

$$
102648
$$

ATTAR
inter correct PALM trans. No. and any inter correct PALM trans. No. and . ican Interference No. Label
3. ican Send No. Label
\qquad

Joseph A. Picard et al. attis: derry E bnssen et al. Warner hambert Co. 2800 P quouth Road Ann'Arbok, M1 48105

Yoshihiro Fujikawaetal. atty: Norman F. Oblon et al. Oblon, Fisher, Spivak, Mcclellan o Maier 1755 S. Jeff. Davis Hwy, Crystal Square 5, Ste, 400 Arlington, VA 22202

FAJENTAYOTMMEMMK OFFICE
INTERFERENCE-INITIAL MEMORANDUM
MTCOERENCES
EXAMINERS INSTRUCTIONS-This form need not be typewritten. Complete the items below and forward to the Group Clark with all $\begin{array}{ll}\text { (See MPEP 2309.02) } & \text { files including those benefit of which has } \\ \text { order. Use a separate form for each count. }\end{array}$
BOARD OF PATENT APPEALS AND INTERFERENCES: An Interference is found to exist between the following cases:

The claims of this party which correspond to this count are: \quad The claims of this party which do not correspond to this count

If a claim of any party is exactly the same as this count, it should be circled above. If not, type the count in this space (attach additional sheet if necessary):

- The serial number and filing date of each application the benefit of which is intended to be accorded must be listed, it is not sufficient to merely list the earliest application if there are intervening applications necessary for continuity.

DATE
Clerk's instructions: 1. Obtain a title report for all cases and include a copy. 2. Forward all files including those benefit of which is being accorded.

- The serial number and filing date of each application the benefit of which is intended to be accorded must be listed. It is not sufficient to merely list the earliest application if there are intervening applications necessary for continuity.

DATE
Clerk's instructions: 1. Obtain a title report for all cases and include a copy, 2. Forward all files including those benefit of which is being accorded.

- The serial number and filing date of each application the benefit of which is intended to be accorded must be listed. It is not sufficient to merely list the earliest application if there are intervening applications necessary for continuity

| DATE | PRIMARY EXAMINER |
| :--- | :--- | :--- | :--- | :--- |
| Clerk's instructions: | |
| 1. Obtain a title report for all cases and include a copy. | |
| 2. Forward all files including those benefit of which is being accorded. | GROUP DIRECTOR SIGNATURE (if required) |

The cases involved in this interference are:
Junior Party
Applicant: Sompong Wattanasin
Address: 11 Dịvito Trail Hopatcong, New Jersey 07843
Serial No.: 07/498,301 filed 03/23/90
For: Quinoline Analogs of Mevalonolactone And Derivatives Thereof
Assignees: None

Attorneys of Record:	Gerald D. Sharkin, Robert S. Honor,
	Richard E. Villa, Walter F. Jewell, Thomas
	O. McGovern, Thomas C. Doyle, Melvyn M.
	Kassenoff, Joseph J. Borovian, Joanne M.
	Giesser and Diane E. Furman

Associate Attorney: None
Accorded Benefit of: U.S. Serial No. 07/318,773 filed 03/03/89

Senior Party
Applicants: Yoshihiro Fujikawa, Mikio Suzuki, Hiroshi Iwasaki, Mitsuaki Sakashita and Masaki Kitahara

Addresses: Nissan Chemical Industries, Ltd, Chuo Kenkyusho, 722-1, Tsuboi-cho, Funabashi-shi, Chiba-ken, Japan

Serial No.: 07/233,752 filed 08/19/88
For: Quinoline Type Mevalonolactones
Assignees: Nissan Chemical Industries Ltd., Tokyo, Japan
Attorneys of Record: Norman F. Oblon, Stanley P. Fisher, Marvin J. Spivak, C. Irvin McClelland, Gregory J. Maier, Arthur I. Neustadt, Robert C. Miller, Richard D. Kelly, James D. Hamilton, Eckhard H. Kuesters, Robert T. Pous, Charles L. Gholz, Vincent J. Sunderdick, William E. Beaumont and Steven B. Kelber

Associate Attorney: None
Accorded Benefit of: Japan Serial Nos. 207224 filed 08/20/87 and 15585 filed 01/26/88
Japan serial No, 193606, filel August'3, 1988
Address: Oblon, Fisher, Spivak, McClelland \& Maier
1755 S. Jeff. Davis Hwy.
Crystal Square 5, ste. 400
Arlington, VA 22202

wherein \mathbf{A} is

X is $-\mathrm{CH} 2 \mathrm{CH} 2-$ or $-\mathrm{CH}=\mathrm{CH}-$; \mathbf{R}_{1} and $\mathbf{R}_{\mathbf{2}}$ are independently
hydrogen;
alkyl of from one to six carbons;
trifluoromethyl;
cyclopropyl;
cyclohexyl;
cyclohexylmethyl;
phenyl;
phenyl substituted with
fluorine,
chlorine,
bromine,
hydroxy, trifluoromethyl,
alkyl of from one to four carbon atoms, or alkoxy of from one to four carbon atoms;
phenylmethyl;
phenylmethyl substituted with
fluorine,
chlorine,
bromine,
hydroxy,
trifluoromethyl,
alkyl of from one to four carbon atoms, or alkoxy of from one to four carbon atoms;
2-, 3-, or 4-pyridinyl; or
2-, 4, or 5-pyrimidinyl;

```
\(R_{3}, R_{4}, R_{5}, R_{6}\) are independentiy selected from
    hydrogen;
    alkyl of from one to six carbon atoms;
    trifluoromethyl;
    cyciopropyl;
    fluorine;
    chiorine;
    bromine;
    hydroxy;
    alkoxy of from one to four carbon atoms;
    cyano;
    nitro;
    amino;
    acetylamino;
    aminomethyl;
    phenyl;
    phenyl substituted with
        fluorine,
        chlorine,
        bromine,
        hydroxy,
        trifluoromethyl,
        alkyl of from one to four carbon atoms, or
        alkoxy of from one to four carbon atoms;
    phenylmethyl; or
    phenylmethyl substituted with
        fluorine,
        chlorine,
        bromine,
        hydroxy,
        trifluoromethyl, or
        alkyl of from one to four carbon atoms;
provided that when X is in the 2 -position, R is hydro-
    gen and is attached in the 4-position;
or a corresponding 3,5-dihydroxyacid of Formula II
```


II
wherein $A, X, R_{1}, R_{\mathbf{2}}, R_{3}, R_{4}$, and R_{5} are as defined above, or a pharmaceutically acceptable salt thereof. The claims of the parties which correspond to Count 1 are:

Wattanasin : Claims 1-7 and 10
Picard et al. : Claims 1-14
Fujikawa et al.: Claims 1-9, 11-34, 36, 39 and 40

Count 2

A method of inhibiting cholesterol biosynthesis in a patient in need of said treatment comprising administering a cholesterol synthesis inhibiting amount of a compound as defined by count 1 in combination with pharmaceutically acceptable carrier.

The claims of the parties which correspond to Count 2
are:

All communications respecting this case should identify it by number and naties of parties.

U.8. DEPARTMENT OF COMMERCE Patent and Trademark Office

Address: EOXINTERFERENCE
Commissioner of Patents and Trademarks Washington, D.C. ᄅロᄅ31

Telephone: (703)557-4007
Facsimile: (703)557-8642

MAILED

Interference No. 102,648

Wattanasin

MAR 111992
PAT. \& T.M. OFFICE BOARD OF PATENT APPEALS AND INTERFERENCES
v.

Picard et al.
v.

Fujikawa et al.

This interference has been assigned to the undersigned in accordance with 37 CFR 1.610. All future papers filed in this interference should be captioned to include this information.

Any questions regarding procedure in this interference should be directed to the undersigned. However, any such contact must include the participation of both parties, e.g., via a conference call.

Each party is required to file a paper in accordance with 37 CFR 1.613 identifying its lead attorney or agent (see 37 CFR $1.601(k))$ by no later than 25 MAR 1992. Future changes in the lead attorney or agent must likewise be called to the attention of this board as soon as reasonably possible. No contact should be made with the undersigned by anyone other than the lead attorneys or agents.

The time for filing and serving notice of filing (but not serving) preliminary statements (37 CFR 1.621-1.628) and for filing preliminary motions (37 CFR 1.633, et. seg., note in particular, 1.637) is set to expire 11.لUN1992.

The parties are strongly encouraged to make contact with each other at the time that its lead attorney or agent are identified in an attempt to settle this interference. The examiner-in-chief can be expected to cooperate in allowing reasonable time for a bona fide attempt at settlement negotiations, which will obviate the necessity for filing preliminary motions and will result in the filing of an appropriate termination paper under 37 CFR 1.662 .

There has been confusion regarding the use of the "BOX INTERFERENCE" requirement of 37 CFR $1.1(e)$ in the filing of papers. Unless the paper itself is hand carried to the Service Branch of the Board of Patent Appeals and Interferences, located in Room 10c01 of Crystal Gateway 2 (1225 Jefferson Davis Highway, Arlington, VA), the designation "BOX INTERFERENCE" must be on the outside of the envelope containing the paper as well as on the paper itself. Merely hand carrying a paper to the PTO Mail Room does not suffice.

Summary of Times Running

1. Statements and Motions due

11 JUN 1992 -
2. Identity of lead attorney or agent due 25 MAR 1992 _.

gjh

IN the United states patent and trademark office of patent appeals and interferences

WATIPANASIN
INTERFERENCE 102,648
EXAMINER-IN-CHIEF:
MICHAEL SOFOCLEOOS

v.

PICARD ET AL
v.

FUJIKAWA ET AL

DESIGNATION OF LEAD COUNSEL, 37 CR $\$ 1.601(\mathrm{k})$

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:
Pursuant to 37 CPR $\$ 1.601(k)$, the Senior Party Fujikawa et al hereby designates as lead attorney Steven B. Kelber, Reg. No. 30,0731.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND, MATER \& NEUSTADT, PC.

Steven B. Kelber
Registration No.: 30,073
Attorney of Record
Fourth Floor
1755 South Jefferson Davis Highway
Arlington, Virginia 22202
703-521-5940

CERTIFICATE OF SERVICE

I hereby certify that true copies of:

DESIGNATION OF LEAD COUNSEL, 37 CFR §1.601(k)
were served upon Counsel for the Wattanasin and Picard et al as follows:

Gerald D. Sharkin, Esq.
Sandoz Corp.
59 Route 10
E. Hanover, NJ 07936
and
Jerry F. Janssen, Esq.
Warner-Lambert Co.
2800 Plymouth Road
Ann Arbor, MI 48105
via first-class mail, postage prepaid, this 17 th day of March, 1992.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATrANASIN	-	INTERFERENCE 102,		
V.		EXAMINER-IN-CHIEF: MTCHAET SOFOCLEOUS		
,	:	MICHAEL SOFOCLKOUS	\%	
PICARD ET AL	:		-	$\cdots{ }^{m}$
PICARD EI	:		∞	品
V.	:		5	$\chi_{0} 0 \times \frac{1}{4}$
FUTTKAWA ET AL	:			$\cdots \mathbb{i}$

POWER TO INSPECT AND MAKE COPIES

BOX INTERFERENCE
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231

SIR:
The undersigned, being an Attorney of Record for the aboveidentified Interference, hereby grants to MURALIDHAR PAI/SAM BRONN, the power to inspect and make copies of the above-identified Interference files.

BOARD OF PATEHT
 APPEALS \&
 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INILERFERENCES H1 26 ค 192

WATTANASIN :
V.

INTERFERENCE 102,648
EXAMINER-IN-CHIEF: MICHAEL SOFOCLEOUS

PICARD ET AL
V.

FUJIKAWA ET AL

SUPPLEMENTAL
DESIGNATION OF LEEAD COUNSEL, 37 CFR_\$1.601(k)

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:
Superseding Senior Party Fujikawa's earlier filed Designation of Lead Counsel, 37 CFR $\$ 1.601(k)$ is a Supplemental Designation of Lead Counsel, 37 CFR $\$ 1.601(k)$ correctly identifying Lead Counsel's Registration Number as 30,073. The Senior Party Fujikawa regrets this inadvertent error and any inconvenience it may have caused. Respectfully submitted, OBLON, SPIVAK, MCCLELLLAND, MAIER \& NEUSTADT, P.C.

Steven B. Kelber Registration No.: 30,073

 Attorney of Record
BOARD OF PATENT APPEALS :
 INTERFERENCES
 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERPERENCESPR 261992

WATMIANASIN	
V.	:
PICARD ET AL	
V.	
FUJIKAWA EX AL	-

INTERFPRENCE 102,648
EXAMINER-IN-CHIEF:
MICHAEL SOFOCLEOUS

SUPPLEMENTAL
DESIGNAXION OF IEAD COUNSEI, 37 CFR §1.601(k)

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:
Pursuant to $37 \mathrm{CFR} \$ 1.601(k)$, the Senior Party Fujikawa et al hereby designates as lead attorney Steven B. Kelber, Reg. No. 30,073.

Fourth Floor
Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADT, P.C.

Steven B. Kelber Registration No.: 30,073 Attorney of Record

1755 South Jefferson Davis Highway Arlington, Virginia 22202
703-521-5940

I hereby certify that true copies of:

SUPPLEMENTAL DESIGNATION OF LLEAD COUNSEL, 37 CFR $\$ 1.601(\mathrm{k})$

```
were served upon Counsel for the Wattanasin and Picard et al as follows:
```

Gerald D. Sharkin, Esq.
Sandoz Corp.
59 Route 10
E. Hanover, NJ 07936
and
Jerry F. Janssen, Esq. Warner-Lambert Co. 2800 Plymouth Road Ann Arbor, MI 48105
via first-class mail, postage prepaid, this 26 th day of March,
1992.

Case No. 600-7101/CONT Patent

MAR 251992
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE RECEWED IM BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES BOX INTERFEREMCE

WATTANASIN	$:$
v.	$: \quad$ Interference No. 102,648
PICARD et al.	$: \quad$ Examiner-in-Chief:
v.	:
FUJIKAWA et al.	M. Sofocleous

Honorable Commissioner of Patents and Trademarks
Washington, D.C. 20231
BOX INTERFERENCE

37 CFR 1.602 NOTIFICATION OF INTEREST FOR THE PARTY WATTANASTN

In accordance with 37 CFR 1.602, the Board of Patent Appeals and Interferences is hereby advised that the involved application of the party Wattanasin is assigned to, and the real party in interest is, Sandoz Pharmaceuticals Corporation, a corporation of Delaware, having its principal place of business at 59 Route 10, East Hanover, New Jersey 07936.

```
Respectfully submitted,
```


SANDOZ CORP.
59 Route 10
E. Hanover, NJ. 07936

RMF : def
March 24, 1992


```
    It is hereby certified that true copies of the paper
entitled:
```


37 CFR 1.602 NOTIFICATION OF INTEREST

FOR THE PARTY WATTANASIN

were served on counsel for the parties Fujikawa et al. and Picard et al., this 24 th day of March, 1992, by postage prepaid first-class mail addressed to the following:

```
Warner-Lambert Co.
Patent Department
Attn: Jerry F. Janssen, Esq.
2800 Plymouth Road
Ann Arbor, MI 48105
for the party Picard et al.
Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
for the party Fujikawa et al.
```


Patent
TN THE UNITED STATES PATENT AND TRADEMARK OFFICE

\qquad
WATTANASIN
v.

PICARD et al.
v .
Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231
BOX INTERFERENCE

Case No. 600-7101/CONT

Interference No. 102,648
Examiner-in-Chief:
M. Sofocleous

37 CFR 1.613 DESIGNATION OF LEAD ATTORNEY

FOR THE PARTY WATTANASIN

In accordance with 37 CFR 1.613, the undersigned, Diane E. Furman, is hereby designated as the lead attorney for the party Wattanasin in the above-identified interference.

Melvyn M. Kassenoff, Registration No. 26,389, attorney of record at phone no. (201) 503-8477, is hereby designated deputy lead attorney with full power and authority to act in the absence, for any reason, of the lead attorney.

As per the power of record, the address for both of the foregoing is: Patent and Trademark Department, Sandoz Corporation, 59 Route 10, East Hanover, New Jersey 07936.

Respectfully submitted,

SANDOZ CORP.
59 Route 10
E. Hanover, NJ 07936

RMF: def
March 23, 1992


```
It is hereby certified that true copies of the paper entitled:
```

37 CFR 1.613 DESIGNATION OF LEAD ATTORNEY
FOR THE PARTY WATTANASIN
were served on counsel for the parties Fujikawa et al. and Picard et al., this 23 rd day of March, 1992 , by postage prepaid first-class mail addressed to the following:

```
Warner-Lambert Co.
Patent Department
Attn: Jerry F. Janssen, Esq.
2800 Plymouth Road
Ann Arbor, MI 48105
for the party Picard et al.
```

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
for the party Fiujikawa et al.


```
PATENT
CASE NO. 600-7101/CONT.
```

```
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In Re: SOMPONG WATTANASIN
Serial No.: 07/498,301
Filed: March 23, 1990
For: QUINOLINE ANALOGS OF MEVALONOLACTONE AND DERIVATIVES THEREOF
```


POWER TO INSPECT AND MAKE COPIES

```
Honorable Commissioner of
    Patents and Trademarks
Washington, D.C. 20231
Dear Sir:
    Kindly permit Marian Schwartz, Ann Rutledge, Rosalie
Jared, Somchay Chinyavong, Judy Valusek, James Jackson, Bobbie
Judy, or Nancy Perry of Specialized Patent Services to inspect and
make copies in the above noted matter, including recently declared
Interference No. l02,648 in which said patent is involved.
```

Respectfully submitted,
SANDOZ CORP.
59 Route 10
E. Hanover, N.J. 07936

DEF:lcr

Encl.: postcard

IN THE UNITED STATES PATENT \& TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Wattanasin
v.

Picard, et al.
V.

Fujikawa, et al.
\qquad

Interference No. 102,648

Examiner-In-Chief: Michael Sofocleous

FYI

APR: 8: 1992
RECEIVED IN BOX INTERFERENCE

DESIGNATION OE LEAD ATTORNEY FOR THE PARTY PICARD, ET AL.

BOX INTERFERENCE
Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

The party Picard, et al. hereby designates RONALD A. DAIGNAULT, Registration Number 25,968, as lead attorney for the above-identified interference. The lead attorney's address and direct dial telephone are:

WARNER-LAMBERT COMPANY
2800 Plymouth Road
Ann Arbor, MI 48105
(313) 996-7530

Respectfully submitted,

Dated: fuel 6, 1252

I hereby state that true and complete copies of the DESIGNATION OF LEAD ATTORNEY FOR THE PARTY PICARD, ET AL. was day of April, 1992 parties Wattanasin and Fujikawa, et al. this fth postage affixed and prepaid as follows

For the Party Wattanasin

Diane E. Furman, Esq.
SANDOZ CORP.
59 Route 10
East Hanover, NJ 07936
and

For the Party Fujikawa, et al.
Steven B. Keller, Esq.
OBLON, SPIVAK, McCLELLAND,
MATER \& NEUSTADT, PC.
Fourth Floor
1755 S. Jefferson Davis Hwy.
Arlington, VA 22202

Furthermore, I hereby certify that this correspondence is being deposited today with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, BOX INTERFERENCE
Washington, D.C. 20231.

Dated: Queen 6, 1952

IN THE UNITED STATES PATENT \& TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Interference No. 102,648
Examiner-In-Chief:
Michael Sofocleous

FYI


```
REQUEST BY THE PARTY PICARD, ET AL.
    UNDER 37 CER 1.662(a) EOR
    ENTRY OF ADVERSE JUDGMENT AS TO
COUNTS 1 AND 2 OF THE INIEREERENCE
```

BOX INTERFERENCE
Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:
The party Picard, et al. hereby requests entry of Adverse Judgment as to the subject matter of Counts 1 and 2 of the Interference which corresponds to Picard, et al.'s Claims 1 and 2-14.

I hereby state that true and complete copies of the REQUEST BY THE PARTY PICARD, ET AL. UNDER 37 CR $1.662(\mathrm{a})$ FOR ENTRY OF ADVERSE JUDGMENT AS TO COUNTS 1 AND 2 OE THE INTEREERENCE was served upon the parties Wattanasin and Fujikawa, et al. this fth day of April, 1992, by mailing same with sufficient first class postage affixed and prepaid as follows:

For the Party Wattanasin
Diane E. Furman, Esq.
SANDOZ CORP.
59 Route 10
East Hanover, NJ 07936
and

For the Party Eujikawa, et al.
Steven B. Kelber, Esq.
OBLON, SPIVAK, McCLELLAND,
MATER \& NEUSTADT, PAC.
Fourth Floor
1755 S. Jefferson Davis Hwy.
Arlington, VA 22202

Furthermore, I hereby certify that this correspondence is being deposited today with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, BOX INTEREERENCE, Washington, D.C. 20231.

MAILED

Judgment
Ar:1•002

Paper No. 11 MS\gjh

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Patent Interference No. 102,648

Wattanasin v. Picard et al. v. Fujikawa et al.

Whereas Picard et al., a junior party, have filed a request for entry of an adverse judgment, pursuant to 37 CFR $1.662(a)$ judgment as to the subject matter of the counts in issue is hereby entered against Joseph A. Picard, Bruce D. Roth and Drago R. Sliskovic, a junior party. Accordingly, Picard et al. are not entitled to a patent containing claims 1 to 15 corresponding to the count.

The foregoing judgment is deemed to terminate the proceeding as to Picard et al.

BOARD OF PATENT	
INTERFERENCES	
CERTIFICATE OF SERvice	JUM 111992
	$\# 12$

I hereby certify that true copies of:

1. FUJIKAWA NOTICE OF FILING PRELIMINARY STATEMENT
2. AMENDMENT--37 CFR 1.633(C)
3. FUJIKAWA ET AL STATEMENT OF RELATED APPLICATIONS
4. FUJIKAWA MOTION FOR BENEFIT, 37 CFR $1.633(f)$
5. FUJIKAWA ET AL MOTION TO ADD COUNTS, 37 CFR 1.633(c)
6. DECLARATION--PATENTABLY DISTINCT SUBJECT MATTTER

OF MASAKI KITAHARA (EXECUTED)
7. FUJIKAWA ET AL MOTION FOR BENEFIT, 37 CFR 1.633(f)
8. ENGLISH TRANSLATION (CERTIFIED COPY) OF

JAPANESE PATENT APPLICATION 193606/1988
were served upon Counselfor Wattanasin as follows:
Diane E. Furman
SANDOZ CORP.
59 Route 10,
E. Hanover, New Jersey 0.7936
via first-class mail, postage prepajd, this 11th day of June, 1992.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
\#及 BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATMANASIN
INTERFERENCE 102,648
v. EXAMINER-IN-CHIEF: MICHAEL SOFOCLEOUS
PICARD ET AL
V.

FUJIKAWA ET AL

FUJIKAFA ET AL NOTICE OF FILING PRELIMINARY STATEMENT, 37 CFR §1.626

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:
Pursuant to the above-captioned Rule, Fujikawa et al hereby gives notice of the filing of a Preliminary Statement.

Respectfully submitted, ORLON, SPIVAK, MCCLELLAND, MATER \& NEUSTADT, PC.

In the united states patent and trademark office before the board of patent appeals And Intrerferences

```
WATTANASIN
v.
    INTERFERENCE 102,648
    EXAMINER-IN-CHIEF:
    MICHAEL SOFOCLEOUS
PICARD ET AL
V.
FUJIKAWA ET AL
FUJIKAWA ET AL
PRELIMTNARY STATEMENT, 37 CFR \(\$ 1.626\)
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, DC 20231
BOX INTERPERENCE
SIR:
Fujikawa et al intends to rely solely on the filing date of Japanese Patent Applications 207224/1987, 15585/1988 and 193606/1988, filed August 20; 1987, January 26, 1988 and August 3, 1988, respectively to prove a constructive reduction to practice of the Counts of the Interference.
```

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,
MAIER \& NEUSTADT, P.C.

Steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al
in tere united states patent and trademark officterferences before the board of patent appeals and interferenfes

V.	
PICARD ET AL	$:$
V.	
FUJIKAWA ET AL	

INTERFERENCE 102,648
EXAMINER-IN-CHIEF: MICHAEL SOFOCLEOUS

FOJIKAWA MOTION FOR BENEFIT, 37 CFR S1.633(f)

HONORABLE COMIMSSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:
Pursuant to the provision of Rule 637(c)(1)(vi) and the abovecaptioned Rule, Fujikawa hereby request benefit of Japanese patent application Serial numbers 207224 and 15585, filed August 20, 1987 and January 26, 1988, respectively, as to Counts 3 and 4 proposed in Fujikawa's Motion to Redefine the Interference, and Claims 41-44 submitted by Amendment herein.

As grounds for this motion, Fujikawa notes that it has been granted benefit of the identified priority applications on the grounds that the priority documents represent constructive
reduction to practice of Counts 1 and 2 of the Interference. These same cases constitute constructive reduction to practice of the narrowed Counts 3 and 4, see the certified translations of record, and the detailed descriptions at pages 2-6. Note also the specific examples falling within the scope of the Count.

Accordingly, benefit as to Counts 3 and 4, and the Claims 4144 added by Amendment is respectfully requested.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADT, P.C.

Norman F. Oblon Registration No.: 24,618

Steven B. Kelber Registration No.: 30,073 Attorneys of Record

Fourth Floor
1755 South Jefferson Davis Highway Arlington, Virginia 22202
703-521-5940

BOARD OF PATENT
 APPEALS \& INTERFERENCES

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

FUJIKANA ET AL MOTION TO ADD COUNTS, 37 CR S1.633(C)

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231 BOX INTERFERENCE

SIR:
Pursuant to the provisions of the above Motion, the Senior Party hereby moves that the subject matter of this Interference be redefined by the addition of Counts 3 and 4 , set forth below. As required by 37 CPR $\$ 1.637(c)(1)(i i)$ and (vi), this Motion is accompanied by an Amendment in Fujikawa's application involved herein, and a Request for Benefit as to the proposed Counts, and claims added by Amendment.

Fujikawa moves the following Counts be added to redefine the

Interference.

Count 3

A compound of the formula:

wherein $\quad \begin{aligned} R^{1} & =H \\ & R^{3}=F\end{aligned}$

$R^{5}=$ cyclopropyl ($c-P r$) and Z is selected from the group
$-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{COOH}$
$-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{COONa}$
$-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2} \mathrm{COO} / / 2 \mathrm{Ca}$
$-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{COOR}$, wherein R is C_{1-3}, alkyl and

lactone.

Count 4
A method of inhibiting cholesterol biosynthesis in a patient in need of said treatment comprising administering thereto a cholesterol synthesis inhibiting amount of a compound as defined by Count 3 in combination with a pharmaceutically acceptable carrier.

STATEMENT OF MATERIAL FACTS

1. The compounds embraced by Count 1 of the current Interference and the claims of the Senior and Junior Party thereto (Judgment against Picard et al having been rendered based on request for the same) designated as corresponding to the Count have utilities as inhibitors of biosynthesis of cholesterol (the synthesis, in vivo by animals, of cholesterol).
2. The method of inhibiting cholesterol biosynthesis in an animal in need of same by administration of the compounds of count has been judged to be patentably distinct from Count 1, and constitutes separate Count 2 of this Interference.

4

3. The compounds of proposed Count 3, characterized by a cyclopropyl substituent at R^{5}, exhibit unusually high activity in the inhibition of cholesterol biosynthesis. Page 3 of the Declaration of Kitahara.
4. In side-by-side comparisons with structural isomers of the proposed Count 3, varying only with respect to the identity of the R^{5} substituent, the n-propyl and isopropyl isomers exhibited dramatically reduced activity, whether measured in vivo or in vitro. The Declaration of Kitahara, see the tables attached thereto.
5. The unusually high activity exhibited by compounds of proposed Count 3 is not a function of the molecular weight of the substituent at R^{5}. Analogous substituents, both lower and greater molecular weight, show lower activity, when the remainder of the molecule is the same. See the Kitahara Declaration, tables attached thereto.
6. There is nothing in the art that would suggest the enhanced activity conferred on the compounds of count 1 when R^{5} is cyclopropyl and the remaining identities of Count 3 are observed.

One of ordinary skill in the art could not have predicted the differences between compounds of Count 3, and isomers thereof with respect to R^{5}, on the basis of structure only. Kitahara Declaration, paragraph 5.
7. The Fujikawa application describes, and enablingly discloses, compounds within the scope of proposed Count 3, as well as providing a generic description of that Count.
8. The application of Wattanasin involved herein does not specifically identify cyclopropyl as a substituent at the R^{5} position (R in the claims of Wattanasin). This substituent is suitably identified as cycloalkyl C_{3-7}, however, and the application elsewhere identifies isopropyl and methyl as suitable substituents for this position. Thus, the identity of this substituent as cyclopropyl is reasonably conveyed to those of ordinary skill in the art by the application of Wattanasin.

REASONS IN SUPPORT OF THE DESIRED RELIEF

As set forth in MPP 2309.01, each Count must be drawn to a separate patentable invention. Separate counts to a species or

Abstract

6 sub-genus may be presented, if the specie or sub-genus is unobvious over the genus, even though the genus may not be patentable, given the specie. Thus, in this Interference, adoption of Counts 3 and 4 is appropriate if the sub-genus of Count 3 is patentable over the genus of Count 1 , and the sub-genus of Count 4 is patentable over the genus of Count 2. Fujikawa respectfully submits that the declaration of Kitahara clearly indicates that such is the situation here.

There is no question that the sub-genus of Counts 3 and 4 are herein embraced by Counts 1 and 2. Demonstration of the unobvious nature, and patentability, of a sub-genus or a species over an embracing genus can be achieved by proof tending to show activity in the sub-genus or species that is unpredictably higher than that exhibited in the genus as a whole. Ex parte Ebata, 19 USPQ2d 1952 (POBAT 1991). The Declaration of Kitahara submitted herewith clearly demonstrates such unpredicted superior bioactivity.

As noted above, Count 1 embraces a wide number of compounds whose utility is identified by both parties as the inhibition of the biosynthesis of cholesterol. In other words, administration of these compounds to individuals can result in the reduction of
biosynthesis of cholesterol by the individual so treated. This second invention is addressed by count 2 . As set forth in the Declaration of Kitahara submitted herewith, compounds within the limited sub-genus of Count 3 , when R^{5} is cyclopropyl, exhibit unexpectedly superior cholesterol biosynthesis inhibition activity, when compare with isomeric forms of the compounds of Count 1. Not only the isomers, but analogous compounds, wherein R^{5} is an alkyl group of lower or higher carbon number, branched or unbranched, have also been demonstrated to be patentably distinct from the compounds of Count 3, in terms of bioactivity.

Similar to the relation between Counts 1 and 3, administration of the compounds of Count 3 to an animal in need of inhibition of biosynthesis of cholesterol as called for in Count 4 is equally patentable over the broad genus of Count 2. This can be most clearly seen by reference to the Declaration of Kitahara, and the Tables attached thereto. The unobviously superior bioactivity of Kitahara is evidenced in the dramatically reduced IC_{50} values of the compounds of Count 3. Thus, administration will require dramatically reduced dosages, or reduced administration periods, to achieve the same results. Such is the stuff of unobviousness.

Structural similarity would predict similar bioactivity. Certainly, there is nothing of record which would predict the unusual bioactivity keyed by the R^{5} substituent as cyclopropyl. See the Declaration of Kitahara. Indeed, it is respectfully submitted that one of ordinary skill in the art would not immediately recognize the substitution as a point on the molecule determining activity. Nonetheless, the same has been demonstrated to be true, by competent comparative experiment.

Counts 3 and 4 having been demonstrated, by comparative experiment commensurate in scope with the Counts themselves, to be unobvious over the genus over Counts 1 and 2, addition of Counts 3 and 4 to this Interference is respectfully requested.

[^0]
9

Amendment presenting claims 41-44, claims 41-43 corresponding to Count 3 and claim 44 corresponding to Count 4.

PROPOSED CLATM FOR WATHANASIN

Pursuant to the provisions of Rule 637(c)(1)(iii), Fujikawa notes that no claim currently presented by Wattanasin appears to correspond to either Count 3 or Count 4. Such claims can be presented by Wattanasin, and the same are suggested below.

As a claim corresponding to Count 3 of the Interference, Fujikawa suggests Wattanasin adapt the following claim 11.

Claim 11. The compound of claim 1 , wherein R_{1} and R_{2} are
hydrogen, R_{o} is F, X is $-\mathrm{CH}=\mathrm{CH}-, \mathrm{R}$ is
 atoms and M is sodium.

As a claim corresponding to Count 4, Fujikawa proposes Wattanasin adopt the following claim 12.

Claim 12. A method of inhibiting cholesterol biosynthesis in a patient in need of said treatment comprising administering a cholesterol biosynthesis inhibiting amount of the compound of Claim 11 in combination with a pharmaceutically acceptable carrier.

Save for the issue of a priority, these claims appear to be patentable to Wattanasin. Note in particular that in Claim 11, the identity of all substituents is selected from a disclosure appearing in Claim 2, save for the identification of M and R. With regard to the identity of M, Wattanasin identifies sodium as a pharmaceutically acceptable cation at page 5 of the specification. Indeed, this is the preferred cation. With regard to cyclopropyl, as the identity for R, note that Claim 1 specifies that this group may be cycloalkyl of 3-7 carbon atoms. Although cyclopropyl is not specified, the corresponding non-cyclocpropyl isomer, isopropyl is particularly identified. See, e.g. Claim 4 and with more particularity, the disclosure at page 4 of the specifications. Accordingly, substituent R as cyclocpropyl in the Application and Claim 1 of Wattanasin appears to be reasonably conveyed to those of ordinary skill in the art, and the claim appears to be patentable to Wattanasin, save for the issue of priority in this Interference. With regard to Claim 12, this appears to correspond exactly to Claim 8 of Wattanasin, substituting Claim 11 for Claim 1.
Accordingly, as Wattanasin appears able to contest this
Interference with claims patentable thereto, entry of an
appropriate Order is respectfully requested.

Fujikawa, having demonstrated proposed Counts 3 and 4 to be directed to subject matter patentable over the current Counts of the Interference and directed to an invention separately patentable from every Count in the Interference, having added claims to its own Application that correspond to the Count and suggested Claims for Wattanasin that correspond to the Count, redefinition of the subject matter of the Interference by addition of Counts 3 and 4 is respectfully requested. A Motion for Benefit accompanies this Motion.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.

Norman F. Oblon Registration No.: 24,618

Steven B. Kelber
Registration No.: 30,073
Attorneys of Record

Fourth Floor
1755 South Jefferson Davis Highway Arlington, Virginia 22202
703-521-5940

IN THE UNITED STPAMES PAMPNY AND TTRADEMARK OFEICE BEFORE ITHE BOARD OF PATENT APPEALS AND INTERPERENCES

WATMANASIN

V.

PICARD ET AL
V.

FUJIKAFA ET AL

INTMERFPRENCE 102,648
KXAKINER-IN-CHIEF:
MICHAEI. SOFOCTEOUS

DECLARATION--PATENTABITY DISTINCT SUBJECT MATHER

HONORABYE COKMISSIONER OF PAIENTIS AND TRADEMARKS
FASHINGTON, DC 20231
BOX INTIERFBRENCE

SIR:
I. MASAKI KIMAHARA, do hereby declare and state that:

1. I am a citizen and resident of Japan, and a named coinventor in U.S. Patent Application 07/233,752, involved in the above-captioned patent Interference.
2. To demonstrate the unpredicted improvement in inhibition of cholesterol biosynthesis obtained when making specific election
for the substituents of the subject matter of the Count of the above Interference, the tests described below were conducted by me, or under my direct supervision.
3. Tests were conducted to determine the impact of specific substituents on compounds of the following formula:

```
wherein }\quad\mp@subsup{\mathbf{R}}{}{\mathbf{1}}=\textrm{H
    R}\mp@subsup{R}{}{3}=
    R = cyclopropyl (c-Pr) and z is selected from the
group consisting of
```

```
    3.
-CH(OH)-CH2-CH(OH)-CH2-COOH (carboxylic acid),
-CH(OH)-CH2-CH(OH)-CH2-COONa (sodium salt),
-CH}(\textrm{OH})-\mp@subsup{\textrm{CH}}{2}{}-\textrm{CH}(\textrm{OH})-\mp@subsup{\textrm{CH}}{2}{}\textrm{COO
-CH(OH)-CH2-CH}(\textrm{OH})-\mp@subsup{\textrm{CH}}{2}{}\textrm{COOR}\mathrm{ , wherein R is C}\mp@subsup{\textrm{C}}{1-3}{}\mathrm{ alkyl and
```


In compounds of the above formula, where R^{5} is cyclopropyl, unpredictably enhanced inhibition of cholesterol biosynthesis, as tested both in vitro and in vivo (culture cell) is obtained. This unexpected improvement is maintained even when contrasted with identical compounds save for the identity of R^{5}, wherein R^{3} is isopropyl or n-propyl. This is true even if the 1dentity of R^{5} is of larger size, such as a C_{6} substituent.
4. In the test described above, inhibition of cholesterol
biosynthesis was determined according to two tests, A and B, as set forth in the specification of U.S. Patent Application 07/233,752, involved in the above-captioned Interference. These tests are set forth and identified as tests A and B on pages 28-30 of the specification. The results of the tests are set forth in the Tables attached to this Declaration. In the tables presented, the $\mathrm{IC}_{\text {so }}$ values are given, thus indicating higher activity in compounds giving lower IC_{50} values.
5. The superior activity of compounds bearing a R^{5} cyclopropyl substituent could not, on the basis of my personal knowledge and experience, be predicted on the basis of chemical structure alone. There is nothing in the art that would lead one of skill, having the approximate level of a graduate chemist with several years of experience in the field, to conclude, on the basis of structural comparison alone, that the cyclopropyl substituent at R^{5} would confer superior activity in the inhibition of cholesterol biosynthesis.

I hereby declare that all statements made herein of my own knowledge are true, and all statements made on information and belief are believed true. Further, I am aware that willful false
statements and the like are punishable by fine, imprisonment or both, 18 U.S.C. $\$ 1001$, and that such willful false statements may jeopardize the validity of U.S. Patent Application 07/233,752, any patent issued thereon, as well the rights of the party fujikawa et al in the above-captioned Interference.

DATE: \qquad
$\frac{\text { Masaki /Sitahara }}{\text { vASARI KITABARA }}$
(1) Test A: Inhibition of cholesterol biosynthesis from acetate in vitro

This test was carried out as described on pages 28-29 of the specification. The numerical values indicate $I C_{50}$ (nanomolar concentration i.e. mol $\times 10^{-9}$).
(a) Sodium salt

R^{5}	carbon number		1	2	3	6
		normal	71.0	15.0	93.1 (n-Pr)	>1000
		iso	X	x	10.0(i-pr)	-
		cyclic	X	X	4.2(c-Pr)	51

(b) Calcium salt

R^{5}	carbon number		1	2	3	6
	structure	normal	-	-	-	$-$
		iso	X	X	$23.0(i-p r)$	-
		cyclic	X	X	4.4(c-Pr)	\cdots

(c) Ethyl ester

R^{5}	carbon number		1	2	3	6
		normal	-	24.3	39.9(n-Pr)	>1000
		150	X	X	. -	-
		cyclic	X	X	$2.8(c-P x)$	96

(d) Lactone

R^{5}	carbon number		1	2	. 3	6
		normal	-	-	-	-
		130	x	X	25.9(i-Pr)	-
		cyellc	x	x	$6.8(\mathrm{c}-\mathrm{Pr})$	-

(2) Test B: Inhibition of cholesterol biosynthesis in culture cel2s
This test was carried out as described on pages 29 to 30 of the specification. The numerical values indicate I_{50} (nanomolar concentration i.e. mol $\times 10^{-9}$).
(a) Sodium salt

R^{5}	caxbon number		1	2	3	6
		normal	-	2050	733 (n-PI)	>20000
		iso	X	x	100(i-Pr)	-
		cyclic	X	X	27.5(c-Pr)	394

(b) Caloium salt

R^{5}	caxbon number		1	2	- 3	6
	structure	normal	-	-	-	-
		1so	X	X	105(i-Pr)	\cdots
		cyclic	X	X	$35.0(\mathrm{cmig})$	-

(c) Ethyl eater

R^{5}	carbon number		1	2	3	6
		normal	-	797	$501(n-P r)$	>10000
		iso	X	X	-	-
		cyclic	x	X	$39.1(\mathrm{cmPr})$	4000

I. STATEMENT OF MATERIAL FACTS

Abstract

2 1. Japanese Patent Application $193606 / 1988$ was filed August 3, 1988 by the assignee of the entire right, title and interest in and to the Fujikawa et al application involved herein, Nissan Chemical.

2. A certified translation of the priority document, as well as the document itself, is of record in the file history of U.S Application Serial No. 07/233,752, involved in the above-captioned Interference.
3. The certified translation of the priority document reflects disclosure and description of compounds within the scope of Interference Count 1 , and a method of administering those compounds to individuals in need of inhibition cholesterol biosynthesis in an amount sufficient to inhibit such synthesis, as set forth in current Count 2 of the Interference. Moreover, the reference discloses and describes compounds within proposed count 3 of the Interference, and methods of administering those compounds to individuals in need of cholesterol biosynthesis inhibition, in an inhibiting amount, as set forth in proposed count 4 of the Interference.

II. ARGUNENTS IN SUPPORT OF RELIEF REQUESTED

Pursuant to the provisions of 37 CFR $\$ 1.637(f)$, Fujikawa has identified Japanese Patent Application 193606/1988 as an earlierfiled Japanese Patent Application, benefit of the filing date of which, August 3, 1988, Fujikawa seeks herein. A copy of the application, together with the certified translation of the application, is of record in Fujikawa's U.S. Application Serial 07/233,752 file history. Accordingly, it is incumbent on Fujikawa to demonstrate that this reference is a constructive reduction to practice of each Count of the Interference. Fujikawa requests benefit not only as to current Counts 1 and 2 , but as to Counts 3 and 4 proposed by Fujikawa, and Claims $41-44$ added by Fujikawa. A discussion of the nature of this constructive reduction to practice follows.
III. CURRENT COUNTS 1 AND 2

Current Count 1 broadly embraces any of a variety of compounds characterized by the chemical structure set forth. In point of fact, complete description of such compounds appears in the

4

Fujikawa priority document, as can be confirmed by the certified translation (reference herein to page numbers constitutes reference to the pages of the certified translation). Claim 1, pages 1-2 of the translation, describes a wide variety of compounds each fitting within the Count of the Interference. Beginning on page 5, with Claim 6, claims are presented directed to a common family of compounds having the identical structure, but including the carboxylic acid, condensation lactone or salt of the identified compound. The compounds identified in these claims, which continue on to page 10 of the translation, all fall within the Count of the Interference. Moreover, see the examples beginning on page 39, which again fall within the Count of the Interference.

A full and complete disclosure of how to make the compounds set forth in the translation; and embraced by the Count of the Interference, appears at pages 23-31 of the translation. The translation discloses that the compounds have utility as cholesterol biosynthesis inhibitors. See pages 11-12 of the translation. Accordingly, it is respectfully submitted that the compounds of Count 1 of the Interference are fully disclosed, in terms of the manner of making and using the compounds of Count 1 , and full benefit of Japanese Patent Application 193606/1988 is respectfully requested as to this Count.

Count 2 embraces a method of administration of the compounds of Count 1 , calling for administration of those compounds to individuals in need of cholesterol biosynthesis inhibition in an amount effective to inhibit the cholesterol biosynthesis. The same is disclosed in the translation of Japanese Patent Application 193606/1988, see in particular pages 36-38, followed by examples demonstrating the cholesterol biosynthesis inhibition activity of the compounds identified. Accordingly, it is respectfully submitted that full constructive reduction to practice of Count 2 is also made out by the certified translation.

Benefit as to Counts 1 and 2 is respectfully requested.

IV. COUNTS 3 AND 4, AND CLATMS 41-44

Elsewhere, Fujikawa has moved to redefine the Interference by adding limited Counts 3 and 4 , which parallel the broader Counts, but limit the identities of R^{1}, R^{2}, R^{6} and R^{4} to hydrogen, require R^{3} to be fluorine, and identify R^{5} as cyclopropyl. Moreover, Y is limited to an ethylene bridge, and Z is narrowly limited to a dihydroxy carboxylic acid, sodium or calcium salt thereof or a lactone corresponding thereto. These compounds have all been
demonstrated to yield unobviously superior cholesterol biosynthesis inhibition activity, when compared with isomeric forms not bearing the cyclopropyl substituent at R^{5}. Contingent on the grant of Fujikawa's Motion to Redefine the Interference, benefit of Japanese Patent Application 193606 is also respectfully requested as to Counts 3 and 4 and Claims 41-44 added by Fujikawa, which correspond to proposed Counts 3 and 4.

With regard to narrowed Count 3, attention is directed to the broad disclosure, pages 1-2, and Claim 10, page 5 of the benefit application. Note, moreover, the identification of preferred forms in Claims 4 and 5, page 4 of the translation. With respect to the necessary choices in substituents to arrive at the claimed invention, see pages 14-15, which identify preferred embodiments.

Again, with regard to the compounds identified herein, a full disclosure of how to make these compounds appears at pages 23-31. Note, moreover, the final example set forth on page 35, with regard to choice of substituents.

Accordingly, a constructive reduction to practice of Count 3 is believed clearly made out by the priority case.

Count 4 corresponds to Count 2 discussed above, but recites the compounds of Count 3. Again, these compounds, discussed above, are described and enabled with regard to their method of use at
pages 36-38 of the translation. Full benefit as to these Counts is respectfully requested.

Claims 41-44 were added as corresponding to Counts 3 and 4 of the Interference. They claim essentially identical subject matter, and identical support, demonstrating a constructive reduction to practice, can be found in the translation. Benefit as to these claims is respectfully requested as well.

Fujikawa having shown the certified translation of Japanese Patent Application 193606 filed August 3, 1988, to be a constructive reduction to practice of Counts 1-4 and Fujikawa Claims 41-44, benefit is respectfully requested.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLLAND, MATER \& NEUSTADT, PC.

Steven B. Keller
Registration No.: 30,073
Attorney for Fujikawa et al

Fourth Floor
1755 South Jefferson Davis Highway
Arlington, Virginia 22202
703-521-5940

WATTANASIN	:	
	:	INTERFERENCE 102,648
V.	:	EXAMINER-IN-CHIEF:
	:	MICHAEL SOFOCLEOUS
PICARD ET AL	:	
	:	
V.	:	
	:	
FUJIKAWA ET AL	:	

FUJIKAWA ET AL STATEMENT OF RELATED APPLICATIONS

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGION, DC 20231
 BOX INTERFERENCE

SIR:
By reason of a plurality of restriction and election requirements issued in the prosecution of the application of the Senior Party involved herein, and its progeny, Fujikawa et al and the assignee of the entire right, title and interest, Nissan Chemical, have secured patent protection, and currently have pending U.S. Patent Applications on subject matter patentably distinct from the claims of Fujikawa involved herein, but related as divisional or continuation applications.

Thus, U.S. Patent 5,011,930, now the subject of Reissue Patent Application 07/799,058, as well as U.S. Patent 5,102,888 have issued. Additionally, U.S. Patent Application Serial Nos. 07/631,092, 07/483,829 and 07/883,398, related to the application involved herein under $35 \mathrm{U} . \mathrm{S} . \mathrm{C}$. $\$ 120$, are also pending. As the Patent Office has previously held the claims presented in each application to be patentably distinct from the claims of Fujikawa et al designated as corresponding to Counts 1 and 2 of the Interference, no action with respect thereto is believed necessary.

Respectfully submitted, OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADTT, P.C.

Steven B. Kelber
Registration No.: 30,073
Attorney of Record

[^1]```
 Case No. 60' '101/CONT
 Patent
 FIT
 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE % UUN 151992
```



```
WATTANASIN
 BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES DGEMED IN
 #%/8 RCLENED IN
 Interference No. 102,648
 v.
PICARD et al.
 Examiner-in-Chief: M. Sofocleous
 v.
FUJIKAWA et al.
```


## NOTICE OF THE FILING OF THE PRELIMINARY STATEMENT OF THE PARTY WATTANASIN

Appended is the Preliminary Statement of the party Wattanasin for the subject interference.

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF:rmf

June 11, 1992

## CERTIFICATE OF SERVICE

```
It is hereby certified that a true copy of the paper entitled:
```


## NOTICE OF THE FILING OF THE PRELIMINARY STATEMENT

 OF THE PARTY WATTIANASINwas served on counsel for the party Fujikawa et al., this 11 th day of June, 1992, by postage pre- paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202

```
 Case No. 600-1101/CONT/Int Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES WATTANASIN
v. Interference No. 102,648
PICARD et al.
V.
FUJIKAWA et al.
```

PRELIMINARY STATEMENT OF THE PARTY WATTANASIN

In accordance with 37 CFR 1.622 and 1.623 , the party Wattanasin hereby states as follows:
(1) That the invention of each of Counts 1 and 2 was made in the United States by Sompong Wattanasin.
(2) That the invention of each of Counts 1 and 2 was first disclosed by Dr. Sompong Wattanasin, to Dr. Faizulla Kathawala of Sandoz Pharmaceuticals Corporation, by November $28,1983$.
(3) That the invention was first conceived no later than November $28,1983$.
(4) That the first drawing or written description of the invention of each of Counts 1 and 2 also occurred by November 28 , 1983, when Dr. Wattanasin proposed to Dr. Kathawala to synthesize compounds of the invention of Counts 1 and 2 from previously synthesized intermediates and commercially available compounds for formulation into compositions for use as HMG-CoA reductase inhibitors.

Exhibits A-C ${ }^{1}$ document the first drawing or written description of the invention.

Exhibit A comprises a true copy of a research proposal of Sompong Wattanasin, the last page of which lists a compound designated 14 , as follows:


14
and "L" indicates either of the following side chains:

and

where $\mathrm{R}^{2}$ is an acid, a salt or an ester.

[^2]Exhibit B comprises a true copy of another research proposal submitted by Dr. Wattanasin to Dr. Kathawala which further indicates a drawing or written description of the invention on November 19, 1984. Page 1 thereof contains the following compounds:



wherein $L$ and $R_{2}$ have the significances mentioned above.
(5) That the date after conception when active exercise of reasonable diligence began was no later than May 31, 1984.
(6) That the first synthesis of a compound within the scope of Count 1 , and an active agent of a method of Count 2 , was performed by Sompong Wattanasin and was completed on November 15 , 1984, when Compound 1079-111-19 (subsequently redesignated Compound 63-366), comprising an erythro racemate, was prepared, and recorded in his laboratory notebook.

Exhibits C-D comprise true copies of laboratory pages from the notebook of Sompong Wattanasin followed by copies of NMR spectra for the final product synthesized ${ }^{2}$ :

Exhibit C comprises a true copy of Laboratory Notebook No. 1049, pages 237, 241, 248, 251, and Laboratory Notebook No. 1079, pages $22,24,27,30,33,34,39,105,106,110$ and 111 , corresponding to the synthesis of Compound $63-366$ and its non-commercially available intermediates. The NMR spectrum of Compound 63-366 was taken on November 21, 1984.

Exhibit D Comprises copies of Laboratory Notebook No. 1127, pages 5 , 9 , and 11 (together with copies of spectra) corresponding to Compound 1127-11-34 of the invention (later redesignated Compound 63-548) and Compound 1127-11-37 (later redesignated Compound 63-549) of the invention and their non-commercially available intermediates. Both compounds also comprise erythro racemates.
(7) That the date of first actual reduction to practice was no later than December 31, 1984, when Compound 63-366 was known to have in vitro activity as an HMG-CoA reductase inhibitor.
2. On some of the notebook pages, microanalysis data were affixed subsequent to the date the actual synthesis was performe

Exhibits E-F comprise true copies of portions of bioassay data sheets which were prepared by Dr. Terence J. Scallen, an outside consultant for Sandoz. The bioassay data sheets were prepared concurrently with the tests, and then sent to. Dr. Robert E. Damon of Sandoz. (The sheets bear the handwritten notations of Dr. Damon after he received them from Dr. Scallen.)

The bioassay data show that a composition containing Compound 63-366, i.e., a dimethylacetamide solution of Compound 63-366, was tested for HMG-COA reductase inhibition activity on December 13 , 1984. The test demonstrated that Compound 63-366 achieved a $50 \%$ inhibition of HMG-COA reductase at a concentration of < $1 \times 10^{-6}$ $\mu / I$.

```
 Additionally, dimethylacetamide solutions of, respectively,
Compounds 63-548 and 63-549, were each tested for HMG-COA
reductase inhibition activity on June 13, 1985.
```

Exhibit E comprises a true copy, of the protocol which was followed, and Scallen's Laboratory Notebook pages which recorded the data for 63-366.

Exhibit $F$ comprises a true copy, of the description of the procedure and the printout showing the data for 63-548 and 63-549.

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
June 11, 1992
Exhibits $A, B, C, D, E, F$

EXHIBIT A


Sawai Ex 1005
Page 72 of 4322
(3) $\quad 0 p 4+$ Dr.Kareawala

1984 Proposal

Sompong wattanasir November 28, 1983

Our plan for 1984 was organized into four general areas of increasing difficulty.
we will conduct the work in the approximate. order present below. All of our work will be guided by results of biological assays and we will use biological information as it becomes available to modify our synthetic objectives.
The four areas are:
(1) Synthesis of Indenes
(2) Synthesis of "restricted rotation" Indole anologues,
(3) Synthesis of complex analogues based on SAH 62-528-A3a ralogue of Compaction
(4) Synthesis of new analogues based on
(1) $\rightarrow$ (3).
(1) Synthesis of Indenes

Based on the indole 1, we intend to prepared and testing compounds $2- \pm$


1

$$
L=\text { Lactom }
$$



2


3


4

Compound 2 will be prepared to examine the effect of replacement of the nitrogen by carbon. Compound 3 and / or 4 will next be prepared to test whether or not the free.! rotation of the isopropyl group necessary for activity.
(2) Synthesis of "restricted rotation" Indoles


5


6

Analogues 5 and/ or 6. are proposed as probes of the rotation requirements of the park - fluorophengl group and the double bond side chain of the lactone, Nothing is currently known in this regard.
(3) Synthesis of complex analogues based on SAH 62-528 - Az analogue of compaction.
A) Asymmetric synthesis of an az a aralogue of compaction


7


8


9

The racemic compounds 7 - 9 , az a arialoyue of compaction, have already prepared and submitted for testing. If any of these compounds showed significant activity, we intend. to prepare one of them in optically. active form.
B) Diels-Alder reaction of $z$ azo trienes

We have found that the Diens-Alder reaction of the $z$ azatriene is highly stereospecific to yield the cis isoquinoline compound 10 , as the only product.



10

The highly stersospecitic and the usefulness of the method in the synthexic of this type of compounds makes US feel mecersary to demonstrate the followings:
(a) Effect of the $R$ group $C R=C$ th rather thaw $H$ ) in the cyclisation.
(b) Identity of the products from the following Diets - Alder reactions.

${ }^{\text {stereochemistry }}$

C). Synthesis of the analogue II.

Compound II is a close relative of the ara analogues of compaction 7 - 9 , but might be. move readily obtainable by the route shown above.


In addition, computer modellings slow a better overlapping between compacting. and II than the of $7-9$
(4) Synthesis of new analogues based on
(1) - (3)

If any of the analogues thus far proposed show interesting activity, if may be necessary to prepare a variety of compound. with various modifications. In addition, theresa more analogues such as $12-14$ are of interesting.

$12 x=N R$
$13 x=5$


14
$\qquad$

It is unrealistic to expect all of these goals to be accomplished during the next year period, but we certainly expect to complete the indene analogue, the restricted rotation indole analogue, the optical synther of an azo analogue of compaction, to complete. general study of Diels.Alder reaction of $z$ azo trieke, and to make a substantial: progress into the synthesis of other analogues.
$\rightarrow p y$ To yr. tox. $\rightarrow \rightarrow$ riata
Sompong wantamesiw Now. 19, 1984.
1985 Proposal

The followings are my objectives in 1985
(1). Complete the project on QuInoline system. If one of the quinoline proved to be very active, all of there three quinolimes and



a few modifications might heed to be prepared, becense of their appearent ease of symthene.
(2) Completer the project on INDENE systems. some of these chosen relarat arialoge may be necessary. to prepoins to find out the optimum structure.



(3) New Analogs of Indenes.


$$
\begin{aligned}
& R=A_{y} l, \text { alkyl groups } \\
& x=0, N R, S
\end{aligned}
$$



(4) $X$-ray structure of crustalline HMG-CoA derivatives.


- Derivatikes vary $R \leftrightarrow x$

(5) New modifications bosed ow $(1-3)$. und Modifications on ester. $R$ groups ey.




## EXHIBIT C




$10+9-237-27$
P. ISK.




S-inom - in-xylene im inter (F inl) drupunise (cet 20
a ate that the recithon mothre refluce ceutly)
9.05 am. $\rightarrow$ ar. 9.4 am am The remition
mixtupe wore thew fatat at ivfine for 3 th.

$10+9-237-27$ in ihat $(10$ el $)+$ iow $(=i-\dot{x})$ dmpuise (Via a fuenmel)
 itec a tirathal with atoAz to give a 30 yellow $\sigma^{1}=3.6$ a

Performed by-
Witness-n. Mrelela
Performec
Witnems

|  |  |
| :---: | :---: |
| $\rightarrow 7 \cdot \text { cole dea }$ | Eont'd to- |

$\qquad$ 1 Jome 10-1e 251


Proceduve Larm lova-2ur Re. 15


ricro

$$
\text { m.p. } 82-8 i c
$$





5

10

15

$$
a, i r \text { am: }
$$

$50 \%$

35
Thit sprt dutiapos


40






The mint. was mental of reflex for 3 h. After cooling the reaction mist, un- and filtered through a pares of silica gel. Concentration gave a semisolid 1 which wasp purified by pip. The to give a cordless, ioh-d $=140$ to in
TLc $\Rightarrow$ only one main seel of prese






to grue on Marion oi $=177 \mathrm{mg}$ Clo7a-3a-it



$$
\text { Tee } \because \text { ore ines spit. }
$$

$1: 1$
$1480-2$
and



To a soln of dinppronlamide C1.8M im

 for 30 min .
4.00 man: it re ot the di isupropiamioue
 $4 . \omega \mathrm{mm}$.

TLe a after mein sput of pwsivch only the of tim. ow, kein sput of prithec ${ }^{2}$ que of iat. Mke e gave a yellow $\sigma 1=290 \mathrm{~kg}$ Esu-phis:

$\qquad$ एव运却1-11:



Sawai Ex 1005
Page 98 of 4322


The soln wa stivere ort. r.t. for 2 dape. 9-20

TLC $\Rightarrow$ showed one main spet (illethe-petrel).

-i. ...nnv 10 .ig.
"lvolv. Ti scelle itr ig.





1

Witness-







EXHIBIT E
ORUG INHIBITION STUDY FOR SANDOZ CONTRACT
Sandoz unknowns were dissolved in DMA (Dimethylacetamide
from Sigma), and Buffer A and DMSO: 0.1 M NaOH .
results
Compactin in DMA at various concentrations was assayed for
inhibition also and is indicated in the results. Buffer A, and DMA, DMSO: 0.1 M NaOH were also assayed by adding $10 \mu 1$ of each to $200 \mu 1$ of microsomal suspension and they showed no significant inhibition
of HMG-COA reductase.
NOTE: That compound marked (SAP) was saponified in a $50^{\circ}$ waterbath for 2 hr .


婇


7．OF
INHIBITION


0

べロめずかずす

సべゥ



June 27, 1985.

DRUG INHIBITION STUDY FOR SANDOZ CONTRACT

$$
\begin{aligned}
& \text { Sandoz unknowns were dissolved in DMA (Dimethylacetamide. } \\
& \text { from Sigma), and Buffer } A \text { and } D M S O: 0.1 \mathrm{M} \mathrm{NaOH} \text {. } \\
& \text { Dilution of each compound gave the concentrations indicated in the } \\
& \text { results. }
\end{aligned}
$$ Microsomes were prepared from male Sprague-Dawley rats ( 163 q

in Buffer A with 10 mM DTT and frozen at $-80^{\mathrm{C}} \mathrm{C}$ until thawed and used for
experiment. 200 Al (quots of microsomal suspension $(.97-1.11 \mathrm{mg} / \mathrm{ml})$ plus $10 \mu$ of drug dilution were assayed for HMG-CoA reductase activity Compactin in DMA at various concentrations was assayed for
inhibition also and is indicated in the results. Buffer $A$, and $200 \mu 1$ of microsomal suspension and they showed no significant.inhibit of HMG-CoA reductase.


## $\stackrel{\text { 둘 }}{\underset{\sim}{\mid}}$

글




WATTANASIN
v .
PICARD et al.
v.

FUJIKAWA et al.

PRELIMINARY MOTION UNDER 37 CFR $\$ 1.633(C)(1)$ BY THE PARTY WATTANASIN

The party Watanasin moves to substitute a count for the present Count 1 of the subject interference:

In compliance with 37 CFR 1.637(c)(1)(i), said Proposed Substitute Count I comprises the following:

Proposed Substitute Count I

A compound of the formula:

wherein

$$
\begin{aligned}
& R^{1}, R^{2}, R^{3}, R^{4} \text { and } R^{6} \text { are independently } \\
& \text { hydrogen, } \\
& C_{1-6} \text { alkyl, } \\
& C_{1-6} \text { cycloalkyl, }
\end{aligned}
$$

```
C
n-butoxy,
i-butoxy,
sec-butoxy,
R }\mp@subsup{}{}{7}\mp@subsup{}{}{8}\mp@subsup{N}{N}{}\mathrm{ - (wherein }\mp@subsup{R}{}{7}\mathrm{ and }\mp@subsup{R}{}{8}\mathrm{ are independently
 hydrogen or (C 1-3 alkyl),
trifluoromethyl,
trifluoromethoxy,
difluoromethoxy,
fluoro,
chloro,
bromo,
phenyl,
phenoxy,
benzyloxy,
hydroxy,
hydroxymethyl,
-O(CH2)) OR }\mp@subsup{}{}{19}\mathrm{ (wherein }\mp@subsup{\textrm{R}}{}{19}\mathrm{ is hydrogen or
 C (1-3 alkyl and \alpha is 1, 2 or 3),
or when located at the ortho position to each
other, R}\mp@subsup{R}{}{3}\mathrm{ and }\mp@subsup{R}{}{4}\mathrm{ together optionally form
-CH=CH-CH=CH-;
```

$\mathrm{R}^{5}$ is hydrogen,
$\mathrm{C}_{1-6}$ alkyl,
$\mathrm{C}_{2-3}$ alkenyl,
$\mathrm{C}_{3-6}$ cycloalkyl,
phenyl substituted by $\mathrm{R}^{9}$ (wherein $\mathrm{R}^{9}$ is hydro-
gen, $\mathrm{C}_{1-4}$ alkyl, $\mathrm{C}_{1-3}$ alkoxy, fluoro, chloro, bromo
or trifluoromethyl),
phenyl- $\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}-\quad$ (wherein m is $1 ; 2$ or 3 ),
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl or phenyl- $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ -
(wherein n is 0,1 or 2 ).

Y is

$$
\begin{aligned}
& -\mathrm{CH}_{2}-, \\
& -\mathrm{CH}_{2} \mathrm{CH}_{2}- \\
& -\mathrm{CH}=\mathrm{CH}- \\
& -\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\text {, or } \\
& -\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\text {; }
\end{aligned}
$$

Z is


or $-\mathrm{Q}-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12} \underset{\mathrm{R}^{14} \text { (where ; }}{ } \mathrm{R}^{12}$ is hydrogen or
$Q$ is $\quad-\mathrm{CH}(\mathrm{OH})-$.
$-\mathrm{C}(\mathrm{O})-$, or
$-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}{ }^{- \text {; }}$

W is

$$
\begin{aligned}
& -\mathrm{C}\left(\mathrm{R}^{11}\right)(\mathrm{OH})-\begin{array}{r}
\text { (where } \mathrm{R}^{11} \text { is hydrogen or } \mathrm{C}_{1-3} \\
\text { alkyl), } \\
-\mathrm{C}(\mathrm{O})^{-,} \text {or } \\
-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2^{-;}}
\end{array}
\end{aligned}
$$

the two $R^{13}$ are independently primary or secondary $C_{1-6}$ alkyl; or two $R^{13}$ together form $-\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3}^{- \text {i }}$
$\mathrm{R}^{14}$ is physiologically hydrolyzable alkyl or M (wherein M is $\mathrm{NH}_{4}$, sodium, potassium, $1 / 2$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine); and
$\mathrm{R}^{17}$ and $\mathrm{R}^{18}$ are independently hydrogen or $\mathrm{C}_{1-3}$ alkyl;

## REMARKS

The present Count 1 of the interference was drawn to cover subject matter in the involved patent applications in common with U.S. Patent No. 4,761,419 of the party Picard et al., with whom each of the parties Wattanasin and Fujikawa et al had respectively requested interference.

In view of the termination of this proceeding as to picard et al., it is respectfully suggested that the present count is deficient in not covering subject matter common to both of the involved applications. For example:
(1) The proviso of the present Count 1 is irrelevant since the claims of both Wattanasin and Fujikawa et al. require that the "X-Z" chain (equivalent to Fujikawa et al.'s Y-Z chain) be bonded to the quinoline ring at the 3 -position;
(2) The scope of the present Count 1 is deficient in that it is limited to erythro (or trans lactone) compounds. However, neither Fujikawa's claim 1 or Wattanasin's claim 1 is similarly limited;
(3) The scope of the present Count 1 is deficient in that it excludes esters of the open ring compound, which are claimed by both Wattanasin and Fujikawa et al.;
(4) The scope of the present Count 1 is deficient in that it excludes open ring compounds wherein a carbonyl group is at the 5-position of the side chain, which are claimed by both parties; and
(5) The scope of the present Count 1 is ambiguous insofar as the definition of $R_{1}$ or $R_{2}$ is concerned when either substituent is phenyl substituted by $C_{1-4}$ alkyl, because it is unclear whether the phenyl can be di-substituted.

Accordingly, the party Wattanasin moves to substitute the above Proposed Substitute Count 1 for the present Count 1 .

It will be noted that this Proposed Substitute Count 1 duplicates the party Fujikawa's claim 1 as amended during prosecution.

The proposed count is suupported by Wattanasin at e.g.r . Example 1, page 42 of the specification and original claims 1-7.

Claims $1-7$ and 10 of the involved application of the party Wattanasin correspond to Proposed Substitute Count 1.

In compliance with 37 CFR $1.637(c)(1)(i i)$, claims $1-7$ and 10 are believed patentable in view of the Communication from the Examiner dated March 13, 1991 in Wattanasin's involved application.

In compliance with 37 CFR 1.637(c)(1)(iii), claims 1-34, 36 and 39-40 of the involved application of the party Fujikawa et al. are believed to correspond to Proposed Substitute Count 1 .


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: Imf
June 11, 1992

## CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

## PRELIMINARY MOTION UNDER 37. CFR SS1.633(c)(1)

BY THE PARTY WATTANASIN
was served on counsel for the party Fujikawa et al., this 11th day of June, 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway Crystal Square 5, Ste. 400
Arlington, VA 22202


Case No. 600-7」01/CONT/Int.(2)
Patent
[ Y Y
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
$v$.
PICARD et al.
v.

FUJIKAWA et al.

PRELIMINARY MOTION UNDER 37 CFR $\$ 1.635$ BY THE PARTY WATTANASIN

The party Wattanasin moves that U.S. Patent No. 5,011,930 on the basis of claim 1 thereof be included in the present interference.

## Remarks

U.S. Patent No. 5,011,930 (the "'930" patent) issued on April 30, 1991 on a divisional application from the involved application of the party Fujikawa et al (hereinafter "Fujikawa"). A copy of the patent is appended hereto.

On information and belief, the $\quad 1930$ patent is also assigned to Nissan Chemical Industries Ltd.

It is respectfully submitted that claim 1 of the ' 930 patent contains interfering subject matter with the involved application of Wattanasin. Said claim 1 is essentially encompassed by Count 1 of this interference.

It is also submitted that Claim 1 of the 930 patent and the involved claims of the party fujikawa are not drawn to. separate and distinct inventions.

## BACKGROUND

Reference is made to the prosecution history of the party Fujikawa's involved application wherein the Examiner issued a restriction requirement to one of four groups of claims respectively directed to: (1) quinolinoyl substituted heptenoic acids ; (2) silyloxy-containing quinoline compounds; (3) quinoline compounds containing a fused heterooxygen-containing ring; and (4) carbocyclic ring-containing quinoline compounds and use (see Fujikawa Serial No. $07 / 233,752$, office action of June 6, 1989).

In response to the restriction requirement, Fujikawa elected with traverse the invention defined by group (1), i.e. quinolinoyl substituted heptenoic acids (Restriction Response of July 13, 1989); elected a lactone species within the scope (compound "I-31" wherein $\mathrm{R}^{5}$ is isopropyl; and amended the claims to delete the canceled subject matter.

Then Fujikawa requested interference with the Picard et al. patent (Fujikawa Paper of August 21, 1989).

Fujikawa's application Serial No. 483,720 was then filed on February 23, 1990, in which the subject matter of group (4) above (i.e. the carbocyclic-containing compounds) was pursued (maturing into claims 2-7), but which also contained claim 1 of the parent application encompassing subject matter within group (1) above.

This original claim 1 was eventually dropped and replaced by newly presented claim 38 (Fujikawa Amendment of July 3, 1990) directed to a subgenus of compounds wherein $R^{5}$ of structural formula I of Fujikawa is defined to be cyclopropyl or isopropyl The subject matter of claim 38 is clearly within the scope of Group (1) which was elected for prosecution in the involved Fujikawa application, and essentially involves the invention of Count 1 of this interference.

In late October 1990, the issue fee was paid on the $\quad 720$ divisional application.

It will be noted that shortly thereafter, in the ongoing prosecution of the involved parent application, Fujikawa canceled original claim 10 directed to a species within group (1) wherein $R^{5}$ of Fujikawa's structural formula $I$ was cyclopropyl ${ }^{1}$. Fujikawa indicated that the subject matter of claim 10 would be pursued in a divisional application filed concurrently with the cancellation of claim 10, because:
> "Applicants have discovered that the subject matter of Claim. 10, and related subject matter, exhibits unobvious and distinguishing properties, with respect to the genus

(cont'd)

[^3]Wattanasin
Int. No.. 102,648
Rule 635 Motion
page - 4 -
circumscribed by the remaining claims of the above-captioned application, as well as the claims of the patent with which an Interference is to be declared. Accordingly, that claim will be pursued in a separate application."
(Serial No. 07/233,752, Amendment of December 19, 1990)

The party Wattanasin is not aware of a divisional application of the party Fujikawa which may have been filed concurrently with Fujikawa's December 19, 1990 amendment.

However, the ' 720 divisional application did issue on April 30, 1991 (as the '930 patent) containing the mentioned claim 1, which reads on canceled claim 10 .

Unlike claims $2-7$ of the ' 930 patent, which are limited to compounds having a carbocyclic fused ring, claim 1 of Fujikawa's '930 patent is not so limited; it does not even embrace the carbocyclic compounds, but rather is directed to compounds of the present Count 1 .

Insofar as can be determined from the copy of the '930 prosecution history obtained from the Patent and Trademark Office, no evidence of "unobvious and distinguishing properties" was proffered during prosecution in support of compounds within the scope of claim 1 of the 930 patent. ${ }^{2}$

[^4]The Fujikawa specification is not considered to provide evidence of superiority over the claimed range of compounds of claim 1.

The inventorship on the '930 patent is the same as the inventorship on the involved application of the party Fujikawa.

Accordingly, the party Wattanasin submits that the subject matter of claim 1 of Fujikawa's '930 patent does not constitute a separate and distinct invention from the involved subject matter, and that this issued claim 1 , which falls squarely within the ambit of subject matter common to both involved applications, should not remain sequestered from this interference.

It will be noted that the '930 patent issued nearly a year after the party Wattanasin filed its Request for Interference. By Information Disclosure mailed June 3, 1991, the party Wattanasin did advise the Examiner of the 930 patent and indicated its suitability for inclusion in the requested interference. However, no further action appears to have been taken by the Examiner in this regard.

## CONCLUSION

This motion is being filed under Rule 635 because Rule 633 does not appear to expressly provide for a motion to include an additional patent of an involved party in an interference.

It is respectfully urged that the Examiner-In-Chief bring the '930 patent into the present interference to the extent of claim 1 thereof.

In the event of denial of this motion, a contingent motion under Rule $633(e)$ is being filed concurrently herewith.

It will be noted for purposes of 35 USC $\$ 135(\mathrm{~b})$, that the claims of Wattanasin were made prior to one year from the date on which the $\quad 930$ patent of Fujikawa was granted.

Respectfully submitted,


Attorney for the Party Wattanasin Registration No. 31,104.
201-503-7332
SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
June 11, 1992

```
 It is hereby certified that a true copy of the paper
entitled:
```


## PRELIMINARY MOTION UNDER 37 CFR $\$ 1.635$

BY THE PARTY WATTANASIN
was served on counsel for the party Fujikawa, this 11th day of June, 1992, by postage pre- paid first-class mail addressed to the following:

Oblon, Spivak, McClelland; Maier
\& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202


Diane E. Furman

| United States Patent [19] | $[11]$ | Patent Number:$5,011,930$ <br> Apr. 30, 1991 |
| :--- | :--- | :--- | :--- |
| Fujikawa et al. |  |  |

[54] QUINOLINE TYPE MEVALONOLACTONES
[75] Inventors: Yoshihiro Fujikswa; Mikio Suzuki; Hiroshi Imasaki, all oi Fuuabashi; Mitsuaki Sakashita: Masaki Kitahara, both of Shitaoka, all of Japan
73] Assignee: Nissan Chemical Industries Ltdi, Tokyo, Japan
[21] Appl. No.: 483,720
[22] Filed: Feb. 23, 1990
Related U.S. Application Data
[62] Division of Ser. No. 233,752, Aug. 19, 1988.
30] Foreign Application Priority Data
Aus. 20, 1987 [JP] Japan $\qquad$ 62-207224
Jan. 26, 1988 [JP]
Japan C07D 215/00. C07D 221/06
[51] Int. Cl. ${ }^{5}$ $\qquad$ C07D 215/00; C07D 221/06
[52] U.S. C. 546/174; 546/175; 546/178
[58] Field of Search $546 / 174 ; 546 / 175 ; 546 / 178$
.... $546 / 101,174,173,175$, $1,174,173,178$,
$546 / 178 ; 514 / 290$

## References Cited

U.S. PATENT DOCUMENTS
4.761.419 8/1988 Picard et al. $\qquad$ . $546 / 174$

## FOREIGN PATENT DOCUAIENTS

114027 7/1985 European Pat. Off.
179559 4/1986 European Pat. Off.
wo860307 1/1986 World Int. Prop. O. .
Primary Examiner-David B. Springer
Attorney, Agent, or Firm-Oblon, Spivak, McClelland, Maier \& Neustadt
[57]
ABSTRACT
A compound of the formula:

wherein $R^{1}, R^{2}, R^{3}, R^{4}$ and $R^{6}$ are independently hydrogen, $C_{1-6}$ alkyl, $C_{1-6}$ cyeloalkyl, $C_{1-3}$ alkoxy, n-botoxy, i-botoxy, sec-butoxy, $R^{7} R^{8} N$ - (wherein $R^{7}$ and $R^{8}$ are
independently hydrogen or $\mathrm{C}_{1.5 \mathrm{alky}} \mathrm{l}$ ), trifluoromethyl, trifluoromethoxy, difluoromethoxy, fluoro, chloro bromo, phenyl, phenoxy, benzyloxy, hydroxy, trimethylsilyloxy, diphenyl-t-butylsilyloxy, hydroxymethy or - $\mathrm{O}\left(\mathrm{CH}_{2}\right)$ ) $\mathrm{OR}^{19}$ (wherein $\mathrm{R}^{19}$ is hydrogen or $\mathrm{C}_{1} \cdot 3$ alkyl, and 1 is 1,2 or 3 ); or when located at the ortho position to each other, $R^{1}$ and $R^{2}$, and $R^{3}$ and $R^{4}$ together form $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$; or when located as the ortho position to each other, $\mathrm{R}^{\prime}$ and $\mathrm{R}^{2}$ together form - $O C\left(R^{15}\right)\left(R^{16}\right) O$ - (wherein $R^{15}$ and $R^{16}$ are independently hydrogen or $\mathrm{C}_{1-3}$ alkyl); Y is $-\mathrm{CH}_{2}-$, $-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-$; and Z is $-\mathrm{Q}-\mathrm{CH}_{2} \mathrm{WC}$. . $\mathrm{H}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12}$,


(wherein $Q$ is $-\mathrm{C}(\mathrm{O})_{-},-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}-$ or $-\mathrm{CH}-$ $(\mathrm{OH})$-; $W$ is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}$ - or $-\mathrm{C}\left(\mathrm{R}^{11}\right.$ -$(\mathrm{OH})-\mathrm{R}^{11}$ is hydrogen atom or $\mathrm{C}_{1.3}$ alkyl; $\mathrm{R}^{12}$ is hydrogen or $R^{14}$ (wherein $R^{14}$ is physiologically hydrohydrogen or R or M (wherein M is NH4, sodium, potaslyzable alkyl or $M$ (wherein $M$ is NHL, sodium, pous-
sium, $\frac{1}{}$ calcium or a hydrate of lower alkyl amine, dislower alkyl amine or tri-lower alkyl amine)); two $\mathrm{R}^{13}$ are independently primary or secondary $\mathrm{C}_{\mathrm{l} .6}$ alkyl; or two $\mathrm{R}^{13}$ together form - $\left(\mathrm{CH}_{2}\right)_{2}$ - or - $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{R}^{17}$ and $\mathrm{R}^{18}$ are independently hydrogen or $\mathrm{C}_{1-3}$ alkyl; and $\mathrm{R}^{5}$ is hydrogen, $\mathrm{C}_{1-6}$ alkyl, $\mathrm{C}_{2-3}$ alkenyl, $\mathrm{C}_{3.6}$ cycloalkyl,

(wherein $\mathrm{R}^{9}$ is a hydrogen atom, $\mathrm{C}_{1-4}$ alkyl, $\mathrm{C}_{1-3}$ alkoxy, fluoro, chloro, bromo or trifluoromethyl), phenyl$\left(\mathrm{CH}_{2}\right)_{m}$ - (wherein mis 1,2 or 3 ), $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ phenyl or phenyl- $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - (wherein $n$ is 0,1 or 2 ).

## QUINOLINE TYPE MEVALONOLACTONES

This is a division, of application Ser. No. 07/233/752 fited on Aug. 19. 1988.
The present invention relares to novel mevalonolac tones having a quinoline ring, processes for their production, pharmaceutical compositions containing them and their pharmaceutical uses particularly as antihyperlipidemic, hypolipoproteinemic and anti-atherosclerotic agents, and intermediates useful for their production and processes for the production of such intermediates.
Some fermentation metabolic products such as compactine, CS-514, Mevinolin or semi-synthetic derivatives or fully synthetic derivatives thereof are known to be inhibitors against HMG-CoA reductase which is a rate limiting enzyme for cholesterol biosynthesis. (A. Endo J. Med Chem., 23(4) 401 (1985))
CS-514 and Mevinolin have been clinically proved to be potentially useful anti-hyperlipoproteinemic agents, and they are considered to be effective for curing or preventing diseases of coronary artery sclerosis or atherosclerosis. (IXth Int. Symp. Drugs Affect. Lipid Metab., 1986, p30, p31, p66)
However, with respect to fully synthetic derivatives, particularly hetero aromatic derivatives of inhibitors against HMG-CoA reductase, limited information is disclosed in the following literatures:
WPI ACC NO. 84-158675, 86-028274, 86-098816, 86-332070, 87-124519, 87-220987, 88-07781, 88-008460, 88-091798 and 88-112505.
The present inventors have found that mevalonolactone derivatives having a quinoline ring, the corresponding dihydroxy carboxylic acids and salts and esters thereof have high inhibitory activities against cholesterol biosynthesis wherein HMG-CoA reductase acts as a rate limiting enzyme. The present invention has been accomplished on the basis of this discovery.
The novel mevalonolactone derivatives of the present invention are represented by the following formula I:

wherein $R^{1}, R^{2}, R^{3}, R^{4}$ and $R^{6}$ are independently hydrogen. $C_{1.6}$ alkyl, $C_{3-6}$ cycloalkyl, $C_{1-3}$ alkoxy, n-butoxy, i-butoxy, sec-butoxy, $R^{7} R^{8} N$ - (wherein $R^{7}$ and $R^{8}$ are independenity hydrogen or $\mathrm{C}_{1-3}$ alkyl), trifluoromethyl, trifluoromethoxy, difluoromethoxy, fluoro, chloro bromo, phenyl, phenoxy, benzyloxy, hydroxy, trimethylsilyloxy, diphenyl-t-butylsilyloxy, hydroxymethyl or $-\mathrm{O}\left(\mathrm{CH}_{2}\right) \mathrm{OR}^{19}$ (wherein $\mathrm{R}^{19}$ is hydrogen or $\mathrm{C}_{1.3}$ alkyl, and 1 is 1,2 or 3); or when located at the ortho position to each other, $\mathrm{R}^{1}$ and $\mathrm{R}^{2}$, or $\mathrm{R}^{3}$ and $\mathrm{R}^{4}$ together optionally form $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$; or when located at the ortho position to each other, $\mathrm{Rl}^{1}$ and $\mathrm{R}^{2} 65$ together optionally form - OC $\left(\mathrm{R}^{15}\right)\left(\mathrm{R}^{16}\right) \mathrm{O}$ - (wherein $R^{15}$ and $R^{16}$ are independently hydrogen or $C_{1-3}$ alk $y!$ ); $Y$ is $-\mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}$ -

5

10
$=-\mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-$ : and Z is $-\mathrm{Q}-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{\mathrm{I}}$,


(wherein $Q$ is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}-$ or -CH . $(\mathrm{OH})-\mathrm{W}$ is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}-$ or $-\mathrm{C}\left(\mathrm{R}^{11}\right.$. )(OH)-; $\mathrm{R}^{11}$ is hydrogen or $\mathrm{C}_{1.3}$ alkyl; $\mathrm{R}^{12}$ is hydrogen or $\mathrm{R}^{14}$ (wherein $\mathrm{R}^{14}$ is physiologically hydrolyzable alkyl or M (wherein M is $\mathrm{NH}_{4}$. sodium, potassium, $\frac{1}{2}$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine)); two $\mathrm{R}^{13}$ are inde pendently primary or secondary $\mathrm{C}_{1-6}$ alkyl; or two $\mathrm{R}^{13}$ together form - $\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{R}^{17}$ and $\mathrm{R}^{13}$ are independently hydrogen or $\mathrm{C}_{1-3}$ alkyl; and $\mathrm{R}^{3}$ is hydrogen. $\mathrm{C}_{1-6}$ alkyl, $\mathrm{C}_{2.3}$ alkenyl, $\mathrm{C}_{3.6}$ cycloalkyl

(wherein $\mathrm{R}^{9}$ is hydrogen, $\mathrm{C}_{1+4}$ alkyl, $\mathrm{C}_{1.3}$ alkoxy, fluoro chloro. bromo or trifluoromethyl), phenyl- $\left(\mathrm{CH}_{2}\right)_{m}$ (wherein m is 1,2 or 3 ), $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl o phenyl- $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-(wherein n is 0,1 or 2 ).

Various substituents in the formula I will be described in detail with reference to specific examples. However it should be understood that the present invention is by no means restricted by such specific examples.
$C_{1.6}$ alkyl for $R^{1}, R^{2}, R^{3}, R^{4}, R^{6}$ and $R^{9}$ includes, for: example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl and t-butyl. $\mathrm{C}_{1-3}$ alkoxy for $\mathrm{R}^{1} ; \mathrm{R}^{2}, \mathrm{R}^{3}$
$R^{4}$ and $R^{6}$ includes, for example, methoxy, ethoxy, $n$ propoxy and i-propoxy:
$\mathrm{C}_{1-3}$ alkyl for $\mathrm{R}^{11}$ includes, for example, methyl, ethyl, n-propyl and i-propyl.
$\mathrm{C}_{1.3}$ alkyl for $\mathrm{R}^{13}$ includes, for example, methyl, ethyl, n-propyl and i-propyl.

Alkyl for $\mathrm{R}^{14}$ includes, for example, methyl, ethyl n-propyl, i-propyl, n-butyl and i-butyl.
M is a metal capable of forming a pharmaceutically acceptable salt, and it includes, for example, sodium and potassium
$\mathrm{CO}_{2} \mathrm{M}$ includes, for example, $-\mathrm{CO}_{2} \mathrm{NH}_{4}$ and $-\mathrm{CO}_{2} \mathrm{H}$. (primary to tertiary lower alkylamine such as trimethylamine)
$\mathrm{C}_{1.6}$ alkyl for $\mathrm{R}^{5}$ includes, for example, methyl, ethyl n-propyl, i -propyl, n-butyl, i -butyl, sec-butyl, t -butyl, n -pentyl and n -hexyl.
$\mathrm{C}_{3-6}$ cycloalkyl for $\mathrm{R}^{5}$ includes, for example. cyclopropyl. cyclobutyl, cyclopentyl and cyclohexyl.
$\mathrm{C}_{2.3}$ alkenyl for $\mathrm{R}^{5}$ includes, for example, vinyl and i-propenyl.

Phenyl- $\left(\mathrm{CH}_{2}\right)_{m}$ - for $\mathrm{R}^{5}$ includes, for example, ben zyl. $\beta$-phenylethyl and $\gamma$-phenylpropyl.

Phenyl-( $\left.\mathrm{CH}_{2}\right)_{7} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$ for $\mathrm{R}^{5}$ includes, for example. $a$-phenylethyl and $a$-benzylethyl
$C_{1-j}$ alkyl for $R^{7}$ and $R^{8}$ includes, for example, methyl. ethyl, n-propyl and i-propyl.
Further, these compounds may have at least one or two asymmetric carbon atoms and may have at least wo to four optical isomers. The compounds of the formula I include all of these optical isomers and all of the mixtures thereof.
Among compounds having carboxylic acid moieties falling outside the definition of $-\mathrm{CO}_{2} \mathrm{R}^{12}$ of the carboxylic acid moiety of substituent $Z$ of the compounds of the present invention, those which undergo physiological hydrolysis, after intake, to produce the corresponding carboxylic acids (compounds wherein the $-\mathrm{CO}_{2} \mathrm{R}^{12}$ moiety is $-\mathrm{CO}_{2} \mathrm{H}$ ) are equivalent to the compounds of the present invention.
Now, preferred substituents of the compounds of the present invention will be described.

In the following preferred, more preferred still further perferred and most preferred examples, the numer als for the positions of the substituents indicate the posi tions on the quinoline ring. For example, $\mathrm{N}^{\prime}$ shown by e.g. $1^{\prime}$ or $2^{\prime}$ indicates the position of the substituent on the phenyl substituted at the 4 -position of the quinoline ring (the carbon connected to the quinoline ring is desienated as 1 '). The meanings of the respective substitu ents are the same as the above-mentioned meanings.
Preferred substituents for $\mathrm{R}^{1}, \mathrm{R}^{2}$ and $\mathrm{R}^{6}$ are hydrogen, fluoro, ch!oro, bromo, $C_{1.3}$ alkyl, $C_{1.3}$ alkoxy, $C_{3.6}$ cycloalkyl, dimethylamino, hydroxy, hydroxymethyl, hydroxyethyl, trifluoromethyl, trifluoromethoxy, difluoromethoxy, phenoxy and benzyloxy.

Further, when $\mathrm{R}^{6}$ is hydrogen, it is preferred that $\mathrm{R}^{1}$ Further, when $R^{2}$ together form methylenedioxy.

As preferred examples for $R^{3}$ and $R^{4}$, when $R^{4}$ is hydrogen, $R^{3}$ is hydrogen, $3^{\prime}$-fluoro, $3^{\prime}$-chloro, $3^{\prime}$ methyl. 4'-methyl, 4'-chloro and 4'-fluoro.

Other preferred combinations of $R^{3}$ and $R^{4}$ include 3'-methyl-4'-chloro, $3^{\prime}, 5^{\prime}$-dichloro, $3^{\prime}, 5^{\prime}$-difluoro, $3^{\prime}, 5^{\prime}$ dimethyl and 3'-methyl-4'-fluoro.

Preferred examples for $R^{5}$ include primary and secondary $C_{1.6}$ alkyl and $C_{3.6}$ cycloalkyl.
Preferred examples for Y include $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ and $-\mathrm{CH}=\mathrm{CH}$ -
Preferred examples for $\mathbf{Z}$ include

$-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12},-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}$. $\mathrm{C}\left(\mathrm{O} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{12}\right.$ and $(\mathrm{OH}) \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OR}^{13}\right)_{2} \mathrm{CH}$. ${ }_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$.
Now, more preferred substituents of the compounds of the present invention will be described.
As more preferred examples for $R^{1}, R^{2}$ and $R^{6}$, when orth $\mathrm{R}^{2}$ and $\mathrm{R}^{6}$ are hydrogen, $\mathrm{R}^{1}$ is hydrogen, 5 -fluoro, 6 -fluoro, 7 -fluoro, 8 -fluoro, 5 -chloro, 6 -chloro, 7 chloro, 8 -chloro, 5-bromo, 6-bromo, 7 -bromo, 8 -bromo, 5 -methyl, 6 -methyl, 7 -methyl, 8 -methyl, 5 -methoxy, 6-methoxy, 7-methoxy, 8-methoxy, 5-trifluoromethyl, 6-trifluoromethyl, 7-trifluoromethyl, 8-trifluoromethyl, 6 6-trifluoromethoxy, 6-difluoromethoxy, 8-hydroxyethyl, 5-hydroxy, 6-hydroxy, 7-hydroxy, 8-hydroxy 6-ethyl, 6-n-butyl and 7-dimethylamino.

50

When $R^{0}$ is hydrogen, $R^{1}$ and $R=$ together represent 6 -chloro-8-methyl. 6 -bromo-7-methoxy, 6 -methyl-7chloro, 6 -chloro-8-hydroxy, 5 -methyl-2-hydroxy, 6-merhoxy-7-chloro, 6-chloro-7-methoxy, 6-hydroxy-7chloro 6-chloro-7-hyorasy, 6-chloro-8-bromo, 5 . chloro-0-hydroxy, $\quad$-bromo-8-chloro, 6 -bromo-8hydroxy, 5-methyl-8-chloro, 7-hydroxy-8-chloro, 6-bromo-8-hydroxy, 6 -methoxy-7-methyl, 6-chloro-8bromo, 6 -miethyl- 8 -bromo, 6,7 -difluoro, 6.8 -difluoro, 6,7-methylenedioxy, 6,8-dichloro, 5,8-dimethyl, 6,8dimethyl, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo or 6,8-dibromo

When $R^{1}, R^{2}$ and $R^{6}$ are not hydrogen, they together represent 5,7-dimethoxy-8-hydroxy, 5,8-dichloro-6hydroxy, 6,7,8-trimethoxy, 6,7,8-trimethyl, 6,7,8-trichloro, 5-fluoro-6,8-dibromo or 5 -chloro-6,8-dibromo.

As more preferred examples for $R^{3}$ and $R^{4}$, when $R^{3}$ is hydrogen, $\mathrm{R}^{+}$is hydrogen, $4^{\prime}$-methyl, $4^{\prime}$-chloro or $4^{\prime}$-lluoro. When both $R^{3}$ and $R^{4}$ are not hydrogen, they 20 together represent $3^{\prime}, 3^{\prime}$-dimethyl or $3^{\prime}$-methyl-4'-fluoro. As more preferred examples for $\mathrm{R}^{3}$, the above-mentioned preferred examples of $\mathrm{R}^{5}$ may be mentioned.
As preferred examples for $\mathrm{Y},-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - and ( E )- $\mathrm{CH}=\mathrm{CH}-$ may be mentioned. As more preferred examples for $Z$, the above preferred examples for $Z$ may be mentioned.
Now, still further preferred substituents of the compounds of the present invention will be described. As examples for $R^{1}, R^{2}$ and $R 6$, when both $R^{2}$ and $R^{6}$ are 30 hydrogen, $R^{1}$ is hydrogen, 6 -methyl, 6 -ethyl, 6 -trifluoromethyl, 6 -hydroxy, 6-methoxy, 6 -chloro, 6 bromo, 6 -n-butyl and 7 -dimethylamino.

When only $R^{6}$ is hydrogen, $R^{1}$ and $R^{2}$ represent 6,8 dichloro, 5,8-dimerhyl, 6,8-dimethyl, 6,7-dimethoxy, 5 6.7-diethoxy, 6,7-dibromo, 6,8-dibromo, 6,7-difuuoro and 6,8 -difluoro.

As suill further preferred examples for $R^{3}$ and $R^{4}$ when $R^{3}$ is hydrogen, $R^{4}$ is hydrogen, $4^{\prime}$-chloro or $4^{\prime-}$ fluoro, or $R^{3}$ and $R^{4}$ together represent $3^{3}$-methyl-4'0 fluoro.

Still further preferred examples for $\mathrm{R}^{5}$ include ethyl, n-propyl, i-propyl and cyclopropyl.
Still further preferred examples for $Y$ include ( E ) $-\mathrm{CH}=\mathrm{CH}-$
5 As still further preferred examples for $Z$, the abovementioned preferred example for $Z$ may be mentioned. Now, the most preferred substituents for the compounds of the present invention will be described.
As the most preferred examples for $\mathrm{R}^{1}, \mathrm{R}^{2}$ and $\mathrm{R}^{6}$, when both $R^{2}$ and $R^{6}$ are hydrogen, $R^{1}$ is hydrogen, 6 -methyl or 6 -chioro.
When only $R^{6}$ is hydrogen, $R^{1}$ and $R^{2}$ together represent, for example, 6,7-dimethoxy.
As the most preferred examples for $R^{3}$ and $R^{4}, R^{3}$ is 55 hydrogen and $\mathrm{R}^{4}$ is hydrogen, $4^{\prime}$-chloro or $4^{\prime}$-fluoro.

The most preferred examples for $\mathrm{R}^{3}$ include i-propyl and cyclopropyl. The most preferred example for Y may be ( E )- $\mathrm{CH}=\mathrm{CH}-$.

As the most preferred examples for $Z$, the abovementioned preferred examples for $\mathbf{Z}$ may be mentioned. Now, particularly preferred specific compounds of the present invention will be presented. The following compounds (a) to ( $z$ ) are shown in the form of carbox lic acids. only the compounds in the form of carboxylic acids but also the corresponding lactones formed by the condensation of the carboxylic acids with hydroxy at the 5 position, and sodium salts and lower alkyl esters (such
as methyl. ethyl, i-propyl and n-propyl esters) of the carboxylic acids. which can be physiologically hydro
lyzed to the carboxylic acids
(a) (E)-j,5-dihydroxy-7-[4'-(4"-fluorophenyl) $\mathbf{2}^{\prime}$-( $1^{\prime \prime}$ -methylethyl)-quinolin- $3^{\prime}$-yl]-hept-6-enoic acid
(b) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl) $-2^{\prime}$-( $]^{\prime \prime}$. methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(c) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-( $1^{\prime \prime}$ -methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
(d) (E)-3,5-dihydroxy-7-[4'-(4'-nluorophenyl)-2'-(1"-methylethyl)-6', $7^{\prime}$-dimethoxy-quinolin- $3^{\prime}$-yl]-hept-6enoic acid
(e) (E)-3,5-dihydroxy-7-[4'-(4'-fluorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
(f) (E)-3,5-dihydroxy-7-[4'-(4"'-fluorophenyl)-2'-
cyclopropyl- $6^{\prime}$-chloro-quinolin- $3^{\prime}$-yl]-hept-6-enoic acid

cyclopropyl-6'-merhyl-quinolin- $3^{\prime}$-ylf-hept-6-enoic acid
(h) (E)-3.5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yi]-hept-6enoic acid
(i) (E)-3,5-dihydroxy-7-[4'-(4"'chlorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid
(j) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1". ${ }^{2}$ methylethyl)-6'-chloro-quinolin- $3^{\prime}$-yl]-hept-6-enoic acid
(k) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin- $3^{\prime}$-yll -hept-6-enoic acid
(I) (E)-3,5-dihydroxy-7-[4'-(4"-ch]orophenyl)-2'-(1] ${ }^{30}$ methylethyl)- $6^{\prime}, 7^{\prime}$-dimethoxy-quinolin- $3^{\prime}$-ylj-hept-6enoic acid
(m) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-
cyclopropyl-quinolin-3'-y1]-hept-6-enoic acid
(n) (E)-3,5-dihydroxy-7-[4'-(4'"-chlorophenyl)-2'
cyclopropyl-6'-chloro-quinolin- $3^{\prime}$ - yll-hept-6-enoic acid
(o) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-
cyclopropyl- $6^{\prime}$-methyl-quinolin- $3^{\circ}$-yl]-hept- 6 -enoic acid
(p) (E)-3,5-dihydroxy-7-[4'-(4'"-chlorophenyl)-2'. 40


15
cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-
enoic acid
(q) (E)-3.5-dihydroxy-7-[4'-phenyl-2'-(1"-methyle-thyl)-quinolin-3'-yl]-hept-6-enoic acid
(r) (E)-3.5-dihydroxy-7-[4'-phenyl-2'-(1"-methyle- ${ }^{45}$
thyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(s) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methyle-
thyl) -6 '-methyl-quinolin-3'-yl]-hept-6-enoic acid
(t) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1" -methyle-(hyl)-6', $7^{\prime}$-dimethoxy-quinolin- 3 ,-yl]-hept-6-enoic acid (u) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-quinolin- $3^{\prime}$-yl]-hept-6-enoic acid
(v) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-
chloro-quinolin-3'-yl]-hept-6-enoic acid
(w) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl- 55
$6^{\prime}$-methyl-quinolin-3'-yl]-hept-6-enoic acid
( $x$ ) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-
$6^{\prime}, 7^{\prime}$-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(y) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1" 60 -methylethyl)-6'-methoxy-quinolin-3'-yi]-hept-6-enoic acid
(z) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropy1-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid

The mevalonolactones of the formula I can be pre pared by the following reaction scheme. The enal III can also be prepared by processes K, L and M.

## 20.

 0

## 65



III
5,011,930
7



$\xrightarrow[H]{ }{ }^{35}$





$\vec{N}$


In the above reaction scheme, $R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}$ and $R^{12}$ are as defined above with respect to the formula $I$, and $R^{21}$ and $R^{22}$ independently represent $C_{1-4}$ lower alkyl such as methyl. ethyl, n-propyl, i-propyl or nbutyl.
Step A represents a reduction reaction of the ester to a primary alcohol. Such reduction reaction can be conducted by using various metal hydrides, preferably diisobutylaluminium hydride, in a solvent such as tetrahydrofuran or toluene at a temperature of from $-20^{*}$ to $20^{\circ} \mathrm{C}$., preferably from $-10^{\circ}$ to $10^{\circ} \mathrm{C}$.
Step $B$ represents an oxidation reaction of the pri Step B represents an oxidation reaction of the priby using various oxidizing agents. Preferably, the reaction can be conducted by using pyridinium chlorochromate in methylene chloride at a temperature of from 0 o $25^{\circ} \mathrm{C}$., or by using oxalyl chloride, dimethyl sulfoxide and a tertiary amine such as triethylamine (Swern oxidation), or by using a sulfur trioxide pyridine complex.

Step $C$ represents a synthesis of a 3-ethoxy-1-hydroxy-2-propene derivative, which can be prepared by reacting a compound $V$ to lithium compound which has been preliminarily formed by treating cis-1-ethoxy-2-(tri-n-butylstannyl)ethylene with butyl lithium in tetrahydrofuran.
As the reaction temperature, it is preferred to employ a low temperature at a level of from $-60^{\circ}$ to $-78^{\circ} \mathrm{C}$

Srep $D$ represents a synthesis of an enal by acidic hydrolysis. As the acid catalyst, it is preferred to employ p-toluene sulfonic acid, hydrochloric acid or sulfuric acid, and the reaction may be conducted in a solvent mixture of water and tetrahydrofuran or ethanol at a temperature of from $10^{\circ}$ to $25^{\circ} \mathrm{C}$. The 3 -ethoxy-1-hydroxy-2-propene derivative obtained in Step C can be used in Step D without purification i.e. by simply removing tetra-n-butyl tin formed simultaneously.

Step E represents a double anion condensation reaction between the enal III and an acetoacetate. Such condensation reaction is preferably conducted by using sodium hydride and n-butyl lithium as the base in tetrahydrofuran at a temperature of from $-80^{\circ}$ to $0^{\circ} \mathrm{C}$. preferably from $-30^{\circ}$ to $-10^{\circ} \mathrm{C}$.
Step $F$ represents a reduction reaction of the carbonyl group, which can be conudcted by using a metal hydride, preferably sodium borohydride in ethanol at a temperature of from $-10^{\circ}$ to $25^{\circ} \mathrm{C}$., preferably from $-10^{\circ}$ to $5^{\circ} \mathrm{C}$.
Further, the reduction reaction may be conducted by using zinc borohydride in dry ethyl ether or dry tetrahydrofuran at a temperature of $-100^{\circ}$. to $25^{\circ} \mathrm{C}$., prefer. ably from $-80^{\circ}$ to $-50^{\circ} \mathrm{C}$.
Step $G$ is a step for hydrolyzing the ester. The hydrolysis can be conducted by using an equimolar amount of form $\alpha, \beta$-unsaturated carboxylic acid ester can be obtained by a so-called Horner-wittig reaction by using an alkoxycarbonylmethyl phosphonate. The reaction is conducted by using sodium hydride or potassium tbutoxide as the base in dry tetrahydrofuran at a temper ature of from $-30^{\circ}$ to $0^{\circ} \mathrm{C}$., preferably from $-20^{\circ}$ to $-15^{\circ} \mathrm{C}$.
Step $L$ represents' a reduction reaction of the $\alpha, \beta$ unsaturated carboxylic acid ester to an allyl alcohol. This reduction reaction can be conducted by using various metal hydrides, preferably diisobutylaluminiumhydride, in a solvent such as dry tetrahydrofuran or toluene at a temperature of from $-10^{\circ}$ to $10^{\circ} \mathrm{C}$., preferably from $-10^{\circ}$ to $0^{\circ} \mathrm{C}$.

Step $M$ represents an oxidation reaction of the ally alcohol to an enal. This oxidation reaction can be conducted by using various oxidizing agents, particularly active manganese dioxide, in a solvent such as tetrahydrofuran, acetone, ethyl ether or ethyl acetate at a temperature of from $0^{\circ}$ to $100^{\circ} \mathrm{C}$., preferably from $15^{\circ}$ to $50^{\circ} \mathrm{C}$.
Srep N represents a reaction for the synthesis of an $a, \beta$-unsaturated ketone by the selective oxidation of the dihydroxy carboxylic acid ester. This reaction can be conducted by using activated manganese dioxide in a solvent such as ethyl ether, tetrahydrofuran, benzene or toluene at a temperature of from $20^{\circ}$ to $80^{\circ} \mathrm{C}$., preferably from $40^{\circ}$ to $80^{\circ} \mathrm{C}$.

In addition to the compounds disclosed in Examples given hereinafter, compounds of the formulas I- 2 and I-5 given in Table 1 can be prepared by the process of the present invention. In Table 1, i. means iso, secmeans secondary and c. means cyclo. Likewise, Me means methyl, Et means ethyl, Pr means propyl, Bu means butyl, Pent means pentyl, Hex means hexyl and Ph means phenyl.

11
TABLE 1

## 10

$2\left(\mathrm{R}^{12}=\mathrm{H}\right)$
$\mathrm{S}\left(\mathrm{R}^{12}=\mathrm{Na}\right)$


|  | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | R ${ }^{4}$ | R ${ }^{5}$ | $\mathrm{R}^{6}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R |  |  | H | j.Pr | H | 15 |
| 6.0Me | $\stackrel{H}{H}$ | ${ }_{4-\mathrm{F}}^{4}$ | H | $\mathrm{i}_{-\mathrm{Pr}}$ | H |  |
| 6.0.Me | H | $4-\mathrm{F}$ | H | i-Pr | H |  |
| $6-\mathrm{Br}$ | ${ }^{\text {H }}$ | 4 | H | $\mathrm{i}-\mathrm{Pr}$ | H |  |
| 6 -Me | 8-Me | $4-\mathrm{F}$ | H | $\mathrm{i}_{\mathrm{H}} \mathrm{Pr}$ | H |  |
| 7.0.Me | 8-OMe H | ${ }_{2 \cdot}+\mathrm{F}$ | H | i-Pr | H | 20 |
|  |  |  | H | i-Pr | H |  |


$\mathrm{H} \quad \mathrm{H}$
H
 ention is preferably administered orally in the presen in the form of powders, granules, tablets or capsules formulated by mixing the compound of the present invention including a binder such as hydroxypropyl cellulose, 25 syrup, gum arabic, gelatin, sorbitol, tragacanth gum, polyvinyl pyrrolidone or $\mathrm{CMC}-\mathrm{Ca}$, an excipient such as polyvinyl pyrrolidone or lactose, sugar, corn starch, calcium phosphate, sorbitol, glycine or crystal cellulose powder, a lubricant such as glycine or crysium stearate, talk, polyethylene glycol or silica, 30 and a disintegrator such as potato starch. and a disintegrator
However, the pharmaceutical composition of the present invention is not limited to such oral administration and it is applicable for parenteral administration. For example, it may be administered in the form of e.g.
35 a suppository formulated by using oily base materia a suppository formulated bacao butter, polyethylene glycol, lanolin or fatry acid triglyceride, a transdermal therapeutic base formulated by using liquid parafin, white vaseline, a higher alcohol, Macrogol ointment, hydrophilic ointhigher alcohol, Mase material, an injection formula0 ment or hydro-gel base materal, an injection fore materials selected
tion formulated by using one or more met from the group consisting of polyethylene glycol, hy dro-gel base material, distilled water, distilled water fo injection and excipient such as lactose or corn starch, or 45 a formulation for administration through mucous mem-
branes such as ocular mucous membrane, a nasal branes such as an ocular mucous membrane, a
Further, the compounds of the present invention may be combined with basic ion-exchange resins which are capable of binding bile acids and yet not being absorbed in gastraintestinal tract.

The daily dose of the compound of the formula I is from 0.05 to 500 mg , preferably from 0.5 to 50 mg for an adult. It is administered from once to three times per 55 day. The dose may of course be varied depending upon the age, the weight or the condition of illness of the patient.
The compounds of the formulas II to VII are novel, and they are important intermediates for the prepara60 tion of the compounds of the formula I. Accordingly, the present invention relates also to the compounds of the formulas II to VII and the processes for their production

Now, the present invention will be described in fur65 ther detail with reference to Test Examples for the pharmacological activities of the compounds of the pharmacological activiren, their Preparation Examples and Forpresent invention, their Prepara, it should be understood
mulation Examples. However, it

Further, pharmaceutically acceptable salts such as potassium salts or esters such as ethyl esters or methyl esters of
manner.

The compounds of the present invention cxhibit high inhibitory activities against the cholesterol biosynthesis wherein HMG.COA reductase acts as a rate limiting enzyme, as shown by the test results given hereinafter, and thus are capable of suppressing or reducing the mount of cholesterol in blood as lipoprotein. Thus, the compounds of the present invention are useful as curing gents against hyperlipidemia, hyperlipoproteinemia and atheroscleosis.
They may be formulated into various suitable formulations depending upon the manner of the administration. The compounds of the present invention may be administered in the form of free acids or in the form of physiologically hydrolyzable and acceptable esters or lactones, or pharmaceutically acceptable salts.
The pharmaceutical composition of the present in ention is preferably administered orally in the form m of powders, granules, tablers or capsule invention ith a suitable pharmaceutically acceptable carr her alcohol, Macrogol ointmen, hydrophic oikl m the group consisting of polyethylene gled water fo

|  | H | $\pm \mathrm{Ph}$ | H | i-Pr |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | H H | $4-\mathrm{PhCH}$ | H | i-Pr | H |  |
| H | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | $4 . \mathrm{F}$ | H | c. Pr | H |  |
| $6 . \mathrm{Cl}$ | H | -F | H | $\mathrm{sec} \cdot \mathrm{Bu}$ | H |  |
| $\mathrm{COCH}_{2} \mathrm{Ph}$ | H | 1-F | H | i. Pr | H | 35 |
| H | H | 1 F | H | - C - Pu | H |  |
| H | H | $+\mathrm{F}$ | $\xrightarrow{\mathrm{H}}$ | c-Pent | H |  |
| 6.Cl | H | +F | H H |  | H |  |
| 6-Men N | H | $+F$ | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | ${ }_{\text {i }}^{\text {i.Pr }}$ - Pr | H |  |
| 6-Me | H | $4-\mathrm{F}$ | H | i. Pr | H |  |
| 6-i.Pr | H | +F | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | ${ }_{\text {c. }} \mathrm{Pr}$ | H | 40 |
| 7.Me | H | -F | H H | ${ }_{\text {c- }-\mathrm{Pr}}$ | H |  |
| 6-0. ${ }^{\text {c }}$ | H | $+\mathrm{F}$ | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | ${ }_{c}$ - Pr | H |  |
| $6-\mathrm{Br}$ | H | 4 F | H | $\mathrm{c}-\mathrm{Pr}_{\mathrm{T}}$ | H |  |
| $6 . \mathrm{i}-\mathrm{Pr}$ | $\stackrel{H}{4}$ | 4 F | H | $\mathrm{c}-\mathrm{Pr}$ | H |  |
| $6 . \mathrm{Cl}$ | $8 . \mathrm{Cl}$ | 4 F | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | $\stackrel{\text { i-Pr }}{ }$ | $\mathrm{B}-\mathrm{Br}$ |  |
| 5.5 | $6 \cdot \mathrm{Br}$ | $4-F$ | H H | $\stackrel{-1}{i-\mathrm{Pr}}$ | $8-\mathrm{me}$ | 4 |
| $6-\mathrm{OMe}$ | 7.0 Me | 4 F | H | ${ }_{i-\mathrm{Pr}}^{\text {i }}$ | 8.Me |  |
| 6 -Me | 7.3 Me | +F | H H | i-Pr | $8 . \mathrm{Cl}$ |  |
| $6-\mathrm{Cl}$ | ${ }^{7 . C l}$ | 4 F | H H | c - Bu | H |  |
| H | H | +F | H H | c-Hex | H |  |
| H | H | 4 F | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | i- Pr | H |  |
| 6.0.ife | 7.0 Me | H | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | ${ }_{i-\mathrm{Pr}}^{\mathrm{i}}$ | H |  |
| 6-0.19 | 7.0 Me | 4 Cl | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | ${ }_{\text {c. }}^{\text {Pr }}$ Pr | H |  |
| 6-OMc | 7.OMe | H | ${ }_{H}$ | ${ }_{c}^{\text {c. }} \cdot \mathrm{Pr}$ | H |  |
| 6-0Me | 7.0Me | $\stackrel{+}{4-\mathrm{Fl}}$ | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | c.Pr | H |  |
| 6-0Me | 7.0 Me | ${ }_{\text {H }}^{4}$ | $\stackrel{H}{H}$ | i-Pr | H |  |
| 6 -ive | H H | ${ }_{4}^{\mathrm{H}} \mathrm{Cl}$ | $\stackrel{H}{\mathrm{H}}$ | i-PT | H |  |
| 6.Me | H H | ${ }_{\mathrm{H}}$ | H | c. Pr | H |  |
| 6. Mc | H $H$ | ${ }_{4}$ | H | c. Pr | H |  |
| 6-Me | H H | 4 F | H | ${ }_{c} \cdot \mathrm{Pr}$ | H |  |
| $6 . \mathrm{Me}$ | H H | ${ }_{\mathrm{H}}$ | H | i. $\cdot \mathrm{Pr}$ | H |  |
| ${ }_{6 . C l}$ | H H | ${ }_{4}$ | H | i-Pr | H |  |
| ${ }_{6 . C l}$ | H H | ${ }_{\mathrm{H}}$ | H | c-Pr | H |  |
| ${ }_{6 .-\mathrm{Cl}}$ | H | 4 Cl | H | c.Pr | H |  |
| 6-Cl | H | 4 -F | H | c-Pr | ${ }_{\mathrm{H}}^{\mathrm{H}}$ |  |
| H | H | H | H | ${ }_{\text {i. }} \mathrm{Pr}$ | ${ }_{\mathrm{H}}^{\mathrm{H}}$ |  |
| H | H | ${ }_{4} \mathrm{Cl}$ | H | i. Pr c. Pr er | H |  |
| H | H | H | H | c. c-Pr Pr | H |  |
| H | H | $+\mathrm{Cl}$ |  | C-P- Pr | H |  |
| H | H | +F |  |  |  |  |

that the present invention is by no means restricted by such specific Examples.

## PHARMACOLOGICAL TEST EXAMPLES

Test A: Inhibition of cholesterol biosynthesis from acetate in vitro
Enzyme solution was prepared from liver of male Wistar rat billialy cannulated and discharged bile for over 24 hours. Liver was cut out at mid-dark and microsome and supernatant fraction which was precipitable with $40-80 \%$ of saturation of ammonium sulfate (sup fraction) were prepared from liver homogenate according to the modified method of Knauss et. al.; Kuroda, M., et. al., Biochim. Biophys. Acta, 489, 119 (1977). For assay of cholesterol biosynthesis, microsome ( 0.1 mg protein) and sup fraction ( 1.0 mg protein) were incubated for 2 hours at $37^{\circ} \mathrm{C}$. in $200 \mu$ of the reaction mixture containing ATP; 1 mM . Glutathione; 6 mM , Glucose-1-phosphate; 10 mM ; NAD; 0.25 mM , NADP; $0.25 \mathrm{mM}, \mathrm{COA}_{;} 0.04 \mathrm{mM}$ and 0.2 mM [2.15 C]sodium acetate ( $0.2 \mu \mathrm{Ci}$ ) with $4 \mu \mathrm{l}$ of test compound solution dissolved in water or dimethyl sulfoxide. To stop reaction and saponify, 1 ml of $15 \%$ EtOH-KOH was added to the reactions and heated at $75^{\circ} \mathrm{C}$. for 1 hour. Nonsaponifiable lipids were extracted with petroleum ether 25 and incorporated ${ }^{14} \mathrm{C}$ radioactivity was counted. Inhibitory activity of compounds was indicated with IC50.
Test B: Inhibition of cholesterol biosynthesis in culture cells
Hep G2 cells at over 5th passage were seeded to 12 well plates and incubated with Dulbecco's modified Eagle (DME) medium containing $10 \%$ of fetal bovine serum ( FBS ) at $37^{\circ} \mathrm{C}$.. $5 \% \mathrm{CO}_{2}$ until cells were conlluent for about 7 days. Cells were exposed to the DME 3 medium containing $5 \%$ of lipoprotein deficient serum (LpDS) prepared by ultracentrifugation method for over 24 hours. Medium was changed to 0.5 ml of fresh $5 \%$ IpDS containing DME before assay and $10 \mu$ of test compound solution dissolved in water or DMSO 4 were added. $0.2 \mu \mathrm{Ci}$ of $\left[2 .{ }^{14} \mathrm{C}\right]$ sodium acetate $(20 \mu \mathrm{l})$ was added at $0 \mathrm{hr}(\mathrm{B}-1)$ or $4 \mathrm{hrs}(\mathrm{B}-2)$ after addition of compounds. After 4 hrs further incubation with [2${ }^{14} \mathrm{C}$ ]sodium acetate, medium was removed and cells were washed with phosphate buffered saline(PBS) chilled at $4^{\circ} \mathrm{C}$. Cells were scraped with rubber policeman and collected to tubes with PBS and digested with 0.2 ml of 0.5 N KOH at $37^{\circ} \mathrm{C}$. Aliquot of digestion was used for protein analysis and remaining was saponified with 1 ml of $15 \% \mathrm{EtOH}-\mathrm{KOH}$ at $75^{\circ} \mathrm{C}$. for 1 hour. Nonsaponifiable lipids were extracted with petroleum ether and ${ }^{1+} \mathrm{C}$ radioactivity was counted. Counts were revised by cell protein and indicated with DPM/mg protein. Inhibitory activity of compounds was indicated with IC50.

Test C: Inhibition of cholesterol biosynthesis in vivo
Male Sprague-Dawley rats weighing about 150 g were fed normal Purina chow diet and water ad libitum, and exposed to 12 hours light/12 hours dark lighting 60 pattern (2:00 PM-2:00 AM dark) prior to use for in vivo inhibition test of cholesterol biosynthesis. Animals were separated groups consisting of five rats as to be average mean body weight in each groups. Test compounds at dosage of $0.02-0.2 \mathrm{mg} / \mathrm{kg}$ body weight $(0.4 \mathrm{ml} / 100 \mathrm{~g} 65$ body weight), were dissolved in water or suspended or in $0.5 \%$ methyl cellulose and orally administered at 2-3 hours before mid-dark (8:00 PM), while cholesterol
biosynthesis reaches to maximum in rats. As control, rats were orally administered only water or vehicle. At 90 minutes after sample administration, rats were injected intraperitoneally with $10 \mu \mathrm{Ci}$ of $[2-1+\mathrm{C}]$ sodium acetate at volume of 0.2 ml per one. 2 Hours later, blood samples were obtained and serum were separated immediately. Total lipids were extracted according to the method of Folch et al. and saponified with EtOH-KOH Nonsaponifiable lipids were extracted with petroleum ether and radio activity incorporated into nonsaponifiable lipids was counted.
Inhibitory activity was indicated as percent decrease of counts in testing groups (DPM/2 ml serum/2 hours) 5 from that in control group.

With respect to the compounds of the present invention, the inhibitory activities against the cholesterol biosynthesis in which HMG-CoA reductase serves as a rate limiting enzyme, were measured by the above Test 20 A and B. The results are shown in Tables, 2, 2-2, 3 and 3.2. Further, the results of the measurements by Test $C$ are also presented.

TABLE 2

| Inhibitory actuvities by Test A |  |
| :---: | :---: |
| Compound | I50 (molar concentration) |
| (Compounds of the present invention) |  |
| I. 13 | $1.25 \times 10^{-7}$ |
| I-51 | $1.0 \times 10^{-8}$ |
| I-52 | $7.1 \times 10^{-8}$ |
| I-53 | $1.9 \times 10^{-7}$ |
| (Reference |  |
| compounds) |  |
| Mevinolin | $1.4 \times 10^{-8}$ |
| CS-514 | $9.0 \times 10^{-9}$ |

In Table 2-2, the relative activities are shown based 40 on the activities of CS-514 being evaluated to be 1 .

-continued
(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenvi)-2'-(1"5 methylethyl)-quinolin-3'-yl]-hept-6-enoate (compound I-11) (prepared by steps of Example 1-a through

Example I-q)
EXAMPLE 1-a
10
Ethyl
$4(4 '$ fluorophenyl $)-2-(1$-methylethyl)-quinolin-3-ylcarboxylate (compound VII-1)
The synthesis was conducted in accordance with the method disclosed in J. Org. Chem., 2899 (1966)
$6.45 \mathrm{~g}(0.03 \mathrm{~mol})$ of 2-amino-4'fluorobenzophenone, $5.53 \mathrm{~g}(0.035 \mathrm{~mol})$ of ethyl isobutyrylacetate and 0.1 ml of conc. sulfuric acid were dissolved in 30 ml of glacial acetic acid, and the mixture was heated at $100^{\circ} \mathrm{C}$. for about 10 hours. After confirming the substantial disap20 pearance of 2 -amino- 4 -huorobenzophenone by thin layer chromatography, the reaction solution was cooled to room temperature, and a mixture of 45 ml of conc aqueous ammonia and 120 ml of water cooled with ice, was gradually added thereto. A separated oily sub5 stance was solidified when left to stand overnight in a refrigerator. This solid was recrystallized from a smal amount of ethanol to obtain $6.47 \mathrm{~g}(55 \%)$ of white pow der. Melting point: $68^{\circ}-70.5^{\circ} \mathrm{C}$.
30
In Table 3-2, the relative activities are shown based on the activities of CS-514 being evaluated to be 1 .

TABLE $3-2$

| TABLE 3-2 |  |
| :---: | :---: |
| Relative activities by Test B-1 |  |
| Compound | Relative activities |
| 1-116 | 19.4 |
| I.520 | 20.0 |
| II-20 | 30.8 |

Results of the measurement of the inhibitory activities by Test $C$

The percent decrease of counts after the oral administration of $0.05 \mathrm{mg} / \mathrm{kg}$ of compound 1.520 was $55 \%$ relative to the measured value of the control group. The percent decrease of counts after the oral administration of $10 \mathrm{mg} / \mathrm{kg}$ of CS- 514 was $55 \%$ under the same condition. The compounds of the present invention exhibited activities superior to the reference compound such as CS-514 or Mevinolin in Test A, and exhibited activities superior to CS-514 in Tests B and C.

## Test D : Acute toxicity

A. $0.5 \%$ CMC suspension of a test compound was orally administered to ICR male mice (group of three mice). The acute toxicity was determined based on the mortality after seven days. With compound 1-57, 1-58, 1-59, I-511, I-512. I-513, I-514, I-515, I-517 and 1-523 of the present invention, the mortality was $0 \%$ even when they were orally administered in an amount of 1000 $\mathrm{mg} / \mathrm{kg}$.

## EXAMPLE 1-b

4(4'-fluorophenyl)-3-hydroxymethyl-2-(1'-methyle-thyl)-quinoline (compound V1-1)
$5.4 \mathrm{~g}(0.016 \mathrm{~mol})$ of compound VII-1 was dissolved in 5 dry toluene under a nitrogen atmosphere and cooled in ice bath to $0^{\circ} \mathrm{C}$. To this solution, 40 ml of a 16 wit $\%$ diisobutylaluminium hydride-toluene solution was dropwise added, and the mixture was stirred at $0^{\circ} \mathrm{C}$. for two hours. After confirming the complete disappear0 ance of compound VII-1 by thin layer chromatography, a saturated ammonium chloride solution was added thereto at $0^{\circ} \mathrm{C}$. to terminate the reaction. Ethyl ether was added to the reaction mixture, and the organic layer was separated. A gelled product was dissolved by 5 an addition of an aqueous sodium hydroxide solution and extracted anew with ethyl ether. The ethyl ether extracts were put together, dried over anhydrous magnesium sulfate and filtered. The solvent was distilled off The residual oil underwent crystallization when left to 5 stand. It was recrystallized from ethyl acetate-n-hexane to obtain 3.3 g of white crystals. Yield: $70 \%$. Melting point: $136^{\circ}-137^{\circ} \mathrm{C}$.

## EXAMPLE I-c

4(4'-fluorophenyl)-2-(l'-methylethyl)quinolin-3-yl-carboxyaldehyde (compound V-1)
2.0 g ( 9.3 mmol ) of pyridinium chlorochromate and 0.4 g of anhydrous sodium acetate was suspended in 10 ml of dry dichloromethane. To this suspension, a solution obtained by dissolving Ig ( 3.4 mmol ) of compound VI-1 in 10 ml of dry dichloromethane, was immediately added at room temperature. The mixture was stirred for one hour. Then, 100 ml of ethyl ether was added, thereto, and the mixture was throughly mixed. The 5 reaction mixture was filtered under suction through a silica gel layer. The filtrate was dried under reduced pressure. The residue was dissolved in the isopropyl ether, and insoluble substances were.filtered off. The
fillerate was again dried under reduced pressure, and the residue was recrystallized from diisopropyl ether to obrain 0.7 g (Yield: $70 \%$ ) of slightly yellow prism crystals. Melting point: $124^{\circ}-126^{\circ} \mathrm{C}$.

## EXAMPLE 1-d

3-(3'-ethoxy-1'-hydroxy-2'-propenyl)-4-(4'-fluoro-phenyl)-2-(1'-methylethyl)-quinoline (compound IV-1)
1.13 g ( 3.13 mmol ) of cis-1-ethoxy-2-(tri-n-butylstannyl)ethylene was dissolved in 8 ml of dry tetrahydrofuran, and the solution was cooled to $-78^{\circ} \mathrm{C}$. in a nitrogen stream. To this solution, $2 \mathrm{ml}(3.2 \mathrm{mmol})$ of a 15 wt $\widetilde{C}_{c}$ n-buryllithium-n-hexane solution was dropwise added The mixture was stirred for 45 minutes. Then, a added. Tion prepared by dissolving $0.76 \mathrm{~g}(2.6 \mathrm{mmol})$ of 15 compound $\mathrm{V}-1$ in 10 ml of dry tetrahydrofuran was dropwise added thereto. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$. for two hours. Then, 2 ml of a saturated ammonium chloride solution was added thereto to terminate the reaction. The organic layer was extracted with diethyl ether, and the diethyl ether extract was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was separated with $n$-hexane and acetonitrile. The solvent was distilled off under reduced pressure from the acetonitrile layer, and an oily substance thereby obtained was purified by silica gel column chromatography (eluent: $2.5 \%$ methanol-chloroform) to obtain 0.91 g of the desired compound in a purified oily form.

H-M:NR $\quad\left(\mathrm{CDCl}_{3}\right) \quad \delta \mathrm{ppm}: \quad 1.1(\mathrm{t}, 3 \mathrm{H}, 7 \mathrm{~Hz})$ $1.37(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}) \quad 3.7(\mathrm{~m}, 1 \mathrm{H}) \quad 3.7(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ $4.75(\mathrm{t}, 1 \mathrm{H}, 7 \mathrm{~Hz}) 5.7(\mathrm{~m}, 1 \mathrm{H}) 5.95(\mathrm{~m}, 1 \mathrm{H}) 7.05-8.2(\mathrm{~m}, 8 \mathrm{H})$.

## EXAMPLE 1-e

(E)-3-[4'-(4"'fluorophenyl)-2'-(1"-methylethyl)-quino-lin- $3^{\prime}$-yl]propenaldehyde (compound III-1)
0.91 g of compound IV- 1 was dissolved in 20 ml of tetrahydrofuran, and 5 ml of water and 100 mg of p -toluenesulfonic acid were added thereto. The mixture was stirred at room temperature for 24 hours. The reaction solution was extracted with diethyl ether a few times. The extracts were washed with a sacurated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. Then, the solvent was distilled off. The residue was purified by silica gel column chromatography (eluent: chloroform) to obtain the desired product as white prism crystals. $0.4 \mathrm{~g}(50 \%)$. Melting point: $127^{\circ}-128^{\circ} \mathrm{C}$.

## EXAMPLE 1.f

Ethyl
(E)-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quino-lin-3'-yl]-5-hydroxy-3-oxohepto-6-enoate (compound II-1)
50 mg of $60 \%$ sodium hydride was washed with dry petroleum ether and dried under a nitrogen stream, and then suspended in 5 ml of dry tetrahydrofuran. The 60 suspension was cooled to $-15^{\circ} \mathrm{C}$. in a nitrogen atmosphere. Then, $120 \mathrm{mg}(0.92 \mathrm{mmol})$ of ethyl acetoacetate was dropwise added thereto, and the mixture was stirred for 15 minutes. Then, $0.6 \mathrm{ml}(0.92 \mathrm{mmol})$ of a 15 wt $\%$ n-butyllithium-n-hexane solution was dropwise added thereto, and the mixture was stirred for 30 min utes. Then, a solution prepared by dissolving 160 mg ( 0.5 mmol ) of compound III-1 in dry tetrahydrofuran,
was dropwise added thereto, and the mixture was stirred for one hour. To the reaction mixture, 1 ml of a saturated ammonium chloride aqueous solution was added at $-15^{\circ} \mathrm{C}$. Then, the mixture was extracted three times with diethyl ether. The diethyl ether solution was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. The solution was evaporated to dryness under reduced pressure. The residue was recrystallized from diisopropyl ether to obtain 130 mg (yield: $59 \%$ ) of white crystals Melting point: $99^{\circ}-101^{\circ} \mathrm{C}$.

## EXAMPLE $1-8$

## Ethyl

(E)-3,5-dihydroxy-7-[4'-(4"-Rluorophenyl)-2'-(1"-methylethyl)-quinolin- $3^{\prime}$-ylj-hept-6-enoate (compound I-11)
110 mg ( 0.245 mmol ) of compound II- 1 was dissolved 0 in 5 ml of ethanol in a nitrogen atmosphere, and the solution was cooled $0^{\circ} \mathrm{C}$. Then, $10 \mathrm{mg}(0.263 \mathrm{mmol})$ of sodium borohydride was added, and the mixturer was stirred for one hour. Then, 1 ml of a $10 \%$ hydrochloric acid aqueous solution was added thereto, and the mixture was extracted three times with ethyl ether. The ethyl ether solution was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. Then, the solution was evaporated to dryness under reduced pressure. The residual oil was purified by silica gel column chromatography (eluent: $5 \%$ methanol-chloroform) to obtain the desired product as a pure colorless oily substance. 70 mg (Yield: 6-4\%)
$\mathrm{H} \cdot \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 1.30(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})$ $3.0-3.9 \quad(\mathrm{~m}, 2 \mathrm{H}) \quad 3.50(\mathrm{~m}, 1 \mathrm{H}) \quad 3.9-4.6(\mathrm{~m}, 2 \mathrm{H})$ $4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=8 \quad \mathrm{~Hz}) \quad 5.35(\mathrm{~m}, \mathrm{lH}) \quad 6.59(\mathrm{~m}, 1 \mathrm{H})$ $7.10-8.18(\mathrm{~m}, 8 \mathrm{H})$.

## EXAMPLE 2

## Sodium salt of

(E)-3,5-dihydroxy-7.[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin- $3^{\prime}$-yl]-hept-6-enoic acid (compound I-51) reduced pressure. Then, 5 ml of water was added thereto, and the mixture was extracted with ethyl ether. The aqueous layer was freeze-dried to obtain 40 mg ( $67 \%$ ) of hygroscopic white powder. Melting point: 207*-209* C. (decomposed).

EXAMPLE 3
(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid (compound I-21)
110 mg ( 0.244 mmol ) of compound I-11 was dissolved in 10 ml of ethanol. Then, 0.79 ml of a 0.5 N sodium hydroxide aqueous solution was dropwise added thereto. The mixture was stirred at room lemperature 65 for further one hour, and ethanol was distililed off under reduced pressure. Then, 10 ml of water was added thereto, and the mixture was extracted with ethyl ether. The aqueous layer was weakly acidified ( pH 4 ) with a

19
dilute hydrochloric aqueous solution and extracted hree rimes with ethyl ether. The ethyl ether layers were put together and dried over anhydrous magnesium sulfate. Then, the solvent was distilled off under stum sulfat. Then, obtain 90 mg of slightly yellow oily reduced
substance.
$\mathrm{H}-\mathrm{MiR}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 1.36(\mathrm{~d} .6 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz})$ $2.4(\mathrm{~m} .2 \mathrm{H}) \quad 3.5(\mathrm{~m}, 1 \quad \mathrm{H}) \quad 3.45(\mathrm{~m}, 1 \mathrm{H}) \quad 3.8-4.6(\mathrm{~m}, 2 \mathrm{H})$ $5.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=19 \mathrm{~Hz}, \mathrm{~J}=8 \mathrm{~Hz}\right) 6.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=19 \mathrm{~Hz}) 10$ $7.0-8.3(\mathrm{~m}, 8 \mathrm{H})$

## EXAMPLE 4

(E)-6-[4'-(4'- fluorophenyl)-2'-(I' ${ }^{\prime \prime}$-methylethyl)quino-lin-3'-ylethenyl]-4hydroxy-3,4,5,6-cetrahydro-2H. pyran-2-one (compound I-31)
90 mg of compound $\mathrm{I}-21$ was dissolved in 10 ml of dry toluene, and the solution was refluxed under heating for 3 hours by means of a Dean Stark apparatus. 20 Toluene was distilled off under reduced pressure, and the residual solid was recrystallized from diisopropyl ether to obtain 40 mg of colorless prism crystals. Melting point: $182^{\circ}-184^{\circ} \mathrm{C}$.

By silica gel thin chromatography, the product gave 25
wo absorption spots close to each other attributable to the diastereomers. (Developping solvent: $3 \%$ merhanolchloroform)
These diasteromers were separated and isolated by 30 silica gel thin layer chromatography. [Developping solvent: t -BuOMe/hexane/acetone $=7 / 2 / 1 \quad(\mathrm{~V} / \mathrm{v})$, $\mathrm{Rf}=0.6$ and 0.7 (obtained weight ratio: $1 / 2$ )]
$\mathrm{Rf}=0.7$ : trans lactone
H.NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ ppm: $1.40(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}) 35$
$1.6(\mathrm{~m} .2 \mathrm{H}) \cdot \quad 2.65(\mathrm{~m}, 2 \mathrm{H}) \quad 3.48(\mathrm{~m}, 1 \mathrm{H}) \quad 4.20(\mathrm{~m} .1 \mathrm{H})$
$5.15(\mathrm{~m}, 1 \mathrm{H}) \quad 5.37\left(\mathrm{dd} .1 \mathrm{H}, \mathrm{J}_{1}=18 \quad \mathrm{~Hz}, \mathrm{~J}_{2}=7 \quad \mathrm{~Hz}\right)$
$6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=19 \mathrm{~Hz}) 7.1-8.2(\mathrm{~m}, 8 \mathrm{H})$.
$\mathrm{Rf}=0.6$ : cis lactone
$\mathrm{H} \cdot \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ ppm: $1.40(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$
$.6(\mathrm{~m}, 2 \mathrm{H}) \quad 2.65(\mathrm{~m}, 2 \mathrm{H}) \quad 3.48(\mathrm{~m}, 1 \mathrm{H}) \quad 4.20(\mathrm{~m}, 1 \mathrm{H})$
$4.65(\mathrm{~m}, 1 \mathrm{H}) 5.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=18 \mathrm{~Hz}, \mathrm{~J}_{2}=7 \mathrm{~Hz}\right) 6.66(\mathrm{~m}, 1 \mathrm{H})$ $7.0-8.2(\mathrm{~m}, 8 \mathrm{H})$.

## EXAMPLE 5

6-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)quinolin-3'-ylethynyil]-hydroxy-3,4,5,6-tetrahydro- 2 H -pyran-2-one (compound I-41)
20 mg of a mixture of diastereomers of compound I-31 was dissolved in 5 ml of ethanol, and 10 mg of $5 \%$ palladium-carbon was added thereto. The mixture was stirred under a hydrogen atmosphere. After confirming the disappearance of the starting substance and the the disappeaf a new spot by thin layer chromatography, the palladium-carbon was filtered off, and ethanol whas distilled off to obtain colorless oil.
This oil was purified by preparative thin layer chromatography to obrain 16 mg of the desired product as pure colorless oil.
$\mathrm{MS}(\mathrm{m} / \mathrm{e}): 408(\mathrm{M}+\div \mathrm{H}), 407(\mathrm{M} \div), 366,292,278$
In the same manner as in Example 1-2, compounds VII-2 to VII-27 were prepared. The physical proper- 6 ties of these compounds are shown in Table 4. (In the Table, $R^{1}, R^{2}, R^{3}, R^{4}, R^{5}$ and $R^{21}$ correspond to the substitients of compound VII.)

20






VII-13
$\mathrm{H} \cdot \mathrm{-iMR}\left(\mathrm{in} C \mathrm{CDCl}_{3}\right) \delta$ ppmi: $0.97(1.3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}) .1 .43(\mathrm{~d} .6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$


vil.21. H.NMR (in CDCly) 6 ppa: 1.03 (t. $3 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz}), 1.41$ (d. 6 H
le. $1 \mathrm{H} . \mathrm{J}=6 \mathrm{~Hz}$ ), $4.0 \mathrm{~S}(\mathrm{q} .2 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz}$ ). $6.8-8.1$ (m. 1 JH )
 $\mathrm{H} \cdot \mathrm{NMR}(\mathrm{inc}$
$\mathrm{J}=7 \mathrm{~Hz}$ ) $3.51(\mathrm{n}, 3 \mathrm{H}, 6.8-8.1(\mathrm{ra}, 8 \mathrm{H})$

In the same manner as in Example l-b, compounds VI-2 to VI-27 were prepared. (In Table $5, R^{\prime}, R^{2}, R^{3}$, $\mathrm{R}^{4}$ and $\mathrm{R}^{5}$ correspond to the substituents in compound VI.)


TABLE 6-concinued

|  |  |  |  |  |  |  |  |  |  | ABLE | $6 \cdot \mathrm{co}$ | nued |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BLEE 5 | contin are com |  | ds of the |  |  |  | ompounds formula | in this $T$ | دole are | ompo | ds of the $\text { n. } 1$ |  |
|  | $\begin{aligned} & \text { mpounds } \\ & \text { iormula } \end{aligned}$ | V wherei | in $R^{0}$ is $h$ | drose | n.) |  |  |  |  |  |  |  |  |  |
|  |  |  | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | $R^{5}$ | $\begin{aligned} & \text { m. p. } \\ & \left({ }^{\circ} \mathrm{c} .\right) \end{aligned}$ | 5 | Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{1}$ | $\mathrm{R}^{5}$ | ( $\left.{ }^{\circ} \mathrm{C}.\right)$ |
| Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | R |  |  |  |  |  |  |  |  |  | 108.1 |
| VIS | H | H | H | H | i. Pr | $\begin{aligned} & 130-. \\ & 130.5 \end{aligned}$ |  | V.15 | H | H | 3-Me | S-Me | i. $\cdot \mathrm{Pr}$ | ${ }_{122.8}^{122.8}$ |
| VI.S | $6-\mathrm{Cl}$ | H | H | H | $\mathrm{CH}_{3}$ | $139-141$ |  | V. 16 | 6.OMe | 7-0Me | 4F | H | i-Pr | 168.4- |
| V1.6 | $6-\mathrm{Cl}$ | H | H | $\xrightarrow{H}$ | i. Pr |  |  | V-16 | 6.0 M |  |  |  |  | 165.2 |
| VI-7 | H | H | $2 \cdot F$ | H | i-Pr | $\begin{aligned} & 1+0.5- \\ & 1+2.0 \end{aligned}$ | 10 | - V. 17 | H | H | $4-\mathrm{F}$ | H | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $\begin{aligned} & 143.1- \\ & 144.2 \end{aligned}$ |
| VI. 8 | 7-Me | H | H | H | $\mathrm{i} \cdot \mathrm{Pr}$ | $\begin{aligned} & 155.0- \\ & 157.0 \end{aligned}$ |  | V-18 | H | H | 4F | H | $n-\mathrm{Pr}$ | $\begin{aligned} & 150.2- \\ & 155.3 \end{aligned}$ |
| VI-9 | H | H | 4 Cl | H | i. $\cdot \mathrm{Pr}$ | $\begin{aligned} & 192.0- \\ & 195.0 \end{aligned}$ |  | V-19 | $6-\mathrm{Cl}$ | H | 4-F. | H | i-Pr | $\begin{aligned} & 16+.5- \\ & 165.3 \end{aligned}$ |
| V1.10 | H | H | 4-OMe | H | i.Pr | $\begin{aligned} & 186.0- \\ & 188.5 \end{aligned}$ | 15 | V-20 | H | H | 4F | H | c.Pr | $\begin{aligned} & \text { 150.1- } \\ & 151.6 \end{aligned}$ |
| VI-11 | H | H | 4-Me | H | i.Pr | $\begin{aligned} & 161.0- \\ & 16+.0 \end{aligned}$ |  | V-21 | H | H | 40Ph | H | i-Pr | $\begin{aligned} & 106.9- \\ & 107.7 \end{aligned}$ |
| V1.12 | $6-\mathrm{Cl}$ | H | $2 . \mathrm{Cl}$ | H | i-Ps | $\begin{aligned} & 122.0- \\ & 124.0 \end{aligned}$ |  | V.2? | 6.Cl | $8 . \mathrm{Cl}$ | 4F | H | i.Pr | $135.0$ $\begin{aligned} & 135.0-135.7 \end{aligned}$ |
| VI-13 | $\cdots$ | H | $4 \mathrm{CF}_{3}$ | H | i. Pr | $\begin{aligned} & 183.0- \\ & 186.0 \end{aligned}$ | 20 | V-23 | $6-\mathrm{Cl}$ | H | H | H | Ph | $\begin{aligned} & 174.8- \\ & 175.3 \end{aligned}$ |
| VI-14 | H | H | 3.Me | 4-F | i-Ps | $\begin{aligned} & 161.0- \\ & 162.5 \end{aligned}$ |  | V-24 | $6 . \mathrm{Cl}$ | H | H | H | c. Pr | 157.5- $158.0$ |
| VI.15 | H | H | 3-Me | 5-31e | i-Pr | $\begin{aligned} & 137.0- \\ & 138.0 \end{aligned}$ |  | V-25 | H | H | 4-F | H | $\mathrm{sec}-\mathrm{Bu}$ | $\begin{aligned} & 125.0- \\ & 126.5 \end{aligned}$ |
| VI-16 | 6.Me | 7.0Me | 4F | H | i-Pr | $\begin{aligned} & 164.0- \\ & 165.0 \end{aligned}$ | 25 | V-26 | 6-Me | H | 4 F | H | i-Pr | $\begin{aligned} & 155.0 \\ & 157.0 \end{aligned}$ |
| V'1.17 | H | H | $4-\mathrm{F}$ | H | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $\begin{aligned} & 141.5- \\ & 1+3.5 \end{aligned}$ |  | V. 27 | 6.OMe | 7-0Me | 4-F | H | c.Pr | $\begin{aligned} & 200.0- \\ & 200.5 \end{aligned}$ |
| V1-18 | H | H | $4 . \mathrm{F}$ | H | $n \cdot \mathrm{Pr}$ | $\begin{aligned} & 146.5- \\ & 1+8.5 \end{aligned}$ |  |  |  |  |  |  |  |  |
| V1-19 | $6 . \mathrm{Cl}$ | H | 4-F | H | i-Pr | $\begin{aligned} & 171.0- \\ & 172.0 \end{aligned}$ | 30 | In the | same ma | anner | as in E | xam | 1-d, | compounds |
| \I. 20 | H | H | 4.F | H | ${ }_{\text {c. }} \cdot \mathrm{Pr}$ | $120-126$ |  | IV-2 to I | V-6 wer | prepa | ared. ( | Tab | 7, ${ }^{1}$ | $\mathrm{R}^{2}, \mathrm{R}, \mathrm{R}^{4}$ |
| V1.21 | H | H | +OPh | H | i.Pr | $\begin{aligned} & 153.0- \\ & 154.0 \end{aligned}$ |  | and $\mathrm{R}^{5} \mathrm{c}$ | respon | nd to the | subst |  | com | ound (V.) |
| Y1.22 | $6 . \mathrm{Cl}$ | $8 . \mathrm{Cl}$ | +-F | H | ${ }^{\text {i.Pr }}$ | 98.5-103 |  |  |  |  |  |  |  |  |
| V1.23 | $8-\mathrm{Cl}$ | H | H | H | Ph | ${ }_{172.5}^{17.5}$ |  |  |  |  | ABLE |  |  |  |
| V1-24 | $6 . \mathrm{Cl}$ | H | H | H | c.Pt | $172.0-$ 860 | 35 |  | Compound | nds in this | Table herein | com ${ }^{6}$ is hud | unds of ren.) |  |
|  |  |  |  |  |  |  |  |  |  | $\mathrm{R}^{1}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | R | m. p. (*C.) |
| V1.25 | H | H | 4.7 | H | sec.bu | $\begin{array}{ll} 4 \\ \\ & 1219.0- \end{array}$ |  | Compou | n $\mathrm{R}^{\text {r }}$ | $\mathrm{R}^{2}$ |  |  |  |  |
|  |  | H | 4-F | H | i-Pr | 160.0- |  | [ v - 2 | H | H | 4.F | H | $\mathrm{CH}_{3}$ | 77-17 |
| 11-20 | 6.tie | H |  |  |  | 161.5 | 40 | 1V-3 | $\xrightarrow{H}$ | H H | H H | H H | $\stackrel{\mathrm{i}-\mathrm{Pr}}{ }$ | 三 |
| VI-27 | 6.0Mc | 7.096 | 4-F | H | c.Pr | $162.0-$ 163.0 | 40 | . IV.5 | 6-C | Cl H | H | H | $\mathrm{CH}_{3}$ | - |
|  |  |  |  |  |  |  |  | IV. 6 | $6-\mathrm{C}$ | Cl | H | H | i-Pr | - |

In the same manner as in Example 1-c, compounds $V-2$ to $V-27$ were prepared. (In Table $6, R^{1}, R^{2}, R^{3}, R^{4}$ and $R^{5}$ correspond to the substituents of compound of V.)

TABLE 6

| (Compounds in this Table are compounds of the formula $V$ wherein $R^{6}$ is hydrozen.) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | $\mathrm{R}^{5}$ | $\begin{aligned} & \text { m. p. } \\ & \text { ('C. } \left.^{2}\right) \end{aligned}$ |
| V-2 | H | H | p -F | H | $\mathrm{CH}_{3}$ | 125-173 |
| $V \cdot 3$ | H | H | H | H | $\mathrm{CH}_{3}$ | 143-146 |
| V- | H | H | H | H | i. Pr | 92-93 |
| $V \cdot 5$ | $6-\mathrm{Cl}$ | H | H | H | $\mathrm{CH}_{3}$ | 220-222 |
| V. 6 | $6-\mathrm{Cl}$ | H | H | H | ${ }^{\text {i.-Pr }}$ | $140-140.5$ |
| V. 7 | H | H | 2-F | H | $\mathrm{i} \cdot \mathrm{Pr}$ | $\begin{aligned} & 121.5-5 \\ & 124.0 \end{aligned}$ |
| V. 8 | 7.Me | H | H | H | i. Pr | 105.1- |
| V.9 | H | H | $+\mathrm{Cl}$ | H | i-Pr | 147.0- |
| V.9 |  |  |  |  |  | 147.8 |
| V. 10 | H | H | 4.OMe | H | i. $\cdot \mathrm{Pr}$ | 135.6 |
|  | H | H | 4.Me | H | i-Pr | 119.4- |
| V.11 | H |  |  |  |  | 120.4 |
| V-12 | $6 . \mathrm{Cl}$ | H | $2 . \mathrm{Cl}$ | H | i-Pr | 105.8- |
|  |  |  |  |  |  |  |
| Y. 13 | H | H | $4 \mathrm{CFF}_{3}$ | H | $\mathrm{i} \cdot \mathrm{Pr}$ | 163.7- |
|  | H | H | 3.34 | 4.5 | i. Pr | 161.1- |

In the same manner as in Example l-e, compounds III-2 to III-27 were prepared. (In Table 8, $R^{1}, R^{2}, R^{3}$, $R^{4}$ and $R^{3}$ correspond to the substituents of compound III.)

TABLE 8

| (Compounds in this Table are compounds of the formula III wherein $R^{6}$ is hydrogen.) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cempound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | $\mathrm{R}^{5}$ | $\begin{aligned} & \text { m. p. } \\ & \left({ }^{\prime \prime} \mathrm{C} .\right) \end{aligned}$ |
| III-2 | H | H | +F | H | $\mathrm{CH}_{3}$ | 194-196 |
| III-3 | H | H | H | H | $\mathrm{CH}_{3}$ | $\begin{aligned} & 170- \\ & 171.5 \end{aligned}$ |
| III $\rightarrow$ | H | H | H | H | i-Pr | $\begin{aligned} & 107- \\ & 108.5 \end{aligned}$ |
| II1-5 | $6-\mathrm{Cl}$ | H | H | H | $\mathrm{CH}_{3}$ | 192-194 |
| [1]-6 | $6-\mathrm{Cl}$ | H | H | H | i-Pr | ${ }_{125}^{125.5-}$ |
| III-7 | H | H | 2-F | H | $\mathrm{i}-\mathrm{Pr}$ | $\begin{aligned} & 80.1- \\ & 80.2 \end{aligned}$ |
| III-8 | 7-Me | H | H | H | j-Pr | $\begin{aligned} & 121.1- \\ & 122.3 \end{aligned}$ |
| III.9 | H | H | 4 Cl | H | i.Pr | $\begin{aligned} & 148.0- \\ & 149.1 \end{aligned}$ |
| III. 10 | H | H | 40 Me | H | i. $\cdot \mathrm{Pr}$ | $\begin{aligned} & 137.4- \\ & 1+0.1 \end{aligned}$ |
| 111.11 | H | H | thime | H | i-Pr | $\begin{aligned} & 111.6- \\ & 113: 1 \end{aligned}$ |
| III.12 | $6 . \mathrm{Cl}$ |  | $2 \cdot \mathrm{Cl}$ | H | i-Pr | 83.8- |

TABLE 8-continued

| Compound | (Compounds in this Table are compounds of the formuia III wherein $R^{0}$ is hydrocen.) |  |  |  |  |  | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R}^{\prime}$ | R2 | $R^{3}$ | $R^{4}$ | R | $\begin{aligned} & \text { m. } p . \\ & \left({ }^{\circ} \mathrm{c} .\right) \end{aligned}$ |  |
| 111.13 | H | H | -CF3 | H | i-Pr | $\begin{aligned} & 84.5 \\ & 126.2- \\ & 123.8 \end{aligned}$ |  |
| [11-14 | H | H | 3-Me | 4-F | j-Pr | $\begin{aligned} & 124.8- \\ & 126.4 \end{aligned}$ | 10 |
| 115-15 | H | H | 3-Me | S.Me | i-Pr | $\begin{aligned} & 117.6- \\ & 120.3 \end{aligned}$ |  |
| 1II-16 | 6-0.Me | 7-0Me | 4 F | H | i-PT | $\begin{aligned} & 1+7.8- \\ & 150.9 \end{aligned}$ |  |
| H1-17 | H | H | $4-\mathrm{F}$ | H | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $\begin{aligned} & 124,3- \\ & 128.5 \end{aligned}$ | 15 |
| [11-18 | H | H | +F | H | $n-P_{5}$ | $\begin{aligned} & 1117.8- \\ & 121.5 \end{aligned}$ |  |
| III-19 | $6 . \mathrm{Cl}$ | H | 4 F | H. | i-PT | $\begin{aligned} & 135.2- \\ & 135.9 \end{aligned}$ |  |
| 111-20 | H | H | 4-F | H | c-Pr | $\begin{aligned} & 1+1.3- \\ & i+4.1 \end{aligned}$ |  |
| 1II-21 | H | H | +OPh | $\stackrel{H}{4}$ | ${ }_{i-\mathrm{Pr}}^{\mathrm{i}} \mathrm{Pr}$ |  | 20 |
| 111-22 | $6 . \mathrm{Cl}$ | $8-\mathrm{Cl}$ | +F | H |  |  |  |
| III-33 | $6 . \mathrm{Cl}$ | H | H | H | Ph | $\begin{aligned} & 1+2.8- \\ & 1+4.3 \end{aligned}$ |  |
| III-24 | $6 . \mathrm{Cl}$ | H | H | H | c-Pr | $\begin{aligned} & 161.0- \\ & 161.5 \end{aligned}$ | 25 |
| 111-25 | H | H | +F | H | sec.Bu | $\begin{aligned} & 78.0- \\ & 81.0 \end{aligned}$ |  |
| 111-26 | 6-Me | H | +F | H | j.pr | $\begin{aligned} & 137.0- \\ & 137.5 \end{aligned}$ |  |
| !11-27 | 6.0.Me | 7-0Me | $4-\mathrm{F}$ | H | c. Pr | $\begin{aligned} & 189.5- \\ & 191.0 \end{aligned}$ | 30 |

 $\mathrm{dd} \mathrm{IH}, \mathrm{J}=\mathrm{jHz}, j=16 \mathrm{~Hz}), 6.8-8.1(\mathrm{~m}, \mathrm{l} \mathrm{H}) \mathrm{g}, \mathrm{j} 4(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz})$

In the same manner as in Example 1-f, compounds I. 2 to II-27 were prepared. (In Table 9, R1, R2, R3, R ${ }^{4}$ and $R^{5}$ correspond to the substituents of compound II.)

TABLE 9

| Compound | (Compounds in this Table are compounds of the formula II wherein $\mathrm{R}^{6}$ is hydrogen.) $\qquad$ |  |  |  |  |  | $\begin{aligned} & \text { m. p. } \\ & \left({ }^{(c \mathrm{c} .)}\right. \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | $\mathrm{R}^{5}$ | $\mathrm{R}^{12}$ |  |
| 11.2 | H | H | p.F | H | $\mathrm{CH}_{3}$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ |  |
| 11-3 | H | H | H | H | $\mathrm{CH}_{3}$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 105- |
| [1-4 | H | H | H | H | ${ }_{i} \cdot \mathrm{Pr}$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 88.5- |
|  |  | H | H | H | $\mathrm{CH}_{3}$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 77-82 |
| 11.5 | 6.Cl | ${ }_{\mathrm{H}}$ | H | H | i-Pr | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 96-98 |
| 11.7 | H. | H | $2 \cdot \mathrm{~F}$ | H | $i-\mathrm{Pr}$ | $\mathrm{C}_{2} \mathrm{H}_{3}$ | oil |
| 11.8 | 7-Me | H | H | H | i-Pr | $\mathrm{C}_{2} \mathrm{H}_{3}$ | $\begin{aligned} & 68.5- \\ & 74.0 \end{aligned}$ |
| 11-9 | H | H | $+\mathrm{Cl}$ | H | i-Pr | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $0-$ |
| I1. 10 | H | H | 4-0.Me | H | i-Pr | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 78. |
|  |  |  |  |  |  |  | 78.5 |
| II-11 | H | H | 40Me | H | i. Pr | $\mathrm{C}_{2} \mathrm{H} 5$ | 75.0- |
|  |  |  | $2-C 1$ | H | i.Pr | $\mathrm{C}_{2} \mathrm{H}_{5}$ | oil |
| 11-13 | H | H | $4-\mathrm{CF}_{3}$ | H | $\mathrm{j}-\mathrm{Pr}$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 78.0- |
|  |  |  |  |  |  |  | 83.0 |
| II-14 | H | H | 3-Mse | 4-F | i.Ps | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $66.0$ |
|  | H | H | 3-Me | s-Me | i- Pr | $\mathrm{C}_{2} \mathrm{H}_{5}$ |  |
| 11.16 | 6 | 7. | 4 F | H | i-P: | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 83.00 |
| 13.16 | OMe | OMe |  |  |  |  | 90.0 |
| [1-17 | H | H | -F | H | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 94.0- |
|  |  | H | 4 F | H | $n \cdot \mathrm{Pr}$ | $\mathrm{C}_{2} \mathrm{H} 5$ |  |
| 11.19 | $6-\mathrm{Cl}$ | H | +F | H | $\mathrm{i}-\mathrm{Pr}$ | $\mathrm{C}_{2} \mathrm{H}_{3}$ | S 111.0 |
|  |  |  |  |  |  |  | 113.5 |
| II-20 | H | H | 4 F | H | c.Pr | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 5 $91.0-$ |

24
TABLE 9-continued


 $\left.J=6 H_{2}\right), 4.3$,
$J=10 \mathrm{~Hz}$,
$70-7,6(m, ~$
${ }_{7.0-7.6(\mathrm{~m} . \epsilon \mathrm{H})}$
 H.N. $3.2 \mathrm{~s}(\mathrm{~s}, 2 \mathrm{H}) 4.09(4,2 \mathrm{H} \mathrm{J}=7 \mathrm{~Hz}) .4 .1-4 \mathrm{fm}$. iH ) $\leq .08$ (dd. $1 \mathrm{H} . \mathrm{J}=6 \mathrm{~Hz}$ $5 \mathrm{~J}=16 \mathrm{~Hz}, 6.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz}), 7.0-3.0(\mathrm{~m} .13 \mathrm{H})$
If-2s
H.NMR (in CDC(1) 5 ppm: $0.96(\mathrm{~d} .6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) .1 .26(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.8-24(\mathrm{~m}$.
 $1 \mathrm{H} \cdot 26$
40 H-NMR (in CDCly) 6 ppm: $1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.32(\mathrm{~d} .6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}) 2.32(\mathrm{~s} .3 \mathrm{H})$
 $4.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.3-1.7(\mathrm{~m} . \mathrm{HH}), 5.0-5.2(\mathrm{~m} .1 \mathrm{H}), 6.3-6.7(\mathrm{~m}, 1 \mathrm{H}), 6.8-7.9(\mathrm{~m}$
$\mathrm{TH})$ $7 \mathrm{H})$
$11 \cdots 7$
 3.42 (s. 2 H$) .3 .71(14 \mathrm{H}) .4 .00(\mathrm{~s}, 3 \mathrm{H}) .4 .20(\mathrm{q} .2 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz}), 4.4 .8(\mathrm{~m}, 1 \mathrm{H})$

In the same manner as in Example 1-g, compounds I-12 to I-127 were prepared.

TABLE 10
50

55




27 5,011,930

27
(

15
20
25
 (decom-
posed)

I-57 H $\quad \mathrm{H} \quad 2-\mathrm{F} \quad \mathrm{H} \quad \mathrm{i}-\mathrm{Ft} \quad \mathrm{Na}$| $193-20$ |
| :---: |
| (decom |
| posed) |

| I-98 | 7-Me | H | H | H | $i_{i-P r}$ | Na | $170-175$ (decom- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1.59 $\mathrm{H} \quad \mathrm{H} \quad 4 \mathrm{Cl} \quad \mathrm{H} \quad \mathrm{i}-\mathrm{Pr} \quad \mathrm{Nia}$| 193-202 |
| :--- |
| (cecom- |
| posed) |

| 1.510 | H | H | 4-OMe | H | $\mathrm{i}-\mathrm{Pr}$ | Ni | in8-193 <br> (decom- |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| insed) |  |  |  |  |  |  |  |

(derom-
posed)
187-200
(decom-
(decom-
203-209
203-209
(decom-
posed)

$200-212$
(decom posed)
$195-200$

| 1-514 | H | H | 3-Mc | +F | $\mathrm{i}-\mathrm{Pr}$ | Na | $195-200$ (decomr- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 |  |  |  |  |  |  | posed) |
| 1.515 | H | H | 3-Me | 5-Me | i-Pr | Na | 192-197 | 192-197

(decom-(decom-
posed)

$40 \mathrm{I}-516$ 6-OMe $7.0 \mathrm{Me}+\mathrm{F} \quad \mathrm{H} \quad \mathrm{i} \cdot \mathrm{Pr} \quad \mathrm{Na}$| posed) |
| :--- |
| $239-243$ |
| (decom- |
| posed) |


| $\mathrm{I}-517$ | H | H | 4 F | H | $\mathrm{C}_{2} \mathrm{H}_{3}$ | Ni 3 | posed) <br> $230-237$ <br> (decom- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{llllllll}1.519 & 6-C l & H & 4 \mathrm{~F} & \mathrm{H} & \mathrm{i} \cdot \mathrm{Pr} . & \mathrm{Na} & \begin{array}{l}193-199 \\ \text { (decom- }\end{array} \\ 1.520 & \mathrm{H} & \mathrm{H} & 4 \mathrm{~F} & \mathrm{H} & \text { e.Pr } & \mathrm{Na} & \begin{array}{l}\text { posed) } \\ 197-199\end{array}\end{array}$
 (decom-
posed)

| 1-522 | $6-\mathrm{Cl}$ | $8-\mathrm{Cl}$ | 4F | H | $\mathrm{i} \cdot \mathrm{Pr}$ | Na | $\begin{aligned} & \text { posed) } \\ & \text { 183-187 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

In the same manner as in Example 2, compounds 1-52
to 1.527 were prepared.

J-53

TABLE 1-continued
$6 .-6.7(\mathrm{~m}, 1 \mathrm{H} .7 .3-5.6(\mathrm{~m} .1 \mathrm{H})$ H.XMR(in DMSO- $\mathrm{d}^{\circ}$ ) $\delta \mathrm{pFm}$ : $0.9-\mathrm{t} .2(\mathrm{~m} .2 \mathrm{H}) .1 .31(\mathrm{~d} .6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ $1.7-2.2(\mathrm{~m} .2 \mathrm{H}) .2 .50(\mathrm{~s}, 3 \mathrm{H})$ 3.3-6.6(m. m H), 5.2-5. $6(\mathrm{~m}, 1 \mathrm{H})$ $6.3-6.6(\mathrm{~m} .1 \mathrm{H}), 7.1-7.9(\mathrm{~m}, \delta \mathrm{H})$
$\mathrm{H}-\mathrm{MR}\left(\mathrm{in}\right.$ DMSO- $\left.\mathrm{d}^{6}\right) \delta \mathrm{ppm}:$ H-M
$0.1 .3(\mathrm{~m} .2 \mathrm{H}), 1.33(\mathrm{~d}, 6 \mathrm{H}, \mathrm{j}=7 \mathrm{~Hz})$ $1.6-2.2(\mathrm{~m}, 2 \mathrm{H}) .3 .18(\mathrm{Heptaplet} .1 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz})$ $3.5 \rightarrow .6(\mathrm{~m}, 4 \mathrm{H}), 5.2-5.6(\mathrm{~m}, 2 \mathrm{H})$ $6.3-6.6(\mathrm{~m}, \mathrm{IH}), 7.1-8.1(\mathrm{~m}, 8 \mathrm{H})$ H-NMR(in DMSO-d ${ }^{6}$ ) 8 ppm: $1.0-1.3(\mathrm{~m}, 2 \mathrm{H}) .1 .32(\mathrm{~d} .6 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz})$ $1.6-2.2(\mathrm{~m}, 2 \mathrm{H}) .3 .0-3.8(\mathrm{~m} .4 \mathrm{H})$ $3.86(5.3 \mathrm{H}) .+.0-4.3(\mathrm{~m} .1 \mathrm{H})$ $5.3-5.6(\mathrm{~m}, 1 \mathrm{H}) .6 .3-6.6(\mathrm{~m}, 1 \mathrm{H})$ 6.9-8.1(m. 8H)

H-NMR(in DMSO-d ${ }^{6}$ ) $\delta$ ppm:
$0.9-1.3(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ 1.7-2.1(m, 2 H$) .2 .41(\mathrm{~s}, 3 \mathrm{H})$ $3.2-3(\mathrm{~m}, \mathrm{sH}), 5.3-5.6(\mathrm{~m}, 1 \mathrm{H})$ $6.3-6.6(\mathrm{~m} .1 \mathrm{H}) .7 .0-8.3(\mathrm{~m} .8 \mathrm{H})$ $0.9-13(\mathrm{TH}) 133(\mathrm{~d} 6 \mathrm{H}, \mathrm{J}=7$ $162(\mathrm{~m}, 2 \mathrm{H}), 31=3(\mathrm{~m}, 3 \mathrm{H})$ 3.48 (heplaplet, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ ), $3.9 \rightarrow .2(\mathrm{~m}, \mathrm{th})$ $3 .+8($ heplaplef, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~h})$.
$5.3-5.7(\mathrm{~m} .1 \mathrm{H}), 6.3-6.7(\mathrm{~m} . \mathrm{H})$ ${ }_{7.0-8.1(\mathrm{~m}, 7 \mathrm{H})}$
H. $\mathrm{C} M \mathrm{MR}$ (in DMSO. $\mathrm{d}^{6}$ ) 5 ppm ;
$0.3-1.3(\mathrm{~m}, 2 \mathrm{H}) .1 .3+(\mathrm{d} .6 \mathrm{H} . \mathrm{J}=7$
1.6-2.2(m, 2H), 2.7-3.9(m. 3H)
3. 49 (Heptaplet, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ ), $3.9-4(\mathrm{~m}, 1 \mathrm{H})$
5.2-5.6(m. 1 H$), 6.3-6.7(\mathrm{~m} .1 \mathrm{H})$ 7.1-8.1(m. 8H)

H-XMR (in DMSO-d ${ }^{6}$ ) $\delta$ ppm:
$0.9-1.3(\mathrm{~m}, 2 \mathrm{H}), 1.3 \mathrm{~s}(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$
$1.7-2.1(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz})$
$3.0-3.3(\mathrm{~m}, 3 \mathrm{H}), 3.51(\mathrm{Heptaplec}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ $3.5-4.3(\mathrm{~m}, 1 \mathrm{H}), 5.3-5.6(\mathrm{~m}, 1 \mathrm{H})$ $6.3-6.6(\mathrm{~m} .1 \mathrm{H}) .6 .9-8.1(\mathrm{~m}, 7 \mathrm{H})$ H-NMR(in DMSO-d ${ }^{6}$ ) $\delta$ ppm:
$1.0-1.2(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, 6 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz})$ 1.6-2.2(m. 2 H$) .2 .35(\mathrm{~s} .6 \mathrm{H})$
$3.0-3.3(\mathrm{~m}, 3 \mathrm{H}), 3.51$ (Heptaplet. $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ ) $4.0-3(\mathrm{~m} .1 \mathrm{H}), ~ 5.3-5.6(\mathrm{~m}, 1 \mathrm{H})$ H-NMR(in DMSO-d ${ }^{6}$ ) 5 Pom: 0.9-1.3(m, 2 H$) .1 .31(\mathrm{~d}, 6 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz})$ $0.9-1.3(\mathrm{~m}, 2 \mathrm{H}) .1 .31(\mathrm{~d}, 6 \mathrm{H} . \mathrm{J}=7 \mathrm{H}$
$1.7-2.0 \mathrm{~m}, 2 \mathrm{H}) 3.2-3.7(\mathrm{~m}, 4 \mathrm{H})$ $1.7-2.0(\mathrm{~m}, 2 \mathrm{H}), 3.2-3.7(\mathrm{~m}$,
$3.62(\mathrm{~s}, 3 \mathrm{H}), 3.9-4.2(\mathrm{~m}, 1 \mathrm{H})$ $3.62(\mathrm{~s}, 3 \mathrm{H}, 3.1 \mathrm{~s}, 3(\mathrm{H}, 1 \mathrm{H})$
$3.1-5.5(\mathrm{~m} . \mathrm{H})$ 6.2-6.6(m. 1 H$), 7.0-7.5(\mathrm{~m}, 6 \mathrm{H})$ H-NMR(in DMSO-d ${ }^{6}$ ) $\delta$ ppm: $0.9-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{c} .3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ 1.6-2.2(m, 2 H$), 2.7-3.4(\mathrm{~m}, 4 \mathrm{H})$ $3.6-3(\mathrm{~m}, 2 \mathrm{H}), 5.2-5.7(\mathrm{~m}, 1 \mathrm{H})$ 6.1-6.6(m. 1 H$), 6.9-8.1(\mathrm{~m}, 8 \mathrm{H})$ H-NMR (in DMSO-d ${ }^{6}$ ) $\delta$ ppm: $0.8-1.3(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ 1.6-2.1( $\mathrm{m}, 4 \mathrm{H}), 2.7-3.8(\mathrm{~m}, \mathrm{SH})$ 3.9-4.3(m, 1H), 5.2-5.7(m. 1H) H-MMR(in DMSO- ${ }^{6}$ S $\delta$, $0.9-1.3(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ $0.9-1.3(\mathrm{~m}, 2 \mathrm{H}, 1.3(\mathrm{~d}, \mathrm{M}, \mathrm{J}=$ 3.49 (Heptaplet, $1 \mathrm{H} . \mathrm{J}=7 \mathrm{~Hz}) .4 .0-4.3(\mathrm{~m}, \mathrm{H})$ $5.3-5.6 \mathrm{~m}, 1 \mathrm{H}), 6.3-6.6(\mathrm{~m}, 1 \mathrm{H})$ $5.3-5.6 \mathrm{~m}$, th)
$7.2-8.1(\mathrm{~m}, 7 \mathrm{H})$
H-NMR (in DMSO-d ${ }^{6}$ ) $\delta \mathrm{ppm}$ : $0.8-1.3(\mathrm{~m}, 6 \mathrm{H}), 1.7-2.2(\mathrm{~m}, 2 \mathrm{H})$ 2.3-2.7(m, IH$), 3.0-3.9(\mathrm{~m}, 3 \mathrm{H})$ $4.0-3(\mathrm{~m}, 1 \mathrm{H}), 5.5-5.8(\mathrm{~m}, 1 \mathrm{H})$ $6.4-6.7(\mathrm{~m}, 1 \mathrm{H}), 7.2-8.0(\mathrm{~m} .8 \mathrm{H})$ H-NMR(in DMSO-d ${ }^{6} 5 \mathrm{ppm}:$ $0.9-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7$ $1.7-2.3(\mathrm{~m}, 2 \mathrm{H}), 3.0-3.9(\mathrm{~m} .3 \mathrm{H})$ 3. $50(\mathrm{Heptaplet}$, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.0-3(\mathrm{~m}, 1 \mathrm{H})$ 5.2-5.6(m, 1 H$), 6.4-6.7(\mathrm{~m}, 1 \mathrm{H})$ 7.0-8.1(m. 13H) $0.8-1.3(\mathrm{~m} .2 \mathrm{H}), 1.37(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$


In the same manner as in Example 3, compounds 1.22 to $\mathrm{I}: 26$ can be prepared.


In the same manner as in Example 4, compounds I-32 to 1.36 can.be prepared.

| 50 | Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | $\mathrm{R}^{\text {s }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.22 | H | H | 4-F | H | $\mathrm{CH}_{3}$ |
|  | 1-23 | H | H | H | H | $\mathrm{CH}_{3}$ |
|  | I-24 | H | H | H | H | i-Pr |
|  | 1-25 | $6-\mathrm{Cl}$ | H | H | H | $\mathrm{CH}_{3}$ |
| 55 | 1-26 | $6-\mathrm{Cl}$ | H | H | H. | i. Pr |

$\therefore$ FORMLILATION EXAMPLE 4

| 5 | Ointment |  |
| :---: | :---: | :---: |
|  | Compound 1-51 | $1.0 \mathrm{~g}(10.0 \mathrm{~g})$ |
|  | Liquid paramin | $10.0 \mathrm{~g}(10.0 \mathrm{~g})$ |
|  | Cetanol | $20.0 \mathrm{~g}(20.0 \mathrm{~g})$ |
|  | White vaseline | $68.4 \mathrm{~g}(59.4 \mathrm{~g})$ |
| 10 | Ethylpzraben | $0.1 \mathrm{~g}(0.1 \mathrm{~g})$ |
|  | L-menthol | $0.5 \mathrm{~g}(0.5 \mathrm{~g})$ |
|  | Total | 0.08 |


| Compound | $\mathrm{R}^{\prime}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | R ${ }^{4}$ | $\mathrm{R}^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.32 | H | H | LF | H | $\mathrm{CH}_{3}$ |
| I. 33 | H | H | H | H | $\mathrm{CH}_{3}$ |
| I-34 | H | H | H | H | $i-\mathrm{Pr}$ |
| 1. 35 | $6 . \mathrm{Cl}$ | H | H | H | $\mathrm{CH}_{3}$ |
| 1.36 | $6-\mathrm{Cl}$ | H | H | H | i. $\cdot \mathrm{Pr}$ |

The above components were mixed by a usual method to obtain a $1 \%(10 \%)$ ointment.

The above components were mixed by a usual method and then tabletted to produce 100 tablets each containing 10 mg of the active ingredient.

FORMUIATION EXAMPLE 2

|  |  |
| :--- | ---: |
| Suppository | 1.0 g |
| Compound I-51 | 46.9 g |
| Witepsol H15 | 52.0 g |
| Witepsol W35 | 0.1 g |
|  | 100.0 g |

-Trademark for triglyeeride compound
30 The above components were melt-mixed by a usual method and poured into suppository containers, followed by cooling for solidification to obtain 100 suppos- ponens. 5 ponenr.

FORMULATION EXAMPLE 6

40

|  |  |
| :--- | :--- | :--- |
|  |  |
|  |  |

The formulation is prepared by dissolving the compound in the distilled water whenever it is required.

FORMULATION EXAMPLE 7
The above components were mixed by a usual method and then packed in No. 4 gelatin capsules to 50 obtain 100 capsules each containing 10 mg of the active ingredient.

FORMULATION EXAMPLE 3

| 55 | Granules |  |
| :---: | :---: | :---: |
|  | Compound 1-51 | 1.0 g |
|  | Lactose | 6.0 g |
|  | Crystal cellulose powider | 6.5 g |
|  | Comstarch | 5.0 g |
|  | Hydroxypropyl cellulose | 1.08 |
|  | Magnesium stearate | 0.58 |
| $60 \ldots$ Tous |  | 20.0 g |
| The above components were granulated by a usual method and packaged to obtain 100 packages each containing 200 mg of the granules so that each packige contains 10 mg of the active ingredient. <br> We claim: <br> 1. A compound of the formula |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

$\qquad$


| Compound I-SI | 1.0 g |
| :--- | ---: |
| Lactose | 3.5 g |
| Crysal cellulose powider | 10.0 g |
| Magnesium stearate | 0.5 |
| Total | 15.0 g |

The above components were granulated by a usual method and packaged to obtain 100 packages each containing 200 mg of the granules so that each packige We claim:

1. A compound of the formula

The above components were mixed and packed in 65 No. 3 soft gelatin capsules by a usual method to obtain 100 soft capsules each containing 10 mg of the active ingredient.

|  |  |
| :--- | ---: |
| Soft capsules |  |
| Compound I-51 | 1.00 g |
| PEG (polyethylene glycol) t.00 | 3.89 g |
| Sasturated fatty acid triglyceride | 15.00 g |
| Peppermint oil | 0.01 g |
| Polysorbate 80 | 0.10 g |
| Total | 20.00 g |

FORMULATION EXAMPLE 5
號

wherein $R^{1}$ is hydrogen, 5 -fluoro, 6 -fluoro, 7 -fluoro, 8 -fluoro, 5 -chloro, 6 -chloro, 7 -chloro, 8 -chloro, 5 bromo, 6 -bromo, 7 -bromo, 8 -bromo, 5 -methyl, 6 - 15 methyl, 7 -methyl, 8 -methyl, 5 -methoxy, 6 -methoxy, 7 -methoxy, 8 -methoxy, 5 -trifluoromethyl, 6 -trifluoromethyl. 7 -trifluoromethyl, 8 -trifluoromethyl, 6 trifluoromethoxy, 6 -difluoromethoxy, 8 -hydroxyethyl, 5-hydroxy, 6-hydroxy, 7-hydroxy, 8-hydroxy, 6-ethyl, 20 6 -n-butyl or 7 -dimethylamino;
$R^{2}, R^{3}$ and $R^{6}$ are hydrogen,
$R^{*}$ is hydrogen, $4^{\prime}$-chloro or $4^{\prime}$-fluoro,
$R^{5}$ is i -propyl or cyclopropyl,
$Y$ is $(E)-\mathrm{CH}=\mathrm{CH}-$, and
$Z$ is

$-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$,
-CH . $(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{R}^{12}$ or $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}$. $\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$, wherein $\mathrm{R}^{12}$ is hydrogen, physiologically hydrolyzable alkyl, $\mathrm{NH}_{4}$. sodium. potassium $\frac{1}{2}$ calcium, or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine; two $\mathrm{R}^{13}$ are independently primary or secondary
$\therefore$ 2. $^{\left.-\mathrm{CH}_{2}\right)_{3}-\text {. }}$ butadienyl)-4'-(4"-fluorophenyl)-2'.(1"-nethylerhyl)-
5 quinolin- $3^{\prime}-\mathrm{y} \mid$ ]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $\mathrm{C}_{1.3}$ alkyl ester of the carboxylic acid.
3. The compound (E)-3,5-dihydroxy-7-[6', $7^{\prime}-\left(1^{\prime \prime}, 3^{\prime \prime}\right.$ 10 butadieny 1 ) $4^{\prime}$-(4"-fluorophenyl) $-2^{\prime}$-( $1^{\prime \prime}$ - methylethyl) $-6^{\prime}$ -chloro-quinolin-3,-ylj-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $\mathrm{C}_{1.3}$ alkyl ester of the carboxylic acid.
4. The compound (E)-3,5-dihydroxy-7-[ $7^{\prime}, 8^{\prime}-\left(1^{\prime \prime}, 3^{\prime \prime}-\right.$ butadienyl)-4'(4"'fluorophenyl)- $2^{\prime}$-( $1^{\prime \prime}$-methylethyl)-quinolin- $3^{\prime}$-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $\mathrm{C}_{1-3}$ alkyl ester of the carboxylic acid.
5. The compound (E)-3,5-dihydroxy-7-[ $5^{\prime}, 6^{\prime}$-( $1^{\prime \prime}, 3^{\prime \prime}$ -butadienyl)-2'-cyclopropyl-4'-(4"-fluorophenyl)-quino-lin- $3^{\prime}$-yll-hept-6-enoic acid, a lactone formed by the 25 condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
6. The compound (E)-3,5-dihydroxy-7-[ $5^{\prime}, 6^{\prime}$-( $1^{\prime \prime}, 3^{\prime \prime}$ -butadienyl)-2'-cyclopropyl-4'-(4"-fluorophenyl)quino-
30 lin- $3^{\prime}$-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt of $\mathrm{C}_{\mathrm{t}-3}$ alkyl ester of the carboxylic acid.
7. The compound (E)-3,5-dihydroxy-7-[ $7^{\prime}, 8^{\prime}-\left(1^{\prime \prime}, 3^{\prime \prime}-\right.$ butadienyl)-2'-cyclopropyl-4'-(4'"-nuorophenyl)-quino-lin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $\mathrm{C}_{1.3}$ alkyl ester of the carboxylic acid.
40
Case No. 600-1.01/CONT/Int. (3)
Patent

RECEIVED IN
WATTANASIN
v.

PICARD et al.
v.

FUJIKAWA et al.

## CONTINGENT PRELIMINARY MOTION UNDER 37 CFR $1.633(e)$ BY THE PARTY WATTANASIN

Contingent on the denial of the party Wattanasin's Preliminary Motion under 37 CFR $\$ 1.635$ being filed concurrently herewith, the party wattanasin moves for declaration of an additional interference between the party wattanasin's involved application in the present interference and U.S. Patent No. 5,011,930, for the reasons stated in the aformentioned Rule 635 motion.

Count. 1 of the present interference is proposed for the additional interference.

Alternatively, contingent on the granting of the party Wattanasin's Rule 633(c)(1) Motion being filed concurrently herewith, Proposed Substitute Count 1 is proposed for the additional interference.

Claim $1-7$ and 10 of Wattanasin are designated to correspond to Count 1 (or Proposed Substitute Count 1).

Claim 1 of Fujikawa et al. '930' should be designated to correspond to Count 1 (or Proposed Substitute Count 1).

```
Wattanasin
Rule 633(e) Motion
page - 2-
```


## Remarks

Rule 633(e) does not specifically provide for a motion to institute the granting of an additional interference with another patent of an involved party.

However, in the event Wattanasin's concurrently filed Rule 635 Motion is denied, Rule 633 is being relied on to provide an alternative remedy to the party Wattanasin to fully adjudicate the subject matter in conflict with Fujikawa et al.

With respect to the present motion under Rule 633(e), notwithstanding Rule 637(e)((1)(vii), on the available evidence it is not believed possible to propose a count for the additional interference which defines a separate patentable invention from all counts of the present interference; and therefore the present count 1 of the present interference (or alternatively, the party Wattanasin's Proposed Substitute Count 1) is proposed to comprise the count in the requested interference.

The Remarks of the party Wattanasin in his Rule 635 Motion are otherwise hereby incorporated by reference.

Respectfully submitted,


[^5]```
DEF:rmf
June 11, }199
```


CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

PRELIMINARY MOTION UNDER 37 CPR $1.633(\mathrm{e})$ BY THE PARTY WATTANASIN

was served on counsel for the party Fujikawa et al., this lith day of June, 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Mater \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq
1755 South Jefferson Davis Highway Crystal Square 5, Ste. 400
Arlington, VA 22202

Case No. 600-. 101/CÖNT/Int..(4) Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES JUN 151992
WATTANASIN
v .
PICARD et al.
v .
FUJIKAWA et al.

CONTINGENT PRELIMINARY MOTION FOR BENEFIT UNDER 37 CPR $\$ 1.633(f)$
 BY THE PARTY WATTANASIN

Contingent on the granting of one or more of the party Wattanasin's preliminary motions being filed concurrently herewith, the party Wattanasin also moves to be accorded the benefit of parent application Serial No. $07 / 318,773$ filed March 3, 1989, from which the involved application is a Rule 60 continuation.

This will certify that a complete copy of the file of Serial No. $07 / 318,773$, except for documents filed under 37 CFR 1.131 or 1.608, is being concurrently served on the party Fujikawa et al. [37 CFR 1.637(f)(2)]

The parent application fulfills the four requirements of 35 USC $\$ 112$ for at least one species of the involved application, and constitutes a constructive reduction to practice of Counts 1 and 2 (see, egg., pages 33-35, 51-53 of the specification).

Respectfully submitted,

[^6]
CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

CONTINGENT PRELIMINARY MOTION FOR BENEFIT UNDER 37 CPR $\mathbb{S 1 . 6 3 3 (f)}$
 BY THE PARTY WATTANASIN

was served on counsel for the party Fujikawa et al., this lith day of June, 1992, by postage prepaid first-class mail addressed to the following:

> Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Keller, Esq.
> 1755 South Jefferson Davis Highway
> Crystal Square 5 , Ste. 400
> Arlington, VA 22202

Diane E. Furman

```
JUN 19'52 12:21 SANIDOZ InRF. PAT. AND TM
```

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

```
In Re: WATTANASIN
102648
Serial`No.: 07/498,301
Filed: March 23, }199
FOX:' QUUINOLINE ANALOGS OF MEVALONOLACTONE AND
        DERIVATIVES THEREOF
```

POWER TO INSPECT AND MAKE COPIES
Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231
Dear Sir:

Kindly permit. Marian Schwartz; Ann Rutledge, Rosalie Jared, Somchay Chinyavong, Judy Valusek, James Jackson, Bobbie Judy, or Nancy Perry of Specialized Patent Services to inspect and make copies in the above noted matter, including recently declared Interference No. 102,648 in which said patent is involved.

Respectfully submitted,
June 19, 1992

SANDOZ CORP.
59 Route 10
E. Hanover, N.J. 07936

DEF: lex

Encl,: Dostoart

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE \#\# BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN

INTERFERENCE 102,648
V.

EXAMINER-IN-CHIEF:
MICHAEL SOFOCLEOUS
PICARD ET AL
v.

FUJIKAWA ET AL

FUJIKAWA ET AL
OPPOSITION TO CONTINGENT
PRELIMINARY MOTION, 37 CFR S1.633(e)
AND PRELIMTNARY MOTION UNDER 37 CFR $\$ 1.635$

HONORABLE COMMTSSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:
By Motion under 37 CFR $\$ 1.635$ and by Contingent Preliminary
Motion under 37 CFR $\$ 1.633(e)$, Wattanasin seeks designation of
Claim of Fujikawa et al U .S. Patent $5,011,930$, as being in
Interference with Claims $1-7$ and 10 of Wattanasin, and
corresponding to Wattanasin's proposed substitute Count, or the
current Count, of the Interference. It appears, from the, joint
Motions, that Wattanasin does not care whether a separate

Interference is declared, or Claim 1 of the 930 Patent is designated as corresponding to the broad Count of the current Interference, just so long as it is designated in some fashion.

Wattanasin's Motion pursuant to $37 \mathrm{CFR} \$ 1.633(\mathrm{e})$ appears to run clearly against the holding in Gerk v. Cottringer, 17 USPQ 2d 1615 (POBAI 1990). Note in particular the holding therein that Rule $633(\mathrm{c})(3)$ is confined to patent claims of patent applications already involved in the Interference, and that Motions seeking relief not specifically provided for under Rule 633 are improper as Preliminary Motions, and the same relief cannot be obtained pursuant to Rule 635. By analogy, 37 CFR $\$ 1.633(e)$ which is expressly confined to patents involved in the Interference cannot be relied on by Wattanasin. Note, not even 37 CFR §1.633(c)(3) permits the Motion relied on.

Wattanasin specifically acknowledges that the relief sought is not provided for under Rule $633(e)$. The relief sought by Wattanasin under Rule 635 is not substantially different from the relief sought, and denied, in Gerk v. Cottringer, and accordingly, save for the stipulation, the Motion ought to be denied as well.

Specifically, Wattanasin acknowledges its Motion (either under Rule $633(e)$ or 635) is not provided for under Rule 633 at al. Motions which are in the nature of Preliminary Motions that are not
provided for under Rule 633(a)-(j) may not be brought, and must be dismissed.

> §1.633 would be rendered a nullity if every preliminary motion which did not comply with its requirements could avoid dismissal by being characterized as a motion under $\$ 1.635$.

Theeuwes v. Bogentoft, 2 USPQ 2d 1378, 1379 (Comm. of Pats. 1987). See also, Gerk, 17 USPQ 2d at 1616. Clearly, a Preliminary Motion (or 2!) the movant acknowledges is not authorized by 37 CFR $\$ 1.633$ must be dismissed.

Wattanasin's Motion under Rule 635 ought to be denied as well. Specifically, one cannot achieve, via Rule 635; relief governed by Rule 633. If that relief is not provided for, seeking the same via Rule 635 would render Rule 633, and its limitations a nullity. It is further noted that the Rule 635 Motion should be dismissed for failure to comply with 37 CFR \$1.637(b). The Rule 635 Motion is devoid of any certification that agreement of opposing Counsel was sought. This is grounds for dismissal. M v. V, 6 USPQ 2d 1039
(POBAI 1987). For failure to comply with the requirements of the Rules, these Motions should be dismissed, and if not dismissed, denied.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,
MAIER \& NEUSTADT, P.C.

Steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al

CERIIFICATE OF SERVICE

I hereby certify that true copies of:

1. FUJIKAWA ET AL OPPOSITION TO CONTINGENT PRELIMINARY MOTION, 37 CFR §1.633(e) AND PRELIMINARY MOTION UNDER 37 CFR $\$ 1.635$
2. FUJIKAWA ET AL OPPOSITION TO THE CONTINGENT PRELIMINARY MOTION FOR BENEFIT, 37 CFR S1.633(f)
3. FUJIKAWA ET AL MOTION FOR BENEFIT, 37 CFR S1.633(j)
4. FUJIKAWA ET AL OPPOSITION TO PRELIMTNARY MOTION TO SUBSTITUTE A COUNT
5. CERTIFICATE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 079:36
via first-class mail, postage prepaid, this 1st day of July, 1992.

JUL - 11992
in the united states patent and trademark office \#25 BEFORE THE BOARD OF PATENT APPEATS AND INTERFERENCES

WATIANASIN
INTERFERENCE 102,648
V.

EXAMINER-IN-CHIEF: MICHAEL SOFOCLEOUS
PICARD ET AL
V.

FUJIKAWA ET AL

FUJIKAWA ET AL OPPOSITION TO THE CONIINGENT PRELIMINARY MOTION FOR BENEFIT, 37 CFR S1.633(f)

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, DC 20231
BOX INTERFERENCE

SIR:

In a one-page Motion, Wattanasin requests benefit of its parent application, U.S. Application Serial No. 07/318,773. It is unclear as to what Wattanasin seeks benefit for, as no specific Rule is identified, nor are the provisions of 37 CFR $\$ 1.637$ complied with. In particular, 37 CFR $\$ 1.637(\mathrm{a})$ requires a statement of the precise relief requested, and a full statement of the reasons why the relief should be granted. Further, 37 CFR
§1.633(f) requires that the movant show that the earlier application constitutes a constructive reduction to practice of each Count. Neither of these Rules has been complied with by Wattanasin.

Initially, it is noted that Wattanasin has been granted benefit of its parent application. Accordingly, what further benefit is required? The Wattanasin Motion is apparently contingent upon the grant of certain other Motions filed concurrently. Wattanasin declines to identify which Motions those are. It is noted that Wattanasin has sought designation of Claim 1 of Fujikawa et al's U.S. Patent 5,011,930, which would not, if granted, be a basis for a grant of benefit already accorded. Accordingly, the premise of the Wattanasin Motion is confusing and unclear, and in violation of Rule 637(a). It should be dismissed.

Similarly, Wattanasin refers to the "four requirements of 35 U.S.C. §112, for at least one species of the involved application". Compliance with 35 U.S.C. $\$ 112$, as to species (claimed? or of the Count?) of the involved application is irrelevant. Demonstration of the requirements of 35 U.S.C. $\$ 112$, first paragraph, as to the Count of the Interference is required. Further, Wattanasin urges that the parent application constitutes a constructive reduction to practice of Counts I and II of the Interference. Again, as

Fujikawa et al have not moved to deny benefit of that parent application as to Counts I and II, this is not seen to be relevant.

Wattanasin has not requested benefit as to Wattanasin's proposed substitute count I, and accordingly, cannot be granted benefit of the parent application as to that proposed substitute Count, if the Motion to substitute is granted. It would be highly inappropriate for Wattanasin to seek benefit in a Reply, and Fujikawa et al will move to strike any Reply that so requests benefit, in untimely fashion.

Dismissal or denial of the Contingent Preliminary Motion, to the extent benefit of the parent application is sought therein for anything other than current Counts I and II of the Interference is respectfully requested.

```
Respectfully submitted,
OBLON, SPIVAK, MCCLELILAND,
MAIER & NEUSTADT, P.C.
```



```
Steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al
```


CERTIFICATE OF SERVICE

I hereby certify that true copies of:

1. FUJIKAWA ET AL OPPOSITION TO CONTINGENT PRELIMINARY MOTION, 37 CFR S1.633(e) AND PRELIMTNARY MOTION UNDER 37 CFR S 1.635
2. FUJIKANA ET AL OPPOSITION TO THE CONTINGENT PRELIMINARY MOTION FOR BENEFIT, 37 CFR §1.633(f)
3. FUJIKAWA ET AL MOTION FOR BENEFIT, 37 CFR $\$ 1.633(j)$
4. FUJIKAWA ET AL OPPOSITION TO PRELIMINARY MOTION TO SUBSTITUTE A COUNT
5. CERTIFICAIE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this lst day of July, 1992.

BOARO OP PATENT
 $\%$
 IATE. -EVES

JUL-1 1992 木杸6

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATMIANASIN	:	
	:	INTHERFERENCE 102,648
V.	:	EXAMINER-IN-CHIEF:
	:	MICHAEL SOFOCLEOUS
PICARD ET AL	:	
	:	
V.	:	
	:	
FUJIKAFA ET AL	:	

FOJIKAWA ET AL MOTION FOR BENEFIT, 37 CFR $\$ 1.633(\mathrm{j})$

HONORABLE COMMISSIONER OF PATENTS AND TRRADEMARKS WASHINGTON, DC 20231 BOX INTERFERENCE

SIR:

Pursuant to the provisions of the above-captioned Rule, and responsive to the Wattanasin Motions under Rule 633(e), Rule 635 and Rule 633(c)(1), Fujikawa et al hereby requests benefit of its priority applications, Japanese Patent Application Serial No. 207224, filed August 20, 1987; Japanese Patent Application Serial

No. 15585, filed January 26, 1988 and Japanese Patent Application Serial No. 193606, filed August 3, 1988, as to proposed substitute Count I of Wattanasin's Motion under 37 CFR $\$ 1.633(c)(1)$, and as to Claim 1 of U.S. Patent 5,011,930, if designated as corresponding to the Count of the Interference.

With respect to the proposed substitute Count, it should be noted that each of the Japanese Patent Applications, certified translations of which are of record, has ipsis verbis support, as well as a plurality of examples falling therewithin. Indeed, Wattanasin's Motion recognizes that proposed substitute Count I is identical to Fujikawa et al's Claim 1', as to which Fujikawa has already received the benefit of Japanese Patent Application 207224, filed August 20, 1987, and 15585, filed January 26, 1988. Further, on the grounds set forth with respect to Japanese Patent Application 193606, filed August 3, 1988, benefit as to current Counts I and II has already been requested, see Fujikawa et al Motion for Benefit, and benefit as to proposed substitute Counts is requested on the same grounds.

Clearly, in addition to literal support, each of the three Japanese Patent Applications identified has a plurality of examples
which constitute constructive reduction to practice of proposed substitute Count I. Benefit, should proposed substitute Count I be adopted, is respectfully requested.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADT, P.C.

Registration No.: 30,073
Attorney for Fujikawa et al

CERTIFICATE OF SERVICE

I hereby certify that true copies of:

1. FUJIKAWA ET AL OPPOSITTION TO CONTINGENT PRELIMINARY MOTION, 37 CFR §1.633(e) AND PRELIMINARY MOTION UNDER 37 CFR $\$ 1.635$
2. FUJIKAWA ET AL OPPOSITION TO THE CONTINGENT PRELIMINARY MOTION FOR BENEFIT, 37 CFR $\$ 1.633(f)$
3. FUJIKAWA ET AL MOTION FOR BENEFIT, 37 CFR $\$ 1.633(j)$
4. FUJIKAWA ET AL OPPOSITION TO PRELIMINARY MOTION TO SUBSTITUTE A COUNT
5. CERTIFICATE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this 1st day of July, 1992.

in the united states patent and trademark office
\#27 BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN	:	
	:	INTERFERENCE 102,648
V.	:	EXAMTNER-IN-CHIEF:
	:	MICHAEL SOFOCIEOUS
PICARD ET AL	:	
	:	
V.	:	
	:	
FUJIKAWA ET AL	:	

FUJIKAWA ET AL OPPOSITION TO PRELIMINARY MOTION TO SUBSTITUTE A COUNT

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGION, DC 20231 BOX INTERFERENCE

SIR:

Fujikawa et al oppose the Motion by Junior Party Wattanasin to substitute proposed substitute Count I for the current Count of the Interference, on the grounds that the identity set forth for moiety Z, the first structural formula thereof, is incorrect. On page 3 of the Motion, moiety z is defined as being one of three ring structures, or a fourth linear structure, the first ring structure being:

a moiety not found in the claims of the parties. Further, Wattanasin advances, as grounds for its Preliminary Motion, the argument that the proposed substitute Count I is intended to
correspond to Claim 1 of the involved Fujikawa et al application. Claim 1 of the involved Fujikawa et al application does not present a cyclic structure of the type set forth above for moiety Z, or any other substituent. The closest corresponding ring structure, which does not appear in proposed Count I, is

wherein the hydroxy substituent and the R^{11} substituent are on the same ring carbon atom. On this ground, Fujikawa et al opposes the Motion to substitute Count I.

Further, it is noted that Wattanasin's Motion does not address Count II. If substitute Count I is adopted, Count II will call for
the administration of a compound of current Count I, while those compounds may not be the subject of this Interference, if Wattanasin's Motion is granted. Accordingly, if the Motion is granted, it would be necessary to modify Count II to call for the administration of a compound from proposed substitute Count I, rather than current Count I of the Interference. On this ground as well, the Motion to substitute is opposed.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.

Steven B. Kelber
Registration No: : 30,073
Attorney for Fujikawa et al

CERTIFICATE OF SERVICE

I hereby certify that true copies of:

1. FUJIKAWA ET AL OPPOSITTION TO CONPINGENT PRELIMINARY MOTION, 37 CFR §1.633(e) AND PRELIMINARY MOTION UNDER 37 CFR $\$ 1.635$
2. FUJIKAWA ET AL OPPOSITION TO THE CONTINGENT PRELIMTNARY MOTION FOR BENEFIT, 37 CFR $\$ 1.633(f)$
3. FUJIKAWA ET AL MOTION FOR BENEFIT, 37 CFR $\$ 1.633(j)$
4. FUJIKAWA ET AL OPPOSITION TO PRELIMINARY MOTION TO SUBSTITUTE A COUNT
5. CERTIFICATE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this lst day of July, 1992.

Case No. 60C-/101/CONT FYI Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE!UL 61992 BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES RECEIVED IN BOXINTERERENCE
WATTANASIN
v.

PICARD et al.
v .
FUJIKAWA et al.

Interference No. 102,648
Examiner-in-Chief: M. Sofocleous

OPPOSITION OF WATITANASIN
TO FUJIKAWA ET AL. MOTION TO ADD COUNTS
AND TO ADD CLAIMS TO WATYANASIN APPLICATION

SUMMARY

The party Wattanasin hereby opposes the party Fujikawa et al.'s motion to redefine the interference by adding proposed Counts 3 and 4 .

The opposition is.on the ground that the party Fujikawa et al. (hereinafter "Fujikawa") are not in compliance with 37 CFR 1.637 (C).

More particularly, Fujikawa have not met the requirements of either or both of, sub-sections (c)(1)(iii) and c(1)(v) of Rule 637.

First, with respect to 37 CFR (c)(1)(iii), there is no written description in the involved application of Wattanasin, of the subject matter of species claims 11 and 12 which Fujikawa have proposed to wattanasin to correspond to proposed Counts 3 and 4. Since the Fujikawa proposed claims 11 and 12 do not comply with 35 USC 112, written description requirement, Fujikawa have failed to meet the requirement of 37 , CFR 1.637 (c)(1)(iiii) that proposed claims be patentable to the other party. Accordingly, given that

Fujikawa are unable to propose claims to Wattanasin corresponding to their proposed narrow counts, which also meet the written description requirement of 35 USC 112 , the Fujikawa motion to redefine the interference should be denied.

Second, the Fujikawa proposed Counts 3 and 4 do not define a separately patentable invention from the subject matter of Counts 1 and 2 of this interference, as required by 37 CFR 1.637 (c)(1)(v).

The proposed counts 3 and 4 cover a cyclopropyl (4-fluorophenyl)-substituted quinoline species within the generic scope of Counts 1 and 2 of the present interference.

As the basis for separate patentability of the counts, Fujikawa allege that the cyclopropyl (4-fluorophenyl) species exhibits "unexpected improvement" in HMG-COA reductase inhibition activity compared to that of its closest structural isomer, i.e. the corresponding isopropyl spcies.

It is the position of Wattanasin, however, that: (1) the state of the art even prior to the earliest Fujikawa priority date included a recognition that improved HMG-CoA reductase inhibition activity was exhibited by both isopropyl- and cyclopropyl-bearing nitrogen-containing (4-fluorophenyl bearing) heterocycles; (2) that the Fujikawa comparative data submitted into the record do
not indicate an improvement in activity of cyclopropyl (4-fluorophenyl) over isopropyl (4-fluorophenyl) that rises to the level of "unexpectedness," particularly given the clear direction in the art to prepare the cyclopropyl (4-fluorophenyl); and (3) that the Fujikawa comparative data of record are deficient in not presenting a comparison of the cyclopropyl species of the Fujikawa proposed counts 3 and 4 at issue with other cyclopropyl species within counts 1 and 2 of this interference which are excluded from the scope of the Fujikawa proposed counts.

For the above reasons, which are more fully described below, Wattanasin requests that Fujikawa's motion be denied.

BACKGROUND

Fujikawa moved to redefine the present interference by adding proposed Counts $\underline{3}$ and $\underline{4}$.

Fujikawa's proposed Count 3 is directed in essence to a single species embraced by Count 1 (as well as Wattanasin's proposed Substitute Count 1). This species has the following structural formula:
(A)

(where Z is selected from the group consisting of 3,5-dihydroxy- substituted carboxylic acids, sodium and calcium salts, and C_{1-3} alkyl esters thereof, and the lactone formed by condensation of the carboxylic acid with the hydroxy at the 5-position)

```
Fujikawa's Proposed Count \(\underline{4}\) is directed in essence to a method of using a compound of proposed Count 3.
```

It will be noted that in the above structural formula (A), the quinoline ring is substituted at the 2 -position, i.e. between the nitrogen atom and the "Z" substituent, by cyclopropyl. Also, the quinoline ring is substituted at the 4 -position by 4-fluorophenyl.

Compounds having structural formula (A) are hereinafter referred to collectively as the "cyclopropyl (4-fluorophenyl) species" (or alternately, the "cyclopropyl species").

It will be further noted that compounds disclosed by Fujikawa in their involved application which are similar in structure to the cyclopropyl species but which fall outside the scope of proposed Counts 3 and 4 comprise:

[^7](ii) compounds of structure (A), with the sole exception that fluorine is replaced by chlorine (see compound of claim 18 of Fujikawa application).

The cyclopropyl species which is the subject of proposed Counts 3 and 4 is embraced by Counts 1 and 2 of this interference. Additionally, the cyclopropyl species falls within the scope of claims $1-5$, and 32-34, and newly presented claims 41-44, of the Fujikawa involved application, as well as claim 1 of Fujikawa U.S. Patent No. 5,011,930, which Fujikawa have indicated is being taken into reissue. The cyclopropyl species also falls within the generic scope of claims $1-3$ and $8-10$ of Wattanasin's involved application.

To correspond to proposed Count 3 , Fujikawa have proposed to Wattanasin added claim 11, which is directed to the cylopropyl (4-fluorophenyl) species.

As corresponding to proposed Count 4 , Fujikawa also propose a claim 12 to Wattanasin which is directed to the use of a compound of claim 11.

In support of proposed Counts 3 and 4, Fujikawa represent that the cyclopropyl (4-fluorophenyl) species of the proposed counts has "unusually high" activity as an inhibitor of cholesterol biosynthesis relative to the genus covered by Count 1 , and that "nothing of record" would predict the increased activity associated with the cyclopropyl substituent. A Declaration of one
of the named co-inventors, Masaki Kitihara, is presented for the purpose of demonstrating the "unexpectedly superior" activity of the cyclopropyl species relative to its structural isomer, i.e. the corresponding isopropyl species, as well as homologs of isopropyl.

ARGUMENT

Fujikawa's motion to add proposed claims 11 and 12 to the involved application of Wattanasin should be denied.

Wattanasin discloses quinoline compounds substituted at the 2-position by (1) isopropyl or (2) C_{3-7} cycloalkyl. However, while the involved application of Wattanasin certainly covers within its generic scope compounds which are substituted by cyclopropyl, there is no description by wattanasin of a cyclopropyl species, as acknowledged by Fujikawa.

Neither the term "isopropyl" nor the term "C ${ }_{3-7}$ cycloalkyl" provides a written description of "cyclopropyl" for purposes of 35 USC 112 .

Since Wattanasin does not provide a written description in its involved application of the species proposed by Fujikawa, Fujikawa has failed to comply with 35 USC 112.

Fujikawa, in proposing claims to Wattanasin, are required to show the patentability of the claims to Wattanasin, 37. CFR 1.637 (c)(1)(5), MPEP 2338.

Since Fujikawa are unable to establish the patentability of their proposed claims to Wattanasin, the Fujikawa motion to redefine should be denied.

Even assuming arguendo that Fujikawa had fully complied with 37 CFR 1.637(c)(1) (iii) by proposing a claim to Wattanasin which fulfilled the requirements of 35 USC 112 , the Fujikawa motion should still be denied because the proposed Counts 3 and 4 do not define a separately patentable invention.

It is self-evident that the question of separate patentability of the cyclopropyl (4-fluorophenyl) species, independent of the genus in which it is contained, involves the principle of selection. That is, the patentability of Fujikawa's proposed counts hinges on whether the cyclopropyl species possesses properties which are truly "surprising" or "unexpected," or which otherwise make it distinct from the generic invention. Fujikawa appear to rely on mere activity differences between the cyclopropyl species and certain other members of the genus. However, these differences are not beyond normal variations to be expected in a generic invention, and moreover, could even be expected based on the prior art.

Opposition to Motion to Redefine
page - 8 -

First of all, the state of the art well prior to Fujikawa's earliest priority date, as reflected in actual prior art of record in Fujikawa's U.S. Patent No. 5,011,930, reflects a clear direction to prepare a species of an HMG-CoA inhibitor compound which contains either an isopropyl or a cyclopropyl substituent.

In particular, reference is made to Warner-Lambert European Patent Application 179,559 (published on April 30, 1986) which discloses a pyrrole series of HMG-CoA reductase inhibition compounds having the formula:

(or a ring-opened dihydroxyacid derived therefrom, or a pharmaceutically acceptable salt thereof).

Most pertinent for present purposes is that in the above compounds of Warner-Lambert, R_{4} is selected from the limited Markush group comprising: C_{1-4} alkyl, cyclopropyl, cyclobutyl or trifluoromethyl.

Furthermore, at pp. 13-14 of the publication Warner-Lambert express a "particular" preference for the following two compounds:

Opposition to Motion to Redefine
page - 9 -
trans-6-[2-[2-(4-fluorophenyl)-5-(1-methylethyl)-1H-pyrrol-1-y1]-ethy1]tetrahydro-4-hydroxy-2H-pyran-2-one:

trans-6-[2-[2-cyclopropyl]-5-(4-fluorophenyl)-1H-pyrrol-1-yl] -ethyl]tetrahydro-4-hydroxy-2H-pyran-2-one:

Based on the Warner-Lambert disclosure alone, it is fair to say that by April 1986, i.e. well prior to the earliest Fujikawa filing date of August 20,1987 , there was a recognition in the art that: an isopropyl (4-fluorophenyl) species could provide enhanced HMG-CoA reductase activity; and further, that the isopropyl could be cyclized to form cyclopropyl; and finally that the resulting cyclopropyl (4-fluorophenyl) itself exhibited particular improvements in activity relative to a genus of compounds within the same series. Note that in both Warner-Lambert species, above, the isopropyl or cyclopropyl occupies a position on the pyrrole ring adjacent to the nitrogen, as in the case of the cyclopropyl species at issue.

Therefore, it is submitted that certain improved activity levels were already noted in the art in connection with a cyclopropyl-bearing compound well prior to Fujikawa's filing date, such that by August 1987 if not earlier, one of ordinary skill, guided by the Warner-Lambert publication and others, would have considered the activity levels of Fujikawa's cyclopropyl species, as being at best merely consistent with the preferences expressed in the prior art in connection with other nitrogen-containing heterocycles, and certainly well removed from the realm of surprise or unexpectedness.

Further noted in connection with the state of the art is U.S. patent No. $4,952,852$ of Hoechst, the foreign counterpart of which would have published in December 1988. The Hoechst disclosure is directed to pyridinyl compounds such as, e.g., the compound of Examples l3ac and 13 e, col. 62.

Note particularly in the Hoechst reference the activity level of various compounds which is indicated on Table l, col. 13-14. Compare especially Example 13 e on Table 1 (isopropyl) to Example 13ac (cyclopropyl), which indicates a higher activity level for cyclopropyl than for isopropyl.

It is noted that while the Hoechst publication was available only after Fujikawa's priority filings, it was in the art prior both to Fujikawa's assertion during prosecution of its involved application that the cyclopropyl species had "unobvious"
properties (Amendment of December 19, 1990), and also prior to the February 23 , 1990 filing date of the divisional application which issued as the $\quad 330$ patent.

Copies of relevant portions of the Warner-Lambert and Hoechst publications are enclosed.

The clear direction in the art surrounding Fujikawa's involved application virtually deprive Fujikawa of the argument that increased activity of its cyclopropyl (4-fluorophenyl) species over the other species within its scope would be "unexpected" or "surprising".

Put differently, given the preferences expressed in the art, Fujikawa is necessarily held to a very high threshold of improvement in activity of its cyclopropyl (4-fluorophenyl) species over, e.g., the isopropyl (4-fluorophenyl), in order to justify a conclusion of "unexpectedness" such as would give rise to separate patentability; and this threshold is simply not overcome by the comparative evidence of record.

Turning now to the Kitihara Declaration proffered in support of Fujikawa's motion to redefine, it is submitted that this data simply does not provide a basis for according separate patentability to the cyclopropyl species.

Kitihara provides Test A and Test $B I C_{50}$ data for the sodium and calcium salts, ethyl ester and lactone forms of the cyclopropyl species of structure (A), above, which is covered by proposed Counts 3 and 4. Comparative data is provided with respect to quinoline compounds also having structure (A), with the sole exception that the cyclopropyl group is substituted by methyl, ethyl, isopropyl or C_{6}.

The data may be summarized as follows:
A. Test A :

Table (a), containing data for the sodium salts of cyclopropyl and the comparative compounds, demonstrates that: i - cyclopropyl is more active than isopropyl by a factor of about 2.4, and
ii - isopropyl is more active than n-propyl by a factor of about 9.

Table (b) has only two data points for the calcium salts, which indicate that cyclopropyl is more active than isopropyl by a factor of about 5. However, it is difficult to determine how meaningful this activity difference is given the absence of additional comparative data.

Table (c), listing data on the ethyl esters, indicates that the cyclopropyl is more active than n-propyl by a factor of about 14, but no data is given for isopropyl.

Table (d), listing data on the lactones, indicates that the cyclopropyl is more active than the isopropyl by a factor of about 3.8. Again, given that no other compounds were tested, it is difficult to determine how meaningful this data is.
B. Test B

Table (a), listing data on the sodium salts, indicates that i. cyclopropyl is about 5.7 times more active than isopropyl;
ii. isopropyl is about 7 times more active than n-propyl.

Table (b): the calcium salt of the cyclopropyl is about 3 times more active than the i-propyl; no other data is given.

Table (c), ethyl ester -- No data is given for the isopropyl. The cycopropyl is about 13 times more active than the n-propyl.

```
It is noted, first, that the above-summarized Kitihara data give no indication that toxicity does not also increase with actvitiy.
```

Second, given that the difference in activity level between isopropyl and its homologous species is typically substantially greater than the difference in activity betweeen cyclopropyl and isopropyl, Fujikawa is in the untenable position of claiming that
cyclopropyl is a separate and distinct invention from a genus of compounds which includes both the isopropyl and the other species tested above.

Third, the Kitihara Declaration is deficient in failing to make a complete comparison with compounds supported in its case which fall outside the scope of proposed Count 2 .

Reference is made, for example, to claim 18 of Fujikawa's involved application, for example, which is directed to a compound having structural formula (A), above, with the sole exception that the quinoline ring is substituted at. the "4" position not by 4-fluorophenyl, but by 4-chlorophenyl. This species falls outside the scope of proposed Counts 3 and 4 solely by virtue of the substitution of fluorine with another halogen, chlorine. No comparative data is offered by Fujikawa in respect of this chlorine species.

CONCLUSION

Fujikawa have failed to establish two requisites for entering a separate cyclopropyl (4-fluorophenyl) species count in this interference:
(1) The claims proposed to be added by Wattanasin do not comply with 35 USC 112 in the Wattanasin application, and therefore do not meet the requirement of 37 CFR 1.637 (c)(1)(iii)

[^8]It is concluded that the comparative data presented by Fujikawa, to the extent meaningful, merely indicate activity of the cylopropyl species as an HMG-CoA reductase inhibitor which is well within the range of normal expectancy across the genus of quinoline compounds corrres- ponding to Counts 1 and 2, particularly given the teachings and expectations of the prior art which point to ispropyl, cyclopropyl and 4-fluorophenyl as clearly preferred features (it also being noted that cyclopropyl is a mere ring homolog of isopropyl).

Accordingly, it is repectfully requested that Fujikawa's motion to redefine the interference be denied.

Respectfully submitted,

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF:rmf
July 1, 1992

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper
entitled:
OPPOSITION OF WATTIANASIN
TO FUJIKAWA ET AL.'S MOTION TO ADD COUNTS AND TO ADD CLAIMS TO WATTTANASIN APPLICATION
was served on counsel for the party Fujikawa et al., this list day of July 1992, by postage ore- paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Mater \& Neustadt, P.C.
Attn: Steven B. Keller, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
\qquad

(54) Trans-6-72-(substitutedpyrrol-i-y)
(57) 6 - $\{2$-(Substituted-pyrrol-1-y $)$ alkyl)pyran-2-ones of for-
mula
$\underset{4}{N}$

and the corresponding ring-opened hydroxy-acids derived therefrom are potent inhibitors of the enzyme 3-hydroxy-3methylglutarylcoenzyme A reductase (HMG-CoA reductase), and are thus useful hypolipidemic and hypocholesterolemic D agents, Pharmaceutical compositions containing such com1 pounds, and

呈

The present invention is related to compounds and pharmaceutical compositions useful as hypocholesterolemic
and hypolipideric agents. More particularly, this invention concerns certain trans-6-[2-(substitutedpyrrol-l-yl)alkyll-2-ones and the corresponding ring-opened acids derived therefrom which are potent inhibitors of the enzyme 3-hydroxy-3-methylgiutaryl-coenzyme A reductase ($H M G-C O A$ reductase); pharmaceutical composition containing such compounds, and method of lowering blood serum cholesterol levels employing such pharmaceutíal compositions.

Migh levels of blood cholesterol and blood liplds are conditions uhjch are involved in the onset of orteriosclerosis. It is well known that inhibitors of HMG-CoA reductase are effective in lowering the level of blood plasma cholesterol, especially low density ifpoprotein cholesterol (LDL-C), in man (cf. M. S. Brown and J. L. Goldstein, New England Journal of Medicine (1981), 3e5. No. 9, 515-517). It has now been established that lowering LDL-C levels affords protection from coronary heart disease (cf. Journal of the American Medical Association (1984) 251, No. 3, 351-374).

Moreover, it is known that certain derivatives of mevalonfc acid (3,5-dihydroxy-3-methylpentanoic acid) and the corresponding ring-closed lactone form, mevalonoIactone, inhibit the biosynthesis of cholesterol (cf. F. M. Singer et al.. Proc. Soc. Exper. Biol. Med. (1959). 182, 278) and F. B. Hulcher, Arch. Biochem. Biophys. (1971). 346. 422.

United States Patents 3,983,148; 4, ©49,495 and 4,137,322 disclose the fermentative production of a natural product, now called compactin, having an inhibitory effect on cholesterol biosynthesis. Compactin has been shown to have a complex structure wich includes a mevalonolactone moiety (Brown et al., J. Chem. Soc. Perkin $I_{1}(1976), 1165$.

Undted States Patent 4, 255,444 to Oka e0417.90559 closes several synthetic derdvatives of mevalonolactone having antilipidemic activity.

United States Patents $4,198,425$ and $4,262,813$ to Mitsue et al. disclose aralkyl derivatives of mevalonolactone which are useful in the treatment of hyperlifidemfa.

United States patent 4,375,475 to Willard et al. discloses certain substituted 4 -hydroxytetrahydropyran18 2-ones which, in the $4(R)$-trans stereoisomeric form, are inhibltors of cholesterol biosynthesis.
 alkyljpyran-2-ones and the corresponding ring-opened hydroxy-acids derived therefrom which are potent inhibitors of cholesterol biosynthesis by virtue of their ability to inhibit the enzyme 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMG-CoA reductase).

In particular, in its broadest chemical compound aspect, the present invention provides compounds of structural formula 1

wherein X is $-\mathrm{CH}_{2}{ }^{-},-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ or $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{7}{ }^{-}$. R_{1} is 1-naphthyl; 2-naphthyl; cyclohexyl; norbornenyl; phenyl: phenyl substituted by fluorine, chlorine, hydroxy, trifluoromethyl, alkyl of from one to four carbon atoms, alkoxy of from one to four carbon
atoms, or alkanoyloxy of from two to elght carbon atoms; 2-, 3-, or 4-pyridinyl: 2-, 3-, or 4-pyridinyl-N-oxidei 05

Where $R_{5}\{s$ alkyl of from one to four carbon ators and hal is chloride, bromide, or lodide. R_{2} and R_{3} are independently hydrogen; chloring; bromine; cyang;
where n is three or four; a ring denoted by
a ring denoted by
30

where R_{8} is hydrogen, alkyl of from one to six carbon atoms, phenyl, or benzyli or a ring denoted by

Where R_{g} and $R_{2 g}$ are hydrogen, alkyl of from one to four carbon atoms, or benzyl.
R_{4} is alkyl of from one to four carbon atoms, cyclopropyl, cyclobutyl, or trifluoromethyl.

Also contemplated as falling within this aspect of the invention are the corresponding dihydroxy-acid compounds of formula iI corresponding to the opened form of the lactone ring of compounds of formula I

II
Where X, R_{1}, R_{2}, R_{3}, and R_{4} are as defined above, and. the pharmaceutically acceptable salts thereof, all of the compounds bejng in the trans racemate of the tetrahydropyran moiety.

In another aspect of the present invention, there is provided a method of preparing compounds of formula I above by (a) first reacting a substituted [(pyriol-1-yl)alkyljaldehyde compound of formula III

III
where X, R_{1}, R_{2}, R_{3}, and R_{4} are as defined above, with the alkali metal salt of the dianion of wethyl acetoacetate to form compound of structural formula iv

5

IV
where X, R_{1}, R_{2}, R_{3}, and R_{4} are as defined above, then successivly (b) reducing compound iv with a trialkylborane and sodium borohyoride and (c) oxidizing with alkaline hydrogen peroxide to produce an acid compound of formula V

V
and finally (d) cyclizing, if desired, the acid compound of formula V to a lactone compound of formula I by heating in an inert solvent or, alternatively converting, if desired, the acid compound of formula V to a pharmaceutically acceptable salt.

In another aspect, the present invention provides pharmaceutical compositions, useful as hypolipidemic or hypocholesterolemic agents, comprising a hypolipidemic or hypocholesterolemic affective amount of a compound in accordance with this invention as set forth above, in combination with a pharmaceutically acceptable carrier.

In another aspect, the present invention provides a method of inhibiting cholesterol biosynthesis in a patient in need of such treatment by administering a pharmaceutical composition in accordance with the present invention as defined above.

> In a first preferred subgeneric chemical compound aspect, the present invention provides compounds of formula I above wherein X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-, \mathrm{R}_{1}$ is

```
                -7-
    as defined above, R R and R R are indepenseritly Qiyorgg%%,9
chlorine, or bromine, and }\mp@subsup{R}{4}{}\mathrm{ is as defined above.
    In a second preferred subgeneric chemical:compound
aspect, the present invention provides compounds of
cornula I above where X is -- CH2CH2-, R
5 Fhenyl or phenyl substituted by fluorine, chlorine,
hysiroxy, trifluoromethyl, alkyl of from one to
four carbon atoms, alkoxy of from one to four carbon
atoms, or alkanoyloxy of from two to efght carbon atoms,
or where R_ is 2-, 3-, or 4-pyfidinyl; 2-, 3-, or
le 4-pyridinyl-N-oxide, Or
```


where R_{s} is alkyl of from one to four carbon atoms and hal is chioride, bromide, or iodide. In this aspect of the invention, R_{2} and R_{3} are preferibly inoependently hydrogen, chlorine, or bromine, and R_{4} is alkyl of from one to four carbon atoms or tififuoromethyl.

In a third preferred subgeneric chemical compound zspect, the present invention provides compounds of formula I above where X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-, \mathrm{R}_{1}$ is phenyl or phenyl substituted by fluorine, chlorine, hydroxy, trifluoromethyl, alkoxy of from one to four carbon atons, or alkanoyloxy of from two to eight carbon atoms, R_{2} and R_{3} are independently hydrogen, chlorine, or bromine, and R_{4} is isopropyl or krifluoromethyl,

In a tourth preferred subgeneric chemical compound aspect, the present invention provides compounds of formula I above where X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$, and R_{1} is phenyl or phenyl substituted by fluorine, chlorine; trifluoromethyl, alkyl of from one to four
35 carbon atoms, alkoxy of from one to four carbon atoms, or alkanoyloxy of from two to eight carbon atoms, or where R_{1} is 1 -naphthyl. 0 or 2-naphthyl. In this preferied aspect of the invention, R_{2} and R_{3} are independently
hydrogen, chlorine, bromine, cyano, trifluoromethyl, phenyl, alkyl of from one to four carbon atoms, carboalkoxy of from two to elght carbon atoms, $-\mathrm{CR}_{2} \mathrm{OR}_{6}$ where R_{6} is hydrogen or alkanoyl of from one to $s i x$
a ring denoted by

where n is three or four; ring denoted by

 carbon atoms, or benzyl. In this aspect of the methyl. carbon atoms, $-\mathrm{CH}_{2} \mathrm{OCONHR}_{7}$ where R_{7} is alkyl of from one to $5 i x$ carbon atoms, phenyl, or phenyl substituted with chlorine, bromine, or alkyl of from one to four carbon atoms. In this aspect of the invention, R_{2} and R_{3} may also, when taken together with the carbon atoms to which
where R_{g} and $R_{1 g}$ are hydrogen, alkyl of from one to four invention, R_{4} is preferably alkyl of from one to four carbon atoms, cyclopropyl, cyclobutyl, or trifluoro-

In fifth preferied subgeneric chemical compound aspect, the present invention provides compounds of formula I above where X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - and RI
Is phenyl or phenyl substituted by fluorlne, chiorlne,
trifluoromethyl, alkyl of from one to four carbon atoms,
alkoxy of from one to four carbon atoms, or alkanoyloxy
of from two to elght carbon atoms. R_{2} and R_{3} are preferably independently hydrogen, chlorine, bromine, phenyl, or carboalkoxy of from two to elght carbon atoms. In thls aspect of the invention R_{2} and R_{3} may also, when taken together with the carbon atoms to which they are attached, form a. ring denoted by

where n is three.or four; a ring denoted by

where R_{B} is hydrogen, or alkyl of from one to four carbon atoms; or a ring denoted by

Where R_{9} and R_{10} are hydrogen or alkyl of from one to four carbon atoms. In this aspect of the invention, R_{4} is preferably alkyl of from one to four carbon atoms, or trifiuoromethyl.

In-t gixth preferred subgeneric chemicil compound aspect, the present invention provides compounds of
formula I above where X is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{R}_{1}$ is is phenyl or phenyl substituted by fluorine, chlorine, trifluor-
wethyl, alkyl of from one to four carbon atoms, alkoxy of
from one to four carbon atoms, or alkanoyloxy
of from two to elght carbon atoms. R_{2} and R_{3} are
preferably independently carboalkoxy of from two to elght carbon atoms or, when taken together with the carbon atoms to which they are attached form a ring denoted by

28 where R_{B} is hydrogen or alkyl of from one to four carbon atoms. In this aspect of the invention, R_{4} is preferably isopropyl or trifiuororethyl.

As used throughout this specification and the appended claims, the term alkyl" denotes a branched or unbranched saturated hydrocarbon group derived by the removal of one hydrogen atom from an alkane.

The term "alkoxy" denotes an alkyl group, as just defined, attached to the parent molecular residue through an oxygen atom.

The term "alkanoyloxy" is meant to denote an alkyl group, as defined above, attached to a carbonyl group and thence, through an oxygen atom, to the parent molecular residue.

The term "carboalkoxy" is meant to denote an alkyl group, as defined above, attached to an oxygen atom and thence, through a carbonyl group, to the parent molecular residue.

The term "norbornenyl" denotes a group derived by the removal of hydrogen atom (other than at a bridgehead carbon atom) from bicyciol2.2.1]hept-2-ene.

specifle examples of compounds contemplated as falifing within the scope of the present invention inciude the following：
trans－6－（2－（2－cyelobutyl－5－（4－fivorophenyd）－1具－ pyrtol－1－yl\}ethyl) tetrahydro-4-hydroxy-2H-pyran-2-one.
trans－6－（2－（2－Cyelohexyl－5－（4－E）vorophenyl）－2 pyrrol－i－yllethyldtetrahydro－4－hydroxy－pyran－2－one．
trans－Tetrahydro－4－hydroxy－6－\｛2－（2－Dethyl－5－

trans－6－［2－［2－（4－Chlorophenyl）－5－methyl－1H－ pyrrol－2－yldethyll tetrahydro－4－hydroxy－2B－pyran－2－one．
trans－Tetrahydro－4－hydroxy－6－［2－\｛2－（4－methoxy－ phenyd）－5－methyl－1H－pyriol－1－yl）ethyll－2H－pyran－2－one．
trans－6－［2－［2－（［1，1＇－Biphenyl］－4－yl）－5－methyl－ 1月－pyrrol－1－yl）ethylltetrahydro－4－hydroxy－2מ－pyran－2－one．
trans－Tetrahydro－4－hydroxy－6－【2－【2－methyl－5－ ［3－（trifluoromethyl）phenyl\}-1太-pyrrol-1-yl]ethyl]-2具pyran－2－one．
trans－6－［2－\｛2－（2，5－Dimethyl phenyl）－5－
（1－methylethyl）－1H－pyrrol－1－yl）ethylutetrahydro－4－ hydroxy－2k－pyran－2－one．
trins－6－［2－［2－（2，6－Dimethoxypheny1）－5－ （1－methylethyl）－1H－pyrrol－1－yluethylutetrahydro－4－ hydroxy－2H－pyran－2－one．
trans－Tetrahydro－4－hydroxy－6－［2－［2－methyl－5－ （2－naphthalenyl）－1H－pyrrol－1－yllethyl］－2甘－pyran－2－one．
trans－6－12－（2－（Cyclohexyl－5－trifluoromethyl－1其－ pyrrol－2－yl）ethyl\} tetrahydro-4-hydroxy-2h-pyran-2-one.
trans－6－［2－［2－（4－Fluorophenyl）－3，4－dimethyl－5－ （1－methylethyl）－1旦－pyrrol－1－yluethyljtetrahydro－4－ hydroxy－2留－pyran－2－one．
trans－2－（4－Fi uorophenyl）－5－（1－methylethyl）－1－［2－ （tetrahydro－4－hydroxy－6－oxo－2B－pyran－2－yl）ethyl］－1日－ pyrrole－3，5－dicarboxylic acid．
trans－2－（4－Fluorophenyl）$-n^{3}, N^{3}, N^{4}, N^{4}$－tetranethyl－ 5－（1－methylethyl）－1－【2－（tetrahydro－4－hydroxy－6－oxo－2日－ pyran－2－yl）ethyl］－1H－pyrrole－3，4－dicarboxamide．
－12－
trans－6－ 2 －（3，4－Dichloro－2－（3－fluoropheńyl）－5－ （1－methylethyl）－1H－pyrrol－1－yljethylutetrahydro－4－ hydroxy－2H－pyran－2－one．
trans－2－（4－Fluorophenyl）－5－（1－methylethyl）－1－（2－ （tetrahydro）－4－hydroxy－6－0xo－2H－pyran－2－yl）ethyl］－1 pyrrole－3，4－dicarbondtrile．
trans－6－（2－［3，4－Diacetyl－2－（4－fluorophenyl）－5－ （1－methylethyl）－1R－pyrrol－l－yl）ethyl］tetrahydro－4－ hydroxy－2H－pyran－2－one．
trans－Diethyl 2－（4－Fluoropheny1）－1－（2－（tetrahydro）－ 4－hydroxy－5－oxo－2H－pyran－2－yl）ethyl）－5－（trifluoromethyl）－ 1甘－pyrrole－3，4－dicarboxylate．
trans－Bis（l－methylethyl）2－（4－Fluorophenyl）－5－ （1－methylethyl）－1－（2－（tetrahydro）－4－hydroxy－6－oxo－2B－ pyran－2－yl）ethyll－1H－pyrrole－3，4－dicarboxylate．
trans－6－［2－（3，4－Diethyl－2－（4－fluorophenyl）－5－ （1－methylethyl）－1H－pyrrol－1－yl）ethyl］tetrahydro－4－ hydroxy－2H－pyran－2－one．
trans－6－（2－（2－（4－Fluorophenyl）－3．4－ bis（hydroxymethyl）－5－（1－methylethyl）－1县－pyrrol－1－yl）－ ethyljtetrahydro－4－hydroxy－2H－pyran－2－one．
trans－1－Methylethyl 4－Chloro－2－（4－fluorophenyl）－5－ （1－methylethyl）－1－［2－（tetrahydro）－4－hydroxy－6－oxo－2胃－ pyran－2－yl）ethyll－1H－pyrrole－3－carboxylate．
trans－6－［2－［4－（4－F］uorophenyl）－6－（1－methylethyl）－ 1旦－furø［3，4－c $]$ pyrrol－5（3H）－yl］ethyl］tetrahydro－4－hydroxy－ 2E－pyran－2－one．
trans－6－［2－\｛2－（4－Fluorophenyl）－5－（1－methyle thyl）－ 3，4－bis［［［（phenylamino）carbonyl］oxy］methyl］－l旦－pyrrol－ l－yljethyljtetrahydro－4－hydroxy－2g－pyran－2－one．
trans－l－Methylethyl 4－Chloro－5－（4－fluorophenyl）－2－ （1－methylethyl）－1－（2－（tetrahydro）－4－hydroxy－6－oxo－2H－ pyran－2－yl）ethylj－1
trans－Ethyl 5－（4－Fluorophenyl）－1－［2－（tetrahydro）－4－ hydroxy－6－oxo－2H－pyran－2－yl）ethyl］－2－（trifiuoronethyl）－ 1目－pyrrole－3－carboxylate．

$$
-13-
$$

0179559
trans－Ethyl 5－（4－Fluorophenyl）－2－（1－methylethyl）－ 4－phenyl－1－（2－（tetrahydro－4－hydroxy－6－ox0－2H－pyran－2－ yl）ethyll－1H－pyrrole－3－carboxylate．
trans－6－（2－（1－（4－F）uorophenyl）$-4,5,6,7$－tetrahydro－3－ methyl－2H－isoindol－2－yljethyldtetrahydro－4－hydroxy－2H－ pyran－2－one．
trans－4－（4－FI uorophenyl）－2－methyl－6－（1－methylethyl）－ 5－［2－（tetrahydro－4－hydroxy－6－oxo－2H－pyran－2－yl）ethyl］－ pyrrolo［3，4－c\} pyrrole-1, $3(2 \mathrm{H}, 5 \mathrm{H})$－dione．
trans－6－（2－（1－（4－Eluorophenyl）－5，6－dihydro－3－ （1－methylethyl）pyrrolo（3，4－c］pyrrol－2（4표）－yl］ethyl］－ tetrahydro－4－hydroxy－2H－pyran－2－one．
trans－6－（2－（1－（4－Fluorophenyl）－5，6－dihydro－5－ methyl－3－（1－methylethyl）pyrrolo［3，4－c pyrrol－2（4E）－yl］－ ethylltetrahydro－4－hydroxy－2H－pyran－2－one．
trans－6－（2－（3－Ch）oro－5－（4－fluorophenyl）－2－ （1－methylethyl）－4－phenyl－l－pyrrol－l－yllethylltetrahydro－ 4－hydroxy－2H－pyran－2－one．
trans－6－（2－［2－（4－Fluorophenyl）－5－（1－methylethyl）－ 3．4－diphenyl－1 2旦－pyran－2－one．

Particularly preferred compounds in accordance with the present invention are：
trans－6－［2－［3，4－Dichloro－2－（4－fi］uorophenyl）－5－ （1－methylethyl）－1H－pyrrol－l－yljethyl）tetrahydro－4－ hydroxy－2H－pyran－2－one．
trans－6－［2－（3．4－Dibromo－2－（4－f］uorophenyl）－5－ （1－methylethyl）－1具－pyrrol－1－yllethylltetrahyoro－4－ hydroxy－2H－pyran－2－one．
trans－6－（2－（2－（4－F］uorophenyl）－5－（trifiuoromethyl）－ 1旦－pyrrol－I－yl）ethyl］tetrahydro－4－hydroxy－2B－pyran－2－one．
trans－Diwethyl 2－（4－Fluorophenyl）－5－（1－methylethyl）－ 1－［2－（tetrahydro－4－hydroxy－6－oxo－2B－pyran－2－yI）ethyl］－ 1具－pyrrole－3，4－dicarboxylate．
trans－6－［2－［2－（4－Fluorophenyl－5－methyl－18－pyrrol－ 1－yllethyll tetrahydro－4－hydroxy－2B－pyran－2－one．

0179559

trans－6－［2－［2－（4－F］uorophenyf－5－（1－methylethyd）－ 1H－pyrrol－1－yl］ethyl］tetrahydro－4－hydroxy－2H－pyran－2－one． trans－6－（2－（2－Cyclopropyl－5－（4－fluorophenyl）－1H－ pyriol－l－yl）ethylltetrahydro－4－hydroxy－2H－pyran－2－one．
trans－6－（2－（2－（1，1－Dimethylethy1）－5－
（4－fluorophenyl）－1 hydroxy－2H－pyran－2－one．
trans－Tetrahydro－4－hydroxy－5－［2－［2－（2－methoxy－ phenyl）－5－triflưoromethyl－1H－pyrrol－1－yllethyll－2H－2－one．
trans－Tetrahydro－4－hydroxy－6－［2－［2－（2－wethoxy－ phenyl）－5－（1－methylethyl）－2H－pyrrol－1－yllethyll－2甘－ pyran－2－one．
trans－Tetrahydro－4－hydroxy－6－［2－［2－methy1－5－ （1－naphthalenyl）－1H－pyrrol－l－yllethyll－2H－pyran－2－one． 1H－pyrrol－1－yl）ethyl）tetrahydro－4－hydroxy－2H－pyran－2－one．
trans－6－［2－［2－（4－F］uorophenyl）－5－（1－methyl phenyl）－ 1甘－pyrrol－l－yllpropyljtetrahydro－4－hydroxy－2县－pyran－2－ one．

Compounds of the present invention where R_{2} and R_{3} are hydrogen are prepared by the methods outlined in Reaction Sequence 1 or Reaction Sequence 2. As shown in Reaction Sequence 1 ，the aldehydes，VI，are reacted with the appropriately substituted vinylketones， VII，in the presence of the thiazolium salt，VIII，and a base such as triethylamine，to produce the diketones，IX． （See Ang．Chem．Int．Ed．，15：639－712（1976））．

The diketones，$I X$ ，are reacted with an omega－amino－ alkylnitrile（compound Roman numeral ten where the value of X is methylene，ethylene，or l－methylethylene）in acetic acid to produce the disubstituted pyriole nftriles，XI．

Treatment of the pyrtole nitriles，XI，with difsobutylaluminum hydride in an inert solvent such as dichloromethane produces the corresponding pyrrole aldehydes，XII．

3-DEMETHYLMEVALONIC ACID DERIVATTVES AND PHARMACEUIICAL FRODUCTS BASED ON THESE COMPOUNDS

Derivatives of 3-hydroxy-3-methylglutaric acid (HMG) and of mevalonic acid have been described as inhibitors of cholesterol biosyathesis (M. T. Boots et al., J. Pharm. Sci. 69, 306 (1980), F. M. Singer et al., Proc. Soc. Exper. Biol. Med. 102, 270 (1959), H. Feres, Tetra- 10 hedron Lett. 24, 3769 (1983)). 3-Hydroxy-3-methylglutaric acid itself shows a significant cholesterol-lowering action in the rat and in human experiments (Z . Beg Experimentia 23, 380 (1967), ibid 24, 15 (1968), P. J. Lupien et al., Lancet $1978,1,283$).
Endo et al. (FEBS Letters 72323 (1970), J. Biol Chem. 253, 1121 (1978)) reported the inhibition of 3 -hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-COA reductase), the rate-determining enzyme of cholesterol biosyathesis, by the fermentation product "compactin".

Brown et al. (J. Chem. Soc. 1165 (1976) determined the chemicat strucrure and the absolute configuration of "compactin" by a combinsion of chemical, spectroscopic and X-ray crystallographic methods and were able to show that "compactin" is a derivative of the actone of 3-demethylmevalonic acid.
Compactin derivatives which inhibit the activity of HMG-CoA reductase have alreedy been deacribed (G E. Stokker et al., J. Med. Chem. 28, 347-358 (1985)).

The present invention relates to new synthetic unalogs of "compactin" in the form of the δ-lactone of the fommula I or in the form of the dihydrosy acid deriva jive II

11

In the formulae
In the formulac or $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$.
Z denotes a radical of the formula - CH or a nitrogen atom
R^{1}, R^{2} and R^{3}. independently of one another, denote $s s$ hydrogen, a saturated or unsaturated. straightchain or branched hydrocarbon radical which has up to 6 carbon atoms and can optionally be substituted on the terminal carbon by a saturated or unsaturated, cyclic hydrocarbon radical having 3-6 carbon atoms, a cyclic hydrocarbon radical which has 3-7 carbon atoms and is saturated or is unsaturated once or twice, an aromatic radical elocted from the group comprising phenyl furyh selected from the group comprising phenyl, furyh thienyl or pyndinyl. which can optionally carry in
the nucleus $1-3$ identical or different substituents from the following groups: halogen, trifluorofrom the following groups: halogen, trifluoro-
methyl, alixyl or alkenyl. each having up to 6 car-

5
bon atoms, hydroxyl, alkoxy having 1-6 carbon atoms, cartoxyl, or carbalixoxy having l-6 carbon atoms in the alkoxy moiety,
R^{4}.denotes hydrogen, a straight-chain or branchec, saturated or unsaturated hydrocarbon radical having up to 5 carbon atoms, a benzyl radical whose nucleus can thin susstituted 1-2 tiroer by halogen or an alkyl radical having $1-4$ carbon atoms, an alkali metal or an ammonium ion $N R^{3} R^{6} R^{7} R^{8}$ where $R^{R 5}, R^{6}, R^{7}$ and R^{8} are identical or different and denote hydrogen, alkyl having $1-4$ carbon atores or hydroxyalryl having $1-4$ carbon atoms.
The invention relates to the pure ecantiomers having the absolute configuration 4 R. $6 S$ indicated in the general formula I or the absolute configuration 3R.SS depicted in formula II.
Preferred substituents R^{1} and R^{2} are a straight-chain or branched alkyl radical having $1-4$ carbon atoms, a cycloalkyl radical having 3-6 carbon atoms, a cycloalk. ylmethyl or cycloalkenylmethyl radical having a ring size of 5-6 carbon atoms, a phenyl radical which can optionally carry l-3 identical or different substituents from the following groups halogen, trifluoromethyl. bikyl having 1-4 carbon atoms, hydroxyl, alkoxy having 1.4 carbon atoms or carbalkoxy having !-4 carbon 3toms in the alkoxy moiety.
The preferred meanings for R^{3} ? are bydrogen, a straight-chain or branched alkyl or alkenyl radical having up to 6 carbon atoms, a cyclaalkyl or cycloalkenyl radical, each having 3-6 carbon atoms, a phenyl or pyridinyl radical, it being possible for the aromatic radicals optionally to carry $1-3$ identical or different substituents from the following groups: halogen, alky!
having 1-4 carbon atoces, hydroxyl, alkoxy having 1-4 carbon atoms or carbalkoxy having 1-4 carbon atoms in the alkoxy moiety.
The preferred radicals R^{4} are hydrogen, methyl, ethyl, isopropyl, isobutyl, benzyl. sodium, potassium.
40 ammoniuin $\left(\mathrm{NH}_{4}\right)$ or methyltris(hydroxymethyl)ammonium.
Particularly preferred substituents R^{1} are: methyl, ethyl, isopropyl, sec.-butyl, tert.-butyl, cyclopropyl, cyclohexyl, pienyl, 4-chlorophenyl, 4-fluorophenyl,
45 4-hydroxyphenyl, 4-methoxyphenyl. 4-fluoro-3-methylphenyl, 3,5-dimethylphenyl, cyclohexylmethyl and 4trifuoromethylphenyl:
Particularly preferred substituents R^{2} are methyl. ethyl, isopropyl, sec.-butyl, tert.-butyl, cyelopropyl. cyclohexyl, phenyl, 4-ehlorophenyl, 4-nuorophenyl. 4-hydroxyphenyl, 4-methoxyphenyl; 4-fluoro-3-methylphenyl, 3,5-dimethylphenyl, cyclohexylmethyl and 4 trifluoromethylphenyl.
Particularly preferred substituents R^{3} are hydrogen. methyl, isopropyl, tert.-butyl, cyclohexyl, phenyi. \& fluorophenyl, 4-hydroxyphenyl. 2,5-dimethylphenyl. 3,5-dimethylphenyl and 4-trifluoromethylphenyl.
Particularly preierred substituents R^{\dagger} are kydrogen, 60 methyl, ethyl, sodium and potassium.

Very particular preference is given to compounds of the formula I in which \mathbf{Z} denotes a radical of the formula -CH ot N, R^{\prime} denotes ethyl, isopropyl, cyclopropyl, R.2 denotes 4-fluorophenyl, 4-hydroxyphenyl and R^{3} denotes isopropyl. tert.-butyl, cyclohexyl, phenyl, thydroxyphenyl or 4-fluorophenyl, and to the sodium and potassium saits of the corresponding dihydroxy carboxylic acids of the formula II.

$$
3
$$

4,925,852
The invention also relites to a proces for the preparation of compounds of the formulae I and II, which comprises
(a) reaction of the phophonium salts of the formula III

III

10

VIl
in which R^{1}, R^{2}, R^{3} and Z have the meaning indicated 1 for formula I, and X is CI, Br or I, with the chiral aldehyde of the formula IV

in which R^{9} is a protective group which is stable bases and weak acids, for example the $t-\mathrm{C}_{4} \mathrm{H}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Si}$ group, to give a compound of the formula V

in which R^{1}, R^{2}, R^{3} and Z have the meaning given for formula I, R^{9} has the meaning given for formula $I V$, and A-B represents the ($-\mathrm{CH}=\mathrm{CH}-$) group.
(b) acid hydrolysis of the methyl acetal group in a compound of the general formula V to give a lactol of compound of the formula VI

in which R^{1}, R^{2}, R^{3} and Z have the meaning given for formula $\mathrm{I}, \mathrm{R}^{9}$ has the meaning given for formula IV, and 65 A-B represents the ($-\mathrm{CH}=\mathrm{CH}-$) group.
(c) oxidation of the compound of the formula VI to
give a lactone of the general formula VII
v^{30} w be carried out on the compounds of the formula V, VI or VII to give compounds in which A-B represents the $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$ group
(f) where eppropriate conversion of a hydroxylactone of the general formula I into the corresponding dibydroxy acid of the formula II, or its salts, or, where
35 appropriate, preparation from the bydroxylactone I or the free hydroxy acid II of the corresponding esters. The phospbonium salts which are used as starting material in the process according to the invention and have the general formula III, in which R!, R2 and R^{3}
to have the meaning given for the general formula I, are obtained as depicted in scheme 1 .

Ketones of the general formula VIII, where R^{2} and R^{3} have the indicated meaning, are known from the R^{3} have the indicated meaning, are known from the
literature or can be prepared by processes known from 45 the literature (cf., for example, D. Vorländer and F. Kalkow, Berichte d. Dtscb. Chem. Ges. 30, 2268 (1897) or H. Stetter in Heuben-Weyl, Methoden der Organise. hen Cheraie (Methods of Organic Chemistry) Vol. VII/26, 1449-1507, Thieme, Stuttgart 1976). Likewise
$s 0$ known from the literature or amenable to preparation . by processes known from the literature (for example in analogy to M. Jackman, M. Klenk, B. Fishburn, B. F Tullar and S. Archer. J. Am. Chem. Soc. 70, 2884 (1948)) are the β-keto esters of the general formula IX .

35 where R^{1} has the abovementioned meaning, and. R^{10} denotes a straight-chain or branched alkyl radical hav. ing up to 6 carbon stoms, preferably a methyl or ethy? radical.
Compounds of the formula X in which R^{1}, R^{3}, R^{3} and $00 \mathrm{R}^{10}$ have the indicated meaning are prepared in analogy to literature processes, for exuraple according to R. Connor, D. B. Andrews, J. Am. Chem. Soc. 562713 (1943) and literature cited therein. An example of a process used to convert compounds of the type X into pyridines of the general formula $X V$ (in this, $R 1, R^{2}$ and R^{3} have the abovementioned meaning, and Z denotes a CH group) is that described by F. Rebberg and F. Kröhnke, Liebigs Ann. Chem. 717, 91 (1968).

4,925,852

5

-

described by E. A. Braude, J. Hannah, R. Linstead, J. Chem. Soc. 1960, 3257.

Compounds of the general fermula XV are reduced be prenared, for example in analogy to a literature process (E. F. Silversmith, J. Org. Chem. 27, 4090 (1962)) or for example aleo by a syntheas shown in scheme 1 , route A, by reacting a β-keto ester of the general formuia IX with an aldchyde of the type XI to give a compound of the general formula XII, and reacting the latter, without further purification, with an amidinium compound of the type XIII to give a dihydropyrimidinocarboxylic ester of the general formula 10 XIV . The preparation of compounds of the type XIV from components of the general formulae IX, XI and XIII can likewise be carried out as a one-pot reaction (scberne 1, route B).

The oxidation of compounds of the formula XIV to give pyriwidinocarboxylic esters of the general formula $X V$ in which R^{1}, R^{2}, R^{3} and R^{10} have the abovernentioned meaning, and Z denotes a nitrogen atom, is carconed weang, and Z denols a piod ried out in aralogy to procestes known from the literature, for example by dehydrogenation using chloroanil
or 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) as
by reaction with complex metal hydrides such as for example, lithium aluminum hydride or diisobutylaluminum hydride, in aprotic solvents, for example diethyl ether or tetrabydrofuran, at temperatures between $-30^{\circ} \mathrm{C}$ and $+5 \nu^{\circ} \mathrm{C}$
Alkyl halides of the general formula XVII, where R 1 $0 Z^{2}, R^{3}$ and X bave the abovementioned meaning, can be prepared from alcohols of the type XVI, for example by reaction with phosphorus halides in inert solvents such as, for example, dichloromethane or toluene, at temperatures between 0° and $100^{\circ} \mathrm{C}$., or by reaction with hydrobalic acids.

Phosphonium salts of the general formula III are obsined by, for example, reaction of the alkyl halides XVII with triphenylphosphine in inert solvents such a toluene, at temperatures between $20^{\circ} \mathrm{C}$. and $120^{\circ} \mathrm{C}$. (cf. toluene, at
scheme 1)

The chiral aldehyde of the formula IV which is used as starting material in the process according to the $i=-$ vention is obtained by a process known from the litersture (Yub Lin, J. R. Falck, Tetrabedron Letters 23, 4305-4308 (1982)) from the corresponding alcobol by oxidation with, for example, CrO_{3} or oxalyl chloride/dimethyl sulfoxide in the presence of triethylamine.
Reaction of the chiral aldehyde of the formula IV with a phosphonium salt of the formula III by the Wittig method (for example Wittig, Hsag, Chem Ber. 88. 1654 (1955)) results in compounds of the formula V, a preferred embodiment comprising dissolution or suspension of phosphoniom salts of the formula III in a solvent such as tetrahydrofuran, dimechyl sulforide or UME liberation of the corroponding phosphoranes UME, liberation of the corresponding phosphoranes using a suitable strong base such as, for example, sodium
hydride, potassium tert-butylate, Li echylate or burylihydride, potassium tert-butylate, Li echylate or butyli-
thium, and then addition of the aldehyde of the formula thium, and then addition of the aldehyde of the formula $+50^{\circ} \mathrm{C}$. for $1-6 \mathrm{~h}$
In this, the compounds of the formula V are mainly ${ }^{40}$ obtained in the form of mixtures of the E / Z oiefins. Mixtures of E/Z olefins can, where appropriste, be fractionatel by chromatography. The pure Z-olefins can also te obtained, as described by G. Drefahl Cbem. Ber. 94,907 (1961), by irradiation of the E / Z mixture in solutions, such as, for example, toluene or nitrobenzene. The cortesponding pure E-olefins can be obrsiocel, is described by De Tar et al. in J. Amer. Cbem. Soc. 78, 474 (1955), by heating the E / Z mixtures in solution in the presence of iodine.
The methyl acetal protective group is the compounds of the formula V can be selectively eliminated by acid hydrolysis in the generally cuatomary manner, preferably using a mixture of glacial acetic acid, tetrahydrofuran and water in the ratio $3: 2: 2$, at $+20^{\circ}$ to . $+90^{\circ} \mathrm{C}$., within 6-24 bours.
Oxidation of the compounds of the formula VI to give a lactone of the formula VII can be carried out by oxidiring agents such $\mathrm{CrO}_{3} \times 2 \mathrm{Pyr}$, or pyridinium chlorochromate in inert solvents such as, for example, methyleae chloride or chloroform. Further possibilities for the oxidation comprise reaction with thioanisole/ Cl_{2}. /NEt ${ }_{3}$ in carboa retrachloride, reaction with DMSCloxalyl chioride/NEt ${ }^{2}$ at $-20^{\circ} \mathrm{C}$., or reaction with N -iodosuccinimide/tetrabutylammonium iodide in dichloromethane.

To prepare the compounds of the formula 1 , the protective group R^{9} in the compounds of the formula VII is
eliminated. This can take pince with stroug acids such as 5 -normal hydrochioric acid or sulfuric acid, at -10° as 5 -normal hydrochioric acid or sulfuric acid, at -10°
C . to $+30^{\circ} \mathrm{C}$., or with Iuoride ions, preferably by dissolving the compounds of the formula VII in tetrahydrofuran or diethyl ether, and adding a mixture of tetrabutylammonium Iluoride and glacind acetic acid, fol lowed by stirring at $0^{\circ} \mathrm{C}$. to $40^{\circ} \mathrm{C}$. for between l and 12 hours.

Compoundis of the formula I in which A-B represents a ($\mathrm{CH}=\mathrm{CH}$) group are hydrogenated by a generally customary method, expediently at a temperature between $20^{\circ} \mathrm{C}$. and $40^{\circ} \mathrm{C}$. using hydrogen in the pregence of a metal catalyst preferably palladium platinum $\mathrm{P}_{1} \mathrm{P}_{2}$ or PdO_{2} to HO_{2} or PO_{2}, w give Comp a which A-B denotes a $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ group. This hydrogenation can be carried out under atonospheric pres sure in customary solvents such as tetrahydrofuran, ethyl acetate, methanol, jow molecular weight alcohols, glacial acetic acid or chloroform, or in autoclaves under elevated pressure ($2-50 \mathrm{~atm}$). The hydrogenation of the $-\mathrm{CH}=\mathrm{CH}-$ group can also be carried out on the compounds of the formulae V, VI or VII.

The resulting compounds of the formula I can be 45 isointed in a straightforward monner by evaporation of the solvent, where appropriate after purification by chromatography
The compounds of the formula I are obtained in optically pure form. Concerning the configaration of the 3 double bond ($\mathrm{A}-\mathrm{B}=-\mathrm{CH}=\mathrm{CH}-$) E / Z mixtures are obtained, and these can, at all siages of the synthesis, be fractionated by chromatography or isomerized to give the E form (cf. in this context, De Tar et al., J. Amer. Chem. Soc: 78475 (1955))

Compounds of the formula I in the form of the δ-lac tone csn be hydrolyzed in alkaline medium to give the corresponding salts of the dihydroxy acids, for example using NaOH or KOH in a low molecular weight alco hol such as methanol, or in ethers such as dimethoxyeth 0 ane or $T H F$, where appropriate in the presence of wa ter. The alkali metal cation in the resulting salts of the dihydroxy acids can, after acidification, be exchanged by any desired cations in ion exchanger, in the custom ary manner. For this purpose, for example, the dihy 5 droxy acids are allowed to run through a column packed with a cation exchanger, such as, for example, based on polystyrene/divinylbenzene (®AMBER. LITE CG-150 or ©DOWEX CCR-2). The cation

Apart from the compounds described in the exam ples, the process accordirg to the invention can be used o prepare the following compounds
E-6S-(2-(2-Cyclohexyl-4(4-fluorophenyl)-6-phenyl-
pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro 2H-pyran-2-one
E-6S-(2-(4-Cyclohexyl-2-(4-fluorophenyl)-6-phenyl-
pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro2 H -pyran-2-one
10 E-6S-(2-(4-Cyclohexylmethyl)-2-(1-methyicthyl)-6-phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(2-Cyclohexymethyl)-2-(1-methylethyl)-6-
Phenylpyridin- 3 -yl)ethenyl)-4R-hydroxy-3,4,5,6-tet rahydro-2H-pyran-2-one
E-6S-(2-(4-3,5-Dimethylphenyl)-2-(1-methylethyl-6-phenylpyridin-3-yl)etheayl)-4R-hydroxy-3,4,5,6-te:-rahydro-2H-pyran-2-one
E-6S-(2-(2-(3,5-Dimethylphenyl)-2-(1-methylethyl-6-phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet phenylry-2H-pyran-2-one
E. 6 S-(2-(4,6-Diphenyl-2-(1-methylethyl)pyridin-3-yl)e
 thenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(2,G-Diphenyl-2-(1-methylethyl)pyridin-3-yl)e-thenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(2-(1-Methylethyl)-6-phenyl-4-(4-trifluorome thylphenyl)pyridin-3-yi)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E.6S-(2-4-(1-Methylethyl)-6-phenyl-4-(4-trifluorome-thylphenyl)pyridin-3-yl;: henyl)-4R-hydroxy-3,4,5,6-tetrabydro- 2 H -pyran- 2 -inc
$35 \mathrm{E}-6$ S-(2-(4-(4-Fluoro-3-methyiphenyl)-2-(1-methyle thyl)-6-phenyipyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(2-(+Fluoro-3-methylphenyl)-2-(1-methyle thyl)-6-phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro- 2 H -pyran-2-one
E-6S-(2-6-(4-Fluorophenyl)-2-(1-methylethyl)-4 phenylpyridio- 3 -yl)ethenyl)-4R-hydroxy-3,4,5,6-tet rahydro-2H-pyran-2-one
E-6S-(2-(6-(4-Fluorophenyl)-4-(1-methylethyi)-2-phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet rahydro-2H-pyran-2-one
E-6S-(2-(6-(3,5-Dimethylphenyl)-4-(4-fluorophenyl)-2(1 -methylethyl)pyridin-3-yl)ethenyl)-4R-hydroxy-3.4,5,6-tetrahydro-2H-pyran-2-one

50 E-6S-(2-(6-(3,5-Dimethylphenyl)-2-(4-fluorophenyl) -1 (1 -methylethyl)pyridin- 3 -yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2 H -pyran-1-one
E-6S-($2-(4,6$-Bis-(1-methylethyl)-2-(4-fuorophenyl)-pyridia-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro2 H -pyran-2-one
E-6S-(2-(2,6-Bir-(1-methylethyl)-4(4-nuorophenyl)-pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro2 H -рyran-2-one
E E-6S-(2-(4-4-Fluoropheny) $)$-2-(1-methylethy 1$)-6$-(4-tri-fluoromethylphenyl)pyridin- 3 -yl)ethenyl)-4R hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E- $6 \mathrm{~S}-(2-(2-(4-$ Fluoropheny $)-4-(1-$ methylethyl $)-6-(4$-tri-fluoromechylphenyl)pyridin-3-yl)ethenyl)-4R-
hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(6-(4-Fluorophenyl)-(4-methoxyphenyl)-2-(1-methylethyl)pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one

11

E-SS-(2-(6-(4-Fluorophenyl)-2-(4-metboxyphenyl)-2-(1-methylethyl)pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro- 2 H -pyran-2-one
E-6S $-(2-(2,6-\operatorname{Bis}(1,1$ dimethylethyl) - (4 -fluorophenyl)-pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro2 H -pyran- 2 -one
E-6S-(2-(4,6-Bis(1,1 -dimethyletbyl)-2-(4-fluorophenyl)-pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-cetrahydro2 H -pyran-2-one
E-6S-(2-(4,6-Dimethyl-2-(4-fluoropbenyl)pyridin-3-yljecthenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2II-pyran-2-one
E-6S-(2-(2-Chlorophenyl)-4,6-dimethylpyridin-3-yl)-ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(2-(4-Fluorophenyl)-4-methyl-6-phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrabydro-2H-pyran-2-one
E-6S-(2-(2-(4-Fluorophenyl)-6-methyl-4-(1-methyle-thyl)pyridin-3-yl)etheny1)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(4-(1,1-Dimethylethyl)-2-(4-fluoropheny1)-6-phenylpyridin-3-yl)ethenyl)-4R-bydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-ope
E-6S-(2-(2,6-Dimethyl-4-(4-methoxyphenyi)pyridin-3-yi)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(4,6-Dimethyl-2-(4-methoryphenyl)pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrabydro-2H-pyran-2-one
E-6S-(2-(4-(4-Methoxypbenyl)-6-methyl-2-(1-methyle-thyl)pyridin-3-yl)ethenyl)-4R-bydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(2-(4-Methoxyphenyl)-6-methyl-4-(1-methyle-thyl)pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(2-(4-Methoxyficnyl)-4-(1-methylethyl)-6-pheaylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(6-(2,5-Dimethylphenyl)-2-(4-fuoroptenyl)-4 (1-methylethyl)pyridin:3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-iz-(2,4-Bis-(4-fluoropbenyl)-4-(1-methyiethyl)-pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(6-Cyclohexyl-4-(4-fluorophenyl)-2-(1-methylethyi)pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pytan-2-ode
E-6S-(2-(6-Cyclohexyl-2-(4-fluos. . ohenyl)-4-(1-methyletiayl)pyridin-3-yl)etheayl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(4-(4-Fluorophenyl)-2-(1R-metinylpropyi)-6-phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pytan-2-one
E-6S-(2-(4-(4-Fluorophenyl)-2-(1S-met上ylpropyl)-6-phenylpyridin-3-yl)ethenyl)-4R-hydrosy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(2-(1-Fluoropheny))-4-(1R-methylpropyl)-6-phezylpyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(2-(4-Fluoropheny)-4-(1S-methylypropyl)-6-phenylpyridio-3-yi)etheayl)-4R-hydroxy-3,4,5,6-tet-rahydro- 2 H -pyran-2-one
E-6S-(2-(2,6-Dimethyl-4-(4-nuorophenyl)pyridin-3-yl)ethyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one

E-6S-(2-(4-(4-Fluorophenyi)-2-(1-methylethyl)-6-phenylpyridin-3-yl)ethyl)-4R-hydroxy-3,4,5,6-tet-rabydro-2H-pyran-2-one
E-6S-(2-(2-(4-Fluorophenyi)-4-(1-methylethyl)-6 phenylpyridin-3-yl)ethyl)-4R-hydroxy-3,4,5,6-tet-rahydro-2H-pyran-2-one
E-6S-(2-(2-Cyclohexyl-4-(4-fluorophenyl)-6-phenyl-pyridin-3-yl)ethyl)-4R-hydroxy-3,4,5,6-terahydrc-2H-pyran-2-one
10 E-6S-(2-(4-(4-Methoxyphenyl)-2-(1-methylethyl)-6-phenyl)ethyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-0,
E-6S-(2-(6-(2,5-Dimethylphenyl)-4-(4-fluorophenyl)-2. (1-methylethyl)pyridin-3-yl)ethyl)-4K-hydroxy-
E-6S-(2-(6-(3,5-Dimethylphenyl)-4-(4-fuorophenyl)-2. E-6S-(2-(6-(3,5-Dimethylphenyl)-4-(4-nuoropieny 3,4,5,6-tetrahydro-2H-pyran-2-one
20 E-6S-(2-(5-(2-Phenyl-4-(4-fluorophenyl)-6-isopropyl)-pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-(2-Methylpheny!)-4-(4-chlorophenyi) 6 -isopropyl)pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-
25 t.trabydro-2H-pyran-2-one
t.trabydro-2h-pyran-2-one
E-6S-(2-(5-(2-(2,6-Dimethylpheny))-4-(4-fluorophenyl)-6-isopropyl)pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(3-(2-(2,6-Dichlorophenyl)-4-(4-fluorophenyl)-
0 6-isopropyl)pjrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-Phenyl-4-(4-chlorophenyl)-6-t-butyl)-pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
35 E-6S-(2-(5-(2-Phenyl-4-(4-fluorophenyl)-6-t-butyl)-pyrimidinyl)ethyl)-4R-bydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-Phenyl-4-(4-nuoro-3-methylphenyl)-6-isopropylpyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-
tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-Phenyl-4-(4-fluoro-3-methylphenyi)-6-isopropylpyrimidinyl)ethyl)-4R-hydroxy-3,4,5,6-tet-ahydro-2H-pyran-2-one
45 E-6S-(2-(5-(2,6-Diisopropyl-4-(4-chlorophenyl)-pyrimidinyl)ethenyl)-4R-hydrexy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2,6-Diisopropyl-4-(4-methoxyphenyl) pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
50 E-6S-(2-(5-(2,6-Dimethyl-4-cyclohexyl)pyrimidinyl)e-thenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyras-2-one
E-6S-(2-(5-(2,6-Diisopropyl-4-cyciohexyl)pyrimidinyl-
E-6.thenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-Phenyl-4-cyclohexyl-6-isopropyl) . pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyoun-2-one
60 E-6S-(2-(5-(2,6-Ditert-ivutyl-4-(4-chlorophenyl)-pyrimidinyl)etr,enyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2,6-Ditert.buryl-4-(4-nuorophenyl)-E-6S(2-(5-(2,6-Ditert.-buty)-4-(4)-huorophent)-4R-hydroxy-3,4,5,6-tetrahydro-
65
2H-pyran-2-one
E-6S-(2-(5-(2-Methyl-4(4-nuoro-3-methylphenyl)-6-iso-propyl)pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tet. rahydro-2H-pyran-2-one

$4,925,852$

E-6S-(2-(5-(2-Methy! -4 (4-fluorophenyl)-6-isopropyl) pyrimidinyl)cthyl)-4R-hydroxy-3,4,5,6-cetrahydro 2H-pyran-2-one
E-6S-(2-(5-(2-(2,6-Dictloropheny))-4-(4-fluorophenyl)-6-isopropyl)pyrimidinyl)echenyl)-4R-inydroxy-3-4,5,6-ictrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-(2-Chloro-4-methylpheny))-4-(4-chioro phenyl)-6-isopropyl)pyrimidinyl)ethenyl)-4R hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-(2,4-Dichlorophenyl)-4-(4fluorophenyl)-6-methyl)pyrimidinyl)ethenyl)-4R-hydroxy-3,4,5,6-tetrabydro-2H-pyran-2-one
E-6S-(2-(5-(2-(2,4-Dimethyl-phenyl)-4-(4-methoxy phenyl)-6-isopropyl)pyrimidinyl)ethyl)-4R-hydroxy 3,4,5,6-tetrahydro-2H-pyran-2-onc
-6S-(2-(5-(2-(2-Chloro-4methyl-phenyl)-4(4nuoro-3-phenyl)-6-isopropyl)pyrimidinyl)ethyl)-4Rhydrox x - $3,4,5,6$-tetrahydro- 2 H -pyran-2-one
E-6S-(2-(5 -(2-Methyl-phenyl-6-tert.butyl)pyrimidinyl)ethenyl) 4 R -hydroxy- $3,4,5,6$-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-Methyl-4-phenyl-6-tert.buty)-pyrimidinyl)ethyl)-4R-hydroxy-3,4,5,6-tetrahydro-

14
hythm, with cholestyramine ((®) CUEMID). The substrate used was $(\mathrm{S}, \mathrm{R})-{ }^{14} \mathrm{C}-\mathrm{HMG}-\mathrm{CoA}$, and the NADPH concentration was maintained during the incubation by a regenerating system. ${ }^{4} \mathrm{C}$-Mevaionste was separated
5 from the substrate and other products (for example ${ }^{14} \mathrm{C}$-HMG) by column elution, the elurion profile of andividul ample being deternined ${ }^{3}$-Mevalo ach : te wa cause relative dati on the inibitory effects were re quired. In each series of tests, the enf: me-free control the enzyme-containing normal minture ($=100 \%$) and hose with additions of product, final concentratio 10^{-5} to $10^{-9} \mathrm{M}$, were treated together. Each individua value was the mean formed from 3 parallel samples. Th is significance of the mean differences between product free and product-containing samples was assessed using the t test.
Using the method descrited above, the following alues for the inhibition of HMG-CoA reduclase was deteroined for the compounds according to the inven ion for example [IC $\mathrm{C}_{\mathrm{s}} / \mathrm{mol} /$ ititer denotes the molar concentration of the compound required for 50% inhibition):

Compound of Example	z	R^{1}	R^{2}	$\mathrm{R}^{\mathbf{3}}$	A-B	IC
13.	CH	CH_{3}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	CH_{3}	(E)-CH=CH	$2.6 \cdot 10^{-7}$
13 b	CH	CH_{3}	${ }_{4} \mathrm{CCC}_{6} \mathrm{H}_{4}$	CH_{3}	(E)- $\mathrm{CH}=\mathrm{CH}$	9.4. 10^{-8}
lse	CH	CH_{3}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{5} \mathrm{H}_{5}$	$(\mathrm{E})-\mathrm{CH}=\mathrm{CH}$	$3.8 \cdot 10^{-8}$
13 d	CH	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FCOH}_{4}$	CH_{3}	(E)- $\mathrm{CH}-\mathrm{CH}$	$9.1 \cdot 10^{-9}$
ise	CH	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FCO}_{6} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{3}$	(E)- $\mathrm{CH}-\mathrm{CH}$	$2.9 \cdot 10^{-8}$
138	CH	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{6} \mathrm{H}$ S	(E)- $\mathrm{CH}-\mathrm{CH}$	$4.0 \cdot 10^{-9}$
${ }^{13} \mathrm{~g}$	CH	${ }_{1 \mathrm{C}_{4} \mathrm{H}_{9}}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	(E)- $\mathrm{CH}=\mathrm{CH}$	$1.8 \cdot 10^{-8}$
13 i	CH	$\mathrm{iC}_{3} \mathrm{H}_{7}$	4 FCOH	$2 \mathrm{~S}_{4}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	(E)- $\mathrm{CH}-\mathrm{CH}$	S.0. s^{-8}
13 j	CH	$\mathrm{i}^{\text {C }}$ 3 H_{7}	$4 \mathrm{FCOH}_{4}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	(E)- $\mathrm{CH}=\mathrm{CH}$	$2.3 \cdot 10^{-9}$
13k	N	CH_{3}	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	CH_{3}	(E)- $\mathrm{CH}=\mathrm{CH}$	$5.0 \cdot 10^{-7}$
131	N	CH_{3}	${ }_{4} \mathrm{CaC}_{6} \mathrm{H}_{4}$	CH_{3}	(E)-CH-CH	$6.0 \cdot 10^{-7}$
130	N	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{3}$	(E)- $\mathrm{CH}=\mathrm{CH}$	$3.0 \cdot 10^{-9}$
139	CH	iC) H_{7}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$i_{\text {i }}^{3} \mathrm{H} \mathrm{H}_{7}$	(E)- $\mathrm{CH}=\mathrm{CH}$	$2.5 \cdot 10^{-9}$
13 r	CH	${ }_{1 C_{3} \mathrm{H}_{7}}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$		(E) $-\mathrm{CH}-\mathrm{CH}$	1.2-10-9
135	CH	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{CCO}_{*} \mathrm{H}_{11}$	(E)-CH=CH	$3.7 \cdot 10^{-9}$
пиissing orissing						
$13{ }^{13}$	N	$\mathrm{C}_{\mathbf{C}}^{3} \mathrm{H}_{7}$	$4 \mathrm{FC}_{5} \mathrm{H}_{4}$	$\mathrm{iC}_{3} \mathrm{H}_{7}$	(E) $-\mathrm{CH}-\mathrm{CH}$	$2.5 \cdot 10^{-4}$
13 w	N	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	(E)- $\mathrm{CH}-\mathrm{CH}$	$0.9 \cdot 10^{-8}$
132	N	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4-\mathrm{FC}_{8} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	${ }_{-2} \mathrm{CH}_{3}-\mathrm{CH}-$	3.3 - 10^{-9}
13 sb	CH	iC $_{3} \mathrm{H}_{7}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$4 \mathrm{HOC}_{6} \mathrm{H}_{4}$	(E)-CH-CH	1.3. 10^{-9}
13 cc	CH	$\mathrm{CCH}_{3} \mathrm{H}_{5}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	CaH_{3}	(E)-CHmCH	$1.0 \cdot 10^{-9}$

2H-pyran-2-one
E-6S-(2-(5-(2-Phenyl-4-(4-fluorophenyl)-6-isopropyl)-pyrimidinyl)ethyl)-4R-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one
E-6S-(2-(5-(2-Phenyl-4-(4-fluoro-3-methyl-phenyl)-6-tert-butyl)pyrimidinyl)ethyl)-4R-hydroxy-3,4,5,6-tet rahydro-2H-pyran-2-one
E-65-(2-(2-(4-Fluorophenyl)-6-(4-hydroxyphenyl)-4-(1-methylethyl)pyridin-3-yl)ethenyl)-4R-hydroxy 3,4,5,6-tetrahydro- 2 H -pyran-2-one
E. 6 S-($2-(2-(4$-HydroxyphenyI) -4 -(1-duethylethyl) 6 -phenylpyridin-3-yl)ethenyl)-4R-hydroxy-3.4,5,6-tet-ahydro-2H-pyrart-2-one
E-6S-(2-(4-Cyclopropyl-2-(4-fluorphenyl)-6-phenyl pyridin-3-yl)ethenyl)-4R-hydroxy-3,4,5,6-tetrahydro2 H -ругал-2-one

BIOLOGICAL ASSAY SYSTEMS

1. HMG-COA reductase activity in enzyme prepara-

The HMG-COA reductase activity was measured on solubilized enzyme preparations from rat liver microsomes induced, dfter a changeover in the day/night
2. Suppression or inhibition of HMG-CoA reductase in cell cultures of HEP.G2 cells trient medius were preincubated with approprizee nucentrations of the preincubated with appropriate conexample 1 hour), the labeled precursor, for example sodium ${ }^{14} \mathrm{C}$-acetate was added and then the incubation 35 was continued (for example for 3 hours). Addition of an internal standard (${ }^{3} \mathrm{H}$-cholesterol) was followed by alkaline hydrolysis of some of the cells. The lipids were extracted from the hydrolyzed cells using chloroform/methanol Carier cholesterol was added ic this lipid /r. toixture which was then subected to preparative thin layer chromatography, the cholesterol band was visual ized with iodine vapor and then isolated, and the amount of ${ }^{1+C}$-cholesterol formed from the ${ }^{1+} \mathrm{C}$-precursor was determined by scintigraphy, Cellular protein 65 was determined in an aliquot of the cells, so that it is possible to calculate the amount of ${ }^{1+} \mathrm{C}$-cholesterol formed per mg of cellular protein in unit time. Comparison of this figure with the amount of ${ }^{+C}$ C-cholesterol

15
$4,925,852$
formed per $m g$ of cellular protein and unit time in a cultire treated in the same way but containing no test substasce revealed the inhibitory effect of the particular teat product on the cholesterol biosynthesis of HEP-G2 cell cultures.

Using the method described above, the following values for the inhibition of cbolesterol biosynthesis (in HEP-G2 cells) were determined for the compounds according to the invention, for example (the ICso/mol/liter is the concentration of the compound which brings about 50% imhibition of cholesterol biosynthesis) (Tab. 2):
these types. One starting point for this is the inhibition or reduction of endogenous cholesterol biosynthesis. Inhibitors of :HMG-COA reductase block cholesterol biosynthesis at an early stage.
5 Hence the compounds of the general formula I or II are suitable as hypolipidemics and for the treatment or prophylaxis of arteriosclerotic changes.

Hence the inver:ion also relates to $F^{\text {h }}$ armaceutical products based on these compounds and to their use as 10 medicaments, in particular as hypolipodemies and for the prophylaxis of arteriosclerotic changes.
The compounds of the formida I or II are used as hypolipidemies or anti-arteriosclerotics in oral doses of 3 to 2500 mg , but preferably in the dase range $10-500$ 15 mg . These daily doses can, where required, also be divided into two to four single doses or administered in sustained release fonm. The dosage regimen may depend on the type, age, weight, sex and medical condition of the patient.
20 An additional cholesterol-lowering effect can be achieved by concurrent administration of the compounds according to the invention with substances which bind bile acids, such as, for example, anion exchanger resins. Excretion of bile acids results in an 25 i. crease in neosynthesis and thus in an increase in cholesterol breakdown (cf. M. S. Brown, P. T. Koranen and J. C. Goldstein, Science 212, 628 (1981); M. S. Brown, J. C. Goldgtein, Spektrum der Wissenschaft 1985, 1, 96).
30 The compounds of the formula I or II, according to the invention, can be used in the form of the δ-lactones, as the free acids or in the form of their physiologically acceptable inorganic or organic salts or as esters. Acids and salts or esters can be used in the form of their aque3 ous solutions or suspensions, or dissolved or suspended in pharmacologically acceperable organic solvents such as monohydric or polyhydric alcohols such as, for ex-

TABLE 2

Compound of Example	\geq	P1	R^{2}	$\mathrm{R}^{\mathbf{3}}$	A-B	ICso/mol/
lic	CH	CH_{3}	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{0} \mathrm{H}_{5}$	(E)- $-\mathrm{CH}=\mathrm{CH}$	$9 \cdot 10^{-8}$
11 d	CH	$\mathrm{i}_{-\mathrm{C}}^{3} \mathrm{H} 7$	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	(E)--CH-CH	$5 \cdot 10^{-8}$
lle	CH	$\mathrm{i}_{-\mathrm{C}}^{\mathbf{C} \mathrm{H}_{7}}$	$4 \mathrm{~F}-\mathrm{C}_{6} \mathrm{H}_{4}$	CaH_{3}	(E)-CH-CH	5. 10^{-9}
110	N	$\mathrm{i}_{-} \mathrm{C}_{3} \mathrm{H}_{7}$	4.F-C. ${ }_{\text {ch }}$	$\mathrm{Co}_{0} \mathrm{H}$ S	(E) $-\mathrm{CH}=\mathrm{CH}$	3. 10^{-9}

The compounds of the general formula I or II are distinguished by strong inhibition of HMG-CoA reductase, the rate-determining enzyme of cholesterol biosynthesis.
The extent of inhibition which is chasucterized by 30 ICso values in the range $10^{-7}-10^{-9} \mathrm{~mol}$.per liter for compounds of the general formula I or II is distinctly higher than that for fully synthetic HMG-COA reduc. tase inhibitors known from the literature, such as, for example, those deacribed by G. E. Stokker et al., J. 5 Med. Chem. 29, 170 (1986).
The enzyme HMG-CoA reductase is widespread in nature. It catalyzes the formation of mevalonic acid from HMG-CoA. This reaction is a central step in chofrom HMG-CoA. This reaction is a central step in cho-
lesterol biosynthesis (cf. J. R. Sabine in CRC Series in to Enzyme Biology: 3-hydroxy-3-methylglutaryl Coenzyme A Reductase, CRS Press Inc. Boca Raten, Fla. 1983 (ISEN 0-8493-6551-1))

A connection is drawn between high cholesterol levels and a number of disorders such as, for example, 6 coronary heart disease or arterioscierosis Hence the lowering of elevated cholesterol levels is an aim of therapy for the prevention and treatment of disorders of
ample, ethanol, ethylene glycol or glycerol, in triacetin in alcohol/acetaldehyde discetal mixtures, oils such as. for example, sunflower oil or fish liver oil, ethers such as, for example, diethylene glycol dimethyl ethe:, or polyethers such as, for example, polyethylene glycol, or in the presence of other pharmacologically acceptable polymeric vehicles such as, for example, polyvinylpyrrolidone, or in solid formulations.
The preferred pharmaceutical forms for the compounds of the formula I or II are solid, can be adminis tered urally and may contain the customary auxiliaries They are produced by customary methods.

Particularly suitable formulations for oral use are o tablets, coated tablets or capsules. One dosage unit pref erably contains 10 to 500 mg of active substance.
The compounds of the formula III, V, VI and VII are new and represent valuable intermediates for the prepa ration of compounds of the formula I. Hence the invention also relates to these compounds and to processes for their preparation.

Preliminary note: Unless otherwise specified, NMR spectra were measured in CDCl_{3} with TMS as internal

MISSING PAGE(S)

FROM THE U.S. PATENT OFFICE OFFICIAL FILE WRAPPER

Colvmas 17-60

61
tered through bieselguhr and evaporated．Ix remained in the form of white erystels
Yield： 3.93 g （98\％）
Melting poimt： $170^{\circ}-172^{\circ} \mathrm{C}$
$[\alpha] D^{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right):+13^{\circ}$ ．
iH－NMR：8／ppm $=1.5-1.9(\mathrm{~m}, 2 \mathrm{H}), 1.2$（brr，1H）， 2.6
（ 3 HH ） $2.7(\mathrm{~s}, 3 \mathrm{H}), 2.6-3.0(\mathrm{~m}, 2 \mathrm{H}), 4.3(\mathrm{~m}, \mathrm{HH}), 4.5-4.6$ （m，1H），7．1－7．2（m，2H），7．4－7．5（m，2H）．

EXAMPLE $12 b$
1.0 g of the compound E－Ie（Example lle）was re 1.08 of the conditions indicated in Example 120 to ctod und give the hydrog $\mathrm{Z}=\mathrm{CH}, \mathrm{A}-\mathrm{B}=-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ）．
Yield $0.918(91 \%)$
Yield： $0.91 \mathrm{~g}(91 \%)$
Melting point：oil．
．
$[\alpha] p^{23}\left(\mathrm{CH}_{3} \mathrm{OH}\right):+26^{\circ}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 6 / \mathrm{ppm}=1.3-1.8(\mathrm{~m}, 1 \mathrm{H}), 2.3-2.8(\mathrm{~m}, 7 \mathrm{H})$,
$34(\mathrm{~h}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.2(\mathrm{mc}, 1 \mathrm{H})$ ，
MS：$m / e=433\left(M^{+}\right)$

EXAMPLE 12

10 g of the compound E－It（Example 11d）was te
1.0 g of the compound Elt（he conditions indicated in Example 128 to acted under the condion product $\mathrm{Iz}_{2}\left(\mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}^{2}=4\right.$－ give
Field： $0.93 . \mathrm{g}(91 \%)$ ．
Melting point： $53^{\circ}-55^{\circ} \mathrm{C} \quad 6 \mathrm{H}, 1.5-1.9 \quad$（m， 4 H ）， 30
H－NMR： $8 / \mathrm{ppmen}=1.4(\mathrm{mc}, 6 \mathrm{H}), 1.5-1.9$（min 4 H$)$ ，
． $5.2 .9(\mathrm{~m}, 4 \mathrm{H}), 4.3(\mathrm{mc}, 1 \mathrm{H}), 4.5(\mathrm{mc}, 1 \mathrm{H}), 7.1(\mathrm{mc}, 2 \mathrm{H})$ ，
$7.3-7.5(\mathrm{~m}, 6 \mathrm{H}), 8.0(\mathrm{mc}, 2 \mathrm{H})$
MS： $\mathrm{m} / \mathrm{e}=429\left(\mathrm{M}^{+}\right)$．
It is possible in a maner analogous to than deacribed
in Exampie 12 to hydrogenate the compoumes of the

4，925，852
62
eneral formula 1 with $\mathrm{A}-\mathrm{B}=-\mathrm{CH}=\mathrm{CH}$－to give cmpounds of the general formula I with A－B $=-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$

EXAMPLE 13
Preparation of the salts of the free dihydroxy acids of the general formula I
Example $13 a\left(\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{R}^{j}=\mathrm{CH}_{3}\right.$ $\mathrm{R}^{4}=\mathrm{K}, \mathrm{Z}=\mathrm{CH}, \mathrm{A}-\mathrm{B}=(\mathrm{E},-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$ （E）－and（Z）－（3R，5S）－3，5－Dihydroxy－7－（2，6－dimethyl： 4（4－fluorophenyl）pyridin－3－yl）－6－heptenoic acid potas． sium selis，E－IIa and Z－IIs（as $30-70$ mixture of Z and II） vomers）
0.10 g （ 0.29 mmol ）of the compound Ia was dissolvel

15 in 5 ml of ethanol． $2.9 \mathrm{ml}(0.29 \mathrm{mmol})$ of a 0.1 －molar solution of potassium hydroxide in ethanol was added to shis solutiou at room temperature．The progress of the teaction was followed by thin－layer chromatography reaction was followed acetate／methanol 10：1）．Precursor 20 （mobile phase ethyl longer present after 3 h ．The reaction solution was no longer present ater The potassium salt Ila re was cunerntrated of white crystals．
mained in the form（ Yield： 0.11 g （ 96% ）（ 30.70 mixture of 2－1Ia The isomers were then separated 2.1 ）： 0.23 ．
Z．Ha：Ri（ethyl acetate／methanol
IR： $1605 / 1575 \mathrm{~cm}^{-1}(\mathrm{C}=0$ band）． 10.
E－IIa：Ri（ertyl acetate／methanol
EXAMPLES 13b－13z
The compounds Inb－IIz were prepared in a manller nalogous to that described in Example 13a（cf．Tahle 14）．

TABLE 14

Example	Compertar		©	$=(\mathrm{E})-\mathrm{CH}=$	$=\mathrm{CH} .(\mathrm{Z})-\mathrm{CH}=\mathrm{O}$		R＿（z：if）
			R^{\prime}			Yield \％	
Exmpl	1 lb ．	CH	CH_{3}	$4 \mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	97 97	0．30： 0.20
c	IIe	$\mathrm{CH}_{\mathrm{CH}}$	${ }_{\text {CH3 }} \mathrm{CH}_{3} \mathrm{CH}_{7}$	${ }_{4} \mathrm{FCO}_{6} \mathrm{Hs}^{\text {a }}$	CH_{3}	92	\cdots
d	Ild	${ }_{\mathrm{CH}}^{\mathrm{CH}}$		$4 \mathrm{FCOH}_{4}$	COH_{5}	99	\cdots
e	He	$\xrightarrow[\mathrm{CH}]{\mathrm{CH}}$	${ }_{4} \mathrm{FCC}_{6} \mathrm{H}$	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$\mathrm{CoH}^{\text {che }}$	9	一：0．9\％
1	ili	$\mathrm{CH}_{\mathrm{CH}}$	${ }_{\mathrm{r}}^{\mathrm{C}} \mathrm{CH}_{4}$	$4 \mathrm{FC}_{4} \mathrm{H}_{4}$	CoH_{5}	97 96	一：0．498
8	${ }^{118}$	$\stackrel{C}{\text { ci }}$	$\mathrm{iC}_{3} \mathrm{H} 7$	$4 \mathrm{CH}_{3} \mathrm{OC}_{0} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{Ca}_{3} \mathrm{H}_{3}$	100	－0．0．0
h	${ }^{11}$	CH	$\mathrm{CO}_{5} \mathrm{H}_{7}$	$4{ }_{4} \mathrm{FC}_{6} \mathrm{H}_{4}$		9	－0．0．4\％
¢	！	CH	$\mathrm{iC3}^{\text {C }} \mathrm{CH}_{3}$	${ }_{4}^{4} \mathrm{FCC}_{6} \mathrm{H}_{4}$		94	0．20．0．14 ${ }^{\circ}$
${ }^{j}$	Hix	N	CH_{3}	${ }_{4-\mathrm{CCO}}^{4}$	CH_{3}	97.	0．17：014
1	In	N	CH_{3}		CH_{3}	96	0．32： $0.72{ }^{2}$
\pm	Ilm	N	CH_{3}	${ }_{4-\mathrm{ClC}_{6} \mathrm{Cl}_{6} \mathrm{CH}_{4}}$	${ }_{\mathrm{H}}$	93	0．20．0．0
0	1 n	${ }_{N}^{N}$	$\mathrm{CiC3}_{3}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	CaH_{3}	97	－：0．310
－	Ho	N N		$4{ }_{4} \mathrm{FC}_{6} \mathrm{H}_{4}$	CH_{3}	93	一：0．140
P	IIp	${ }_{\mathrm{CH}}^{\mathrm{CH}}$		$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{iC}_{3} \mathrm{H}_{7}$	95 98	－：0，30
9	Ha_{4}	CH	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	${ }_{1-4} \mathrm{CaH}_{9}$	98	－0\％\％
t	$\stackrel{\text { Ifr }}{ }$	CH	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{CCO}_{6} \mathrm{H}_{11}$	${ }_{98}^{96}$	0．40，\％ 21
；	It	CH	$\mathrm{C}_{2} \mathrm{H}_{5}$	$4 \mathrm{FC}_{6} \mathrm{H}_{4}$	CaH_{3}	100	
t	If	CH	${ }_{-C_{6} \mathrm{H}_{11}}$	$4 \mathrm{FCC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{H}_{7}}$	100	－： $0 \%{ }^{2}$
$\stackrel{4}{v}$	$\mathrm{Hu}^{11 \mathrm{l}}$	N	$\mathrm{iCH}_{\mathrm{C}_{3} \mathrm{H}_{7}}$	${ }_{4} \mathrm{FC}_{6} \mathrm{H}_{4}$	${ }_{4} \mathrm{FCC}_{6} \mathrm{FCH}_{4}$		－035
ω	Hw	N	$\mathrm{iC}_{3} \mathrm{H}_{7}$	$4 \mathrm{FCO}_{6} \mathrm{H}_{4}$			

JUN 19'92 12:21 SANDC ${ }^{\prime}$ cORP. PAT. AND TM
P. $2 / 3$

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re: WATTANASIN
102,648
Serial No.: 07/498,301
Filed: March 23, 1990
FOR: QUINOLINE ANALOGS OF MEVALONOLACTONE AND DERIVATIVES THEREOF

POWER TO INSPECT AND MAKE COPIES

Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

Dear Sin:
Kindly permit Marian Schwartz, Ann Rutledge, Rosalie Jared, Somchay Chinyavong, Judy Valusek, James Jackson, Bobbie Judy, or Nancy Perry of Specialized Patent Services to inspect and make copies in the above noted matter, including recently declared Interference No. 102,648 in which said patent is involved.

Respectfully submitted,
June 19, 1992

SANDOZ CORP.
59 Route 10
E. Hanover, N.J. 07936

DEF:ICI

in the united statrs patent and trademark offgct 61992 ; 30 before the board of patent appeals and interferences

WATtanasin

```
v. INTERFERENCE 102,648
PICARD et al
EXAMINER-IN-CHIEF:
MICHAEL SOFOCLEOUS
```


FUJIKAFA et al

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231

BOX INTERFERENCE

SIR:
Pursuant to the provisions of the above rule, Fujikawa et al hereby requests a five-day extension of time to reply to Oppositions to Preliminary Motions in the above-captioned interference. Replies are currently due July 16, 1992. If granted, this Motion would make the Replies due July $21,1992$.

As grounds for the Request, undersigned counsel submits that the Opposition of the Junior Party to Fujikawa's Motion to Add Counts and Claims to the Application was not received until July 6, 1992, at which time undersigned counsel had left on vacation, intending to return July 13, 1992. Unfortunately, while on vacation, undersigned counsel injured his left hand, occasioning
surgery, which surgery is due to be completed July 16, 1992. An extension until July 21, 1992 would permit completion of the Replies.

Counsel for Wattanasin was contacted, and graciously indicated the Motion for Extension of Time would not be opposed. In the absence of Examiner-in-Chief Sofocleous, Examiner-in-Chief Smith indicated that on the grounds set forth above, the Motion for an Extension of five days would be granted. The cooperation and assistance of the Examiner-in-Chief is deeply appreciated.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLLAND, MATER NEUSTADT, PC.

Steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al
Crystal Square Five
Fourth Floor
1755 Jefferson Davis Highway
Arlington, Virginia 22202
(703) 521-5940

5

- 3 -

CERTIFICATE OF SERVICE

I hereby certify that a true copy of the foregoing MOTION FOR EXTENSION OF TIME TO FILE REPLIES, 37 C.F.R. 1.645, 1.635 was served by first class mail, postage prepaid, on counsel for the Party Wattanasin, as follows:

Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
this 1.6th day of July, 1992.

Steven B. Kelber

WATTIANASIN

FUJIKAWA et al

HONORABLIE COMMISSIONER OF PATENIS AND TRADEMARKS

WASHINGTON, D.C. 20231
BOX INTERFERENCE

SIR:
Pursuant to the provisions of the above rule, Fujikawa et al hereby requests a five-day extension of time to reply to Oppositions to Preliminary Motions in the above-captioned interference. Replies are currently due July 16, 1992. If granted, this Motion would make the Replies due July 21, 1992.

As grounds for the Request, undersigned counsel submits that the Opposition of the Junior Party to Fujikawa's Motion to Add Counts and Claims to the Application was not received until July 6, 1992, at which time undersigned counsel had left on vacation, intending to return July 13, 1992. Unfortunately, while on vacation, undersigned counsel injured his left hand, occasioning
ppo. 32-10
No. 102648
Sofoclenus
INTERFERENCE
Qhthenain SN, 07/498,301
和
Picard at al PA $476 / 4+9$
fujikawa etal S, N 07/233.750
\qquad

Quinoline Type mevalonolactones
\square
\qquad
\qquad

$$
\text { cen } 1201
$$

PTO-257
\qquad

Vpo. $32-10$

l0. 2648

Wattanasin V. Ricardetat ts. Fuijkawa etal

DECLARATION, MOTIONS DUE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN	$:$
v.	: INTERFERENCE NO.: 102,648
PICARD et al	$: \quad$ EXAMINER-IN-CHIEF:
v.	:
FUJIKAWA et al	$:$

FUJIKANA ET AL REPLY TO THE OPPOSITION TO FUJIKAWA ET AL'S MOTION TO ADD COUNTS 3 AND 4

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231

BOX INTERFERENCE

SIR:
In opposition to Fujikawa's Motion to Add Counts 3 and 4, and add claims to the Wattanasin application, Wattanasin essentially urges three different grounds of opposition. First, Wattanasin insists that the claims proposed by Fujikawa for the Wattanasin application, that correspond to Counts 3 and 4, are not patentable to Wattanasin, Wattanasin lacking a written description the same, 35 U.S.C. 112, first paragraph. Second, Wattanasin urges that the

Abstract

evidence submitted with the Fujikawa Motion is inadequate to demonstrate that the subject matter of Counts 3 and 4 is directed to subject matter patentably distinct from Counts 1 and 2 in the interference. Third, Wattanasin objects to the Motion on the grounds that Fujikawa's Claim 18 is directed to subject matter closely related to the subject matter of Counts 3 and 4 , and not shown to be patentably distinct therefrom. Each of the arguments is replied to, below.

I. Written Description in Wattanasin's Application

Wattanasin urges that Fujikawa's proposed Claims 11 and 12 for the Wattanasin application are unsupported by the Wattanasin disclosure, in that they lack a written description. It is to be particularly noted that the contentions of Wattanasin are unsupported by proof of any kind, and that in fact the evidence of record, including admissions by Wattanasin, supports the opposite conclusion.

In exploring any question of written description, attention is focused on whether or not the specification, as originally filed,
conveys to those of skill in the art that the inventors had possession of the invention at the time the application was filed. Quite conspicuously, any testimony from the inventors, regarding their possession of this invention, is absent from the Wattanasin opposition. Note that the standard for determining compliance with written description, whether or not those of skill in the art would conclude that applicants had possession of the invention at the time of filing, has been long established. In re Smith, 178 U.S.P.Q. 620 (C.C.P.A. 1973). Thus, the sole inquiry presented to the Board on this issue is whether or not one of ordinary skill in the art, reading the Wattanasin disclosure, would conclude that Wattanasin had possession of the invention addressed in Claims 11 and 12 at the time the Wattanasin application was filed.

The sole limitation of proposed Claims 11 and 12 Wattanasin urges is not described in the Wattanasin application is the identity of substituent R as cyclopropyl. Wattanasin urges that there is no specific recitation or exemplification of this species. Fujikawa agrees, but notes that the same is not required for written description. In re Kaslow, 217 U.S.P.Q. 1089, 1996 (Fed. Cir. 1983) and cases cited therein. Specifically, Wattanasin discloses that the substituent at the 2 -position may be cycloalkyl
of 3-7 carbon atoms. This identifies a class of five possible substituents. The class is not all that large, and Fujikawa submits that, without more, one of ordinary skill in the art would clearly conclude that the compound of Claim 11, and process of Claim 12, was clearly within the scope of the invention discovered by Wattanasin at the time of filing. Indeed, Wattanasin urges the same. See page 6 of the Opposition. Under similar circumstances, courts of competent jurisdiction have repeatedly held that selection of one among five is clearly supported, for the purposes of written description. In re Driscoll, 195 U.S.P.Q. 434 (C.C.P.A. 1978) (one of 14); and In re Johnson, 194 U.S.P.Q. 187, 195-96 (C.C.P.A. 1977) (a reduction of from 12 to 10 members clearly supported).

While prior cases may be of limited value in determining compliance with the written description provision of 35 U.S.C. 112, first paragraph, it is respectfully submitted that, without more, prior cases have held that the selection of one member of a class of five, when that member is encompassed by the generic disclosure, is supported by that generic disclosure, in the absence of countervailing evidence. Clearly, one of ordinary skill in the art taught that the substituent at the 2-position may be any one of cyclo-
propyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl would clearly conclude that cyclopropyl is within the province of the invention of Wattanasin. Indeed, it is the likely starting point, having the lowest molecular weight. More is not required.

Beyond that, however, Wattanasin acknowledges that the Wattanasin application repeatedly exemplifies isopropyl. Indeed, isopropyl is mentioned by name as an alternate substituent at the 2-position. Having been taught that isopropyl is an acceptable substituent and within the scope of Wattanasin's invention, those of skill in the art would readily arrive at the selection of cyclopropyl, out of the disclosure of cycloalkyl of 3-7 carbon atoms, as the next logical, and analogous compound, isomerically related to exemplified species. Clearly, in the given case, there is more than simple narrowing of the Wattanasin claims from a genus of five to a sub-genus of one. Here there is additional supportive teaching that the isomer of that sub-genus is also suitable. It is well established that isomeric species are expected to behave in similar fashion, in the absence of evidence to the contrary. Those of skill in the art would certainly consider cyclopropyl to be within the scope of the compound and processes taught and claimed by Wattanasin.

The Wattanasin argument that there is no written description of the claims in question, Claims 11 and 12 , must be rejected. The "selection", urged by Wattanasin to be totally beyond those of ordinary skill in the art, is simple, straightforward, and additionally supported by the selection of isopropyl as an alternate substituent in the disclosure of Wattanasin.

If further evidence were required, it is provided by Wattanasin. Wattanasin urges, pages $8-9$ of its Opposition, that those of skill in the art were well aware that both isopropyl and cyclopropyl substituents could be employed in a similar position on related compounds. Specifically, Wattanasin relies on European Patent Publication 179,559 . Regardless of what that publication actually teaches, there is a clear admission, on the part of Wattanasin, pages $8-9$, that those of skill in the art, reading the Wattanasin application, would be aware that wherever isopropyl is taught for substitution next to the nitrogen atom on the ring, cyclopropyl may be similarly employed (note, as discussed below, Fujikawa does not agree that the art teaches that one would expect particular improvements in going from isopropyl to cyclopropyl in the subject matter of the claims of Wattanasin and Fujikawa). It is sufficient, for the issue of written description, to note that
those of ordinary skill in the art would be aware that given a teaching of isopropyl as an appropriate substituent for the position in question, one of skill in the art, taught that cycloalkyl of 3 carbon atoms was acceptable, would move to cyclopropyl. Again, Wattanasin's argument undercuts its position, and grant of the Fujikawa Motion is respectfully solicited.

II. The Evidence Offered in Support is Inadequate to Make Out Patentable Distinction

Fujikawa agrees with Wattanasin that it is incumbent on Fujikawa to demonstrate that the subject matter of Counts 3 and 4 is patentably distinct from the subject matter of Counts 1 and 2. Evidence of that patentable distinction is made out in the Declaration of Kitahara submitted with the Fujikawa Motion. Fujikawa submits herewith the Supplemental Declaration of Kitahara, providing similar evidence for the lactone species, Test B. As made out in paragraph 2 of the Declaration, this data simply was not available at the time of filing of the Fujikawa Motion. . It is submitted herewith, in completion of the evidential burden placed on Fujikawa to demonstrate patentable distinction.

Wattanasin urges that the type of evidence presented does not make out an unexpected difference between the isopropyl and cyclopropyl classes (in the language adopted in the Wattanasin Opposition, the cyclopropyl class is the class of proposed Counts 3 and 4, while the isopropyl class is the class of current Counts 1 and 2). The Wattanasin position, unsupported by any evidence of record, is that the type of differences set forth, uniform superiority for the cyclopropyl class independent of substituent Z identity and test type, would be expected by those of ordinary skill in the art. Quite simply, the position adopted by Wattanasin is contrary to the expectations of those of ordinary skill in the art.

As made out in the Kitahara Declaration and Supplemental Declaration, regardless of the identity of moiety Z, the cyclopropyl class is always more than twice as active as the closely related isomeric species isopropyl and n-propyl. Indeed, for the sodium salt, the $I C_{50}$ value for isopropyl is about 2.5 times greater than that for cyclopropyl, and the $I C_{50}$ value for n-propyl is 22 times greater than that of cyclopropyl. Where other values for Z are considered, the comparison is even more'drastic, the calcium salt cyclopropyl species having a five-fold greater activity, the
ethyl ester species having a fourteen-fold greater activity, and the lactone activity, again as measured by Test A, being nearly four times higher.

When the alternative test, Test B, is given, the relative values are similar. Further, Kitahara, one of particular skill in this art, concludes in both the Supplemental Declaration and original Declaration that such increased activity could not have been predicted on the basis of structure alone. While Wattanasin urges to the contrary, the Wattanasin position is unsupported by any evidence of any type. Attorney argument, alone, is not an adequate substitute for proof. The Wattanasin position must be rejected.

Wattanasin also urges that the level of skill in the art, as reflected by European Patent Publication 179,559 and U.S. Patent 4,925,852, would have predicted the differences obtained and reported in the Kitahara Declarations. Initially, it must be noted that U.S. Patent $4,925,852$ is not part of the prior art, and not appropriate for consideration as to the level of skill brought to the question by artisans prior to the Fujikawa filing date. Specifically, Wattanasin urges that this patent was in the art prior to Fujikawa's assertion herein of patentable distinction and,
accordingly, must be considered. No legal support is provided, and Wattanasin's position is contrary to specific holdings on this issue. It is well established that facts, determined at a date after filing, are permissible to support a finding of nonobviousness as to compounds and processes, at the time of filing. Kansas Jack, Inc. v. Kuhn, 219 U.S.P.Q. 857 (Fed. Cir. 1983). Thus, the U.S. patent relied on by Wattanasin must be ignored, and attention focused only on the European patent publication.

European Patent Publication 179,559 is confined to compounds and processes patentably distinct from the compounds claimed herein. The formulas are substantially unrelated. Note that the European patent publication is confined to trans-6-[2-substituted-pyrrol-1-yl)alkyl]-pyran-2-ones, thus, compounds quite unrelated to the phenyl-substituted, lactone-substituted quinolines of the claimed invention. It is respectfully submitted that Wattanasin
has failed to make out any art-recognized equivalency between phenyl-substituted quinolines and the pyrroles of the reference. Indeed, review of the file history of U.S. Patent 5,011,930 reflects the conclusion of Fujikawa and the Patent Office that, without evidence of any type, the subject matter of Counts 3 and 4 and the disclosure of the European patent publication are patentably distinct, one from the other. In the absence of such an art-recognized equivalence, Wattanasin's argument is fatally defective.

Moreover, Fujikawa respectfully submits that Wattanasin deliberately, and without support, misrepresents the teaching of the European patent publication. Specifically, Wattanasin urges, in the last paragraph on page 9 and first paragraph of page 10 of its Opposition, that this European patent publication teaches that one of skill in the art would expect "particular improvements in activity relative to a genus of compounds with the same series." Further, Wattanasin urges that one of ordinary skill in the art would have expected the cyclopropyl species to be better than the isopropyl species. No such teaching appears in the European patent publication. Indeed, at best, the European patent publication identifies isopropyl and cyclopropyl as equivalent. See, e.g.,
page 8 , lines $30-35$, wherein these two species are identified as equivalent. Many other preferences in the European patent publication identify isopropyl as preferred to the cyclic species. See the sixth preferred genus, page 9, line 31 - page 10, line 12; the fifth preferred genus, particularly, page 9, lines 28-30; the fourth, page 7, line 29; and the second, page 7, line 20. Indeed, only the first and third preferences equate isopropyl and cyclopropyl. Accordingly, it is respectfully submitted that the only reference Wattanasin submits that may be looked to, the European patent publication, at best establishes isopropyl and cyclopropyl to be equivalent, and may indicate isopropyl to be superior.

Further, it is respectfully submitted that in fact, the compounds of the European Patent Publication relied upon by Wattanasin have a much higher activity when isopropyl, rather than cyclopropyl is used as a substituent at the identified position. Submitted herewith please find Roth et al, Journal of Medicinal Chemistry, 1990, 33, pages 21-31, which, authored by the inventors identified in the European Patent Publication relied upon by Wattanasin in its Opposition, reflects the activities of certain of the compounds embraced by the European Patent Publication, EP 179559.

Particular attention is directed to page 25 of the reference, which shows, Table III, that the IC_{50} value for compound 8 x (trans-6-[2[2-(4-fluorophenyl)-5-(1-methylethyl)-1-H-pyrrol-1-yl]-ethyl] tetrahydro-4-hydroxy-2-H-pyran-2-one is 0.40 , while the IC_{50} value for the cyclopropyl isomeric counterpart (compound 8aa) is 2.2. Thus, the isopropyl species is 5.5 times more active, by WarnerLambert's own reckoning, than the corresponding cyclopropyl species. To the extent the Warner Lambert European Publication is relevant to the issue at all, it again suggests those of ordinary skill in the art would look to the isopropyl species to have higher activity than the cyclopropyl species. Rather than supporting the Wattanasin position, the Warner Lambert publication serves to only more clearly highlight the fact that the art would not expect higher activities in the cyclopropyl species designated for the Count of the Interference, clearly drawing attention to the unexpected and unobvious nature of the proposed Counts 3 and 4.

Certainly, at best, there is no teaching in the art anywhere that one of ordinary skill in the art would expect the cyclopropyl class to be superior, consistently so by better than a factor of two, regardless of the identity of the z substituent. This, it has been sworn to, could not have been predicted on the basis of
structure alone. Wattanasin offers no proof to the contrary, and, accordingly, the Wattanasin Opposition cannot succeed. Grant of the Motion is respectfully requested.

III. Fujikawa's Claim 18

On page 14 of the Opposition, in the final paragraph, prior to the Conclusion, Wattanasin makes reference to Fujikawa's Claim 18, which is a 4-chlorophenyl-substituted species. The Wattanasin reference to this claim is not clearly understood. Fujikawa has no data to indicate that the chlorine-substituted species is equivalent to the fluorine-substituted species, and, indeed, the record lacks disclosure of the same. The burden would be on Wattanasin to demonstrate to the contrary. Notwithstanding the above, should the Examiner find it appropriate, it would be acceptable to designate Claim 18 of the Fujikawa patent application as corresponding to Counts 3 and 4 of the interference.
IV. Conclusion

The Wattanasin position is totally unsupported by evidence confirming the arguments offered by Wattanasin's counsel. Wattanasin, having urged that those of ordinary skill would recognize both isopropyl and cyclopropyl as suitable substituents at the 2 -position in the compounds of the claimed invention, and having disclosed the suitability of both isopropyl and cycloalkyl of 3 carbon atoms as suitable substituents at that position, cannot successfully argue that Claims 11 and 12 proposed by Fujikawa are not supported by the written description of the Wattanasin application. Similarly, there is absolutely no evidence of record that suggests that the differences between the compounds of Counts 3 and 4, proposed by Fujikawa, and Counts 1 and 2, respectively, would be anywhere predicted by those of skill in the art. Indeed, the prediction would be quite to the contrary, that those of skill would expect similar performance, given the isomeric relationship of the compounds tested. Having successfully demonstrated patentable distinction between Counts 3 and 4 and Counts 1 and 2 , and having an appropriate claim for Wattanasin to contest priority with respect thereto, the Fujikawa Motion should be granted. Should the

Examiner-in-Chief find it necessary, Claim 18 may be designated as corresponding to Counts 3 and 4, and benefit with respect thereto, on the grounds previously urged in Fujikawa's Motion for Benefit as to those counts, is respectfully requested.

Crystal Square Five
Fourth Floor
1755 Jefferson Davis Highway
Arlington, Virginia 22202
(703) 521-5940
 in-3-yl) (iyclopentyl]cirbind (11 b). Compound 96 (268 mg , I mmol) wh processed os desctibed jor in zo yield 220 mg of 11 b . (8ig) which was recystallized from ethonol-water (i:2) to afford (89\%), which was recrystall $223-225^{\circ} \mathrm{C}$, MS (30 e $\mathrm{V}, 250^{\circ} \mathrm{C}$) m/a
 $249\left(\mathrm{M}^{+}\right), 218\left(\mathrm{M}^{+}-31,1 \mathrm{~N}^{-1}(\mathrm{~B} \rightarrow \mathrm{~N}) \mathrm{UV} \lambda_{\max } 253,283 \mathrm{nma}\right.$ is 0.1 OH), $1700,-1600 \mathrm{~cm}^{-1}$ (Cmic NHCH NMR (dimerhyl-a suraxis) $\mathrm{NH}_{3}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $\mathrm{D}_{2} \mathrm{O}$ oxchangenble), $6.50-6.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{2}, \mathrm{D}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ ex-4.95-4.85 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{m}^{\prime}\right), 4.65=4.60 \mathrm{H}$), $2.35-1.60$ (m, $7 \mathrm{H}, \mathrm{H}-\mathrm{s}^{\prime}$, changeable), $3.50-3.40\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), \mathrm{C}, \mathrm{H}, \mathrm{N}$. $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHH}$). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{3} \mathrm{SN}_{7} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$

Acknowledgment. This work was supported by Public Health Service Grant CA23263 from the National Cuncer Institute We gratafully acknowledge the valuable assistance of Jay Brownell.

Registry No. 1a; $61865-50-7 ; 1 \mathrm{tb}, 66898-98-8 ; 2 \mathrm{n}, 122624-70-0 ;$
 4b, 129 6b, 118237-86-8; 7a, $118353-05-2 ; 7 \mathrm{~h}, 112915-00-1: 8 \mathrm{a} .118237-88-0$ 6b, 120360-361; *a, 122624-79-7:9b, 122624-8u-0; I 14a, 12269481-1
 4.6-dichioropyrimidine, 50-05-8; p-chiorogniline, 106-47-8

 $4.70^{-4.50}\left(\mathrm{br}_{1}{ }^{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exahen $\left.\mathrm{H}^{2} \mathrm{CH}_{2}, \mathrm{CHH}^{\prime}\right)$. Anal H. $\mathrm{CH}_{2} \mathrm{OH}$), 2.32-1.55 ($\mathrm{m},{ }^{7}{ }^{7} \mathrm{H}$

(ㄱ) -cis-d-(5,7-Diamina-3F-1,2, (11a). Compound 9a (26) dim-3-yl)-2-cyclopentenyl carainol (12 $\mathrm{mg}, 1 \mathrm{mmol}$) was procebsed as described for cidual mixture was reaction kime of 20 h at $60^{\circ} \mathrm{C}$. The residum milumn. $(20$ bsorbed onto silica gel (2 g); it was packed inw $\times 10 \mathrm{~cm}$) and sluted by $\mathrm{CHCl}_{3}-\mathrm{MeOF}$ (15:1) to ylan ayesalg, $204 \mathrm{mg}(83 \%)$. The crude product was pecrystal. mS com cthanol-water ($2: 1$) to yiteld 11a: mp 240-242 0 dec, 15 $\left.30 \mathrm{eV}, 240^{\circ} \mathrm{C}\right) \mathrm{m} / \mathrm{e} 247\left(\mathrm{M}^{+}\right), 229\left(\mathrm{M}^{+}-18,217\left(\mathrm{M}^{+}, 30\right), 2 \mathrm{~m}^{+1}\right.$ $\left(\mathrm{B}^{\top}\right), \mathrm{IR}$ (HCBr) $3600-8100(\mathrm{NH}, \mathrm{OH}), 1700,1650,1600 \mathrm{NMR}$
 (dimethyl- ${ }_{5}$ sulforide $\left(5,2 \mathrm{H}, \mathrm{NH}_{2} \mathrm{D}_{2} \mathrm{O}\right.$ axchangeable), $6.15-6.10$ changGabie), $6.50-60^{(d d} 2 \mathrm{H}, \mathrm{CH} \mathrm{CH}$ vinyl, ${ }^{2}=5.0 . \mathrm{Ha}$), $5.65-5.55$ and $5.95-5.90$ (ad, $\mathrm{H}, \mathrm{H}-1^{\prime}$, $4.75-4.65\left(\mathrm{~L}, \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable),
 $3.55-3.40\left(\mathrm{ma}_{2} 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, 20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH})\right.$. Anol. ($\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{7}$ $\left(\mathrm{m}_{1} \mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{N}\right.$.

Inhibitors of Caolesterol Biosynthesis. I.
trans-6-(2-Pyrrol-1-ylethyl)-4-hydroxypyran-2-ones, a Novel Series of HMG-CoA Reductase Inhibitors. 1. Effects of Structural Modifications at the 2 - and

5-Positions of the Pyrrole Nucleus

B. D. Roth,* D. F. Ortwine,* M. L. Hoefle, C. D. Stratton, D. R. Sliskovic, M. W. Wilson, and R. S. Newton

Parke-Davis Pharmaceurical Research Diwision, Warner-Lambert Company, 2800 Plymouch Road. Ann Arbor, Michigan fala5. Received January 25, 1989
rovel series of trans- 6 (2-pyrtol-1-ylathyl) -4-bydroxypyran-2-onEs and their dihydroxy acid derivatives ware prepared and evaluated or their abilt the pyrale ring revealed that optimam povency was reabued with the (analite at the 2- and S-positions of the pron ahenyl)-5-isoprapyl derivative $8 x$ (abl compactin (1). A molecular modelige a (A) length limits of 5.9 and 3.3 A for the 2 andituent and (B) an orientation of the athyl(ene) briage wo the A across the pyrrole ring from the $2-$ wo the to the planes of the parent pyrrole, hexanydrunaphzhalane, and 4-bydroxypyran-2vone rimg neany perpent phenyl rings of the suructures examined (Figure isobutyric esrer side chain with the symstinesis sinfogues (Table ILI. $8 \mathrm{~m} \sim \mathrm{p}$) with equal or a 4-iluoro)phenyldpyrrolts, supporting the hy polarity or charge distribution in this area
The discovery that the fungel metabolites compactin $(I)^{1}$ ad mevinolin (II) ${ }^{2}$ are not only potent inhibitors of the enzyme HMG-CoA reductase (HMGR), the ratelimiting enzyme in cholesterol biosynthesis, but are also effective hypocholesterolemic agents in man has led to a plethora
(1) (a) Enda A.; Kufoda, M. Tzuliza, Y. J. Antibiot. 1976, 1346-8 (a) Enda, A.; Kurada, M. Tsulua, Y, K, FEBS Lett. 1076, 72(2), (b) Endo, A.; Kuroda, Y.; Tanzawa, T, C.; King. T. J.; Hassen-323-6. (c) Brown, A. G.; Smale Chem, Soc., Perkin Trans, I kamp, 1165-9.
(2) (a) Findo. A. J. Antibioc. 1975, 32, 852. (b) Alberts, A.: Chen J.; Kuron, G.i: Hunt V.; Huff, J.: Hoffman, C.; Rothrock, J. Lope2, M.; Johbs H. Harria, E; Patheth A.; Monaghan, R. Currie, S.S Stapley, E.; Albers-Schonberg, G.; Hensens, 0. Hirshfield J. Ha Liesch, J.i Springer. J. Proc Harshtield, Acad. Sci. U.S.A. 1980, 77(7), 3957-61.
(3) (a) Therapentic reaponse to Louestatin (Mevinolin) in Non (a) Therapeatic responiomis. J. Am. Med. Assoc, 1996, 256 amina Mo 2829. (1) 2s-88 and references contained therein.
of publications describing synthetic and biological studies of close structural analogues. ${ }^{\text {. }}$

I: $\mathrm{R}=\mathrm{H}$ (compaqin)
1: $\mathrm{R}=\mathrm{H}$ (compacin)
II: $\mathrm{R}=\mathrm{CH} \mathrm{H}_{3}$ (mevinolin)

The disclosure of a series of very potent 6 -(o-bi-phenylyl)-substituted 4-hydroxypyran-2-ones (III) by Willard et als led us to hypothesize that the key structural
(4) For a review, seas; Rosen. T.; Heathtock, C. Tetrahedron 1986, 40 (18), 4909-51.

Scheme I-
Method A

Mcihed 8
-(a) 3. Benzyl-5-(í-hydroxyethyl)-4-methylthiazolium chloride, $\mathrm{E}_{4} \mathrm{~N}, 70^{\circ} \mathrm{C}$. (b) $\mathrm{NaH}, \mathrm{R}_{1} \mathrm{COCH} \mathrm{H}_{3} \mathrm{Br}$. (c) $\mathrm{NROH}, \mathrm{CH}, \mathrm{OH}$.
feature possessed by all of these agents was a large lipo philic group held in a particular spatial relationghip with respect to the 4 -hydroxypyran-2-one moiety. Indeed, exmination of CPK models of these inhihitors suggested that the ortho phenyl ying might occupy the same space ts the isobutyric ester moiety of compactin and mevinolin. This hypothesis is supported by the 100 -fold lose in potency found on hydrojysis of the isobutyric aster group, ${ }^{6}$ as well as the suggestion by Nakamura and Abeles that this portion of mevinolin fits into a lipophilic pocket in the active site of HMGR normally aceupied by coenzyme 7. If this were true. then any connecting group that arved to hold the lactane and the lipophilic moiety in the correct spatial relationship might be sufficient for potent inbibition. To investigate this, we selected the pyirole ring as the anchor for various connecting groups, since there apeared to be sulficient synthetic methodology to allow or the simultanegus introduction of a variety of 2 - and 5 -aubstituents. By varying the steric and clectronic properties of these substituents; modifying the connecting roup, and eimploying a molecular modeling analysis, we hoped to discern, at least in part, the optimal spatial relationship between the lipophilic group and the 4-hydroxypyran-2-0me moiety and use this information in the design of potent HMGR inhibitors.
We herein present our initial investigations into this eries of inhibitors that define the structure-activity relationships at the 2 - and 5 -positions of the pyrrole nucleus and in the connecting group to the lactone ring. Also reported is the molecular modeling study and associated pharmacophore model, which describe conformational requirements of the side chain and steric requirements at the 2 - and 5 -positions of the pyrrole.ring.

Chemistry

Our general symthetic strategy entailed the preparation of a suitable 1 , 4 -diketone (3 , Table 1 , either by the thiazolium galt themistry developed by Stetter (Scheme I, method A) ${ }^{8}$ or by alkylation of a β-keto ester with an u-halo ketone followed by hydrolysit and decarboxylation (method B). The Stetter radition proved to be the more vergatile and generally higher yielding of the two. PanlKnorr cyclizotion with 3-sminopropionitrile or ar w-arnino acetal provided the pyrroles in geod yield (Scheme II). The one exception was 1-(4-iluorophenyl)-5,5-dimethyl-
(5) (a) Willard, A-; Novello. Fi; Hofman, W.; CrafGa, E. USP 4459422. (b) Stokker, Gi Hoffman, W; Alberts, A, Crazot, E.; Doana, A.i Gilfillan, Ji; Huff, L_{i} Novello, P:; Yugh, Ji Smith. R.: Willard, A. M. Med. Chem. 1985 . 28 . Crayoc, E J. Stokker, G. Eit Albarts, A. W.; Anderson, P. S.i Cragoc, E. J. Deana, A. A.; Q.
 J. D.; Rooney, C. S.; Smith, R L L; Wimard, A.
1986, 29, 170-181.
(6) Endo. A. J. Med. Chem. 1985, 25, 401-5.
7) Nakamara, C.t Abelea, R. Biochemistry 1965, 24, 1264-76
(8) (a) Stutar, YH. Angew. Chem, Int, Ed, Engl. 1976, 15, 639. (b) Stetter, H.; Kuhlmann, H. Chem. Ber. 1976. 109, 2890 ((c) Stetter, H1,; Schreckenberg, M. Chem, Ber, 1974, J07, 2453. (d) Suetter, H.; Kublmann, H. Synthesis 1975، 379.

- (a) $\mathrm{F}_{2} \mathrm{~N}-\mathrm{X}-\mathrm{CN}$, HOAf, reflux. (b) DIBAL-H, whuene $-78^{\circ} \mathrm{C}$ (c) aqueous HCl . (d) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{X}-\mathrm{CH}(\mathrm{OEt}$), whene, col $p-T S A$, Yeflux. (c) $\mathrm{CH}_{3} \mathrm{CO}^{-} \mathrm{CHCH}_{2} \mathrm{CH}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$. (0) $n-\mathrm{Bus}, \mathrm{NaB}$ $\mathrm{HOAC}^{(j)} \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$, pyr: (k) $\mathrm{KCN}, \mathrm{DMF}-\mathrm{H}_{2} \mathrm{O} .100^{\circ} \mathrm{C}$.

Scheme IIX

Schambily

hexane-1,4-dione (3q), which was extremely resistant to cyclization. After considerable experimentation, it was found that treatment with ethanolamine in acetic acid resulted in an exothermic reaction from which the pyrrole was isolated in 84% yield. Mesylation and displacement with potassium oyenide in DMF/H2O afforded the requisite nitrile. Reduction of the nitriles 5 with DIBAL-H produced the desired aldehydes 6 in good yields (Table II). Condensation of 6 with the dianion of methyl or ethyl acetoacetate under the conditions of Weiler ${ }^{9}$ afforded the corresponding alcohols 7 . Sih et al. ${ }^{10}$ reported the reduction of a related δ-hydroxy- β-keto ester in their syn thesis of compactin in which little stereoselectivity ($2: 1$ erythro:threo) was found employing either sodium or zine borohydride. We. and others, ${ }^{\text {sh }}$ have found excelient selectivity ($>10: 1$ erythro:threo) employing the procedure of Narasakn and Pai, ${ }^{11}$ in which 7 was complexed with a trialkylborane prior to treatment with borohydride at low temperature. The resultant boronate was hydrolyzed with
(9) Hukin, S. N.; Weiler; L. N. Am. Chem. Sot. 197d, 今ô 1082-1087.
(10) Wang, N. Y.i Fsil, C. T.i Sih, C. J. J. Am. Chem. Soc. 1981, j09, 6538-8539.
(11) (a) Narasaka, K.i Pai, H, C. Chsm, Lect, 1980, 1415-1418. (b) Ibid. Tetrahedron 1984, 40, 2233-2230.

24 Journal of Medicinal Chemisary, 1990, Vol. 3 , No. 1

Figure 2, CAMSER-II energies calculated for comparable oriontarions of the lactont side chain. Dashed lines represent less potent analoguts

acetate to cholesterol employing a crude liver homogenate derived from rats fed a chow diet containing 5% cholestyramine. Method I^{15} (CoA. reductusa inhibition scroon, or COR) was a more specific screen employing a partially purified microsomal enzyme preparation to measure the direct conversion of $\left.\mathrm{D}, \mathrm{I}-\mathrm{I}^{14} \mathrm{C}\right] \mathrm{HMG}-\mathrm{CoA}$ to mevalonic acid. The biological aetivities are reported as IC_{50} values and as a ratio to compactin, which was employed as the internal standard in each testing protacol. Compactin consistently displayed an IC_{50} between 0.02 and $0.03 \mu \mathrm{M}$. The IC_{60} values from the two assays were moderately correlated (eq 1. ${ }^{16}$ Figure 1).
$\log \left(1 C_{50}, C O R\right)=0.81(\pm 0.09) \log \left(I C_{30}, C S I\right)-1.32$

$$
\begin{equation*}
n=36, r^{3}=0.70, F=81, \delta=0.39 \tag{I}
\end{equation*}
$$

Structure-Activity Relationships
As very little was known about heterocycle-containing inhibitors at the ourset of this study, our strategy was to systematically examine each portion of the structure, $k \in \in p i n g$ the 4 -hydroxypyran-2-one ring intact. Initially, the optimum chain length between the lactone and the pyrrole ring was determined. A two-carbon bridge (8f) was superior to either a three-carbon (8d) or aryl spacer ($8 a-c$) (Table III). This is consistent with the findings of Stokker et al. ${ }^{5 b}$
Holding the bridge constant as ethyl, the structure-activity relationships of che 2 and 5 pyrrole substituents were explored. With 5 -methyl substitution ($89-w$), high poteney was conferred by bulky cycloalkyl 2 -substitutents ($8 s-v$). Among 2-(substituted-phenyl)-5-mechyl derivatives ($8 f-x$).

[^9]aside from a length limitation or the 2 -5ubstituent (see the molecular modeling section below), no obvious structureactivity relationships could be discerned. Optimum potency resided in the 4 -fluorophenyl analogue, $8 f$. With 2-substitution held constant as the optimal 4-fluorophenyl, potency increased with increasing length of the 5 -substituent from methyl (8f) through cyclopencyl (8aa) to a maximum with isopropyl (8 x) (length $=2.5$ A; see modeling section below). Potency decreased thereafter is a low of $>100 \mu \mathrm{M}$ with 5 -cyclohexyl substitution (8 cc).
With 5-substitution held constant as the optimal isopropyl, udditional varietion of the 2-phenyl substituents, now keeping within the length limit of $5.9 \AA$ suggested by the modeling analysis (8ee-mma), failed to improve the potency over the 2 -(4-fluorophenyl)-6-isopropyl derivative, 8x. Indeed, an additional "front-co-back" widrh limitation (Figure 3) may be apparent with sii and 8 mm, which project significantly greater bulk in these directions than the other analogs. Finally, of interest is the 2 -(4-fuoro-phenyl)-5-trifluoromethyl enalogue 8dd, whose high potoncy may be due in part to stabilization of the pyrrole ring by the electron-withdrawing trifluoromethyl group, an aspect to be addressed in future communications.
These results, combined with results from the molecular modeling study, confirmed our belief that $8 x$ possesised the optimum substitution pazsern, since structural modifica. tions at the 2 - and 5 -positions, as well as variation of the bridge to the lactone ring, led to deereased potency. A similar conclusion can be inferred from the examination of other 5 -membered ring heterocycles reported in the patent Jiterature. ${ }^{17}$
(16) Compounds 8 c and scc wepe assigned IC_{50} values of $100 \mu \mathrm{M}$ so they could be included in the correlation.
(17) Kathawala, F. G. WIPO Pazent WO 84/02131, 198:.

92-gT-21 $99: 27$ TuS INTERCORPATENT

26 Journal of Medicinal Chamistry, 1990, Vol. 33, No. J

$a_{3}=$ iont than 10.6
Figure 3 . Summary of conclusions from the molecular modeling study.

Molecular Modeling

In order to identify the required spatial relationship between the lipophilic group (represented by the substituted pyrinle, phenyl, and hexahydronaphthalene ring systema) and the 4 -hydroxypyran-2-one moiety, quantify steric tolerances across the pyrrole ring, and evaluate the relationship between potency and the polarity (charge distribution) of the side chains, selected anslogues from Table III, compactin (1), and the potent biphenyl inhibitor III were modeled by using the CAM3EQ-HI programn package ${ }^{10,19}$ (Table IV; see the Experimental Section). Conformational preferences of the ethyl (or ethylene) bridge to the lactone ring, size of the R_{1} and R_{2} substituents (Table IV), and charge distribution were compared to potency in the CSI screen (at the outset of this study, affinities in the COR screen were unavailable for the majority of the analogues studied) (n order to develop a pharmacophore model for HMGR inhibition.
Lactone Side Chain Conformations. For reforence purposes, calculated energies for the $0^{\circ}, 90^{\circ}, 180^{\circ}$, and lowest energy conformations of θ are summarized in Table IV. Figure 2 depicts the calculated energies for individual conformations. From Figure 2, all of the modeled compounds, including compactin (1), the biphenyl analogue IM, and the less potent analogues $8 \mathbf{x}, \mathbf{8 b b}$, 8cc, and 8 mn , can adopt an eneretically favorable conformation where the ethyl(ene) bridge is noarly perpendicular to the pareat pyrrole, benzene, or hexahydronaphthalene find syatems. Indeed, for the potent derivatives 8 t and III, the calculations show that the out of plane ($\theta=80-110^{\circ}$) orientation is the only one allowed. In addition; the reduced potency of the cert-butyl (8 y) over the isopropyl (8 x) analogue may be explained by the fact that the out of plane conformation ($\theta=110^{\circ}$) of $8 y$ is calculated to be enerretically disfavored over the in-plane ($\theta=0-70^{\circ}$) orientations.
Thus, it is concluded that a conformation of the ethyl(ene) bridge to the 4-hydroxypyram-2-ome ring out of the plane ($90-120^{\circ}$) of the parent ring systems is consistent with increased potency as a HMGR inhibitor. Interestinsly, this corresponds to the calculated minimume energy and not the X-ray coniormation ${ }^{\text {Ib }}$ of compactin. The X-ray conformation represents a seconclary minimum at $\theta=$

[^10]

${ }^{87}$

Figute 4, Charge distribution of compactin and selected ana logucs. Hatehed and open sphcixes represent posivive and negative charges, respectively. Sphate size is proportional to the magnitud of the atomic charge
$24.6^{\circ}, 1.2 \mathrm{kcal} / \mathrm{mol}$ higher in energy, probably due to packing interactions.

Steric Tolerences. In determining steric tolerances, the substituents were somewhat arbitrarily assigned Larger substituents such as substituted phenyl, nor bornenyl, and the isobutyric ester on compactin were placed at R_{1} ('Table IV); small slkyl groups were assigned to R_{2}. Changing the aspienment would affect the conclusions regarding these tolerances. Low-energy, extended conformations of the substituents were used in the distance calculations; other orientations of flexible groups such as $\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ could produce different distances.
The maximum lengthe of R_{1} and F_{2} and the overal width of the molecule across the parent ring system from K_{1} to R_{2} are given in Table IV. The calculations show a clear dependence of CSI potency on all three dirtance summazized in Figure 3. High potency ($\mathrm{IC}_{s 0}<1.6 \mu \mathrm{M}$) is observed only for those analogues whose (a) maximum length of R_{1} (Figure $3, d_{1}$) is <5.9 A (Table IV: compare $8 f$ and 8 j), (b) maxinum length of R_{2} (Figure $3, d_{2}$) is $\langle 3.3$ \mathcal{A}_{2} (compara $8 x$ and 82 or $8 n n$), and (c) overall width (Figure B, d_{3}) is <10.6 A (compare $8 y$ and $8 b b$). Othe anglogues not included in Table IV reinforce the length constraints at Ω_{1} : the 2 -nuphthyl amalogue 8 a $\left(d_{1}=6.40\right.$ A) is less potent then the 1 -naphthyl $\left(d_{1}=4.20 \mathrm{~A}\right)$, and the para-substicuted dorivatives 8 h and 8 i possess reduced potency.
Charge Disuribution. Initially, it was hyporhesized that the spatiol orientation of polar regions with relatively large partial charges within the molecule might be connected to CSI potency. Compactin contajns two distinct regions of relatively large partial charges corresponding to the 4-hydroxypyran-2-oDe ring and the isobutyric ester side chain (Figure 4). The potent inhibitors $8 f$ and $8 x$ also present relatively large partial charges, albeit weaker in strength, in roughly the same region as this side chain. However, atiempts to incrcase potency by more closely mimicking the polar regions associated with the isobutyric ester of compactin with the more polar 2- and 3-(methoxy and hydroxy)phenyl analogues $8 \mathrm{~m}-\mathrm{p}$ resulted in equipo-
Inhibitors of Cholesterol Bicsynchesis. I
Journal of Medisinal Chemistry, 1990, Vol. 38, No. 1
Table IV. Results of Mfodeliog Sudites on Gompactin and Substituted Pyreales

esized
atively
constinct inding a ester
(atome A, B, C, D in a cis oritizarion). Steric and retation of 0 from 0 to 180° by 10°, unlews otherwiso noted, atarting from the in-glane conformation shoun

 from 0° to 350° by 10°.
tent, not more potent, analogues. In addition, compounds containing bicyelo moieties at $\mathrm{R}_{1}(8 t-v)$ demonstrated that a polar substicuent in this area (or an axyl ring, for that mattry) was not required for CSI polency at the I μM level. Thus, it is concluded that CSI potency is relatively in-
sensitive to the polarity of the group at R_{1}.

Conclusions

A series of 6 -(2-pyrrol-1-ylethyl)-4-hydroxypyran-2-ones (8) has been identified as inhibiting the enzyme HMG-CoA
reductase (HMGR). By measuring the inhibition of HMGR in vitro, the 2 -and 5 -substituents on the pyrsole ring have treen optimized, thus obtainiag a compound ($8 x$) that possesse6 30% of the in vitro potency of the potent fungal metabolite compactin.
From a molecular modeling study, it was determined that so long as the 2 - and 5 -substituents did not interfere with the ability of the ethyl bridge to the lactone ring to attain an out-of-plane conformation ($\theta=90-110^{\circ}$), and the substituente were within the distance contraints given in Figure 3, one could expect to achieve potency at the $1 \mu \mathrm{~m}$ level in the CSI screen. Attempts to enhance potency by mimicking partial charges in the polar isobutyric ester side chain in compactin failed. it is concludad that theye are no strong electronic requirements for binding in this area.
In addition, the reduced potency of $8 w, 8 i i$, and $8 \times m$ relative to other substituted phenyl derivatives suggests a steric intolerance off of one of the ortho phenyl positions of the R_{1} substituent Ont other noteworthy observation is that substitution of the 5-isopropyl with trifluoromethyl produced an analogue, sdd, of essentially equal potency, (Teble XuI: compare 8 dd with 8 f and 8 x). This suggests the desirability of an electron-deficient pyrrole ring and a poosible direction for future exploration. Efforts to further oprimize the inhibitory potency of this series will be reported in subsequent publications from these laboratories.

Experimental Section

Unless otharwise noted, materials were obrained from com. mertivl suppliars and wore used without further purification. THF mertiel guppiares and wors used withour furchar punicaetion. aris were dried over MgSO, except where otherwise notied. Malting points were determined on a ThomaenHoover melting point apparatus and are uncorracted. Inirarad apactra ware detormined on a Nicolet NOM-I FT-IR spectrophotometar. NMR spectra ware determined on either a Varian BM-390 spectrophotometer or a Varian XL-200 instrumenc. Chemical shifts are appressed as parts per million downfitid from internal tetramethyloilane. Elemental a Perkin-Elmer Model 240 C elamantal analyzer and aro within 0.4% of theory unless noted otherwise. HPLC analyses were performed with a Varion 5500 unit equipped with a Reodyne 7126 loop injector, a Dupont variable wavelength detector, and an octadecylsilane column (Altech Cis $600 \mathrm{RF}, \mathrm{CH}_{3} \mathrm{CN}_{\mathrm{N}}-\mathrm{H}_{2} \mathrm{O}$ eluant, $60: 40, \mathrm{v} / \mathrm{v}$) interfaced to Varian 402 data system for computation of peak areas. All starting materials were commercially available unlesy indieated otherwise.
Pseparation of 1 -(4-Fluoruphenyl)-5-methyl-1, whexanedione' (3D). Method A. I-(4-Fluorophenyl)-2-propen-2-one (43.0 8. 287 mmol) was mixed with 37.2 mLL (844 mmol) of isobutysaldehyde, 28 mI (200 mmol) of triethylamine, and 14.5 g (58 manol) of 2 (2-hydraxyethyl)-2-methyld 4 benzyithlazoliun chloride. The mixture was sitred at $70^{\circ} \mathrm{C}$ under nitrogen for 12 h , cooled to room temperature, and partitioned between ether (500 mL) and water (100 mL). The aquesus layer was furcher cxtracted with ether (300 mL). The combined ether extracts were washed successively with water (200 mL), $2 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL}$), and brine (100 mL) and dried. Filtration and cancontsation to drynexs in vucus provided un oil which wus distilled (bp $115-120^{\circ} \mathrm{C}, 0.2$ mmHy) to provide 36.7 g (58%) of the titie compound which = $7.12(4,3 \mathrm{H}), 7.95(\mathrm{~m}, 2 \mathrm{H})$. An anelytical sample could be obtained by recrystallization from hexane, mp $51-3{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{55} \mathrm{FO}_{3}\right)$ C. Ii, N.

Alternate Syathesis of 3D. A mixture of 2 methyl-4-pen-ten- 4 -6ne ${ }^{\infty}$ ($2.0 \mathrm{~g}, 20 \mathrm{mmal}$), 4-fluorohenzaldehyde ($2.4 \mathrm{~g}, 20$ $\mathrm{mmol}), 2 \mathrm{~mL}$ (14 mmol) of triethylamine, and $1.0 \mathrm{~g}(4 \mathrm{mmol})$ of 2 -(2.hydroxyethyl)-3-methyl-4.benzyithiazolium chloride was stirred under nitrogen for 5 h at $70^{\circ} \mathrm{C}$, cooled to room temper. ature. and partitioned between ether (200 mL) and water (50 mL) The water layer was extracted with ether (000 mL). The ether
extracts were cumbined, washed successively with water ($\mathbf{S 0} 0 \mathrm{mLL}$), $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL}$), and brine (50 mL), and dried. After corcentration ty drymess in vacula, the residue was flash chromatographed on silica gel with hexane-ethyl acetate ($20: 1 \mathrm{~V} / \mathrm{v}$) as cluant, afr fording 2.6 g of $3 \mathrm{p}, \mathrm{mp} 47-49^{\circ} \mathrm{C}$
Method B. To a suspension of hexane-washed NaH (6.5 g . 70 mmol) in dry DMF (300 mL) ar $0^{\circ} \mathrm{C}$ under dry niwrogen wos added a solution of mathyl 4 -methyl-3-oxopentanoate ($37.5 \mathrm{~g}, 260$ mamol) in 100 mL of dry DMF. When gas evolution had subsided, a solution of 2-bromo-4'-fluoroacetophanone (260 zrmol) in dry DMF (100 mL) was added dropwise over 60 min. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$ overnight. poured into ice-cold 2 $\mathrm{MHC}(300 \mathrm{~mL})$, and extracted with ather $(2 \times 300 \mathrm{~mL})$. The orzanic laybr was washed with water ($3 \times 50 \mathrm{~mL}$) and brine (50 oredinic and concentrated to dryness in vacuo. The and prine produc: mL) and concentrated to dryness in vacuo. The crude wroduct ($24 \mathrm{~g}, 600 \mathrm{mmol}$), and the mixture was etirred overnight. The solution was made acidic with 6 N HCl and exiracted with ether ($2 \times 300 \mathrm{~mL}$). The ether extructs were washed with water (50 mL), biearbonate (50 mL), and brine (50 mL) and dried. Distillation provided $40 \mathrm{~g}(69 \%)$ of 3 p .
Predaration of $2-[2$-(4-Fluorophenyl)-5-(1-methyl ethyl)-1 H-pyrrol- 1 -yll -1 -cyanoechane ($5, \mathrm{R}_{1}=4-\mathrm{FPh}, \mathrm{R}_{\mathrm{g}}=$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{X}=-\mathrm{CK}_{2} \mathrm{CH}_{2}-$. A mirrure of 3 p ($365 \mathrm{~g}, 2.65 \mathrm{mad}$) 3-aminopropionitrile ${ }^{2} / 2$-fumarate ($334 \mathrm{~g}, 3.8 \mathrm{Bmal}$), and 1 g o p-TSA in glacial acelio acid (1800 mL) was stirred and heater at reflux for 8 h . After tooling to room temberature, the solution wes poured into ice water (3L). The solid that formed was isolated by suction filmation and recryscallined trom isopropyl ether and hexane (212 g, mp $75-78^{\circ} \mathrm{C}$). The filtrate was extracted with ether ($2 \times 1 \mathrm{~L}$). The combined ether extreote were washed with water (1 L), sarurated aqutous sodium bicarbonate (until ga evolulion ceased), and hrine (500 mI) and dried. Filtration and concentration to dryness in vacuo efforded a solid which wa recrystallized from isopropyl ether to provide a further 99 go the title compound (310 g total 73%): $\mathbb{I R}$ (K8r) $3990,2249,1566$ 1522, 1481, 1219.1162 847, $782 \mathrm{~cm}^{-1}$: $200-\mathrm{MHz} \mathrm{NMR} \mathrm{(CDC1} \mathrm{I}_{8}$)
 $1 \mathrm{H}, J=7 \mathrm{~Hz}), 4.22(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz}) .6 .00(\mathrm{~d} .1 \mathrm{H}, J=3.5 \mathrm{~Hz})$ $6.10\left(\mathrm{~d}_{\mathbf{N}}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}\right), 7.0-7.4(\mathrm{~m}, 4 \mathrm{H})$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{47} \mathrm{FN}_{2}\right)$ C, H. N .
Proparation of 3-[2-(4-F)uorophenyl)-5-(1-mechyl above intermediste ($200 \mathrm{~g}, 780 \mathrm{mmol}$) in 2500 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient ternperature under nitrogen was wreated dropsise with 936 mL of a 1.0 M solution of diisobutylaluminum hydride (DIBAL-H) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 4 h. The resulting mixture was stired overnight at room temperalure, and then the cxeess hydride was destroyed by chutious addition of methanol. When gas evolution was complets, the solution was carafully poured into 1000 mL of vigorously stirsed ico-cold 2 M HCI (exothermic). The emulsion that resulted was extracted with ether ($2 \times 1 \mathrm{~L}$), and the combinec ether extracts were washed successivaly with water (500 mL). saturated aqueous sodium biagrhanate ($2 \times 500 \mathrm{ml}$), and brine (500 moL) and driad. The solventa were removed in vacuo, and the residue was flast chromntographed over sillics gel, elucing with hexane-ethyl acetate ($10: 1, v / v$) to provide $6 t$ ($28 \% \mathrm{~g} .92 \%$) as a colorless oil: IR (film) 2930, $1720, \mathrm{~cm}^{-1} ; 90-\mathrm{MHz} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $81.25(d, 6 \mathrm{H}, J=7 \mathrm{~Hz}), 2.50(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 285$ (septot, $1 \mathrm{H}, J=7 \mathrm{~Hz}), 4.20(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 5.90(d, 1 \mathrm{H}, J=2.5 \mathrm{~Hz})$ 6.03 (d, $1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 6.0-2.3(\mathrm{~m}, 4 \mathrm{H}), 0.45(\mathrm{~B}, 1 \mathrm{H})$.

Preparation of Methyl 7-[2-(4-F]uoxaphongl).5-(1-methylethyl)-1p7-pyrrol-1-yl]-5-hydroxy-3-axahepranoute (7, $\left.\mathrm{R}_{1} 4-\mathrm{PRh}_{4} \mathrm{R}_{3}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{X}=-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)^{-}$. A stited sus.
 a solution of methyl aceroncerata ($B .9 \mathrm{~mL}, 82 \mathrm{mmol}$ in anhydrous Thr (150 mL) over 30 min . When gas evolution was complete, n-butylithium (39 mL of a 2.1 M salution in hoxane) wes added drapoise. The resulting solution was stirred for 30 min and then treated dropwise over 30 min with a solution of $6 \mathbf{x}(19.4 \mathrm{~g} .74 .9$ mmol) in anhydrous THF (150 mL). The solution was stirred for an additional I h and the resction was qutnched with saturated aquanus $\mathrm{NH}_{4} \mathrm{Cl}$ (100 mL), followed by 2 M HCl (200 mL).
The resulting mixture was partitioned between ether (500 mL) and watar (100 mL). The water layer was separated and extracted

Inhibitors of Cholesterol Biosynthesis. I
Sournal of Medicinal Chemistri, 1990, Vol. 3S, No. 1 ig
with cther (300 ml). The ether extrects were combined, washed with brine (50 mL), and dxied. The solvents were removed in vacuo, and the residue dus fash chromatographed on silica wel eluting with hexane-ethyl actrate ($8: 1 . v / v$) to yield 19.9 g (64%) of the tite compound as a colorless oil: 200-MFts NMR (CDCls) $1.28(\mathrm{~d}, 6 \mathrm{H}, J=7 \mathrm{~Hz}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 2.45$ (m, 2 H). 2.6 (br s , $\mathrm{H}, \mathrm{J}=25 \mathrm{H}(4), 7.0-7,4(\mathrm{~m}, 4 \mathrm{H})$; IR (flm) $3520,2986,2873,1749$ 1716, 2518, 122S, 1158, 845, 815, $787 \mathrm{~cm}^{-1}$.
Preparation of trans-6-[2-[2-(d-Fluurouhergy)-5-(1. aethylezhyl)-1H-pyrrol-1-yl jethyljuecrahydro-4-hydroxy$2 \boldsymbol{H}$-pyran-2-one (8 x). air (80 mL) was bubbled by syringe 2H-pyran-2-one solution of $\mathrm{n} \cdot \mathrm{Bu}_{\mathrm{y}} \mathrm{B}(58 \mathrm{~mL}$ of a I M THIf solution) in dry THF (50 mL) containing 19.9 g (58 m m nol) of the solution) in dry 1 sbove intermediate at roorn temperatite. The enlution was starred
for 18 h at room temperarure and cooled to $-78{ }^{\circ} \mathrm{C}$, and sadium (or 18 h at room temperaturt and cooled to $-78^{\circ} \mathrm{C}$, and sadium
borohydride ($2.27 \mathrm{~g}, 60 \mathrm{mmoll}$ was added in one portion. The mixure was atiryed for 60 min at $-78^{\circ} \mathrm{C}$ and warmed to $0^{\circ} \mathrm{C}$ for 90 min . A mixture of water (10 mL) and methanal (10 my) was carefully addad (gas evolution). $\mathrm{NaOH}(3 \mathrm{M}, 60 \mathrm{~mL})$ and 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ (30 mL) were added simultaneously to the mixture from separate dropping funnels. The vigorousily stirred mixture wat held at $0^{\circ} \mathrm{C}$ for 60 min and then at roam temperature for 2 h .

The mixture was partitioned between water (300 mL) and ethe (300 ral). The ether hayer was extracted with 10% acueous NaOH (50 mln). The aqueous layers were combined, acidified with concentrated HCl , and extracted with ehyyl acetate ($2 \times 500 \mathrm{~mL}$). The echyl acetate extrects were comibined, washed twice with brine (100 mL), and dried. Removal of the solvonts in vacuo yielded 12.5 g of an oil which was diseolved in toluene $(500 \mathrm{~mL})$ and heated at reflux with azeotropic removal of water (Dean-Stark trap). The cooled solution was concentrated and the restdue flash ehromarographed on silien geh, elutiog with hexane-sthyl acetate ($5: 1 \mathrm{v} / \mathrm{v}$) so yield 11 g of a colorless solid. Recrystallization frorn isopropyl ther yielded $9.5 \mathrm{~g}(52 \%)$ of $8 \mathrm{x}, \mathrm{mp} 104-105{ }^{\circ} \mathrm{C}$, which whas a $97: 3$ mixcure of diastereamers by HPLC: 200-MFH NMR (CDClig) $\$$ $1.80(0,6 \mathrm{H}, J=7 \mathrm{~Hz}), 1.5-1.9(\mathrm{~m}, 4 \mathrm{H}), 260(\mathrm{~m}, 2 \mathrm{H}), 2.98$ (septet, $1 \mathrm{H}, \mathrm{Hz}, 6.08\left(\mathrm{~d}, 1 \mathrm{H}, J \mathrm{~J}=2.5 \mathrm{H}_{2}\right), 7.10(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}) ;$ IR (KEr) $3440,2966,2870,1690,1518,1268,1223,1015,837,773$ in (KEr $3440,2066,2870,1690,1518$
$\mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{FNO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Preparation of 2-[1-(4-Fhuorophenyl)-5-(1, 1-dimethyl-
 mone portion to a stirred solution of 部 (66 mmol) and ethanolamine (27 mL) at ambient temperature. A vigorous oxorhermic reaction ensued (the internal tempersiture rase to $95^{\circ} \mathrm{C}$). When the exotherm had subsided (TLC indiceted reaction almost omplete), the solution was zuirred and hated at reflux for 30 min (1Le indicated all stazing materisl was congurned, but new high-r, spot hed appearad). The reaction mixture ors boled oo room Lemperature and poured into ice water (200 mL). The queous mixture was extracted with ethor ($\times 500 \mathrm{mI}$) wh combined ether axtracts were washed with water (2 $\times 200 \mathrm{~m}$) aturazod aquecua bicarbonats ($2 \times 200 \mathrm{mI}$) and ($\times 200 \mathrm{~mL}$), drikd, and concentrated to deyness in vacho , and brine (100 mL), raphy of the residue on silici pol, eluting the ehyl anromatog
 methylethyl \rangle-1 H -pyrrol-1- y$)$)-2-ethanol prodent of a high- K, material which appanol product (62\%) and 5 g 0 -acetare by NMR (3 H s appeared to be the correaponding stirred wich NaOH (2 H) in $\mathrm{CH}, \mathrm{CH}_{2} \mathrm{OH}$). The high $R_{\text {, }}$ fraction was for 2 h . The solution was concentrated diluted with (10 ml) mL) and exe solution was concentraved, diluted with water (20 mL) and extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The ethyl actiate extructs were washed with brine (50 mL) and dried. Filtration and concentration to dryness in vacuo provided a further 3.7 g oi the above alcoho) (14.1 g tofal, 84%).

Mesyl chloride ($1.93 \mathrm{~m} \mathbf{L}, 25 \mathrm{mmol}$) Was added dropwige to a stirred solution of the above alcohol ($5 \mathrm{~g}, 19.1 \mathrm{mmal}$) in pyridine (1s mL) cooled in,an ice bath. The mixture was stirred for 2.5 mL) and wated mul, and extracted with ether ($2 \times 300 \mathrm{~mL}$). The combined ether extracts were washed with water (50 mL), $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL}$), bicarbonale ($2 \times 50 \mathrm{~mL}$), and brine (50 mL), dried, and concontrated to dryness in vaeuo. The erude mosylate was used without further purification
A. salution of KCN ($1.54 \mathrm{~g}, 23.6$ mmol) and $\mathrm{Ky}(1.16 \mathrm{~g}, 10 \mathrm{mmol})$ in water (12 mL) was taded dropwise to a stirred, $70^{\circ} \mathrm{C}$ solution of the mesylate (4.0 g , 18 mol) in D. 10 (36 mL). The resulting soluzion was heated under relux for $2 \div h$, ecolsed, and pourid into ice water. The mixture was extractid with ether ($2 \times 200 \mathrm{~mL}$) The combined ether extrets were washed with water (50 mL) $2 \mathrm{MHCl}(35 \mathrm{~mL})$, bicarbonate ($2 \times 50 \mathrm{~mJ}$), and bring (25 mL) dried, and concentrated to drynass in vacuo. Flash ehromator raphy of the residue on sllica gel, eluting with herane-ethyl acetate ($20: 1, v / v$), provided $28 \mathrm{~g}\left(89 \%\right.$) of the tithe compound: $90-\mathrm{MH} \mathrm{m}_{3}$ NMR (CDCI $)$ \& $1.42(\mathrm{~s}, 9 \mathrm{H}), 2.20(\mathrm{~s}, 2 \mathrm{H}), \mathrm{J}=2 \mathrm{~Hz}), 4.80(\mathrm{~h}$ $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 5.90(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 6.00(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz})$ $6.4-7.4$ (m, 4 Hi$)$.
Prepartion of 6-[2-(2-Bicyolo[2-2.0]oct-3-yl-s-methyl-1Fy. pyrrol-1-yl)echyljtecrahydro-4-hydivecy-2B-pyman-2-oze (Bv). To a solution of $\mathrm{Bu}(0.3 \mathrm{~g}, 0.91 \mathrm{mmol})$ in ethyl acetate (10 mL) was added 0.03 g of 10% PdmC. Tbe mixture wos evzeusted, plaoed under a balloan of hydrogen (1 atm) at room temperature, and stirred ovarnight Tbe sufpension was filtered through Celive and concentrated to dryness in vacuo, and the solid residue was ecrystalized fram isopropyl othtr te aftord 0.21 g of 8 v (68%), mp 135-139 ${ }^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NO}_{2}$) C. H, N.
Generral Demethylation Pracedure (Proparation of 8n). $\mathrm{BBrys}^{(11}$ mmol) was disisolved in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropmise to a solution of 8 m ($1.2 \mathrm{~g}, 3.64$ nomol) in 100 mL of $\mathrm{CH}_{3} \mathrm{Cl}_{2}$ of $-20^{\circ} \mathrm{C}$ under dry nitrogen. The mixture was stirred for 2 h , and then a further 2 mmon of $\mathrm{BBrg}_{\mathrm{g}}$ was added. The solution was allowed to waren slowly to $0^{\mathrm{A}} \mathrm{C}$. poured into saturated aqueous bicarboante (500 mL), and extracted with echyl acetaite ($2 \times 200 \mathrm{ml}$). The combined organic extracts were washed with 10% aqueous bisulfits (50 mL), saxureted aqueous bicarbonate (30 mL), and brine ($\$ 0 \mathrm{~mL}$), dried, and concenurated to dryasts in vacto. Flash chromatography of the residue provided 450 mg of impure phenol. Two recrsstallizations from isopropyl cther of implre phenol. Two recrytalizations from isopropyl ether
provided pure $8 \mathrm{D}, \mathrm{mp} 110 \mathrm{~m} 111.5^{\circ} \mathrm{C}$. Snal. $\left(\mathrm{C}_{2 \theta} \mathrm{H}_{n 1} \mathrm{NO} \mathrm{O}_{n}\right) \mathrm{C}, \mathrm{H}$, Nro.

HMG-COA Riducrabe Inibibition Assay 1: The Cholestero Synthesis Inhibition Scesen (CSJ). The procedure is a modifiention of the protocol developed by Dugan et ul. ${ }^{14}$ Male rats (lype CD from Charles Rivar) weizhing $300-400 \mathrm{~g}$ wert kep in-house for at least I week before ine dey of the experiment. Fo 3 consecutive days before being used, they were fed a diet of 5% cholegtyramine (by weight) in normal pound chow. On the day of the absay, the rats were anesthetized oith ether and sacrificed. Their livers were removed, weizhed, and placed on Saran Wrap on ice. The entire livers were minced and diluted with 2 volumen of leg-cold pH 7.4 homogeoizing buffer $\left(0.1 \mathrm{M} \mathrm{KPO}_{4}, 0.004 \mathrm{M}\right.$ $\mathrm{MgCl}_{2} \mathrm{AH}_{2} \mathrm{O}, 0.001 \mathrm{M}$ EDTA, and 0.01 M 2 -moreaptoethanol). Liver homogenates were prapared by use of five to six paceas of a Teflon pestle in a $50-\mathrm{mL}$ glass homogenizes. The homogenates were peoled and centrifuged ar 5000 y for 10 min at $4^{\circ} \mathrm{C}$. Initiol supernatants wore pooled and centrifuged at 20000 s for 13 min $4^{\circ} \mathrm{C}$. Final gupernatants were capeitly drawn off avoidi the lnose pellet'and lipid layar, pooled, and kept on ice. Ona dilliter ahquots of this crude microsomal preparation wes uned for the ebsay.
Compounds were dissolved in 2 mL of toluene and sonicated if not fully soluble. The mixture wos rreazed wilh 2 mL of 0,1 N NaOH and scirred constantly for 2 h in a water bath at $4,-\dot{0} 0$ ${ }^{4} \mathrm{C}$. Any remaining toluene wos blown off under a stream of N Appraximately 6 mL of 0.1 N NaOH was added end the saponified drug placed on ise immediately. If the salt had erystallized, i was sonicated to achieve tis unifrum a suipersion as passible. Th oH was adjuth as asible. Th my ml with $\mathrm{H}_{3} \mathrm{O}$. One-milliliter aliquors wire frozen in dry ice acctone and stored at $-70^{\circ} \mathrm{C}$.

On the day of the screen, drugs were dissolved in 1 mL of 0.1 N KOH and dilutod with II mL of homogeniring buffer to make a 2 ma atock solution. If nevisary, sanitation was used to echiave a salution, or in some cases, a suspension of drue. The 2 mM siock was diluted $1: 1$ with a mixture of 1 mL of 0.1 N KOH and 11 mL of homosenizing buffer. The resulting 1 mM solution was further diluted with homogenizing buffer alone to produce a series of 10 x stocks from 10^{-6} to $10^{-3} \mathrm{M}$. The sodium salt of compactin was used as a reference compound in every assay in a coneencration
range of 10^{-8} to $10^{-6} \mathrm{M}$.

Aspay Condicions. The assay was carriged out in duplieate in $16 \times 125 \mathrm{~mm}$ seraw-capped cubes. The reaction mixture contained the following, on ice (initial concontrations): 0.1 mL of 20 mM NAD 0.1 mL of $20 \mathrm{mM} N A D P, 0.1 \mathrm{~mL}$ of 200 mM glueose 6-phosphate, 0.5 mL of 0.12 mM niacinamide, and 0.2 mL of the $10 \times$ drug stocks. Contruls were aiso run with 0.2 mlj of a mixture of 1 mL of 0.1 N KOH , plus 11 mL of harnogenising buffer in place of drug. One milliliter of the crude microsomal preparation was added immediately eftex the drugg, to give a total volume af 2 mL . Final drus coneentrations ware $10^{-6} 2010^{-7} \mathrm{M}$, or in the cese of compactin, 10^{-8} to $10^{-9} \mathrm{M}$. The gamples were warmed at $37^{\circ} \mathrm{C}$ for 5 min before adding the radionctive precursor. ($1-^{18} \mathrm{C}$)Acerate was used in the amount of $2,88 \mu \mathrm{Ci}$ per sample, plus 98 umol of sodium acotate as cold carrior. When (H)mevalozate WBC used, the amount of $0.5 \mu \mathrm{Ci}$ per sample with cold earrier was added to make a total of $0.2 \mu \mathrm{~mol}$ per sample volume fradiolabel per sample wos 100μ arter receiving cadialabel, radiolabel per amples were incubaced at 3 , of 10% Kifer cooling to rooin temt 70 (cholesterol accounts for peralure, the nonse of nonasponifinble linids; the remeinder are approsimalal wore extracted by shaking the eamples with 4.2 methyl sterols) wer 10 min a al, of hexane with 8 ml of Handiflur and eounted.
Percent inhibicion was calculated as follows: 2.0 - (drug
Percent inhibicion was calculated as follows 2.0 - (arug cpm / control cpm). Control refers to the samples that raceived
buffer only. From a plot of percent inhibition versus the log of buffer only. From a plot of percent inhibition versus the log of the drug concentration, the $\mathrm{IC}_{\text {so }}$ wac determined. Every assay yielded an $1 C_{s o}$ for the reference compound, compactin, thus
providing s comparison for the other compounds as well as a providing s comparison for the other compouncs
tandard to check for consistency between assay: Ceductase Hibition screen (COR). This procedure is amodification of that reported by Kita et al. ${ }^{26}$ Male Charies River (CD) rats weighing $200-300 \mathrm{~g}$ were fed a chow diet concaining chalestyramins 5%) Sor 3 days in order to increase levels of liver microsomal HMG-COA reductase. Between 9 a.m. and 10 a.m., fed animals were anesthetized with ether prior to a widline incision to open the abdomen. Traverse tuts waro made to the left and right of abdominal cavity exposing the hepatic yortal voin. A syringe with 22 -rauge needle containing 10 mL of exsenguinating buffer (40 mM Tris, 0.25 M sucrose, 0.3 mM EDTA, 5 mM dithiothreiral (DTT), of 7,2) was injected into the portal vein after cutting the inferior vena cava. Prior to exoision, the livar was eleared or blowd nerior venn cava. Pror winating buffer. Immedlately afrer exby per the liver was added to ice-cold ($4^{\circ} \mathrm{C}$) pH 7.4 buffer (0.3 ision, the liver was added to ice-cold (4 C) pH 7.4 burer (0.3 M sucrose, $5 \mathrm{mN}, \mathrm{mi}, 50 \mathrm{mM}$ leupeptin, 5 mM EOMA, 1 mM PMSF). Approximately 1 g samples were taken from the largest lobe and homosenized witt 10 strokes of a tight-fixting PottorElvehjem homogenizer. Each homogenate was centrifured for 15 min at 12000 g in a Servall refrigeraced-tatomatic contrifuge (SM- 34 rotor). The supernatant wof decented and raspun under the same conditions. The rexulting supernatant was removed via pipet, with special care beipg token not to remove any of the mildohondrialurich pelter. The supernatanas were then pooled and certrituged with a 5011 or bo Ii fotor in a Eeckman Le-80 ultracentrifuge. After ultracentrifugation, the pellet was mixed with ice-cold $\mathrm{KH}_{2} \mathrm{PO}$, buffer (0.2 MM pH 7.4), homogenized, and stored in liquid nitrogen at $10 \mathrm{mg} / \mathrm{ml}$ mioyosomal protain. Microgomes maintained in liquid nitrogen retained \#MG-CoA reductase activity for up to I year. Each pellet wea resuspended in a solution of 0.3 M sucrose and 10 mM 2-mercaproethanol and frozen immediately in liquid nitrogen. The allquated samples ($500 \mu \mathrm{~L}$) were then stored at $-70^{\circ} \mathrm{C}$ for no more than 1 month. For each microsomal isolation, an activity/microgram of microsomal protein curve was determined so that the amount of microgomal prouein utilized in each assay was in the linear part of the activicy curve.

Assay Conditions. Frozen mierosomes (see above) wert alAssay Conditions. Frozen microsomes (see above) wers al-
lowed to slowly thaw on ice. Assay solurions were prepared as. follows:
A. Resuspension buffer: $0.2 \mathrm{M} \mathrm{KHy} \mathrm{K}_{2} \mathrm{O}_{4}$ buffer, pH 7.4
B. Incubation buffer: $0.2 \mathrm{M} \mathrm{KH} \mathrm{KO}_{4}$ buffer (stock, 3 M $\mathrm{KH}_{2} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O} .1 \mathrm{M} \mathrm{KH} \mathrm{PO}_{4}$. Final 2 M$) ; 0.01 \mathrm{M}$ EHOA, 12 mM dithiothreitol; 40 mM glucose 6-phosphate; 4 mM NADPH; 0.45
$\mu \mathrm{M}$ nl-3-hydroxymethylglutarylucoenzymo a (glutaryl-3. $\left.{ }^{24} \mathrm{C}\right)$
 ($4.5 \mu \mathrm{Ci} / \mu \mathrm{mol}$) ; inal concentration $6.9 \mu \mathrm{MJ}$).
Resuspension buffer ($70 \mu \mathrm{~L})+$ microsomal solution ($20 \mu \mathrm{~L}: 100$ $\mu \mathrm{g}$ protein) $+\mathrm{drug}(10 \mu \mathrm{~L})=100 \mu \mathrm{~L}$
$\mu \mathrm{g}$ protein) + drug $(10 \mu \mathrm{~L}) \mathrm{L})+\left({ }^{14} \mathrm{C}\right] \mid \mathrm{FM} \mathrm{C}-\mathrm{CoA}(10 \mu \mathrm{~L})$ (final addition) $=100 \mu \mathrm{~L}$.
Total volume of assay mix $=100 \mu \mathrm{~L}+100 \mu \mathrm{~L}=200 \mu \mathrm{~L}$.
The asay solution was vortexed and incubated in a shaking water bath at $37^{\circ} \mathrm{C}$ for 60 min . Termination of zhe reaction was weter bath at 37 Cor gim. Nernicar HCl Convercion of the accomplished with $80 \mu \mathrm{~L}$, of enncentratad HCl . Conversion of the ${ }^{4}$ C)mevalonic acic to the lactoner for 30 min at $37^{\circ} \mathrm{C}$. Conversion of $\left.{ }^{14} \mathrm{C}\right]$ mevalonic atid to the lactone form occurred during refrizeration overnight. To each reaction rube was added DIr[$\left.2^{3} \mathrm{H}\right] m$ mevalonic acid lactone ($10000-15000 \mathrm{spm}+200 \mu \mathrm{~g}$ of unlabeled mevalonalactone) as an intarnal atandard to correct for incomplete recovery of [$\left.{ }^{14} \mathrm{C}\right]$. mevalonate. Afcor vortexing, an aliquot (60μ H) from the assay mix in ench tube was put over a AG d-X8 ($200-400$ mesh) formate form anion exchange resin colume. The mevalonate was eluted with 3×750 wi of areter into scintillation vigle. Scincillation coektail (Beckman Readi-Solv, 10 mL) was then added to euch viul. The vials were vortexed and allowed to equilibrate for 1 h . Standarde for the [$\left.{ }^{14} \mathrm{C}\right]$ HMGGMAA, $\left.{ }^{3} \mathrm{H}\right]$ mevalonolactone, and acid-inacrivated micrasomes (blank) were also isolated by coluran separation in a Hewlett. Packard Model 3320 Tricarb geintillation spectrometer fce fot double label counting at mavimum efficiency. Standards for $\left.\left.{ }^{14} \mathrm{C}\right] H \mathrm{MG}-\mathrm{CoA},{ }^{3} \mathrm{H}\right]$ nevalonolactone, and acidinactivated mieroaomes pionl were alco isolated by TLC nactivated min counce straped, and counted. Calculazions ware performed in the usual manner taking into consideration orossover of H into the channul and visa versa, as well as diution factors and specific activity of $\left.{ }^{14} \mathrm{C}\right] \mathrm{HMC}-\mathrm{COA}$ used. Reductate activity was expressed as picomole of [$\left.{ }^{13} \mathrm{C}\right] H M G-C o A$ canverted to [$\left.{ }^{14} \mathrm{C}\right]$ mevalonic acid lactone/milligrem of mierosomal protein per minutu. Compactin war used as a referemee compound at concentranono of $10^{-1} \mathrm{M}$ to and $10^{-7} \mathrm{M}$ to determine the concentration at 50% inhibition from control value. Drugs were tested for their inhibitory characteristies at four concentrations yun in triplicate. Statistical significance from contral values was decermined by using Durnetr's t test

Molecular Modeling. Selected analogues were modeled by ssing an in-house madified version ${ }^{17}$ of CAMSED- 1^{10} operating on on LBM 3083 machine. The structure of compactin was obtained from published de Xoray dater the structure of pyrrole came from a compendium ${ }^{\infty}$ or minimized scructures. Coordinates for other groups were extracted from the library of fregments within camspo-II. Structures III and 8 were built to attaching the side chain conculning the 4 -hydroxypyran-2"one ring (coondinateas for which wero copied from the Xorey structure of compactin) to the bentene and pyrtole tinte respectitely, and gading the other bubstitumes. Side chais were rotated to remove greric cantacts.
After CNDO/2 was employed to generate atomic charges, Afker CNDO/2 was eruplay to generate atomic charges, counterclockwise rorations (unless otherwise noted, frum 0° to 180° by 10°) were performed using the SCAN module about 8 starting from the in-plone conformation shown in the structure al whe wp of formation of the 4-hydroxypyran-2-one ring was held inxed throughout these calcuhrions, Sheric and elechoubatic energy tarms were used. At each conformation of 8 . the comformationa flexibility of the 2- and 5-substizuents was investigated (Table IVi column hezaed by "ohery rotations"), including entegy evaluation, to jnsure that a lowednerg; contormer of was selected Hoin the endo and exo icomers of the norbornenyl analogue 8 ts well as the R and S isomers of Re were modeled. The ayjal wereched isomer of sec proved to be sterleally hindered and was not included. Figures 1 and 2 were generated by using the sasconfry pragram package. ${ }^{21}$ In eq 1 , the number in parentheses is the standard error of the regression cuefficient, n is the number of compounds, r is the curselation coeffitiant, F is a significurnez test, and s is the standsrd error.
(20) SYBYI. Standard Fragment Litrary, generously supplied by Tripos Assnciates, Su. Louis, MO.
(21) SAS Institute, Inc. SAS/GR.APA Uter's Guide, Version 5 Edition: SAS Institute, Inc., Cary, NC, 1S25.

Acknowledgratat. We are indebted to E. H. Ferguson and C. S. Sekerke for conducting the enzyme inhibition assays, to Dr. S. Brenman, T. Hurley, and D. Sherwood for HPLC analyses, to Dr. F. A. MacKellar and staff for analytical and spectral determinations, and to P. Carr and D. Sandy for manuscript preparation.

Registry No. 1 ($\mathrm{R}_{1}=\mathrm{Ph}$), 768-03-6; $1\left(\mathrm{R}_{1}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ 51694-59-3: $1\left(\mathrm{R}_{1}=4-\mathrm{Ph} . \mathrm{C}_{6} \mathrm{H}_{4}\right), 42575-11-2 ; 1\left(\mathrm{R}_{1}=4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ $7448-87-5 ; 1\left(R_{1}=4 \mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{C}_{\mathrm{H}} \mathrm{H}_{0}\right), 7448-86-4,1\left(\mathrm{R}_{1}=3-\mathrm{F}_{3} \mathrm{C}_{2} \mathrm{C}_{7} \mathrm{H}_{4}\right)$ 20 CH) CR, © 1-naph
 $1\left(\mathrm{R}_{1}=\right.$ cyclohexyl $), 2177-34-6 ; 1\left(\mathrm{R}_{1}=\mathrm{P}_{2} \mathrm{CH}\right), 93021-71-7 ; 1\left(\mathrm{R}^{2}\right.$
$=\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right), 123184-16-7 ; 1\left(\mathrm{R}_{1}=2 . \mathrm{F} \cdot \mathrm{C}_{\mathrm{g}} \mathrm{H}\right), 89698-21-1 ; 1(\mathrm{R}$
 $\left.=\mathrm{CH}_{3}\right\}, 75-07-0 ; 2\left(\mathrm{R}_{2}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7884 \cdot 2 ; 2\left(\mathrm{R}_{2}=\mathrm{CH}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{3}\right)$. 97-96-2: 2 ($\mathrm{R}_{2}=$ syclopropyl), $1489-69-6 ; 2$ ($\mathrm{R}_{2}=$ eycliobutyl). 2987-17.9: $2\left(R_{2}=\right.$ cyclohexyl), 2043-61-0; $2\left(R_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$). 630-19-3; $2\left(\mathrm{R}_{2}=4-\mathrm{F} \mathrm{C}_{4} \mathrm{H}_{4}\right) .459-57-4: 2\left(\mathrm{R}_{2}=\mathrm{C}_{n} \mathrm{H}_{5}\right), 123-98-6$; 3ı, $583-05-1 ; 3 \mathrm{~b}, 123133-95-9 ; 3 \mathrm{c}$. 63472-37-7; 3d, $53842-12-9$; Se, $2108-54-5 ; 3 \mathrm{f}_{1} 123189-96-0 ; \$ \mathrm{sg}, 123183-97 \cdot 1 ; 3 \mathrm{~h}, 104562-48-3 ; 3$; 223, 83-99-2; $3 \mathrm{j}, 123263-79-6 ; 3 \mathrm{k}, 70353-45-6 ; 31,123189-99-3 ; 3 \mathrm{~m}$, 61771-79-7; 3n, 12318400-9; 30, 123184-01-0, 3d. 104568-88.5: 3q, 123184-02-1; 3r, 123184-03-2; 3x, 123184-04-8; 3t, 123184-05-4; 3u. 123184-08-5; 3v, 123184-07-6; 3wo, 123184-08-7; 3x, 123184-09-8; $3 \mathrm{y}, 123184-10-1$; 3z, 123184-11-5; 3aa, 123184-12-3: 3bb, 123184-1344; 5a, 123184-20-5; 5b, 123184-21-4; 5c, 123184-22-5;
 5h, 123184-26-9, 5i, 123184-27.0; 65, 12318428-1; 55, 128184.29.2. $51,123184-30-575 \mathrm{~m}, 123184-31-6 ; 5 n, 121184-32-7 ; 50,123184-33-8_{0}$ $5 \mathrm{p}, 123184-34-9 ; 5 \mathrm{q}, 123184-35-0$: 5r. 123184-36-1; 5s, 123184-37-2; $5 \mathrm{~s}, 104568-68-6 ; 5 \mathrm{u}, 1123184-88-3 ; 5 \mathrm{v}, 123184-38-3 ; 5 \mathrm{vw}, 123184-39-4 ;$ $5 \mathrm{x}, 128184-40-7 ; 5 y, 123184-41-\mathrm{B} ; 5 \mathrm{z}, 104568-91-4 ; 5 \mathrm{se}, 104568-69-6 ;$ $5 \mathrm{bb}, 123184442-9 ; 5 \mathrm{cc}, 123184.43 .0$; 5dd, $128184-44-1$; 5ee.
 5ii, 123184-49-64 5j). 123184-50-9; 68, 123184-51-0; 66, 123184-52-1;
 68, $123184-57-6 ; 6 \mathrm{~h}, 123184-58-7 ; 6 \mathrm{i}, 123184-59.8 ; 6 \mathrm{j}$, 128184-60-1;
 50, 123184.65.6: $6 \mathrm{p}, 123184-66-7,6 \mathrm{q}, 123184-67.8 ; 6 \mathrm{~F}, 123184-68-9$ 6 , $123184.69 .0 ; 6 \mathrm{~F}, 104568.70-64,123184-70-8 ; 60,123184-71$ 6w, 123184-72-5; $6 x, 123184-73-6 ; 6 y, 123184-744 ; 62,123184.75-8 ;$

6aa, 123184-76-9; 6bb, 138184-77.0; 6cc, 123184-78-1; 6 dd , $123184-79-2 ; 60 e_{1} 123184-80-5 ; 65 \mathrm{f}, 123184+81 \cdot 6 ; 6 \mathrm{gg}, 123184-802-7 ;$ $6 \mathrm{hh}, 123184-83-8 ; 6 i \mathrm{i}, 123184-84 \cdot 9 ; 6 j \mathrm{j}, 123184-85-0 ; 7 a_{1} 123184-$ 90-7; 7b, 123184-91-8; 7c, 123184-92-9; 7d, 123154-93-0; 7e, 123184-94-1; 7f, 123184-95-2; 76, 123184-96-3; 7h, 123184-97-4; 75, 123184-98-5; 7j, 123184-99-6; 71, 123185000-2; 7m, 123185-01-9; 71, 123184-96-5; 71. 123184-99-6; 71, 1231850002; 7ns, 123183-01-3; $70.12318602-4 ; 7 \mathrm{a}, 123185-03-5 ; 7 \mathrm{r}, 12318504-6 ; 75,123185.05-7$; $7 \mathrm{c}, 123185-0 \mathrm{ccs} 974,123185-07-9 ; 7 \mathrm{w}, 123185-08-0 ; 7 \times, 104568-2 \mathrm{I}-0 ;$ $7 y, 123185-09 \cdot x_{1} 72,123165-10-4 ; 7 \mathrm{aa}, 123185-11-5: 7 \mathrm{bb}$, $123185-12.6 ; 7 c c, 12185-13-7 ; 7 a d, 123185-14-8 ; 7 e e, 123180-16-9 ;$ ff 123185.16-0; 7gg, 12318s-1 123185-19-3; 7jj, 123185-20-6; 7ktw, 123185-21-7; 711, 123185-22-8 $7 \mathrm{mma}, 123185-23-9 ; 7 \mathrm{nn}, 123185-24-0 ; 8 \mathrm{a}, 123185-25-1 ; 8 \mathrm{~b}$ 23185-26.2; 8c, 123185-27-3; 8d, 123185-28-4; 8e (stereoisome 1). 128185-29-5; 8e (stereoiscomer 2), 123185-49-9; 8f, 104568-74-8 8g. 105256-37.4; 8h, 104568-SI-2; 8i, 104588-78-7; 8j, $223185-30-8$ $8 \mathrm{k}, 123185-31-9 ; 81,104568-80-1 ; 8 \mathrm{~m}, 123185-32-0 ; 8 \mathrm{n}, 123185-33-1$ $80,104568.7746 ; 8 \mathrm{p}, 123185-34-2 ; 8 \mathrm{q}, 10456 \mathrm{~B}-83-1 ; 8 \mathrm{pr}$, 104589-82-3 Es, 104568.798; 8t (steresisomer 1). 123355-04-4: 8t (stereoisome
 $8 \mathrm{x} .104568-73-2 ; 8 \mathrm{y}$, 104568-76-5; 8z, 123185-37-5: 8aca. 104568-75-4 8bb, 123185-38-6; 8cc, 123185-39-7; 8dd, 104568-92-5; 8ee 123185-40-0; 8ff. 123185-41-1; 8gg, 133185-42-2; 2hh, $105356-38-5$ 8ii, 133185-43-3: 8j9, 123185-44-4; 8kk, 123185-45-5; 811 128185-46-6; $8 \mathrm{~mm}, 123185-47-7 ; \quad 8 \mathrm{nn}, \quad 223185-48-8$, $\mathrm{EtCOCH}_{2} \mathrm{CO}_{2} \mathrm{Me} 30414-53-0 ; \mathrm{CF}_{3} \mathrm{COCH}_{4} \mathrm{CO}_{-2} \mathrm{Me}, 83643-84-8$
 $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{Br}, \quad 403-29-2 ; \quad 2,6-\left(\mathrm{M} 4 \mathrm{O}_{2} \mathrm{C}_{8} \mathrm{H}_{3} \mathrm{COCH}_{2} \mathrm{Br}^{2}\right.$ 123134-19-0; 3 -benzyl-5 (2-hydraxyethyl)-4-marhylthiazolium chloride, $4568-71-2$; 2 -(2-hydroxychyl)-8-methyl-4-benzy! chiaride, thazalium chloride, 12384-189; 3-4minopropionitrile ${ }^{2} / 2^{-4}$
 1H-pyrrol- - -yl)-2-echanol, 123184-86-1; 2 -(2-(t-nuorophenyl)

Supplementary Mazerial Available: cambeq-II energies Supplementary Muzerial Available: camseq-II energies
calculated for individuol conformations of θ for compounds appearing in Table IV. The date are ploted in Figure 2. Also, a description of the format of a CAMBEA-II MOL file, followed by MOL files siving x, y, z coordinates for the conformations of compounds I, III, and $8 x$ used is the pharmacophore model (7) pages). Ordering information is given on any eurrent masthead page.

Inhibitors of Cholesterol Biosynthesis. 2. 1,3,5-Xrisubstituted [2-(Tetrahydro-4-hydroxy-2-oxopyran-6-yl)ethyl]pyrazoles

D. R. Sliskovic," B. D. Roth, M. W. Wilson, M. L. Hoenle, and R. S. Newton

arke-Dauis Pharmaceutical Researth Diuision, Warhar-Lambert Company, 2800 Plymouzh Kaad, Ann Arbor, Michizan 48105. Received March 16. 1989

A sexiss of $1,3,5-$ trisubstizutad pyrazole mevalonalactonse were prejpared and evaluated for their ability w inhibi the enzyme FMGG-CoÁ reducrase in vitro. Sinte previous studiex yuggested that the 5 -(4.fuorophanyI) and 3 -(I merhylethyl) subatizuents afforded optimum porency, attention was facusad on variations in position 1 of the pyrazole ing. Biological cvaluaion of analogues bearing a variety of 1-gubstituents suggestud thut, af hough most subytituent ivere tolerated, none afforded an adventage over phenyl, which exhibited potency comparable to what of compactin
in vitro.

We previously described a series of 2,5 -disubstituted pyrrole mevalonolactones whose 3,5-dihydroxyheptanoic acid darivatives were shown to possess varying degrees of intrinsic 3-hydroxy-3-methy)glutaryl-coeazyme A (HMG Cod) reductase activity in vitro. ${ }^{3}$ Structure-activity relationships (SAR) for this series of compounds were dc-

[^11]termined, and the preferred substituents in the 2- and 5 -positions of the pyrrole nucleus were found to be 4 . floorophenyl and 1 -methylethyl, respectively. This pape describes the synthesis and biological activity of a series of $1,3,5$-trisubstituted pyrazole mevalonolactones ${ }^{2}$ with
(3) During the colurite of mis study, a series of trisubstituted py razole mevalonolatenes wete reported to inhibit HMG-CAA eductase by J. R. Wereing at Sandoz Pharmaccutionls Corp U.S. Patent. 4613610.

CERTIFICATE OF SERVICE

I hereby certify that a true copy of the foregoing

1. FUJIKAWA ET AL REPLY TO THE OPPOSITION TO FUJIKAWA ET AL'S MOTION TO ADD COUNTS 3 AND 4
2. J. Med. Chem, 1990,33, 21-31
3. EXECUTED JOINT STIPULATION TO DESIGNATE CLATM 1 OF U.S. PATENT 5,011,930 AS CORRESPONDING TO THE COUNT OF THE INTERFERENCE, 37 CR S1.642
was served by first class mail, postage prepaid, on counsel for the Party Wattanasin, as follows:
Diane E. Furman .
SANDOZ CORP.
59 Route 10.

E. Hanover, New Jersey 07936
this 21st day of JULY, 1992.

Steven B. Keller
V. EXAMTNER-C1F-CEIEF: MTCHAEL SOFOCLESOUS

PICARD ET AL
V.

FUJIKAMA ET AT
the above-captioned Interference.
The parties further agree that Claims 2-7 of U.S. Patent 5,011,930 do not correspond to the Count of the Interference or any of the proposed Counts of the Interference.

Aceodingly, purauant to the provisions Rule 642, the parties y request the Examiner-in-Chief degignate Claim 1 of is.s. Patent 5,011,930, and Claim 1 only of that patent, as corresponding to Count 1 or substitute Count 1 of the Interference.

sy: flane fumax
DIANE E. FURMAN
REG. NO. 31, 204
ATtORNEY FOR WATHANASIN
Date: \qquad

CERTIFICATE OF SERVICE

I hereby certify that a true copy of the foregoing

1. FUJIKAWA ET AL REPLY TO THE OPPOSITION TO FUJIKAWA ET AL'S MOTION TO ADD COUNTS 3 AND 4
2. J. Med. Chem, 1990,33, 21-.31
3. EXECUTED JOINT STIPULATION TO DESIGNATE CLAIM 1 OF U.S. PATENT 5,011,930 AS CORRESPONDING TO THE COUNT OF THE INTFERFERENCE, 37 CFR $\$ 1.642$
was served by first class mail, postage prepaid, on counsel for the Party Wattanasin, as follows:
```
    Diane E. Furman
    SANDOZ CORP.
    59 Route 10
    E. Hanover, New Jersey 07936
this 21st day of JULY, 1992.
```


Case No. 600-7101/CONT/INT. (1)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES JUL 271992
RECEIVED IN
WATLANASIN BOX INTERFERENCE
v.

PICARD et al.
v.

FUJIKAWA et al.

Interference No. 102,648

Examiner-in-Chief: M. Sofocleous

REPLY OF WATTIANASIN TO
FUJIKAWA ET AL. OPPOSITION TO WATTANASIN MOTION TO SUBSTITUTE A COUNT

BACKGROUND

The opposition of the party Fujikawa et al. to the party Wattanasin's Preliminary Motion under 37 CFR 1.633(c)(1) to substitute a count is on two limited and hypertechnical grounds:
(1) There is an apparent error in the depiction of one of the three lactone structures representing the substituent "Z" of Wattanasin's proposed Substitute Count I; and
(2) Wattanasin has not specifically requested via contingent motion, that Count 2 of this interference also be modified to call for administration of a compound of Wattanasin's proposed Substitute Count I rather than the present Count 1 of the interference.

Wattanasin
600-7101/CONT/INT.
Reply to Fuj Opp. to Mot. to Sub. Count page - 2 -

REMARKS

(1) Wattanasin agrees with Fujikawa et al. that in Wattanasin's proposed Substitute Count I, the following structure representing the substituent."Z":
"a"

should be changed to:
"b"

Structure "a" is incorrect because the -OH group should be a substituent on the same carbon atom of the lactone ring on which R^{11} is a substituent, rather than a substituent on the adjacent carbon atom. The correct structure "b", above, is consistent with definition (b) of substituent "Z" of claim 1 of the Wattanasin involved application, and is identical to the first lactone structure for the "Z" substituent of Fujikawa et al. in claim 1 of their involved application.

Wattanasin regrets the inadvertent error and notes that it resulted from photocopying an incorrect printed structure depicted in the Abstract of Fujikawa's U.S. Patent No. 5,011,930 (which issued on a divisional application of the Fujikawa et al. involved application).

Accordingly, Wattanasin respectfully requests in the accompanying "Wattanasin Motion to Correct Typographical Error..." that proposed Substitute Count I be corrected by replacing structure "a" therein with the correct structure "b".
(2) With respect to the second ground of the Fujikawa et al. Opposition to Wattanasin's Rule 633(c)(1) Motion, Wattanasin acknowledges that the Motion to substitute was not accompanied by a motion to modify Count 2 contingent on the granting of the motion to substitute.

However, it is Wattanasin's position that the presence or absence of such a contingent motion with respect to Count 2 has no effect on Wattanasin's motion to substitute a count.

[^12]Wattanasin
Reply to Fuj. Opp, to Mot. to Sub. Count
page - 4 -

Accordingly, for the reasons set forth herein and in Wattanasin's Rule $633(\mathrm{c})(1)$ Motion to substitute a count, it is respectfully requested that the Wattanasin motion be granted.

Respectfully submitted,

SANDOZ CORP.
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
Enc.: Wattanasin Motion to Correct Typographical Error
Jul.y 2l, 1992

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

REPLY OF WAITIANASIN TO FUJIKAWA ET AL. OPPOSITION TO WATTTANASIN MOTION TO SUBSTITUTE A COUNT

was served on counsel for the party Fujikawa et al., this 21st day of July 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Meier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
$\frac{\text { diane human }}{\text { Diane E. Furman }} 7 / 21 / 92$

Case No. 600-7101/CONT/INT. (2) FY/ patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE JUL 271992 BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES RECEIVED IN BOX iNTERFERENCE
WATIANASIN
v.

PICARD et al.
v. FUJIKAWA et al.

WATTANASIN MOTION TO CORRECT TYPOGRAPHICAL ERROR IN PROPOSED SUBSTITUTE COUNT I

Wattanasin hereby moves to correct proposed Substitute Count I to correct an inadvertent typographical error in one of the structures representing the substituent "Z" of the structural formula therein. This motion is necessitated by one of the grounds raised by Fujikawa et al. in their opposition to the Wattanasin Rule $633(\mathrm{c})(1)$ motion to substitute a count.

REMARKS

The party Fujikawa et al. in their Opposition have identified a typographical error in the Wattanasin Substitute Count I. Wattanasin acknowledges the error, which was inadvertent.

Accordingly, Wattanasin herein moves to correct Substitute Count I by replacing the following incorrect structure appearing on page 3 of. its Rule 633(c)(1) Motion:

Wattanasin 600-7101/CONT./INT. Motion to Correct page - 2 -
with the following correct structure:
"b"

Structure "a" is incorrect because the -OH group should be a substituent on the same carbon atom of the lactone ring on which R^{11} is a substituent, rather than a substituent on the adjacent carbon atom. The correct structure "b", above, is consistent with definition (b) of substituent "Z" of claim 1 of applicant's involved application, and is identical to the first lactone structure for the "Z" substituent of Fujikawa et al. in claim 1 of their involved application.

Wattanasin notes that the error inadvertently resulted from photocopying an incorrect printed structure depicted in the Abstract of Fujikawa's U.S. Patent No. 5, 011,930.

Accordingly, Wattanasin respectfully requests that the Wattanasin proposed Substitute Count I be corrected by substituting the above structure "b" for structure "a". therein, of the "Z" substituent.

Wattanasin
Motion to Correct
page - 3 -

The error is regretted, and entry of this motion would be gratefully appreciated.

Respectfully submitted,

SANDOZ CORP.
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
July 21, 1992

```
It is hereby certified that a true copy of the paper entitled:
```


WATTANASIN MOTION TO CORRECT TYPOGRAPHICAL ERROR IN PROPOSED SUBSTITUTE COUNT I

was served on counsel for the party Fujikawa et al., this 21st day of July 1992, by postage pre-paid first-class mail addressed to the following:

Oblong, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Keller, Esq. 1755 South Jefferson Davis Highway Crystal Square 5, Ste. 400
Arlington, VA 22202

Diane E. Furman

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE JUL 271992 , BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN
BOX INTERFERENCE
v.

PICARD et al.
v.

FUJIKAWA et al.
Interference No. 102,648
Examiner-in-Chief: M. Sofocleous

REPLY OF WATTANASIN TO FUJIKAWA ET AL. OPPOSITION TO WATTIANASIN 37 CR $\$ \$ 1.635$ AND $1.633(\mathrm{e})$ MOTIONS

BACKGROUND

Abstract

The party Wattanasin by Rule 635 Motion has moved to include claim 1 of the Fujikawa et al. related patent, U.S. 5,011,930 (hereinafter the "r930 patent") in this interference; or alternatively by Contingent Preliminary Motion under Rule 633(e), Wattanasin has sought to declare an additional interference between the involved application of Wattanasin and the ' 930 patent of Fujikawa et al. [Fujikawa et al. in their Statement of Related Applications have indicated that they have now taken the '930 patent into reissue as application Serial No. 07/799,058.]

The party Fujikawa et al. have opposed the Wattanasin Rule 635 and $633(e)$ motions, principally on the ground that the motions are not specifically authorized by the Rules.

Wattanasin herein responds to the Opposition of Fu'jikawa et al.

```
Wattanasin
Reply to Fuj. Opp. to 635, 633(e) Motions
page - 2 -
```

600-7101/CONT/INT.

REMARKS

In implementing the new rules of interference effective February 11, 1985, the Patent and Trademark Office stated that "The object of the interference will be to resolve all controversies as to all interfering subject matter defined by one or more counts. A final decision in the interference will determine who, if anyone, is entitled to claims which correspond to a count." [emphasis supplied] 1050 OG 385.

Consistent with the above statement of administrative purpose to resolve all interfering subject matter defined by one or more counts, the interference rules do specifically provide that if during the pendency of an interference, the EIC becomes aware of an application or a patent not involved in the interference which claims the same patentable invention as a count in the interference, the EIC may add the application or patent to the interference on such terms as may be fair to all parties, 37 CFR 1.642. (See also 37 CFR $1.610(e)$, which gives the EIC discretion "to determine a proper course of conduct in an interference for any situation not specifically covered by this part.")

[^13]Wattanasin
Reply to Fuj. Opp, to 635, 633(e) Motions
page - 3 -

Wattanasin submits that the factual context of the present interference particularly justifies the granting of Wattanasin's Rule 635 or $633(e)$ Motions, and give the EIC substantial reason to exercise his discretion to involve claim 1 of the Fujikawa et al. ' 930 patent (or any corresponding claim of the reissue application). That is, claim 1 of the Fujikawa et al. '930 patent clearly corresponds to, and is substantially embraced by, counts 1 and 2 of this interference (as well as to Wattanasin's proposed substitute count I), and therefore would not require that an additional count be added to the interference.

Furthermore, in view of this specific factual setting, the prior opinions cited by Fujikawa et al. in their Opposition are not considered squarely on point.

In Theeuwes v. Bogentoft, 2 USPQ2d 1378 (Comm. of Pats. 1987), patentee Theeuwes unsuccessfully moved to add or substitute a pending Theeuwes application to the interference. However, in denying the motion, the opinion of the Commissioner was careful to clarify that it was not apparent why the requested addition of the copending application would be necessary, since the stated purpose of Theeuwes' motion was to permit broadening of the count to include his best proofs, which Theeuwes in any case would be permitted to do without addition of the copending application, 2 USPQ2d at 1379 .

In Gerk v. Cottringer, 17 USPQ2d 1615 (POBAI 1990), Gerk unsuccessfully moved under Rule 633(c)(2) or 633(c)(3) to involve an additional application of Cottringer et al. in the interference. However, there is no indication of the relationship, if any, of the involved patent or application of Cottringer and the application which Gerk sought to be included.

Abstract

In the instant case, Wattanasin is seeking to involve a claim of another patent (or corresponding reissue application) of Fujikawa et al. which issued on a divisional application of the involved application of Fujikawa et al. and which is already substantially covered by Counts 1 and 2 (and the Wattanasin proposed Substitute Count I) of the present interference.

In the interest of administrative economy and fairness to Wattanasin, there should be a full and final resolution of the matters at issue in this interference. Assuming arguendo that Wattanasin's 635 or $633(\mathrm{e})$ motions are denied, then the possibility will exist that Fujikawa will emerge from reissue with a claim still within the scope of Count 1 of this interference, and Wattanasin could bear the burden of reinstituting interference on the very same issues that are now before the EIC.

As a final matter, Fujikawa et al. have advanced a technical ground for opposition to Wattanasin's Motion under Rule 635, with regard to a need for certification of opposing counsel [Rule $637(\mathrm{~b}) \mathrm{]}$. Wattanasin acknowledges this inadvertent omission.

However, the EIC is advised that counsel for Fujikawa et al. and the undersigned have been conferring in an attempt to resolve by agreement the issues raised by Wattanasin's Rule 635 [or 633(e)] Motion. More particularly, counsel for the parties have reached agreement on a joint stipulation to be filed in this proceeding which states that claim 1 of the Fujikawa et al. '930 patent should be designated as corresponding to Count 1 (or proposed Substitute Count I) of the present interference, and that said claim 1 embraces subject matter that may not be patentably distinct from either the current or proposed count of this interference. (A reference is made to this stipulation by Fujikawa et al. in their Opposition on page 2, fourth line from bottom.) These activities indicate good faith efforts by the parties to resolve the issues raised by the Wattanasin Rule 635 Motion, notwithstanding the lack of formal certification therein.

Furthermore, Fujikawa's citation to M. v. V., 6 USPQ2d 1039 (Bd. Pat: App. Interfer. 1987) is not considered to support its request for dismissal or denial of the Wattanasin 635 Motion on the ground of technical insufficiency. In that case, notwithstanding that movant's 635 Motion lacked a certification pursuant to $637(\mathrm{~b})$, the Board nevertheless did not deny or dismiss the motion on that ground but instead went on to consider the motion on the merits, 6 USPQ2d at 1040 .

Wattanasin
Reply to Fuj. Opp. to 635, 633(e) Motions
page - 6 -

Accordingly, for the reasons indicated above and as outlined in the Wattanasin Motion under Rule 635 and Contingent Motion under Rule $633(\mathrm{e})$, the $E I C$ is respectfully requested to act favorably on the subject motions of Wattanasin.

Respectfully submitted,

SANDOZ CORP
59 Route 10
E. Hanobver, NJ 07936

DEF: Imf
July 21, 1992

I hereby certify that this correspondance is boing
deposited with the United States Postal Service as
first class mail it an enveiope addressed to: Commis-
sioner of Patents and Trademarks, Washington, D.C.

… (Date of Deposit)
Diane E Furman.

Registerg Represe
Mans. tithon
uly 21 Signature

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

REPLY OF WATTANASIN TO FUJIKAWA ET AL. OPPOSITION TO WATTANASIN 37 CFR SS 1.635 AND $1.633(\mathrm{e})$ MOTIONS

```
was served on counsel for the party Fujikawa et al., this 21st day
of July 1992, by postage pre-paid first-class mail addressed to
the following:
```

Oblon; Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Keller, Esq.
1755 South Jefferson Davis Highway Crystal Square 5, Ste. 400
Arlington, VA. 22202


```
Case No. 600-7101/CONT/INT.(4
Patent
```

```
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
JUL 271992
RECEIVED IN BOX INTERFERENCE
```


WATTANASIN

v.

PICARD et al.
v.

FUJIKAWA et al.

Interference No. 102,648
Examiner-in-Chief: M. Sofocleous

REPLY OF WATTANASIN TO
FUJIKAWA ET AL. OPPOSITION TO WATTANASIN MOTION FOR BENEFIT

BACKGROUND

Fujikawa et al. have opposed the Wattanasin Contingent Motion for Benefit (37 CFR 1.633(f)) primarily on the ground that Wattanasin has not shown how the parent U.S. application constitutes a constructive reduction to practice of the Wattanasin proposed Substitute Count I.

Wattanasin submits that the Fujikawa et al. opposition is without basis, for the reasons set forth below.

REMARKS

It is a matter of record that:
(1) Wattanasin's involved application is a R60 continuation application of a now-abandoned parent application; and
(2) The parent application is the only application of record on which Wattanasin can base a request for benefit; and

Wattanasin
600-7101/CONT./Int.
Reply to Fuj. Opp. to Motion for Benefit
page - 2 -
(3) The EIC has already independently granted Wattanasin the benefit of the parent filing date in connection with Counts 1 and 2 when this interference was declared; and
(4) Fujikawa et al. have not contested Wattanasin's right to the benefit of the parent filing date in connection with Counts 1 and 2.

Wattanasin's Contingent Motion for Benefit (Rule 633(f)) was filed concurrently with three Preliminary Motions: Motion under 633(c)(1); Motion under Rule 635; and Contingent Motion under Rule $633(\mathrm{e})$. Rule $637(\mathrm{c})(1)(\mathrm{vi})$ requires a request for benefit in connection with a $633(c)$ Motion. Rule $637(e)(1)$ (viii) requires such a motion to accompany a Rule $633(\mathrm{e})$ Motion. No specific requirement in this regard exists with reference to Rule 635.

It is obvious that Wattanasin's Contingent Motion for Benefit was filed in connection with the abovementioned motions under Rules $633(c)(1), 635$ and $633(e)$, since the Motion for Benefit expressly states that it is contingent on the granting of any one or more of the motions being filed concurrently therewith.

Wattanasin
600-7101/CONT./Int.
Reply to Fuj. Opp, to Motion for Benefit
page - 3 -

It is further evident that the granting of the Rule 633(c)(1) Motion would have resulted in the substitution of Wattanasin's Substitute Count I for the present Count 1 of the interference.

Abstract

It is still further apparent that Wattanasin has effectively fulfilled the requirements of Rule $633(f)$ with respect to proposed Substitute Count I.

Wattanasin fulfills these requirements by: (1) identifying the earlier wattanasin application and certifying that a copy was served on Fujikawa et $\underline{a l} . ;$ and (2)" showing that the earlier application constitutes a constructive reduction of the Substitute Count I by identifying relevant specific pages of the parent application (namely, pages $33-35$ and pages 51-53) which contain everything necessitated by the first paragraph of 35 USC $\$ 112$ for constructive reduction to practice of at least one compound embraced by said proposed Substitute Count I. More particularly, the disclosure at pages 51-53 (i.e. Examples $3 A-E$ and 4) satisfies the written description, how-to-make, and best mode requirements for at least one compound within the scope of proposed Substitute Count I; and the utility statement at pages 33-35 of the parent specification satisfies the how-to-use requirement of 35 USC $\$$ 112 for at least one compound within the scope of Substitute Count I.

Wattanasin
600-7101/CONT./Int.
Reply to Fuj. Opp. to Motion for Benefit
page - 4 -

Therefore, given that the EIC has already held that the Wattanasin parent application fulfills the requirement for priority of 35 USC $\$ 112$ with respect to Counts 1 and 2 , and that on the present facts the Motion for Benefit is a virtual "formality" to reaffirm that which the EIC has already granted with respect to proposed Substitute Count I, Wattanasin hereby traverses the Fujikawa et al. Opposition to the Wattansin Motion for Benefit and submits that it is without foundation.

Respectfully submitted,

DEF: rmf
SANDOZ CORP.
59 Route 10
E. Hanover, NJ 07936

July 21, 1992

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

REPLY OF WATMANASIN TO FUJIKAWA ET AL. OPPOSITION TO WATTANASIN MOTION FOR BENEFIT

was served on counsel for the party Fujikawa et al., this 21st day of July 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
$\frac{\text { Plane thana } 7 / 21 / 92}{\text { Diane E. Furman }}$

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN

v.

PICARD et al.
v .
FUJIKAWA et al.

WATTANASIN SECOND CONTINGENT MOTION FOR BENEFIT 37 CFR $\$ 1.633(\mathrm{f})$

Contingent on the granting of Wattanasin's concurrently filed "Motion to Correct Typographical Error in Proposed Substitute Count I," the party Wattanasin hereby moves to be accorded the benefit of parent application Serial No. 07/318,773 filed March 3, 1989, from which the involved application is a Rule 60 continuation, with respect to said corrected Substitute Count I.

This will certify that a complete copy of the file of Serial No. $07 / 318,773$, except for documents filed under 37 CFR 1.131 or 1.608, has previously been served on the party Fujikawa et al. [37 CFR 1.637(f)(2)]

The parent application satisfies all four requirements of 35 USC $\$ 112$ for at least one species of proposed Substitute Count I.

More particularly, the written description and enablement requirements of 35 USC $\$ 112$ for species of the count are satisfied by the parent disclosure at, e.g., pages $36-53$ directed to the preparation of various species within the scope of the Count (for example, see the compounds of Examples $3 \mathrm{~A}-\mathrm{E}$ and 4, pp. 51-53); the how-to-make requirement is satisfied at pages 5-32 as well as in the Examples at pages $36-53$; and the how-to-use requirement is fulfilled at pages 33-35 (utility statement).

Wattanasin
Sec. Cont. Mot. Benefit
page - 2 -

Therefore, since the parent application satisfies all four requirements of 35 USC $\$ 112$ for at least one species of proposed Substitute Count I, it is respectfully submitted that the parent application of Wattanasin's involved application constitutes a constructive reduction to practice of proposed Substitute Count I as corrected.

Respectfully submitted,

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07986

DEF: rmf
July 21, 1992

Ihereby certify that this correspondence is being
deposited with the United States Poatal Service as
first class mail in an onvelope addressed to: Commissioner of Patents and Jrademerks, Washington, D.C.

(Date of Deposit)
Diane E, Eurman.

Date of Signature

CERTIFICATE OF SERVICE

```
    It is hereby certified that a true copy of the paper
entitled:
```


WATTANASIN SECOND CONTINGENT MOTION FOR BENEFIT

 37 CTR $\$ 1.633$ (f)was served on counsel for the party Fujikawa et al., this 21st day of July 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Mater \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
$\frac{\text { Plane Human } 7 / 2 / 92}{\text { Diane E. Furman }}$

Case No. 600-7101/CONT/Int.(6)
Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATEENT APPEALS AND INTERFERENCES JUL 271992

WATTANASIN

RECEIVED In
BOX INTERFERENCE
Interference No. 102,648
Examiner-in-Chief: M. Sofocleous
PICARD et al.
v .
FUJIKAWA et al.

WATTANASIN CONTINGENT OPPOSITION TO

FUJIKAWA ET AL. MOTION FOR BENEFIT, 37 CFR $\$ 1.633(J)$

Fujikawa et al. have requested benefit of their three Japanese priority applications ${ }^{1}$, for Wattanasin's proposed Substitute Count I.
In their motion, Fujikawa et al. have stated that the
Japanese applications contain "ipsis verbis support" for
Substitute Count I and also contain a "plurality of examples"
embraced thereby.

However, Fujikawa et al. did not show how any of the three Japanese applications, let alone each of them, constitutes a constructive reduction to practice of Substitute Count I. In particular, Fujikawa et al. have failed to identify the specific portions of the Japanese applications that purportedly satisfy the "how to make" and "how to use" requirements of the first paragraph of 35 USC $\$ 112.2$

1. Japanese Patent Application Serial No. 207,224 (August 20,
1987), Serial No. 15,585 (January 26,1988) and Serial No. 193,606 (August 3, 1988).
2. Fujikawa et al. have alleged that they have already received the benefit of two of their Japanese applications for claim 1. That is not seen to be the case; they have been accorded benefit for existing Counts 1 and 2, but not for any particular claim corresponding thereto.

Cont. Opp. to Fuj. Mot. Ben.
page - 2 -

Fujikawa et al. have now also opposed the Wattanasin Contingent Motion for Benefit on the ground that Wattanasin has not shown how his U.S. parent application constitutes a constructive reduction to practice of Proposed Substitute Count I. For the reasons set forth in Wattanasin's Reply (being filed concurrently herewith) to the Fujikawa et al. Opposition to the Wattanasin Motion for Benefit, Wattanasin disagrees with the grounds of the Fujikawa Opposition.

However, if the Wattanasin Motion for Benefit is deemed to be defective, then the Fujikawa et al. Motion must also be defective for the reasons set forth above.

Therefore, contingent on the denial of the "Wattanasin Contingent Preliminary Motion for Benefit Under 37 CFR §1.633(f)" or the "Wattanasin Second Contingent Motion for Benefit" being filed concurrently herewith, Wattanasin opposes the granting of the Fujikawa et al. Opposition to the Wattanasin Contingent Preliminary Motion for Benefit.

Respectfully submitted,

Diane E. Furman
Attorney for the Party Wattanasin Registration No. 31,104
201-503-7332

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07986

DEF: rmf
July 21, 1992

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

WATTINASIN CONTINGENT OPPOSITION TO

 FUJIKAWA ET AL. MOTION FOR BENEFIT, 37 CPR $\$ 1.633(\mathrm{~J})$```
was served on counsel for the party Fujikawa et al., this 21st day
of July 1992, by postage pre-paid first-class mail addressed to
the following:
```

Oblong, Spivak, McClelland, Meier \& Neustadt, P.C. Attn: Steven B. Keller, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
$\frac{\text { Plane Human } 7 / 21 / 92}{\text { Diane E. Furman }}$

All communications respecting this .ase should identify is by number and names of parties.


## U.B. DEPARTMENT OF COMMERCE Patent and Trademark Office

Address: BOXINTERFERENCE
Commissioner of Patents and Trademarks Washington, ロ.C. 20こ31

## -

> MdED


Interference No. 102,648
Wattanasin et al. v.

Fujikawa et al.

The following preliminary motions were filed on June 21, 1991 by Wattanasin et al. (Wattanasin) and are before the Examiner-in-Chief (EIC) for decision:

1. Preliminary motion under 37 CFR 1.633 (c) (1) to redefine by substituting proposed count 1 (Paper No. 19).
2. Motion under 37 CFR 1.635 to add U.S. Patent No. 5,011,930 to this interference (Paper No. 20).
3. Contingent preliminary motion under 37 CFR 1.633 (e) to declare an additional interference (Paper No. 21).
4. Contingent preliminary motion under 37 CFR $1.633(f)$ to be accorded benefit (Paper No. 22).

The following motions and notices were filed by Fujikawa et al. (Fujikawa):

1. Preliminary motion under 37 CFR 1.633 (c)(1) to redefine by adding proposed counts 3 and 4 (Paper No. 15).
2. Preliminary motion under 37 CFR 1.633 (f) to be accorded benefit with respect to proposed counts 3 and 4 (Paper No. 14).
3. Preliminary motion under 37 CFR 1.633 (f) to be accorded benefit with respect to counts 1 and 2, proposed counts 3 and 4 and claims 41 to 44 (Paper No. 16).
4. Notice of related application (Paper No. 17).
5. Preliminary motion under 37 CFR $1.633(j)$ to be accorded benefit (Paper No. 26) .

Various oppositions and replies thereto have been filed. In addition, the parties filed a joint stipulation (Paper No. 33) to add claim 1 of U.S. Patent No. 5,011,930 to this interference. Sua Sponte Action

The EIC proposes to declare an additional interference with Fujikawa's uninvolved patent No. 5,011,930 on the basis of a new count similar in scope to that proposed by Wattanasin's motion (1) by modifying Wattanasin's proposed count in the manner suggested by Fujikawa's opposition (Paper No. 27). See the parties' stipulation (Paper No. 33). The proposed count is as follows: Count 1

A compound of the formula:


```
wherein
```



```
\(\mathrm{R}^{5}\) is hydrogen,
\(C_{1-6}\) alkyl,
\(\mathrm{C}_{2-3}\) alkenyí,
C \({ }_{3-6}\) cycloalkyl,
phenyl substituted by \(R^{9}\) (wherein \(R^{9}\) is hydro-
gen, \(C_{1-4}\) alkyl, \(C_{1-3}\) alkoxy, fluoro, chloro, bromo
or trifluoromethyl),
phenyl- \(\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}{ }^{-}\)(wherein m is 1,2 or 3),
\(-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\)-phenyl or phenyl- \(\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\) -
(wherein n is 0,1 or 2).
```

$Y$ is

$$
\begin{aligned}
& -\mathrm{CH}_{2}-, \\
& -\mathrm{CH}_{2} \mathrm{CH}_{2}-, \\
& -\mathrm{CH}=\mathrm{CH}-, \\
& -\mathrm{CH} 2-\mathrm{CH}=\mathrm{CH}-, \text { or } \\
& -\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-;
\end{aligned}
$$

z is


or $-Q-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12}$ (where $\mathrm{R}^{12}$ is hydrogen or $R^{14}$ ) ;

Interference No. 102,648

```
 Q is }\quad-\textrm{CH}(\textrm{OH})-
 -C(0)--, C=
 -C(OR }\mp@subsup{}{}{13}\mp@subsup{)}{2}{-
 W is -C(}\mp@subsup{\textrm{R}}{}{ll})(\textrm{OH})-\quad(\mathrm{ where }\mp@subsup{\textrm{R}}{}{11}\mathrm{ is hydrogen or C C l-3
 alkyl),
 -C(O)-, or
 -C(OR }\mp@subsup{}{}{13}\mp@subsup{)}{2}{-i
 the two R R
alkyl; or two R R
 R14 is physiologically hydrolyzable alkyl or M (wherein M
 is NH4, sodium, potassium,' 1/2 calcium or a hydrate
 of lower alkylamine, di-lower alkylamine or
 tri-lower alkylamine); and
 R
```

        The claims of the parties which correspond to the count are
    as follows:
    Wattanasin et al.: Claims 1 to 7 and 10.
Fujikawa et al.: Claims 1 to 9,11 to $34,36,39$ and 40.
Fujikawa et al. '930: Claim 1.

The EIC also proposes to substitute a new count 3 for count
2. Count 2 is as follows:

Count 3
A method of inhibiting cholesterol biosynthesis in a patient in need of said treatment comprising administering a cholesterol synthesis inhibiting amount of a compound of the formula:

wherein

```
R', R2, R
hydrogen,
C 1-6 alkyl,
C
C1-3 alkoxy,
n-butoxy,
i-butoxy,
sec-butoxy,
R}\mp@subsup{}{}{7}\mp@subsup{R}{}{8}N\mathrm{ - (wherein }\mp@subsup{R}{}{7}\mathrm{ and }\mp@subsup{R}{}{8}\mathrm{ are independently
 hydrogen or C (1-3 alkyl),
trifluoromethyl,
trifluoromethoxy,
difluoromethoxy,
```

```
fluoro,
chloro,
Eromo,
phenyl,
phenoxy,
benzyloxy,
hydroxy,
hydroxymethyl,
-O(\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{)}{\alpha}{}\mp@subsup{\textrm{OR}}{}{19}\mathrm{ (wherein R R}
```

$R^{5}$ is
hydrogen,
$\mathrm{C}_{1-6}$ alkyl,
$\mathrm{C}_{2-3}$ alkenyl,
$\mathrm{C}_{3-6}$ cycloalkyl,
phenyl substituted by $R^{9}$ (wherein $R^{9}$ is hydro-
gen, $C_{1-4}$ alkyl, $C_{1-3}$ alkoxy, fluoro, chloro, bromo
or trifluoromethyl),
phenyl- $\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}$ (wherein m is 1,2 or 3$)$,
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl or phenyl- $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}^{\mathrm{CH}\left(\mathrm{CH}_{3}\right)-}$
(wherein n is 0,1 or 2 ).
Y is

```
\(-\mathrm{CH}_{2}-\),
\(-\mathrm{CH}_{2} \mathrm{CH}_{2}\)-,
\(-\mathrm{CH}=\mathrm{CH}-\),
\(-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\), or
\(-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\);
```

```
Interference No. 102,648
```

2 is


or $-Q-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12} \underset{\mathrm{R}^{14} \text { ) ; (where }}{\text { R }} \quad \mathrm{R}^{12} \quad$ is hydrogen or
$Q$ is $\quad-\mathrm{CH}(\mathrm{OH})-$.
-C(0)-, or
$-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}{ }^{- \text {; }}$
$W$ is $\quad-C\left(R^{11}\right)(O H)-\quad$ (where $R^{11}$ is hydrogen or $C_{1-3}$
$-C(0)-$, or
$-\mathrm{C}\left(\mathrm{OR}^{\mathrm{l3}}\right)_{2}{ }^{- \text {; }}$
the two $R^{13}$ are independently primary or secondary $C_{1-6}$ alkyl; or two $\mathrm{R}^{13}$ together form $-\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3}$-;
$R^{14}$ is physiologically hydrolyzable alkyl or $M$ (wherein $M$ is $\mathrm{NH}_{4}$, sodium, potassium, $1 / 2$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine); and
$R^{17}$ and $R^{18}$ are independently hydrogen or $C_{1-3}$ alkyl;
as defined in combination with pharmaceutically acceptable carrier.

The claims of the parties which correspond to count 3 are:
Wattanasin : Claims 8 and 9
Fujikawa et al.: Claims 35,37 and 38

Since the parties have had the opportunity to argue the merits of Wattanasin's substituted count, the EIC is not setting a time for either party to file its views as to the substitute count.

Each party is accorded the benefit of the applications
listed in the notice declaring this interference with respect to the count of the additional interference and count 3.

Wattanasin's motions (1 to 4)
These motions are dismissed as moot in view of the EIC's sua sponte action.

Fujikawa's motion (1)
The motion requests that proposed counts 3 and 4 be added to the proceeding. The motion is denied. The EIC agrees with Wattanasin's opposition (Paper No. 28) that his application disclosure does not contain a written description within the meaning of 35 U.S.C. 112, first paragraph, for proposed claims 11 and 12 to be added to the application to correspond to counts 3 and 4 .

Interference No. 102,648

## Fujikawa's motion (2)

The motion is dismissed as moot in view of the denial of Fujikawa's motion (1), supra.

Fujikawa's motion (3)
The motion is dismissed as unnecessary. Fujikawa has been accorded the benefit of the prior Japanese applications with respect to the present counts.

Fujikawa's motion (5)
The motion is dismissed as moot in view of the EIC's accordation of benefit to Fujikawa in the sua sponte action, supra. Serving of Preliminary Statements

Preliminary statements have been opened. In light of the EIC's sua sponte action, supra, each party may file a supplemental preliminary statement with respect to count 3 . Both the original and supplement statements must be served within 10 days after the date of mailing of this order. $37 \mathrm{CFR} 1.631(\mathrm{a})$. With respect to the count of the additional interference, each party must file with 10 days after the date of mailing of this order a preliminary statement and serve a copy upon its opponent.

## Suggestion for Negotiations

After the redeclaration of this interference, the EIC will set times for the parties to present testimony. The parties are strongly encouraged to make contact with each other, before the times are set, and attempt to settle this interference or, failing that, to

Interference No. 102,648
narrow down, as much as possible, the issues for final hearing. The EIC can be expected to cooperate in allowing reasonable time for a bona fide attempt at such negotiations.

gjh

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

| WATTANASIN | : |  |
| :---: | :---: | :---: |
| V. | : | INTERFERENCE NO.: 102,648 |
| PICARD et al | : | EXAMINER-IN-CHIEF: |
| V. | : | MICHAEL SOFOCLEOUS |
| FUJIKANA et al |  |  |

FUJIKAWA REPLY TO BELATED
OPPOSITION TO FUJIKAWA'S MOTION FOR BENEFIT

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGION, D.C. 20231

BOX INTERFERENCE

SIR:

In papers filed July 21, 1992, Wattanasin contingently opposes Fujikawa's Motion for Benefit. Fujikawa's Motion for Benefit was filed June 11, 1992. Any Opposition thereto was clearly due July 1, 1992. $37 \mathrm{CFR} \$ 1.638$. Wattanasin was aware of this date, as it filed Opposition to another Fujikawa Motion filed on the same date
in timely fashion on July 1, 1992. Clearly, the Wattanasin Opposition to Fujikawa's Motion for Benefit is belated.

The provisions of Rule 645 are quite clear. Any belated Motion must be accompanied by a Motion Rule under 635 explaining why the Motion could not be earlier filed. Here, quite clearly, there is no explanation, wattanasin now adopts an argument it did not present earlier. The fact that it did not occur wattanasin until Fujikawa made a similar argument against Wattanasin's Motion is hardly acceptable. A failure of original thinking does not excuse delay.

Further, had a Motion been properly brought pursuant to Rule 635, compliance with that Rule would have required contact with undersigned Counsel to resolve the issue. No such contact was attempted, itself grounds for dismissal. M v. V, 6 USPQ 2d 1039 (PTOBAI 1987). The Opposition should clearly be dismissed.

Fujikawa would like to take further issue with footnote 2 in the Wattanasin contingent Opposition, to the extent it is not dismissed. Specifically, Wattanasin urges that Fujikawa have not been granted benefit for their existing Claim 1, as to their priority cases, wattanasin urging that they have only been accorded
benefit as to existing Counts 1 and 2. The Wattanasin argument is wrong, and misperceives the case.

Wattanasin moved to substitute Fujikawa's Claim 1 as the Count of the Interference. In prosecution, Fujikawa was in fact granted benefit as to this Claim 1, in order to overcome a rejection under 35 U.S.C. $\$ 102(e)$. It is in fact true that Fujikawa has been accorded benefit as to existing Counts 1 and 2, but that is less relevant than the fact that the Primary Examiner specifically found support in the Japanese priority cases for Fujikawa's Claim 1, which Wattanasin urges as substitute Count 1 of the Interference. While the Primary Examiner's decision is not binding, it is strong evidence, coupled with the remainder of the discussion in the Fujikawa Motion for Benefit, that Fujikawa is entitled to that benefit. Grant of the same is respectfully requested.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,
MAIER \& NEUSTADT, P.C.
steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al

## CERTIFICATE OF SERVICE

I hereby certify that a true copy of the foregoing FOJIKAWA REPLY TO BELATED OPPOSITION TO FUJIKAWA'S MOTION FOR BENEFIT was served by first class mail, postage prepaid, on counsel for the Party Wattanasin, as follows:

```
Diane E. Furman
SANDOZ CORP
59 Route 10
E. Hanover, New Jersey 07936
```

this 3rd day of AUGUST, 1992


Steven B. Keller

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES



#### Abstract

Motion for Benefit, a Motion to Correct Typographical Error and a contingent Opposition to Fujikawa's Motion. Fujikawa herein opposes Wattanasin's Motions belatedly filed, that is, the second contingent Motion and the Motion to correct a typographical error. The belatedly Opposition is replied to elsewhere.


## I. THE PAPERS ARE ILATE WITHOUT EXPLANATION

```
 The time for filing Preliminary Motions in this Interference
is long past. Motions were filed June 11, 1992. This is the
absolute final due date for such Preliminary Motions, and no further extension of that time was sought by either party. Accordingly, as Motions pursuant to Rule 633, the Motions are clearly belated. 37 CFR \(\$ 1.645\) provides explicit instruction on how such filing may be effected. Specifically, Rule 645(b) provides:
```

```
($1.635) which shows sufficient
cause why the paper was not timely
filed
```

Wattanasin did not file a Motion under Rule 635 . Rule 645 is not discretionary, neither paper filed by Wattanasin may be considered.

Moreover, Rule 635 clearly provides that if entry of a belated Motion is sought, the issue must be discussed by Counsel for the parties, in an effort to arrive at resolution in good faith. 37 CFR $\$ 1.637(\mathrm{~b})$. Wattanasin did not contact undersigned Counsel for Fujikawa, nor does Wattanasin make any representation of such effort. Clearly, Wattanasin was aware of the penalty for failure to comply with this requirement as the case of $M \mathrm{~V}, \mathrm{~V}, 6 \mathrm{USPQ} 2 \mathrm{~d}$ 1039 (PTOBAI 1987) was cited in Fujikawa's Opposition, and discussed in Wattanasin's Reply. Having elected to flaunt prior case holding, and the clear requirements of the Rule, the Wattanasin belated Motions, the Motion to correct a typographical error, and the second contingent Motion for Benefit must be dismissed. This was the holding of the Board in M.V.
II. THE MOTION TO CORRECT IS NOT AUTHORIZED UNDER RULE 633

A review of Wattanasin's Motion "to correct typographical error" reflects that no where in that Motion is there a substitute Count proposed. Rather, Watṭanasin discusses alterations of an earlier substitute Count. The Rules require that any Motion seeking to propose a substitute Count set forth that Count. Rule 637(c)(1)(i). There is no authority under the Rules to provide a Motion to correct a Count in an earlier Motion not reflected in the "correcting" Motion, and accordingly, the Motion to correct must clearly be dismissed. If this Motion is acceptable at all, it is acceptable only pursuant to Rule 635, although that itself is doubtful. Unauthorized Motions, even where the provisions of Rule 635 are complied with, are generally not acceptable. Gerk v. Cottringer, 17 USPQ 2d 1615 (PTOBAI 1990).

In any event, the "Motion to correct" is clearly not provided for under Rule 633, and if brought at all, should have been brought under Rule 635. The requirements of Rule 635, including Rule

637(b) were not complied with. The Motion should be dismissed.
Respectfully submitted,
OBLON, SPIVAK, MCCLELLLAND, MATER \& NEUSTADT, PAC.


Steven B. Keller
Registration No.: 30,073 Attorney for Fujikawa et al

[^14]
## CERTIFICATE OF SERVICE

I hereby certify that a true copy of the foregoing FUJIKAWA OPPOSITION TO WATTANASIN'S MOTION TO CORRECT TYPOGRAPHICAL ERROR AND WATTANASIN'S SECOND CONTINGENT MOTION FOR BENEFIT was served by first class mail, postage prepaid, on counsel for the Party Wattanasin, as follows:

Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
this 3rd day of AUGUST, 1992.


Steven B. Kelber

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

| WATTANASIN | $:$ |
| :--- | :--- |
| V. | : INTERFERENCE NO.: 102,648 |
| PICARD et al | $: \quad$ EXAMINER-IN-CHIEF: |
| V. | $:$ |
| FUSIKAWA et al | $:$ |

## REFILING OF SUPPLEMENTAL DECLARATION

```
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231
BOX INTERFERENCE
```

SIR:
On August 5, 1992, Wattanasin caused to be filed and served an unauthorized paper entitled "Wattanasin Response to Fujikawa et al Reply...". The paper is clearly unauthorized, surrebuttals or surreplies of the type presented by Wattanasin not being permitted by the Rules. Accordingly, Fujikawa will not respond to the assertions therein.

Nonetheless, Wattanasin does assert that it did not receive a copy of the Supplemental Declaration of Kitahara. While it is unclear as to why this was not received, Fujikawa refiles and reserves copies of the Declaration herewith.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLLAND, MAIER \& NEUSTADT, P.C.


Fourth Floor
1775 Jefferson Davis Highway Arlington, Virginia 22202 (703) 521-5940

## CERTIFICATE OF SERVICE

I hereby certify that true copies of each of the foregoing REFILING OF SUPPLLEMENTAL DECLARATION and SUPPLEMENTAL DECLARATION PATENIIABLY DISTIINCT SUBJECT MATMER were served by first class mail, postage prepaid, on counsel for the Party Wattanasin, as follows:

Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
this llth day of AUGUST, 1992.


```
 IN THR UNITED STATES PATENTP AND TRADEMARK OFFICE BEPORE THB BOARD OF PATENT APPKALS AND INTERFERENCES
```

natrianasin
v.

PICARD ET AL
v.

FUJIKAMA ET AL

INTIERFERERCE 102,648 EXAMINER-IN-CHIEF: MICHARL SOFOCLEOUS
:

Interference.
2. In my prior Declaration dated June 1, 1992, data for the lactone species identified, as determined by teat $B$, the inhibition of cholesterol biosynthesis in culture cells, carried out purauant to the description on pages 29-30 of U.S. Patent Application Serial No. 07/233,752, was not included, as it was not available at that time. I have now obtained such data, and the same is reproduced in the table attached to this Declaration.
3. As can be readily confirmed by the comparison between the ICso value reported for the isopropyl and cyclopropyl isomers, that subject matter wherein $z$ is of the lactone structure and $R^{s}$ is cyclopropyl exhibite unobvious superiority, when compared with the closely related isopropyl isomer of the same compound. Thus, all compounds within the scope of the formula set forth in paragraph 3 of my Declaration dated June 1,1992 , uniformly demonstrate unobvious superiority when $R^{s}$ is cyclopropyl, as opposed to closely related isomeric structures.

The observations in paragraphs 4 and 5 of my Declaration of June 1,1992 remain accurate.

## 3

I hereby declare that all statements made herein of my own knowledge are true, and all statements made on information and belief are believed true. Further, I am aware that willful false statements and the like are punishable by fine, impifaonment or both, 18 U.S.C. S1001, and that such wiLlful false statements may jeopardize the validity of U. 5 . Patent Application 07/233,752, any patents issued thereon, as wall as the rights of the party fujikawa at al in the above-captioned Interference.

DATE:
July 6, 1992
 SAHARA


## Test B: Inhibition of cholesteral biosynthesis in cultureceing

This test was carried out as described on pages 29 to 30 of the spacification. The numerial values indicate $I_{50}$ (nanomelax concentration l.e. mol $\times 10^{-9}$ ).

| $R^{5}$ | carbon number |  | 1 | 2 | 3 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | structure | normal | - | - |  |  |
|  |  | 180 | 又 | x | $123.8(i-p r)$ | - |
|  |  | cyclic | X | x | $47.5(\mathrm{c}-\mathrm{pr})$ | * |

## Case No. 600-, $01 / \mathrm{CONT} / \mathrm{INT}$. FVI Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE AUG 101992 BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES REMEVED IN NATTANASIN
v.

PICARD et al.
v .
FUJIKAWA et al.

WATIANASIN RESPONSE TO
FUJIKAWA ET AL. REPLY TO
Interference No. 102,648 \& 44
Examiner-in-Chief: M. Sofocleous

Wattanasin hereby responds to particular allegations or statements made by Fujikawa et al. (hereinafter "Fujikawa") in their Reply to Wattanasin's Opposition to Fujikawa's motion to add counts directed to a cyclopropyl-substituted species within the scope of current Counts 1 and 2 (and proposed substitute Count 1):

1. First, on information and belief the "Supplemental Declaration of Kitahara" which Fujikawa in their Reply (p. 7) indicate to have been filed concurrently with the Reply "in completion of the evidential burden placed on Fujikawa to demonstrate patentable dis Declaration has apparently been received; nor is it listed on Fujikawa's Certificate of Service; nor can Wattanasin find any indication by Fujikawa that the Declaration was being provided as an attachment to their Reply.

Accordingly, Wattanasin is left to conclude that the Supplemental Declaration of Kitahara was not proferred, and that Fujikawa's evidential burden remains uncompleted.

## Wattanasin

Response to Reply
page - 2 -
2. Second, Fujikawa in their Reply (pp. 6-7) argue that Lambert publication, EP 179,559, showing isopropyl- and cyclopropyl-substituted pyrrole compounds having HMG-CoA reductase activity, amounts to some sort of an "admission" as to the level of skill in the art as it bears on the wattanasin disclosure, which serves to "undercut" Wattanasin's position that the Wattanasin application does not provide 35 USC 112 written description support for a cyclopropyl species.

However, the prior art teachings are irrelevant to whether the Wattanasin disclosure itself, within its four corners, complies with the written description requirement of section 112 with respect to a cyclopropyl species. The wattanasin disclosure, in itself, simply does not provide a written description of a cyclopropyl species, and therefore does not reasonably convey cyclopropyl as being an aspect of the Wattanasin invention.

Additionally, it is difficult to reconcile Fujikawa's allegations, on the one hand, that Wattanasin's characterizations of the Warner-Lambert teaching constitute an "admission" against interest bearing on the sufficiency of the Wattanasin application under Section. 112 with respect to the cyclopropyl species at issue, with the arguments of Fujikawa elsewhere in their Reply (pp. 10-11) that the Warner-Lambert pyrrole formulas are "substantially unrelated" to the quinoline compounds at issue in this interference, and that Wattanasin has "failed to make out any art-recognized equivalency" between the two.

Wattanasin
Response to Reply
page - 3 -

Furthermore, the case law cited by Fujikawa concerning Section 112 , first paragraph, is inapposite. In re Driscoll, 195 USPQ 434 (CCPA 1978) concerns selection of an individually described member of a Markush group. In In re Johnson, 194 USPQ 187 at 195-196, the CCPA expressly stated that "Appellants...are narrowing their claims, and the full scope of the limited genus now claimed is supported in appellant's earlier application, generically and by specific examples." (emphasis supplied) Compare Fields v. Conover, 170 USPQ 276, 280 (CCPA 1971).

The fact is, Fujikawa find themselves in a position rather analogous to that of the Godtfredsen party in Bigham v. Godtfredsen, 8 USPQ2d 1266 (CAFC 1988). Like Godtfredsen, Fujikawa in essence want to 'have their cake and eat it too'.

Godtfredson urged the patentable distinction of bromo and iodo over chloro, and obtained a bifurcation of the count on that theory; and at the same time urged a contrary theory (i.e. that halogen exemplified by chloro was a disclosure of bromo and iodo) in order to obtain priority as to those species. The CAFC rejected this contrary position as follows:

[^15]```
Wattanasin
Response to Reply
page - 4 -
```

In the present circumstances, Fujikawa in order to propose their counts 3 and 4, need to comply with Rule 637 (c) by proposing corresponding claims to Wattanasin. Therefore Fujikawa, likewise, find themselves in an inherently contradictory position of urging, on the one hand, that cyclopropyl is separately patentable (over the four remaining members of wattanasin's sub-genus comprising C_{3-7} cycloalkyl, as well as over the other species within the scope of count 1. (or proposed substitute count 1), while at the same time urging that wattanasin by virtue of his C_{3-7} cycloalkyl disclosure, provides $\$ 112$, written description support for a cyclopropyl species.

The CAFC rejected this kind of argument when presented by Godtfredsen; and the EIC should also reject it in relation to Fujikawa.
3. Third, Watanasin would prefer not to let stand without rebuttal, the assertion by Fujikawa (p. 11) that the Wattanasin Opposition "deliberately, and without support, misrepresents" the teaching of Warner-Lambert European Patent Application 179,559 (1986).

According to Fujikawa et al., what apparently constitutes this purported "misrepresentation" is the statement of Wattanasin

Wattanasin
Response to Reply
page - 5 -
in connection with the Warner-Lambert reference, that prior to Fujikawa,
"there was a recognition in the art that: an isopropyl (4-fluorophenyl) species could provide enhanced HMG-CoA reductase activity; and further that the isopropyl could be cyclized to form cyclopropyl; and finally that the resulting cyclopropyl (4-fluorophenyl) itself exhibited particular improvements in activity relative to a genus of compounds within the same series." (Opposition at p. 9)

Fujikawa attempt to insinuate into the above statement of Wattanasin, an implication by Wattanasin that Warner-Lambert are teaching that "one of ordinary skill in the art would have expected the cylopropyl species to be better than the isopropyl species." Nowhere is this statement actually made by Wattanasin in connection with the warner-Lambert application.

The fact is, the Warner-Lambert disclosure to the full extent of its breadth covers scores of compounds. However, at pages 11-13, Warner-Lambert choose to exemplify some 33 species of compounds falling within their scope. Still further, at page 13, they specifically recite only 13 compounds which are said to be "particularly preferred compounds." Two of these compounds are the cyclopropyl and isopropyl species depicted on page 9 of the Wattanasin Opposition. In face of the clear teaching of the prior art that these are "particularly preferred" compounds, Wattanasin believes there is ample justification for the simple statement of Wattanasin's, duplicated above, that the prior art showed that "cyclopropyl (4-fluorophenyl) itself exhibited particular improvements in activity relative to a genus of compounds within the same series."

It is Wattanasin's position that there is no misrepresentation, and certainly no deliberate misrepresentation, in this

Wattanasin
Response to Reply
page - 6-
characterization of the Warner-Lambert disclosure, and any suggestion otherwise by Fujikawa is vigorously denied.
4. Also, Fujikawa at page 9 of their Reply indicate that Hoechst U.S. Patent No. $4,925,852$ is inappropriate for consideration, given that it would have been available as prior art only after Fujikawa's priority filings. On the other hand, Fujikawa at pages 12-13 urge that the teachings of the prior art Warner-Lambert European patent application be interpreted in light of a related 1990 article which is also not prior art to Fujikawa. It is respectfully submitted that Fujikawa, again, cannot have it both ways; if the 1990 article is suitable for considexation; then the Hoechst reference should be considered as well.
5. Finally, Wattanasin hereby opposes the designation of Fujikawa claim 18 (covering a 4-chlorophenyl substituted species) as corresponding to counts 3 and 4 of the interference, since the counts exclude this species from their scope.

For the reasons set forth above and in Wattanasin's Opposition, the Motion of to Fujikawa to Add Counts and to Add Claims to the Wattanasin Application, should be denied.

SANDOZ CORP.
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
August 5, 1992

Respectfully submitted,
Mame human
Diane E. Furman
Attorney for the Party Wattanasin
Registration No. 31, 104
201-503-7332

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

WATTANASIN RESPONSE TO
FUJIKAWA ET AL. REPLY TO WATTANASIN "OPPOSITION TO FUJIKAWA ET AL. MOTION TO ADD COUNTS AND TO ADD CLAIMS TO WATTANASIN APPLICATION"
was served on counsel for the party Fujikawa et al., this 5th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Keller, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202

The above identified interference is hereby redeclared
as follows:
Counts 1 and 2 are stricken, and count 3 is added.

Count 3
A method of inhibiting cholesterol biosynthesis in a patient in need of said treatment comprising administering a cholesterol synthesis inhibiting amount of a compound of the formula:

wherein

$$
\begin{aligned}
& R^{1}, R^{2}, R^{3}, R^{4} \text { and } R^{6} \text { are independently } \\
& \text { hydrogen, } \\
& C_{1-6} \text { alkyl, } \\
& C_{1-6} \text { eycloalkyl, } \\
& C_{1-3} \text { alkoxy, } \\
& \text { n-butoxy, } \\
& \text { i-butoxy, } \\
& \text { sec-butoxy, }
\end{aligned}
$$

```
R}\mp@subsup{}{}{7}\mp@subsup{R}{}{8}N\mathrm{ - (wherein }\mp@subsup{R}{}{7}\mathrm{ and }\mp@subsup{R}{}{8}\mathrm{ are independently
    hydrogen or C (1-3 alkyl),
trifluoromethyま,
trifluoromethoxy,
difluoromethoxy,
fluoror
chloro,
biomo,
phenyl,
phenoxy,
benzyloxy,
hydroxy
hydroxymethyl,
-O(CH2}\mp@subsup{)}{\alpha}{}\mp@subsup{O}{}{-19}\mathrm{ (wherein R R
    C1-3alkyl and a is 1, 2 or 3),
or when located at the ortho position to each
    other, R}\mp@subsup{R}{}{3}\mathrm{ and }\mp@subsup{R}{}{4}\mathrm{ together optionally form
    -CH=CH-CH=CH
```

R^{5} is hydrogen
C_{1-6} alkyl,
C_{2-3} alkenyl,
C_{3-6} cycloalkyl,
phenyl substituted by R^{9} (wherein R^{9} is hydro-
gen, C_{1-4} alkyl, C_{1-3} alkoxy, fluoro, chloro, bromo
or trifluoromethyl),
phenyl-($\left.\mathrm{CH}_{2}\right)_{\mathrm{m}^{-}}$(wherein m is 1,2 or 3),
$-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl or phenyl-($\left.\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ -
(wherein n is 0.1 or 2).
Y is

$$
\begin{aligned}
& -\mathrm{CH}_{2}-, \\
& -\mathrm{CH}_{2} \mathrm{CH}_{2}- \\
& -\mathrm{CH}=\mathrm{CH}- \\
& -\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\text {, or } \\
& -\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-;
\end{aligned}
$$

z is

or $-Q-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12} \underset{\mathrm{R}^{14} \text {); }}{\text { (where }} \mathrm{R}^{12}$ is hydrogen or
Q is $\quad-\mathrm{CH}(\mathrm{OH})-$.

$$
-C(0)-1 \text { or }
$$

$$
-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}-
$$

W is $-C\left(R^{1 I}\right)(O R)-\quad$ (where $R^{I I}$ is hydrogen or C_{1-3}

$$
-c(0)-\text { or }
$$

$$
-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}^{-;}
$$

the two R^{13} are independently primary or secondary C_{1-6} alkyl; or two R^{13} together form $-\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3}$-;
R^{14} is physiologically hydrolyzable alkyl or M (wherein M is NH_{4}, sodium, potassium, $1 / 2$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine); and
R^{17} and R^{18} are independently hydrogen or C_{1-3} alkyl;
as defined in combination with pharmaceutically acceptable carrier.

The claims of the parties which correspond to count 3
are:
Wattanasin : Claims 8 and 9
Fujikawa et al.: Claims 35, 37 and 38

gjh

GOARO OF PATENT APPEALS \& IN THE UNITED STATES PATENT AND TRADEMARK OFFICE AFGRFERENCES BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCESERFERENCES

WATTANASIN	-	AUG 181792	
	:	INTHERFERENCE 102,648	
V.	:	EXAMINER-IN-CHIEF:	
	:	MICHAEL SOFOCLEOUS	
PICARD ET AL	:		
	:		
V.	:		
	:		
FUJIKAWA ET AL	:		

POWER TO INSPECT AND MAKE COPIES

BOX INTERFERENCE
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231

SIR:
The undersigned, being an Attorney of Record for the aboveidentified Interference, hereby grants to MURALIDHAR PAI/SAM BROWN, the power to inspect and make copies of the above-identified Interference files.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLLAND,
MAIER \& NEUSTADT, P.C.

Fourth Floor
1755 South Jefferson Davis Highway
Arlington, Virginia 22202
703-521-5940

Case No. 60r 7101/CONT/Int. Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES WATTANASIN
v.

Interference No. 102,648

FUUIKAWA et al.
Examinex-in-Chief: 10 ,
WATTANASIN
REQUEST FOR EXTENSION OF TIME, 37 CFR SS 1.635y. 645

AUG 21 199g

The party Wattanasin hereby requests a ten-day extension of time for the parties to file and/or serve Preliminary Statements and/or Supplemental Preliminary Statements which are currently due August 17, 1992 in the above-captioned interference. If granted, this Motion would make the preliminary statements and/or Supplemental Preliminary Statements due August 27, 1992.

As grounds for the Request, undersigned counsel submits that the decision of the Examiner-inuChief mailed August 7, 1992 (Paper No. 40) was not received by the undersigned until Friday, August 14, 1992; and certain critical issues addressed in said decision concerning an additional interference and the counts of said interference and the present interference desirably ought to be clarified by the EIC in consultation with the parties, before Wattanasin can adequately respond by filing a Preliminary Statement and/or Supplemental Preliminary Statement.

In a telephone conversation today with the undersigned, Examiner-In-Chief Sofocleous indicated that he would act favorably on this request. Opposing counsel, Steven. B. Kelber, has also agreed to a reciprocal extension of time.

```
Wattengsin
Request for Extension
page = 2 -
```

Accordingly, Wattananasin hereby moves that the time period for response by the parties to the decision of the EIC mailed August 7, 1992 (Paper No. 40), by filing and/or serving a Preliminary Statement and/or Supplemental Preliminary Statement, be extended to August 27, 1992.

59 Route 10
E. Hanover, NJ 07936

DEF: Imf
August 17, 1992

CERTIFICATION OF FACSIMILE TRANSMISSION ATTENTION BOX INTERFERENCE

I hereby certify that this paper is being facsimile transmitted to the Patent and Trademark Office on the date shown below:

CERTIFICATE OF SERVICE
 It is hereby certified that a true copy of the paper entitled:

```
WATMANASIN
REOUEST FOR EXTENSION OF TIMEX 37 CFR SS1.635, 645
was served on counsel for the party Fujikawa et al., this 17th day of August 1992, by postage pre-paid first-class mail addressed to the following:
```

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B, Kelber, Eqq.
1755 South Jefferson Davis Highway
Crystal Square 5, ste. 400
Arington, VA 22202

FEGEVET
aUG 1 71992
$J=4 \operatorname{con}$ cantar

Case No. 60C 101/CONT/Int. patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN

AUG 191992
RECEIVED IN
v.

Interference No. 102,648
BOX INTERFERENCE

FUJIKAWA et al.

Examiner-in-Chief: M. Sofocleous

WATIANASIN

REQUEST FOR EXTENSION OF TIME 37 CFRR SS1.635, 645

The party Wattanasin hereby requests a ten-day extension of time for the parties to file and/or serve Preliminary Statements and/or Supplemental Preliminary Statements which are currently due August 17, 1992 in the above-captioned interference. If granted, this Motion would make the Preliminary Statements and/or Supplemental Preliminary Statements due August 27, 1992.

As grounds for the Request, undersigned counsel submits that the decision of the Examiner-in-Chief mailed August 7, 1992 (Paper No. 40) was not received by the undersigned until Friday, August 14, 1992; and certain critical issues addressed in said decision concerning an additional interference and the counts of said interference and the present interference desirably ought to be clarified by the EIC in consultation with the parties, before Wattanasin can adequately respond by filing a Preliminary Statement and/or Supplemental Preliminary Statement.

In a telephone conversation today with the undersigned, Examiner-In-Chief Sofocleous indicated that he would act favorably on this request. Opposing counsel, Steven B. Kelber, has also agreed to a reciprocal extension of time.

Wattanasin
Request for Extension
page - 2 -

Accordingly, Wattananasin hereby moves that the time period for response by the parties to the decision of the EIC mailed August 7, 1992 (Paper No. 40), by filing and/or serving a Preliminary Statement and/or Supplemental Preliminary Statement, be extended to August 27, 1992.

Respectfully submitted,

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF:rmf
August 17, 1992

Ithereby certhy that this correspondence is being
depoelted with the United States Postal Service
first clase mall in an envelope addressed to: Commis-
stoner of Putanis ead Fradpmarke, Washingtor, D.c.
2023 , 1 August 17,1992 opto Dopoet

- Diane E. Furman

jolane itanoueld
August 17,1992
Dote of Elanture

CERTIFICATION OF FACSIMILE TRANSMISSION ATTENTION BOX INTERFERENCE

[^16]
CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

WATTANASIN

REQUEST FOR EXTENSION OF TIME,
37 CFR SS1.635, 645
was served on counsel for the party Fujikawa et al., this 17 th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202

HUG if 'צĆ 15:10 SANDOZ CORP. PAT. AND IM
P. 1/3

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE WATHANASIN BE FE THE BOARD OF PATENT APPEALS AND INTERFERENCES

> TRIED

v.

FUJIKAWA et al.

$$
102109 \text { Interference No. } 102,648
$$

WATTANASIN
REQUEST FOR EXTENSION OF TIME, 37 CPR S\$1.635, 645

The party wattanasin hereby requests a ten-day extension of time for the parties to file and/or serve preliminary Statements and/or Supplemental Preliminary Statements which are currently due August 17, 1992 in the above-captioned interference. If granted, this Motion would make the Preliminary Statements and/or Supplemental Preliminary Statements due August 27, 1992.

As grounds for the Request, undersigned counsel submits that the decision of the Examiner-in-Chief mailed August 7, 1992 (Paper No. 40) was not received by the undersigned until Friday, August 14, 1992; and certain critical issues addressed in said decision concerning an additional interference and the counts of.said interference and the present interference desirably ought to be clarified by the EIC in consultation with the parties, before Wattenasin can adequately respond by filing a Preliminary Statement and/or Supplemental Preliminary Statement.

In a telephone conversation today with the undersigned, Examiner-In-Chief Sofocleous indicated that he would act favorably on this request. Opposing counsel, Steven B. Kelber, has also agreed to a reciprocal extension of time.

IN THE UNITED STATES PATENT AND TRADEMARR OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN	$: \quad$ INTERFERENCE NO.: 102,648
v.	$: \quad$ EXAMINER-IN-CHIEF:
FUJIKAWA et al	$: \quad$ MICHAEL SOFOCLLEOUS

```
BOX INMERFERENCE
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231
```

SIR:
In a paper filed, through the mail, and dated August 17, 1992, Wattanasin seeks an extension of time in which to file its Preliminary Statement and Supplemental Preliminary Statement. Fujikawa, through undersigned counsel, had earlier agreed not to oppose that Motion for Extension of Time, and does not expressly oppose it at this time. Fujikawa notes, however, that the Motion was not filed in accordance with the provisions of 37 C.F.R. $\$ 1.645$, which directs the movant to file the Motion in a fashion designed to ensure that it will reach the EIC in advance of the

- 2 -
expiration of the period in question. Quite simply, that was not done herein.

Fujikawa notes that the Motion for Extension of Time was evidently sent via facsimile to the Patent Office. It was not served via facsimile on undersigned counsel. Moreover, the files of the Board of Patent Appeals and Interferences did not have either the facsimile version, or the signed version, of the Motion for Extension of Time present at 2:45 p.m. on August 17, 1992, at which time the file was inspected by counsel for Fujikawa. As a result, Fujikawa, not having sought an extension on its own, was obliged to file its Preliminary Statement and Supplemental Preliminary Statement as required by the Decision of the EIC.

Ordinarily, this would not result in any specific prejudice to Fujikawa. Wattanasin, having earlier filed its Preliminary Statement, can only serve that Preliminary Statement it earlier filed. However, the Decision of the EIC requires the parties to serve two additional Preliminary Statements not previously prepared, a Supplemental Preliminary Statement with respect to Count 3, and, potentially, a Preliminary Statement with respect to the Interference to be declared. It would be extreme prejudice if Wattanasin were allowed to craft its Preliminary Statement in light of

Fujikawa's own Supplemental Preliminary Statement, alleging a date earlier than, or different from, the date alleged in Wattanasin's Preliminary Statement previously filed in the above-captioned Interference.

Accordingly, Fujikawa submits that the Wattanasin Motion for Extension of Time should be granted, notwithstanding its violation of Rule 645, only on the condition that any Supplemental Preliminary Statement of Wattanasin, or additional Preliminary Statement to be filed by Wattanasin, alleges facts identical to the Wattanasin Preliminary Statement already filed. As Wattanasin has urged that Count 3 of the above-captioned Interference and the Count of the Interference to be declared by the EIC are not patentably distinct from original Counts 1 and 2 of this Interference, this should not work a hardship to wattanasin.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,
MAIER \& NEUSTADT, P.C.

Steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al
Fourth Floor
1755 Jefferson Davis Highway Arlington, Virginia 22202 (703) 521-5940

```
BOARD OF FATENT मिPEALS WReramedeES
K2 2182
2. FUJIKAWA COMMENT ON WATTTANASIN'S MOTION FOR
```

I hereby certify that true copies of:

1. REQUEST FOR RECONSIDERATION EXTENSION OF TTME
2. CERTIIFICATE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this 21 st day of August, 1992.

STEVEN B. KELBER

```
49-111-0
    IN THE UNITED STATES PAITENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
```

WAITIANASIN :

```
WAITIANASIN :
: INTERFERENCE NO.: 102,648
: INTERFERENCE NO.: 102,648
. . E EXAMINER-IN-CHIEF:
. . E EXAMINER-IN-CHIEF:
FUJIKAWA ET AL : MICHAEL SOFOCLEOUS
```

FUJIKAWA ET AL : MICHAEL SOFOCLEOUS

```

REQUEST FOR RECONSIDERATION
```

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, D.C. 20231
BOX INTERFERENCE
SIR:
Responsive to the Decision on Preliminary Motions, Paper No.
40 in the above-captioned patent Interference, Fujikawa
respectfully requests reconsideration of aspects of that Decision,
pursuant to the provisions of 37 CFR \$1.640(c). As points and
issues Fujikawa submits the Examiner-in-Chief may have
misapprehended or overlooked, Fujikawa identifies the following:

```
1. The nature and character of the literal
and generic description in the wattanasin
application of claims 11 and 12 proposed by
Fujikawa, for the purposes of contesting
additional Counts 3 and 4 .
2. The duplicative nature of the Interference declared sua sponte, by the Examiner, and the increased burden on the Patent Office and parties for contesting this second Interference, when alternatives exist under the law.
3. The Examiner's rejection of Fujikawa's Motion for Benefit, Paper No. 16, on the grounds that it was unnecessary, when benefit of the application requested had not been previously granted.
```

4. Failure to indicate the status of Fujikawa's Motion to redefine the interfering subject matter by addition of Claims 41-44.
```

Each of these issues is considered, in turn, below.

\section*{I. . WRITTEN DESCRIPTION ISSUE}

Fujikawa moved that the Interference be redefined by adding proposed Counts 3 and 4, confined to a sub-genus, on the grounds that the sub-genus defined subject matter patentably unobvious over the current Counts of the Interference, due to unusual and unpredicted activity exhibited by the members of that sub-genus. As one element of that Motion, Fujikawa proposed a claim, Claim 11, to be adopted by Wattanasin, corresponding to Count 3, and a corresponding administration Claim 12, to correspond to proposed Count 4. In the Decision on Motions, the Motion to redefine the Interference was denied on the grounds that the EIC agreed with the
opposition that the application of Wattanasin "does not contain a written description within the meaning of 35 U.S.C. \(\$ 112\), first paragraph, for proposed Claims 11 and 12 to be added to the application to correspond to Counts 3 and 4."

As the Decision of the EIC did not make independent findings, either factual or legal, to support the legal conclusion, it must be presumed that the Examiner has adopted the arguments set forth in the Wattanasin opposition agreed with. The sole argument presented with regard to written description in that opposition (Paper No. 28) is that Wattanasin lacks a written description of a cyclopropyl substituent for \(R\), that is, the substituent at the 2 position being cyclopropyl. This argument appears on page 6 of the Opposition, and can be summed in the third full paragraph set forth therein, which consists solely of the recitation

> Neither the term "isopropyl" nor the term "C \(\mathrm{C}_{3-7}\) cycloalkyl" provides a written description of "cyclopropyl" for purposes of \(35 \mathrm{U} . \mathrm{S} . \mathrm{C} . \$ 112\). (Quotes in original).

The statement is neither sufficient as a matter of law, nor accurate as a matter of fact. As the EIC has not provided
independent findings, it must be assumed that the EIC has relied on this statement, and accordingly, Fujikawa respectfully submits that the EIC has misapprehended or overlooked the descriptive nature of the Wattanasin application, with regard to the substitution, at the 2 position, of a cyclopropyl group.

\section*{A. The Test for Written Description}

As discussed below, Fujikawa submits that the Wattanasin application includes literal support for the identity of cyclopropyl as the substituent at the 2 position, or moiety \(R\) of the Wattanasin application claims. But surely, it is well established that the test for determining written description is broader than the presence of literal support, or indeed, exemplary support. Fujikawa submits that it is established beyond peradventure that the test for determining compliance with the written description requirement is whether the disclosure of the application as originally filed would reasonably convey to those of skill in the art that the inventors had possession of the subject matter claimed in the claims at issue, at the time the application
was originally filed. This test, rather than the presence or absence of literal or exemplary support in the specification has been repeatedly expressed by the Court of Appeals for the Federal Circuit. Vas-Cath, Inc. V. Mahurkar, 19 USPQ 2d 1111,1116 (Fed. Cir. 1991), In re Kaslow, 217 USPQ 1089,1096 (Fed. Cir. 1983). It is, at least, quite clear that the claim need not be described, either in identical or literal correspondence in the specification, to satisfy the written description requirement, Kennecott Corporation V. Kyocera International, Inc., 5 USPQ 2d 1194,1197 (Fed. Cir. 1987), cert. denied, 108 Supreme Ct 1735 (1988). Additional cases to the same effect are legion, and need not be cited herein.

Fujikawa respectfully submits that it is inarguably clear that the Wattanasin disclosure conveys to those of skill in the art possession of the compounds of proposed Claim 11 and method of proposed claim 12, with respect to the cyclopropyl substituent. Wattanasin acknowledges that the proposed claim is entirely embraced within the Wattanasin disclosure, and the broad Wattanasin claims. From Wattanasin's Opposition, page 6:
The involved application of Wattanasin
certainly covers within its generic scope
compounds which are substituted by
cyclopropyl...(emphasis added).

Similar discussion of the scope of Wattanasin's broad claims appears at page 5 of the Opposition.

> The cyclopropyl species also falls within the generic scope of claims \(1-3\) and \(8-10\) of Wattanasin's involved application.

It is thus clear that the proposed claim falls within Wattanasin's broad claims, and the test becomes whether the claim is so narrow, directed to a species or sub-genus so limited, that those of skill in the art would not ordinarily appreciate it, on reading the Wattanasin disclosure.

Wattanasin discloses, as possible substituents for the 2 position (moiety \(R\) of the Wattanasin application claims) three different narrow sub-genera:
\[
\begin{aligned}
& \mathrm{C}_{1-6} \text { alkyl, } \\
& \mathrm{C}_{3-7} \text { cycloalkyl, } \\
& \text { Ring A. }
\end{aligned}
\]

See, e.g., page 1, lines 3-4 of the Wattanasin application. Thus, those of skill in the art are clearly taught that one group of substituents within the invention in possession of Wattanasin at the time of filing are those compounds wherein \(R\) is \(C_{3-7}\) cycloalkyl. This is a genus of five species, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. It is a narrow and closed group. Regardless of the presence or absence of literal support, discussed below, it is respectfully submitted that the selection of one out of five is not beyond the level of skill of those in the art. Clearly, even if they would not form Claim 11 in their minds, those of skill in the art would recognize the possession by the Wattanasin inventors of the cyclopropyl substituted species. This is more the case for \(C_{3}\) than any of the other members of the group, because it is the starting point for the group, and the most likely substituent. This is particularly in light of the fact that Wattanasin teaches, as a preferred, and repeatedly exemplified species, isopropyl. If one were to select a cycloalkyl substituent, as directed by Wattanasin, one would almost certainly
select that most closely related to the preferred embodiment, one would select the cyclopropyl moiety. Clearly, those of skill in the art would recognize possession, by Wattanasin, of Claim 11 at the time of filing.

The selection of one out of five, where no other selection need be made, is hardly beyond the level of skill of those in the art, or something not clearly taught by the application. This is supported by evidence beyond the written description itself, Wattanasin having in fact argued that those of skill in the art, given the disclosure of compounds of the type exemplified by Wattanasin, would have recognized the suitability of a cyclopropyl group at the 2 position. Specifically, Wattanasin argued, page 9 of its Opposition (Paper No. 28) and admitted against interest,
There was a recognition in the art that: an
isopropyl (4-fluorophenyl) species could
provide enhanced HMG-CoA reductase activity;
and further that the isopropyl could be
cyclized to form cyclopropyl; and finally that
the resulting cyclopropyl (4-fluorophenyl)
itself exhibited particular improvements in
activity relative to a genus of compounds
```

within the same series. Note that in both Warner-Lambert species, above, the isopropyl or cyclopropyl occupies a position on the pyrole ring adjacent to the nitrogen, as in the case of the cyclopropyl species at issue.

```

The reliability and truth of the statements advanced by Wattanasin, together with their relevance to the current Interference, have been discussed in Fujikawa's reply. For the purposes of this Request for Reconsideration, it suffices to note that Wattanasin has admitted against interest that those of skill in the art, given compounds of the type embraced by the Wattanasin disclosure, which admits of the insertion of a cyclopropyl species, and exemplifies isopropyl, would recognize that the isopropyl substituent could be cyclized to form cyclopropyl substituents, without loss of activity. Clearly, given the Wattanasin disclosure of the suitability of cycloalkyl species, having three carbon atoms, and the identification of isopropyl as a suitable substituent, those of skill in the art would have recognized the cyclopropyl substituent as within the scope of Wattanasin's invention. On that grounds, Fujikawa seeks reconsideration of the Decision of the EIC.

\section*{B. Literal Support}

Fujikawa agrees that there is no exemplary support of a compound within the scope of claim 11 bearing a cyclopropyl substituent in Wattanasin's application. Exemplary support, however, is not the only means of meeting the written description test. Literal description is an equal means of satisfying the requirements of 35 U.S.C. \(\$ 112\), first paragraph, with regard to written description. Snitzer v. Etzel, 175 USPQ 108 (CCPA 1972). Fujikawa respectfully submits that literal support for the identity of moiety \(R\), the substituent at the 2 position, as cyclopropyl, exists in the Wattanasin disclosure. The Wattanasin disclosure advances, as possible identities for \(R, C_{3-7}\) cycloalkyl. Regardless of the number of members of the group encompassed by that generic recitation (there are five), it is clear that those of skill in the art are certainly taught two cyclic substituents, specifically, \(\mathrm{C}_{3}\) cycloalkyl and \(\mathrm{C}_{7}\) cycloalkyl. It might well be argued that a \(\mathrm{C}_{5}\) alkyl, if singled out, is not literally supported by the Wattanasin disclosure, however, the term " \(C_{3}\) cycloalkyl" appears repeatedly in the Wattanasin disclosure, page 1 , line 4 , page 54 , line 4 , and in the Abstract, line 4. The uncyclized corresponding alkyl,
isopropyl, is repeatedly identified as a preferred example throughout the application. See, e.g., pages 51 and 53.
\(C_{3}\) cycloalkyl IS cyclopropyl. There are no other moieties that meet the description. Note that the Wattanasin disclosure is confined to cycloalkyls, and accordingly, a potential, though sterically strained, cycloalkene is not available for consideration. Having specifically identified, by accepted chemical nomenclature, cyclopropyl as a substituent, Wattanasin can hardly be heard to argue, as it does now, that it does not provide a written description of the same.

It should be noted that as the proponent of this argument, the burden rests on Wattanasin to demonstrate lack of compliance with 35 U.S.C. \(\$ 112\), written description requirement. While Fujikawa bears the burden of proof with respect to the Motion, per se, that burden has been supported. Fujikawa has pointed to those part of the specification which provide support for Claim 11, as well as meeting the other requirements of the Rules which the EIC does not quarrel with. Accordingly, Wattanasin must advance an explanation of why the disclosure of \(C_{3}\) does not support the identification of cyclopropyl as the potential substituent

In this regard, it should be noted that although the standards for establishing anticipatory disclosure are different from those
required to meet 35 U.S.C. §112, first paragraph, 35 U.S.C. §102 and 35 U.S.C. \(\$ 112\) share a common denominator, the reference or patent application in question must contain a description of the subject matter at issue. There is abundant case law which clearly directs that the Wattanasin disclosure is a description of cyclopropyl at the substitution point in question. The Court in In re Petering, 133 USPQ 275 (CCPA 1962) considered a similar question, whether or not the generic disclosure of a U.S. Patent described the invention to those of skill in the art, or that application provided a generic disclosure, and one of skill in the art would have to fashion, upon reading the disclosure, a more limited class, to meet the claims. At page 280 , the Court observed:

We think the Karrer patent, as a printed publication describes to one skilled in this art not only the broad class but also this much more limited class within that broad class, and we think it is immaterial that Karrer did not expressly spell out the limited class as we have done here. It is our opinion that one skilled in this art would, on reading
the Karrer patent, at once envisage each member of this limited class, even though the skilled person might not at once define in his mind the formal boundaries of the class as we have done here....For these reasons, we hold that each compound within the limited class in Karrer, as defined supra, has been described in a printed publication, within the meaning of 35 U.S.C. \(\$ 102(\mathrm{~b})\), and that it is of no moment that each compound is not specifically named or shown by structural formula in that publication. (Emphasis in the original) at page 280 .

Like the reference in Petering, in the current case, Wattanasin provides a limited genus, five compounds, out of which one could and would, on the basis of the Wattanasin teaching, certainly envisage each member separately, including the cyclopropyl species. More is unnecessary to meet the written description requirement. See to the same effect, In re Sivaramakirshna, 213 USPQ 441,442 (CCPA 1982) where the Court found that prior art disclosure of the species claimed, among seventy different members of a disclosed
genus, was a description of that species. Where there is no requirement to make multiple simultaneous choices from different genuses, a limited genus amounts to a description of each member of the genus.

That in fact the Wattanasin disclosure necessarily includes a description of each member of the class \(\mathrm{C}_{3} \mathrm{~F}_{7}\) cycloalkyl is brought home by the Decision in Snitzer v. Etzel, supra, where the Court found that the identification of trivalent ytterbium, out of a list of fourteen possible ions, was a literal description of a claim reciting trivalent ytterbium, specifically. The Court expressly found that even within a class of fourteen, nearly triple the size of the class considered herein, each member of the class was described, within the meaning of 35 U.S.C. S112, first paragraph. Similar application of the law is requested herein.

It should be noted that this is not a case like Bigham V . Godtfredsen, 8 USPQ 2d 1266 (Fed. Cir. 1988), which found a lack of disclosure of a constructive reduction to practice of specific halogens iodo and bromo, based on a disclosure of chloro and halogen, where patentable distinction had been drawn between the two. Here, Wattanasin has specifically named \(\mathrm{C}_{3} \mathrm{cyc}\) cloalkyl, that is cyclopropyl. More is unnecessary for 35 U.s.C. \$112 support for Claims 11 and 12.

In summary, Fujikawa respectfully submit that whether measured by literal description, or by the impression conveyed to those of skill in the art that Wattanasin had possession of the invention at the time the application was filed, the Wattanasin application clearly supports proposed Claims 11 and 12,35 U.S.C. §112, first paragraph. Should the Decision not be reconsidered, it is respectfully requested that the EIC make, of record, specific findings as to why the identification of \(\mathrm{C}_{3}\) cycloalkyl is not a description of cyclopropyl, and why the recitation of \(\mathrm{C}_{3}\) \(C_{7}\) cycloalkyl does not constitute a description of a limited genus whose each member is described, for purposes of preparation of the Brief at Final Hearing.
II. THE EXAMINER'S SUA SPONTE ACTION

In Paper No. 40, the Examiner, sua sponte, declared an additional Interference, designating that the claims of Wattanasin and Fujikawa corresponding to the current Interference, as well as Claim 1 of U.S. Patent 5,011,930. Although the Examiner proposed to declare an additional Interference, no additional Interference
was actually declared, and yet, on page 10 of Paper No. 40 , the EIC directed the filing and service of a Preliminary Statement with respect thereto. Fujikawa respectfully submits that the requirement of the filing of a Preliminary Statement in an Interference not yet declared, independent of the question of whether a Preliminary Motions period would be granted, merely serves to highlight the difficulties presented by the Examiner's sua sponte action. Fujikawa respectfully submits that there are easier ways of achieving the same goal.

Specifically, there can be no question that the Count of the Interference the Examiner proposed to declare is not patentably distinct from current Count 1 of the Interference. There is substantial overlap between the Counts, and no evidence or reason to believe that this overlap is entirely contained within patentably distinct sub-genera. The Rules of Interference proceeding would seem to require that Counts of separate Interferences, between the same parties, be directed to patentably distinct subject matter. In particular, it is not seen that contesting two Interferences between the same parties, on the same applications, to patentably indistinct Counts serves the interests of justice in any fashion, given Rule 658(c), Interference Estoppel. The creation of a second Interference file, together
with the necessary briefing papers and the like, on patentably indistinct subject matter, creates an administrative and paper burden on both applicants and the Patent Office, without substantially deciding any additional questions that could not be decided in the current Interference. In particular, it is noted that although a second Interference could not be requested by the parties, Gerk v. Cottringer, 17 USPQ 2d 1615 (BPAI 1990), Gerk does specifically provide that the EIC can exercise his discretion and jurisdiction to do that which is considered a proper course of conduct for any situation not specifically covered by the Rules of Interference practice. \(37 \mathrm{CFR} \$ 1.610(\mathrm{e})\). Among those acts that are specifically provided for is the addition of a patent to an Interference, on terms fair to all parties. \(37 \mathrm{CFR} \$ 1.642\). The parties requested just that in a Stipulation. The Stipulation would have designated as corresponding to current Count 1 of the Interference, Claim 1 of U.S. Patent 5,011,930. It is believed that this is the intended substantive effect of the Examiner's sua sponte action. The Stipulation proposed by the parties would achieve the same goal, be consistent with the Rules of Practice and particularly Rule 610, 642 and 658, and yet not increase the paper trail, administrative and filing burden, and complications created by the Examiner's sua sponte action.

It is further pointed out that due to errors which can occur in the shouldering of administrative and paper responsibilities discussed above, the situation could well occur where one party receives a favorable award of priority in the above-captioned Interference, while the other party received the award of priority in the Interference to be declared under the Examiner's sua sponte action. Were this to occur, who would be entitled to a patent on what? Quite simply, Fujikawa submits the Examiner's sua sponte action unnecessarily burdens the parties, and the patent Office, and creates a possibility of mass confusion that would serve neither the parties nor the public.

It is uncertain, from the Decision on Motions, why the EIC did not adopt the stipulated proposal of the parties. Fujikawa recognizes that the Fujikawa '930 patent does not present a claim directed to administration of the subject matter of claim 1 . Thus, it is quite true that the \(\mathbf{~} 930\) patent does not present a claim that can be designated as corresponding to current Count 3 of the abovecaptioned Interference. There is nothing in the Rules, however, which would seem to require that a patent or application involved in an Interference have at least one claim designated as corresponding to each Count of the Interference, when there are more than two patents or applications involved in an Interference.

Indeed, the combination of Rules 610 and 642 seem to imply that this situation may occur.

Fujikawa is unaware of any precedent with respect to the sua sponte action taken by the Examiner. It is true that there is case law which holds that the initial Declaration of more than one Interference with Counts not patentably distinct therebetween is not objectionable by the parties. That is not the case, herein. Here, the Examiner seeks to add an Interference in order to resolve a question that would otherwise be left to resolution by Rule 658(c). It is believed simpler to resolve the issue by adding the patent claim in question to this Interference, than creating a whole new Interference.

Fujikawa further requests reconsideration of the Examiner's Order to submit a Preliminary Statement with respect to the proposed Count. It is respectfully submitted that the Rules make it clear that a Preliminary Statement cannot be filed until an Interference is declared. See, e.g., 37 CFR §1.614, and 37 CFR \$1.621. In order to secure benefits that otherwise might be denied, Fujikawa hereby serves notice that were the Interference proposed by the Examiner declared, Fujikawa would rely, with respect to the proposed Count of the proposed Interference, solely on the filing date of Japanese Patent Applications 207224/1987,

15585/1988 and 193606/1988, filed August 20, 1987, January 26, 1988 and August 3, 1988, respectively, to prove a constructive reduction to practice of the Counts of the Interference. Fujikawa cannot do so at this time, as no such Interference has been declared. Should it be necessary, the Examiner is respectfully requested to consider this Request for Reconsideration to include a request for extension of time nunc pro tunc, for the purpose of filing a Preliminary Statement in the Interference to be declared.

In view of the foregoing, it is respectfully submitted that the Examiner's sua sponte action should be reconsidered, with an eye towards simplifying the procedure proposed. In this respect, Fujikawa would be open to a conference call, as set forth in 37 CFR \(\$ 1.610(\mathrm{~d})(1)\), for simplification of the issue presented.

Appropriate relief is respectfully requested.
III. FUJIKAWA'S MOTION FOR BENEFIT

The EIC dismissed Fujikawa's Motion for Benefit, Paper No. 16, on the grounds that it was unnecessary, benefit having been previously accorded Fujikawa as to the priority application
identified. The Examiner's action is respectfully submitted to have overlooked the specific priority document whose benefit was requested in the Motion, and nature of the priority documents as to which benefit was granted in the original Declaration of Interference.

In the Interference, as originally declared, Fujikawa was accorded benefit of Japanese Patent Applications Serial Numbers 207224 and 15585, filed August 20, 1987 and January 26, 1988, respectively. The Motion identified in the Decision on Motions as Paper No. 16, i.e., Fujikawa Motion 3, seeking benefit with respect to Counts 1, 2, proposed Counts 3 and 4, and Claims 41-44, sought benefit not of these priority applications, but a third priority application, Japanese Patent Application 193606, filed August 3, 1988. While it is recognized that this priority date is later than the dates of the priority applications whose benefit has previously been accorded, Fujikawa is nonetheless entitled to seek that benefit, and furthermore, the Motion should be considered, not dismissed, as it is possible that for reasons that Fujikawa cannot currently imagine, Fujikawa benefit as to the earlier applications might be denied or removed. Further, Rule 658(c) commands that this issue be raised now, or forever be denied Fujikawa in subsequent ex parte practice. Since Fujikawa intends to seek
benefit of the priority application in question in ex parte practice in the involved application, and other applications, subsequent to the termination of this Interference, were Fujikawa to lose, it would denied the opportunity explore this issue.

In short, the benefit sought in Motion 16 , the benefit of Japanese Patent Application 193606 has not previously been accorded Fujikawa, and was not accorded Fujikawa with respect to the Interference proposed in the Examiner's sua sponte action. Grant of that benefit, since the Motion was not opposed, is respectfully requested, on reconsideration.
IV. FUJIKAWA'S MOTION TO AMEND, 37 CFR \(\$ 1.633(\mathrm{c})\)

The Decision of the EIC neither refers to, nor decides, the status of Fujikawa's paper filed pursuant 37 CFR \$1.633(c), the Amendment adding Claims 41-44 to the Fujikawa application. Consideration of this Amendment, and entry, pursuant to the provisions of Rule \(615(a)\) is respectfully requested. Specifically, the Amendment introduced claims confined to the subject matter of Fujikawa's proposed Counts 3 and 4. As discussed above, it is
believed that on reconsideration, Fujikawa's Motion to add Counts 3 and 4 will be granted. Even if that Motion is denied, however, the issue of Fujikawa's Amendment is not mooted. No one has questioned that Fujikawa has support for Claims 41-44. As such, Fujikawa is entitled to present claims directed to that subject matter. If Fujikawa's Motion to add the Counts is granted, presentation of Claims 41-44 is essential. If the Motion is denied, Fujikawa may nonetheless add Claims 41-44, which clearly, because of the unobvious superiority exhibited thereby, and the alleged failure on the part of Wattanasin to be able to contest priority as to that subject matter, would not correspond to any of the Counts of the current Interference, or the proposed Interference. Thus, entry of the Fujikawa Amendment will not require disturbing the Decision on Motions, or the designation of claims corresponding to any of the identified Counts of any Interference involving the two parties, if Fujikawa's Motion to redefine is not granted. Nonetheless, presentation of these claims is essential to Fujikawa's subsequent ex parte prosecution of those claims, something to which Fujikawa is entitled to, and neither Wattanasin nor the EIC has indicated otherwise. If the claims are not entered into the application at this time, were Fujikawa to lose the Interference, with respect to all Counts, the application
would be considered abandoned. Accordingly, consideration and entry of the Amendment submitted pursuant to Rule 633(c) is respectfully requested.

It is noted that items I-IV set forth above are independent, and each can be decided separately of the other. Reconsideration, as set forth above, is respectfully requested.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.


\footnotetext{
Fourth Floor
1755 South Jefferson Davis Highway Arlington, Virginia 22202
703-521-5940
}

\section*{CERTIFICATE OF SERVICE}


I hereby certify that true copies of:
1. REQUEST FOR RECONSIDERATION
2. FUJIKAWA COMMENT ON WATIIANASIN'S MOTION FOR EXTENSION OF TIME
3. CERTIFICATE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman
SANDOZ CORP
59. Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this 21 st day of August, 1992.


STEVEN B. KELBER


Interference

In the united states patent and trademark office before the board of patent appeals and Interferences

WATTANASIN
v.

PICARD et al
v.
:
: INTERFERENCE NO.: 102,648
:
EXAMINER-IN-CHIEF :
MICHAEL SOFOCLEOUS
FUJIKAWA et al

NOTICE OF SERVICE
BOX INTERFERENCE
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231

SIR:
Pursuant to Paper No. 40 , page 10 thereof, Fujikawa hereby certifies that it has served on the Party Wattanasin its Preliminary Statement, together with its Supplemental Preliminary Statement .

Fourth Floor
1755 Jefferson Davis Highway Arlington, Virginia 22202 (703) 521-5940


\section*{WATPANASIN ET AL}
v.

FUJIKAWA ET AL

INTERFERENCE NO. 102,648
EXAMINER-IN-CHIEF:
MICHAEL SOFOCLEOUS

\section*{SUPPLEMENTAL PRELIMINARY STATEMENT}

\section*{BOX INTERFERENCE \\ HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231}

SIR:
Responsive to Paper No. 40 , Fujikawa et al intends to rely, with respect to Count 3 , solely on the filing date of Japanese Patent Applications 207224/1987, 15585/1988 and 193606/1988, filed August 20, 1987, January 26,1988 and August 3, 1988, respectively, to prove a constructive reduction to practice of the Counts of the Interference.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND, MATER \& NEUSTADT, PIC.


Steven B. Kelber
Registration No.: 30,073
Attorney for Fujikawa et al


I hereby certify that true copies of:
--PRELIMINARY STATEMENT
--SUPPLEMENTAL PRELIMINARY STATEMENT
were served upon counsel for the Party Wattanasin et al as follows:
Diane E. Furman, Esquire
SANDOZ CORP.
59 Route 10
East Hanover, New Jersey 07936
via first-class mail, postage prepaid, this 17 th day of August, 1992 .


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
FYI
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

\section*{WATTANASIN}

JUL 19 1993」
RECEIVED IN

\section*{v.}

FUJIKAWA et al.

Interference No. 102,975 box INTERFERENCE

Examiner-in-Chief: M. Sofocleous

JUNIOR PARTY WATTANASIN
PROPOSED FINDINGS OF FACT

Fujikawa took no direct testimony, and is therefore restricted to its uncontested benefit date under 35 USC \(\$ 119\), based on its earliest Japanese priority application filed on August 20, 1987.
1. The junior party Wattanasin. has established by a preponderance of the evidence conception and reduction to practice prior to the Fujikawa effective date.
a. Wattanasin has demonstrated conception and synthesis of at least one species of the count in an initial activity phase by May 17 , 1985, and did not abandon, suppress or conceal his invention in the period prior to the second activity phase in early 1987, or otherwise.

\begin{abstract}
b. In the second activity phase commencing in early 1987, Wattanasin synthesized at least one species of the count prior to the Fujikawa filing date, but testing was not completed until after August 20, 1987. However, testing of the compounds prior to August 20, 1987 was not necessary for reduction to practice since their practical utility was clear and certain. Hence the invention was reduced to practice on July 28 , 1987 and July 29 , 1987, the respective dates of completion of preparation of 64-933 and 64-934/NA.
\end{abstract}

Wattanasin
Int. No. 102,975
Prop. Findings Fact
page 2
2. If the Board finds that testing is required for the compounds made in 1987, Wattanasin has clearly demonstrated diligence from a time prior to the Fujikawa filing date of August 20,1987 until such testing and reductions to practice were completed by and on behalf of Wattanasin. The in vitro testing was completed by October 20, 1987 for all 1987 compounds. The in vivo testing was completed by October 29, 1987.
3. No abandonment of the invention by Wattanasin is indicated or proved because of apparent or alleged delay in filing the Wattanasin application after the 1987 reductions to practice.
4. The Wattanasin biological testing satisfies the utility requirement of the count.
a. The Wattanasin in vitro assays meet the utility requirement of the count;
b. The Wattanasin in vivo testing also satisfies the requirement of practical utility of the count.
c. The Wattanasin in vivo testing is competent to show the efficacy of the Wattanasin compounds of the count in inhibiting cholesterol biosynthesis in a patient in need of said treatment when administered in combination with a pharmaceutically acceptable carrier.

Wattanasin
Int. No. 102,975
Prop. Findings Fact
page 3

Respectfully submitted,
Attorney for the Party Wattanasin Registration No. 31,104 201-503-7332
201-503-7332
201-503-7332

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

July 16, 1993
DEF: Imf

Wattanasin
Int. No. 102,975
Prop. Findings Fact

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

JUNIOR PARTY WATTANASIN PROPOSED FINDINGS OF FACT
was served on counsel for the party Fujikawa et al., this 16th day of July 1993, by postage prepaid first-class mail addressed to the following:
```

Oblon, Spivak, McClelland, Maier \&
Neustadt P.C.
Attn.: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202

```



\section*{WATTANASIN \\ ACKNOWLEEDGEMENI OF CLARIFICATION}

The party Wattanasin hereby acknowledges that the "request for clarification" which undersigned counsel for Wattanasin had indicated to the, EIC would be filed by Wattanasin in this interference \({ }^{1}\), has now been mooted in view of the EIC's decision mailed August 21,1992 (Paper No. 14), redeclaring the aboveidentified interference, cancelling counts 1 and 2 , and adding count 3 .
1.

In decisions mailed August 7 and 19, 1992 the EIC had (1) initially redeclared the present interference, and (2) declared additional Interference No. 102,975 between the Wattanasin involved application, the Fujikawa U.S. Patent No. 5,011,930, and the Fujikawa involved application. A due date of August 17, 1992 was set for the parties to file and/or serve Preliminary Statements and/or Supplemental Preliminary Statements.

On Monday, August 17, 1992, undersigned counsel for Wattanasin telephoned the EIC for the purpose of obtaining clarification of the status and counts of the two interferences. The EIC indicated that he would act favorably on a request to extend the due date of the parties' Preliminary Statements and/or Supplemental Preliminary statements, for ten (10) days, to August 27, 1992, to permit Wattanasin to file a Request for Clarification of the order of August 7. (Wattanasin filed a written Request for Extension on August 17, 1992, which was granted on August 21 , 1992.)

However, the action taken by the EIC in the paper of August 21, 1992, has rendered a request for clarification moot.

However, the courtesy of the EIC in responding to Wattanasin's phone inquiry and in orally approving a request for extension of time are gratefully acknowledged.

Wattanasin Acknowledgement
page - 2 -

Since Interference No. 102,975 contains solely (compound) count 1 as set out in Paper No: 2 therein, and since the present interference contains solely (method) count 3, the EIC has now clarified the status of the counts in the two interferences, and the wattanasin request has been mooted.

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
August 27, 1992

\footnotetext{
Thereby certify thet this correspondence is being
first class mail in an envelope addressed to: Commis-
sioner of Patents and Jrademarko, Washington, D.C.
20231, on August 27 1992
(Date of Deposit)
Diane E. Furman
Diane E.- Furman
Nam of appligant, assignee, of
LILN
88977
Date of Signature
}

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

WATTANASIN
ACKNOWLEDGEMENT OF CLARIFICATION
was served on counsel for the party Fujikawa et al., this 27 th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblong, Spivak, McClelland, Maser \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202


\section*{Case No. 600-7101/CONT/Int. (2) \\ Patent}

IN THE UNITED STATES PATENT AND TRADEMARK OFEIEE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES FYI


FUJIKAWA et al.
Examiner-in-Chief: M. Sofocleous

\section*{WATTANASIN}

NOTIFICATION OF SERVICE OF PRELIMINARY STATEMENT

The party Wattanasin hereby notifies the Examiner-in-Chief that counsel for Wattanasin is serving on counsel for the party Fujikawa et al.r this 27 th day of August 1992, a true copy of the Wattanasin Preliminary Statement filed June 11, 1992 in the subject interference.

Respectfully submitted


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF:rmf
August 27, 1992


\section*{CERTIFICATE OF SERVICE}
```

 It is hereby certified that a true copy of the paper
 entitled:

```

\section*{WATIANASIN}

NOTIFICATION OF SERVICE OF PRELIMINARY STATEMENT
was served on counsel for the party Fujikawa et al., this 27 th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202



In response to the Fujikawa Request for Reconsideration of the EIC's decision on Preliminary Motions, Paper No. 40 , in the above-referenced interference, the party Wattansin offers the following limited remarks:

\section*{(1) WRITYEN DESCRIPTION ISSUE}

Aside from urging the truly questionable proposition that a (4-fluorophenyl)cyclopropylquinoline species within count 1 has an activity level as an HMG-CoA reductase inhibitor which is so far removed from what would be normally expected over the series of compounds contained within the counts, and in view of the prior art, as to render it separately patentable, Fujikawa also cling to the tenuous argument that the Wattanasin disclosure fulfills the written description requirement of 35 USC \(\$ 112\), first paragraph, with respect to that same (4-fluorophenyl)cyclopropyl species (see Fujikawa Paper No. 15).

The following points are noted with respect to the inability of Wattanasin to satisfy the 35 USC \(\$ 112\), written description requirement for the count proposed by Fujikawa.

Wattanasin Response
page - 2 -

As pointed out previously by Wattanasin, a close analogy to the present factual circumstances exists in the inter partes case of Bigham v. Godtfredsen, 8 USPQ2d 1266 (Fed. Cir. 1988).

In the Godtfredsen case, the issue turned on whether the term "halogen" provided written description support of bromo or iodo.

It can hardly be denied that the term "halogen" is transparently self-evident to any worker in the art and would immediately signify, for practical purposes, at least the species: fluoro, chloro, bromo and iodo.

This the Federal Circuit did recognize when it stated in Godtfredsen that under ordinary circumstances, a generic disclosure of "halogen" would be.sufficient to constitute a written description of the various common halogen species.

However, the Court went on to say that "this simple rule does not apply when the count is based on and requires patentable distinction among specific halogens," 8 USPQ2d at 1268.
```

Wattanasin Respor. \&

```
page - 3 -

\begin{abstract}
Most pertinently, the Federal Circuit stated that a party in an interference may not, on the one hand, invoke one theory of law based on chemistry (i.e. that bromo and iodo are patentably distinct from chloro) to obtain, in Godtfredsen, a bifurcation of a count on that theory, and on the other hand, urge a contrary theory (i.e. that halogen exemplified by chloro comprises 35 USC \(\$ 112\) written description support for bromo and iodo) for priority purposes.
\end{abstract}

Like Godtfredsen, Fujikawa want it both ways: They argue on the one hand, that cyclopropyl is patentably distinct from the genus \(\mathrm{C}_{3-7}\) cycloalkyl and, on the other hand, that the genus \(\mathrm{C}_{3-7}\) cycloalkyl amounts to a specific disclosure of cyclopropyl (and presumably every other member of the c3-7cycloalkyl group.)

Fujikawa acknolwedge that Wattanasin certainly contains no exemplification of a cyclopropyl species and only discloses "C \(\mathrm{C}_{3-7}\) cycloalkyl"; however, they point out that " \(\mathrm{C}_{3}\) cycloalkyl" constitutes an endpoint of the \(C_{3-7}\) cycloalkyl group, and is therefore specifically named.

As in Godtfredsen, it will be no revelation to the worker in the art that the group of substituents embraced by \(C_{3-7}\) cycloalkyl consists of: \(\mathrm{C}_{3}\) cycloalkyl (cyclopropyl), \(\mathrm{C}_{4}\) cycloalkyl (cyclobutyl), \(\mathrm{C}_{5}\) cycloalkyl (cyclopentyl), \(\mathrm{C}_{6}\) cycloalkyl (cyclohexyl), and \(C_{7}\) cycloalkyl (cycloheptyl).
```

Wattanasin Respor. \&

```
page - 4-

However, the fact that \(C_{3}\) cycloalkyl constitutes the lower endpoint of this group makes it no more or less described than the other individual species, i.e. \(\mathrm{C}_{4}{ }^{-}, \mathrm{C}_{5}{ }^{-}, \mathrm{C}_{6}{ }^{-}\)and \(\mathrm{C}_{7}-\) cycloalkyl.

Yet if, for example, Wattanasin in ex parte prosecution were to propose a claim directed to, say, \(C_{6}\) cycloalkyl, the claim would surely would draw a 35 USC \(\$ 112\), written description, rejection. This may also be the case with cyclopropyl. See Fields v. Conover, 170 USPQ 276, 280 (CCPA 1971).

Written Description Support: 35 USC \(102 / 103\) v. 35 USC 112

Fujikawa acknowledge that "the standards for establishing anticipatory disclosure are different from those required to meet 35 U.S.C. §112, first paragraph" (pages 12-13).

Nevertheless, they continue to muddle this distinction both in their argument and their citation of case law.

For example, they rely on the opinion in Petering which, however, was decided under 35 USC \(102(\mathrm{~b})\). [Held, that preferences set out in the prior art patent to Karrer were effective to limit Karrer's practical teachings to 20 compounds (not otherwise specifically mentioned) within the broad generic scope which, therefore, conssitute \(102(b)\) prior art, In re Petering, 133 USPQ 275 (CCPA 1962)].

In re Sivaramakrishnan, 213 USPQ 441 (Fed. Cir. 1982), is also a 35 USC \(102(\mathrm{~b})\) decision, wherein the Federal Circuit concluded that a prior art disclosure of polycarbonate comprising a metal salt, of which cadmium laurate was exemplified as one of up to 70 such salts, anticipated applicant's claims to polycarbonate resins containing that same cadmium laurate.

The other cases cited by Fujikawa do turn on 35 USC 112 issues but are only marginally, or not at all, relevant on their facts.

For example, in Snitzer v. Etzel, l75.USPQ 108 (CCPA 1972), the verbatim naming of "trivalent ytterbium" as an individual member of a 14 -member Markush-type group of laser materials was held in compliance with the 35 USC \(\$ 112\), written description requirement to support a claim to the same trivalent ytterbium. Compare in In re Kaslow, 217 USPQ 1089, 1096 (Fed. Cir. 1983) (no written description sufficiency).

Wattanasin Respol. ᄅ
August 25, 1992
page - 6 -

Kennecott Corp. v. Kyocera Int'l., Inc., 5 USPQ2d 1194, 1198 (Fed. Cir. 1987), cert. denied, 108 Sup. Ct. 1735 (1988) is of remote relevance (disclosure in a subsequent patent application of an inherent property of a product does not deprive that product of the benefit of an earlier filing date). Nor is the Vas-Cath Inc. v. Mahurkar, 19 USPQ2d 1111 (Fed. Cir. 1991) particularly helpful to Fujikawa (whether drawings alone may fulfill the written description requirement):

Fujikawa derive little actual support from the legal and factual bases of their cited case law.

It is notable that what is pertinent about the cited Vas-Cath decision is the observation of Judge Rich, as follows:

The CCPA also recognized a subtle distinction between a written description adequate to support a claim under \(\$ 112\) and a written description sufficient to anticipate its subject matter under 102(b). The difference between "claim-anticipating disclosures" was dispositive in In re Lukach [citation omitted] where the court held that a U.S. "grandparent" application did not sufficiently describe the later-claimed invention, but the appellant's intervening British application, a counterpart to the U.S. application, anticipated the claimed subject matter.***
19 USPQ2d at 1115
```

Wattanasin Respor. 2

```
page - 7 -

Given that Fujikawa initially at least acknowledge this distinction, it is particularly eggregious that Fujikawa go on to mischaracterize certain of Wattanasin's prior remarks (see Wattanasin's Opposition to the Fujikawa Motion to Add Counts) which were clearly directed to the 35 USC 102/103 patentability issue, as "admissions against interest" purportedly with respect to the 35 USC 112, written description issue. This mischaracterization is unwarranted.

Specifically, at page 9 of their Request paper, Fujikawa excerpt a passage from Wattanasin's Opposition in which Wattanasin stated why the proposed count of Fujikawa directed to a (4-fluorophenyl)cyclopropyl species could not be considered separately patentable over the (4-fluorophenyl)isopropyl species, given specific prior art teachings of cyclopropyl-substituted compounds having improved HMG-COA reductase activity.

Clearly, the excerpted Wattanasin remarks went to the issue of patentable distinctness of the separate cyclopropyl species in view of the prior art teachings, rather than the written description requirement.

Fujikawa may attempt to obfuscate the issue, but the fact remains that for purposes of complying with the 35 USC 112, written description requirement, support for the cyclopropyl species has to be found within the four corners of the Wattanasin specification, and here it does not.

Accordingly, the EIC should maintain the rejection of the Fujikawa motion to redefine by adding counts (Paper No. 15).
```

Wattanasin Respor. s

```
page - 8 -

\section*{(2) FUJIKAWA MOTION TO AMEND}
(see Fujikawa Request paper at page 23 )

Fujikawa have previously proposed species claims 41-44 (directed to the (4-fluorophenyl)cyclopropyl species), be added by amendment to their involved application in Int. No. 102,975 (see Fujikawa Amendment --37 CFR 1.633(c)) in order to correspond to their proposed counts 3 and 4.

The EIC apparently did not enter this amendment.

Fujikawa now request, even in the event the denial of their motion to add species counts 3 and 4 is maintained, that their proposed claims 41-44 be entered.

What is confusing to Wattanasin is that Fujikawa go on to state that these claims 4l-44, "because of the unobvious superiority exhibited thereby, and the alleged failure on the part of Wattanasin to be able to contest priority as to that subject matter, would not correspond to any of the Counts of the current Interference, or the proposed Interference."

Whatever Fujikawa presume to suggest here, Wattanasin submits that the subject matter of these added claims 41-44 does fall squarely within the scope of count 1 of Interference No. 102,975 (claims 41-43) or count 3 of Interference No. 102,648 (claim 44).
```

Wattanasin Respor. *

```
page - 9 -

In fact, if Fujikawa's claims 41-44 are added to their involved application, the EIC should designate said claims 41-44 to either of counts 1 and 3, since they are clearly encompassed by these counts, and moreover have not been shown to be patentably distinct from the genera thereof. \({ }^{1}\)

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
August 27, 1992


\footnotetext{
1. Wattanasin notes that the belatedly received Fujikawa Supplemental Declaration by Kitihara does not convincingly establish separate patentability of the lactone (4-fluorophenyl)cyclopropyl species.
}

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper
led: entitled:

\section*{WATTANASIN RESPONSE TO}

FUJIKAWA REQUEST FOR RECONSIDERATION
was served on counsel for the party Fujikawa et al., this 27 th day of August 1992, by postage pre-paid first-class mail addressed to
the following:

> Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
> 1755 South Jefferson Davis Highway Crystal Square 5 , Ste. 400
> Arlington, VA 22202


Diane E. Furman

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN
v.

FUJIKAWA et al.

RECEIVED IN
Interference No. \(102,6480 X I N T\). 2 PENCE
Examiner-in-Chief: M. Sofocleous


WATTANASIN RESPONSE TO
FUJIKAWA COMMENT ON WATIANASIN MOTION FOR EXTENSION OF TIME

Wattanasin's Motion for Extension of Time has been granted by the Examiner-in-Chief, and therefore the Fujikawa Comment and is moot.

However, it is noted that Fujikawa has challenged the Wattanasin motion on the sole basis that Wattanasin copied Fujikawa on the Wattanasin motion by first-class mail on August 17, 1992, instead of telefaxing a copy.

Wattanasin acknowledges that regrettably, through inadvertent oversight, a copy of the Wattanasin Request for Extension was not telefaxed to counsel for Fujikawa.

However, Wattanasin further notes for the record that counsel for Wattanasin did orally inform counsel for Fujikawa on August 17, 1992 that the EIC had orally granted an extension of ten (10) days to August 27, 1992.

With respect to the Fujikawa request that the EIC deny entry of a Wattanasin Supplemental Preliminary Statement or modified Preliminary Statement in the related interference, it is submitted that this request was mooted by the EIC's grant of the extension.

Wattanasin Resp, to Fuj. Comment page - 2 -

Moreover, there is absolutely no prejudice to Fujikawa whether or not Wattanasin files such a Supplemental Preliminary Statement in this interference, or a modified Preliminary Statement in Interference No. 102,975, since Fujikawa are relying solely on their Japanese priority applications as evidence of a constructive reduction to practice.

Therefore the Fujikawa request is simply punitive in nature, and without rational basis.

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
August. 27, 1992


\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

WATTANASIN RESPONSE TO
FUJIKAWA COMMENT ON WATTRANASIN MOTION FOR EXTENSION OF TIME
was served on counsel for the party Fujikawa et al., this 27 th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
Telefax: (703) 486-2347


Case No. 600-1ょ01/CONT/Int. (10) Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
```

WATTANASIN

```

AUG 311992
received in
v.


FUJIKAWA et al.
Examiner-in-Chief: M. Sofocleous

\section*{WATTANASIN}

NOTICE OF THE FILING OF SUPPLEMENTAL PRELIMINARY STATEMENT

Appended is the Supplemental Preliminary Statement of the
party Wattanasin for the subject interference.

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
August 27, 1992


\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the papers entitled:

WATTANASIN
NOTICE OF THE FILING OF SUPPLEMENTAL PRELIMINARY STATEMENT
and

WATTANASIN
SUPPLEMENTAL PRELIMINARY STATEMENT
were served on counsel for the party Fujikawa et al., this 27 th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

\author{
WATTANASIN \\ v. \\ Interference No. 102,648 \\ FUJIKAWA et al. \\ Examiner-in-Chief: M. Sofocleous \\ WATTANASIN \\ SUPPLEMENTAL PRELIMINARY STATEMENT
}

\begin{abstract}
The above interference has been redeclared by a decision of the Examiner-in-Chief mailed August 21, 1992 (Paper No. 14).

For purposes of a Supplemental Preliminary Statement with respect to the sole count of the redeclared interference, i.e. (method) count 3 , the party Wattanasin hereby relies on his Preliminary Statement filed on June 11, 1992, which is hereby incorporated by reference and is being concurrently served on opposing counsel, and on the following additional information:
\end{abstract}

Compound 64-933, the compound of Example 1 (step H) of the Wattanasin application, was synthesized on or before July 23, 1987, and characterized no later than July 27, 1987 (Exhibit G), and was tested in vivo (i.e. administered to a patient) on or before December 9, 1987 according to the procedure described in the Wattanasin application at pages 33-34, as substantiated by the accompanying computer printout (Exhibit H). Diligence is alleged between June 8, 1987 and December 9, 1987.

For purposes of this interference as redeclared by the EIC (paper mailed August 21, 1992), it.shall be understood as follows:
(1) Count "1" wherever it appears in the Wattanasin Preliminary Statement refers to count 1 of related Interference No. 102,975 ; and
(2) Count "2" wherever it appears in the Wattanasin Preliminary Statement refers to count \(\underline{3}\) of the present Interference No. 102,648 .

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: Imf
August 27, 1992
Enclosures: Exhibits \(G\) and \(H\)

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of papers entitled:
WATTANASIN
SUPPLEMENTAL PRELIMINARY STATEMENT
were served on counsel for the party Fujikawa et al., this 27th day of August 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq. 1755 South Jefferson Davis Highway Crystal Square 5, Ste. 400 Arlington, VA 22202



Sawai Ex 1005
Page 388 of 4322

 To 1206130-2) in dry ther Nnth coein 15
 a


Rx inix iperved in ice ro (en otherinich, strongRx)
 Thery: \(8.86 \mathrm{~g} \quad(95.8 \%)\)


- Sosay

Sawai Ex 1005
Page 391 of 4322


Sawai Ex 1005
Page 392 of 4322















301


\[
\begin{aligned}
& 60 \% \text { NaH } \\
& 16 \mathrm{mn} \text { Buh lhex }=27 \mathrm{mel} \\
& \text { TrF } 40 \mathrm{mil}
\end{aligned}
\]

To a son d \(1206166-30\) in dminfctomi at \(-5^{\circ}\) to -10 c uns added a so n o o dianiem Dianion (gat fram or Som)

To so \({ }^{2}\) of 5 minsi acetoacetate in somir dreth


 to dank wel \(\quad\) TLC \((50 \%\) etzoipet) aften \(15 \mathrm{~min} \Rightarrow\) complete rx

 pellow on \(5.9188 \mathrm{G}\left(12^{2} 06-172=417\right.\) Theon: 5:017, \(0(67: 8.2 \%)\).

Performed by-
















s.
\[
\underbrace{05-}_{-}
\]








Sawai Ex 1005


Sawai Ex 1005


Sawai Ex 1005



Su:



```

M9-111-0 IN THE UNITED STAATES PATENT AND TRADEMARK OFFICE
FUJIKAWA MODIFICATION OF REQUEST FOR RECONSIDERATION
HONORABLIE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231
BOX INTAERFERENCE
SIR:
In Fujikawa's Request for Reconsideration of August 21, 1992, Section II, pages $16-21$, is devoted to seeking reconsideration of the sua sponte action of the EIC in proposing a second Interference. That request was based on the concern that both Interferences would present Counts patentably indistinguishable, directed to compounds, and having overlapping scope.
The Redeclaration of the Interference, mailed the day the Request for Reconsideration was filed, resolves this issue by

```

2
striking Count 1 of this Interference, something that was not indicated in the earlier Decision on Motions of the EIC. Accordingly, Section II of the Fujikawa Request for Reconsideration need not be treated, as resolved by the Redeclaration of the Interference, Paper No. 26.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.


Fourth Floor
1755 South Jefferson Davis Highway
Arlington, Virginia 22202
703-521-5940

\section*{CERTIFICATE OF SERVICE}

I hereby certify that true copies of:
1. FUJIKAWA MODIFICATION OF REQUEST FOR FOR RECONSIDERATION
2. CERTIFICATE OF SERVICE
were served upon Counsel for Wattanasin as follows:
Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this 3rd day of September, 1992.

```

MARLD

9291 W0\%	$\begin{aligned} & \text { Paper No. } 58 \\ & \text { MS/gjh } \end{aligned}$
PAT. © T.M. OFFICE DARD OF PATENT APPEALS AOHTERFEPGCO	
STATES PATENT	ARK OFFICE

```
\(\qquad\)
```

BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
Patent Interference No. 102,648
Wattanasin v. Fujikawa et al.
Reconsideration
R Smith, Sofocleous and Caroff, Examiners-in-Chief.
Sofocleous, Examiner-in-Chief.

```

\begin{abstract}
On August 21, 1992, Fujikawa et al. (Fujikawa) filed a
request (Paper No. 50) for reconsideration of the Examiner-in-Chief's (EIC's) Decision on Preliminary Motions, dated August 7, 1992 (Paper No. 40) with respect to the denial of Fujikawa's preliminary motion to redefine the interfering subject matter by adding proposed counts 3 and 4 and their corresponding proposed claims 41 to 44 and the dismissal of Fujikawa's preliminary motion to be accorded the benefit of a previously filed application in Japan and the EIC's sua sponte action. In the modification (Paper No. 57) to the request, Fujikawa has withdrawn his request seeking reconsideration with respect to the EIC's sua sponte action.
\end{abstract}

Interference No. 102,648
Preliminarily, we note that Wattanasin filed a response (Paper No. 54) to the Fujikawa request for reconsideration. Since the EIC did not request that the response be filed, the response is dismissed as being an unprovided for paper. 37 CFR \(\$ 1.641\) (c).

The request for reconsideration was filed pursuant to 37 CFR \(1.640(\mathrm{c})\), which requires that a request shall specify the points believed to have been misapprehended or overlooked in rendering the decision. We have reviewed the request and agree with Fujikawa that the EIC should not have dismissed Fujikawa's preliminary motion (Paper No. 16) to be accorded benefit since the motion seeks the benefit of a previously filed application in Japan whose benefit Fujikawa was not accorded in the notice of interferences. We do not agree with Fujikawa that the EIC overlooked any matters in the denial of the preliminary motion to add proposed counts 3 and 4 and their corresponding proposed claims 41 to 44.

In denying the preliminary motion to add proposed counts 3 and 4, the EIC agreed with Wattanasin's opposition that his application did not support the claims suggested by Fujikawa to correspond to the proposed counts. Fujikawa's position concerning Wattanasin's purported support for the proposed claims was before the EIC, but he did not agree with Fujikawa. In our view, the EIC did not overlook any matters in denying the motion since he considered the arguments raised by Fujikawa. A disagreement with the EIC's

Interference No. 102,648
decision under these circumstances is not a matter for reconsideration under 37 CFR 1.640 (c) but rather is a matter which Fujikawa may seek review at final hearing.

The EIC did not enter Fujikawa's amendment proposing claims 41 to 44 since the entry of the amendment was contingent upon the granting of Fujikawa's preliminary motion to add proposed counts 3 and 4 to this proceeding. See pages 8 and 9 of the motion. In the motion, Fujikawa urged that the subject matter of the proposed counts is directed to a separate patentable invention. Fujikawa now requests that the amendment be entered and that the proposed claims be designated as corresponding to the count. The present request is contrary to the allegations in Fujikawa's motion to redefine which urged that these claims were directed to. a separate patentable invention, i.e., were patentably distinct from the counts of the interference and the claims corresponding thereto. In any event, since Fujikawa did not request in the motion that the claims be designated as corresponding to the counts of this interference, the EIC could not have overlooked the matter. The EIC could not have overlooked the matter not presented before him.

The request for reconsideration is granted to the extent that the interference is remanded to the EIC to consider Fujikawa's

Interference No. 102,648
motion to be accorded benefit.
RECONSIDERATION GRANTED TO THE FOREGOING EXTENT.


All communications respecting this case should identify it by number and names of parties．


U．B．DEPARTMENT OF COMMERCE Patent and Trademark Office

Address：BOXINTERFERENCE
Commissioner of Patents and Trademarks Washington，D．C．2ロこヨ1

Pursuant to the Decision on Reconsideration，the interference has been remanded to the examiner－in－chief（EIC）for a decision on Fujikawa et al．＇s preliminary motion（Paper No．16）under 37 CFR 1．633（f）to be accorded benefit．

For the reasons stated therein，the motion is granted． Accordingly，Fujikawa et al．are accorded the benefit of Japanese Patent Application 193606，filed August 3， 1988 with respect to count 3 and with respect to the count of the additional interference，now Interference No．102，975．

It is now appropriate to set times for taking testimony． In setting the times for taking testimony below，the EIC has only set Fujikawa et al．rebuttal testimony．A possible issue in this interference is whether Fujikawa et al．＇s preliminary motion（Paper No．15）to redefine by adding proposed counts should have been granted．Should Fujikawa et al．desire to have the denịal of this motion reviewed at final hearing and to rely upon the evidence
presented during the motion period, they should notify in writing the EIC before the start of the junior party's testimony. The testimony times are set as follows:

Testimony-in-chief of the junior party Wattanasin for deposition testimony, including cross-examination of witnesses, to open October 1, 1992 and to close December 15, 1992.

Testimony-in-chief of the junior party Wattanasin for affidavit testimony (affidavits pursuant to 37 CFR 1.671 (e) and 1.672 (b) must be filed) to close November 15, 1992.

Cross-examination of any junior party's affiants to close December 15, 1992.

Rebuttal testimony of the senior party Fujikawa et al. for deposition testimony, including cross-examination of witnesses, to open January 5, 1993 and to close February 25, 1993.

Testimony of the senior party Fujikawa et al. for affidavit testimony (affidavits pursuant to \(37 \mathrm{CFR} 1.671(\mathrm{e})\) and 1.672 (b) must be filed) to close January 30, 1993.

Cross-examination of any senior party's affiants to close February 25, 1993.

For filing and serving the record to close March 25, 1993. The brief times are set as follows:

Junior party's brief due April 25, 1993.
```

Senior party's brief due May 25, 1993.
Junior party's reply brief due June $15,1993$.

```

\section*{Additional Discovery}

Most interferences do not require motions for additional discovery (37 CFR 1.687(c)). Therefore, no period for filing such motions has been set. If additional discovery is deemed necessary, the parties should attempt to resolve the matter by agreement under 37 CFR \(1.687(d)\) before filing a motion for additional discovery. If either party deems such a motion to be necessary, the party should contact the examiner-in-chief (EIC) via a conference call, including opposing counsel, within 20 days after the date of this order. Other Evidence

If either party intends to rely on an affidavit filed by him during ex parte prosecution, an affidavit under 37 CFR 1.608 or an affidavit under 37 CFR \(1.639(c)\), he must comply with the provisions of 37 CFR 1.671 (e) by the close of his testimony-in-chief for affidavit testimony. If either party intends to present the testimony of a witness by affidavit, the affidavit must be filed by the close of his testimony-in-chief for affidavit testimony.

Any motion under \(37 \mathrm{CFR} 1.671(\mathrm{~g}), 1.683(\mathrm{a})\) and \(1.684(\mathrm{a})\) must be filed sufficiently far in advance of the end of the testimony period that the motion (including any opposition) can be acted upon,
and any resultant testimony taken or filed, prior to the end of the testimony period. Compliance with the provisions of 37 CFR 1.673(a), (b) and ( \(g\) ) must be completed within a reasonable time from the opening of the testimony period so as to ensure that testimony will be taken within the time set.

Cross-Examination
If either party wishes to cross-examine any of his opponent's affiants, the party should file a pro forma request therefor ( 37 CFR 1.672 (b)) and proceed during the time set. After such request, it becomes the responsibility of the opponent to notice the depositions of his affiants during the period set for crossexamination, arrange for the court reporter and file the certified transcript of the deposition (37 CFR 1.673(e and 1.672(b)). Failure to notice the depositions during the period set may result, upon a motion from the party, in according the affidavit testimony no weight at final hearing (37 CFR 1.616).

Record and Testimony
A certified transcript of a deposition must be filed by the time set in 37 CFR 1.678.

\section*{Suggestion for Negotiations}

The parties are strongly encouraged to make contact with each other, prior to the start of simon et al.'s testimony period,

Interference No. 102,648
and attempt to settle this interference or, failing that, to narrow down, as much as possible, the issues for final hearing. The EIC can be expected to cooperate in allowing reasonable time for a bona fide attempt at such negotiations.

gjh
```

 #60
 49-111-0
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

```
```

WATTANASIN

```
WATTANASIN
:
:
: INTERFERENCE NO.: 102,648
: INTERFERENCE NO.: 102,648
v.
v.
FUJIKAWA ET AL : MICHAEL SOFOCLEOUS
FUJIKAWA ET AL : MICHAEL SOFOCLEOUS
FUJIKAWA ET AL REQUEST FOR PRESERVATION OF ISSUES AND EVIDENCE
```

```
HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231
BOX INTERFERENCE
SIR:
Pursuant to Paper No. 59, Orders of the EIC setting times for taking testimony, Fujikawa hereby requests denial of Fujikawa's Motion to Redefine the Interference by the addition of proposed Counts and Fujikawa's Claims \(41-44\) be reviewed at Final Hearing, and Fujikawa further indicates its desire to rely upon the evidence presented during the Motion Period. This notification is made pursuant to the Order of the EIC in Paper No. 59, page 2.
With respect to companion Interference 102,975 , it is believed
```

that a similar issue should be preserved in that Interference as well, as Fujikawa's Motion to Redefine included a proposed Count with respect to the compound, and the method of administration. Appropriate relief is requested in Interference 102,975 as well. It is further submitted that it may be appropriate to combine the evidence, records and Briefs into a single body for the Interferences involved, as the issues raised in the two Interferences appear, in many cases, to be inextricably tied, one to the other.

Appropriate relief is respectfully requested.

Respectfully submitted, OBLON, SPIVAK, MCCLELLAND, MATER \& NEUSTADT, PC.

Steven B. Kelber
Registration No.: 30,073 Attorney for Fujikawa et al

Fourth Floor
1755 South Jefferson Davis Highway Arlington, Virginia 22202
703-521-5940

CERTIFICATE OF SERVICE

I hereby certify that true copies of:

1. FUJIRAWA ET AL REQUEST FOR PRESERVATION OF ISSUES AND EVIDENCE
2. CERTIFICATE OF SERVICE

Were served upon Counsel for Wattanasin as follows:
Diane E. Furman
SANDOZ CORP.
59 Route 10
E. Hanover, New Jersey 07936
via first-class mail, postage prepaid, this 30 th day of September, 1992.

PATENT AND TRADEMARK DEPARTMENT
TELEX 240867
TELEFAX 2015038807

October 29, 1992

BY PRIORITY MAIL
Steven B. Kelber, Esq.
Oblon, Spivak, McClelland,
Mater \& Neustadt, P.C.
1755 Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202

WATTANASIN Declarations and
Exhibits Pursuant to 37 CR 1.608

Dear Steve:

Per our phone conversation yesterday, enclosed please find a true copy of the above papers from the file of Wattanasin Application Serial No. 07/498,301, which were mailed to the PTO on May 25, 1990.

> very truly yours, Ainu finmane

Diane E. Furman
DEF: rf
cc: M. Mo Sofocleous, EIC

Sawai Ex 1005

TABLE OF CONTENTS

DECLARATIONS AND EXHIBITS SUBMITTED
PURSUANT TO $37 \mathrm{C} . \mathrm{F} . \mathrm{R} .1 .608 \mathrm{IN}$
WATTANASIN PATENT APPLICATION SERIAL NO. $07 / 498,301$

DECLARATIONS:
(1) DECLARATION OF SOMPONG WATTANASIN
(2) DECLARATION OF RAJESHVARI PATEL
(3) DECLARATION OF FAIZULLA KATHAWALA
(4) DECLARATION OF SANDOR BARCZA
(5) DECLARATION OF DAVID WEINSTEIN
(6) DECLARATION OF TERENCE J. SCALLEN
(7) DECLARATION OF ROBERT E. DAMON, II
(8) DECLARATION OF NICHOLAS A. PAOLELLA
(9) DECLARATION OF LAWRENCE B. PEREZ
(10) DECLARATION OF STEWART W. MYERS
(11) DECLARATION OF PRASAD KAPA

EXHIBITS:	
EXHIBIT	
	$\mathrm{A}-1$
	$\mathrm{~A}-2$
$\mathrm{~A}-3$	
EXHIBIT	$\mathrm{B}-1$
	$\mathrm{~B}-2$
EXHIBIT	$\mathrm{C}-1$
	$\mathrm{C}-2$
$\mathrm{C}-3$	
EXHIBIT	$\mathrm{D}-1$
	$\mathrm{D}-2$
$\mathrm{D}-3$	

EXHIBITS: (CONT.)

EXHIBIT E-1
E-2
E-3
E-4
E-5
EXHIBIT F-1
EXHIBIT G-I
G-2
EXHIBIT H-1
EXHIBIT I-1
EXHIBIT J-1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATEN

WATTANASIN
Interference No. 102,975
v.

FUJIKAWA et al.
WATTANASIN REPLY TO
FUJIKAWA OPPOSITION TO
WATMANASIN PROPOSED FINDINGS OF FACT

FECGIVEU Hiv

Honorable Commissioner of patents
and Trademarks
washington, D.C. 20231

Sir:

Fujikawa have opposed the wattanasin Proposed Findings of Fact filed with the wattanasin opening brief on July $16,1993$.

First of all, Wattanasin notes that under $37 \mathrm{CFR} 1.656(\mathrm{~g}) \mathrm{r}$ proposed findings of fact and/or conclusions of law are not mandatory, and it is solely within the discretion of the Board to adopt them in whole or in part or not to adopt them at all irrespective of whether or not they fully comply with the rules.

With respect to the grounds of the Fujikawa opposition, Wattanasin responds as follows:

1. There was no abandonment, supression or concealment of the Wattanasin invention between June 1985 (by which time he had reduced to practice by testing in vitro the "initial phase". compounds 63-366, 63-548 and 63-549), and March 1987, when work was resumed on the "second phase" compounds, because during this period wattanasin was involved in continuing synthesis work within

Watt. Reply Fuj. Opp. Find. Fact page 2
the generic invention of HMG-COA inhibitors and furthermore suffered from a manpower shortage in his laboratory which prevented him from completing the quinoline series, although it remained his intention to do so (WB^{1} at 28-30, 67-68).
2. Additional testing was not needed for a reduction to practice of the "second phase" compounds 64-933, 64-934/NA, 64-935, and 64-936/NA, because their practical utility was already known to wattanasin from the prior testing of the "initial phase" compounds (WB at 27-28).
3. Even if testing of the second phase compounds was required for a reduction to practice, diligence in making and testing the second phase compounds is shown by Wattanasin from just prior to the Fujikawa benefit date of August 20 , 1987 to the in vitro testing carried out on October $\underline{8}$ and 13,1987 by Dr. Scallen (WRB at 35-43).
4. The in vitro testing constituted a renewed reduction to practice within the count because it confirmed the practical utility of the "second phase" compounds, and because the activity in vitro could be reasonably correlated with activity in vivo. If arguendo the Board finds that the wattanasin in vitro testing of Wattanasin does not prove a reduction to practice and requires in vivo testing, then the Board should sua sponte also restrict Fujikawa to, at the earliest, their priority date of August $\underline{3,}$ 1988, when they first introduced in vivo test results in their priority filing (WRB at 11-19).

[^17]Watt. Reply Fuj. Opp. Find. Fact page 3
5. In vivo testing of compounds 64-933, 64-935 and 64-936/NA was also pursued with diligence down to October 22 and 29, 1987; and culminated in further activity for the count comprising entry of $\mathrm{ED}_{50}{ }^{\prime}$ s for 64-933, 64-935 and 64-936/NA into the Sandoz database on December 9,1987 (WB at 43-45; WRB at 19-29). In vivo administration to rats of carboxymethylcellulose solutions or suspensions of test compounds (WR at 204) met the limitations of the count (WRB at 24, WR at 204).
6. Wattanasin did not at any time abandon, suppress or conceal the invention, and nothing in the record supports such an inference. On the contrary, in view of the January 1988 recommendation of the Sandoz Patent Committee to file a patent application on the Watttanasin invention, there was an outstanding obligation to file, and attorney activity toward that objective, through to the filing date of March 3, 1989, which was 14 months after the last activity for the count (WB at 45-57; WRB at 24-25).
7. Accordingly, it is submitted that wattanasin has proved priority by a preponderance of the evidence, or by clear and convincing evidence, over Fujikawa.

Respectfully submitted,

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: Imf
September 7, 1993
1 hereby certify that this correspendence is her: $\%$ dencsited with the United Ste:en mini Sentes

 (Date of Deposit)


```
    It is hereby certified that a true copy of the paper
entitled:
```

WATTANASIN REPLY TO FUJIKAWA OPPOSITION TO
WATTANASIN PROPOSED FINDINGS OF FACT

```
was served on counsel for the party Fujikawa et al., this 7th day of September 1993, by postage pre-paid first-class mail addressed to the following:
```

```
Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202
```


Diane E. Furman

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Interference No. 102,975

Examiner-in-Chief: M. Sofocleous

WATTANASIN OPPOSITION
 TO FUJIKAWA MOTION TO SUPPRESS EVIDENCE

Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231
Sir:

FY

SEP 221993

RECEIVL. OOX NTERFERENO

Fujikawa have moved to supress the Declaration and Supplemental Declaration of Robert E.. Engstrom, the Sandoz researcher who conducted in vivo testing of the Wattanasin compounds in rats, together with Exhibits $K-1$ and Q which accompany his respective declarations. For the convenience of the Board, copies of these declarations and exhibits (as well as the companion Rodney Slaughter declaration) are appended hereto.

Fujikawa are apparently objecting to the $E D_{50}$ data in the Engstrom declaration (WR 206) because they "constitute the results of not one but two computer manipulations."

Whatever, Fujikawa intend by this, the following things are evident from these declaration and exhibit pages:

1. Pages 334 and 337 . (see upper right hand corner of exhibit page) are summary pages generated for each of the screenings carried out starting October: 22 and October 29, i987, respectively, and simply record the type of test solutions utilized;

Watta..asin
Opp. Fuj. Mot. Supress
page 2
2. Pages 335-336 and 338-339 show the actual counts in nanocuries per 100 ml . of rat serum obtained for each in vivo testing.

As described more fully by Engstrom at WR 204; the rats were administered the test substance dissolved or as a suspension in a formulation comprising carboxymethylcellulose. The rats were therafter injected with a given amount of radiolabeled sodium acetate. Serum samples were then obtained, the sterols were precipitated, and their radioactivity detected by liquid scintillation spectrometry.

The count in nanoCuries per 100 ml . rat serum is listed down the fifth column of the WX $K-1$ computer printout. This is the actual raw data obtained from the experiments. From the nanocurie values received for the six rats in each testing, various computations were made including a "\% change" in nanoCurie count. A of change greater than 50% would indicate activity in the assay. (This is a quite stringent assay, where the industry standard, compactin, itself had an ED50 of 3.5 , as described by Wattanasin in the Reply Brief at 21-22.,

This data were then inputed into a computer program which generated an $E D_{50}$ number for each compound tested, and the $E D_{50}$ was downloaded in the Sandoz database maintained in the ordinary course of business. (Notice that the database accepted only $E D_{50}$ values which were smaller than 1.) However, in Exhibit Q (at page 418), a Biological Activity Data Report on the wattanasin compounds shows that compound 64-933 was also calculated to have a specific $E D_{50}$ value of 2.40 .

ஸُattanasin
Opp. Fuj. Mot. Supress
page 3

Calculation of $E D_{50}$ in this manner was hardly new to the art as of December 1987. In fact, the whole Engstom in vivo testing procedure appears almost verbatim at page 33 of the Kathawala 1984 European patent publication on fluvastatin, EP 114,027 which was cited as "technological background" against the involved Fujikawa '930 patent (copy of relevant pages also appended).

Even the Fujikawa rebuttal witness, Dr. Homlund, acknowledged that he had. "no quarrel with the techniques for determining statistical activity" used•by wattanasin (FR at 204).

Given the art-recognized status of this in vivo assay, it is hard to understand why Fujikawa insist on being provided with computer programs or logorithms so that they can trace the exact progress of each byte of information.

The Board has discretion in applying the rules of evidence, and there is submitted to be no convincing argument that a "rule of reason" should not apply here where the raw data is attested to. by the individuals who actually performed the experiments, and the resulting $E D_{50}$ calculation was generated thereon by sandoz in the ordinary course of business.

Fujikawa affect discomfort that the $E D_{50}$ data for one of 64-933 and 64-936/NA was inadvertently "switched" at page 206 of the original Engstrom declaration. Regardless of whether this typographical error is related in any way to an acknowledged Engstrom "goof" showing up in Exhibit Q, all of the other Wattanasin Exhibits are uniform in assigning an $E D_{50}$ value to

Wattanasin

Opp. Fuj. Mot. Supress
page 4
compound 64-935, alone, of 0.49 (see, e.g., Exhibit S-1 (relevant page also appended)) ${ }^{1}$.

Like any other business or technical information maintained in the ordinary course of business by Sandoz, the $E D_{50}$ data in a sense speaks for itself, and should not be invalidated by a purported lack of foundation, particularly since the underlying computer programs or logorithms are not themselves likely to be comprehensible.

Accordingly, the Fujikawa motion to suppress should be denied.

1. Fujikawa also attempt an argument surrounding the absence of a sodium salt indication, i.e. "NA", from the Sandoz database printout for 64-936(NA) included in Wattanasin Exhibit K-1 (at 336). However, notice that on pages 203, 205 and 209 of the Wattanasin record "64-936" is used interchangeably with the designation "64-936/NA", just as the sandoz fluvastatin compound, a sodium salt (technically, "62-320/NA."), is typically referred to as, simply, 62-320 (WR at 484), without the added sodium
designation. It is hard to see how Fujikawa could allege difficulty with practices that are customary in the art, and manifested throughout the wattanasin record in relation to compounds of known strucutre such as fluvastatin.

CERTIFICATE OF SERVICE

It is hereby certified that a true copy of the paper entitled:

WATTANASIN OPPOSITION
TO FUJIKAWA MOTION TO SUPPRESS EVIDENCE

```
and the attachments thereto were served on counsel for the
party Fujikawa et al., this 7th day of September 1993, by
postage pre-paid first-class mail addressed to the following:
```

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway Crystal Square 5, Ste. 400
Arlington, VA 22202

0114027 AI

(51) Int. Cl .3: C 07 D 209/18, C 07 D 405/04, A61K 31/405
(2) Date of filing: 22.11.83

- 6. AUG. 1984
(43) Date of publication of application: 25.07.84 Bulletin 84/30

Designated Contracting States: AT BE CH DE FR GB IT LILUNLSE
(5) Applicant: SANDOZ AG, LIchtstrasse 35, CH-4002 Basel (CH)
(84) Designated Contracting States: BE CH FR GB TILILU NLSE
(17) Applicant: SANDOZ-PATENT-GMBH, Humboldtstrasse 3, D-7850 Lörrach (DE)
(84) Designated Contracting States: DE
(71) Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgeseilschaft m.b.H., Brunner Strasse 59, A-1235 Vienna (AT)
(84) Designated Contracting States: AT
(12) Inventor: Kathawala, Falzulla Gulamhuseln,

39 Woodland Avenue, MountaIn Lakes, N.J., 07946 (US)
(54) Analogs of mevalolactone and derivatives thereof, processes for their production, pharmaceutical compositions containing them and their use as pharmaceuticals.
R_{4} is hydrogen, $R_{5 a}$ must be hydrogen when R_{5} is hydrogen. not more than one of R_{4} and R_{5} is trifluoromethyl. not more than one of R_{4} and R_{5} is phenoxy and not more than one of R_{4} and R_{5} is benzyloxy.
R_{2} is hydrogen, $\mathrm{C}_{1.4}$ alkyl, $\mathrm{C}_{3.6}$ Cycloalkyl, C_{1-4} alkoxy, (ex sept t-butoxy), trofluoromethyl, fluors, chloro, phenoxy or benzyloxy,
R_{3} is hydrogen, $C_{1.3 a l k y l} C_{1.3}$ alkoxy, trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy, with the provisos that R_{3} must be hydrogen when R_{2} is hydrogen, not more than one of R_{2} and R_{3} is trifluorome thy, not more than one of R_{2} and R_{3} is phenoxy, and not more than one of R_{2} and R_{3} is benzyloxy, x is $-1 \mathrm{CH}_{2 n}$. or, $\mathrm{CH}=\mathrm{CH}-(\mathrm{n}=0.1 .2$ or 31 .

wherein R_{6} is hydrogen or $C_{1.3 a l k y l}$ in free acid form or in the form of a physiologically-hydrolysable and -acceptable ester or a lactone thereof or in salt form.

These compounds are indicated for use as pharmaceutic: cats particularly for inhibiting cholesterol biosynthesis and treating atherosclesoris.

The isomer of Yang et al. and the isomer disclosed in Reaction Scheme III yield lactones having the 4R,6S configuration and, as a result of epimerization in Reaction X, such compounds having the $4 R, 6 R$ configuration. Lactones having the $4 S, 6 R$ and $4 S, 6 S$ configuration may be obtained from the other isomer whose synthes is is disclosed in Rection Scheme III.

The availability of these intermediates enables synthesis of optically pure end products.

Reaction products both intermediale and final can be isola10 ted and purified in conventional mannr whereby intermediates can where appropriately be employed directily in a subsequent reaction

Mixtures of stereoisomers (cis, trans and optical) may be separated by conventional means at whatever stage of symthesis is appropriate. Such methods include re-crystalisation,
formulae $V, X-X I I, X X$ and $X X I X B-X X I X D)$ and Groups (xiv)-(xx), (xxxiii)-(xxxviii) and (lxxxix)-(cxiv) for formulae XXVI-XXVIII) to the extent consistent therewith:

The compounds of formula I possess pharmacological activity in particular they are inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-COA) reductase and as a consequence inhibitors of cholesterol biosynthesis as demonstrated in the following three tests.

Test A: In Vitro Microsomal Assay of HMG-CóA Reductase Inhibition:

200 ul . aliquots ($1.08-1.50 \mathrm{mg} . / \mathrm{ml}$.) of r at liver microsomal suspensions, freshly prepard from male Spargue-Dawley rats ($150-225 \mathrm{~g}$. body weight), in Buffer A with 10 mmol . dithiothreitol are incubated with 10 ul . test substance dissolved in dimethylacetamide and assayed for HMG-COA:reductase activity as described by Ackerman et al., J. Lipid Res. 18, 408-413 (1977). In the assay the microsomes are the source of the HMG-COA reductase enzyme which catalyses the reduction of HMG-COA to mevalonate. The assay employs a chloroform extraction to separate the product, $\left[{ }^{14} \mathrm{C}\right]$ mevalonolactone, formed by the HMG-COA reductase reaction from the substrate, [${ }^{14}$ C] HMG-COA. [3h]mevalono-lactone is added as an internal reference. Inhibition of HMG-COA reductase is calculated from the decrease in specific activity. $\left[{ }^{14} \mathrm{C} /{ }^{3} \mathrm{H}\right]$ mevalonate) of test groups compared to controls.

Test B: In Vitro Cell Culture Cholesterol Biosynthesis Screen:

The, cell culture is prepared as follows: Stock monolayer cultures of the Fu5AH rat hepatoma cell line (originally obtained from G. Rothblat; see Rothblat, Lipids 9, 526-535 (1974) are routinely maintained in Eagle's Minimum Essential Medium (EMEM) supplemented with 10% fetal bovine serum (FBS) in $75 \mathrm{~cm}^{2}$ tissue culture flasks. For these studies, when the cultures reach

```
    *
```

:-
-31-
600-6951
confluence, they are removed by mild enzymatic treatment with 0.25% trypsin in Hanks' balanced salt solution (without calcium and magnesium). After centrifugation of the cell suspension and aspiration of the enzymatic solution, a cell pellet is resuspended in an appropriate volume of media for seeding into 60 mm . tissue culture dishes. The cultures are incubated at $37^{\circ} \mathrm{C}$ in an atmosphere of high humidity and 5% carbon dioxide. When the cultures are confluent (approximately 5 days), they are ready for use. The culture media is aspirated from the dishes and replaced with 3 ml of EMEM suplemented with $5 \mathrm{mg} / \mathrm{ml}$ of dilipidized serum protein (DLSP) prepared by the method of Rothblat et al., In Vitro 12, 554-557 (1976). Replacement of the F8S with DLSP has been shown to stimulate the incorporation of [${ }^{4} \mathrm{C}$ C]acetate into sterol by removing the exogenous sterol
15 supplied by the F8S, thereby requiring the cells to synthesized sterol. Enthanced 3-hydroxy-3-methylglutaryl Coenzyme A reductase (HMG-CoA reductase) activity is measurable in the cells in response to the lack of exogenous sterol. Following approximately 24 hours incubation at $37^{\circ} \mathrm{C}$ in the DLSP supplemented media, the 20 assay is initiated by the addition of $3 \mu \mathrm{Ci}$ of $\left[{ }^{14} \mathrm{C}\right]$ acetate and the test substances solubilized in dimethylsulfoxide (DMSO) or distilled water. Solvent controls and compactin-treated controls are always prepared. Triplicate 60 mm . tịssue culture dishes are run for each group. After 3 hours incubation at $37^{\circ} \mathrm{C}$, the
25 cultures are examined microscopically using an inverted phase contrast microscope. Notations are made of any morphological changes which may have occurred in the cultures. The media is aspirated and the cell layer is gently washed twice with $\dot{0} .9 \%$ sodium chloride solution (saline). The cell layer is then harvested in $3 \dot{m} \mathrm{l}$. of 0.9% saline by gentle scraping with a rubber policeman and transferred to a clean glass tube with Teflon lined cap. The dishes are rinsed with 3 ml . of 0.9% saline and rescraped, and the cells are combined with the first harvest. The tubes are centrifuged at 1500 r.p.m. for 10 minutes
－32－
600－6951
in an IEC PR－J centrifuge，and the supernatant is asperated． The cells are then extracted as follows：One ml．of 100\％ ethanol is added to the cell pellet followed by sonication for 10 seconds with a＂LO＂setting of 50 on a Bronwell Biosonik IV．One hundred Ul．are taken for protein determination．One $\dot{m}]$ ．of 15% potassium hydroxide（ KOH ）is added，and the samples are thoroughly vortexed．Saponification is accomplished by heating the ethanol－KOH treated samples at $60^{\circ} \mathrm{C}$ for 60 minutes in a water water，they are ether．The petroleum ether with 2 ml ．of distilled water and finally washed three times a stream of nitrogen．

The obtained samples are then analyzed by thin layer chromatography（TLC）as follows：Residues from the petroleum ether extraction are taken up in a small volume of hexane and spotted on silica gel 60 TLC plates（ E ．Merck）．Development of the plates is carried out in a 150 parts by volume hexane： 50 parts by volume diethyl ether： 5 parts by volume galcial acetic
2．）acid solvent system using a three phase development procedure． Visualization is accomplished in an iodine vapor chamber．＇The plates are divided into five sections such that each section contains the molecules having the following approximate Rf values：section $1-0-0.4$ ，section $2-0.4-0.55$ ，section $3-$ 0．55－0．7，section 4－0．7－0．9 and section 5－0．9－1．0．Sectión contains the non－saponifiable sterols．The five sections of the TLC plates are scraped into scintillation vials．Blanks are also prepared from scrapings of chromatographed non－labelled standards．ACS ${ }^{\mathcal{B}}$ scintililation cocktail is added，and the spectromety is determined in a liquid scintillation counting efficiencies ${ }^{14}$ ］hexadecane standards are used to determine is determined employing the Biol protein content of the samples is determined employing the Bio－Rad Protein Assay System．

The results are reported as disintegrations per minute per mg protein (d.p.m./mg protein) for each of the live TLC sections. Mean d.p.m./mg protein \pm standard error of the mean are compared for percentage change (\% Δ) and statistical significance with
5 solvent control means. TLC section 2 data is taken as a measure of HMG-COA reductase activity inhibition.

Test C: In Vivo Cholesterol Biosynthesis Inhibition Tests: In vivo studies utilize male Wistar Royal Hart rats weighing $150+20 \mathrm{~g}$ which have been kept for $7-10$ days on an altered light
10 cycle (6:30 a.m. - 6:30 p.m. dark) housed two per cage and fed powdered Purina Rat Chow and water ad libitum. Three hours before the diurnal maximum of cholesterol synthesis at mid-dark, the rats are administered the test substances dissolved or as a suspension in 0.5% carboxymethylcellulose in a volume of $1 \mathrm{ml} / 100$ calculated in nCi (nanocuries) of sterol formed per 100 ml of serum. Inhibition of sterol synthesis is calculated from the reduction in the nCi of sterols formed from test groups compared to controls.

The compounds are thus indicated for use as hypolipoproteinemic and anti-atherosclerotic agents.

An indicated suitable daily dosage for use in the treatment of hyperlipoproteinemia and athersclerosis is from about
to 2000 mg preferably 1.5 to 100 mg suitably administered in divided dosages of 0.25 to 1000 mg preferably 0.4 to 50 mg two to four times daily or in retard form.

They may be administered in free acid form or in the form
5 of a physiologically-hydrolysable and -acceptable ester or a lactone thereof or in pharmaceutically acceptable salt form whereby the various forms have activities in the same range.

The invention therefore also concerns a method of treating hyperlipoproteinemia or atherosclerosis by administration of a

600-6951 compound of formula I in free acid form or in the form of a physiologically-hydrolysable and -acceptable ester or a lactone thereof or in pharmaceutically acceptable salt form as well as such compounds for use as pharmaceuticals e.g. as hypolipoproteinemic and anti-atherosclerotic agents.

The compounds may be administered alone, or in admixture with a pharmaceutically acceptable diluent or carrier, and, optionally other excipients, and administered orally in such forms as tablets, elixirs, capsules or suspensions or parenterally in such forms as injectable solutions or suspensions.

The preferred phamaceutical compositions from the standpoint of ease of preparation and administration are solid compositions, particularly tablets and hard-filled or liquidfilled capsules.

Such compositions also form part of the invention.
The following examples, in which all temperatures are in ${ }^{\circ} \mathrm{C}$ illustrate the invention.

107

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES WATTANASIN
v. Fujikawa et al.

Interference No. $102,648,102,975$

DECLARATION OF ROBERT G. ENGSTROM PURSUANT TO 37 CTR $\$ 1.672$

I, Robert G. Engstrom, do hereby declare as follows:
(1) That I have been employed by Sandoz Pharmaceuticals Corporation since 1964 as a Research Scientist. Among my responsibilities lias been supervising the testing of new HMG Co-A reductase inhibiting compounds synthesized by Sandoz chemists.
(2) That all activities referred to in this Declaration took place in the United States:

IN VIVO TESTING OF
WAITANASIN COMPOUNDS 64-933, 64-935 and 64-936/Na

1. On or before october 29, 1987, in my laboratory under my supervision, Rodney Slaughter began performing the below-indicated protocol on compounds. 64-933, 64-935 and 64-936/Na:

Robert Angstrom
Rule 672 Declaration
page - 2 -

Abstract

In vivo studies utilized male wistar Royal Hart rats weighing $150 \pm 20 \mathrm{~g}$. which have been kept for $7-10$ days on an altered light cycle (6:30 A.M. - 6:30 P.M. dark) housed two per cage and fed powdered Purina Rat Chow and water ad libitum. Three hours before the diurnal maximum of cholesterol systhesis at midday the rats were administered the test substances dissolved or as a suspension in 0.5% carboxymethylcellulose in a volume of $1 \mathrm{ml} . / 100 \mathrm{~g}$. body weight. Controls received vehicle :alone. One hour after receiving the test substance, the rats were injected intraperitoneally with about 25 $\mu \mathrm{Ci} / 100 \mathrm{~g}$. body weight of sodium [$\left.1-{ }^{14} \mathrm{C}\right]$ acetate $1-3 \mathrm{mCi} / \mathrm{mmol}$. Two hours after mid-dark, blood samples were obtained under sodium hexobarbitol anesthesia, and the serum was separated by centrifugation. The resulting serum samples were saponified and neutralized, and the 3β-hydroxy sterols were precipitated with digitonin basically as described by Sperry et al.', J. Biol. Chem. 187,97(1.950).

The $[14 \mathrm{C}] d i g$ itonides were counted by liquid scintillation spectrometry. The assay is based on the conversion of ${ }^{4}{ }^{\mathrm{C}} \mathrm{C}$-acetate to ${ }^{14} \mathrm{C}$-cholesterol in viva.

2. The counts in DPM of digitonin precipitable sterol (β-hydroxy sterol, mostly cholesterol in the rat) were entered by Rodney Slaughter into my computer program, which converted them to nCi of sterol found per 100 ml . of serum at 4 hours after the injection of the ${ }^{14}$ C-acetate.
3. I have reviewed Exhibit K-l hereto; which comprises true copies of pages 133, 134, and 135, 136, 137 and 138 of R. Slaughter's Laboratory Notebook \#917. I witnessed Rodney Slaughter's signature on each. of these pages, and each page bears my true signature as a witness.

109.

```
Robert Engstrom
Rule 672 Declaration
page - 3 -
```

4. Notebook pages 133-135 contain true copies of a computer printout for the protocol and results in nCi/dl of Study \#H318, which was commenced on October 22, 1987. I initialed the first page of this computer printout on or before october 22, 1987. This computer printout on page 135 indicates that an in vive assay of compound 64-936 was started on October 22, 1987.
5. Notebook pages 136-138 contain true copies of a computer printout for the protocol and results in $\mathrm{nCi} / \mathrm{dl}$ of Study \#H319, which was commenced on October 29, 1987. I initialed the first page of this computer printout on page 136 on or prior to October 29, 1987. This computer printout on page 137-138 indicates that an in vive assay. of compound 64-933 and 64-935 was started on October 29, 1987.
6. Both studies were completed on or prior to December 9, 1987, the date indicated at the bottom of pages 135 and 138.
7. It was my responsibility to enter the $\mathrm{nCi} / \mathrm{dl}$ data into a separate computer program which calculates the $E D_{50}$ values of a compound tested in vive from the reduction in the nCi of sterols formed from test groups compared to controls for each assay, and forms a database of the $E D_{50}$ values. On or before December 9, 1987, I entered the data for compounds 64-933, 64-935 and 64-936/Na.
```
Robert Engstrom Rule 672 Declaration page - 4 -
```

8. The list page of Exhibit $K-1$ comprises a true copy of part of the $E D_{50}$ database. This page indicates that the $E D_{50}$ for compounds 64-933, 64-935 and 64-936/Na was in the system as of December 9, 1987. Therefore, the information was available to other Sandoz employees having access to the computer database as of December $9,1987$.

The ED50 for these compounds are:

COMPOUND
$\mathrm{ED}_{50}(\mathrm{mg} / \mathrm{kg})$
64-933 0.49
$64-935>1.0$
64-936 >1.0

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section. 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECIARATION this 13 day of November 1992.

\author{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
 ```
WATTANASIN
 v. Interference Nos. 102,648, 102,975
 FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous
 DECLARATION OF RODNEY SLAUGHTER PURSUANT TO 37 CFR §l.672
 I, Rodney Slaughter, do hereby declare as follows:
 (1) That I have been employed by Sandoz
 Pharmaceuticals Corporation since 1982, and during the
 time periods referred to herein, I worked in the
 Department of Lipid Metabolism.

```
}
(2) That it has been my responsibility to carry out an in vivo testing program of various HMG-CoA reductase inhibitor compounds, including Wattanasin compounds 64-933, 64-935 and 64-936.
(3) That all of the below-indicated activities took place in the United States.

IN VIVO TESTING OF
WAITANASIN COMPOUNDS 64-933, 64-935 and 64-936
1. On or before October 29, 1987, I carried out the below-indicated protocol on compounds 64-933, 64-935 and 64-936:

\author{
Rodney Slaughter \\ Rule 672 Declaration \\ page - 2 -
}

In vivo studies utilized male Wistar Royal Hart rats weighing \(150 \pm 20\) g. which have been kept for 7-10 days on an altered light cycle (6:30 A.M. - 6:30 P.M. dark) housed two per cage and fed powdered Purina Rat Chow and water ad libitum. Three hours before the diurnal maximum of cholesterol systhesis at mid-day the rats were administered the test substances dissolved or as a suspension in \(0.5 \%\) carboxymethylcellulose in a volume of \(1 \mathrm{ml} . / 100 \mathrm{~g}\). body weight. Controls received vehicle alone. One hour after receiving the test substance, the rats were injected intraperitoneally with about 25 \(\mu \mathrm{Ci} 1100 \mathrm{~g}\). body weight of sodium [1- \({ }^{14} \mathrm{C}\) ]acetate \(1-3 \mathrm{mCi} / \mathrm{mmol}\). Two hours after mid-dark, blood samples were obtained under sodium hexobarbitol anesthesia, and the serum was separated by centrifugation. The resulting serum samples were saponified and neutralized, and the \(3 \beta\)-hydroxy sterols were precipitated with digitonin basically as described by Sperry etial.r J. Biol. Chem. 187,97(1950). The [ \({ }^{14}\) C]digitonides were counted by liquid scintillation spectrometry. The assay is 14 based on the conversion of \({ }^{14}{ }_{C}^{c}\)-acetate to \({ }^{14}\) C-cholesterol in vivo.
2. I entered the counts in DPM of digitonin precipitable sterol ( \(\beta\)-hydroxy sterol, mostly cholesterol in the rat) into a computer program, which converted them to mCi of sterol found per 100 ml . of serum at 4 hours after the injection of the \({ }^{14}\) C-acetate.
3. I have reviewed Exhibit \(K-1\) hereto, which comprises true copies of pages \(133,134,135,136,137\) and 138 of my Laboratory Notebook \#917.

Rodney Slaughter
Rule 672 Declaration
page - 3 -
4. Notebook pages 133-135 contain true copies of a computer printout for the protocol and results in nCi/dl of Study \(\# H 318\), which I started on October 22, 1987. These pages contain the date of \(10 / 22 / 87\) at the top in my handwriting.
5. Notebook pages 136-138 contain true copies of a computer printout for the protocol and results in nCi/dl of Study \#H319, which I started on October 29, 1987. These pages contain the date of 10/29/87 at the top in my handwriting.
6. Both studies were completed on or prior to December 9, 1987, the date indicated at the bottom of the computer printouts on pages 135 and 138 .
7. It was my practice to paste the computer printouts into my notebook and to sign the notebook page when I did this.

Rodney Slaughter Rule 672 Declaration page - 4-

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this \(I\) day of November 1992.







ョ：ícimミで \(b y\)


\(3:\)

Case No. 600-7101/CONT/INT.(5)
patent .
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN
v.

\section*{FUJIKAWA et al.}

Interference Nos. \(102,648,102,975\)
Examiner-in-Chief: M. Sofocleous

SUPPIEEMENTAI DECIARATION OF ROBERT G.ENGSTROM PURSUANT TO 37 CFR 51.672
I, Robert \(G\). Engstrom, do hereby declare as follows:
All of the below-indicated activities took place in the United States.

Exhibit \(Q\) comprises a true copy of a Biological Activity Data Report dated May 24,1988 which \(I\) sent to the patent Department concerning the compounds of PD 299/84, together with a computer printout of the Sandoz database dated May 23, 1988. The printout contains \(\mathrm{IC}_{50}\) and some \(\mathrm{ED}_{50}\) values for compounds of patent Disclosure \(295 / 84\) and compounds of the subject Patent Disclosure 299/84.
(I note that \(I\) became aware of a computer entry error comprising the inadvertent "switching" of the \(E D_{50}\) data for compounds 64-933 and 64-935. The corrections on the printout are in my handwriting and would have been made on or about May 23 , 1988.).

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful

Engstrom
Suppl. Decl.
page - 2
false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing Declaration this
\(\qquad\) day of February, 1993.

i．ACTIVITY TO EE DISCLOSEL：
Inhibition of cholesterol biosynthesis；antihypercholesteremic． antiatherosclerotic
2．IF ANY COMPGLIIDS COVEREI BY ABOVE－NOTED DISCLOSURE HAVE MORE THAI ONE ACTIVITY，INDICATE TOTAL NUMBER OF ACTIVITIES AND PREPARE A． SEPARATE R．A．［1．R．SHEET FOR EACH．TOTAL NO．OF ACTIVITIES： 1

3．a）TEST METHOCIS USED TO ESTABLISH ACTIVITY：
HMG－COA reductase inhibition in rat liver microsomes（DT 84） Cholesterol synthesis inhibition invivo in rats（DT ES）
b）DOSAGE RANGES RASED ON ACTUAL DOSES USED IN TEST PROCEDURE： \(0.050-1.5 \mathrm{mg} / \mathrm{kg}\)
4．COMPDUNLS TESTED WITHIN DISCLOSURE WHICH EXHIBIT WEAK OR GREATER ACTIVITY：
54－935．54－933

5．DOSSAGE SCHELULE－Broad Ranges：
a）Large f small animals：． 10 to 1.0 mg／kg．
b）Large animals： 20 to 200 mg／day．
MOST FREFERED COMPOUND FOR ACTIVITY DESIGNATED：
54－9．35
7．＇OTHER FREFEREED OR POTENTIALLY PREFERRED COMPOUNDS FOR DESIGNATEI ACTIVITY：
64－936，63－566，64－933，64－934
8．EDSO FQR THE FFEFERFED COMPOUND IN EACH OF THE TEST METHODS INDICATED IN Ea）FOR．THE DESIGNATED ACTIVITY：



IC50 TABLE RAT MICROSOMAL ASSAY
（CSI－DT64）
－HIS FILE IS A CALCUI＿ATED ESTIMATE OF THE IC5O（CONCENTRATION WHICH REDUCES THE CONVERSION OF HMG－COA TO MEVALONATE BY 50\％）USING ALL THE STUDIES T．THE RELEVANT COMPOUNDS UP TO THE SORT DATE．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I＿AST UPDATE： & \multicolumn{2}{|l|}{02－04－38} & \multicolumn{3}{|c|}{SORT BY：DISCLNO} & \multirow[b]{2}{*}{COMMENTS} \\
\hline COMPO & REGNO & OISCL & IC50 uM． & DATE & REF & \\
\hline SAH－062977 & 24162 & ：395－84 & 25． 0000 & 02－07－84 & 1014－248 & \\
\hline 3AH－062978 & 24163 & ：295－84 & 0.0180 & 02－07－84 & 1014－249 & \\
\hline \(\cdots \mathrm{SAH}-063033\) & 24315 & －95－84 & 0.0450 & 04－18－84 & 1014－257 & SAPONIFIED \\
\hline －SAH－063033 & 24315 & \(\because 95-84\) & 0． 5250 & 02－29－84 & 1014－257 & \\
\hline SAH－063034 & 24316 & －95－84 & 0.3630 & 02－22－84 & 1014－258 & \\
\hline ．－jAH－063035 & 24317 & ：こ95－84 & 0.0400 & 02－22－84 & 1014－259 & \\
\hline SAH－063074 & 24446 & －95－84 & 0.4000 & 05－23－84 & 014－277 & \\
\hline SAH－063074 & 24446 & －95－84 & 0.6900 & 03－26－84 & 1014－277 & \\
\hline 3AH－063075 & 24448 & －：95－84 & 0.5300 & 04－18－84 & 1014－278 & SAPONIFIED \\
\hline \(\cdots\) こAH－063075 & 24448 & －95－84 & 0.9040 & 03－26－84 & 1014－278 & \\
\hline SAH－063076 & 24449 & ：－95－84 & 0.5800 & 06－12－84 & 1 & \\
\hline ．ЗAH－063076 & ．24449 & －95－84 & 0.6400 & 05－23－84 & ．1014－279 & \\
\hline －mAH－063076 & 24.449 & －95－84 & 0． 9000 & 03－26－84 & 1014－279 & \\
\hline SAH－063083 & 24511 & \(\because 95-84\) & 1． 9100 & 03－28－84 & 1014－281 & \\
\hline S．4H－063083 & 24511 & \(\because-95-84\) & 2． 3200 & 03－28－84 & 1014－281 & \\
\hline ЗAH－063084 & 24512 & －95－84 & 3． 1600 & 06－12－84 & 1014－282 & \\
\hline SAH－063094． & 24512 & －95－84 & 6． 3200 & 03－28－84 & 232 & \\
\hline SAH－063144 & 24750 & －95－84 & 1． 1600 & 05－10－84 & 1014－294 & SAPONIFIED \\
\hline うAH－063144 & 24750 & －95－84 & 2.0200
210.0000 & \(05-10-84\)
\(05-07-84\) & 1014－294 & SAPONIFIED \\
\hline SAH－063145 & 24755 &  & \(>10.0000\)
\(>10.0000\) & 05－10－84 & 1014－295 & \\
\hline SAH－063145 & 24755 & －95－84 & \(>10.0000\)
\(>10.0000\) & 05－10－84 & 1014－296 & \\
\hline 5AH－063146 & 24756 & \(\because 95-84\) & \(>10.0000\)
0.1000 & 06－04－84 & 1069－002 & SAPDNTFTET \\
\hline jAH－063158 & 24809 & －75－84 & 0． 0.3430 & & 1069－002 & \\
\hline SAH－063158 & 24809 & －95－84 & 0.3430
0.2250 & 06－04－84 & 1069－002 & \\
\hline SAH－063159 & 24810 & －95－84 & 0．22，50 & \(06-12-84\)
\(06-04-84\) & 1069－003 & \\
\hline SAH－063159 & 24810 & －95－84 & 0.2630 & 06－04－84 & 1069－004 & SAPONIFIED \\
\hline ЗAH－063160 & 24811 & －95－84 & 0． 1110 & \(06-04-84\)
\(06-04-84\) & 1069－004 & SAPONIFIED \\
\hline SAH－063160 & 24811 & －95－84 & 1． 5600 & 06－04－84 & 1069－004 & \\
\hline ЗAH－063161 & 24821 & －95－84 & 0.0020 & 06－04－84 & 1069－005 & \\
\hline －SAH－063161 & 24821 & \(\because 95-84\) & 0.0020 & 06－12－84 & 1069－005 & \\
\hline \(\cdots\) SAH－063162 & 24822 & －95－84 & 0.0030 & 06－04－84 & 1069－000 & \\
\hline SAH－063162 & 24822 & －95－84 & 0.0035 & 06－12－84 & 1069－006 & SAPDNIFIED \\
\hline 3AH－063174 & 24965 & －95－84 & 0.0140 & 06－06－84 & 1069－013 & SAPORIFIED \\
\hline ．．－JAH－0¢3174 & 24865 & \(\because 95-84\) & 0.0190 & 06－06－94 & 1069－013 & \\
\hline SAH－063175 & 24366 & \(\cdots 95-84\) & 0． 0260 & 06－06－84 & 1069－014 & \\
\hline SAH－063229 & 25075 & －95－84 & 210．0000 & 08－04－84 & 1069－036 & \\
\hline ： \(3 \mathrm{AH}-063230\) & 25078 & －95－84 & －0．0042 & 08－01－84 & 1069－037 & \\
\hline SAH－06З231 & 25079 & －95－84 & 0.0058 & 08－04－84 & 1069－038 & SAPONIFIED \\
\hline SAH－063269 & 25205 & －95－84 & 0.0030 & \(09-10-84\)
\(09-12-84\) & \[
1059-053
\] & \\
\hline ЗАH－06326？ & 25205 & －95－84 & 0.0440
0.0080 & \(09-12-84\)
\(09-05-84\) & \[
1069-054
\] & \\
\hline SAH－063270 & 25206 & \(995-84\)
\(\cdots 95-84\) & 0.0380 & 09－10－84 & 1069－055 & SAPONIFI \\
\hline SAH－063271 & 25208 & －．95－84 & & & 1069－055 & \\
\hline SA以－063271 & 25208 & －95－8¢ & 0． 1450 & －9－12 & & \\
\hline
\end{tabular}

\(\vdots\)
\(\because-\)
ED50 TABLE : \(: \rightarrow\) T INVIVO ACETATE INCORPORATION (CSIV-DT65)
\(\because \because\)
-HIS FILE IS A CALCLGATED ESTIMATE OF THE EDSO (DOSE WHICH REDUCES THE INCORPORATION OF 145 -ACETATE INTO CHOLESTEROL BY \(50 \%\) ) USING ALL THE STUDIES InN THE RELEVANT COMPGUNDS UP TO THE SORT DATE.
\(\rightarrow\)
LAST UPDATE: \(1-06-8:\) SORT BY: REGNO

\(\cdots\)
...
\(\therefore\) - SAH-O64745 SAH-064745 SAH-064745 SAH-C6З162 SAH-063162 .SAH-063162
SAH-064119
\(\therefore\) SAH-064744 SAH-064816 SAH-064.483
.... SAH-O64063 SAH-064309
.. SAH-063231
SAH-064393
- SAH-063161 SAH-063989
\(1 \quad \mathrm{SAH}-063425\)
- - SAH-064305 SAH-O64480
1 SAH-063270
- SAH-063270
- SAH-063270 SAH-064307
SAH-063159


917-127 \(N=9\)
C17-154 \(\mathrm{N}=3\) BS BATCH
917-154 \(N=12\) 2BATCHES
917-101 \(N=10\)
\(N=19\) 3BATCHES
812-266 \(N=8\)
869-228 N=6
917-090 N=3 -21\% 6. 10
917-119 N=6
517-024 \(N=3\)
869-211 \(N=3\)
869-283 N=3
812-250
917-031 N=6
612-293-1260. 25
869-195 N=6
869-0 \(16 \quad \mathrm{~N}=3\)
869-280 \(N=3-34 \%\) е. З
917-023 \(\mathrm{N}=3 \div 3 \%\) ©. 3
\(N=11\) 2BATCHES
812-267
869-018
917-020 \(\mathrm{N}=6\)
612-219


\section*{Case No. 600-i, \(01 / \mathrm{CONT} / \mathrm{Int}\). (1) patent \\ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

\section*{WATTANASIN}
v.

FUJIKAWA et al.
Examiner-in-Chief: M. Sofocleous

WATTANASIN
v.

FUJIKAWA et al.
v.

Interference No. 102;975
Examiner-in-Chief: M. Sofocleous
FYI

FUJIKAWA et al.

WATTANASIN MOTION TO CONSOLIDATE RECORD
RECEIVED IN -TY NTERFERENGE

Wattanasin hereby moves to consolidate the record for the above-numbered interferences, the counts of which are directed to essentially the same subject matter.

The undersigned counsel for Wattanasin has conferred with counsel for Fujikawa et al., who take no exception to the present motion to consolidate (however, without forfeiting the right to oppose in the event of unspecified changed circumstances in the future).

I hereby certify that this correspondence is being
deposited with the United States Postal Service as
first class mail in an snvelope addressed to: Commus-
sioner of Patents and Trademarks, Washington, D.C. 20231 , on NOV. \(16,1992\).
(Date of Deposit)
(Date of Deposit)
Diane Frman
Name/pf applicatt, assignee, or
Reqstered boresentative
sigulluan
Date of Signature

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
November 16, 1992

Watt. Mot. Consolidate November 16, 1992
page - 2 -

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

\section*{WATTANASIN MOTION TO CONSOLIDATE RECORD}
was served on counsel for the party Fujikawa et al., this l6th day of November, 1992, by postage pre-paid first-class mail addressed to the following:

\author{
Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq. \\ 1755 South Jefferson Davis Highway \\ Crystal Square 5, Ste. 400 \\ Arlington, VA 22202
}



\section*{WATTANASIN}
v.

FUJIKAWA et al.
-
Examiner-in-Chief: M. Sofocleous

WATTANASIN
v .
FUJIKAWA et al.
v .
Interference No. 102,975
Examiner-in-Chief: M. Sofocleous FYI

FUJIKAWA et al.
-WATTANASIN MOTION FOR EXTENSION OF TIME UNDER 37 CFR \(\$ 1.635\)

NOV 191992
RECEIVED IN COXINTERFERENCE

It is respectfully requested that the party Wattanasin be permitted an extension of time of ten (10) days, from November 15, \(1992^{1}\), i.e. until November 25, 1992, to file and serve: (1) an executed copy of the Declaration of Lawrence B. Perez pursuant to 37 CFR 1.672; and (2) an original of the executed copy of the Declaration of Rajeshvari Patel pursuant to \(37 \mathrm{CFR} \$ 1.672\).

With regard to the Perez declaration, it was discovered today by the undersigned that the original and copies of Dr. Perez's signed declaration have regrettably been misplaced. It has also been learned that Dr. Perez, who is a Sandoz employee, is on vacation and is therefore unavailable to sign from Friday, November 13 to at least Wednesday, November 18, 1992, inclusive.
1. The Wattanasin deadline for filing and serving testimony in the above interferences.

Watt. Mot. Exten. Time
November 16, 1992
page - 2 -

An unexecuted copy of the Perez declaration is today being filed and served in the above interferences.

With respect to the declaration of Rajeshvari Patel, who is no longer employed by Sandoz: inadvertently, only a facsimile copy of the execution page of the signed declaration is currently available, perhaps owing to miscommunication between the declarant and undersigned counsel, who expected to receive the original by mail today. The facsimile copy of the Patel declaration is today being filed and served in the above interferences.

Counsel for Fujikawa et al. have been apprised of the above, and have indicated to the undersigned that they will not oppose the introduction of the Patel declaration; but they are reserving the right to oppose introduction of the Perez declaration.

Acccordingly, it is respectfully requested that wattanasin be permitted to file a signed copy of the Perez declaration, and an original of the signed copy of the Patel declaration, on or before November 25, 1992.

Respectfully submitted,


59 Route 10
E. Hanover, NJ 07936

DEF: rimf
November 16, 1992

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

\section*{WATTANASIN MOTION FOR EXTENSION OF TIME}
was served on counsel for the party Fujikawa et al., this 16th day of November, 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Mater \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202


\section*{Case No. 600-7101/CONT}

In re Application of
SOMPONG WATTANASIN
Serial No. \(07 / 498,301\)
Filed: March 2, 1990
For: QUINOLINE ANALOGS OF MEVALONOLACTONE AND DERIVATIVES THEREOF

\section*{FYI}

Art Unit:
Examiner:
NOV 191992
RECEIVED IN IOXINTERFERENGE

DECLARATION OF LAWRENCE B. PEREZ PURSUANT TO 37 C.F.R. \(\$ 1.608\)
Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231
Dear Sir:

I, Lawrence B. Perez, Ph.D. do hereby declare that:
1) I am an Assistant Fellow employed by Sandoz

Pharmaceuticals Corporation. In the course of my employment I synthesize compounds, including HMG-COA reductase inhibiting compounds, and I am familiar with the chemistry employed to make such compounds. All activities referred to in this Declaration took place in the United States.
2) I reviewed Rajeshvari Patel's Laboratory Notebook \#1206, pages 179 and 201.
3) I signed the aforementioned Laboratory Notebook pages prior to December 7, 1987.
4) Exhibit \(\mathrm{F}-1\) contains true copies, except that the dates have been deleted of Rajeshvari Patel's Notebook \#1206, pages 179 and 201, bearing my signature. The dates which have been deleted are prior to December 7, 1987.
5) The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this day of \(5 / 8 \quad 1990\).


Case No. 600-7101/CONT
Serial No. 07/498,301


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
\begin{tabular}{ll} 
In re Application of & \(:\) \\
SOMPONG WATMANASIN & : Art Unit: \\
Serial No. \(07 / 498,301\) & \(:\) Examiner: \\
Filed: March 23,1990 & \(:\) \\
FOr: QUINOLINE ANALOGS OF & \(:\) \\
MEVALONOLACTONE AND & \(:\) \\
DERIVATIVES THEREOF & \(:\)
\end{tabular}

DECLARATION OF RAJESHVARI PATEL PURSUANT TO 37 C.F.R. \(\$ 1.608\)
Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231
Dear Sir:
I, RAJESHVARI PATEI, do hereby declare that:
1) I am a chemist, who was employed by Sandoz Pharmaceuticals Corporation, 59 Route 10, East Hanover, N.J. during the time when Dr. Sompong Wattanasin was in the process of reducing to practice compounds claimed in U.S. Patent Application Serial Number 07/498,301. One of my job responsibilities included the synthesis of certain compounds under the direction and supervision of Dr. Wattanasin. All activities referred to in this Declaration took place in the United States of America.
2) I kept a record of this activity in my Laboratory Notebook \#1206. Exhibit \(F-1\) is a true copy of my Laboratory Notebook \#1206, Pages 130, 137, 145, 153, 158, 166, 172, 175, 176, 179 and 201,
except that dates have been deleted. The activity recorded in these notebook pages and the recordation of this activity both took place prior to December 7, 1987.
3) To determine molecular weight, mass spectrometry was performed. The molecular weight which was determined is the weight of the molecular ion, or \(\mathrm{M}-\mathrm{H}^{+}\), where M is the compound of interest. Thus, to calculate the molecular weight of the compound rather than its ion, one must subtraćt the molecular weight of hydrogen (1) from the molecular weight of the ion. In the notebook pages, I recorded the molecular weight of the ion. Thus, the molecular weight of the compound is 1 less than what \(I\) recorded in my notebook.
4) The spectra and microanalyses were not performed by me, but were performed by an employee of the physical Organic Chemistry Department of Sandoz Pharmaceuticals Corporation. Upon receipt of the spectra from the Physical Organic Chemistry Department, I filed them in their own folder arranged by their compound number. Reference is made to the Declaration of Dr. Sandor Barcza which accompanies this Declaration for details concerning analysis procedures.

Notebook \#1206, Page 130, documents the following reaction which I performed.

\(\varnothing=\) phenyl group
(1206-129-18)


(1206-130-27)

The compound on the left side of the equation was designated 1206-129-18. A mixture of 11.5 g (0.04930 mol) of 1206-129-18,
\(11.93 \mathrm{ml}(0.073958 \mathrm{~mol} ; 1.5\) equivalents) of
and 105 ml EtOH was heated to reflux for six hours (10:00 A.M. to 4:00 P.M.) and then stirred at room temperature overnight.

The following day, the reaction mixture was evaporated to dryness to give a yellow oil with the rotary evaporator, basified with \(\mathrm{NH}_{4} \mathrm{OH}\) and extracted with ether, and the ether extract was washed with \(\mathrm{H}_{2} \mathrm{O}\) and then brine, dried with anhydrous sodium sulfate, and filtered. The filter cake was washed with ether and the washing was combined with the initial filtrate and evaporated to give 10.21 g of an orange-yellow solid, designated 1206-130-27. IR and NMR spectra were performed and follow Laboratory Notebook \#1206, page 130. Yield was calculated to be \(64.86 \%\). The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-130-27).

Notebook \#1206, Page 137; documents the following reaction which I performed.


To \(10.21 \mathrm{~g}(0.0319621 \mathrm{~mol})\) of \(1206-130-27\) in 100 ml dry ether with cooling was added \(2.43 \mathrm{~g}(0.063242 \mathrm{~mol}) \mathrm{LAH}\) (lithium aluminum hydride) portion-wise. The reaction was exothermic and foaming occurred. The mixture was stirred at room temperature for three hours (9:35 A.M. to 12:35 P.M.).

The reaction mixture was poured into ice water (the reaction was strongly exothermic). The result was extracted with ether and the ether extract was washed with water and then brine, dried with anhydrous sodium sulfate and filtered. The filter cake was washed with ether, and the washing was combined with the initial filtrate. Evaporation gave 8.5 g of a yellow solid, designated 1206-137-31. IR and NMR spectra were performed and the results follow Laboratory Notebook \#1206, page 137. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-137-31). Yield was calculated at \(95.8 \%\) of theoretical.

Notebook \#1206, Page 145, documents the following reaction which I performed.


To \(8.0 \mathrm{~g}(0.0288392 \mathrm{~mol})\) of \(1206-137-31\) in 150.0 ml toluene was added 16.0 g activated \(\mathrm{MnO}_{2}\). This was heated to reflux for approximately \(3-3 / 4\) hours (11:00.A.M. to \(2: 45\) F.M.). The result
was filtered through a pad of silica gel. During filtration, it separated into two bands, which were then filtered separately and evaporated separately. Both were yellow solids: (a) 2.6518 g designated 1206-145-25 with a molecular weight of 276, which was determined to be the desired product; and (b) 4.4663 g , designated 1206-145-26, with a molecular weight of 278, which was determined to be the starting material. IR and NMR spectra were performed on 1206-145-25 and the results follow Laboratory Notebook \#1206, page 145. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-145-25).

This process was repeated with \(1206-145-26\) as recorded in Laboratory Notebook \#1206, page 148, and 3.26 g of the same compound as 1206-145-25 was obtained, and designated 1206-148-33. Thus total yield was calculated as \(2.6518 \mathrm{~g}+3.26 \mathrm{~g}=5.91 \mathrm{~g}\). Theoretical yield was 7.91 g , yield was therefore \(74.52 \%\).

Laboratory Notebook \#1206, Page 153, documents the following reaction which I performed.

\(\mathrm{Ph}=\) phenyl group
\(\mathrm{Me}=\) methyl group
5.91 g of the combination of 1206-145-25 and 1206-148-33
\((0.0214909 \mathrm{~mol}), 8.6135 \mathrm{~g}\) of \(\mathrm{Ph}_{3} \mathrm{P} \quad \mathrm{CO}_{2} \mathrm{Me}(0.025789 \mathrm{~mol})\) and 85 ml of toluene were heated to reflux for 1.5 hours. (Before heating this was a yellow heterogeneous mixture). It was then stirred at room temperature overnight.

The following day, the reaction mixture was diluted with \(50 \%\) ether/petroleum ether and filtered through a pad of silica gel. The filter cake was washed with \(50 \%\) ether/petroleum ether, the washing was combined with the initial filtrate and evaporated to dryness to give 8.6 g of a yellow crystalline solid. Trituration with methanol gave 5.5198 g of an off-white solid, designated 1206-153-31, molecular weight 331; yield was 77.6\%. The mother liquor was evaporated to dryness, leaving a 2.7593 g of a yellow oil, designated 1206-153-34.

Trituration of 1206-153-34 with methanol gave 761.6 mg of a light yellow solid, designated 1206-153-37, with a molecular weight of 331. Evaporation of the mother liquor to dryness resulted in a yellow solid, designated 1206-153-38. 1206-153-31 and 1206-153-37 were combined and designated 1206-153-40. The melting point of 1206-153-40 was found to be 128-130 \({ }^{\circ} \mathrm{C}\). Spectra were run on 1206-153-31 (NMR), 1206-153-37 (NMR) and 1206-153-34 (IR) and the results follow Laboratory Notebook \(\frac{\pi}{\pi} 1206\), page 153. The spectra of 1206-153-31 and 1206-153-37 were judged by me and Dr. Wattanasin to be consistent with the desired product.

Laboratory Notebook \#1206, Page 158, documents the following reaction which I performed.

(1206-158-41)

To a solution of 6.25 g of \(1206-153-40(0.0188821 \mathrm{~mol})\) in 75 \(\mathrm{ml} \mathrm{CH} 2 \mathrm{Cl}_{2}\) at \(-78^{\circ} \mathrm{C}\) was added 25.18 ml of 1.5 M DIBAL-H (diisobutylaluminum hydride) ( \(0.0377642 \mathrm{~mol} ; 2\) equivalents) in toluene. This was stirred at \(-78^{\circ} \mathrm{C}\) for about three hours (12:15 P.M. to 3:10 P.M.). The reaction was then quenched with 12.5 ml 2 N NaOH , diluted with EtOAc, and stirred at room temperature overnight. A white solid (gel) came out of solution.

The following day, the reaction product was filtered through a pad of silica gel, washed with EtOAc, water, and then brine, dried with anhydrous sodium sulfate and evaporated to dryness. The result was 5.42 g of an off-white solid, designated 1206-158-35. Yield was 73.78 theoretical yield. The solids were dissolved in \(E t_{2} \mathrm{O}\), and the insoluble portion (aluminum oxide) was filtered off. The solution was evaporated to dryness, resulting in 5.22 g of white-yellow solids designated 1206-158-37. The solids were dissolved in \(E t_{2} \mathrm{O}\), and the insoluble portion (aluminum oxide) was filtered off. The resulting solution was evaporated to dryness, resulting in 4.2117 g of a yellowish solid, designated 1206-158-41, with a molecular weight of 303 and a melting point of \(119-121^{\circ} \mathrm{C}\). NMR and IR spectra were run on \(1206-158-41\) and the results follow Laboratory Notebook \#1206, page 158. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-158-41).

Laboratory Notebook \#1206, page 166, documents the following reaction, which I performed.


To 4.0 g of 1206-158-41 (0.0132013 mol) in 50 ml toluene was added 8.0 g activated \(\mathrm{MnO}_{2}\). This was heated to reflux for one hour (2:00 P.M. to 3:00 P.M.), then stirred at room temperature overnight.

The following day, the reaction product was filtered through a pad of silica gel. Evaporation to dryness gave 3.4946 g of a yellow crystalline material, designated 1206-166-30, with a molecular weight of 301 . NMR and IR spectra were run on 1206-166-30 and the results follow Laboratory Notebook \#1206, page 166. Yield was \(88 \%\) theoretical yield. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-166-30).

Twelve days later, a microanalysis was performed. Two days later, the melting point was determined to be \(98-101^{\circ} \mathrm{C}\).

Laboratory Notebook \#1206, Pages 172 and 175 document the following reaction which I performed.

(1206-166-30)


NaH

To a solution of \(3.5 \mathrm{~g}(0.0116279 \mathrm{~mol})\) of \(1206-166-30\) in 40 ml dry THF at \(-5^{\circ} \mathrm{C}\) to \(-10^{\circ} \mathrm{C}\) was added 38 ml of a previously prepared solution of the dianion of ethyl acetoacetate, the details of the preparation of which are set forth below. The color changed
from yellow to orange to dark red, suggesting that the reaction had occurred. A TLC (using \(50 \%\) ether/petroleum ether) run after 15 minutes indicated the reaction was complete. The reaction mixture was stirred for 30 minutes.

The reaction mixture was quenched with \(\mathrm{NH}_{4} \mathrm{Cl}\) solution, extracted with EtOAC, resulting in two layers. The organic layer was separated and was washed with water then brine, dried with anhydrous sodium sulfate and filtered. Evaporation gave 5.9188 g of a yellow oil, designated 1206-172-41. Yield was 67.87\% theoretical.

To make the dianion solution used above, the following procedure was used. A solution of 5 ml ethyl acetoacetate in 50 ml dry THF was added 1.9 g of \(50 \% \mathrm{NaH}\) in THF at \(-5^{\circ}\) to \(0^{\circ} \mathrm{C}\). This was stirred for 15 minutes (the solution was foaming as \(\mathrm{H}_{2}\) was evolved). At \(-10^{\circ}\) to \(-15^{\circ} \mathrm{C}, 27 \mathrm{ml}\) of 1.6 M n-butyllithium/hexane was added and the mixture was stirred for 20 minutes at \(-10^{\circ} \mathrm{C}\). 92 ml of a yellow homogeneous solution resulted ( 0.04 mol ).

Flash chromatography through silica gel ( \(25 \%\) ether/petroleum ether) of 1206-172-41 gave 3.4004 g of a yellow solid, designated 1206-175-4. Melting point was \(84-87^{\circ} \mathrm{C}\). Yield was 68\%. A microanalysis was performed and the results are shown. NMR and IR spectra were run on 1206-175-4 and the results follow Laboratory Notebook \#1206, page 172. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-175-4).

Laboratory Notebook \#1206, Page 176, documents the following reaction which I performed.


(1206-176-41)
To a homogeneous solution of \(1.0 \mathrm{~g}(0.0023201 \mathrm{~mol}) 1206-175-4\) in 10 ml dry THF and 2.5 ml methanol was added \(3.5 \mathrm{ml} 1 \mathrm{MEt}_{3} \mathrm{~B}\) ( \(0.0034801 \mathrm{~mol} ; 1.5\) equivalents) in THF. This was stirred at room temperature for one hour (9:45 A.M. to 10:45 A.M.). Then the solution was cooled to \(-78^{\circ} \mathrm{C}\). 0.1315 g of \(\mathrm{NaBH}_{4}(0.0034810 \mathrm{~mol}\); 1.5 equivalents) was added portion-wise. This was then stirred at \(-78^{\circ} \mathrm{C}\) for four hours (11:00 A.M. to 3:00 P.M.).

The reaction was quenched with 5 ml acetic acid at \(-78^{\circ} \mathrm{C}\). Ethyl acetate was then added and the mixture was allowed to warm to room temperature. The organic layer was washed with saturated sodium bicarbonate solution, water, and brine. It was then dried, filtered and evaporated to dryness. The residue was redissolved in methanol and evaporated to dryness. The evaporation process (in methanol) was repeated until TLC showed the desired product was obtained, 1.0914 g of an orange oil, designated 1206-176-39.
\[
-10-\quad
\]

Flash chromatography on silica gel (80\% ether/petroleum ether) gave two products: (a) \(\mathrm{F}_{4-6}, 0.4043 \mathrm{~g}\) of a yellow solid, designated 1206-176-41 with a molecular weight of 433 and M.P. \(104-106^{\circ} \mathrm{C}\), which was shown by HPLC to be \(98.3 \%\) pure; and (b) \(\mathrm{F}_{7-13^{\prime}}\) 0.510 g of a yellow solid designated 1206-176-43, with a molecular weight of 433 , which was shown to be \(93.2 \%\) pure by HPLC. IR and NMR spectra were run on both 1206-176-41 and 1206-176-43 and follow Laboratory Notebook \#1206, page 176. Based on these spectra, compound 1206-176-41 was determined to be the desired product. Compound 1206-176-41 was eventually renamed 64-933.

A sample of 64-933 was sent to Dr. Scallen for biological testing in his in vitro microsomal assay for HMG-COA reductase inhibition activity. It was shown by Dr. Scallen to possess inhibition activity prior to December 7, 1987. I learned of this activity from Dr. Damon. Thus, prior to December 7, 1987, I knew that 64-933 was useful as an anti-cholesterol biosynthesis agent, and would be useful in treating atherosclerosis and other conditions resulting from excessive cholesterol biosynthesis.

Laboratory Notebook \#1206, page 179, documents the following reaction which I performed.


To 200.0 mg 1206-176-41 in 5 ml absolute ethanol at \(0^{\circ} \mathrm{C}\). was added approximately \(439 \mu \mathrm{ml}\) of 0.5 N NaOH . This was stirred at \(0^{\circ} \mathrm{C}\). for approximately 1 hour. A yellow oil resuilted. The mixture was diluted with ether and evaporated to a yellow oil. This was re-diluted with ether and solids precipitated out of solution. The solids were washed with ether, the ether was decanted, and the solids were dried under vacuum to obtain 178.8 mg of yellow solids designated 1206-179-30. NMR and IR spectra and a microanalysis were performed. The spectra appear after Notebook \(\frac{n}{\pi} 1206\), page 179 , and were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-179-30). The product shrunk at \(187^{\circ} \mathrm{C}\) and the melting point was above \(210^{\circ} \mathrm{C}\).

1206-179-30 was re-named 64-934. It was submitted to Dr. Scallen for biological testing in his above-mentioned in vitro microsomal assay and was found to be active.

Laboratory Notebook \#1206, page 201, documents the following reaction which I performed.


The compound on the left side of the equation was synthesized and designated 1206-190-41. To 100 mg 1206-190-41 in 5 ml absolute ethanol, at \(0^{\circ} \mathrm{C}\) with stirring was added approximately \(217.3 \mu \mathrm{ml} 1 \mathrm{~N}\)

NaOH dropwise. The mixture was stirred at \(0^{\circ} \mathrm{C}\) for approximately 3 hours, resulting in a yellow oil.

This was diluted with ether, and evaporated to dryness to produce a yellow oil. Upon the addition of ether, yellow solids precipitated out. . These were filtered, washed and dried to give 86.4 mg of a yellow solids designated 1206-201-30.

NMR and a microanalysis were performed on 1206-201-30. The spectrum appears after Notebook \#1206, page 201. It was judged by me and Dr. Wattanasin to be consistent with the desired product (1206-201-30). Its melting point was greater than \(225^{\circ} \mathrm{C}\).

1206-201-30 was renamed 64-936. It was submitted to Dr. Scallen for biological testing in his above-mentioned microsomal assay and was found to be active prior to December 7, 1987.

Thus, prior to December 7, 1987, I knew that both 64-934 and 64-936 were useful as anti-cholesterol biosynthesis agents, and would be useful in treating atherosclerosis and other conditions resulting from excessive cholesterol biosynthesis.

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this \(7^{\text {th }}\) day of May, 1990.

\section*{Rajeshremsi. D Patel}

RAJESHVARI PATEL

Case No. 600-7101/CONT/Int. (4) Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN
v.

FUJIKAWA et al.
v.

FUJIKAWA et al. v.

FUJIKAWA et al.

Interference No. 102,648 - t十6 4
Examiner-in-Chief: M. Sofocleous

Interference No. 102,975 事 \(C_{0}\)
Examiner-in-Chief: M. Sofocfepus

\author{
NoV 191902
}

AECEIVED IN COXMTEFFERENGE
Contingent on the denial of the Wattanasin Motion for Extension of time of even date herewith, the party Wattansin hereby gives notice of intent to rely on the Rule 608 Declaration of Lawrence B. Perez (if the above-mentioned Motion is denied as to Perez), and/or the Rule 608 Declaration of Rajeshvari Patel (if the above-mentioned Motion is denied as to patel) filed in Wattanasin application Serial No. \(07 / 318,773\) on May 25, 1990. A copy of each of the Perez and Patel Rule 608 Declarations is enclosed herewith.

Respectfully submitted,


SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF: rmf
November 16, 1992
I hereby certify that this correspondence is being deposited with the United States Fostal Servico as first class mail in an envelope addressed to: Commis
sioner of Patents and Trademarks, Washington, D.C. 20231 , on NOV........16, 1992 --- (Date of Deposit) Diate of Deposit) Furman
Encs: Rule 608 Dilat Diane E. Furman Nectaration Namq of applicent assignee, or
\(\qquad\) 119996 Depte of signature

Watt. Rule 671(e) Notif.
November 16, 1992
page - 2 -

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

\section*{WATTANASIN RULE \(671(e)\) NOTIFICATION}
together with the enclosures appended to said paper, were served on counsel for the party Fujikawa et al., this 16 th day of November, 1992, by postage pre-paid first-class mail addressed to the following:
```

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C.
Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202

```


FYI
NOV 161992
RECELVED IN
BOX INTERFERENCE


\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
}
```

WATTANASIN
V.
FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous
Interference Nos. 102,648, 102,975

```
DECLARATION OF SOMPONG WATTANASIN PURSUANT TO 37 CFR \(\$ 1.672\)
    I, Sompong Wattanasin, Ph.D., do hereby declare as
follows:
(1) That I am the inventor of the subject matter contained in U.S. patent application Serial Number 07/498,301.
(2) That based upon the information provided in this Declaration, I believe that \(I\) am entitled to a judgment relative to Fujikawa et al., U.S. patent application Serial No. 07/233,752.
(3) That I am currently a Senior Associate Fellow employed by Sandoz Pharmaceuticals Corporation, 59 Route 10, East Hanover, New Jersey. At the time during which \(I\) conceived and reduced the invention of the above-identified patent application to practice, \(I\) was a Senior Scientist A. My job responsibilities included the invention and synthesis of compounds which are inhibitors of 3-hydroxy-3-methyl- glutarylcoenzyme \(A\) reductase (HMG-CoA Reductase), an enzyme which is involved in cholesterol biosynthesis.
(4) That prior to August 20, 1987, I conceived and reduced to practice my invention in the United States.

Sompong Wattanasin
Rule 672 Declaration Page - 2 -

\section*{All the activities described in this Declaration took place in the United States.}

\section*{I. CONCEPTION PRIOR TO AUGUST 20, 1987}
(1) On or before November 28, 1983, I conceived of the following compounds:

(I)

(II)
where \(\mathrm{R}=\) phenyl, 3,5-dimethylphenyl; 4-fluorophenyl, or isopropyl
\(R^{1}=\) methyl, isopropyl, or 4-fluorophenyl
\(R^{2}=\) an ester group, a salt, an acid

It was preferred that the open chain compounds be in the form of the \(3 R, 5 S\) isomer, or be in the erytho racemic form. For lactone compounds, I preferred the \(4 \mathrm{R}, 6 \mathrm{~S}\) isomer or the trans racemic form.
(2) I made the first drawing or written description of the invention on or before November 28, 1983, when \(I\) proposed to Dr. Kathawala to synthesize compounds of the invention from previously synthesized intermediates and commercially available compounds for formulation into compositions for use as HMG-CoA reductase inhibitors.
```

Sompong Wattanasin
Rule 672 Declaration
Page - 3 -

```

Exhibit A-I documents my first drawing or written description of my invention, and is a true copy of a research report I authored.

The pages which comprise Exhibit \(A-1\) are written in my handwriting. The first page contains my signature and the date of November 28,1983 in my handwriting. I sent a copy of this report to Dr. Kathawala on November 28, 1983 and also orally disclosed the substance of the report to Dr. Faizulla Kathawala on or before November 28, 1983.

This exhibit outlines the following year's projects. It explains that the coordinated search for compounds having HMG-CoA reductase activity should be centered in four major areas. On the last page, a compound designated compound l4, which makes up part of this invention is proposed. In this proposal's formulae, "L" indicates either of the side chains:

where \(R^{2}=\) an acid, a salt or an ester.

I also intended that the preferred open chain form be the \(3 \mathrm{R}, 5 \mathrm{~S}\) form or the erythro racemate, and the \(4 \mathrm{R}, 6 \mathrm{~S}\) or trans racemate for lactones.

Sompong• Wattanasin Rule 672 Declaration Page - 4 -

\begin{abstract}
Exhibit A-2 documents a further written description of my invention, and is a true copy of another research report I authored.
\end{abstract}

The pages which comprise Exhibit \(A-2\) are written in my handwriting. The first page contains my signature and the date of November 19,1984 in my handwriting. I sent a copy of this report to Dr. Kathawala on November 19, 1984 and also orally disclosed the substance of the report to Dr. Faizulla Kathawala on or before November 19, 1984.

This report outlines plans for the following year's research. On the first page, the following compounds are proposed. In this proposal's formulae, "L" again indicates these side chains, with \(R^{2}\) and the stereochemistry the same as above.

ana


Exhibit A-3 comprises a true copy of an Invention Disclosure Form which \(I\) authored. The Form contains my signature and my date of signature of March 16, 1987. I had this document witnessed by Dr. Faizulla Kathawala. I then sent this document to the Sandoz Patent and Trademark Department. Two representative formulae are presented, as follows:
```

Sompong Wattanasin
Rule 672 Declaration
Page - 5 -

```


The second and third pages of the Invention Disclosure were also authored by me and are in my handwriting. I attached these pages to the Invention Disclosure Form before sending it to the Patent and Trademark Department. Two methods of synthesizing compounds are shown on these pages. The method of the second page yields both compounds of Formula \(I\) and II, whereas the method on the third page yields only compounds of Formula I.

While the Invention Disclosure Form only indicates the ester compounds, I intended the ester to be a shorthand designation for salts and acids as well.. Since the salts and acids are easily made from the esters (i.e. by simple hydrolysis), and since these types of reactions were fully explained in other patent applications on which I am a named inventor, I did not include these in the

> Sompong Wattanasin Rule 672 Declaration Page \(-6-\)

\begin{abstract}
Invention Disclosure although I considered them part of my invention. Also at this time, and based on my experience with the chemistry of other HMG-CoA reductase inhibitors, I expected that for a given compound, the lactone would be less active than an open side chain and that the acid form, ester form and salt form would show approximately the same activity. Therefore, I considered the acids, esters and salts to be equivalents and for brevity's sake would only generally draw one of them when referring to all three.
\end{abstract}

\section*{II. ACTUAL REDUCTION TO PRACTICE OF MY INVENTION PRIOR TO AUGUST 20,1987}
(1) Compounds of my invention were actually reduced to practice by me and by chemists working under my supervision in the United States prior to August 20, 1987.
(2) For details of work performed under my supervision, and not by me personally, reference is made to Exhibits \(F-1\) and L-1 hereto, which \(I\) have reviewed and which to my knowledge comprises the notebook pages of Rajeshvari Patel.
(3) For details concerning the biological activities of compounds of my invention, reference is made to Exhibit E-1 to E-5 hereto which \(I\) have reviewed and which to my knowledge contains the assay work of Dr. Terence Scallen

\section*{7}

Sompong Wattanasin Rule 672 Declaration Page - 7 -
of the University of New Mexico and Dr. Robert Damon of Sandoz; and to Exhibit \(K-1\) hereto, which \(I\) have reviewed and which to my knowledge contains the in vive data obtained by Mr. Robert Engstrom of Sandoz.
A. FIRST ACTUAL REDUCTION TO PRACTICE PRIOR TO AUGUST 20, 1987
(1) Synthesis of Compound 63-366

On or before May 31,1984 , I began to reduce my invention to practice.

On or before November 15,1984 , I synthesized compound 1079-111-19 (subsequently redesignated compound 63-366, comprising an erythro racemate), a compound within the scope of my invention.
In accordance with standard company procedures, I
recorded my laboratory activities relating to the
preparation of compounds of the invention in a laboratory
notebook. It was my practice to sign and date each
notebook page on the same day the work described on the
page was performed.

Exhibits \(\mathrm{B}-1\) and \(\mathrm{B}-2\) hereto comprise true copies of my laboratory notebook pages, which include copies of NMR spectra for the final product synthesized, as well as the intermediates. (On some of the notebook pages, micro-

\section*{Sompong Wattanasin Rule 672 Declaration Page - 8}
analysis data were affixed to the laboratory notebook page subsequent to the date the actual synthesis was performed.)

\section*{Detailed Description of Laboratory Notebook Pages}
i. Designation of Compounds:

Intermediates and final compounds are referred to in the notebooks by a three part number. The first number is the notebook number, the second is the page of the notebook where the compound appears, and the third number is the line of the page. Thus, compound 1049-237-19. is the entity appearing in Laboratory Notebook 1049, page 237, line 19.
ii. Spectra, Microanalyses and TLC:

The spectra and microanalyses were not performed by me, but were performed by an employee of the Physical Organic Chemistry Department of Sandoz Pharmaceuticals Corporation.

Procedures used to obtain these spectra and microanalyses are detailed in Section \(V\) below. Reference is also made to Exhibits \(\mathrm{C}-2, \mathrm{C}-3, \mathrm{D}-2, \mathrm{G}-1, \mathrm{G}-2\) and \(\mathrm{H}-1\) hereto which \(I\) have reviewed, and which to my knowledge reflects work performed under the supervision of Dr. S. Barcza of Sandoz.

\begin{abstract}
The copies of the spectra which follow the relevant notebook pages are to my best knowledge, true copies of the results I received from the Physical Organic Chemistry Department. When I received a spectrum from the Physical Organic Chemistry Department, I would file it according to its compound number. For convenience in this Declaration, the spectra have been placed after the relevant notebook pages.
\end{abstract}

A11 spectra in Exhibits \(B-1\) and \(B-2\) bear dates prior to August 20, 1987. For microanalyses, the percentages obtained by the Physical Organic Chemistry Department were sent to me and I copied these values into my notebook pages.

\begin{abstract}
All microanalyses in Exhibits \(B-1\) and \(B-2\) were performed prior to August 20, 1987.

Thin Layer Chromatography (TLC) was performed by me. The entries in the laboratory notebook pages are my drawings of the results \(I\) obtained. All the TLC in Exhibits \(B-1\) and \(B-2\) were performed by me or under my supervision and were recorded in my notebooks prior to August 20, 1987.
\end{abstract}

Additionally, Section VI. below describes the Sandoz procedure for assigning company numbers to compounds, which I followed; and Section VII. describes the procedures used for determining biological activity of the compounds of the invention.

\section*{EXHIBIT B-1}

Exhibit B-1 comprises true copies of my Laboratory Notebook \#1049, pages 237, 241, 248, 251 and Laboratory Notebook \#1079, pages 22, 24, 27, 30, 33, 34, 39, 105, 106, 110 and 111 along with copies of spectra, and microanalysis data corresponding to the intermediate and final products.

These pages show the synthesis of the following compound, which was given the designation 63-366:


Notebook \#1049; page 237 contains my signature and the date of May 29, 1984 in my handwriting. This page documents the following reaction which \(I\) performed.


Then, approximately 30 ml of the acetic anhydride was removed. The residue was cooled to give a yellow solid. Recrystallization from acetic anhydride gave 8.9 g of a pale yellow solid, designated 1049-237-19. 1049-237-19 was dissolved in ether and filtered through a pad of silica gel. Evaporation gave 7.0 g of a colorless solid, melting point \(76-78^{\circ} \mathrm{C}\), designated 1049-237-27. NMR, IR, and microanalysis were performed on 1049-237-27. The spectra follow page 237 , and the results of the microanalysis is reported on page 237. The spectra and microanalysis were judged by me to be consistent with the desired product.

Notebook \#1049, page. 241 contains my signature and the date of May 31,1984 in my handwriting. This page documents the following reaction which I performed:

(1049-237-27)
1)

2) \(\mathrm{H}_{3} \mathrm{O}^{+}\)

(1049-241-43)

To a suspension of \(446 \mathrm{mg} \mathrm{Mg}(0.0186 \mathrm{~mol})\) in 2 ml ether and a few drops of \(I_{2}\) at room temperature was added a few drops of 1,2-dibromoethane, followed by a solution of \(3.44 \mathrm{~g}(0.0186 \mathrm{~mol}) 5\)-bromo-m-xylene in 8 ml ether dropwise (at a rate such that the reaction mixture refluxed gently). This began at 9:05 A.M. and continued until 9:45 A.M. The reaction mixture was then heated at

\begin{abstract}
Sompong Wattanasin Rule 672 Declaration Page - 12 -
reflux for 3 hours. Then the Grignard reagent was withdrawn by syringe (approximately 8 ml ) and added to a solution of \(2 \mathrm{~g} \mathrm{1049-237-27(0.0124mol)}\) in 10 ml benzene and 2 ml ether dropwise (via a funnel).

The next morning, the reaction mixture was quenched with 3 N HCl and extracted with EtOAc and evaporated to give a 3.6 g of a yellow oil, designated 1049-241-31. Preparative TLC of 300 mg of 1049-241-31 gave two products: (a) 128 mg of a colorless oil, designated 1049-241-34; and (b) 24 mg of a white solid designated 1049-241-37. HPLC of the 1049-241-31 gave 1.6 g of a product, designated 1049-241-43. An NMR spectrum was performed on 1049-241-34 and follows Laboratory Notebook \#1049, page 241. The spectra was judged by me to be consistent with the desired product.
\end{abstract}

Notebook \#1049, page 248 contains my signature and the date of June 6,1984 in my handwriting. This page documents the following reaction which I performed:


(1049-241-43)

(1049-248-24)

A solution containing 1.6 g of 1049-241-43,. 20 ml ethyl alcohol, and 0.5 ml concentrated HCl was heated at \(90^{\circ} \mathrm{C}\). This began at 8:50 AM and lasted until 4:00 P.M. A TLC showed that there was a very small amount of starting material remaining. The solution was concentrated and the

\begin{abstract}
Sompong Wattanasin Rule 672 Declaration Page - 13 -
residue was extracted in ether and filtered to give 1.15 g of a pale yellow solid, which was designated 1049-248-24.
\end{abstract}

Notebook \#1049, page 251 contains my signature and the date of June 8,1984 in my handwriting. This page documents the following reaction which I performed:

(1049-248-24)

\(\xrightarrow[\substack{\mathrm{COnC}^{2} \\ \mathrm{E}_{2} \mathrm{SO}_{4}}]{\text { EtOH }}\)

(1049-251-29)
500 mg ( 0.001912 mol\()\) of \(1049-248-24,412 \mathrm{mg}\) of ( procedure as set forth in Notebook \#1049, page 245 (which is set forth below). The reaction was started at 8:50 A.M. and continued until 12:30 P.M. The product was concentrated, basified with \(\mathrm{NH}_{4} \mathrm{OH}\), diluted with \(\mathrm{H}_{2} \mathrm{O}\), extracted with ether and evaporated to give 720 mg of an oil. A preparative TLC using \(20 \%\) ether-petroleum ether showed one main band. The yield was 565 mg which upon standing in the refrigerator solidified into a pale yellow solid with a melting point of \(82-83^{\circ} \mathrm{C}\), which was designated 1049-251-29. Microanalysis was performed on 1049-251-29 and the results were recorded on page 251 . The results of the microanalysis were judged by me to be consistent with the desired product.

> Sompong Wattanasin Rule 672 Declaration Page - 14 -

Notebook \#1049, page 245, contains my signature and the date of June 5, 1984 in my handwriting. This page documents the following reaction which I performed:

(1049-244-24)
The compound on the far left side of the above equation was synthesized and designated 1049-244-24. A solution containing 20 mg of 1049-244-24 ( 0.0000766 mol ), 11 mg ( 0.000011 mol ) of methyl 4 -methyl-3-oxopentanoate , 2 ml ethyl alcohol and 1 drop of concentrated \(\mathrm{H}_{2} \mathrm{SO}_{4}\) was heated at reflux. This started at 9:30 A.M. and continued until 5:00 P.M. The product was concentrated, basified with \(\mathrm{NH}_{4} \mathrm{OH}\) and extracted with ether. The crude oil so obtained. was purified by preparative TLC (1:1 ether/petroleum ether) and evaporated to give 17 mg of a colorless oil, designated 1049-245-23. A NMR spectrum was run on 1049-245-23 and follows Laboratory Notebook \#104.9, page 245. The spectrum was judged by me to be consistent with the desired product.

Notebook \#1079, page 22 contains my signature and a date of August 10,1984 in my handwriting. This page documents the following reaction which I performed:


\section*{Sompong Wattanasin \\ Rule 672 Declaration Page - 15 -}

To a solution of 535 mg ( 0.00154 mol ) of 1049-251-29 in 8 ml dry ether at room temperature was added 117 mg (0.0091 mol) LAH (lithium aluminum hydride) portion-wise. The mixture was stirred at room temperature and TLC was performed to check the progress of the reaction. The reaction began at 9:15 A.M. and was stopped at 10:15 A.M. when TLC showed that the reaction was complete. The reaction was quenched by pouring into cold water. The product was extracted with ether and evaporated. It solidified upon standing to give 427 mg of a colorless solid with a melting point of \(115-118^{\circ} \mathrm{C}\), designated 1079-22-28. The IR spectrum of 1079-22-28 was run and the results follow Laboratory Notebook \#1074, page 22. The spectrum was judged by me to be consistent with the desired product.

Notebook \#1079, page 24 contains my signature and a date of August 10,1984 in my handwriting. This page documents the following reaction which I performed:


A mixture of 420 mg of compound 1079-22-28 and 500 mg of \(\mathrm{MnO}_{2}\) in 6 ml toluene was stirred at room temperature. TLC was performed after 2 days to monitor the progress of
the reaction. The mixture was diluted with ether and filtered through a pad of silica gel. Upon evaporation, a pale yellow solid was obtained, designated 1079-24-24. An NMR spectrum of 1079-24-24 and the results following page 24 indicated that no reaction occurred. A TLC showed that mainly starting material was present, so the crude product, 1079-24-24 was used directly in the reaction set forth below.

Notebook \#1079, page 27 contains my signature and the date of August 14,1984 in my handwriting. This page documents the following reaction which I performed.


382 mg of 1079-24-24, 400 mg DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) and 4 ml toluene are stirred at room temperature overnight. The reaction mixture (a dark red color) was diluted with ether and filtered through a pad of silica gel. Evaporation resulted in a dark red foam gum. TLC indicated no reaction had occurred.

The above gum was dissolved in \(10 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}\) and 400 mg PCC (pyridinium chlorochromate) and 1 g neutral alumina were added. The mixture was stirred at room temperature
for one hour. TLC showed a complete reaction. The mixture was diluted with ether and filtered through 5 g silica gel. Evaporation of the filtrate gave a pale yellow oil ( 137 mg ) which was designated 1079-27-25. NMR and IR spectra were run on 1079-27-25 and the results follow Laboratory Notebook \#1079, page 27. The spectra were judged by me to be consistent with the desired product.

Notebook \#1079, page 30 contains my signature and the date of August 17,1984 in my handwriting. This page documents the following reaction which I performed:

(1079-27-25)

Toluene, \(\Delta\)

140 mg of 1079-27-25, 200 mg of methyl(triphenyl phosphoranylidene) acetate (abbreviated as \(\mathrm{Ph}_{3} \mathrm{P} \quad \mathrm{CO}_{2} \mathrm{CH}_{3}\) ) and 5 ml toluene were heatted and refluxed for 3 hours. After cooling, the mixture was diluted with ether and filtered through a pad of silica gel. Concentration gave a semisolid which was further purified by preparative chromatography to give 140 mg of a colorless solid with a melting point of \(110-112^{\circ} \mathrm{C}\). The product was given the designation 1079-30-23. An NMR spectrum was performed on 1079-30-23 and the results follow Laboratory Notebook \#1079, page. 30. The spectrum was judged by me to be consistent with the desired product.
```

 Sompong Wattanasin
 Rule 672 Declaration
 Page - 18-
 Notebook \#1079, page 33, contains the date of August 22, 1984 in my handwriting. This page documents the following reaction which I performed:

```

(1079-30-23)
\(\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\text { DIBAL- } \mathrm{A}}\)
\(-50^{\circ} \mathrm{C}\)

(107c-33-15)
To a solution of \(130 \mathrm{mg}(0.0003768 \mathrm{~mol})\) of 1079-30-23 in 5 ml dry \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) at \(-50^{\circ} \mathrm{C}\) was added \(0.5 \mathrm{ml}(0.007136\) mol) of DIBAL-H. DIBAL-H is the abbreviation \(I\) use for diisobutylaluminum hydride. The mixture was stirred at \(-50^{\circ} \mathrm{C}\) for 0.5 h . TLC showed that the reaction was complete.
The reaction product was diluted with ether and filtered through a pad of silica.gel. Evaporation gave 135 mg of a crude gel which was directly used in the next step. TLC of this crude oil showed only one spot. The reaction product was designated 1079-33-19.

Sompong Wattanasin Rule 672 Declaration Page - 19 -

Notebook \#1079, page 34 contains my signature and the date of August 23,1984 in my handwriting. This page documents the following reaction which I performed:


A mixture of 135 mg of \(1079-33-19\) and \(300 \mathrm{mg} \mathrm{MnO}_{2}\) in 5 ml toluene was stirred at room temperature overnight. The result was 107 mg of a pale yellow oil which was designated 1079-34-17. An NMR spectrum was performed on 1079-34-17 and follows Laboratory Notebook \#1079, page 34. The spectrum was judged by me to be consistent with the desired product.

Notebook \#1079, page 39 contains my signature and the date of September 5, 1984 in my handwriting. This page documents the following reaction which I performed.


At 10:00 A.M., 100 mg of 1079-34-17 (0.0003039 mol), 5 ml of the dianion from 1079-38-28, ( \(\simeq 0.0014 \mathrm{~mol}\) ) the structure of which is

and 4 ml THF (tetrahydrofuran) were mixed. By 10:50 A.M. the reaction was complete, as evidenced by one spot on the TLC. The reaction was quenched with saturated \(\mathrm{NH}_{4} \mathrm{Cl}\), extracted with ethyl acetate (EtOAc) and evaporated. The result was 177 mg of a yellow oil, which was designated 1079-39-18. The crude 1079-39-18 was reduced in the next step directly without further purification.

Notebook \#1079, page 105 contains my signature and the date of November 8,1984 in my handwriting. This page documents the following reaction which \(I\) performed (This is the same reaction described in Notebook \#10.79, page 39):

( \(1079-101-28\) )
The list of reagents on page
(1079-105-35)
105 includes 0.5 ml
( 0.00334 mol ) diisopropylamine and 1.6 Mm n puLi ( 2 ml , 0.00334 mol). Upon mixing these reagents, lithium diisopropylamide would be formed, and could be used as set forth below. However, \(I\) found that the commercially available lithium diisopropylamide in cyclohexane gave equally satisfactory results compared to the lithium diisopropylamide which I synthesized. Therefore, I used the commercially available reagent.
```

Sompong Wattanasin
Rule 672 Declaration
Page - 21.-

```

To a solution of lithium diisopropylamide (1.8M in cyclohexane, 1.8 ml ) (a commercially available reagent) in THF at \(-25^{\circ} \mathrm{C}\) was added 0.22 ml ethyl acetoacetate. The resulting yellow solution was stirred at \(-20^{\circ}\) to \(-30^{\circ}\) for 30 minutes.

4 ml of the above solution was withdrawn by a syringe and added to a solution of 110 mg of the aldehyde designated 1079-101-28 (which was prepared as described for 1079-34-17) in 2 ml THF at \(-30^{\circ} \mathrm{C}\). The solution was stirred at \(-30^{\circ}\) to \(-10^{\circ} \mathrm{C}\) for about 20 minutes. The reaction was quenched with 2 ml of saturated \(\mathrm{NH}_{4} \mathrm{Cl}\) and extracted with EtOAC to give 290 mg of a yellow oil. Prep \(\operatorname{TLC}\) ( \(1: 1\) ether-petroleum ether) and evaporation gave 112 mg of a yellow oil, designated 1079-105-35. NMR and IR spectra were performed on this compound and the results follow Laboratory Notebook \#1079, Page 105. The results of the spectra were judged by me to be consistent with the desired product.

\section*{Notebook \#1079, page 106 contains my signature and} the date of November 12,1984 in my handwriting. This page documents the following reaction which I performed:

(2075-105-35)

(1079-10ミ-35)

To a solution of 55 mg 1079-105-35 in 2 ml THF at room temperature was added \(1 \mathrm{M} \mathrm{Et}_{3} \mathrm{~B} \quad(0.0001437 \mathrm{~mol})\) and 1 ml air (by syringe). The solution was stirred at room temperature for 1.5 hr . The solution was then cooled to \(-78^{\circ} \mathrm{C}\) and \(10 \mathrm{mg} \mathrm{NaBH}_{4}\) was added. The reaction mixture was stirred at \(-78^{\circ} \mathrm{C}\) from 10:3.0 A.M. until 8:30 A.M. the next morning. TLC showed the presence of starting material. \(15 \mathrm{mg} \mathrm{NaBH}_{4}\) was added and stirring was continued at \(-78^{\circ} \mathrm{C}\). At approximately 3:20 P.M., the reaction was quenched with dilute HCl and extracted with EtOAC to obtain 50 mg of a crude product designated 1079-106-36, which was used directly in the next step. The crude product probably contained, in addition to the structure shown in the above reaction, some boron-intermediate designated infra as 1079-110-33, and some by-products of the reaction of 1079-106-36 with HCl. 1079-106-36 was believed to be the erythro racemate with the proportion of the \(3 R, 5 S\) isomer to be at least \(85 \%\) or greater.

Notebook \#1079, page 110 contains my signature and the date of November 14,1984 in my handwriting. This page documents the following reaction which I performed, which is similar to that of Laboratory Notebook \#1079, page 106:


(1075-110-33)
```

Sompong Wattanasin
Rule 672 Declaration
Page - 23 -

```

To a solution of 50 mg 1079-105-35 in 2 ml THF at room temperature was added 0.2 ml of \(1 \mathrm{M} \mathrm{Et}{ }_{3} B\) and 1 ml air (by syringe). The solution was stirred at room temperature from 2:30 to 3:30 P.M., then cooled to \(-78^{\circ} \mathrm{C}\). The following day, the almost colorless reaction mixture was diluted with 4 ml CH 3 OH after the cooling bath was removed. After 10 minutes, a slightly fluorescent color occurred, and \(1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}\) and a few drops of acetic acid was added. After the evolution of \(\mathrm{H}_{2}\) subsided, the reaction mixture was concentrated. Water was added, the mixture was extracted with ether, and evaporated. The result, 40 mg of an oil which was pale yellow and with some florescence, was designated 1079-110-33 and was used directily in the next step. The oil was believed to contain the two compounds shown, the ester was believed to be the erythro racemate, with at least approximately \(85 \%\) being the \(3 R, 5 S\) isomer.

Notebook \#1079, page 111 contains my signature and the date of November 15,1984 in my handwriting. This page documents the followinǵ reaction which i performed:

1079-110-33
\(\xrightarrow{\mathrm{CH}_{3} \mathrm{OH}}\)

(1070-111-19)

A solution of \(40 \mathrm{mg} \mathrm{1079-110-33}\) in 4 ml CH 33 was stirred at room temperature for 3 days. TLC (1:1 ether-petroleum ether) showed one main spot of the product. Prep. TLC gave 25.6 mg of a pale yellow oil designated 1079-111-19. IR and NMR spectra were performed on 1079-111-19 and follow Laboratory Notebook, Page 111. The spectra were judged by me to be consistent with the desired product. Compound 1079-11-19 was subsequently redesignated compound 63-366. This redesignation occurred prior to December 13, 1984.
III. TESTING OF COMPOUND 63-366 FOR HMG-COA REDUCTASE INHIBITOR PRIOR TO AUGUST 20, 1987

On or before December 31,1984 , I learned the results of in vitro testing of compound 63-366 in an assay for HMG-CoA reductase activity.

Page 111 of my laboratory notebook indicates that on or before November \(26,1984,14.5 \mathrm{mg}\) of compound 63-366 were sent to Dr. Terence Scallen of the University of New Mexico for testing in his in vitro microsomal assay for HMG-CoA reductase inhibition activity.

Compound 63-366 was shown by Drs. Scallen and Damon to inhibit \(H M G-C O A\) reductase activity by having an \(I C_{50}\) of 1.58 .
```

Having reviewed Exhibit E-5 hereto, my best recollection is that Dr . Damon of Sandoz informed me of this activity either orally or by sending me a copy of the computer printout included in Exhibit E-5 on or before December 31, 1984.

```

Thus on or before December 31, 1984, I knew that 63-366 had activity in an assay for HMG-CoA reductase activity.

Furthermore, it was my judgment on or before December 31, 1984 that it was likely that said compound 63-366 would have activity in vivo as an HMG-COA reductase inhibitor, and therefore would have activity when administered to a patient to treat atherosclerosis and other conditions resulting from excessive cholesterol biosynthesis.

By way of background, since prior to December 31, 1984, I had been receiving from Dr. Damon the \(\mathrm{IC}_{50}\) data he calculated from Dr. Scallen's assays for various other Sandoz compounds being investigated for HMG-CoA reductase inhibitor activity besides the quinoline compounds of my invention.
Sompong wattanasin \begin{tabular}{l} 
Rule 672 Declaration \\
Page \(-26-1\)
\end{tabular}
These other compounds have the same 3,5 -dihydroxy
heptenoic acid, ester, or salt side chain, or
alternatively, lactone form, as the quinoline compounds
of my invention. However, these compounds differ by
having an organic radical substituent other than a
quinoline.
For example, Sandoz compounds containing a
substituted napthyl or indole radical, were tested at
approximately the same time as compound 63-366, as
shown on Exhibit E-5, hereto.

Additionally, on or before December 31, 1984, I knew the \(\mathrm{IC}_{50}\) values for the compound Mevastatin (Compactin) which was a known HMG-CoA reductase inhibitor for administration to a patient to treat hypercholesterolemia or atherosclerosis. These values were obtained from data generated by Dr. Scallen in the same assays as used to test the quinoline compounds of my invention. (See Exhibit E-5 hereto).

Also, on or before December 31,1984 , I was knew the \(\mathrm{IC}_{50}\) values for Sandoz compound 62-320/Na (fluvastatin sodium) (see Exhibit E-5), which I knew to be very active in vivo.

Sompong Wattanasin Rule 672 Declaration Page - 27 -

Further, on or prior to December 31, 1984, I further knew that there was typically a high correlation between in vitro activity and in vivo activity of Sandoz compounds which had been tested.
Based on my knowledge and experience, it was my
judgment since on or prior to December 31,1984 , that
Wattanasin compound \(63-366\) would have activity when
administered in vivo to a patient for the treatment of
hypercholesteremia or atherosclerosis, and would have
activity when administered to a human patient in in a
dosage amount recited in my specification at page 35.

It was also my judgment upon receiving the \(I C_{50}\) data for each of compounds 63-548, 63-549, 64-933, \(64-934 / \mathrm{Na}\), \(63-935\), and \(64-936 / \mathrm{Na}\) (0.53), that the quinoline compounds of my invention would have activity as an HMG-CoA reductase inhibitor when administered to a patient, and when administered to a human patient within the dosage amounts taught in my application.

\section*{IV. CONTINUING EXPERIMENTAL ACTIVITY UNDER MY SUPERVISION}
\(\qquad\)
(1) Compounds 53-548 and 53-549

Prior to August 20, 1987, I synthesized compounds 63-548 and 63-549 of the invention.

EXHIBIT B-2

Exhibit B-2 comprises true copies of my Laboratory Notebook \#1127, pages 5, 9, and 11 along with copies of spectra, corresponding to the intermediate and final products. These pages show the synthesis of compounds 63-548 and 63-549. 63-548 is a racemic mixture, with at least \(95 \%\) being the \(3 R, 5 S\) isomer. Similarly, 63-549 is also a racemic mixture with at least \(95 \%\) being the \(4 \mathrm{R}, 6 \mathrm{~S}\) isomer. The structures of these compounds are as follows:

63548
63549




```

Sompong Wattanasin Rule 672 Declaration Page - 29 -

```

Notebook \#1127, page 5 contains my signature and the date of May 2,1985 in my handwriting. This page documents the following reaction which I performed.


The compound on the left was synthesized by me and given the designation 1079-296-35. A mixture of 1079-296-35 ( 150 mg ) and triethyl phosphite ( 0.3 ml ) in toluene ( 2 ml ) was heated at reflux for approximately 2 hrs. TLC indicated no reaction had occurred. An additional 0.5 ml of triethyl phosphite was added. The reaction was heated at \(100^{\circ} \mathrm{C}\) for 20 hrs . TLC showed a complete reaction. Concentration by distillation at reduced pressure gave 160 mg of an oil which solidified on standing to an almost colorless solid, designated 1127-5-23. Melting point was \(105-107^{\circ} \mathrm{C}\). NMR and IR spectra were performed on 1127-5-23 and the results follow Laboratory Notebook \#1127, page 5. The spectra were judged by me to be consistent with the desired product.

\footnotetext{
Sompong Wattanasin Rule 672 Declaration Page - 30 -

Notebook \#1127, page 9 contains my signature and the date of May 6, 1985 in my handwriting. This page documents the following reaction which \(I\) performed:


> 1) LDA

\(-60^{\circ} \mathrm{C}, 30 \mathrm{~min}\)

(1127-9-33) \(\quad-{ }_{R}=-\) SiPh \(_{2} \quad\) (t-butyl-diphenylsilyl)
To a solution of \(150 \mathrm{mg}(0.0003778 \mathrm{~mol})\) of 1127-5-23 in 3 ml THF (tetrahydrofuran) at \(-55^{\circ} \mathrm{C}\) was added 0.27 ml (1.2 equivalents) of 1.7 M LDA (lithium diisopropyl amide) in cyclohexanes. The resulting dark orange solution was then stirred at \(-55^{\circ} \mathrm{C}\) to \(-60^{\circ} \mathrm{C}\) for 10 minutes, from \(9: 50\) A.M. to 10:00 A.M.

The aldehyde having the structure

where \(\mathrm{R}=-\mathrm{SiPh}_{2}\)

is termed the "Prasad aldehyde", referring to another chemist at Sandoz, Dr. Prasad Kapa, who made this molecule.
}

A solution containing \(293 \mathrm{mg}(0.0004534 \mathrm{~mol})\) of the aldehyde and 2 ml THF is added to the above dark orange solution. A TLC performed after 20 minutes indicated that there was mainly one product formed. After 30 minutes, the reaction was quenched at \(-6.0^{\circ} \mathrm{C}\) with 0.5 ml acetic acid. Then, dilute HCl and \(\mathrm{H}_{2} \mathrm{O}\) were added, the solution was extracted with EtOAC, and evaporated to yield 500 mg of a yellow oil, designated 1127-9-30. A preparative TLC ( \(1: 1\) ether/petroleum ether) gave 100 mg of a yellow oil designated 1127-9-33. A NMR was performed on 1127-9-33 and the results follow Laboratory Notebook \#127, page 9 . The spectrum was judged to be consistent with the desired product.

Notebook \#1127, page 11 contains my signature and the date of May 7,1985 in my handwriting. This page documents the following reaction which I performed:




\section*{32}

\section*{Sompong Wattanasin \\ Rule 672 Declaration \\ Page - 32 -}

\begin{abstract}
A mixture of \(90 \mathrm{mg}(0.0001012 \mathrm{~mol})\) 1127-9-33, 0.61 ml ( 0.000607 mol ) \(1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NF}\) (tetra-n-butylammonium fluoride) in THF, \(0.03 \mathrm{ml}(0.0005 \mathrm{~mol}) \mathrm{HOAc}\), and 2 ml THF was stirred at room temperature. This began at 9:00 A.M. and a TLC was performed the next morning at 9:00, which indicated that the reaction was not complete. Additional 0.6 ml in \(\mathrm{Bu}_{4} \mathrm{NF}\) and 0.02 ml of HOAC were added. A second TLC run five days later at 8:30 A.M. indicated that there was a mixture of starting materials and product. The solution was heated at 9:00 A.M. to \(50^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\). A TLC at 11:00 A.M. still showed a mixture of spots. The reaction was stopped at 5:30 P.M. The reaction product was concentrated and the crude oil was purified by a preparative TLC (using ether/HOAC). Two products were obtained; (a) 10 mg of a colorless oil designated 1127-11-34 and (b) 10 mg of an oil designated 1127-11-37. IR and NMR spectra were performed on both of 1127-11-34 and 1127-11-37. The spectra follow Laboratory Notebook \#1127, page 11. The spectra were judged by me to be consistent with the desired products.
\end{abstract}

Compound 1127-11-34 was subsequently renumbered 63-548 and Compound 1127-11-37 was subsequently renumbered 63-549; the renumbering of both compounds occurred on or before March 20, 1985.

On or prior to May 17, 1985, I sent compounds 63-548 and 63-549 to Dr. Scallen for testing in his in vitro microsomal assay for HMG-CoA reductase inhibition activity. Both compounds were shown by Drs. Scallen and Damon to possess inhibitory activity. Having reviewed Exhibit E-5 hereto, ny best recollection is that I learned of the activity of compounds 63-548 and 63-548 from Dr. Damon on or before June \(30,1985\).

Based on the in vitro data, it was also my judgment on or before June 30,1985 that it would be likely that the quinoline compounds of my invention would have activity in vivo as an HMG-CoA reductase inhibitor, and therefore would have activity when administered to a patient to treat atherosclerosis and other conditions resulting from excessive cholesterol biosynthesis.
(2) Synthesis of compounds 64-933, 64-934/Na, 64-935 and 64-936/Na:

Compounds 64-933 and 64-934/Na were synthesized under my direction by Rajeshvari. Patel prior to August 20, 1987. These compounds have the following structures:

64933


64934



\section*{EXHIBIT F-1}

Exhibit \(\mathrm{F}-1\) comprises pages 130 , 137 , 145, 153, 158, \(166,172,175,176\) and 179 of Laboratory Notebook \#1206 of Rajeshvari Patel. Each of these pages (except page 179) bear my true signature as a witness.

I witnessed the work performed by Rajeshvari Patel on the pages which \(I\) signed. I read and understood the above-numbered laboratory pages which I signed.

Exhibit F-1 indicates that the synthesis of compounds 64-933 and 64-934/Na was commenced on or before June \(1_{\text {, }}\) 1987 and was completed on of before August 5, 1987. This is consistent with my general recollection.

I have also reviewed pages 190 and 201 of notebook \#1206, which also comprise Exhibit \(\mathrm{F}-1\), and Exhibit \(\mathrm{L}-1\), hereto. These show the synthesis of compounds 64-935 and 64-936/Na. These pages indicate that the final steps of the synthesis commenced on or prior to August 10, 1987, and it was completed by September 1 r 1987. Although \(I\) did not perform the work performed on these pages, this time period is consistent with my general recollection as the laboratory supervisor of Rajeshvari Patel.

Sompong wattanasin Rule 672 Declaration Page - 35 -

Testing of Compounds 64-933, 64-934/Na, 64-935 and 64-936/Na

I learned the results of testing of compounds 64-9.33, 64-934/Na, 64-935 and 64-936/Na in an in vitro asssay for HMG-CoA reductase activity.

Compounds 64-933, 64-934/Na, 64-935, and 64-936/Na were sent to Dr. Scallen for testing in his in vitro microsomal assay for HMG-CoA reductase inhibition activity. They were shown by Dr. Scallen to possess inhibitory activity.

Having reviewed Exhibit E-5 hereto, my best recollection is that Dr. Damon of Sandoz informed me of this activity either orally or by sending me a copy of the computer printout included in Exhibit E-5 on or before October 31, 1987.

Sompong Wattanasin
Rule 672 Declaration
Page - 36 -

Based on the in vitro data, it was my judgment on or before October 31,1987 that it was likely that the quinoline compounds of my invention would have activity in vivo as HMG-COA reductase inhibitors, and therefore would have activity when administered to a patient to treat atherosclerosis and other conditions resulting from excessive cholesterol biosynthesis, and would have activity when administered to a human patient under the dosage conditions recited in my patent application.

I have also reviewed Exhibit. K-1 hereto, which contains rat cholesterol biosynthesis data for compounds 64-933, 64-935 and 64-936/Na which were tested by Robert Engstrom. I believe I learned of this. data on or before December 9, 1987. This data indicate that the quinoline compounds of my invention would have activity as an HMG-CoA reductase inhibitor when administered to a patient for treatment of hypercholesteremia or atherosclerosis.
V: PROCEDURES FOR OBTAINING SPECTRA AND
MICROANALYSES AND MAINTENANCE OF RESULTS

All IR and NMR spectra as well as microanalyses are performed by the Sandoz Physical Organic Chemistry Department. The Department has developed procedures to follow when submitting samples of materials which are to be analyzed. These procedures, described below, were in place prior to and after August 20, 1987, including the time periods referred to herein, and these are the procedures which \(I\) followed when \(I\) submitted samples of compounds which \(I\) made for analysis. For details concerning procedures of the Physical Organic Chemistry Department, reference is made to the work of Dr . Sandor Barcza of Sandoz.

Approximately 1 to 20 mg of the sample was placed in a vial and the vial was labeled with the three-part numerical designation used-in the notebooks. A Request Sheet was filled out in duplicate by me or under my supervision, on which it was indicated, among other things, the type of analyses \(I\) wished to have performed, and the sample number of the vial.

Exhibit C-1 comprises a copy of a blank Request Sheet.

Upon receipt of the form and sample, the physical Organic Chemistry Department notes the date of receipt on the form, and assigns its own number to each spectrum run.

This procedure was followed prior to and after August 20, 1987 for each of compounds 64-366, 63-548, 63-549, 64-933, \(64-934 / \mathrm{Na}, 64-935\) and \(64-936 / \mathrm{Na}\).

\begin{abstract}
Exhibit C-2 comprises true copies of the Sandoz Physical Organic Chemistry Department's Request Sheets for spectra and/or microanalysis before and after the sheets were received and the compounds were assigned a spectrum number. (For the compounds synthesized in Exhibits B-1 and \(B-2, I\) was the Requestor. For the compounds synthesized in Exhibits \(F-1\) and \(L-1, M\). Patel is listed as the Requestor.)
\end{abstract}

Exhibits \(B-1\) and \(B-2\) contain copies of the spectra for the compounds of the invention which \(I\) received from the Physical Organic Chemistry Department.

\section*{VI. PROCEDURE FOR ASSIGNING COMPANY NUMBERS TO COMPOUNDS}

When an end product has been made, an official company number is assigned to the compound and information concerning the compound is entered into the company's computerized database. There is an established procedure in effect for this, both prior to and after August 20, 1987, including the time periods referred to herein, which I followed.

\begin{abstract}
Sompong Wattanasin
Rule 672 Declaration Page - 39 -

I filled out a "Chemical Information" form for each end product which included such information as the chemical structure, molecular weight, empirical formula, and synthesis procedure as well as the three part number used in the notebook.
\end{abstract}

Exhibit D-1 comprises a blank "Chemical Information" form.

This form is sent to the Drug Room, which is part of the Sandoz Physical Organic Chemistry Department. Upon receipt of this form, the Drug Ro,om personnel assign the compound a number.

Exhibit D-2 comprises copies of forms submitted by me or under my supervision to the Drug Room for the compounds of the invention. I note that the page for compounds 63-548 and 63-549 bears a date of May 15, 1985 in my handwriting.

Exhibit D-3 comprises a copy of the information which is assembled by the Drug Room personnel and made accessible on the computer database. The "SAH" number is the official compound number. The large type number in the second box in the left column is the internal registry number. The three-part number in the third box in the left column is the notebook, page, and line number. The two-part number in the fourth box in the left column is the number of the patent disclosure which covers the compound.

\section*{VI. PROCEDURES FOR DETERMINING BIOLOGICAL ACTIVITX}

Sandoz has an established procedure for determining whether end products possess biological activity of interest, e.g. HMG-CoA reductase inhibitor activity which would indicate that they inhibit the biosynthesis of cholesterol and are useful in the treatment of atherosclerosis and other related diseases in a patient.

These procedures were in place prior to and after August 20, 1987, including the time periods referred to herein, and these were the procedures which were followed in determining whether the compounds \(I\) invented had such activity.

After the official company number has been assigned to an end product, the compound is tested for biological activity. The Physical Organic Chemistry Department submits the sample of the compounds for biological testing. Some tests are performed in-house; others are performed outside the company. The in vitro testing of my compounds was done. by a person who is not employed by Sandoz, Professor Terence Scallen, Department, of Biochemistry, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131.

Dr. Scallen reported his results to \(D x\). Robert E. Damon at Sandoz. Upon receipt of the reports, Dr. Damon would draw the chemical structure of each test compound on

Sompong Wattanasin Rule 672 Declaration Page - 41 -
the report, and calculate the \(I C_{50}\) value of each test compound and would write this on the report. Dr. Damon then sent copies of these reports to researchers involved in the project.

Exhibit E-5 comprises true copies of Dr. Scallen's reports which \(I\) received, with what \(I\) believe to be Dr. Damon's handwritten structures and \(I C_{50}\) values, for compounds 63-366, 63-548, 63-549, 64-933, 64-934/Na, 64-935 and 64-936/Na:

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this \(3^{\text {th }}\) day of November, 1992.
 WATTANASIN
v.

FUJIKAWA et al.
Interference Nos. 102,648 , 102,975
Examiner-in-Chief: M. Sofocleous

DECLARATION OF SANDOR BARCZA PURSUANT TO 37 CFR \(\$ 1.672\)
I, Sandor Barcza, Ph.D., do hereby declare as follows:
(1) That I am employed by Sandoz Pharmaceuticals Corporation. My position, both prior to August 20, 1987 and during the time periods thereafter which are referred to herein, was Director of the Department of Physical Organic Chemistry.
(2) That all activities referred to in this Declaration took place in the United States, under my supervision.
(3) That it was the responsibility of personnel working under my supervision to perform various analyses of samples prepared by Sandoz chemists, including the determination or confirmation of chemical structure and purity.
(4) That individuals working under my direction initialed and dated the pages of the IR and NMR spectra which they personally recorded. I have reviewed B-l, B-2 and \(F-1\) hereto, and in my best recollection, the following initials are those of the following named individuals.

\section*{Sandor Barcza}

Rule 672 Declaration page - 2 -
S.D.: Susan DiCataldo; Karl G.: Karl Gunderson; MXK: Michael X. Kolpak; F.M.: Frances McCrink; J.B.: (?); none of whom are now employed by Sandoz.
M.J.S.: Michael J. Shapiro, Fellow, Senior Scientific Staff, and head of the NMR laboratory.

Exhibits \(B-1, B-2\) and \(F-1\) contain true copies of IR and Spectra generated by the Physical Organic Chemistry Department under my supervision.

\section*{I. ANALYSIS OF WATTANASIN COMPOUNDS}

Sandoz has established procedures which researchers must follow in order for my department to perform various analyses of compounds and mixtures. These procedures are outlined below and were company policy at the time when the samples of Exhibits \(B-1, B-2\), and \(F-1\) were analyzed, i.e., prior to August 20, 1987 and during the other time periods referred to herein.

When a scientist wants to have material analyzed, he completes a Request Sheet.

General Description of Exhibits \(\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3\); \(\mathrm{D}-2\);
\(\mathrm{G}-1, \mathrm{G}-2\) and \(\mathrm{H}-1\)

Exhibit C-1 comprises a blank Request Sheet, and is the same as that used during the time that the compounds of this patent application were analyzed, i.e., prior to

August 20, 1987 and during the other time periods referred to herein. Referring to Exhibit C-1, there are areas on the Request Sheet where the type of analysis can be requested, including IR spectrum, NMR spectrum, and microanalysis. Also, there is a space on the Request Sheet where the compound is identified by reference to its notebook number, page number and line number. In addition to filling out the form, the scientist provides a sample of the material in a vial which is also labeled with the notebook number, page number, and line number. The personnel who actually perform the analyses rely on the notebook number-page number-line number designation for identification of the sample, and then assign their own number to the analysis (spectrum).

Exhibit C-2 comprises true copies of the Physical Organic Chemistry Department's copies of Request Sheets for IR spectra.

Upon receipt of a completed Request Sheet and its accompanying sample, the Optical Spectroscopy Laboratory (Infra Red) Laboratory records each request in a laboratory logbook. The Infra Red Laboratory's logbook is kept in a three ring binder. Each sample is treated as a separate entry and is entered sequentially, into two sequential lines.

Exhibit C-3 comprises copies of the Physical Organic Chemistry Department's copies of Request Sheets for NMR spectra.
```

Sandor Barcza
Rule 672 Declaration
page - 4 -

```

Exhibit D-2 comprises completed copies of Chemical Information forms for compounds of the invention.

Exhibit G-1 comprises copies from the Infra Red Laboratory's logbook.

Exhibit G-2 contains copies of the Microanalysis Laboratory logbook.

Exhibit H-1 comprises copies of printouts of entries of the computer database. The dates are the dates on which the structures and data were entered.

To my knowledge, the papers which comprise these Exhibits are true copies.

Compounds \(63-366,63-548,63-549,64-934 / \mathrm{Na}, 64-935\) and 64-936/Na

The spectra of compounds 63-366, 63-548, 63-549, \(64-934 / \mathrm{Na}\), 64-935 and 64-936/Na were recorded under my supervision. The above-listed exhibits show the following:

Exhibit G-1 documents receipt of the wattanasin compounds by the Infra Red Laboratory on the following dates:

\section*{Compounds from Exhibit B-1}
\begin{tabular}{lllll} 
Line 1377: & receipt of compound \(1049-237-27\) on & \(5 / 31 / 84\) \\
Line 2009: & receipt of compound \(1079-22-28\) on & \(8 / 10 / 84\) \\
Line 2029: & receipt of compound \(1079-27-25\) on & \(8 / 14 / 84\) \\
Line 2514: & receipt of compound \(1079-105-35\) on & \(11 / 9 / 84\) \\
Line 2589: receipt of compound \(1079-111-19\) on & \(11 / 21 / 84\)
\end{tabular}

Sandor Barcza
Rule 672 Declaration
page - 5 -

Compounds from Exhibit B-2
Line 1012: receipt of compound 1127-5-23 on 5/ 6/85 Line 1094: receipt of compound 1127-11-34 on 5/17/85 Line 1095: receipt of compound 1127-11-37 on 5/17/85

Compounds from Exhibit F-1
Line 899: receipt of compound 1206-130-27 on 7/5/87
Line 922: receipt of compound 1206-137-31 on 7/12/87
Line 1007: receipt of compound 1206-153-34 on 7/16/87
Line 1037: receipt of compound 1206-158-41 on 7/21/87 Line 1052: receipt of compound 1206-175-4 on 7/30/87 Line 1084: receipt of compound 1206-176-41 on 7/30/87 Line 1087: receipt of compound 1206-176-40 on 7/31/87

The line number of the logbook becomes the assigned spectrum number. The spectrum number is written on the request sheet in the box on the right side marked "do not fill in" by the person who would be running the spectrum, along with that person's initials.

Exhibit C-2 contains the assigned numbers for the compounds:

\section*{Compounds from Exhibit B-1:}

1049-237-27, assigned spectrum number 1377 1079-22-28, assigned spectrum number 2009 1079-27-25, assigned spectrum number 2029 1079-105-35, assigned spectrum number 2514 1079-111-19, assigned spectrum number 2589

\section*{Compounds from Exhibit B-2:}

1127-5-23, assigned spectrum number 1012
1127-11-34, assigned spectrum number 1094
1127-11-37, assigned spectrum number 1095

\section*{Sandor Barcza}

Rule 672 Declaration
page - 6 -

\section*{Compounds from Exhibit F-1}
\begin{tabular}{lll} 
1206-130-27, assigned spectrum number 899 \\
\(1206-137-31\), & assigned spectrum number & 922 \\
\(1206-153-34\), & assigned spectrum number 1007 \\
\(1206-158-41\), & assigned spectrum number & 1037 \\
\(1206-186-30\), & assigned spectrum number & 1084 \\
\(1206-175-4\), & assigned spectrum number & 1052 \\
\(1206-176-41\), & assigned spectrum number & 1087 \\
\(1206-179-30\), & assigned spectrum number & 1085 \\
\(1206-179-30\), & assigned spectrum number & 1093
\end{tabular}

The NMR Laboratory assigns spectra numbers in the following manner: Upon receipt of a Request Sheet and accompanying sample, the request sheet is stamped "Received" with an automatic stamper which dates the request sheet and assigns it a number in sequential order.

Exhibit \(\mathbf{C - 3}\) contain the assigned spectrum number in the box marked "do not fill in.":

Compounds from Exhibit B-1
\begin{tabular}{llll} 
Compounds from & Exhibit \(B-1\) \\
\hline \(1049-237-27\), & spectrum number 4716 received on \(5 / 30 / 84\) \\
\(1049-241-34\), & spectrum number 4751 received on \(6 / 1 / 84\) \\
\(1079-22-28\), & spectrum number 6255 received on \(8 / 13 / 84\) \\
\(1079-27-25,:\) & spectrum number 6288 received on \(8 / 14 / 84\) \\
\(1079-30-23,:\) & spectrum number 6404 received on \(8 / 22 / 84\) \\
\(1079-34-17,:\) & spectrum number 6597 received on \(9 / 5 / 84\)
\end{tabular}

Compounds from Exhibit B-2
1127-5-23, : spectrum number 2517 received on 5/6/85 1127-9-33, : spectrum number 2538 received on 5/7/85 1127-11-34, : spectrum number 2683 received on 5/14/85
\(1127-11-37\), spectrum number 2686 received on \(5 / 14 / 85\)
```

Sandor Barcza
Rule 672 Declaration
page - 7 -

```

\section*{Compounds from Exhibit F-1}
\begin{tabular}{lll}
\(1206-130-27:\) & & spectrum number 3256 received on \(6 / 5 / 87\) \\
\(1206-137-31:\) & spectrum number 3326 received on \(6 / 12 / 87\) \\
\(1206-145-25:\) & spectrum number 3450 received on \(6 / 19 / 87\) \\
\(1206-145-26:\) & spectrum number 3451 received on \(6 / 19 / 87\) \\
\(1206-153-31:\) & spectrum number 3596 received on \(7 / 2 / 87\) \\
\(1206-153-37:\) & spectrum number 3615 received on \(7 / 7 / 87\) \\
\(1206-158-41:\) & spectrum number 3677 received on \(7 / 10 / 87\) \\
\(1206-166-30:\) & spectrum number 3793 received on \(7 / 16 / 87\) \\
\(1206-175-4:\) & spectrum number 3874 received on \(7 / 22 / 87\) \\
\(1206-176-41:\) & spectrum number 3934 received on \(7 / 27 / 87\) \\
\(1206-176-43:\) & spectrum number 3933 received on \(7 / 27 / 87\)
\end{tabular}

Exhibit G-2 contains copies of the Microanalysis Laboratory's logbook containing the sample numbers listed below. Each sample is entered on one line in a sequential manner and the line number becomes the analysis number:

Compounds from Exhibit F-1:
\begin{tabular}{lll} 
Line 518: receipt of compound \(1206-153-31\) & on \(7 / 9 / 87\) \\
Line \(524:\) & receipt of compound \(1206-158-41\) & on \(7 / 15 / 87\) \\
Line 545: receipt of compound \(1206-175-4\) & on \(7 / 23 / 87\) \\
Line 560: receipt of compound \(1206-166-30\) & on \(7 / 28 / 87\) \\
Line 563: receipt of compound \(1206-179-30\) & on \(7 / 29 / 87\) \\
Line 634: receipt of compound \(1206-201-30\) & on \(8 / 26 / 87\) \\
Compounds from Exhibit B-1: & \\
Line \(813:\) receipt of compound \(1049-237-27\) on \(5 / 31 / 84\)
\end{tabular}

Upon completion of an IR or NMR spectrum, the chemist is provided with the original spectrum, and no copies are retained by the Physical Chemistry Department. Each spectrum contains information identifying the sample, including the sample's notebook number-page number-line number; the date, the operator, and any other notes which are relevant.

\section*{49}

\author{
Sandor Barcza Rule 672 Declaration page - 8 -
}

The chemist who requested the sample is primarily responsible for the interpretation of the structure based on the data provided by my department; however, my Department can provide assistance if necessary.
II. PROCEDURES FOR ASSEMBLING THE DATABASE

Another responsibility of the Physical Organic Chemistry Department was the assembly of a computerized database for use only by Sandoz employees which contains information regarding compounds produced by the chemists. The database information regarding the compounds of this patent application were assembled in the following manner. This procedure was the one 'in use when the compounds of this patent application were submitted.

Upon verification of the structure and purity of a sample, a "Chemical Information" form is completed, and an accompanying sample of the compound is submitted.

Exhibit D-1 is a blank Chemical Information form. The "Date" box at the upper right hand side of the form is filled in by the person registering the compound, and the Compound Number is assigned sequentially by the person registering the compound. (The initials of the person who is registering the compound is recorded on the computer database).

The Chemical Information form also includes a list of "screens" which are standard biological tests which the chemist may request. Abbreviations which appear on the forms (either printed or handwritten in the blank spaces) are as follows: \(A O=\) anti-obesity, \(G H I=\) growth hormone inhibition, GLUC= glucagon, \(\mathrm{HG}=\) hypoglycemic, \(\mathrm{HL}=\) hypolipidemia, \(\mathrm{PL}=\) platelet, \(\mathrm{TC}=\) tissue culture cholesterol absorption inhibition test, AM/AV= anti-microbial and/or anti-viral, Tr= Tripanosoma, Agro= agricultural, CSI= cholesterol synthesis inhibition, CSIV= cholesterol synthesis inhibition in vivo.

The Chemical Information Form also includes, at the bottom, a "Chem. No." which is the laboratory notebook-page number-line number of the sample.

Exhibit D-2 contains copies of Chemical Information forms for compounds which are contained in the aboveidentified patent application. These forms were submitted for compound registration in the database.

\begin{abstract}
Sandor Barcza Rule 672 Declaration page - 10 -
Upon receipt of the Chemical Information Form and sample, personnel under my direction enter this information into the Sandoz computer database.
\end{abstract}

\begin{abstract}
Exhibit \(H-1\) contains copies of printouts of entries of the computer database. The date which is recorded in the database is automatically supplied by the computer; it is not manually entered by the operator, and is not changed once it is generated.
\end{abstract}

Codes used in the databank are as follows. INT.REG.NO is the unique internal registry number, the number assigned sequentially to this compound in the Sandoz internal database. Information recorded across the top of the printout is as follows. SAH.NO is the "Sandoz Number" or the official Sandoz number for the compound. These numbers are assigned sequentially, and are never deleted. SALTCODE is the code of the type of salt form, if the compound is a salt. CHEM.NO. is the laboratory notebook-page number-line number designation of the sample. SUBMITTED is the date the data were entered into the database. DISCL is the number of the Invention Disclosure form which was submitted to the Patent and Trademark Department.

Each chemist who submits a compound for entry into the database must proofread the entry. The data in the database are considered accurate by the scientists at Sandoz, and the data as recorded in the database are relied upon in the course of further research, testing, and development.

Upon assignment of an official number, the samples are marked with their "SAH" number and are stored in the Drug Room.
III. STORAGE AND INVENTORY PROCEDURES

The Sandoz Drug Room is responsible for the storage of samples of compounds that are catalogued in the database.

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing
Declaration this \(/ 2 \mathrm{CL}\) day of November, 1992.


PATEL

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

\section*{WATTANASIN}
v 。
Interference Nos. 102,648, 102,975
FUJIKAWA et al.
Examiner-in-Chief: M. Sofocleous

DECLARATION OF RAJESHVARI PATEL PURSUANT TO 37 C.F.R. \(\$ 1.672\)

I, Rajeshvari Patel, do hereby declare as follows:
(1) That I am a chemist, who was employed by Sandoz Pharmaceuticals Corporation, 59 Route 10 , East Hanover, N.J. during the time when Dr. Sompong Wattanasin was in the process of reducing to practice compounds claimed in U.S. Patent Application Serial Number 07/498,301.
(2) That one of my job responsibilities included the synthesis of certain compounds under the direction and supervision of Dr. Wattanasin.
(3) That all activities referred to in this Declaration took place in the United States of America.

\section*{A. SYNTHESIS OF COMPOUNDS 64-933, 64-934/Nar 64-935 AND 64-936/Na}

Under the supervision of Sompong Wattanasin, I synthesized compounds 64-933, 64-934/Na, 64-935 and 64-936/Na of the invention. I kept a record of this activity in my Laboratory Notebook \#1206.

Rajeshvari Patel
Rule 672 Declaration page - 2 -
```

Exhibit F-l comprises a true copy of my Laboratory Notebook \#1206, Pages 130, 137, 145, 153, 158, 166, 172, 175, 176, 179, 190 and 201.

```

It was my practice to date the top of each laboratory notebook page on the date \(I\) started the experiment reported on the page, and to sign the page and date my signature after the experiment was completed.

\section*{General Description of Laboratory Notebook Pages}

\section*{i. Molecular Weight:}

To determine molecular weight of each compound and its intermediates, mass spectrometry was performed. The molecular weight which was determined is the weight of the molecular ion, or \(M-H^{+}\), where \(M\) is the compound of interest. Thus, to calculate the molecular weight of the compound rather than its ion, one must subtract the molecular weight of hydrogen (1) from the molecular weight of the ion. In the notebook pages, I recorded the molecular weight of the ion. Thus, the molecular weight of the compound is 1 less than what \(I\) recorded in my notebook.
ii. Spectra and Microanalyses:

The spectra and microanalyses were not performed by
me, but were performed by an employee of the Physical
Organic Chemistry Department of Sandoz Pharmaceuticals

Rajeshvari Patel
Rule 672 Declaration page - 3 -

Corporation. Upon receipt of the spectra from the Physical Organic Chemistry Department, I filed them in their own folder arranged by their compound number. Reference is made to the work of Dr. Sandor Barcza for details concerning analysis procedures.

Notebook \#1206, page 130 is dated June 1,1987 at the top in my handwriting, and contains my dated signature of June 8, 1987, at the bottom of the page. This page documents the following reaction which I performed:

\(\emptyset\) = phenyl group
(1206-129-18)
The compound on the left side of the equation was designated 1206-129-18. A mixture of 11.5 g (0.04930 mol) of 1206-129-18, 11.93 ml ( 0.073958 mol; 1.5 equivalents) of and 105 ml EtOH was heated to reflux for six hours (10:00 A.M. to 4:00 P.M.) and then stirred at room temperature overnight.

The following day, the reaction mixture was evaporated to dryness to give a yellow oil with the rotary evaporator, basified with \(\mathrm{NH}_{4} \mathrm{OH}\) and extracted with ether, and the ether extract was washed with \(\mathrm{H}_{2} \mathrm{O}\) and then brine, dried with anhydrous sodium sulfate, and filtered. The filter cake was washed with ether and the washing was

> Rajeshvari Patel
> Rule 672 Declaration page -4 -
combined with the initial filtrate and evaporated to give 10.21 g of an orange-yellow solid, designated 1206-130-27. IR and NMR spectra were performed and follow Laboratory Notebook \#1206, page 130. Yield was calculated to be 64.86\%. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-130-27).

Notebook \#1206, page 137 is dated June 9, 1987 at the top in my handwriting, and contains my dated signature of July 2, 1987 at the bottom of the page. This page documents the following reaction which \(I\) performed:


To \(10.21 \mathrm{~g}(0.0319621 \mathrm{~mol})\) of \(1206-130-27\) in 100 ml dry ether with cooling was added \(2.43 \mathrm{~g}(0.063242 \mathrm{~mol})\) LAH (lithium aluminum hydride) portion-wise. The reaction was exothermic and foaming occurred. The mixture was stirred at room temperature for three hours (9:35 A.M. to 12:35 P.M.).

The reaction mixture was poured into ice water (the reaction was strongly exothermic). The result was extracted with ether and the ether extract was washed with water and then brine, dried with anhydrous sodium sulfate and filtered. The filter cake was washed.with ether, and
```

Rajeshvari Patel
Rule 672 Declaration
page - 5 -

```
the washing was combined with the initial filtrate. Evaporation gave 8.5 g of a yellow solid, designated 1206-137-31. IR and NMR spectra were performed and the results follow Laboratory Notebook \#1206, page 137. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-137-31). Yield was calculated at \(95.8 \%\) of theoretical.

Notebook \#1206, page 145 is dated June 17 , 1987 at the top in my handwriting, and contains my signature. This page documents the following reaction which. I performed:


To \(8.0 \mathrm{~g}(0.0288392 \mathrm{~mol})\) of \(1206-137-31\) in 150.0 ml toluene was added 16.0 g acitivated \(\mathrm{MnO}_{2}\). This was heated to reflux for approximately \(3-3 / 4\) hours (11:00 A.M. to 2:45 P.M.). The result was filtered through a pad of silica gel. During filtration, it separated into two bands, which were then filtered separately and evaporated separately. Both were yellow solids: (a) 2.6518 g designated 1206-145-25 with a molecular weight of 276, which was determined to be the desired product; and (b) 4.4663 g , designated 1206-145-26, with a molecular weight of 278 , which was determined to be the starting material.

Rajeshvari Patel
Rule 672 Declaration
page - 6-

IR and NMR spectra were performed on 1206-145-25 and the results follow Laboratory Notebook \#1206, page
145. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-145-25).

This process was repeated with 1206-145-26 as recorded in Laboratory Notebook \#1206, page 148, and 3.2.6 \(g\) of the same compound as 1206-145-25 was obtained, and designated 1206-148-33. Thus total yield was calculated as \(2.6518 \mathrm{~g}+3.26 \mathrm{~g}=5.91 \mathrm{~g}\). Theoretical Yield was 7.91 g, yield was therefore \(74.52 \%\).

Notebook \#1206, page 153 is dated June 30, 1987 at the top in my handwriting, and contains my dated signature of July 6, 1987. This page documents the following reaction which I performed:

(120E-145-25)
(1206-148-33)
(1206-153-40)
\(\mathrm{Ph}=\) phenyl group
Me = methyl group
5.91 g of the combination of 1206-145-25 and 1206-148-33 (0.0214909 mol), 8.6135.g.of \(\mathrm{Ph}_{3} \mathrm{P}\) \(\mathrm{CO}_{2} \mathrm{Me}(0.025789 \mathrm{~mol})\) and 85 ml of toluene were heated to

Rajeshvari Patel
Rule 672 Declaration page - 7 -
reflux for 1.5 hours. (Before heating this was a yellow heterogeneous mixture). It was then stirred at room temperature overnight.

The following day, the reaction mixture was diluted with \(50 \%\) ether/petroleum ether and filtered through a pad of silica gel. The filter cake was washed with \(50 \%\) ether/petroleum ether, the washing was combined with the initial filtrate and evaporated to dryness to give 8.6 g of a yellow crystalline solid. Trituration with methanol gave 5.5198 g of an off-white solid, designated 1206-153-31, molecular weight 331; yield was 77.6\%. The mother liquor was evaporated to dryness, leaving a 2.7593 g of a yellow oil, designated 1206-153-34.

Trituration of 1206-153-34 with methanol gave 761.6 mg of a light yellow solid, designated 1206-153-37, with a molecular weight of 331 . Evaporation of the mother liquor to dryness resulted in a yellow solid, designated 1206-153-38. 1206-153-3i and 1206-153-37 were combined and designated 1206-153-40. The melting point of 1206-153-40 was found to be \(128-130^{\circ} \mathrm{C}\). Spectra were run on 1206-153-31 (NMR), 1206-153-37 (NMR) and 1206-153-34 (IR) and the results follow Laboratory Notebook \#1206, page 153. The spectra of 1206-153-31 and 1206-153-37 were judged by me and Dr. Wattanasin to be consistent with the desired product.

Notebook \#1206, page 158 is dated July 7, 1987 at the top in my handwriting, and contains my dated signature of July 17, 1987. This page documents the following reaction which I.performed:


To a solution of 6.25 g of 1206-153-40 (0.0188821 mol) in \(75 \mathrm{ml} \mathrm{CH}{ }_{2} \mathrm{Cl}_{2}\) at \(-78^{\circ} \mathrm{C}\) was added 25.18 ml of 1.5 M DIBAL-H (diisobutylaluminum hydride) (0.0377642 mol; 2 equivalents) in toluene. This was stirred at \(-78^{\circ} \mathrm{C}\) for about three hours (12:15 P.M. to 3:10 P.M.). The reaction was then quenched with 12.5 ml 2 N NaOH , diluted with EtOAc, and stirred at room temperature overnight. A white solid (gel) came out of solution.

The following day, the reaction product was filtered through a pad of silica gel, washed with EtOAC, water, and then brine, dried with anhydrous sodium sulfate and evaporated to dryness. The result was 5.42 g of an off-white solid, designated 1206-158-35. Yield was 73.7\% theoretical yield. The solids were dissolved in \(E t_{2} O\), and the insoluble portion (aluminum oxide) was filtered off. The solution was evaporated..to dryness, resulting in 5.22 g of white-yellow solids designated 1206-158-37. The solids were dissolved in \(E t_{2} O\), and the insoluble portion (aluminum oxide) was filtered off. The resulting solution was evaporated to dryness, resulting in 4.2117 g of a yellowish solid, designated 1206-158-41, with a molecular weight of 303 and a melting point of \(119-121^{\circ} \mathrm{C}\). NMR and IR spectra were run on 1206-158-41 and the results follow Laboratory Notebook \#1206, page 158. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-158-41).

Notebook \#1206, page 166 is dated July 15, 1987 at the top in my handwriting, and contains.my dated signature of July 20, 1987. This page documents the following reaction, which I performed:


To 4.0 g of 1206-158-41 (0.0132013 mol) in 50 ml toluene was added 8.0 g activated \(\mathrm{MnO}_{2}\). This was heated to reflux for one hour (2:00 P.M. to 3:00 P.M.), then stirred at room temperature overnight.

The following day, the reaction product was filtered through a pad of silica gel. Evaporation to dryness gave 3.4946 g of a yellow crystalline material, designated 1206-166-30, with a molecular weight of 301. NMR and IR spectra were run on 1206-166-30 and the results follow Laboratory Notebook \#1206; page 166. Yield was 88\% theoretical yield. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-166-30).

Twelve days later, a microanalysis was performed. Two days later, the melting point was determined to be \(98-101^{\circ} \mathrm{C}\).
```

Rajeshvari Patel
Rule 672 Declaration
page - 10-

```

Notebook \#1206, page 172 is dated July 20, 1987 at the top in my handwriting, and contains my dated signature of July 21, 1987. Notebook \#1206, page 175 is dated July 22, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987. These pages document the following reaction which I performed:

(1206-166-30)


(1200-175-4)

To a solution of \(3.5 \mathrm{~g}(0.0116279 \mathrm{~mol})\) of 1206-166-30 in 40 ml dry THF at \(-5^{\circ} \mathrm{C}\) to \(-10^{\circ} \mathrm{C}\) was added 38 ml of a previously prepared solution of the dianion of ethyl acetoacetate, the details of the preparation of which are set forth below. The color change from yellow to orange to dark red, suggesting that the reaction had occurred. A TLC (using 50\% ether/petroleum ether) run after 15 minutes indicated the reaction was complete. The reaction mixture was stirred for 30 minutes.

The reaction mixture was quenched with \(\mathrm{NH}_{4} \mathrm{Cl}\). solution, extracted with EtOAc, resulting in two layers. The organic layer was separated and was washed with water then brine, dried with anhydrous sodium sulfate and filtered. Evaporation gave 5.9188 g of a yellow oil, designated 1206-172-41. Yield was 67.87\% theoretical.

\begin{abstract}
To make the dianion solution used above, the following procedure was used. A solution of 5 ml ethyl acetoacetate in 50 ml dry THF was added 1.9 g of \(50 \% \mathrm{NaH}\) in THF at \(-5^{\circ}\) to \(0^{\circ} \mathrm{C}\). This was stirred for 15 minutes (the solution was foaming as \(H_{2}\) was evolved). At \(-10^{0}\) to \(-15^{\circ} \mathrm{C}, \quad 27 \mathrm{ml}\) of 1.6 M n-butyllithium/hexane was added and the mixture was stirred for 20 minutes at \(-10^{\circ} \mathrm{C} .92 \mathrm{ml}\) of a yellow homogeneous solution resulted ( 0.04 mol ).
\end{abstract}

Flash chromatography through silica gel (25\% ether/petroleum ether) of 1206-172-41 gave 3.4004 g of a yellow solid, designated 1206-175-4. Melting point was \(84-87^{\circ} \mathrm{C}\). Yield was \(68 \%\). A microanalysis was performed and the results are shown. NMR and IR spectra were run on 1206-175-4 and the results follow Laboratory Notebook \#1206, page 172. The spectra were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-175-4).

Notebook \#1206, page 176 is dated July 23, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987. This: page documents the following reaction which I performed:


(2206-276-61)

To a homogeneous solution of \(1.0 \mathrm{~g} \quad(0.0023201 \mathrm{~mol})\) 1206-175-4 in 10 ml dry THF and 2.5 ml methanol was added \(3.5 \mathrm{ml} \mathrm{l} \mathrm{MEt} 3^{B}\) ( \(0.0034801 \mathrm{~mol} ; 1.5\) equivalents) in THF . This was stirred at room temperature for one hour (9:45 A.M. to 10:45 A.M.). Then the solution was cooled to \(-78^{\circ} \mathrm{C}\). 0.1315 g of \(\mathrm{NaBH}_{4}(0.0034810 \mathrm{~mol} ; 1.5\) equivalents) was added portion-wise. This was then stirred at \(-78^{\circ} \mathrm{C}\) for four hours (11:00 A.M. to 3:00 P.M.).

\begin{abstract}
The reaction was quenched with 5 ml acetic acid at \(-78^{\circ} \mathrm{C}\). Ethyl acetate was then added and the mixture was allowed to warm to room temperature. The organic layef was washed with saturated sodium bicarbonate solution, water, and brine. It was then dried, filtered and evaporated to dryness: The residue was redissolved in methanol and evaporated to dryness. The evaporation process (in methanol) was repeated until TLC showed the desired product was obtained, 1.0914 g of an orange oil, designated 1206-176-39.
\end{abstract}

Flash chromatography on silica gel ( \(80 \%\) ether/ petroleum ether) gave two products: (a) \(\mathrm{F}_{4-6}, 0.4043 \mathrm{~g}\) of a yellow solid, designated 1206-176-41 with a molecular weight of 433 and M.P. \(104-106^{\circ} \mathrm{C}\), which was shown by HPLC to be \(98.3 \%\) pure; and (b) \(F_{7-13}, 0.510 \mathrm{~g}\) of a yellow solid designated 1206-176-43, with a molecular weight of 433, which was shown to be 93.2 pure by HPLC. IR and NMR spectra were run on both 1206-176-41 and 1206-176-43 and follow Laboratory Notebook \#1206, page 176. Based on these spectra, compound 1206-176-41 was determined to be

\section*{65}

Rajeshvari Patel
Rule 672 Decláration page - 13 -
the desired product. Compound 1206-176-41. was eventually renamed 64-933.

A sample of 64-933 was sent to Dr. Scallen for biological testing in his in vitro microsomal assay for HMG-COA reductase inhibition activity. It was shown by Dr. Scallen to possess inhibition activity prior to December 7, 1987. I learned of this activity from Dr. Damon. Thus, prior to December 7, 1987, I knew that 64-933 was useful as an anti-cholesterol biosynthesis agent, and would be useful in treating atherosclexosis and other conditions resulting from excessive cholesterol biosynthesis.

Notebook \#1206, page 179 is dated July 28, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987. This page documents the following reaction which \(I\) performed:


\author{
Rajeshvari Patel. \\ Rule 672 Declaration \\ page - 14 -
}

To \(200.0 \mathrm{mg} \mathrm{1206-176-41}\) in 5 ml absolute ethanol at \(0^{\circ} \mathrm{C}\). was added approximately \(439 \mu \mathrm{ml}\) of 0.5 N NaOH . This was stirred at \(0^{\circ} \mathrm{C}\). for approximately 1 hour. A yellow oil resulted. The mixture was diluted with ether and evaporated to a yellow oil. This was re-diluted with ether and solids precipitated out of solution. The solids were washed with ether, the ether was decanted, and the solids were dried under vacuum to obtain 178.8 mg of yellow solids designated 1206-179-30. NMR and IR spectra and a microanalysis were performed. The spectra appear after Notebook \#1206, page 179, and were judged by me and Dr. Wattanasin to be consistent with the desired product (1206-179-30). The product shrunk at \(187^{\circ} \mathrm{C}\) and the melting point was above \(210^{\circ} \mathrm{C}\).

1206-179-30 was re-named 64-934. It was submitted to Dr. Scallen for biological testing in his above-mentioned in vitro microsomal assay and was found to be active.

Notebook \#1206, page 190 is dated August 10,1987 at the top in my handwriting, and contains my dated signature of September 1, 1987. This page documents the following reaction which \(I\) performed:


Rajeshvari Patel Rule 672 Declaration page - 15 -

To a solution of 400 mg 1206-187-18 in 133.6 ml THF at room temperature was added \(1 \mathrm{M} \mathrm{Et}{ }_{3} \mathrm{~B}(0.0001437 \mathrm{~mol})\) and 1 ml air (by syringe). The solution was stirred at room temperature for 1 hr . The solution was then cooled to \(-78^{\circ} \mathrm{C}\) and \(10 \mathrm{mg} \mathrm{NaBH}_{4}\) was added. The reaction mixture was cooled to \(-78^{\circ} \mathrm{C}, 51 \mathrm{mg} \mathrm{NaBH}_{4}\) was added and stirring was continued at \(-78^{\circ} \mathrm{C}\) from 12 noon to \(3 \mathrm{p} . \mathrm{m}\). The reaction was quenched and extracted with EtOAC, and washed with saturated \(\mathrm{NaHCO}_{3}\), dried, filtered, washed with MeOH five times to give a yellow oil which was chromatographed to give a yellow-orange oil, 1206-190-38, which was dried over high vacuum to give \(206: 6 \mathrm{mg}\) of 1206-190-41 which was believed to be the erythro racemate.

1206-190-41 was re-named 64-935. It was submitted to Dr. Scallen for biological testing in his above-mentioned in vitro microsomal assay and was found to be active.

Notebook \#1206, page 201 is dated August 25, 1987 at the top in my handwriting, and contains my dated signature of September 1, 1987. This page documents the following reaction which \(I\) performed.

(1206-190-41)
To \(100 \mathrm{mg} \mathrm{1206-190-41}\) in 5 ml absolute ethanol, at \(0^{\circ} \mathrm{C}\) with stirring was added approximately \(217.3^{\prime \prime} \mu \mathrm{ml} 1 \mathrm{~N}\) NaOH dropwise. The mixture was stirred at \(0^{\circ} \mathrm{C}\) for approximately 3 hours, resulting in a yellow oil.

Rajeshvari Patel
Rule 672 Declaration page - 16 -

This was diluted with ether, and evaporated to dryness to produce a yellow oil. Upon the addition of ether, yellow solids precipitated out. These were filtered, washed and dried to give 86.4 mg of a yellow solids designated 1206-201-30.

\author{
NMR and a microanalysis were performed on 1206-201-30. The spectrum appears after Notebook \#1206, page 201. It was judged by me and Dr. Wattanasin to be consistent with the desired product (1206-201-30). Its melting point was greater than \(225^{\circ} \mathrm{C}\). \\ 1206-201-30 was renamed 64-936. \\ Compounds 64-933, 64-934/Na, 64-935 and 64-936/Na were sent to Dr. Scallen for biological testing in his in vitro microsomal assay for HMG-CoA reductase inhibition activity.
}
 Rule 672 Declaration Page = 17 .

The undersigned desiares further that ald etatements made herain of my own knowledge ary true and that all atatements made on information and belisf are believad to be trues and furthor that these gtatomente were made with the knowledge that willful false gtatemente and the like so made are punishable by fine or imprisonment, or both, undex Section 2001 of titie 18 of the United States Code and that buch willful false gtatomente may joopazdize the validity of this appilcation or any patent iesuing thereon.

I hereby subscribe my name to the foregoing declaration this \(13^{\text {th }}\) day of November, 1992.

\section*{Rajestion' Dopotel \\ RAJESHVARI DATEL}

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES WATTANASIN
}
v. Interference Nos. 102, 648, 102,975

FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous

\section*{SUPPPLEMENTAL DECLARATION OF RAJESHVARI PATEL PURSUANT TO 37 C.F.R. \(\$ 1.672\)}

I, Rajeshvari Patel, do hereby declare as follows:
(1) That I am a chemist, who was employed by Sandoz Pharmaceuticals Corporation, 59 Route 10, East Hanover, N.J. during the time when Dr. Sompong Wattanasin was in the process of reducing to practice compounds claimed in U.S. Patent Application Serial Number 07/498,301, and during the time periods referred to in my Declaration pursuant to 37 CFR 1.672 and this Supplemental Declaration pursuant to 37 CFR 1.672 .
(2) That one of my job responsibilities included the synthesis of certain compounds under the direction and supervision of Dr. Wattanasin.
(3) That all activities referred to in this Declaration took place in the United States of America.
(4) The contents of my Declaration made Pursuant to Rule 37 CFR 1.672 are hereby incorporated by reference in their entirety.
```

Rajeshvari Patel Supp. R. 672 Declaration page - 2 -

```

\section*{SYNTHESIS OF COMPOUND 64-935}

Under the supervision of Sompong Wattanasin, I synthesized compound 64-935 of the invention. I kept a record of this activity in my Laboratory Notebook \#1206.
```

Exhibit F-1 comprises a true copy of my Laboratory
Notebook \#1206, Pages 130, 137, 145, 153, 158, 166, 172,
175, 17.6, 179, 190 and 201.

```

Exhibit \(L-1\) hereto comprises a true copy of my Laboratory Notebook \#1206, Pages 86, 99, 103, 119, 178, 181, 183, 185, 186, and 187.

These pages show the complete synthesis of compound 64-935.

It was my practice to date the top of each laboratory notebook page on the date \(I\) started the experiment reported on the page, and to sign the page and date my signature after the experiment was completed.

Rajeshvari Patel Supp. R. 672 Declaration page - 3 -

\begin{abstract}
Notebook \#1206, page 86 is dated April 13, 1987 in my handwriting and contains my dated signature of April 14, 1987 at the bottom of the page. This page documents the synthesis of compound 1206-86-387 from benzoxazine according to the method of Suzuki et al., JOC, 1961, 2239, 2241 .
\end{abstract}

Notebook \#1206, page 99 is dated April 13, 1987 at the top in my handwriting, and contains my dated signature of April 14,1987 at the bottom of the page. This page documents the synthesis of compound 1206-99-26 by a process analogous to the one recorded in Notebook \#l079, Page 248 in Exhibit B-1.

Notebook 非1206, page 103 is dated May 4, 1987 at the top in my handwriting, and contains my dated signature of May 5, 1987 at the bottom of the page. This page documents the synthesis of compound 1206-103-28 by a process analogous to the one recorded my Notebook \#1206, Page 130 in Exhibit \(\mathrm{F}-1\).

Notebook \#1206, page 119 is dated May 20 , 1987 at the top in my handwriting, and contains my dated signature of May 27, 1987, at the bottom of the page. This page documents the synthesis of compound 1206-119-30 by a process analogous to the one recorded in my Notebook \#1206, Page 137 in Exhibit F-1.

Rajeshvari Patel
Supp. R. 672 Declaration
page - 4 -

Notebook \#1206, page 178 is dated July 27, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987 at the bottom of the page. This page documents the synthesis of compound 1206-178-31 by a process analaogous to the one recorded in my Notebook \#1206, page 145 in Exhibit F-1.

Notebook \#1206, page 181 is dated July 29, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987 at the bottom of the page. This page documents the synthesis of compound 1206-181-26 by a method analogous to the one recorded in my Notebook \#1206, page 153 in Exhibit \(F-1\).

Notebook \#1206, page 183 is dated August 3, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987 at the bottom of the page. This page documents the synthesis of compound 1206-181-26 by a method analogous to the one recorded in my Notebook \#1206, page 158 in Exhibit \(F-1\).

Notebook \#1206, page 185 is dated August 4, 1987 at the top in my handwriting. This page documents the synthesis of compound 1206-185-31 by a method analogous to the one recorded in my Notebook \#1206, page 166 in Exhibit F-1.

Rajeshvari Patel
Supp. R. 672 Declaration page - 5 -

Notebook \#1206, page 186 is dated August 5, 1987 at the top in my handwriting, and contains my dated signature of August 5, 1987 at the bottom of the page. Notebook \#1206, page 187 is dated August 5, 1987 at the top in my handwriting and contains my dated signature of September 1, 1987. These pages document the synthesis of compound 1206-187-18 by a method analogous to the one recorded in my Notebook \#1206, pages 172 and 175 in Exhibit F-1.

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this \(16^{\text {thday }}\) of November, 1992.


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANAS IN
v. Interference Nos. 102,648, 102,975

FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous

DECLARATION OF TERENCE 'J. SCALLEN PURSUANT TO 37 CFR \(\$ 1.672\)
I, Terence J. Scallen, M.D., Ph.D., do hereby declare as follows:
(1) That \(I\) am a Professor of Biochemistry in the Department of Biochemistry, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131.
(2) That all activities referred to in this Declaration took place in the United States.

\section*{BIOLOGICAL ACTIVITY OF WATMANASIN COMPOUNDS}

\begin{abstract}
1. I have done extensive research in the area of cholesterol biosynthesis inhibition and am familiar with compounds which possess cholesterol biosynthesis inhibition activity.
2. I have performed tests of biological activity on compounds supplied to me by Sandoz Pharmaceuticals Corporation both since 1980 , and \(I\) have reported the results back to Sandoz. The compounds \(I\) receive are labeled with only their compound number, and no structural identification of these compounds is given until the testing is completed.
\end{abstract}

\section*{76}

> Terence J. Scallen Rule 672 Declaration Page - 2 -
3. The compounds sent to me by Sandoz were tested to determine whether they are competitive inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, the rate limiting enzyme in cholesterol biosynthesis, and therefore inhibitors of cholesterol biosynthesis. If a compound possesses this activity, it would be useful for lowering the blood cholesterol level in animals; e.g., mammals and especially larger primates. A compound with this activity would therefore be a hypolipoproteinemic and anti-atherosclerotic agent.
4. There was an established protocol which was used in my laboratory for assaying the samples which \(I\) received, which is described on the first page of each of Exhibits E-1 to E-4 (and also for each group of test results in \(\mathrm{E}-5\) ) appended hereto.

In general, the test which \(I\) use to determine whether a compound has HMG-CoA reductase inhibition activity is as follows:
```

 200 \mul aliquots (1.08-1.50 mg/ml) of rat
 liver microsomal suspensions are prepared from
male Sprague-Dawley rats (150-225g body
weight), in Buffer A with 10 mM dithio-
threitol (DTT). "Buffer A" is 0.04M potassium
phosphate, pH 7.4, 0.05M KCl, 0.03M EDTA and
0.25M sucrose; (The microsomes were frozen
before use.)

```

The microsomal suspension is incubated with \(10 \mu l\) of a solution of the test compound in dimethylacetamide (DMA); as described by Ackerman, et al. 1977 J. Lipid Res. v. 18 p. 408-413. In the assay, the rat microsomes are the source of HMG-COA reductase enzyme which catalyzes the reduction of HMG-CoA to mevalonate. Rather than using a chloroform extraction procedure as described by Ackerman, et al., supra, a Dowex \({ }^{R}\) 1X8 (200-400 mesh, formate form) ion exchange column is used to separate the product, \(\left[{ }^{14} \mathrm{C}\right]\) mevalonolactone, which is formed by the HMG-CoA reductase reaction from the substrate, \(\left[{ }^{14} \mathrm{C}\right] \mathrm{HMG}-\mathrm{CoA}\). [ \(\left.{ }^{3} \mathrm{H}\right]\) mevalonolactone is added as an internal reference. Inhibition of HMG-CoA reductase is calculated from the decrease in specific activity ([ \(\left.{ }^{14} \mathrm{C} /{ }^{3} \mathrm{H}\right]\) mevalonate ([ \(\left.\left.\left.{ }^{3} \mathrm{H}\right] \mathrm{MVA}\right)\right)\) ) of test groups compared to controls.
5. In vitro assays of biological activity as an HMG-CoA reductase inhibitor, were performed in my laboratory under my supervision on compounds 63-366, 63-548, 63-549, 64-933, 64-934/Na, 64-935 and 63-366/Na; and \(I\) reported the results to Dr. Robert Damon of Sandoz.

Compound 63-366

On or before December 13, 1984, an in vitro biological assay of compound 63-366 was performed in my laboratory. I reviewed the results of the assay, and
determined that the compound has HMG-CoA reductase activity. On or before December 20, 1984, I communicated this result to Dr. R. Damon of Sandoz.

Exhibit E-1 comprises true copies of the testing protocol utilized and the Laboratory Notebook pages which recorded the data for compound 63-366.

The first two pages of Exhibit E-1 bear the date of December 13, 1984. It was the practice in my laboratory to date these pages with the date on which the testing of the compound was performed.

The third page of Exhibit E-1 shows the data I obtained for 63-366.

On or before June 13, 1985, in vitro biological assays of Compounds 63-548 and 63-549 were performed in my laboratory. I reviewed the results of the assays, and determined that these compounds have HMG-CoA reductase activity. On or before June 30 , 1985, I communicated those results to Dr . R. Damon of Sandoz.

Exhibit E-2 contains a true copy of the description of the procedure and the printout showing the data for 63-548 and 63-549. The printout pages bear a date of June 13, 1985. The practice in my laboratory was to date these pages with the date on which the testing of the compound was performed.

The data for compounds 63-548 and 63-549 are on the third page of Exhibit E-2.

Compounds 64-933, 64-934/Na, 64-935 and 64-936/Na

On or before October 8, 1987, in vitro biological assays of compounds \(64-933,64-934 / \mathrm{Na}\), and 64-935 were performed in my laboratory. I reviewed the results of the assays, and determined that these compounds have HMG-CoA reductase activity. On or before October 20, 1987, I communicated these results to Dr. R. Damon of Sandoz.

\footnotetext{
On or before October 13, 1987, an in vitro biological assay of compound \(64-936 / \mathrm{Na}\) was performed in my laboratory. I reviewed the results of the assay, and determined that this compound has HMG-COA reductase activity. On or before October 20, 1987, I communicated these results to \(\mathrm{Dr} . \mathrm{R}\). Damon of Sandoz.
}

\author{
Terence J. Scallen Rule 672 Declaration Page - 6 -
}

Exhibit E-3 contains a true copy of the report \(I\) sent to Dr. Damon summarizing my results and the printouts for compounds 64-933, 64-934/Na and 64-935. The printout pages bear the date of October 8 , 1987. The practice in my laboratory was to date these pages with the date on which the testing of the compound was performed.

Exhibit E-4 contains a true copy of the report \(I\) sent to Dr. Damon summarizing my results and the printout for compound \(64-936 / \mathrm{Na}\). The printout pages bear the date of October 13, 1987. The practice in my laboratory was to date these pages with the date on which the testing of the compound was performed.

Exhibit E-5 contains true copies (except that structures and \(\mathrm{IC}_{50}\) values have been added), of the summary of the results of a series of assays which \(I\) performed on compounds including 63-366, 63-548, 63-549, 64-933, \(64-934 / \mathrm{Na}, 64-935\), and \(64-936 / \mathrm{Na}\) which I sent to Dr. Damon.

\begin{abstract}
It has been my judgment since prior to August 20, 1987, that the level of in vivo activity of a compound as a cholesterol inhibitor or anti-atherosclerotic when administered to a patient, is typically highly correlatable to its in vitro activity in my HMG-CoA reductase inhibitor assays.
\end{abstract}

\begin{abstract}
As demonstrated by Exhibit E-5 hereto, since on or prior to December 31, 1984, I was involved in the testing of numerous Sandoz compounds in substantially the same assay as used for the quinoline compounds, to determine in vitro HMG-CoA reductase activity.
\end{abstract}
These other compounds have the same 3,5-dihydroxy
heptenoic acid, ester, or salt side chain, or
alternatively have internal ester, i.e. lactone form, as
the Wattanasin quinoline compounds at issue. However,
these compounds differ by having a different organic
radical substituent of the side chain.

For example, I performed in vitro assays of Sandoz compounds having a substituted napthyl or indole substituent, at or about the same time as compound 63-366, as indicated by Exhibit E-5, hereto.

Therefore, \(I\) have substantial experience in testing compounds for HMG-CoA reductase activity in vitro; and I

Terence J. Scallen Rule 672 Declaration Page - 8 -
was familiar with the in vivo activity of many of these compounds as a result of my discussions with Dr. Damon and Mr. Engstrom of Sandoz.

On or before December 31, 1984, I also used the assay described herein to determine \(I C_{50}\) values for the compound Mevastatin (Compactin) which was a known HMG-CoA reductase inhibitor for administration to a patient to treat hypercholesterolemia or atherosclerosis.

Additionally, on or before December 31, 1984, I determined the \(I C_{50}\) values for Sandoz compound 62-320/Na (fluvastatin sodium), which \(I\) also knew to be active in vivo on or prior to December 31, 1984.

Therefore, \(I\) was able to compare the \(\mathrm{IC}_{50}\) values for the quinoline compounds to the \(I C_{50}\) values for mevastatin and fluvastatin sodium, both of which were known to be active in vivo.

Based on my Jnowledge and experience, it was my judgment since on or prior to December 31, 1984, that Wattanasin compound 63-366 would be active when administered in vivo to a patient for the treatment of hypercholesteremia or atherosclerosis, in a dosage amount recited by Wattanasin in his patent application. It was

Terence J. Scallen Rule 672 Declaration Page - 9 -
also my.judgment after determining the in vitro assay data for each of compounds 63-548, 63-549, 64-934/Na, 63-935 and \(64-936 / \mathrm{Na}\), that each of these compounde would also be active in rivo, and would be active when administered to a human patient in the dosage amounts recited in the Wattanasin specification.

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are puniehable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this day of November, 1992.


PAOLELLA

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

WATTANASIN
v. Interference Nos. 102,648, 102,975
FUJIKAWA et al.
Examiner-in-Chief: M. Sofocleous

DECLARATION OF NICHOLAS A. PAOLELLA PURSUANT TO 37 C.F.R. \(\$ 1.672\)

I, Nicholas A. Paolella, do hereby declare as follows:
(1) That \(I\) was a Senior Scientist A employed by Sandoz Pharmaceuticals Corporation from 1960 to 1991. In the course of my employment I synthesized compounds, including HMG-COA reductase inhibiting compounds and \(I\) am familiar with the chemistry employed to make such compounds.
(2) That all activities referred to in this Declaration took place in the United States.
(3) That \(I\) have reviewed Sompong Wattanasin's Laboratory Notebook \#1049 pages 237, 241, 248, 251, 245, Laboratory Notebook \#1079 pages 22 , \(24,27,30,33,34\), 39, 105, 106, 110 and 111.
(4) That I understood the experiments reported on these pages, and read and understood the aforementioned Laboratory Notebook pages, which I signed as a witness prior to August 20, 1987.

Nicholas A. Paolella Rule 672 Declaration page - 2 -

Exhibit B-1 contains true copies of Sompong Wattanasin's Notebook \#1049, pages 237, 241, 248, 251, 245 and Notebook \#1079, pages 22, 24, 27, 30, 33, 34, 39, 105, 106, 110 and 111 which bear my signature.

It is my recollection that I signed these pages prior to August 20, 1987.

\begin{abstract}
The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.
\end{abstract}
```

I hereby subscribe my name to the foregoing Declaration this $6^{\text {th }}$ day of November 1992.

```
nicholos A. Paolella.

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE \\ BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES \\ WATTANASIN \\ v. \\ FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous
}

DECLARATION OF FAIZULLA G. KATHAWALA PURSUANT TO 37 CFR \(\$ 1.672\)

I, Faizulla G. Kathawala, Ph.D., do hereby declare as follows:
(l) That I am employed by Sandoz Pharmaceuticals
Corporation as Director of Medicinal Chemistry --
Lipoprotein Metabolism. I am the supervisor of Dr.
Sompong Wattanasin. All activities referred to in this
Declaration took place in the United States.
(2) For over a decade Sandoz has been involved in an intense effort to discover compounds which have HMG-COA reductase inhibiting activity. This project began in 1979 when \(I\) was named the section head, supervising one other Ph.D. and his technician. Our research team expanded until there are five laboratory units each headed by a Ph.D. and also staffed by 12-15 other scientists. Sompong Wattanasin joined the project in 1982 as a Post-Doctoral level scientist working under my direction, and was later appointed as head of one of the five laboratory units.
(3) That prior to and during the same time as the invention of the quinoline-HMG-CoA reductase inhibitory compounds claimed in the Wattanasin patent application

\section*{87}

Faizulla G. Kaṭhawala Rule 672 Declaration Page - 2 -

Serial Number 07/498,301, I and/or other scientists in my department had invented other HMG-COA reductase inhibitors which were chemically analogous to such quinolines except that the quinoline moiety was replaced by another moiety which included: the pyrazole, pyrimidine, indene, pyrrole, naphthalene and indole systems. By "system" I mean the compound either had the following side chain

and was a salt form, an acid form, or an ester form, or the compound was in a lactone form. Additionally, it included the \(3 \mathrm{R}, 5 \mathrm{~S}\) forms as well as racemates. Based on the chemistry we learned from these other systems, we expected that if one of these forms showed biological activity, the other forms could be expected to show activity as well. Thus, when a scientist referred to compounds in a generic manner, it was understood by everyone involved to include salts, acids, esters and lactones, even if only one of these was actually drawn.
(4) That when a scientist had an idea for making a new system, he would review the idea with me prior to the start of the synthesis. The proposed synthetic pathways would also be discussed. Dr. Wattanasin reviewed his idea for making a quinoline system with me prior to the synthesis of the first quinoline.

> Faizulla G. Kathawala Rule 672 Declaration Page - 3 -

\section*{WATTANASIN CONCEPTION PRIOR TO AUGUST 20, 1987}
1. On or before November 28 , 1983, the subject invention was disclosed to.me by Dr. Sompong Wattanasin. On November 28 , 1983, I received a report from Dr. Wattansin in which compounds of the Wattanasin patent application were proposed for, synthesis.

Exhibit A-1 comprises a true copy of the report \(I\) received. I understood the "L" in structure \(\underline{14}\) to include the following side chain (where \(R\) indicates an acid, salt or ester) and also the lactone form.

and


I understood that the open chain compounds were preferably in the \(3 R, 5 S\) form or in an racemic mixture, and that the lactone was preferably in the \(4 R, 6 S\) form or in a trans racemic mixture.
2. On November 19,1984 , I received a report from Dr. Wattanasin, proposing the synthesis of additional compounds which form the subject of this invention.

Exhibit A-2 comprises a true copy of the report I received. For each of the structures drawn on page 1 of Exhibit A-2, I understood "L" to include the following

Faizulla G. Kathawala Rule 672 Declaration Page - 4 chain (where \(R\) indicates an acid, salt or ester) and also the lactone form.


\begin{abstract}
I understood that the open chain compounds were preferably in the \(3 \mathrm{R}, 5 \mathrm{~S}\) form or in an erythro racemic mixture, and that the lactone was preferably in the \(4 \mathrm{R} ; 6 \mathrm{~S}\) form or in \(a\) trans racemic mixture.
\end{abstract}
3. On March 16,1987 I reviewed, understood, and signed and dated as a witness, a disclosure of invention prepared by Dr. Wattanasin for the compounds of this patent application.

Exhibit A-3 is a true copy of the disclosure of invention, bearing my signature as a witness. I understood Compound \(I\) of Exhibit \(A-3\) to include the salt and acid forms as well as the ester form shown: I also understood that the preferred stereochemistry for the open chain compound was the \(3 \mathrm{R}, 5 \mathrm{~S}\) or the erythro racemate, and that for the lactone, the \(4 \mathrm{R}, 6 \mathrm{~S}\) form or the trans racemate was preferred.

\begin{abstract}
4. During the time that Drs. Wattanasin and Patel made the compounds described in their laboratory notebooks, \(I\) observed their work in my laboratory, and I was in contact with them on a frequent basis concerning their progress and results. Dr. Wattanasin spent a considerable amount of time and effort on this project.
\end{abstract}

\section*{WATTANASIN ACTUAL REDUCTION TO PRACTICE}
1. To the best of my knowledge and belief, the Laboratory notebook pages which form Exhibits B-1, B-2, and \(F-1\) are accurate reflections of the work performed in my laboratory.
2. I was aware that certain of the Wattanasin compounds were sent to Dr . Scallen for in vitro biological testing prior to August 20, 1987. I was aware that Dr. Scallen reported the results he obtained to Dr. Robert Damon. Dr. Damon reported these results to me.

Exhibit E-5 contains true copies of reports of activities of compounds which Dr. Damon sent to me and other investigators involved in the HMG-CoA reductase project.
3. That based on the in vitro biological activity, I knew, prior to August 20, 1987, that compounds according to this invention were HMG-CoA reductase inhibitors. I therefore knew that they possessed utility as anticholesterol synthesis agents, and therefore as hypolipoproteinemic and anti-atherosclerotic compounds.
4. I also believed, prior to August 20, 1987, based on the in vitro data for compound 63-366, that compound 63-366 and other compounds of the invention would also have activity as an HMG-CoA reductase inhibitor when administered in vivo, to a patient.

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing Declaration this 12 day of Nov. , 1992.
\(\frac{\text { faizula lay. Cath areola }}{\text { FAIZULLA G. KATHAWALLA, Ph.D. }}\)

\section*{DECLARATION OF PRASAD KAPA PURSUANT TO 37 CFR \(\$ 1.672\)}

I, Prasad Kapa, do hereby declare as follows:
(1) That I am a chemist employed by Sandoz Pharmaceuticals Corporation in the Process Research and Development. Group. All activities referred to in this Declaration took place in the United States.
(2) That on or prior to July 31, 1983, I synthesized the following racemic compound:

(3) That on or prior to May 6, 1985, I supplied this racemate to Dr. Sompong Wattanasin for use in his synthesis of HMG-COA reductase inhibiting compounds; and that this is the compound referred to as the "Prasad Aldehyde" in Dr. Wattanasin's notebook \#ll27, page 9, which I have reviewed.
```

Prasad Kapa
Rule 672 Declaration page - 2 -

```

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this 12 th day of November 1992.


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

\section*{WATTANASIN}
v. Interference Nos. 102, 648, 102,975

FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous

DECLARATION OF ROBERT E. DAMON PURSUANT TO 37 CFR \(\$ 1.672\)

I, Robert E. Damon, II, Ph.D., do hereby declare as follows:
(1) That \(I\) am a chemist employed by Sandoz Pharmaceuticals Corporation. Anong my responsibilities is coordination of the shipping of compounds to Dr. Terence Scallen and receiving data from him concerning the biological activity of new HMG-CoA reductase inhibiting compounds synthesized by Sandoz chemists.
(2) That all activities referred to in this Declaration took place in the United States.

\section*{TESTING OF WATTANASIN COMPOUNDS}
1. Under my direction, Mrs: Honora Lukas of Sandoz sent samples of compounds stored in the Drug Room to Dr. Scallen for biological activity assaying.

Exhibit I-1 comprises what appear to be true copies of covering sheets accompanying shipments of compounds 63-366, 63-548, 63-549, 64-933, 64-934/Na, 64-935 and 64-936/Na to Dr. Scallen.

Robert E. Damon Rule 672 Declaration page - 2 -
2. When Dr. Scallen performed assays on Sandoz compounds, including 63-366, 63-548, 63-549, 64-933, 64-934/Na, 64-935 and 64-936/Na, he sent the data to me.

Exhibit E-5 comprises true copies of reports that I received from Dr . Scallen reporting the results of his assay on the Wattanasin compounds (bearing structures and \(I C_{50}\) data handwritten by me after receipt).

As soon as \(I\) received the reports, I date-stamped them and initialed the date. The structures and \(I C_{50}\) numbers appearing on the reports were also written by me.

The first report I date-stamped on December 20, 1984.
The June 27,1985 report I date-stamped June 28 , 1985.

The October 8, 1987 report I date-stamped October 20 , 1987.

The October 20,1987 report I date stamped October 20, 1987 .
3. \(I C_{50}\) Data: Based on the data supplied to me in the reports which make up Exhibit E-5, I calculated the \(I C_{50}\) value for each compound. \({I C_{50}}\) is the concentration of the test substance in the assay system calculated to produce a \(50 \%\) inhibition of \(H M G-C O A\) reductase activity. The smaller the \(I C_{50}\) value; the more active the compound was in the assay.
4. I wrote the structural formulae and \(I C_{50}\) value for the compounds tested by Dr. Scallen on the reports received from Dr. Scallen.
5. My practice was that, within at most three or four days of receiving a report from \(D r\). Scallen, \(I\) would send the report (containing my handwritten structures and \(\mathrm{IC}_{50}\) data) to Dr . Wattanasin and other researchers working in the \(\mathrm{HMG}-\mathrm{CoA}\) reductase inhibitor area.
6. I also recorded the data from Dr. Scallen in my laboratory notebooks.

Exhibit J-1 comprises true copies of my Laboratory Notebook \#1069, pages 113, 197, 198, and Laboratory Notebook \#1238, pages \(13,14,15\), and 16.

It was my practice after receiving a report from Dr. Scallen, to prepare a form containing the structural formula of a compound which was tested by Dr. Scallen. I retrieved the structural formula from the Sandoz computerized database. I affixed the form to a page of my laboratory notebook, and wrote on the form the assay data (including the \(\mathrm{IC}_{50}\) data) received from Dr. Scallen. Each page bears a date in my handwriting which is the date that Dr. Scallen tested the compound, which I obtained from Dr. Scallen's reports.

\section*{Robert E. Damon \\ Rule 672 Declaration page - 4 -}

Laboratory notebook \#1069, page 113 , records the biological activity of 63-366. Its \(\mathrm{IC}_{50}(\mathrm{in} \mu \mathrm{M}\) ) is 1.58 . This page bears a date of December 13,1984 in my handwriting.

Laboratory notebook \#1069, page 197, records the biological activity of 63-549. Its \(I_{50}\) (in \(\mu M\) is 7.3100. This page bears a date of June 13,1985 in my handwriting.

Laboratory notebook \#1069, page 198, records the biological activity of 63-548. Its \(\mathrm{IC}_{50}\) (in \(\mu \mathrm{M}\) ) is 3.7750. This page bears a date of June 13,1985 in my handwriting.

Laboratory notebook \#1238, page 13, records the biological activity of 64-933. Its \(\mathrm{IC}_{50}\) (in \(\mu \mathrm{M}\) ) is 2.3700. This page bears a date of October 8, 1987 in my handwriting.

Laboratory notebook \#1238, page 14, records the biological activity of \(64-934 / \mathrm{Na}\). Its \(\mathrm{IC}_{50}\) (in \(\mu \mathrm{M}\) ) is 2.6100. This page bears a date of October 8, 1987 in my handwriting.

Laboratory notebook \#1238, page 15, records the biological activity of 64-935. Its \(\mathrm{IC}_{50}\) (in . \(\mu \mathrm{M}\) ) is 0.4130. This page bears a date of October 8, 1987 in my handwriting.

Robert E. Damon
Rule 672 Declaration page - 5 -

Laboratory notebook \#1238, page 16 , records the biological activity of \(64-936 / \mathrm{Na}\). Its \(\mathrm{IC}_{50}\) (in \(\mu \mathrm{M}\) ) is 0.5300. This page bears a date of October 13,1987 in my handwriting.
7. On or prior to December 31, 1984, I had already received from Dr. Scallen the in vitro assay data for various other Sandoz compounds being investigated for HMG-CoA reductase inhibitor activity, and had computed the \(I C_{50}\) values for such compounds.

These other compoinds have the same 3,5-dihydroxy heptenoic acid side chain, or ester, salt or internal lactone form as the Wattanasin quinoline compounds 63-633 et al. However, these compounds differ by having a different organic radical substituent of the side chain. Some of these other compounds were tested approximately the same time as compound 63-366, as indicated by Exhibit E-5, hereto.

> Robert E . Damon Rule 672 Declaration page \(-6-\)

I compared the \(I C_{50}\) values of the wattanasin quinoline compounds and other compounds tested by Dr. Scallen to \(\mathrm{IC}_{50}\) values for the compound Mevastatin (Compactin) which was a known HMG-CoA reductase inhibitor for administration to patients to inhibit cholesterol biosynthesis. Exhibit E-5 also indicates that prior to December 31,1984 , I calculated the IC50 values for Sandoz compound 62-320/Na (fluvastatin sodium), which I also knew to be active in vivo on or prior to December \(31,1984\).

Based on my knowledge and experience, it was my judgment on or prior to December 31, 1984, that there was a high probability that Wattanasin compound \(63-366\) would be active when administered in vivo to a patient to inhibit cholesterol biosynthesis, i.e. for the treatment of hypercholesteremia or atherosclerosis. It was also my judgment based on the in vitro assay data for the other tested quinoline compounds, that there was a high probability that the compounds of Dr. Wattanasin's invention would have activity when administered to a patient to inhibit cholesterol biosynthesis, i.e. for the treatment of hypercholesteremia or atherosclerosis, etc.

\begin{abstract}
The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.
\end{abstract}

I hereby subscribe my name to the foregoing Declaration this \(13^{\text {th }}\) day of November, 1992.


WEINSTEIN

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE \\ BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
}

WATTANASIN
v. Interference Nos. \(102,648,102,975\)

FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous

DECLARATION OF DAVID WEINSTEIN PURSUANT TO 37 CFR \(\$ 1.672\)

I, David Weinstein, do hereby declare as follows:
(1) That I am employed by Sandoz Pharmaceuticals Corporation. Presently \(I\) am Head of the Department of Lipid and Lipoprotein Metabolism. During the time when Dr. Wattanasin invented the compounds of his invention, I was in charge of the "Drug Room", which is the facility where samples of compounds produced by Sandoz chemists are stored.
(2) That all activities referred to in this Declaration took place in the United States.

\section*{TESTING OF WATTANASIN COMPOUNDS}
1. That at the time when Dr. Wattanasin supplied the Drug Room with samples of compounds of his invention, both prior to and after August 20, 1987, the following procedure was in place:

A sample of the compound, labeled with its official Sandoz number, was given to the Drug Room personnel, and its receipt was recorded in the computer database.

\section*{102}
David Weinstein
Rule 672 Declaration
page - 2 -

Exhibit H-1 contains true copies of printouts of the database entries for various compounds of the invention.

Compound 63-366 was entered on November 26, 1984.
Compound 63-548 was entered on May 17, 1985.
Compound 63-549 was entered on May 17, 1985.
Compound 64-933 was entered on September 21, 1987.
Compound 64-934 was entered on September 21, 1987.
Compound 64-935 was entered on September 21, 1987.
Compound 64-936 was entered on September 22, 1987.
At the bottom right hand column of the printout is a box entitled "AMOUNTS,mg". This is the amount of compound which was deposited in the Drug Room. There are also notations in this box if samples were sent to biologists for testing, and whether the Drug Room currently has any of the compound on hand.

Referring to the printout for 63-366, the notation means that a 14.5 mg sample of the compound (the entire amount deposited in the Drug Room) was sent to Dr. Terence Scallen.

For compound 63-548, a 2.0 mg sample (from a total deposit of 4.8 mg ) was sent to Dr . Scallen.

For 63-549, the entire 2.0 mg deposit was sent to Dr. Scallen.

For other compounds encompassed by this invention:
\begin{tabular}{lll}
\(64-933:\) & 50.0 mg deposited; 50 mg sent to Dr . Scallen \\
\(64-934:\) & 50.0 mg deposited; 50 mg sent to Dr . Scallen \\
\(64-935:\) & 20.0 mg deposited; 20 mg sent to Dr . Scallen \\
\(64-936:\) & 20.0 mg deposited; 20 mg sent to Dr . Scallen
\end{tabular}

David Weinstein
Rule 672 Declaration
page - 3 -

\begin{abstract}
2. In addition to recording in the computer database, the Drug Room also recorded when a sample was sent to a researcher.
\end{abstract}

Exhibit I-1 is a true copy of the Drug Room records documenting that Dr. Terence Scallen was sent samples of the compounds as follows:

63-366: December 3, 1984
63-548 and 63-549: June 3, 1985
64-933, 64-934/Na, 64-935 and 64-936/Na: October 2, 1987
3. It has been Drug Room policy, in force since before the dates in question, that when a sample of a compound leaves the Drug Room, it may not be returned to the Drug Room. This policy is meant to eliminate the risk of mis-identifying samples, and prevent contamination of compounds on deposit with the Drug Room. Thus, when a sample is sent from the Drug Room to a researcher, the researcher may rely on the identity of the compound, its purity, and the fact that it has not deteriorated.

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both,

David Weinstein
Rule 672 Declaration
page - 4 -
under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this \(12 \nmid /\) day of November, 1992.


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

\section*{WATTANASIN}
v. Interference Nos. 102, 648, 102,975

FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous

DECLARATION OF LAWRENCE B. PEREZ PURSUANT TO 37 CFR \(\$ 1.672\)

I, Lawrence B. Perez, Ph.D. do hereby declare as follows:
(1) I am an Associate Fellow employed by Sandoz Pharmaceuticals Corporation since July 1987. In the course of my employment \(I\) synthesize compounds, including HMG-COA reductase inhibiting compounds, and I am familiar with the chemistry employed to make such compounds. All activities referred to in this Declaration took place in the United States.
(3) I reviewed and and understood the experiments reported in Rajeshvari Patel's Laboratory Notebook \#1206, pages 179, 190 and 201, before signing these pages.
(4) I reviewed and and understood the experiments reported in Rajeshvari Patel's Laboratory Notebook \#1206, 86, 99, 103, 119, 124, 167, 173, 177, 178, 180, 181, 183, 185, 186 and 187, before signing these pages.

Exhibit \(F-1\) comprises true copies of Rajeshvari Patel's Notebook \#1206, pages 179 and 201, bearing my signature.

\author{
Lawrence B. Perez \\ Rule 672 Declaration \\ page - 2 -
}

\begin{abstract}
Exhibit L-1 comprises true copies of Rajeshvari Patel's Notebook \#1206, pages \(86,99,103,119,124,167\), 173, 177, 178, 180, 181, 183, 185, 186 and 187 , bearing my signature.
\end{abstract}

\begin{abstract}
The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.
\end{abstract}

I hereby subscribe my name to the foregoing Declaration this day of November, 1992.

Iawrence B. Perez, Ph.D.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

\section*{WATTANASIN}
v. Interference No. 102,648, 102,975

Fujikawa et al. Examiner-in-Chief: M. Sofocleous

DECLARATION OF ROBERT G. ENGSTROM PURSUANT TO \(37 \mathrm{CFR} \$ 1.672\)

I, Robert G. Engstrom, do hereby declare as follows:
\(\quad\) (l) That I have been employed by Sandoz
Pharmaceuticals Corporation since 1964 as a Research
Scientist. Among my responsibilities has been supervising
the testing of new HMG Co-A reductase inhibiting compounds
synthesized by Sandoz chemists.
(2) That all activities referred to in this Declaration took place in the United States.

\section*{IN VIVO TESTING OF}

WATTANASIN COMPOUNDS 64-933, 64-935 and 64-936/Na
1. On or before October 29, 1987, in my laboratory under my supervision, Rodney slaughter began performing the below-indicated protocol on compounds 64-933, 64-935 and 64-936/Na:

\section*{Robert Engstrom Rule 672 Declaration page - 2 -}
\begin{tabular}{|c|}
\hline In vivo studies utilized male Wistar \\
\hline Royal Hart rats weighing \(150 \pm 20\) g. which \\
\hline have been kept for 7-10 days on an altered \\
\hline light cycle (6:30 A.M. - 6:30 P.M. dark) \\
\hline housed two per cage and fed powdered Purina \\
\hline Rat Chow and water ad libitum. Three hours \\
\hline before the diurnal maximum of cholesterol \\
\hline systhesis at mid-day the rats were adminis- \\
\hline tered the test substances dissolved or as a \\
\hline suspension in 0.58 carboxymethylcellulose in a \\
\hline volume of \(1 \mathrm{ml} . / 100 \mathrm{~g}\). body weight. Controls \\
\hline received vehicle alone. One hour after \\
\hline receiving the test substance, the rats were \\
\hline injected intraperitoneally with about 25 \\
\hline \(\mu \mathrm{Ci} / 100 \mathrm{~g}\). body weight of sodium \\
\hline [ \(\left.1-{ }^{14} \mathrm{C}\right]\) acetate \(1-3 \mathrm{mCi} / \mathrm{mmol}\). Two hours after \\
\hline mid-dark, blood samples were obtained under \\
\hline sodium hexobarbitol anesthesia, and the serum \\
\hline was separated by centrifugation. The \\
\hline resulting serum samples were saponified and \\
\hline neutralized, and the \(3 \beta\)-hydroxy sterols were \\
\hline precipitated with digitonin basically as \\
\hline described by Sperry et, al., J. Biol. Chem. \\
\hline 187,97(1950). The [ \(\left.{ }^{14} \mathrm{C}\right]\) digitonides were \\
\hline counted by liquid scintillation spectrometry. \\
\hline The assay is based on the conversion of \\
\hline \({ }^{4} \mathrm{C}\)-acetate to \({ }^{14} \mathrm{C}\)-cholesterol in vivo. \\
\hline
\end{tabular}
2. The counts in DPM of digitonin precipitable sterol ( \(\beta\)-hydroxy sterol, mostly cholesterol in the rat) were entered by Rodney Slaughter into my computer program, which converted them to nCi of sterol found per 100 ml . of serum at 4 hours after the injection of the \({ }^{14}\) C-acetate.
3. I have reviewed Exhibit K-1 hereto, which comprises true copies of pages 133, 134, and 135, 136, 137 and 138 of R. Slaughter's Laboratory Notebook \#917. I witnessed Rodney Slaughter's signature on each of these pages, and each page bears my true signature as a witness.
4. Notebook pages 133-135 contain true copies of a computer printout for the protocol and results in nCi/dl of Study \#H318, which was commenced on October 22, 1987. I initialed the first page of this computer printout on or before October 22, 1987. This computer printout on page 135 indicates that an in vivo assay of compound 64-936 was started on October 22, 1987.
5. Notebook pages 136-138 contain true copies of a computer printout for the protocol and results in nCi/dl of Study \#H319, which was commenced on October 29, 1987. I initialed the first page of this computer printout on page 136 on or prior to October 29, 1987. This computer printout on page 137-138 indicates that an in vivo assay of compound 64-933 and 64-935 was started on October 29, 1987.

\begin{abstract}
6. Both studies were completed on or prior to December 9, 1987, the date indicated at the bottom of pages 135 and 138.
\end{abstract}
7. It was my responsibility to enter the nCi/dl data into a separate computer program which calculates the \(E D_{50}\) values of a compound tested in vivo from the reduction in the nci of sterols formed from test groups compared to controls for each assay, and forms a database of the \(E D_{50}\) values. On or before December 9, 1987, I entered the data for compounds 64-933, 64-935 and 64-936/Na.
```

Robert Engstrom
Rule 672 Declaration
page - 4 -

```

\begin{abstract}
8. The last page of Exhibit \(K-1\) comprises a true copy of part of the \(E D_{50}\) database. This page indicates that the \(\mathrm{ED}_{50}\) for compounds 64-933, 64-935 and 64-936/Na was in the system as of December 9 , 1987. Therefore, the information was available to other Sandoz employees having access to the computer database as of December 9, 1987.
\end{abstract}

The ED50 for these compounds are:
\begin{tabular}{ll} 
COMPOUND & \(\mathrm{ED}_{50}(\mathrm{mg} / \mathrm{kg})\) \\
\(64-933\) & 0.49 \\
\(64-935\) & \(>1.0\) \\
\(64-936\) & \(>1.0\)
\end{tabular}

The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

I hereby subscribe my name to the foregoing DECLARATION this 3 day of November 1992.


\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE \\ BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES
}

WATTANASIN
v. Interference Nos. 102,648, 102,975

FUJIKAWA et al. Examiner-in-Chief: M. Sofocleous

DECLARATION OF RODNEY SLAUGHTER PURSUANT TO \(37 \mathrm{CFR} \$ 1.672\)
I, Rodney Slaughter, do hereby declare as follows:
(1) That I have been employed by Sandoz
Pharmaceuticals Corporation since 1982 , and during the
time periods referred to herein, I worked in the
Department of Lipid Metabolism.
(2) That it has been my responsibility to carry out an in vivo testing program of various HMG-CoA reductase inhibitor compounds, including Wattanasin compounds 64-933, 64-935 and 64-936.
(3) That all of the below-indicated activities took place in the United States.

IN VIVO TESTING OF
WATTANASIN COMPOUNDS 64-933, 64-935 and 64-936
1. On or before October 29, 1987, I carried out the below-indicated protocol on compounds 64-933, 64-935 and 64-936:

\author{
Rodney Slaughter Rule 672 Declaration \\ page - 2 -
}

In vive studies utilized male Wistar Royal Hart rats weighing \(150 \pm 20 \mathrm{~g}\). which have been kept for \(7-10\) days on an altered light cycle (6:30 A.M. - 6:30 P.M. dark) housed two per cage and fed powdered Purina Rat Chow and water ad libitum. Three hours before the diurnal maximum of cholesterol systhesis at midday the rats were administered the test substances dissolved or as a suspension in \(0.5 \%\) carboxymethylcellulose in a volume of \(1 \mathrm{ml} . / 100 \mathrm{~g}\). body weight. Controls received vehicle alone. One hour after receiving the test substance, the rats were injected intraperitoneally with about 25 \(\mu \mathrm{Ci} / 100 \mathrm{~g}\). body weight of sodium [1-14C]acetate \(1-3 \mathrm{mCi} / \mathrm{mmol}\). Two hours after mid-dark, blood samples were obtained under sodium hexobarbitol anesthesia, and the serum was separated by centrifugation. The resulting serum samples were saponified and neutralized, and the \(3 \beta\)-hydroxy sterols were precipitated with digitonin basically as described by Sperry. et \({ }_{1}\) l., J. Biol. Chem. 187,97(1950).

The [ \({ }^{4}\) C]digitonides were counted by liquid scintillation spectrometry. The assay is based on the conversion of \({ }^{4}{ }^{4}\)-acetate to \({ }^{14}\) C-cholesterol in vive.
2. I entered the counts in DPM of digitonin precipitable sterol ( \(\beta\)-hydroxy sterol, mostly cholesterol in the rat) into a computer program, which converted them to nCi of sterol found per 100 ml . of serum at 4 hours after the injection of the \({ }^{14} \mathrm{C}\)-acetate.
3. I have reviewed Exhibit K-1 hereto, which comprises true copies of pages \(133,134,135,136,137\) and 138 of my Laboratory Notebook \#917.

\section*{1/3}

\begin{abstract}
Rodney Slaughter Rule 672 Declaration page - 3 -
4. Notebook pages 133-135 contain true copies of a computer printout for the protocol and results in nCi/dl of Study \#H318, which \(I\) started on October 22, 1987. These pages contain the date of \(10 / 22 / 87\) at the top in my handwriting.
\end{abstract}
5. Notebook pages \(136-138\) contain true copies of a
computer printout for the protocol and results in nCi/dl
of Study \#H319, which \(I\) started on October 29,1987 .
These pages contain the date of \(10 / 29 / 87\) at the top in my
handwriting.
6. Both studies were completed on or prior to December 9, 1987, the date indicated at the bottom of the computer printouts on pages 135 and 138 .
7. It was my practice to paste the computer printouts into my notebook and to sign the notebook page when I did this.

Rodney Slaughter Rule 672 Declaration page - 4 -

\begin{abstract}
The undersigned declares further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.
\end{abstract}

I hereby subscribe my name to the foregoing DECLARATION this 13 day of November 1992.


Case No. 600-7101/CONT/Int. (2) Patent BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCE \({ }^{\text {为 }}\) X INTERFERENCE
```

WATTANASIN

```
v .
FUJIKAWA et al.

Interference No. \(102,648=\frac{H}{4}\)
Examiner-in-Chief: M. Sofocleous

WATTANAS IN
v .
FUJIKAWA et al.
v.

FUJIKAWA et al.

NOTICE OF THE FILING OF WATTANSIN CONSOLIDATED AFFIDAVIT TESTIMONY PURSUANT TO 37 CFR 1.672

Appended is the consolidated affidavit testimony of the party Wattanasin for the above-numbered interferences.

Respectfully submitted,


Interference No. \(102,975-\frac{1}{4}\) ?
Examiner-in-Chief: M. Sofocleous

SANDOZ CORPORATION
59 Route 10
E. Hanover, NJ 07936

DEF:rmf
November 16, 1992
Enclosures: Volume I (pages 1-114)
Declaration of S. Wattanasin Declaration of S.Barcza
```

Int. Nos. 102,648, 102,075
Rule 672 Notification
page - 2 -

```

\section*{Enclosures (continued):}
```

Declaration of R. Patel
Supplemental Declaration of R. Patel
Declaration of T. Scallen
Declaration of N. Paolella
Declaration of F. Kathawala
Declaration of R. Damon
Declaration of D. Weinstein
Declaration of L. Perez
Declaration of R. Engstrom
Declaration of R. Slaughter
Volume II (pages 115-262)
Exhibits A-1, A-2, A-3
Exhibits B-1, B-2
Exhibits C-1, C-2, C-3
Exhibits D-1, D-2, D-3
Exhibits E-1, E-2, E-3, E-4, E-5
Volume III (pages 263-355)
Exhibit F-1
Exhibj.ts G-1, G-2
Exhibit H-1
Exhibit I-1
Exhibit J-1
Exhibit K-1
Exhibit L-1

```

Int. Nos. 102,648 , 102 r975
Rule 672 Notification
page - 3 -

\section*{CERTIFICATE OF SERVICE}

It is hereby certified that a true copy of the paper entitled:

NOTICE OF THE FILING OF CONSOLIDATED WATTANSIN AFFIDAVIT TESTIMONY PURSUANT TO 37 CFR 1.672
together with the declarations and exhibits appended to said paper, were served on counsel for the party Fujikawa et al., this 16th day of November, 1992, by postage pre-paid first-class mail addressed to the following:

Oblon, Spivak, McClelland, Maier \& Neustadt, P.C. Attn: Steven B. Kelber, Esq.
1755 South Jefferson Davis Highway
Crystal Square 5, Ste. 400
Arlington, VA 22202


Interference No, \(102,648-\neq 66\)
Interference No. \(102,975-\neq 8\)
WATTANASIN Consolidated
Affidavit Testimony
and Exhibits

VOLUME II
Interference No. 102,648
Interference No. 102,975
WATTANASIN Consolidated Affidavit Testimony and Exhibits
(3) \(\operatorname{cop} 4\) to Dr.Kateawala

1984 Proposal
Sompong wattanasi
November 28, 1983
Our plan for 1984 was organized into for general areas of increasing difficulty.
we will conduct the work in the approximal order present below. All of our work will be guided by results of biological assays and we will use biological information as it becomes available to modify our synthetic objectives.
The four areas are:
(1) Synthesis of Indenes
(2) Synthesis of "restricted rotation" Indole anologues,
\(x\) (3) Synthesis of complex analogues based on SAH 62-528-A3a ralogue of Compaction
(4) Synthesis of new analogues based on
(1) \(\rightarrow\) (3).
(1) Synthe sis of Indenes

Based on the indole 1, we intend to prepared and testing compounds \(2-4\)



1
\[
L=\text { Lactom }
\]


3


4

Compound 2 will be prepared to examine the effect of replacement of the nitrogen by carbon. Compound 3 and / or 4 will next be prepared to test whether or wot the frei.. rotation of the isopropyl group necessary for activity.
(2) Synthesis of "restricted rotation" Indoles


5


6

Analogues 5 and/ or 6 . are proposed as probes of the rotation requirements of the pars - fluorophenyl group and the double bond side chain of the lactone. Nothing is currently known in this regard.
(3) Synthesis of complex analogues based on SAH 62-528- Az analogue of compaction.
A) Asymmetric synthesis of an af a analogue of compaction


7


9

The racemic compounds 7 - 9 , az a analogue of compaction, Rave already prepared and submitted for testing. If any of these. compounds showed significant activity, we intend. to prepare ole of them in optically. active form.
B) Diels - Alder reaction of \(Z\) azo trienes

We have found that the Disels-Alder reaction of the. \(z\) aga trine is highly stereospecific to yield the cis isoquinoline compound 10 , as the only product.



10

The highly stereospecitic and the usefulness of the method in the sunthexic of this type of compounds makes US feel necessary to demonstrate the followings:
(a) Effect of the \(R\) group \(C R=\) Cit, rather Han H) in the cyclisation.
(b) Identity of the products from the following Deeds - Alder reactions.

stereochemistry

C). Synthesis of the analogue 11 .

Compound II is a close relative of the ara analogues of compaction 7 - 9 , but might be move readily obtainable by the route shown above.


In addition, computer modellings show a better overlapping between compaction. and II than those of \(7-9\)
(4) Synthesis of new analogues boned on (1) - (3)

If any of the analogues thus far proposed show interesting activity, it may be necessary to prepare a variety of compounds: with various modifications. In addition, serena more analogues such as \(12-14\) are of interesting.

\(12 x=N R\)
13 \(x=5\)


14

It is unrealistic to expect all of the ce goals to be accomplished during the wet year period, but we certainly expect to complete the indene analogue, the restricted rotation indole analogue, the optical synths of an azo analogue of compaction, to complete general study of Dies. Alder reaction of \(z\) asa triene, and to make a substantial progress into the synthesis of other analogues.

1985 Proposal

The followings are men objectives in 1985
(1) Complete the project on Quinoline system. If one of the quinoline proved to be very active, all of these three quisolimes and



a few modifications might heed to be prepared, because of their apparent ease of syrutenes.
: (2) Complete the project on INDENE systems. some of there cherely related analogs may be necessary. to prepare, to find ont the optimum structure.


\[
x=0, N R, S
\]
(3) New Anelogs of Indened.

\[
\begin{aligned}
& R=A r_{y}, a l k_{y} l \text { gromps } \\
& x=0, N R, S
\end{aligned}
\]

(4) \(x\)-ray. structure of crystalline HMG-coA derivatives.


Derivatives vary \(R \& x\)

(5). New modifications boned ow \((1-3)\). and Modifications on ester. \(R\) groups eg.




Route I



\(\underset{\substack{\text { reflux. } \\ \text { Eton }} \mathrm{R}_{1} \mathrm{H}_{\mathrm{M}}^{\mathrm{O}} \mathrm{OR}_{2}}{ }\)

3) \(n \mathrm{Bu}_{4} \sim \mathrm{~N}\)

\section*{Route II}

3) \(\mathrm{CH}+\mathrm{OH}\)







132


518.5

9735781 thev. 11




136








9.99 ppm


\begin{tabular}{|c|c|c|c|c|}
\hline arte flulsu, Proj. & Title- & \(\# 1079\) & 33 & 146 \\
\hline ", 'd From- & & & & \\
\hline
\end{tabular}






Title- wirt
\[
22,5 \times \omega^{t}=1.8 e r=1=
\]


\[
\begin{aligned}
& \left(\begin{array}{c}
329 \\
3
\end{array}\right. \\
& \because 22 \\
& +, 1.01
\end{aligned}
\]
\[
1079-101-28=
\]
\[
\begin{array}{ll}
10779-101-28 & =110 \\
\text { Disopropylamine } & =0.5 \text { me? }
\end{array}
\]
\[
\begin{aligned}
& 110 \text { mg }(0,00233 \times 3 \text { mol }) \\
& 0.5 \text { me } \quad(000334 \text { mol }
\end{aligned}
\]
\[
\begin{aligned}
& = \\
& \text { Hisoprpylamine }=
\end{aligned}
\]
\[
\text { exhml acto acutra }=
\]
commerilly availach
To a soln of deisupwiplamide Cl 8 sM im

 resmetig. yellow. Soln w \(\rightarrow\) shind ai \(-2 \rightarrow-30^{2}\) for 3o min.
4.0 pm: it we of the di isproptamide
 4 mm .

TLe aft 2 on min \(\Rightarrow\) ore onty tra of sim.


En-pahl R Piep TLC.( \(1: 1\) ether-pahol)
\(\ldots i^{\text {sm }}\)
(a): yellow \(\underset{\sim}{n}=112 \mathrm{ng}(1079-105-35)\)









ct. P. \(1079-86\).

\[
397.458
\]
(2a5) \(\begin{aligned} 1079-296-35 & =150 \mathrm{mg} \\ P(06 t)_{2} & =0.3 \mathrm{me}\end{aligned}\) \(\begin{array}{rlcl}P \text { COEF } & =0.3 & 2 & \text { me. } \\ \text { Tolnene } & = & \end{array}\)
9.10 fam:

TLC \(11.20 \mathrm{am}: \quad \Rightarrow \mathrm{sm}\).
0.5 me of \(P(044)_{3} \omega \rightarrow\) addid
0.5 mero heatic
 pulonges lefturity at \(110^{\circ}\) for zob \(\Rightarrow\) complete raction Cencentration 64 distily invarm gave ow ol which solicefiel on standing 160 mg (57) \((127-r-23)\) mp lor- 107 ( almas cotorlecs s \(d-2)_{25}\)





I) LDA
\[
\begin{aligned}
& \text { 1) } \\
& \text { 2) } \\
& \hline
\end{aligned}
\]

\[
\begin{aligned}
& \text { (397) } 1127-5-23=150 \text { ing (0.0003778 mol) }
\end{aligned}
\]
\[
\begin{aligned}
& 1.7 \mathrm{M} \\
& \text { THF = } \\
& 3 \\
& 1.2 \text { oㅏ. } \\
& \text { me. }
\end{aligned}
\]

To a solution of \(1127-5-22\) in THF (3 me) at \(-55^{\circ} \mathrm{C}\) aseded LDA. The velulty dack 10 orace coln w \(\rightarrow\) thew stirind at \(\rightarrow \pi^{\circ} \rightarrow-6 i c\) for \(2^{10}\) min. 9.50 am -10.00 am .
 aloled aft \(20 \mathrm{~min} \Rightarrow\) mainly one product

stattiy
phoplenamas. a
Prep TLC (1:1 atso-petrol) gaur with etote. to gika yellow sil \(=500\) mg (127-930) - \(60^{\circ} c\) wite o.t xe Hote. Them dil. Hee a ther was acked aud iectractsel
yellow oil \(=100\) ing \((1021127-9-33)\)
UMr
)



1






Exhibit C



Sawai Ex 1005
Page 705 of 4322


Sawai Ex 1005


Sawai Ex 1005


Sawai Ex 1005
Page 708 of 4322



Sawai Ex 1005



Sawai Ex 1005




Sawai Ex 1005
Page 715 of 4322



Sawai Ex 1005
Page 717 of 4322




Sawai Ex 1005
Page 720 of \(\mathbf{4 3 2 2}\)














87147/81 (Rev. 2)









Exhibit. \(D\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
S_{\text {SANDO }}
\]} & \multicolumn{4}{|r|}{\multirow[b]{2}{*}{SANDOZ RESEARCH INSTITUTE east hanover, new Jersey CHEMICAL INFORMATION}} & Date: & \\
\hline & & & & & Compound No.: & - \\
\hline \multirow[t]{2}{*}{Structure:} & & & & & \begin{tabular}{l}
Emp. Form: \\
Mol. Wt. \\
m.p. \\
b.p. \\
-Others
\end{tabular} & \\
\hline & & & & & \begin{tabular}{l}
Hanover \\
AM/AV \\
Tr \\
Agro
\end{tabular} & \\
\hline \multicolumn{7}{|l|}{Name:} \\
\hline Screen: & \(\checkmark\) & Screen: & \(\checkmark\) & \multirow[t]{3}{*}{\begin{tabular}{l} 
Pat. Disclosure No. \\
L \& D No. \\
Known \\
\hline
\end{tabular}} & Remarks: & \\
\hline 10 & & & & & & \\
\hline GHI & & & & & & \\
\hline GLUC & & & & \multirow[t]{7}{*}{Preparation of Physiol. Solution} & & \\
\hline HG & & & & & & \\
\hline HL & & & & & & \\
\hline PL & & AM/AV & & & & \\
\hline \multirow[t]{2}{*}{TC} & & Tr & & & & \\
\hline & & Agro & & & & \\
\hline Compare With: & & & & & & \\
\hline
\end{tabular}

Synthesis:


Synthesis:



83520/74 Rev. 6


Synthesis:


Chem. No.: \(\quad .-i+j 7\)
83520/74 Rev. 6



Chemist: S. Wattanasin /R.Patel
Chem. No.: 1206-179-30
83520/74 Rev. 7



Chemist: S. Wattanasin / R. Patel
Chem. No.: 1206-201-30



Exhibit E

\section*{SANdoz HMG-Co-A. Keductase SerEENing Book \(\frac{\pi}{5}\) pagk \\ \(2 / 7\)}

\section*{\(12-13-84\)}

Sandoz Compounds Teṣted for HMG-CoA Reductase
1) Following compounds weighed out to make \(\frac{10^{-2} \mathrm{mu}}{\mathrm{m}}\) dilution: 63-364 ( 25489 ) 1.30 mg in 13.015 me DMA \(63.365(25490) \quad 1.60 \mathrm{mg}\) un 18.836 , Tul DMA \(63.366(25496) .1 .50 \mathrm{mg}\) w 15.473 me DMA 63-369 (25512). 5 mg min. 5.338 tue DMA \(63-162 /\{(25500) 1.80 \mathrm{mg}\) m. 19.284 me DmA Following compounds saponified in \(50^{\circ}\) waterbath for 2 hrs:
2) Microsomes were made on \(12-10-84 \quad\) and kept frozen at \(-80^{\circ}\) until thawed and rehomogenized for this experiment. Protein concentration of microsomes \(.180 \times 10 \times 1.8 \times 1.18 \mathrm{mg} / \mathrm{m}\)
3) Samples were pre-incubated 20 minutes in \(37^{\circ}\) waterbath.
4) \(20 \mu \mathrm{l} \quad 2 \mathrm{mM}\) NAOPH added to each sample with repeating Eppendorf.
\(20 \mu]\) [ \({ }^{14}\) C]HMG-COA added to each sample with repeating Eppendorf.
5) Samples incubated 20 min in \(37^{\circ}\) waterbath.
6) Reaction stopped with addition of \(50 \mu 1\) conc. HCL (12M).
7) \(100 \mu 1[3 \mathrm{H}]\) MVA added to each sample with pipetman.
8) Samples on benchtop \(k 0\) minutes before putting samples on columns.
9) Factor for calculations 48.44 .

RESULTS OF EXPERIMENT:


1) Thaw frozen microsomes in ice water for approximately \(30-45\) minutes, and rehomogenize microsomes with a tight-fitting pestle 10 X .
2) Check the protein concentration of the sample by the method of Bradford, using a 1:10 dilution of microsomes. If needed dilute microsomes with Buffer \(A+10 \mathrm{mM}\) DTT ( pH 7.2 ). Microsomes should have a protein concentration of \(1.0 \mathrm{mg} / \mathrm{m} 7\) to \(1.5 \mathrm{mg} / \mathrm{m} 7\).
3) \(200 \mu 1\) Buffer \(A+D T T\) is used for blank, run parallel with the enzyme samples.
4) \(200 \mu 1\) of the microsomal suspension is used to assay each sample.
5) Pre-incubate samples at \(37^{\circ} \mathrm{C}\) in shaking waterbath for 20 minutes.
6) With Eppendorf repeating pipette, add \(20 \mu 12 m M\) Nadph to each sample at timed intervals.
7) With Eppendorf repeating pipette, add 20ر1 [ \(\left.{ }^{14} \mathrm{C}\right] H \mathrm{HG}-\mathrm{COA}(30,000\) dpm, 2.5 mM final concentration).
8) Incubate samples 30 minutes in shaking \(37^{\circ}\) waterbath.
9) Stop reaction with \(30 \mu 1\) 12M HCL at the same timed intervals as before.
10) Add \(100, \mu 1[3 \mathrm{H}]\) mevalonate in distilled water \((90,000 \mathrm{dpm})\) to each sample with pipetman.
11) Incubate samples at room temperature for at least 60 minutes. (Samples may be left at room temperature overnight.)
12) After room temperature incubation, each entire assaying volumn is applied to, and allowed to drain into the top of the resin column. The sample is eluted with 2 ml of distilled water, and counted in a dual channel detector with 5 mls of Merit Radioassay Medium (Isolab, Inc.)
13) Activity is calculated using the internal standard method of Goldfarb and Pitot.

\section*{PREPARATION OF COLUMNS USED FOR} HMG-COA REDUCTASE ASSAY
1) Dowex 1-x8 200-400 mesh was obtained from Polysciences, Inc. The chloride salts of these resins were converted to the hydroxide form with 20 volumns of 1 N sodium hydroxide followed by 5 volumns of distilled water. The subsequent conversion to the formate salt with \(3-4\) volumns of \(1 N\) formic acid is indicated by a distinct return of the resin to a lighter golden color. Excess salt is removed by rinsing extensively with distilled water. The well drained but damp resin is stored in the dark at \(4^{\circ} \mathrm{C}\).
2) Columns are prepared by pouring a slurry of resin, consisting of one part formate resin and three parts water into a polystyrene column (QS-J from Isolab, Inc.). Dimensions of the settled resin are 0.7 by 4 cm ( 1.5 ml if 5 mls of slurry are applied).



 Sandoz unknowns were dissolved in DMA (Dimethylacetamide
from Sigma), and Buffer A
Dilution of each compound gave the concentrations indicated in the
results. Microsomes were prepared from male Sprague-Dawley rats ( 150 g )
in Buffer A with 10 mM DTT and frozen at \(-80^{\circ} \mathrm{C}\) until thawed and used for
experiment. \(200 \mu \mathrm{Aliquots}\) of microsomal suspension ( \(0.91 \quad \mathrm{mg} / \mathrm{ml})\)
plus \(10 \mu \mathrm{l}\) of drug dilution were assayed for HMG-CoA reductase activity. Compactin in DMA at various concentrations was assayed for
inhibition also and is indicated in the results. Buffer \(A\), and DMA \(200 \mu 1\) of microsomal suspension and they showed no significant inhibition of HMG-CoA reductase.

227
号

옹ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅁㅁㅁ

~"
\begin{tabular}{l}
5 \\
\(\stackrel{5}{4}\) \\
0 \\
\hline
\end{tabular}




 ,
\(\qquad\)


人, מ-

A , \% \(\therefore\)
कन

0
OCTOBER 15, 1981
DRUG inhibition study for saldol contract
\[
\begin{aligned}
& \text { Microsomes were prepared from male Sprague-Dawley rats ( } 150 . \mathrm{g} \text { ) } \\
& \text { in Buffer A with } 10 \mathrm{mM} \mathrm{DTT} \text { and frozen at }-80^{\mathrm{C}} \mathrm{C} \text { until thawed and used for } \\
& \text { experiment. } 200 \mu \mathrm{Aliquots} \text { of microsomal suspension ( } 0.96 \text { mg/ml) } \\
& \text { plus } 10 \mu l \text { of drug dilution were assayed for HMG-Con reductase activity. } \\
& \text { Compactin in DMN at various concentrati.ons was assayed for } \\
& \text { inhibition also and is indicated in the results. Buffer A, and DMA } \\
& \text { were also assayed by adding } 10 \mu l \text { of each. to } \\
& 200 \mu 1 \text { of microsomal suspension and they showed no significant inhibition } \\
& \text { of HMG-CoA reductase. }
\end{aligned}
\]
from Sigma), , and Buffer \(\wedge\)
Dilution of each compound gave the concentrations indicated in the results.
Sandoz unknowns were dissolved in DMN (Dinethylacetamide
\(\ldots\)


\begin{tabular}{|c|c|c|c|}
\hline ずずすが号べN &  &  &  \\
\hline
\end{tabular}

\footnotetext{

111～1～


KOIIIQiHN
}



気





\section*{Sawai Ex 1005 \\ Page 781 of 4322}```


[^0]:    FUJIKAWA'S CLAIMS TO CORRESPOND TO THE COUNTER INTERFERENCE
    The original claim 10 of the Fujikawa application was cancelled, and pursued in a copending application which is the subject of a separate paper in this Interference, during ex parte prosecution, see the Amendment of December 19, 1990. Claim 10 would have corresponded to proposed Count 3. In a separate Amendment pursuant to 37 CFR 1.637(c)(1)(ii), Fujikawa submits an

[^1]:    Fourth Floor
    1755 South Jefferson Davis Highway
    Arlington, Virginia 22202
    703-521-5940

[^2]:    1. The documents appended as exhibits hereto correspond to certain of the exhibits already provided with Wattansin's Request for Interference of May 25 , 1990 , with the exception that the dates are left unmasked. A detailed explanation of the exhibits is provided in the Request.
[^3]:    1. Claim 10 covered the compound (E)-3,5-dihydroxy-7-[4'-(4"-(fluorophenyl)-2'-cyclopropyl-quinolin-3'-yl]- hept-6-enoic acid, a lactone formed by condensation of the carboxYlic acid with hydroxy at the 5 -position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
[^4]:    2. A few pages were missing from Wattanasin's copies of the prosecution histories of Fujikawa's involved application and the '930 patent.
[^5]:    SANDOZ CORPORATION
    59 Route 10
    E. Hanover, NJ 07936

[^6]:    SANDOZ CORPORATION
    59 Route 10
    E. Hanover, NJ 07986

    DEF: mf
    June 11, 1992

[^7]:    (i) compounds of structure (A), with the sole exception that cyclopropyl is replaced by isopropyl (see compound of claim 6 of Fujikawa application) [referred to herein as the ".isopropyl" or "isopropyl (4-fluorophenyl)" species].

[^8]:    (2) Fujikawa have failed to demonstrate the separate patentability of the cyclopropyl species over the genus of Counts 1 and 2 .

[^9]:    (15) Kita, T.: Brown, M.i Goldstein, J. J. Clin, Inuest. 1980, 66. $1004 \div 1100$.

[^10]:    (18) (a) Potenzonc, R., Jr.; Cavicehi, E.; Weintraub, K. J. K.; Hop finger, A. J. Comput. Chem. 1977. 1, 187. (b) Potenzone, R. Y.. Hopfinger. A. J. A Demonstration of the CAMSIRQJ Sof lluare Sysfem In DHEW Publ. (FDA) (U.S.), Issue FDA 78-1046, Srructural Correlations of Carcinagenesis and MutoEuntsis, 1978, pp 102-102.
    (19) In-hrube conversion of the program to rum on an IBM 3083 under MVS/TSO (J. W. Vinson, unpublished work).

[^11]:    (1) Roth. B. D.; Hoenle, M. L.; Stratton, C. D.i Sliskovic, D. R.;

    Wilson, M. W.: Newton, R. S. Submitted to J. Med. Chem,

[^12]:    Moreover, if the Wattanasin motion to substitute is granted and proposed Count I becomes Count 1 of this interference, then there is no need to amend existing Count 2 because Count 2 is automatically dependent on Count 1 . It is self-evident that Count 2 is dependent on Count 1 irrespective of whether Count 1 comprises the original Count 1 of the interference as declared or Substitute Count 1.

[^13]:    It is therefore believed in conformity with the overall purpose of the interference rules to include an additional patent or application of a party which contains claims directed to interfering subject matter.

[^14]:    Crystal Square Five
    Fourth Floor
    1755 Jefferson Davis Highway Arlington, Virginia 22202
    (703) 521-5940

[^15]:    "When the [PTO] board held that there was a patentable distinction between chloro, on the one hand, and bromo and iodo on the other, Godtfredsen's disclosure of halogen and chloro lost the possibility of serving as a "full, clear, concise and exact", in the words of $\$ 112$, written description of the separate invention of the unnamed bromo and iodo compounds." (emphasis supplied), 8 USPQ2d at 1268 (bot.)-1269.

[^16]:    I hereby certify that this paper is being facsimile transmitted to the Patent and Trademark Office on the date shown below:
    
    $\qquad$

[^17]:    1. "WB" is the Wattanasin opening brief; "WRB" is the Wattanasin reply brief; "WR" is the wattanasin record.
