogen except that R₄ in compounds IC is preferably other than hydrogen. More preferably, the preferences of both preceding sentences occur simultaneously. Thus, the preferred compounds IB and IC and each of the sub-scopes thereof are those having attached to the pyrrole ring two Rings A and two alkyl groups or in compounds IB especially one alkyl group and one hydrogen. Even more preferably the two Rings A are ortho to each other. Also preferably the pyrrole ring does not bear two ortho tertiary alkyl groups.

In Formula IB:

 R_1 is preferably R_{1Bx} , where R_{1Bx} is Ring A, more preferably $R_1^{\prime\prime}$ $R_1^{\prime\prime}$ $R_2^{\prime\prime}$, where $R_1^{\prime\prime}$ $R_2^{\prime\prime}$ is Ring A wherein $R_3^{\prime\prime}$ is $R_3^{\prime\prime}$, and R_7 is $R_7^{\prime\prime}$, even more preferably $R_1^{\prime\prime}$ $R_2^{\prime\prime}$, where $R_1^{\prime\prime}$ $R_2^{\prime\prime}$ is Ring A wherein $R_3^{\prime\prime}$ is $R_3^{\prime\prime}$, and $R_7^{\prime\prime}$ is hydrogen, and most preferably phenyl, 4-fluorophenyl or 3,5-dimethylphenyl, especially

4-fluorophenyl; or

R₁ is preferably R_{1By}, where R_{1By} is C₁₋₆alkyl not containing an asymmetric carbon atom, more preferably R₁ By, where R₁ By is C₁₋₄alkyl not containing an asymmetric carbon atom, and most preferably i-propyl. R₂ is preferably R_{2Bx}, where R_{2Bx} is C₁₋₆alkyl not containing an asymmetric carbon atom, more preferably R₂ Bx, where R₂ Bx is C₁₋₄alkyl not containing an asymmetric carbon atom, and most preferably i-propyl, or R₂ is preferably R_{2By}, where R_{2By} is Ring A, more preferably R₂ By, where R₂ By is Ring A wherein R₅ is R₅, R₆ is R'₆, and R₇ is R'₇, even more preferably R₂ By, where R₂ By is Ring A wherein R₅ is R'₆ and R₇ is hydrogen, and most preferably phenyl, 4-fluorophenyl or 3.5-dimethylphenyl, especially 4-fluorophenyl.

 R_3 is preferably R_{3Bx} , where R_{3Bx} is hydrogen or $C_{1\text{--}6}$ alkyl not containing an asymmetric carbon atom, more preferably R_3^* B_{1} , where R_3^* B_{2} is hydrogen or $C_{1\text{--}2}$ alkyl, even more preferably R_3^* B_{2} , where R_3^* B_{3} is hydrogen or methyl, and most preferably hydrogen; or

 R_3 is preferably R_{3By} , where R_{3By} is Ring A, more preferably R_3^{\bullet} B_y , where R_3^{\bullet} B_y is Ring A wherein R is R'₅, R₆ is R'₆, and R₇ is R'₇, even more preferably R_3^{\bullet} B_y , where R_3^{\bullet} B_y is Ring A wherein R₅ is R"₅, R₆ is R"₆, and R₇ is hydrogen, and most preferably phenyl.

 R_4 is preferably R_{4Bx} , where R_{4Bx} is Ring A, more preferably R_4 R_5 where R_4 R_5 is Ring A wherein R_5 is R_5 , R_6 is R_5 , and R_7 is R_7 , even more preferably R_4 R_5 , where R_4 R_5 is Ring A wherein R_5 is R_5 , R_6 is R_6 , and R_7 is hydrogen, and most preferably phenyl; or R_4 is preferably R_{4By} , where R_{4By} is hydrogen or C_{1-6} alkyl not containing an asymmetric carbon atom, more preferably R_4 R_7 , where R_4 R_7 is hydrogen or R_7 is hydrogen or methyl, and most preferably hydrogen.

In Formulae IA, IC and ID:

 R_1 is preferably R_{1Cx} , where R_{1Cx} is C_{1-6} alkyl not containing an asymmetric carbon atom, more preferably R_1 C_1 , where R_1 C_2 is C_{1-4} alkyl not containing an asymmetric carbon atom, and most preferably I_1 -propyl, or I_2 is preferably I_3 I_4 I_5 is I_5 and I_7 is I_7 even more preferably I_8 I_8 I_9 $I_$

 R_2 is preferably R_{2Cx} , where R_{2Cx} is Ring A, more preferably R_2' C_x , where R_2' C_x is Ring A wherein R_5 is R_5' , R_6 is R_6' and R_7 is R_7' , even more preferably R_2'' C_x , where R_2'' C_x is Ring A wherein R_5 is R_5'' , R_6 is R_5'' , and R_7 is hydrogen, and most preferably phenyl, 4-fluorophenyl or 3,5-dimethylphenyl, especially 4-fluorophenyl; or

 R_2 is preferably R_{2Cy} , where R_{2Cy} is C_1 -ealkyl not containing an asymmetric carbon atom, more preferably R_2 cy, where R_2 cy is C_1 -ealkyl not containing an asymmetric carbon atom, and most preferably i-propyl. R_3 is preferably R_{3Cx} , where R_{3Cx} is Ring A, more preferably R_3 cx, where R_3 cx, is Ring A wherein R_5 is R_5 , R_6 is R_6 , and R_7 is R_7 , even more preferably R_3 cx, where R_3 cx is Ring A wherein R_5 is R_6 , and R_7 is hydrogen, and most preferably phenyl; or

R₃ is preferably R₃C_y, where R₃C_y is hydrogen or C₁₋₆alkyl not containing an asymmetric carbon atom, more preferably **R**³3 C_y, where **R**³3 C_y is hydrogen or C₁₋₂alkyl, and even more preferably **R**³3 C_y, where **R**³3 C_y is hydrogen or methyl, especially hydrogen.

In the compounds of formulae IA and ID, especially the former, R_{3cy} , R_{3cy} and R_{3cy} include $-CH = C(CH_3)_2$.

In formula IC:

R4 is preferably R4Cx, where R4Cx is hydrogen or C1-salkyl not containing an asymmetric carbon atom, more preferably R4Cx, where R4Cx C1-2alkyl, even more preferably methyl, or

R₄ is preferably R₄C_y, where R₄C_y is Ring A, more preferably \mathbb{R}^4_4 C_y, where \mathbb{R}^4_4 C_y is Ring A wherein R is R'₅, R₆ is R'₆, and R₇ is R'₇, even more preferably \mathbb{R}^4_4 C_y, where \mathbb{R}^4_4 C_y is Ring A wherein R₅ is R"₅, R₆ is R"₆, and R₇ is hydrogen, and most preferably phenyl.

In addition, in the compounds IA and ID R₂ is preferably C₁₋₆alkyl not containing an asymmetric carbon atom, especially isopropyl or t-butyl, or phenyl or p-substituted phenyl, especially p-fluorophenyl and R₁ is preferably phenyl or p-substituted phenyl especially p-fluorophenyl.

Of IA and ID the former are preferred.

In each of IA, IB, IC and ID the following preferences apply.

Each R_5 independently is preferably R_5 ' where R_5 ' is hydrogen, C_{1-3} alkyl, C_{1-2} alkoxy, trifluoromethyl, fluoro or chloro, more preferably R_5 " where R_5 " is hydrogen methyl or fluoro. In the case of R_1 and R_2 being a Ring A each R_5 " is preferably fluoro, especially 4-fluoro. In the case of R_3 and R_4 being a Ring A R_5 " is preferably hydrogen.

Each R₆ independently is preferably R₆' where R₆' is hydrogen, C₁₋₂alkyl, fluoro or chloro more preferably R₆" where R₆" is hydrogen or methyl, most preferably hydrogen.

Each R₇ independently is preferably R₇' where R₇' is hydrogen or methyl, most preferably hydrogen.

Preferably, each Ring A, independently bears a maximum of one substituent selected from the group consisting of t-butyl, trifluoromethyl, phenyl, phenoxy and benzyloxy. More preferably, when any two or all three of the substituents on each Ring A independently are ortho to each other, at least one member of each pair that are ortho to each other is a member of the group consisting of hydrogen, methyl, methoxy, fluoro and

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

