
Passing Information to a Method or a Constructor (The Java™ Tutorials > Learning the Java Language > Classes and Objects)

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html[10/19/2015 5:34:18 PM]

Download Ebooks
Download JDK
Search Java Tutorials
Hide TOC

Home Page > Learning the Java Language > Classes and Objects
Classes and Objects

Classes
Declaring Classes
Declaring Member
Variables

Defining Methods
Providing Constructors
for Your Classes

Passing Information
to a Method or a
Constructor

Objects
Creating Objects
Using Objects

More on Classes
Returning a Value from
a Method

Using the this Keyword
Controlling Access to
Members of a Class

Understanding Class
Members

Initializing Fields
Summary of Creating
and Using Classes
and Objects

Questions and Exercises
Questions and Exercises
Nested Classes

Inner Class Example
Local Classes
Anonymous Classes
Lambda Expressions

Method References
When to Use Nested
Classes, Local
Classes, Anonymous
Classes, and Lambda
Expressions

Questions and Exercises
Enum Types
Questions and Exercises

« Previous • Trail • Next »

Passing Information to a Method or a Constructor
The declaration for a method or a constructor declares the number and the type of the arguments for that
method or constructor. For example, the following is a method that computes the monthly payments for a home
loan, based on the amount of the loan, the interest rate, the length of the loan (the number of periods), and the
future value of the loan:

public double computePayment(

 double loanAmt,

 double rate,

 double futureValue,

 int numPeriods) {

 double interest = rate / 100.0;

 double partial1 = Math.pow((1 + interest),

 - numPeriods);

 double denominator = (1 - partial1) / interest;

 double answer = (-loanAmt / denominator)

 - ((futureValue * partial1) / denominator);

 return answer;

}

This method has four parameters: the loan amount, the interest rate, the future value and the number of
periods. The first three are double-precision floating point numbers, and the fourth is an integer. The parameters
are used in the method body and at runtime will take on the values of the arguments that are passed in.

Note: Parameters refers to the list of variables in a method declaration. Arguments are the actual
values that are passed in when the method is invoked. When you invoke a method, the arguments
used must match the declaration's parameters in type and order.

Parameter Types

You can use any data type for a parameter of a method or a constructor. This includes primitive data types,
such as doubles, floats, and integers, as you saw in the computePayment method, and reference data types,
such as objects and arrays.

Here's an example of a method that accepts an array as an argument. In this example, the method creates a
new Polygon object and initializes it from an array of Point objects (assume that Point is a class that
represents an x, y coordinate):

public Polygon polygonFrom(Point[] corners) {

 // method body goes here

}

Note: If you want to pass a method into a method, then use a lambda expression or a method
reference.

Arbitrary Number of Arguments

Documentation

The Java™ Tutorials

Patent Owner Finjan, Inc. - FIN-2001, p. 1f

Find authenticated court documents without watermarks at docketalarm.com.

http://www.oracle.com/technetwork/java/javase/downloads/java-se-7-tutorial-2012-02-28-1536013.html
http://www.oracle.com/technetwork/java/javase/downloads/java-se-7-tutorial-2012-02-28-1536013.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://docs.oracle.com/javase/tutorial/search.html
https://docs.oracle.com/javase/tutorial/search.html
javascript:toggleLeft()
javascript:toggleLeft()
https://docs.oracle.com/javase/tutorial/index.html
https://docs.oracle.com/javase/tutorial/index.html
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classdecl.html
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
https://docs.oracle.com/javase/tutorial/java/javaOO/usingobject.html
https://docs.oracle.com/javase/tutorial/java/javaOO/usingobject.html
https://docs.oracle.com/javase/tutorial/java/javaOO/more.html
https://docs.oracle.com/javase/tutorial/java/javaOO/more.html
https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html
https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html
https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html
https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html
https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html
https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html
https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html
https://docs.oracle.com/javase/tutorial/java/javaOO/summaryclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/summaryclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/summaryclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/summaryclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/summaryclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/summaryclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/creating-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/creating-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/objects-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/objects-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/nested-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/nested-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/enum-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/enum-questions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/TOC.html
https://docs.oracle.com/javase/tutorial/java/TOC.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://www.docketalarm.com/

Passing Information to a Method or a Constructor (The Java™ Tutorials > Learning the Java Language > Classes and Objects)

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html[10/19/2015 5:34:18 PM]

You can use a construct called varargs to pass an arbitrary number of values to a method. You use varargs
when you don't know how many of a particular type of argument will be passed to the method. It's a shortcut to
creating an array manually (the previous method could have used varargs rather than an array).

To use varargs, you follow the type of the last parameter by an ellipsis (three dots, ...), then a space, and the
parameter name. The method can then be called with any number of that parameter, including none.

public Polygon polygonFrom(Point... corners) {

 int numberOfSides = corners.length;

 double squareOfSide1, lengthOfSide1;

 squareOfSide1 = (corners[1].x - corners[0].x)

 * (corners[1].x - corners[0].x)

 + (corners[1].y - corners[0].y)

 * (corners[1].y - corners[0].y);

 lengthOfSide1 = Math.sqrt(squareOfSide1);

 // more method body code follows that creates and returns a

 // polygon connecting the Points

}

You can see that, inside the method, corners is treated like an array. The method can be called either with an
array or with a sequence of arguments. The code in the method body will treat the parameter as an array in
either case.

You will most commonly see varargs with the printing methods; for example, this printf method:

public PrintStream printf(String format, Object... args)

allows you to print an arbitrary number of objects. It can be called like this:

System.out.printf("%s: %d, %s%n", name, idnum, address);

or like this

System.out.printf("%s: %d, %s, %s, %s%n", name, idnum, address, phone, email);

or with yet a different number of arguments.

Parameter Names

When you declare a parameter to a method or a constructor, you provide a name for that parameter. This name
is used within the method body to refer to the passed-in argument.

The name of a parameter must be unique in its scope. It cannot be the same as the name of another parameter
for the same method or constructor, and it cannot be the name of a local variable within the method or
constructor.

A parameter can have the same name as one of the class's fields. If this is the case, the parameter is said to
shadow the field. Shadowing fields can make your code difficult to read and is conventionally used only within
constructors and methods that set a particular field. For example, consider the following Circle class and its
setOrigin method:

public class Circle {

 private int x, y, radius;

 public void setOrigin(int x, int y) {

 ...

 }

}

The Circle class has three fields: x, y, and radius. The setOrigin method has two parameters, each of
which has the same name as one of the fields. Each method parameter shadows the field that shares its name.
So using the simple names x or y within the body of the method refers to the parameter, not to the field. To
access the field, you must use a qualified name. This will be discussed later in this lesson in the section titled
"Using the this Keyword."

Patent Owner Finjan, Inc. - FIN-2001, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Passing Information to a Method or a Constructor (The Java™ Tutorials > Learning the Java Language > Classes and Objects)

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html[10/19/2015 5:34:18 PM]

Passing Primitive Data Type Arguments

Primitive arguments, such as an int or a double, are passed into methods by value. This means that any
changes to the values of the parameters exist only within the scope of the method. When the method returns,
the parameters are gone and any changes to them are lost. Here is an example:

public class PassPrimitiveByValue {

 public static void main(String[] args) {

 int x = 3;

 // invoke passMethod() with

 // x as argument

 passMethod(x);

 // print x to see if its

 // value has changed

 System.out.println("After invoking passMethod, x = " + x);

 }

 // change parameter in passMethod()

 public static void passMethod(int p) {

 p = 10;

 }

}

When you run this program, the output is:

After invoking passMethod, x = 3

Passing Reference Data Type Arguments

Reference data type parameters, such as objects, are also passed into methods by value. This means that when
the method returns, the passed-in reference still references the same object as before. However, the values of
the object's fields can be changed in the method, if they have the proper access level.

For example, consider a method in an arbitrary class that moves Circle objects:

public void moveCircle(Circle circle, int deltaX, int deltaY) {

 // code to move origin of circle to x+deltaX, y+deltaY

 circle.setX(circle.getX() + deltaX);

 circle.setY(circle.getY() + deltaY);

 // code to assign a new reference to circle

 circle = new Circle(0, 0);

}

Let the method be invoked with these arguments:

moveCircle(myCircle, 23, 56)

Inside the method, circle initially refers to myCircle. The method changes the x and y coordinates of the
object that circle references (i.e., myCircle) by 23 and 56, respectively. These changes will persist when the
method returns. Then circle is assigned a reference to a new Circle object with x = y = 0. This
reassignment has no permanence, however, because the reference was passed in by value and cannot change.
Within the method, the object pointed to by circle has changed, but, when the method returns, myCircle still
references the same Circle object as before the method was called.

« Previous • Trail • Next »

Patent Owner Finjan, Inc. - FIN-2001, p. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
https://docs.oracle.com/javase/tutorial/java/TOC.html
https://docs.oracle.com/javase/tutorial/java/TOC.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html
https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html
https://www.docketalarm.com/

Passing Information to a Method or a Constructor (The Java™ Tutorials > Learning the Java Language > Classes and Objects)

https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html[10/19/2015 5:34:18 PM]

Your use of this page and all the material on pages under "The Java Tutorials" banner is subject to these legal
notices.

Copyright © 1995, 2015 Oracle and/or its affiliates. All rights reserved.

Problems with the examples? Try Compiling and Running the Examples:
FAQs.

Complaints? Compliments? Suggestions? Give us your feedback.

Patent Owner Finjan, Inc. - FIN-2001, p. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://docs.oracle.com/javase/tutorial/information/cpyr.html
https://docs.oracle.com/javase/tutorial/information/cpyr.html
https://docs.oracle.com/javase/tutorial/information/cpyr.html
https://docs.oracle.com/javase/tutorial/information/cpyr.html
https://docs.oracle.com/javase/tutorial/information/run-examples.html
https://docs.oracle.com/javase/tutorial/information/run-examples.html
https://docs.oracle.com/javase/tutorial/information/run-examples.html
https://docs.oracle.com/javase/tutorial/information/run-examples.html
https://docs.oracle.com/javase/feedback.html
https://docs.oracle.com/javase/feedback.html
https://www.docketalarm.com/

