
Page 251 of 500

CHAPTER 5

DSP Operating System

GetSectionAddress

The GetSectionAddress macro returns the physical address of the specified section.

GetSectionAddress (theSectionPtr,theSectionName)

the S e c ': i on Pt 1: Returns a value, physical location of section.

the S ect ionName The name of section to locate.

REGISTER USAGE

The GetSectionAddress macro does not alter the contents of any registers except
theSectionPtr.

DESCRIPTION

The GetSectionAddress macro calculates the physical address of thesectionName

and copies the address into the theSectionPtr register, which may be any cau

register r1 —r1 8.

GetSectionLabel

The GetSectionLabel macro returns a physical pointer to a label in the

specified section.

GetSection.abe' (theSectionLabelPtr,theSectionLabel)

the S ect i on .abe ' Pt 1: Returns a pointer, physical location of section.

thesection‘ .abe' Label used within the section.

REGISTER USAGE

The GetSectionLabel macro does not alter the contents of any register except
theSectionLabelPtr.

DESCRIPTION

The GetSectionLabel macro returns a physical pointer to a label designated by

theSectionLabel. The pointer is returned in theSectionLabelPtr, which may

be any cau register r1—r18.

DSP Operating System Reference

PUMA EXHIBIT 2005

Page 251 of 500 PART 6 OF 10

acaswell
Typewritten Text
PUMA EXHIBIT 2005
PART 6 OF 10

Page 252 of 500

CHAPTER 5

DSP Operating System

GetSectionSize

The Get S ect ion S i z e macro returns the size of the specified section.

Getsectionsize (thesectionsize,theSectionName)

thesectionsize The size of the section.

theSectionName The section name.

REGISTER USAGE

The Getsectionsize macro destroys the contents of cau registers rl—r4, rl5—rl8,
and a0—a1.

DESCRIPTION

The Getsectionsize macro calculates the size of theSectionName and copies it into

the thesectionsize register, which may be any cau register r1—r18.

PopSection

The Popsection macro caches the specified section off—chip.

Popsection (theSectionName)

theSectionName The section name.

REGISTER USAGE

The Popsection macro destroys the contents of cau registers rl—r4, r15—rl 8, and
a0—a1.

DESCRIPTION

The Popsection macro caches theSectionName. The actual caching operation

performed depends upon the section's caching flags.

For static sections, Popsection caches the section data from its primary container to its

secondary container. For non-static sections, Popsection caches the section data from

the top of the demand cache stack to its primary container.

DSP Operating System Reference

Page 252 of 500

Page 253 of 500

CHAPTER 5

DSP Operating System

Note

The Save flag must be set (caching flags) for the specified section if data

is to be moved. The memory space is automatically reclaimed by the

DSP operating system. 0

WARNING

Sections must use Popsection in the reverse order that they use
Pushsection. A

PushSection

The Pushsection macro loads the specified section on—chip.

Pushsection (theSectionName)

thesectionName The section name.

REGISTER USAGE

The Pushsection macro destroys the contents of cau registers r1—r4, r15—r18,
and aO—a1.

DESCRIPTION

The Pushsection macro caches theSectionName. The actual caching operation

performed depends upon the section's caching flags.

For static sections Pu shsection caches the section data from its secondary container to

its primary container. For non—static sections, Pushsection caches the section data

from its primary container to the top of a demand cache stack.

Note

You must set the Load flag (caching flags) for the specified section if data

is to be moved. The Clear flag must be set if the section is to be cleared.

Either the Bank A or Bank B flag should also be set. If no Bank flag or the

Don't Care flag is selected the DSP operating system will use Bank A. 0

Module Manipulation Macro

The Setskipcount macro helps you program DSP modules.

DSP Operating System Reference

Page 253 of 500

Page 254 of 500

CHAPTER 5

DSP Operating System

SetSkipCount

The Setskipcount macro sets the skip count (number of modules to be jumped over).

Setskipcount (theskipcount)

theskipcount The number of modules to skip over.

REGISTER USAGE

The Setskipcount macro destroys the contents of cau registers r1—r4, rl5—rl 8,
and a0-al.

DESCRIPTION

The Setskipcount macro sets the skip count for the currently executing module. The
current module continues its execution. When the module finishes its execution, the new

skip count takes effect.

The theskipcount parameter is a 32-bit constant or any cau register in the range r1

through r 1 7.

Task Manipulation Macros

The macros described in this section help you work with tasks.

GetNumRealTimeFrames

The Ge tNumRealTimeFrames macro returns the number of real-time frames that have

been executed.

Ge tNumRealTimeFrame s (numFrame s)

numFrames The number of frames executed.

REGISTER USAGE

The Ge tNumRealTimeFrames macro destroys the contents of cau registers rl—r4,
r15-r18, and a0-al.

DESCRIPTION

The GetNumRealTimeFrames macro is used to get the number of real-time frames that
have been executed since the DSP was started or reset.

DSP Operating System Reference

Page 254 of 500

Page 255 of 500

CHAPTER 5

DSP Operating System

SetTaskInactive

The SetTas klnactive macro turns off the task associated with the section that is

using it.

SetTaskInactive ()

REGISTER USAGE

The SetTaskInactive macro destroys the contents of cau registers rl—r4, r15—r18,
and aO—a1.

DESCRIPTION

The SetTas klnactive macro sets the owner task for the currently executing module

inactive. Setting the task inactive does not take effect until the next frame. The task’s

modules complete their execution for the current frame.

FIFO Manipulation Macros

The macros described in this section help you work with FIFO buffers.

A WARNING

Although FIFO manipulations deal with byte counts, all operations

must be done in longword (4 bytes) increments only. Use of the FIFO

calls with non—longword counts will cause unpredictable results. A

FIFOGetReadCount

The FIFOGetReadCount macro returns the available number of data bytes in the FIFO.

FIFOGetReadCount (theFIFOName)

theFIFOName The FIFO name.

REGISTER USAGE

The FIFOGetReadCount macro destroys the contents of cau registers rl—r4,
rl5—r18, and a0—al.

DESCRIPTION

The FIFOGetReadCount macro returns, in 1:2, the current number of bytes available in

the FIFO that can be read. A value of 0 indicates an empty FIFO.

DSP Operating System Reference

Page 255 of 500

Page 256 of 500

FIFORead

CHAPTER 5

DSP Operating System

The FIFORead macro copies FIFO data into the specified section.

FIFORead (theSectionName)

theSectionName The section name.

REGISTER USAGE

DESCRIPTION

The FIFORead macro destroys the contents of cau registers r1—r4, r15—rl 8,
and a0-al.

The FIFORead macro takes one argument, the section name of an AIAO FIFO
section. The AIAO FIFO section must be located within the same DSP module as

the current section.

The FIFORead macro copies data to the AIAO FIFO section from the FIFO that's
connected to it.

The size of AIAO is used as the number of bytes to read from the FIFO. If the FIFO

empties during the read, only the actual number available will be read. The remaining

bytes in the section are cleared to 0.

In the event that an underrun occurs (the FIFO does not contain enough data to fill the

AIAO), a kdspFIFOUnderrunMessage message is sent to the FIFO’s message handler

if the FIFO’s kdspEnableOverUnderMessage flag is set. Also, if the FIFO’s

kdspOVerUnderTas klnactive flag is set, the owner task of the currently executing
module is set inactive.

Note

Reads and writes to the buffers must occur on longword boundaries. 6

FIFOReadN

Page 256 of 500

The FIFOReadN macro copies the requested number of bytes of FIFO data into the

specified section.

FIFOReadN (theFIFOName, theCount)

The FIFO name.

The number of bytes to copy.

theFIFOName

thecount

DSP Operating System Reference

Page 257 of 500

CHAPTER 5

DSP Operating System

REGISTER USAGE

The FIFOReadN macro destroys the contents of cau registers r1 —r4 , rl 5—rl 8, and
a0-a1.

DESCRIPTION

The FIFOReadN macro reads the specified number of bytes in thecount from the

named FIFO to the section. The programmer should check 1:2 to make sure that the

requested number of bytes was transferred. If the FIFO empties during the read, only

the actual number of bytes available are read. The remaining bytes in the section are
cleared to O.

FIFOReadNBuffer

The FIFOReadNBuf fer macro copies the requested number of bytes of FIFO data into

the specified section.

FIFOReadNBuffer (theFIFOName, thecount, theBufferPtr)

the F I FOName The FIFO name.

thecount The number of bytes to copy.

theBufferPt 1: The section data is being copied to.

REGISTER USAGE

The FIFOReadNBuffer macro destroys the contents of cau registers r1 —r4, r15—rl 8,
and a0-a1.

DESCRIPTION

The FIFOReadNBuf fer macro reads the specified number of bytes in thecount from

the named FIFO to the section pointed to by theBufferPtr. The programmer should

check r2 to make sure that the requested number of bytes was transferred. If the FIFO

empties during the read process, only the actual number of bytes available will be read.

The remaining bytes in the section are cleared to 0.

DSP Operating System Reference

Page 257 of 500

Page 258 of 500

CHAPTER 5

DSP Operating System

FIFOGetWriteCount

The FIFOGetWriteCour1t macro returns the number of empty bytes available in
the FIFO.

FIFOGetWriteCount (theFIFOName)

theFI FOName The FIFO name.

REGISTER USAGE

The FIFOGetWriteCour1t macro destroys the contents of cau registers rl—r4,
r15—rl8, and aO—al.

DESCRIPTION

The FIFOGetWriteCour1t macro returns in r2 the current number of bytes available in

the FIFO that can be written—in other words, how much empty space is available. A
value of 0 indicates a full FIFO.

FIFOWrite

The FIFOWrite macro copies section data into the specified FIFO.

FIFOWrite (theSectionName)

thesect ionName The section name.

REGISTER USAGE

The FIFOWrite macro destroys the contents of cau registers r1—r4, r15—rl 8, and
aO—al.

DESCRIPTION

The FIFOWrite macro writes from the AIAO section to the named FIFO. The

programmer should check 1:2 to make sure that the requested number of bytes was

transferred. If the FIFO fills up, without overrunning, the maximum number of

bytes possible will be transferred.

The size of the AIAO section is used as the number of bytes to write to the FIFO.

DSP Operating System Reference

Page 258 of 500

Page 259 of 500

CHAPTER 5

DSP Operating System

In the event that an overrun occurs (the FIFO does not contain enough space to hold the

AIAO’s data), a kdspFI FOOverrunMes sage message is sent to the FIFO’s message

handler if the FIFO’s kdspEnableOverUnde rMes sage flag is set. Also, if the FIFO’s

kdspoverUnderTaskInactive flag is set, the owner task of the currently executing
module is set inactive.

Note

Reads and writes to the FIFO and the buffer may occur on longword

boundaries only. 0

FIFOWriteN

The FIFOWriteN macro copies the specified number of bytes of section data into the

specified FIFO.

FIFOWriteN (theFIFOName, thecount)

The FIFO name.

The number of bytes to copy.

theFIFOName

thecount

REGISTER USAGE

DESCRIPTION

The FIFOWriteN macro destroys the contents of cau registers rl—r4, rl5—r18, and
a0-aL

The FIFOWriteN macro writes the specified number of bytes in thecount to the

named FIFO from the section. The programmer should check 1:2 to make sure that the

requested number of bytes was transferred. If the FIFO fills up, without overrunning, the

maximum number of bytes possible will be transferred.

FIFOWriteNBuffer

Page 259 of 500

The FIFOWriteNBuf fer macro copies the specified number of bytes of section data

into the specified FIFO.

FIFOWriteNBuffer (theFIFOName, thecount, theBufferPtr)

The FIFO name.

The number of bytes to copy.

theFIFOName

thecount

theBufferPt r The section data is being copied from.

DSP Operating System Reference

Page 260 of 500

CHAPTER 5

DSP Operating System

REGISTER USAGE

DESCRIPTION

The FI FOWr i teNBuffer macro destroys the contents of cau registers r 1 — r 4,
r15-r18, and a0-al.

The FIFOWriteNBuffer macro writes the specified number of bytes in thecount to

the named FIFO from the buffer pointed to by theBufferPtr. The programmer should

check r2 to make sure that the requested number of bytes was transferred. If the FIFO

fills up, without overrunning, the maximum number of bytes possible will be transferred.

Note

Reads and Writes to the FIFO and the buffer are on longword

boundaries only. 6

GPB Manipulation Macros

The macros described in this section help you manage the GPB for a module. GPB is

discussed in ”Guaranteed Processing Bandwidth,” in Chapter 3.

GPBElapsedCyc1es

The GPBElapsedCycles macro returns the number of DSP cycles used by this module

up to the point it is called.

GPBElapsedCycles (thecycles)

thecycles Elapsed cycles since start or reset.

REGISTER USAGE

DESCRIPTION

Page 260 of 500

The GPBElapsedCycles macro destroys the contents of cau registers r1—r4,
rl5—rl8, and a0-al.

The GPBElapsedCycles macro returns the number of DSP instruction cycles that have

elapsed since this module started execution. By comparing this Value with the expected

value returned from the GPBExpectedCycles () macro, a dumb lumpy algorithm can

determine if it should cease processing. Dumb lumpy algorithms are discussed in

”Smooth and Lumpy Algorithms,” in Chapter 3.

DSP Operating System Reference

Page 261 of 500

CHAPTER 5

DSP Operating System

GPBExpectedCycles

The GPBExpectedCycles macro returns the computed number of DSP cycles this

module is expected to need based on the supplied GPB estimate.

GPBExpectedCycles (thecycles)

thecycles Expected cycles for this module.

REGISTER USAGE

The GPBExpectedCycles macro destroys the contents of cau registers r1—r4,
rl5—r18, and aO—al.

DESCRIPTION

The GPBExpectedCycles macro returns the expected number of DSP instruction cycles

to complete this module. This is used in conjunction with the GPBElapsedCycles

macro (page 235) to control the execution of a dumb lumpy algorithm.

GPBSetUseActual

The GPBSetUseActual macro tells the DSP operating system to use the actual GPB

required instead of the estimated value.

GPBSetUseActual ()

REGISTER USAGE

The GPBSetUseActual macro destroys the contents of cau registers r1 —r4, r15—rl 8,
and aO—al.

DESCRIPTION

The GPBSetUseActual macro sets the UseActualGPB flag for the module. This flag is

set immediately, so this routine should not be called until the module is in its worst—case

GPB usage.

DSP Operating System Reference

Page 261 of 500

Page 262 of 500

CHAPTER 5

DSP Operating System

Semaphore Manipulation Macros

The macros described in this section help you work with semaphores.

SemaphoreClear

The Semaphoreclear macro clears the specified semaphore in a locked environment.

SemaphoreClear (theSemaphorePtr, theMask, theoldsemaphorevalue)

theSemaphorePtr Pointer to the semaphore.

theMas k Mask of new semaphore value.

theoldsemaphorevalue Returns the Value of the old semaphore.

REGISTER USAGE

The SemaphoreClear macro destroys the contents of cau registers rl—r4, 1:15-1:18,
and a0-a1.

DESCRIPTION

The Semaphoreclear macro locks the system bus and performs the following

operation:

[lock the bus]

*theSemaphorePtr = ((theOldSemaphoreValue = *theSemaphorePtr) &

~theMask)

[unlock the bus]

The value of thesemaphorePtr must be a cau register in the range rl through r17

containing a physical pointer.

The Value of theMask may be any register in the range rl through r1 7, or a constant.

The Semaphoreclear macro performs dolock on the bus to prevent host access and

then reads the semaphore location. The old semaphore value is AND-combined with NOT

of the mask and this new value is written back to the semaphore location.

RETURN VALUE

The value of theoldsemaphorevalue is the value of the semaphore before it was

AND-combined with the one’s-complement of the Value of theMask.

DSP Operating System Reference

Page 262 of 500

Page 263 of 500

CHAPTER 5

DSP Operating System

Semaphoreset

The Semaphoreset macro sets the specified semaphore in a locked environment.

Semaphoreset (theSemaphorePtr, theMask, theoldsemaphorevalue)

the S emaphorePtr Pointer to the semaphore.

theMas k Mask of new semaphore value.

theoldsemaphorevalue Returns the value of the old semaphore.

REGISTER USAGE

The Semaphoreset macro destroys the contents of cau registers r1—r4, r15—r1 8, and
aO—al.

DESCRIPTION

The Semaphoreset macro locks the system bus and performs the following operation:

[lock the bus]

*theSemaphorePtr = ((theOldSemaphoreValue = *theSemaphorePtr) |

theMask)

[unlock the bus]

The value of theSemaphorePtr must be a cau register rl—r1 7 containing a

physical pointer.

The Semaphoreset macro performs DoLock on the bus to prevent host access and then

reads the semaphore location. The old semaphore value is OR-combined with the mask

and this new value is written back to the semaphore location.

RETURN VALUE

The value of theoldsemaphorevalue is the Value of the semaphore before it was
OR-combined with theMask.

DSP Operating System Reference

Page 263 of 500

Page 264 of 500

CHAPTER 5

DSP Operating System

Message Manipulation Macro

The SendMessageToHost macro helps you work with DSP messages.

SendMessageToHost

The SendMessageToHost macro sends a message from the module to the host using

the interrupt handler.

SendMessageToHost (theDSPMessagePtr)

the DS PMe s s agePt 1: Pointer to the message vector.

REGISTER USAGE

DESCRIPTION

Page 264 of 500

The SendMessageToHost macro destroys the contents of cau registers rl—r4 ,
r15—rl8, and aO—al.

The SendMessageToHost macro calls the msvector (interrupt handler) in the Real

Time Manager structure that then passes the message to the interrupt handler. When

used by a module to send a message to the client application the ms Data [0] through

ms Data [2] fields are not defined when using this macro.

The value of theDSPMes sagePtr must be a cau register rl —rl 7 containing a physical

pointer to a DSP message.

Note

The msvector field of the message must be initialized to a valid

interrupt handler. Fields ms Data [0] through ms Data [2] can be

used by the programmer as needed. 0

When the Real Time Manager uses this routine to send a message to the client

application ms Data [0] contains theErrorMes sage constant. The message is sent to

the interrupt Vector of the owner task for the currently executing module. The owner
task is then set inactive.

The theErrorMessage constant is a DSP message constant or a register containing a

DSP message constant. The Apple-defined DSP message constants are defined in the
next section.

DSP Operating System Reference

Page 265 of 500

CHAPTER 5

DSP Operating System

When the host interrupt Vector for the task is called, a complete DSPMes sage structure

is passed on the stack containing the following information:

The owner task’s interrupt vector —> msvector

theErrorMessage —>msData [O]

The task’s reference number —> ms Data [1]

The current module's reference number —> ms Data [2]

The DSP message structure is diagrammed in Figure 5-3.

Figure 5-3 DSP message structure

DSP message

msData[O]

msData[2]

The corresponding routine in the Macintosh API is the Mes sageAct i onProc routine.

Summary of the DSP Operating System

Constants

#define kdspFIFOMaskAllMessages OXOOOOOOOO // disable all

//messages (p) priority of FIFO messages in descending order

#define kdspFIFOEnableOverUnderMessage OxOOOOOOOl // (3) enable

// message when FIFO transfer causes an overrun or underrun

Summary of the DSP Operating System

Page 265 of 500

Page 266 of 500

CHAPTER 5

DSP Operating System

kdspFIFOEnableFullEmptyMessage OxOOOOOOO2 //

// message when FIFO goes full or empty

kdspFIFOEnableHighLowMessage OXOOOOOOO4 // (1) enable

// message when FIFO goes at least half full or half empty

kdspFIFOEnableLinkMessage 0x00000008 // (4) enable

// message when FIFO’s link is traversed

#define kdspFIFOOverUnderTaskInactive OxOOOOOOlO // if task

// accessing FIFO causes either FIFO overrun or underrun then

// set task inactive

#define kdspFIFOFullEmptyTaskInactive OXOOOOOOZO // if task

// accessing FIFO causes either FIFO full or FIFO empty then set

// task inactive

// -- --

// ModuleFlags

// -- --

#define kdspAutoCache OXOOOOOOOO // select auto cache model

#define kdspDemandCache OxOOOOOOOl // select demand cache model

#define kdspOnChipSectionTable OXOOOOOOO4 // put section table on—chip

#define kdspOnChipStack 0x00000020 // a stack of the specified

// size will be created on—chip

#define kdspOffChipStack 0x00000040 // a stack of the specified

// size will be created off—chip

// —— --

// GPBFlags (see DSPConstantsPrivate.h for the complete list of flags)

// -- --

#define kdspLumpyModule OXOOOOOOOO // use bnEstimate

#define kdspSmoothModule OxOOOOOOOl // see DSPConstantsPrivate.h

// -- --

// SectionFlags

// -- --

// Costs the DSP one instruction to use the following flags:

#define kdspLeaveSection OXOOOOOOOO // do not load or save this

// section

#define kdspLoadSection OxOOOOOOOl // load this section

#define kdspsavesection OxOO0OOOO2 // save this section

#define kdspclearsection OXOOOOOOO4 // fill this section with zeroes

Summary of the DSP Operating System

Page 266 of 500

Page 267 of 500

CHAPTER 5

DSP Operating System

kdspsaveoncontextswitch OXOOOOOOO8 // save this section on context

// switch

#define kdspExternal OXOOOOOOOO // never loaded on—chip

#define kdspBankA OxOOOOOO2O // load in Bank A if possible

#define kdspBankB 0x00000040 // load in Bank B if possible

#define kdspAnyBank (kdspBankA | kdspBankB) // load anywhere

#define kdspstaticsection OxOOOOOO8O // section statically allocated

// before runtime

#define kdspFIFOSection OxOOOOO1OO // section is a FIFO buffer

#define kdspReservedSectionFlagO2OO OxOOOOO2OO // reserved

#define kdspLoadFIFOSection OxOOOOO4OO // when loading convert from a

// FIFO

#define kdspSaveFIFOSection 0x00000800 // when saving convert to a FIFO

#define kdspHIHOSection 0x00001000 // this is a HIHO section

#define kdspReservedForToggleSectionTbl 0x00002000 // this flag holds the

// kdspToggleSectionTable flag

// from the module's flag

#define kdspLoadHIHOSection OxOOO04000 // when loading convert from a

// HIHO

#define kdspSaveHIHOSection 0x00008000 // when saving convert to a HIHO

// Costs the DSP two instructions to use the following flags:

#define kdspNotIOBufferSection 0x00010000 // all cases other than below

#define kdspInpu:Buffer 0x00020000 // section is an input buffer

#define kdspOutputBuffer 0x00040000 // section is an output buffer

#define kdspITBSection 0x00080000 // section is an intertask

// buffer

#define kdspscalablesection OxOO1000OO // section size can be scaled

#define kdspSectionAllocated OxOO2000OO // reserved for use by the DSP

// Manager

#define kdspDSPUseOnly OxOO4000OO // only DSP should modify this

// memory

// -- --

// SectionDataTypes

// -- --

#define kdspNonData OXOOOOOOOO // data in section is beyond

// description

#define kdsp3200Float OxOOOOOO0l // 3200 float

#define kdspIn««Float OxOOOOOOO2 // IEEE float format

Summary of the DSP Operating System

Page267of5OO

Page 268 of 500

#define

#define

#define

#define

CHAPTER 5

DSP Operating System

kdspIn:32

kdspIntl6l6

kdspIn:8888

kdspmuLaw

0x00000003

0x00000004

0x00000005

0x00000006

// 32bit integer

// 16bit integer packed

// 8bit integer packed

// muLaw format

#define kdspALaw OXOOOOOOO7 // Alaw format

#define kdspAppSpecificData OXOOOOFFFF // application—specific

//——--

// DSP CLIENT DEFINITIONS

//==

// —— --

// constants used by a client to specify where to insert a task

// —— --

// insert at list:

OXOOOOOOO4 // head

OxOOOOOOO8 // tail

OXOOOOOOIO // before reference link

OxOOOOOO2O // after reference link

kdspHeadInsert // anywhere

#define kdspHeadInsert

#define kdspTailInsert

#define kdspBeforeInsert

#define kdspAfterInsert

#define kdspAnyPositionInsert

// —— --

// constants for messages received by client tasks

// —— --

#define kdspBIOPinChangedState Ox62696f7O //'biop' (bio pin has changed

// state)

// constants used for FIFO:

#define kdspFIFOMessage Ox66000OOO // 'f ' (messages)

#define kdspFIFOLinkMessage Ox666c6e6b // 'lnk ' (link was traversed)

#define kdspFIFOOverrunMessage Ox666f7672 // 'fovr' (buffer filled before

// FIFO write completed)

#define kdspFIFOUnderrunMessage Ox66756e64 //'fund' (buffer emptied before

// FIFO read completed)

// constants used for FIFO buffer:

#define kdspFIFOFullMessage Ox6666756c

#define kdspFIFOEmptyMessage 0x66656d7O

#define kdspFIFOHighMessage 0x66686967

'fful' (exactly full)

'femp' (exactly empty)

'fhig' (at least half full

but not exactly full)

‘flow’ (at least half empty#define kdspFIFOLowMessage Ox666c6f77

but not exactly empty)
0x66707269#define kdspFIFOPrimeMessage 'fpri' (application—specific)

Summary of the DSP Operating System

Page 268 of 500

Page 269 of 500

// constants

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

CHAPTER 5

DSP Operating System

kdspExceptionMessage

kdsp3xceptionReset

kdspExceptionBusError

kdsp3xceptionIllegalopcode

kdspExceptionReservedOne

kdspExceptionAddressError

kdspExceptionDAUOverUnderflow

kdspExceptionNotANumber

kdspExceptionReservedTwo

kdspExceptionExternalIntZero

kdspExceptionTimer

kdspExcep:ionReservedThree

kdspExceptionSIOInputBufFull

kdspExcep:ionSIOOutputBufEmpty

kdspExceptionSIODMAInputFrame

kdspExceptionSIODMAOutputFrame

kdspExceptionExternalIntOne

kdspExceptionRuntimeError

kdspGPBMessage

kdspGPBTaskActive

kdspGPBTaskInactive

kdspGPBFrameOverrun

kdspGPBFrameSkip

Jsed for dsp exception messages
0x78000000

0x78727374

0x78627573

Ox78696c6c

0x78727631

0x78616472

0x78646175

Ox786e6l6e

0x78727632

0x78657830

Ox7874696d

0x78727633

0x78736962

0x78736f62

0x78736966

Ox78736f66

0x78657831

0x78657272

0x67000000

0x67616374

Ox67696e6l

0x676f7672

Ox67736b7O

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

‘X

'xbus'

'xrv1'

'xadr'

'xdau'

'xnan'

'xrv2'

'xex0'

'xtim'

'xrv3'

'xsib'

'xsob'

'xsif'

'xsof'

'xex1'

'xerr'

'g ' (prefix used

for GPB messages)

'gact' (task is

active)

'gina' (task is

inactive)

'govr' (task was
involved in a frame

overrun and is now

inactive)

'gskp' (task has

skipped one or more
frames due to a

frame overrun)

// —— --

// read/write permission constants for clients

// —— --

#define

#define

#define

Page 269 of 500

OxOOO1

OxOOO2
kdspWritePermission

kdspReadPermission

kdspReadWritePermission

Summary of the DSP Operating System

(kdspWritePermission kdspReadPermission)

Page 270 of 500

CHAPTER 5

DSP Operating System

// -- --

// constants for indexed devices

// -- --

// CPU processor types

#define kdsp321O '3210'

#define kdsp32C '32C '

// -- --

// constants for DSP API functions

// -- --

#define kevtMessageToHost (17)

#define kevtCacheSection (22)

#define kev:CopyFIFO (23)

#define kevtGetSectionSize (43)

#define kev:GPBSetUseActua1 (44)

#define kevtGPBExpectedCycles (45)

#define kevtGPBElapsedCycles (46)

#define kevtsemaphoreset (47)

#define kevtsemaphoreclear (48)

#define kevtSetSkipCount (50)

#define kevtSetTaskInactive (51)

#define kevtBlockMove (53)

#define kevtNumreal—timeFrames (113)

//——--

// constants for errors returned by Macintosh DSP API

//==

// —— --

// misc errors

// the next available error code number is -733

// if you add an error, also add it to the DSPErrorStrings.r file

// -- --

#define kdspUnimplemented (-692) // feature is not implemented

#define kdspParamErr (-704) // bad parameter

// —— --

// DSPFIFO errors

// -- --

#define kdspNotAFIFOSection (-700) // not a FIFO section

#define kdspNoMessageInterrupt (-702) // no message passing without a

// vector

Summary of the DSP Operating System

Page 270 of 500

Page 271 of 500

#define

#define

#define

CHAPTER 5

DSP Operating System

kdspFIFOInUseByDSP

kdspTaskMustBeInActive

kdspNotFirstFIFO

//

//

//

//

//

//

this FIFO is currently being

accessed by the DSP

can only dipose of inactive
structures

the FIFO must be the first FIFO

in the link to wrap it

// -- --

// DSPList errors

// —— --

#define

#define

#define

#define

#define

(-666)

(-667)

(-668)

kdspNonExistantReferenceErr(-669)

kdspPositionIllegalErr

kdspPositionBusyErr

kdspInvalidReferenceErr

kdspNonExistantElementErr (-670)

//

//

//

//

//

//

illegal DSPPosition type

DSPPosition already occupied

illegal insertion request
reference element does not

exist

deletion element not found

// —— --

// DSPMemory errors

// —— --

#define

#define

#define

#define

#define

#define

kdspMemFullErr

kdspAddressNotInZone (-672)

kdspNilAddress (-683)

kdspContainingNilAddress(-684)

(-685)

(-686)

(-671)

kdspInvalidZoneSize

kdspInvalidZoneBase

//

//

//

//

//

//

//

heap full,allocation failed
address is not in a zone

of nil

of (nil, nil)

factor of four

trying to dispose

trying to dispose

heap size must be

heap base must be longword

aligned

// —— --

// DSPClient errors

// —— --

#define

#define

#define

#define

#define

#define

Page 271 of 500

(-673)

(-674)

kdspDeviceNotFound

kdspInvalidIndexErr

kdspDeviceHasActiveclients (-675)

kdspInvalidPermission (-688)

kdspWritePermissionDenied (-689)

kdspClientNameInvalid (-690)

Summary of the DSP Operating System

//

//

//

//

//

//

//

//

//

//

//

no device matching given name

no device (or whatever)

matching index given

can't sign out device with
clients

invalid permission for

operation

client already exists with

write permission

client name must be [1U31]

bytes

Page 272 of 500

CHAPTER 5

DSP Operating System

#define kdspInvalidoptionselector // options selector not

// recognized

#define kdspInvalidIODeviceType // invalid io device type,

// index out of range

#define kdspInvalidClientICON // an invalid ICON was passed

#define kdspDeviceCantBeSlave // specified cpu device cannot

// be a slave

// —— --

// resource loader errors

// —— --

#define kdspModuleNotFound (-676) // module does not exist

#define kdspModuleUncompatibleRate (-677) // incompatible frame or

// sample rate

#define kdspUnknownDSPFResourceVersion (-679) // DSPF resource not

// recognized

#define kdspUnknownDSPSectionTag (-680) // DSPF resource not

// recognized

#define kdspZeroGPB (—7l4) // module has GPB set to

// zero

#define kdspTwoStacks (-731) // cannot have both an

// on-chip and an

// off—chip stack

// —— --

// DSPStorage errors

// -- --

#define kdspStorageNotFound (-695) // the amount and location do

// not exist

#define kdspNotEnoughOnChipMemory (-696) // not enough on—chip memory to

// allocate

// -- --

// DSPAllocation errors

// —— --

#define kdspCouldNotAllocate (-678) // could not allocate the

// module

#define kdspMoreThanOneModule (-687) // can allocate only one

// module for now

#define kdspsectionAlreadyConnected (-693) // one of the sections has

// already been

// connected (i.e. FIFO

// sections)

Summary of the DSP Operating System

Page 272 of 500

Page 273 of 500

#define

#define

Page 273 of 500

CHAPTER 5

DSP Operating System

kdspSectionsDoNotMatch

kdspsectionsNotInSameModule

kdspSectionNotFound

kdspBothFIFOsAllocated

kdspHadToUseOffChipMemory

kdspAlreadyAllocated

kdspTooManyITBs

kdspInvalidModuleAddress

kdspAIAOMustLoadOrSave

kdspFIFOsNotConnected

kdspNotAllocated

kdspTaskNotInstalled

Summary of the DSP Operating System

the sections which are

being connected either do
not have the same size

or the same type or are

both input or both output
the sections that are

being connected are not
in the same module

could not find the

specified section
both FIFO sections have

already been attached to
FIFOS

section which was

supposed to be on-chip

was set up off—chip; the

module will still run,

but not as quickly

you cannot make a new ITB
or connect sections if

task has already been
allocated

you cannot have more than

MAX_MAP_SECTIONS ITBS

passed in a nil module
address

when connecting a FIFO to

an AIAO,the AIAO must

move data or the

connection will not work

you cannot insert a task
if all the FIFOS are not

connected to other FIFOs

you must insert the task

before you can call
DSPGetSectionData

you cannot get the

available on-chip

memory until after the
task is installed

Page 274 of 500

CHAPTER 5

DSP Operating System

// -- --

// DSPTask errors

// -- --

#define kdspTaskRefNumAlreadyAllocated(-681) // trying to reuse used

// DSPTaskRefNum

#define kdspNilMessageActionProc (-705) // passed in nil where

// MessageActionProc

// required

#define kdspInvaLidCPUDeVicePtr // passed in nil for

// DSPCPUDeviceParamBlkPtr

#define kdspInvalidTaskRefNumPtr // passed in nil for the

// DSPTaskRefNumPtr

#define kdspInvaLidTaskAddress // passed in nil for the

// DSPTaskAddressPtr

#define kdspInva;idTaskRefNum // passed in nil for the

// DSPTaskRefNum

#define kdspInva;idTaskName // length of name must

// be > O and < 3l

kdspNoMasterSlaveRelationship // tasks to be synchronized

// must be on one

// DSP or on DSPs that have

// master-slave relationship

kdspAllTasksMustBeRealTime // tasks to be synchronized

// that are on different

// DSPs must all be in

// the real—time task list

#define kdspNotEnoughTime // didn't have enough time

// to successfully

// synchronize all the tasks

#define kdspchangingstate (-725) // task is in the process of

// going (in)active

#define kdspAlreadyActive (-726) // task is already active

#define kdspAlreadyInactive (-727) // task is already inactive

// —— --

// DSPGPB errors

// —— --

#define kdspNotEnoughGPB (-682) // not enough real time for allocation

Summary of the DSP Operating System

Page 274 of 500

Page 275 of 500

CHAPTER 5

DSP Operating System

// —— --

// DSP address fixup errors

// -- --

#define kdspOnChipPatchup (-729) // auto—init using address already

// on-chip

#define kdspBadRelocationType (-730) // internal assert — unrecognized

// relocation type from linker

//==

// DSP REGISTER ASSIGNMENTS

//

//

// DSP32lO Register Model

//

// REGISTER USAGE DESCRIPTION

// rl-r4 scratch The contents of these registers are not

// rl5—rl7 saved or restored. The contents of these

// aO—al registers may be destroyed by DSP API calls.

//

// r5—rl4 protected The contents of these registers must

// a2-a3 always be saved and restored when they

// are used by the programmer.

//

// The contents of these registers are always

// saved before and restored after they are

// used by the DSP API calls.

//

// The DSP operating system always calls the first

// instruction in the entry section of

// each module. r18 contains the return

// vector to get back to the DSP operating system

// when the module has finished executing.

//

// Before jumping to the return vector, all

// protected registers must be restored to the

// same values they contained upon initial

// entry to the module.

//

// reserved This register is reserved by Apple. Do not alter

// its contents.

//

// reserved This register is reserved by Apple. Do not alter

// its contents.

//

Summary of the DSP Operating System

Page275of5OO

Page 276 of 500

CHAPTER 5

DSP Operating System

// r21 This register is the common stack pointer

// register shared by the programmer and the

// DSP operating system. r21 always points to the

// next available stack location. Therefore, r2l

// is pre—decremented for pops and

// post—incremented for pushes.

// reserved This register is reserved by Apple. Do not alter

// its contents.

//

//

#define TMP rl7 // temporary register

#define RV rl8 // return vector

#define MXPB rl9 // reserved

#define ERRT r20 // reserved

#define SP r2l // stack pointer

#define EVTP r22 // reserved

//==

// DSP API CONSTANTS

//==

#define kLongWordSize (4)

#define kStr31Size (32)

// DSPMessage

#define msVector (0)

#define msData (msVector + kLongWordSize)

#define DSPMessageSize (msData + 3*kLongWordSize)

#define kEVTPad (512)

#define Find(theSelector) EVTP + kEVTPad + theSelector*kLongWordSize

#define OSCall(theSelector)\

RV = (long) Find(theSelector);\

RV = (long) *RV;\

nop;\

call RV (RV);\

nop

Summary of the DSP Operating System

Page 276 of 500

Page 277 of 500

CHAPTER 5

DSP Operating System

// Selectors/Options for DSP API macros

#define kdspSelectPush OXOOOOOOOO selector for direction

#define kdspSelectPop Ox00000OOl selector for direction

#define kdspOptionSpecifyBuffer 0x00000002 option for specifying
buffer

#define kdspoptionspecifycount OXOOOOOOO4 option for specifying
count

#define kdspoptionNoCopyJustCount 0x00000008 option for just counting

Routines

//

// DSP PROGRAM MACROS

//

#define NewModule (Name, GPBFlags, ModuleFlags, EntryName)\

@lowmod (Name, GPBFlags, ModuleFlags, EntryName)

#define Newsection (Name, SectionFlags, SectionDataType, ModuleName)\

@lowseg (Name, SectionFlags, O, SectionDataType, ModuleName)

#define Appendsection (Name)\

.rsect"Name", TEXT

#define NewInputFIFOAndBufferSection (Name, Buffersize, SectionDataType,

ModuleName)\ Newsection (Name,\

kdspBankB I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspInputBuffer | kdspFIFOSection,\

SectionDataType,\

ModuleName)\

Buffersize * long 0

#define NewOutputFIFOAndBufferSection (Name, Buffersize, SectionDataType,

ModuleName)\NewSection (Name,\

kdspBankB | kdspSaveOnContextSwitch | kdspDSPUseOnly

|kdspOutputBuffer I kdspFIFOSection,\

SectionDataType,\

ModuleName)\

Buffersize * long 0

Summary of the DSP Operating System

Page277of5OO

Page 278 of 500

CHAPTER 5

DSP Operating System

#define NewInputFIFOAndScalableBufferSection (Name, Bufferscale,

SectionDataType, ModuleName)\NewSection (Name,\

kdspBankB I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspInputBuffer I kdspFIFOSection

I kdspScalableSection,\

SectionDataType,\

ModuleName)\

Bufferscale * long 0

#define NewOutputFIFOAndSca;ableBufferSection (Name, Bufferscale,

SectionDataType, ModuleName)\NewSection (Name,\

kdspBankB I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspOutputBuffer I kdspFIFOSection

I kdspScalableSection,\

SectionDataType,\

ModuleName)\

Bufferscale * long 0

#define NewInputAIAOSection (Name, AIAOSize, SectionDataType, ModuleName)\

Newsection (Name,\

kdspLoadSection I kdspBankB

I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspInputBuffer I kdspStaticSection,\

SectionDataType,\

ModuleName)\

AIAOSize * long 0

#define NewOutputPRBSection (Name, AIAOSize, SectionDataType, ModuleName)\

Newsection (Name,\

kdspclearsection I kdspsavesection I kdspBankB

I kdspSaveOnContextSwitch I kdspDSPUseOnly

I kdspInputBuffer I kdspOutputBuffer

I kdspStaticSection,\

SectionDataType,\

ModuleName)\

AIAOSize * long 0

#define NewOutputCRBSection (Name, AIAOSize, SectionDataType, ModuleName)\

Newsection (Name,\

kdspsavesection I kdspBankB

I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspOutputBuffer I kdspStaticSection,\

SectionDataType,\

ModuleName)\

AIAOSize * _ong 0

Summary of the DSP Operating System

Page 278 of 500

Page 279 of 500

CHAPTER 5

DSP Operating System

#define NewscalableInputAIAOSection (Name, AIAOScale, SectionDataType,

ModuleName)\NewSection (Name,\

kdspLoadSection I kdspBankB

I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspInputBuffer I kdspstaticsection

I kdspScalableSection,\

SectionDataType,\

ModuleName)

AIAOScale * long 0

#define NewTempScalableAIAOSection (Name, AIAOScale, SectionDataType,

ModuleName)\NewSection (Name,\

kdspLeaveSection I kdspBankB

I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspscalablesection I kdspClearSection,\

SectionDataType,\

ModuleName)\

AIAOScale * long 0

#define NewscalableOutputPRBSection (Name, AIAOScale, SectionDataType,

ModuleName)\NewSection (Name,\

kdspclearsection I kdspsavesection I kdspBankB

I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspInputBuffer I kdspOutputBuffer

I kdspstaticsection I kdspScalableSection,\

SectionDataType,\

ModuleName)\

AIAOScale * long 0

#define NewScalableOutputCRBSection (Name, AIAOScale, SectionDataType,

ModuleName)\NewSection (Name,\

kdspsavesection I kdspBankB

I kdspsaveoncontextswitch I kdspDSPUseOnly

I kdspOutputBuffer I kdspstaticsection

I kdspScalableSection,\

SectionDataType,\

ModuleName)\

AIAOScale * long 0

#define NewCachedProgramSection (Name, ModuleName)\

Newsection (Name,\

kdspLoadSection I kdspBankA I kdspDSPUseOnly

I kdspNotIOBufferSection,\

kdspNonData,\

ModuleName)

Summary of the DSP Operating System

Page 279 of 500

Page 280 of 500

CHAPTER 5

DSP Operating System

#define NewExternalProgramsection (Name, ModuleName)\

Newsection (Name,\

kdspLeaveSection I kdspNotIOBufferSection,\

kdspNonData,\

ModuleName)

#define NewParameterSection (Name, SectionDataType, ModuleName)\

Newsection (Name,\

kdspExternal I kdspNotIOBufferSection,\

SectionDataType,\

ModuleName)

#define NewTableSection (Name, SectionDataType, ModuleName)\

Newsection (Name,\

kdspLoadSection I kdspBankA I kdspDSPUseOnly

I kdspNotIOBufferSection,\

SectionDataType,\

ModuleName)

#define Newstatevariablesection (Name, SectionDataType, ModuleName)\

Newsection (Name,\

kdspLoadSection I kdspsavesection I kdspBankB

I kdspDSPUseOnly I kdspsaveoncontextswitch

I kdspNotIOBufferSection,\

SectionDataType,\

ModuleName)

#define NewTempVariableSection (Name, SectionDataType, ModuleName)\

Newsection (Name,\

kdspLeaveSection I kdspBankB

| kdspSaveOnContextSwitch I kdspDSPUseOnly

I kdspNotIOBufferSection,\

SectionDataType,\

ModuleName)

Summary of the DSP Operating System

Page 280 of 500

Page 281 of 500

CHAPTER 5

DSP Operating System

//--

// DSP API MACROS

//

//

// GENERAL

//

#define BlockMove(theSrcPtr,theDestPtr,theCount)\

rl L theSrCPtr;\

r2 ' theDestPtr;\

r3 L theCount;\

RV ' Find(kevtBlockMove);\

RV = : *RV; \

r15 = (ushort24) OxOOO4;\

call RV (RV);\

r16 = (ushort24) OXOOO4

#define PcLabel(theSectionLabel) \

pc + ((theSectionLabel)—(.+8))

#define Pop(theRegister)\

SP = (long) SP--;\

theRegister = (long) *SP;\

nop

#define Push(theRegister) *SP++ = (long) theRegister

//

// SECTION MANIPULATION

//

#define Callsection (theSectionName)\

RV = (long) MXPB + sectn theSectionName;\

RV = (long) *RV;\

nop

call RV (RV);\

nop

#define GetSectionAddress(theSectionPtr,theSectionName)\

theSectionPtr = (long) MXPB + sectn theSectionName;\

theSectionPtr (long) *theSectionPtr;\

nop

Summary of the DSP Operating System

Page281of5OO

Page 282 of 500

CHAPTER 5

DSP Operating System

#define Getsectionsize(thesectionsize,theSectionName)\

RV = (long) Find(kevtGetSectionSize);\

RV = (long) *RV;\

r1 = (short) sectn theSectionName;\

call RV (RV);\

nop;\

thesectionsize = (long) r2

#define GetSectionLabel(theSectionLabelPtr,theSectionLabel)\

theSectionLabelPtr = (_ong) MXPB + sectn theSectionLabel;\

theSection.abe'Ptr = (_ *theSectionLabelPtr;\

nop;\

theSection1abe'Ptr (long) theSectionLabelPtr + offset theSectionLabel

#define Popsection (theSectionName)\

RV = (long) Find(kevtCacheSection);\

RV = (long) *RV;\

r1 = (short) sectn theSectionName;\

call RV (RV);\

r2 = (ushort24) kdspSelectPop

#define Pushsection (theSectionName)\

RV = (long) Find(kevtCacheSection);\

RV = (long) *RV;\

r1 = (short) sectn theSectionName;\

call RV (RV);\

r2 = (ushort24) kdspSelectPush

//——--

// MODULE MANIPULATION

//

#define Setskipcount(theskipcount)\

RV = (long) Find(kevtSetSkipCount);\

RV = (long) *RV;\

r1 = (long) theSkipCount;\

call RV (RV);\

nop

Summary of the DSP Operating System

Page 282 of 500

Page 283 of 500

CHAPTER 5

DSP Operating System

//--

// TASK MANIPULATION

//==

#define GetNumRealTimeFrames(numFrames)\

numFrames = (long) Find(kevtNumRealTimeFrames);\

numFrames = (long) *numFrames;\

nop

#define SetTaskInactive() OSCall(kevtSetTaskInactive)

//

// FIFO MANIPULATION

//——--

#define FIFOGetReadCount(theFIFOName)\

RV = (long) Find(kevtCopyFIFO);\

RV = (long) *RV ;\

r1 = (short) sectn theFIFOName;\

call RV (RV);\

r2 = (ushort24) (kdspOptionNoCopyJustCount I kdspSelectPush)

#define FIFOGetWriteCount(theFIFOName)\

RV = (long) Find(kevtCopyFIFO);\

RV = (long) *RV;\

r1 = (short) sectn theFIFOName;\

call RV (RV);\

r2 = (ushort24) (kdspoptionNoCopyJustCount I kdspSelectPop)

#define FIFORead(theSectionName)\

RV (long) Find(kevtCopyFIFO);\

RV (long) *RV;\

rl (short) sectn theSectionName;\

call RV (RV);\

r2 = (ushort24) (kdspSelectPush)

#define FIFOReadN(theFIFOName,thecount)\

r4 = (long) theCount;\

RV (long) Find(kevtCopyFIFO);\

RV (- *RV;\

rl (short) sectn theFIFOName;\

call RV (RV);\

r2 = (ushort24) (kdspSelectPush I kdspoptionspecifycount)

Summary of the DSP Operating System

Page283of5OO

Page 284 of 500

CHAPTER 5

DSP Operating System

#define FIFOReadNBuffer(theFIFOName,theCount,theBufferPtr)\

r3 = (long) theBufferPtr;\

r4 = (long) theCount;\

RV = (long) Find(kevtCopyFIFO);\

RV = (long) *RV;\

r1 = (short) sectn theFIFOName;\

call RV (RV);\

r2 = (ushort24) (kdspSelectPush I kdspoptionspecifycount

I kdspOptionSpecifyBuffer)

#define FIFOWrite(theSectionName)\

RV = (long) Find(kevtCopyFIFO);\

RV = (long) *RV;\

r1 = (short) sectn theSectionName;\

call RV (RV);\

r2 = (ushort24) (kdspSelectPop)

#define FIFOWriteN(theFIFOName,thecount)\

r4 = (long) theCount;\

RV (long) Find(kevtCopyFIFO);\

RV (long) *RV;\

r1 = (short) sectn theFIFOName;\

call RV (RV);\

r2 = (ushort24) (kdspSelectPop I kdspoptionspecifycount)

#define FIFOWriteNBuffer(theFIFOName,theCount,theBufferPtr)\

r3 = (long) theBufferPtr;\

r4 (long) theCount;\

RV (long) Find(kevtCopyFIFO);\

RV (long) *RV;\

rl (short) sectn theFIFOName;\

call RV (RV);\

r2 = (ushort24) (kdspSelectPop I kdspoptionspecifycount

I kdspOptionSpecifyBuffer)

//

// GPB MANIPULATION

//--

#define GPBElapsedCycles(thecycles)\

OSCall(kevtGPBElapsedCycles);\

thecycles = (long) r2

Summary of the DSP Operating System

Page284of5OO

Page 285 of 500

CHAPTER 5

DSP Operating System

#define GPBExpectedCycles(theCycles)\

OSCall((kevtGPBExpectedCycles);\

theCycles = (long) r2

#define GPBSetUseActual() OSCall(kevtGPBSetUseActual)

//

// MESSAGE MANIPULATION

//

#define SendMessageToHost(theDSPMessagePtr)\

RV = (long) Find(kevtMessageToHost);\

RV = (long) *RV;\

rl = (long) theDSPMessagePtr;\

call RV (RV);\

nop

//

// SEMAPHORE MANI PULAT ION

//==

#define Semaphoreclear (theSemaphorePtr, theMask,

theOldSemaphoreValue)\

RV = (ong) Find(kevtSemaphoreClear);\

RV = (long) *RV;\

(Long) theSemaphorePtr;\

r2 = (long) theMask;\

call RV (RV);\

nop;\

theoldsemaphorevalue = (long) r3

rl =

#define Semaphoreset (theSemaphorePtr, theMask,

theOldSemaphoreValue)\

RV = ong) Find(kevtSemaphoreSet);\

RV = long) *RV;\

r1 = ong) theSemaphorePtr;\

r2 = long) theMask;\

call RV (RV);\

nop;\

theoldsemaphorevalue = (long) r3

Summary of the DSP Operating System

Page 285 of 500

Page 286 of 500

P ART THREE

Speech Synthesis and
Recognition

Page 286 of 500

This part of the Macintosh Quadra 840AV and Macintosh Centris 660AV Developer

Note explains the facilities in the Macintosh Quadra 840AV and Macintosh

Centris 660AV system software for generating and understanding human

speech. It contains three chapters:

Chapter 6, "Speech Manager,” describes a new Macintosh system software

manager that provides a standardized way for applications to generate

synthesized speech. The Speech Manager also lets an application control

one or more speech synthesizers, which generate spoken sound in specific

languages, intonations, and speaking styles.

Chapter 7, ”Introduction to Speech Recognition,” contains a basic tutorial

for the Speech Setup control panel. This control panel provides commands

for controlling the speech recognition functions of the Macintosh

Quadra 840AV and Macintosh Centris 660AV computers.

Chapter 8, ”Speech Rules,” describes the speech rules that are built into the

Macintosh Quadra 840AV and Macintosh Centris 660AV system software.

Page 287 of 500

CHAPTER6

Speech Manager

Page 287 of 500

Page 288 of 500

CHAPTER 6

Speech Manager

This chapter describes Apple's Speech Manager, which provides a standardized method

for Macintosh applications to generate synthesized speech.

This chapter provides an overview of the Speech Manager followed by general informa-

tion about generating speech from text. The necessary information and calls needed by

all text-to-speech applications are given next, followed by a simple example of speech

generation. More advanced calls and special-purpose routines are described last.

Speech Manager Overview

Page 288 of 500

A complete system for speech synthesis consists of the elements shown in Figure 6-1.

Figure 6-1 Speech synthesis components

“The cat sat

on the mat” Controls B Sample data [4
Speech ManagerApplication Speech synthesizer

An application calls routines in the Speech Manager to convert character strings into

speech and to adjust various parameters that affect the quality or character of the spoken

output. The Speech Manager is responsible for dispatching these requests to a speech

synthesizer. The speech synthesizer converts the text into sound and creates the actual

audio output. Hardware support for speech generation in the Macintosh Quadra 84OAV

and Macintosh Centris 660AV is described in ”Sound I / O,” in Chapter 2.

The Apple-supplied voices, pronunciation dictionaries, and speech synthesizer may

reside in a single file or in separate files. These files are clearly identifiable as Speech

Manager—related files and are installed and removed by being dragged into or out of the

System Folder. Additional voices can be provided by bundling the resources in the

resource forks of specific applications. These resources are considered private to that

particular application. It is up to the individual developers to decide whether the voice

resources they provide are usable on a systemwide basis or only from within their

applications.

In the first release of the Speech Manager, pronunciation dictionaries are managed

entirely by the application. The application is free to store dictionaries in either the

resource or the data fork of a file. The application is responsible for loading the

individual dictionaries into RAM and then passing a handle to the dictionary data to

the Speech Manager.

Applications that use the Speech Manager must provide their own human interface for

selecting voices and / or controlling other speech characteristics. If voices are provided in

separate files, the speech synthesizer developer is responsible for providing a method for

Speech Manager Overview

Page 289 of 500

CHAPTER 6

Speech Manager

installing these resources into the System Folder or Extensions folder. The computer

must be rebooted after speech synthesizers are added to or removed from the System

Folder for the desired changes to be recognized.

Speech Manager Concepts

Page 289 of 500

On a simple level, speech synthesis from text input is a two—stage process. First, plain-

language English text is converted into phonemic representations for the individual

words. Phonemes stand for specific sounds; for a complete explanation, see ”Summary

of Phonemes and Prosodic Controls," later in this chapter. The resulting sequence of

phonemes is converted into audible sounds by mapping of the individual phonemes to a

series of waveforms, which are sent to the sound hardware to be played.

In reality, each stage is more complicated than this description suggests. For example,

during the text-to-phoneme conversion stage, number strings, abbreviations, and special

symbols must be detected and converted into appropriate words before being converted

into phonemes. When a sentence such as ”He earned over $2,000,000 in 1990" is spoken,

it would normally be preferable to say ”He earned over two million dollars in nineteen-

ninety” rather than ”He earned over dollar-sign, two, comma, zero, zero, zero, comma,

zero, zero, zero, in one, nine, nine, zero.” To produce the desired spoken output

automatically, knowledge of these sorts of constructions is built into the synthesizer.

The phoneme—to—sound conversion stage is also complex. Phonemes by themselves are

often not sufficient to describe the way a word should be pronounced. For example, the

word ”object” is pronounced differently depending on whether it is used as a noun or a

Verb. (When it is used as a noun, the stress is placed on the first syllable. When it is used

as a Verb, the stress is placed on the second syllable.) In addition to stress information,

phonemes must often be augmented with pitch, duration, and other information to

produce intelligible, natural-sounding speech.

The speech synthesizer has many built-in rules for automatically converting text into the

complex phonemic representation described above. However, there will always be

words and phrases that are not pronounced the way you want. The Speech Manager

allows you to provide raw phonemic information directly in order to enable very precise

control over the spoken output.

By default, speech synthesizers expect input in normal language text. However, using

the input mode controls of the Speech Manager, you can tell the synthesizer to process

input text in raw phonemic form. By using the embedded commands described in the

next section, you can even mix normal language text with phonemic text within a single

string or text buffer.

See ”Summary of Phonemes and Prosodic Controls,” later in this chapter, for a listing of

the phonemic character set and each character's interpretation.

Speech Manager Concepts

Page 290 of 500

CHAPTER 6

Speech Manager

Using the Speech Manager

This section describes the routines used to add speech synthesis features to an

application. It is organized into three sections: ”Getting Started” (easy), ”Essential Calls-

Simple and Useful” (intermediate), and ”Advanced Routines.”

Getting Started

If you're just getting started with text-to-speech conversion using the Speech Manager,

the following routines will get you up and running with minimal effort. If you're

developing an application that does not need to choose voices, use more than one

channel of speech, or exercise real-time control over the synthesized speech, these may

be the only routines you need.

Determining If the Speech Manager Is Available

Listing 6-1

Page 290 of 500

You can find out if the Speech Manager is available with a single call to the

Gestalt Manager.

Use the Ge s ta1 t toolbox routine and the selector ge s ta1 tSpeechAtt r to determine

whether or not the Speech Manager is available, as shown in Listing 6-1. If Gestalt

returns noErr, then the parameter argument will contain a 32-bit value indicating one or

more attributes of the installed Speech Manager. If the Speech Manager exists, the bit

specified by gestaltSpeechMgrPresent is set.

Determining if the Speech Manager is available

Boolean SpeechAvailable
OSErr

long

(void) {

err;

result;

err = Gestalt(gestaltSpeechAttr,

if ((err !(result &

(1 << gestaltSpeechMgrPresent)))

return FALSE;

else

return TRUE;

&result);

!= noErr) |

Using the Speech Manager

Page 291 of 500

CHAPTER 6

Speech Manager

Determining Which Version of the Speech Manager Is Running

Once you have determined that the Speech Manager is installed, you can see which

Version of the Speech Manager is running by calling SpeechManagerVers ion.

SpeechManagerVersion

Returns the version of the Speech Manager installed in the system.

pascal Numversion SpeechManagerVersion (void);

DESCRIPTION

SpeechManagerVersion returns the Version of the Speech Manager installed in the

system. This call should be used to determine the compatibility of your program with

the currently installed Speech Manager.

RESULT CODES

None

Making Some Noise

The most basic operation of the Speech Manager is accomplished by using the

Speakstring call. This call passes a specific text string to be spoken to the

Speech Manager.

Speakstring

The Speakstring function passes a specific text string to be spoken to the

Speech Manager.

pascal OSErr Speakstring (StringPtr s);

Text string to be spoken.

DESCRIPTION

Speakstring attempts to speak the Pascal-style text string contained in mystring.

Speech is produced asynchronously using the default system voice. When an application

calls this function, the Speech Manager makes a copy of the passed string and creates

any structures required to speak it. As soon as speaking has begun, control is returned

to the application. The synthesized speech is generated transparently to the application

Using the Speech Manager

Page 291 of 500

Page 292 of 500

CHAPTER 6

Speech Manager

so that normal processing can continue While the text is being spoken. No further

interaction with the Speech Manager is required at this point, and the application is free

to release or purge or trash the original string.

If Speakstring is called while a prior string is still being spoken, the audio currently

being synthesized is interrupted immediately. Conversion of the new text into speech is

then initiated. If an empty (zero length) string or a null string pointer is passed to

Speakstring, it stops the synthesis of any prior string but does not generate any

additional speech.

As with all Speech Manager routines that expect text arguments, the text may contain

embedded speech control commands.

RESULT CODES

noErr 0 No error

memFullErr -108 Not enough memory to speak
synthOpenFailed -241 Could not open another speech synthesizer channel

Determining If Speaking Is Complete

Once an application starts a speech process with speakstring, the next thing it will

probably need to know is whether the string has been completely spoken. It can use

SpeechBusy to determine whether or not the system is still speaking.

SpeechBusy

The SpeechBusy routine is useful when you want to ensure that an earlier speech

request has been completed before having the system speak again.

pascal short SpeechBusy (void);

DESCRIPTION

SpeechBusy returns the number of channels of speech that are currently synthesizing

speech in the application. If you use just Speakstring to initiate speech, SpeechBusy

will always return 1 as long as speech is being produced. When SpeechBusy returns 0,

all initiated speech has finished.

RESULT CODES

None

Using the Speech Manager

Page 292 of 500

Page 293 of 500

CHAPTER 6

Speech Manager

A Simple Example

The example shown in Listing 6-2 demonstrates how to use the routines introduced in

this section. It first makes sure the Speech Manager is available. Then it starts speaking a

string (hard-coded in this example, but more commonly loaded from a resource) and

loops, doing some screen drawing, until the string is completely spoken. This example

uses the SpeechAvailable routine shown in Listing 6-1.

Listing 6-2 Elementary Speech Manager calls

OSErr err;

if (SpeechAvailable()) {

err = SpeakString("\pThe cat sat on the mat.");

if (err == noErr)

while (SpeechBusy() > O)

CoolAnimationRoutine();

else

NotSoCoolAlertRoutine(err);

Essential Calls—Simple and Useful

While the routines presented in the last section are simple to use, their applicability

is limited to a few basic speech scenarios. This section describes additional routines

that let you work with different voices and adjust some basic characteristics of the

synthesized speech.

Working With Voices

Page 293 of 500

When describing a person's voice, we talk about the particular set of characteristics that

help us to distinguish that person's voice from another. For example, the rate at which

one speaks (slow or fast) and the average pitch (high or low) characterize a particular

speaker on a crude level. In the context of the Speech Manager, a voice is the set of

parameters that specify a particular quality of synthesized speech. This portion of

the Speech Manager is used to determine which voices are available and to select

particular voices.

Every specific voice has a unique ID associated with it, which is the primary way an

application refers to it. Every voice is also associated with a Voicespec structure that

is set up by the Ma kevoicespec routine.

The Speech Manager provides two routines to count and step through the list of

currently available voices. Countvoices is used to compute how many voices are

available with the current system. Getlndvoice uses an index, starting at 1, to return

information about all currently installed voices.

Using the Speech Manager

Page 294 of 500

CHAPTER 6

Speech Manager

Use the GetIndVoice routine to step through the list of available voices. It will fill a

Voicespec record that can be used to obtain descriptive information about the voice or

to speak using that voice.

Any application that wishes to use multiple voices will probably need additional

information about the available voices beyond the Voicespec structure, such as the

name of the Voice and perhaps What script and language each Voice supports. This

information might be presented to the user in a ”Voice picker” dialog box or voice menu,

or it might be used internally by an application trying to find a voice that meets certain

criteria. Applications can use the Ge tVoiceDescription routine for these purposes.

MakeVoiceSpec

DESCRIPTION

Page 294 of 500

To maximize compatibility with future versions of the Speech Manager, you

should always use Ma kevoicespec instead of setting the fields of the Voicespec

structure directly.

pascal OSErr MakeVoiceSpec (OSType creator, OSType id, Voicespec

*voice);

typedef struct Voicespec {

creator;

id;

OSType // determines which synthesizer is required

OSType

} Voicespec;

// voice ID on the specified synth

Field descriptions

creator The synthesizer required by your application.
id

*voice

Identification number for this Voice.

Pointer to the V0iCe Spe c structure.

Most voice management routines expect to be passed a pointer to a Voicespec

structure. Ma kevoicespec is a utility routine provided to facilitate the creation of

V0 i ce Spe c records. On return, the passed Voi ce Spe c structure contains the

appropriate values.

Voices are stored in resources of type ' ttsv' in the resource fork of Macintosh files. The

Speech Manager uses the same search method as the Resource Manager, looking for

voice resources in three different locations when attempting to resolve Voicespec

references. It first looks in the application's resource file chain. If the specified voice is

not found in an open file, it then looks in the System Folder and the Extensions folder (or

in just the System Folder under System 6) for files of type ' ttsv' (single-voice files) or

' ttsb ' (multivoice files) and in text-to-speech synthesizer component files (file type

' INIT ' or ' thng '). Voices stored in the System Folder or Extensions folder are

normally available to all applications. Voices stored in the resource fork of an application

files are private to the application.

Using the Speech Manager

Page 295 of 500

CHAPTER 6

Speech Manager

RESULT CODE

noErr 0 No error

While the determination of specific voice ID values is mostly left to synthesizer

developers, the voice creator values are specified by Apple (they would ordinarily

correspond to a developer's currently assigned creator ID). For both the creator and

id fields Apple further reserves the set of OSType Values specified entirely by space

characters and lowercase letters. Apple is establishing a standard suite of voice ID values

that developers can count upon being available with all speech synthesizers.

CountVoices

The Countvoices routine returns the number of voices available.

pascal OSErr Countvoices (short *voiceCount);

voicecount Number of voices available to the application.

DESCRIPTION

Each time Countvoices is called, the Speech Manager searches for new voices. This

algorithm supports dynamic installation of voices by applications or users. On return,

the voicecount parameter contains the number of voices available.

RESULT CODE

No error

GetIndVoice

The Getlndvoice routine returns information about a specific Voice.

pascal OSErr GetIndVoice (short index, Voicespec *voice);

index Index value for a specific voice.

*vo ice Pointer to the Vo i ce Spe c structure.

DESCRIPTION

As with all other index—based routines in the Macintosh Toolbox, an index value of 1
causes Getlndvoice to return information for the first voice. The order that voices are

returned is not presently defined and should not be assumed. Speech Manager behavior

when voice files or resources are added, removed, or modified is also presently

Using the Speech Manager

Page 295 of 500

Page 296 of 500

RESUETCODES

CHAPTER 6

Speech Manager

undefined. However, calling Countvoices or GetIndVoice with an index of 1

will force the Speech Manager to update its list of available voices. Get Indvoice

will return a voiceNotFound error if the passed index value exceeds the number of
available voices.

0
-244

No error

Voice resource not found

noErr
voiceNotFound

GetVoiceDescription

enum {kNeuter

TheGetVoiceDescriptionroufinerenunshfionnafionaboutavokebeyondthat

provided by Get Indvoi ce.

pascal OSErr GetVoiceDescription (VoiceSpec *voice,

VoiceDescription *info, long infoLength);

0, kwale, kFemale};// returned in gender field below

typedef struct VoiceDescription {

_ong

long
Str63

Str255

short

short

short

short

short

long

Voicespec

//

//

//

//

//

//

//

//

//

//

//

length; size of structure

voice; synth and ID info for voice

version; version code for voice

name; name Of voice

comment; additional text info about voice

gender; neuter, male, or female

age; approximate age in years

script; script code of text voice can process

language; language code of Voice output speech

region; region code of voice output speech

reserved[4]; always zero — reserved

} VoiceDescription;

*voice

*info

DESCRIPTION

Page 296 of 500

Field descriptions

Pointer to the VoiceSpec structure.

infoLength Length in bytes of info structure.

The Speech Manager fills out the passed VoiceDescription fields with the correct

information for the specified voice. If a null Voicespec pointer is passed, the Speech

Manager returns information for the system default voice. If the VoiceDe s cription

UsmgtheSpeed1Manager

Pointer to structure containing parameters for the specified voice.

Page 297 of 500

RESUETCODES

CHAPTER 6

Speech Manager

pointer is null, the Speech Manager simply Verifies that the specified Voicespec
refers to an available voice. If Voice spec does not refer to a known voice,

GetVoiceDescription returns a voiceNotFound error, as shown in Listing 6-3.

To maximize compatibility with future versions of the Speech Manager, the application

must pass the size of the VoiceDescription structure. Having the application do this

ensures that the Speech Manager will never write more data into the passed structure

than will fit even if additional information fields are defined in the future. On returning

from GetvoiceDescription, the length field is set to reflect the length of data actually

written by this routine.

Listing 6-3 Getting information about a voice

OSErr GetVoiceGender (VoiceSpec *voicePtr,
OSErr

VoiceDescriptionvd;

short *gender) {
err;

err GetVoiceDescription

(voicePtr,&vd,sizeof(VoiceDescription));

if (err noErr) {

if (vd.length > offsetof(VoiceDescription,gender))

*gender vd.gender;
else

err badStructLen;

}

return err;

0
-50

-108
-244

No error
Parameter error

Not enough memory to load voice into memory
Voice resource not found

noErr

paramErr
memFullErr

voiceNotFound

Managing Connections to Speech Synthesizers

Page 297 of 500

Using the routines described earlier in this chapter, an application can select the Voice

with which to speak. The next step is to associate the selected voice with the proper

speech synthesizer. This is accomplished by creating a new speech channel with the

Newspeechchannel routine. A speech channel is a private communication connection

to the speech synthesizer, much as a file reference number is a communication channel to

an open file in the Macintosh file system.

The Di sposespeechchannel routine closes a speech channel when the application is

finished with it and releases any resources that have been allocated to support the

speech synthesizer and are no longer needed.

Using the Speech Manager

Page 298 of 500

CHAPTER 6

Speech Manager

NewSpeechChannel

The Newspeechchannel routine creates a new speech channel.

pascal OSErr Newspeechchannel (VoiceSpec *voice,

Speechchannel *chan);

*voice Pointer to the Voice Spec structure.

* chan Pointer to the new channel.

DESCRIPTION

The Speech Manager automatically locates and opens a connection to the proper

synthesizer for a specified voice and sets up a channel at the location pointed to by

* chan so that it is ready to speak with that voice. If a null Voice Spec pointer is passed

to Newspeechchanne 1, the Speech Manager uses the current system default voice.

There is no predefined limit to the number of speech channels an application may create.

However, system constraints on available RAM, processor loading, and number of

available sound channels may limit the number of speech channels actually possible.

RESULT CODES

r1oErr 0 No error

memFul lErr -108 Not enough memory to open speech channel
syn thOpenFailed -241 Could not open another speech synthesizer channel
voiceNotFound -244 Voice resource not found

DisposeSpeechChannel

The D i spo s e Spe e chchanne 1 routine disposes of an existing speech channel.

pascal OSErr DisposeSpeechChannel (speechchannel chan);

chan Specific speech channel.

DESCRIPTION

This routine disposes of an existing speech channel. Any speech channels that have not

been explicitly disposed of by the application are released automatically by the Speech

Manager when the application quits.

RESULT CODES

noErr 0 No error

invalidComponentID -3000 Invalid Speechchannel parameter

Using the Speech Manager

Page 298 of 500

Page 299 of 500

CHAPTER 6

Speech Manager

Starting and Stopping Speech

SpeakText

All the remaining routines in this section require a valid speech channel to work

properly. Once the application has successfully created a speech channel, it can start to

speak. You use the SpeakText routine to begin speaking on a speech channel.

At any time during the speaking process, the application can stop the synthesizer’s

speech. The Stopspeech routine will immediately abort any speech being produced on

the specified speech channel and force the channel back into an idle state.

DESCRIPTION

Page 299 of 500

The SpeakText routine converts designated text into speech.

pascal OSErr SpeakText (SpeechChannel Chan,

textBytes);

Ptr textBuf, long

Field descriptions
chan

textBuf
Specific speech channel.
Buffer of text.

textBytes Length of textBuf.

In addition to a valid speech channel, SpeakText expects a pointer to the text to be

spoken and the length in bytes of the text buffer. SpeakText will convert the given

text stream into speech using the voice and control settings for that speech channel.

The speech is generated asynchronously. This means that control is returned to your

application before the speech has finished (probably even before it has begun). The

maximum length of text buffer that can be spoken is limited only by the available RAM.

However, it's generally not very friendly to force the user to listen to long uninterrupted

text unless the user requests it.

If SpeakText is called while it is currently busy speaking the contents of a prior text

buffer, it will immediately stop speaking from the prior buffer and will begin speaking

from the new text buffer as soon as possible. As with Speakstring, described on

page 267, if an empty (zero length) string or a null text buffer pointer is passed to

SpeakText, this will have the effect of stopping the synthesis of any prior text but will

not generate any additional speech.

WA R N I N G

With SpeakText, unlike with Speakstring, the text buffer must

be locked in memory and must not move during the entire time that

it is being converted into speech. This buffer is read at interrupt

time, and very undesirable effects will happen if it moves or is

purged from memory. A

Using the Speech Manager

Page 300 of 500

CHAPTER 6

Speech Manager

RESULT CODES

noErr 0 No error

invalidComponentID -3000 Invalid Speechchannel parameter

StopSpeech

The StopSpeech routine terminates speech delivery on a specified channel.

pascal OSErr Stopspeech (speechchannel chan);

chan Specific speech channel.

DESCRIPTION

After returning from Stopspeech, the application can safely release any text buffer that

the speech synthesizer has been using. The SpeechBusy routine, described on page 268,

can be used to determine if the text has been completely spoken. (In an environment

with multiple speech channels, you may need to use the more advanced status routine

Getspeechlnfo, described on page 286, to determine if a specific channel is still

speaking.) Stopspeech can be called for an already idle channel without ill effect.

RESULT CODES

noErr 0 No error

invalidComponentID -3000 Invalid Speechchannel parameter

Using Basic Speech Controls

The Speech Manager provides several methods of adjusting the variables that can affect

the way speech is synthesized. Although most applications probably do not need to use

these advanced features, two of the speech variables, speaking rate and speaking pitch,

are useful enough that a Very simple Way of adjusting these parameters on a channel-

by—channel basis is provided. Routines are supplied that enable an application to both set

and get these parameters. However, the audible effects of changing the rate and pitch of

speech vary from synthesizer to synthesizer; you should test the actual results on all

synthesizers with which your application may work.

Speaking rates are specified in terms of words per minute (WPM). While this unit of

measurement is difficult to define in any precise way, it is generally easy to understand

and use. The range of supported rates is not predefined by the Speech Manager. Each

speech synthesizer provides its own range of speaking rates. Furthermore, any specific

rate value will correspond to slightly different rates with different synthesizers.

Speaking pitches are defined on a musical scale that corresponds to the keys on a

standard piano keyboard. By convention, pitches are represented as fixed-point values in

the range from 0.000 through 100.000, where 60.000 corresponds to middle C (261.625

Using the Speech Manager

Page 300 of 500

