In The Matter Of:

BRISTOL-MYERS SQUIBB COMPANY
 v.

GENENTECH, INC., and CITY OF HOPE, et al.

DR. JEFFERSON D. FOOTE - Vol. 1 January 9, 2015

```
    UNITED STATES DISTRICT COURT
        CENTRAL DISTRICT OF CALIFORNIA
        ----000---
```

BRISTOL-MYERS SQUIBB COMPANY,
Plaintiff/
Counter-Defendant,
vs. Case No.:
2:13-cv-05400-MRP-
JEM
GENENTECH, INC., and CITY OF
HOPE,
Defendants/
Counter-Plaintiffs.
MEDAREX, L.L.C.,
Third Party Defendant/
Counter-Claimant.
/
VIDEOTAPED DEPOSITION OF
DR. JEFFERSON D. FOOTE
Friday, January 9, 2015
REPORTED BY: RACHEL FERRIER, CSR 6948
(NY-019567)


```
    Page 6
Mayer Brown for Bristol-Myers and Medarex.
    MR. BROWN: Neal Dahiya from Bristol-Myers
and Medarex.
    THE VIDEOGRAPHER: Thank you very much.
    The Court Reporter today is Rachel Ferrier of
Merrill.
    And would the Reporter please swear in the
witness.
    ---000---
DR. JEFFERSON D. FOOTE
```

called as a witness, having been
first duly sworn, was examined and testified as follows:
---o0o---
EXAMINATION
BY MS. DAVIS:

Q Good morning, Dr. Foote.
As you just heard, my name is Kira Davis, and I represent Genentech and City of Hope.

As we discussed a little bit before we
started, I understand you are feeling somewhat under
the weather today, so if at any point in time you need to take a break, please just let us know and we can take breaks as frequently as -- as needed.

Page 7
Does that make sense?
A Yes. Thank you.
MS. DAVIS: So we are going to start.
I want to hand you five documents, so let me put them on the record.

Exhibit 1 is the Expert Report of Jefferson
Foote, Ph.D., in BMS v Genentech.
Exhibit 2 is the Rebuttal Expert Report of
Jefferson Foote, Ph.D., also in this case.
Exhibit 3 is U.S. Patent 4,816,567.
Exhibit 4 is U.S. Patent 6,331,415.
And Exhibit 5 is U.S. Patent 7,923,221.
I'm handing you those documents.
THE WITNESS: Thank you.
(Exhibits 1 through 5 were marked
for identification by the Reporter.)
BY MS. DAVIS:
Q So starting with -- they're -- they're all yours now.

Starting with Exhibit 1, do you recognize
Exhibit 1 to be a report that you prepared in this case?
A Yes, this is.
Q And if you turn to the first page of that report.

1 A Turn to the first page.
2 Q The first page of text.
3 A I'm on page 1 with the " 1 " at the bottom.
Q In the Introduction, this report says that you have been retained by Bristol-Myers Squibb and Medarex, LLC.

Do you see that?
A Yes.
Q And that is correct?
A That is correct.
Q If I refer to those two companies today
jointly as "BMS," will you understand what I'm referring to?

A Yes.
Q You -- in your first opinion -- in your first
paragraph in your report, you indicate that you are
providing expert opinions and testimony in this
matter concerning the invalidity of -- of two
patents.
Do you see that?
A Yes.
Q And the first patent is the ' 415 patent?
A Right, or Cabilly II, yes.
Q And that was my question.
That -- that patent is commonly referred to
as 'Cabilly II''; correct?
A Mm-hmm.
Q And if you turn to your stack of documents, Exhibit 4 is a copy of Cabilly II.

Do you see that?
A '415, Cabilly II, yes.
Q And the -- the next patent that you opine on is the ' 221 , or Cabilly III, patent; is that correct?

A That's correct.
Q And if I refer to that as "Cabilly III," we will all understand what -- what I'm referring to?
A I prefer calling it Cabilly III rather than whatever the number is, ' 221 .

Q And Exhibit 5 in your stack of documents should be Cabilly III.

Do you have that?
A 5, Cabilly III, '221, yes.
Q So if at any point during the day you need to refer to those patents, you have them. Those copies are -- are for your use during this deposition.

The other exhibit we marked is Exhibit 3.
Do you have that?
A Exhibit 2 and Exhibit 3.
Q And Exhibit 3 is what's known as the

```
            Page 10
            ge 10
    "Cabilly I" patent; is that correct?
        A Yes.
        Q Okay. So you can set the patents aside for
the moment; although, again, if at any point you
need them --
    A Mm-hmm.
    Q -- they will stay with you.
    A Are these in order, Exhibit 3, 4, 5;
    Cabilly I, II, III?
    Q Yes, they are in order.
    A That will help me. Thank you.
    Q You have previously served as an expert,
    opining on the validity of the Cabilly II patent; is
    that correct?
    A Yes.
    Q You were retained in that case by GSK?
    A Yes.
    Q If you look in your report at paragraph 3 --
    and this is, again, Exhibit 1.
        In paragraph 3, you state, in part, that
    Defendants Genentech and/or City of Hope may have an
    expert respond to this report.
        Do you see that?
    A Yes.
    Q That has since happened; correct?
"Cabilly I" patent; is that correct?
```

 Page 11
 A Yes.
 Q And you put in a second report, a rebuttal
 report?
A Yes.
Q And that is the document that is Exhibit 2 in
front of you right now; is that correct?
A Yes.
Q So Exhibits 1 and 2, combined, are you --
your two reports in this case.
Do those two reports contain a complete
summary of the opinions you are offering in this
case?
A Yes.
Q Sitting here today, are you aware of any
corrections that you would like to make to either of
your reports?
A There was something in the first report. On
page 5 , there was a typo, line 4 , where it says,
"Moreover, anticipation does not require actual
performance and/or suggestions in a disclosure."
And instead of "and/or," it would be the -- better
to say "performance of a suggestion in a
disclosure."
Q So, for the record, the -- the corrected
sentence would read:

BY MS. DAVIS:
Q Are you aware that a report was put in this case by Dr. Skerra?
A Yes.
Q Have you reviewed that report?

Page 14	
1	A No.
2	Q Do you know Dr. Fiddes?
3	A No.
4	Q You have never met?
5	A Not that I can recall.
6	Q Turning to the second page of your report --
7	A Yes.
8	Q -- you describe, in this section, some of
9	your own personal background; is that fair?
10	A Yes.
11	Q In paragraph 6, you indicate that your first
12	research project in the laboratory of
13	Professor David Dressler was an attempt to clone an
14	antibody gene; is that correct?
15	A That's correct.
16	Q As I understand it, that project was not
17	successful; correct?
18	A Correct.
19	Q You failed to clone an antibody gene?
20	A That's correct.
21	Q When did you first clone an antibody gene, if
22	ever?
23	A First clone one. Well, that would have been
24	in Winter's lab, and, again, it depends what's meant
25	by "clone." The first antibody I worked with I made
	Page 15
1	synthetically.
2	Q You worked with Sir Gregory Winter beginning
3	in approximately 1985; is that correct?
4	A That's correct, yes.
5	Q So you believe you would have first cloned an
6	antibody gene at some point in 1985 or subsequent to
7	that?
8	A That's right.
9	Q You had -- you had mentioned that it might
10	depend on what was meant by 'cloning'; is that
11	correct?
12	A Yes, but I'm -- I'm being too worried about
13	my answer. I synthesized a gene and cloned that and
14	expressed it.
15	Q What -- what, typically, do you understand
16	the word "cloning" to mean in reference to a gene?
17	MR. McCORMICK: Objection; vague, ambiguous.
18	THE WITNESS: My understanding of cloning a
19	gene is putting the DNA and coding something, such
20	as an antibody, onto a replicable plasmid or other
21	DNA vector.
22	BY MS. DAVIS:
23	Q And creating a synthetic gene would be
24	included within that definition?
25	A Yes.

Q There are other -- there are other ways to clone a gene other than by creating a synthetic version?
A Yes.
Q What other ways -- what -- what other types of methods fall within what you understand to be the definition of 'cloning'?

MR. McCORMICK: Objection; vague, ambiguous.
THE WITNESS: Many methods. One can start from the genome of -- of the cell that's producing an antibody. One can isolate messenger RNA from a cell, reverse transcribe that in what's called "CDNA cloning." One can take a gene that someone else has isolated by one of these methods and you can transfer that to a vector. Sometimes we call that "subcloning," but that's a form of cloning as well. BY MS. DAVIS:
Q Do you know when reverse transcriptase was discovered?
A I think that was in the late 1960s.
Q When did it become possible to create CDNA?
A I don't know the origin date. I know that in this early-antibody-cloning project, that was our approach, so by 1997, but I think before then, well before then.

Page 17
Q In paragraph 7 of your report, you describe a project you worked on under the direction of Professor Evan Kantrowitz?
A That's correct.
Q And the project you worked on was studying
the structure and function of aspartate
transcarbamylase; is that correct?
A That's correct.
Q Did I pronounce it correctly?
A "Aspartate transcarbamylase," yeah.
Q That particular protein is frequently referred to as "A-T Case"?
A "A-T-C ase."
Q "A-T-C ase"?
A Attorneys always say "A-T Case," but it's "A-T-C ase."
Q And "ATCase" --
A Yeah.
Q -- is a common way to refer to that particular protein?
A That's correct.
Q In this work from the 1979-to-1980 time period, you attempted to clone the gene encoding ATCase?
A I did.

Q And that effort was not successful; correct? A That's correct.

I should add. I don't want to mislead you. That wasn't the main area of work that I was doing. I was working on other projects and have papers from that period, and this was kind of a side light.

Q What was the main area of your work during that time period?
A The main area of work in that time period in Dr. Kantrowitz's lab had to do with isolating and studying mutations in the ATCase gene that were reintroduced in bacteria that would substitute new amino acids at so-called nonsense codons, its approach to studying protein structure that's not used any longer.

Q Was protein expression a focus of your work in Dr. Kantrowitz's lab?

A "Protein expression," do you mean "recombinant expression" by that question?
Q Let's just start with expression recombinant or not recombinant.
A Oh, well, the protein we worked with was expressed, was made in bacteria, but it was nonrecombinant.
Q Were you studying expression -- the
Page 19
expression aspect of that protein, or were you studying something else?
A We were mainly interested in how the protein's enzymatic activity is regulated, so we weren't studying how it was expressed.
Q And you said it was nonrecombinant?
A That's right.
Q When did you first work on a recombinant protein?
A Well, in Berkeley, when I started graduate school, I worked on a recombinant version of ATCase.
Q And when did you begin working on a
recombinant version of ATCase?
A When?
Q When.
A That would be September of 1980. I don't
know the exact date, but when I arrived in my first lab rotation, starting then.
Q Did you succeed in expressing a recombinant protein during your time at Berkeley?
A Oh, yes. Expression had already been worked
out, and I used this plasmid that had been
constructed repeatedly to prepare recombinant protein.
Q And that is -- was that the beta-lactamase
protein?
A No, no. It was the -- it was ATCase. I
worked on ATCase in three different labs.
Q You said the plasmid had been constructed by others that you were working with?
A That's right.
Q When did you first construct a plasmid for the re- -- for the expression of a recombinant protein?
A Did I construct. Well, that would have been in Winter's lab, beginning in 1985.

You mentioned "beta lactamase," and you have reminded me that, in Evan Kantrowitz's lab, I did do an experiment with recombinant beta lactamase, but that was not a recombinant construct that I had prepared. It was the beta lactamase on pBR 322 , a plasmid that had been constructed in Dr. Boyer's lab.
Q And you said the first time you prepared a plasmid for the expression of a recombinant protein was with Dr. Winter?
A That's right. I had worked with recombinant plasmids with -- in Dressler's lab.

And I might add. Dressler's lab was kind of a subsidiary of Walter Gilbert's lab. Dressler

Page 21
had -- was an assistant professor. He had been Gilbert's graduate student, and he was given a ten-year-track faculty job, but he was within the ambit of Gilbert. We had joint group meetings. We shared facility. There was a lot of interaction. I also --
Q Go ahead.
A Oh, no.
Q Were you finished with your answer?
A Yeah, I was going to say something not germane.

Oh, but let me just make sure I say it. I don't want to mislead you. I don't want to deprive you of information.

I, in Berkeley, in my first year, also worked with a recombinant protein called -- what's it called. It has several names. One is kanamycin phosphotransferase, and you've -- you've triggered my memory, and, in fact, that was my first successful attempt at making a expression construct, which I did my first year, beginning at the very end of 1980. That project was not continued.
Q And you said that was a recombinant protein?
A Yes.
Q And you constructed the vector used to

```
express that protein?
    A Yes. Yes. I had -- well, yes.
    Q Did you achieve expression of the recombinant
protein?
    A I did. I could give you more deals so you --
I can speed things along.
            The -- that gene had already been cloned, and
so I took it from one vector that -- where it had
been cloned, and I transferred that into something
called a "runaway plasmid," which would -- supposed
to exist in very high copy number. Would have many
thousands of copies per E. coli cell and was thought
to be better for high expression of recombinant
proteins. I did get it transferred. Expression was
rather ambiguous. It -- in retrospect, I probably
just should have stuck with what I had and not try
to overexpress it.
    Q The phosphotransferase, what -- I'm sorry.
What was the full name of that particular protein?
    A Kanamycin, k-a-n-a-m-y-c-i-n.
    Q And the kanamycin phoso- --
    A Phosphotransferase,
p-h-o-s-p-h-o-t-r-a-n-s-f-e-r-a-s-e.
    Q The kanamycin phosphotransferase, what type
of protein is that?
```

 Page 23
 A That's a drug-resistance protein. It
 modifies kanamycin, a drug. It modifies other
similar drugs as well, and modifies them by
transferring a phosphate group onto them, rendering
them nontoxic to the cell that harbors this gene.
Q Is it a bacterial protein?
A It is, yes.
Q Is it a single-unit protein?
A Yes.
Q And you cloned it into another type of
bacteria?
A I -- it was still E. coli. I put it into a
new vector and transferred that into E. coli.
Q So it's an E. coli protein that you
transvected into E. coli?
A I don't want to mislead you again. I'm not
sure I would call it an "E. coli protein." It came
originally from -- oh, I'm not sure where it came
from originally. It was encoded on something called
"Transposon 5," but I don't recall who first
identified that. A transposon is a gene that can
hop from bug to bug.
Q It is bacterial, though?
A It is bacterial.
Q You said someone else had cloned it first; is

Page 24
that correct?
A Yes.
Q Do you know who that was?
A I don't know. It was -- it was widely
available.
Q When you say "widely available," do you mean
you could order it?
A Not from a company. He would phone someone
up and ask for it, though.
Q So phone someone up in another lab and ask --
A That's right.
Q -- for a copy?
A That's right.
Q You received your Ph.D. in 1985?
A That's right.
Q So in 1983, by definition, you did not have a
Ph.D.?
A That's correct.
Q You then went to work for Sir Gregory Winter?
A That's correct.
Q If I refer to Sir Gregory Winter as
"Dr. Winter," is that --
A That's fine.
Q That's acceptable?
A It's tough for me to say "Sir Gregory,"
Page 25
thinking of him as a knight.
Q And you were with Dr. Winter from 1985 to
1992?
A That's right. Although, during that time, I
kind of had a -- I kind of had dual mentors, Greg
and -- sorry, Dr. Winter and says Cesar Milstein.
Q Have you spoken to Dr. Winter recently?
A No.
Q Are you aware that there is a related case to
this one in which Dr. Winter has issued an opinion?
A I was told that he had given an opinion, but
I don't know much about the case. I thought it
might be this case, but I didn't pay attention. I
didn't read his opinion.
Q And you have not spoken to Dr. Winter about
this case?
A No. My last -- I last spoke with him it must
have been 2011, 2012. It was a 60th-birthday party
for him that I went to.
Q When is the last time you spoke to Dr. Winter
about -- when, if ever, is the last time you spoke
to Dr. Winter about antibodies?
A That would have been that time.
Q The 60th-birthday party?
A That's right.

	Page 26
1	Q And you have never spoken to him about this case?
2	
A No.	
4	Q A minute ago you had -- strike that.
5 Just to go back a little bit on -- in --	
6	strike that.
7	You had said that the kanamycin
8	phosphotransferase that you were working with, you
9	would obtain from another lab; is that correct?
0	A The -- the gene for the phosphotransferase
1	was from another lab.
2	Q And this is in what time frame?
3	A Might even have been the same lab,
	Schachman's lab. It really was very widespread.
5	This was 1980.
6	Q At that time, was it normal for labs to share
	materials with other labs of -- of the type of this
8	gene that you were working with?
9	A Yes.
	MR. McCORMICK: Objection.
	THE WITNESS: There was no material transfer
	agreement that we used back then.
	BY MS. DAVIS:
	Q You would -- how often did you have occasion
	to phone up another lab and ask for material?

Page 27

A I would guess once or twice a year, like
that. Often -- I didn't have to phone another lab
often. The material was within the same building.
In the case of the so-called runaway plasmid,
I had to go downstairs. The person who made it was there.
Q Turning to page 3 of your report, in
paragraph -- paragraph 12 of your report, you refer
to the time you spent prosecuting a drug delivery
patent.
Do you see that?
A Yes.
Q That is a patent application on which you are
the inventor?
A One of two inventors.
Q Has that patent issued?
A Not yet.
Q How long have you been prosecuting that patent?
A I think the original provisional application
would have been in 2004, so that's more than ten
years.
Q Do you -- strike that.
I don't want to -- I'm not asking about any
discussions with patent lawyers.

Sitting here today, do you have any
expectation as to when, if at all, that patent will issue?
A This year.
Q And for the record, you are literally fingers crossed.

So you are hoping that patent will issue in 2015 ?
A Yes. In fact, just this morning, I received word that we had put in a response to the most recent Office Action.
Q And if the patent issues in 2015, that would be approximately 11 years of prosecution?
A Yes.
Q In -- on page 4 of your report, there's a
section called "Prior Testimony."
Do you see that?
A Page -- yes.
Q And this indicates that you gave deposition testimony in Glaxo Group Limited v. Genentech, Inc., et al.

Do you see that?
A Yes.
Q That is a case in which you opined on the validity of the Cabilly II patent?

A That's right.
Q Have you reviewed your deposition transcript
that is described in this "Prior Testimony" section?
A I've not gone back and reread the whole transcript.

Q Sitting here today, are you aware of anything in that deposition transcript that you believe was a misstatement?

MR. McCORMICK: Objection.
THE WITNESS: I can't think of a
misstatement.
BY MS. DAVIS:
Q There is a second case listed under "Prior Testimony."

A Yes.
Q What does that case relate to, generally speaking?
A That's an employment law case. The
plaintiff, Perez-Melgosa, was dismissed from the
University of Washington with a allegation of scientific misconduct.
Q Were you an expert or a fact witness or something else?
A Expert, and I analyzed whether this was, indeed, misconduct.

Merrill Corporation - New York

Q Sticking to anticipation, does any of your anticipation opinion depend on a disclosure in one of the pieces of prior art being an inherent disclosure?
A Again, that seems very broad and kind of abstract for me to answer in a categorical way.
If -- if we come to particular examples of inherency, I could maybe describe them or how I used them.
Q In the abstract, you don't know whether you relied exclusively on expressed disclosure; is that correct?
A Expressed disclosure. Well, no -- well, for
example, Cohen \& Boyer lists antibodies as a type of recombinant protein that could be made with their method, but they don't have an express example of that, if that's what you mean.
Q So my question right now is limited to -- strike that.

In your description of the law of anticipation --
A Right.
Q -- you describe what you understand to be an inherent disclosure.

Do you see that in this paragraph 18 ?
Page 35
A Paragraph 18, single -- expressly or inherently, yes.

Q And regarding inherent disclosure, you say: "A claim element is inherent in the prior art if it is necessarily present in the prior art reference, even though a person of ordinary skill in the art (defined below) would not necessarily recognize or appreciate the presence of the inherent disclosure in the prior art at the time of the filing of the patent."
A Yes.
Q Do you see that?
A Yes, I do.
Q And that is your understanding of "inherent
disclosure" in connection with the law of anticipation?
A Yes.
Q And in conducting your anticipation analysis, are you relying on any inherent disclosures in the
Cohen \& Boyer patent?
A I'm --
MR. McCORMICK: Objection; foundation.

A Yes.
Q Paragraph 20 says:
"A prior art reference is pertinent to the obviousness analysis if it discloses information designed to solve the same problems faced by the patent's inventors," and then it goes on.
A Yes.
Q Do you see that?
A Yes.
Q What did you consider to be the problem faced
by the patent's inventors?
A Which patent?
Q Cabilly II.
A The problem they faced was expression of recombinant antibodies, recombinant proteins.
Q So you just said, 'expression of recombinant antibodies, recombinant proteins."

A Yes.
Q Was it both of those problems that they were faced with?
A That's a genus/species issue. They were
expressing recombinant antibodies, which are
proteins.
Q You understood the problem faced by the inventors of the Cabilly II patent to be the expression of recombinant antibodies which are proteins?

A A particular type of protein, yes.
Q And that is the problem that you had in your mind when conducting your obviousness analysis?

A Yes.
Q How did you determine that that was the problem faced by the inventors of the Cabilly II patent?
A That that was their problem, an expression of recombinant antibodies. That seemed to be what the whole patent was written about.

Q You go on in your description of the law of obviousness to say:
"A prior art reference is pertinent... if the reference discloses information that has obvious uses beyond its main purpose that a person of ordinary skill in the art would reasonably examine to solve the same problems faced by the inventors."

Do you see that?
A Paragraph 20, yes.
Q What criteria did you use to decide what a person of ordinary skill in the art would examine trying to solve the problem of the expression of recombinant antibodies?
A That was a long question. Could we read that back.
(Record read by Reporter as follows:
"QUESTION: What criteria did you use to decide what a person of ordinary skill in the art would examine trying to solve the problem of the expression of recombinant antibodies?") THE WITNESS: The criterion was thematic relatedness. BY MS. DAVIS:

Q What do you mean by 'thematic relatedness"?
A Someone who expresses Protein A and someone
who expresses Protein B are both expressing a
protein, even though A is not the same as B. That's thematic relatedness.

Q Did you consider -- strike that.
Are you saying that any art regarding the

```
BY MS. DAVIS:
```

Q Turning to page 6 of your report?
A Yes.
Q In paragraph 22, you state:
"I understand that I should also consider whether a reason existed at the time of the invention that would

	Page 42	Page 44
1	have prompted a person of ordinary	1 continuing to use antibodies in therapy and being
2	skill in the art in the relevant	2 able to modify antibodies to improve their
3	field to combine the known elements	3 therapeutic potential.
4	in the way the patent claim does."	4 Q Just to backtrack a minute, you had said that
5	Do you see that?	5 you did not exclude from your description of the
6	A Yes.	6 relevant field the expression of nonrecombinant
7	Q First -- strike that.	7 proteins; correct?
8	We are still talking about obviousness;	8 A That's right.
9	correct?	9 Q Why not?
10	A Yes.	10 A Oh, many biochemical techniques for working
11	Q There's a reference to "relevant field" here.	11 on proteins were devised and are still devised using
12	Do you see that?	12 proteins isolated directly from an organism or
13	A Yes.	13 microorganism, and those you would use the same for
14	Q What did you mean by 'relevant field'?	14 recombinant or nonrecombinant proteins. As I said,
15	A Relevant field. In this case, the set of	15 I had worked on recombinant ATCase and
16	technologies that relates to recombinant expression	16 nonrecombinant ATCase, but many of the techniques
17	of proteins or even expression and isolation of	17 for working on the protein itself were the same.
18	nonrecombinant proteins. Much of protein	18 Q You also said you did not exclude from the
19	biochemistry, much of gene expression and molecular	19 relevant field prokaryotic proteins?
20	biology is potentially relevant.	20 A That's right.
21	Q And you did not limit -- in conducting your	21 Q Why not?
22	analysis, you did not limit the relevant field to	22 A Why did I not exclude prokaryotic proteins
23	the expression of eukaryotic proteins?	23 from -- I'm trying to understand your question.
24	A I didn't limit it to that, no.	24 Q In your obviousness analysis, you made use of
25	Q And you didn't limit the relevant field to	25 the idea of there being a relevant field of art;
	Page 43	Page 45
1	the expression of recombinant proteins?	1 correct?
2	A No.	2 A Yes.
3	Q You go on to say:	3 Q And within that relevant field, you -- strike
4	'The reason could come from the	4 that.
5	prior art, the background knowledge	5 You considered the expression of prokaryotic
6	of one of ordinary skill in the art,	6 proteins to be within that relevant field.
7	the nature of the problem to be	7 A Yes.
8	solved, market demand, or common	8 Q Why did you exclude the expression of
	sense."	9 prokaryotic proteins within the relevant field for
10	Do you see that?	10 purposes of your obviousness analysis?
11	A Yes, I do.	11 A Why did I?
12	Q Did you take into account market demand in	12 Q Why did you?
13	conducting your obviousness analysis?	13 A Did I exclude -- did I just say that? I'm
14	A It was at the back of my mind that antibodies	14 sorry.
15	could be a very important protein to be able to	15 Q Why did you include?
16	produce and manipulate.	16 A Why did I include prokaryotic proteins. I
17	Q How so?	17 don't make a distinction between pro- -- prokaryotic
18	A Antibodies have been used in therapy for more	18 or eukaryotic; because, to me, proteins are
19	than a century and will continue to be used in	19 proteins, many common properties.
20	therapy.	20 Q Do you make a distinction between prokaryotic
21	Q How did that factor into your obviousness	21 and eukaryotic host cells?
22	analysis?	22 MR. McCORMICK: Objection; vague, ambiguous.
23	A Obvious -- my obviousness analysis, it was a	23 THE WITNESS: Well, technically, they are
24	background awareness of a very large number of	24 handled in a different way, but no. They're --
25	people working on antibodies of great interest in	25 differences between them don't concern me.

BY MS. DAVIS:

Q And so expression results achieved in a prokaryotic host cell are relevant to expression in the eukaryotic host cell?

A They are.
MR. McCORMICK: Objection; vague,
ambiguous --
THE WITNESS: Yes --
MR. McCORMICK: -- incomplete hypothetical.
Go ahead.
THE WITNESS: I've expressed the same protein
in a prokaryotic cell and a eukaryotic cell.
BY MS. DAVIS:
Q In paragraph 23 of your report, you say:
'In making the obviousness
assessment, one must also consider
certain other surrounding
circumstances -- so-called
'secondary considerations' -- that I
understand may be raised by the
patentee in support of
non-obviousness."
Do you see that?
A Yes.
Q Do you understand that Genentech and City of
Page 47
Hope have raised secondary considerations in this case?
A I don't really -- I can't recall if I was
told anything about that. I -- if they were, I
don't know what they are.
Q Have you reviewed the report of a Dr. Fintan Walton?
A I may have looked at that. I don't even
recall if I looked at that in the Glaxo case, but I
didn't for this case.
Q In conducting your obviousness analysis, did
you take into account any of the so-called secondary
considerations, as that phrase is used in
paragraph 23?
A Not in a very substantial way. They -- they
didn't affect my opinion.
Q So you said "not in a very substantial way,"
which suggests to me you did consider them at least
a little bit; is that correct?
A This is -- in my background knowledge, I'm
aware that Genentech makes a lot of antibodies and
sells them, and they do wonderful things for
patients, and other companies make antibodies and
they pay royalties to Genentech based on the Cabilly patent. I'm aware of that.

Q And how, if at all, did you take those factors into account in conducting your obviousness analysis?
A I didn't really apply that to the obviousness issue, which, to me, was a scientific technical issue; whereas, what I mentioned, royalties, is more a business issue.
Q You mentioned that Genentech has many antibody products.
A Yes.
Q And BMS has an antibody product that's at issue in this case?
A That's right.
Q Do you know whether those antibodies -- well, strike that.

Let me start with the BMS antibody, Yervoy.
Do you know whether Yervoy is made in a eukaryotic host cell or a prokaryotic host cell?
A I believe it's made in a eukaryotic host
cell.
Q Do you --
A I didn't study how it's made. I didn't talk
with anyone at Bristol about how they were making this.

Q Do you understand that the process used to
make Yervoy in a eukaryotic host cell is a process
that is covered by the asserted claims of Cabilly II?
A Yes; otherwise, we wouldn't be here.
Q Do you know whether -- strike that.
Do you know whether BMS is contesting infringement?
A I believe BMS thinks that the allegation of infringement isn't valid because the underlying patent is invalid. The underlying claims are invalid.

Q And do you understand that BMS is not -well, strike that.

A Yeah.
Q You are an inventor on several patents.
A Yes.
Q You understand the concept of infringement, generally speaking.
A Yes.
Q Do you know whether BMS is contesting whether
Yervoy infringes the asserted claims of the
Cabilly II patent, other than the argument that the patent claims are invalid?

A I'm not aware of what might have gone on
between BMS and Genentech beyond the claims I was
asked to look at.
Q Could you turn to page 7.
Paragraph 25 is the definition of a -- well, strike that.

Page 25 includes the definition of a person of ordinary skill in the art.

A Paragraph 25, yes.
Q And that definition you state that you
believe a person of ordinary skill in the art would have a Ph.D. in molecular biology or a related discipline, such as biochemistry, with one or two years of post-doctoral experience or an equivalent amount of combined education and laboratory experience; is that correct?
A Yes.
Q As of April 1983, you did not have a Ph.D.?
A That is correct.
Q Do you believe you were -- do -- strike that.
Do you believe you are within the definition of a person of ordinary skill in the art as of April 1983?
A I don't meet this definition that I've set up. I would have been very close, though, so although I was only three years into my Ph.D., I did have this work experience in Walter Gilbert, David

Page 51
Dressler's lab, so I was close.
You are looking for a black and white?
Q No. I'm looking for your answer so that
it -- it --
A Those were my skills at that time.
Q Continuing on in this paragraph, you say you base this opinion on the level of education and experience of persons actively working in the field at the time of the invention --

A Yes.
Q -- including the inventors of the Cabilly patents.

What field -- how are you defining "field" in this context?

A "Field" here is the expression of recombinant proteins.

Q In --
A Or if that's -- go ahead.
Q Please, if you are not done with your answer, please finish.
A Actively working in the field, you would stop there. Oh, there were additional parts to that, but maybe you were going to come to that.

Q We will come to that --
A Right.

25

Q -- my first question is: For purposes of -of figuring out who was working in the field, what definition of "field" did you use?
A Field, expression of recombinant proteins.
Q For purposes of figuring out who was a person
of ordinary skill in the art, you limited the field
to expression of recombinant as opposed to
nonrecombinant proteins; is that correct?
THE WITNESS: Please read back.
MS. DAVIS: Go ahead.
(Record read by Reporter as follows:
"QUESTION: For purposes of figuring
out who was a person of ordinary
skill in the art, you limited the
field to expression of recombinant
as opposed to nonrecombinant
proteins; is that correct?")
THE WITNESS: Oh, yes. The -- that's
correct. The person expressing recombinant proteins
would have all the facility for working with DNA;
whereas, a pure protein biochemist would not.
BY MS. DAVIS:
Q A little bit earlier we were discussing, in connection with your obviousness analysis, that you had included, within the field of art that was

Page 53
relevant, the expression of nonrecombinant proteins.
Do you remember that?
A Yes.
Q Why is the field of art that the person of ordinary skill looking at broader -- strike that.

Why did you limit the field of persons of ordinary skill in the art to recombinant proteins when you did not limit the field for obviousness purposes to recombinant proteins?
A Oh, because many of the techniques the person skilled in the art would use come from outside that narrow field, such as gel electrophoresis of proteins, doesn't really have anything to do with whether the protein is recombinant or not, but it's a vital technique to know how to use for problems like recombinant expression of proteins.
Q Continuing on in paragraph 25 , you refer to the types -- the type of problems encountered in the art and the prior art solutions to those problems.

Do you see that?
A Yes.
Q What types of problems encountered in the art did you have in mind in forming your definition of a person of ordinary skill in the art?
A Type of problems encountered in the art.

Well, that would have to do with -- for example, the group that had expressed insulin had -- they expressed it as a fusion protein and needed to have a way to cut that protein after it was made to release the insulin chains. That's an example of a problem that could be relevant.

Proteins often, once they are made, are not in the ideal form, and biochemists have ways of treating them chemically. I've certainly done that, that type of considerations.
Q You go on in this paragraph to discuss the sophistication of the technology in the art at the time of the invention, including the rapidity with which innovations were made in the art at the time of the invention.

Do you see that?
A Yes.
Q What did you understand to be the level of sophistication of the technology in the art at the time of the invention?
A The sophistication of the technology -- now I've lost your question. Please read back.
Q Well, let me --
A Yeah.
Q -- actually, let me rephrase it.
Page 55
A Yeah.
Q What did you mean by "the sophistication of the technology in the art at the time of the invention"?

A I meant that these were very cutting-edge techniques at the time in recombinant expression, recombinant protein expression. Many people were working on that. The -- the field was moving very fast.
Q And how did you -- how did that factor into your analysis?
A Well, that had to do with what the -- that the person of ordinary skill would be taking in all this -- all these new developments, this flux in the field, and might have to use techniques that he or she hadn't used before but could find in the literature and apply, like that. There would be some self-education going on.
Q And finally in this paragraph, you refer to the rapidity with which innovations were made.

Do you see that?
A Yes.
Q Were innovations being rapidly made in approximately April 1983?
A Innovations were being made.

Q So if you could turn to page 7 of your report.

A Yes.
Q There's a section on page 7 entitled 'Summary
Page 57
of Opinions."
Do you see that at the very bottom?
A Yes.
Q And then it goes on over to page 8?
A Yes.
Q My first question is: Is the "Summary of Opinions" section, in fact, a summary of -- a fair and complete summary of your opinions in this case?
A Yes.
Q Starting with the very bottom of page 7, you refer to the Cabilly II patent?
A Yes.
Q And there are three asserted claims from the Cabilly II patent at issue in this case?

A $15,17,33$.
Q And with respect to those three claims, it is your opinion that those claims are anticipated both by the Cohen \& Boyer patent and by the Bujard patent?
A Yes.
Q Sticking for the moment to anticipation, is it correct that there is no other art that you are contending anticipates claims 15,17 , and 33 of Cabilly II?
A No other art contained within Cohen \& Boyer
and Bujard.
Q Cohen \& Boyer and Bujard are the only prior art references that you contend anticipate the asserted claims of Cabilly II?

A That's right. Just to be sure, there are
other discoveries in the field about antibody genes, but these are what can be used for expression.
Q The first bullet is -- or strike that.
The very last line on page 7: "Claims 15,17
and 33 are anticipated by the Bujard patent."
A Yes.
Thank you.
Q Did you take into account in your analysis whether the Bujard patent was enabled?

A I didn't -- I didn't take enablement into
account. I wasn't asked to opine on enablement.
Q I think you might be answering a slightly
different question than the one I asked --
A Oh.
Q -- although, that is helpful.
Let me start with what I think you were answering.

There -- you are aware that there's an invalidity doctrine known as enablement, in general terms?

Page 59
A When you -- the patent must work. It must be enabled. Okay. Yes.
Q And you have not been asked to opine as to whether the Cabilly II or the Cabilly III patents --

A Oh, that's right.
Q -- meet the enablement requirement.
That's what you were saying; is that correct?
A That's right. Yeah, that's right. I'm
sorry.
Q The -- the question that -- that I would like to ask you now --
A Okay.
Q -- is whether the particular prior art that you used in your anticipation analysis -- whether you consider whether that prior art was enabled for the purpose that you used it for?

A Yes.
Q And you did consider whether the prior art was enabled?
A That's right.
Q Is that analysis contained in your opinion -in your reports in this case?
A My analysis was the -- was that the Bujard patent and the Cohen \& Boyer patent were enabled for -- yes.

Q And that is --
A But aren't all patents presumed to be enabled? I believe they were enabled, yeah, okay, as written.
Q The analysis that goes along with your view that the Cohen \& Boyer patent and the Bujard patent are enabled, that analysis is found within your two reports in this case?
A Yes.
Q Turning to page 8?
A Yes.
Q You say at the top: In the alternative, claim 33 is obvious, and in one bullet you have it in view of Bujard in combination with Riggs \& Itakura, and in another bullet, you have it as obvious in view of Cohen \& Boyer.
A Yes.
Q In combination with Riggs \& Itakura.
So you -- you have -- strike that.
You are not contending that claims 15 and 17 of the Cabilly II patent are obvious; is that correct?
A Yes, apparently. Yes.
Q The only claim of Cabilly II that you are contending is obvious is claim 33 ?

Page 61
A That's right.
Q And with respect to claim 33, you have put forward two combinations of prior art?
A Correct.
Q You are not opining that there are other combinations of prior art that would make obvious claim 33 of the Cabilly II patent?
A I'm -- I'm not claiming that. I've focused on this Riggs \& Itakura.
Q Riggs \& Itakura, in combination with either Cohen \& Boyer or in combination with Bujard?
A For claim 33, yes.
Q You would agree there is other art discussed in your reports?
A Other art, yes.
Q The other art that you discuss in your report
that is not Cohen \& Boyer, Bujard, and Riggs \&
Itakura, you are not opining that that art should be used in an obviousness combination?

MR. McCORMICK: Objection.
THE WITNESS: That's right, yes, because I
talk about other recombinant proteins that have been expressed, but it's these that I've distilled down
as the most germane methods to which to use for the argument about obviousness.

Merrill Corporation - New York
BY MS. DAVIS:
Q These being Cohen \& Boyer, Bujard, and Riggs 62
\& Itakura?
A That's right.
Q The next portion at the top of page 8 refers
to the Cabilly III patent?
A Yes.
Q So in a minute I'm going to ask you about
your obviousness-type double-patenting opinions with
respect to Cabilly III.
A Right.
Q I first want to ask you: Is it correct that
you are not opining that the asserted claims of
Cabilly II are invalid due to obviousness-type
double patenting?
A That's correct, only Cabilly III.
Q And with respect to Cabilly III, there are --
are you -- strike that.
If you turn to the next page, page 9, there's
a section "Asserted Claims of the Cabilly III
Patent'?
A Yes.
Q And there are, in fact, five asserted claims
of the Cabilly III patent; is that correct?
A That's right.

Page 63
Q One of those claims is claim 34?
A That's right.
Q Now, if we go back to page 8 in your "Summary of Opinions," you are not opining that claim 34 of Cabilly III is invalid; is that correct?

A I'm leaving that one out of it -- or, sorry,
please repeat.
Q You are not opining that claim 34 of
Cabilly III is invalid?
A No, only the other four: $20,27,43$, and 46.
Q So you have no opinion at all regarding
claim 34 of Cabilly III?
A Leaving 34 alone.
Q With respect to the four Cabilly III claims
that you do have an opinion on, is it correct that
you are not opining that any of those four claims
are anticipated?
A That's correct.
Q And you are also not opining that any of those four claims are obvious other than by way of obviousness-type double patenting?

A That's correct.
Q A minute ago we talked about invalidity opinions you are not making, specifically enablement.

Do you recall that?
A Yes.
Q Are you familiar with an invalidity
doctrine -- strike that.
Are you familiar with a validity requirement
known as the "written description requirement"?
A Written description of an invention, also
called an "enablement," or --
Q Whether -- go ahead.
A I'm aware of that. A written description of the invention must accompany the patent application.

Q You are not opining on the written
description of the Cabilly II or Cabilly III patents; correct?

A Not opining on the written description -- no,
I'm -- I see what you mean, I think. I'm not
finding fault with the written description. I'm
finding fault with the claims. That's where my focus is.

Q So you have not made an -- strike that. You have no opinions regarding whether -Let's go -- we have a microphone fail, so let's go briefly off the record just for a second. THE VIDEOGRAPHER: Off the record at 11:13. (Recess taken.)

Page 65
THE VIDEOGRAPHER: Back on the record at 11:13.
BY MS. DAVIS:
Q You don't have any opinions in this case regarding whether the Cabilly II or Cabilly III patents met the written description requirement for validity is that correct?
A That's correct.
Q Could you turn to page -- strike that -page 10.

Page 10, at the bottom, there's a section referred to as "Prosecution History."

Do you see that?
A Yes.
Q You have looked at portions of the Cabilly II prosecution history; is that correct?
A That's correct.
Q Have you looked at the entire prosecution history of Cabilly II?
A My eyes passed over it, but please don't ask
me to recall parts of it. I -- I did look at it.
Q In -- on page 11, paragraph 37 -- in
paragraph 37 you refer to the fact that the PTO rejected the claims of the Cabilly II patent over the Axel patent and the Moore patent.

```
            Page 66
            Do you see that?
        A Yes.
        Q Have you compared Cohen & Boyer to the Axel
patent?
    A I've looked at both.
    Q Have you considered whether the Cohen & Boyer
patent defers from the Axel patent?
            MR. McCORMICK: Objection; foundation.
            THE WITNESS: I have considered. My -- yes.
    BY MS. DAVIS:
    Q What is your opinion?
    A My understanding is that the -- the Patent
    Office construed the Axel patent as producing just
    one recombinant polypeptide chain; whereas, I
    believe that Boyer outlines production of more than
    one polypeptide chain.
    Q Have you considered the Moore patent?
    A I have looked at the Moore patent, but I
    don't recall much about it.
    Q Have you compared Cohen & Boyer to the Moore
    patent?
    A Not in a comprehensive way that I remember,
    but I did look at both of those.
    Q Turning to page 12, could you look at
    paragraph 38?
```

 Page 67
 A Yes.
 Q You say in paragraph 33 that you understand
 that Cohen \& Boyer was cited by the applicants
 during the prosecution of the Cabilly II patent and
 Cabilly III patent but that it was not the subject
 of a rejection by the PTO during prosecution of
 those patents.
 Do you see that?
 A Yes.
 Q What do you understand it to mean that Cohen
 \(\boldsymbol{\&}\) Boyer was not the subject of a rejection by the
 PTO?
 A Oh, the PTO did not tell your client, "Oh,
 your patent was anticipated by Cohen \& Boyer."
 Although -- yeah, that's my understanding.
 Q Is it your understanding that Cohen \& Boyer
 would have been considered by the PTO during the
 prosecution of the Cabilly II and Cabilly III
 patents?
 A I notice---
 MR. McCORMICK: Objection.
 THE WITNESS: I noticed that it was
 referenced in the -- somewhere in the file wrapper
 more than once, but -- sorry. What did you just
 ask?

BY MS. DAVIS:

Q Is it your understanding that Cohen \& Boyer would have been considered by the PTO during the prosecution of the Cabilly II and Cabilly III patents?

MR. McCORMICK: Objection; vague.
THE WITNESS: Considered. I don't know. I
just know that it was part of the record. I don't
know what the PTO did with it or if considered as a
particular meaning. I don't know how it was treated.
BY MS. DAVIS:
Q The next section in your report is "Question Presented'?
A Yes.
Q So in paragraph 39 you state: 'I have been asked to express an opinion on whether the asserted claims of the Cabilly II Patents would have been anticipated or made obvious by the Cohen \& Boyer patent and/or the Bujard patent, alone or in combination with Riggs \& Itakura."
Do you see that?
Page 69
A Yes.
Q Sticking to that sentence about Cabilly II, my -- my question to you is: Were you asked specifically to consider whether those three art references anticipated or rendered obvious Cabilly II? Was that the question you were given?

A That was the question I was given, but we discussed quite a bit besides that. I've read quite a few references besides just these three.
Q Were you familiar with either the Cohen \& Boyer patent or the Bujard patent prior to your work in connection with the GFK Cabilly case?

A I knew about the Cohen \& Boyer patent. I did not know about the Bujard patent.

Q Were you asked -- strike that.
Did you find either of the Bujard patent or the Riggs \& Itakura patent yourself?
A The Riggs \& Itakura is not a patent.
Q Yes. Fair question.
You didn't find the art that you were asked to opine on yourself; is that correct?

A Well, I found -- Cohen \& Boyer was well known, but Bujard and the Riggs \& Ita- -- the Riggs \& Itakura paper is a more obscure. I hadn't read that before.
Q And those were provided to you by the
attorneys?
A Yes.
Q Continuing on in paragraph 39 , it says that
you were asked to express an opinion on whether the
asserted claims of the Cabilly III patents would
have been obvious under ODP when certain claims of
the Cabilly I patent were combined with the
teachings of the Cohen \& Boyer patent and/or the
Bujard patent.
Do you see that?
A Yes.
Q Were you asked to consider those specific
combinations?
A I was, yes.
Q You didn't come up with those combinations on
your own?
A I hadn't heard of ODP before this case.
Q And a fair point is that ODP is shorthand for
'obviousness-type double patenting."
Is that your understanding?
A Yes, that's my understanding. Sorry.
Q Could you turn to page 13 .
A Yes.
Q You have a footnote, Footnote 5 .

Page 71
Do you see that?
A Yes.
Q And in that footnote, you refer to a prior report written by an expert, E. Fintan Walton.

Do you see that?
A Yes.
Q You have not read Dr. Walton's report in this
case; is that correct?
A That's right.
Q You note that Dr. Walton has made some statements about the Cohen \& Boyer patents in the -the report you did read; is that fair?

A In the report I did read? I read Walt- --
Dr. Walton's report in the GSK case, yeah --
Q And --
A -- that retained this language, yes.
Q -- in this footnote, you are referring to a
report Dr . Walton prepared in a case that's referred to here as MedImmune.

Do you see that?
A That's -- MedImmune, yes.
Q Do you know what that's a reference to, the MedImmune case?
A That's the earlier case in which I -- oh, actually, no. That's not the case I worked on.

That's the case before. That's right, yeah.
Q Is that the only report by Dr. Walton that you have reviewed, the MedImmune report?

A That's right.
Q In the footnote, you describe some statements that Dr. Walton has made previously about the Cohen \& Boyer patents; correct?

A Yes.
Q Do you agree that the Cohen \& Boyer invention was a fundamental one?

A Yes.
Q Are you familiar at all with the licensing of the Cohen \& Boyer patent?

A I've heard a few things about it.
Q What --
A That it was -- they quite nobly wanted it to
be applied as widely as possible and made it
available to everyone. Didn't try to cut anyone out.

Q Are you aware that Dr. Walton has compared the licensing history of the Cabilly patents to the Cohen \& Boyer licensing history?
A I -- I don't recall reading that, but I can't
say that it's not true. I just don't recall.
Q Do you have any opinions on the licensing
history of the Cabilly patents?
A I don't know much about the licensing
history, so, no.
MS. DAVIS: If you turn to page 14 , and, at this point, let me go ahead and mark Cohen \& Boyer.
(Exhibit 6 was marked for
identification by the Reporter.)
BY MS. DAVIS:
Q I have handed you what's been marked as Exhibit 6.

A Okay.
Q This is a U.S. Patent $\mathbf{4 , 2 3 7 , 2 2 4}$.
Do you see that?
A Yes.
Q And this is the Cohen \& Boyer patent referred to in your report; is that correct?
A This is.
Q So in paragraph 44 on page 14 , you have some statements from the Cohen \& Boyer patent; correct?
A Yes.
Q And you begin with the -- strike that.
You first say that the Cohen \& Boyer patent explicitly and repeatedly discloses insertion of multiple foreign genes, and then the first quote is: "DNA having at least one intact gene."

	Page 74		Page 76
1	Do you see that?	1	that's been opened in the plasmid vehicle.
2	A Yes.	2	Q You would agree that a single fragment of DNA
3	Q And your reference to Cohen \& Boyer -- the	3	could contain one or more genes; correct?
4	first reference is column 1 , line 58 through 59, so	4	A Yes.
5	if you want to turn there.	5	Q It depends on how the DNA is cut?
6	Is it your understanding that the phrase in	6	A Yes.
7	the Cohen \& Boyer patent that you have excerpted,	7	Q And you agree that Cohen \& Boyer are, in
8	"DNA having at least one intact gene" -- would that	8	places, discussing using a single fragment of DNA
9	refer to a single fragment of DNA, in your view?	9	that may contain one or more genes on that single
10	A A sig- -- a sig- -- single fragment of DNA.	10	fragment of DNA?
11	Let me take a minute to read this.	11	A They contemplate more than one gene on a
12	Well, they don't -- their words are: "A	12	single fragment of DNA. I don't see a departure
13	plasmid or viral DNA is modified to form a linear	13	from that, yeah.
14	segment," which, in practice, means it's cut with a	14	Q Continuing on in paragraph 44, you quote a
15	restriction enzyme, "having ligatable termini which	15	portion of Cohen \& Boyer that refers to the DNA
16	is joined to DNA having at least one intact gene,"	16	fragment may include one or more genes or one or
17	and that could be a single fragment of DNA or it	17	more operons.
18	could be more than one, as long as both fragments	18	Do you see that?
19	have complementary ligatable termini.	19	A Yes.
20	Q The next -- well, strike that.	20	Q And I just first want to ask you: What is an
21	Continuing on in paragraph 44, you have a	21	'operon'?
22	reference that's from column 4 at line 29 to 30:	22	A An "operon" is a -- was a regulatory
23	"DNA containing the foreign gene(s)."	23	structure, an arrangement of segments of DNA that
24	Do you want to turn to that?	24	was first identified in prokaryotes. I don't think
25	A Four -- yes.	25	there's a strict definition. We don't really have
	Page 75		Page 77
1	Q And the full context of that phrase is:	1	strict definitions in molecular biology, but one of
2	"If production of cohesive termini	2	the typical ones is the lactose operon, which has
3	is by restriction endonuclease	3	multiple genes, a promoter. It also has a separate
4	cleavage, the DNA containing the	4	gene for a repressor molecule that has its own
5	foreign gene(s) to be bound to the	5	promoter, so it's a collection of genes and signal
6	plasmid vehicle will be cleaved in	6	sequences that act as one unit.
7	the same manner as the plasmid	7	Q You would agree that an operon is a
8	vehicle."	8	contiguous set of co-regulated genes; right?
9	Do you see that?	9	A The operons I know about are contiguous
10	A Yes.	10	there, yes.
11	Q Do you believe that that is a reference to a	11	Q You can obtain an operon on a single fragment
12	single fragment of DNA?	12	of DNA?
13	A I'm just taking a minute to read. I'm sorry	13	A Yes.
14	for the delay.	14	Q And, in fact, if you continue in
15	I think it could be one fragment or two	15	paragraph 44, you have a quote from Cohen \& Boyer in
16	fragments. They -- they don't say one.	16	which they, in fact, obtained a complete operon on a
17	Q Do they say two fragments?	17	single fragment; is that right?
18	A No. They don't give a number. I think, in	18	A I'm not seeing it, but I think you are right;
19	many cases, it might be one, but two is not ruled	19	they did the tryptophan operon on a single fragment.
20	out by this.	20	Q Is that the -- there is an indented portion
21	The main condition is if production of	21	of paragraph 44.
22	cohesive termini is by restriction endonuclease	22	Do you see that?
23	cleavage, which could give more than one fragment,	23	A Oh, yes. Oh, I see, yes. Yes.
24	which -- and the -- the multiplicity of fragments	24	Q And so Cohen \& Boyer, at this particular
25	are each capable of being inserted in this site	25	example that you have cited, is a single fragment of

	Page 78		Page 80
1	DNA containing a complete operon?	1	distinct genes to exclude a fusion protein?
2	A Yes.	2	A It's not that I'm excluding a fusion protein.
3	Q And the operon is bacterial?	3	A fusion protein is two genes fused together. Let's
4	A That's a bacterial operon, yes.	4	think of it simply like that. But two genes that
5	Q In paragraph 45, you state -- strike that.	5	aren't fused together would still fit this
6	A portion of paragraph 45 reads:	6	description, so both situations fit this language of
7	'... the Cohen \& Boyer patent	7	two genes.
8	teaches co-expression of multiple	8	Q We discussed earlier the -- the concept of
9	distinct and separate polypeptides	9	expressed disclosure for anticipation versus
10	in a single microorganism host	10	inherent disclosure for anticipation.
11	cell."	11	Do you recall that?
12	Do you see that?	12	A Yes.
13	A Yes.	13	
14	Q Where are you getting from Cohen \& Boyer	14	Boyer teaches co-expression of multiple and --
15	'multiple distinct and separate polypeptides'?	15	multiple distinct and separate polypeptides in a
16	A Multiple distinct and separate polypeptides.	16	single microorganism host cell -- is that based on
17	Well, that refers to all the previous references	17	expressed disclosures, inherent disclosures, or
18	where Cohen \& Boyer talk about gene or genes. Genes	18	both?
19	is inherently multiple.	19	A Well, expressed disclosures, with the example
20	Q What did you mean by 'distinct and separate	20	of the tryptophan.
21	polypeptides'?	21	Q Please continue.
22	A Let's see. "Distinct and separate" meaning	22	A Yeah.
23	that there are two separate polypeptide chains; that	23	Inherent disclosures, again, if they were
24	the end of one does not connect to the beginning of		yeah, I think -- well, tryptophan is an expressed
25	the other.	25	disclosure. Again, inherently, just from
	Page 79		Page 81
1	Q What teachings in Cohen \& Boyer led	1	understanding molecular biology, two independent
2	you -- strike that.	2	genes not connected is a -- is a more natural state.
3	What teachings in Cohen \& Boyer refer to	3	That's inherently the way one would think about it.
4	polypeptides where the end of one is not connected	4	And if someone told me -- that's a fusion protein.
5	to the beginning of another?	5	That's the exception. It's the -- when the two
6	A Well, the tryptophan operon is the best	6	separate genes -- I don't think of them as being --
7	example where there are five polypeptides, each not	7	forming a continuous polypeptide gene -- polypeptide
8	connected end to end.	8	chain.
9	Q Are there other portions of Cohen \& Boyer	9	Q Could you turn to page 15?
10	that refer to polypeptides that are not connected to	10	A Yes.
11	one another?	11	Q At the -- the top carry-over paragraph, you
12	MR. McCORMICK: Objection; asked and	12	state, in part:
13	answered.	13	'... the invention encompasses
14	THE WITNESS: I'm reading into the statements	14	distinct and separate polypeptide
15	of more than one gene, meaning that they would not	15	subunits that assemble to form a
16	be connected one to the other.	16	multimeric protein."
17	BY MS. DAVIS:	17	Do you see that?
18	Q And why are you reading that into those	18	A Yes.
19	statements?	19	Q What in Cohen \& Boyer shows the assembly of
20	A That's usually the way I interpret two	20	distinct and separate polypeptides to form a
21	distinct genes. One can contemplate a fusion	21	multimeric protein?
22	protein, but I don't think that's what they are	22	A Well, they express the trp operon, which
23	talking about, and certainly not in the tryptophan		normally -- which encodes these genes that associate
24	case, but.		together.
25	Q What are you relying on to interpret two	25	Q Are other portions of Cohen \& Boyer that

Page 82
disclose distinct and separate polypeptide subunits that assemble to form a multimeric protein?

A An expressed disclosure?
Q Let's -- let's start with an expressed disclosure.

A This is Cohen \& Boyer. Let me just look at the examples. Well, the expressed disclosure is the tryptophan. The other examples aren't like that.

Q Are there -- strike that.
Just to be sure I understand your answer, are there other portions of Cohen \& Boyer that you believe expressly disclose separate and distinct polypeptide subunits assembling to form a multimeric protein?
A Well, they -- okay. Cohen \& Boyer lists proteins that are -- that could be made by their method, and that includes several examples of proteins that are heteromultimers, and those would be made in the cell. Whether they would assemble together in the cell isn't really discussed in Cohen \& Boyer, except Cohen \& Boyer allow the possibility of in vitro combination of these subunits, but definitely multimeric proteins can be made within one cell in their invention.

MS. DAVIS: So I'm not quite sure how long we
Page 83
have been going, but we are going to have to chain the tape soon.

THE WITNESS: Oh.
MS. DAVIS: Should we go ahead and take a quick break?

MR. McCORMICK: Yeah, that makes sense.
THE WITNESS: Quick break. Okay.
THE VIDEOGRAPHER: This concludes Video 1,
Volume 1 in the deposition of Dr. Foote.
Going off the record at 11:43.
(Recess taken.)
THE VIDEOGRAPHER: This begins Video 2, Volume 1 in the deposition of Dr. Jefferson Foote.

Going back on the record, the time is 11:55.

BY MS. DAVIS:

Q Dr. Foote, you prepared a chart that is at
the back of your report setting forth your
comparison of the Cohen \& Boyer patent and the
asserted claims of the Cabilly II patent and then
the Bujard and Cabilly II; is that correct?
A That's correct.
Q Let's go ahead and turn to that chart now.
A Yeah.
Q And the first page should be C-1.
A C-1.

Q And this is labeled "Section 102 Invalidity Claim Chart" at the top?
A Right.
Q And this is the chart you prepared setting
forth where in Cohen \& Boyer and then Bujard the
elements of the asserted Cabilly II claims can be found?
A Yes.
Q The first claim you have listed is claim 33?
A Yes.
Q And is it -- well, strike that.
What were you trying to convey in this chart?
A The chart's no different from the bulk of the report. It's just a summary.
Q So looking at the first box in the chart, you
have a claim limitation from claim 33 of Cabilly II?
A Yes.
Q And that limitation is:
"A process for producing an immunoglobulin molecule or an immunologically functional immunoglobulin fragment comprising at least the variable domains of the immunoglobulin heavy and light chains, in a single host cell,

24 Q And that's why you are citing it?
25 A Yes.

Q Now that line in column 1 is not talking about a process to produce antibodies; is that correct?
A Well, isn't it. One -- one sec, please.
I believe it is talking about a process to produce antibodies. You are talking about it at a very high-level, but it's about a process.
Q Does the language in column 1 , around line 39 , discuss the production of antibodies?
A Right around 39 , it lists antibodies as an example of what could be made, but talks about other things that could be made, one of which is antibodies.
Q Now, the -- the sentence that that language appears in is: "Thus, it becomes practical to introduce into a particular microorganism, genes specifying..."
A Yes.
Q Do you see that?
A Yes.
Q Is this section discussing introducing genes into an organism?
A It's definitely talking about introducing genes.

Q Do --
Page 87
A But I'm not -- let me finish, though.
MR. McCORMICK: Read as much as you need -THE WITNESS: Right.
MR. McCORMICK: -- to finish answering the question.

THE WITNESS: But it later talks about
functions, which are indigenous to other classes of organisms, so.
BY MS. DAVIS:
Q Do you understand the function language to be a reference to producing antibodies?

A Yeah. The function is -- that refers to what is produced, not just the gene itself. The gene itself is just DNA, like lots of other DNA. It's -the function refers to the product of the gene doing something.
Q Is there a difference -. strike that.
A Yeah.
Q We discussed earlier some of your work prior to 1983.

Do you recall that?

A Yes.
Q Was there a difference in the work that you did between introducing a gene into an organism and having that organism express the gene?

25
q

A A difference between those. Well, the genes I introduced were expressed, so one led to the other.
Q Is it always the case that you will get expression of a gene that you have introduced into an organism?
A You could have a dead gene. I -- I accept that.
Q What do you mean by a "dead gene"?
A A gene that's not transcribed, let's say. It never produces a protein.
Q What types of genes would not be transcribed?
MR. McCORMICK: Objection.
THE WITNESS: That's hard to answer. There's not really a -- a property that would keep a gene from being transcribed. They are just little aspects of its structure, whether it has a promoter nearby, whether it's in a cell that supplies functions to transcribe it, things like that. BY MS. DAVIS:
Q Do you believe that once that -- strike that. How difficult is it to ensure that a gene you have introduced into a cell is expressed?
A Difficult. That's -- that's tough to quantify. I'm looking -- always looking to quantify Page 89
things. I think most genes can be expressed. Sometimes it takes a little work. Sometimes the level of detection is such that it's being expressed and you don't know it, but genes can be expressed.
Q So in this particular passage of Cohen \& Boyer, is it fair to say that you believe that they are discussing the production of antibodies -- well, strike that.

What language is it again in this section of Cohen \& Boyer that you believe refers to the production of antibodies?
A When they use the word "function."
Q And that is because one function of the organism into which the gene has been introduced is to express the gene?
A One sec, please.
This is very high-level language, but the use of the word "function" means these processes; nitrogen fixation, photosynthesis, enzymes and antibodies. These functions refers to the gene product doing something. So they are not really interested in just putting the DNA there per se. Putting the DNA there becomes interesting because of the functions it confers on the microbe that's received it.

Page 94	Page 96
eukaryotic source and RNA	1 paragraph of column 9: "By introducing one or more
transcribed from the eukaryotic DNA	2 exogenous genes into a unicellular organism," that's
can be formed in a bacterial cell	3 a single cell.
and isolated," etc.	4 And then 16:63, let me take a look. I'm
Q In conducting your anticipation analysis,	5 sorry to go through this so laboriously.
with respect to Cohen \& Boyer, did you take into	6 "In addition, the products" -- Im now
account what sections the various phrases you've	7 reading from line 60 on column 16.
pulled out -- what sections those appear in?	8 "In addition, the products of the
A I paid attention to what --	enzymic reactions may be more
10 MR. McCORMICK: Object; characterization.	10 readily isolated and more
11 But go ahead.	11 efficiently produced by a
12 THE WITNESS: I paid attention to whether	12 transformant than by the original
13 they were in the specification or the claims.	13 host."
14 BYMS. DAVIS:	14 So a transformant, again, is singular. The
15 Q Did you take into account anything else	15 antibody reference follows that. So, again, it
16 regarding what sections they appeared in?	16 would seem to be a single host cell.
17 A I paid attention to what was trying to be	17 Q Are you familiar with -- well, strike that.
18 said, so I know the difference between an abstract	18 In your reports, you have referred to the
and background and summary. I took into account	19 early work producing insulin; correct?
20 that, but -- but, you know, to me the section head	20 A Yes.
21 is just part of the -- part of the explanation. It	21 Q And you are aware that, early on, insulin was
22 helps guide the reader to what's contained below,	22 produced by putting one of the insulin chains in one
but there's a distinct difference between claims a	23 cell and the other insulin chain in another cell;
4 specification, and that's the one I paid the most	24 corre
25 attention to.	25 A The City of Hope and Genentech group did
Page 95	Page 97
Q In the three examples we have discussed so	that, yes. Mm-hmm.
far that are in your -- your sort of first two lines	Q In the passages we have just discussed in
regarding the Cohen \& Boyer patent --	3 Cohen \& Boyer, do you understand those passages to
A Yes.	4 exclude the type of process that the Genentech and
Q -- have -- have we seen any reference to	City of Hope individuals used in producing insulin
heavy chains or light chains?	with one chain in one cell and the other chain in
A In those three lines, it just says	another cell?
antibodies.	A Exclude that. I think Cohen \& Boyer is
Q And Cohen -- please finish.	completely compatible with expressing a single
10 A Which -- which inherently have heavy chains	10 polypeptide.
11 or light chains, but they don't use the words	11 Q Solet's --
12 "heavy" and "light."	12 A Yeah.
13 Q And, in fact, at no point in Cohen \& Boyer is	13 Q -- let's start with column 1, the first
14 there a reference to either a heavy chain or a light	14 section we looked at.
15 chain; is that correct?	15 A Right.
16 A I'm not aware of a -- I would have to -- it	16 Q And you had said that the language in
17 would take too long to check, but I'm not aware of a	17 column 1 you understood to refer to a single host
18 specific use of heavy chain or light chain.	18 cell.
19 Q Did any of the three passages that we have	19 A Yes.
20 discussed -- did those refer to the concept of a	20 Q Could the language in column 1 also refer to
21 single host cell?	21 a method like the method used by Genentech and City
22 A Let's see. So 1:39: "Thus, it becomes	22 of Hope to produce insulin with each of the chains
23 practical to introduce into a particular	23 in a separate cell?
24 microorganism," that would be a single host cell.	24 A That could be. I could see that, yes.
25 Line 28 refers back to that first full	25 Q And is the same true of the other passages of

Page 98
Cohen \& Boyer that we have discussed that -- that you opine refer to a single host cell?
A Refer to a single host cell. I think with
Cohen \& Boyer, you can always express one chain in a single host cell, yes.

Q Does Cohen \& Boyer -- strike that.
So insulin is a multimeric protein; correct?
A It has two chains, yes.
Q Cohen \& Boyer does not insist that you put
both of those two chains in a single cell; is that correct?
A Does not insist; it allows, yes.
Q And so the passages of Cohen \& Boyer that we
have been looking at don't specify that -- if you
have a multimeric protein, they don't specify that
you must put the chains all into one cell?
A Let's see.
MR. McCORMICK: I'm going to object as asked and answered.

THE WITNESS: It's a good question. I'll start with the first one.

Well, in some cases -- in some cases, you would have to put everything into one cell, so if we take -- I'm going to start in column 1,34, and the sentence:
organism at the conclusion is able to fix nitrogen --

A In that case, yes.
Q -- is that correct?
In the context of a protein that is being harvested, like insulin, does Cohen \& Boyer require that the chains -- the composite chains be put into a single cell?

MR. McCORMICK: Objection; again, asked and answered.

THE WITNESS: I don't think it requires that they be put into a single cell. They could make it as two fusion proteins, the way you have described. BY MS. DAVIS:

Q And the reference to the way I described is with reference to the Genentech and City of Hope prior to 1983 ?
A That's right.
Q As of -- well, strike that.
Do you understand that the priority date for Cohen \& Boyer is 1974 ?
A Yes.
Q As of 1974, CDNA had not yet come into use; right?
A I don't recall. I didn't study that issue.
Page 101
Q When was the first time you used CDNA?
A That would have been 1977.
Q How difficult would it have been in 1974 to put both the heavy chain and light chain of an antibody into a single host cell?
A In 1974, the first antibody chains had not even been cloned, so that would have made it very hard in 1974.
Q If, in 1974, someone succeeded in cloning them, would there be other difficulties in getting both the antibody heavy chain gene and antibody light chain gene into a single cell?

MR. McCORMICK: Objection --
THE WITNESS: If someone --
MR. McCORMICK: -- incomplete hypothetical.
THE WITNESS: -- had cloned them, I -- I see
much less problem. The big problem was cloning them
in the first place. I should add. That was true
for a lot of proteins. There were not very many
cloned proteins in 1974.
MS. DAVIS: I had promised half an hour,
so -- we can keep going?
MR. McCORMICK: If -- you mean another 15 minutes? Whatever the witness --

MS. DAVIS: Okay.

```
            Page 102
MR. McCORMICK: -- he --
MS. DAVIS: Sure.
MR. McCORMICK: -- he needs the breaks more than we do.
MS. DAVIS: All right.
THE WITNESS: No, we are fine.
MS. DAVIS: We can keep going? All right.
We will go a little further.
Q So in the same box, there's the language -the Cohen \& Boyer box, you had referred earlier to the passage on column 9, lines 12 through 14.
Do you want to turn to that?
A Oh, sorry. Where are we in the table?
Q Still in the first Cohen \& Boyer box --
A Yeah.
Q -- the sentence beginning: "See, e.g." --
A Oh, "See, e.g., 9:12 to 14 ."
Q And that language is the sentence beginning:
"By introducing one or more exogenous genes";
correct?
A Let me -- I'm on the wrong column. Sorry.
Where did it go. There. By introducing one or more exogenous genes, yes.
Q The language that you have quoted in your chart at column 9, lines 12 through 14, does not say
```

Page 103
which specific genes are going into the unicellular organism; is that correct?
A 12 to 14 --
MR. McCORMICK: Objection.
THE WITNESS: -- does not say which. That
follows later. Mm-hmm.
BY MS. DAVIS:
Q Continuing in your chart, now you have the
reference to column 16, lines beginning at line 53 .
Do you see that?
A Yes.
Q And that is -- strike that.
That section begins: "In addition, the subject method provides means for preparing enzymes, enzymic products from bacteria," and then it goes on.

Is that the language you were referring to?
A Yes.
Q That particular language does not say
anything about which specific genes are being
introduced into the cell, does it?
A Doesn't it say other proteins can be
produced; antibodies, antigens, albumins, globulins?
Or am I looking in the wrong place or
misunderstanding your question?
someone knowing the structure of antibodies in 1974

Page 105
would know there are heavy chains and light chains and variable domains and constant domains. That was all known then from the protein-level analysis, even in advance of the study of antibody genes.

Q You said a few minutes ago that, as of 1974, antibody genes had not been cloned; correct?

A That's right.
Q Do you believe that it is a predicate to be able to use the Cohen \& Boyer method to produce an antibody that you have cloned the antibody genes?

MR. McCORMICK: Hold on. Let me read this.
I'll just object as ambiguous to time frame.
But you can answer.
THE WITNESS: Can I have that again?
MS. DAVIS: Sure.
THE WITNESS: Yeah.

BY MS. DAVIS:

Q Do you believe that it is a predicate to be able to use the Cohen \& Boyer method to produce an antibody that you have cloned the antibody genes?
A Well, part of Cohen \& Boyer is about cloning genes, so many of these other things hadn't been cloned either. This was the start of cloning. This is what it would be good for. So you don't need to have them in hand right in 1974, if that's what you
were asking.

Q When did it become possible, in your opinion, to produce an antibody using the method of Cohen \& Boyer?

A Possible. There's some complexity to that question because it would have been possible in 1974 if you had the right pieces of DNA there. Those pieces of DNA started emerging later in the 1970s, so by 1977, we were making a serious effort in Dressler's lab. Of course, Tamagawa, who got the Nobel Prize, was making an even more serious effort. Other people were working on that by late '70s, in that region.

Q You believe -- for purposes of your opinion in this case, you believe that there is a point, a time in which using the Cohen \& Boyer method, a person of ordinary skill in the art would be able to produce an antibody; correct?
A A point in time or region in time. I
couldn't name a day, an hour, minute, but.
Q What is the region of time?
A Region of time: 1978, '79, '80, '81, in
there, maybe ' 82 , but in that region, it became possible.

Q What are you basing that opinion on?
Page 107
A I'm basing that, I confess, on my own experience, having tried to do that as a technician in the lab. I thought it was possible then. But other papers began to appear with parts of antibodies cloned. The genes themselves appeared, the -- the first constant region clones by Tamagawa. The mechanisms of antibody rearrangement were understood.

So basing it on those factors, a kind of wave of understanding of antibody genes as they existed in humans and animals, and the dynamics they would go through and what their DNA sequences were; how they were -- their expression was controlled; what cells they would appear in. This was a body of knowledge that was developing then.
Q How much work was being done with the genes for human antibodies in the range of time period you have identified?

A I would say --
MR. McCORMICK: Objection. Just outside the scope of his report.

THE WITNESS: Right.
I did not study human antibodies for this report, but my impression is that not much work was being done on human antibodies at that time. The
big focus was on hybridomas, which had appeared in 1975.

BY MS. DAVIS:
Q Is there a point in time, in your mind, in which the focus switched away from hybridomas?
A The focus switched away from hybridomas. I used the word "focus," but I might have better said "foci." There were different groups. There were some groups interested in how expression of these genes are controlled; other groups were interested in therapeutic use.

You asked about a period of time where it shifted away from hybridomas. I think hybridomas are still of interest, but the beginning of -- well, I couldn't really identify a point in time where interest shifted away from hybridomas.
Q Are you equating hybridomas with murine hybridomas?
A Yes.
Q Are you familiar at all with human-murine hybridomas?

A I'm dimly aware that people have tried hard to make human hybridomas and did not have much success.
Q Are you aware of some reports of success
Page 109
with -- well, first, I want to start with
human-murine hybridomas.
MR. McCORMICK: Objection; time frame, vague, ambiguous.

THE WITNESS: Right.
I didn't study this. I don't recall specific reports, so I can't answer that with any confidence. BY MS. DAVIS:
Q You mentioned hearing reports of individuals having difficulties with human-human hybridomas; was that correct?
A I -- I did not follow that literature well at the time, and I haven't followed it since. I can't really give an informed answer there.

Q Do you know if there's any difference between -- strike that.

Do you know if the -- the difficulties you are vaguely recalling related to human-human hybridomas or humine (sic) -- human-murine hybridomas?
A I would barely be aware the difference. I
couldn't -- I couldn't say.
Q If you could turn to page C-2.
A C-2.
Q And in the top of this is a carry-over box

```
            Page 110
from --
    A Right.
    Q -- your first Cohen & Boyer --
    A C-1.
    Q -- limitation.
    A Okay.
    Q The last sentence is:
        "The one or more genes include
        antibodies having at least the
        variable region of the heavy and
        light chains."
        Do you see that?
    A Yes.
    Q And you agree, as we've discussed a couple
    times, that heavy and light chains -- those don't
    appear anywhere in Cohen & Boyer; right?
    A Right. Those -- those words don't appear,
    but I did mention earlier that antibodies were
    understood to have separate heavy and light chains.
    That much was well known.
    Q The next limitation of the Cabilly II patent
    is the second box on the -- the left:
        "Independently expressing a first
        DNA sequence encoding at least the
        variable domain of the
                Page 111
    immunoglobulin heavy chain and a
    second DNA sequence encoding at
    least the variable domain of the
    immunoglobulin light chain so that
    said immunoglobulin heavy and light
        chains are produced as separate
        molecules in said single host cell
        transformed with said first and
        second DNA sequences."
    A Yes.
    Q Do you see that?
    A Yes.
    Q And in your box on Cohen & Boyer, you say:
        ''The transformed microorganism is
        capable of independently expressing
        the DNA sequences encoding the heavy
        and light chains," and then you
        quote some language in the patents.
    A That's right.
        I was wondering: Are we going to start
    something pretty long or would now -- now be a good
    time for a break?
        MS. DAVIS: Let's go ahead and --
        THE WITNESS: Okay.
        MS. DAVIS: -- break for lunch.
question pending --
    MR. McCORMICK: You'll withdraw it --
    MS. DAVIS: -- I will withdraw it.
    THE WITNESS: Thanks.
    MS. DAVIS: It might have been: Are those
    words on the page? So --
    THE VIDEOGRAPHER: Off the record at 12:40.
    (Lunch recess taken.)
        ---o00---
MR. McCORMICK: Was there a question pending?
I just want to --
    MS. DAVIS: I --
    THE WITNESS: It seemed like we moved to a --
I'm sorry to --
    MS. DAVIS: If there was a
    AFTE
    Page 113
    AFTERNOON SESSION 1:28 P.M.
        THE VIDEOGRAPHER: Back on the record at
BY MS. DAVIS:
    Q So, Dr. Foote, I want to start with C-2 of
    your report, which is still the chart.
    A Yes.
    Q And I want to talk about the portions of
    Cohen that you have listed as corresponding to the
    Cabilly II claim 33 limitation that begins
    "independently expressing."
        Are you there?
    A Yes.
    Q And you indicate in your report that the
    transformed microorganism of the Cohen & Boyer
    patent is capable of independently expressing the
    DNA sequences encoding the heavy and light chains.
            Do you see that?
    A Yes.
    Q And the portion that you -- the first portion
    you cite is column 5, line 64 to 65.
    A That's right.
    Q So can we go there.
            And the sentence in question, which you have
```

also quoted in the chart, is:
"The DNA fragment may include one or more genes or one or more operons';
is that correct?
A Yes.
Q Does that language refer to independent expression?
A Yes, more than one gene expressed.
Q Are you equating the expression of more than
one gene with independent expression?
A Yes.
Q And why is that?
A Because the alternate is a fusion protein,
and I think that's a very special case, so my -- I
think the default is that if you express two genes,
you get two polypeptides.
Q Continuing on in your chart --
A Yes.
Q -- you have a reference to column 6, lines 1
through 3?
A Yes.
Q And you say that, in your chart:
"(the foreign DNA fragment should have 'an intact promoter and base sequences coding for the initiation

Page 115
and termination sites... for gene expression.'")
A Yes.
Q Is it your opinion that so long as you have an intact promoter and initiation and termination sequences, you will get at least some expression of the gene you've inserted into the microorganism?

A Yes -- oh.
MR. McCORMICK: Objection; incomplete hypothetical.

Go ahead.
THE WITNESS: You would need those, promoter and terminator.
BY MS. DAVIS:
Q Is it your opinion that so long as you have the promoter and terminator in -- that you have inserted into the microorganism, that you will get at least some expression of the gene of interest?

A I can think of ways that would go wrong, but, in most cases, it would work.

Q In what ways could it go wrong?
A Well, if you had a -- like a nonsense code
on -- in your reading frame, that might mess you up, or, you know, some other structure that would interfere with transcription or translation. But in
most -- those are exceptional cases.
Q In most cases, so long as you have an intact promoter and initiation and termination sequences, you would expect to get at least some expression?
A Yes.
Q What else would you need, if anything, in order to get at least some expression?
A Those are all you would need, really. Those are the minimum.
Q Is one promoter sufficient to get expression of both heavy and light chain?

MR. McCORMICK: Objection; incomplete hypothetical.

THE WITNESS: Yes. You need at least one.
What I'm thinking is that if you had one promoter, you could have a construct, like in the genes for ATCase where you have a intracistronic region where one chain stops being translated, you go along a bit, and then the new one starts. So you wouldn't -- you don't need two promoters. You can get by with one promoter.
BY MS. DAVIS:
Q Would you be concerned at all -- strike that.
As of 1983, if you were constructing a -- a plasmid according to Cohen \& Boyer, would you be

Page 117
concerned at all about the possibility that you would get uneven expression of the heavy chain and the light chain with your vector?
A Uneven expression. So more of one than the other?
Q Yes.
A You could well get that. I'm not at all sure that would be a problem though.

Q Why do you say you are not at all sure that would be a problem?
A I don't know why it would be a problem if you get an unequal expression, unless you had almost none of one.
Q Would you be able to recover intact antibody if you had a vector that resulted in uneven expression of the heavy and light chain?

MR. McCORMICK: Objection; vague, ambiguous.
THE WITNESS: I think you would. You would end up throwing part of it away because there wasn't a partner for the chain that was in excess.
BY MS. DAVIS:
Q You would agree that Cohen \& Boyer does not say that heavy and light chains would be produced as separate molecules?
A Could I have that again? I would agree
that --
Q Cohen \& Boyer does not say that heavy and light chains would be produced as separate molecules?
A Cohen \& Boyer doesn't mention the words "heavy" and "light chains."
Q And with respect to other multimeric proteins, Cohen \& Boyer also doesn't specify that any of those multimeric proteins, their component chains, would be produced independently?
A Which multimeric proteins do you mean?
because there are several appearances of that
throughout.
Q Are there any multimeric proteins discussed
in Cohen \& Boyer in which you believe Cohen \& Boyer
describes the constituent chains being expressed independently?

A I don't recall, no.
Q Is it fair to say that you believe Cohen \&
Boyer should be read to call for the production of heavy and light chains as separate molecule because you believe that's the better option as compared to a fusion protein?
A The better option. I don't know what's meant by "better option," but I would like to learn more,

Page 119
and maybe I could help you then.
Q You had said a little while ago that you didn't believe that a fusion protein was what coin -- Cohen \& Boyer meant; is that fair?

A Cohen \& Boyer could accommodate a fusion protein, but they don't insist on it, yes. I
remember the discussion, I think, and for a fusion protein, you need a very precise joining. If you are doing it with restriction enzyme sequences, that has to match just perfectly for -- to make your polypeptide sequence be translated in frame.

Okay. Let me stop there. I'm getting off track.

Q Let me just ask it this way: Can you explain to me again why you are assuming that the proteins produced, according to Cohen \& Boyer, are produced as separate molecules as opposed to, for example, a fusion protein?

A Oh, I'm saying that they would be produced as separate molecules as the kind of default; that if Cohen \& Boyer wanted to talk about a fusion protein or if someone wanted to describe making a fusion protein, you need to have more precise language, more precise instructions.

So if I were reading Cohen \& Boyer and it
says "express two genes," I wouldn't assume that those two genes would be fused in frame unless there had been a deliberate effort to fuse them in frame.
Q Why, in that example, would you assume that they would be produced as separate molecules?

MR. McCORMICK: Objection; asked and answered.

THE WITNESS: Because if their -- if two genes are juxtaposed, having been cut on fragments with restrict- -- restriction sequences, it would be -- it would be a tremendous coincidence if they lined up exactly in frame flush right together. One goes out to its end and immediately the next one starts. There would have -- there has to be a very concerted effort to achieve that.

So if one talks about just two genes, there's no way those would form a fusion protein unless there was a deliberate effort to -- to fuse them. BY MS. DAVIS:
Q Is there any particular type of cellular machinery that would be required such that two genes would be produced as separate molecules?
A Cellular machinery. Well, you are right; someone has to stop translating the first one and start translating the second one, or a new ribosome

Page 121
can start translating the second one, but you do need the ribosome to stop adding polypeptide, and the termination codon would usually do that.

Q And to get the ribosome to start on the second chain or a new ribosome to start on the second chain, is machinery required for that?
A There's a ribosomes start site usually, yeah.
Q Were those types of machinery known in 1983?
A Yes.
Q Do you believe that there's any other type of cellular machinery other than what we have just discussed that would be required to get two genes within the same cell produced as separate molecules?
A That's the -- that's the chief requirement
that the -- there's an independent start site for ribosome to start translating the second one. You do need the thing to be transcribed, but that would be for making -- transcribing one gene or two, you need a promoter in there somewhere. You need a promoter before the first thing you want
transcribed, not just somewhere. In a particular place.
Q Were promoters known in 1983?
A Oh, yes.
Q How many promoters were known in 1983 ?

Q You mentioned "SV40." That's a eukaryotic -- strike that.

SV40 is a promoter suitable for use with eukaryotic genes?

Page 123
A SV40 is a virus that infects mammalian cells, and there are promoters within the virus that have been used for expression of eukaryotic genes and were being used at the time. I -- another rotation project in Berkeley in my first year of graduate school was with Robert Tijan's -- in Robert Tijan's lab, and we worked with SV40 promoters.
Q In your own experience, did you work with any promoters suitable for use with eukaryotic genes other than SV40?
A At what time?
Q Prior to April 1983.
A That was the only one I worked with, eukaryotic promoter.
Q Did you have success using the SV40 promoter with eukaryotic genes?
A Yes.
Q Continuing in your chart regarding Cohen \&
Boyer, still in the -- the column -- or the box corresponding to the independent -- independently expressing limitation --
A Yes.
Q -- you have a reference towards the bottom to column 6, line 6 , through column 9 , line 34 . So let's start with that.

Is that a reference to the section of --
A I'm lost. Eight --
Q Column 8, beginning at line 6 .
A Column 8, line 6. Okay.
Q That is a reference to the section
"Replication and Transcription of the Plasmid"? A Yes.
Q And then you also refer to column 16, lines 8
through 12 ?
A Yes.
Q And in that section, the language you are
referring to, as quoted in your report, is:
"... and entire operon can be
introduced into a bacterial cell and
the cell becomes capable of transcription, translation, and production of a functional gene product."
Do you see that?
A 12. Yes, I do.
Q You would agree that an operon -- in an operon, the genes are contiguous?
A The genes are contiguous, separated by small bits of DNA, yes.
Q And you would also agree that this portion of
Page 125
Cohen \& Boyer does not include reference to antibodies?
A I'm looking at 16,8 to 12 ?
Q Yes.
A Well, doesn't use the word "antibody," but if
we back up a few lines at 16 , line 2 :
"The employment of DNA for
production of ribosomal RNA is merely illustrative of using a genome from a eukaryotic cell for formation of a recombinant plasmid," dah, dah, dah. "Genomes from a eukaryotic cell for formation of genotypical properties, such as the production of enzymes" -- see, it doesn't mention -- they don't mention antibodies, but they could have -- "could have equivalently been used."
Q And it is your opinion that those references to enzymes could include antibodies?
A That's right. It says "such as production of enzymes." That's one example.

In some of these lists of proteins that can
be produced, they talk about antibodies and enzymes.

Page 127
sites?
A Yes.
Q Does Cohen \& Boyer describe 18S and 28S as being non-contiguous?

A Well, these were known to be non-contiguous in the -- at the time the application was written.
I don't know whether they used that word. I can look for it if you like.

Q Well, I don't want to limit you specifically to the word "non-contiguous."

Do you know whether Cohen \& Boyer describes
$18 S$ and $28 S$, in words or substance, as
non-contiguous?
A I would have to look to be sure.
Would you like me to read it and look for "non-contiguous" or?

Q Let me ask it this way: Are you aware, sitting here now, of a place in Cohen \& Boyer in which they describe those two genes as being non-contiguous, in words or substance?
A I can't remember a passage with that in it.
I haven't memorized it. I'm sorry.
Q You then say -- strike that.
Your reference to " $18 S^{\prime}$ " and " $28 S^{\prime}$ " is a reference to transcription of those two genes; is

25

that correct?

A Yes.
Q Does Cohen \& Boyer have an example of both
the transcription and translation of two non-contiguous genes?
A Oh, well, in the tryptophan operon, any two genes in a room might be next to each other, but, you know, the first gene is not contiguous with the third gene, let's say.
Q In the tryptophan operon, the thing separating the third gene from the first gene in your description is the second gene --
A That's correct --
Q -- correct?
A -- yes.
Q Other than in that context, does Cohen \&
Boyer describe both a description and translation of non-contiguous genes?

MR. McCORMICK: Objection.
THE WITNESS: Sorry. In -- in that context?
BY MS. DAVIS:
Q Other than --
A Other than --
Q -- strike that.
You have explained that in the -- the --
Page 129
A Tryptophan.
Q -- tryptophan context, because there are more than two genes, the, for example, first and third are not contiguous to each other. They are separated by the second gene; correct?
A That's right.
Q And so my question is: Other than in that context, does Cohen \& Boyer disclose one or more genes that are not contiguous being both transcribed and translated?

MR. McCORMICK: Objection.
THE WITNESS: I don't think he does. I could look at the examples, but I don't think there's one.
The others are -- the other examples are one product at a time, I think. But then he does have this --
those are the specific examples.
BY MS. DAVIS:
Q In the third paragraph of your Cohen box on page C-3 --
A Yes.
Q -- you say:
'Furthermore, in order to express separate heavy chain and light chain subunits that could assemble into an immunoglobulin, the genes would

Page 130	Page 132
1 necessarily have to be	1 separate molecules and not as a single heavy
2 non-contiguous, i.e., separated in	2 chain/light chain fusion.
3 the vector by sufficient non-coding	3 Do you see that?
4 DNA sequence to ensure that they are	4 A Please point it out to me. I believe you,
5 produced as separate molecules and	5 but --
6 not as a" sig- -- 'single heavy	6 Q In the box corresponding to claim 15.
7 chain/light chain fusion."	7 A Oh.
$8 \quad$ Do you see that?	8 Q The carry-over paragraph.
9 A Yes.	9 A Okay. Oh, so there's more to it.
10 Q A minute ago you had said it would be	10 "... in order to express separate
1 difficult to get expression as a fusion protein; is	11 heavy chain and light chain" subu-
12 that correct?	12 -- "subunits that could assemble
13 A You would have to take specific steps to do	13 into an immunoglobulin, the genes
14 it; although, not always. To have the end of one	14 would... have to be
15 protein exactly coincide with the beginning of the	15 non-contiguous..."
16 next is very hard. Sometimes you can clone into a	16 And that relies on knowledge that was -- been
17 preexisting gene, so I think in cloning insulin, by	17 known for many years by then; that the end terminal
18 Gilbert's group, not by Genentech group, they cloned	18 of the light chain and the end terminal of the heavy
19 into the middle of a beta-lactamase gene, and their	19 chain are relatively close to each other. That is,
20 insulin was fused to that, so that wasn't so hard.	20 the variable domains of the heavy chain and light
21 It was just -- but it wasn't the same kind of thing	21 chain in three-dimensional space line up next to
22 as having two independent genes. The beta-lactamase	22 each other, but if you did one of these fusions,
23 gene was destroyed.	23 let's say a light chain followed by heavy chain,
24 Q In the language in -- in your report,	24 that would physically move the heavy chain very far
25 you're -- you indicate that you would need the genes	25 from the light chain and could never get back in
Page 131	Page 133
1 to be non-contiguous to ensure that they are not	1 three-dimensional space to form a -- an association
2 produced as a fusion chain; is that correct?	2 that would be capable of binding antigen. That's
3 A Let's see. Sorry. My head's pounding. Can	3 why they would have to be separate.
4 you repeat, please.	4 Q Do you have a particular reference in mind
5 Q Sure.	5 that you were referring to in the answer you just
6 A Yeah.	6 gave?
7 Q In the language in your report --	7 A A particular reference that shows what?
8 A Yes.	8 Q In the answer you just gave, you described
9 Q -- you indicate that you would need the genes	9 the -- the reasons why you wouldn't want a fusion
10 to be non-contiguous to ensure that they are not	10 protein if you wanted the heavy and light chain to
11 produced as a fuse -- fusion chain; is that correct?	11 assemble correctly; is that correct?
12 A The genes would be non-contiguous. They	12 A Why you wouldn't want them as a fusion
13 would not -- that is, the genes would be separated	13 protein, yeah.
14 by some piece of DNA that wasn't translated.	14 Q Do -- is there a particular article or patent
15 Q And you believe that's necessary because,	15 or other reference that you have in mind?
16 otherwise, they would be produced as a fusion	16 A That deal specifically with the fusion
17 protein?	17 problem and the impossibility of having a fusion
18 A They -- I'm using this to rule out a fusion	18 between heavy and light chains?
19 protein in this case. If they are separated by a	19 Q Yes.
20 little piece of DNA, they are not a fusion protein.	20 A I don't have one in mind that was present in
21 Q In your report, you have said that the reason	21 1983. I'm relying kind of on -- not kind of. I'm
22 you assume that they are separated by at least some	22 relying on common sense and also what was known
23 DNA --	23 about antibody structure.
24 A All right.	24 Q Was it known, prior to April 1983, that
25 Q -- is to ensure that they are produced as	25 the -- that a fusion protein of an antibody heavy

Merrill Corporation - New York
chain and light chain would be -- would present difficulties in terms of getting a functional antibody?

MR. McCORMICK: Objection; asked and answered.

THE WITNESS: Was it known in the sense of had it been proven or -- I don't think that had been addressed. But the structure of antibodies was known, even the three-dimensional structure. And just knowing about what the parts of the antibody do, it -- it wouldn't make sense. It would be like having a cat with two, you know, feet going down and two more feet going up. You just wouldn't make a construct like that.
BY MS. DAVIS:
Q Are you familiar with instances in the prior
art, prior to April of 1983, in which proteins, other than antibodies, were expressed as fusion proteins and then later recombined?
A Well, the insulin chains were expressed as fusion proteins and recombined.
Q Would it be possible, in your view, prior to April of 1983, to express the antibody heavy and light chains as a fuse- -- fusion protein and then later recombine them?

Page 135
A Could they be expressed --
MR. McCORMICK: Objection; vague, ambiguous, confusing.

THE WITNESS: So they would be expressed as a fusion protein and then perhaps cut away from the thing they were fused to and then recombined.

I forgot your original question, but if I --
I'm not aware of that having been done by 1983, but it sounds to me like it could be done or -- in 1983. you could have done it that way. BY MS. DAVIS:
Q Were fusion proteins always -- strike that.
Prior to April of 1983, are you aware of proteins, other than insulin, that were expressed as fusion proteins intentionally?
A I didn't study the list of fusion proteins, but insulin is the main example that comes to mind by several labs. The somatostatin in the Cohen \& Boyer paper was another one. I think the same group made human growth hormone. But I don't -- I didn't read the human growth hormone papers. I can't be sure of that.

Q Did you read the somatostatin papers?

A No. My knowledge on somatostatin comes from Cohen \& Boyer, their example.

```
    Q Was somatostatin expressed as a fusion
protein?
    A I believe it was. Let me -- so we are
looking at "Example V: Cloning of Synthetic
Somatostatin Gene."
            "Because of the failure to detect
            somatostatin activity from cultures
            carrying plasmid" -- I'm reading
            column 15, line about -- starting
            about 17.
            "Because of the failure to detect
            somatostatin activity from cultures
            carrying plasmid pSOM1, a plasmid
            was constructed in which the
            somatostatin gene could be located
            at the COOH-terminus of the
            beta-galactosidase gene, keeping the
            translation in phase."
            So that's a fusion protein, yes.
            Q Would the method described in Cohen & Boyer
for producing somatostatin as a fusion protein --
would that have worked to produce an antibody heavy
and light chain as a fusion protein?
    MR. McCORMICK: Objection.
    THE WITNESS: So do you mean that if we took
```

 Page 137
 a light chain gene and used that the way they used somatostatin, fused that, and then separately made a heavy chain fused with beta-galactosidase and fused that, would that -- would that have produced these separate chains.

It would have produced fusion polypeptides, but part of the trick here with somatostatin was that -- I don't recall the somatostatin sequence offhand, but with insulin, there was a reliance on particular chemical reaction to cleave the fused polypeptide chain right at a specific place that would free up the insulin part, independent of the thing it had fused to. And I don't think the same technique could be applied to an antibody, which is much longer than these short peptide hormones. BY MS. DAVIS:
Q With respect to insulin, you are referring to cleavage at the methionine?
A That's right.
Q Do you know whether somatostatin -- whether it was cleaved at methionine?

MR. McCORMICK: Objection; foundation.
THE WITNESS: Cleaved at a methionine in this paper?

MS. DAVIS: Correct.

Page 138

THE WITNESS: I don't recall offhand, but I can look and tell you.

Looks like they didn't do that chemical workup.
BY MS. DAVIS:
Q Can you tell from Cohen \& Boyer how the somatostatin protein was cleaved?

MR. McCORMICK: Objection; foundation.
THE WITNESS: I don't see a cleavage reaction here.
BY MS. DAVIS:
Q Are you able to tell whether the fusion protein method used for somatostatin in Cohen \& Boyer would have worked to produce antibody and -antibody heavy and light chains?

MR. McCORMICK: Objection.
THE WITNESS: Well, it wouldn't have given antibody heavy chain and light chains, it would have given a fusion to something else. I'm sorry I hadn't read this more carefully before, but it's detailed biochemistry here I'm trying to understand on the fly.
BY MS. DAVIS:
Q Are you still reviewing?
A It's okay.
Page 139
Q It's fine if you are. I just want to make
sure --
A Let's try the next question.
Q Are you aware of any reason why, following
Cohen \& Boyer, a person of ordinary skill in the art could not express antibody heavy and light chain in a manner similar to the somatostatin experiments and then reconstitute those chains into a functional antibody?

A I -- I don't see an impediment.
Q The chains in that hypothetical would be expressed attached to another protein?
A Well, if you make a fusion, you have to get rid of the thing it's fused to.

Q And you see no impediment to producing antibody heavy and light chains, according to Cohen \& Boyer, where each heavy and light chain -- each of the heavy and light chain is fused to another protein?
A I -- I see potential problems in getting rid of the thing it's fused to.
Q You would need to identify a method to cleave away the fusion partner?

A That's right.
Q You don't know what method was used to cleave
away the fusion partner in the somatostatin example?
A No, I don't.
MR. McCORMICK: Objection.
THE WITNESS: I haven't been able to figure

it out just here.

MS. DAVIS: Okay. I want to move on to a new topic.

THE WITNESS: Okay.
MS. DAVIS: Do we -- is -- does anyone need a break?

THE WITNESS: Time flies. I don't need a break.

MS. DAVIS: Okay. Then let's mark the next exhibit. This is Exhibit 7, the Bujard patent, U.S. Patent 4,495,280.
(Exhibit 7 was marked for
identification by the Reporter.)
BY MS. DAVIS:
Q Do you have that in front of you?
A I do.
Q So if you could turn in your report back to
page 15, you see that you have a section labeled
"Bujard."
A Yes.
Q My first question is about paragraph 48, Page 141
which carries over onto page 16. In that paragraph, you state:
"The invention is an elaboration of the recombinant expression method of the Cohen \& Boyer patent."
Do you see that?
A Yes.
Q Is it a fair statement that Bujard is an elaboration of Cohen \& Boyer as opposed to being an entirely separate invention?
A An elaboration --
MR. McCORMICK: Objection.
THE WITNESS: Scientifically speaking, it's an elaboration. I don't know about a legal term, but, yes. BY MS. DAVIS:
Q For purposes of your anticipation analysis, did you view that Bujard and Cohen \& Boy- -- Boyer references as similar?

MR. McCORMICK: Objection.
THE WITNESS: Yes, they were similar. BY MS. DAVIS:

Q In your opinion, they anticipate the asserted claims of the Cabilly II patent for similar reasons; fair?

	Page 142	Page 144
	A Yes.	1 A Optimize. That -- that term basically means
2	Q In paragraph 49, you say that:	2 getting the most of what you want for the least
3	"The Bujard patent generally relates	3 expenditure of resources. So if you are growing up
4	to methods and compositions for	4 a cell, having the cell make more protein.
5	preparing and cloning strong	5 Q Is it fair to say that, prior to 1983,
6	promoters and terminator regulatory	6 expression levels could vary in terms of the gene of
7	signals, and utilizing the strong	7 interest being expressed?
8	regulatory sequences in the	8 A It could vary depending on what other factor,
9	transcription and expression of a	9 depended on promoter or cell type, other factors
10	gene or genes of interest."	10 could -- yes.
11	Do you see that?	11 Q One of the goals of Bujard was a particular
12	A Yes.	12 way in which to optimize levels of expression.
13	Q You agree that the thrust of the Bujard	13 A That's right.
14	patent is the strong promoter and terminator	14 Q Could you turn to paragraph 54.
15	combination?	15 A Yes. Ah, yes.
16	MR. McCORMICK: Objection.	16 Q This paragraph you refer to Bujard's use of
17	THE WITNESS: That's why Bujard made a	17 the term 'multimer"?
18	plasmid with these properties, yes. The thrust,	18 A Yes.
19	yes.	19 Q You have a number of references in here that
20	BY MS. DAVIS:	20 are references to 'multimeric proteins'; is that
21	Q At a very high-level, what does a promoter	21 fair?
22	do?	22 A That is.
23	A A promoter causes an enzyme called RNA	23 Q You would agree that Bujard was not using
24	polymerase to begin transcription of a strand of DNA	24 "multimer" to refer to a protein. It was, instead,
25	near the promoter.	25 using 'multimer" to refer to a gene?
	Page 143	Page 145
1	Q We discussed earlier that you had done some	1 A I think he was using -- he was referring to
2	work with the SV40 promoter; correct?	2 gene or genes coding a multimeric protein.
3	A That's right.	3 Q Does Bujard use "multimeric protein," the
4	Q Had you, personally, done work with other	4 term?
5	promoters prior to April of 1983?	5 A Does he use it in the patent at all? I know
6	A "Other promoters," you mean eukaryotic	6 we are talking about this one line. He uses the
7	promoters or any promoters?	7 term "multimer." What's the quote? "Plurality of
8	Q Any promoters.	8 genes, including multimers and operons."
9	A No, I hadn't.	9 Q In that quote, the multimer is genes;
10	Q Approximately how much had you worked with	10 correct, not proteins?
11	the SV40 promoter?	11 A His usage is a little awkward, and I
12	A I worked for at least two quarters while	12 interpreted it as genes encoding for multimers, but
13	taking classes, but that was maybe six months.	13 it's genes, plurality of genes, yes.
14	Q And this is prior to 1983?	14 Q What led you -- what are you relying on to
15	A That's right. This is 1981.	15 conclude that his reference to "multimer" was
16	Q Could you turn to page 17 of your report.	16 referring to genes encoding multimeric proteins?
17	A Yes.	17 A Because an alternative of just repeated genes
18	Q In paragraph 51, you state, in part:	18 in a row wouldn't make sense. I -- I know he says
19	''The overall goal of the invention	19 "a plurality of genes, including multimers and
20	is to optimize production of	20 operons." Well, you know, an operon is not a gene
21	recombinant proteins encoded by the	21 either. It's more complex, so I think his language
22	DNA sequence of interest."	22 was a little sloppy here.
23	Do you see that?	23 Q In your report at paragraph 54, you have a
24	A Yes.	24 number of uses of 'multimer' and 'multimeric';
25	Q What did -- what did you mean by "optimize"?	25 correct?
		37 (Pages 142 to 145)
Merrill Corporation - New York		

Page 146	Page 148
1 A That's right.	Beginning a little higher up:
2 Q Those are in the context of the use of the	"A person of ordinary skill in the
3 term 'multimer' referring to a protein; correct?	3 art would have known in 1983 that
4 A That's correct.	antibodies are assembled from
5 Q Do you have any similar examples of the use	multiple, discrete polypeptides
6 of the word 'multimer' in which it is referring to a	(four - two heavy chains and two
gene?	light chains) encoded for by two
8 A Do I have any. You mean, did I put any in my	8 different genes. The Bujard patent
report or can I think of any?	9 inventors themselves recognized this
10 Q Both.	10 when they identified the structure
11 A I didn't put that into my report.	11 of each type of immunoglobulin that
12 Back to Dressler's lab. After working with	12 can be produced according to their
13 this antibody project, the other one ongoing in the	13 method. For instance, they
14 lab that I joined was looking at recombination	14 recognized that IgG has the
15 between plasmids. This is not in vitro	15 molecular formula of gamma 2 kappa 2
16 recombination the way Cohen \& Boyer is, but natural	16 and gamma 2 lambda 2 (two heavy
17 recombination.	17 chains and two light chains)."
18 And if you think about it, if a plasmid is	18 Do you see that?
19 two circles and two circles recombine -- for the	19 A Yes.
20 audio record, I'm making two circles with my	20 Q Turning to Bujard, you were referring to
21 fingers. If they recombine, you get one big circle,	21 column 5?
22 and we would call those "multimers." They could be	22 A Yes.
23 the size of two little circles or three little	23 Q If you could turn back to column 4, do you
24 circles or four little circles. So that was a	24 see, at column 4, line 35, in the same list of
25 usage, but, again, that's not repeated genes.	25 proteins, ''immunoglobulins, e.g., IgA, IgD, IgE, IgG
Page 147	Page 149
1 "Multimer" is an English word, and in	and IgM and fragments thereof''?
2 biochemistry it has the specific meaning about	2 A Yes.
3 proteins with multiple subunits, or I may have	3 Q You would agree that Bujard lists the
quoted the Oxford English dictionary. There was a	different types of antibodies twice?
specific technical meaning. Usually refers to that.	5 A He lists them here, and then he lists them in
Q Is it your understanding that "multimer"	6 column 5, yes.
usually refers to multiples of the same gene?	Q In column 5, he lists them with their
8 A Multi- -- sorry. Multiper -- "multimer"	8 molecular formula?
refers to multiples of?	9 A Yes.
10 Q The same gene.	10 Q In column 4, he does not list them with their
11 A In this case, it would be the same protein	11 molecular formula?
12 or -- I'm confused by the question. Maybe we should	12 A Gives just their name, yes.
13 try it again.	13 Q What do you make of the fact that Bujard
14 Q My question is whether it is your	14 lists the different types of antibodies twice?
15 understanding that 'multimer' usually refers to	15 MR. McCORMICK: Objection; foundation.
16 multiples of the same gene.	16 THE WITNESS: Well, he's giving a kind of --
17 A No. "Multimer" refers to multiples of the	17 he's just being redundant. He's giving a kind of
18 same protein subunit.	18 paragraph list, and then he's taking more care and
19 Q Could you turn to page 19?	19 listing things one by one, one protein per line --
20 A Yes.	20 or per several lines, but he's saying the same thing
21 Q Paragraph 57?	21 for antibodies.
22 A Yes.	22 BY MS. DAVIS:
23 Q You note in here that the Bujard patent	23 Q Do you --
24 inventors themselves -- well, strike that, because	24 A And also -- I'm sor- -- sorry to interrupt --
25 there's a -- the reference will not be clear.	25 I notice, at the top, he says "and fragments

Merrill Corporation - New York
thereof." So this is a more -- sorry.
In column 4, after IgA, 'D, 'E, 'G, and fragments thereof, so this is a kind of summary in one line. And then he spells it out in two lines: immunoglobulin G, IgG, or gamma G-globulin, molecular formula, like that. So summary -- summary statement and then a verbose statement.
Q You mentioned the antibody fragments are mentioned.

A Yes.
Q Does Bujard describe what is meant by 'fragments of immunoglobulins"?
A I don't recall if he has a description
outside that statement. I don't know that he has a specific description.

Q In 1983, would it -- strike that.

An IgG antibody can be conceived of as having three fragments; is that fair?

A Three fragments?
Q Yes.
A I'm just trying to count them. You are
thinking Fv fragments, FAB fragments. There's an
Fd fragment. Several fragments, yes.
Q An IgG antibody can be broken into two fab fragments and one Fc fragment; is that correct?

Page 151
A That's right, yes.
Q Would it have been known, in 1983, that an IgG antibody could be broken into two fab fragments and one Fc fragment?

A Yes.
Q The Fc fragment, that's the fraction crystallizable fragment?
A That's the common knowledge, but I don't think that's what it stands for.
Q What -- what do you think it stands for?
A Milstein told me this story. His very close
friend -- his closest friend, Rodney Porter, is the
one who did this fractionation, and in undergraduate
courses, you hear FAB stands for fragment antigen
binding, and Fc stands for fraction crystallizable, or fragment crystallizable.

But this wasn't true; that Porter did these digestions of IgG with proteolytic enzymes, and he would run them on chromatography columns, and he would elude peaks off these columns, and he got one peak, two peaks, three peaks, and he called them Peak A, Peak B, and Peak C.

And then, later, he took Peak A, thinking it was different from Peak B, and he ran it again, and he got two peaks again, and he found that Peak A and

Peak B were the same thing, and he couldn't figure out what the difference was, so he started calling them FAB, and I thought this was just some weird story until I did it myself, and I got three peaks off a column, and I ran one and it split into two more peaks.

But Fc , I know what you mean.
Q That was in Dr. Milstein's lab?
A I -- that was after I left his lab, and I was at Fred Hutchinson when I did that experiment, with a very modern HPLC column, and it still split into three peaks.

Q The Fc fragment of an IgG antibody is composed entirely of heavy chain; is that correct?

A That's correct.
Q It's the second and third constant domains of the heavy chain joined to each other?

A That's correct.
Q There's no light chain in the Fc fragment;
correct?
A That's correct.
Q Do you have an opinion as to whether an Fc fragment would be included in the fragments thereof that Bujard describes as being a protein that could be produced by this method?

Page 153
A Right. In his verbose list, he doesn't -- he doesn't mention Fc, so it's ambiguous. In the short summary list, he says "fragments," and Fc was certainly a -- a well-known fragment. For that reason, I would be inclined to believe that an Fc would be produced by his method.
Q Do you believe that Bujard anticipates the production of an IgA or an IgM antibody?

MR. McCORMICK: Objection.
THE WITNESS: Yes. He says this can be used to make $\lg A$ or IgM.
BY MS. DAVIS:
Q To your mind, is there any difference in how a person of ordinary skill in the art, in 1983, would go about producing an IgA or an IgM as opposed to an IgG antibody, according to the method of Bujard?
A Well, these have an extra chain that ties the end of the heavy chains together, the J chain, most
well known for IgM. But you can still make IgAs
lacking a J chain, and they assemble.
Q How about -- oh, please finish your answer.
A Yeah. And they are considered IgAs.
Q How about IgM; do you believe a person of ordinary skill in the art would have been able to
make an IgM antibody, according to the method of Bujard, prior to 1983?

A IgM could have been made. Again, he -- you know, he gives the subunit substructure and doesn't mention the J chain, but could be made.

Q Could you make an IgM without a J chain?
A Well, you could certainly make the
polypeptides inside a cell, and you could probably
assemble them either in the cell or by in vitro methods.

Q In the answer you just gave, were you
contemplating that the J chain would be made in a different cell?

A No. I mean, you could make it without having the gene for the J chain there.

Q Would that still be considered -- strike that.

Would the end product of that still be considered an IgM?

A I think it would.
Q In 1983?
A Yes.
MR. McCORMICK: We have been going about --
MS. DAVIS: Yeah.
MR. McCORMICK: -- an hour, more than one
Page 155
hour, so --
MS. DAVIS: And we need to change the tape, so --

MR. McCORMICK: Okay. Good timing, then.
MS. DAVIS: So let's go ahead and take a
break.
THE VIDEOGRAPHER: This concludes Videotape
No. 2, Volume 1 in the deposition of Dr. Foote.
Going off the record, the time is $2: 33$.
(Recess taken.)
THE VIDEOGRAPHER: This begins Video 3,
Volume 1 in the deposition of Dr. Jefferson Foote.
Going back on the record, it's 2:50.
BY MS. DAVIS:
Q Dr. Foote, could you look at paragraph 58 of your report?

A I have it.
Q You refer, in paragraph 58, to -- the
reference in Bujard to "free light chain'; correct?
A Yes.
Q Are there uses for free light chain, apart
from as a part of an assembled antibody?
A Uses for free light chain. I'm trying to
think of any that are more than trivial. Usually
they go together with heavy chains.

Page 156

Q Have you considered whether there are reasons a researcher might have wanted free light chain in 1983?
A I didn't consider -- I'm considering now, but can't come up with much. They are a bit simpler than heavy chains.
Q Are you aware of any uses of free light chain as reagents?
A Light chains. Something called Bence Jones proteins are light-chain dimers, and those were studied for a time because they were easily obtained from cancer patients.
Q Are you familiar with any other instances in which -- well, strike that.

A light-chain dimer is two light chains; correct?
A That's correct.
Q Are you familiar with any other instances of light-chain dimers being intentionally produced?
A I can't think of any.
Q In paragraph 59, you say:
"In short, the inclusion of immunoglobulins (as well as the other multi-subunit proteins mentioned above) as an exemplar

Page 157
protein that could be produced by the Bujard method would have indicated to one ordinarily skilled in the art that the plasmid vehicle could, and necessarily must in the case of immunoglobulins, contain more than one foreign gene -- one each for the heavy and light chains."
Do you see that?
A Yes.
Q You say must contain the genes for the heavy and light chains in the case of an antibody; is that correct?
A "Necessarily must," yes.
Q What is the basis for saying that if you were producing an antibody by the Bujard method, you must include both the heavy and light chain gene in the same plasmid?

A Well, that comes from the previous paragraph;
that just reading through Bujard for -- reading that
list, I would see, oh, free light chains, but -- but
here he doesn't say free heavy chains. I can't find
it anywhere. So that, to me, as someone skilled in
the art reading that in 1983 would think, oh, well,

Page 158
there must be something wrong with making free heavy chains, so I'll make them together; I won't try to make them separately and later recombine them.
Q Is free light chain considered a contaminant?
A A contaminant of?
Q In an antibody production. If you were producing antibodies, do you sometimes end up with free light chain?

MR. McCORMICK: Objection; incomplete hypothetical.

THE WITNESS: Not usually. I haven't had that problem.
BY MS. DAVIS:
Q A minute ago you had said that the reason -your basis for saying necessarily must include both a heavy and light chain is the absence of an entry for free heavy chain --

A That's right.
Q -- correct?
Do you have any other basis for saying that when producing an antibody by the method of Bujard, one of skill in the art necessarily must include the heavy and light chain in the same cell?
A No. I'm referring to that argument right
there.
Page 159
Q You agree that an antibody could be produced by the method of Bujard by way of having the heavy chain in one cell, the light chain in another cell, followed by in vitro reconstitution?
A I think it could; although, Bujard seems to be warning me not to try to produce heavy chains.
Q You said -- oh, please finish.
A He didn't -- that's right. I might try
anyway, but that would be a disincentive for me to
try producing heavy chains separately. A
disincentive doesn't mean it absolutely won't work.
Q You said you might try it anyway.
A Yes.
Q Why might you try that?
A Well, if I needed to make an antibody, I
would probably try making the two chains together,
but as I said before, it's a disincentive but not an absolute prohibition, so I have to make the heavy chain some way, and this would direct me to make it together with the light chain in the same cell.
Q Do you have any opinion as to why, in your view, the -- Bujard chose to express this concept by listing light chain but not listing heavy chain as opposed to vice versa?
A I don't know what was in his mind.

25

Q If Bujard had said free heavy chain but did not list light chain, would your opinion be the same?
A If he listed free heavy chain but not free light chain, that would suggest to me, just from this patent alone, that it might be hard to make light chains by his method, and that would make me more inclined to try and express them together, the two chains.
Q Do you interpret the Bujard patent to be suggesting that it is difficult to make heavy chains alone?
A There's a suggestion there by its absence in that list, yes.
Q How, if at all, do you reconcile that with
the fact that Bujard contemplates producing
fragments of antibodies which could include the all-heavy-chain Fc fragment?
A Well, he doesn't list the Fc would make me think again about whether he meant to include that, but also, the Fc is not a heavy chain, it's a smaller part. Maybe it's okay to make Fc.
Q Is it, in fact, true that it is harder to make a heavy chain than it is to make a light chain?
A There's some lore that it's harder, and there
Page 161
was this precedent of finding a lot of these Bence Jones proteins in cancer patients, because it would come out in the urine. That's how it would be isolated.

My old professor talked about being in Wisconsin where it was so cold all the time. You could just take the stuff and -- the urine and leave it on the roof, and the next day you would have your Bence Jones protein.

So there was more experience with light-chain dimers.
Q The potential difficulty with producing heavy chain, how, if at all, in your opinion, is that overcome by producing it in the same cell with a light chain?
A In -- I don't think that gets you much of advantage, unless -- if they are made as separate polypeptides -- let's say in E. coli -- and they're not assembled, I don't think that buys you much advantage. If you could get to the stage of an assembled immunoglobulin, an IgG in assembled immunoglobulin tends to be very stable. It's not necessarily true of a isolated heavy chain.
Q Is it your opinion that in vivo -- well, strike that.

$$
6
$$

$$
7
$$

$$
8
$$

5
6

Page 162
In vivo assembly is assembly of the antibody heavy and light chains into an antibody within the cell; fair?
A Within the cell, in vivo assembly, yes.
Q Is it your opinion that in vivo assembly is easier than in vitro assembly?

MR. McCORMICK: Objection -- hold on -- it's
outside the scope of his expert report and incomplete hypothetical.

THE WITNESS: I haven't considered assembly for this report, the feasibility, the enablement aspects. It's hard to say whether one would be easier.
BY MS. DAVIS:
Q A minute ago you had said that the -- the fact that, in your opinion, Bujard is discouraging you from producing free heavy chain would suggest to you to put the heavy and light chain in the same cell.
A That's right.
Q And I am trying to understand what is it about putting them both in the same cell that overcomes whatever it is that you see as the problem being flagged with respect to producing heavy chains? Do you have something in mind?

Page 163
A There're -- there are sort of two roots to that. Just that the reading of Bujard, the Bujard patent all by itself, says make free light chains, but it doesn't say make free heavy chains, but it does say make IgG, so I infer from that we will put both chains in the same cell.

From my knowledge of antibody biochemistry, I don't see the advantage of putting them in the same cell unless they are going to assemble, so I -- but, again, that's outside the areas I've considered for this report.
Q In the answer you just gave, you -- you said you don't see the advantage of putting them in the same cell unless they are going to assemble.

Were you referring to assembling in the cell?
A That's right. But, again, that's my personal scientific opinion that's influenced by -- by what I learned after, you know, over the years, and it's not my reading of Bujard.

My reading of Bujard says make light chains, but don't make standalone heavy chains, so put both in the same cell.
Q A person of ordinary skill in the art could make an antibody by expressing the heavy chain in one cell and the light chain in another cell in

"free light chain" other than in the Bujard patent?

Page 165

Do you see that?
A Yes.
Q Is that correct?
A Yes. They were leaders, yes.
Q What is the significance of being among the

Page 166
first scientists to express a mammalian polypeptide in bacteria?

A The significance? Oh, just, in general, it's a good thing to be first, to be first than to be second.
Q Why is it significant that they were among the first to express a mammalian polypeptide in bacteria?

MR. McCORMICK: Objection; foundation.
THE WITNESS: Is it significant. This is just a kind of benign compliment. There's no deeper meaning to that. I'm showing that these are leaders in the field who have written this article that I'm going to quote from.
BY MS. DAVIS:
Q Prior to the work of Dr. Riggs and Dr. Itakura, scientists had expressed bacterial proteins in bacteria; fair?
A Yes.
Q And Dr. Riggs and Dr. Itakura are among the first to express a mammalian protein in bacteria; correct?

A That's right.
Q What significance, if any, do you ascribe to the mammalian aspect of their work?

Page 167
A The fact that it was mammalian -- nothing really special. They weren't even the first. I mean, Gilbert expressed insulin in bacteria before them. It just happened to be red insulin.

Q Not specific to Dr. Riggs and Itakura, but with respect to the scientists who first expressed a mammalian protein in bacteria, what significance, if any, do you ascribe to their success in expressing a mammalian protein in bacteria as opposed to a bacterial protein in bacteria?
A I think, at the time, it showed that -- well, there really was a universal genetic code that -you know, here you could take something from a human or a mouse or a monkey or a rabbit and put it in bacteria, and it would make the same protein, essentially, in bacteria as was being made in the higher organism.

Q You believe that --
A That, and there was also a -- it was, in a
way, kind of technical triumph in that mammalian
DNA, the DNA in one mammalian genome, the DNA within one cell, is many, many times larger -- or longer, containing more nucleotides, than in a bacterium.
So, in this case, they are taking a much smaller
part of a big mass and cloning that.
5 Q

Q Do you remember hearing about Dr. Riggs and
Page 169

Dr. Itakura's work --

A Ido.
Q -- at around the time?
A I do. Very much.
Q Do you remember what you thought when you heard about their production of insulin?
A I remember what I thought about it, because it was, at that time, that I was working in the Gilbert group, which was the rival, and I thought, oh, Gilbert lost, and I wasn't feeling kindly to him -- toward Gilbert, at that time, so it was, ah, Gilbert lost, but I -- I liked the audacity of using synthetic DNA.

Gilbert's group had not really invested in organic chemistry. They took the purely biological approach of making cDNA clones, and they had gone on a kind of pretentious expedition to this biohazard facility in Britain to try and clone a human gene, and I was -- I found that a pleasing result; that Itakura is the one who gave the talk that I heard that he had done it by this way. I thought, you know, good for chemistry.

Q Do you recall having any reaction to the -the fact that Dr. Riggs and Dr. Itakura put each of the two insulin chains in separate cells?

BY MS. DAVIS:

Q Are smaller constructs -- well, strike that. In 1983, would a smaller construct be easier to work with than a larger construct?

MR. McCORMICK: Objection.
THE WITNESS: That would be -- that would depend on small and large. Something that was 5,000 basis would be easier to work with than something that was 15,000 , but 5,000 versus 6,000 , you might -- you wouldn't notice the difference. BY MS. DAVIS:

Q Could you turn to page 26 of your report.
A Okay.
Q Paragraph 74, are you there?
A Yes.
Q In that paragraph, you say -- well, strike that.

This is referring to Bujard; correct?
A Right.
Q You say:
"The region between the promoter and terminator in the plasmid vector can have a plurality of restriction sites to allow insertion and removal of regulatory signals and genes.

When two or more genes of interest are present in this region, the insertion of one or more regulatory tols before each gene will result expres eparate production of the Do you see that?
A Yes.
Q Is it always true that when you have two or more genes of interest in the coding region with one or more regulatory signals before each gene, you will achieve expression of both genes and separate production of the encoded-for polypeptide?
A If they are appropriate signals and regulatory sequences, yes.
Q What would you need to know in order to gure out what would be the appropriate signals and atory sequences?
A Well, let's say I was making one of these intercistronic constructs. I would like to know that the region between the two polypeptide genes would include this ribosome restart site.

At the upstream end, I would want to know that the promoter is going to be functional in that

Page 173
particular cell type.
Q In 1983, do you believe a person of ordinary sin in the art would have been able to select appropriate promoters for use in expressing the

A Yes.
MR. McCORMICK: Objection.
BY MS. DAVIS:
Q What types of promoters do you believe a person of ordinary skill in the art could have selected in 1983 to express antibody heavy and light chain genes?
A Are these --
MR. McCORMICK: Same objection.
Go ahead.
THE WITNESS: Are these using Bujard's method?

MS. DAVIS: Yes, using Bujard's method.
THE WITNESS: Well, could use some of the
genes that Bujard himself found from the T5 phage.
One could use lack promoters. There have been quite a few promoters active in E. coli identified by then.
BY MS. DAVIS:
Q Would a lack promoter work to express an
antibody heavy or light chain gene?
A I think it could be used to do that.
Q Could you turn to page 29.
A 29, yes.
Q And so on page 29, you have a section
entitled "Obviousness of Asserted Claim 33 in the
Cabilly II Patent."
A Yes.
Q This section addresses obviousness.
A Yes.
Q Paragraph 84 on the next page, are you there?
A Yes.
Q You state: "Cohen \& Boyer and Riggs \&
Itakura" -- strike that.
You say:
"Cohen \& Boyer and Riggs \& Itakura
are all publications in the same
general field of research: the production of eukaryotic proteins in heterologous host cell systems, specifically microorganisms."
Do you see that?
A Yes.
Q What is the significance to your analysis
that Cohen \& Boyer and Riggs \& Itakura are in the
Page 175
field of the production of eukaryotic proteins in heterologous host cell systems?
A The significance of that? Common goals. Q Is that the field in which you believe a person of ordinary skill in the art in 1983 faced with the problem of producing a recombinant antibody, the field in which that person would be looking to?

A Yes.
Q Could you turn to page 32 .
Page 32 you have a heading "Invalidity of the Asserted Claims of the Cabilly III Patent under ODP'; correct?

A Yes. Uh-huh.
Q As discussed earlier, that's obviousness-type double patenting?

A Yes.
Q For purposes of your opinion that certain claims of Cabilly III are invalid for obviousness-type double patenting, did you consider the Cabilly II file history?
A I looked at the file history here and there.
I didn't master it, so it didn't enter tremendously
into my analysis.
Q Are you aware that the PTO considered
arguments that certain claims of Cabilly II were invalid for obviousness-type double patenting?

A I believe I did see that.
Q Do you know what the resolution of that issue was?

A The patent was issued, so they must have decided against it.

Q Did you consider the arguments made in connection with the -- in the file history regarding the obviousness-type double-patenting argument raised with respect to Cabilly II?
A I'm sorry. Was --
Q Let me rephrase.
A Yeah.
Q In conducting your analysis of whether Cabilly III is invalid for obviousness-type double patenting, did you examine the arguments that were rejected by the Patent Office with respect to Cabilly II?
A I -- I did have a look, but I don't really remember what they are as we sit here, and mostly my analysis was -- rested on looking at this Cabilly claim -- or this claim 2 from Cabilly I and the Cabilly II and III in light of Cohen \& Boyer and Bujard, and Mr. McCormick explained the concept of

Page 177
obvious-type double patenting. That's mostly
where -- that's where most of my information came from to reach this conclusion, this opinion.

Q Did you compare the arguments that you are making with respect to double patenting of Cabilly III to the arguments made before the PTO about the alleged obviousness-type double patenting of Cabilly II?
A I didn't compare. I didn't write my piece and then go back and compare. I did -- again, vaguely looked at the old file history, but I wouldn't say that it was influential.
Q Do you know whether the PTO considered, in connection with Cabilly II, combinations of a claim of Cabilly I with particular art references?
A I don't recall what they put together. My recollection of the action between your client and the PTO is very vague.
Q Do you know what art references had been combined with Cabilly I claims in the context of the Cabilly II ODP arguments?
A I don't recall, no.
Q Do you know whether any of the arguments that you are making with respect to the alleged double patenting of Cabilly III are similar to the

```
                        Page }17
arguments that have been raised with respect to
alleged double patenting of Cabilly II?
    A As we sit here, I don't, offhand, know the
relation of my arguments to what happened before the
PTO.
    Q Could you turn to page 34.
    A Mm-hmm.
    Q You have a footnote on page 34.
        Do you see that?
    A Yes.
    Q You say in the footnote:
        ''... once it was known that
        non-chimeric heavy and light chains
        could be successfully co-expressed
        (i.e., transcribed and translated)
        in a single host cell and that a
        chimeric heavy or light chain could
        also be successfully expressed
        (i.e., transcribed and translated)
        in a single host cell, a person of
        ordinary skill in the art would have
        been confident that chimeric heavy
        and light chains could be
        successfully co-expressed (i.e.,
        transcribed and translated) in a
```

 Page 179
 single host cell."
 Do you see that?
 A Yes.
 Q That statement is true?
 A Let me read that.
 Yes, and this -- this jogs my memory; that
 one result of the action between your client and the
 PTO was the emphasis that, in Cabilly I, a chimeric
 light chain or a chimeric heavy chain could be
 expressed, but not both. It was "or" not "and/or."
 Q Do you -- strike that.
 A Right.
 Q I -- I appreciate the clarification.
 A Yeah. Mm-hmm.
 Q I want to ask you about the statement just in
 isolation.
A Right.
Q Not necessarily --
A Okay.
Q -- with respect to Cabilly I.
A Right.
Q Do you agree with the statement you made in
Footnote 10?
A Right. So let me read it again.
Yes, I agree with that.
BY MS. DAVIS:
Q Would you -- well, strike that.
A Yeah.
Q You say in this that once it was known that
non-chimeric heavy and light chains could be
successfully co-expressed and then a chimeric heavy
or light chain could also be expressed, a person of
ordinary skill in the art would be confident that
chimeric heavy and light chains could be
successfully co-expressed.
And my question is: In that statement, did

Q In this footnote, do you distinguish -- well, strike that.

I don't see in this footnote any particular type of DNA that you are describing as being expressed, whether it be murine or rabbit or something else; is that fair?
A It just says "chimeric" or "non-chimeric," $\mathrm{mm}-\mathrm{hmm}$.
Q One option for -- for chimeric DNA would be part murine, part human; is that fair?
A That's -- that's chimeric.
Q Did you -- do you believe the -- well, strike that.

A murine-human chimeric antibody is within what you are discussing in Footnote 10?
A Yes.
Q What significance, if any, do you ascribe to
the fact that in a murine-human chimeric antibody, a portion of the DNA is human?
A What effect do I describe -- ascribe to that?
MR. McCORMICK: Objection; foundation.
THE WITNESS: Effect from the point of view of a molecular biologist expressing, because they will have different functions in vivo, but just in terms of expression, what effect does that have. No

Page 181
particular effect comes to mind.
BY MS. DAVIS:
Q Are human antibody heavy and light chain genes expressed in a fashion similar to murine antibody heavy and light chain genes?

MR. McCORMICK: Objection; incomplete hypothetical.

THE WITNESS: Do you mean in humans and in mice?

MS. DAVIS: Recombinantly.
THE WITNESS: Recombinantly.
MR. McCORMICK: Same objection.
THE WITNESS: They are expressed the same way.
BY MS. DAVIS:
Q Would you -- well, strike that.
Yean.
Q You say in this that once it was known that non-chimeric heavy and light chains could be successfully co-expressed and then a chimeric heavy or light chain could also be expressed, a person of ordinary skill in the art would be confident that chimeric heavy and light chains could be successfully co-expressed.

And my question is: In that statement, did

Page 186
Q You mentioned just now 1981, '82, '83.
Among those years, is there a particular year you have in mind?
A It gets easier and easier with each year.
Q Just so that I'm sure I understand your testimony --
A Yes.
Q -- is there one year that you believe is the best candidate among those four, or does your answer include all four years?

A I think ' 83 would be better than ' 82 , but I
think it could have been done in all four years.
Q Other than cloning of the genes, what was available in the later years that would have been very difficult in 1974 ?

A The tools were much better. We had
oligonucleotide-directed mutagenesis. If we didn't have a restriction site in the right place, we could put one there. We had many, many more restriction enzymes to choose from. We had CDNA cloning from kits, commercial material technology. The tools were much better in ' 83.
Q You said that, in 1974, it would have been very difficult to make a vector containing the heavy chain gene and the light chain gene aco---

Page 187

according to Cohen \& Boyer?

A Yes.
Q Would it have been possible at all to make a heavy chain gene and a light chain -- strike that.

Would it have been possible at all in 1974 to create a single vector containing the heavy chain gene and the light chain gene?
A In 1974, possible at all. And leaving out
the idea of undue experimentation.
Q Correct.
A I think it would have been.
Q Could you have made, in 1974, a vector
containing the heavy chain gene and the light chain gene both in the form of genomic DNA?

A Genomic DNA. It would have been split into
exons, and that wasn't known in 1974, and it would
have -- it would have taken a genomic gene and put
it into a bacterium. You wouldn't have gotten a
polypeptide, so that would have prevented it. So, no, it would not have been possible with genomic.

Q Was there another option in 1974 other than the use of genomic DNA that would have let you put both a heavy chain gene and a light chain gene in a single vector?
A I'm thinking more of fragments thereof. That
would have been easier. Even though DNA sequencing was just beginning right around then, there's extensive protein sequencing, so we knew what the -we knew what variable domains looked like. We knew the amino acid sequence of many of them.

So if someone had been able to clone a variable domain from a cancer cell, let's say, one could have -- one could have expressed that gene, that variable domain gene, would have known what the boundaries were, and it could have been expressed. Not elegantly, not without great difficulty, but it could have been done.
Q In your answer --
A Yeah.
Q -- are you limiting expression to the variable domain only?

A Well, we knew what the constant domains were too, but I don't think we could have synthesized a complete -- let's just focus on the heavy chain. I don't think, by synthetic methods, we could have made one that was, whatever, hundreds of basis long. It was just not feasible with the organic chemistry technology for making synthetic oligonucleotides, so we would have had to take pieces from the genome, and we would have run into this problem of exons.

Page 189
There may have been an expectation that genes were contiguous then, but we found out that was wrong. We found out that was wrong the first time someone sequenced an antibody gene.
Q That happened after 1974?
A That did.
Q You mentioned variable domains and constant domains were known in 1974.
A Yes.
Q Was the boundary between the constant domain and the variable domain of an antibody known in 1974?
A Yes.
Q When did that become known, do you know?
A Oh, that was defined by protein sequencing
and was known, I would say, by 1971. In 1971, Cabot
published a compilation of amino acid sequences, and he got the boundaries about right.
Q You did some early work attempting to clone an antibody gene; correct?
A That's right.
Q That was in the late 1970s?
A 1977.
Q Did you know, at that time, the boundary between the variable domain and the constant domain?

A Yes.
Q Do you think, essentially, everyone in the field working with antibodies knew where the boundary between the variable domain and the constant domain was?

MR. McCORMICK: Objection.
THE WITNESS: Yes.
BY MS. DAVIS:
Q Do you believe that Drs. Cohen \& Boyer believed an antibody could be produced using their methods in 1974?

A Yes.
Q Why do you think they believed an antibody could be produced using their methods in 1974 ?
A Even though those genes weren't -- oh, produced using their method in 1974. That's the question.

I don't know what they, personally, believed. The impression I get from reading the patent is that all these problems of expressing proteins would fall into place, and they would fall into place using this method, and there will be difficulties on the way, but those will be overcome, and so I think that they believed the problem could be overcome using their method, even if there were difficulties along

Page 191
the way.
Again, there hadn't -- it was at the dawn of cloning. This was the key cloning patent, but they had envisioned that these problems would be solved; you know, antibodies, nitrogen fixation, photosynthesis. Complicated things could be slotted into the -- into a restriction plasmid and would function in vivo.

Q Could you turn to pages 4 and 5.
A Yes.
Q The paragraph 12 at the bottom of page 4 ?
A Yes.
Q You state:
'... a person of ordinary skill in the art in April 1983 was able to create a vector capable of expressing both the heavy and light chain genes, including the necessary regulatory elements, without undue experimentation. Although a step-by-step methodology for creating this vector is not explicitly recited in the prior art patents, a workable route could be devised from a reading of the patent
specifications, combined with a scientific literature of the day, and the 'ordinary' experimenter's years of training, and common sense."
Do you see that?
A Yes.
Q What scientific literature of the day did you have in mind when you wrote this sentence?
A Let me read this again. One sec.
And you asked about what's the relative scientific literature of the day?
Q Yes.
A Oh, well, that's -- literature of the day is all about the knowledge of the different antibody genes and where the pieces were.

The -- the problem that Boyer \& Cohen faced was that the antibody genes were kind of a black box. We didn't really know what they looked like, but, in a way, solving that was a research problem that was outside of the Cohen \& Boyer method. If someone had handed Cohen \& Boyer, you know, restriction fragments with heavy chain and the light chain, they could have put them in their plasmid and made antibody protein.

$$
\text { Page } 193
$$

By 1983, all those problems had been cleared up. We had ways of making antibodies with predetermined specificity. Milstein had done that. Human and mouse constant region genes had been cloned. We knew about the gene rearrangements.

So all that scientific knowledge that had accumulated made the problem much easier.
Q Are there any specific pieces of literature that you have in mind by name that you were referring to in this sentence regarding the scientific literature of the day?
A Oh, well, the -- we can start with the genes, per se, from the -- from the -- for the constant regions. Those were known in ' 83.
Q Is there a particular reference you have in mind that you would look to for the constant region genes of an antibody?
A Well, I think Phil Leder may have been the first one to clone a human kappa gene. That might have -- I think that was published by 1983. That's where I got mine from.

Leroy Hood had papers on constant region genes. Hanjo, Japanese group, had papers on constant region genes. Those are some.
Q Is there any other literature that you have

Page 194
in mind by name that you were referring to in the sentence regarding the scientific literature of the day?

A Papers by Tamagawa showing the rearrangement of variable and constant region genes during
formation of a lymphocyte.
Q Anything else?
A Those are what spring to mind.
Q Continuing on in that paragraph, you have a list of -- of techniques that you opine would have been within the skill set of the ordinarily skilled genetic engineer.

Do you see that?
A Oh, yes. Uh-huh.
Q In addition to the techniques that you have
listed here, would you have needed to incorporate into the vector features to control the proper ratio of the amounts of each immunoglobulin chain?

MR. McCORMICK: Objection.
THE WITNESS: That's more like fine-tuning. That's more optimization rather than creating an antibody in the first place.
BY MS. DAVIS:
Q Was controlling the ratio the amount of each immunoglobulin chain critical to being able to

Page 195
create a functional antibody in 1983 ?
A I don't think it was critical. I wouldn't

say so, no.

Q You would expect to get some antibody regardless of whether you controlled the ratio of the amounts of each immunoglobulin chain?
A Yes.
MR. McCORMICK: Objection.
BY MS. DAVIS:
Q Could you turn to page 6.
MR. McCORMICK: Are we at a good breaking point?

MS. DAVIS: Sure.
MR. McCORMICK: We have been going about an hour and ten.

THE WITNESS: Yeah.
THE VIDEOGRAPHER: Off the record at 3:52.
(Recess taken.)
THE VIDEOGRAPHER: Back on the record at 4:07.
BY MS. DAVIS:
Q Dr. Foote, could you turn to page 9 of your rebuttal report, which is Exhibit 2.
A Yes.
Q In paragraph 20 on page 9 , you refer to
certain papers on the subject of the ATCase protein.
A That's right.
Q You are not arguing that these references anticipate the claims of the Cabilly II or Cabilly III patents; correct?

A That's right. I'm not using them as prior art.

Q You are not using them for either anticipation --

A Right, for anticipation, yes.
Q Are -- you are also not using these references in combination with other references to argue that any claim in Cabilly II or Cabilly III is obvious; correct?
A That's right.
Q When did you become aware of the ATCase papers that are listed in paragraph 20?

A Papers. So the thesis, when it was written, that was someone in the lab. The paper Pauza, et al., before it was published, it's very similar to the thesis.

The other papers, Wild, et al., Roof,
Turnbough, I became aware of when they were published, or sometime slightly before. Let's just say when they were published. I don't -- yeah.

Page 197
MS. DAVIS: Let me mark, as the next exhibit, the PNAS Pauza paper.
(Exhibit 8 was marked for
identification by the Reporter.)
MS. DAVIS: For the record, Exhibit 8
is -- strike that.
Exhibit 8 I'm handing to you.
THE WITNESS: Thank you.
MS. DAVIS: And for the record, Exhibit 8 is a PNAS paper, cites 79, 4020 through 4024.

Q Do you have that?
A Yes.
Q This is the PNAS Pauza paper referred to in your paragraph 20 ?

A Yes.
Q The title of the paper, "Genes encoding E. coli aspartate transcarbamoylase: The pyrB-pyrI operon."

A "pyrB-pyrI operon."
Q The genes encoding the ATCase, these are
bacterial genes?
A They are.
Q In this particular work, there are references to E. coli genes and Salmonella genes; is that correct?

Page 198

Page 200
A In this work, yes. Are there? And
Salmonella?
Q My first question to you is --
A Yes.
Q -- are the gene -- the ATCase gene that
the -- that Pauza was working with, are those --
A E. coli.
Q E. coli?
A Yes.
Q What host cell are they being expressed in?
A Let's see.
I think mostly they were expressed in
E. coli. At some point they were -- people in the lab also expressed them in Salmonella. Was it this paper or a later paper? I -- I think I mention that in my report, but let's see.

No, it should be in here. Oh, you wanted me to find that; is that right, or --
Q We don't have to find the specific reference.
A Yeah.
Q It's your recollection that the ATCase genes were expressed in Salmonella?
A Yes.
Q Salmonella is a bacteria?
A That's right.
Page 199
Q So this work is the expression of a bacterial gene in a bacteria?

A That's right.
Q Do you know the percentage of homology between E. coli and Salmonella?

A Not offhand, no.
Q Do you have any guess as to the degree of homology?

A The homology, no. The number that sticks in mind is that there are about -- they diverged in evolution a hundred million years ago.

Q How closely related are E. coli and
Salmonella for purposes of using the two as host cells?

MR. McCORMICK: Objection; foundation.
THE WITNESS: Well, let's see. I'm trying to remember the hierarchy. They might be the same class or order, not the same genous, obviously. But the E. coli genes were expressed in Salmonella, though. They -- so the control sequences, which were also from E. coli, worked in Salmonella. BY MS. DAVIS:

Q Would you agree that the goal of the Pauza work was not protein synthesis?
A Pauza himself was interested in gene
regulation. Others in the lab were interested in protein expression.

Q Is the focus of the Pauza paper gene regulation?
A It is, yes.
Q You would agree that the Pauza paper that is Exhibit 8 is not in the field of the expression of eukaryotic genes?

A It's -- doesn't concern eukaryotic genes;
that's right.
Q As we discussed earlier, the ATCase gene is an operon?

A pyrB-pyrI operon, yes.
Q The genes are contiguous to one another?
A They are.
Q They are, therefore, necessarily on the same chromosome?

A They are.
Q The heavy chain gene of an antibody and the
light chain gene of an antibody are on different chromosomes; correct?

A That's correct.
Q You said that -- that E. coli ATCase or -was expressed in Salmonella; correct?
A Yes.
Page 201
1 Q Salmonella itself expresses ATCase; correct?
A Its own, yes.
Q ATCase is a protein that is naturally expressed in Salmonella?
A That's right.
Q Do you consider the expression of E. coli ATCase in Salmonella to be the expression of a heterologous protein?
A Yes.
Q Why is that?
A It's a different species.
Q Do you consider there to be any significance
to the fact that Salmonella expresses ATCase on its own?
A We all -- you and I express ATCase.
Q Does it make it easier to have Salmonella
express E. coli ATCase that Salmonella itself
expresses ATCase?
MR. McCORMICK: Objection.
THE WITNESS: It's not so much that
Salmonella expresses ATCase, it's that the control
signals from the E. coli gene are active in
Salmonella.
BY MS. DAVIS:
Q Why are the control signals from the E. coli

51 (Pages 198 to 201)
Merrill Corporation - New York
$1-800-325-3376$
Page 52
www.merrillcorp.com/law

Page 202
gene active in Salmonella?
A Why are they. I would have to speculate on that. I would guess they are -- they have some similarity to signals in Salmonella.

Q Could you turn to page 10 of your rebuttal report.

A Yes.
Q You discuss, in paragraph 22, the size of the ATCase protein; correct?

A Correct.
Q It is -- strike that.
In the first sentence, you take issue with
Dr. Fiddes' statement that the size and complexity of an intact antibody was a significant advance in the art?

A Sorry. Please repeat the --
Q Sure.
A Yeah. In the size --
Q In paragraph 52 --
A Yes.
Q -- you are taking issue with Dr. Fiddes'
statement regarding the size and complexity of an
antibody --
A Yes.
Q -- reflecting a significant advance in
Page 203
achieving its expression.
A That's right.
MS. DAVIS: Let me mark the next exhibit.
(Exhibit 9 was marked for identification by the Reporter.)
BY MS. DAVIS:
Q You have been handed Exhibit 9, the expert report of Dr. Skerra?

A Yes.
Q You have not seen this report; correct?
A That's correct.
Q Could you turn to page 13.
A I'm there.
Q Paragraph 46?
A Yes.
Q Dr. Skerra states:
"By April of 1983, insulin was the only multimeric (i.e., hetero-dimeric) protein produced using recombinant DNA expression."
Do you see that?
A Yes.
Q Do you agree with that statement?
A Well, ATCase is an exception, so I think he
may have left out the word "eukaryotic," or -- or

25
something like that, but I don't agree with it as he has written it right here. What we have just been talking about conflicts with that.
Q If Dr. Skerra had insed sted (sic) -- had instead said: By April of 1983 , insulin was the only multimeric eukaryotic protein produced using recombinant DNA expression, would you agree with that statement?
A I -- I haven't studied that issue. I'm not sure if I could inform you whether other proteins were being expressed then.
Q Are you aware of any multimeric eukaryotic proteins produced using recombinant DNA expression prior to April of 1983 other than insulin?
A Not offhand, but my memory is imperfect.
Q Could you look at paragraph 47.
A Yes.
Q Dr. Skerra states:
"Many heterologous proteins were expressed as fusion proteins, i.e., the eukaryotic protein was fused with a portion of an unrelated bacterial protein. This strategy took advantage of the host cell machinery for transcription and

Page 205
translation."
Do you see that?
A Yes.
Q Do you agree with Dr. Skerra that, by April
of 1983, many heterologous proteins were being expressed as fusion proteins?
A I don't know enough about expression of fusion proteins. I haven't studied that issue.

Q Dr. Skerra states:
'... fusion proteins are often more
stable in bacteria than the native eukaryotic protein."
Do you see that?
A I see that.
Q Do you agree with that statement?
A Again, my -- I haven't studied that. I don't
know enough to agree or disagree.
Q Could you turn to page 14 , paragraph 49. Are you there?
A Yes.
Q Dr. Skerra states:
"None of the proteins expressed in
1983 compare in size and complexity to an immunoglobulin molecule." Do you see that?

A I do.
Q Do you agree with that statement?
A Well, he seems to have overlooked ATCase, and
I wonder, again, if he's qualifying this with some
subset like eukaryotic or -- I don't know what, but
because of the ATCase exception, which I think was a
large complex molecule, I would disagree. My
testimony is opposite of his, yes.
Q If Dr. Skerra had stated: None of the
proteins expressed in 1983 -- strike that.
If this said: None of the eukaryotic
proteins expressed in 1983 compare in size and
complexity to immunoglobulin molecule, would you
agree with that statement?
A I don't know enough to say whether I would
agree with that or not, but that would -- that would
exempt ATCase. That might explain our disagreement
there.
Q Could you turn to page $\mathbf{1 5}$?
A Yes.
Q Paragraph 51 ?
A Yes.
Q In the middle, there is a sentence that
begins: "Moreover, as of April."
A Yes.
Page 207
Q Dr. Skerra states:
"Moreover, as of April 1983, neither
I, nor Genentech's previous experts
Drs. Harris and McKnight, were aware
of any reported example of
expression of a recombinant multimeric protein, let alone an immunoglobulin tetramer, in a single bacterial host cell."
Do you see that?
A Yes.
Q Do you agree that there was no reported
example of an -- of expression of a recombinant in a single bacterial host cell as of April 1983?

A No, I don't. There's the ATCase example, as we have discussed.
Q Are there any other examples that you are aware of?
A I think the nitrogenase may have been
expressed before April 1983, and that's a multimeric protein.
Q What was the protein again?
A Nitrogenase.
Q What type of protein is nitrogenase?
A In the particular case, it was a bacterial
protein I'm thinking of. That's in my rebuttal report.

Q Is that one of the nitrogen-fixing proteins?
A That's right, yes.
Q You can set aside Exhibit 9.
A Wow, this exhibit's long. He's very thorough.

Q Back to your rebuttal report, Exhibit 2. Could you turn to page 11?
A Yes.
Q In paragraph 23, you are discussing nitrogen fixation?

A Yes. Yes.
Q The goal of nitrogen fixation is to take an organism that does not fix nitrogen and get it to fix nitrogen; correct?

A That's correct.
Q The goal of nitrogen fixation is not protein synthesis; is that correct?

A Well, that depends how you break the project down. What's key to success is expression of -- or other -- well, expression of these nitrogen-fixation gene proteins, and the overall goal is to extract nitrogen from the air and put it into organic form, such as proteins.

Page 209
Q Is the goal of the nitrogen-fixation work the recovery of the protein expressed by the nitrogen-fixation genes?
A The -- that's an intermediate goal. The long-term goal is to take nitrogen out of the atmosphere. Expression of the nitrogen-fixation genes -- in one project, you would just be content to have the nit- -- nitrogenase expressed in the cell, not isolated, and I think that's the one I was writing about here.
Q You were writing about the project in which it was expressed but not isolated?

A It may have been isolated, but it was not going to be isolated and used medically, if that's -- yeah.
Q What field of work would you say the nitrogen fixation papers fall into?
A I would say gene expression. And although the initial work was with prokaryotic genes, would not necessarily be -- well, let me just say -- let me go back to my first statement.

It was -- the field is protein expression.
Q Is the field protein expression or gene expression?
A Sorry. Gene expression, expression of

Page 210
recombinant proteins.
Q The -- strike that.
You refer to a number of papers in these pages in your report on nitrogen fixation; correct?
A Yes. Yes.
Q You are not relying on those papers to argue that the claims of the Cabilly II or III patents are anticipated; correct?
A That's correct.
Q You are not relying on those papers to argue that the claims of the Cabilly II and III patents are obvious; correct?

A That's correct.
Q The nitrogen-fixation genes that you describe
in these paragraphs in your report are all bacterial
in origin; correct?
A That's right.
Q If you look at paragraph 24 ?
A Yes.
Q You refer to the mapping of the "(nif) genes of Klebsiella pneumoniae"?
A Yes. That's probably what I have right now, yeah.

Q That's a type of bacteria?
A That is.
Page 211
Q Do you know the degree of identity between that pneumonia bacteria and E. coli?

A I think they are not very closely related,
but I -- I don't know exactly. Not the same class.
They diverge higher up in the chain of phylum order, whatever.

Q Are they more closely related to each other or less closely related to each other than would be E. coli and Salmonella, if you know?

A I think Klebsiella is less closely related
than Salmonella.
Q Could you turn to page 12.
A Yes.
Q The -- you have a reference in paragraph 25
to a paper by Fuhrmann \& Hennecke.
Do you see that?
A Yes.
(Exhibit 10 was marked for
identification by the Reporter.)
MS. DAVIS: I'm handing you Exhibit 10.
THE WITNESS: Thank you.
BY MS. DAVIS:
Q Is Exhibit 10 the Fuhrmann \& Hennecke paper you refer to?

A Let's see. 187, 419. Yes, this is.

Q This paper reports on the recombinant expression of E. coli nitrogen-fixing genes; is that correct?
A Rhizobium nitrogen-fixing genes, and they are expressed in E. coli.
Q Rhizobium is a type of bacteria?
A Yes.
Q Do you know how closely related Rhizobium is to E. coli?
A I know that it's not very closely related.
Q Is Rhizobium more or less closely related to E. coli than E. coli is to Salmonella?

A Less closely related than Salmonella and E. coli.

Q You are not relying on the -- this work for purposes of arguing that the Cabilly II or III patents are anticipated or obvious; correct?
A That's correct.
Q When did you become aware of the Fuhrmann \&
Hennecke paper?
A Fuhrmann \& Hennecke. After Dr. Fiddes'
report appeared, I made an investigation of
nitrogen-fixation chains. I had been aware of that
work going on. One of the people in my lab went to do that as a post-doc, and some of the early work

Page 213
had happened in Berkeley, but it's recent -- the end of last year that I bore down and read some of these
papers. Even at Harvard, someone in Walter
Gilbert's lab was trying to clone these genes.
Q In what field of work is the Fuhrmann \& Hennecke paper?

A Expression of recombinant proteins.
Q Is this in the same field of work as papers on the expression of recombinant eukaryotic proteins?
A I would put it in the same field, yes.
Q Why is that?
A That the eukaryotic part is just a kind of
technicality. Here they say that, oh, these
Rhizobium genes haven't been expressed in E. coli
before, so they are -- they are taking a difficult expression project and they are taking genes they want, putting them in E. coli to make recombinant proteins.
Q Does E. coli carry any nitrogen-fixation genes?

A No.
Q The -- are the proteins that are expressed as a result of the Fuhrmann paper -- were those isolated, do you know?

A I don't recall offhand.
Q Is the ultimate goal of the work described in the Fuhrmann paper the creation of E. coli that fixes nitrogen?

A I think that's a stage that the -- the
project passes through. I think this is more investigational still, cloning the genes, learning about their expression, and E. coli might be the host of choice to work with in the short-term.

In the longer term, these genes might, in turn, be put into transgenic plants, let's say, so that the plants wouldn't have to rely on nitrogen-fixing microbes in the soil, though. You could have plants that essentially would fertilize themselves.

Q Could you turn to page 14 of your report?
A Yes.
Q Beginning at page 14 and continuing on
through the next several pages, you make reference
to a number of different U.S. patents; is that correct?
A Yes.
Q Are you relying on any of those U.S. patents to argue that the claim of the Cabilly II or III patent are anticipated?

Page 215
A No.
Q Are you relying on any of those patents to argue that the claims of the Cabilly II or III patent are obvious?
A No. These are arguing against Dr. Fiddes' claim about the prevailing mindset.

Q Could you turn to page 18.
A 18 .
Q And this is referring to a reference called
"George"?
A Yes.
Q In the middle of the paragraph, there's a sentence that begins: "For example"?

A Yes.
Q And you say that the inventors approach
recombinant protein production by
co-expreshing (sic) -- co-expressing a fusion protocol, i.e., the gene for the protein of interest fused to a carrier protein, and the unfused protein of interest.

Do you see that?
A Yes, I do.
Q Do you agree that fusion proteins would sometimes be desired end product of work in the late '70s and early 1980s?

A Sometimes the end product. That's --
would -- would I agree. Usually you don't want the fusion protein; you want to get rid of the things it's fused to. But I can't say categorically that you never want the fusion protein, and they seem to be making use of it here as a -- as a way of getting the protein of interest.
Q Let me rephrase my question.
A Yes.
Q I -- I phrased it poorly.
Would you agree that, in the late 1970s and early 1980s, fusion proteins were sometimes an intended product of the recombinant expression process to then be later reconstituted?
A Fusion protein was the -- sorry. Was it the --
Q An intended -- an intended product in the process.
A Yes, it was made intentionally.
Q You agree that, in the late 1970s and early
1980s, persons of ordinary skill in the art sometimes set out to intentionally make a fusion protein?
A Yes, but I haven't studied that issue. I don't know specific examples. I know that usually

Page 217
it's not the fusion partner you want but the unfused protein.
Q Could you turn to page 20.
A Yes.
Q You refer, in paragraph 40, to a patent relating to the production of cholera toxins? A Yes.

MS. DAVIS: If you will bear with me one moment --

THE WITNESS: Sure.
MS. DAVIS: We will attempt to find my copy.
(Exhibit 11 was marked for
identification by the Reporter.)
MS. DAVIS: I'm marking, as Exhibit 11,
U.S. Patent 4,666,837.

THE WITNESS: Okay.
BY MS. DAVIS:
Q Exhibit 11 is the patent you are discussing in paragraph 40?
A Paragraph 40, '837, yes.
Q When did you become aware of this patent?
A During my work on the rebuttal report in
November and early December.
Q Do you see that the assignee on this patent is a SmithKline entity?

A	3:10 28:11 177:17	144:23 149:3 159:1	3:5 5:1,17
able	179:7	168:16 179:22,25	alucier@paulweiss....
43:15 44:2 91:16	active	183:12 199:23 200:6	3:21
100:1 105:9,19	122:4 173:22 201:22	203:23 204:1,7 205:4	ambiguous
106:17 117:14	202:1	205:15,17 206:2,14	15:17 16:8 22:15 31:6
138:12 140:4 153:25	actively	206:16 207:12	33:6 41:9 45:22 46:7
173:3 188:6 191:15	51:8,21	215:23 216:2,11,20	105:12 109:4 117:17
194:25	activity	agreeing	135:2 153:2
absence	19:4 136:7,12	183:23	ambit
158:16 160:13	actors	agreement	21:4
absolute	99:11	26:22	Americas
159:18	actual	ah	3:19
absolutely	11:19 12:2	144:15 169:11	amino
159:11	add	ahead	18:13 41:6 90:14
abstract	18:3 20:24 101:18	21:7 36:1 46:10 51:18	188:5 189:17
33:9 34:6,10 94:18	adding	52:10 64:9 73:5 83:4	amount
accept	121:2	83:22 94:11 111:23	50:13 168:4,5 194:24
88:7	addition	115:11 155:5 173:15	amounts
acceptable	96:6,8 103:13 194:15	air	194:18 195:6
24:24 165:6	additional	99:23 208:24	analysis
accommodate	51:22	al	31:2 32:23 33:13
119:5	addresse	2:18 28:21 196:20,22	35:21 37:5 38:8
accompany	134:8	albumins	42:22 43:13,22,23
64:11	addresses	92:16 103:23	44:24 45:10 47:11
account	174:9	alient	48:3 52:24 55:11
31:3 33:2,12,18 43:12	adjust	36:4	56:1 58:13 59:14,21
47:12 48:2 58:13,16	13:17	allegation	59:23 60:5,7 94:5
94:7,15,19	advance	29:20 49:8	105:3 141:17 174:24
accumulated	105:4 202:14,25	alleged	175:24 176:15,22
193:7	advantage	177:7,24 178:2	analyzed
achieve	161:17,20 163:8,13	Allison	29:24 32:1
22:3 120:15 172:13	204:24	3:19 5:23	and/or
achieved	affect	allow	10:21 11:20,21 68:22
46:2	47:16	82:21 171:24	70:9 179:10
achieving	AFTERNOON	allowed	animals
203:1	113:1	221:17	107:11
acid	ago	allows	answer
188:5 189:17	26:4 63:23 105:5	98:12	15:13 21:9 31:17 34:6
acids	119:2 130:10 158:14	all-heavy-chain	51:3,19 82:10 88:14
18:13 41:6 90:15	162:15 170:2 199:11	160:18	105:13 109:7,14
	agree	alternate	133:5,8 153:22
186:25	61:13 72:9 76:2,7 77:7	114:13	154:11 163:12 186:9
act	90:24 110:14 117:22	alternative	188:13
$77: 6$	117:25 124:21,25	60:12 145:17	answered
action	126:23 142:13	Alto	79:13 98:19 100:10

120:7 134:5	189:4,11,20 190:10	67:3	31:5,8,12,14,20,25
answering	190:13 192:15,18,25	application	32:14
33:9 58:17,22 87:4	193:17 194:22 195:1	27:13,20 64:11 127:6	arrangement
antibiotic	195:4 200:19,20	applied	76:23
99:6,13	202:14,23	30:5 72:17 91:20	arrived
antibodies	anticipate	137:14	19:17
25:22 34:14 37:18,20	58:3 141:23 196:4	apply	art
37:25 38:4,14 39:6	anticipated	48:4 55:17	12:5 30:16,25 31:4,12
39:15 43:14,18,25	30:13 57:17 58:10	appreciate	31:20 33:14,15,19
44:1,2 47:21,23	63:17 67:14 68:20	35:10 179:13	34:3 35:5,6,8,11 37:4
48:14 85:22 86:2,6,9	69:5 210:8 212:17	approach	38:18,23 39:4,12,25
86:10,13 87:11 89:7	214:25 219:14	16:24 18:14 32:18	40:1,3,8,9,11,13,17
89:11,20 90:17,21,25	anticipates	169:16 215:15	42:2 43:5,6 44:25
91:2,4,12 92:15,20	31:1 57:23 153:7	appropriate	50:6,9,20 52:6,14,25
92:23 95:8 99:8	anticipation	172:15,18 173:4	53:4,7,11,19,19,22
103:23 104:16,25	11:19 12:1 30:8,21	approximately	53:24,25 54:12,14,19
107:5,17,23,25 110:9	31:2 32:25 33:13	15:3 28:13 55:24	55:3 57:22,25 58:3
110:18 125:2,17,21	34:1,2,21 35:19,21	143:10	59:13,15,18 61:3,6
125:25 134:8,18	57:21 59:14 80:9,10	April	61:13,15,16,18 69:4
148:4 149:4,14,21	94:5 141:17 196:9,10	50:16,21 55:24 122:13	69:20 106:17 134:17
158:7 160:17 185:21	antigen	123:12 133:24	139:5 148:3 153:14
190:3 191:5 193:2	133:2 151:14	134:17,23 135:13	153:25 157:4,25
antibody	antigens	143:5 191:15 203:17	158:22 163:23 164:5
14:14,19,21,25 15:6	92:16 103:23	204:5,14 205:4	173:3,10 175:5
15:20 16:11 40:3,12	anyway	206:24 207:2,14,20	177:15,19 178:21
40:20 48:9,11,16	159:9,12	area	181:22 182:6 184:22
58:6 85:11,16 90:3	apart	18:4,7,9 122:5	191:15,23 196:7
92:23 96:15 101:5,6	155:21	areas	202:15 216:21
101:11,11 104:18	apparently	163:10	Arthur
105:4,6,10,10,20,20	60:23	argue	122:7
106:3,18 107:7,10	appear	196:13 210:6,10	article
117:14 125:5 133:23	31:11,20 94:8 107:4	214:24 215:3 219:13	2:21 133:14 166:13
133:25 134:3,10,23	107:14 110:16,17	219:17	art's
136:22 137:14	appearances	arguing	184:24
138:14,15,18 139:6,9	3:11 4:1 118:12	196:3 212:16 $215: 5$	ascribe
139:16 146:13 150:8	appeared	argument	166:24 167:8 180:17
150:17,24 151:3	3:7 31:4 33:4 94:16	49:22 61:25 158:24	180:20
152:13 153:8,16	107:5 108:1 212:22	176:10	ase
154:1 155:22 157:13	appearing	arguments	17:13,14,16
157:17 158:6,21	92:2	176:1,8,17 177:4,6,21	aside
159:1,15 162:1,2	appears	177:23 178:1,4	10:3 85:7 183:4 208:5
163:7,24 164:10,18	86:15 93:3,4	183:20	asked
165:8 173:5,11 174:1	appended	Arne	50:1 58:16,18 59:3
175:7 180:14,18	221:17	2:19	68:17 69:3,15,20
181:3,5 185:8,18	applicants	arranged	70:5,13 79:12 98:18

Merrill Corporation - New York
1-800-325-3376
Page 59
www.merrillcorp.com/law

100:9 108:12 120:6	119:15	139:4 156:7 175:25	23:6,23,24 78:3,4 94:3
134:4 192:11	ATCase	196:16,23 204:12	124:14 166:17
asking	17:17,24 18:11 19:11	207:4,18 212:19,23	167:10 197:21 199:1
27:24 106:1	19:13 20:2,3 44:15	217:21 218:7	204:23 207:9,14,25
aspartate	44:16 116:17 168:2	awareness	210:15 218:17,19,20
2:16 17:6,10 197:17	170:21 196:1,16	43:24	bacteria-phage
aspect	197:20 198:5,21	awkward	168:3,5
19:1 32:18 166:25	200:11,23 201:1,3,7	145:11	bacterium
aspects	201:13,15,17,18,21	Axel	167:23 168:3 187:18
88:17 162:12	202:9 203:24 206:3,6	65:25 66:3,7,13	barely
assemble	206:17 207:15	A-T	109:21
81:15 82:2,19 129:24	atmosphere	17:12,15	base
132:12 133:11	209:6	A-T-C	51:7 114:24
153:21 154:9 163:9	attached	17:13,14,16	based
163:14	139:12 182:16	a.m	47:24 80:16
assembled	attempt	3:3 5:3,14	basically
148:4 155:22 161:19	14:13 21:20 217:11	B	144:1
161:21,21	attempted		basing
assembling	17:23	B	106:25 107:1,9
82:13 163:15	attempting	39:21,22 151:22,24	basis
assembly	189:19	152:1	157:16 158:15,20
81:19 162:1,1,4,5,6,10	attention	back	171:8 182:22 188:21
asserted	25:13 94:9,12,17,25	26:5,22 29:4 39:8 40:5	Bates
31:13 49:2,21 57:13	attorney	41:17 43:14 52:9	2:10
58:4 62:13,20,23	3:13,18,19 221:19	54:22 56:19 63:3	bear
68:18 70:6 83:19	attorneys	65:1 83:14,17 95:25	217:8
84:6 141:23 174:6	17:15 70:2	113:3 125:6 132:25	began
175:12	audacity	140:21 146:12	107:4
assessment	169:12	148:23 155:13	beginning
46:16	audio	177:10 195:19 208:8	15:2 20:11 21:21 56:8
assignee	146:20	209:21 220:2	78:24 79:5 102:16,18
217:24	authored	background	103:9 108:14 124:3
assistant	12:22	14:9 36:5 43:5,24	130:15 148:1 188:2
21:1	available	47:20 94:19	214:18
associate	24:5,6 72:18 186:14	backtrack	begins
81:23 164:22	Avenue	44:4	5:8 83:12 103:13
associates	3:19	bacteria	113:11 155:11
164:21	aware	18:12,23 23:11 41:1,4	206:24 215:13
association	11:14 12:9 13:8,22	103:15 165:20 166:2	believe
133:1	25:9 29:6 30:20,24	166:8,18,21 167:3,7	15:5 29:7 31:1 36:9
assume	47:21,25 49:24 58:23	167:9,10,15,16 168:9	40:1,9,17 48:19 49:8
120:1,4 131:22	64:10 72:20 95:16,17	198:24 199:2 205:11	50:9,18,19 60:3
assumed	96:21 104:9 108:22	210:24 211:2 212:6	66:15 75:11 82:12
36:7	108:25 109:21	218:24 219:9,10	86:5 88:21 89:6,10
assuming	127:17 135:8,13	bacterial	105:8,18 106:14,15

118:15,19,22 119:3	169:17	67:3,11,14,16 68:2	1:5 4:3 5:9 6:1,2 8:5
121:10 126:10	biological	68:21 69:11,13,22	Britain
131:15 132:4 136:3	169:15	70:9 71:11 72:7,9,13	169:18
153:5,7,24 164:4	biologist	72:22 73:5,15,19,22	broad
167:18 173:2,9 175:4	180:23	74:3,7 76:7,15 77:15	34:5
176:3 180:12 185:14	biology	77:24 78:7,14,18	broader
186:8 190:9 218:22	42:20 50:10 77:1 81:1	79:1,3,9 80:14 81:19	53:5
believed	bit	81:25 82:6,11,15,21	Broadway
190:10,13,18,24	6:21 26:5 47:19 52:23	82:21 83:18 84:5	3:14
Bence	69:8 116:19 156:5	85:5 89:6,10 90:2,22	broken
156:9 161:1,9	bits	94:6 95:3,13 97:3,8	104:19,24 150:24
benign	124:24	98:1,4,6,9,13 100:6	151:3
166:11	black	100:21 102:10,14	Brown
Berkeley	51:2 192:18	104:9,21 105:9,19,21	3:13 6:1,2
19:10,20 21:15 123:5	block	106:4,16 110:3,16	bug
168:1 213:1	183:3	111:13 113:16	23:22,22
best	BMS	116:25 117:22 118:2	building
79:6 170:12 186:9	7:7 8:12 48:11,16 49:6	118:5,8,15,15,20	27:3
beta	49:8,12,20,25	119:4,5,16,21,25	Bujard
20:12,14,16	body	123:19 125:1 126:10	32:5 57:18 58:1,2,10
beta-galactosidase	56:7 107:14	126:13,24 127:3,11	58:14 59:23 60:6,14
136:17 137:3	bore	127:18 128:3,17	61:11,17 62:2 68:22
beta-lactamase	213:2	129:8 135:19,25	69:11,14,16,23 70:10
19:25 130:19,22	bottom	136:20 138:6,14	83:20 84:5 85:7
better	8:3 57:2,10 65:11	139:5,17 141:5,9,18	140:14,23 141:8,18
11:21 22:13 108:7	123:23 191:11	146:16 174:13,16,25	142:3,13,17 144:11
118:22,24,25 186:11	bound	176:24 184:17 185:6	144:23 145:3 147:23
186:16,22	75:5	187:1 190:9 192:17	148:8,20 149:3,13
beyond	boundaries	192:21,22	150:11 152:24 153:7
38:21 49:25	188:10 189:18	Boyer's	153:17 154:2 155:19
big	boundary	20:17	157:2,17,21 158:21
101:17 108:1 146:21	189:10,24 190:4	break	159:2,5,22 160:1,10
167:25	box	6:24 56:13 83:5,7	160:16 162:16 163:2
binding	84:15 102:9,10,14	104:16 111:22,25	163:2,19,20 164:20
133:2 151:15	109:25 110:22	140:10,12 155:6	164:25 171:18
biochemical	111:13 123:19 126:9	208:20 219:20	173:20 176:25
44:10	129:18 132:6 192:19	breaking	184:17
biochemist	Boy	56:10 195:11	Bujard's
52:21	141:18	breaks	144:16 173:16,18
biochemistry	Boyer	6:25 102:3	bulk
42:19 50:11 138:21	12:14 32:4,19,21 33:4	briefly	84:13
147:2 163:7 165:4	34:14 35:23 36:12	64:23	bullet
biochemists	57:18,25 58:2 59:24	Bristol	58:8 60:13,15
54:8	60:6,16 61:11,17	48:23	business
biohazard	62:2 66:3,6,15,20	Bristol-Myers	48:7

buys	151:21 156:9 215:9	cases	cellular
161:19	calling	75:19 98:22,22 115:20	120:20,23 121:11
B1	9:13 152:2	116:1,2	Central
2:12,13	Camino	cat	1:25:11
C	3:4,5 5:17	134:12	century
C			
151:22	candidate	categorically	46:17 70:7 175:18
Cabilly	186:9	216:4	176:1 196:1
8:23 9:1,4,6,8,11,13	capable	cause	certainly
9:16,18 10:1,9,13	75:25 111:15 113:17	221:6,21	13:19 54:9 79:23
28:25 30:2 33:3,5,16	124:15 133:2 191:16	causes	153:4 154:7
33:20 37:16 38:3,11	care	142:23	CERTIFICATE
47:24 49:3,22 51:11	149:18	cDNA	221:1
57:11,14,24 58:4	carefully	16:12,21 100:23 101:1	Certified
59:4,4 60:21,24 61:7	138:20	169:16 186:20	3:6221:2
62:6,10,14,16,17,20	carrier	cease	certify
62:24 63:5,9,12,14	215:19	93:20	221:3,18
64:13,13 65:5,5,15	carries	cell	Cesar
65:19,24 67:4,5,18	141:1	16:10,12 22:12 23:5	25:6
67:18 68:4,4,19 69:2	carry	46:3,4,12,12 48:18	chain
69:6,12 70:6,8 72:21	213:20	48:18,20 49:1 78:11	66:14,16 81:8 83:1
73:1 83:19,20 84:6	carrying	80:16 82:19,20,24	95:14,15,18,18 96:23
84:16 110:21 113:11	136:8,13	84:25 88:18,23 94:3	97:6,6 98:4 101:4,4
122:8 126:3 141:24	carry-over	95:21,24 96:3,16,23	101:11,12 104:10,10
174:7 175:12,19,21	81:11 109:25 132:8	96:23 97:6,7,18,23	104:11,12,14,15,17
176:1,11,16,19,22,23	165:16	98:2,3,5,10,16,23	104:17,20,20,22,23
176:24 177:6,8,14,15	Casali	99:16 100:8,12 101:5	111:1,4 116:11,18
177:20,21,25 178:2	13:9	101:12 103:21 111:7	117:2,3,16,20 121:5
179:8,20 196:4,5,13	case	121:13 124:14,15	121:6 129:23,23
196:13 210:7,11	1:7 5:11 7:9,22 10:16	125:10,13 144:4,4,9	130:7 131:2,11 132:2
212:16 214:24 215:3	11:9,12 13:1,23	154:8,9,13 158:23	132:11,11,18,19,20
218:9 219:13,17	17:12,15 25:9,12,13	159:3,3,20 161:14	132:21,23,23,24,25
Cabot	25:16 26:2 27:4	162:3,4,19,22 163:6	133:10 134:1,1
189:16	28:24 29:13,16,18	163:9,14,15,22,25,25	136:23 137:1,3,11
California	30:1 42:15 47:2,9,10	164:8,9 167:22 170:3	138:18 139:6,17,18
1:2 3:6 5:1,11,17	48:12 57:8,14 59:22	170:9,10,14,15 173:1	152:14,17,19 153:18
220:16	60:8 65:4 69:12	174:20 175:2 178:16	153:19,21 154:5,6,12
call	70:18 71:8,14,18,23	178:20 179:1 188:7	154:15 155:19,21,23
16:15 23:17 118:20	71:24,25 72:1 79:24	198:10 204:24 207:9	156:2,7 157:18 158:4
146:22 164:14 165:3	88:4 99:24 100:3	207:14 209:9	158:8,16,17,23 159:3
called	106:15 114:14	cells	159:3,19,20,23,23
3:8 6:12 16:12 21:16	131:19 147:11 157:6	45:21 107:14 123:1	160:1,2,4,5,21,24,24
21:17 22:10 23:19	157:13 167:24	168:17,18 169:25	161:13,15,23 162:17
28:16 64:8 142:23	207:25	199:14	162:18 163:24,25

Merrill Corporation - New York
1-800-325-3376
Page 62

164:8,8,15,16,17,19	chart	cites	137:10 139:22,25
164:21,25 165:6,7,8	83:16,22 84:2,4,12,15	197:10	cleaved
165:9,10,10 170:3	90:8 91:24 92:8	citing	75:6 137:21,23 138:7
173:5,12 174:1	102:25 103:8 113:7	85:24 90:12	client
178:17 179:9,9 181:3	114:1,17,22 123:18	City	67:13 177:17 179:7
181:5,21 182:2,3,8,9	chart's	1:9 5:22,24 6:20 10:21	clone
184:16 185:8,15	84:13	46:25 96:25 97:5,21	14:13,19,21,23,25
186:25,25 187:4,4,6	check	100:16	16:2 17:23 130:16
187:7,13,13,23,23	95:17	claim	169:18 170:19 188:6
188:19 191:18	chemical	30:12,15 31:4,5,11,13	189:19 193:19 213:4
192:23,24 194:18,25	137:10 138:3	31:19,21 33:3,3 35:4	cloned
195:6 200:19,20	chemically	42:4 60:13,24,25	2:22 15:5,13 22:7,9
211:5	54:9	61:2,7,12 63:1,4,8,12	23:10,25 101:7,16,20
chains	chemistry	84:2,9,9,16,16	105:6,10,20,23 107:5
54:5 78:23 84:25 95:6	169:15,22 188:22	113:11 126:3,6 132:6	130:18 168:1 185:19
95:6,10,11 96:22	chief	174:6 176:23,23	193:5
97:22 98:8,10,16	121:14	177:14 196:13	clones
100:7,7 101:6 105:1	chimeric	214:24 215:6	107:6 169:16
105:1 110:11,15,19	178:17,22 179:8,9	claiming	cloning
111:6,17 113:18	180:7,9,11,14,18	61:8	15:10,16,18 16:7,13
117:23 118:3,6,10,16	181:20,23 182:9	claims	16:16 101:9,17
118:21 133:18	choice	49:2,10,21,23,25	105:21,23 130:17
134:20,24 137:5	214:9	57:13,16,17,23 58:4	136:4 142:5 167:25
138:15,18 139:8,11	cholera	58:9 60:20 62:13,20	186:13,20 191:3,3
139:16 148:6,7,17,17	217:6 218:14,21,25,25	62:23 63:1,14,16,20	214:7
153:19 155:25 156:6	choose	64:18 65:24 68:19	close
156:9,15 157:9,13,22	186:20	70:6,7 83:19 84:6	50:23 51:1 132:19
157:23 158:2 159:6	chose	94:13,23 141:24	151:11
159:10,16 160:7,9,11	159:22	175:12,19 176:1	closely
162:2,25 163:3,4,6	chromatography	177:20 196:4 210:7	199:12 211:3,7,8,10
163:20,21 164:9,11	151:19	210:11 215:3 219:13	212:8,10,11,13 219:5
164:12,12,13,13	chromosome	219:17	closest
168:17 169:25	200:17	clarification	151:12
178:13,23 181:19,23	chromosomes	179:13	code
212:23	200:21	class	41:7 115:22 167:12
chain/light	circle	199:18 211:4	coding
130:7 132:2	146:21	classes	2:22 15:19 114:25
change	circles	87:7 143:13	145:2 172:11
155:2	146:19,19,20,23,24,24	clear	codon
changed	circumstances	30:13 147:25	121:3
33:21	46:18	cleared	codons
changes	cite	193:1	18:13
221:15	85:15 113:22	cleavage	Cohen
characterization	cited	75:4,23 137:18 138:9	12:13 32:19,20 33:4
94:10	67:3 77:25	cleave	34:14 35:23 36:12

57:18,25 58:2 59:24	173:22 197:17,24	135:17,24 157:20	component
60:6,16 61:11,17	198:7,8,13 199:5,12	181:1	118:9
62:2 66:3,6,20 67:3	199:19,21 200:23	commencing	composed
67:10,14,16 68:2,21	201:6,17,22,25 211:2	3:3	152:14
69:10,13,22 70:9	211:9 212:2,5,9,12	commercial	composite
71:11 72:6,9,13,22	212:12,14 213:15,18	186:21	100:7
73:5,15,19,22 74:3,7	213:20 214:3,8 219:3	common	compositions
76:7,15 77:15,24	collection	17:19 43:8 45:19	142:4
78:7,14,18 79:1,3,9	77:5	133:22 151:8 165:3,5	comprehensive
80:13 81:19,25 82:6	column	175:3 192:4	66:22
82:11,15,20,21 83:18	74:4,22 85:16,17,17	commonly	comprising
84:5 85:4,9,10 89:5	85:21 86:1,8 90:1,9	8:25 164:16 165:2	84:22 85:1
89:10 90:2,2,21 94:6	91:9,22,25 92:6	companies	computer
95:3,9,13 97:3,8 98:1	93:19,23 96:1,7	8:11 47:23	221:10
98:4,6,9,13 100:6,21	97:13,17,20 98:24	company	conceived
102:10,14 104:9,21	102:11,21,25 103:9	1:5 24:8	150:17
105:9,19,21 106:3,16	113:22 114:19	compare	concept
110:3,16 111:13	123:19,24,24 124:3,4	177:4,9,10 205:23	31:19,22 49:17 80:8
113:10,16 116:25	124:8 126:14 136:9	206:12	95:20 159:22 176:25
117:22 118:2,5,8,15	148:21,23,24 149:6,7	compared	concern
118:15,19 119:4,5,16	149:10 150:2 152:5	66:3,20 72:20 118:22	45:25 200:9
119:21,25 123:18	152:11	comparison	concerned
125:1 126:10,13,15	columns	83:18	116:23 117:1
126:23 127:3,11,18	151:19,20	compatible	concerning
128:3,16 129:8,18	combination	97:9	8:18 31:15
135:18,25 136:20	60:14,18 61:10,11,19	compilation	concerted
138:6,13 139:5,16	68:23 82:22 142:15	189:17	120:15
141:5,9,18 146:16	196:12	complementary	conclude
174:13,16,25 176:24	combinations	74:19	145:15
184:17 185:6 187:1	61:3,6 70:14,16	complete	concluded
190:9 192:17,21,22	177:14	11:10 57:8 77:16 78:1	220:12
cohesive	combine	188:19	concludes
75:2,22	32:6,18 42:3	completely	83:8 155:7
coin	combined	97:9	conclusion
119:4	11:8 33:5,14,15 50:13	completion	100:1 177:3
coincide	70:8 164:9,17 177:20	221:13	concrete
130:15	192:1	complex	184:4
coincidence	combining	99:11 145:21 206:7	condition
120:11	32:15,17,20	complexity	75:21
cold	come	106:5 202:13,22	conducting
161:6	12:15 34:7 41:1,2,4,5	205:23 206:13	31:2 33:12 35:21 38:8
coli	43:4 51:23,24 53:11	Complicated	42:21 43:13 47:11
2:16 22:12 23:12,13	70:16 100:23 156:5	191:6	48:2 94:5 176:15
23:14,15,17 126:20	161:3	compliment	Conference
161:18 168:18	comes	166:11	3:5

confers	constituent	contiguous	52:8,17,19 57:22
89:24	118:16 164:11	77:8,9 124:22,23	59:7 60:22 61:4
confess	construct	128:8 129:4,9 189:2	62:12,16,24 63:5,15
107:1	20:7,10,15 21:20	200:14	63:18,22 64:14 65:7
confidence	116:16 134:14	continue	65:8,16,17 69:21
109:7 182:19,22,25	170:19,21 171:3,4	43:19 77:14 80:21	71:8 72:7 73:16,19
confident	constructed	continued	76:3 83:20,21 85:2
178:22 181:22 182:8	19:23 20:4,17 21:25	4:1 21:22	86:3 95:15 96:19,24
182:19	136:14	continuing	98:7,11 100:4 102:20
conflicts	constructing	44:1 51:6 53:17 70:4	103:2 104:10 105:6
204:3	116:24	74:21 76:14 103:8	106:18 109:11 114:4
confused	constructs	114:17 123:18 194:9	128:1,13,14 129:5
93:13 147:12	171:2 172:21	214:18	130:12 131:2,11
confusing	construed	continuous	133:11 137:25 143:2
33:7 135:3	66:13	81:7	145:10,25 146:3,4
connect	contain	control	150:25 152:14,15,18
78:24	11:10 76:3,9 157:6,12	194:17 199:20 201:21	152:20,21 155:19
connected	contained	201:25	156:16,17 157:14
79:4,8,10,16 81:2	57:25 59:21 94:22	controlled	158:19 164:1 165:23
connection	183:12,14 185:8	107:13 108:10 195:5	166:22 168:14
32:22 35:18 52:24	containing	controlling	171:18 175:13
69:12 176:9 177:14	74:23 75:4 78:1	194:24	184:17 185:3,4
218:8	167:23 184:15	convey	187:10 189:20 196:5
consider	185:14 186:24 187:6	84:12	196:14 197:25
37:13 39:24 41:24	187:13	convincing	200:21,22,24 201:1
46:16 47:18 59:15,18	contaminant	30:14	202:9,10 203:10,11
69:4 70:13 156:4	158:4,5	COOH-terminus	208:16,17,19 210:4,8
175:20 176:8 201:6	contemplate	136:16	210:9,12,13,16 212:3
201:12	76:11 79:21	copies	212:17,18 214:21
considerations	contemplates	9:20 22:12	219:14,18,19 220:15
46:19 47:1,13 54:10	160:16	copy	corrected
considered	contemplating	9:4 22:11 24:12	11:24
45:5 66:6,9,17 67:17	154:12	217:11	correction
68:3,7,9 153:23	contend	cornucopia	12:19
154:16,19 156:1	58:3	91:6	corrections
158:4 162:10 163:10	contending	correct	11:15 12:9
175:25 177:13	57:23 60:20,25	8:9,10 9:1,9,10 10:1	correctly
considering	content	10:14,25 11:6 12:15	17:9 133:11
156:4	209:7	12:18,23 14:14,15,17	correspond
constant	contesting	14:18,20 15:3,4,11	126:11
105:2 107:6 152:16	49:6,20	17:4,7,8,21 18:1,2	corresponding
182:16,23 183:2	context	24:1,18,20 26:9 30:8	113:10 123:20 132:6
188:17 189:7,10,25	51:14 75:1 100:5	30:9 32:16 33:24	corresponds
190:5 193:4,13,16,22	128:16,20 129:2,8	34:12 37:1 42:9 44:7	85:10 126:3
193:24 194:5	146:2 177:20	45:1 47:19 50:14,17	counsel

3:11 5:18 221:18	39:16	40:16,23 41:12,19	32:5
count	critical	46:1,13 52:10,22	December
150:21	194:25 195:2	56:10,13,21 62:1	217:23
Counter-Claimant	crossed	65:3 66:10 68:1,12	decide
1:14	28:6	73:4,8 79:17 82:25	39:3,11
Counter-Defendant	crystallizable	83:4,15 87:9 88:20	decided
1:6	151:7,15,16	93:16 94:14 99:17	176:7
Counter-Plaintiffs	CSR	100:14 101:21,25	declare
1:11	1:24 221:25	102:2,5,7 103:7	220:14
couple	cultures	105:15,17 108:3	deeper
110:14	136:7,12	109:8 111:23,25	166:11
coupled	cut	112:3,6,9,11 113:5	default
184:22	54:4 72:18 74:14 76:5	115:14 116:22	114:15 119:20
course	120:9 135:5	117:21 120:19	Defendant
106:10	cutting-edge	122:21 128:21	1:14
courses	55:5	129:17 134:15	Defendants
151:14	C-1	135:11 137:16,25	1:10 3:9,17 10:21
Court	83:24,25 110:4	138:5,11,23 140:6,9	defers
1:1 5:10 6:5	C-2	140:13,18 141:16,22	66:7
covered	109:23,24 113:6	142:20 149:22	defined
49:2	C-3	153:12 154:24 155:2	35:8 189:15
co-expreshing	126:1 129:19	155:5,14 158:13	defining
215:17	D	162:14 164:6 166:15	51:13
co-expressed	D	168:24 171:1,11	definitely
178:14,24 181:20,24	D	173:8,18,24 181:2,10	82:23 86:23
182:8,10	1:18 3:8 6:10 150:2	181:15 182:17,21	definition
co-expressing	dah	184:1 190:8 194:23	15:24 16:7 24:16 50:3
215:17	125:12,12,12	195:9,13,21 197:1,5	50:5,8,19,22 52:3
co-expression	Dahiya	197:9 199:22 201:24	53:23 76:25
78:8 80:14	4:3 6:2	203:3,6 211:20,22	definitions
co-regulated	date	217:8,11,14,17	77:1
77:8	5:13 16:22 19:17	219:20,22 220:4	definitive
create	100:20	dawn	31:17
16:21 187:6 191:16	DATED	191:2	degree
195:1	221:23	day	199:7 211:1 219:2
created	dates	9:19 106:20 161:8	delay
185:7,15	56:3	192:2,8,12,14 193:11	75:14
creating	David	194:3 220:16	deliberate
15:23 16:2 191:22	4:3 5:15 14:13 50:25	dead	120:3,18
194:21	Davis	88:7,9	delivery
creation	2:3 3:18 5:20,20 6:17	deal	27:9
184:15,25 214:3	6:19 7:3,17 13:16,21	133:16	demand
criteria	15:22 16:17 26:23	deals	43:8,12
39:3,10	29:12 31:9 32:9 $33 \cdot 1136: 1139 \cdot 18$	22:5	demonstrate
criterion	33:11 36:11 39:18	dealt	30:21

departure	destroyed	156:15 164:22	discussed
76:12	130:23	dimers	6:21 61:13 69:8 80:8
depend	detailed	156:10,19 161:11	82:20 87:19 95:1,20
15:10 34:2 170:17	138:21	dimly	97:2 98:1 104:8
171:7	detect	108:22	110:14 118:14
depended	136:6,11	direct	121:12 143:1 175:15
144:9	detection	159:19	184:7 200:11 207:16
depending	89:3	direction	discussing
144:8	determine	17:2 221:11	52:23 76:8 86:21 89:7
depends	38:10	directly	92:3 180:15 208:11
14:24 76:5 208:20	developing	44:12	217:18
deponent	107:15	disagree	discussion
221:16	developments	205:17 206:7	12:16 93:9,10,21
deposition	55:14 56:6	disagreement	119:7
1:17 5:8,16 9:21 28:19	devised	206:17	discussions
29:2,7 83:9,13 155:8	44:11,11 191:25	discipline	27:25
155:12 220:8,11	dictionary	50:11	disincentive
221:4,7,13,20	147:4	disclose	159:9,11,17
depositions	difference	82:1,12 126:15,24	disinterested
3:2	41:1,3 87:17,23 88:1	129:8	221:8
deprive	94:18,23 109:15,21	disclosed	dismissed
21:13	152:2 153:13 171:10	30:15,25 92:21	29:19
describe	differences	discloses	distilled
14:8 17:1 34:8,23 72:5	45:25	37:6 38:20 73:23	61:23
90:2,4,4,6 92:19	different	85:11	distinct
119:22 127:3,19	20:3 32:5 45:24 58:18	disclosure	78:9,15,16,20,22
128:17 150:11	84:13 108:8 122:9	11:20,23 12:3 33:23	79:21 80:1,15 81:14
168:12 180:20	126:17,25 148:8	34:2,4,11,13,24 35:3	81:20 82:1,12 94:23
210:14	149:4,14 151:24	35:11,18 80:9,10,25	distinction
described	154:13 168:11	82:3,5,7	45:17,20
29:3 36:25 100:13,15	180:24 192:15	disclosures	distinguish
133:8 136:20 214:2	200:20 201:11	35:22 36:16,19 80:17	180:1
describes	214:20	80:17,19,23	District
118:16 127:11 152:24	difficult	discouraging	1:1,2 5:10,11
describing	88:22,24 101:3 130:11	162:16	diverge
180:4	160:11 170:24	discovered	211:5
description	186:15,24 213:16	16:19 185:20	diverged
2:6 34:20 38:16 44:5	difficulties	discoveries	199:10
64:6,7,10,13,15,17	101:10 109:10,17	58:6	DNA
65:6 80:6 128:12,17	134:2 190:22,25	discrete	15:19,21 52:20 73:25
150:13,15	difficulty	148:5	74:8,9,10,13,16,17
designed	161:12 188:11	discuss	74:23 75:4,12 76:2,5
37:6	digestions	54:11 61:16 86:9	76:8,10,12,15,23
desired	151:18	90:25 93:20 183:24	77:12 78:1 87:14,14
215:24	dimer	202:8	89:22,23 93:25 94:2

Merrill Corporation - New York
1-800-325-3376
Page 67

106:7,8 107:12	155:15 165:17,17	87:19 102:10 104:8	30:15 31:3,11,19 32:2
110:24 111:2,9,16	166:16,17,20,20	110:18 143:1 175:15	32:12, 15, 17, 19, 20
113:18 114:2,23	167:5 168:16,16,25	200:11	33:3,13 42:3 84:6
124:24 125:7 130:4	169:1,24,24 183:20	early	191:19
131:14,20,23 142:24	184:5 195:22 202:13	12:13 96:19,21 189:19	elude
143:22 165:19,19	202:21 203:8,16	212:25 215:25	151:20
167:21,21,21 169:13	204:4,18 205:4,9,21	216:12,20 217:23	Email
180:4,9,19 184:25	206:9 207:1 212:21	early-antibody-clon...	3:15,21
187:14,15,22 188:1	215:5 220:9	16:23	emerging
203:20 204:7,13	Dressler	easier	106:8
doctrine	14:13 20:25	162:6,13 170:14 171:3	emphasis
58:24 64:4	Dressler's	171:8 186:4,4 188:1	179:8
document	20:23,24 51:1 106:10	193:7 201:16	employee
11:5 93:5	146:12	easiest	13:19
documents	Drs	168:23 170:3	employment
7:4,13 9:3,15	190:9 207:4	easily	29:18 125:7
doing	drug	156:11	enabled
18:4 87:15 89:21	23:2 27:9	education	58:14 59:2,15,19,24
119:9	drugs	50:13 51:7	60:3,3,7
domain	23:3	effect	enablement
104:22 110:25 111:3	drug-resistance	180:20,22,25 181:1	58:15,16,24 59:6
188:7,9,16 189:10,11	23:1	efficiently	63:25 64:8 162:11
189:25,25 190:4,5	dual	96:11	encode
domains	25:5	effort	218:20
84:23 105:2,2 132:20	due	18:1 106:9,11 120:3	encoded
152:16 188:4,17	62:14	120:15,18	23:19 41:7 143:21
189:7,8	duly	Eight	148:7
double	3:9 6:13 221:4	124:2	encoded-for
62:15 63:21 70:20	dynamics	either	172:7,14
175:16,20 176:2,16	107:11	11:15 30:17 33:23	encodes
177:1,5,7,24 178:2		61:10 69:10,16 91:11	81:23
183:11,21 184:6	E	95:14 104:14,24	encoding
double-patenting	E	105:23 145:21 154:9	2:16 17:23 110:24
62:9 176:10	22:12 23:12,13,14,15	184:16 196:8 221:19	111:2,16 113:18
downstairs	23:17 71:4 126:20	El	145:12,16 197:16,20
27:5	150:2 161:18 168:18	3:4,5 5:17	encompasses
Dr	173:22 197:17,24	elaboration	81:13
1:18 3:8 5:9 6:10,18	198:7,8,13 199:5,12	141:3,9,11,14	encountered
12:11,23 13:4,9,13	199:19,21 200:23	electrophoresis	53:18,22,25
13:23 14:2 18:10,17	201:6,17,22,25 211:2	53:12	endonuclease
20:17,21 24:22 25:2	211:9 212:2,5,9,12	elegantly	75:3,22
25:6,7,10,15,20,22	212:12,14 213:15,18	188:11	engineer
47:6 71:7,10,14,18	213:20 214:3,8 219:3	element	194:12
72:2,6,20 83:9,13,16	earlier	35:4	English
113:6 152:8 155:8,12	52:23 71:24 80:8	elements	147:1,4 165:3

Merrill Corporation - New York
1-800-325-3376
Page 68

ensure	41:2,5	146:5 207:17 216:25	expectation
88:22 130:4 131:1,10	eukaryotic	exception	28:2 189:1
131:25	42:23 45:18,21 46:4	81:5 203:24 206:6	expedition
ent	46:12 48:18,19 49:1	exceptional	169:17
218:6	94:1,2 122:9,13,17	116:1	expenditure
enter	122:18,23,25 123:3,9	excerpted	144:3
175:23	123:14,16 125:10,13	74:7	experience
entire	143:6 168:8 174:19	excess	50:12,14,25 51:8
65:18 124:13	175:1 200:8,9 203:25	117:20	107:2 123:8 161:10
entirely	204:6,12,21 205:12	exclude	164:15,19
141:10 152:14	206:5,11 213:9,13	44:5,18,22 45:8,13	experiment
entities	Evan	80:1 97:4,8	20:14 152:10
218:6	17:3 20:13	excluding	experimental
entitled	event	80:2	93:12,14
2:21 56:25 174:6	221:21	exclusively	experimentation
entity	evidence	34:11	12:7 185:2,7,9,16
217:25 218:3	30:14	exemplar	187:9 191:20
entry	evident	156:25	experimenter's
85:9 158:16	93:24	exempt	192:3
envisioned	evolution	206:17	experiments
191:4	199:11	exhibit	139:7
enzymatic	exact	2:7,8,10,12,13,14,15	expert
19:4	19:17	2:16,19,20,24 7:6,8	2:7,8,19 7:6,8 8:17
enzyme	exactly	7:10,11,12,20,21 9:4	10:12,22 12:25 29:22
74:15 119:9 142:23	120:12 130:15 211:4	9:15,22,22,24,24,25	29:24 71:4 122:15
enzymes	EXAMINATION	10:8,19 11:5 73:6,10	162:8 182:14 203:7
89:19 92:14 99:8	2:2 6:16	140:14,14,16 183:5	expertise
103:14 125:15,21,23	EXAMINATIONS	195:23 197:1,3,5,7,9	122:18
125:25 151:18	2:1	200:7 203:3,4,7	experts
186:20	examine	208:5,8 211:18,20,23	207:3
enzymic	38:23 39:4,13 176:17	217:12,14,18	explain
96:9 103:15	examined	Exhibits	119:14 206:17
equating	3:10 6:13	2:5 7:15 11:8	explained
108:17 114:9	example	exhibit's	128:25 176:25
equivalent	34:14,16 54:1,5 77:25	208:6	explanation
50:13	79:7 80:19 86:11	exist	94:21
equivalently	93:11,14,17,22 99:18	22:11	explicitly
125:18	119:17 120:4 125:23	existed	73:23 126:15,24
Escherichia	126:18 128:3 129:3	41:24 107:10	191:23
2:16	135:17,25 136:4	exogenous	express
essentially	140:1 168:1 207:5,13	91:15 96:2 102:19,23	22:1 34:16 40:3,12
167:16 190:2 214:14	207:15 215:13	exons	68:17 70:5 81:22
et	examples	187:16 188:25	87:25 89:15 98:4
2:18 28:21 196:20,22	34:7 82:7,8,17 93:8	expect	114:15 120:1 129:22
eukaryotes	95:1 129:13,14,16	116:4 164:10 195:4	132:10 134:23 139:6

159:22 160:8 165:19	114:10 115:2,6,18	160:16,23 162:16	150:23
166:1,7,21 173:11,25	116:4,7,10 117:2,4	167:1 169:24 180:18	feasibility
201:15,17	117:12,16 122:17	201:13	162:11
expressed	123:3 130:11 141:4	factor	feasible
15:14 18:23 19:5	142:9 144:6,12 172:5	43:21 55:10 56:1	188:22
33:23 34:11, 13 41:8	172:13 180:25	144:8	features
46:11 54:2,3 61:23	182:23 185:1 188:15	factors	194:17
80:9,17,19,24 82:3,4	199:1 200:2,7 201:6	48:2 107:9 144:9	feeling
82:7 88:2,23 89:1,3,4	201:7 203:1,20 204:7	faculty	6:22 169:10
114:8 118:16 134:18	204:13 205:7 207:6	21:3	feet
134:20 135:1,4,14	207:13 208:21,22	fail	134:12,13
136:1 139:12 144:7	209:6,18,22,23,24,25	64:22	Ferrier
166:17 167:3,6	209:25 212:2 213:7,9	failed	1:24 3:6 6:5 221:2,25
178:18 179:10 180:5	213:17 214:8 216:13	14:19	fertilize
181:4,13,21 182:20	218:12	failure	214:14
183:1,2 188:8,10	expressly	136:6,11	Fiddes
198:10,12,14,22	30:17 35:1 82:12	fair	12:11,23 14:2 183:20
199:19 200:24 201:4	extensive	14:9 36:21,22 57:7	184:5 202:13,21
204:11,20 205:6,22	188:3	69:19 70:19 71:12	212:21 215:5
206:10,12 207:20	extent	89:6 118:19 119:4	field
209:2,8,12 212:5	32:11,12 182:14	141:8,25 144:5,21	42:3,11,14,15,22,25
213:15,23	extra	150:18 162:3 166:18	44:6,19,25 45:3,6,9
expresses	153:18	168:4 180:6,10 219:8	51:8,13,13,15,21
39:20,21 201:1,13,18	extract	fairly	52:2,3,4,6,15,25 53:4
201:21	208:23	56:10 164:23	53:6,8,12 55:8,15
expressing	eyes	fall	58:6 166:13 174:18
19:19 37:25 39:21	65:20	16:6 190:20,21 209:17	175:1,4,7 190:3
40:15 52:19 91:5	e.g	familiar	200:7 209:16,22,23
97:9 110:23 111:15	90:16 102:16,17	64:3,5 69:10 72:12	213:5,8,11 218:11
113:12,17 123:21	148:25	96:17 108:20 134:16	figure
163:24 167:8 168:9		156:13,18 164:24	140:4 152:1 172:18
173:4 180:23 190:20	F	far	figuring
191:17	fab	95:2 104:24 132:24	52:2,5,12
expression	150:22,24 151:3,14	fashion	file
18:16,18,19,20,25	152:3	181:4	67:23 175:21,22 176:9
19:1,21 20:8,20	faced	fast	177:11
21:20 22:3,13,14	37:7,13,17,23 38:2,11	55:9	filing
37:17,19 38:4,13	38:24 40:19 175:5	fault	35:12
39:5,14 40:1,8,14,18	192:17	64:17,18	finally
40:20 42:16,17,19,23	facility	Fc	55:19
43:1 44:6 45:5,8	21:5 52:20 169:18	150:25 151:4,6,15	find
46:2,3 51:15 52:4,7	fact	152:7,13,19,22 153:2	33:8 55:16 69:16,20
52:15 53:1,16 55:6,7	21:19 28:9 29:22 57:7	153:3,5 160:18,19,21	157:23 198:18,19
58:7 88:5 90:2	62:23 65:23 77:14,16	160:22	217:11
107:13 108:9 114:7,9	80:13 95:13 149:13	Fd	finding

64:17,18 161:1	191:5 208:12,14,18	13:15	fragments
fine	209:17 210:4	forgot	74:18 75:16,17,24
24:23 56:16 102:6	fixes	135:7	120:9 149:1,25 150:3
139:1	99:22 214:4	form	150:8,12,18,19,22,22
fine-tuning	flagged	16:16 54:8 74:13	150:23,25 151:3
194:20	162:24	81:15,20 82:2,13	152:23 153:3 160:17
fingers	flies	120:17 133:1 164:17	187:25 192:23
28:5 146:21	140:11	165:7 187:14 208:24	frame
finish	flush	formation	26:12 105:12 109:3
51:20 87:1,4 95:9	120:12	125:11,13 194:6	115:23 119:11 120:2
153:22 159:7	flux	formed	120:3,12
finished	55:14	94:3	Fred
21:9 32:10	fly	forming	152:10
Fintan	138:22	53:23 81:7	free
47:6 71:4	foci	formula	137:12 155:19,21,23
first	108:8	148:15 149:8,11 150:6	156:2,7 157:22,23
3:9 6:13 7:24 8:1,2,15	focus	forth	158:1,4,8,17 160:1,4
8:15,22 11:17 14:11	18:16 64:19 108:1,5,6	83:17 84:5 126:7,9	160:4 162:17 163:3,4
14:21,23,25 15:5	108:7 188:19 200:3	forward	164:11,12,13,13,15
19:8,17 20:7,19	focused	61:3	164:19,20,25 165:8,9
21:15,19,21 23:20,25	61:8	found	165:10
30:7 31:18,21 42:7	follow	60:7 69:22 84:7	frequently
52:1 57:6 58:8 62:12	109:12	151:25 169:19	6:25 17:11
73:22,24 74:4 76:20	followed	173:20 189:2,3	Friday
76:24 83:24 84:9,15	109:13 132:23 159:4	foundation	1:20 3:3 5:2
85:20 91:5 92:8 95:2	following	35:25 66:8 137:22	friend
95:25 97:13 98:21	56:5 139:4 185:5	138:8 149:15 166:9	151:12,12
101:1,6,18 102:14	follows	180:21 183:22	front
107:6 109:1 110:3,23	6:14 39:9 40:6 52:11	199:15	11:6 140:19
111:8 113:21 120:24	96:15 103:6	four	Fuhrmann
121:20 123:5 128:8	Foote	63:10,14,16,20 74:25	211:15,23 212:19,21
128:11 129:3 140:25	1:18 2:7,9 3:8 5:9 6:10	146:24 148:6 186:9	213:5,24 214:3
165:18 166:1,4,4,7	6:18 7:7,9 83:9,13,16	186:10,12	full
166:21 167:2,6 183:8	113:6 155:8,12,15	fraction	22:19 75:1 95:25
184:2 189:3 193:19	195:22 220:9	151:6,15	function
194:22 198:3 202:12	footnote	fractionation	17:6 87:10,12,15
209:21	70:25,25 71:3,17 72:5	151:13	89:12,13,18 90:7
fit	178:8,11 179:23	fragment	122:4 191:8
80:5,6	180:1,3,15	74:9,10,17 75:12,15	functional
five	foregoing	75:23 76:2,8,10,12	84:21 124:17 134:2
7:4 62:23 79:7	220:15 221:4	76:16 77:11,17,19,25	139:8 172:25 195:1
fix	foreign	84:22 114:2,23	functions
100:1 208:15,16	73:24 74:23 75:5	150:23,25 151:4,6,7	87:7 88:19 89:20,24
fixation	114:23 157:7	151:14,16 152:13,19	99:4 180:24
89:19 99:5,13,18,20	Forgive	152:23 153:4 160:18	fundamental

Merrill Corporation - New York
1-800-325-3376
Page 71

72:10	gene	29:16 49:18 91:3,11	gene(s)
further	14:14,19,21 15:6,13	142:3 219:5	74:23 75:5
102:8 220:4 221:18	15:16,19,23 16:2,13	generated	genome
Furthermore	17:23 18:11 22:7	184:21	16:10 125:10 167:21
129:22	23:5,21 26:10,18	genes	168:8 188:24
fuse	42:19 73:25 74:8,16	2:16,22 33:21 41:7	Genomes
120:3,18 131:11	76:11 77:4 78:18	58:6 73:24 76:3,9,16	125:12
134:24	79:15 81:7 87:13,13	77:3,5,8 78:18,18	genomic
fused	87:15,24,25 88:5,7,9	79:21 80:1,3,4,7 81:2	185:20 187:14,15,17
80:3,5 120:2 130:20	88:10,15,22 89:14,15	81:6,23 86:16,21,24	187:20,22
135:6 137:2,3,3,10	89:20 90:3 101:11,12	88:1,12 89:1,4 90:6	genotypical
137:13 139:14,18,21	114:8,10 115:1,7,18	91:15 96:2 99:3,15	125:14
204:21 215:19 216:4	121:18 124:17 128:8	102:19,23 103:1,20	genous
fusion	128:9,11,11,12 129:5	104:5 105:4,6,10,20	199:18
54:3 79:21 80:1,2,3	130:17,19,23 136:5	105:22 107:5,10,16	genus/species
81:4 100:13 114:13	136:15,17 137:1	108:10 110:8 114:3	37:24
118:23 119:3,5,7,18	142:10 144:6,25	114:15 116:17 120:1	George
119:21,22 120:17	145:2,20 146:7 147:7	120:2,9,16,21 121:12	215:10
130:7,11 131:2,11,16	147:10,16 154:15	122:10,13,25 123:3,9	germane
131:18,20 132:2	157:7,18 168:2,6,10	123:16 124:22,23	21:11 61:24
133:9,12,16,17,25	169:18 170:14,18	126:16,25 127:19,25	getting
134:18,21,24 135:5	172:4,5,12 173:5	128:5,7,18 129:3,9	31:24 78:14 101:10
135:12,15,16 136:1	174:1 185:20 186:25	129:25 130:22,25	119:12 134:2 139:20
136:19,21,23 137:6	186:25 187:4,7,7,13	131:9,12,13 132:13	144:2 216:6
138:12,19 139:13,23	187:14,17,23,23	142:10 145:2,8,9,12	GFK
140:1 204:20 205:6,8	188:8,9 189:4,20	145:13,13,16,17,19	69:12
205:10 215:17,23	193:5,19 198:5,5	146:25 148:8 157:12	Gilbert
216:3,5,12,15,22	199:2,25 200:3,11,19	168:9 170:15,25	21:4 50:25 122:6
217:1	200:20 201:22 202:1	171:25 172:1,11,13	167:3 169:9,10,11,12
fusions	208:23 209:18,23,25	172:22 173:12,20	Gilbert's
132:22	215:18	181:4,5 184:16 185:8	20:25 21:2 130:18
Fv	Genentech	185:10,15,18,19	169:14 213:4
150:22	1:9 5:10,21,24 6:20	186:13 189:1 190:15	give
G	7:7 10:21 13:19	191:18 192:16,18	22:5 31:16 75:18,23
G	$48 \cdot 849 \cdot 25$ 96.25	193:4, 12,17,23,24	109:14 122:1
150:2,5	97:4,21 100:16	197:24,24 198:21	21:2 25:11 69:6,7
gamma	130:18	199:19 200:8,9,14	138:17,19 221:12
148:15,16 150:5	Genentech's	209:3,7,19 210:14,20	gives
gamma-globulin	207:3	212:2,4 213:4,15,17	91:19 149:12 154:4
90:17	general	213:21 214:7,10	giving
Garrison	2:20 58:24 92:24 93:1	genetic	149:16,17
3:18 5:21	93:9,10,21 166:3	41:7 167:12 194:12	Glaxo
gel	170:14 174:18 183:8	Genetics	28:20 47:9 218:5,9
53:12	generally	2:21	GlaxoSmithKline

218:3	218:22 220:10	150:5	151:14
globulin	good		heard
90:16 104:18	5:7 6:18 12:21 56:10	H	6:19 70:18 72:14
globulins	98:20 105:24 111:21	half	169:6,20
90:17 92:16 103:23	155:4 166:4 169:22	101:21	hearing
glycoprotein	195:11	hand	109:9 168:25
104:18	gotten	7:4 105:25	heavy
glycoproteins	187:18	handed	84:24 95:6,10,12,14
92:17	governing	73:9 192:22 203:7	95:18 101:4,11
GNE-MED-07608	3:2	handing	104:10, 11,14,16,20
2:10	graduate	7:13 197:7 211:20	104:22 105:1 110:10
GNE-MED-07646	19:10 21:2 123:5	handled	110:15,19 111:1,5,16
2:11	great	45:24	113:18 116:11 117:2
go	43:25 188:11 219:24	Hanjo	117:16,23 118:2,6,21
21:7 26:5 27:5 36:1,7	greatly	193:23	129:23 130:6 132:1
36:12 38:16 41:12	170:23	happen	132:11,18,20,23,24
43:3 46:10 51:18	Greg	13:17	133:10,18,25 134:23
52:10 54:11 63:3	25:5	happened	136:22 137:3 138:15
64:9,22,23 73:5 83:4	Gregory	10:25 167:4 178:4	138:18 139:6,16,17
83:22 92:5 94:11	15:2 24:19,21,25	189:5 213:1	139:18 148:6,16
96:5 102:8,22 107:12	group	harbors	152:14,17 153:19
111:23 113:24	21:4 23:4 28:20 54:2	23:5	155:25 156:6 157:8
115:11,19,21 116:19	96:25 130:18,18	hard	157:12,18,23 158:1
153:15 155:5,25	135:19 168:1 169:9	88:14 101:8 108:22	158:16,17,23 159:2,6
164:16 173:15	169:14 193:23	130:16,20 160:6	159:10,18,23 160:1,4
177:10 209:21	grouped	162:12 185:22	160:11,21,24 161:12
goal	92:23,24	harder	161:23 162:2,17,18
99:20 143:19 199:23	groups	160:23,25	162:24 163:4,21,24
208:14,18,23 209:1,4	108:8,9,10	Harris	164:7,11,12,13,17
209:5 214:2	grow	207:4	165:7,9 173:5,11
goals	219:10	Harvard	174:1 178:13,17,22
144:11 175:3	growing	213:3	179:9 181:3,5,19,20
goes	144:3	harvested	181:23 182:2,7,9
37:9 57:4 60:5 90:16	growth	99:21 100:6	184:15 185:8,14
103:15 120:13	135:20,21	head	186:24 187:4,6,13,23
going	GSK	94:20	188:19 191:17
7:3 21:10 51:23 55:18	10:16 71:14	header	192:23 200:19
56:14 62:8 83:1,1,10	guess	93:19	help
83:14 85:7 98:18,24	27:1 122:2 199:7	heading	10:11 119:1
101:22 102:7 103:1	202:3	175:11	helpful
111:20 134:12,13	guide	heads	58:20
154:23 155:9,13	94:22	93:14	helps
163:9,14 166:14	gut	head's	94:22
172:25 195:14	219:11	131:3	hemology
209:14 212:24	G-globulin	hear	219:2

Hennecke	hormones	108:18,21,23 109:2	59:4 60:21,24 61:7
211:15,23 212:20,21	137:15	109:10,19,20	62:14 64:13 65:5,15
213:6	host	hypothetical	65:19,24 67:4,18
hereto	45:21 46:3,4 48:18,18	46:9 101:15 115:10	68:4,19 69:2,6 83:19
221:17	48:19 49:1 78:10	116:13 139:11	83:20 84:6,16 110:21
heterologous	80:16 84:25 95:21,24	158:10 162:9 164:3	113:11 126:3 141:24
174:20 175:2 201:8	96:13,16 97:17 98:2	181:7 182:13	174:7 175:21 176:1
204:19 205:5	98:3,5 101:5 111:7		176:11,19,24 177:8
heteromultimers	174:20 175:2 178:16	I	177:14,21 178:2
82:18	178:20 179:1 198:10	idea	196:4,13 210:7,11
hetero-dimeric	199:13 204:24 207:9	44:25 187:9	212:16 214:24 215:3
203:19	207:14 214:9	ideal	219:13,17
hierarchy	hour	54:8	III
199:17	56:14 101:21 106:20	identification	9:8,11, 13, 16,18 10:9
high	154:25 155:1 195:15	2:5 7:16 73:7 140:17	59:4 62:6,10,16,17
22:11,13	HPLC	197:4 203:5 211:19	62:20,24 63:5,9,12
higher	152:11	217:13	63:14 64:13 65:5
148:1 167:17 211:5	huge	identified	67:5,18 68:4 70:6
high-level	168:8	23:21 76:24 107:18	126:19 175:12,19
86:7 89:17 90:5	human	122:4 148:10 173:22	176:16,24 177:6,25
142:21 168:13	107:17,23,25 108:23	identify	196:5,13 210:7,11
hired	135:20,21 167:13	5:18 108:15 139:22	212:16 214:24 215:3
218:9	169:18 180:10,19	identity	219:13,17
history	181:3 182:16,23	211:1	illustrative
65:12,16,19 72:21,22	183:3 193:4,19	IgA	125:9
73:1,3 175:21,22	humans	148:25 150:2 153:8,11	immediately
176:9 177:11	107:11 181:8	153:15	120:13
hold	human-human	IgAs	immunoglobulin
105:11 162:7 182:12	109:10,18	153:20,23	84:20,22,24 111:1,4,5
homology	human-murine	IgD	129:25 132:13
199:4,8,9	108:20 109:2,19 182:9	148:25	148:11 150:5 161:21
Hood	humine	IgE	161:22 194:18,25
193:22	109:19	148:25	195:6 205:24 206:13
hop	hundred	IgG	207:8
23:22	122:2 199:11	148:14,25 150:5,17,24	immunoglobulins
Hope	hundreds	151:3,18 152:13	148:25 150:12 156:23
1:9 5:22,24 6:20 10:21	188:21	153:16 161:21 163:5	157:6
47:1 96:25 97:5,22	hung	IgM	immunologically
100:16	31:24	149:1 153:8,11,15,20	84:21
hopefully	husband	153:24 154:1,3,6,19	impediment
219:22	13:18	II	139:10,15
hoping	Hutchinson	8:23 9:1,4,6 10:9,13	imperfect
28:7	152:10	28:25 33:3 37:16	204:15
hormone	hybridomas	38:3,11 49:3,22	implement
99:6 135:20,21	108:1,5,6,13,13,16,17	57:11,14,24 58:4	12:6

Merrill Corporation - New York
1-800-325-3376
Page 74
www.merrillcorp.com/law

important	INDEX	innovations	43:25 90:15,21 108:14
43:15	2:1	54:14 55:20,23,25	108:16 115:18
impossibility	indicate	insed	142:10 143:22 144:7
133:17	8:16 14:11 33:22	204:4	168:6 172:1,11
impression	113:15 130:25 131:9	inserted	215:18,20 216:7
107:24 190:19	indicated	75:25 115:7,17	interested
improve	157:3	insertion	19:3 89:22 108:9,10
44:2	indicates	73:23 126:17,25	199:25 200:1 221:20
inappropriately	28:19	171:24 172:3	interesting
32:6	indigenous	inside	89:23
inclined	87:7	154:8	interfere
153:5 160:8	individuals	insist	115:25
include	97:5 109:9	98:9,12 119:6	intermediate
45:15,16 76:16 90:15	infects	instance	209:4
90:16 104:14 110:8	123:1	148:13	International
114:2 125:1,21	infer	instances	2:21
157:18 158:15,22	163:5	134:16 156:13,18	interpret
160:17,20 172:23	influenced	165:1	79:20,25 160:10
186:10	163:17	instructions	interpreted
included	influential	119:24	145:12
15:24 52:25 104:19	177:12	insulin	interrupt
152:23 184:7	inform	54:2,5 96:19,21,22,23	149:24
includes	204:10	97:5,22 98:7 100:6	interruption
50:5 82:17	information	130:17,20 134:20	13:14
including	21:14 37:6 38:20	135:14,17 137:9,12	intracistronic
51:11 54:13 145:8,19	177:2	137:17 167:3,4	116:17
191:18	informed	168:13,17 169:6,25	introduce
inclusion	109:14	170:13 203:17 204:5	86:16 95:23 99:2
156:22	infringement	204:14	introduced
incomplete	49:7,9,17	intact	88:2,5,23 89:14
46:9 101:15 115:9	infringes	73:25 74:8,16 114:24	103:21 104:5,7
116:12 158:9 162:9	49:21	115:5 116:2 117:14	124:14
164:2 181:6 182:13	inherency	202:14	introducing
incorporate	34:8 36:3	intended	86:21,23 87:24 90:6,7
194:16	inherent	216:13,17,17	91:14 96:1 102:19,22
indented	33:23 34:3,24 35:3,4	intentionally	Introduction
77:20	35:11,17,22 36:18	135:15 156:19 216:19	8:4
independent	80:10,17,23	216:22	introns
81:1 114:6,10 121:15	inherently	interaction	185:19
123:20 130:22	30:17 35:2 78:19	21:5	invalid
137:12	80:25 81:3 95:10	intercistronic	30:12 49:10,11,23
independently	initial	170:22 172:21	62:14 63:5,9 175:19
110:23 111:15 113:12	209:19	intercistronic-type	176:2,16
113:17 118:10,17	initiation	170:20	invalidity
123:20	114:25 115:5 116:3	interest	8:18 58:24 63:23 64:3

Merrill Corporation - New York
1-800-325-3376
Page 75
www.merrillcorp.com/law

84:1 175:11	69:17,18,24 165:14	juxtaposed	25:1
invention	165:17 166:17,20	120:9	know
41:25 51:9 54:13,15	167:5 168:16 169:20		6:24 12:19 13:3 14:2
54:20 55:4 64:7,11	169:24 174:14,16,25	K	16:18,22,22 19:17
72:9 81:13 82:24	Itakura's	kanamycin	24:3,4 25:12 34:10
141:3,10 143:19	169:1	21:17 22:20,21,24	47:5 48:14,17 49:5,6
inventor	IV	23:2 26:7	49:20 53:15 68:7,8,9
27:14 49:15 122:7	30:4	Kantrowitz	68:10 69:14 71:22
inventors	i.e	17:3	73:2 77:9 89:4 93:2
27:15 37:8,14 38:3,11	130:2 178:15,19,24	Kantrowitz's	94:18,20 99:12 105:1
38:25 51:11 147:24	203:18 204:20	18:10,17 20:13	109:15,17 115:24
148:9 215:15	215:18	kappa	117:11 118:24 127:7
invested		148:15 193:19	127:11 128:8 134:12
169:14	J	kdavis@paulweiss.c...	137:20 139:25
investigation	J	3:21	141:14 145:5,18,20
212:22	153:19,21 154:5,6,12	keep	150:14 152:7 154:4
investigational	154:15	88:15 101:22 102:7	159:25 163:18
214:7	January	keeping	167:13 169:22
irrelevant	1:20 3:3 5:2,13	136:17	172:17,21,24 176:4
32:7	Japanese	kept	177:13,19,23 178:3
isolate	193:23	56:3	185:23 189:14,24
16:11 185:10	japonicum	key	190:18 191:5 192:19
isolated	2:23	191:3 208:21	192:22 199:4 205:7
16:14 44:12 94:4	Jefferson	kicked	205:17 206:5,15
96:10 161:4,23 209:9	1:18 2:7,9 3:8 5:9 6:10	183:14,16	211:1,4,9 212:8,10
209:12,13,14 213:25	7:6,9 83:13 155:12	kind	213:25 216:25,25
isolating	JEM	18:6 20:24 25:5,5 33:8	219:2,5,7
18:10	1:8	34:5 36:4 107:9	knowing
isolation	job	119:20 130:21	104:25 134:10
42:17 168:10 179:16	21:3	133:21,21 149:16,17	knowledge
issue	jogs	150:3 166:11 167:20	43:5 47:20 56:7
28:3,7 37:24 48:5,6,7	179:6	169:17 192:18	107:15 132:16
48:12 57:14 100:25	joined	213:13	135:24 151:8 163:7
170:12 176:4 184:6	74:16 146:14 152:17	kindly	184:24 192:15 193:6
202:12,21 204:9	165:7,9	169:10	218:4
205:8 216:24	joining	Kira	known
issued	119:8	3:18 5:20 6:19	9:25 36:8 42:3 58:24
25:10 27:16 176:6	joint	kits	64:6 69:23 105:3
issues	21:4	186:21	110:20 121:8,23,25
28:12	jointly	Klebsiella	122:3,3,13,16,19
Ita	8:12	210:21 211:10	127:5 132:17 133:22
69:23	Jones	knew	133:24 134:6,9 148:3
Itakura	156:9 161:2,9	69:13 188:3,4,4,17	151:2 153:20 178:12
32:21 60:15,18 61:9	Journal	190:3 193:5	181:18 187:16 188:9
61:10,18 62:3 68:24	2:21	knight	189:8,11,14,16

Merrill Corporation - New York
1-800-325-3376
Page 76 www.merrillcorp.com/law

193:14	Largely	85:20 88:10 95:22	187:4,7,13,23 191:17
k-a-n-a-m-y-c-i-n	41:10	97:11,13 98:17	192:23 200:20
22:20	larger	111:23 123:25 128:9	light-chain
	167:22 171:4	131:3 132:23 139:3	156:10,15,19 161:10
L	late	140:13 155:5 161:18	liked
lab	16:20 106:12 189:22	172:20 188:7,19	169:12
14:24 18:10,17 19:18	215:24 216:11,20	196:24 198:11,16	limit
20:11,13,18,23,24,25	law	199:16 211:25	42:21,22,24,25 53:6,8
24:10 26:9,11,13,14	3:13,18,19 29:18	214:11 218:18	127:9
26:25 27:2 51:1	34:20 35:18 36:25	level	limitation
106:10 107:3 123:7	38:16	51:7 54:18 89:3 122:5	84:16,18 85:10 110:5
146:12,14 152:8,9	laws	levels	110:21 113:11
196:19 198:14 200:1	3:1	144:6,12	123:21
212:24 213:4	lawyer	licensing	limited
labeled	30:23	72:12,21,22,25 73:2	28:20 34:18 52:6,14
84:1 140:22	lawyers	ligatable	limiting
laboratory	27:25	74:15,19	188:15
14:12 50:14	leaders	light	line
laboriously	165:24 166:12	18:6 84:24 95:6,11,12	11:18 58:9 74:4,22
96:5	learn	95:14,18 101:4,12	85:16,21 86:1,9 90:8
labs	56:8 118:25	104:10,12,15,17,20	90:9,11 95:25 96:7
20:3 26:16,17 135:18	learned	104:23 105:1 110:11	103:9 113:22 123:24
lack	163:18	110:15,19 111:4,5,17	123:24 124:3,4 125:6
173:21,25 183:1	learning	113:18 116:11 117:3	132:21 136:9 145:6
lacking	214:7	117:16,23 118:3,6,21	148:24 149:19 150:4
153:21	leave	129:23 132:11,18,20	linear
lactamase	161:7	132:23,25 133:10,18	74:13
20:12,14,16	leaving	134:1,24 136:23	lined
lactose	63:6,13 187:8	137:1 138:15,18	120:12
77:2 122:7	led	139:6,16,17,18 148:7	lines
lambda	79:1 88:2 145:14	148:17 152:19	85:17 91:9,22,25 92:6
148:16	Leder	155:19,21,23 156:2,7	95:2,7 102:11,25
language	193:18	156:9,15 157:8,13,18	103:9 114:19 124:8
12:18 71:16 80:6	left	157:22 158:4,8,16,23	125:6 149:20 150:4
85:15 86:8,14 87:10	110:22 126:6 152:9	159:3,20,23 160:2,5	linked
89:9,17 90:1,12,18	203:25	160:7,24 161:15	32:13
90:24 91:9,10,21,25	legal	162:2,18 163:3,20,25	list
92:19 93:3 97:16,20	30:5 31:15 36:4	164:8,11,11,13,15,16	91:19 135:16 148:24
102:9,18,24 103:17	141:14	164:19,21,25 165:6,8	149:10,18 153:1,3
103:19 104:3,11,13	Leroy	165:9,10 173:5,11	157:22 160:2,14,19
111:18 114:6 119:23	193:22	174:1 176:24 178:13	194:10
124:11 130:24 131:7	let's	178:17,23 179:9	listed
145:21	18:20 32:19 33:4	181:3,5,19,21,23	29:13 84:9 113:10
large	41:12 64:22,23 78:22	182:2,7,9 184:16	160:4 194:16 196:17
43:24 171:7 206:7	80:3 82:4,4 83:22	185:8,15 186:25	listing

149:19 159:23,23	looked	188:23 193:2 216:6	68:6 79:12 83:6 87:2
lists	47:8,9 65:15,18 66:5	mammalian	87:4 88:13 93:5
34:14 82:15 86:10	66:18 97:14 175:22	123:1 165:20 166:1,7	94:10 98:18 100:9
125:24 149:3,5,5,7	177:11 188:4 192:19	166:21,25 167:1,7,9	101:13,15,23 102:1,3
149:14	looking	167:20,21 168:9	103:4 105:11 107:20
literally	51:2,3 53:5 84:15	manipulate	109:3 112:1,8 115:9
28:5	88:25,25 98:14	43:16	116:12 117:17 120:6
literature	103:24 125:3 136:4	manner	122:14 128:19
55:17 109:12 192:2,8	146:14 175:8 176:22	75:7 139:7	129:11 134:4 135:2
192:12,14 193:8,11	Looks	mapping	136:24 137:22 138:8
193:25 194:2	138:3	210:20	138:16 140:3 141:12
litigation	lore	mark	141:20 142:16
218:9	160:25	73:5 140:13 197:1	149:15 153:9 154:23
little	lost	203:3	154:25 155:4 158:9
6:21 26:5 31:16 36:2	54:22 124:2 169:10,12	marked	162:7 164:2 166:9
47:19 52:23 88:16	lot	2:5 7:15 9:22 73:6,9	168:21 170:16 171:5
89:2 102:8 119:2	21:5 31:15 47:21	140:16 197:3 203:4	173:7,14 176:25
131:20 145:11,22	101:19 122:6 161:1	211:18 217:12	180:21 181:6,12
146:23,23,24 148:1	lots	market	182:12 183:22 190:6
170:2	87:14	43:8,12	194:19 195:8,11,14
live	Lucier	marking	199:15 201:19
99:23	3:19 5:23,23	217:14	219:21,24 220:5
LLC	lunch	marks	McKnight
8:6	111:25 112:14	220:7	207:4
LLP	lymphocyte	mass	mean
3:13,18	194:6	167:25 168:7	15:16 18:18 24:6 31:8
located	L.L.C	master	34:17 39:19 42:14
126:17,25 136:15	1:12	175:23	55:2 64:16 67:10
long		match	78:20 88:9 101:23
27:18 39:7 74:18	M	119:10	118:11 122:3 136:25
82:25 95:17 111:21	M	material	143:6,25 146:8 152:7
115:4,15 116:2	3:19	26:21,25 27:3 186:21	154:14 159:11 167:3
188:21 208:6	machinery	materials	181:8 182:15 183:16
longer	99:15 120:21,23 121:6	26:17	218:16
18:15 137:15 165:10	121:8,11 204:25	matter	meaning
167:22 214:10	main	5:9 8:18	68:10 78:22 79:15
long-term	18:4,7,9 32:7,8 38:21	Mayer	147:2,5 166:12
209:5	75:21 135:17	3:13 6:1	means
look	making	McCORMICK	31:10 74:14 89:18
10:18 50:1 65:21	21:20 46:15 48:23	3:13 5:25,25 15:17	103:14 104:6 144:1
66:23,24 82:6 91:13	63:24 106:9,11	16:8 26:20 29:9 31:6	meant
96:4 127:8,14,15	119:22 121:18	31:23 33:6 35:25	14:24 15:10 55:5
129:13 138:2 155:15	146:20 158:1 159:16	40:22 41:9 45:22	118:24 119:4 150:11
176:20 193:16	169:16 170:18	46:6,9 56:12,14	160:20
204:16 210:18	172:20 177:5,24	61:20 66:8 67:21	mechanisms

107:7	106:3,16 136:20	193:9,16 194:1,8	molecules
Medarex	138:13 139:22,25	199:10	111:7 117:24 118:4
1:12 4:4 6:1,3 8:6	141:4 148:13 152:25	mindset	119:17,20 120:5,22
medically	153:6,16 154:1 157:2	215:6	121:13 130:5 132:1
209:14 218:20	157:17 158:21 159:2	mine	moment
MedImmune	160:7 173:17,18	193:21	10:4 57:21 85:8 217:9
71:19,21,23 72:3	190:16,22,25 192:21	minimum	monitor
meet	methodology	116:9	5:14
50:22 59:6	191:21	minute	monkey
meetings	methods	26:4 44:4 62:8 63:23	167:14
21:4	16:6,9,14 61:24 142:4	74:11 75:13 106:20	months
memorized	154:10 184:16 185:6	130:10 158:14	143:13
127:22	188:20 190:11,14	162:15	Moore
memory	MGG	minutes	65:25 66:17,18,20
21:19 179:6 204:15	2:20	101:24 105:5	morning
mental	mice	misconduct	5:7 6:18 28:9
56:7	181:9	29:21,25	mouse
mention	microbe	mislead	167:14 193:4
104:9 110:18 118:5	89:24	18:3 21:13 23:16	move
125:16,17 153:2	microbes	missing	132:24 140:6
154:5 198:15	214:13	185:17	moved
mentioned	microorganism	misstatement	112:4
15:9 20:12 32:15 48:6	44:13 78:10 80:16	29:8,11	moving
48:8 109:9 122:22	86:16 95:24 99:3	misunderstanding	55:8
150:8,9 156:25 186:1	111:14 113:16 115:7	103:25	Multi
189:7	115:17	mm-hmm	147:8
mentors	microorganisms	9:2 10:6 97:1 103:6	multimer
25:5	174:21	178:7 179:14 180:8	144:17,24,25 145:7,9
merely	microphone	modern	145:15,24 146:3,6
125:9	64:22	152:11	147:1,6,8,15,17
Merrill	middle	modified	multimeric
6:6	126:13 130:19 206:23	74:13	81:16,21 82:2,13,23
mess	215:12	modifies	98:7,15 118:7,9,11
115:23	million	23:2,2,3	118:14 144:20 145:2
messenger	199:11	modify	145:3,16,24 203:18
16:11	Milstein	44:2	204:6,12 207:7,20
met	25:6 151:11 193:3	molecular	multimers
14:4 65:6	Milstein's	2:20 42:19 50:10 77:1	145:8,12,19 146:22
metabolic	152:8	81:1 122:5 148:15	Multiper
99:4,14	mind	149:8,11 150:6	147:8
methionine	38:8 43:14 53:23 56:3	180:23	multiple
137:18,21,23	108:4 133:4,15,20	molecule	73:24 77:3 78:8,15,16
method	135:17 153:13	77:4 84:20 118:21	78:19 80:14,15 99:15
34:16 82:17 97:21,21	159:25 162:25 181:1	205:24 206:7,13	104:19 147:3 148:5
103:14 105:9,19	182:1,4 186:3 192:9	218:21	multiples

147:7,9,16,17	need	106:11	1:25
multiplicity	6:24 9:19 10:5 87:2	nobly	
75:24	99:15 105:24 115:12	72:16	0
multi-subunit	116:6,8,14,20 119:8	nonrecombinant	object
156:24	119:23 121:2,17,19	18:24 19:6 42:18 44:6	94:10 98:18 105:12
murine	121:19 130:25 131:9	44:14,16 52:8,16	183:22
108:17 180:5,10 181:4	139:22 140:9,11	53:1	objection
182:2,5,7,15	155:2 172:17	nonsense	15:17 16:8 26:20 29:9
murine-human	needed	18:13 115:22	31:6,23 33:6 35:25
180:14,18	6:25 54:3 159:15	nontoxic	40:22 41:9 45:22
mutagenesis	194:16	23:5	46:6 61:20 66:8
186:17	needs	non-chimeric	67:21 68:6 79:12
mutations	102:3	178:13 180:7 181:19	88:13 100:9 101:13
18:11	negatives	182:1,7	103:4 107:20 109:3
	183:1	non-coding	115:9 116:12 117:17
N	neither	130:3	120:6 122:14 128:19
name	207:2	non-contiguous	129:11 134:4 135:2
5:15 6:19 22:19	never	126:18 127:4,5,10,13	136:24 137:22 138:8
106:20 149:12 193:9	14:4 26:1 88:11	127:16,20 128:5,18	138:16 140:3 141:12
194:1	132:25 185:19 216:5	130:2 131:1,10,12	141:20 142:16
names	new	132:15	149:15 153:9 158:9
21:17	3:14,14,20,20 18:12	non-obviousness	162:7 164:2 166:9
narrow	23:13 40:15 55:14	46:22	168:21 170:16 171:5
53:12	56:6 116:19 120:25	normal	173:7,14 180:21
native	121:5 140:6	26:16	181:6,12 182:13
205:11	nif	normally	190:6 194:19 195:8
natural	210:20	81:23	199:15 201:19
81:2 146:16	nit	note	obscure
naturally	209:8	12:19 71:10 147:23	69:24
201:3	nitrogen	notice	observed
nature	89:19 99:5,13,18,20	67:20 149:25 171:10	33:14
43:7	99:22 100:2 191:5	noticed	obtain
Neal	208:11,14,15,16,18	67:22	26:9 77:11
4:3 6:2	208:24 209:5,16	November	obtained
near	210:4 214:4	217:23	77:16 156:11
142:25	nitrogenase	nucleotides	obvious
nearby	2:22 207:19,23,24	167:23	38:21 43:23 60:13,16
88:18	209:8	nuisance	60:21,25 61:6 63:20
necessarily	nitrogen-fixation	170:24	68:21 69:5 70:7
35:5,9 130:1 157:5,15	208:22 209:1,3,6	number	196:14 210:12
158:15,22 161:23	210:14 212:23	9:14 22:11 43:24	212:17 215:4 219:18
179:18 200:16	213:20	75:18 122:1 144:19	obviously
209:20	nitrogen-fixing	145:24 199:9 210:3	199:18
necessary	$208: 3 \text { 212:2,4 214:13 }$	214:20	obviousness
131:15 191:18	Nobel	NY-019567	32:23 36:25 37:5 38:8

38:17 42:8 43:13,21	101:25 110:6 111:24	90:20 106:2,14,25	91:15,16 96:2 99:22
43:23 44:24 45:10	119:12 124:4 126:2,5	115:4,15 125:20	100:1 103:2 167:17
46:15 47:11 48:2,4	132:9 138:25 140:6,8	141:23 152:22	208:15
52:24 53:8 61:19,25	140:13 155:4 160:22	159:21 160:2 161:13	organisms
174:6,9	171:13 179:19	161:24 162:5,16	87:8
obviousness-type	217:16 219:24	163:17 175:18 177:3	organization
62:9,14 63:21 70:20	old	185:5	93:13
175:15,20 176:2,10	161:5 177:11	opinions	origin
176:16 177:7 183:11	oligonucleotides	8:17 11:11 57:1,7,8	16:22 210:16
183:21 184:6	188:23	62:9 63:4,24 64:21	original
obvious-type	oligonucleotide-dire...	65:4 72:25	27:20 96:12 135:7
177:1	186:17	opposed	originally
occasion	once	52:7,16 119:17 141:9	23:18,19
26:24	27:1 54:7 67:24 88:21	153:15 159:24 167:9	Osgood
ODP	178:12 181:18	opposite	4:3 5:15
70:7,18,19 175:13	ones	206:8	outlines
177:21	77:2	optimization	66:15
offering	ongoing	194:21	outside
11:11	146:13	optimize	30:24 53:11 107:20
offhand	opened	143:20,25 144:1,12	122:14,17 150:14
137:9 138:1 178:3	76:1	option	162:8 163:10 164:20
199:6 204:15 214:1	operon	118:22,24,25 180:9	182:14 192:21
219:4	2:17 76:21,22 77:2,7	187:21	overall
Office	77:11,16,19 78:1,3,4	order	92:21 143:19 208:23
28:11 66:13 176:18	79:6 81:22 122:7	10:8,10 24:7 30:21	overcome
oh	124:13,21,22 128:6	116:7 129:22 132:10	161:14 190:23,24
18:22 19:21 21:8,12	128:10 145:20	172:17 199:18 211:5	overcomes
23:18 41:12 44:10	197:18,19 200:12,13	ordinarily	162:23
51:22 52:18 53:10	operons	157:3 194:11	overexpress
58:19 59:5 67:13,13	76:17 77:9 114:3	ordinary	22:17
71:24 77:23,23 83:3	145:8,20	35:7 38:22 39:4,12	overlooked
92:10,12 102:13,17	opine	40:2,11 42:1 43:6	206:3
115:8 119:19 121:24	9:7 58:16 59:3 69:21	50:6,9,20 52:6,13	Oxford
128:6 132:7,9 153:22	98:2 194:10	53:5,7,24 55:13 56:5	147:4
157:22,25 159:7	opined	106:17 139:5 148:2	000
166:3 169:10 183:7	28:24	153:14,25 163:23	1:3 2:25 4:5 5:4 6:9,15
185:17 189:15	opining	173:2,10 175:5	112:15 220:13
190:15 192:14	10:13 61:5,18 62:13	178:21 181:22 182:6	
193:12 194:14	63:4,8,16,19 64:12	184:23 191:14 192:3	P
198:17 213:14	64:15	216:21	page
219:24	opinion	organic	2:2,6 7:24 8:1,2,3
okay	8:15 25:10,11,14 34:2	169:15 188:22 208:24	11:18 14:6 27:7
10:3 12:17 36:17,22	47:16 51:7 57:17	organism	28:15,18 36:23 41:20
59:2,12 60:3 73:11	59:21 63:11,15 66:11	44:12 85:12 86:22	50:2,5 56:22,25 57:4
82:15 83:7 85:6 92:7	68:18 70:5 80:13	87:24,25 88:6 89:14	57:10 58:9 60:10

62:5,19,19 63:3 65:9	81:11 93:22 96:1	117:20 139:23 140:1	191:3,25 214:25
65:10,11,22 66:24	104:4 126:13 129:18	217:1	215:4 217:5,15,18,21
70:23 73:4,18 81:9	132:8 140:25 141:1	parts	217:24 218:7,11
83:24 109:23 112:12	142:2 143:18 144:14	51:22 65:21 107:4	219:12,16
126:1,4 129:19	144:16 145:23	134:10	patentee
140:22 141:1 143:16	147:21 149:18	party	46:21
147:19 165:11,12	155:15,18 156:21	1:14 25:18,24	patenting
171:12 174:3,5,11	157:20 168:12	passage	62:15 63:21 70:20
175:10,11 178:6,8	171:14,16 174:11	89:5 102:11 127:21	175:16,20 176:2,17
184:11 191:11	184:14 191:11 194:9	passages	177:1,5,7,25 178:2
195:10,22,25 202:5	195:25 196:17	95:19 97:2,3,25 98:13	183:11,21 184:7
203:12 205:18	197:14 202:8,19	passed	patents
206:19 208:9 211:12	203:14 204:16	65:20	8:19 9:20 10:3 30:2
214:16,18 215:7	205:18 206:21	passes	32:1 49:15 51:12
217:3	208:11 210:18	214:6	59:4 60:2 64:14 65:6
pages	211:14 215:12 217:5	patent	67:7,19 68:5,19 70:6
191:9 210:4 214:19	217:19,20	2:10,12,13,14,15,24	71:11 72:7,21 73:1
paid	paragraphs	7:10,11,12 8:22,22	111:18 122:8 184:22
94:9,12,17,24	210:15	8:25 9:7,8 10:1,13	191:24 196:5 210:7
Palo	parlance	12:14 27:10,13,16,19	210:11 212:17
3:5 5:1,17	165:4,6	27:25 28:2,7,12,25	214:20,23 215:2
paper	part	30:12 31:1 32:4,5,19	219:14,18
32:21 36:6,7,9 69:24	10:20 32:4,7,7,8 68:8	32:21 35:13,23 37:15	patent's
135:19 137:24	81:12 90:7 91:7	38:3,12,15 42:4	37:8,14
196:19 197:2,10,13	94:21,21 105:21	47:25 49:10,22,23	pathway
197:16 198:15,15	117:19 137:7,12	57:11,14,18,19 58:10	99:14
200:3,6 211:15,23	143:18 155:22	58:14 59:1,24,24	patients
212:1,20 213:6,24	160:22 167:25	60:6,6,21 61:7 62:6	47:23 156:12 161:2
214:3	180:10,10 213:13	62:21,24 64:11 65:24	Paul
papers	218:23	65:25,25 66:4,7,7,12	3:18 5:20,23
18:5 107:4 135:21,23	particular	66:13,17,18,21 67:4	Pauza
193:22,23 194:4	17:11,20 22:19 34:7	67:5,14 68:21,22	2:17 196:19 197:2,13
196:1,17,18,22	38:6 59:13 68:10	69:11,11,13,14,16,17	198:6 199:23,25
209:17 210:3,6,10	77:24 86:16 89:5	69:18 70:8,9,10	200:3,6
213:3,8	90:1 95:23 99:2	72:13 73:12,15,19,22	pay
paragraph	103:19 104:13	74:7 78:7 83:18,19	25:13 47:24
8:16 10:18,20 14:11	120:20 121:21	91:7 92:22 93:2 95:3	pBR322
17:1 27:8,8 34:25	122:20 133:4,7,14	104:22 110:21	20:16
35:1 37:3 39:2 41:22	137:10 144:11 173:1	113:17 133:14	peak
46:14 47:14 50:3,7	177:15 180:3 181:1	140:14,15 141:5,24	151:21,22,22,22,23,24
51:6 53:17 54:11	182:1,4 186:2 193:15	142:3,14 145:5	151:25 152:1
55:19 65:22,23 66:25	197:23 207:25	147:23 148:8 160:6	peaks
67:2 68:16 70:4	parties	160:10 163:3 164:20	151:20,21,21,25 152:4
73:18 74:21 76:14	221:19,22	164:25 174:7 175:12	152:6,12
77:15,21 78:5,6	partner	176:6,18 190:19	penalty

Merrill Corporation - New York
1-800-325-3376
Page 82
www.merrillcorp.com/law

220:14	56:4	137:11 186:18	12:11
pending	pertinent	190:21,21 194:22	poly
112:1,7	37:4 38:19	221:9	90:14
people	phage	places	polymerase
36:8 43:25 55:7	173:20	76:8	142:24
106:12 108:22	phase	plaintiff	polypeptide
198:13 212:24	136:18	1:6 3:12 29:19	66:14,16 78:23 81:7,7
peptide	Phil	plants	81:14 82:1,13 97:10
137:15	193:18	214:11,12,14	119:11 121:2 137:11
percentage	phone	plasmid	166:1,7 172:7,14,22
199:4	13:17 24:8,10 26:25	15:20 19:22 20:4,7,17	187:19
Perez-Melgosa	27:2	20:20 22:10 27:4	polypeptides
29:19	phonetic	74:13 75:6,7 76:1	78:9,15,16,21 79:4,7
perfectly	13:9	116:25 124:6 125:11	79:10 80:15 81:20
119:10	phoso	136:8,13,13 142:18	91:16 114:16 137:6
performance	22:21	146:18 157:4,19	148:5 154:8 161:18
11:20,22 12:2	phosphate	171:22 191:7 192:24	165:20
period	23:4	plasmids	poorly
17:23 18:6,8,9 107:17	phosphotransferase	20:23 146:15 170:9	216:10
108:12 221:17	21:18 22:18,22,24	please	Porter
perjury	26:8,10	5:18 6:7,24 12:18	151:12,17
220:14	photosynthesis	51:19,20 52:9 54:22	portion
perplexed	89:19 99:5,13 191:6	63:7 65:20 80:21	62:5 76:15 77:20 78:6
36:3	phrase	86:4 89:16 95:9	113:21,21 124:25
person	47:13 74:6 75:1	131:4 132:4 153:22	180:19 204:22
12:5 27:5 35:7 38:22	phrased	159:7 202:16	portions
39:4,11 40:2,10,19	216:10	pleasing	65:15 79:9 81:25
42:1 50:5,9,20 52:5	phrases	169:19	82:11 113:9 126:10
52:13,19 53:4,10,24	94:7	plurality	positive
55:13 56:4 106:17	phylum	145:7,13,19 171:23	182:25
139:5 148:2 153:14	211:5	PNAS	possibility
153:24 163:23 164:4	physically	197:2,10,13	82:21 117:1 170:10
164:7 173:2,10 175:5	132:24	pneumonia	possible
175:7 178:20 181:21	Ph.D	211:2	16:21 72:17 106:2,5,6
182:6 184:23 191:14	2:7,9,19 7:7,9 24:14	pneumoniae	106:24 107:3 134:22
221:8	24:17 50:10,16,24	210:21	185:24 187:3,5,8,20
personal	piece	point	post-doc
14:9 163:16	30:16,25 131:14,20	6:23 9:19 10:4 12:17	185:23 212:25
personally	177:9	15:6 36:14 56:11	post-doctoral
3:7 143:4 190:18	pieces	70:19 73:5 95:13	50:12
persons	34:3 106:7,8 188:24	104:17 106:15,19	potential
51:8 53:6 216:21	192:16 193:8	108:4,15 132:4	44:3 139:20 161:12
pertaining	place	180:22 182:5 185:13	potentially
$40: 13$ pertains	$\begin{gathered} 5: 16 \text { 101:18 103:24 } \\ 121: 22127: 18 \end{gathered}$	$\begin{aligned} & \text { 195:12 198:13 } \\ & \text { pointed } \end{aligned}$	40:14 42:20 pounding

Merrill Corporation - New York
Page 83

131:3	previously	48:25 49:1 84:19	153:8 158:6 168:13
power	10:12 72:6	85:11 86:2,5,7 90:25	169:6 172:6,14
91:7	Principles	91:1,3,5,10,14 92:19	174:19 175:1 215:16
practical	30:5	92:21,22,24 93:1	217:6
86:15 95:23 99:1	prior	97:4 168:13 216:14	products
practice	28:16 29:3,13 30:16	216:18	48:9 96:6,8 103:15
74:14	30:25 31:4,12,20	processes	professor
precedent	33:14,15,19 34:3	89:18 99:10	14:13 17:3 21:1 161:5
31:15 161:1	35:5,6,11 37:4 38:18	produce	prohibition
precise	43:5 53:19 58:2	43:16 86:2,6 91:16	159:18
119:8,23,24 122:1	59:13,15,18 61:3,6	97:22 99:21 105:9,19	project
predetermined	69:11 71:3 87:19	106:3,18 136:22	14:12,16 16:23 17:2,5
193:3	100:17 123:12	138:14 159:6	21:22 99:25 123:5
predicate	133:24 134:16,17,22	produced	146:13 208:20 209:7
105:8,18	135:13 143:5,14	87:13 92:15 96:11,22	209:11 213:17 214:6
preexisting	144:5 154:2 166:16	103:23 111:6 117:23	projects
130:17	184:22 191:23 196:6	118:3,10 119:16,16	18:5
prefer	204:14 218:8	119:19 120:5,22	prokaryotes
9:13	priority	121:13 125:25 130:5	76:24
prepare	56:2 100:20	131:2,11,16,25 137:4	prokaryotic
19:23	Prize	137:6 148:12 152:25	40:18 44:19,22 45:5,9
prepared	106:11	153:6 156:19 157:1	45:16,17,20 46:3,12
7:21 20:16,19 71:18	pro	159:1 190:10,14,16	48:18 122:10 209:19
83:16 84:4 218:8	45:17	203:19 204:6,13	promised
preparing	probably	produces	101:21
103:14 104:6 142:5	22:15 154:8 159:16	88:11	promoter
presence	210:22	producing	77:3,5 88:17 114:24
35:10	problem	16:10 66:13 84:19	115:5,12,16 116:3,10
present	37:13,17 38:2,7,11,13	85:11 87:11 90:25	116:16,21 121:19,20
4:3 35:6 99:15 133:20	39:5,13 40:19 43:7	91:11 92:20 96:19	122:24 123:14,15
134:1 172:2	54:6 101:17,17 117:8	97:5 136:21 139:15	142:14,21,23,25
Presented	117:10,11 133:17	153:15 157:17 158:7	143:2,11 144:9
68:14	158:12 162:23 175:6	158:21 159:10	171:21 172:25
presumed	188:25 190:24	160:16 161:12,14	173:25
60:2	192:17,20 193:7	162:17,24 175:6	promoters
pretentious	problems	product	116:20 121:23,25
169:17	37:7,22 38:24 53:15	48:11 87:15 89:21	122:9,12,16,18,19
pretty	53:18,19,22,25	124:18 129:14	123:2,7,9 142:6
111:21	139:20 190:20 191:4	154:18 215:24 216:1	143:5,6,7,7,8 173:4,9
prevailing	193:1	216:13,17	173:21,22
215:6	proceeded	production	prompted
prevented	164:7	66:15 75:2,21 86:9	42:1
187:19	PROCEEDINGS	89:7,11 99:6,14	pronounce
previous	5:5	118:20 124:17 125:8	17:9
78:17 157:20 207:3	process	125:15,22 143:20	proper

194:17 properties	217:2 proteins	$\begin{aligned} & \text { provisional } \\ & 27: 20 \end{aligned}$	$\begin{aligned} & \text { p-h-o-s-p-h-o-t-r-a-... } \\ & 22: 23 \end{aligned}$
2:22 45:19 125:14	22:14 37:18,20 38:1,5	pSOM1	p.m
142:18	40:14,18,25 41:1,2,4	136:13	113:1 220:12
property	41:4 42:17,18,23	PTO	
88:15	43:1 44:7,11,12,14	65:23 67:6,12,13,17	Q
prosecuting	44:19,22 45:6,9,16	68:3,9 175:25 177:6	qualifying
27:9,18	45:18,19 51:16 52:4	177:13,18 178:5	206:4
prosecution	52:8,17,19 53:1,7,9	179:8	quantify
28:13 65:12,16,18	53:13,16 54:7 61:22	publications	88:25,25
67:4,6,18 68:4	82:16,18,23 90:15	174:17	quarters
protein	91:6,17 92:14,25	published	143:12
17:11,20 18:14,16,18	100:13 101:19,20	189:17 193:20 196:20	question
18:22 19:1,9,20,24	103:22 118:8,9,11,14	196:24,25	8:24 18:19 31:1,18,21
20:1,9,20 21:16,23	119:15 125:24	pulled	33:8 34:18 39:7,10
22:1,4,19,25 23:1,6,8	134:17,19,21 135:12	94:8	40:4,7 44:23 52:1,12
23:14,17 34:15 38:6	135:14,15,16 143:21	pure	54:22 57:6 58:18
39:20,21,22 40:1,9	144:20 145:10,16	52:21	59:10 68:13 69:3,6,7
40:15 42:18 43:15	147:3 148:25 156:10	purely	69:19 87:5 98:20
44:17 46:11 52:21	156:24 161:2 166:18	169:15	103:25 106:6 112:1,7
53:14 54:3,4 55:7	168:11 174:19 175:1	purpose	113:25 129:7 135:7
79:22 80:1,2,3 81:4	190:20 204:10,13,19	38:21 59:16	139:3 140:25 147:12
81:16,21 82:2,14	204:20 205:5,6,8,10	purposes	147:14 165:16
88:11 90:21 98:7,15	205:22 206:10,12	45:10 52:1,5,12 53:9	181:25 183:8,10
99:7,21 100:5 114:13	208:3,23,25 210:1	106:14 141:17	184:2 190:17 198:3
118:23 119:3,6,8,18	213:7,10,19,23	175:18 199:13	216:8 218:25
119:21,23 120:17	215:23 216:12	212:16	questions
130:11,15 131:17,19	218:13,14,15,16,17	pursuant	183:5 220:4
131:20 133:10,13,25	218:19,20	3:1	quick
134:24 135:5 136:2	protein's	put	83:5,7
136:19,21,23 138:7	19:4	7:5 11:2 13:22 23:12	quite
138:13 139:12,19	protein-level	28:10 61:2 98:9,16	69:8,8 72:16 82:25
144:4,24 145:2,3	105:3	98:23 100:7,12 101:4	173:21
146:3 147:11,18	proteolytic	146:8,11 162:18	quote
149:19 152:24 157:1	151:18	163:5,21 167:14	12:13 73:24 76:14
161:9 166:21 167:7,9	protocol	169:24 170:9 177:16	77:15 111:18 145:7,9
167:10,15 188:3	215:18	186:19 187:17,22	166:14
189:15 192:25 196:1	proven	192:24 208:24	quoted
199:24 200:2 201:3,8	134:7	213:11 214:11	90:9 102:24 114:1
202:9 203:19 204:6	provided	putting	124:12 147:4
204:21,23 205:12	70:1 221:16	15:19 89:22,23 96:22	R
207:7,21,22,24 208:1	provides	162:22 163:8,13	
208:18 209:2,22,23	103:14	170:8,25 213:18	rabbit 167:14 180:5
215:16,18,19,19	providing	PyrB-pyrI	Rachel
216:3,5,7,15,23	8:17	2:17 197:17,19 200:13	$1: 243: 66: 5 ~ 221: 2,25$

raised	93:10 170:1	recognized	113:3 146:20 155:9
46:20 47:1 176:11	really	148:9,14	155:13 195:17,19
178:1	26:14 31:7 47:3 48:4	recollection	197:5,9 219:25 220:2
ran	53:13 76:25 82:20	177:17 198:21	220:10 221:11
151:24 152:5	88:15 89:21 108:15	recombinant	recover
range	109:14 116:8 167:2	18:19,20,21 19:8,11	117:14
107:17	167:12 168:11,22	19:13,19,23 20:8,14	recovery
rapidity	169:14 170:11	20:15,20,22 21:16,23	209:2
54:13 55:20	176:20 192:19	22:3,13 34:15 37:18	red
rapidly	rearrangement	37:18,19,20,25 38:4	167:4
55:23	107:7 194:4	38:14 39:6,14 40:3	reduced
ratio	rearrangements	40:12,20 42:16 43:1	221:10
194:17,24 195:5	193:5	44:14,15 51:15 52:4	redundant
reach	reason	52:7,15,19 53:7,9,14	149:17
177:3	41:24 43:4 131:21	53:16 55:6,7 61:22	refer
reaction	139:4 153:5 158:14	66:14 91:6 125:11	8:11 9:11,20 17:19
137:10 138:9 169:23	reasonably	141:4 143:21 165:18	24:21 27:8 53:17
170:1	38:23	175:6 184:24 203:20	55:19 57:11 65:23
reactions	reasons	204:7,13 207:6,13	71:3 74:9 79:3,10
96:9	133:9 141:24 156:1	210:1 212:1 213:7,9	91:1,3,10 95:20
read	rebuttal	213:18 215:16	97:17,20 98:2,3
11:25 25:14 39:7,9	2:87:8 11:2 183:6,9,9	216:13 218:12	114:6 124:8 144:16
40:4,6 52:9,11 54:22	183:10,13 184:11	Recombinantly	144:24,25 155:18
69:8,24 71:7,12,13	195:23 202:5 208:1,8	181:10,11	164:10,16 165:6
71:13 74:11 75:13	217:22	recombination	195:25 210:3,20
87:2 105:11 118:20	recall	146:14,16,17	211:24 217:5
127:15 135:21,23	14:5 23:20 47:3,9 64:1	recombine	reference
138:20 179:5,24	65:21 66:19 72:23,24	134:25 146:19,21	15:16 31:4,12,20 35:6
183:8 192:10 213:2	80:11 87:21 100:25	158:3	37:4 38:18,19 42:11
reader	109:6 118:18 137:8	recombined	71:22 74:3,4,22
94:22	138:1 150:13 169:23	134:19,21 135:6	75:11 87:11 92:9
readily	177:16,22 214:1	reconcile	95:5,14 96:15 100:15
96:10	218:5,10	160:15	100:16 103:9 104:14
reading	recalling	reconstitute	104:21 114:19
72:23 79:14,18 96:7	109:18	139:8	123:23 124:1,5 125:1
115:23 119:25 136:8	received	reconstituted	127:24,25 133:4,7,15
157:21,21,25 163:2	24:14 28:9 89:25	216:14	145:15 147:25
163:19,20 190:19	recess	reconstitution	155:19 193:15
191:25	41:16 56:18 64:25	159:4	198:19 211:14
reads	83:11 112:14 155:10	record	214:19 215:9
78:6	195:18 220:1	7:5 11:24 12:20 28:5	referenced
reagents	recited	39:9 40:6 41:13,15	67:23
156:8	191:23	41:17 52:11 56:17,19	references
real	recognize	64:23,24 65:1 68:8	58:3 69:5,9 78:17
3:4,5 5:17 40:25 41:3	7:20 35:9	83:10,14 112:13	125:20 141:19

Merrill Corporation - New York
1-800-325-3376
Page 86
www.merrillcorp.com/law

144:19,20 177:15,19	76:22 142:6,8 171:25	214:12	113:7,15 122:15
196:3,12,12 197:23	172:3,12,16,19	relying	124:12 126:1 130:24
referred	191:19	35:22 79:25 133:21,22	131:7,21 140:21
8:25 17:12 65:12	reintroduced	145:14 210:6,10	143:16 145:23 146:9
71:18 73:15 96:18	18:12	212:15 214:23 215:2	146:11 155:16 162:8
102:10 197:13	rejected	219:12,16	162:11 163:11
referring	65:24 176:18	remember	171:12 182:14 183:6
8:13 9:12 32:13 71:17	rejection	12:12,14 53:2 66:22	183:9,10,13 184:8,9
90:18 91:21 103:17	67:6,11	119:7 127:21 168:25	184:12 195:23
124:12 133:5 137:17	relate	169:5,7 176:21	198:16 202:6 203:8
145:1,16 146:3,6	29:16	183:23 199:17	203:10 208:2,8 210:4
148:20 158:24	related	REMEMBERED	210:15 212:22
163:15 171:18	25:9 32:3 50:10	3:1	214:16 217:22 218:8
184:14 193:10 194:1	109:18 199:12 211:3	reminded	reported
215:9	211:7,8,10 212:8,10	20:13	1:24 207:5,12
refers	212:11,13 218:3	removal	reporter
62:5 76:15 78:17	219:5 221:21	171:24	3:7 6:5,7 7:16 39:9
87:12,15 89:10,20	relatedness	rendered	40:6 52:11 73:7
92:21 95:25 147:5,7	39:17,19,23	69:5	140:17 197:4 203:5
147:9,15,17	relates	rendering	211:19 217:13 221:1
refill	30:1,7 42:16 142:3	23:4	221:3,16
41:13	relating	repeat	reports
reflecting	40:17 217:6	63:7 131:4 202:16	11:9,10,16 12:25
202:25	relation	repeated	59:22 60:8 61:14
regarding	30:3 178:4	145:17 146:25	96:18 108:25 109:7,9
35:3 39:25 40:8 63:11	relative	repeatedly	212:1
64:21 65:5 94:16	192:11	19:23 73:23	represent
95:3 123:18 176:9	relatively	rephrase	5:19 6:20
193:10 194:2 202:22	132:19	54:25 176:13 216:8	represented
regardless	release	replicable	168:4
195:5	54:5	15:20	repressor
region	relevant	Replication	77:4
106:13,19,21,22,23	40:14,18 42:2,11,14	124:6	requested
107:6 110:10 116:18	42:15,20,22,25 44:6	report	221:15,15
170:22 171:21 172:2	44:19,25 45:3,6,9	2:7,8,19 7:6,8,21,25	require
172:11,22 182:16,16	46:3 53:1 54:6	8:4,16 10:18,22 11:2	11:19 12:2 99:11
182:24 193:4,16,22	reliance	11:3,17 12:12,22	100:6
193:24 194:5	137:9	13:3,6,8,11, 13,22,25	required
regions	relied	14:6 17:1 27:7,8	120:21 121:6,12
183:2 193:14	34:11	28:15 30:5 33:22	requirement
regulated	relies	41:20 46:14 47:6	59:6 64:5,6 65:6
19:4	132:16	56:23 61:16 68:13	121:14
regulation	reluctant	71:4,7,12,13,14,18	requirements
200:1,4	31:16	72:2,3 73:16 83:17	30:21
regulatory	rely	84:14 107:21,24	requires

Merrill Corporation - New York
1-800-325-3376
Page 87
www.merrillcorp.com/law

12:4 100:11	8:5 10:16 71:16	61:21 62:4,11,25	19:18 123:4
reread	retrospect	63:2 71:9 72:1,4	route
29:4	22:15	77:8,17,18 84:3 85:4	191:24
research	return	86:10 87:3 90:13,19	row
14:12 122:5 174:18	36:14	91:2 92:1,12 93:7	145:18
192:20	reverse	97:15 100:18,24	royalties
researcher	16:12,18	102:5,7 105:7,25	47:24 48:6
156:2	review	106:7 107:22 109:5	rRNA
reserved	221:14	110:2,16,17 111:19	126:20
183:17	reviewed	113:23 120:12,23	rule
resolution	12:22,25 13:6,11,25	125:22 129:6 131:24	131:18
176:4	29:2 47:6 72:3	137:11,19 139:24	ruled
resources	reviewing	143:3,15 144:13	75:19
144:3	138:24	146:1 151:1 153:1	run
respect	Rhizobium	158:18,24 159:8	151:19 188:25
57:16 61:2 62:10,17	2:23 212:4,6,8,11	162:20 163:16	runaway
63:14 94:6 118:7	213:15	166:23 170:6 171:19	22:10 27:4
137:17 162:24 167:6	ribosomal	179:12,17,21,24	S
176:11,18 177:5,24	125:8	183:17 184:5,10	S
178:1 179:20 182:23	ribosome	186:18 188:2 189:18	Salmonella
respond	120:25 121:2,4,5,16	189:21 196:2,6,10,15	197:24 198:2,14,22,24
10:22 183:17,18	170:22 172:23	198:18,25 199:3	199:5,13,19,21
response	ribosomes	200:10 201:5 203:2	200:24 201:1,4,7,13
28:10 183:19	121:7	204:2 208:4 210:17	201:16,17,21,23
responses	Richard	210:22 219:1,15	202:1,4 211:9,11
184:5	3:13 5:25	rival	212:12,13
restart	rid	169:9	saw
170:23 172:23	139:14,20 216:3	rmccormick@maye...	32:1 33:19
rested	Rifkind	3:15	saying
176:22	3:18 5:21	RNA	39:25 40:7 59:7 90:20
restrict	Riggs	16:11 94:1 125:8	119:19 149:20
120:10	32:21 60:14,18 61:9	126:20 142:23	157:16 158:15,20
restriction	61:10,17 62:2 68:23	road	says
74:15 75:3,22 119:9	69:17,18,23,23 122:7	183:15,16	8:4 11:18 25:6 37:3
120:10 171:23	165:14,17 166:16,20	Robert	70:4 95:7 120:1
186:18,19 191:7	167:5 168:16,25	123:6,6	125:22 145:18
192:23	169:24 174:13,16,25	Rodney	149:25 153:3,10
result	right	151:12	163:3,20 180:7
168:20 169:19 172:4	8:23 11:6 12:8 15:8	roof	Schachman's
179:7 213:24	19:7 20:6,22 24:11	161:8 196:22	26:14
resulted	24:13,15 25:4,25	room	school
117:15	29:1 33:1,25 34:18	3:5 128:7	19:11 123:6
results	34:22 36:2,13,20	roots	scientific
46:2 93:25	44:8,20 48:13 51:25	163:1	29:21 36:5 48:5
retained	58:5 59:5,8,8,20 61:1	rotation	163:17 192:2,8,12

193:6,11 194:2	75:9 76:12,18 77:22	90:14 98:25 102:16	90:15
Scientifically	77:23 78:12,22 81:17	102:18 110:7 113:25	served
141:13	85:13 86:19 91:24	165:17 192:9 193:10	10:12
scientists	92:8,12 95:22 97:24	194:2 202:12 206:23	SESSION
165:18 166:1,17 167:6	98:17 101:16 102:16	215:13	113:1
scope	102:17 103:10	separate	set
107:21 122:14 162:8	110:12 111:11	32:3 77:3 78:9,15,16	10:3 42:15 50:22 77:8
182:14	113:19 124:19	78:20,22,23 80:15	85:7 126:7 183:4
se	125:15 126:6,21	81:6,14,20 82:1,12	194:11 208:5 216:22
89:22 193:13	130:8 131:3 132:3	97:23 110:19 111:6	setting
sec	138:9 139:10,15,20	117:24 118:3,21	83:17 84:4 126:9
86:4 89:16 91:13	140:22 141:6 142:11	119:17,20 120:5,22	share
192:10	143:23 148:18,24	121:13 129:23 130:5	26:16
second	157:10,22 162:23	132:1,10 133:3 137:5	shared
11:2 14:6 29:13 41:13	163:8,13 165:21	141:10 161:17 168:6	21:5
64:23 110:22 111:2,9	172:8 174:22 176:3	168:17,18 169:25	Sheraton
120:25 121:1,5,6,16	178:9 179:2 180:3	172:6,13 218:5	3:4
128:12 129:5 152:16	183:3,9 192:6 194:13	separated	shifted
166:5	198:11,16 199:16	124:23 129:5 130:2	93:20 108:13,16
secondary	203:21 205:2,13,14	131:13,19,22	short
46:19 47:1,12	205:25 207:10	separately	137:15 153:2 156:22
second-year	211:16,25 215:21	137:2 158:3 159:10	shorthand
185:23	217:24	separating	3:7 70:19 221:2,8
section	seeing	128:11	shortly
14:8 28:16 29:3 30:4,7	77:18 218:10	September	92:2,2 219:23
56:25 57:7 62:20	seen	19:16	short-term
65:11 68:13 84:1	95:5 182:7 203:10	sequence	214:9
85:16 86:21 89:9	segment	110:24 111:2 119:11	showed
90:20 92:3 93:2,4,12	74:14	122:3 130:4 137:8	167:11
93:14,17 94:20 97:14	segments	143:22 188:5	showing
103:13 124:1,5,11	76:23	sequenced	166:12 194:4
140:22 165:14 174:5	select	189:4	shows
174:9	173:3	sequences	81:19 133:7
sections	selected	77:6 107:12 111:9,16	sic
94:7,8,16	173:11	113:18 114:25 115:6	91:7 109:19 204:4
see	self-education	116:3 119:9 120:10	215:17
8:7,20 9:5 10:23 12:17	55:18	142:8 172:16,19	side
27:11 28:17,22 30:18	sells	189:17 199:20	18:6
34:25 35:15 37:11	47:22	sequencing	sig
39:1 42:5,12 43:10	sense	188:1,3 189:15	74:10,10 130:6
46:23 53:20 54:16	7:1 31:14 43:9 83:6	series	signal
55:21 57:2 64:16	133:22 134:6,11	93:8 99:12	77:5
65:13 66:1 67:8	145:18 192:5	serious	signals
68:25 70:11 71:1,5	sentence	106:9,11	142:7 171:25 172:4,12
71:20 73:13 74:1	11:25 69:2 86:14	serum	172:15,18 201:22,25

Merrill Corporation - New York
1-800-325-3376
Page 89

202:4	172:23 186:18	170:19 171:2,3	47:12
Signature	sites	SmithKline	space
220:20	115:1 126:17 127:1	217:25 218:6	132:21 133:1
significance	171:24	soil	speaking
165:25 166:3,24 167:7	sitting	214:13	29:17 49:18 141:13
174:24 175:3 180:17	11:14 12:10 28:1 29:6	solutions	speaks
201:12	127:18 183:19	53:19	93:5
significant	situations	solve	special
166:6,10 168:5,20,22	80:6	37:7 38:24 39:5,13	114:14 167:2
202:14,25 218:21	six	solved	species
Silverstein	143:13	43:8 191:4	201:11 219:6
13:4	size	solving	specific
similar	146:23 202:8,13,18,22	192:20	70:13 92:22 95:18
23:3 41:8 139:7	205:23 206:12	somatostatin	103:1,20 104:11
141:19,21,24 146:5	Skerra	93:11,20 135:18,23,24	109:6 129:16 130:13
177:25 181:4 196:20	2:19 13:13,23 203:8	136:1,5,7,12,15,21	137:11 147:2,5
similarity	203:16 204:4,18	137:2,7,8,20 138:7	150:15 165:1 167:5
202:4	205:4,9,21 206:9	138:13 139:7 140:1	183:3,10 193:8
simpler	207:1	somewhat	198:19 216:25 218:4
156:5	skill	6:22 33:21	218:24
simply	35:8 38:22 39:4,12	soon	specifically
80:4	40:2,11 42:2 43:6	83:2	36:15 63:24 69:4 91:1
single	50:6,9,20 52:6,14	sophistication	91:11 127:9 133:16
30:16 31:4,12,20 35:1	53:5,7,24 55:13 56:5	54:12,19,21 55:2	174:21
74:9,10,17 75:12	106:17 139:5 148:2	sor	specification
76:2,8,9,12 77:11,17	153:14,25 158:22	149:24	93:15 94:13,24
77:19,25 78:10 80:16	163:23 173:3,10	sorry	specifications
84:25 95:21,24 96:3	175:5 178:21 181:22	22:18 25:6 32:10	192:1
96:16 97:9,17 98:2,3	182:6 184:23 191:14	45:14 59:9 63:6	specificity
98:5,10 99:25 100:8	194:11 216:21	67:24 70:22 75:13	193:3
100:12 101:5,12	skilled	93:12 96:5 102:13,21	specify
111:7 130:6 132:1	12:5 53:11 157:3,24	112:5 127:22 128:20	98:14,15 118:8
178:16,20 179:1	164:4 194:11	131:3 138:19 147:8	specifying
184:15 187:6,24	skills	149:24 150:1 176:12	86:17 99:3
207:8,14	51:5	202:16 209:25	speculate
single-unit	slightly	216:15	202:2
23:8	58:17 196:24	sort	speed
singular	sloppy	32:3 95:2 163:1	22:6
96:14	145:22	170:24 183:14	spells
Sir	slotted	sounds	150:4
15:2 24:19,21,25	191:6	135:9	spent
sit	small	source	27:9
176:21 178:3	124:23 171:7	94:1	split
site	smaller	so-called	152:5,11 187:15
75:25 121:7,15 170:23	160:22 167:24 168:7	18:13 27:4 46:18	spoke

Merrill Corporation - New York
Page 90

25:17,20,21	204:8 205:15 206:2	60:19 62:18 64:4,20	196:1
spoken	206:14 209:21	65:9 69:15 73:21	submitted
25:7,15 26:1	statements	74:20 78:5 79:2 82:9	13:1,3,8
spring	71:11 72:5 73:19	84:11 87:17 88:21	Subscribed
194:8	79:14,19	89:8 96:17 98:6	220:15
Squibb	states	100:19 103:12	subsequent
1:5 4:3 5:10 8:5	1:192:13 126:14	109:16 116:23	15:6
stable	203:16 204:18 205:9	122:23 127:23	subset
161:22 164:23 205:11	205:21 207:1	128:24 135:12	206:5
stack	static	147:24 150:16	subsidiary
9:3,15	56:7	154:16 156:14	20:25
stage	stay	161:25 165:11 171:2	substance
161:20 214:5	10:7	171:16 174:14	127:12,20
standalone	sted	179:11 180:2,12	substantial
163:21	204:4	181:16 187:4 197:6	47:15,17
stands	steps	202:11 206:10 210:2	substitute
151:9,10,14,15	130:13	strong	18:12
start	step-by-step	142:5,7,14	substructure
7:3 16:9 18:20 33:4	191:21	Structural	154:4
48:16 58:21 82:4	Sticking	2:22	subu
85:20 97:13 98:21,24	32:25 34:1 57:21 69:2	structure	132:11
105:23 109:1 111:20	sticks	17:6 18:14 76:23	subunit
113:6 120:25 121:1,4	199:9	88:17 104:25 115:24	147:18 154:4
121:5,7,15,16 123:25	stop	133:23 134:8,9	subunits
193:12 218:18	51:21 119:12 120:24	148:10 164:23	81:15 82:1,13,22
started	121:2	185:20	129:24 132:12 147:3
6:22 19:10 106:8	stops	stuck	succeed
152:2	116:18	22:16	19:19
starting	story	student	succeeded
7:18,20 19:18 57:10	151:11 152:4	21:2	101:9
136:9	straight	studied	success
starts	165:3	156:11 204:9 205:8,16	99:25 108:24,25
116:19 120:14	strain	216:24	123:15 167:8 208:21
state	218:25	study	successful
5:19 10:20 30:10	strand	48:22 100:25 105:4	14:17 18:1 21:20
41:22 50:8 68:16	142:24	107:23 109:6 135:16	successfully
78:5 81:2,12 85:9	strategy	studying	178:14,18,24 181:20
141:2 143:18 174:13	204:23	17:5 18:11,14,25 19:2	181:24 182:8,10
191:13	strict	19:5	sufficient
stated	76:25 77:1	stuff	116:10 130:3
126:23 206:9 221:9	strike	161:7	suggest
statement	26:4,6 27:23 34:19	subcloning	160:5 162:17
141:8 150:7,7,14	39:24 42:7 45:3	16:16	suggesting
179:4,15,22 181:25	48:15 49:5,13 50:4	subject	160:11
202:13,22 203:23	50:18 53:5 58:8	67:5,11 103:14 183:20	suggestion

11:22 12:3,6 160:13	15:23 16:2 99:4 136:4	tape	146:3 164:24 165:2
suggestions	165:19 169:13	83:2 155:2	214:10
11:20 12:4	188:20,23	teach	terminal
suggests	synthetically	12:5	132:17,18
47:18	15:1	teaches	termination
suitable	system	78:8 80:14 126:19	115:1,5 116:3 121:3
122:12,24 123:9	170:17	teachings	terminator
summary	systems	70:9 79:1,3 184:21	115:13,16 142:6,14
11:11 56:25 57:6,7,8	174:20 175:2	technical	171:22
63:3 84:14 94:19		48:5 147:5 167:20	termini
150:3,6,6 153:3	T	168:8	74:15,19 75:2,22
supervision	table	technicality	terms
221:11	102:13	213:14	58:25 134:2 144:6
supplies	take	technically	180:25
88:18	6:24,25 13:16 16:13	45:23	testified
support	31:3 33:2,12,18	technician	6:14
46:21	43:12 47:12 48:1	107:2	testimony
supposed	56:13 58:13,15 74:11	technique	8:17 28:16,20 29:3,14
22:10	83:4 94:6,15 95:17	53:15 137:14	170:5 186:6 206:8
sure	96:4 98:24 130:13	techniques	221:9,12
21:12 23:17,18 32:12	155:5 161:7 167:13	44:10,16 53:10 55:6	tetramer
41:12 56:12 58:5	168:2,7 188:24	55:15 184:25 194:10	207:8
82:10,25 102:2	202:12 208:14 209:5	194:15	text
105:15 117:7,9	219:20	technologies	8:2
127:14 131:5 135:22	taken	42:16	Thank
139:2 170:22 186:5	41:16 56:18 64:25	technology	6:4 7:2,14 10:11 12:21
195:13 202:17	83:11 112:14 155:10	54:12,19,21 55:3	56:15 58:12 197:8
204:10 217:10	187:17 195:18 220:1	165:19 186:21	211:21 220:5,6
219:21	221:7	188:23	Thanks
surrounding	takes	Telephone	112:10 219:24
46:17	89:2	3:15,20	thematic
SV40	talk	Telephonic	39:16,19,23
122:19,22,24 123:1,7	13:19 48:22 61:22	13:14	thematically
123:10,15 143:2,11	78:18 85:4 113:9	tell	32:3,13
swear	119:21 125:25	67:13 138:2,6,12	therapeutic
6:7	169:20	184:10 221:4	44:3 108:11
switched	talked	ten	therapy
108:5,6	63:23 161:5	27:21 122:2,6 195:15	43:18,20 44:1
sworn	talking	tends	thereof
3:9 6:13 221:4	42:8 79:23 86:1,5,6,23	161:22	3:4 149:1 150:1,3
synthesis	145:6 204:3	ten-year-track	152:23 187:25
99:7,7 199:24 208:19	talks	21:3	thereto
synthesized	86:11 87:6 120:16	term	221:22
$15: 13188: 18$	Tamagawa 106:10 107:6 194:4	$\begin{array}{r} 31: 1636: 4141: 14 \\ 144 \cdot 117 \quad 145: 47 \end{array}$	thesis $196: 18,21$

Merrill Corporation - New York

thing	thought	6:5,23 8:11 11:14	126:19 127:25 128:4
56:4 121:17,20 128:10	22:12 25:12 107:3	12:10,17 28:1 29:6	142:9,24 204:25
130:21 135:6 137:13	152:3 169:5,7,9,21	183:19	transfer
139:14,21 149:20	170:11	Today's	16:15 26:21
152:1 166:4	thousands	5:13	transferred
things	22:12	told	22:9,14 23:13
13:17 22:6 36:7 47:22	three	25:11 47:4 81:4	transferring
72:14 86:12 88:19	20:3 50:24 57:13,16	151:11	23:4
89:1 91:19 105:22	69:4,9 95:1,7,19	tools	transform
149:19 191:6 216:3	146:23 150:18,19	186:16,21	99:22
think	151:21 152:4,12	top	transformant
16:20,24 27:20 29:10	three-dimensional	60:12 62:5 81:11 84:2	96:12,14
32:6 58:17,21 64:16	132:21 133:1 134:9	109:25 149:25	transformation
75:15,18 76:24 77:18	throwing	topic	168:18
79:22 80:4,24 81:3,6	117:19	32:5 140:7	transformed
89:1 97:8 98:3	thrust	tough	111:8,14 113:16
100:11 108:13	142:13,18	24:25 88:24	transgenic
114:14,15 115:19	ties	toxic	214:11
117:18 119:7 129:12	153:18	218:22	translated
129:13,15 130:17	Tijan's	toxin	116:18 119:11 129:10
134:7 135:19 137:13	123:6,6	218:14,21	131:14 178:15,19,25
145:1,21 146:9,18	time	toxins	translating
151:9,10 154:20	5:14 6:23 13:16 17:22	217:6	120:24,25 121:1,16
155:24 156:20	18:8,9 19:20 20:19	track	translation
157:25 159:5 160:20	25:4,20,21,23 26:12	119:13	115:25 124:16 128:4
161:16,19 167:11	26:16 27:9 35:12	training	128:17 136:18 205:1
174:2 183:17 184:5	41:25 51:5,9 54:13	192:4	transposon
185:17 186:11,12	54:14,20 55:3,6	transcarbamoylase	23:20,21
187:11 188:18,20	83:14 101:1 105:12	2:17 197:17	transvected
190:2,13,23 193:18	106:16,19,19,21,22	transcarbamylase	23:15
193:20 195:2 198:12	107:17,25 108:4,12	17:7,10	treat
198:15 203:24 206:6	108:15 109:3,13	transcribe	184:9
207:19 209:9 211:3	111:22 123:4,11	16:12 88:19	treated
211:10 214:5,6	127:6 129:15 140:11	transcribed	68:11
thinking	155:9 156:11 161:6	88:10,12,16 94:2	treating
25:1 116:15 150:22	167:11 169:3,8,11	121:17,21 129:9	54:9
151:23 170:8 187:25	183:18 185:21 189:3	178:15,19,25	tremendous
208:1	189:24 220:10 221:8	transcribing	120:11
thinks	times	121:18	tremendously
49:8	104:19 110:15 167:22	transcript	175:23
third	timing	29:2,5,7 221:14	trick
1:14 128:9,11 129:3	155:4	transcriptase	137:7
129:18 152:16	title	16:18	tried
thorough	197:16	transcription	107:2 108:22
208:7	today	115:25 124:6,16	triggered

21:18	214:11,16 215:7	15:15	unicellular
triumph	217:3	typo	85:12 91:15 96:2
167:20 168:9	Turnbough	11:18	103:1
trivial	196:23	T5	unit
155:24	Turning	173:20	77:6
trouble	14:6 27:7 41:20 60:10		UNITED
33:9	66:24 148:20	U	1:1
trp	twice	Uh-huh	universal
81:22	27:1 149:4,14	175:14 194:14	167:12
true	two	ultimate	University
36:10 72:24 97:25	8:11,18 11:9,10 27:15	214:2	29:20
101:18 151:17	50:12 60:7 61:3	unchanging	unknown
160:23 161:23	75:15,17,19 78:23	56:7	185:21
172:10 179:4 220:15	79:20,25 80:3,4,7	undergraduate	unrelated
221:11	81:1,5 95:2 98:8,10	151:13	204:22
truth	100:13 114:15,16	underlying	unsaid
221:5,5,6	116:20 120:1,2,8,16	49:9,10	36:7
try	120:21 121:12,18	understand	unstable
22:16 56:8 72:18	127:19,25 128:4,6	6:22 8:12 9:12 14:16	170:11
139:3 147:13 158:2	129:3 130:22 134:12	15:15 16:6 34:23	upstream
159:6,8,10,12,14,16	134:13 143:12	36:18 41:23 44:23	172:24
160:8 169:18	146:19,19,20,23	46:20,25 48:25 49:12	urine
trying	148:6,6,7,16,17	49:17 54:18 67:2,10	161:3,7
39:5,13 40:3,11 44:23	150:4,24 151:3,21,25	82:10 87:10 97:3	usage
84:12 94:17 138:21	152:5 156:15 159:16	100:20 138:21	145:11 146:25
150:21 155:23	160:9 163:1 164:9	162:21 186:5	use
162:21 199:16 213:4	168:17 169:25 170:8	understanding	3:2 9:21 31:18 36:8
tryptophan	170:15,25 172:1,10	15:18 30:11,22 31:10	39:3,11 44:1,13,24
77:19 79:6,23 80:20	172:22 199:13 219:6	35:17 66:12 67:15,16	52:3 53:11,15 55:15
80:24 82:8 128:6,10	type	68:2 70:21,22 74:6	61:24 89:12,17 95:11
129:1,2	22:24 23:10 26:17	81:1 93:18 104:3	95:18 100:23 105:9
turn	34:14 38:6 53:18,25	107:10 147:6,15	105:19 108:11
7:24 8:1 9:3 30:4 50:2	54:10 97:4 120:20	165:5 218:2	122:12,24 123:9
56:22 62:19 65:9	121:10 144:9 148:11	understood	125:5 144:16 145:3,5
70:23 73:4 74:5,24	173:1 180:4 182:1,3	38:2 97:17 107:8	146:2,5 165:18 173:4
81:9 83:22 90:10	207:24 210:24 212:6	110:19 165:2	173:19,21 187:22
102:12 109:23 126:1	218:14,16	undue	216:6 218:22
140:21 143:16	types	12:7 185:1,7,9,15	useful
144:14 147:19	16:5 53:18,22 88:12	187:9 191:19	91:7
148:23 165:11,12	121:8 149:4,14 173:9	unequal	uses
171:12 174:3 175:10	typewriting	117:12	38:21 145:6,24 155:21
178:6 184:11 191:9	221:10	uneven	155:23 156:7 164:24
195:10,22 202:5	typical	117:2,4,15	usually
203:12 205:18	77:2	unfused	79:20 121:3,7 147:5,7
206:19 208:9 211:12	typically	215:19 217:1	147:15 155:24

Merrill Corporation - New York
1-800-325-3376
Page 94
www.merrillcorp.com/law

158:11 216:2,25	vectors	180:24 191:8	way
utilizing	33:21 185:1	Volume	17:19 30:1 33:15 34:6
142:7	vehicle	83:9,13 155:8,12	42:4 45:24 47:15,17
U.S	75:6,8 76:1 157:4	220:8	54:4 56:9 63:20
2:10,12,13,14,15,24	verbose	vs	66:22 79:20 81:3
5:10 7:10,11,12	150:7 153:1	1:7	100:13,15 104:1
73:12 140:15 214:20	versa		119:14 120:17
214:23 217:15	159:24	W	127:17 135:10 137:1
V	version	Walt	144:12 146:16 159:2
V	16:3 19:11,13	71:13	159:19 167:20
v	versus	Walter	168:23 169:21 170:3
7:7 28:20 93:14,17	5:10 80:9 122:10	20:25 50:25 122:6	170:12 181:14
136:4	171:9	213:3	190:23 191:1 192:20
vaccine	vibrio	Walton	216:6 221:20
218:23	218:25	47:7 71:4,10,18 72:2,6	ways
vague	vice	72:20	16:1,5 41:3,8 54:8
15:17 16:8 31:6 33:6	159:24	Walton's	115:19,21 193:2
41:9 45:22 46:6 68:6	video	71:7,14	weather
109:3 117:17 135:2	5:8,14,16 83:8,12	want	6:23
177:18	155:11 220:8	7:4 13:16,19 18:3	weird
vaguely	Videographer	21:13,13 23:16 27:24	152:3
109:18 177:11 218:4	4:3 5:7 6:4 41:15,17	30:4 56:13 62:12	Weiss
valid	56:17,19 64:24 65:1	74:5,24 76:20 85:4	3:18 5:20,23
49:9	83:8,12 112:13 113:3	92:5,7 102:12 109:1	well-known
validity	155:7,11 195:17,19	112:2 113:6,9 121:20	153:4
10:13 28:25 64:5 65:7	219:25 220:2,7	127:9 133:9, $12139: 1$	went
value	Videotape	140:6 144:2 172:24	24:19 25:19 212:24
170:24	155:7	179:15 183:4 213:18	weren't
variable	VIDEOTAPED	216:2,3,5 217:1	19:5 167:2 190:15
84:23 104:22 105:2	1:17	wanted	we'll
110:10,25 111:3	view	72:16 119:21,22	12:14,19,19
132:20 182:15 188:4	60:5,14,16 74:9	133:10 156:2 198:17	we've
188:7,9,16 189:7,11	134:22 141:18	warning	56:14 110:14
189:25 190:4 194:5	159:22 180:22	159:6	Wharton
various	viral	Washington	3:18 5:21
93:13 94:7	74:13	29:20	white
vary	virus	wasn't	51:2
144:6,8	123:1,2	18:4 32:8 58:16	widely
vector	vital	117:19 130:20,21	24:4,6 36:8 72:17
15:21 16:15 21:25	53:15	131:14 151:17	widespread
22:8 23:13 117:3,15	vitro	169:10 187:16	26:14
130:3 171:22 184:15	82:22 146:15 154:9	water	Wild
184:20 185:6,14	159:4 162:6	41:11,13	196:22
186:24 187:6,12,24	vivo	wave	Winter
191:16,22 194:17	161:24 162:1,4,5	107:9	15:2 20:21 24:19,21

Merrill Corporation - New York
1-800-325-3376
Page 95

24:22 25:2,6,7,10,15	wonderful	15:12	188:14 195:16
25:20,22	47:22	wouldn't	196:25 198:20
Winter's	wondering	49:4 56:6 116:20	202:18 209:15
14:24 20:11	111:20	120:1 133:9,12	210:23
Wisconsin	word	134:11,13 138:17	year
161:6	15:16 28:10 85:21	145:18 165:3 171:10	21:15,21 27:1 28:4
withdraw	89:12,18 108:7 125:5	177:12 187:18 195:2	123:5 186:2,4,8
112:8,9	127:7,10 146:6 147:1	214:12	213:2
within-entitled	203:25	Wow	years
221:6	words	208:6	27:22 28:13 50:12,24
witness	74:12 95:11 110:17	wrap	122:5,6 132:17
3:8,10 6:8,12 7:14	112:12 118:5 127:12	219:22	163:18 186:2,10,12
13:15,18 15:18 16:9	127:20	wrapper	186:14 192:4 199:11
26:21 29:10,22 31:7	work	67:23	Yervoy
31:24 33:8 36:2	17:22 18:4,7,9,16 19:8	write	48:16,17 49:1,21
39:16 40:13 41:10,14	24:19 50:25 59:1	177:9	York
45:23 46:8,11 52:9	69:11 87:19,23 89:2	writing	3:14,14,20,20
52:18 56:16 61:21	96:19 99:12,16	209:10,11	1
66:9 67:22 68:7	107:16,24 115:20	written	1
79:14 83:3,7 87:3,6	123:8 143:2,4 159:11	38:15 60:4 64:6,7,10	1
88:14 93:7 94:12	166:16,25 169:1	64:12,15,17 65:6	2:7 5:8 7:6,15,20,21
98:20 100:11 101:14	171:4,8 173:25	71:4 127:6 166:13	8:3,3 10:19 11:8
101:16,24 102:6	189:19 197:23 198:1	196:18 204:2	74:4 83:8,9,13 85:16
103:5 105:14,16	199:1,24 209:1,16,19	wrong	85:21 86:1,8 90:1
107:22 109:5 111:24	212:15,24,25 213:5,8	102:21 103:24 115:19	97:13,17,20 98:24
112:4,10 115:12	214:2,9 215:24	115:21 158:1 189:2,3	114:19 155:8,12
116:14 117:18 120:8	217:22	wrote	220:8
122:16 128:20	workable	32:20 192:9	1:28
129:12 134:6 135:4	191:24		113:1,4
136:25 137:23 138:1	worked	X	1:39
138:9,17 140:4,8,11	14:25 15:2 17:2,5	X	95:22
141:13,21 142:17	18:22 19:11,21 20:3	221:14	10
149:16 153:10	20:22 21:15 44:15		2:20 65:10,11 179:23
158:11 162:10 164:4	71:25 122:6 123:7,13	Y	180:15 202:5 211:18
166:10 168:22	136:22 138:14	yeah	211:20,23
170:17 171:6 173:16	143:10,12 199:21	17:10,18 21:10 32:14	10:26
173:19 180:22 181:8	working	41:14 49:14 54:24	41:15,18
181:11,13 182:15,18	18:5 19:12 20:5 26:8	55:1 59:8 60:3 67:15	10:48
183:23 190:7 194:20	26:18 43:25 44:10,17	71:14 72:1 76:13	56:17
195:16 197:8 199:16	51:8,21 52:2,20 55:8	80:22,24 83:6,23	10019
201:20 211:21	106:12 146:12 169:8	87:12,18 91:23 92:12	3:14,20
217:10,16 220:6,20	190:3 198:6	97:12 102:15 104:2	102
221:3,12	workup	105:16 121:7 131:6	84:1
wonder	138:4	133:13 153:23	11
206:4	worried	$\begin{aligned} & \text { 154:24 176:14 } \\ & \text { 179:14 181:17 184:3 } \end{aligned}$	2:24 28:13 65:22

Merrill Corporation - New York
1-800-325-3376
Page 96

208:9 217:12,14,18	17	87:20 100:17 116:24	2012
11:02	57:15,23 58:9 60:20	121:8,23,25 122:13	25:18
56:20	136:10 143:16	122:17 123:12	2015
11:13	18	133:21,24 134:17,23	1:20 3:3 5:2,13 28:8
64:24 65:2	34:25 35:1 215:7,8	135:8,9,13 143:5,14	28:12 220:17
11:43	18S	144:5 148:3 150:16	203
83:10	126:19 127:3,12,24	151:2 153:14 154:2	2:19
11:55	187	154:21 156:3 157:25	211
83:14	211:25	164:1 171:3 173:2,11	2:23
1107	19	175:5 185:13 191:15	212.373.3230
3:5	147:19	193:1,20 195:1	3:20
113	1960s	203:17 204:5,14	212.506.2500
2:3	16:20	205:5,23 206:10,12	3:15
12	197	207:2,14,20	217
27:8 66:24 91:22,23	2:18	1985	2:24
91:25 102:11,25	1970s	15:3,6 20:11 24:14	22
103:3 124:9,20 125:3	106:8 189:22 216:11	25:2	41:22 165:12 202:8
191:11 211:12	216:20	1992	221
12:40	1971	25:3	9:8,14,18
112:13	189:16,16	1997	23
1285	1974	16:24	46:14 47:14 208:11
3:19	100:21,23 101:3,6,8,9		24
13	101:20 104:25 105:5	2	210:18
70:23 203:12	105:25 106:6 185:5	2	25
14	185:11,12,13,18,23	2:8 7:8 9:24 11:5,8	50:3,5,7 53:17 211:14
73:4,18 91:25 102:11	186:15,23 187:5,8,12	83:12 125:6 148:15	26
102:17,25 103:3	187:16,21 189:5,8,12	148:15,16,16 155:8	171:12
205:18 214:16,18	190:11,14,16	176:23 183:5 195:23	27
140	1975	208:8	63:10
2:15	108:2	2:13-cv-05400-MRP	28
15	1977	1:8	85:17 90:9,11 91:9
57:15,23 58:9 60:20	101:2 106:9 189:23	2:13-cv-05400-MRP...	95:25
81:9 93:23 101:24	1978	5:12	285
126:3,6 132:6 136:9	106:22	2:33	126:20 127:3,12,24
140:22 206:19	1979-to-1980	155:9	29
15,000	17:22	2:50	74:22 174:3,4,5
171:9	1980	${ }^{155: 13}$	3
16 85.17 92.6 93.19 96.7	$19: 1621: 22 ~ 26: 15$ $185 \cdot 17$	20 37:3 39:2 63:10 122:5	3
85:17 92:6 93:19 96:7	185:17 1980s	37:3 39:2 63:10 195:25 196:17	3:10 7:10 9:22,24,25
141:1	215:25 216:12,21	197:14 217:3	10:8,18,20 27:7
16:63	1981	2004	114:20 155:11
96:4	143:15 186:1	27:21	184:11 220:8
1675	1983	2011	3:52
3:14	24:16 50:16,21 55:24	25:18	195:17

30	4024	6	106:22 185:24
74:22 85:17 91:10	197:10	2:3,14 14:11 41:20	81
32	415	73:6,10 114:19	106:22 185:24
175:10,11	8:22 9:6	123:24,24 124:3,4	82
33	419	195:10	106:23 185:24 186:1
57:15,23 58:10 60:13	211:25	6,000	186:11
60:25 61:2,7,12 67:2	43	171:9	83
84:9,16 113:11 174:6	63:10	6,331,415	185:25 186:1,11,22
34	44	2:12 7:11	193:14
63:1,4,8,12,13 98:24	73:18 74:21 76:14	60	837
123:24 178:6,8	77:15,21	96:7	217:20 218:11 219:12
35	45	60th-birthday	219:16
148:24	78:5,6	25:18,24	84
37	46	625	174:11
65:22,23	63:10 203:14	3:5 5:17	9
38	47	63	9
66:25	204:16	85:17 92:6,7,10,11	9
39	48	64	1:20 2:19 3:3 5:2
68:16 70:4 85:16,21	140:25	113:22	62:19 85:17 90:9
86:9,10	49	65	91:9,22,25 96:1
4	142:2 205:18	85:18 92:6 113:22	102:11,25 123:24
4	5	1:24 221:25	203:4,7 208:5
2:12 7:11 9:4 10:8	5		9th
11:18 28:15 74:22	2:13 7:12,15 9:15,18	7	5:13
148:23,24 149:10	10:8 11:18 23:20	7	9:12
150:2 191:9,11	36:23 70:25 113:22	2:7,9,11,12,13,15 17:1	102:17
4,237,224	148:21 149:6,7 191:9	50:2 56:22,25 57:10	9:40
2:14 73:12	5,000	58:9 140:14,16	3:3 5:3,14
4,495,280	171:7,9	7,923,221	
2:15 140:15	51	2:13 7:12	
4,666,837	143:18 206:21	70s	
2:24 217:15	52	106:12 215:25	
4,816,567	202:19	73	
2:10 7:10	53	2:14	
4:07	92:7 103:9	74	
195:20	54	171:14	
4:44	144:14 145:23	79	
219:25	57	106:22 197:10	
4:56	147:21	8	
220:3,10,12	$\mathbf{5 8}$	8	
40 217:5,19,20	$74: 4$ $\mathbf{5 9}$	82:16 57:4 60:10 62:5	
4020	74:4 156:21	63:3 124:3,4,8 125:3	
197:10		197:3,5,7,9 200:7	
	6	80	

Merrill Corporation - New York
Page 98

