
· SECOND EDITION
L·.:~;. ·· - - ·:; - ·.:. ;::,.: ... ·- ··-· :- •.• .:.·. -=:-: .• ·::: .. :-;=. -· -;·;:·.:-:·.: ... : .-:· . .. - ···-· .. . ' • .. """;."":: •

THE

PRENTICE HALL SOFTWARE SERIES

ServiceNow's Exhibit No. 1004001

Ubnry of Conpeta CataloJinl-in-PubUcation Data

Kernighan, Brian W.
The C programming language.
Includes index.
1. C (Computer program language) I. Ritchie,

Dennis M. II. Title.
QA76.73.C15K47 1988 005.13'3 88-5934
ISBN 0-13-110370-9
ISBN 0-13-110362-8 (pbk.)

Copyriaht o 1988, 1978 by BeU Telephone Laboratories, Incorporated.

C Publiahed by Prentice Hall P T R
Prenti~·Hall. Inc.
Upper Saddle River, NJ 07458

All riahts reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy·
ina, record ina, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaaeously in Canada.

UNIX is a rqistercd trademark of ATclT.

This book was typeset (pic I tbll eqn I troff -aa) in Times Roman and Courier by
the authors, using an Autolosic APS·S phototypesetter and a DEC VAX 8SSO runnina
the 9th Edition of the UNIX• operatins system.

Prentice Hall Software Series
Brian Kernighan, Advisor

ISBN 0-13-110362-8

Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.
Fifty-Second Printing, February 2014

ISBN
ISBN

O-l.3-l.l.D3b2-&
0-1.3-110370-,

{PBK}

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall oflndia Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro ServiceNow's Exhibit No. 1004002

Contents

Preface ix

Preface to tbe First Editioa xi

Introduction 1

Chapter 1. A Tutorial Introduction 5
1.1 Getting Started 5
1.2 Variables and Arithmetic Expressions 8
1.3 The For Statement 13
1.4 Symbolic Constants 14
1.5 Character Input and Output 15
1.6 Arrays 22
1.7 Functions 24
1.8 Arguments-Call by Value 27
1.9 Character Arrays 28
1.10 External Variables and Scope 31

Chapter l. Types, Operators, and Expressions 3S
2.1 Variable Names 35
2.2 Data Types and Sizes 36
2.3 Constants 37
2.4 Declarations 40
2.5 Arithmetic Operators 41
2.6 Relational and Logical Operators 41
2.7 Type Conversions 42
2.8 Increment and Decrement Operators 46
2.9 Bitwise Operators 48
2.10 Assignment Operators and Expressions 50
2.11 Conditional Expressions 51
2.12 Precedence and Order of Evaluation 52

Chapter 3. Control Flow 55
3.1 Statements and Blocks 55
3.2 If-Else 55

ServiceNow's Exhibit No. 1004003

Yi THE C PROGRAMMING LANGUAGE CONTENTS

3.3 Else-If 57
3.4 Switch 58
3.5 Loops-While and For 60
3.6 Loops-Do-while 63
3.7 Break and Continue 64
3.8 Goto and Labels 65

Chapter 4. Fuactions and Program Structure 67
4.1 Basics of Functions 67
4.2 Functions Returning Non-integers 71
4.3 External Variabl~ 73
4.4 Scope Rules 80
4.5 Header Files 81
4.6 Static Variables 83
4.7 Register Variables 83
4.8 Block Structure 84
4.9 Initialization 85
4.10 Recursion 86
4.11 The C Preprocessor 88

Chapter 5. Pointers and Arrays 93
5.1 Pointers and Addresses 93
5.2 Pointers and Function Arguments 95
5.3 Pointers and Arrays 97
5.4 Address Arithmetic 100
5.5 Character Pointers and Functions 104
5.6 Pointer Arrays; Pointers to Pointers 107
5.7 Multi-dimensional Arrays llO
5.8 Initialization of Pointer Arrays 113
5.9 Pointers vs. Multi-dimensional Arrays 113
5.10 Command-line Arguments 114
5.ll Pointers to Functions 118
5.12 Complicated Declarations 122

Cllapter 6. Stnactures 127
6.1 Basics of Structures 127
6.2 Structures and Functions 129
6.3 Arrays of Structures 132
6.4 Pointers to Structures 136
6.5 Self -referential Structures 139
6.6 Table Lookup 143
6.7 Typedef 146
6.8 Unions 147
6.9 Bit-fields 149

Cllapter 7. lnptlt aad Output 151
7.1 Standard Input and Output 151
7.2 Formatted Output-Printf 153

ServiceNow's Exhibit No. 1004004

THE C PROGRAMMING LANGUAGE

7.3
7.4
7.5
7.6
7.7
7.8

Variable-length Argument Lists
Formatted Input-Scanf
File Access
Error Handling-Stderr and Exit
Line Input and Output
Miscellaneous Functions

Cbapter 8.
8.1
8.2
8.3
8.4
8.5
8.6
8.7

Tbe UNIX System Interface
File Descriptors
Low Level I/O-Read and Write
Open, Creat, Close, Unlink
Random Access-Lseek
Example-An Implementation of Fopen and Getc
Example-Listing Directories
Example-A Storage Allocator

Appendix A. Reference Manual
A1 Introduction
A2 Lexical Conventions
A3 Syntax Notation
A4 Meaning of Identifiers
A S Objects and Lvalues
A6 Conversions
A 7 Expressions
A8 Declarations
A9 Statements
AI 0 External Declarations
A 11 Scope and Linkage
A 12 Preprocessing
Al3 Grammar

Appendix B. Standard Library
Bl Input and Output: <stdio.h>
B2 Character Class Tests: <ctype.h>
B3 String Functions: <string.h>
B4 Mathematical Functions: <math.h>
B5 Utility Functions: <stdlib.h>
B6 Diagnostics: <assert.h>
B7 Variable Argument Lists: <stdarg.h>
B8 Non-local Jumps: <setjmp.h>
B9 Signals: <signal.h>
B 10 Date and Time Functions: < time.h >
Bt l Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

CONTENTS vii

155
157
160
163
164
166

169
169
170
172
174
175
179
185

191
191
191
194
195
197
197
200
210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259

263

ServiceNow's Exhibit No. 1004005

Introduction

C is a general-purpose programming language. It has been closely associ­
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a "system programming language" because it is useful for writing com­
pilers and operating systems, it has been used equally well to write major pro­
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are "typeless" languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating­
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well­
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do) , and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
"automatic," or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively "low level" language. This characterization is not
ServiceNow's Exhibit No. 1004006

l lNTRODUCfiON

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com­
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objec~ such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a u~it. The
language does not define any storage allocation facility other than static defini­
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili­
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly­
called functions. Most C implementations have included a reasonably standard
collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera­
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi­
ciency ("You mean I have to call a function to compare two character
strings?"), keeping the language down to modest size has real benefits. Sin~ C
is relatively small, it can be described in a small space, and learned quickly. A
programmer . can reasonably expect to know and understand and indeed regu­
larly use the entire language.

For many years, the defmition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or
"ANSI C," was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

ServiceNow's Exhibit No. 1004007

THE C PROGRAMMING LANGUAGE 3

effects on most programmers.
A second significant contribution of the standard is the definition of a library

to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca­
tion, string manipulation, and the like. A collection of standard headers pro­
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the "standard 1/0 library"
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change.

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self·
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselves port­
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care it is easy to write port­
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversions that
had already been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophy that programmers know what they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it.
The tutorial does assume a working knowledge of the basic elements of pro­
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+ 1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have
concentrated on the language.

ServiceNow's Exhibit No. 1004008

4 INTRODUCTION

Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formaUy, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if·else, switch, while, for, etc. Chapter 4 covers functions and program
structure-external variables, scope rules, multiple source files, and so on-and
also touches on the preprocessor. Chapter S discusses pointers and . address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use it
for input, output, and other operating system access can be moved from one sys·
tern to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat·
ing system, concentrating on input/output, the file system, and storage alloca·
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges­
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost fQr compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one's
own compil~r remain the final authorities on the language.

ServiceNow's Exhibit No. 1004009

cHAPTER s: Pointers and Arrays

A pointer is a variable that contains the address of a variable. Pointers are
much used in C, partly because they are sometimes the only way to express a
computation, and partly because they usually lead to more compact and effi­
cient code than can be obtained in other ways. Pointers and arrays are closely
related; this chapter also explores this relationship and shows how to exploit it.

Pointers have been lumped with the goto statement as a marvelous way to
create impossible-to-understand programs. This is certainly true when they are
used carelessly, and it is easy to create pointers that point somewhere unex­
pected. With discipline, however, pointers can also be used to achieve clarity
and simplicity. This is the aspect that we will try to illustrate.

The main change in ANSI C is to make explicit the rules about how pointers
can be manipulated, in effect mandating what good programmers already prac­
tice and good compilers already enforce. In addition, the type void * (pointer
to void) replaces char *as the proper type for a generic pointer.

5.1 Pointers and Addresses

Let us begin with a simplified picture of how memory is organized. A typi­
cal machine has an array of consecutively numbered or addressed memory cells
that may be manipulated individually or in contiguous groups. One common
situation is that any byte can be a char, a pair of one-byte cells can be treated
as a short integer, and four adjacent bytes form a long. A pointer is a group
of cells (often two or four) that can hold an address. So if cis a char and pis
a pointer that points to it, we could represent the situation this way:

The unary operator &. gives the address of an object, so the statement

ServiceNow's Exhibit No. 1004010

94 POINTERS AND ARRAYS CHAPTERS

P = &.c;

assigns the address of c to the variable p, and p is said to "point to" c. The &
operator only applies to objects in memory: variables and array elements. It
cannot be applied to expressions, constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when
applied to a pointer, it accesses the object the pointer points to. Suppose that x
and y are integers and ip is a pointer to int. This artificial sequence shows
how to declare a pointer and how to use & and *:

int x = 1' y = 2, z[10];
int *ip; I• ip is a pointer to int */

ip = &.x; /• ip now points to x •I
y = •ip; /• y is now 1 •I
•ip = 0•

' /• x is now 0 •I
ip = &.z[O]; I• ip now points to z[O] •/

The declarations of x, y, and z are what we've seen all along. The declaration
of the pointer ip,

is intended-as a mnemonic; it says that the expression *iP is an int. The syn­
tax of the declaration for a variable mimics the syntax of expressions in which
the variable might appear. This reasoning applies to function declarations as
well. For example,.

double •dp, atof(char •);

says that in an expression *dP and atof (s) have values of type double, and
that the argument of a to£ is a pointer to char.

You should also note the implication that a pointer is constrained to point to
a particular kind of object: every pointer points to a specific data type. (There
is one exception: a "pointer to void" is used to hold any type of pointer but
cannot be dereferenced itself. We'll come back to it in Section 5.11.)

If ip points to the integer x, then *iP can occur in any context where x
could, so

•ip = •ip + 10;

increments *iP by 10.
The unary operators * and & bind more tightly than arithmetic operators, so

the assignment

y = •ip + 1

takes whatever ip points at, adds 1, and assigns the result to y, while

•ip += 1

increments what ip points to, as do

ServiceNow's Exhibit No. 1004011

SECTION 5.2 POINTERS AND FUNCTION ARGUMENTS 95

and

The parentheses are necessary in this last example; without them, the expression
would increment ip instead of what it points to, because unary operators like *
and ++ associate right to left.

Finally, since pointers are variables, they can be used without dereferencing.
For example, if iq is another pointer to int,

iq = ip

copies the contents of ip into iq, thus making iq point to whatever ip pointed
to.

5.2 Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct way for
the called function to alter a variable in the calling function. For instance, a
sorting routine might exchange two out-of-order elements with a function called
swap. It is not enough to write

swap(a, b);

where the swap function is defined as

void swap(int x, int y) /* WRONG */
{

}

int temp;

temp = x;
X = y;
y = temp;

Because of call by value, swap can't affect the arguments a and b in the rou­
tine that called it. The function above only swaps copies of a and b .

The way to obtain the desired effect is for the calling program to pass
pointers to the values to be changed:

swap(&a, &b);

Since the operator & produces the address of a variable, &a is a pointer to a. In
swap itself, the parameters are declared to be pointers, and the operands are
accessed indirectly through them.

ServiceNow's Exhibit No. 1004012

96 POINTERS AND ARRAYS CHAPTERS

void swap(int •px, int •py) /• interchange •px and *PY •I
{

}

Pictorially:

int temp;

temp = •px;
*PX • •py;
*PY = temp;

in caller:

a:

in swap:

Pointer arguments enable a function to access and change objects in the
function that called it. As an ·example, consider a function qetint that per­
forms free-format input conversion by breaking a stream of characters into
integer values, one integer per call. qetint has to return the value it found
and also signal end of file when there is no more input. These values have to be
passed back by separate paths, for no matter what value is used for EOF, that
could also be the value of an input integer.

One solution is to have qetint return the end of file status as its function
value, while us~ng a pointer argument to store the converted integer back in the
calling function. This is the scheme used by scan£ as well; ·see Section 7 .4.

The following loop fills an array with integers by calls to getint:

int n, array[SIZE], qetint(int •);

for (n ~ 0; n < SIZE && qetint(&array[n]) I= EOF; n++)

Each call sets array[n) to the next integer found in the input and increments
n. Notice that it is essential to pass the address of array[n] to getint.
Otherwise there is no way for qetint to communicate the converted integer
back to the caller.

Our version of qetint returns EOF for end of file, zero if the next input is
not a number, and a positive value if the input contains a valid number.

ServiceNow's Exhibit No. 1004013

SECTION 5.3

#include <ctype.h>

int getch (void) ;
void ungetch(int);

POINTERS AND ARRAYS 97

I• getint: get next integer from input into •pn •I
int getint(int •pn)
{

}

int c, sign ;

while (isspace(c = getch())) I• skip white space • I

if (lisdigit(c) && c I= EOF && c 1= '+' && c I= '-') {
ungetch(c); I* it's not a number *I
return 0;

}

sign= (c == '-') ? -1 : 1;
if (c •• , +, : : c == , -,)

c • getch();
for (*pn = 0; isdigit(c); c = getch())

*Pn = 10 * *Pn + (c- '0');
*Pn *= sign;
if (c I= EOF)

ungetch(c);
return c;

Throughout getint, *Pn is used as an ordinary int variable. We have also
used getch and ungetch (described in Section 4.3) so the one extra character
that must be read can be pushed back onto the input.

Exercise 5-1. As written, getint treats a + or - not followed by a digit as a
valid representation of zero. Fix it to push such a character back on the input.
0

Exercise 5-2. Write getfloat, the floating-point analog of getint. What
type does getfloat return as its function value? 0

5.3 Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong
enough that pointers and arrays should be discussed simultaneously. Any opera­
tion that can be achieved by array subscripting can also be done with pointers.
The pointer version will in general be faster but, at least to the uninitiated,
somewhat harder to understand.

The declaration

ServiceNow's Exhibit No. 1004014

98 POINTBRS AND ARRAYS CHAPTERS

int a[10];

defines an array a of size I 0, that is, a block of 10 consecutive objects named
a[O], a[1], ... , a[9].

a: I I
a[O]a[1] a[9]

I

The notation a[i] refers to the i-th element of the array. If pais a pointer to
an integer, declared as

int •pa;

then the assignment

pa • &.a[O];

sets pa to point to element zero of a; that is, pa contains the address of a [0] .

Now the assignment

X • •pa;

will copy the contents of a [0] into x.
If pa points to a particular element of an array, then by definition pa+ 1

points to the next element, pa+i points i elements after pa, and pa-i points i
elements before. Thus, if pa points to a [0] ,

•(pa+1)

refers to the contents of a[1], pa+i is the address of a[i], and •(pa+i) is
the contents of a [i] .

These remarks are true regardless of the type or size of the variables in the
array a. The meaning of "adding 1 to a pointer," and by extension, all pointer
arithmetic, is that pa+ 1 points to the next object, and pa+i points to the i-th

ServiceNow's Exhibit No. 1004015

SECTION 5.3 POINTERS AND ARRAYS 99

object beyond pa.
The correspondence between indexing and pointer arithmetic is very close.

By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus after the assignment

pa = &a[O];

pa and a have identical values. Since the name of an array is a synonym for
the location of the initial element, the assignment pa=&a [0] can also be writ­
ten as

pa = a;

Rather more surprising, at least at first sight, is the fact that a reference to
a[i] can also be written as *(a+i}. In evaluating a[i], C converts it to
* (a+i) immediately; the two forms are equivalent. Applying the operator & to
both parts of this equivalence, it follows that &a [i] and a+i are also identical:
a+i is the address of the i-th element beyond a. As the other side of this coin,
if pa is a pointer, expressions may use it with a subscript; pa [i 1 is identical to
* (pa + i}. In short, an array-and-index expression is equivalent to one written
as a pointer and offset.

There is one difference between an array name and a pointer that must be
kept in mind. A pointer is a variable, so pa=a and pa++ are legal. But an
array name is not a variable; constructions like a=pa and a++ are illegal.

When an array name is passed to a function, what is passed is the location
of the initial element. Within the called function, this argument is a local vari­
able, and so an array name parameter is a pointer, that is, a variable containing
an address. We can use this fact to write another version of strlen, which
computes the length of a string.

I* strlen: return length of string s */
int strlen(char *S)
{

int n;

for (n = 0; *S I= '\0'; s++)
n++;

return n;
}

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the
character string in the function that called strlen, but merely increments
strlen's private copy of the pointer. That means that calls like

strlen("hello, world");
strlen(array);
strlen(ptr);

all work.

/* string constant */
I* char array[100]; */
/* char *Ptr; */

As formal parameters in a function definition,

ServiceNow's Exhibit No. 1004016

100 POINTERS AND ARRAYS CHAPTERS

char s[];

and

char •s;

are equivalent; we prefer . the latter because it says more explicitly that the
parameter is a pointer. When an array name is passed to a function, the func­
tion can at its convenience believe that it has been handed either an array or a
pointer, and manipulate it accordingly. It can even use both notations if it
seems appropriate and clear.

It is possible to pass part of an array to a function, by passing a pointer to
the beginning of the subarray. For example, if a is an array,

f(&.a[2])

and

f(a+2)

both pass to the function f the address of the subarray that starts at a [2 1.
Within f, the parameter declaration can read

f (int arr []) { ... }

or

f (int •a.rr) { ... }

So as far as f is co~cemed, the fact that the parameter refers to part of a larger
array is of no consequence.

If one is sure that the elements exist, it is also possible to index backwards in
an array; p[-1 1. p[-21. and so on are syntactically legal, and refer to the ele­
ments that immediately precede p[01. Of course, it is illegal to refer to objects
that are not within the array bounds.

5.4 Address Arithmetic

If p is a pointer to some element of an array, then p++ increments p to
point to the next element, arid p+=d increments it to point i elements beyond
where it currently does. These and similar constructions are the simplest forms
of pointer or address arithmetic. ·

C is consistent and regular in its approach to address arithmetic; its integra­
tion of pointers, arrays, and address arithmetic is one of the strengths of the
language. Let us illustrate by writing a rudimentary storage allocator. There
are two routines. The first, alloc(n), returns a pointer p to n consecutive
character positions, which can be used by the caller of alloc for storing char­
acters. The second, a free (p} , releases the storage thus acquired so it can be
re-used later. The routines are "rudimentary" because the calls to afree must
be made in the opposite order to the calls made on alloc. That is, the storage

ServiceNow's Exhibit No. 1004017

SECTION 5.4 ADDRESS ARITHMETIC 101

managed by alloc and afree is a stack, or last-in, first-out list. The stand­
ard library provides analogous functions called malloc and free that have no
such restrictions; in Section 8.7 we will show how they can be implemented.

The easiest implementation is to have alloc hand out pieces of a large
character array that we will call allocbuf. This array is private to alloc
and afree. Since they deal in pointers, not array indices, no other routine
need know the name of the array, which can be declared static in the source
file containing alloc and afree, and thus be invisible outside it. In practical
implementations, the array may well not even have a name; it might instead be
obtained by calling malloc or by asking the operating system for a pointer to
some unnamed block of storage.

The other information needed is how much of allocbuf has been used.
We use a pointer, called allocp, that points to the next free element. When
alloc is asked for n characters, it checks to see if there is enough room left in
allocbuf. If so, alloc returns the current value of allocp (i.e., the begin·
ning of the free block). then increments it by n to point to the next free area. If
there is no room, alloc returns zero. afree(p) merely sets allocp to p if
pis inside allocbuf.

before call to alloc:
allocp: \

allocbu£: I I I
..---in use --• .,. ___ _ free

after call to alloc:
allocp: \

allocbuf: I I I I
muse

___ _,..,..,. __
free

#define ALLOCSIZE 10000 I* size of available space *I

static char allocbuf[ALLOCSIZE] ;
static char *allocp = allocbuf;

I * storage for alloc *I
I* next free position •I

char *alloc(int n) I • return pointer to n characters • I
{

}

if (allocbuf + ALLOCSIZE - allocp >= n) { I* it fits • I
allocp += n ;
return allocp - n; I• old p *I

} else I• not enough room * I
return 0;

ServiceNow's Exhibit No. 1004018

101 POINTERS AND ARRAYS CHAPTERS

void afree(char *P) /* free storage pointed to by p */
{

}

if (p >= allocbuf && p < allocbuf + ALLOCSIZE)
allocp = p;

In general a pointer can be initialized just as any other variable can, though
normally the only meaningful values are zero or an expression involving the
addresses of previously defined data of appropriate type. The declaration

static char *allocp • allocbuf;

defines allocp to be a character pointer and initializes it to point to the begin­
ning of allocbuf, which is the next free position when . the program starts.
This could have also been written

static char *&lloep = &allocbuf[O];

since the array name is the address of the zeroth element.
The test

if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits •I

checks if there's enough room to satisfy a request for n characters. If there is,
the new value of alloep would be at most one beyond the end of allocbuf.
If the request can be satisfied, alloc returns a pointer to the beginning of a
block of characters (notice the declaration of the function itself). If not, alloc
must return some signal that no space is left. C guarantees that zero is never a
valid address for data, so a return value of zero can be used to signal an abnor­
mal event, in this case, no space.

Pointers and integers are not interchangeable. Zero is the sole exception:· the
constant zero· may be assigned to a pointer, and a pointer may be compared
with the constant zero. The symbolic constant NULL is often used in place of
zero, as a mnemonic to indicate more clearly that this is a special value for a
pointer. NULL is defined in <stdio.h>. We will use NULL henceforth.

Tests like

if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */

and

. if (p >= alloebuf &.& p < allocbuf + ALLOCSIZE)

show several important facets of pointer arithmetic. First, pointers may be com­
pared under certain circumstances. If p and q point to members of the same
array, then relations like ==, I=, <, >=, etc., work properly. For example,

p < q

is true if p points to an earlier member of the array than q does. Any pointer
can be meaningfully compared for equality or inequality with zero. But the
behavior is undefined for arithmetic or comparisons with pointers that do not

ServiceNow's Exhibit No. 1004019

SECTION 5.4 ADDRESS ARITHMETIC 103

point to members of the same array. (There is one exception: the address of the
first element past the end of an array can be used in pointer arithmetic.)

Second, we have already observed that a pointer and an integer may be
added or subtracted. The construction

P + n

means the address of the n-th object beyond the one p currently points to. This
is true regardless o(the kind of object p points to; n is scaled according to the
size of the objects p points to, which is determined by the declaration of p. If
an int is four bytes, for example, the int will be scaled by four.

Pointer subtraction is also valid: if p and q point to elements of the same
array, and p<q, then q-p+ 1 is the number of elements from p to q inclusive.
This fact can be used to write yet another version of strlen:

/* strlen: return length of string s */
int strlen(char *S)
{

}

char *P = s;

while (*P I= '\0'}
p++;

return p - s;

In its declaration, p is initialized to s , that is, to point to the first character of
the string. In the while loop, each character in turn is examined until the
'\0' at the end is seen. Because p points to characters, p++ advances p to the
next character each time, and p-s gives the number of characters advanced
over, that is, the string length. (The number of characters in the string could be
too large to store in an int. The header <stddef . h> defines a type
ptrdiff _ t that is large enough to hold the signed difference of two pointer
values. If we were being very cautious, however, we would use size_ t for the
return type of strlen, to match the standard library version. size_ t is the
unsigned integer type returned by the sizeof operator.)

Pointer arithmetic is consistent: if we had been dealing with floats, which
occupy more storage than chars, and if p were a pointer to float, p++ would
advance to the next float. Thus we could write another version of alloc
that maintains floats instead of chars, merely by changing char to float
throughout alloc and afree. All the pointer manipulations automatically
take into account the size of the object pointed to.

The valid pointer operations are assignment of pointers of the same type,
adding or subtracting a pointer and an integer, subtracting or comparing two
pointers to members of the same array, and assigning or comparing to zero. All
other pointer arithmetic is illegal. It is not legal to add two pointers, or to mul­
tiply or divide or shift or mask them, or to add float or double to them, or
even, except for void *, to assign a pointer of one type to a pointer of another
type without a cast.

ServiceNow's Exhibit No. 1004020

104 POINTERS AND ARRAYS CHAPTERS

5.5 Character Pointers and Functions

A string constant, written as

"I am a string•

is an array of characters. In the internal representation, the array is terminated
with the null character '\0' so that programs can find the end. The length in
storage is thus one more than the number of characters between the double
quotes.

Perhaps the most common occurrence of string constants is as arguments to
functions, as in

printf("hello, world\n");

When a character string like this appears in a program, access to it is through a
character pointer; print£ receives a pointer to the beginning of the character
array. That is, a string constant is accessed by a pointer to its frrst element.

String constants need not be function arguments. If pmessage is declared
as

char •pmessaqe;

then the statement

pmessaqe = "now is the time";

assigns to pmessage a pointer to the character array. This is not a string
copy; only pointers are involved. C does not provide any operators for process­
ing an entire string of characters a.s a unit.

There is an important difference between these definitions:

char .amessaqe[] = "now is the time";
char •pmessaqe = "now is the time";

I• an array •I
I• a pointer •I

amessage is an array, just big enough to hold the sequence of characters and
'\0 ' that initializes it. Individual characters within the array may be changed
but amessaqe will always refer to the same storage. On the other hand,
pmessage is a pointer, initialized to point to a string constant; the pointer may
subsequently be modified to point elsewhere, but the result is undefined if you
try to modify the string contents.

pmessaqe: G~-•-i now is the time\0 I

amessaqe: jnow is the time\ 0 I
We will illustrate more aspects of pointers and arrays by studying versions of

two useful functions adapted from the standard library. The first function is
strcpy (s , t) , which copies the string t to the string s. It would be nice just .
to say s=t but this copies the pointer, not the characters. To copy the

ServiceNow's Exhibit No. 1004021

SECTION 5.5 CHARACTER POINTERS AND FUNCTIONS 105

characters, we need a loop. The array version is first:

I• strcpy: copy t to s ; array subscript version •I
void strcpy(char •s, char •t)
{

}

int i;

i = 0;.
while ((s[i] = t[i]} J= ' \0')

i++;

For contrast, here is a version of strcpy with pointers:

I• strcpy: copy t to s; pointer version 1 •I
void strcpy(char •s, char •t)
{

}

while (<•s = •t) l= '\0') {
S++;
t++;

}

Because arguments are passed by value, strcpy can use the parameters s and
t in any way it pleases. Here they are conveniently initialized pointers, which
are marched along the arrays a character at a time, until the '\0' that ter­
minates t has been copied to s.

In practice, strcpy would not be written as we showed it above. Experi­
enced C programmers would prefer

I• strcpy: copy t to s; pointer version 2 •I
void strcpy(char •s, char •t)
{

while ((•s++ = •t++) I= '\0')

}

This moves the increment of s and t into the test part of the loop. The value of
*t++ is the character that t pointed to before t was incremented; the postfix
++ doesn't change t until after this character has been fetched. In the same
way, the character is stored into the old s position before s is incremented.
This character is also the value that is compared against '\0' to control the
loop. The net effect is that characters are copied from t to s, up to and includ­
ing the terminating ' \0 ' .

As the final abbreviation, observe that a comparison against '\0 ' is redun­
dant, since the question is merely whether the expression is zero. So the func­
tion would likely be written as

ServiceNow's Exhibit No. 1004022

106 POINTERS AND ARRAYS

I• strcpy: copy t to s; pointer version 3 •I
void strcpy(char •s, char •t)
{

while <•a++ = •t++)

}

CHAPTERS

Although this may seem cryptic at first sight, the notational convenience is con­
siderable, and the idiom should be mastered, because you will see it frequently
in C programs.

The strcpy in the standard library (<string .h>) returns the target
string as its function value.

The second routine that we will examine is strcmp(s,t), which compares
the character strings s and t, and returns negative, zero or positive if s is lexi­
cographically less than, equal to, or greater than t. The value is obtained by
subtracting the characters at the first position where sand t disagree.

I• strcmp: return <0 if s<t, 0 if s••t, >0 if s>t •I
int strcmp(char •s, char •t)
{

}

int i;

for (i = 0 ; s[i] •• t[i]; i++)
if (s[iJ == '\0')

return 0;
return s[i] - t[i];

The pointer version of stremp:

I• strcmp: return ·<0 if s<t, 0 if s•=t, >0 if s>t •/
int stramp(char •s, char •t)
{

}

for (; •s •• •t; a++, t++)
if <•• •• '\0')

return 0;
return •• - •t;

Since ++ and -- are either prefix or postfix operators, other combinations of
*and ++and --occur, although less frequently. For example,

decrements p before fetching the character that p points to. In fact, the pair of
expressions

*P++ • val;
val = •--p;

I• push val onto stack •I
I• pop top of stack into val •I

are the standard idioms for pushing and popping a stack; see Section 4.3.
The header <string. h> contains declarations for the functions mentioned

ServiceNow's Exhibit No. 1004023

SECTION 5.6 POINTER ARRAYS; POINTERS TO POINTERS 107

in th!s section, plus a variety of other string-handling functions from the stand­
ard library.

Exercise 5-3. Write a pointer version of the function strcat that we showed
in Chapter 2: strcat (s, t) copies the string t to the end of s. 0

Exercise 5-4. Write the function strend (s, t), which returns 1 if the string
t occurs at the end of the string s, and zero otherwise. 0

Exercise 5-5. Write versions of the library functions strncpy, strncat, and
strncmp, which operate on at most the first n characters of their argument
strings. For example, strncpy (s, t, n) copies at most n characters of t to s.
Full descriptions are in Appendix B. o

Exercise 5-6. Rewrite appropriate programs from earlier chapters and exercises
with pointers instead of array indexing. Good possibilities include getline
(Chapters 1 and 4), atoi, i toa, and their variants (Chapters 2, 3, and 4),
reverse (Chapter 3), and strindex and getop (Chapter 4). 0

5.6 Pointer Arrays; Pointers to Pointers

Since pointers are variables themselves, they can be stored in arrays just as
other variables can. Let us illustrate by writing a program that will sort a set of
text lines into alphabetic order, a stripped-down version of the UNIX program
sort.

In Chapter 3 we presented a Shell sort function that would sort an array of
integers, and in Chapter 4 we improved on it with a quicksort. The same algo­
rithms will work, except that now we have to deal with lines of text, which are
of different lengths, and which, unlike integers, can't be compared or moved in
a single operation. We need a data representation that will cope efficiently and
conveniently with variable-length text lines.

This is where the array of pointers enters. If the lines to be sorted are stored
end-to-end in one long character array, then each line can be accessed by a
pointer to its first character. The pointers themselves can be stored in an array.
Two lines can be compared by passing their pointers to strcmp. When two
out-of-order lines have to be exchanged, the pointers in the pointer array are
exchanged, not the text lines themselves.

This eliminates the twin problems of complicated storage management and high
overhead that would go with moving the lines themselves.

ServiceNow's Exhibit No. 1004024

108 POINTERS AND ARRAYS

The sorting process has three steps:

read all the lines of input
sort them
print them in order

CHAPTER S

As usual, it's best to divide the program into functions that match this natural
division, with the main routine controlling the other functions. Let us defer the
sorting step for a moment, and concentrate on the data structure and the input
~00~ .

The input routine has to collect and save the characters of each line, and
build an array of pointers to the lines. It will also have to count the number of
input lines, since that information is needed for sorting and printing. Since the
input function can only cope with a finite number of input lines, it can return
some illegal line count like -1 if too much input is presented.

The output routine only has to print the lines in the . order in which th~y
appear in the array of pointers.

i nclude <stdio . h>
#include <string.h>

#define MAXLINES 5000

char •lineptr[MAXLINES];

I* max #lines to be sorted *I

I * pointers to text lines • I

int r .eadlines (char •lineptr[], int nlines);
void writelines(char •lineptr[], int nlines);

void qsort(char •lineptr[], int left , int right);

I • sort input lines • I
main()
{

}

int nlines; I* number of input lines read •I

if ((nlines • readlines (lineptr , MAXLINES)) >• 0) {
qsort(lineptr, 0 , nlines-1) ;
writelines(lineptr, nlines) ;
return 0;

} else {
printf("error: input too big ~o sort\n");
return 1;

}

ServiceNow's Exhibit No. 1004025

SECTION 5.6 POINTER ARRAYS: POINTERS TO POINTERS 109

#define MAXLEN 1000 /* max length of any input line */
int getline(char *, int);
char *alloc(int);

/* readlines: read input lines */
int readlines(char *lineptr(], int maxlines)
{

}

int len, nlines;
char *P, line[MAXLEN];

nlines = 0;
while ((len= getline(line, MAXLEN)) > 0)

if (nlines >= maxlines I I (p = alloc(len)) --NULL)
return -1;

else {

}

line[len-1] = '\0'; /*delete newline*/
strcpy(p, line);
lineptr[nlines++] = p;

return nlines;

I* writelines: write output lines */
void writelines(char *lineptr[], int nlines)
{

}

int i;

for (i = 0; i < nlines; i++)
printf("%s\n", lineptr[i]);

The function getline is from Section 1.9.
The main new thing is the declaration for 1 ineptr:

char * 1 ineptr [MAXLINES.]

says that lineptr is an array of MAXLINES elements, each element of which
is a pointer to a char. That is, lineptr [i] is a character pointer, and
•lineptr [i] is the character it points to, the first character of the i-th saved
text line.

Since lineptr is itself the name of an array, it can be treated as a pointer
in the same manner as in our earlier examples, and wri telines can be writ­
ten instead as

/* writelines: write output lines */
void writelines(char *lineptr[], int nlines)
{

while (nlines-- > 0)
printf ("%s\n", *lineptr++) ;

}

ServiceNow's Exhibit No. 1004026

110 POINTERS AND ARRAYS CHAPTERS

Initially •lineptr points to the first line; each increment advances it to the
next line pointer while nlines is counted down.

With input and output under control, we can proceed to sorting. The quick­
sort from Chapter 4 needs minor changes: the declarations have to be modified,
and the comparison operation must be done by calling strcmp. The algorithm
remains the same, which gives us some confidence that it will still work.

I• qsort: sort v[left] ••. v[right] into increasing order •/
void qsort(char •v[], int left, int right)
{

}

int i, last;
void swap(char •v[], inti, int j);

if (left >= right)
return;

swap(v, left, (left +
last = left;

I• do nothing if array contains •I
I• fewer · than two elements •I
right)/2);

for (i = left+1; i <= right; i++)
if (strcmp(v[i], v[left]) < 0)

swap(v, ++last, i);
swap(v, left, last);
qsort(v, left, last-1);
qsort(v, last+1, right);

Similarly, the swap routine needs only trivial changes:

I• swap : interchange v[i] and v[j] •I
void swap(char •v[], int i, int j)
{

}

char *temp;

temp= v(i];
v[i] = v[j];
v[j] = temp;

Since any individual element of v (alias lineptr) is a character pointer, temp
must be also, so one can be copied to the other.

Exercise 5-7. Rewrite readlines to store lines in an array supplied by main,
rather than calling alloc to maintain storage. How much faster is the pro­
gram? o

5. 7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they
are much less used than arrays of pointers. In this section, we will show some
of their properties.

ServiceNow's Exhibit No. 1004027

SECTION 5.7 MULTI-DIMENSIONAL ARRAYS Ill

Consider the problem of date conversion, from day of the month to day of
the year and vice versa. For example, March 1 is the 60th day of a non-leap
year, and the 61st day of a leap year. Let us define two functions to do the
conversions: day_ of _year converts the month and day into the day of the
year, and month_day converts the day of the year into the month and day.
Since this latter function computes two values, the month and day arguments
will be pointers:

month_day(1988, 60, &m, &d)

sets m to 2 and d to 29 (February 29th).
These functions both need the same information, a table of the number of

days in each month ("thirty days hath September ... ") . Since the number of
days per month differs for leap years and non-leap years, it's easier to separate
them into two rows of a two-dimensional array than to keep track of what hap­
pens to February during computation. The array and the functions for perform­
ing the transformations are as follows:

static char daytab[2][13] = {

} ;

{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31 , 30, 31}

I • day_of_year: set day of year from month & day */
int day_of_year(int year, int month, int day)
{

}

int i, leap;

leap = year%4 == 0 && year%100 I= 0 I I year%400 == 0;
for (i = 1; i <month; i++)

day+= daytab[leap][i];
return day;

/* month_day: set month, day from day of year */
void month_day(int year, int yearday, int •pmonth, int •pda}
{

}

int i, leap;

leap= year%4 == 0 && year%100 I= 0 II year%400 == 0;
for (i = 1; yearday > daytab[leap][i]; i++)

yearday -= daytab[leap][i];
•pmonth = i;
•pday = yearday;

Recall that the arithmetic value of a logical expression, such as the one for
leap, is either zero (false) or one (true), so it can be used as a subscript of the
array daytab.

The array daytab has to be external to both day _of_year and

ServiceNow's Exhibit No. 1004028

Ill POINTERS AND ARRAYS CHAPTERS

month_day, so they can both use it. We made it char to illustrate a legiti­
mate use of char for storing small non-character integers.

daytab is the first two-dimensional array we have dealt with. In C, a two­
dimensional array is really a one-dimensional array, each of whose elements is
an array. Hence subscripts are written as

daytab[i][j]

rather than

daytab[i,j]

I• Erow][eol] •I

I• WRONG •I

Other than this notational distinction, a two-dimensional array can be treated in
much the same way as in other languages. Elements are stored by rows, so the
rightmost subscript, or column, varies fastest as elements are accessed in storage
order.

An array is initialized by a list of initializers in braces; each row of a two­
dimensional array is initialized by a corresponding sub-list. We started the
array daytab with a column of zero so that month num~rs can run from the
natural l to 12 instead of 0 to 11. Since space is not at a premium here, this is
clearer than adjusting the indices.

If a two-dimensional array is to be passed to a function, the parameter
declaration in the function must include ·the number of columns; the number of
rows is irrelevant, since what is passed is, as before, a pointer to an array of
rows, where each . row is an array of 13 ints. In this particular case, it is a
pointer to objects that are arrays of 13 ints. Thus if the array daytab is to
be passed to a function f, the declaration off would be

f (int claytab [2][13] } { ... }

It could also be

f (int daytab [][13]) { .. . }

since the number of rows is irrelevant, or it could be

f (int (•daytab)[13]) (... }

which says that the parameter is a pointer to an array of 13 integers. The
parentheses are necessary since brackets [] have higher precedence than *·
Without parentheses, the declaration

int •claytab[13]

is an array of 13 pointers to integers. More generally, only the first dimension
(subscript) of an array is free; all the others have to be specified.

Section 5.12 has a further discussion of complicated declarations.

Exercise 5-8. There is no error checking in day _of_year or month_ day.
Remedy this defect. D

ServiceNow's Exhibit No. 1004029

SECTION 5.9 POINTERS VS. MULTI-DIMENSIONAL ARRAYS 113

5.8 Initialization of Pointer Arrays

Consider the problem of writing a function month_name (n), which returns
a pointer to a character string containing the name of the n-th month. This is
an ideal application for an internal static array. month_name contains a
private array of character strings, and returns a pointer to the proper one when
called. This section shows how that array of names is initialized.

The syntax is similar to previous initializations:

I* month_name: return name of n-th month */
char *month_name(int n)
{

}

static char *name[] = {
"Illegal month",

} ;

"January11
, "February", "March11

,

"April", "May", "June",
"July", "August", "September",
"October", "November", 11 December"

return (n < 1 I I n > 12) ? name[O] : name[n];

The declaration of name, which is an array of character pointers, is the same as
lineptr in the sorting example. The initializer is a list of character strings;
each is assigned to the corresponding position in the array. The characters of
the i-th string are placed somewhere, and a pointer to them is stored in
name [i J. Since the size of the array name is not specified, the compiler
counts the initializers and fills in the correct number.

5.9 Pointers vs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between a
two-dimensional array and an array of pointers, such as name in the example
above. Given the definitions

int a[10)[20];
int *b[10];

then a [3 1 [4 1 and b [3 1 [4 1 are both syntactically legal references to a single
int. But a is a true two-dimensional array: 200 int-sized locations have been
set aside, and the conventional rectangular subscript calculation 20xrow+col is
used to find the element a [row][col]. For b, however, the definition only allo­
cates 10 pointers and does not initialize them; initialization must be done expli­
citly, either statically or with code. Assuming that each element of b does point
to a twenty-element array, then there will be 200 ints set aside, plus ten cells
for the pointers. The important advantage of the pointer array is that the rows
of the array may be of different lengths. That is, each element of b need not

ServiceNow's Exhibit No. 1004030

114 POINTERS AND ARRAYS CHAPTERS

point to a twenty-element vector; some may point to two elements, some to fifty,
and some to none at alL

Although we have phrased this discussion in terms of integers, by far the
most frequent use of arrays of pointers is · to store character strings of diverse
lengths, as in the function month ... name. Compare the declaration and picture
for an array of pointers:

char *name [] = { "Illegal month", "Jan, "Feb", "Mar"· } ;

name:
~ Illegal month,ol

Jan\o

Feb'o
Mar\o

-
with those for a two-dimensional array:

char aname[][15] = { "Illegal month", "Jan", "Feb", "Mar" };

aname:
!Illegal month\o Jan\o Peb\o Mar\o
0 15 30 45

Exercise 5-9. Rewrite the routines day_of_year and month_ day with
pointers instead of indexing. 0

5.10 Command-line Arguments

In environments that support C, there is a way to pass command-line argu­
ments or parameters to a program when it begins executing. When main is
called, it is called with two arguments. The first (conventionally called arqc,
for argument count) is the number of command-line arguments the program
was invoked with; the second (argv, for argument vector) is a pointer to an
array of character strings that contain the· arguments, one per string. We cus~
tomarily use multiple levels of pointers to manipulate these character strings.

The simplest illustration is the program echo, which echoes its command­
line arguments on a single line, separated by blanks. That' is, the command

echo hello, world

prints the output

hello, world

ServiceNow's Exhibit No. 1004031

SECTION 5.10 COMMAND-LINE ARGUMENTS 115

By convention, argv [0] is the name by which the program was invoked, so
argc is at least 1. If argc is 1, there are no command-line arguments after
the program name. In the example above, argc is 3, and argv [0] , argv [1] ,
and argv[2] are "echo", "hello,", and "world" respectively. The first
optional argument is argv [1] and the last is argv [argc- 1] ; additionally,
the standard requires that argv [argc] be a null pointer.

argy:

I l_ echo\o 1 I
hello, \o 1

world\o 1

0

The first version of echo treats argv as an array of character pointers:

#include <stdio.h>

I* echo command-line arguments; 1st version */
main(int argc, char *argv[])
{

int i;

for (i = 1; i < argc; i++)
printf("%s%s", argv[i], (i < argc-1)? 11 11

"");

printf("\.n");
return 0;

}

Since argv is a pointer to an array of pointers, we can manipulate the pointer
rather than index the array. This next variation is based on incrementing argv,
which is a pointer to pointer to char, while argc is counted down:

#include <stdio.h>

I* echo command-line arguments; 2nd version */
main(int argc, char *argv[])
{

}

while (--argc > 0)
printf("%s%s", *++argv, (argc > 1)?"" " 11

);

printf ("\.n");
return 0;

Since argv is a pointer to the beginning of the array of argument strings, incre­
menting it by 1 (++argv) makes it point at the original argv[1] instead of
argv[0]. Each successive increment moves it along to the next argument;
*argv is then the pointer to that argument. At the same time, argc is decre­
mented; when it becomes zero, there are no arguments left to print.

Alternatively, we could write the printf statement as

ServiceNow's Exhibit No. 1004032

116 POINTERS AND ARRAYS CHAPTERS

print£ ((argc > 1) ? ""s • : ""s" , •++a.rgv) ;

This shows that the format argument of print£ can be an expression too.
As a second example, let us make some enhancements to the pattern-finding

program from Section 4.1. If you recall, we wired the search pattern deep into
the program, an obviously unsatisfactory arrangement. Following the lead of
the UNIX program grep, let us change the program so the pattern to be
matched is specified by the first argument on the command line.

#include <atdio . h>
#include <string~ .h> .
#define MAXLINE 1000

int getline(char •line, int max);

I• find: print lines that match pattern from 1st arg •I
main(int a.rgc, char •argv[])
{

}

char line[MAXLINE];
int found = 0;

if (argc l= 2)
printf(•osage: find pattern\n");

else
while (getline(line, MAXLINE) > 0)

if (strstr(line, argv[1]) I• NULL) {
· printf(""s", line);
found++;

}
return found;

The standard library function strstr (s, t) returns a pointer to the frrst
occurrence of the string t in the string s, or NULL if there is none. It is
declared in <string. h>.

The model can now be elaborated to illustrate further pointer constructions.
Suppose we want to allow two optional arguments. One says "print all lines
except those that match the pattern;" the second says ~~precede each printed line
by its line number."

A common convention for C programs on UNIX systems is that an argument
that begins with a minus sign introduces an optional flag or parameter. If we
choose -x (for "except") to signal the inversion, and -n ("number") to request
line numbering, then the command

find -x -n pattern

will print each line that doesn't match the pattern, preceded by its line number.
Optional arguments should be permitted in any order, and the rest of the

program should be independent of the number of arguments that were present.
Furthermore, it is convenient for users if option arguments can be combined, as

ServiceNow's Exhibit No. 1004033

SECTION S. J 0 COMMAND-LINE ARGUMENTS 117

.
10

find -nx pattern

Here is the program:

#include <stdio.h>
#include <strinq . h>
#define MAXLINE 1000

int getline(char •line, int max);

I• find: print lines that match pattern from 1st arg •I
main(int argc, char •argv[])
{

}

char line[MAXLINE];
long lineno = 0;
int c , except = 0, number = 0, found = 0;

while (--argc > 0 && (•++arqv)[O] == '-')
while (c = •++argv[O])

switch (c) {
case 'x':

except = 1;
break;

case 'n':
number = 1;
break;

default :

}

printf("find: illegal option %c\n", c);
argc = 0;
found= -1;
break;

if (argc I= 1)
printf("Usage : find -x -n pattern\n");

else
while (getline(line, MAXLINE) > 0) {

lineno++;

}

if ((strstr(line, •argv) I= NULL) I= except) {
if (number)

}

printf("%ld:", lineno);
printf (""s", line) ;
found++;

return found;

argc is decremented and arqv is incremented before each optional argu­
ment. At the end of the loop, if there are no errors, argc tells how many argu­
ments remain unprocessed and arqv points to the first of these. Thus argc

ServiceNow's Exhibit No. 1004034

I 18 POINTERS AND ARRAYS CHAPTERS

should be 1 and •argv should point at the pattern. Notice that •++argv is a
pointer to an argument string, so (•++argv) [01 is its first character. (An
alternate valid form would be ••++argv.) Because [1 binds tighter than *
and ++, the parentheses are necessary; without ·them the expression would be
taken as * + + (argv [0]) . In fact, that is what we used in the _inner loop,
where the task is to walk along a specific argument string. In the inner loop,
the expression •++argv[01 increments the pointer argv[0]!

It is rare that one uses pointer expressions more complicated than ·these; in
such cases, breaking them into two or three steps will be more intuitive.

Exercise 5-10. Write the program expr, which evaluates a reverse Polish
expression from the command line, where each operator or operand is a separate
argument. For example, ·

expr 2 3 4 + •

evaluates 2 x (3+4) . 0

Exercise 5-11. Modify the programs en tab and de tab (written as exercises in
Chapter 1) to accept a list of tab stops as arguments. Use the default tab set­
tings if there are no arguments. o

Exercise 5-12. Extend entab and detab to accept the shorthand

entab -m +n

to mean tab stops every n columns, starting at column m. Choose convenient
(for the user) default behavior. 0

Exercise 5-13. Write the program tail, which prints the last n lines of its
input. By default, n is 10, let us say, but it can be changed by an optional
argument, so that

tail -n

prints the last n lines. The program should behave rationally no matter bow
unreasonable the input or the value of n. Write the program so it makes the
best use of available storage; lines should be stored as in the sorting program of
Section 5.6, not in a two-dimensional array of fixed size. 0

5. 11 Pointers to Functions

In C, a function itself is not a variable, but it is possible to define pointers to
functions, which can be assigned, placed in arrays, passed to functions, returned
by functions, and so on. We will illustrate this by modifying the sorting pro­
cedure written earlier in this chapter so that if the optional argument -n is
given, it will sort the input lines numerically instead of lexicographically.

A sort often consists of three parts-a comparison that determines the

ServiceNow's Exhibit No. 1004035

SECTION 5.11 POINTERS TO FUNCTIONS 119

ordering of any pair of objects, an exchange that reverses their order, and a
sorting algorithm that makes comparisons and exchanges until the objects are in
order. The sorting algorithm is independent of the comparison and exchange
operations, so by passing different comparison and exchange functions to it, we
can arrange to sort by different criteria. This is the approach taken in our new
sort.

Lexicographic comparison of two lines is done by strcmp, as before; we will
also need a routine numcmp that compares two lines on the basis of numeric
value and returns the same kind of condition indication as strcmp does. These
functions are declared ahead of main and a pointer to the appropriate one is
passed to qsort. We have skimped on error processing for arguments, so as to
concentrate on the main issues.

#include <stdio.h>
#include <string.h>

#define MAXLINES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /*pointers to text lines */

int readlines(char *lineptr[], int nlines);
void writelines(char *lineptr[J, int nlines);

void qsort(void *lineptr[], int left, int right,
int (*comp)(void *,void*));

int numcmp(char *, char*);

/* sort input lines */
main(int argc, char *argv[])
{

}

int nlines; /* number of input lines read */
/* 1 if numeric sort */ int numeric = 0;

if (argc > 1 &&. strcmp(arqv[1], "-n1
') == 0)

numeric = 1;
if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {

qsort((void **) lineptr, 0, nlines-1,
(int (*)(void*,void*))(numeric? numcmp : strcmp));

writelines(lineptr, nlines);
return 0;

} else {

}

printf (11 input too big to sort\n") ;
return 1;

In the call to qsort, strcmp and numcmp are addresses of functions. Since
they are known to be functions, the &. operator is not necessary, in the same way
that it is not needed before an array name.

We have written qsort so it can process any data type, not just character

ServiceNow's Exhibit No. 1004036

120 POINTERS AND ARRAYS CHAPTERS

strings. As indicated by the function prototype, qsort expects an array of
pointers, two integers, and a function with two pointer arguments. The generic
pointer type void * is used for the pointer arguments. Any pointer can be cast
to void * and back again without loss of information, so we can call qsort by
casting arguments to void *· The elaborate cast of the function argument
casts the arguments of the comparison function. These will generally have no
effect on actual representation, but assure the compiler that all is well. .

I• qsort: sort v[left] ••• v[rightl into increasing order •I
void qsort(void •v[], int left, int right,

{

}

int <•comp)(void •, void •))

int i, last;
void swap(void •v[], int, int);

if (left >= right)
return;

swap(v, left, (left +
last • left;

I• do nothing if array contains •I
I• fewer than two elements •I
right)12);

for (i • left+1; i <• right; i++)
if ((•comp)(v[i], v[left]) < 0)

swap(v, ++last, i);
swap(v, left, last);
qsort(v, left, last-1, oomp);
qsort(v, last+1, right, oomp);

The declarations should be studied with some care. The fourth parameter of
qsort is

int ·(•eomp)(void •, void •)

which says that comp is a pointer to a function that has two void* arguments
and returns an int.

The use of comp in the line

if ((•eomp)(v[i], v[left]) < 0)

is consistent with the declaration: comp is a pointer to a function, *comp is the
function, and

<•comp)(v[i], v[left])

is the call to it. The parentheses are needed so the components are correctly
associated; without them,

int •comp(void •, void •> I• WRONG •I

says that comp is a function returning a pointer to an int, which is very dif­
ferent.

We have already shown strcmp, which compares two strings. Here is
numcmp, which compares two strings on a leading numeric value, computed by

ServiceNow's Exhibit No. 1004037

SECTION 5.11 POINTERS TO FUNCTIONS 121

calling a tof:

#include <stdlib.h>

I• numcmp: compare s1 and s2 numerically */
int numcmp(char *S1, char *S2)
{

}

double v1, v2;

v1 = atof (s 1);
v2 = atof(s2);
if (v1 < v2)

return -1;
else if (v1 > v2}

return 1;
else

return 0;

The swap function, which exchanges two pointers, is identical to what we
presented earlier in the chapter, except that the declarations are changed to
void*·

void swap(void •v[], int i, int j)
{

}

void •temp;

temp = v[i];
v[i] • v[j];
v[j] = temp;

A variety of other options can be added to the sorting program; some make
challenging exercises.

Exercise 5-14. Modify the sort program to handle a -r flag, which indicates
sorting in reverse (decreasing) order. Be sure that -r works with -n. 0

Exercise 5-15. Add the option -f to fold upper and lower case together, so that
case distinctions are not made during sorting; for example, a and A compare
equal. o

Exercise 5-16. Add the -d ("directory order") option, which makes comparis­
ons only on letters, numbers and blanks. Make sure it works in conjunction
with -f. 0

Exercise 5-17. Add a field-handling capability, so sorting may be done on fields
within lines, each field sorted according to an independent set of options. (The
index for this book was sorted with -df for the index category and -n for the
page numbers.) 0

ServiceNow's Exhibit No. 1004038

122 POINTERS AND ARRAYS CHAPTER 5

5. 12 Complicated Declarations

C is sometimes castigated for the syntax of its declarations, particularly ones
that involve pointers to functions. The syntax is an attempt to make the
declaration and the usc asree; it works well for simple cases, but it can be
confusing for the harder ones, because declarations cannot be read left to right,
and because parentheses are over-used. The difference between

int •f(); I• f: function returning Pointer to int •I

and

int (•pf)(); I• pf: pointer to function returning int •I

illustrates the problem: * is a prefix operator and it has lower precedence than
() , so parentheses are necessary to force the proper association.

Although truly complicated declarations rarely arise in practice, it is impor­
tant to ~ow how to understand them, and, if necessary, how to create them.
One good way to synthesize declarations is in small steps with typedef, which
is discussed in Section 6. 7. As an alternative, in this. section we will present a
pair of programs that convert from valid C to a word description and back
again. The word description reads left to right.

The first, del, is the more complex. It converts a C declaration into a word
description, as in theSe examples:

char ••arqv
arqv: . pointer to pointer to char

int (•daytab)[13]
daytab: pointe~ to array[13] of int

int •daytab[13]
~aytab: array[13] of pointer to int

void •comp ()
comp: function returning pointer -to void

void (•comp)()
comp: pointer to function returning void

char (•(•x())[])()
x: function returning pointer to array[] of
pointer to function returning char

char (•(•x[3])())[5]
x: array[3] of pointer to function returning
pointer to array[S] of char

del is based on the grammar that specifies a declarator, which is spelled out
precisely in Appendix A, Section 8.5; this is a simplified form:

del: optional •'s direct-del
direct -del: name

(del)
direct -del ()
direct -del [optional size]

In words, a del is a direct-del, perhaps preceded by •'s. A direct-del is a

ServiceNow's Exhibit No. 1004039

SECTION S. l2 COMPLICATED DECLARATIONS 123

name, or a parenthesized del, or a direct -del followed by parentheses, or a
direct -del followed by brackets with an optional size.

This grammar can be used to parse declarations. For instance, consider this
declarator:

(*pfa[])()

pf a will be identified as a name and thus as a direct -del. Then pf a [] is also
a direct-de/ . Then *Pfa[] is a recognized as a· del, so (*Pfa(]) is a direct­
del. Then (*Pfa[]) () is a direct-del and thus a del. We can also illustrate
the parse with a parse tree like this (where direct-de/ has been abbreviated to
dir-del) :

* pfa [1 ()

I
name

I
dir-dcl

dir-dc/

I
dir-dc/

I
del

The heart of the del program is a pair of functions, del and dirdcl, that
parse a declaration according to this grammar. Because the grammar is recur­
sively defined, the functions call each other recursively as they recognize pieces
of a declaration; the program is called a recursive-descent parser.

I* del: parse a declarator */
void dcl(void)
{

}

int ns;

for (ns = 0; gettoken() == '*';
ns++;

dirdcl();
while (ns-- > 0)

strcat (out, " pointer to") ;

ServiceNow's Exhibit No. 1004040

124 POINTERS AND ARRAYS

I • dirdcl : parse a direct declarator • I
void dirdcl(void)
{

int type;

if (tokentype == ' (') {
del();

I • (del) • I

)~·) ;

CHAPTER S

if {tokentype I• ') ')
printf("error: missing

} else if (tokentype == NAME)
strcpy(name, token) ;

I • variable name • I

else
printf("error: expected name or (dcl) \ n");

while ({type• gettoken()) ==PARENS II type • • BRACKETS)
if (type == PARENS)

}

strcat(out , " function returning") ;
else {

}

strcat(out, " array•);
atrcat(out, token);
strcat(out , "of");

Since the programs are intended to be illustrative, not bullet-proof, there are
significant restrictions on del. It can only handle a simple data type like char
or int It does ·not handle argument types in functions, or qualifiers like
const. Spurious blanks confuse it. It doesn't do much error recovery, so
invalid declarations will also confuse it. These improvements are left as exer­
cises.

Here are· the global variables and the main routine:

#include <stdio.h>
#include <string . h>
#include <ctype.h>

#define MAXTOKEN 100

enum { NAME, PARENS, BRACKETS

void del (void);
void dirdcl (void) ;

int gettoken(void) ;
int tokentype; I •
char token [MAX'l'OlCEN] ; I •
char name [MAXTOICEN] ; I •
char datatype[MAXTOKEN] ; I •
char out[1000]; I •

} ;

type of last token • I
last token string • I
identifier name •I
data type = char, int,
output string • I

etc . •I

ServiceNow's Exhibit No. 1004041

SECTION 5.12 COMPLICATED DECLARATIONS 115

main() I• convert declaration to words •I
{

}

while (gettoken() I= EOF) { I• 1st token on line •I
strcpy(datatype, token); I• is the datatype •I
out[O] = '\0';

}

del(); I• parse rest of line •I
if (tokentype I= '\n')

printf("syntax error\n");
printf (""s : "s "s\n", name, out, data type);

return 0;

The function qettoken skips blanks and tabs, then finds the next token in
the input; a "token" is a name, a pair of parentheses, a pair of brackets perhaps
including a number, or any other single character.

int gettoken(void) I• return next token •I
{

}

int c, getch(void);
void ungetch(int);
char *P = token;

while ((c = getch()) --

if (c == , (,) {

, , I I c == '\t' >

if ((c = getch()) == ')') {
strcpy(token, "()");
return tokentype = PARENS;

} else {
ungetch (c } ;
return tokentype = '(';

}

} else if (c == '[') {
for (•p++ = c; (•p++ = getch()) I= ']';) .

' *P = '\0';
return tokentype = BRACKETS;

} else if (isalpha(c)) {
for (•p++ = c; isalnum(c = getch());

*P++ = c;
*P = '\0';
ungetch (c) ;
return tokentype = NAME;

} else
return tokentype = c;

qetch and unqetch were discussed in Chapter 4.
Going in the other direction is easier, especially if we do not worry about

generating redundant parentheses. The program undcl converts a word

ServiceNow's Exhibit No. 1004042

ll6 POINTERS AND ARRAYS CHAPTERS

description like "x is a function returning a pointer to an array of pointers to
functions returning char," which we will express as

x () • [] • ()char

to

char (• (•x ()) [1) 0

The abbreviated input syntax lets us reuse the qettoken function. undcl also
uses the same external variables as del does.

I• undcl: convert word description to declaration •/
main()
{

}

int type;
char temp [MAXTOI<EN 1 ;

while (gettoken() I• EOF) {
strcpy(out, token);

}

while ((type= gettoken()) I• '\n')
if (type •• PARENS I I type == BRACI<ETS)

strcat(out , token);
else if (type •• '•') {

sprintf(temp, " (•~s) " , out);
strcpy(out, temp);

} else if (type == NAME) {
sprintf(temp, "~s ~s", token, out);
strcpy(out, temp);

} else
printf("invalid input at ~s\n", token);

printf("%s\n", out);

return 0;

Exercise S-18. Make del recover from input errors. c

Exercise S-19. Modify undcl so that it does not add redundant parentheses to
declarations. c

Exercise S-20. Expand del to handle declarations with function argument
types, qualifiers like const, and so on. D

ServiceNow's Exhibit No. 1004043

cHAPTER 1: Input and Output

Input and output facilities are not part of the C language itself, so we have
not emphasized them in our presentation thus far. Nonetheless, programs
interact with their environment in much more complicated ways than those we
have shown before. In this chapter we will describe the standard library, a set
of functions that provide input and output, string handling, storage manage­
ment, mathematical routines, and a variety of other services for C programs.
We will concentrate on input and output.

The ANSI standard defines these library functions precisely, so that they can
exist in compatible form on any system where C exists. Programs that confine
their system interactions to facilities provided by the standard library can be
moved from one system to another without change.

The properties of library functions are specified in more than a dozen
headers; we have already seen several of these, including <stdio. h>,
<string. h>, and <ctype. h>. We will not present the entire library here,
since we are more interested in writing C programs that use it. The library is
described in detail in Appendix B.

7.1 Standard Input and Output

As we said in Chapter 1, the library implements a simple model of text input
and output. A text stream consists of a sequence of lines; each line ends with a
newline character. If the system doesn't operate that way, the library does
whatever is necessary to make it appear as if it does. For instance, the library
might convert carriage return and linefeed to newline on input and back again
on output.

The simplest input mechanism is to read one character at a time from the
standard input, normally the keyboard, with get char:

int getchar(void)

getchar returns the next input character each time it is called, or EO~" when it
encounters end of file. The symbolic constant EOF is defined in <stdio. h>.

ServiceNow's Exhibit No. 1004044

151 INPUT AND OUTPUT CHAPTER 7

The value is typically -1, but tests should be written in terms of EOF so as to be
independent of the speCific value.

In many environments, a file may be substituted for the keyboard by using
the < convention for input redirection: if a program prog uses getchar, then
the command line

prog <infile

causes prog to read characters from· infile instead. The switching of the
input is done in such a way that prog itself is oblivious to the change; in partic­
ular, the string "<infile" is not included in the command-line arguments in
argv. Input switching is also invisible if the input comes from another program
via a pipe mechanism: on some systems, the command line

otherprog I prog

runs the twq programs otherprog and prog, and pipes the standard output of
otherprog into the standard input for prog.

The function

int putchar(int)

is used for output: putchar (c) puts the character c on the standard output,
which is by default the screen. putchar returns the character written, or EOF
if an error occurs. Again, output can usually be directed to a file with
>filename: if prog uses putchar,

prog >outfile

will write the standard output to outfile instead. If pipes are supported,

pro<1 I anotherprog .

puts the standard output of prog into the standard input of anotherprog.
Output produced by printf also finds its way to the standard output.

Calls to putchar and printf may be interleaved-output appears in the
order in which the calls were made.

Each source file that refers to an input/output library function must contain
the line

#include <stdi9 . h>

before the first reference. When the name is bracketed by < and > a search is
made for the header in a standard set of places (for example, on UNIX systems,
typically in the directory /usr/include).

Many programs read only one input stream and write only one output
stream; for such programs, input and output with getchar, putchar, and
printf may· be entirely adequate, and is certainly enough to get started. This
is particularly true if redirection is used to connect the output of one program to
the input of the next. For example, consider the program lower, which con­
verts its input to lower case:

ServiceNow's Exhibit No. 1004045

SECTION 7.2 FORMATTED OUTPUT- PRINTF 153

#include <stdio.h>
#include <ctype. h>

main() /*lower: convert input to lower case*/
{

}

int c;

while · ((c = getchar()) I= EOF}
putchar(tolower(c));

return 0;

The function to lower is defined in <ctype. h>; it converts an upper case
letter to lower case, and returns other characters untouched. As we mentioned
earlier, "functions" like getchar and putchar in <stdio. h> and tolower
in <ctype. h> are often macros, thus avoiding the overhead of a function call
per character. We will show how this is done in Section 8.5. Regardless of how
the <ctype. h> functions are implemented on a given machine, programs that
use them are shielded from knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case
to upper, depending on the name it is invoked with, as found in argv[0]. D

7.2 Formatted Output-Printf

The output function printf translates internal values to characters. We
have used printf informally in previous chapters. The description here covers
most typical uses but is not complete; for the full story, see Appendix B.

int print£ (char *format, arg 1 , arg2 , ...)

printf converts, formats, and prints its arguments on the standard output
under control of the format. It returns the number of characters printed.

The format string contains two types of objects: ordinary characters, which
are copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to printf.
Each conversion specification begins with a % and ends with a conversion char­
acter. Between the %and the conversion character there may be, in order:

• A minus sign, which specifies left adjustment of the converted argument.

• A number that specifies the minimum field width. The converted argument will be
printed in a field at least this wide. If necessary it will be padded on the left (or
right, if left adjustment is called for) to make up the field width.

• A period, which separates the field width from the precision.

• A number, the precision, that specifies the maximum number of characters to be
printed from a string, or the number of digits after the decimal point of a floating­
point value, or the minimum number of digits for an integer.

ServiceNow's Exhibit No. 1004046

154 INPUT AND OUTPUT CHAPTER 7

• An h if the integer is to be printed as a short, or 1 (letter ell) if as a long.

Conversion characters· are shown in Table 7-1. If the character after the % is
not a conversion specification, the behavior is undefined.

TABLE 7-1 . BASIC PRINTF CONVERSIONS

CHARACTER ARGUMENT TYPE; PRINTED AS

d, i int; decimal number.
o int; unsigned octal number (without a leading zero).

x, X int; unsigned hexadecimal number (without a leading Ox or
OX), using abcdef or ABCDEF for 10, ... , 15.

u int; unsigned decimal number.
c int; single character.
s char *; print characters from the string until a '\0' or the

number of characters given by the precision.
f double; [-]m.dddddd, where the number of d's is given by the

precision (default 6) .
e, E double; [-]m.dddddde±xx or [-]m.ddddddE±xx, where the

number of d's is given by the precision (default 6).
g, G double; use %e or %E if the exponent is less than -4 or greater

than or equal to the precision; otherwise use %£. Trailing zeros
and a trailing decimal point are not printed.

p void *; pointer (implementation-dependent representation).
% no argument is converted; print a %.

A width or precision may be specified as *• in which case the value is com­
puted by converting the next argument (which must be an int). For example,
to print at most ma.x characters from a string s ,

printf("%.•s'', max, s);

Most of the format conversions have been illustrated in earlier chapters.
One exception is precision as it relates to strings. The following table shows the
effect of a variety of specifications in printing "hello, world" (12 characters) .
We have put colons around each field so you can see its extent.

:"s: :hello, . world:
:%10s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world :
:%-15s: :hello, world
:%15.10s : hello, wor:
:"-15.10s: :hello, wor

A warning: print£ uses its first argument to decide how many arguments

ServiceNow's Exhibit No. 1004047

SECTJON 7.3 VARIABLE-LENGTH ARGUMENT LISTS 155

follow and what their types are. It will get confused, and you will get wrong
answers, if there are not enough arguments or if they are the wrong type. You
should also be aware of the difference between these two calls:

printf(s); /*FAILS if s contains%*/
printf("%s", s); /*SAFE*/

The function sprint£ does the same conversiOns as printf does, but
stores the output in a string:

int sprint£ (char *String, char *format, arg 1 , arg 2 , •••)

sprintf formats the arguments in arg 1, arg 2 , etc., according to format as
before, but places the result in string instead of on the standard output;
string must be big enough to receive the result.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way.
As a minimum, it should print non-graphic characters in octal or hexadecimal
according to local custom, and break long text lines. D

7.3 Variable-length Argument Lists

This section contains an implementation of a minimal version of printf, to
show how to write a function that processes a variable-length argument list in a
portable way. Since we are mainly interested in the argument processing,
minprintf will process the format string and arguments but will call the real
printf to do the format conversions.

The proper declaration for printf is

int printf(char *fmt, . ..)

where the declaration ..• means that the number and types of these arguments
may vary. The declaration •.. can only appear at the end of an argument list.
Our minprintf is declared as

void minprintf(char *fmt, ...)

since we will not return the character count that printf does.
The tricky bit is how minprintf walks along the argument list when the

list doesn't even have a name. The standard header <stdarg. h> contains a
set of macro definitions that define how to step through an argument list. The
implementation of this header will vary from machine to machine, but the inter­
face it presents is uniform.

The type va_list is used to declare a variable that will refer to each argu­
ment in turn; in minprintf, this variable is called ap, for "argument pointer."
The macro va_start initializes ap to point to the first unnamed argument. It
must be called once before ap is used. There must be at least one named argu­
ment; the final named argument is used by va_start to get started.

ServiceNow's Exhibit No. 1004048

156 INPUT AND OUTPUT CHAPTER 7

Each call of va_arg returns one argument and steps ap to the next;
va_arg uses a type name to determine what type to return and how big a step
to take. Finally, va_end does whatever cleanup is necessary. It must be called
before the function returns.

These properties form the basis of our simplified printf:

#include <stdarg.h>

/* minprintf: minimal print£ with variable argument list . */
void minprintf(char *fmt, •• •)
{

}

va_list ap; /* points to each unnamed arg in turn */
char *P, *Sval ;
int ival;
double dval;

va_start(ap, fmt); /*make appoint to 1st unnamed arg */
for (p = fmt; *P; p++) {

if (*P I= '%') {
putchar (*P) ;
continue;

}

switch (*++p) {
case 'd':

ival = va_arg(ap, int} ;
printf("%d", ival};
break;

case 'f' :
dval = va_arg(ap, double);
print£("%£", dval);
break;

case 's':
for (sval = va_arg(ap, char*); *Sval ; sval++)

putchar (•sval) ;
break;

default:
put char (*P) ;
break;

}
}

va_end(ap) ; /* clean up when done */

Exercise 7-3. Revise minprintf to handle more of · the other facilities of
printf. 0

ServiceNow's Exhibit No. 1004049

SECTION 7.4 FORMATTED INPUT-SCANF 157

7.4 Formatted lnput-Scanf

The function scan£ is the input analog of print£, providing many of the
same conversion facilities in the opposite direction.

int scanf(char *format, ...)

scan£ reads characters from the standard input, interprets them according to
the specification in format, and stores the results through the remaining argu­
ments. The format argument is described below; the other arguments, each of
which must be a pointer, indicate where the corresponding converted input
should be stored. As with print£, this section is a summary of the most useful
features, not an exhaustive list.

scan£ stops when it exhausts its format string, or when some input fails to
match the control specification. It returns as its value the number of success­
fully matched and assigned input items. This can be used to decide how many
items were found . On end of file, EOF is returned; note that this is different
from 0, which means that the next input character does not match the first
specification in the format string. The next call to scan£ resumes searching
immediately after the last character already converted.

There is also a function sscanf that reads from a string instead of the
standard input:

int sscanf (char *String, char *format, arg 1 , arg2 , ...)

It scans the string according to the format in format, and stores the result­
ing values through arg 1, arg2 , etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used
to control conversion of input. The format string may contain:

• Blanks or tabs, which are ignored.

• Ordinary characters (not %) , which are expected to match the next non-white space
character of the input stream.

• Conversion specifications, consisting of the character %, an optional assignment
suppression character *• an optional number specifying a maximum field width, an
optional h, 1, or L indicating the width of the target, and a conversion character.

A conversion specification directs the conversion of the next input field. Nor­
mally the result is placed in the variable pointed to by the corresponding argu­
ment. If assignment suppression is indicated by the * character, however, the
input field is skipped; no assignment is made. An input field is defined as a
string of non-white space characters; it extends either to the next white space
character or until the field width, if specified, is exhausted. This implies that
scan£ will read across line boundaries to find its input, since newlines are
white space. (White space characters are blank, tab, newline, carriage return,
vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field . The
corresponding argument must be a pointer, as required by the call-by-value

ServiceNow's Exhibit No. 1004050

158 INPUT AND OUTPUT CHAPTER 7

semantics of C. Conversion characters are shown in Table 7-2.

TABLE 7-2. BASIC SCANF CONVERSIONS

CHARACTER INPUT DATA; ARGUMENT TYPE

d decimal integer; int *·
i integer; int *· The integer may be in octal (leading · O) or

hexadecimal (leading Ox or Ox).

o octal integer (with or without leading zero); int *·
u unsigned decimal integer; unsigned int *·
x hexadecimal integer (with or without leading Ox or ox>; int *·
c characters; char *· The next input characters (default 1) are

placed at the indicated spgt. The normal skip over white space
is suppressed; to read the next non-white space character, use
%1s.

s character string (not quoted); char *• pointing to an ~rray of
characters large enough for the string and a terminating ' \0 ' .
that will be added.

e , f, g floating-point number with optional sign, optional decimal point
and optional exponent; float *·

% literal %; no assignment is made.

The conversion characters d, i, o, u, and x may be preceded by h to indi­
cate that a pointer to short rather than int appears in the argument list, or
by 1 Oetter ell) to indicate that a pointer to long appears in the argument list.
Similarly, the conversion characters e, f, and g may be preceded by 1 to indi­
cate that a pointer to double rather than float is in the argument list.

As a first example, the rudimentary calculator of Chapter 4 can be written
with scanf to do the input conversion:

#include <stdio.h>

main() /*rudimentary calculator •/
{

}

double sum, v;

sum = 0;
while (scanf("%1£", &v) == 1)

printf("\t%. 2f\n", sum += v);
return 0;

Suppose we want to read input lines that contain dates of the form

25 Dec 1988

The scanf statement is

ServiceNow's Exhibit No. 1004051

SECTION 7.4 FORMATTED INPUT-SCANF 159

int day, year;
char monthname[20];

scanf("%d %s %d", &day, monthname, &year);

No & is used with monthname, since an array name is a pointer.
Literal characters can appear in the scan£ format string; they must match

the same characters in the input. So we could read dates of the form
mm/dd/yy with this scan£ statement:

int day, month, year;

scan£ ("%d/%d/%d", &month, &day, &year) ;

scanf ignores blanks and tabs in its format string. Furthermore, it skips
over white space (blanks, tabs, newlines, etc.) as it looks for input values. To
read input whose format is not fixed, it is often best to read a line at a time,
then pick it apart with sscanf. For example, suppose we want to read lines
that might contain a date in either of the forms above. Then we could write

while (getline(line, sizeof(line)) > 0) {
if (sscanf(line, "%d %s %d", &day, monthname, &year) ::;;: 3)

printf("valid: %s\n", line); /* 25 Dec 1988 form*/
else if (sscanf(line, "%d/%d/%d", &month, &day, &year) == 3)

printf("valid: %s\n", line); /* nun/dd/yy form*/
else

printf("invalid: %s\n", line); /*invalid form*/
}

Calls to scan£ can be mixed with calls to other input functions. The next
call to any input function will begin by reading the first character not read by
scan£.

A final warning: the arguments to scan£ and sscanf must be pointers.
By far the most common error is writing

scan£("%d", n);

instead of

scan£ ("%d", &n) ;

This error is not generally detected at compile time.

Exercise 7-4. Write a private version of scanf analogous to minprintf from
the previous section. o

Exercise 7-5. Rewrite the postfix calculator of Chapter 4 to use scan£ and/or
sscanf to do the input and number conversion. 0

ServiceNow's Exhibit No. 1004052

160 INPUT AND OUTPUT CHAPTER 7

7.5 File Access

The examples so far have all read the standard input and written the stand­
ard output, which are automatically defined for a program by the local operat­
ing system.

The next step is to write a program that accesses a file that is not already
connected to the program. One program that illustrates the need for such
operations is cat, which concatenates a set of named files onto the staQdard
output. cat is used for printing files on the screen, and as a general-purpose
input collector for programs that do not have the capability of accessing files by
name. For example, the command

cat x.c y.c

prints the contents of the files x. c and y. c (and nothing else) on the standard
output.

The question is how to arrange for the named files to be read-that is, how
to connect the external names that a user thinks of to the statements that read
the data.

The rules are simple. Before it can be read or written, a file has to be
opened by the library function fopen. fopen takes an external name like x. c
or y. c, does some housekeeping and negotiation with the operating system
(details of which needn't concern us), and returns a pointer to be used in subse-

. quent reads or writes of ihe file.
This pointer, called the file pointer, points to a structure that contains infor­

mation about the file, such as the location of a buffer, the current character
position in the buffer, whether the file is being read or written, and whether
errors or end of file have occurred. Users don't need to know the details,
because the definitions obtained from <stdio . h> include a structure declara­
tion called FILE. The only declaration needed for a file pointer is exemplified
by

FILE •fp;
FILE •fopen(char •name, char •mode);

This says that fp is a pointer to a FILE, and fopen returns a pointer to a
FILE. Notice that FILE is a type name, like int, not a structure tag; it is
defined with a typedef. (Details of how fopen can be implemented on the
UNIX system are given in Section 8.5.)

The call to fopen in a program is

fp = fopen(name, mode);

The first argument of fopen is a character string containing the name of the
file. The second argument is the mode , also a character string, which indicates
how one intends to use the file. Allowable modes include read ("r"), write
("w"), and append ("a"). Some systems distinguish between text and binary
files; for the latter, a "b" must be appended to the mode string.

ServiceNow's Exhibit No. 1004053

SECTION 7.5 FILE ACCESS 161

If a file that does not exist is opened for writing or appending, it is created if
possible. Opening an existing file for writing causes the old contents to be dis­
carded, while opening for appending preserves them. Trying to read a file that
does not exist is an error, and there may be other causes of error as well, like
trying to read a file when you don't have permission. If there is any error,
fopen will return NULL. (The error can be identified more precisely; see the
discussion of error-handling functions at the end of Section 1 in Appendix B.)

The next thing needed is a way to read or write the fi le once it is open.
There are several possibilities, of which getc and putc are the simplest. getc
returns the next character from a file; it needs the file pointer to tell it which
file.

int getc(FILE *fP)

getc returns the next character from the stream referred to by fp; it returns
EOF for end of file or error.

putc is an output function:

int putc(int c, FILE *fp)

putc writes the character c to the file fp and returns the character written, or
EOF if an error occurs. Like getchar and putchar, getc and putc may be
macros instead of functions.

When a C program is started, the operating system environment is responsi­
ble for opening three fi les and providing file pointers for them. These files are
the standard input, the standard output, and the standard error; the correspond­
ing file pointers are called stdin, stdout, and stderr, and are declared in
<stdio. h>. Normally stdin is connected to the keyboard and stdout and
stderr are connected to the screen, but stdin and stdout may be
redirected to files or pipes as described in Section 7 .1.

getchar and putchar can be defined in terms of getc, putc, stdin,
and stdout as follows:

#define getchar()
#define putchar(c)

getc(stdin)
putc((c), stdout)

For formatted input or output of files, the functions fscanf and fprintf
may be used. These are identical to scanf and printf, except that the first
argument is a file pointer that specifies the file to be read or written; the format
string is the second argument.

int fscanf(FILE *fp, char *format, ...)
i nt fprintf(FILE *fP, char *format, . ..)

With these preliminaries out of the way, we are now in a posthon to write
the program cat to concatenate files. The design is one that has been found
convenient for many programs. If there are command-line arguments, they are
interpreted as ·filenames, and processed in order. If there are no arguments, the
standard input is processed.

ServiceNow's Exhibit No. 1004054

162 INPUT AND OUTPUT

#include <stdio.h>

/* cat: concatenate files, version 1 */
main(int argc, char *argv[])
{

FILE *fp;
void filecopy(FILE *, FILE*);

CHAPTER 7

if (argc •• 1) /* no args; copy standard input */
filecopy(stdin, stdout);

}

else
while (--argc > 0)

if ((fp = fopen(*++argv, "r")) ==NULL} {
printf("cat: can't open "s\n", *argv};
return 1;

} else {

}

return 0;

filecopy(fp, stdout).;
felose(fp);

I* fileeopy: copy file ifp to file ofp •I
void filecopy(FILE *ifp, FILE *Ofp)
{

}

int c;

while ((c = getc(ifp)) I• EOF)
putc(c, ofp);

The file pointers stdin and stdout are objects of type FILE *· They are
constants, however, not variables, so it is not possible to assign to them.

The function

int fclose(FILE *fP)

is the inverse of fopen; it breaks the connection between the file pointer and
the external name that was established by fopen, freeing the file pointer for
another file. Since most operating systems have some limit on the number of
files that a program may have open simultaneously, it's a good idea to free file
pointers when they are no longer needed, as we did in cat. There is also
another reason for fclose on an output file-it flushes the buffer in which
putc is collecting output. fclose is called automatically for each open ftle
when a program terminates normally. (You can close stdin and stdout if
they are not needed. They can also be reassigned by the library function
freopen)

ServiceNow's Exhibit No. 1004055

SECTION 7.6 ERROR HANDLING-STDERR AND EXIT 163

7.6 Error Handling-Stderr and Exit

The treatment of errors in cat is not ideal. The trouble is that if one of the
files can't be accessed for some reason, the diagnostic is printed at the end of
the concatenated output. That might be acceptable if the output is going to a
screen, but not if it's going into a file or into another program via a pipeline.

To handle this situation better, a second output stream, called stderr, is
assigned to a program in the same way that stdin and stdout are. Output
written on stderr normally appears on the screen even if the standard output
is redirected.

Let us revise cat to write its error messages on the standard error.

#include <stdio.h>

I• cat: concatenate files, version 2 *I
main(int argc, char *argv[])
{

}

FILE *fp;
void filecopy(FILE *, FILE*) ;
char *Prog = argv[O]; I• program name for errors •I

if (argc == 1) I• no args; copy standard input •/
filecopy(stdin, stdout);

else
while (--argc > 0)

if ((fp = fopen(•++argv, "r")) ==NULL) {
fprintf(stderr, "%s: can't open %s\n",

prog , *argv) ;
exit(1);

} else {

}

filecopy(fp, stdout);
fclose (fp);

if (ferror(stdout)) {
fprintf(stderr, "%s: error writing stdout\n" , prog);
exit(2);

}

exit(O);

The program signals errors two ways. First, the diagnostic output produced
by fprintf goes onto stderr, so it finds its way to the screen instead of
disappearing down a pipeline or into an output file. We included the program
name, from argv[0], in the message, so if this program is used with others,
the source of an error is identified.

Second, the program uses the standard library function exit, which ter­
minates program execution when it is called. The argument of exit is avail­
able to whatever process called this one, so the success or failure of the program
can be tested by another program that uses this one as a sub-process.

ServiceNow's Exhibit No. 1004056

164 INPUT AND OUTPUT CHAPTER 7

Conventionally, a return value of 0 signals that all is well; non-zero values usu·
ally signal abnormal situations. exit calls fclose for each open output file,
to flush out any buffered output.

Within main, return expr is equivalent to exit (expr) . exit has the
advantage that it can be qalled from other functions, and that call~ to it can be
found with a pattern-searching program like those in Chapter 5.

The function f error returns non·zero if an error occurred on the stream
fp.

int ferror(FILE •fp)

Although output errors are rare, they do occur (for example, if a disk fills up),
so a production program should check this as well.

The function f eof (FILE *) is analogous to f error; it returns non-zero if
end of file has occurred on the specified file.

int feof(FILE *tp)

We have generally not worried about exit status in our small illustrative pro­
grams, but any serious program should take care to return sensible, useful status
values.

7. 7 Line Input and Output

The standard library provides an input routine fgets that is similar to the
getline function that we have used in earlier chapters:

char •f9ets(char •line, int maxline, FILE *fp)

fgets reads the next input line (including the newline) from file fp into the
character array line; at most maxline-1 characters will be read. The result­
ing line is terminated with '\0 '. Normally fgets returns line; on end of
file or error it returns NULL. (Our getline returns the line length, which is a
more useful value; zero means end of file.)

For output, the function fputs writes a string (which need not contain a
newline) to a file:

int fputs(ehar •line, FILE *fp)

It returns EOF if an error occurs, and zero otherwise.
The library functions gets and puts are similar to fgets and fputs, but

operate on stdin and stdout. Confusingly, gets deletes the terminal '\n ',
and puts adds it.

To show that there is nothing special about functions like fgets and
fputs, here they are, copied from the standard library on our system:

ServiceNow's Exhibit No. 1004057

SECTION 7.7 LINE INPUT AND OUTPUT 165

/* fgets: get at most n chars from iop */
char *fgets{char *S, int n, FILE *iop)
{

}

/*

register int c;
register char *CS;

cs = s;
while {--n > 0 && (c = getc(iop)) I= EOF)

if ((*CS++ =c) == '\n')
break;

*CS = '\0' j
return (c == EOF && cs -- s) ? NULL s;

fputs: put string s on file iop *I
int fputs(char *S, FILE *iop)
{

int c;

while (c = *S++)
putc(c, iop);

return ferror(iop) ? EOF O·
' }

The standard specifies that ferror returns non-zero for error; fputs returns
EOF for error and a non-negative value otherwise.

It is easy to implement our getline from fgets:

/* getline: read a line, return length */
int getline(char *line, int max)
{

}

if (fgets(line, max, stdin) == NULL)
return 0;

else
return strlen(line);

Exercise 7-6. Write a program to compare two files, printing the first line
where they differ. D

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input
from a set of named files or, if no files are named as arguments, from the stand­
ard input. Should the file name be printed when a matching line is found? 0

Exercise 7-8. Write a program to print a set of files, starting each new one on a
new page, with a title and a running page count for each file. 0

ServiceNow's Exhibit No. 1004058

166 INPUT AND OUTPUT CHAPTER 7
'

7.8 Miscellaneous Functions

The standard library provides a wide variety of functions. This section is a
brief synopsis of the most useful. More details and many other functions can be
found in Appendix B.

7 .8. 1 String Operations

We have already mentioned the string functions strle~ strcpy, strcat,
and strcmp, found in <string. h>. In the following, s and tare char *'s,
and c and n are ints.

strcat(s,t)
strncat(s,t,n)
strcmp(s,t)

strncmp(s , t,n)
strcpy(s,t)
strncpy(s,t,n)
strlen(s) ·
strchr(s,c)
strrchr(s,c)

concatenate t to end of s
concatenate n characters of t to end of s
return negative, zero, or positive for

s < t, s == t, or s > t
same as strcmp but only in first n characters
copy t to s
copy at most n characters of t to s
return length of s ·,
return pointer to first c in s, or NULL if not present
return pointer to last c in s, or NULL if not present

7.8.2 Character Class Testing and Conversion

Several functions from <ctype. h> perform character tests and conversions.
In the following, c is an int that can be represented as an unsigned char,
or EOF. The functions return int.

isalpha(c)
isupper(c)
islower(c)
isdigit(c)
isalnum(c)
isspace(c)
toupper(c)
tolower(c)

7 .8.3 Ungetc

non-zero if c is alphabetic, 0 if not
non-zero if c is upper case, 0 if not
non-zero if c is lower case, 0 if not
non-zero if c is digit, 0 if not
non-zero if isalpha (c) or i sdigi t (c), 0 if not
non-zero if c is blank, tab, newline, return, formfeed, vertical tab ·
return c converted to upper case
return c converted to lower case

The standard library provides a rather restricted version of the function
ungetch that we wrote in Chapter 4; it is called ungetc.

int ungetc(int c, FILE *fP)

pushes the character c back onto file fp, and returns either c, or EOF for an
error. Only one character of pushback is guaranteed per file. ungetc may be
used with any of the input functions like scanf, getc, or getchar.

ServiceNow's Exhibit No. 1004059

SECTION 7.8 MISCELLANEOUS FUNCTIONS 167

7 .8.4 Command Execution

The function system(char *S) executes the command contained in the
character string s, then resumes execution of the current program. The con­
tents of s depend strongly on the local operating system. As a trivial example,
on UNIX systems, the statement

system("d~te");

causes the program date to be run; it prints the date and time of day on the
standard output. system returns a system-dependent integer status from the
command executed. In the UNIX system, the status return is the value returned
by exit.

7 .8.5 Storage Management

The functions malloc and calloc obtain blocks of memory dynamically.

void *malloc(size_t n)

returns a pointer to n bytes of uninitialized storage, or NULL if the request can­
not be satisfied.

void *Calloc(size_t n, size_t size)

returns a pointer to enough space for an array of n objects of the specified size,
or NULL if the request cannot be satisfied. The storage is initialized to zero.

The pointer returned by malloc or calloc has the proper alignment for
the object in question, but it must be cast into the appropriate type, as in

int *ip;

ip = (int *) calloc(n, sizeof(int));

free (p) frees the space pointed to by p, where p was originally obtained
by a call to malloc or calloc. There are no restrictions on the order in
which space is freed, but it is a ghastly error to free something not obtained by
calling calloc or malloc.

It is also an error to use something after it has been freed. A typical but
incorrect piece of code is this loop that frees items from a list:

for (p = head; p I= NULL; p = p->next)
free (p);

I* WRONG */

The right way is to save whatever is needed before freeing:

for (p = head; p I= NULL; p = q) {
q = p->next;
free (p);

}

Section 8.7 shows the implementation of a storage allocator like malloc, in

ServiceNow's Exhibit No. 1004060

168 INPUT AND OUTPUT CHAPTER 7 .

which allocated blocks may be freed in any order.

7 .8.6 Mathematical Functions

There are more than twenty mathematical functions declared ~n <math. h >;
here are some of the more frequently used. Each takes one or two double
arguments and returns a double.

sin(x)
cos(x)
atan2 (y ,x)
exp(x)
log(x)
log10(x)
pow(x,y)
sqrt(x)
fabs(x)

sine of x, x in radians
cosine of x, x in radians
arctangent of y/x, in radians
exponential function e"
natural (base e) logarithm of x (x>O)
common (base l 0) logarithm of x (x > 0)
xY
square root of x (x ~0)
absolute value of x

7 .8. 7 Random Number Generation

The function rand () computes a sequence of pseudo-random integers in the
range zero to RAND_MAX, which is defined in <stdlib.h>. One way to pro­
duce random floating-point numbers greater than or equal to zero but less than
one is

#define £rand() ((double) rand() I (RAND_MAX+1.0))

(If your library already provides a function for floating-point random numbers,
it is likely to have better statistical properties than this one.)

The function srand(unsigned) sets the seed for rand. The portable
implementation of rand and srand suggested by the standard appears in Sec­
tion 2.7.

Exercise 7-9. Functions like isupper can be implemented to save space or to ·
save time. Explore both possibilities. 0

ServiceNow's Exhibit No. 1004061

