
Page 401 of 500Page 401 of 500

CHAPTER 9

SCSI Manager 4.3

SCSIGet calls are handled entirely within the XPT; the XPT simply notes that the call

was made by setting an internal flag and returning back to the caller. SCS I Select calls

cause the XPT to generate a SCSI_ExeCIO parameter block and submit it to the SIM via

the S IMaction entry point. This parameter block is filled in with an s cFunctionCode

field of SCS I_OldCal 1 and an scDevice Ident field containing the bus number of this

SIM, the target ID requested in the SCS I Select call, and a LUN of 0. This parameter

block should be queued with all other scs I_I3xecIO_PBs.

The SIM should attempt a select of the specified device and return the result of that

select back to the XPT (scsiReqComplete if successful and scs iSelTimeout if not).

Old call results are not communicated through the scResult field, as this would be

interpreted as completion of the entire transaction rather than only the portion of the

transaction resulting from the single old call. Instead, the SIM should place the result in
the oldCallResult field. As additional old calls are made, the XPT fills in the

appropriate fields of the SCS I_ExecIO_PB and calls the SIM’s NewOldCall entry

point. Table 9-2 shows the old call parameters and the fields that are filled in by the XPT.

Table 9-2 Old call parameter conversion

Call

SCSIGet

SCSISelect/
SCSISelAtn

SCSICmd

SCSI<data>

SCSIComplete

SCSIMsgIn

SCSIMsgOut

SCSIReset

SCSIStat

Parameter

targetID

*buffer

count

*tibPtr

*stat

*message

wait

*message

message

Dir

¢TlTTiil

ExeclO field

scDeviceIdent

scCDB

scCDBLen

scDataPtr

scSCSIstatus

scSCSImessage

scConnTimer

scSCSImessage

scSCSImessage

Notes

XPT only

bus ID = this SIM,
LUN = O

Pointer in field

Pointer in field

Status in field

Message in field

TimeMgr format

Message in field

Message in field

SCSI_ResetBus_PB

XPT only

To provide the highest level of compatibility with the old SCSI Manager, every SIM

should be able to perform a SCSI arbitration and selection process independently

of a SCSI message—out or command phase, in order to register itself as being capable

of handling old SCSI calls. If it must have the CDB or message—out bytes in order

to perform the selection operation, then it will be unable to adequately execute

the SCS I Select call. Without this ability, the SIM must always return noErr to a

Guidelines for SIM/HBA Developers 379

PUMA EXHIBIT 2005

PART 9 OF 10

acaswell
Typewritten Text
PUMA EXHIBIT 2005
PART 9 OF 10

Page 402 of 500Page 402 of 500

CHAPTER 9

SCSI Manager 4.3

S C S I Se 1 ect (S C S I_O1 dCa 1 1 function), a result that produces a false indication of the

presence of a device at that ID. This would cause all future SCS I Selects to that ID to

be directed to only this bus. The result would be that no devices installed on buses that

registered after this bus would be accessible through the old API.

Interrupt Support

Each SIM passes the address of its interrupt service routine and an interrupt source

identifier (ISR) to the XPT during the SOS IRegisterBus routine. The XPT installs an

ISR at the specified source so that when that interrupt happens, it can make the call

to the SIM_I SR routine, passing the address of the SIM’s static data space. The XPT

performs some VM-required operations before and after the call to the S IM_I SR when
VM is turned on.

The same S IM_I SR entry point is used by the XPT to get the SIM to check for the

presence of an interrupt. Checking for an interrupt is required during Various situations

where interrupts are disabled but SCSI operations may still be in operation. Hence the

S IM_I SR must be written to verify that the interrupt is in fact present before attempting

to handle it. If an interrupt is handled during the routine, the SIM should return a
nonzero result to the XPT.

Handshaking of Data Bytes

The old SCSI Manager provided TIBs to perform two functions: designation of data

buffers (scatter/ gather) and designation of handshaking requirements for a transfer. The

latter function refers to the handshaking between the processor and the SCSI controller

chip. This was originally required during Macintosh Plus blind transfers because there

was no hardware handshaking that prevented the processor from overflowing or

underflowing the 5380 chip.

In Apple platforms after the Macintosh Plus, the handshaking information was used to

prevent bus errors when the target failed to deliver the next byte within a processor bus

error timeout or when the SCSI Manager attempted to read it from the SCSI interface

chip. This timeout is 250 ms for the Macintosh SE and 16 us for the Macintosh II and all

Macintosh models since. The SCSI Manager blindly read (or wrote) data bytes until it

reached the end of an sclnc or scNoInc pseudoinstruction. When the next scInc or

scNoInc was encountered, the SCSI Manager first explicitly polled the SCSI chip to

make sure that it was ready with data (for a read) or ready to accept data (for a write). In

this way, TIBs were used to make the SCSI Manager synchronize with the target at times

in the transfer when the target was slow in accepting bytes.

The new SCSI Manager still requires this handshaking information for non-DMA SCSI

transfers such as those used on all earlier models. There is no possibility of bus errors

with the Macintosh Quadra 84OAV or Macintosh Centris 660AV, because the DMA

hardware does not attempt to transfer data until the SCSI controller indicates that it

is ready.

Guidelines for SIM/HBA Developers

Page 403 of 500

CHAPTER 9

SCSI Manager 4.3

Handshaking is handled similarly for third-party HBAS. With DMA there is no need for

the explicit handshaking. With non—DMA transfers, however, a SIM must pay attention

to the handshaking description that is part of the sCSI_ExecIO_PB. The form of the

descriptor is much simpler than TIBs and explicitly specifies which bytes in which to

expect delays from the target. In an environment Where bus errors may occur if the

handshaking description is inaccurate, the SIM should provide a bus error handler that

can recover, retry, and pick up the transfer where it was interrupted. Because bus-error

exception processing differs among the members of the 68000 processor family, several

handlers are required, some of which are not trivial. In addition, it is impossible to

predict what will happen in later 68000 processors with different exception handling that

might force rewriting and redistribution of any SIMs with bus error handlers.

DMA Support

For HBAs with DMA support, the direct memory access process typically requires that

the data buffer affected by the transfer be locked down (so that the physical addresses

won't change) and that it be noncacheable. Locking data buffers was previously difficult

to manage because of severe restrictions on when LockMemory could be called.

LockMemory is now allowed at interrupt time but only if the affected pages are already

held. GetPhys ical is also allowed at interrupt time and continues to have its

previously restriction of only working with pages that are locked.

SCSI Manager 4.3 Reference

Page 403 of 500

Many SCSI bus—related functions are available to the client. All of them are accessed by

calling a single entry point (SCS IAction) with a SCSI parameter block (SCS I_PB) and

are designated by the function code element of the SCS I_PB header. The structure of the

SCSI_PB body (past the header) varies depending upon the function requested.

The parameter block consists of function types, parameter structures, action flags and

status flags necessary to perform most SCSI requests. SCSI I/0 requests are performed

by allocating a SCSI parameter block and filling in the necessary fields to describe and

specify the necessary actions the SCSI Manager needs to perform the requested function.

The status of both the I /0 request and actual SCSI bus transaction are returned through

the parameter block. These functions may be specified to complete either synchronously

or asynchronously with respect to the calling client.

By far the most important and commonly used request passed to SCS IAction is to

execute a SCSI I/0 request. It is this request that actually performs the SCSI transaction

between the computer and the target. All of the parameters required by the SCSI

Manager to accomplish a complete transaction are contained in the SCS I_ExecIO_PB

parameter block that is passed to SCS IAct i on.

Besides routines driven by SCSI_PB, the XPT provides several others as well. These

routines fall into two categories: routines of interest to a driver-type client and routines

of interest to an operating system module (such as a SIM).

SCSI Manager 4.3 Reference

Page 404 of 500

CHAPTER 9

SCSI Manager 4.3

Note that in the remainder of this chapter, certain data types have the following
definitions:

#define ushort

#define

#define

uchar

ulong

typedef

{

uchar

bus;

targetID;

LUN;

uchar

uchar

uchar

} Deviceldent;

Data Structure

diReserved;

unsigned short

unsigned char

unsigned long

struct DeviceIdent

unused

SCSI — Bus #

SCSI — Target SCSI ID
SCSI - LUN

This section describes the general parameter block data structure that provides

information and control in SCSI Manager 4.3. There are many different parameter blocks

all using the same template, SCS I_PB. Specific parameter blocks are discussed with the

routines that use them. This section describes the parameter block header and the

construction of the SCS I_PB parameter block.

SCSI Manager Parameter Block

Each client of the SCSI Manager allocates a SCS I_PB parameter block and fills in the

required fields before passing it to the SCS IAction function. A function-specific

SCS I_PB consists of two parts: the SCSI_PB header (SCSIHdr), that part common to all

types of SCS I_PB s, and the SCS I_PB body, containing SCSI parameters specific to the

function's SCS I_PB (the size and fields of which vary depending on the function).

The common parameter block header definition is the following:

#define SCSIPBHdr \

struct SCSIHdr *qLink;

short qType;

scVer;

//

//

//

//

scFunctionCode;//

//

//

//

//

ushort

ushort scPBLen;

FunctionType
OSErr

DeviceIdent

CallbackProc

ulong scFlags;

// end of SCSIPBHdr

scResult;

scDeviceIdent;

scCompFn;

SCSI Manager 4.3 Reference

Page 404 of 500

(internal) Q link to next PB

(unused) Q type
version of the PB

length of the entire PB
function selector

returned result

(bus + target + LUN)

callback on completion function

flags for operation

Page 405 of 500

CHAPTER 9

SCSI Manager 4.3

Note

Several fields in the parameter block are operating system dependent. In

this document the direction shown by arrows is with respect to the SCSI

Manager—for example, in SCS I PBHdr. This is opposite to the

convention followed by ANSI X3T9, the Common Access Method

document, as explained in ”CAM Deviations,” earlier in this chapter. 6

The SCSI parameter block header structure uses SCS I PBHdr, as follows:

typedef struct SCSIHdr

{

SCSIPBHdr

} SCSIHdr;

*qLink Reserved for Apple use only. A pointer to the next parameter block in the

SCSI queue.

qT ype Reserved for Apple use only. The queue type.

scver Version of the parameter block. Used by SCSI Manager to determine the

format of this parameter block.

scPBlen The length in bytes of the PB, including the PB header.
scFunctionCode

A function selector that specifies the service being requested by the SCSI

device driver. See also ”SCSIAction,” later in this chapter.

scDeviceIdent

A function selector that specifies the device that the request is directed

towards. This field is of type Devi celdent, defined above.

scResult A value returned by the SCSI Manager after the function is completed. A

scsiReqInProg status indicates that the request is still in progress or

queued.

Valid s cRe s u l t return values are:

noEr1: Request completed without error

scsiReqInProg Request in progress

s c s iReqAborted Request aborted by the host

scsiUr1ableToAbort Unable to abort request

s c s iReqCmp 1 WE rr Request completed with an error

s c s iBu s y SCSI subsystem busy

scsiReqInval id Request invalid

scsiBus Inval id Bus ID supplied invalid

s c s i DevNotThere SCSI device not installed / there

s c s iUnableTe rmI 0 Unable to terminate I/0 request

s c s i S e l T ime out Target selection timeout

s c s iCmdT ime out Command timeout

s cs iMsgRej ectRcvd Message reject received

SCSI Manager 4.3 Reference

Page 405 of 500

Page 406 of 500Page 406 of 500

CHAPTER 9

SCSI Manager 4.3

scsiSCSIBusReset

scsiUncorParity

scsiAutosenseFail

scsiNoHBA

scsiDataRunErr

scsiUnexpBusFree

scsiSequenceFail

scsiPBLenErr

scsiProvideFail

scsiBDRsent

scsiReqTermIO

scsiLUNInvalid

scsiTIDInValid

scsiFuncNotAvail

scsiNoNexus

scsiIIDInvalid

scsiCDBRcvd

scsiSCSIBusy

scsiSIMQFrozen

scsiAutosenseValid

scDeviceIdent

A longword that uniquely identifies a device that this request is directed

toward. The Devi celdent designates a bus ID, target SCSI ID, and

LUN. A routine is provided to decode a Devi celdent value into these

components if required, but the objective is to eliminate the physical

addressing characteristics of the transport layer (SCSI bus) from the API.

scCompFn

scFlags

SCSI bus reset sent/ received

Uncorrectable parity error occurred

Autosense: request sense command fail

No HBA detected

Data overrun/underrun

Unexpected bus free

Target bus phase sequence failure

Parameter block length supplied is
inadequate

Unable to provide requested capability

A SCSI BDR bus request message was sent
to the target

Request terminated by the host

LUN supplied is invalid

Target ID supplied is invalid

The requested function is not available

Nexus not established

Initiator ID invalid

The SCSI CDB has been received

SCSI bus busy

The SIM queue frozen with this error

Autosense data Valid for target

A pointer to the callback completion function.

A longword that contains the bit settings to indicate special handling of

the requested function. The number and meaning of the flags vary by

function code and are described in function-specific areas:

Flag descriptions

scsiDirMask

Bit field used to specify direction of transfer. Values can be

scsiDirIn

scsiDirOut

scsiDirNone

SCSI Manager 4.3 Reference

Data direction in

Data direction out

No data movement

Page 407 of 500Page 407 of 500

CHAPTER 9

SCSI Manager 4.3

scsiDisAutosense

Disable autosense feature

scsiscattervalid

Scatter / gather list is Valid. If this flag is clear, the Values in

the scData and scDataLen fields are the starting address

and length of a block of data. If this flag is set, the scData

field is a pointer to an S / G list. Each element of the S/ G

list is itself a description of a block of data. In addition,
when set, the scSGlistCnt field contains the number

of S/ G entries, and the scDataLen field contains the total

number of bytes in the data transfer. This last field is

required for easy calculation of the scDataRes idLen
value.

scsiCDBLinked

The PB contains a linked CDB. This bit/ function is not

supported in the built—in SIM.

scsiQEnable

SIM queue actions are enabled. This bit/ function is not

supported in the built-in SIM.

scsiCDBIsPointer

The CDB field contains a pointer. If clear, the scCDB field
contains the actual CDB. If set, the scCDB field contains a

pointer to the CDB. In either case, the scCDBLen field

contains the number of bytes in the command.

scsiDisDisconnect

Disable disconnect. This flag, when set, prevents the SIM

from setting the Di scPriv bit in the identify message
used for this I/O. If clear (default), DiscPriv is set,

allowing the target to disconnect.

scsilnitiatesync

Attempt sync data xfer, and SDTR

scsiDisSync

Disable sync; go to async

scsiSIMQHead

Place parameter block at the head of SIM queue

scsiSIMQFreeze

Return the SIM queue to frozen state

scsiSIMQNoFreeze

Disallow SIM queue freezing

scsiCDBPhys

CDB pointer is physical

scsiDataPhys

SG/buffer data pointers are physical

SCSI Manager 4.3 Reference

Page 408 of 500

CHAPTER 9

SCSI Manager 4.3

scsiSenseBufPhys

Autosense data pointer is physical

scsiMsgBufPhys

Message buffer pointer is physical

scsiNxtPBPhys

Next parameter block pointer is physical

scsiCallBackPhys

Callback function pointer is physical

scsiPhysMask

At least one pointer is physical

scsiDataBufValid

Data buffer valid

scsiStatusBufValid

Status buffer valid

scsiMsgBufValid

Message buffer valid

scsiTgtPhaseMode

The SIM will run in phase mode

scsiTgtPBAvail

Target parameter block available

scsiDisAutoDisc

Disable autodisconnect

scsiDisAutsaveRest

Disable autosave / restore pointers

Routines

This section describes the routines used to control and inquire from the different layers

of the SCSI Manager hierarchy, as shown in Figure 8-1 (page 366). The order of
discussion is:

1. Driver routines

2. SCSI Interface Modules calls to the transport layer

3. Transport layer calls to SCSI Interface Modules

Driver Routines

Driver routines are used by the client to control and inquire from the transport layer. For

most operations using the SCSI Manager, these are the only routines that are needed.

SCSI Manager 4.3 Reference

Page 408 of 500

Page 409 of 500

SCSIAction

CHAPTER 9

SCSI Manager 4.3

Page 409 of 500

The SCS IAction routine executes the request specified in the SCS I_PB parameter

block. Certain types of requests are handled by the XPT (such as those dealing with the

SCSI device table), but most are handled by the SIM/ HBA. The SCS I_PB header

contains a function code specifying the requested operation. The codes are described

later in this section, along with the parameter blocks that correspond to those functions.

void SCSIAction (SCSI_PB *)

Operation

Drivers make all of their SCSI I /O requests using this function. It is designed to take

advantage of all features of SCSI that could be provided by virtually any HBA/ SIM

combination. The parameter SCSI_PB block contains all of the parameters that the XPT

and SIM need to completely transact the I/0 request.

The SCS IAction function typically returns with a status of 0 indicating that the request

was queued successfully. Function completion can be determined by polling for nonzero

status or through the use of the callback on completion field. When the completion

routine is called, it has the same static variable pointer (A5) that existed when the

Execute SCSI I/0 request was received. If A5 was invalid when the I/0 request was
made, it is also invalid when in the callback.

The callback routine should follow this format:

void CompFn (SCSI_ExecIO_PB * thePB);

When issued asynchronously, execute SCSI I/0 requests are performed as such; in other

words, the resulting action may start anytime and may end at any time. There is no

implied ordering of these events with respect to earlier or later requests. An earlier

request may be started later and a later request may complete earlier. However, a series

of requests to the same device (bus ID + target ID + LUN) is issued to that device in the
order received.

SCSlAction Function Codes

SCSIAction function codes are used by SCSI Manager clients to specify requests.

Table 9-3 lists the hexadecimal function codes that SCSI Manager 4.3 supports on its
initial release.

In Table 9-3, note that codes $00 through $0F cover common functions; codes $10

through $1F cover SCSI control functions; and codes above $7F are reserved by Apple.

SCSI Manager 4.3 Reference

Page 410 of 500

CHAPTER 9

SCSI Manager 4.3

Table 9-3 SCSI Manager 4.3 function codes

Code Function Operation (CAM names) Supported

$00 SCS I_Nop NOP (No Operation) \/

$01 SCSI_ExecIO Execute SCSI 1/0 «I

$02 (reserved) Get Device Type

$03 SCSI_BusInquiry Pmh(Bu®Inqufiy

$04 SC S I_Releas eQ Release SIM Queue

$05—$0F (reserved) Set Async callback

$10 SCSI_AbortCommand AbortSCSIconunand

$11 SCSI_ResetBus RamtSCSIbus

$12 SCSI_ResetDevice Re&fiSCSIdevke

$13 SCSI_TerminateIO Terminate I /0 process

$14—$7F (reserved)

$80 SCSI_GetVirtualIDInfo GetDeviceIDofvfihmlH

* Not recommended; see warning on page 392.

SCSI_ExecIO

The most commonly executed request of the SCSI Manager is to perform an I /0

command, as defined by the SCS I_PB parameter block with a selector code of

SCS I_I3xecIO. The resulting data structure is the following:

typedef struct SCSI_ExecIO_PB

{

SCSIPBHdr // header information fields

uchar *scDrvrStorage;// <> ptr used by the driver

struct SCSI_IO *scCmdLink; // —> ptr to the next linked cmd

ulong scAppleRsvdO; // reserved

uchar *scDataPtr; // ptr to data buffer

// or S/G list

ulong scDataLen; // data transfer length

uchar *scSenseBufPtr;// ptr to autosense buffer

uchar scSenseBufLen; // size of autosense buffer

uchar scCDBLen; // number of bytes for the CDB

ushort scSGlistCnt; // number of S/G list entries

ulong scAppleRsvdl; // reserved

uchar scSCSIstatus; // <— returned SCSI device status

char scSenseResidLen;// <—autosense residual length

SCSI Manager 4.3 Reference

Page 410 of 500

Page 411 of 500

CHAPTER 9

SCSI Manager 4.3

ushort

long
CDB

long

uchar

ushort

ushort

scAppleRsvd2;

scDataResidLen;//

scCDB;

scTimeout;

*scMsgPtr;

scMsgLen;

scVUFlags;

//

//

//

//

//

//

//

reserved

transfer residual length

actual CDB or ptr to CDB

timeout value (Time

Manager format)

pointer to message buffer

num bytes in msg buffer

vendor (Apple) unique flags

scTagAction; //

scAppleRsvd3; //

scAppleRsvd4; //

// Apple-specific public fields

*scSGBase; //

scSelTimeout; //

uchar what to do for tag queuing
uchar reserved

ushort reserved

uchar base data for S/G entries

ushort select timeout Value

ushort scXferType; // transfer type

DataXferProc scDIxfer; // data in function

scDOxfer; //

scHandshake[8];//

scAppleRsvd5; //

scConnTimeout; //

scSIMpublics[8];// for use by 3rd—party SIMS

publicExtras[4];// for a total of 48 bytes

// XPT layer privates (for old API emulation)

Ptr savedA5; // the A5 of the client

ushort scCurren:Phase;// <— phase upon compieting o'd ca"

DataXferProc data out function

ushort handshaking structure

ulong reserved

long connection timeout value
uchar

uchar

—> selector specified in o d ca

I/O status of old call

<— Returned SCSI device message

selector; //

oldCallS:atus; //

scSCSImessage; //

short

ushort

uchar

uchar XPTprivFlags; // <> various flags

uchar XP7eXtraS[4]; // for a total of 16 bytes

} SCSI_ExecIO_PB;

Field descriptions

SCSIPBHdr Shorthand for the SCSI Manager parameter block structure. See

”SCSI Manager Parameter Block,” earlier in this chapter, for details.

*scDrvrStorage

*scCmdLink

scAppleRsvdO

*scDataPtr

A pointer used by the peripheral driver to access the SCS IHdr .

A pointer to the next linked command.
Reserved.

A pointer to the data buffer or the S / G list.

scDataLen Length of data buffer to be transferred.

A pointer to the autosense data buffer. Used to get information
about the autosense status.

*scSenseBufPtr

scSenseBufLen Size of the autosense data buffer.

SCSI Manager 4.3 Reference

Page 411 of 500

Page 412 of 500Page 412 of 500

CHAPTER 9

SCSI Manager 4.3

scCDBLen

scSGlistCnt

scAppleRsvdl

scSCSIstatus

Length of the CDB in bytes.

Reserved. Number of entries in the S / G list. Used only by the

operating system.
Reserved.

A byte that returns the SCSI device status. Contains the status of the

specified SCSI device.

s c S en s eRe s idLen Autosense residual length.

scAppleRsvd2

scDataResidLen

scCDB

scTimeout

*scMsgPtr

scMsgLen

scVUFlags

Reserved.

Data transfer residual length.

Actual or a pointer to the CDB.

Length of time specified before timeout of the SCSI bus.

A pointer to the message buffer.

Number of bytes in the message buffer.

Apple-specific flags. These flags define the Apple-specific

operations supported by SCSI Manager 4.3.

Flag Descriptions

scsiNoParityCk

Disables the checking of parity on incoming data. Parity
continues to be generated for outgoing data.

scsiDisSelAtn

Disables the sending of the Identify message for LUN
selection. The Device Ident still specifies the LUN so
that the request gets placed in the proper queue. As
always, the LUN field in the CDB is untouched. The
purpose is to provide compatibility with pre-SCSI-2
devices that did not support the inquiry+LUN concept as
described in the SCSI-2 documentation.

scsiSavePtrOnDisc

If this flag is set, the SCSI Manager automatically does
a Save Data Pointer operation when it receives a
Disconnect message from the target. If this flag were
clear, operation would be as specified in SCSI-2; in
particular, there is no implied Save Data Pointer when
a Disconnect message is received, and if a disconnect
actually did occur, the data pointer would revert to the
value last saved. The purpose of this bit is to provide
compatibility with devices whose designers did not
understand the function of the Save Data Pointer and

Disconnect messages.
scsiNoBucketIn

SCSI Manager 4.3 Reference

Page 413 of 500Page 413 of 500

CHAPTER 9

SCSI Manager 4.3

scTagAction

scAppleRsvd3

scAppleRsvd4

Apple-specific fields

*scSGBLase

scSelTimeout

scXferType

*scDIxfer

*scDOxfer

scHandshake[8]

scAppleRsvd5

When set, no bit-bucketing on data-in is performed for
this transaction. Bit-bucketing normally occurs when
the device (target) wants to supply more data than the
computer (initiator) is expecting. This can happen if
the SCS I_Exec_IO parameter block has inconsistent
parameters—with the CDB indicating a request for more
data than the S/ G list provides. If this bit is set and the
extra data condition occurs, the SCSI Manager request

terminates and the bus is left in data_in phase. A
S C S I_Re s e tBu s request must be issued to clear the bus.
Due to the impact of a SCSI Reset, this bit should only be
set for debugging.

scsiNoBucketOut

When set, no bit-bucketing on data-out is performed for
this transaction. This is the inverse of bit-bucketing
described above and normally occurs when the target is
asking for more data than was supplied in the I /0
request. Again, this bit should only be used for
debugging purposes.

Execsync

This flag causes I / O to be executed synchronously (it
returns from a SCS IAction call only when complete).

Specifies what action is taken for tag queuing.

Reserved. SCSI Manager private data area.

Reserved. SCSI Manager private data area.

A pointer to the base data in an S/ G entry.
A field that allows the client to set an alternate select timeout value.

The timeout is specified in milliseconds but there is no guaranteed

accuracy because different HBAs have different capabilities,

including only being able to handle the standard 250 ms. A value of

0 designates this default time length.

An option that selects which type of transfer to use during the data

phase. This roughly corresponds to blind versus polled. This option

is provided for backward compatibility with a few devices. For

nearly every device, this field should be zero, which selects the
default, fastest, most reliable transfer routine for the selected bus.

The number of specialized transfer types available on a particular
HBA is available in the scXferTypes field of the Bus Inquiry

parameter block.

A pointer to a client—supplied function used by the SCSI Manager

during the data in phase. If null, the SIM’s routine is used.

A pointer to a client—supplied function used by the SCSI Manager

during the data—out phase. If null, the SIM’s routine is used.

A structure used for handshake operations.

Reserved for Apple use only.

SCSI Manager 4.3 Reference

Page 414 of 500

CHAPTER 9

SCSI Manager 4.3

scConnTimeout A value used to time out SCSI operations.

scSIMpublics[8]

Basic allocation for use by third-party SIM vendors.

publicExtras[4]

Expanded allocation for third-party SIM vendors, providing a total

of 48 bytes.

SCSI_AbortCommand

The SCSI_AbortCommand function asks that a SCSI Manager request be canceled by

identifying the parameter block associated with the request. It should be issued on any

I/0 request (not completed) that the driver wishes to cancel. Success of the Cancel

function is never assured. This request does not necessarily result in an Abort message

being issued over SCSI.

// Abort SCSI Manager Request parameter block

typedef struct SCSI_AbortCommand_PB

{

SCSIPBHdr // header information fields

SCSIHdr *scThePB; // —> pointer to the PB to abort

} SCSI_AbortCommand_PB;

SCS I PBHdr Shorthand for the SCSI Manager parameter block structure. See ”SCSI

Manager Parameter Block,” earlier in this chapter, for details.

* s cThe PB A pointer to the parameter block to be canceled.

SCSI_ResetBus

This SCSI_ResetBus function is used to reset the specified SCSI bus.

typedef struct SCSI_ResetBus_PB

{

SCSIPBHdr // header information fields

} SCSI_ResetBus_PB;

SCS I PBHdr Shorthand for the SCSI Manager parameter block structure. See ”SCSI

Manager Parameter Block,” earlier in this chapter, for details.

A WARNING

This function should not be used in normal operation. It can be used

only in the unlikely event that a client is unable to use the SIM/ HBA

due to a faulty device disabling the bus. A

SCSI Manager 4.3 Reference

Page 414 of 500

Page 415 of 500

CHAPTER 9

SCSI Manager 4.3

SCSI_ResetDevice

The SCS I_ResetDevice function is used to reset the specified SCSI target. This

function should not be used in normal operation, but if I/O to a particular device hangs

up for some reason, drivers can abort the I/O and reset the device before trying again.

This request shall always result in a Bus Device Reset message being issued over SCSI.

typedef struct SCSI_ResetDevice_PB

{

SCSIPBHdr

} SCSI_ResetDevice_PB;

// header information fields

SCSIPBHdr Shorthand for the SCSI Manager parameter block structure. See ”SCSI

Manager Parameter Block,” earlier in this chapter, for details.

SCSI_TerminateIO

Page 415 of 500

The SCS I_TerminateIO function requests that a SCSI Manager I/0 request be

terminated by identifying the parameter block associated with the request. This function

should be called for any I/0 request that has not completed and that the driver wishes

to terminate. Success of the termination process is never assured. This request does not

necessarily result in a TerminateIOProces s message being issued over the SCSI bus.

typedef struct SCSI_TerminateIO_PB

{

SCSIPBHdr // header information fields

SCSIHdr *scThePB; // -> a pointer to the parameter block

// to terminate

} SCSI_TerminateIO_PB;

SCS I PBHdr Shorthand for the SCSI Manager parameter block structure. See ”SCSI

Manager Parameter Block,” earlier in this chapter, for details.

* s cThe PB A pointer to the parameter block to be canceled.

SCSI Manager 4.3 Reference

Page 416 of 500

CHAPTER 9

SCSI Manager 4.3

SCSI_GetVirtualIDInfo (Apple-specific)

The S C S I_Getvirtual I D I n fo routine returns the device ID for the specified virtual

ID. This function is typically used by a peripheral driver during the transition from

ROM-based previous SCSI Manager to a system file-based SCSI Manager 4.3. If no

device has yet been found on any of the o ldCal lcapable buses, the s cExi s t s

Boolean value is FALSE and the Device Ident field should be ignored.

typedef struct SCSI_GetVirtualInfo_PB
{

// header information fields

// —> SCSI ID of device

// in question

SCSIPBHdr

ushort scVirtualID;

Boolean scExists; // <— true if device exists

} SCSI_GetVirtualInfo_PB;

Shorthand for the SCSI Manager parameter block structure. See ”SCSI

Manager Parameter Block,” earlier in this chapter, for details.

scHdr

scVirtualID

Identification of a device on either internal or external bus.

scExists A Boolean value that returns true if the device exists on the bus.

Note

The DeviceIdent value is returned in the header of this parameter

block which makes this the only function that returns a Value in the
SCSIHdr outside of the scstatus field. 0

SCSI_ReleaseQ

Page 416 of 500

The SCSI_ReleaseQ function releases a frozen SIM queue for the selected LUN.

typedef struct SCSI_ReleaseQ_PB

{

SCSIPBHdr // header information fields

} SCSI_ReleaseQ_PB;

SCS I PBHdr Shorthand for the SCSI Manager parameter block structure. See ”SCSI

Manager Parameter Block,” earlier in this chapter, for details.

SCSI Manager 4.3 Reference

Page 417 of 500

CHAPTER 9

SCSI Manager 4.3

SCSI_BusInquiry

TheSCSI_BusInquiryfuncfionisusedtogethfionnafiononthespedfiedI{BAb

including the number of HBAs installed.

typedef struct SCSI_BusInquiry_PB

{

SCSIPBHdr // header information fields

uchar scVersionNum; // version number for controller

uchar scHBAInquiry; // mimic of INQ byte 7

uchar scTargetMdFlags; // flags for target mode support

uchar scSIMMisc; // misc feature flags

ushort scEngineCnt; // number of engines on bus

// Apple—specific fields through scVUrsrvd (14 bytes total)

ushort scXferTypes; // <— number of transfer types

// for this HBA

ushort scCntr;rType; // <— type of SCSI controller used

ulong scVUflags; // <— various Apple-specific flags

uchar scVUrsrvd[14—VU_used];// <— vendor—unique reserved
// leftovers

ulong scSIMPrivSize; // size of SIM private data area

ulong scAsyncFlags; // event cap. for Async callback

uchar scHiBusID; // highest bus ID in subsystem

uchar scInitiatorID; // initiator ID on SCSI bus

ushort scReserved; // reserved

char scSIMVend[l6]; // vendor ID of the SIM

char scHBAVend[16]; // vendor ID of HBA

ulong scOSDreserved; // reserved [OSD]

char scCntrlFamily[16];// <— family of SCSI controller

char scCntrlType[l6]; // <— family of SCSI controller

} SCSI_BusInquiry_PB;

Standard field descriptions

SCS I PBHdr Shorthand for the SCSI Manager parameter block structure. See

”SCSI Manager Parameter Block,” earlier in this chapter, for details.

scvers ionNum The version number field is used by the client to verify that the SIM

can handle the requests the client was designed to issue:

Vmue Meamng

$00-07 Prior to revision 1.7

$08 Implementation version 1.7

$09—FF Revision number; for example $31 = 3.1

SCSI Manager 4.3 Reference

Page 417 of 500

Page 418 of 500

CHAPTER 9

SCSI Manager 4.3

scHBAInqui ry These flags indicate basic SCSI capabilities of the subsystem
(SIM + HBA).

Bit Meaning

Modify data pointers

Wide bus 32

Wide bus 16

Synchronous transfers
Linked commands

(reserved)

Tagged queuing

0 Soft reset

scTarge tMdFlags Target mode is not supported in the initial versions of SCSI

Manager 4.3 and consequently, this field returns 0.

Bit Meaning

7 Processor mode

6 Phase cognizant mode

5-0 (reserved)

scs IMMisc These flags are meant to designate how the SCSI Device Table is

generated and maintained.

Bit Meaning

7 O = scanned low to high
1 = scanned high to low

0 = removables included in table
1 = removables not included in table

5 1 = inquiry data not kept by XPT

4-0 (reserved)

scEr1gir1eCr1t As engines are not supported, this value is always 0 for

Apple—supplied SIMS and HBAs.

Apple-specific field descriptions

scXferTypes A field that returns the number of data transfer types available on

this HBA. These transfer types are roughly analogous to blind,

polled, and so on. They are provided purely for the sake of

compatibility with unusual devices that have specific timing

requirements. Apple SIMS provide two transfer routines that

resemble blind (1) and polled (2) modes. Here this field is 2. The

driver specifies which transfer type to use during a particular I/O

in the scXferType field in the SCS I_ExecIO_PB parameter block.

The scXferTypes value returned from a bus inquiry is the

maximum value supported in the Exec SCSI I/0 request.

scCntrlrType A field that designates the SCSI controller chip used in this HBA.

SCSI Manager 4.3 Reference

Page 418 of 500

Page 419 of 500

CHAPTER 9

SCSI Manager 4.3

scVUflags

scHBAname [1 6]

Following are the currently defined Apple-specific flags for HBAS:

Bit Meaning

DMA transfer available and supported

Fast synchronous capable

Single-ended (0) or differential (1)

Bus has no external connectors (i.e. cable cannot extend
outside case)

4 HBA is capable of supporting old-API calls from XPT

An HBA product name— an ASCII text HBA identifier. It is meant

to correspond to a commonly known product name for the HBA

such as WhopperSCSI SE30.

scVUrsrvd[l4—VUused]

scSIMPrivSize

scAsyncFlags

scHiBusID

scInitiatorID

scReserved

scSIMVend[l6]

scHBAVend[l6]

As specified by CAM, a field for vendor-unique data that contains

14 bytes less the part used by Apple.

As specified by CAM, this field designates how many bytes of data

are in the SIM’s private data area (static).

Flags that indicate which types of asynchronous events are

generated by this SIM. A client may register with the XPT to receive

a callback when any of these events occur.

If no bus IDs exist, i.e. no SCSI buses are registered, then the highest

bus ID assigned is $FF, the ID of the XPT.

SCSI Device ID (of Initiator)—For all Apple-supplied HBAs, this

field is 7. It is highly recommended that all third-party HBAs also
use ID 7 for their initiator.

Reserved for Apple use.

Vendor ID of SIM-supplier—This is an ASCII text vendor identifier.

Apple Computer is designated ”Apple Computer”.

Vendor ID of HBA-supplier This is an ASCII text vendor identifier.

Apple Computer is designated ”Apple Computer”.

scCntrlFamily[l6]

A field that designates the family of parts that the SCSI controller

chip belongs to. It is meant to describe primarily the programming

interface to the part. For instance, 5380, 53c80, and IIfx SCSIDMA

chips all have a family of NCR 5380.

s ccnt rlType [1 6] Specific type of SCSI controller.

SCSI Interface Module Calls to Transport

Page 419 of 500

The routines described in this section are used by a SIM to communicate with the

transport layer. Their calls should all be supported by SIM developers.

SCSI Manager 4.3 Reference

Page 420 of 500

CHAPTER 9

SCSI Manager 4.3

SCSIRegisterBus

Page420of5OO

The SCS IRegisterBus routine is called to register an HBA for use with the transport

(XPT). Several characteristics of the HBA are specified as well as the software entry point

SIM and the number of bytes required for a static data space (for global Variables).

The XPT returns a Bus I D that is used for that HBA as well as a pointer to the allocated

static space.

long SCSIRegisterBus (SIMinitInfo * SIMinfo);

SIMinitInfo is defined as:

typedef struct { //

*SIMstaticPtr; //

staticsize; //

uchar

long

long

long

long
void

long
Boolean

ushort

void

void

} SIMinitInfo;

Field descriptions
SIMstaticPtr

staticsize

*SIMinit

*SIMaction

*SIM_ISR
*NewOldCall

oldCallCapable

intrptsource

busID

*XPT_ISR

SIMstaticPtr

(*SIMinit)(); //

(*SIMaction)(); //

(*SIM_ISR)(); //

(*NewOldCall)(); //

intrptsource; //

oldCallCapable; //

busID; //

(*XPT_ISR)(); //

(*MakeCallback)();//

used for SCSIRegisterBus call

<— ptr to the SIM's static vars

—> bytes SIM needs for static

// variables

SIM init routine

SIM
pointer to

action routine

the SIM ISR routine

the SIM NewOldCall

interrupt source specifier
true if this SIM can handle

// old SCSI Manager calls

pointer to

pointer to

pointer to

<— bus # for the registered bus

<- ptr to the XPT ISR

<— pointer to the XPT layer’s

// Makecallback routine

A pointer to the allocated space for the SIM's static variables.

A longword that specifies the number of bytes needed by the SCSI
interface module for its static variables.

A pointer to this SIM's initialization routine.

A pointer to this SIM's action routine.

A pointer to this SIM's interrupt service/polling routine.

A pointer to this SIM's routine for accepting old SCSI Manager calls.
A Boolean Value that is true if this SIM can handle old SCSI

hdanagercafls.

The interrupt source for this SIM's HBA.

The bus number of the bus that this SIM is registered to use.

A pointer to the XPT’s interrupt service routine, used when the SIM

has an interrupt source besides the one specified in S IMinitInfo.

A pointer to this SIM's static variables.

SCSI Manager 4.3 Reference

Page 421 of 500

CHAPTER 9

SCSI Manager 4.3

SCSIDeregisterBus

The SCS IDeregisterBus routine is called to deregister an HBA when it is no longer
available for use.

long SCSIDeregisterBus (ushort busID);

bus I D The bus number of the bus that this SIM is registered to use.

Transport Calls to SCSI Interface Modules

These routines are used by the transport to control the SIM. This section includes all the

SIMinit

SIMAction

previous SCSI Manager routines that the new SCSI manager supports. Their calls should

all be supported by SIM developers.

The SIMinit routine is called by the XPT to initialize the SIM’s state. The SIM, in turn

has the responsibility of optionally initializing the HBA.

void SIMinit (Ptr SIMstaticPtr, long busID);

SIMstaticPtr

A pointer to the previously allocated SIM static data area.

bus I D Bus identification for this HBA.

Page 421 of 500

The SIMAction routine is called by the XPT whenever a SCS IAction call is received

that needs to be serviced by the SIM.

long SIMAction (SCSI_PB *thePB, Ptr SIMstaticPtr);

*thePB

SIMstaticPtr

A pointer to the previously allocated SIM static data area.

A pointer to the parameter block.

SCSI Manager 4.3 Reference

Page 422 of 500

Summary of the SCSI Manager 4.3

CHAPTER 9

SCSI Manager 4.3

Constants

/‘k*~k******~k~k~k~k~k*****************~k~k~k~k~k~k*********************~k*********/

// Defines for the SCSIMgr scResult field in the parameter block header.

/~k~k~k******~k~k~k~k~k******~k~k~k~k~k******~k~k~k~k~k~k*****~k~k~k~k~k~k*****~k~k~k~k~k******~k~k~I<~I</

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

scsiReqInProg

scsi%eqAborted

scsiJnableToAbort

scsiReqCmplWErr

scsi3usy

scsiReqInvalid
scsi3usInvalid

scsiDevNotThere

scsiUnableTermIO

scsiSelTimeout

scsiCmdTimeout

scsiMsgRejectRcvd
scsiSCSIBusReset

scsiUncorParity

scsiAutosenseFail

scsiNoHBA

scsiDataRunErr

scsiUnexpBusFree

scsiSequenceFail

(OxE100+OxO2)

(OxE100+OxO3)

(0xE;OO+OxO4)

(OxE;OO+OxO5)

(OxE;OO+OxO6)

(OXELOO-OXO7)

(OXELOO—OXO8)

(OxELOO—OXO9)

(OxE;OO+OxOA)

(OxE100+OxOB)

(0xE;OO+OxOD)

(OxE100+OxOE)

(OxELOO+OXOF)

(OxElOO+Ox10)

(OxELOO—Ox11)

(OXELOO-0x12)

(OXELOO-Oxl3)

(OXELOO-0x14)

Summary of the SCSI Manager 4.3

Page 422 of 500

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

PB request is in progress

-7934 =

the host

-7933 =

request
-7932 =

with an

-7931 =

-7930 =

-7929 =

invalid

-7928 = SCSI device not

installed there

-7927 =

PB request

-7926 =

-7925 =

-7923 =

-7922 =

received

-7921 =

error occurred

-7920 = autosense:

sense cmd fail

-7919 =

—79l8

-7917

PB request aborted by

Unable to Abort PB

PB request completed
error

SCSI subsystem is busy

PB request is invalid

bus ID supplied is

unable to terminate I/O

target selection timeout
command timeout

message reject received
SCSI bus reset sent

uncorrectable parity

Request

no HBA detected error

data overrun/underrun

unexpected bus free

-7916

sequence failure

target bus phase

Page 423 of 500

CHAPTER 9

SCSI Manager 4.3

#define scsiPBLenErr (OxElOO+Ox15) -7915 = PB length supplied is

inadequate

#define scsiProvideFail (Ox3l00+0xl6) -7914 = unable to provide

required capability

#define scsiBDRsent (Ox3lOO+Ox17) -7913 = a SCSI BDR message was

sent to target

#define scsiReqTermIO (OxElOO+Ox18) -7912 = PB request terminated

by the host

#define scsiLUNInvalid (OxELO0+Ox38) -7880 = LUN supplied is invalid

#define scsiTIDInvalid (OxE100+0x39) -7879 = target ID supplied is
invalid

#define scsiFuncNotAvail (OxE100+0x3A) -7878 = the required function is
not available

#define scsiNoNexus (OxE100+0x3B) -7877 = Nexus is not established

#define scsiIIDInvalid (OxE100+Ox3C) -7876 = initiator ID is invalid

#define scsiCDBRcvd (OxE;OO+Ox3E) -7874 = SCSI CDB has been

received

#define scsiSCSIBusy (Ox ;OO+Ox3F) -7873 = SCSI bus busy

#define scsiSIMQFrozen SIM queue frozen with this error

#define scsiAutosenseValid autosense data valid for target

#define scsiResultMask mask for high (QFZN and

AUTOSNS_VALI D) bits

// Defines for the SCSIMgr flags field in the parameter block header.

// lst Byte

#define scsiDirReserved OXOOOOOOOO data direction (00: reserved)

#define scsiDirIn 0x40000000 data direction (01: DATA IN)

#define scsiDirOut Ox8000OOOO data direction (10: DATA OUT)

#define scsiDirNone OXCOOOOOOO data direction (11: no data)

#define scsiDirMask OXCOOOOOOO data direction mask

#define scsiDisAutosense 0x20000000 disable autosense feature

#define scsiscattervalid 0x10000000 S/G list is valid

#define scsiCDBLinked 0x04000000 parameter block contains a
linked CDB

#define scsiQEnable OXOZOOOOOO SIM queue actions are enabled

#define scsiCDBIsPointer 0x01000000 CDB field contains a pointer

Summary of the SCSI Manager 4.3

Page 423 of 500

Page 424 of 500

CHAPTER 9

SCSI Manager 4.3

// 2nd Byte

#define

#define

#define

#define

#define

#define

#define

scsiDisDisconnect

scsiInitiateSync

scsiDisSync

scsiSIMQHead

scsiSIMQFreeze

scsiSIMQNoFreeze

scsiCDBPhys

// 3rd Byte

#define

#define

#define

#define

#define

#define

scsiDataPhys

scsisense BufPhys

scsiMsgBufPhys

scsiNxtPBPhys

scsiCallBackPhys

scsiPhysMask

0x00800000

0x00400000

0x00200000

0x00100000

0x00080000

0x00040000

0x00020000

0x00002000

0x00001000

0x00000800

0x00000400

0x00000200

0x00000100

// 4th Byte — Target Mode Flags

#define

#define

#define

#define

#define

#define

#define

scsiDataBufValid

scsiStatusBufValid

scsiMsgBufValid

scsiTgtPhaseMode

scsiTgtPBAvail
scsiDisAutoDisc

0x00000080

0x00000040

0x00000020

0x00000008

0x00000004

0x00000002

scsiDisAutsaveRest OXOOOOOOOI

;// APPLE Unique flags — scVUFlags

#define

#define

#define

#define

#define

#define

scsiNoParityCk
scsiDisSelAtn

scsiSavePtrOnDisc

scsiNoBucketIn

scsiNoBucketOut

scsiExecSync

OxOOO2

OXOOO4

OxOOO8

OxOOlO

OxOO2O

OXOO4O

Summary of the SCSI Manager 4.3

Page 424 of 500

disable disconnect

and SDTR

disable sync, go to async

place PB at the head of SIM Q

return the SIM Q to frozen state

attempt Sync data xfer,

disallow SIM Q freezing

CDB pointer is physical

S/G buffer data pointers are

physical

autosense data pointer is physical

message buffer pointer is physical

next parameter block pointer is

physical

callback function pointer is

physical

at least one pointer is physical

data buffer valid

status buffer valid

message buffer valid

SIM will run in phase mode

target PB available
disable autodisconnect

disable autosave/restore pointers

disable parity checking
disable select with attention

do SAVEDATAPOINTER when DISCONNECT

don't bit—bucket in during this I/O

don't bit—bucket out during this

I/O

execute this I/O synchronously

Page 425 of 500

CHAPTER 9

SCSI Manager 4.3

// Defines for the SIM/HBA queue actions. These values are used in the

// SCSI_ExecIO_PB, for the queue action field.

#define scsiSimpleQTag 0x20 // tag for a simple queue

#define scsiHeadQTag Ox2l // tag for head of queue

#define scsiOrderedQTag 0x22 // tag for ordered queue

// Defines for the Bus Inquiry parameter block fields.

#define scsiVERSION 0x22 // binary value for the current vers

#define busMDP 0x80 // supports MDP message

#define busWide32 0x40 // supports 32 bit wide SCSI

#define busWidel6 0x20 // supports 16 bit wide SCSI

#define busSDTR OxlO // supports SDTR message

#define busLinkedCDB 0x08 // supports linked CDBs

#define busTagQ 0x02 // supports tag queue message

#define busSoftReset OxOl // supports soft reset

#define busTgtProcessor 0x80 // target mode processor mode

#define busTgtPhase 0x40 // target mode phase mode

#define busScansHi2Lo 0x80 // bus scans from ID 7 to ID 0

#define busNoRemovable 0x40 // removable dev not included in scan

#define busDMAavail OxOl // DMA is available

#define busFastSCSI 0x02 // HAL supports fast SCSI

#define busDifferential OXO4 // singleEnded (O) or Differential (1)

#define busNoExtern 0x08 // HAL has no external connectors

#define busOldAPI OxlO // HAL is old API capable

Data Type

typedef struct { // directions for SCSIRegisterBus: (—> parm, <— result)

uchar *SIMstaticPtr; // ptr to the SIM's static vars

staticSize; // num bytes SIM needs for static vars

(*SIMinit)(); // pointer to the SIM init routine

(*SIMaction)(); // pointer to the SIM action routine

(*SIM_ISR)(); // pointer to the SIM ISR routine

(*NewOldCall)(); // pointer to the SIM NewOldCall routine

Boolean oldCallCapable; ’/ true if this SIM can handle old-API calls

ushort busID; // bus number for the registered bus

void (*XPT_ISR)(); // ptr to the XPT ISR

V0id (*MakeCallbaCk)(); // pointer to the XPT layer’s

// Makecallback routine

} SIMinitInfo;

Summary of the SCSI Manager 4.3

Page 425 of 500

Page 426 of 500

CHAPTER 9

SCSI Manager 4.3

Routines

void OSErr SCSIAction(SCSI_PB *);

long OSErr SCSIRegisterBus(SIMinitInfo *);

long OSErr SCSIDeregisterBus(SIMinitInfo *);

Summary of the SCSI Manager 4.3

Page 426 of 500

Page 427 of 500

CHAPTER 10

DMA Serial Driver

Page 427 of 500

Page 428 of 500

CHAPTER 10

DMA Serial Driver

The DMA Serial Driver for the Macintosh Quadra 84OAV and Macintosh Centris 66OAV is

a complete reimplementation of the classic serial driver previously documented in Inside

Macintosh. The reasons for this change are

I to improve the maintainability and transportability of the serial driver by writing it in

a high-level language

I to modularize hardware-dependent support features, speeding the development of
serial driver versions for new hardware

These goals mesh with the extensive changes required to support a DMA serial 1/0
model on the Macintosh Quadra 84OAV and Macintosh Centris 66OAV hardware. While

the documented API for the DMA Serial Driver is supported and compatible with the

classic serial driver, there are a few technical changes internally which could affect driver

clients that are not particularly well behaved.

The new Serial Driver does not assume anything about the hardware. Any function that

requires knowledge of the hardware results in a call to a hardware abstract layer (HAL),

an API layer that makes the driver hardware-independent. By supplying a new HAL, the

same serial driver can support many different hardware platforms. The first new HAL,

called PSCHAL, was developed to support the Macintosh Quadra 84OAV and Macintosh
Centris 66OAV hardware.

It is not necessary to read this chapter to use the new DMA Serial Driver. However, some

serial driver clients were written to take advantage of the hardware implementation of

the previous serial driver. The internal structures are not the same as in the previous

serial driver. Any software that relies on the serial driver's internal structures must be

rewritten. Hence, developers wishing to maintain compatibility with the new DMA

Serial Driver should read this chapter and test their existing serial driver clients for

changes in the hardware implementation.

This chapter explains the change in the architecture of the DMA Serial Driver and then

the changes in implementation that could affect existing drivers. For information about

serial port hardware in the Macintosh Quadra 84OAV and Macintosh Centris 66OAV

computers, see ”Serial Ports,” in Chapter 2.

Architecture

Page 428 of 500

At the top level, presenting the familiar Device Manager API, is a serial driver that

handles Open, Close, Read, Write, Control, status, and KillIO calls. The driver

maintains a set of variables referenced by dctlstorage that are not compatible with

the variables of the classic serial driver. The driver never explicitly references the

Macintosh hardware and never makes any assumptions about whether the hardware is a

standard SCC, SCC with IOP, SCC with PSC, or any other specific configuration. The

DMA Serial Driver is a standard 'SERD' resource of ID 1. The preliminary version
number for this driver is 8.

Architecture

Page 429 of 500

CHAPTER 10

DMA Serial Driver

To support the documented API, anytime a required function would involve knowledge

of the hardware a call is initiated to a serial HAL resource. Through a parameter block

interface, the HAL handles requests from the serial driver that require specific knowledge
of the hardware.

A HAL is simply a code resource with a predefined, private API. By interchanging HAL

resources, the same serial driver can support a number of widely different hardware

configurations. The first HAL implemented is PSCHAL, a DMA HAL for the Macintosh

Quadra 840AV and Macintosh Centris 660AV. This HAL is largely a superset of what

would be required for the traditional Macintosh serial platform; by stripping out some

DMA code, for example, a simpler ”SCCHAL" for the SCC could be generated.

Changes in Implementation

Page 429 of 500

This section discusses the following areas affected by changes in the hardware and

software implementation of the DMA Serial Driver:

I interrupt handling

I DMA versus non—DMA transmissions

I elimination of the PollProc mechanism

I use of the DMA capability

Interrupt Handling

The HAL has responsibility for receiving all interrupts generated by the serial hardware.

This is in line with the HAL’s responsibility as keeper of the hardware. The HAL

dispatches serial driver interrupt handlers through the ”Level 2" vector tables, including

external/ status interrupts. It is the responsibility of the driver to make callbacks to the

HAL to perform hardware-dependent tasks at interrupt time, including secondary

dispatch of external / status interrupts. Driver—level interrupt handlers usually run as

deferred tasks with interrupts enabled.

The interrupt dispatch table structure is preserved as an element of the driver /HAL
interface. The familiar Lvl2DT (SCCDT) and ExtStsDT tables are still used. DMA

interrupts are processed through these vectors as well as SCC interrupts, so there is more

complexity required in the interrupt handlers to process a given interrupt properly. In

general, this complexity is not in the driver but is instead pushed down into the HAL.

Register conventions across these dispatch tables may or may not be preserved; for

example, SCC addresses may not be stored in registers A0 or A1.

These changes in interrupt handling should be transparent to any serial driver client, but

they do significantly alter the interrupt handler code paths from those used in the former
serial driver.

Changes in Implementation

Page 430 of 500Page 430 of 500

CHAPTER 10

DMA Serial Driver

DMA Versus Non-DMA Transmissions

The PSC DMA hardware presents a minor limitation in that all serial data transfers must

begin on longword boundaries. As a result, not all data can be transferred using DMA.

Therefore, PSCHAL uses a mixed DMA/ SCC model where DMA is used if possible

and convenient. If DMA is not convenient, the classic character-oriented SCC interrupt

model is employed until synchronization is regained with a longword boundary.

Maximum performance benefit occurs with large, uninterrupted transfers.

When receiving data, there are new requirements on the receive buffer size and

alignment. Although the driver client can request any buffer size and alignment, the

driver uses only receive buffers which are 64 bytes or larger, aligned to a cache line

boundary and a multiple of 16 bytes in length. The driver attempts to ensure that the

buffer is also locked in physical memory and physically contiguous. If a buffer passed

to SerSetBuf does not meet these requirements, the driver attempts to carve out a

subset of the given buffer which does meet them. If that is not possible, the driver

reverts to its internal default 64-byte buffer. This should have little impact on driver

clients, who should make no assumptions about the serial driver's internal use of the

receive character buffer. SerSetBuf and PBWrite will fail if called when interrupts are
masked. The driver will be unable to lock the receive buffer for DMA.

Po||Proc Mechanism

The Pol 1 Proc mechanism, whereby serial characters are received with interrupts

disabled by LocalTall< or other applications, is not supported on the Macintosh

Quadra 84OAV or Macintosh Centris 660AV. PollProcs are completely disabled. The

PSC is capable of reading incoming serial data while interrupts are disabled. Polling

by other software components threatens data integrity just as failure to poll did in

the past. All occurrences of polling in components outside the serial driver should

be disabled. The driver itself does not supply a PollDtaIn equivalent (the PollProc

low memory is always nil).

DMA Use

PSCHAL uses all three serial DMA channels, each in a fixed direction. On port A, the

SCCA DMA channel (channel 4) is used to receive and SCCATX (channel 6) is used to

transmit. This allows full-duplex serial DMA on port A. On port B, SCCB (channel 5) is

used to transmit. Full—duplex serial DMA is not supported on port B, because the printer

port is used primarily for output and not for high-speed input. For hardware details, see

”Serial Ports,” in Chapter 2.

During DMA input, any Read call to the driver and any SerGetBuf Status call requires

that pending DMA be terminated to determine an accurate accounting of characters

received. Terminating DMA ensures that all received characters are immediately

available, but degrades driver performance. If your application calls SerGetBuf in a

loop you might want to rewrite it to work around this requirement.

Changes in Implementation

Page 431 of 500

CHAPTER 11

Video Driver

Page 431 of 500

Page 432 of 500

CHAPTER 11

\fideo Driver

The Macintosh Quadra 840AV and Macintosh Centris 66OAV computers are the first

Macintosh CPUs to provide both video—out and video—in capabilities built into the main

logic board. This chapter discusses the system software changes that support these

features. The hardware for video input and output is discussed in ”Video and Graphics

I/O,” in Chapter 2.

Before reading this chapter, you should already be familiar with video drivers based on

the Macintosh Slot Manager. See Designing Cards and Drivers for the Macintosh Family,

third edition, for background technical information.

Video Television Output

Page 432 of 500

The user can control the Video output portion of the video driver in the Macintosh

Quadra 840AV and Macintosh Centris 66OAV by means of the Monitors control panel,

using the Options button. The Macintosh Quadra 840AV and Macintosh Centris 66OAV

hardware supports video ouput not only through the standard DB-15 monitor connector

but also through a composite video connector on the back panel.

In addition to the standard RGB monitor output, video output is available in either

NTSC or PAL television format. With NTSC format, underscan produces a resolution of

512 by 384 pixels resolution, while overscan produces a resolution of 640 by 480 pixels.

With PAL format, underscan produces a resolution of 640 by 480 pixels, while overscan

produces a resolution of 768 by 576 pixels. When driving an interlaced display or

television, the hardware can implement a flicker—free mode called Apple convolution. This

mode is selectable through a checkbox on the Options dialog box of the Monitors control

panel. Apple convolution is not supported in more than 256 colors or when a video input
Window is active.

Because of the limited resolutions of the NTSC and PAL standards, the video driver

allows the user to switch from an RGB display to a television output only when the RGB

display resolution is 512 by 384, 640 by 480, or 768 by 576 pixels. The driver provides

family modes for all Apple monitors in these resolutions, if physically possible. Thus, a

user who has a 16-inch color display with a resolution of 832 by 624 pixels can change

the family mode to 512 by 384, 640 by 480, or 768 by 576 pixels. The driver will center the

active video on the display and the user will see more black around it than in the

standard 832 by 624 resolution. After doing this, the Option dialog box of the Monitors

control panel will show enabled radio buttons to switch the output to one of the
television formats.

The Macintosh Quadra 840AV and Macintosh Centris 66OAV video driver lets the user

connect a television set as the computer's sole display. This is done by the Primarylnit

code; if there is no monitor connected to the DB-15 port, the code checks a bit in its slot
PRAM to determine whether the user has enabled the boot—on—television feature. If the bit

is set, the video driver opens and the monitor output is displayed on television equipment

connected to the composite output ports. The Options dialog box of the Monitors control

panel provides a checkbox to allow the user to select this feature.

Video Television Output

Page 433 of 500

CHAPTER 11

Video Driver

Monitor output is directed to the video output connector in television format only if
there is no monitor connected to the DB—15 connector. If the user has not clicked the

checkbox in the Options dialog box of the Monitors control panel, this feature can also be

enabled by holding down the Command-Option-T-V keys during startup. If this is done,

the machine will boot up, play the boot beep, and replay the boot beep a short time later.

At that moment the user can release the keys and the computer will continue the startup

process, using the connected television set as its main display.

New Control and Status Routines

To let Video displays go into a power-saving mode if the sync lines are dropped, two
new routines have been added to the video driver:

=VDFlagPtr [SetSyncs]

mode Value [byte]

=VDFlagPtr [GetSyncs]

mode value [byte]

csCode = 11 csParam

—> c sMode f lag

csCode = 11 csParam

e c sMode flag

The Setsyncs control routine promotes evergy conservation by disabling the sync

outputs going to the monitor, thereby setting power—saving monitors in a low—power

mode. The same routine can then be used to reenable the syncs outputs. A csMode value

of 0 enables the sync outputs, and a csMode value of nonzero disables the sync outputs.

While the sync outputs are disabled, the monitor will show black.

The Getsyncs status routine returns a value that indicates the state of sync outputs. If

csMode is 0 it means that the syncs are enabled, and if csMode is nonzero it means they
are disabled.

NuBus Block Moves

Page 433 of 500

Video data movement to and from accessory cards often require block transfers, which

are supported by the MUNI chip as described in ”NuBus Interface,” in Chapter 2. Block

transfers from NuBus are always enabled, but block transfers to NuBus must be enabled

by one of the following two procedures:

I by programming the card's configuration ROM

I by using the trap macro _SlotBlockXferCtl

These procedures are described in the next sections.

Note

The system software fully supports the NuBus block
transfer sResource IDs. The sBl o c kTran s fe r I n f0 and

sMaxLockedTrans fercount sRe s ource IDs are included

in the system's board sResource. 6

New Control and Status Routines

Page 434 of 500Page434of5OO

CHAPTER 11

\fideo Driver

Configuration ROM Programming

The configuration ROM on the card must support slave block transfers of size 4, which is

the only size that the MUNI can generate. The Macintosh system searches the card's

configuration ROM after Primarylnit has run, and looks in the board's sResource
list for the sResource ID of the sBlockTrans ferInfo data structure. If the sResource

ID indicates that the card supports slave transfer sizes of size 4, the MUNI will be

programmed to enable block transfers to that slot. The ROM does not support the

automatic enabling of block transfers to NuBus if these transfers are not supported in all

the operational modes of the card. For further information, see Designing Cards and

Drivers for the Macintosh Family, third edition, and the NuBus Block Transfers technical note.

Using the Trap Macro S|otB|ockXferCt|

You can also use a programmatic interface to enable or disable block transfers to NuBus.

The trap macro _s1otBlockXfe rCt1 is accessed through the _HwPriv trap, with a

selector of 0x0 c. The interface is the following:

Trap Macro: _S1otB1ockXferCt1

HwPriv Selector: OxOc

On Entry: A0 (bits 31-9)

(bit 8)

reserved

0 to disable block xfer to

a slot,

(long)

1 to turn it on

(bits 7-O) slot number, range 1-14

On Exit: DO (long) 0 if we're on a MUNI-based system & good

slot value, paramErr if not

A0 (long) if noerr, previous state of block xfer for

each slot (1 = on, O = off)

(Bits 31-15 reserved, Bit 14 = slot 14,

bit 1 = slot 1, bit 0 reserved)

Destroys: D1,D2,A1

NuBus Block Moves

Page 435 of 500

CHAPTER 12

New Age Floppy Disk
Driver

Page 435 of 500

Page 436 of 500

CHAPTER 12

New Age Floppy Disk Driver

The system software for the Macintosh Quadra 840AV and Macintosh Centris 660AV

computers contains a modified version of the traditional floppy disk driver covered

in Inside Macintosh. The new version is designed to support the New Age floppy disk

controller, described on page 15.

This chapter describes the support in the Macintosh Quadra 840AV and Macintosh

Centris 660AV for floppy disk reading and Writing, plus changes to the floppy disk driver

operation and API.

Floppy Disk Support

The New Age floppy disk driver supports the Apple 800K GCR floppy disk drive and

the Apple SuperDrive floppy disk drive. It does not support the Apple 400K GCR floppy
disk drive or the Macintosh HD20 hard disk drive.

With an Apple 800K GCR drive, the New Age floppy disk driver reads from and writes

to the following disk formats:

I Apple 400K

I Apple 800K

I ProDos GCR

With an Apple SuperDrive, the Newage floppy disk driver reads from and writes to the

formats just listed plus the following:

I 720K MFM disks

I 1440K MFM disks

Programming Interface Changes

Page 436 of 500

The New Age floppy disk driver is very similar to the floppy disk driver used in

Macintosh Quadra computers and previous models. Most of the prime, control, and

status routines are supported and should appear the same to application software; the

calling conventions are identical. However, three control routines—TrackCache,

Ki 1 I I / O, and TagBu f fe r—are no longer supported.

Trackcache, a control routine with a cscode of 9, is no longer supported because the

read process would try to cache everything on the track being read. If it failed to read

everything on that track, as it might on a copy-protected disk, it would only read and

cache what was requested. Similarly, the write process would cache up to a track of data

being written out.

Kill I / O, a control routine with a cscode of 1, and TagBuf fer, a control routine with

a cscode of 8, are also not implemented. Calls to TagBuffer return a result code of
-17 and calls to Kill I / 0 return a result code of -1.

Floppy Disk Support

Page 437 of 500

CHAPTER 12

New Age Floppy Disk Driver

Operational Compatibility

Page 437 of 500

Besides the three unsupported control routines listed in the previous section, there are a

few minor differences between the New Age floppy disk driver and previous Macintosh

floppy disk drivers.

A call to TrackDump with search mode 0 no longer starts its data stream at the

beginning of the track. Instead, it starts after the address field of the first sector (GCR

sector 0 or MFM sector 1). TrackDump is a control routine with a cscode of 8.

A call to Drivestatus with a drive reference number that identifies an uninstalled

floppy drive returns an error code of -56 and puts invalid data in the csParam field. A
call to Drivestatus with a drive reference number of 0 or 1 returns valid data.

Drivestatus is a status routine with a cscode of 8.

The New Age floppy disk driver does not return any of the following error codes:

Drive not installed

One of the address mark bit slip nibbles was incorrect (GCR)

One of the data mark bit slip nibbles was incorrect (GCR)

Unable to initialize IWM

Tried to read a double-sided disk on a single-sided drive

Unable to correctly adjust the drive speed (GCR, 400K
drives only)

noDriveErr

badBtSlpErr

badDBtSlp

initIWMErr

twoSideErr

spdAdjErr

see kErr Wrong track number read in sector's address field

Floppy driver calls to an uninstalled drive return an nsDrvErr error (no such drive
error) instead of noDriveErr.

The New Age controller returns only one error code for a bad address mark. There is no

differentiation in the address mark between a bad slip bit and a wrong track number.

Consequently, the badBtSlpErr, see kErr, and noAdrMkErr (couldn't find valid

address mark) errors have all been merged into noAdrMkErr. Similiarly, badDBtslp

and noDtaMkErr (couldn't find valid address mark) have been merged into
n o Dt aMkE r r.

The error codes init IWME rr, twos ideErr, and spdAdj Err are not applicable to the

New Age driver.

The noNybErr error used to mean a byte timeout. With the New Age driver it indicates

a timeout error resulting from waiting for New Age to respond to a command.

Operational Compatibility

Page 438 of 500Page 438 of 500

Page 439 of 500

CHAPTER 13

Virtual Memory Manager

Page 439 of 500

Page 440 of 500Page 440 of 500

CHAPTER 13

\firtua| Memory Manager

There is one substantial change to the Virtual Memory Manager in the Macintosh
Quadra 84OAV and Macintosh Centris 66OAV, made to accommodate the new SCSI

Manager (described in Chapter 9, ”SCSI Manager 4.3”).

Virtual memory (VM) no longer disables interrupts when executing these tasks:

I I/O completion routines

I Time Manager tasks

I VBL / slot VBL tasks

deferred tasks (as they exist today)

I PPostEvent actions

These tasks are placed in a deferred user function queue. If a user function, such as a

completion routine, is requested while the VM is running the deferred user function

queue (with interrupts enabled), VM places the user function at the end of the deferred

user function queue. This ensures that routines of the types listed above will execute in

their original order.

In earlier Macintosh systems, while Virtual memory is servicing a page fault it defers the

execution of I/0 Completion routines, Time Manager tasks, VBL and slot VBL tasks,

Deferred Tasks, and PPostEvents until it is page fault safe. VM disables dispatching

of the VBL / Slot VBL tasks and the Deferred Tasks when it services a page fault. I/O

completion routines, Time Manager tasks and PPostEvent actions, are placed in a

deferred user function queue. Some Interrupt Service routines may execute the

De fe rUserFn trap to install code in the same deferred user function queue. These

deferred user functions are run only when VM is sure that it is safe. When VM runs these

functions it disables interrupts until the entire deferred user function queue is emptied.

In earlier systems, this was a simple way to ensure that these asynchronous tasks were

executed in the order they were queued.

VM now executes these functions without disabling interrupts. For these routines to

execute in the expected order, if a user function (like a completion routine) is to be run

while VM is running the deferred user function queue (with interrupts enabled), VM

places this new completion routine at the tail of the deferred user function queue.

For general information about memory implementation in the Macintosh Quadra 84OAV

and Macintosh Centris 66OAV, see Chapter 2, ”Hardware Details.”

Page 441 of 500

Appendixes

This part of the Macintosh Quadra 840AV and Macintosh Centris 660AV Developer Note

contains four appendixes. They contain information that can help you with specific

development tasks:

I Appendix A, ”DSP d Commands for MacsBug,” describes three new d commands

added to Macsbug that help in debugging DSP code.

Appendix B, ”BugLite User's Guide,” covers a DSP module installer with a graphical

user interface. It helps programmers create and install tasks to be executed by the DSP.

Appendix C, ”Snoopy User's Guide,” tells you how to use a browser and debugger

for the DSP. It helps programmers debug real-time tasks that run on the DSP.

Appendix D, ”Mechanical Details” contains foldout drawings of the physical

mounting facilities that are provided for internal SCSI devices

and accessory cards in the Macintosh Quadra 840AV and Macintosh Centris 660AV.

Page 441 of 500

Page 442 of 500Page 442 of 500

Page 443 of 500

A P P E N [)1 X A

DSP d Commands for MacsBug

This appendix describes new MacsBug d commands used for debugging DSP3210 digital

signal processor code being run on Macintosh platforms.

These d commands are specific to the DSP3210. The dissassembly instruction assumes

the data is in DSP3210 code format. Before using MacsBug to locate a problem in the

DSP3210 code you should first attempt to use Snoopy, the DSP browser/ debugger.

Additional information about d commands can be found in the MacsBug and Macintosh

debugging documentation available from APDA.

The first section, "Getting Started,” tells you how to install the new d commands in

MacsBug. The next section, ”Using the d Commands,” shows how to find the specific

DSP desired and locate a specific module and section running on that DSP. The last

section, ”d Commands Reference,” provides a description of how each command is used

and shows the default template used by each command.

Getting Started

Use ResEdit to install the d commands and templates into the Debugger Prefs file.

There are four basic d commands used in DSP3210 debugging and twenty five

templates. The d commands are used to show information about the DSPs and
the clients, tasks, modules, and sections that are installed on each one.

Using the d Commands

dsps
Device

000dd740

Task

fee387cc

fee37884

fee37808

fee3778c

fee37710

Page 443 of 500

To locate the data you are interested in you must first find out what devices are

available. Use the dsps command, which produces a display such as the following:

Name Ref Clients Slot Proc Timeshare RealTime Framect EVT

.DSP3210 ffca 0002 000e 0000 00000000 fee387cc 00015351 00015351

RefNum

fee387cc

fee37884

fee37808

fee3778c

fee37710

Modules

fee385e4

00000000

00000000

00000000

fee37528

Client

000dd80c

OOOdd80c

000dd80c

000dd80c

000dd80c

RefCon

00000000

00000000

00000000

00000000

00000000

Vector

00146984

00146984

00146984

00146984

00146984

Name Flags
AtR

atR

atR

atR

AtR

Input

Preput

Midput

Postput

Output

Getting Started

Page 444 of 500

APPENDIX A

DSP d Commands for MacsBug

Second, find the specific task of interest and use the Modules location in the md

command to display the sections that make up the module. This example uses the first

module Input that is located at fee3 8 5e4.

md FEE385E4

Module Name Flags Sections Execution Skipcount Actual Estimate

fee385e4 Input dMsd 00000005 00O159b5 00000000 00O159b5 00000c80

Section Name Flags Index Size Primary Secondary Type

fee38654 Program LscwAbD 00000000 00000118 5003e100 fee38488 iosft
fee38694 LAIAO I 00000001 000003c0 5003f640 00000000 iOSft

fee386d4 RAIAO ' 00000002 000003c0 5003f280 00000000 iOSft

fee38714 Temp ; 00000003 000003c0 5003e218 00000000 iosft
fee38754 Globals 00000004 00000008 5003e5d8 fee379OO iosft

Third, select the code section of interest and disassemble it with the i132 1 0 command.

This example uses the first section located at fee3 8 4 8 8.

IL32lO FEE38488

Disassembling from fee38488

fee38488 9de5c817 *r21++ = (long) r5

fee3848c 9de6c817 *r21++ = (long) r6

fee3849O 9df4c817 *r21++ = (long) r18

fee38494 14200004 r1 (short) 0x4(4)

fee38498 969aO2ac r18 = (long) r22 + 0x2ac(684)

fee3849c 9cf4a000 r18 = (long) *r18
fee384a0 80000000 NOP

fee384a4 12940000 call'r18 (r18)

fee384a8 80000000 NOP

fee384ac 98050022 r5 = (long) r0 + r2

fee384bO 949a0310 r4 = (long) r22 + 0x310(784)

fee384b4 9ce42000 r4 = (long) *r4

fee384b8 947a03c4 r3 = (long) r22 + 0x3c4(964)

fee384bc 9ce31800 r3 = (long) *r3

fee384cO 94240004 r1 = (long) r4 + 0x4(4)

fee384c4 9ce10800 r1 = (long) *r1

fee384c8 9be30001 (long) r3 & 1(0x1)

fee384cc 98010885 if (ne) r1 = (long) r1 + r5

fee384d0 94d5000c r6 = (long) r19 + 0xc(12)

fee384d4 9ce63000 r6 = (long) *r6

Additional information can be obtained by using the display memory command DM and

the templates.

Umngmedcommmms

Page 444 of 500

Page 445 of 500

APPENDIX A

DSP d Commands for MacsBug

d Commands Reference

DESCRIPTION

Page 445 of 500

The three d commands used in DSP3210 debugging (besides DM) are listed in Table A-1.

Table A-1 d commands

Command Description

dsps Display all DSP CPU devices and their associated tasks.

i132 1 O Disassemble 11 lines of DSP32C from the address specified. If no number is
specified, then display half page.

md Display a list of the modules and their associated sections.

These d commands have predefined templates that are used to display the information

in a specific format.

The dsps command displays all DSP CPU devices and their associated tasks.

This command displays all DSP devices installed in the computer. It also shows all tasks

installed and relevent information for finding them in memory. Modules that are

installed in a specific task can be displayed using the Modules reference address. The

current status of the task is specified by the Task flags shown in Table A-2. Upper case

letters indicate the true state, lower case letters indicate thefalse state of the flag.

Table A-2 Task flags

Task

flags Description

A Task is active

T Toggle the active bit to set the task active

R Task is in the real-time task list

d Commands Reference

Page 446 of 500

EXAMPUZ

dsps
Device

OOOdd74O

Task

fee387cc

fee37884

fee37808

fee3778c

fee377lO

APPENDIX A

DSP d Commands for MacsBug

In the example, the only tasks that are active are input and output. All of the other tasks
are inactive and are not set to become active. All of the tasks are in the real—time task list.

Name

.DSP321O ffca 0002

Name

Input

Preput

Midput

Postput

Output

RefNum

fee387cc

fee37884

fee37808

fee3778c

fee377lO

Modules

fee385e4

00000000

00000000

00000000

fee37528

Flags
AtR

atR

atR

atR

AtR

Vector

00146984

00146984

00146984

00146984

00146984

Client

OOOdd80c

000dd80c

OOOdd80c

OOOdd80c

000dd80c

Ref Clients Slot Proc Timeshare RealTime FrameCt EVT

000e 0000 00000000 fee387cc 00015351 00015351

Refcon

00000000

00000000

00000000

00000000

00000000

DESCRIPTION

EXAMPUE

il32lO [addr [n]]

The i132 1 0 command disassembles n lines of dsp3210 code, starting at address uddr. If

no 71 is given, then it displays half page. This command disassembles the data starting at
addr into DSP3210 code format.

li32l0 FEE38488

Disassembling from FEE38488

Page 446 of 500

fee38488

fee3848c

fee38490

fee38494

fee38498

fee3849c

fee384aO

fee384a4

fee384a8

fee384ac

9de5c8l7

9de6c8l7

9df4c8l7

14200004

969a02ac

9cf4a000

80000000

12940000

80000000

98050022

r1 =

r18

r18

NOP

NOP

r5 =

d Commands Reference

*r21++ = ('

*r21++ =

*r21++ = (long)

call-

(short)

_ong)

(Long) r6

r5

r18

Ox4(4)

(long) r22 + 0x2ac(684)

(long)

r18

(long)

*r18

(r18)

r0 + r2

Page 447 of 500

APPENDIX A

DSP d Commands for MacsBug

fee384bO 949a03l0 r4 Long) r22 + 0x310(784)

fee384b4 9ce42000 r4 Long) *r4

fee384b8 947aO3c4 r3 Long) r22 + Ox3c4(964)

fee384bc 9ce3l8OO r3 Long) *r3

fee384c0 94240004 rl Long) r4 + 0x4(4)

fee384c4 9cel0800 r1 Long) *rl

fee384c8 9be3000l (long) r3 & l(Oxl)

fee384cc 98010885 if (ne) r1 = (long) r1 + r5

fee384dO 94d5000c r6 = (long) r19 + Oxc(12)

fee384d4 9ce63000 r6 = (long) *r6

SYNTAX

md [modulepointer]

DESCRIPTION

The md command displays modules in a list with their associated sections. Flags are

listed in Table A-3 through Table A-5.

Table A-3 Module flags

Module

flag Descfipfion

D kdspDemandCache

kdspModuleAl;ocatedM

A. kdspUseActua;

D kdspDontCountThisModule

Secfionflags

Descfipfion

kdspLoadSection

kdspsavesection

kdspclearsection

kdspsaveoncontextswitch

d Commands Reference

Page 447 of 500

Page 448 of 500

APPENDIX A

DSP d Commands for MacsBug

Secfionflags(confinued)

Description

kdsp3ankA

kdsp3ankB

kdspDSPUseOnly

Secflontypes

Descflpflon

kdspInputBuffer

kdspOutputBuffer

kdspscalablesection

kdspFIFOSection

kdspITBSection

EXAMPLE

md FEE385E4

Module Name Flags Sections Execution SkipCount Actual Estimate

fee385e4 Input dMsd 00000005 OOO159b5 00000000 00O159b5 00000c80

Section Name Flags Index Size Primary Secondary Type

fee38654 Program LscwAbD 00000000 00000118 5003el00 fee38488 iosft
fee38694 LAIAO lscWabD 00000001 000003c0 5003f640 00000000 iosft

fee386d4 RAIAO lscWabD 00000002 000003c0 5003f280 00000000 iosft

fee387l4 Temp lscWaBD 00000003 000003c0 5003e2l8 00000000 iosft
fee38754 Globals LScWaBD 00000004 00000008 5003e5d8 fee37900 iosft

d Commands Reference

Page 448 of 500

Page 449 of 500

APPENDIX B

BugLite User's Guide

This appendix describes the user interface for BugLite, a tool for accessing and installing

digital signal processor (DSP) modules, as DSP tasks, in the real-time data processing

subsystem of the Macintosh Quadra 840AV or Macintosh Centris 660AV. The section

”Getting Started” describes how to install the application and provides information on

the initial display. ”Tools of the Trade” describes what the BugLite tools are and how

they operate.

”Using BugLite” describes how to select and load a DSP program module. The example

also shows how to use the tools in creating a DSP task that plays a record from disk. The

final section, ”Getting Information,” shows what information is available about each
module and how to access it.

BugLite is a graphical DSP module installer that allows the DSP programmer to select

DSP modules from any mass storage device (for example, a hard disk) and install

them into a DSP subsystem. Using the graphical representation of tasks and modules,

predefined resource modules can be assembled into a task and run on the DSP subsystem.

This relieves the DSP programmer from having to generate a Macintosh application to

test DSP code. Additional capabilities provide access to external data files and I/0 ports

for connecting the task into real data.

For more information on digital signal processing, see Chapter 3, ”Introduction to

Real—Time Data Processing.” Although multiple DSP operations are not available on the

Macintosh Quadra 840AV or Macintosh Centris 660AV computer, they are documented

here for completeness.

To run BugLite, you need system software version 7.1 or later and at least 1,024 KB

available RAM; the preferred size is 1,024 KB.

Getting Started

Page 449 of 500

This section tells you how to install and launch the BugLite tool.

Installation

BugLite operates as an application running on the main processor. Since it relies on the

DSP Manager that is in the Macintosh Quadra 840AV or Macintosh Centris 660AV ROM

there are no system files to be installed. To use BugLite

I copy the application to your hard drive

I launch BugLite

Getting Started

Page 450 of 500

APPENDIX B

BugLite User's Guide

BugLite can reside anywhere on your drive. However, you may find it useful to have

BugLite in the same directory as your DSP object code so you don't have to search

through multiple directories to locate your source files.

What You See When You Launch BugLite

There are several different objects in BugLite: tasks, modules, sections, and input and

output icons. All of these objects are displayed and manipulated graphically within a

task window. After launching BugLite, the task window, shown in Figure B-1, is

displayed. It is within this task window that a task is configured to run on the DSP.

Figure B-1 Task window

Euample

The task window displays tasks with their associated modules and any subsystem

elements (disk file input or output, sound input or output). It is within this task window

that you can create tasks, load modules, and connect sections to other sections, the

microphone, the speaker, or disk files. On the left side of the task window is the tool

palette, discussed in the next section. Once the task has been configured it can be loaded

onto the DSP and executed by selecting the Run button directly below the task’s name.

See ”Using BugLite,” later in this appendix.

Getting Started

Page 450 of 500

