07/883,398 QUIN	NOLINE TYPE MEVALONOL	TONES	342163US
Bibliographic Data			
Application Number:	07/883,398	Correspondence Address Customer Number:	22850
Filing or 371 (c) Date:	05-15-1992	Status:	Patented Case
Application Type:	Utility	Status Date:	01-04-1999
Examiner Name:	STOCKTON, LAURA LYNNE	Location:	ELECTRONIC
Group Art Unit:	1613	Location Date:	-
Confirmation Number:	3046	Earliest Publication No:	-
Attorney Docket Number:	342163US	Earliest Publication Date:	-
Class / Subclass:	514/311	Patent Number:	5,856,336
First Named Inventor:	YOSHIHIRO FUJIKAWA, FUNABASHI, (JP)	Issue Date of Patent:	01-05-1999
First named Applicant:	-	International Registration Number (Hague):	-
Entity Status:	Undiscounted	International Registration Publication Date:	-
AIA (First Inventor to File):	No		

07/883,398 QU	QUINOLINE TYPE MEVALONOLACTONES		342163US		
Parent Continuity Data					
Description	Parent Number	Parent Filing or 371(c) Date	AIA(First Inventor to File)	Parent Status	Patent Number
This application is a Division of	07/631,092	12-19-1990	No	Patented	5,872,130
is a continuation of	07/233,752	08-19-1988	No	Abandoned	-
Child Continuity Data					
07/978,884 filed on 11-19-1992 which is Patented claims the benefit of 07/883,398					

07/883,398	QUINOLINE TYPE MEVALONOLACTONES 342163US
Transaction History	
Date	Transaction Description
08-02-2013	PARALEGAL OR ELECTRONIC TERMINAL DISCLAIMER APPROVED
07-31-2013	Terminal Disclaimer Filed
04-29-2013	Patent Term Extension Certificate
08-16-2012	Notice of Final Determination -Eligible
08-08-2011	FDA Final Eligibility Letter
12-20-2010	transaction for FDA Determination of Regulatory Review Period
10-28-2010	transaction for FDA Determination of Regulatory Review Period
05-20-2010	Second letter to regulating agency to determine regulatory review period
03-03-2010	Letter from FDA or Dept of Agriculture re PTE application
09-30-1998	Request for Foreign Priority (Priority Papers May Be Included)
12-08-2009	Initial letter Re: PTE Application to regulating agency
09-30-2009	Patent Term Extension Application under 35 USC 156 Filed
01-07-1999	Recordation of Patent Grant Mailed
12-03-1998	Issue Notification Mailed
10-07-1998	Issue Fee Payment Verified
09-30-1998	Mail Notice of Allowance
09-30-1998	Notice of Allowance Data Verification Completed
09-30-1998	Mail Examiner's Amendment
09-30-1998	Examiner's Amendment Communication
09-24-1998	Case Docketed to Examiner in GAU
09-18-1996	Mail Letter of Suspension
09-18-1996	Suspension - Examiner Initiated
09-17-1996	Mail Miscellaneous Communication to Applicant
09-17-1996	Miscellaneous Action with SSP
12-15-1995	Mail Letter of Suspension
12-15-1995	Suspension - Examiner Initiated
12-15-1995	Mail Miscellaneous Communication to Applicant
12-15-1995	Miscellaneous Action with SSP
03-13-1995	Mail Letter of Suspension
03-13-1995	Suspension - Examiner Initiated
03-10-1995	Mail Miscellaneous Communication to Applicant
03-10-1995	Miscellaneous Action with SSP
04-19-1994	Mail Miscellaneous Communication to Applicant
04-19-1994	Miscellaneous Communication to Applicant - No Action Count
02-24-1993	Mail Letter of Suspension
02-24-1993	Suspension - Examiner Initiated
02-22-1993	Mail Miscellaneous Communication to Applicant
02-22-1993	Miscellaneous Action with SSP
12-08-1992	Date Forwarded to Examiner
11-20-1992	Response after Non-Final Action
09-24-1992	Mail Non-Final Rejection
09-21-1992	Non-Final Rejection

07-02-1992	Case Docketed to Examiner in GAU
$06-18-1992$	Preliminary Amendment
$05-15-1992$	Preliminary Amendment
$05-15-1992$	Preliminary Amendment
$06-13-1992$	Application Captured on Microfilm
$06-13-1992$	Application Captured on Microfilm

Close Window

- fos
$\because *$

VEKIFIED	IAPAN	207224'1987		18/20/87
O	- TAFAN	1550\%/4989		71/26/88
dC.	JAPM	63-67605		08/03/98

WINLHLINE TYFE MEVALUNOLACTUMES

PATENT APPLICATION SERIAL NG7/883?98

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

$07 / 883398$

Oblon, Spivak, McCriemand, Mater \& Neustadt, p.o.

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231

```
IN RE APPLICATION OF:
YOBHIHIRO FUJIKAWA ET AL
SERIAL NO.: NEW DIV APPLN
    OF 07/631,092
:GROUP ART UNIT: 129
FILED: HEREWITH
FOR: QUINOLINE TYPE MEVALONOLACTONES
```

SIR:

Attached hereto for filing are the following papers:
DIVISIONAL APPLICATION, NOTICE OF PRIORITY, EXECUTED DECLARATION OF KELBER, PRELIMINARY AMENDMENT, AND UNEXECUTED DECLARATION OF MASARI KITAHARA/WITH FEES

Our check in the amount of $\$ 690.00$ is enclosed covering any required fees. In the event of any variance between the amount enclosed and the Patent office Charges, please charge or credit the difference to our Deposit Account No. 15-0030. A duplicate copy of this letter is enclosed.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,

Steven B. Kelber
Registration No.: 30,073
Attorneys of Record

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

DECLARATION

HONORABLE COMMISSIONER OF PATENTS \& TRADEMARKS WASHINGTON, D.C. 20231

SIR:
I, steven b. Kelber, declare the attached to be a true and accurate copy, as filed, of U.S. Patent Application Serial Number 07/631,092 filed December 19, 1990 which is a continuation of 07/233,752, filed August 19,1988.

The undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,

Attorney of Record
Registration No. 24,618
Steven B. Kelber
Registration No. 30,073
Fourth Floor
1755 Jefferson Davis Highway
Arlington, Virginia 22202
(703) 521-5940

49-146-O DIV

Our Ref.: NC-115

- 1 -

QUINOLINE TYPE MEVALONOLACTONES
The present invention relates to novel mevalonolactones having a quinoline ring, processes for their production, pharmaceutical compositions containing them and their pharmaceutical uses particularly as anti-hyperlipidemic, hypolipoproteinemic and anti-atherosclerotic agents, and intermediates useful for their production and processes for the production of such intermediates.

Some fermentation metabolic products such as compactine, CS-514, Mevinolin or semi-synthetic derivatives or fully synthetic derivatives thereof are known to be inhibitors against HMG-COA reductase which is a rate limiting enzyme for cholesterol biosynthesis. (A. Endo J. Med Chem., 28(4) 401 (1985))

Cs-514 and Mevinolin have been clinically proved to be potentially useful anti-hyperlipoproteinemic agents, and they are considered to be effective for curing or preventing diseases of coronary artery sclerosis or atherosclerosis. (IXth Int. Symp. Drugs Affect. Lipid

phenyl, phenoxy, benzyloxy, hydroxy, trimethylsilyloxy, diphenyl-t-butylsilyloxy, hydroxymethyl or $-0\left(\mathrm{CH}_{2}\right)_{\ell} \mathrm{OR}^{19}$ (wherein R^{19} is hydrogen or C_{1-3} alkyl, and ℓ is 1,2 or 3) ; or when located at the ortho position to each other, $5 R^{1}$ and R^{2}, or R^{3} and R^{4} together form $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$; or when located at the ortho position to each other, R^{1} and R^{2} together finorm $-O C\left(R^{15}\right)\left(R^{16}\right) 0$ - (wherein R^{15} and R^{16} are independently hydrogen or C_{1-3} alkyl); Y is $-\mathrm{CH}_{2}-$, $-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-$; and z is
$-\mathrm{Q}-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{\mathrm{l} 2}$,

15
or
(wherein Q is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}$ - or $-\mathrm{CH}(\mathrm{OH})-$; W is $-\mathrm{C}(\mathrm{O})-$, $-C\left(\mathrm{OR}^{13}\right)_{2}-$ or $-C\left(\mathrm{R}^{l l}\right)(\mathrm{OH})-; \mathrm{R}^{\text {ll }}$ is hydrogen or C_{1-3} alkyl; R^{12} is hydrogen or R^{14} (wherein R^{14} is physiologically hydrolyzable alkyl or M (wherein M is NH_{4}, sodium, potassium, $1 / 2$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine)); two R^{13} are independently primary or secondary C_{1-6} alkyl; or two R^{13} together form $-\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3}{ }^{-;} \mathrm{R}^{17}$ and R^{18} are independently hydrogen or C_{1-3} alkyl; and R^{5} is hydrogen, C_{1-6} alkyl, C_{2-3} alkenyl, C_{3-6} cycloalkyl,

```
                                    -4 -
alkoxy, fluoro, chloro, bromo or trifluoromethyl),
phenyl-(CH2)m- (wherein m is l, 2 or 3),
-(CH2}\mp@subsup{)}{n}{}\textrm{CH}(\mp@subsup{\textrm{CH}}{3}{})\mathrm{ -phenyl or phenyl-(CH2}\mp@subsup{)}{n}{}\textrm{CH}(\mp@subsup{\textrm{CH}}{3}{})-(\mathrm{ wherein n
is 0,1 or 2).
```

Various substituents in the formula I will be described in detail with reference to specific examples. However, it should be understood that the present invention is by no means restricted by such specific examples.
C_{1-6} alkyl for $R^{1}, R^{2}, R^{3}, R^{4}, R^{6}$ and R^{9} includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl and t-butyl. C_{l-3} alkoxy for R^{l}, R^{2}, R^{3}, R^{4} and R^{6} includes, for example, methoxy, ethoxy, n-propoxy and i-propoxy.
C_{l-3} alkyl for $R^{l l}$ includes; for example, methyl, ethyl, n-propyl and i-propyl.
C_{l-3} alkyl for R^{13} includes, for example, methyl, ethyl, n-propyl and i-propyl.

Alkyl for R^{14} includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl and i-butyl.
M is a metal capable of forming a pharmaceutically acceptable salt, and it includes, for example, sodium and potassium.
$\mathrm{CO}_{2} \mathrm{M}$ includes, for example, $-\mathrm{CO}_{2} \mathrm{NH}_{4}$ and $-\mathrm{CO}_{2} \mathrm{H}$. (primary to tertiary lower alkylamine such as trimethylamine).

$$
C_{1-6} \text { alkyl for } R^{5} \text { includes, for example, methyl, }
$$

```
#r,i
    O
    ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl,
    t-butyl, n-pentyl and n-hexyl.
    C 3-6 cycloalkyl for R }\mp@subsup{R}{}{5}\mathrm{ includes, for example,
cyclopropyl; cyclobutyl, cyclopentyl and cyclohexyl.
5 C C C-3 alkenyl for }\mp@subsup{R}{}{5}\mathrm{ includes, for example, vinyl and
i-propenyl.
    Phenyl-(CH2) m- for R}\mp@subsup{\textrm{R}}{}{5}\mathrm{ includes, for example, benzyl,
\beta-phenylethyl and }\gamma\mathrm{ -phenylpropyl.
    Phenyl-(CH2)
\alpha-phenylethyl and \alpha-benzylethyl.
    C l-3 alkyl for R }\mp@subsup{\textrm{R}}{}{7}\mathrm{ and }\mp@subsup{\textrm{R}}{}{8}\mathrm{ includes, for example,
methyl, ethyl, n-propyl and i-propyl.
Further, these compounds may have at least one or two asymmetric carbon atoms and may have at least two to four optical isomers. The compounds of the formula I include all of these optical isomers and all of the mixtures thereof.
Among compounds having carboxylic acid moieties falling outside the definition of \(-\mathrm{CO}_{2} \mathrm{R}^{12}\) of the carboxylic acid moiety of substituent \(Z\) of the compounds of the present invention, those which undergo physiclogical hydrolysis, after intake, to produce the corresponding carboxylic acids (compounds wherein the \(-\mathrm{CO}_{2} \mathrm{R}^{12}\) moiety is \(-\mathrm{CO}_{2} \mathrm{H}\) ) are equivalent to the compounds of the present invention.
Now, preferred substituents of the compounds of the present invention will be described.
```

- 6 -

In the following preferred, more preferred still further perferred and most preferred examples, the numerals for the positions of the substituents indicate the positions on the quinoline ring. For example, N^{\prime}
fluoro, chloro, bromo, C_{1-3} alkyl, C_{1-3} alkoxy, C_{3-6} cycloalkyl, dimethylamino, hydroxy, hydroxymethyl, hydroxyethyl, trifluoromethyl, trifluoromethoxy, difluoromethoxy, phenoxy and benzyloxy.

Further, when R^{6} is hydrogen, it is preferred that R^{l} and R^{2} together form methylenedioxy.

As preferred examples for R^{3} and R^{4}, when R^{4} is hydrogen, R^{3} is hydrogen, 3'-fluoro, 3'-chloro, 3'-methyl, 4'-methyl, 4'-chloro and 4'-fluoro.

Other preferred combinations of R^{3} and R^{4} include 3'-methyl-4'-chloro, 3',5'-dichloro, 3',5'-difluoro, 3',5'-dimethyl and 3'-methy1-4'-fluoro.

Preferred examples for R^{5} include primary and secondary C_{1-6} alkyl and C_{3-6} cycloalkyl.

Preferred examples for Y include $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - and $-\mathrm{CH}=\mathrm{CH}-$.

Preferred examples for Z include

$-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12},-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$ and $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OR}^{13}\right)_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$.

Now, more preferred substituents of the compounds of the present invention will be described.

As more preferred examples for R^{1}, R^{2} and R^{6}, when both R^{2} and R^{6} are hydrogen, R^{1} is hydrogen, 5-fluoro, 6-fluoro, 7-fluoro, 8-fluoro, 5-chloro, 6-chloro, 7-chloro, 8-chloro, 5-bromo, 6-bromo, 7-bromo, 8-bromo, 5-methyl, 6-methyl, 7-methyl, 8-methyl, 5-methoxy, 6-methoxy, 7-methoxy, 8-methoxy, 5-trifluoromethyl, 6-trifluoromethyl, 7-trifluoromethyl, 8-trifluoromethyl, 6-trifluoromethoxy, 6-difluoromethoxy, 8-hydroxyethyl, 5-hydroxy, 6-hydroxy, 7-hydroxy, 8-hydroxy, 6-ethyl, 6-n-butyl and 7-dimethylamino.

When R^{6} is hydrogen, R^{1} and R^{2} together represent 6-chloro-8-methyl, 6-bromo-7-methoxy, 6-methyl-7-chloro, 6-chloro-8-hydroxy, 5-methyl-2-hydroxy, 6-methoxy-7-chloro, 6-chloro-7-methoxy, 6-hydroxy-7-chloro, 6-chloro-7-hydroxy, 6-chloro-8-bromo, 5-chloro-6-hydroxy, 6-bromo-8-chloro, 6-bromo-8-hydroxy, 5-methyl-8-chloro, 7-hydroxy-8-chloro, 6-bromo-8-hydroxy, 6-methoxy-7-methyl, 6-chloro-8-bromo, 6-methyl-8-bromo,

6,7-difluoro, 6,8-difluoro, 6,7-methylenedioxy, 6,8-dichloro, 5,8-dimethy1, 6,8-dimethyl, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo or 6,8-dibromo.

When R^{1}, R^{2} and R^{6} are not hydrogen, they together represent 5,7-dimethoxy-8-hydroxy, 5,8~dichloro-6-hydroxy, 6,7,8-trimethoxy, 6,7,8-trimethyl, 6,7,8-trichloro, 5-fluoro-6,8-dibromo or 5-chloro-6,8-dibromo.

As more preferred examples for R^{3} and R^{4}, when R^{3} is hydrogen, R^{4} is hydrogen, $4^{\prime-m e t h y l, ~} 4^{\prime-c h l o r o ~ o r ~}$ 4'-fluoro. When both R^{3} and R^{4} are not hydrogen, they together represent 3',5'-dimethyl or 3'-methyl-4'-fluoro.

As more preferred examples for R^{5}, the above-mentioned preferred examples of R^{5} may be mentioned.

As preferred examples for $Y,-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - and (E) $-\mathrm{CH}=\mathrm{CH}-$ may be mentioned. As more preferred examples for Z, the above preferred examples for Z may be mentioned.

Now, still further preferred substituents of the compounds of the present invention will be described. As examples for R^{l}, R^{2} and R^{6}, when both R^{2} and R^{6} are hydrogen, R^{l} is hydrogen, 6-methyl, 6-ethyl, 6-trifluoromethyl, 6-hydroxy, 6-methoxy, 6-chloro, 6-bromo, 6-n-butyl and 7-dimethylamino.

When only R^{6} is hydrogen, R^{l} and R^{2} represent 6,8-dichloro, 5,8-dimethyl, 6,8-dimethyl, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo, 6,8-dibromo, 6,7-difluoro and 6,8-difluoro.

As still further preferred examples for R^{3} and R^{4},

- 9 -
when R^{3} is hydrogen, R^{4} is hydrogen, 4'-chloro or 4'-fluoro, or R^{3} and R^{4} together represent 3'-methyl-4'-fluoro.

Still further preferred examples for R^{5} include ethyl, n-propyl, i-propyl and cyclopropyl.

Still further preferred examples for Y include (E) $-\mathrm{CH}=\mathrm{CH}-$.

As still further preferred examples for Z, the above-mentioned preferred example for Z may be mentioned.

Now, the most preferred substituents for the compounds of the present invention will be described.

As the most preferred examples for R^{1}, R^{2} and R^{6}, when both R^{2} and R^{6} are hydrogen, R^{1} is hydrogen, 6 -methyl or 6-chloro.

When only R^{6} is hydrogen, R^{l} and R^{2} together represent, for example, 6,7-dimethoxy.

As the most preferred examples for R^{3} and R^{4}, R^{3} is hydrogen and R^{4} is hydrogen, 4'-chloro or 4'-fluoro.

The most preferred examples for R^{5} include i-propyl and cyclopropyl. The most preferred example for Y may be (E) $-\mathrm{CH}=\mathrm{CH}-$ -

As the most preferred examples for Z, the above-mentioned preferred examples for Z may be mentioned.

Now, particularly preferred specific compounds of the present invention will be presented. The following compounds (a) to (z) are shown in the form of carboxylic acids. However, the present invention include not only
the compounds in the form of carboxylic acids but also the corresponding lactones formed by the condensation of the carboxylic acids with hydroxy at the 5-position, and sodium salts and lower alkyl esters (such as methyl, ethyl, i-propyl and n-propyl esters) of the carboxylic acids, which can be physiologically hydrolyzed to the carboxylic acids.
(a) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid
(b) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
(c) (E)-3,5-dihydroxy-7-(4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
(d) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6',7'-dimethoxy-quinolin-3'-yll-hept-6enoic acid
(e) (E)-3,5-dihydroxy-7-[4'-(4''-fluoropheny1)-2'-cyclopropyl-quinolin-3'-yll-hept-6-enoic acid
(f) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yll-hept-6-enoic acid
(g) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yll-hept-6-enoic acid
(h) (E) -3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yll-hept-6-enoic acid

```
                                    -11 -
(i) (E).-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'~ (1!'-methylethyl)-quinolin-3'-yl)-hept-6-enoic acid
(j) (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-(1''-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
```

(k) (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-(1''-methyiethyl)-6'-methyi-quinolin-3'-yl]-hept-6-enoic acid
(1) (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-(1''-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6enoic acid
(m) (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
(n) (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yll-hept-6-enoic acid
(○) (E)-3,5-dihydroxy-7-[4!-(4!'-chlorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yll-hept-6-enoic acid
(p) (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-cyclopropyl-6'7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(q) (E)-3,5-dihydroxy-7-(4'-phenyl-2'-(1)'-methylethyl)-quinolin-3'-yll-hept-6-enoic acid
(r) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1''-methylethyl)-6'-chloro-quinolin-3'-yll-hept-6-enoic acid
(s) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1''-methylethyl)-6'-methyl-quinolin-3'-yll-hept-6-enoic acid
(t) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1' -

```
        C
methylethyl)-6',7'-dimethoxy-quinolin-3'-yll-hept-6-enoic acid
(u) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-quinolin-3'-yll-hept-6-enoic acid
```

```
(v) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chloro-quinolin-3'-yll-hept-6-enoic acid
(w) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-methyl-quinolin-3'-yll-hept-6-enoic acid
(x) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
(y) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid
(z) (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropyl-6'-methoxy-quinolin-3'-yll-hept-6-enoic acid
The mevalonolactones of the formula I can be prepared by the following reaction scheme. The enal III can also be prepared by processes \(K\), \(L\) and \(M\).
```

```
                        %
                            -13 -
Z
X
```


Sawai Ex 1002 Page 24 of 266

Sawai Ex 1002 Page 25 of 266

In the above reaction scheme, $R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}$ and R^{12} are as defined above with respect to the formula I, and R^{21} and R^{22} independently represent C_{l-4} lower alkyl such as methyl, ethyl, n-propyl, i-propyl or n-butyl.

Step A represents a reduction reaction of the ester to a primary alcohol. Such reduction reaction can be conducted by using various metal hydrides, preferably diisobutylaluminium hydride, in a solvent such as tetrahydrofuran or toluene at a temperature of from -20 to $20^{\circ} \mathrm{C}$, preferably from -10 to $10^{\circ} \mathrm{C}$.

Step B represents an oxidation reaction of the primary alcohol to an aldehyde, which can be conducted by using various oxidizing agents. Preferably, the reaction can be conducted by using pyridinium chlorochromate in methylene chloride at a temperature of from 0 to $25^{\circ} \mathrm{C}$, or by using oxalyl chloride, dimethyl sulfoxide and a tertiary amine such as triethylamine (Swern oxidation), or by using a sulfur trioxide pyridine complex.

Step C represents a synthesis of a 3-ethoxy-l-hydroxy-2-propene derivative, which can be prepared by reacting a compound V to lithium compound which has been preliminarily formed by treating cis-l-ethoxy-2-(tri-n-butylstannyl)ethylene with butyl lithium in tetrahydrofuran.

As the reaction temperature, it is preferred to employ a low temperature at a level of from -60 to $-78^{\circ} \mathrm{C}$.

Step D represents a synthesis of an enal by acidic hydrolysis. As the acid catalyst, it is preferred to employ p-toluene sulfonic acid, hydrochloric acid or sulfuric acid, and the reaction may be conducted in a solvent mixture of water and tetrahydrofuran or ethanol at a temperature of from 10 to $25^{\circ} \mathrm{C}$. The 3-ethoxy-1-hydroxy-2-propene derivative obtained in Step C can be used in Step D without purification i.e. by simply removing tetra-n-butyl tin formed simultaneously.

Step E represents a double anion condensation reaction between the enal III and an acetoacetate. Such condensation reaction is preferably conducted by using sodium hydride and n-butyl lithium as the base in tetrahydrofuran at a temperature of from -80 to $0^{\circ} \mathrm{C}$, preferably from -30 to $-10^{\circ} \mathrm{C}$.

Step F represents a reduction reaction of the carbonyl group, which can be conudcted by using a metal hydride, preferably sodium borohydride in ethanol at a temperature of from -10 to $25^{\circ} \mathrm{C}$, preferably from -10 to $5^{\circ} \mathrm{C}$.

Further, the reduction reaction may be conducted by using zinc borohydride in dry ethyl ether or dry tetrahydrofuran at a temperature of -100 to $25^{\circ} \mathrm{C}$, preferably from -80 to $-50^{\circ} \mathrm{C}$.

Step G is a step for hydrolyzing the ester. The hydrolysis can be conducted by using an equimolar amount of a base, preferably potassium hydroxide or sodium hydroxide, in a solvent mixture of water and methanol or
ethanol at a temperature of from 10 to $25^{\circ} \mathrm{C}$. The free acid hereby obtained may be converted to a salt with a suitable base.

Step H is a step for forming a mevalonolactone by the dry methylene chloride by using a lactone-forming agent such as carbodiimide, preferably a water soluble carbodiimide such as

N-cyclohexyl-N'-[2'-(methylmorpholinium)ethyl]carbodiimide p-toluene sulfonate at a temperature of from 10 to $35^{\circ} \mathrm{C}$, preferably from 20 to $25^{\circ} \mathrm{C}$.

Step J represents a reaction for hydrogenating the double bond connecting the mevalonolactone moiety and the quinoline ring. This hydrogenation reaction can be conducted by using a catalytic amount of palladium-carbon or rhodium-carbon in a solvent such as methanol, ethanol, tetrahydrofuran or acetonitrile at a temperature of from 0 to $50^{\circ} \mathrm{C}$, preferably from 10 to $25^{\circ} \mathrm{C}$.

Step K represents a reaction for the synthesis of an dehydration reaction of the free hydroxy acid I-2. The dehydration reaction can be conducted in benzene or toluene under reflux while removing the resulting water or by adding a suitable dehydrating agent such as molecular sieve.

Further, the dehydration reaction may be conducted in α, β-unsaturated carboxylic acid ester, whereby a trans-form α, β-unsaturated carboxylic acid ester can be obtained by a so-called Horner-Wittig reaction by using an

```
                                    - 21 -
    alkoxycarbonylmethyl phosphonate. The reaction is
    conducted by using sodium hydride or potassium t-butoxide
    as the base in dry tetrahydrofuran at a temperature of
    from -30 to 0}\mp@subsup{0}{}{\circ}\textrm{C},\mathrm{ preferably from -20 to - }1\mp@subsup{5}{}{\circ}\textrm{C}
```

Step L represents a reduction reaction of the α, β-unsaturated carboxylic acid ester to an allyl alcohol. This reduction reaction can be conducted by using various metal hydrides, preferably diisobutylaluminiumhydride, in a solvent such as dry tetrahydrofuran or toluene at a temperature of from -10 to $10^{\circ} \mathrm{C}$, preferably from -10 to $0^{\circ} \mathrm{C}$.

Step M represents an oxidation reaction of the allyl alcohol to an enal. This oxidation reaction can be conducted by using various oxidizing agents, particularly active manganese dioxide, in a solvent such as tetrahydrofuran, acetone, ethyl ether or ethyl acetate at a temperatrue of from 0 to $100^{\circ} \mathrm{C}$, preferably from 15 to $50^{\circ} \mathrm{C}$.

Step N represents a reaction for the synthesis of an α, β-unsaturated ketone by the selective oxidation of the dihydroxy carboxylic acid ester. This reaction can be conducted by using activated manganese dioxide in a solvent such as ethyl ether, tetrahydrofuran, benzene or toluene at a temperature of from 20 to $80^{\circ} \mathrm{C}$, preferably from 40 to $80^{\circ} \mathrm{C}$.

In addition to the compounds disclosed in Examples given hereinafter, compounds of the formulas I-2 and I-5

```
i",r (%)
%
                            -22 -
                given in Table l can be prepared by the process of the
                present invention. In Table l, i- means iso, sec- means
                secondary and c- means cyclo. Likewise, Me means methyl,
                Et means ethyl, Pr means propyl, Bu means butyl, Pent
    5 méaris pentyl, Hex means hexyl and Ph means phenyl.
```

[^0]Table 1
TPAC

R^{1}	R^{2}	R^{3}	R^{4}	R^{5}	R°
6-4e	H	4-F	H	$c-P r r$	H
$6-\mathrm{i}-\mathrm{Pr}$	H	4-F	H	$\mathrm{i}-\mathrm{Pr}$	H
7-Me	H	4-F	H	$c-P r$	H
6-0Me	H	4-F	H	$c-\mathrm{Pr}$	H
$6-\mathrm{Br}$	H	4-F	H	$c-\mathrm{Pr}$	H
6-i-Pr	H	4-F	H	$c-P r$	H
6-C 2	8-C \&	4-F	H	$\mathrm{c}-\mathrm{Pr}$	H
5-F	6-8r	$4-F$	H	$\mathrm{i}-\mathrm{Pr}$	8-Br
6.0 He	7-0Me	$4-\dot{F}$	H	i-Pr	8-0Me
6-Me	7-Me	4-F	H	$\mathrm{i}-\mathrm{Pr}$	8-7e
6-C \&	7-C \&	4-F	H	$\mathrm{i}-\mathrm{Pr}$	8-C \%
H	H	4-F	H	$\mathrm{C}-\mathrm{Bu}$	H
H	H	4-F	H	c-Hex	H
6-0Me	7-0Me	H	H	$\mathrm{i}-\mathrm{Pr}$	H
6-0.7e	$7-0 \mathrm{Me}$	4-C \&	H	i-Pr	H
6-0.4e	7-04e	H	H	$c-\mathrm{Pr}$	H
6-0Me	7-0Me	4-C \&	H	$c-\mathrm{Pr}$.	H
6 -0Me	7-0.Me	4-F	H	$c-\mathrm{Pr}$	H

R^{\prime}	R^{2}	R^{3}	R^{4}	R^{5}	R°
6-Me	H	H	H	i-Pr	H
6-Me	H	4-C ℓ	H	$\mathrm{i}-\mathrm{Pr}_{\mathrm{r}}$	H
6-Me	H	H	H	$c-\mathrm{Pr}$	H
6-Me	H	4-C e	H	$c-\mathrm{Pr}$	H
6-Me	H	4-F	H	$c-\mathrm{Pr}$	H
6-C \&	H	H	H	$\mathrm{i}-\mathrm{Pr}$	H
6-C ℓ	H	4-C \&	H	$\mathrm{i} \sim \mathrm{Pr}_{T}$	H
6-C ℓ	H	H	H	$\mathrm{C}-\mathrm{Pr}$	H
6-C ℓ	H	4-C \&	H	$\mathrm{c}-\mathrm{Pr}$	H
6-C ℓ	H	4-F	H	$\mathrm{c}-\mathrm{Pr}$	H
H	H	H	H	i-Pr	H
H	H	4-C \&	H	$\mathrm{i}-\mathrm{Pr}_{\mathrm{r}}$	H
H	H	H	H	c. Pr	H
H	H	4-C \&	H	$c-\mathrm{Pr}$	H
H	H	4-F	H	$c \cdot P r$	H

Further, pharmaceutically acceptable salts such as potassium salts or esters such as ethyl esters or methyl esters of these compounds can be prepared in the same manner.

The compounds of the present invention exhibit high inhibitory activities against the cholesterol biosynthesis wherein HMG-COA reductase acts as a rate limiting enzyme, as shown by the test results given hereinafter, and thus are capable of suppressing or reducing the amount of cholesterol in blood as lipoprotein. Thus, the compounds of the present invention are useful as curing agents against hyperlipidemia, hyperlipoproteinemia and atheroscleosis.

They may be formulated into various suitable formulations depending upon the manner of the administration. The compounds of the present invention may be administered in the form of free acids or in the form of physiologically hydrolyzable and acceptable esters or lactones, or pharmaceutically acceptable salts.

The pharmaceutical composition of the present invention is preferably administered orally in the form of the compound of the present invention per se or in the form of powders, granules, tablets or capsules formulated by mixing the compound of the present invention with a suitable pharmaceutically acceptable carrier including a binder such as hydroxypropyl cellulose, syrup, gum arabic, gelatin, sorbitol, tragacanth gum, polyvinyl pyrrolidone
or CMC-Ca, an excipient such as lactose, sugar, corn starch, calcium phosphate, sorbitol, glycine or crystal cellulose powder, a lubricant such as magnesium stearate, talk, polyethylene glycol or silica, and a disintegrator such as potato starch.

However, the pharmaceutical composition of the present invention is not limited to such oral administration and it is applicable for parenteral administration. For example, it may be administered in the form of e.g. a suppository formulated by using oily base material such as cacao butter, polyethylene glycol, lanolin or fatty acid triglyceride, a transdermal therapeutic base formulated by using liquid paraffin, white vaseline, a higher alcohol, Macrogol ointment, hydrophilic ointment or hydro-gel base material, an injection formulation formulated by using one or more materials selected from the group consisting of polyethylene glycol, hydro-gel base material; distilled water, distilled water for injection and excipient such as lactose or corn starch, or a formulation for administration through mucous membranes such as an ocular mucous membrane, a nasal mucous membrane and an oral mucous membrane.

Further, the compounds of the present invention may be combined with basic ion-exchange resins which are capable of binding bile acids and yet not being absorbed in gastraintestinal tract.

The daily dose of the compound of the formula I is
%


```
from 0.05 to 500 mg , preferably from 0.5 to 50 mg for an adult. It is administered from once to three times per day. The dose may of course be varied depending upon the age, the weight or the condition of illness of the patient.
The compounds of the formulas II to VII are novel, and they are important intermediates for the preparation of the compounds of the formula \(I\). Accordingly, the present invention relates also to the compounds of the formulas II to VII and the processes for their production.
Now, the present invention will be described in further detail with reference to Test Examples for the pharmacological activities of the compounds of the present invention, their Preparation Examples and Formulation Examples. However, it should be understood that the present invention is by no means restricted by such specific Examples. PHARMACOLOGICAL TEST EXAMPLES Test A: Inhibition of cholesterol biosynthesis from acetate in vitro
Enzyme solution was prepared from liver of male Wistar rat billialy cannulated and discharged bile for over 24 hours. Liver was cut out at mid-dark and microsome and supernatant fraction which was precipitable with 40-80\% of saturation of ammonium sulfate (sup fraction) were prepared from liver homogenate according to the modified method of Knauss et. al.; Kuroda, M., et. al., Biochim.
```


were washed with phosphate buffered saline(PBS) chilled at $4^{\circ} \mathrm{C}$. Cells were scraped with rubber policeman and collected to tubes with PBS and digested with 0.2 ml of 0.5 N KOH at $37^{\circ} \mathrm{C}$. Aliquot of digestion was used for protein analysis and remaining was saponified with 1 ml of 15\% EtOH-KOH at $75^{\circ} \mathrm{C}$ for 1 hour. Nonsaponifiable lipids were extracted with petroleum ether and ${ }^{14} \mathrm{C}$ radioactivity was counted. Counts were revised by cell protein and indicated with DPM/mg protein. Inhibitory activity of compounds was indicated with IC50.

Test C: Inhibition of cholesterol biosynthesis in vivo
Male Sprague-Dawley rats weighing about 150 g were fed normal Purina chow diet and water ad libitum, and exposed to 12 hours light/l2 hours dark lighting pattern (2:00 PM - 2:00 AM dark) prior to use for in vivo inhibition test of cholesterol biosynthesis. Animals were separated groups consisting of five rats as to be average mean body weight in each groups. Test compounds at dosage of $0.02-0.2 \mathrm{mg} / \mathrm{kg}$ body weight ($0.4 \mathrm{ml} / 100 \mathrm{~g}$ body weight), were dissolved in water or suspended or in 0.5% methyl cellulose and orally administered at 2-3 hours before mid-dark (8:00 PM), while cholesterol biosynthesis reaches to maximum in rats. As control, rats were orally administered only water or vehicle. At 90 minutes after sample administration, rats were injected intraperitoneally with $10 \mu \mathrm{Ci}$ of $\left[2-^{14} \mathrm{C}\right]$ sodium acetate at volume of 0.2 ml per one. 2 Hours later, blood samples
were obtained and serum were separated immediately. Total lipids were extracted according to the method of Folch et al. and saponified with EtOH-KOH. Nonsaponifiable lipids were extracted with petroleum ether and radio activity incorporated into nonsaponifiable lipids was counted.

Inhibitory activity was indicated as percent decrease of counts in testing groups (DPM/2 ml serum/2 hours) from that in control group.

With respect to the compounds of the present
10 invention, the inhibitory activities against the cholesterol biosynthesis in which HMG-COA reductase serves as a rate limiting enzyme, were measured by the above Test A and B. The results are shown in Tables, $2,2-2,3$ and 3-2. Further, the results of the measurements by Test C

- 32 -
Table 2: Inhibitory activities by Test A
Compound I_{50} (molar concentration)
(Compounds
of the present
10 invention)

I-13	1.25×10^{-7}
I-51	1.0×10^{-8}
I-52	7.1×10^{-8}
I-53	1.9×10^{-7}

(Reference compounds)
25

Mevinolin	1.4×10^{-8}
CS-514	9.0×10^{-9}

In Table 2-2, the relative activities are shown based on the activities of CS-514 being evaluated to be 1 .

Table 2-2: Relative activities by Test A

35	Compound	Relative activities
-	(Comounds of the present invention)	
40	I-16	1.75
	I-116	2.25
45	I-117	0.37
	I-120	3.21
	I-522	0.76

${ }^{*}$
\because
Structures of reference compounds:
(1) Mevinolin
$=4 X$

(2) CS-514
$12,41 x$

Table $3:$ Inhibitory activities by Test B-1

```
    \because',*
```

 - 35 -
 activities superior to the reference compound such as CS-514 or Mevinolin in Test A, and exhibited activities superior to CS-514 in Tests B and C.
 Test D: Acute toxicity

A 0.5% CMC suspension of a test compound was orally administered to ICR male mice (group of three mice). The acute toxicity was determined based on the mortality after seven days. With compound I-57, I-58, I-59, I-511, I-512, I-513, I-514, I-515, I-517 and I-523 of the present invention, the mortality was 0% even when they were orally administered in an amount of $1000 \mathrm{mg} / \mathrm{kg}$. EXAMPLE 1

Ethyl (E) -3,5-dihydroxy-7-[4,-(4''-fluorophenyl)-2'-(1''-methylethyl)-quinolin-3'-yl)-hept-6-enoate (compound I-ll) (prepared by steps of Example l-a through Example I-g) EXAMPLE l-a: Ethyl 4-(4'-fluorophenyl)-2-(1'-methylethyl)-quinolin-3-yl-carboxylate (compound VII-1)

The synthesis was conducted in accordance with the method disclosed in J. Org. Chem., 2899 (1966).
6.45 g (0.03 mol) of 2-amino-4'-fluorobenzophenone, $5.53 \mathrm{~g}(0.035 \mathrm{~mol})$ of ethyl isobutyrylacetate and 0.1 ml of conc. sulfuric acid were dissolved in 30 ml of glacial acetic acid, and the mixture was heated at $100^{\circ} \mathrm{C}$ for about 10 hours. After confirming the substantial disappearance of 2-amino-4'-fluorobenzophenone by thin layer chromatography, the reaction solution was cooled to room

EXAMPLE l-c: 4-(4'-fluorophenvl)-2-(l'-methylethyl)-
quinolin-3-yl-carboxyaldehyde (compound V-1)
2.0 g (9.3 mmol) of pyridinium chlorochromate and 0.4
g of anhydrous sodium acetate was suspended in 10 ml of

```
``` dry dichloromethane. To this suspension, a solution obtained by dissolving \(1 \mathrm{~g}(3.4 \mathrm{mmol})\) of compound VI-l in 10 ml of dry dichloromethane, was immediately added at room temerature. The mixture was stirred for one hour. Then, 100 ml of ethyl ether was added thereto, and the mixture was throughly mixed. The reaction mixture was filtered under suction through a silica gel layer. The filtrate was dried under reduced pressure. The residue was dissolved in the isopropyl ether, and insoluble substances were filtered off. The filtrate was again dried under reduced pressure, and the residue was recrystallized from diisopropylether to obtain 0.7 g (Yield: 70\%) of slightly yellow prism crystals. Melting point: \(124-126^{\circ} \mathrm{C}\).
EXAMPLE 1-d: 3-(3'-ethoxy-1'-hydroxy-2'-propenyl)-4-(4'-
fluorophenyl)-2-(1'-methylethyl)-quinoline (compound IV-1)
1.13 g (3.13 mmol) of cis-1-ethoxy-2-(tri-nbutylstannyl)ethylene was dissolved in 8 ml of dry tetrahydrofuran, and the solution was cooled to \(-78^{\circ} \mathrm{C}\) in a nitrogen stream. To this solution, \(2 \mathrm{ml}(3.2 \mathrm{mmol})\) of a 5 wt\% n-butyllithium-n-hexane solution was dropwise added. The mixture was stirred for 45 minutes. Then, a solution prepared by dissolving \(0.76 \mathrm{~g}(2.6 \mathrm{mmol})\) of
```

compound $\mathrm{V}-1$ in 10 ml of dry tetrahydrofuran was dropwise added thereto. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for two hours. Then, 2 ml of a saturated ammonium chloride solution was added thereto to terminate the reaction. The organic layer was extracted with diethyl ether, and the diethyl ether extract was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was separated with $n$-hexane and acetonitrile. The solvent was distilled off under reduced pressure from the acetonitrile layer, and an oily substance thereby obtained was purified by silica gel column chromatography (eluent: 2.5\% methanol-chloroform) to obtain 0.91 g of the desired compound in a purified oily form.
$\mathrm{H}-\mathrm{MNR}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}:$
$1.1(\mathrm{t}, 3 \mathrm{H}, 7 \mathrm{~Hz}) 1.37(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}) 3.7(\mathrm{~m}, 1 \mathrm{H})$
$3.7(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}) 4.75(\mathrm{t}, 1 \mathrm{H}, 7 \mathrm{~Hz}) 5.7(\mathrm{~m}, 1 \mathrm{H})$
$5.95(\mathrm{~m}, 1 \mathrm{H}) 7.05-8.2(\mathrm{~m}, 8 \mathrm{H})$
EXAMPLE l-e: (E)-3-[4'-(4''-fluorophenyl)-2'-(1'' methylethyl)-quinolin-3'-yl]propenaldehyde (compound III-1)
0.91 g of compound IV-l was dissolved in 20 ml of tetrahydrofuran, and 5 ml of water and 100 mg of p-toluenesulfonic acid were added thereto. The mixture was stirred at room temperature for 24 hours. The reaction solution was extracted with diethyl ether a few

magnesium sulfate. The solution was evaporated to dryness under. reduced pressure. The residue was recrystallized from diisopropyl ether to obtain 130 mg (yield: 59\%) of white crystals. Melting point: 99-101 ${ }^{\circ} \mathrm{C}$. EXAMPLE 1-g: Ethyl (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1'-methylethyl)-quinolin-3'-yl]-hept-6-enoate (compound I-11)

110 mg ( 0.245 mmol ) of compound II-l was dissolved in 5 ml of ethanol in a nitrogen atmosphere, and the solution was cooled $0^{\circ} \mathrm{C}$. Then, $10 \mathrm{mg}(0.263 \mathrm{mmol})$ of sodium borohydride was added, and the mixturer was stirred for one hour. Then, 1 ml of a $10 \%$ hydrochloric acid aqueous solution was added thereto, and the mixture was extracted three times with ethyl ether. The ethyl ether solution was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. Then, the solution was evaporated to dryness under reduced pressure. The residual oil was purified by silica gel column chromatography (eluent: 5\% methanol-chloroform) to obtain the desired product as a pure colorless oily substance. 70 mg (Yield: 64\%)

H-NMR ( $\mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm}:$

$$
\begin{aligned}
& 1.30(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \quad 1.39(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) \quad 1.4-1.8(\mathrm{~m}, 2 \mathrm{H}) \\
& 2.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}) 3.0-3.8(\mathrm{~m}, 2 \mathrm{H}) 3.50(\mathrm{~m}, 1 \mathrm{H}) \\
& 3.9-4.6(\mathrm{~m}, 2 \mathrm{H}) 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=8 \mathrm{~Hz}) 5.35(\mathrm{~m}, 1 \mathrm{H}) \\
& 6.59(\mathrm{~m}, 1 \mathrm{H}) 7.10-8.18(\mathrm{~m}, 8 \mathrm{H})
\end{aligned}
$$

EXAMPLE 2
Sodium salt of (E)-3,5-dihydroxy-7-[4'-(4' ${ }^{\prime}$ -fluorophenyl)-2'-(1''-methylethyl)-quinolin-3'-yll-hept-6-enoic acid (compound I-5l)

60 mg ( 0.133 mmol ) of compound I-1l was dissolved in 3 ml of ethanol. Then, 0.26 ml of a 0.5 N sodium hydroxide aqueous solution was dropwise added thereto. The mixture was stirred at room temperature for further one hour, and ethanol was distilled off under reduced pressure. Then, 5 ml of water was added thereto, and the mixture was extracted with ethyl ether. The aqueous layer was freeze-dried to obtain 40 mg ( $67 \%$ ) of hygroscopic white powder. Melting point: $207-209^{\circ} \mathrm{C}$ (decomposed). EXAMPLE 3
(E) -3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1'1-methylethyl)-quinolin-3'-yll-hept-6-enoic acid (compound I-21)

110 mg ( 0.244 mmol ) of compound I-ll was dissolved in 10 ml of ethanol. Then, 0.79 ml of a 0.5 N sodium hydroxide aqueous solution was dropwise added thereto. The mixture was stirred at room temperature for further one hour, and ethanol was distilled off under reduced pressure. Then, 10 ml of water was added thereto, and the mixture was extracted with ethyl ether. The aqueous layer was weakly acidified (pH 4) with a dilute hydrochloric aqueous solution and extracted three times with ethyl ether. The ethyl ether layers were put together and dried
over anhydrous magnesium sulfate. Then, the solvent was distilled off under reduced pressure to obtain 90 mg of slightly yellow oily substance. H-NMR ( $\mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm}:$
$1.36(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}) 2.4(\mathrm{~m}, 2 \mathrm{H}) 3.5(\mathrm{~m}, 1 \mathrm{H}) 3.45(\mathrm{~m}, 1 \mathrm{H})$
$3.8-4.6(\mathrm{~m}, 2 \mathrm{H}) .5 .40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=19 \mathrm{~Hz}, \mathrm{~J}_{2}=8 \mathrm{~Hz}\right)$
$6.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=19 \mathrm{~Hz}) 7.0-8.3(\mathrm{~m}, 8 \mathrm{H})$
EXAMPLE 4
 quinolin-3'-ylethenyl1-4-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one (compound I-31)

90 mg of compound $\mathrm{I}-21$ was dissolved in 10 ml of dry toluene, and the solution was refluxed under heating for 3 hours by means of a Dean Stark apparatus.

Toluene was distilled off under reduced pressure, and the residual solid was recrystallized from diisopropyl ether to obtain 40 mg of colorless prism crystals. Melting point: $182-184^{\circ} \mathrm{C}$.

By silica gel thin chromatography, the product gave two absorption spots close to each other attributable to the diastereomers. (Developping solvent: $3 \%$ methanol-chloroform)

These diasteromers were separated and isolated by silica gel thin layer chromatography. [Developping solvent: t-BuOMe/hexane/acetone $=7 / 2 / 1(\mathrm{v} / \mathrm{v}), \mathrm{Rf}=0.6$ and 0.7 (obtained weight ratio: $1 / 2$ )]

```
 - 43 -
 Rf=0.7: trans lactone
 H-NMR (CDCl}33) \delta ppm
 1.40(d, 6H,J=7Hz) 1.6(m, 2H) 2.65(m,2H) 3.48(m,1H)
 4.20(m,1H) 5.15(m,1H) 5.37(dd,1H, J 1 =18Hz, J 2 = 7Hz)
 6.68(d,1H,J=19Hz) 7.1-8.2(m,8H)
 Rf=0.6: cis lactone
 H-NMR (CDCl}3) \delta ppm
 1.40(d, 6H,J=7Hz) 1.6(m, 2H) 2.65(m,2H) 3.48(m,1H)
 4.20(m,lH) 4.65(m,lH) 5.40(dd, 1H, J = =18Hz, J 2 = 7Hz)
 6.66(m,1H) 7.0-8.2(m,8H)
EXAMPLE 5
 6-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-
quinolin-3'-ylethynyl]-4-hydroxy-3,4,5,6-tetrahydro-2H-
pyran-2-one (compound I-4I)
 20 mg of a mixture of diastereomers of compound I-31
 was dissolved in 5 ml of ethanol, and 10 mg of 5%
 palladium-carbon was added thereto. The mixture was
 stirred under a hydrogen atmosphere. After confirming the
 disappearance of the starting substance and the appearance
 Of a new spot by thin layer chromatography, the
 palladium-carbon was filtered off, and ethanol was
 distilled off to obtain colorless oil.
 This oil was purified by preparative thin layer
 chromatography to obtain l6 mg of the desired product as
 pure colorless oil.
 MS (m/e): 408(M+}+\textrm{H}),407(\mp@subsup{\textrm{M}}{}{+}), 366, 292, 27
 In the same manner as in Example l-a, compounds VII-2
```

    \therefore.:
        '
        %
    - 44 -
    to VII-27 were prepared.. The physical properties of these
        compounds are shown in Table 4. (In the Table, R', R
        R
        compound VII.)
    ```

Table 4 (Compounds in this Table are compounds of the formula VII wherein \(R^{6}\) is hydrogen.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VII -24 & 6-C & H & H & H & \(\mathrm{c}-\mathrm{Pr} \mathrm{CH} 3\) & \[
\begin{aligned}
& 97.0- \\
& 98.5
\end{aligned}
\] \\
\hline VII-25 & H & H & 4-F & H & sec-Bu \(\mathrm{CH}_{3}\) & oil \\
\hline VII-26 & 6-Me & H & 4-F & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & 109.0 \\
\hline VIT-27 & 6.0 Me & \(7-0 \mathrm{Me}\) & 4-F & H & \(\mathrm{c}-\mathrm{Pr} \mathrm{CH}_{3}\) & -111.0
153.0 \\
\hline & & & & & & -153.5 \\
\hline
\end{tabular}
```

VII - 8
H-MMR (in $\mathrm{CDCl}_{3}$ ) $\quad \delta \mathrm{ppm}$ :
$0.92(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.41(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$
2.47 ( $s, 3 H$ ), 3.27 (Heptaplet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$ )
$3.96(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 7.0-7.8(\mathrm{~m}, 8 \mathrm{H})$
VII - 14
H-NMR (in $\mathrm{CDCl}_{3}$ ) $\quad \delta \mathrm{ppm}:$
$1.01(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.42(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$
2.38 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$ ) , 3.25 (Heptaplet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$ )
$4.04(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 6.9-8.1(\mathrm{~m}, 7 \mathrm{~Hz})$
VII -15
H-NMR (in $\mathrm{CDCl}_{3}$ ) $\quad \delta \mathrm{ppm}:$
0.97 ( $\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ ) , 1.43 ( $\mathrm{d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$ )
$2.29(\mathrm{~s}, 6 \mathrm{H}), 3.25$ (Heptaplet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$ )
$4.00(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 6.8-8.0(\mathrm{~m}, 7 \mathrm{H})$

```
```

VII - 18
$\mathrm{H}-\mathrm{NMR}\left(\mathrm{in} \mathrm{CDC}_{3}\right.$ ) $\quad \delta \mathrm{ppm}:$
$0.98(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.02(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$
1.6-2.3(m,2H), 2.8-3.1(m,2H)
$4.03(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), \quad 6.9-8.1(\mathrm{~m}, 8 \mathrm{H})$
VII -21
H-NMR (in $\mathrm{CDCl}_{3}$ ) $\quad \delta \mathrm{ppm}:$
$1.03(t, 3 H, J=7 H z), 1.41 \cdot(d, 6 H, J=6 H z)$
$3.25_{(\text {Heptaplet, } 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})}$, $4.05(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$,
6.8-8.1 (m,13H)
VII -25
H-NMR (in $\mathrm{CDCl}_{3}$ ) $\quad \delta \mathrm{ppm}:$
$0.97(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 2.0 \sim 2.6(\mathrm{~m}, 1 \mathrm{H})$
$2.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.51(\mathrm{~s}, 3 \mathrm{H})$,
6.8-8.1 (m, 8H)

```

In the same manner as in Example lib, compounds VI-2 to VI-27 were prepared. (In Table \(5, R^{1}, R^{2}, R^{3}, R^{4}\) and \(R^{5}\) correspond to the substituent in compound VI.)

Table
fath (Compounds in this Table are compounds of the formula VI wherein \(R^{6}\) is hydrogen.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \(\mathrm{R}^{1}\) & \(\mathrm{R}^{2}\) & \(\mathrm{R}^{3}\) & \(\mathrm{R}^{\text {d }}\) & \(\mathrm{R}^{5}\) & \[
\begin{gathered}
\mathrm{m} \cdot \mathrm{p} \\
\left({ }^{\circ}\right)
\end{gathered}
\] \\
\hline VI -2 & H & H & \(\mathrm{p}-\mathrm{F}\) & II & \(\mathrm{CH}_{3}\) & - \\
\hline VI-3 & H & H & H & H & \(\mathrm{CH}_{3}\) & 149-151 \\
\hline VI-4 & H & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
130-
\] \\
\hline VI-5 & 6-C & H & H & H & \(\mathrm{CH}_{3}{ }^{\text {}}\) & 139-141 \\
\hline VI-6 & 6-C \& & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & 168-169 \\
\hline VI-7 & H & H & 2-F & H & \(i-\mathrm{Pr}\) & \[
\begin{array}{r}
140.5- \\
142.0
\end{array}
\] \\
\hline V-8 & 7-Me & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
155.0 \\
157.0
\end{array}
\] \\
\hline V -9 & H & H & 4-C l & H & \(i-P r\) & \[
\begin{array}{r}
192.0- \\
195.0
\end{array}
\] \\
\hline VI-10 & H & H & \(4-0 \mathrm{Me}\) & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
186.0 \\
188.5
\end{array}
\] \\
\hline VI-11 & H & H & 4-Me & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
161.0 \\
164.0
\end{array}
\] \\
\hline VI-12 & 6-C \& & H & 2-C \& & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
122.0 \\
124.0
\end{array}
\] \\
\hline VI-13 & H & H & \(4-\mathrm{CF}_{3}\) & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
183.0- \\
186.0
\end{array}
\] \\
\hline VI-14 & H & H & 3-Me & 4-F & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
161.0 \\
162.5
\end{array}
\] \\
\hline VI-15 & H & H & 3-Me & 5-Me & \(i-P r\) & \[
137.0=
\] \\
\hline VI-16 & 6-4e & 7-0Me & 4-F & 11 & i -Pr & \[
\begin{array}{r}
164.0 \\
165.0
\end{array}
\] \\
\hline V-17 & H & H & 4-F & - H & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & \[
\begin{array}{r}
141.5- \\
143.5
\end{array}
\] \\
\hline VI-18 & H & H & 4-F & 11 & \(\mathrm{n}-\mathrm{Pr}\) & \[
\begin{aligned}
& 146.5- \\
& 148.5
\end{aligned}
\] \\
\hline VI-19 & 6-C 2 & \& II & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
171.0 \\
172.0
\end{array}
\] \\
\hline
\end{tabular}

In the same manner as in Example \(1-\mathrm{c}\), compounds \(\mathrm{V}-2\) to \(V-27\) were prepared. (In Table \(6, R^{1}, R^{2}, R^{3}, R^{4}\) and \(R^{5}\) correspond to the substituent of compound of V .)

Table 6 (Compounds in this Table are compounds of the formula \(V\) wherein \(R^{6}\) is hydrogen.)
- "in) (ツX
\begin{tabular}{lclllll}
Compound & \(R^{2}\) & \(R^{2}\) & \(R^{3}\) & \(R^{4}\) & \(R^{5}\) & \(\left({ }^{\mathrm{m}} \mathrm{C}\right)\) \\
\hline \(\mathrm{V}-2\) & H & H & \(\mathrm{P}-\mathrm{F}\) & H & \(\mathrm{CHI}_{3}\) & \(125-128\) \\
\(\mathrm{~V}-3\) & H & H & H & H & \(\mathrm{CHI}_{3}\) & \(143-146\) \\
\(\mathrm{~V}-4\) & H & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & \(92-93\) \\
\(\mathrm{~V}-5\) & 6-C \& & H & H & H & CHI & \(220-222\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{V}-6\) & 6-C\& & H & H & H & i-Pr & 140-140.5 \\
\hline V-7 & H & H & 2-F & H & \(\mathrm{i}-\mathrm{Pr}\) & 121 \\
\hline V-8 & 7-Me & H & H & H & i-Pr & 124.0 \\
\hline -8 & 7-he & & & & I-Pr & 109.2 \\
\hline V-9 & H & H & 4-C \(\ell\) & H & \(\mathrm{i}-\mathrm{Pr}\) & 147.0 - \\
\hline V-10 & H & H & \(4-0 \mathrm{Me}\) & H & \(\mathrm{i}-\mathrm{Pr}\) & 147.8
\(135.6-\) \\
\hline & & & & & & 136.8 \\
\hline V-11 & H & H & 4-Me & H & \(\mathrm{i}-\mathrm{Pr}\) & 119.4 - \\
\hline V-12 & 6-C & H & 2-C l & H & i-Pr & 120.4
105.8 \\
\hline & & & & & & 106.9 \\
\hline V-13 & H & H & \(4-\mathrm{CF}_{3}\) & H & \(\mathrm{i}-\mathrm{Pr}\) & 163.7 - \\
\hline & & & & & & 164.2 \\
\hline V-14 & H & H & 3-7e & 4-F & \(\mathrm{i}-\mathrm{Pr}\) & 161.1 - \\
\hline & & & & & & 108.1 \\
\hline V-15 & H & H & 3-Me & 5-Me & i-Pr & \[
120.8
\] \\
\hline V-16 & \(6-0 \mathrm{Me}\) & 7-0Me & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & \(162.4{ }^{\text {1 }}\) \\
\hline V-16 & - & & & I & & 165.2 \\
\hline V-17 & \({ }_{1}\) & H & 4-F & H & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 143.1 - \\
\hline & & & & & & 144.2 \\
\hline V-18 & H & ! & 4-F & II & \(n-\mathrm{Pr}\) & 150.2- \\
\hline & & & & & & 155.3 \\
\hline V-19 & 6-C & H & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & \begin{tabular}{l}
164.5- \\
165.3
\end{tabular} \\
\hline V-20 & H & H & 4-F & H & \(\mathrm{c}-\mathrm{Pr}\) & 150.1 - \\
\hline & & & & & & 151.6 \\
\hline V-21 & H & H & OPh & H & \(\mathrm{i}-\mathrm{Pr}\) & 106.97 \\
\hline V-22 & 6-C 2 & 8-C \& & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & 135.0 - \\
\hline & & & & & & 135.7 \\
\hline V-23 & 6-C \& & H & H & H & Ph & 174.8 - \\
\hline & & & & & & 175.3 \\
\hline V-24 & 6-C 2 & H & H & H & \(c-\mathrm{Pr}\) & \(157.5-\) \\
\hline V-25 & & & & & & 158.0 \\
\hline V-25 & H & H & 4-F & H & sec-Bu & \[
\begin{aligned}
& 125.0- \\
& 126.5
\end{aligned}
\] \\
\hline V-26 & 6-Me & H & 4-F & Hi & i-Pr & 155.0- \\
\hline & & & & & & 157.0 \\
\hline V-2i & 6.0 Me & 7-0Me & 4-F & H & \(c-\mathrm{Pr}\) & 200.0- \\
\hline & & & & & & 200.5 \\
\hline
\end{tabular}

\[
z_{0}
\]
\[
\text { - } 52 \text { - }
\]

In the same manner as in Example l-e, compounds III-2 to III-27 were prepared. (In Table \(8, R^{1}, R^{2}, R^{3}, R^{4}\) and \(R^{5}\) correspond to the substituents of compound III.)

Table 8 (Compounds in this Table are compounds of the formula III wherein \(R^{6}\) is hydrogen.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \[
\text { d } R^{1}
\] & \(R^{2}\) & \(\mathrm{R}^{3}\) & R \({ }^{4}\) & \(\mathrm{R}^{5}\) & \[
\left.\mathrm{m}_{(}^{\mathrm{m}} \cdot \mathrm{p}\right)
\] \\
\hline III -2 & H & H & 4-F & H & \(\mathrm{CH}_{3}\) & 194-196 \\
\hline III - 3 & \% & H & H & H & \(\mathrm{CH}_{3}\) & 170. \\
\hline III -4 & H & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & \(107-171.5\) \\
\hline & & & & & & 108.5 \\
\hline III-5 6 & 6-C \(\ell\) & H & H & H & \(\mathrm{CH}_{3}\) & 192-194 \\
\hline \multicolumn{2}{|l|}{III-6-3-6-C 2} & H & H & H & \multirow[t]{2}{*}{\(\mathrm{i}-\mathrm{Pr}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 125.5 \\
& -127
\end{aligned}
\]} \\
\hline III -7 & H & H & 2-F & H & & \\
\hline & & & & & & -80.2 \\
\hline III-8 & 7-Me & H & 8 & H & \(\mathrm{i}-\mathrm{Pr}\) & 121.1- \\
\hline III -9 & H & a & 4-C 2 & H & \(\mathrm{i}-\mathrm{Pr}\) & 148.0- \\
\hline & & & & & & 149.1 \\
\hline III - 10 & \(H\) & H & 4-0Me & H & \(\mathrm{i}-\mathrm{Pr}\) & 137.4- \\
\hline 3iI-11 & H & H & 4-Me & 1 F & \(\mathrm{i}-\mathrm{Pr}\) & 1140.1 \\
\hline & & & & & & 113.1 \\
\hline [10-12 & 6-C 2 & H & 2-C 2 & H & i-Pr & 83.8 \\
\hline & & & & & & -34.5 \\
\hline III - 13 & H & H & \(4-\mathrm{CF}_{3}\) & 1 & \(\mathrm{i}-\mathrm{Pr}\) & \[
\begin{array}{r}
126.2- \\
128.8
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline III-14 & H & H & 3-Me & 4-F & \(\mathrm{i}-\mathrm{Pr}\) & 124.8 \\
\hline III-15 & H & H & \(3-\mathrm{Me}\) & \(5-\mathrm{Me}\) & i-Pr & 126.4 \\
\hline III-15 & H & h & 3-17e & 5-17e & e i-pr & 120.3 \\
\hline III - 16 & 6-0Me & 7.0 Me & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & 147.8- \\
\hline III -17 & H & H & 4-F & H & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 124.3- \\
\hline & & & & & & 128.5 \\
\hline III -18 & H & 11 & 4-F & H & \(n-\mathrm{Pr}\) & 117.8- \\
\hline & & & & & & 121.5 \\
\hline III - 19 & 6-C & \& H & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & 135.2- \\
\hline & & & & & & 135.9 \\
\hline III-20 & H & H & 4-F & H & \(c-\mathrm{Pr}\) & 141.3- \\
\hline III -21 & H & H 4 & 4-09 h & H & \(\mathrm{i}-\mathrm{Pr}\) & oil \\
\hline III -22 & 6-C 2 & \& 8-C \& & 4-F & H & \(i-P r\) & \(117-\) \\
\hline III -23 & 6-C & \& H & H & H & Ph & 122
142.8 \\
\hline & & & & & & 144.3 \\
\hline III-24 & 6-C & H & H & H & \(\mathrm{c} \cdot \mathrm{Pr}\) & 161.0- \\
\hline III-25 & H & H & 4-F & H & \(\sec -\mathrm{Bu}\) & 161.5
78 \\
\hline III-25 & H & & 4-F & & & 81.0 \\
\hline III-26 & 6- He & H & 4-F & H & \(\mathrm{i}-\mathrm{Pr}\) & 137.0- \\
\hline & & & & & & 137.5 \\
\hline III -27 & 6 -04e & \(7-\mathrm{OMe}\) & 4-F & H & \(\mathrm{c}-\mathrm{Pr}\) & \[
\begin{aligned}
& 189.5- \\
& 191.0
\end{aligned}
\] \\
\hline
\end{tabular}
\(\mathrm{H}-\mathrm{NMR}\left(\right.\) in \(\left.\mathrm{CDCl}_{3}\right) \quad \delta \mathrm{ppm}:\)
 \(1.40(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.44\) (Heptaplet, \(1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}\))
 \(5.33(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz}), 6.3-8.1(\mathrm{~m}, 14 \mathrm{H})\)
 \(9.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz})\)

In the same manner as in Example l-f, compounds II-2 to II-27 were prepared. (In Table \(9, R^{1}, R^{2}, R^{3}, R^{4}\) and \(R^{5}\) correspond to the substituents of compound II.)

Table 9 (Compounds in this Table are compounds of the formula of II wherein \(R^{6}\) is hydrogen.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound \(\mathrm{R}^{\text {d }}\) & \(\mathrm{R}^{2}\) & \(\mathrm{R}^{3}\) & \(\mathrm{R}^{4}\) & \(R^{5}\) & \(\mathrm{R}^{12}\) & \[
\begin{aligned}
& \mathrm{m} \cdot \mathrm{p} . \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] \\
\hline II - 2 H & H & \(p-F\) & H & \(\mathrm{CH}_{3}\) & \(\mathrm{C}_{2} \mathrm{II}_{5}\) & oil \\
\hline II - 3 H & H & H & H & \(\mathrm{CH}_{3}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 105 \\
\hline II-4 H & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & \begin{tabular}{l}
88.5 \\
\hline 8
\end{tabular} \\
\hline & & & & & & -90.5 \\
\hline II-5 6-C \& & H & H & H & \(\mathrm{CH}_{3}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 77-82 \\
\hline II-6 6-C \& & H & H & H & i-Pr & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 96-98 \\
\hline II -7 H & H & 2-F & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline II-8 7-7e & H & H & H & \(\because \mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & \[
68.5-
\] \\
\hline II -9 H & H & 4-C 2 & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 91.0 \\
\hline II-10 H & H & 4-0Me & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 78.0 \\
\hline II-11 H & H & 4-0Me & 1 & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 75.0
78.5 \\
\hline II-12 6-C \(\ell\) & H & 2-C 2 & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & oil \({ }^{-78.0}\) \\
\hline II-13 H & H & 4-CF3 & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\text {- }}\) & 78.0 \\
\hline II-14 H & H & 3-Me & 4-F & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 60.0
6.0 \\
\hline II -15 H & H & 3-Me & \(5-\mathrm{Me}\) & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & oil -71.0 \\
\hline
\end{tabular}

```

II - 12
H-NMR(in CDCl l})\quad\delta ppm
1.25(t,3H,J=7Hz), 1.33(d,6H,J=6Hz)
2.2-2.4(m,2H), 2.5-2.8(m,1H)
3.32(s,2H), 3.38(Heptaplet, 1H, J=6Hz)
4.13(q, 2H, J=7Hz), 4.2-4.6(m,1H)
5.34(dd, 1H, J=6Hz,J=15Hz),
6.53(dd, 1H,J=1.5Hz,J=15Hz), 7.0-8.0(m,7H)
II - 1 5
H-NHR(in CDCl3) (
1.23(t,3H,J=7Hz):1.35(d,6H,J=6Hz)
2.2-2.4(m,2H), 2.31(s,6H)
2.6-2.8(m,1H), 3.32(s,2H)
3.35(Heptaplet,1H,Jx6Hz),4.12(q, 2H,J=7Hz)
4.3-4.7(m,1H), 5.30(dd,1H,J=6Hz,J=16Hz)
6.51(dd, 1H,J=1Hz,J=16Hz), 6.7-3.0(m,7H)
II - 18
H-NMR(in CDCl}\mp@subsup{3}{}{\prime})\quad\delta\textrm{ppm}
1.00(t,3H,J=7Hz), 1.26(t,3H,J=7Hz)
1.6-2.3(m,2H): 2.42(d,2H,J=6Hz)

```
- 57 -
2.6-3.2(m,3H), \(\quad 3.35(\mathrm{~s}, 2 \mathrm{H})\)
4.11 \((\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.3-4.7(\mathrm{~m}, 1 \mathrm{H})\)
\(5.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz}\))
\(6.46(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz}), 6.9-8.0(\mathrm{~m}, 8 \mathrm{H})\)
II -22
\(\mathrm{H}-\mathrm{NHR}\) (in \(\mathrm{CDC}_{3}^{\ell}\)) \(\quad \delta \mathrm{ppm}\) :
\(1.26(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.33(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})\)
\(2.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 2.6-2.9(\mathrm{~m}, 1 \mathrm{H})\)
\(3.36(\mathrm{~s}, 2 \mathrm{H}), 3.44\) (Heptaplet, \(1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}\))
4. 13. \((\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.3-4.7(\mathrm{~m}, 1 \mathrm{H})\)
\(5.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz})\),
\(6.53(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz}), 7.0-7.6(\mathrm{~m}, 6 \mathrm{H})\) III -23
\(\mathrm{H}-\mathrm{NMR}\left(\right.\) in \(\left.\mathrm{CDCl}_{3}\right) \quad \delta \mathrm{ppm}:\)
\(1.23(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 2.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})\)
2.4-2.6(m,1H), \(\quad 3.25(\mathrm{~s}, 2 \mathrm{H})\)
\(4.09(q, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 4.1-4.4(\mathrm{~m}, 1 \mathrm{H})\)
\(5.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz})\),
\(6.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=16 \mathrm{~Hz}), 7.0 \sim 8.0\) (m,1011)
```

II - 25
H-NMR(in CDCl 3) }\delta\textrm{ppm}
0.96(d,6H,J=6Hz), 1.26(t, 3H,J=7Hz),
1.8-2.4(m,1H), 2.43(d, 2H, J=6Hz),
2.6-2.9(m,1H), 2.88(d, 2H, J=7Hz),
3.36(s,2H), 4.14(q, 2H,J=7Hz),
4.3-4.7(m,1H), 5.0-5.5(m,1H),
6.3-6.7(m,1H), 6.9-8.1(m,8H)
II - 2 6

```

```

        1.25(t,3H,J=7Hz), 1. 32(d,6|,J=6Hz),
        2.32(s,3H), 2.39(d, 2H, J=7Hz),
        2.6-3.1(m,1H), 3.36(s,2#),
        3.41(Heptaplet,1H,J=6Hz),
        4.11(q, 2H,J=7Hz), 4.3-4.7(m,1H),
        5.0-5.5(m,1H), 6.3-6.7(m,1H),
        6.8-7.9(m,7H)
    II - 27
H-NMR(in CDC 2 % ) \& ppm:
0.8-1.5(m,4H), 1.26(t,3|, J=7|z),

```
2.0-2.9(m, 4H), \(3.42(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})\),
\(4.00(\mathrm{~s}, 3 \mathrm{H})=4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})\),
4.4-4.8(m,1H), 5.3-5.8(m,1H),
6.4-6.9(m,1H), 6.58(s,1H),
7.0-7.5(m,5H)

In the same manner as in Example l-g, compounds I-12 to I-127 were prepared.

Table 10
-1 ifix

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & \(R^{1}\) & \(R^{2}\) & \(\mathrm{R}^{3}\) & \(R^{4}\) & \(\mathrm{R}^{5}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{R}^{1 z \text { m. p. }\left({ }^{\circ} \mathrm{C}\right)} \\
& \text { Mass spectrum }^{2}
\end{aligned}
\]} \\
\hline I-12 & H & \({ }_{H}\) & 4-F & H & \(\mathrm{CH}_{3}\) & \[
\mathrm{C}_{2} \mathrm{H}_{5}
\] & \\
\hline & & & & & & \[
M / e
\] & \[
\begin{aligned}
& 423,292 \\
& 264,249
\end{aligned}
\] \\
\hline I-13 & H & H & H & H & \(\mathrm{CH}_{3}\) & \(\mathrm{C}_{2} \mathrm{Il}_{5}\) & 92-105 \\
\hline I-14 & H & H & H & H & \(\mathrm{i}-\mathrm{Pr}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & 97-100 \\
\hline I-15 & 6-C \(\ell\) & H & H & H & \(\mathrm{CH}_{3}\) & \(\mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I -16 & 6-C \& & H & H & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & \(0 i 1\) \\
\hline I -17 & H & 8 & 2-F & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline 1-18 & 7-Me & H & H & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline 1-19 & H & H & 4-C \(\ell\) & H & i- \(\operatorname{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & 98-104 \\
\hline 1-110 & H & H & \(4-\mathrm{OMe}\) & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & 94-98 \\
\hline 1-111 & H & H & 4-Me & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{Cz}_{2} \mathrm{H}_{5}\) & 79-85 \\
\hline I-112 & 6-Cl & H & 2-Cl & H & i- \(\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline I-113 & H & H & \(4-\mathrm{CF}_{3}\) & H & i-Pr Ciths & 117-128 \\
\hline I -114 & H & H & 3-Me & 4-F & i- \(\mathrm{Pr} \mathrm{Ci}_{2} \mathrm{H}_{5}\) & 85-32 \\
\hline I -115 & R & H & 3-Me & 5-Me & \(\mathrm{i}_{-\mathrm{Pr}} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline 1-116 & 6-0Me & 7 & He 4-F & H & i- \(\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & gum \\
\hline 1-117 & H & H & 4-F & H & \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline I -118 & H & H & 4-F & H & \(\mathrm{n}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline 1-119 & 6-C & H & 4-F & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & 79-82 \\
\hline I -120 & H & H & 4-F & H & \(c-\operatorname{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & 100-104 \\
\hline I-121 & H & H & 4-OPh & H & \(\mathrm{i}-\mathrm{Pr} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline I -122 & 6-C & 8 & \(\ell 4-\mathrm{F}\) & H & \(\mathrm{i}-\mathrm{PrC} \mathrm{C}_{2} \mathrm{H}_{5}\) & 133-143 \\
\hline I-123 & 6-C \(\ell\) & II & H & H & Ph Cills & gum \\
\hline I -124 & 6-C l & 11 & H & H & \(\mathrm{C}-\mathrm{PrC} \mathrm{C}_{2} \mathrm{H}_{5}\) & oil \\
\hline I-125 & H & H & 4-F & H s & \(\mathrm{C}-\mathrm{BuC} \mathrm{C}_{2} \mathrm{ll}_{5}\) & oil \\
\hline
\end{tabular}
```

I-126 6-Me H 4-F H I-PT C_Il5 oil
I-127 6-0Me 7-0Me 4-F H c-Pr C2Hs gum
I-17

```

```

        1.29(t,3H,J=7Hz), 1.40(d,6H,J=6Hz)
        1.4-1.7(m, 2H), 2.3-2.5(m,2H)
        2.9-3.2(m,1H), 3.49(Heptaplet,1H,J=6Hz)
        3.5-3.8(m,1H), 3.9-4.5(m,2H)
        4.20(q, 2H, J=7Hz), 5.2-5.7(m,1H)
        6.5-6.9(m,1H), 7.0-8.2(m,8H)
    1-18
    ```

```

        1.0-1.4(m,2H), 1.31(t,3H,J=7Hz)
        1.39(d, 6H,J=6Hz), 2.3-2.5(m,2H)
        2.52(s,3H), 3.1-3.4(m,1H)
        3.48(Heptaplet,1H,J=6Hz),3.5-3.8(m,1H)
        3.8-4.1(m,1H), 4.20(q, 2H, J=7Hz)
        4.2-4.5(m,1H), 5.2-5.6(m,1H)
        6.4-6.8(m,1H), 7.0-8.0(m,8H)
    ```
```

I - 19
H-NMR(in CDCl}3) \delta ppm :
1.29(t,3H,J=7Hz), 1.38(d,6H,J=6Hz)
1.4-1.8(m,2H), 2.3-2.5(m,2H)
3.2-3.4(m,1H), 3.49(Heptaplet, 1H,J=6Hz)
3.6-3.8(m,1H), 3.9-4.2(m,1H)
4.20(q, 2H,J=7Hz), 4.3-4.5(m,1H)
5.2-5.5(m,1H), 6.5-6.8(m,1H)
7.0-8.2(m,8H)
I-110
H-NMR(in CDCl3}) \delta ppm :
1.29(t,3H,J=7Hz),.1.40(d,6H,J=6Hz)
1.5-1.6(m,2H), 2.3-2.5(m,2H)
2.8-3.0(m,1H), 3.4-3.6(m,1H)
3.52(Heptaplet ,1H,J=6Hz),3.88(s,3H)
3.9-4.1(m,1H), 4.20(q, 2H, J=7Hz)
4.3-4.5(m,1H), 5.3-5.5(m,1H)
6.5-6.7(m,1H): 6.9-3.1(m,8H)
I-111
H-NMR(in CDCl}\mp@subsup{3}{3}{\prime})\quad\delta\textrm{ppm}
1.30(t,3H, J=7Hz), 1.3-1.5(m,2H)

```

\section*{- 63 -}
```

    1.39(d,6H,J=6Hz), 2.3-2.5(m,2H)
    2.43(s,3H), 2.8-3.0(m,1H)
    3.50(Heptaplet,1H,J=6Hz),3.5-3.7(m,1H)
    3.9-4.2(m,1H), 4.19(q, 2H,J=7Hz)
    4.2-4.5(m,1H), 5.2-5.6(m,1H)
    6.4-6.8(m,1H), 6.9-8.2(m,8H)
    I-112

```

```

    1.30(t,3H,J=7Hz), 1.3-1.6(m,2H)
    1.37(d, 6H, J=6Hz), 2.3-2.5(m, 2H)
    2.9-3.2(m,1H), 3.47 (Heptapłet,1H,J=6Hz)
    3.5-3.8(m,1H), 3.9-4.1(m,1H)
    4.19(q, 2H, J=7Hz), 4.2-4.5(m,1H)
    5.3-5.7(m,1H), 6.5-6.8(m,1H)
    7.1-8.1(m,7H)
    1-113
H-NMR(in CDC=3)
1.0-1.3(m,2H), 1.30(t,3H,J=7Hz)
1.40(d,6H,J=6Hz), 2.3-2.4(m,2H)
3.3-3.5(m,1H), 3.49(Heptaplet,1H,y=6Hz)

```
\(\therefore\)
\[
\begin{aligned}
& \text { 3.6-3.7(m,1H), 3.9-4.1(m,1H) } \\
& \text { 4.18(} \mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}), 4.2-4.5(\mathrm{~m}, 1 \mathrm{H}) \\
& \text { 5.1-5.5(m,1H), 6.5-6.8(m,1H) } \\
& \text { 7.2-8.2(m, 8H) } \\
& \text { I-114 } \\
& \mathrm{H} \text {-NMR (in } \mathrm{CDCl}_{3} \text {) } \delta \mathrm{ppm} \text { : } \\
& \text { 1.2-1.4(m, } 2 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}) \\
& 1.39(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}): 2.32(\mathrm{bs}, 3 \mathrm{H}) \\
& \text { 2.3-2.5(m,2H), 3.0-3.3(m,1H) } \\
& 3.50 \text { (Heptaplet, } 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz} \text {) , 3.6-3.8(m,1H) } \\
& \text { 3.8-4.1 (m, } 1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz}) \\
& \text { 4.3-4.6(m,1H), 5.2-5.6(m,1H) } \\
& \text { 6.5-6.8(m,1H), 7.0-8.2(m,7H) } \\
& \text { I-115 } \\
& \text { H-NMR (in } \mathrm{CDCl}_{3} \text {) } \quad \delta \mathrm{ppm}: \\
& \text { 1.1-1.4(m, 2H), } 1.30(t, 3 H, J=7 H z) \\
& 1.40(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz}), 2.2-2.5(\mathrm{~m}, 2 \mathrm{H}) \\
& 2.35(\mathrm{~s}, 6 \mathrm{H}), \quad 2.7-3.1(\mathrm{~m}, 1 \mathrm{H}) \\
& \text { 3. } 51 \text { (Heptaplet, } 1 \mathrm{H}, \mathrm{~J}=6 \mathrm{~Hz} \text {) , 3.6-3.7(m,1H) } \\
& \text { 3.8-4.1 (m, 1H), 4.20(q,2H,J=7Hz) }
\end{aligned}
\]
```

    4.2-4.6(m,1H), 5.2-5.6(m,1H)
    6.4-6.8(m,1H), 6.8-8.2(m,7H)
    1-116
H-NMR (in CDCl ()
1.30(t,3H,J=7Hz), 1.37(d,6H,J=6Hz)
1.5-1.8(m,2H), 2.3-2.5(m,2H)
2.9-3.2(m,1H), 3.46(Heptaplet,1H,J=6Hz)
3.6-3:8(m,1H), 3.75(s,3H)
3.9-4.1(m,1H), 4.07(s,3H)
4.20(q, 2H,J=7Hz),.4.2-4.5(m,1H)
5.1-5.5(m,1H), 6.4-6.8(m,2H)
7.1-7.5(m,5H)
1-117
H-NMR(in CDCl}\mp@subsup{l}{3}{\prime})\quad\delta ppm
1.30(t, 3H,J=7Hz), 1.37(t,3H,J=7Hz)
1.4-1.7(m,2H), 2.2-2.6(m,2H)
2.8-3.2(m,3H), 3.6-3.9(m,11I)
3.9-4.7(m, 4H), 5.2-5.7(m,1H)
6.3-6.7(m,1H) 7.0-8.2(m,8H)

```
```

I - 118
H-NMR (in CDCl}\mp@subsup{3}{3}{}).\delta\textrm{ppm}
1.01(t, 3H,J=7Hz), 1.27(t,3H,J=7Hz)
1.4-2.1(m,4H), 2.3-2.6(m,2H)
2.8-3.3(m,3H), 3.6-3.8(m,1H)
3.9-4.1(m,1H), 4.18(q, 2H,J=7Hz)
4.2-4.5(m,1H) 5.2-5.6(m,1H)
6.4-6.7(m,1H), 7.0-8.1(m,8H)
I-1.1.9
H-NMR (in CDC'\ell}\mp@subsup{\ell}{3}{})\quad\delta\mathrm{ ppm :
1.2-1.5(m,2H), 1.31(t,3H,J=7Hz)
1.37(d,6H,J=7Hz),2.3-2.6(m,2H)
3.0-3.4(m,1H), 3.49(Heptaplet,1H,J=6Hz)
3.6-3.8(m,1H), 3.8-4.2(m,1H)
4.20(q, 2H,J=7Hz), 4.3-4.5(m,1H)
5.2-5.6(m,1H), 6.4-6.8(m,1H)
7.0-8.1(m,7H)
1-120
H-NMR(in CDCl })\quad\delta\textrm{gpm}
0.8-1.8(m,6H), 1.30(t,3H,J=7Hz)
2.1-2.6(m,3H), 2.9-3.3(m,1H)

```
```

<

```
 3.4-3.7(m,1H), 3.8-4.6(m,2H)
 4.20(q, 2H,J=7Hz), 5.4-5.8(m,1H)
 6.4-6.3(m,1H), 6.8-8.0(m,8H)
I - 1 2 1
 H-NMR(in CDC (
 1.29(t,3H,J=7Hz), 1.39(d,6H,J=6Hz)
 1.4-1.9(m,2H), 2.3-2.5(m,2H)
 2.7-3.2(m,1H), 3.51(Heptaplet,1H,J=6Hz)
 3.6-3.8(m,1H), 3.9-4.2(m,1H)
 4.19(q, 2H,J=7Hz), 4.3-4.6(m,1H)
 5.2-5.6(m,1H), 6.4-6.8(m,1H)
 6.9-8.2(m,13H)
I - 1 2 2
 H-NMR(in CDC l 3)
 1.1-1.8(m,2H), 1.31(t,3H,J=7Hz)
 1.41(d, 6H,J=6Hz), 2.3.-2.5(m, 2H)
 2.9-3.4(m,1H), 3.50(Heptaplet,1H,J=6Hz)
 3.6-3.8(m,1H), 3.9-4.5(m,2H)
 4.20(q, 2H,J=7Hz), 5.2-5.6(m,1H)
 6.4-6.8(m,1H), 7.1-7.3(m,5H)
```

$7.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz})$
I-123
H-NMR (in CDCen $) \quad \delta \mathrm{ppm}:$
0.8-1.5 (m, 2H) , 1.29 ( $\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ )
2.2-2.4(m,2H), 2.6-2.9(m,1H)
3.2-3.6(m,1H), 3.7-4.3(m,2H)
4.17(q, $2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ ) , $5.0-5.4(\mathrm{~m}, 1 \mathrm{H})$
6.1-6.5(m,1H), 7.0-8.2(m,13H)
$I-124$
H-NMR (in $\mathrm{CDCl}_{3}$ ) of ppm :
0.8-1.8(m, 6H), 1.29(t, 3H, J=7Hz),
2.2-2.6(m,3H), 2.8-3.2(m,1H),
3.3-3.7(m, 1H), 3.9-4.5(m,2H),
4.19 ( $\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ ), $5.4-5.8(\mathrm{~m}, \mathrm{IH})$,
6.5-6.8(m,1H), 7.1-8.0(m, 8H),

I-125
H-NMR (in $\mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm}$ :
$0.94(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.0-1.7(\mathrm{~m}, 3 \mathrm{H})$,
1.27(t, 3H, J=7Hz), 1.9-2.5(m, 3H),
$2.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.3-4.4(\mathrm{~m}, 3 \mathrm{H})$,

```
i
 - 69 -
 4.12(q, 2H,J=7Hz), 5.0-5.5(m,1H),
 6.2-6.7(m,1H), 6.9-8.0(m,8H),
1-126
 H-N:MR (in CDC &) \delta ppm :
 1.0-1.6(m,3H), 1.21(t,3H,J=7Hz),
 1.34(d,6H,J=6Hz), 2.34(s,3H);
 2.37(d, 2H, J=7Hz), 2.9-3.7(m, 2H),
 3.8-4.5(m, 2H), 4.15(q, 2H,J=7Hz),
 5.0-5.5(m,1H), 6.3-6.7(m,1H),
 6.9-8.0(m,7H),
I-127
 H-NMR (in CDC < %) \delta ppm :
 0.8-1.9(m,8H), 1.29(t,3H,J=7Hz),
 2.1-2.6(m,3H), 2.8-3.2(m,1H),
 3.72(s,3H), 4.02(s,3H),
 4.19(q, 2H,J=7Hz), 4.3-4.6(m,1H),
 5.4-5.8(m,1H), 6.4-6.8(m,1H),
 6.56(s,1H), 7.0-7.4(m,5H)
```



- 70 -

Table 11
T扎化


| Compound | $R^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $\mathrm{R}^{4}$ | $\mathrm{R}^{5}$ | $\mathrm{R}^{12}$ | $\left.{ }_{\left({ }^{\circ} \mathrm{C}\right.} \mathrm{p}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I -52 | H | H | 4-F | H | $\mathrm{CH}_{3}$ | Na | $\begin{aligned} & \text { (decomposed) } \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| I -53 | H | H | H | H | $\mathrm{CH}_{3}$ | Na | 130-132 |
| I-54 | H | H | H | H | i-Pr | Na | (decomposed) |
|  |  |  |  |  |  |  | (decomposed) |
| 1-55 | 6-C \& | H | H | H | $\mathrm{CH}_{3}$ | Na | 211-215 (decomposed) |
| I -56 | 6-C l | H | H | H | i-Pr | Na | $\begin{aligned} & 195-198 \\ & \text { (decomposed) } \end{aligned}$ |
| I-57 | H | H | 2-F | H | i-Pr | Na | $\begin{aligned} & \text { 193-201 } \\ & \text { (decomposed) } \end{aligned}$ |
| I - 58 | 7-Me | H | H | H | $\mathrm{i}-\mathrm{Pr}$ | Na | $170-175$ <br> (decomposed) |
| I -59 | H | H | 4-C $\ell$ | H | $\mathrm{i}-\mathrm{Pr}$ | Na | $193-202$ <br> (decomposed) |
| 1-510 | H | H | $4-0 \mathrm{Me}$ | H | $\mathrm{i}-\mathrm{Pr}$ | Na | 178-193 |
|  |  |  |  |  |  |  | (decomposed) |
| I -511 | 18 | H | 4-Me | H | i-Pr | Na | $\begin{aligned} & 187-200 \\ & \text { (decomposed) } \end{aligned}$ |
|  |  |  |  |  |  |  |  |


| I-512 | 6-C $\ell$ | H | 2-Cl | H | $\mathrm{i}-\mathrm{Pr}$ | Na | $203-209$(decomposed)$200-212$(decomposed)$195-200$(decomposed)$192-197$(decomposed)$239-245$(decomposed)$230-237$(decomposed)$193-200$(decomposed)$193-198$(decomposed)$197-199$(decomposed)$180-189$(decomposed)$183-187$(decomposed)$190-196$(decomposed)$204-210$(decomposed)---$204-208$(decomposed)$234-238$(decomposed) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-513 | 1 | H |  | H |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| I-514 | H | H | $3-\mathrm{Me}$ | 4-F | i-Pr | Na |  |  |
| I-515 | H | H | 3-Me | 5-Me | i-Pr | Na |  |  |
| I-516 | 6-0Me | 7-0Me | 4-F | H | i-Pr |  |  |  |
|  |  |  |  | 1 |  |  |  |  |
| I-517 | H | H | 4-F | H | $\mathrm{C}_{2} \mathrm{H}_{5}$ | Na |  |  |
| I -518. | H | H | 4-F | H | $n-\mathrm{Pr}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |
| 1-519 | 6-C 2 | H | 4-F | H | i-Pr | Na |  |  |
| I -520 | H | H | 4-F | , | c- |  |  |  |
|  |  |  |  |  |  |  |  |  |
| I -521 | H | H | 4-0Ph | H | i-Pr | Na |  |  |
|  |  |  |  |  |  |  |  |  |
| 1-522 | 6-C 2 | 8-C 2 | 4-F | H | i-Pr | Na |  |  |
| I -523 | 6-C \& | H | H | H | Ph | Na |  |  |
| I -524 | 6-C \& | H | H | H | $c-\mathrm{Pr}$ | Na |  |  |
| I-52 | H | H | 4-F | H | - - $\mathrm{Bu}^{\text {u}}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |
| I -526 | 6-Me | H | 4-F | H | i-Pr | Na |  |  |
| I - 527 | 6-0Me | $7-0 \mathrm{Me}$ | 4-F | H | $c-\mathrm{Pr}$ | Na |  |  |
|  |  |  |  |  |  |  |  |  |

$$
\begin{aligned}
& \text { I-57 } \\
& \text { H-NMR (in DMSO-d }{ }^{6} \text { ) } \delta \mathrm{ppm} \text { : } \\
& \text { 0.9-1.2(m,2H), } \quad 1.37(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}=7 \mathrm{~Hz})
\end{aligned}
$$

1.6-2.1(m,2H), 3.48 (Heptaplet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$ )
3.7-4.3(m,4H), 5.3-5.6(m,1H)
6.4-6.7(m,1H), 7.1-8.1(m, 3H)

I -58
H-NMR (in DMSO-d ${ }^{6}$ ) $\delta \mathrm{ppm}$ :
0.9-1.2(m,2H), $\quad 1.31(d, 6 H, J=7 H z)$
1.7-2.2(m,2H), $2.50(\mathrm{~s}, 3 \mathrm{H})$
3.3-4.5(m,5H), $\quad$ 5.2-5.6(m,1H)
6.3-6.6(m,1H), 7.1-7.9(m,8H)

I-59
H-NMR (in DMSO- d $^{6}$ ) $\quad \delta \mathrm{ppm}$ :
0.9-1.3(m, 2 H$), \quad 1.33(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$
1.6-2.2(m,2H), 3.48(Heptaplet, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$ )
3.5-4.6(m,4H), 5.2-5.6(m,2H)
6.3-6.6(m,1H), 7.1-8.1(m,8H)

I-510
H-NMR (in DMSO-d ${ }^{6}$ ) $\delta \cdot \mathrm{ppm}$ :
1.0-1.3(m,2H), $1.32(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$
1.8-2.2(m,2H), 3.0-3.8(m,4H)
$3.86(\mathrm{~s}, 3 \mathrm{H}), \quad 4.0-4.3(\mathrm{~m}, 1 \mathrm{H})$

```
 5.3-5.6(m,1H), 6.3-6.6(m,1H)
 6.9-8.1(m,8H)
I-511
 H-NHR (in DMSO\divd
 0.9-1.3(m,2H), 1.33(d,6H,J=7Hz)
 1.7-2.1(m,2H), 2.41(s,3H)
 3.2-4.3(m,5H), 5.3-5.6(m,1H)
 6.3-6.6(m,1H), 7.0-8.3(m,8H)
 I-5 1 2
 H-NMR (in DMSO-d}\mp@subsup{|}{}{6}\mathrm{) . © ppm :
 0.9-1.3(m,2H), 1.33(d,6H,J=7Hz)
 1.6-2.2(m,2H), 3.1-3.8(m,3H)
 3.48(Heptaplet,1H,J=7Hz),3.9-4.2(m,1H)
 5.3-5.7(m,1H), 6.3-6.7(m,1H)
 7.0-8.1(m,7H)
I - 5 1 3
 H-NMR (in DEASO-d
 0.8-1.3(m,2H), 1.34(d,6H,J=7Hz)
 1.6-2.2(m,2H), 2.7-3.9(m,3H)
 3.49(Heptaplet, 1H,J=7Hz),3.9-4.3(m,1H)
```

```
 5.2-5.6(m,1H), 6.3-6.7(m,1H)
 7.1-8.1(m,8H)
I-514
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) of ppm :
 0.9-1.3(m,2H), 1.35(d,6H,J=7Hz)
 1.7-2.1(m,2H), 2.30(d,3H,J=2Hz)
 3.0-3.8(m,3H), 3.51(Heptaplet,1H, J=7Hz)
 3.9-4.3(m,1H), 5.3-5.6(m,1H)
 6.3-6.6(m,1H), 6.9-8.1(m,7H)
II-515
 H-NMR (in DMSO-d}\mp@subsup{)}{}{6})\quad\delta\textrm{ppm}
 1.0-1.2(m,2H), 1.35(d,6H,J=7Hz)
 1.6-2.2(m,2H), 2.35(s,6H)
 3.0-3.8(m,3H), 3.51(Heptaplet,1H,J=7Hz)
 4.0-4.3(m,1H), 5.3-5.6(m,1H)
 6.3-6.6(m,1H), 6.8-8.0(m,7H)
I-516
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\textrm{ppm}
 0.9-1.3(m,2H), 1.31(d,6H,J=7Hz)
 1.7-2.0(m, 2H); 3.2-3.7(m, 4H)
```

```
(
 -75 -
 3.62(s,3H), 3.9-4.2(m,1H)
 3.94(s,3H), 5.1-5.5(m,1H)
 6.2-6.6(m,1H), 7.0-7.5(m,6H)
I-517
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\mathrm{ ppm :
 0.9-1.5(m,2H), 1.34(t,3H,J=7Hz)
 1.6-2.2(m,2H), 2.7-3.4(m,4H)
 3.6-4.3(m, 2H), 5.2-5.7(m,1H)
 6.1-6.6(m,1H), 6.9-8.1(m,8H)
I-518
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) . }\delta\textrm{ppm}
 0.8-1.3(m,2H), 1.01(t,3H,J=7Hz)
 1.6-2.1(m,4H), 2.7-3.8(m,5H)
 3.9-4.3(m,1H), 5.2-5.7(m,1H)
 6.3-6.6(m,1H), 7.1-8.1(m,8H)
I-519
 H-NHR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\mathrm{ (ppm :
 0.9-1.3(m,2H), 1.33(d,6H,J=7Hz)
 1.6-2.2(m,2H), 2.9-3.9(m,3H)
 3.49(Heptaplet,1H,J=7Hz), 4.0-4.3(m,1H)
```

```
 5.3-5.6(m,1H), 6.3-6.6(m,1H)
 7.2-8.1(m,7H)
I-520
 H-NMR (in DMSO-d 6) \delta ppm :
 0.8-1.5(m,6H), 1.7-2.2(m,2H)
 2.3-2.7(m,1H), 3.0-3.9(m,3H)
 4.0-4.3(m,1H), 5.5-5.8(m,1H)
 6.4-6.7(m,1H), 7.2-8.0(m,8H)
1-5 21
 H-NMR(in DMSO-d}\mp@subsup{)}{}{6})\quad\delta ppm :
 0.9-1.5(m,2H), 1. 36(d,6H,J=7Hz)
 1.7-2.3(m,2H), 3.0-3.9(m,3H)
 3.50(Heptaplet,1H,J=6Hz),4.0-4.3(m,1H)
 5.2-5.6(m,1H) 6.4-6.7(m,1H)
 7.0-8.1(m,13H)
1-522
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\textrm{ppm}
 0.8-1.3(m,2H), 1.37(d,6H,J=7Hz)
 1.6-2.2(m,2H), 3.1-3.9(m,3H)
 3.51(Heptaplet,1H,J=7Hz),4.0-4.3(m,1H)
```

```
(
(}
 5.3-5.7(m,1H), 6.3-6.7(m,1H)
 7.1-8.0(m,6H)
I-5 2 3
 H-NHR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\mathrm{ (ppm :
 0.8-1.4(m,2H), 1.6-2.1(m,2H)
 2.9-3.7(m,3H), 3.7-4.1(m,1H)
 5.1-5.4(m,1H), 6.1-6.4(m,1H)
 . 7.1-8.2(m,13H)
1-524
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\mathrm{ (ppm :
 0.8-1.5(m,5H), 1..6-2.2(m,2H)
 2.3-2.7(m,2H), 3.0-3.8(m,3H)
 3.9-4.3(m,1H), 5.4-5.8(m,1H)
 6.3-6.6(m,1H), 7.0-8.0(m,8H)
I-525
 H-NMR (in DMSO-d}\mp@subsup{}{}{6}\mathrm{) }\delta\mathrm{ (ppm :
 0.9-1.6(m,2H), 0.96(d,6H,J=6Hz)
 1.7-2.6(m,3H), 2.8.9(d, 2H,J=7Hz)
 3.0-3.8(m,3H), 3.9-4.2(m,1H)
 5.2-5.6(m,1H), 6.2-6.6(m,1H)
```



```
 7.1-8.1(m,8H)
I-526
 H-NMR (in DMSO-d
 1.30(d,6H,J=7Hz), 1.7-2.0(m,2H),
 2.34(s,3H), 2.4-2.6(m,1H),
 3.0-3.3(m,2H), 3.3-3.8(m,3H)
 3.9-4.2(m,1H), 5.2-5.6(m,1H)
 6.3-6.6(m,1H), 7.0-8.0(m,7H)
I-527
 H-NMR (in DMSO-d
 0.7-1.5(m,5H), 1.8-2.2(m,2H),
 2.2-2.6(m,2H), 3.1-3.3(m, 2H),
 3.59(s,3H), 3.9-4.2(m,2H),
 3.91(s,3H), 5.4-5.7(m,1H)
 6.3-6.6(m,1H), 6.52(s,1f),
 7.0-7.4(m,5H)
```



```
 *
 (*
\because
\therefore
 - 80 -
In the same manner as in Example 4, compounds I-32 to I-36 can be prepared.
Table 13
```



Compound $\quad R^{1} \quad R^{2} \quad R^{3} \quad R^{4} \quad R^{5} \quad[\quad$

| $\mathrm{I}-32$ | H | H | $4-\mathrm{F}$ | $\mathrm{CH}_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}-33$ | H | H | H | H | $\mathrm{CH}_{3}$ |
| $\mathrm{I}-34$ | H | H | H | H | $\mathrm{i}-\mathrm{Pr}$ |
| $\mathrm{I}-35$ | $6-\mathrm{C} \ell$ | H | H | H | $\mathrm{CH}_{3}$ |
| $\mathrm{I}-36$ | $6-\mathrm{C} \ell$ | H | H | H | $\mathrm{i}-\mathrm{Pr}$ |



25 The above components were mixed by a usual method and then packed in No. 4 gelatin capsules to obtain 100 capsules each containing 10 mg of the active ingredient.

```
#
 C
 FORMULATION EXAMPLE 3
 Soft capsules
 Compound I-51 1.00 g
 PEG (polyethylene glycol) 400 3.89 g
 Saturated fatty acid triglyceride 15.00 g
 Peppermint oil 0.01 g
 Polysorbate 80 0.10 g
 Total 20.00 g
25 The above components were mixed by a usual method to obtain a \(1 \%\) (\(10 \%\)) ointment.
```

FORMULATION EXAMPLE 5

```
 C}
 \because
\therefore-84
_
 FORMULATION EXAMPLE 7
 Granules
 Compound I-51 1.0 g
 Lactose 6.0 g
 Crystal cellulose powder 6.5 g
 Corn starch 5.0 g
 Hydroxypropyl cellulose 1.0 g
 Magnesium stearate 0.5 g
 Total
 20.0 g
 The above components were granulated by a usual method
 and packaged to obtain }100\mathrm{ packages each containing 200 mg
 of the granules so that each package contains 10 mg of the
```

        ~
    1. A compound of the formula:

wherein $R^{1}, R^{2}, R^{3}, R^{4}$ and $R^{6}$ are independently hydrogen, $C_{1-6}$ alkyl, $C_{1-6}$ cycloalkyl, $C_{1-3}$ alkoxy, n-butoxy,
10 i-butoxy, sec-butoxy, $R^{7} R^{8} N$ - (wherein $R^{7}$ and $R^{8}$ are independently hydrogen or $C_{1-3}$ alkyl), trifluoromethyl, trifluoromethoxy, difluoromethoxy, fluoro, chloro, bromo, phenyl, phenoxy; benzyloxy, hydroxy, trimethylsilyloxy, diphenyl--t-butylsilyloxy, hydroxymethyl or $-0\left(\mathrm{CH}_{2}\right)_{\ell} \mathrm{OR}{ }^{19}$ - 15 (wherein $R^{19}$ is hydrogen or $C_{1-3}$ alkyl, and $\ell$ is 1,2 or 3); or when Idcateed at the ortho position to each other, $R^{1}$ and $R^{2} r$ or $R^{3}$ and $R^{4}$ together form $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}$ - or when located at the ortho position to each other, $R^{1}$ and $R^{2}$ together form -OC( $\left.R^{15}\right)\left(R^{16}\right) O-$ 20 (wherein $R^{15}$ and $R^{16}$ are independently hydrogen or $C_{1-3}$ a.le $\left.\mathrm{Y}^{\mathrm{I}}\right)$; Y is $-\mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-$ or $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-$; and Z is $-2-\mathrm{CH}_{2} \mathrm{WCH}_{2}-\mathrm{CO}_{2} \mathrm{R}^{12}$,
or

(wherein $Q$ is $-C(O)-,-C\left(O R^{13}\right)_{2}$ or $-C H(O H)-$; $W$ is $-C(O)-$, $\int_{C}\left(\mathrm{OR}^{13}\right)_{2}$ or. $-C\left(R^{11}\right)(\mathrm{OH})-; R^{11}$ is hydrogen or $C_{1-3}$ alkyl; $R^{12}$ is hydrogen or $R^{14}$ (wherein $R^{14}$ is physiologically hydrolyzable alkyl or M (wherein M is $\mathrm{NH}_{4}$, sodium, 5 potàssium, $1 / 2$ calcium or a hydrate of lower alkylamine, di-lower alkylamine or tri-lower alkylamine)); two $R^{13}$ are indeperdently primary or secondary $C_{1-6}$ alkyl; or two $R^{13}$ together form $-\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3}-; \mathrm{R}^{17}$ and $\mathrm{R}^{18}$ are independently hydrogen or $C_{1-3}$ alkyl; and $\mathrm{R}^{5}$ is hydrogen, $\oint_{1-6}$ alkyl, $C_{2-3}$ alkenyl, $C_{3-6}$ cycloalkyl, $-\dot{0}^{-R^{9}}$
(wherein $R^{9}$ is hydrogen, $C_{l-4}$ alkyl, $C_{1-3}$ alkoxy, fluoro chloro, bromo or trifluoromethyl), phenyl- $\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}$ - (wherein m is 1,2 or 3 ), $-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl or phenyl-( $\left.\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - (wherein n is 0,1 or 2$)$.
2. The compound according to Claim 1 , wherein in the fluoro, chloro, bromo. $C_{1-3}$ alkyl, $c_{1-3}$ alkoxy, $c_{3-6}$ cycloalkyl, dimethylamino, hydroxy, hydroxymethyl, hydroxyethyl, trifluoromethyl, trifluoromethoxy, difluoromethoxy, phenoxy or benzyloxy; or when $R^{6}$ is 25 hydrogen, $R^{1}$ and $R^{2}$ together fofm methylenedioxy; when $R^{4}$ is hydrogen, $\mathrm{R}^{3}$ is hydrogen, 3'-hluoro, 3'-chloro, 3'-methyl, 4'-methyl, 4'-chloro or 4'-fluoro; or $R^{3}$ and $R^{4}$ together represent $3^{\prime}$-methyl-4'-chloro, $3^{\prime}, 5^{\prime}$-dichloro, 3',5'-difluoro, 3',5'-dimethyl or 3'-methyl-4'-fluoro; $\mathrm{R}^{5}$ is primary or
```
```

            O
    ```
```

            O
                                    - 87 -
                                    - 87 -
                                    secondary }\mp@subsup{\textrm{C}}{1-6}{}\mathrm{ alkyl or }\mp@subsup{\textrm{C}}{3-6}{}\mathrm{ cycloalkyl; and Y is - - }\mp@subsup{\textrm{CH}}{2}{}-\mp@subsup{\textrm{CH}}{2}{
                                    secondary }\mp@subsup{\textrm{C}}{1-6}{}\mathrm{ alkyl or }\mp@subsup{\textrm{C}}{3-6}{}\mathrm{ cycloalkyl; and Y is - - }\mp@subsup{\textrm{CH}}{2}{}-\mp@subsup{\textrm{CH}}{2}{
    or - CH=CH-; and z is

```
```

or - CH=CH-; and z is

```
```

5


$-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12,}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$ or $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OR}^{13}\right)_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}$.
3. Compound according to Claim 2, wherein when $R^{2}$ and $R^{6}$ are both hydrogen, $R^{1}$ is hydrogen, 5-fluoro, 6-fluoro, 7-fluoro, 8-fluoro, 5-chloro, 6-chloro, 7-chloro, 8-chloro, 5-bromo, 6-bromo, 7-bromo, 8-bromo, 5-methyl; 6-methyl, 7-methyl 8 -methyl, 5-methoxy, 6-methoxy, 7-methoxy, 8-methoxy -5-trifluoromethyl, 6-trifluoromethyl, 7-trifiuoromethyl, 8-trifluoromethyl, 6-trifluoromethoxy, 6-difluoromethoxy, 8-hyaroxyethyl, 5-hydroxy, 6-hydroxy, 7-htydroxy, 8-hydroxy, 6-ethyl, 6 -n-butyl or 7-dimethylaminp; when $R^{6}$ is hydrogen, $R^{l}$ and $R^{2}$ together represent 6-chloiso-8-methyl,
6-bromo-7-methoxy, 6-methyl-7-chloro, 6-chloro-8-hydroxy, 5-methyl-2-hydroxy, 6-methoxy-7-chloro, 6-chloro-7-methoxy, 6-hydroxy-7-chloro, 6-chloro-7-hydroxy, 6-chloro-8-bromp, 5-chloro-6-hydroxy, 6-bromo-8-chloro, 6-bromo-8-hydroxy, 5-methyl-8-chloro, 7-hydroxy-8-chloro, 6-bromo-8-hydroxy, 6-methoxy-7-methyl, 6-chloro-8-bromo, 6-methyl-8-bromo, 6,7-difluoro,

6,8-difluoro, 6,7-methylenedioxy, 6,8-dichloro, 5, 8 -dimethyl,: 6,8-dimethyl, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo or 6,8-dibromo; or $\mathrm{R}^{1}, \mathrm{R}^{2}$ and $\mathrm{R}^{3}$ together represent 5,7-dimethoxy-8-hydroxy, 5,8-dichloro-6-hydroxy,

5-fluoro-6,8-dibromo or 5-chloro-6,8-dibromo; when $R^{3}$ is hydrogen, $R^{4}$ is hydrogen, 4'-methyi, 4'-chloro or 4'-fluoro; or when both $R^{3}$ and $R^{4}$ are not hydrogen, they represent $3^{\prime}, 5^{\prime-d i m e t h y l ~ o r ~ 3 '-m e t h y l-4 '-f l u o r o ; ~ a n d ~} Y$ is $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - or ( E ) $-\mathrm{CH}=\mathrm{CH}-$.
4. The compound according to Claim 3, wherein when both $R^{2}$ and $R^{3}$ are hydrogen, $R^{l}$ is hydrogen, 6-methyl, 6-ethyl, 6-n-butyl, 6-triflưoromethyl, 6-chloro, 6-bromo, 6-hydroxy, 6-methoxy or 7-dimethylamino; or when $R^{6}$ is hydrogen, $R^{l}$ and $R^{2}$ together represent 6,8-dichloro, 5,8-dimethyl, 6,8-dimethyI, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo, 6,8-dibromo, 6,7-difluoro or 6,8-difluoro; when $R^{3}$ is hydrogen, $R^{4}$ is hydrogen, 4'-fluoro or $4^{\text {'-chloro }}$ or $R^{3}$ and $R^{4}$ tdgether represent 3'-methyl-4'-fluoro; $R^{5}$ is ethyl, n-propyl, i-propyl or cyclopropyl; and $Y$ is ( E )--CH=CH-.
5. The compound according to claim 3, wherein when both $R^{2}$ and $R^{6}$ are hydrogen, $R^{1}$ is hydrogen, 6-methyl or 6-chloro; or when $R^{6}$ is hydrogen, $R^{1}$ and $R^{2}$ together represent 6,7-dimethoxy; when $R^{3}$ is hydrogen, $R^{4}$ is hydrogen, 4'-chloro or 4'-fluoro; $R^{5}$ is i-propyl or cyclopropyl; and $Y$ is (E)--CH=CH-.


- 90 -
condensation of the carboxylic acid with hydroxy at the p-position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.

11. The compound according to Claim 1, which is
(E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropyl-6'-chldro-quinolin-3'-yll-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid. 6'-methyl-quinolin $=3$ '-yll-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the s-position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
12. The compound according to Claim $I$, which is
(E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyI)-2'-cyclopropyl-6',7'-dimethoxy-quinolin- ('-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic łacid.
13. The compound according to chaim 1 , which is
(E) -3,5-dihydroxy-7-[4'-(4''-chlophenyl)-2'-(1''-methylethyl)-quinolin-3'-yl]-hept-k-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
```
 O
 - 91 -
 15. The compound according to Claim 1, which is
 (E)-3,5-dinydroxy-7-[4'-(4''-chlorophenyl)-2'-(1''-
 methylethyl)-6'-chloro-quinolin-3'-yll-hept-6-enoic acid,
 a lactone formed by the condensation of the carboxylic
 acid with hydroxy at the 5-position, or a sodium salt or
 c}\mp@subsup{c}{l-3}{}\mathrm{ atkyl ester of the carboxylic acid.
 16. The compound according to Claim 1, which is
 (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-(1''-
 methylethyI\-6'-methyl-quinolin-3'-yI]-hept-6-enoic acia,
 a lactone formed by the condensation of the carboxylic
 acid with hydrdxy at the 5-position, or a sodium salt or
 c
 17. The compound acoording to Claim 1, which is
 (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-(1''-
 methylethyl)-6',7'-dimethoxy-quinolin-3'-yll-hept-6-enoic
 acid, a lactone formed by the condensation of the
 carboxylic acid with hydroxy at the 5-position, or a
 sodium salt or C Cl-3
 18. The compound according to Claim 1, which is
 (E)-3,5-dihydroxy-7-[4'-(4',-chlorophenyl)-2'-cyclopropyl-
 quinolin-3'-yll-hept-6-enoic acid, a lactone formed by the
 condensation of the carboxylic acid with hydroxy at the
 5-position, or a sodium salt or d l-3 alkyl ester of the
 carboxylic acid.
 19. The compound according to Claim I, which is
 (E)-3,5-dihydroxy-7-[4'-(4''-chloropheny1)-2'-cyclopropyl-
 6'-chloro-quinolin-3'-yl]-hept-6-enoic adica, a lactone
```



condensation of the carboxylic acid with hydroxy at the 5 -position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
29. The compound according to Claim 1 , which is
(E) -3 , s-dihydroxy-7-[4'-pheny1-2'-cyclopropyl-6', 7'-dimethoxy-quinolin-3'-yll-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
30. The compound according to Claim 1, which is (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6'-methoxy-quinolin-3'-yll-hept-6-enoic acid, a lactone formed by the-sondensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or
$15 C_{1-3}$ alkyl ester of the carboxylic acid.
31. The compound according fo-taim 1 , which is (E)-3,5-dihydroxy-7-[4'-(4''-Eluorophenyl)-2'-cyclopropyl-6'-methoxy-quinolin-3'-yll-hept-f-enoic acid, a lactone formed by the condensation of the carboxylic acid with
20 hydroxy at the 5-position, or a sodium salt or $C_{1-3}$ alkyl ester of the carboxylic acid.
32. An anti-hyperlipidemia agent contafining the compound of the formula $I$ as defined in Claim 1.
33. An anti-hyperlipoproteinemia agent containing the 25 compound of the formula $I$ as defined in Claim 1. 34. An anti-atherosclerosis agent containing the compound of the formula $I$ as defined in Claim 1.


wherein $R^{1}, R^{2}, R^{3}, R^{4}$ and $R^{6}$ are independently hydrogen, $C_{1-6}$ alkyl, $C_{1-6}$ qycloalkyl, $C_{1-3}$ alkoxy, n-botoxy,
10 i-botoxy, sec-butoxy, $R^{7} R^{8} N$ - (wherein $R^{7}$ and $R^{8}$ are independently hydrogen or $C_{1-3}$ alkyl), trifluoromethyl, trifluoromethoxy, diffuoromethoxy, fluoro, chloro, bromo, phenyl, phenoxy, benzyloxy, hydroxy, trimethylsilyloxy, diphenyl-t-butylsilyloxy, hydroxymethyl or $-0\left(\mathrm{CH}_{2}\right)_{\ell} \mathrm{OR}^{19}$

(wherein $Q$ is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(\mathrm{OR}^{13}\right)_{2}$ - or $-\mathrm{CH}(\mathrm{OH})-$; W is $-\mathrm{C}(\mathrm{O})-$, $-C\left(\mathrm{OR}^{13}\right)_{2}$ - or $-C\left(R^{11}\right)(\mathrm{OH})-: R^{l l}$ is hydrogen atom or $C_{l-3}$ alkyl; $R^{12}$ is hydrogen or $R^{14}$ (wherein $R^{14}$ is physiological by hydrolyzable alkyl or $M$ (wherein $M$ is $\mathrm{NH}_{4}$, sodium, potassium, $1 / 2$ calcium or a hydrate of lower alkyl amine, di-lower alkyl amine or tri-lower alkyl amine)); two $R^{13}$ are independently primary or secondary $C_{1-6}$ alkyl; or two $R^{13}$ together form $-\left(\mathrm{CH}_{2}\right)_{2}$ - or $-\left(\mathrm{CH}_{2}\right)_{3} ; R^{17}$ and $R^{18}$ are independently hydrogen or $C_{l-3}$ alkyl; and $R^{5}$ is hydrogen, $C_{1-6}$ alkyl, $C_{2-3}$ alkenyl, $C_{3-6}$ cycloalkyl, $0^{+} R^{9}$ (wherein $\mathrm{R}^{9}$ is a hydrogen atom, $\mathrm{C}_{1-4}$ alkyl, $\mathrm{C}_{1-3}$ alkoxy, fluoro, chloro, brdmo or trifluoromethyl), phenyl- $\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}$ - (wherein m is 1,2 or 3 ), $-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-phenyl or phenyl-( $\left.\mathrm{CH}_{2}\right)_{n} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - (wherein $n$ is 0,1 or 2 ).

## COPM <br> 

Page 1 of 3

WE (1) the undersigned inventor(s), hereby declare(s) that:
My residence, post off:ee address and eitizershio are as scated below next to my name,
We (I) beilieve that we are I ann the original, first. and joint : suie: inventor(s) of the subject marter which is claimed and for wrich a patent is sought on the invention enritled

## QUINOLINE TYPE MEVALONOLACTONES

the specification of which
$\square$ is artached hereto.
Was filed on August 19, 1988 as
Application Serial No. $07 / 233,752$
and amended on $\qquad$

- was filed as PCT international application

Number
on
and was amended under PCT Arricle 19
on ______________ if applicable).

We (I) hereby state that we (I) have revieswed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the dury to disclose intormation material to the examination of this application in accordance with Section I.SG(a) of Title 3 ? Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under Secrion 119 of Title 35 United States Code, of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Application No.	Country	Day/Month/Year	Priority Claimed		
207224/1987	Japan	20/8/87		Yes	$\square$ No
15585/1988	Japan	26/1/88	$\boldsymbol{\Sigma}$	Yes	$\square$ No
Not Yet Allotted	Japan	3/8/88	*	Yes	$\square$ No
				Yes	- No


#### Abstract

We (i) hereby claim the benefit under Section 120 of Tit!e 35 United States Code, of any United States ${ }^{\text {a }}$ plication(s) listed below and, insofar as the subject matter of each of the rlainis of this application is not d'-closed in the prior United States application in the manner provided by the first paragraph of Section 112 of Title 35 United States Code, We II ) acknowledge the duty to disclose material information as defined in Section 1.56(a) of Titie 37 Code of Federal Regulations, which occurred between the filing date of the prior a pplication and the national or PCT international filing date of this application:




And we (I) hereby appoint Norman F. Oblon, Registration Number 24,618, Stanley P. Fisher, Registration Number 24,344, Marvin J. Spivak, Registration Number 24,913, C. Irvin McClelland, Registration Number 21.124, Gregory J. Maier, Registration Number 25,599, Arthur I. Neustadt, Registration Number 24.854, Robert C. Miller, Registration Number 25.357, Richard D. Kelly, Registration Number 27.757. James D. Hamilton, Registration Number 28,421, Eckhard H. Kuesters, Registration Number 28.870, Robert T. Pous, Registration Number 29,099, Charles L. Gholz, Registration Number 26,395, Vincent J. Sunderdick, Registration Number 29,004, William E. Beaumont, Registration Number 30,996 and Steven B. Kelber, Registration Number 30,073 , our (my) attorneys, with full powers of substitution and revocation, to prosecute this application and to transact all business in the Parent Office connected therewith: and we (I) hereby request that all correspondence regarding this application be sent to the firm of OBLON, FISHER, SPIVAK, McCLELLAND \& MAIER, P.C., whose Post Office Address is: Crystal Square Five Suite 400, 1755 South Jefferson Davis Highway, Arlington, Virginia 22202.

We (1) declare that all statements made herein of our (my) own knowiedge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.


October 3, 1988
Date
Residence: Nissan Chemical Industries Ltd. Chuo Kenkyusho, 722-1, Tsuboi-cho Funabashi-shi, Chiba-ken, Japan
Citizenship: $\quad$ JAPAN
Post Office Address: same as above
$\qquad$



35 U.s.c. | REQUEST FOR PRIORITY UNDER |
| :---: |
| § 119 AND THE |
| INTERNATIONAL CONVENTION |

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231

8IR:
In the matter of the above-identified patent application, notice is hereby given that applicants claim as priority dates August 20, 1987, January 26, 1988, and August 03, 1988 , the filing dates of the corresponding convention applications filed in JAPAN. The corresponding convention applications bear Serial Numbers 62-207224, 63-15585 and 63-193606, respectively.

Respectfully submitted, OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADT, P.C.

Norman F. Oblon


Fourth Floor
1755 South Jefferson Davis Highway Arlington, Virginia 22202
703-521-5940
49-169-0 DIV of 49-168-0 CONT

Docket No. 49-168-0 DIV
MISSIONER OF PATENTS \& TRADEMARKS
application under 37 C.F.R. 1.60,
[. Divisional


Enclosed is a copy of the prior application as originally filed and an affidavit or declaration verifying it as a true copy.
2.Small Entity Status of this application has been established by a Verified Statement submitted in the parent application.
3.

The filing fee is calculated below:
CLAIMS AS FILED, LESS ANY CLAIMS CANCELLED BY AMENDMENT BELOW

4. The Commissioner is hereby authorized to charge any fees which may be required for the papers being filed herewith and for which no check is enclosed herewith, or credit any overpayment to Account No. 15.0030 . A duplicate copy of this sheet is enclosed.
5.A check in the amount of $\$ \ldots .690 .00$ $\qquad$ is enclosed.
6.Cancel Claims $\qquad$ 41-4:
7. Amend the specification by inserting before the first line the sentence: $\qquad$ This is a continuation, X division, of application Serial No. 07/631,092 , filed on December 19, 1990, which is a continuation of $07 / 233,752$, filed August 19, 198\{
8.New Drawings are enclosed.
9. $\square$The prior application is assigned to: $\qquad$
$\qquad$
10. The Power of Attorney in the prior application is to: Norman F. Oblon, Reg. No. 24,618; Marvin J. Spivak, Reg. No. 24,913; C. Irvin McClelland, Reg. No. 21,124; Gregory J. Maier, Reg. No. 25,599; Arthur I. Neustadt, Reg. No. 24,854; Robert C. Miller, Reg. No. 25,357; Richard D. Kelly, Reg. No. 27,757; James D. Hamilton, Reg. No. 28,421; Eckhard H. Kuesters, Reg. No. 28,870; Robert T. Pous, Reg. No. 29,099; Charles L. Gholz, Reg. No. 26,395; Vincent J. Sunderdick, Reg. No. 29,004; William E. Beaumont, Reg. No. 30,996; Steven B. Kelber, Reg. No. 30,073; Stuart D. Dwork, Reg. No. 31,103; Robert F. Gnuse, Reg. No. 27,295; Jean-Paul Lavalleye, Reg. No. 31,451; William B. Walker, Reg. No. 22,498; Timothy R. Schwartz, Reg. No. 32,171; and John H.O. Clarke, Reg. No. 17,373, all of OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADT, P.C. Fourth Floor, 1755 Jefferson Davis Highway, Arlington, Virginia 22202.
a. $X$ The power appears in the original papers of the prior application. (Copy Attached)Since the power does not appear in the original papers, a copy of the power in the prior application is enclosed.
c.Recognize as associate attorney and address all future communications to:
$\qquad$
$\qquad$
$\qquad$
11. X A Preliminary Amendment is enclosed.


Respectfully submitted,
OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, PRC.


Steven B. Kelber
Registration No. 30,073


## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

## H/80. 78

Docket No. 49-168-0 DIV
application under 37 C.F.R. 1,60,Divisional


1. $X$ Enclosed is a copy of the prior application as originally filed and an affidavit or declaration verify. . ing it as a true copy.
2. $\square$

Small Entity Status of this application has been established by a Verified Statement submitted in the parent application.
3.
$X$ The filing fee is calculated below:
CLAIMS AS FILED, LESS ANY CLAIMS CANCELLED BY AMENDMENT BELOW

For	Number filed		Number extra	Rate	$\begin{aligned} & \text { B8sic } \\ & \$ 690 \end{aligned}$	$\begin{gathered} \text { Fee } \\ \text { (345) } \end{gathered}$
Total Claims. . . . . . Independent Claims.	5-20	=		$\times \$ 20$ (10)	$=$	-0-
	$1-3$	$=$		-\$72(36)	a	-0-
	Multiple Claim Fee $-\mathbf{\$ 2 2 0 ( 1 1 0 )}=$   Total Filing Fee . . . . . . . . . . . $=\$ 6.90$					

4. $X$ The Commissioner is hereby authorized to charge any fees which may be required for the papers being filed herewith and for which no check is enclosed herewith, or credit any overpayment to Account No. 15.0030. A duplicate copy of this sheet is enclosed.
5. X A A check in the amount of $\$$
6. 

X Cancel Claims $\qquad$ 4í48
7. $x$ Amend the specification by inserting before the first line the sentence:

This is a __ continuation, X division, of application Serial No. $07 / 631,092$, filed on .-. December 19, 1990, which is a continuation of $07 / 233,752$, filed August 19, 1988
8.New Drawings are enclosed.
9.The prior application is assigned to: $\qquad$
$\qquad$
$\qquad$
j. Sower of Attorney in the prior application is to: Norman. F. Oblon, Req. No. 24,618; Marvin j. Spivak, Reg. No. 24,913: C. Irvin McClelland, Reg. No. 21,124; Gregory J. Maier, Reg. No. 25,599; Arthur I. Neustadt, Reg. No. 24,854; Robert C. Miller, Reg. No. 25,357; Richard D. Kelly, Reg. No. 27,757; James D. Hamilton, Reg. No. 28,421; Eckhard H. Kuesters, Reg. No. 28,870; Robert T. Pous, Reg. No. 29,099; Charies L. Gholz, Reg. No. 26,395; Vincent J. Sunderdick, Reg. No. 29,004: William E. Beaumont, Reg. No. 30,996; Steven B. Kelber, Reg. No. 30,073; Stuart D. Dwork, Reg. No. 31,103: Robert F. Gnuse, Reg. No. 27,295; Jean-Paul Lavalleye, Reg. No. 31,451; William B. Walker, Reg. No. 22,498; Timothy R. Schwartz, Reg. No. 32,171; and John H.O. Clarke, Reg. No. 17,373, ail of OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C., Fourth Floor, 1755 Jefferson Davis Highway, Arlington, Virginia 22202.
a. X The power appears in the original papers of the prior application. (Copy Attached)
n.Since the power does not appear in the original papers, a copy of the power in the prior application is enclosed.
c.Recognize as associate attorney arid address ail future communications to:
$\qquad$
$\qquad$
slame. registration number and aoaress
11. X A Preliminary Amendment is enclosed.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.


[^1]

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF:	$:$	
YOSHIHIRO FUJIKAWA ET AL	$:$	GROUP ART UNIT: 129
SERIAL NUNBER: NEW DIVISIONAL	$:$	
FILED: HEREWITH	$:$	
FOR: QUINOLINE TYPE MEVALONOIACTONES		

## PRELIMINARY AMENDMENT

HONORABLE COMNISSIONER OF PATENTS AND TTRADEMARKS FASHINGION, DC 20231

SIR:
In advance of prosecution of the above-captioned patent application, entry of the following amendments is respectfully requested.

## IN THE CIATMS:

Please cancel Claims 41-45 and insert new Claims 46-50.


## REMARKS:

Claims 41-45 have been cancelled in favor of new Claims 46-50 in order to more clearly define the invention.

Upon entry, the claims are believed to be in conformance with the requirements of Title 35 , and in condition for examination on the merits. The same is respectfully requested, in light of the Rule 132 Declaration of Masaki Kitahara submitṫed herewith. Applicants are submitting at this time an unexecuted Declaration, an executed Declaration will be submitted when available.


Fourth Floor
1755 South Jefferson Davis Highway
Arlington, Virginia 22202
703-521-5940

IN RE APPLICATION OF:	$:$	
YOSHIHIRO FUUIKAWA ET AL	$:$	GROUP ART UNIT: 129
DIVISIONAL APPLICATION	$:$	EXAMINER: J. RICHTER
DIVIDED FROM		

FOR: QUINOLINE TYPE MEVALONOLACTONES

## DECLARATIQN UNDER 37 CFR 1.132

HONORABLE COMMISSIONER OF PATENTS \& TRADEMARKS
WASHINGTON, D.C. 20231
SIR:
I, Masaki Kitahara, do hereby declare and state that:

1. I am a named co-inventor in the above-captioned patent application, an employee of Nissan Chemical Industries, Limited, and a citizen and resident of Japan.
2. I am familiar with the above-captioned patent application, and Claims presented by Divisional Application.
3. To demonstrate the unobvious superiority of the subject matter claimed therein, comparative tests were conducted, demonstrating the importance and unobvious superiority conferred on these compounds by the selection of the cyclopropyl (c-Pr)
substituent. These are described as follows:

MISSING PAGES)
FROM THE USS. PATENT OFFICE
OFFICIAL FILE WRAPPER


Data was obtained with regard to the following compound having the formula:


TEST METHOD

Compound	$\mathrm{R}^{5}$	Test A Evaluation	Test B Evaluation
Compound of this Invention	$\begin{aligned} & \text { cyclopropy } \\ & (\mathrm{c}-\mathrm{Pr}) \end{aligned}$	$4.4 \times 10^{-9}$	$35.0 \times 10^{-9}$
Reference Compound	$\underset{(i-\mathrm{Pr})}{\text { isopropyl }}$	$23.0 \times 10^{-9}$	$105 \times 10^{-9}$
Test A.	Inhibition biosynthesis	sterol   tate in vi	
This tes specification concentration	was carried   The above n	escribed on values ind	28-29 of th IC 50 (molar

4
Test B: Inhibition of cholesterol
biosynthesis in culture cells

This test was carried out as described on pages 29 to 30 of the specification. The above numerical values indicate $\mathrm{IC}_{50}$ (molar concentration).
4. Based on the data reported above, it can be determined that the compound of this invention exhibits unobvious superiority, and in particular, sharply enhanced inhibition of cholesterol biosynthesis, in vitro, and culture cell, when compared with the referenced compound of the prior art, and compounds having an identical structure save for the selection of cyclopropyl, as opposed to isopropyl substituent, for $R^{5}$. This enhanced activity could not be predicted on the basis of structure, or information available to those of ordinary skill in the art as of the effective filing date of this application.


#### Abstract

5 All statements made herein of my own knowledge are true, and all statements made on information and belief are believed true. I am aware that willful false statements and the like are punishable by fine, imprisonment or both, 18 U.S.C. §1001, and that such willful false statements may jeopardize the validity of the above-captioned patent application and any patent issuing thereon.


FURTHER, I SAYETH NOT.


## PRELIMINARY AMENDMENT, EXECUTED DECLARATION OF KITAHARA

Our check in the amount of $\$ \ldots-0$ - is attached covering any required fees. In the event any variance exists between the amount enclosed and the Patent Office charges for filing the above-noted documents, including any fees required under 37 CFR 1.136 for any necessary Extension of Time to make the filing of the attached documents timely, please charge or credit the difference to our Deposit Account No. 15-0030. Further, if these papers are not considered timely filed, then a petition is hereby made under 37 C.F.R. 1.136 for the necessary extension of time. A duplicate copy of this sheet is enclosed.

Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND,


Steven B. Kelber
Registration No.: 30,073
Attorneys of Record


## 49-168-0 DIV

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
IN RE APPLICATION OF: :
YOSHIHIRA FUJIKANA ET AT : GROUP ART UNIT: 1.29

SERIAL NUMBER: $07 / 883,398$ : EXAMINER: RICHTER
FILED: MAY 15, 1992 :
FOR: QUINOLINE TYPE MEVALONOLACTONES

PRELIMINARY AMENDMENT

HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, DC 20231

SIR:
Prior to examination on the merits in the above-captioned patent application, entry of the following amendments is respectfully requested.

## IN THE CLAIMS:

Please cancel Claims, 1 -35.

```
2
Please renumber Claims 46-50 submitted in the Preliminary Amendment of May 15, 1992 as Claims 36-40.
```


## REMARKS:

Entry and consideration of the above amendments, together with the executed Declaration of Kitahara, submitted herewith, is respectfully requested prior to the examination on the merits.

This application is a divisional application, the immediate parent application being U.S. Application Serial No. 631,092, a continuation of U.S. Application Serial No. 233,752. In filing the application, a Preliminary Amendment was filed which inadvertently sought to cancel Claims $41-45$ (never presented in this application) and insert new Claims 46-50. In fact, of course, applicants intended, and undersigned Counsel respectfully requests, that Claims 1-35 be cancelled. Further, the claims identified as 46-50 in the Preliminary Amendment of May 15 , 1992 should be correctly renumbered as Claims 36-40. The claims cancelled and added by the May 15, 1992 Preliminary Amendment were inadvertently misnumbered, based on the status of claims in the parent application. Any inconvenience is regretted.

Submitted herewith is the executed Declaration of Kitahara,
identical to the unexecuted Declaration submitted with the divisional application filing on May 15, 1992. The Declaration clearly demonstrates that the subject matter of the Count of Interference exhibits unobviously superior bioactivity, when compared with the closest isomeric form. Indeed, the $\mathrm{IC}_{50}$ values obtained for both evaluation methods reported in the Declaration are 4-5 fold superior to the isomeric form, something that could not have been predicted on the basis of the structure alone, given the information available to those of ordinary skill in the art as of the effective filing date of the application. See the Declaration, paragraph 4.

Accordingly, examination and allowance of the claims originally presented in the Preliminary Amendment and numbered 4650 , properly numbered $36-40$, is respectfully requested.

Respectfully submitted,
OBLON, SPIVAK, McCLELLLAND, MAIER \& NEUSTADR PD.C.


Registration No.: 24,618
Steven B. Kelber
Registration No.: 30,073
Attorneys of Record


IN RE APPLICATION OF: :


DECLARATION UNDER 37 CFR 1.132
HONORABLE COMMISSIONER OF PATENTS \& TRADEMARKS
WASHINGTON, D.C. 20231

SIR:
I, Masaki Kitahara, do hereby declare and state that:

1. I am a named co-inventor in the above-captioned patent application, an employee of Nissan Chemical Industries, Limited, and a citizen and resident of Japan.
2. I am familiar with the above-captioned patent application, and Claims presented by Divisional Application.
3. To demonstrate the unobvious superiority of the subject matter claimed therein, comparative tests were conducted, demonstrating the importance and unobvious superiority conferred on these compounds by the selection
```
of the cyclopropyl (c-Pr) substituent. These are
described as follows:
 Data was obtained with regard to the following
compound having the formula:
```



## TEST METHOD

Compound
R5
Test A
Test B
Evaluation
Evaluation
Compound cyclopropyl $4.4 \times 10^{-9} \quad 35.0 \times 10^{-9}$
of this
Invention

Reference isopropyl $23.0 \times 10^{-9} \quad 105 \times 10^{-9}$
Compound
(i-Pr)

This test was carried out as described on pages 28-29 of the specification. The above numerical values indicate $\mathrm{IC}_{50}$ (molar concentration).

## Test B: Inhibition of cholesterol

biosynthesis in culture cells

This test was carried out as described on pages 29 to 30 of the specification. The above numerical values indicate $\mathrm{IC}_{50}$ (molar concentration).
4. Based on the data reported above, it can be determined that the compound of this invention exhibits unobvious superiority, and in particular, sharply enhanced inhibition of cholesterol biosynthesis, in vitro, and culture cell, when compared with the referenced compound of the prior art, and compounds having an identical structure save for the selection of cyclopropyl, as opposed to isopropyl substituent, for R5. This enhanced activity could not be predicted on the basis of structure, or information available to those of ordinary skill in the art as of the effective filing date of this application.


#### Abstract

All statements made herein of my own knowledge are true, and all statements made on information and belief are believed true. I am aware that willful false statements and the like are punishable by fine, imprisonment or both, 18 U.S.C. §l001, and that such willful false statements may jeopardize the validity of the above-captioned patent application and any patent issuing thereon.


FURTHER, I SAYETH NOT.
 COMMISSIONER OF PATENIS AND TRADEMARKS

13.Since this application appears to be in condition for allowance except for formal matters, prosecution as to the marits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 O.G. 213.
14.Other

Serial No. 07/883,398 -2-
Art Unit 1201

The Abstract of the Disclosure is objected to because of undue length. Correction is required. See M.P.E.P. § 608.01(b).

Applicant is reminded of the proper language and format of an Abstract of the Disclosure.

The abstract should be in narrative form and generally limited to a single paragraph on a separate sheet within the range of 50 to 250 words. It is important that the abstract not exceed 250 words in length since the space provided for the abstract on the computer tape used by the printer is limited. The form and legal phraseology often used in patent claims, such as "means" and "said", should be avoided. The abstract should describe the disclosure sufficiently to assist readers in deciding whether there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information given in the title. It should avoid using phrases which can be implied, such as, "The disclosure concerns," "The disclosure defined by this invention," "The disclosure describes," etc.

Pages 27, 32 and 41 of the specification are missing. Replacement copies are required. They must be accompanied by a statement that they contain no new matter.

Claims 37-39 are rejected under 35 U.S.C. $\$ 112$, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The term, "agent", render" claims indefinite. Likewise, the term "containing" is open ended, leaving the claim open to the inclusion of unrecited ingredients, even in major amounts.

Serial No. $07 / 883,398$-3-
Art Unit 1201

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Richter whose telephone number is (703) 308-4532.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-1235.

Richter: ach September 22, 1992

JOHAN RICHTER PRMARIY EXAMINER

GROUP 120


Oblon, Spivak, MoClelland, Maier \& Neustadt, p.c.


HONORABLE COMMISSIONER OF PATENTS AND TRADEMARKS WASHINGTON, D.C. 20231

IN RE ARPLICATION OF:
YOSEIRA FUJIKAWA ET AL SERIAL NUMBER: $07 / 883,398$ FILING DATE: MAY 15, 1992 FOR: QUINOLINE TYPE MEVALONOLACTONES

GROUP ART UNIT : 1201
EXAMINER: RICHTER

sir:
Attached hereto for filing are the following papers:
Amendment (with copies of pages 27, 32 and 41 of the specification as originally filed and a new Abstract of the Disclosure)

A check in the amount of $\$ .00$ is attached covering any required fees. In the event any variance exiats between the amount enclosed and the patent office charges for filing the above-noted documents, including any fees required under 37 CFR 1.136 for any necessary extension of time to make the filing of the attached documents timely, please charge or credit the difference to our Deposit Account Number 15-0030. Further, if these papers are not considered timely filed, then a petition is hereby made under 37 CFR 1.136 for the necessary extension of time. A duplicate copy of this paper is enclosed.

> OBLON, BPIVAR, McCLELLAND, MAIER \& NEUSTADT, P.C.

Fourth Floor
1755 Jefterson Davis Highway Arlington, Virginia 22202

 WASHINGTON, D. C. 20231
sir:
Responsive to the outstanding office Action of September 24, 1992, entry of the following amendments is respectfully requested.

IN THE CLATMS:
Please cancel Claims 37-39.

## REMARKS

Claims 36 and 40 remaining pending upon entry of the above amendments. These claims have been allowed, and the Examiner's indication of the same is deeply appreciated.

Submitted herewith please find copies of pages 27, 32 and 41 of the specification as originally filed. As these pages are
identical to the pages of the application as originally filed, no new matter is contained therein. Substitution of the Abstract set forth on the attached page, for the Abstract of the disclosure as originally filed, is respectfully requested. This is believed to meet the Examiner's objection to the Abstract.

As the sole claims pending, 36 and 40 , have been previously allowed, and the Examiner's objections to the specification and disclosure have been met, allowance of this case is respectfully requested.


Fourth Floor
1755 Jefferson Davis Highway
Arlington, Virginia 22202
(703) 521-5940

$\left.i\right|^{*}$

$\mathrm{Z}=-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{COO}$ - $\frac{1}{2} \mathrm{Ca}$ have $\mathrm{HMG}-\mathrm{COA}$ inhibiting effects, making them useful as inhibitors of cholesterol biosynthesis. The compound may be prepared as a pharmaceutical for reducing hyperlipidemia, hyperlipoproteinemia or atherosclerosis.


UNITED STATES DEPARTMENT OF COMMERCE Patent and Trademark Office

Address : COMMISBIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231


Please find below a communication from the EXAMINER in charge of this application.
Commissioner of Patents.

All claims are allowable. However, due to a potential interference, ex parte prosecution is SUSPENDED FOR A PERIOD OF SIX MONTHS FROM THE DATE OF THIS LETTER.

Upon expiration of the period of suspension, applicant should make an inquiry as to the status of the application.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to examiner Richter whose telephone number is (703) 308-4532.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-1235.

JOHANN RICHTER
Richter: Ib
February 22, 1993
PRIMARY EXAMINER



Please find below a communication from the EXAMINER in charge of this application.

Commissioner of Patents.

Action in this application is further suspended for six months from the date of this letter due to a possible interference.

Upon expiration of the period of suspension, applicants should again make an inquiry as to the status of the application. Manual of Patent Examining Procedure Section 709; 37 C.F.R. 1.103.



Please find below a communication from the EXAMINER in charge of this application.
Commissioner of Patents

Action in this application is further suspended for six months from the date of this letter due to a possible interference.
Upon expiration of the period of suspension, applicants should again make an inquiry as to the status of the application. Manual of Patent Examining Procedure Section 709; 37 CFR 1.103.

> hehad W/ Fisluy
> Richard V. Fisher, Director Patent Examining Group 1200 Organic Chemistry


Please find below a communication from the EXAMINER in charge of this application.
Commissioner of Patents

```
Action in this application is further suspended for six months
from the date of this letter due to a possible interference.
Upon expiration of the period of suspension, applicants should
again make an inquiry as to the status of the application.
Manual of Patent Examining Procedure Section 709; 37 CFR 1.103.
```


## Richard W. Fucker

```
Richard V. Fisher, Director
Patent Examining Group 1200
Organic Chemistry
```



Please find below a communication from the EXAMINER in charge of this application.


Please find below a communication from the EXAMINER in charge of this application.
Commissioner of Patents.

Action in this application is further suspended for six months from the date of this letter due to a possible interference.

Upon expiration of the period of suspension, applicants should again make an inquiry as to the status of the application. Manual of Patent Examining Procedure Section 709; 37 CFR 1.103.


## STATUS REQUEST

Honorable Commissioner of Patents \& Trademarks Washington, D.C. 20231

SIR:
The undersigned respectfully requests the status of the above-captioned application.

1755 Jefferson Davis Highway
Respectfully submitted,
OBLON, SPIVAK, MCCLELLAND, MAIER \& NEUSTADT, P.C.


Attorney of Record
Registration No. 24,618
hoben $\because$. Bnuse
Registraifon Number 27,295


All participants (applicant, applicant's representative, PTO personnel):

(1) Mr. Steven Kelter
(3) Mr. Tsuchiya
(2) Mr. Masuda
(4) Mr. Joham Richter

Date of Interview Sept: 24, 1998
(5) Laura L Stacktor

Type: $\square$ telephonic $\square_{\text {Personal (copy is given to }} \square$ applicant $\square$ applicant's representative).
Exhibit shown or demonstration conducted: $\square$ Yes $\square$ No If yes, brief description:

Agreement $\square$ was reached. $\square$ was not reached.
Claims) discussed: ALI
Identification of prior art discussed:

Description of the general nature of what was agreed to if an agreement was reached, or any other comments: Claims ore now in condition for allowance
$\qquad$
$\qquad$
: :
(A fuller description, if necessary, and a copy of the amendments, if available, which the examiner agreed would render the claims allowable must be attached. Also, where no copy of the amendments which would render the claims allowable is available, a summary thereof must be attached.).

1. It is not necessary for applicant to provide a separate record of the substance of the interview.

Unless the paragraph above has been checked to indicate to the contrary. A FORMAL WRITIEN RESPONSE TO THE LAST OFFICE ACTION IS NOT WAIVED AND MUST. INCLUDE THE SUBSTANCE OF THE INIERVIEW. (See MPEP. Section 713.04). If a response to the last Office action has are ready been fled, APPLLCANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE TO FILEA ATATEMENT OF THE SUBSTANCE OF THE INTERVIEW.
2. Since the Examiner's interview summary above (including any attachments) reflects a complete response to each of the objections,
rejections and requirements that may be present in the last office action, And since the claims are now allowable, this completed form,
is coniddered to fulfil the response requirements of the last Office action. Applicant is pot resjeved from providing a separate record of
the interview unless box 1 above is also checked. the interview unless box 1 above is also checked.

Examiner Note: You must sign this. form unless it is an attachment to another form. FORM PTOL-413 (REV.1-96)
(1)


Interview Summary	Application No. 07/883,398	Applicant(s)			
	Laura L. Stockton		Group Art Unit 1613		相
All participants (applicant, applicant's representative, PTO personnel):					
(1) Leura L. Stockton	(3)				
12) Mr. Steven B. Kelber	(4)				
Date of Interview $\quad$ Sep 28, 1998					
Type: $\triangle$ Telephonic $\square$ Personal (copy is given to	$\square$ applicant $\square$ applicant's representative).				
Exhibit shown or demonstration conducted: $\square$ Yes $\boxtimes$ No. If yes, brief description:					

Agreement $\quad \boxtimes$ was reached, $\square$ was not reached.
Claim(s) discussed: 36
Identification of prior art discussed:

Description of the general nature of what was agreed to if an agreement was reached, or any other comments: The Examiner called Applicants' representative for permission to change the "c-Pr" group to a cyclopropyl group.
(A fuller description, if necessary, and a copy of the amendments, if available, which the examiner agreed would render the claims aliowable must be attached. Also, where no copy of the amendents which would render the claims allowable is available, a summary thereof must be attached.)

1. 区 It is not necessary for applicant to provide a separata record of the substance of the interview.

Unless the paregraph above has been checked to indicate to the contrary, A FORMAL WRITTEN RESPONSE TO THE LAST OFFICE ACTION IS NOT WAIVED AND MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. [See MPEP Section 713.04). If a response to the last Offica action has already been filed, APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW.
2. $\square$ Since the Examiner's interview summary above (including any attachments) reflects a complete response to each of the objections, rejections and requirements that may be present in the last Office action, and since the claims are now allowable, this completed form is considered to fulfill the response requirements of the last Office action. Applicant is not relieved from providing a separate record of the interview unless box 1 above is also checked.

Paper No.


This is a communication from the examiner in charge of your application. COMMiSSIONER OF PATENTS AND TRADEMARKS

## NOTICE OF ALLOWABILITY

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance and Issue Fee Due or other appropriate communication will be mated in due course.This communication is responsive to
A The allowed claims) 36 and 40 now renumbered claims land 2 , respectivelyThe drawings filed on $\qquad$ are acceptable.
A. Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § $119(\mathrm{a}$-(d).

A All $\square$ Some* $\square$ None of the CERTIFIED copies of the priority documents have been
$\square$ received.
X received in Application No. (Series Code/Serial Number)


I received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
*Certified copies not received: $\qquad$Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).
A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAILED" of this Office action. Failure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CF 1.136 (a).
$\square$ Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL APPLICATION, PTO $\cdot 152$, which discloses that the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED.Applicant MUST submit NEW FORMAL DRAWINGSbecause the originally filed drawings were declared by applicant to be informal.including changes required by the Notice of Draftperson's Patent Drawing Review, PTO-948, attached hereto or to Paper No. $\qquad$ -.
$\square]$ including changes required by the proposed drawing correction filed on $\qquad$ which has been approved by the examiner.
$\square]$ including changes required by the attached Examiner's Amendment/Comment.
Identifying indicia such as the application number (see 37 CFR 1.84 (c)) should be written on the reverse side of the drawings. The drawings should be filed as a separate paper with a transmittal letter addressed to the Official Draftperson.
[] Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.
Any response to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES CODE/SERIAL NUMBER). If applicant has received a Notice of Allowance and Issue Fee Due, the ISSUE BATCH NUMBER and DATE of the NOTICE OF
ALLOWANCE should also be included.

## Attachment (s)

X Notice of References Cited, PTO-892 $\{$ References cited to shin the state of the ar it.\} ~
$\square$ Information Disclosure Statements), PTO-1449, Paper Nos).Notice of Draftsperson's Patent Drawing Review, PTO-948
$\square$ Notice of Informal Patent Application, PTO-152
D Interview Summary, PTO-413
X Examiner's Amendment CommentExaminer's Comment Regarding Requirement for Deposit of Biological MaterialExaminer's Statement of Reasons for Allowance


Art Unit: 1613

## EXAMINER'S AMENDMENT

1. An examiner's amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner's amendment was given in a telephone interview with Mr. Steven B. Kelber on September 28, 1998.

## 2. The application has been amended as follows:

## Claim 36:

in the formula on line 2 : replace " $\mathrm{c}-\mathrm{Pr}$ " with.$- \Delta$.-.

Art Unit: 1613

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Laura L. Stockton whose telephone number is (703) 308-1875.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-1235.

A facsimile center has been established. The hours of operation are Monday through Friday, 8:45 AM to 4:45 PM. The telecopier numbers for accessing the facsimile machine are (703) 308-4556 or 305-3592.


September 28, 1998


K

Sawai Ex 1002
Page 149 of 266

## NOTICE OF ALLOWANCE AND ISSUE FEE DUE

```
\(1+1442 / 0900\)
OHLDN,SPIVAK, ML CLELLAND. MAIEF \& NEUSTADT
4TH FLFR. 1755 IEFFERSDM DAVIS HWY, AFIL INGTON VA 22202
```



TITLEOF
INVENTION OUTNGLINE TYFE MEVALDNOLACTGESE


THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS APATENT. PROSECUTION ON THE MERITS IS CLOSED.

## THE ISSUE FEE MUST BE PAID WITHIN THBEE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED.

## HOW TO RESPOND TO THIS NOTICE:

1. Review the SMALL ENTITY status shown above. If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and Trademark Office of the change in status, or B. If the status is the same, pay the FEE DUE shown above.

If the SMALL ENTITY is shown as NO:
A. Pay FEE DUE shown above, or
B. File verified statement of Small Entity Status before, or with, payment of $1 / 2$ the FEE DUE shown above.
II. Part B-Issue Fee Transmittal should be completed and returned to the Patent and Trademark Office (PTO) with your ISSUE FEE. Even If the ISSUE FEE has already been paid by charge to deposit account, Part B Issue Fee Transmittal should be completed and retumed. If you are charging the ISSUE FEE to your deposit account, section "4b" of Part B-issue Fee Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give application number and batch number.

Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.

```
IMPORTANT REMINDER: Utility patents Issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responslbillty to ensure timely payment of maintenance fees when due.
```

PATENT AND TRADEMARK OFFICE COPY
PTOL-85 (REV. 10-96) Approved tor use through 06/30/99. (0651-0033)

H142/0931


TILLE OF
INVENTON BUTNIIIINE TYFE MEVALINOLAOTDNEE


The COMMISSIONER OF PATENTS ANDITRADEMAFKS IS requested to apply the lssue Fee to the application identified above.


Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending on the needs of the individual case. Any comments on the amount of time required to complete this form should be sent to the Chlef information Officer, Patent and Trademark Office, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND FEES AND THIS FOAM TO: Box lssue Fee, Assistant Commissioner for Patents, Washington D.C. 20231
Under the Paperwork Reduction Act of 1985, no persons are required to respond to a collection of information unless it dieplays a valid OMB control number.




[^0]:    $!$

    E
    $:$
    $\ddot{\square}$
    $\div$
    3
    ¥
    !
    !

[^1]:    - IOURTH FLOOR
    :G5 JEFFERSON OAVIS HIGHWAY
    ARLINGTON. VIRGINIA 22202
    :831521.5940

