
Page 67 of 500

CHAPTER 2

Hardware Details

The pin assignments for the 96-pin Euro-DIN NuBus accessory card connectors in the
NuBus interface are shown in Table 2-17.

Table 2-17 NuBus pin assignments

Pin Name Pin Name

a1 —12V b1 —12V

a2 5130 b2 GND

a3 /SPV b3 GND

a4 /51> b4 +5V

a5 /TM1 b5 +5v

a6 /AD1 b6 +5V

a7 /AD3 b7 +5v

a8 /AD5 b8 /TM02

a9 /AD7 b9 /CMO

/AD9 /CM1

a11 /AD11 b11 /CM2

a12 /AD13 GND

a13 /AD15 GND

a14 /AD17 GND

a15 /AD19 GND

a16 /AD21 GND

a17 /AD23 GND

a18 /AD25 GND

/AD27 GND

/AD29 GND

/AD31 GND

GND GND

GND GND

/ARB1 /cL1<2x

/ARB3 STDBYPWR+

/GA1 /CLKZXEN

/GA3 /CBUSY

/ACK +5v

continued

NuBus Interface 41

PUMA EXHIBIT 200

Page 67 of 500 PART 2 OF 10

acaswell
Typewritten Text
PUMA EXHIBIT 2005PART 2 OF 10

Page 68 of 500Page 68 of 500

CHAPTER 2

Hardware Details

Table 2-17 NuBus pin assignments (continued)

Pin Name Pin Name Pin

a29 +5V b29 +5V C29

a3O / RQST b30 GND C30

a31 / NMRQX b31 GND C31

a32 +12V b32 +12V C32

* A slash before a signal name indicates that it is in the low state when active.
J‘ Trickle +5 V supply.

The power available and maximum capacitance loading for each expansion card are
shown in Table 2-18.

Table 2-18 Power budget for each slot card

Maximum Maximum

Voltage (V) current (A) capacitance (uF)

+5 2.0 1513

+12 0.175 536

-12 0.15 698

Digital AudioNideo Expansion Connector

In the Macintosh Quadra 840AV, a digital audio / Video (DAV) expansion connector is
mounted on the main circuit board in line with NuBus slot address $C (the slot nearest

the center of the computer), to let an accessory card access sound and video data directly.

In the Macintosh Centris 660AV, the DAV connector is mounted on the optional NuBus

adapter card (shown in Figure 2-13). Both models can accept a short NuBus accessory

card that accesses the DAV connector; the Macintosh Quadra 840AV can also accept a

long card.

Figure 2-14 illustrates the lower-right portion of a standard short or long NuBus card

that has a connector added to plug into the DAV connector. It shows the mechanical
relation between the DAV connector and the normal NuBus connector, with dimensions

given in inches.

The DAV connector provides access to the system's 4:2:2 unsealed YUV video input

signal and to the digital audio signal input for the Singer codec. One use for this feature

is to provide a hardware audio or Video compression capability on an accessory card,

which could write out compressed data to NuBus. The DAV connector is a 40-pin type,

model KEL 8801-40-170L. Table 2-19 gives its pin assignments.

NuBus Interface

Page 69 of 500

CHAPTER 2

Hardware Details

Figure 2-14 DAV connection on a NuBus card

0

Long board Short board

Table 2-19 DAV connector pin assignments

3:
Signal Pin Signal ' Signal

Y bit 7 15 Y bit 0 UV bit 1

LLC1k 16 Ground NC (reserved)

Y bit 6 17 UV bit 7 UV bit 0

Ground 18 FEI~ Ground

Y bit 5 19 UV bit 6 SingerSync

VS 20 Ground Ground

Y bit 4 21 UV bit 5 SingerSerOut

Ground 22 iicSDA SingerBitClk

Y bit 3 23 UV bit 4 SingerSerIn

HRef 24 Ground Ground

Y bit 2 25 UV bit 3 Ground

Ground 26 iicSCL SingerMClk

Y bit 1 27 UV bit 2

vdcCRef 28 Ground

l-\

O\O0O\‘lO'\0‘Ii-l>QJNi—\
l-\ l-\

l--\ I0

I-4 CD

I-4 rl>-

NuBus Interface

Page 69 of 500

Page 70 of 500Page 70 of 500

CHAPTER 2

Hardware Details

DAV Sound Interface

The Singer sound codec uses time-division multiplexing to transfer multiple audio

channels between the DAV connector, the Singer chip, and the PSC for DMA transfers to

and from RAM memory. The sound signals that appear at the DAV connector are listed

in Table 2-20. These signals have a minimum setup time of 10 ns and a minimum hold

time of 8 ns; they can tolerate a maximum load of 20 pF.

Table 2-20 DAV connector sound signals

Description

24.576 MHz master clock

Bit clock that clocks serial data on singerSerOut and singerSerIn;
256 times the sample rate; also used to clock singersync

Signal

singerMC1k

singerBitClk

singerSync Signal that marks the beginning of a frame and a word

singerSerOut Sound output from PSC to DAV connector

singerSerIn Sound input from DAV connector to PSC

The Singer codec transfers data in 256-bit frames, each of which contains four subframes

of 64 bits each. Each subframe carries two 32-bit audio samples, one left and one right.

Each sample contains 20 data bits and 12 auxiliary bits. Subframe 1 is reserved for the

Macintosh system sound I/ O; the other subframes are available for applications and

accessory cards to use. The Singer frame structure is shown in Figure 2-15

Figure 2-15 Singer sound frame

256 bits

I
W(

Subframe 1 Subframe 2 Subframe 3 Subframe 4

Frame Word syncs
sync

Left channel (20) bits (aux. 12 bits) Right channel (20 bits) (aux. 12 bits)

NuBus Interface

Page 71 of 500

CHAPTER 2

Hardware Details

The signals singerSync, singerSerOut, and singerSerIn are clocked by the singerBitClk

signal. The falling edge of the clock is used to clock the signals, and the rising edge is

used to sample them. As shown in Figure 2-16, a frame sync is marked by a pulse two

singerBitClk cycles wide; a word sync is marked by a pulse one singerSync cycle wide.

Figure 2-16 Sound frame and word synchronization

256 1 2 3

singerBitC|k I I I J I

singerSync I

I I
Word

The singerSync synchronization signals for each subframe are shown in Figure 2-17.

Figure 2-17 Sound subframe synchronization

Frame = 256 singerBitC|k cycles
I

Subframe 1 Subframe 2 Subframe 3 Subframe 4
64 bits 64 bits 64 bits 64 bits

I I I
I Y I I Y I

singersync I I I I

IIIIIIII
Word syncs

DAV Video Interface

At the DAV connector, the digital video signal data format conforms to CCIR

Specification 601 and is compatible with most Video compression chips. In the DAV

interface, Video lines are defined by the HRef signal; it goes high during the image

transmission and low during the blanking interval. The DAV video signal timing

relations are shown in Figure 2-18.

NuBus Interface

Page 71 of 500

Page 72 of 500

CHAPTER 2

Hardware Details

Figure 2-18 DAV video timing

Start of a video line

HRef_

—> Y and UV data valid on the rising edge of conLLC|k
when HRef and CRef are high

End of a video line

HRef_

Processor-Direct Cards for the Macintosh Centris 66OAV

The Macintosh Centris 66OAV (but not the Macintosh Quadra 840AV) can accept an

accessory card that plugs directly into the main circuit board instead of into the adapter

card shown in Figure 2-13. An accessory card plugged into the main circuit board can

gain access to the processor as well as to the DAV bus. The resulting processor—direct slot

(PDS) capability is similar to that of the Macintosh Centris 610 computer, described in

the Macintosh Centris 610 Developer Note.

The Macintosh Centris 610 computer uses an AMP type 650231-5 connector for PDS

cards; the Macintosh Centris 66OAV uses an AMP type 650231-3 connector. Because

the corresponding pins are aligned, it is possible to design PDS cards that work on
both models.

Processor-Direct Cards for the Macintosh Centris 66OAV

Page 72 of 500

Page 73 of 500

CHAPTER 2

Hardware Details

The Macintosh Centris 660Av PDS Connector

The pin assignments for the Macintosh Centris 660AV PDS connector are given in

Table 2-21. Pin numbers preceded by an asterisk have signals that are different from

those in the Macintosh Centris 610. Pin numbers preceded by a minus sign are not used

by the Macintosh Centris 660AV.

Table 2-21 Macintosh Centris 660AV PDS connector pin assignments

Pin number Signal name Pin number Signal name

GND 26 +5 V

Am 27 D(19)

AG) 28 D(17)

A(4) 29 GND

A(6) 30 D(14)

A(7) 31 D(13)

A(9) 32 13(11)

A(11) 33 13(9)

A(13) 34 D(8)

A(15) 35 D(6)

GND 36 D(4)

A(18) 37 +5 V

A(19) 38 13(1)

A(21) 39 GND

A(23) 40 SIZE(1)

A(24) 41 RW

A(26) -42 /TIP.CPU*

A(29) *43 GND"

A(31) 44 /TEA

D(31) *45 /NC

D(29) *46 GND

D(27) 47 /TRST

D(25) -48 /CI.OUT

D(24) 49 GND

D(22) *50 NC

1

2

3

4

5

6

7

8

9

l-\ ®

I-4 I-\

I--\ I0

l-—| 03

l--\ I-P

l-—| U1

l-—| C'\

1-1 \1

l--\ ®

1-1 \O

[UG

N 1-1

I\-)I0

IQDJ

IQ11>-

NJ()1

continued

Processor-Direct Cards for the Macintosh Centris 660AV

Page 73 of 500

Page 74 of 500

CHAPTER 2

Hardware Details

Table 2-21 Macintosh Centris 660AV PDS connector pin assignments (continued)

Pin number Signal name Pin number Signal name

-51 / BR.40SLOT 82 A(17)

52 / BB 83 +5 V

53 /LOCK 84 A(20)

54 /MEM.RESET 35 A(22)

55 / CPURESETOUT 86 GND

56 +5 V 87 A(25)

*57 040INPROGRESS 88 A(27)

58 / NMRQ(6) 89 A(28)

59 GND 90 A(30)

60 / IPL(0) 91 D(30)

61 / IPL(1) 92 D(28)

62 /IPL(2) 93 D(26)

63 —12V 94 GND

64 GND 95 D(23)

*65 NC 96 D(21)

*66 NC 97 D(20)

*67 /NMRQ(5) 98 D(18)

*68 /NMRQ(4) 99 D(16)

*69 /04OLOCKE 100 D(15)

70 +5 V 101 +5 V

71 AUX.CPUCLK 102 D(12)

72 A(0) D(10)

73 A(2) GND

74 +5 V D(7)

75 A(5) D(5)

76 GND D(3)

77 A(8) D(2)

78 A(10) D(0)

79 A(12) SIZE(0)

80 A(14) +5 V

81 A(16) +5 V

Processor-Direct Cards for the Macintosh Centris 660AV

Page 74 of 500

Page 75 of 500

CHAPTER 2

Hardware Details

Table 2-21 Macintosh Centris 660AV PDS connector pin assignments (continued)

Pin number Signal name Pin number Signal name

113 /TA 127 / SYS.RESET

114 GND -128 TM(0)

115 / TS -129 TM(1)

*116 GND -130 TM(2)

*117 +5 V 131 +5 V

*118 +5 V *132 NC

-119 / BG.4OSLOT 133 +12V

120 / BG.CPU 134 GND

121 +5 V 135 BS.CLK

122 TT(0) 136 /BS.MODE

123 TT(1) *137 MUNI / RQ

124 GND *138 NC

-125 TLN(0) 139 reserved

-126 TLN(1) 140 +5 V

* A slash before a signal name indicates that it is in the low state when active.
J’ GND on pin 43 identifies the Macintosh Centris 660AV; on the Macintosh Centris 610 pin 43 isnot connected.

Most of the signals listed in Table 2-21 are connected directly to the computer's

processor. Table 3-22 lists the PDS signals that are connected to the computer's processor

but that should not be connected to a processor on a PDS card. Table 3-23 lists the PDS

signals that are not directly connected to the computer's processor.

Table 3-22 Restricted microprocessor signals on the PDS connector

Signal name Direction Function9:

/ IPL(0—2) I Interrupt priority lines from the PSC; not to be used as
wire-OR lines; can be monitored by a PDS card

/TIP.CPU From the MC68040 on the main circuit board; not

connected to any other part of the computer

*1 indicates input to the PDS card.

Observe the following additional cautions when designing PDS cards for the Macintosh
Centris 660AV:

Processor-Direct Cards for the Macintosh Centris 660AV

Page 75 of 500

Page 76 of 500Page 76 of 500

CHAPTER 2

Hardware Details

Table 3-23 Nonmicroprocessor signals on the PDS connector

Signal name Direction Function

/SYS.RESET I/0* Enables PDS to drive system reset signal; used only
for testing

AUX.CPU.CLK

/BG.CPU

/BG.40SLOT

I Buffered version of main processor's bus clock (BClk)

O

I

/BR.40SLOT O

I

0

Bus grant for main processor

Bus grant for PDS card

Bus request for PDS card

/MEM.RESET

/MI.SLOT

Fast reset generated for memory controller IC

Memory inhibit from PDS card to memory
controller IC

/NMRQ(6) O NuBus slot $E interrupt; also connected to
NuBus slot $E

* I indicates input to the PDS card; 0 indicates output from the PDS card.

Most signals on the PDS connector are connected directly to the main processor

with no buffers. Therefore, the PDS card must present capacitive loads of not more

than 40 pF on the address, data, and clock lines and not more than 20 pF on the
control lines.

The AUX.CPUCLK line (pin 71) is terminated with a series resistor. To reduce

reflections on this line, all loads on the card should be lumped.

/DLE (pin 45) is not connected because DLE-type read actions are not supported by
some Macintosh Centris 66OAV bus masters.

The Macintosh Centris 66OAV does not support snooping; pins 46 and 116 are

grounded.

/ BR.CPU (pin 50) is not connected because the Macintosh Centris 66OAV system bus

arbiter always grants bus control to the microprocessor when there are no other

high-priority bus requests.

The Macintosh Centris 66OAV does not support /BG.4OSLOT (pin 119) and /

BR.4OSLOT (pin 51) because it does not support using an accessory card as a bus

master in addition to the existing bus masters (the processor, the DSP, the PSC, and
the MUNI).

/ TBI (pin 112) is connected to +5 V because the TBI signal is not allowed by some
bus masters.

/ PDS.SLOT.E.EN (pin 132) is not connected because the MUNI is programmed to

decode or ignore individual slots.

The 040INPROGRESS signal (pin 57) is high when the main processor is the bus master.

When this signal is low, a different bus master can use the alternate burst write timing

protocol described in the next section.

Processor-Direct Cards for the Macintosh Centris 66OAV

Page 77 of 500

CHAPTER 2

Hardware Details

Processor Bus Burst Write Timing

The Macintosh Centris 660AV computer's processor bus supports two different timing

protocols for burst write actions. When pin 57 of the PDS connector is high, the main

processor is bus master and burst write actions must use the timing shown in the

top half of Figure 2-19. When pin 57 of the PDS connector is low, an alternate bus

master may perform burst write actions using the timing shown in the bottom half

of Figure 2-19.

Figure 2-19 Burst write timing

Page 77 of 500

Motorola 68040 burst write timing

S|Z[1:O] (burst)

TA

o[31:o]

S|Z[1:O] (burst)

TA

D[31:O]

Processor-Direct Cards for the Macintosh Centris 660AV

Page 78 of 500

CHAPTER 2

Hardware Details

RAM Expansion Cards

The user can expand RAM capacity by inserting 72-pin SIMM cards in RAM expansion

slots. Table 3-24 shows the RAM SIMM pin assignments.

Table 3-24 RAM SIMM pin assignments

'_°. :3 Name Pin Name Pin Name

GND 25 DQ22 49 DQ8

DQ0 26 DQ7 50 DQ24

DQ16 27 DQ23 51 DQ9

DQ1 28 A7 52 DQ25

DQ17 29 NC 53 DQ10

DQ2 30 54 DQ26

DQ18 31 A8 55 DQ11

DQ3 32 A9 56 DQ27

DQ19 33 / RAS3* DQ12

+5V 34 / RAS2 DQ28

NC 35 Reserved 59 +5V

A0 36 Reserved 60 DQ29

A1 37 Reserved 61 DQ13

A2 38 Reserved 62 DQ30

A3 39 GND 63 DQ14

A4 40 / CASO 64 DQ31

A5 41 / CAS2 65 DQ15

A6 42 / CAS3 66 NC

NC 43 / CAS1 67 Reserved

DQ4 44 / RASO 68 Reserved

DQ20 45 / RAS1 69 Reserved

DQ5 46 NC 70 Reserved

DQ21 47 WE 71 Reserved

24 DQ6 48 NC 72 GND

1

2

3

4

5

6

7

8

9

I-1 O

l—| I-—‘

I-1 N

I-1 U)

I-1 IF

I-1 U1

|—\ ON

I-1 \l

I—\ X

|—\ \D

I\)O

N I-1

I\)I\)

IOU)

* A slash before a signal name indicates that it is in the low state when active.

RAM Expansion Cards

Page 78 of 500

Page 79 of 500

CHAPTER 2

Hardware Details

Figure 2-20 shows the mechanical dimensions of SIMM modules for expanding RAM.

Dimensions are given in millimeters, with inch equivalents in brackets.

Figure 2-20 RAM SIMM mechanical dimensions

32.0 [1.26]
R1.5710.1 10161020

[.062 1 .004] [.400 1 .003]
6.35 1 0.20

i [.250 1 .003]
(6.35) T

[.250] t 12.03 1 0.20

[.080 1 .008]

SEE DETAIL A/(
35 x 1.27 [.050] =

44.45 1 0.20

[1.75 1 .008]

5-35i°-05 €19 0.10 [.004] M A B[.250 1 .002]

R 1.57 1 0.12

[.062 1 .005]

35 x 1.27 [.050] =
44.45 1 0.20

[1 .75 1 .008]

2x Q3.18 1 0.1

[.125 1.004]
+ 0.17

0'90 -0.03

j .035 "-003]* L ‘-003 +0.10
2.54[.100] F F127 _()_()8j? £050 + .004]' — .003

E 9.4 [.37] X
<_ 127 1 0'10 MAX Device on this

[050 i 004] side optional.

DETAIL A
ROTATED 90°CCW

RAM Expansion Cards

Page 79 of 500

Page 80 of 500

CHAPTER 2

Hardware Details

Because of signal loading limits, there may not be more than eight chips per bank of

RAM; composite SIMM cards cannot be used.

The Macintosh Quadra 840AV also accepts SIMM cards of a different configuration to

expand its VRAM, as shown in the next section.

VRAM Expansion Cards

The Macintosh Quadra 840AV lets the user expand VRAM capacity by inserting 68-pin

SIM cards in its two VRAM expansion slots. Figure 2-21 shows the mechanical

dimensions of SIMM modules for expanding VRAM, which are different from the RAM

cards discussed in the previous section. Dimensions are given in millimeters, with inch

equivalents in brackets.

Figure 2-21 VRAM SIMM mechanical dimensions

.—1o2.s7[4.o5o1 I 0.15[.D06] ® A. ——
95.11 1 6410 [3.784 ¢.oo4]

$- o.1o[.oo4] ®A|s2x 3.151.124] —> <—MIN
R 157 : 0405

A [.062 1 .002]
5.35 ON Q 2x 9 3.18 i 0.05[250] [.125 1 .002]

1 i I H4>

1905 V ' an 2.54 [.100]
m|l]]|l]]|]]|]]]|]]]|]]|2Il]|]l]|2I]|]]]

[.7001 10.15 : 0.08

i ["400 1°03] I mmimummnmiuunnmmid MIN
l Iil PIN1

—> — 2.03 [.0301

‘: 635 1: 0.03 [.250 1001]

$| o.1o[.oo4] ®| A

«er2x 34 EQSPACES I@ 127 1 one [.050 ¢ .001]
= 41.92 [1 5501TOL NON-ACCUM

«j 90.17 : 0405 [3550 : .0021

H} o.1o[.oo4] ® A B

—» <— s8x1.o4 2 0.03
[.041 1 .001]

|$| o.1o[.oo41 (9Contact zone
must be free
of holes
Card
edge

o.2o[.oo3] —— <— J J254 [.100] MIN

DETAIL A

VRAM Expansion Cards

Page 80 of 500

Page 81 of 500Page 81 of 500

CHAPTER 2

Hardware Details

VRAM SIMM pin assignments are shown in Table 3-25.

Table 3-25 VRAM SIMM pin assignments

Pin Name Pin Name

+5V 25 DQ5

DSF 26 SDQ7

SDQO 27 SDQ6

SDQ1 28 NC

/DT-OE0* +5V

DQO 30 DQ7

DQ1 31 DQ6

SDQ3 32 /CASO

SDQ2 33 A4

/WEO 34 A5

/RAS 35 GND

/ SEO 36 SC

DQ3 37 SDQ8

DQ2 38 SDQ9

A0 39 /DT-OE1

A1 40 DQ8

A2 41 DQ9

A3 42 SDQ11

GND 43 SDQIO

GND 44 /WE1

SDQ4 45 /SE1

SDQ5 46 DQ11

NC 47 DQ10

DQ4 48 A6

I-kl-\

F-‘O\oO0\‘lO‘\UIn-I=UJNo—t

* A slash before a signal name indicates that it is in the low state when active.

VRAM Expansion Cards

Page 82 of 500

CHAPTER 2

Hardware Details

VRAM access times in numbers of clock cycles are shown in Table 3-26. The Random

columns in Table 3-26 show the times required for random accesses; the Second columns

show the times required for immediately succeeding accesses.

Table 3-26 VRAM access times

Macintosh Quadra 840Av Macintosh Centris 660Av

Access type Random Second Random Second

Single write 5 7 3 4

Burst write 5-3-3-3 7-3-3-3 3-2-2-2 4-2-2-2

Single read 7 7 4 4

Burst read 7-3-3-3 7-3-3-3 4-2-2-2 4-2-2-2

VDC write 19 20 19 20

VRAM Expansion Cards

Page 82 of 500

Page 83 of 500

Real-Time Data Processing

Page 83 of 500

This part of the Macintosh Quadra 840AV and Macintosh Centris 660AV Developer

Note covers the software technology of the Macintosh Quadra 84OAV and

Macintosh Centris 66OAV digital signal processing facilities. It contains

three chapters:

Chapter 3, "Introduction to Real-Time Data Processing,” describes the

software architecture of the real-time data processing facility in the

Macintosh Quadra 840AV and Macintosh Centris 660AV. This facility

consists of an AT&T DSP3210 chip that performs data-processing

operations for applications that contain digital signal processor (DSP) code.

Chapter 4, ”Real Time Manager,” describes a new part of the Macintosh

system software that supplies all the services an application requires to use

the DSP, including loading and running DSP code and performing DSP

memory management.

Chapter 5, ”DSP Operating System,” covers the DSP operating system,

contained in the DSP chip. It provides the services every DSP program

needs to work with the Macintosh Operating System.

Page 84 of 500

CHAPTERS

Introduction to Real-Time

Data Processing

Page 84 of 500

Page 85 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

This chapter describes the new real—time data processing software architecture for the

Macintosh Quadra 840AV and Macintosh Centris 660AV computers, including the

functional specifications, features, programming interface, capabilities, and performance.

For hardware information about these computers’ DSP implementation, see Chapter 2,
”Hardware Details.”

For the novice in digital signal processing, this chapter begins with an overview of the

AT&T DSP3210 digital signal processor and the architecture of real—time data processing.

It provides the basics for understanding the rest of the chapter, which provides a more

complete discussion of all the concepts and fuller architectural details.

The serious programmer of real—time data processing should read this entire chapter. You

must understand several concepts introduced in the section ”Real—Time Processing

Architecture” to handle real—time programming and data flow properly.

Other parts of this book supplement this chapter. Chapter 4, "Real Time Manager,”

provides information to the Macintosh programmer and can be skipped by the DSP

programmer. Chapter 5, ”DSP Operating System,” provides information to the DSP

programmer and can be skipped by the Macintosh programmer. However, for a

complete understanding of the interrelationships and dependencies between the two

types of programming anyone doing system debugging or integration should read both

chapters. For information about installing and debugging DSP programs in the

Macintosh Quadra 840AV and Macintosh Centris 660AV, see Appendix A, ”DSP d

Commands for MacsBug,” Appendix B, ”BugLite User's Guide,” and Appendix C,

”Snoopy User's Guide.”

Introduction to Digital Signal Processors

Page 85 of 500

Real-time data processing requires a hardware and software architecture for integrating

digital signal processing technology into the Macintosh Quadra 840AV and Macintosh

Centris 66OAV computers. The architecture supports the computer's digital signal

processor as a coprocessor that has its own operating system but is capable of accessing

the same data memory as the main processor.

Concepts of Digital Signal Processing

Digital signal processing is the manipulation and conversion of digitized data. Digitized

data are digital representations of analog signals, which may represent sounds, images,

speech, or other analog forms. To correctly process these signals it is necessary to know

at what rate they were converted (the sample rate) and the format of the digital bits used

to represent the original data. With this information the signal can be manipulated by a

conventional program using the digitized data as its input. The result can then be stored

on disk or converted back into an analog signal.

Introduction to Digital Signal Processors

Page 86 of 500Page 86 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

All such processing accomplished by a computer is called digital signal processing. The

digital signal processor supports the math routines required in a special chip designed

specifically for signal processing applications. The multiply / accumulate operation is the

basic ingredient of signal processing programs. The digital signal processor is designed

to perform this operation Very rapidly.

The equivalent of digital signal processing in the analog domain is accomplished using

electronic components, such as inductors, capacitors, resistors, and transistors. The

advantage of doing the processing in the digital domain is that the functions can be very

precise, reliable, elaborate, and software-configurable. It is difficult and costly to achieve

these same goals in the analog domain.

Real-Time Processing Capability

The Macintosh Quadra 840AV and Macintosh Centris 660AV computers’ real—time

capability uses a multi-tasking coprocessor to give high-performance processing of

sound, communications, speech, and images (both graphic and video) while utilizing

the system's low—cost dynamic random—access memory (DRAM) for primary storage
of data and code. The standard hardware is the AT&T DSP3210 and the audio and

telephone input/output (I/0) ports. The software is a custom operating system

designed to perform isochronous (real—time) and asynchronous (timeshare) algorithms.

The operating system is based on a team processing approach where the work of the total

system is carefully separated and delegated between the main processor and the digital

signal processor.

This approach has the benefit of

I greatly reducing implementation and hardware costs

I simplifying and speeding up interprocessor communications and data sharing or data

streaming

allowing flexible dynamic load sharing between the main processor and the DSP on

selected algorithms

maximizing the potential to meet future needs for higher performance and multiple
coprocessors

I increasing the range of possible application functions the DSP can provide

The DSP software architecture supports dual threaded processing streams. Real-time

processing uses interrupt-level isochronous algorithms with guaranteed processing

bandwidth to execute real—time functions requiring precisely timed signal generation or

inputs such as sound and communications. (Guaranteed processing bandwidth is

defined in the next section.) Timeshare processing uses asynchronous algorithms that

employ the excess DSP bandwidth for functions not requiring time-correlated

processing, such as still image decompression or scientific computing.

Additionally, the architecture supports the implementation of NuBus cards to make

configurations of multiple DSPs possible.

Introduction to Digital Signal Processors

Page 87 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Real-Time Processing Architecture

Program execution on the DSP is divided into segments of time called frames, typically

10 ms in length, as diagrammed in Figure 3-1. During each frame an attempt is made to
run all of the code that is installed on the DSP. Tasks are blocks of DSP code that are

grouped together by the programmer to perform a specific function.

Figure 3-1 Frames

Time

Frame n — 2 Frame n — 1 Frame n Frame n + 1 Frame n + 2

There are two types of tasks: real-time and timeshare. During each frame all of the

real-time tasks are executed and then any remaining time in the frame is used for

executing timeshare tasks, as diagrammed in Figure 3-2. Real-time tasks are useful for

sound, modem, and video processing where there is a fixed amount of data that must be

processed during each frame; if more processing time were available it would not be

used. However, timeshare tasks use as much processing power as they can get each

frame. Image decompression is an example of a timeshare task, since it should

decompress the image as fast as possible. This means that when a faster version of the

DSP3210 is available timeshare tasks run faster but real-time tasks continue to process
the same amount of data.

Figure 3-2 Real-time and timeshare tasks

10 ms frame

 k 4

<:| Real-time tasks I:<:| Timeshare tasks |:>

Each task is assembled out of modules, which are the functions that the DSP

programmer creates, and each module is composed of sections. This relationship is

shown in Figure 3-3.

Real-Time Processing Architecture

Page 87 of 500

Page 88 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-3 Task list

To understand the need for sections, it is necessary to understand how the memory

system of the DSP works. To keep hardware costs down, the DSP uses the same DRAM

as the main processor. Because the DSP can access memory at a much higher rate than

the RAM can provide, and must also compete with the main processor for RAM access,

some type of caching on the DSP is needed. The DSP does not have a hardware cache

like that in the 68040 main processor. It has a small amount of memory on the DSP

chip that is accessed in the same way as main RAM. It is called on-chip memory, in

contrast to main memory, which is off-chip. The lack of DSP hardware caching means

that caching must be managed by the DSP program and the DSP operating system.

This is called visible caching as opposed to the transparent operation of most main

processor caches.

To accomplish visible caching, the DSP programmer must mark which sections of the

code are loaded in on-chip memory before execution and which sections are saved

off-chip after execution. Visible caching operates in one of two modes. In AutoCache

mode, loading and saving are controlled by the DSP operating system; there is only

one set of sections on-chip during the execution of a module. In DemandCache mode,

loading and saving are controlled by the DSP program, so sections can be moved on and

off-chip during the execution of the module. Caching modes are discussed in more detail

in ”Visible Caching” and "Execution Models,” later in this chapter.

To make modules slightly more general, a mechanism is provided for a single module

to work at different frame rates and sample rates. This is done by making sections

individually scalable. The DSP programmer has the option of saying which sections are

scalable and the possible sizes of the scalable sections. For example, if a reverberation
module works with both 24k Hz and 48k Hz sound at a 10 millisecond frame rate it

would have an input and an output section, both of which would be scalable to either

240 or 480 samples per frame. When the Macintosh program loads the module from disk,

it specifies the module scale of operation.

To ensure that all of the real—time tasks are executed during each frame, the DSP

programmer must specify an upper bound for the execution time of the module. If there

is enough processing power on the DSP, the task that contains this module will be

installed and executed. As long as every module's estimate is correct, the DSP will

execute frames evenly. However, if a module's estimate is not its upper bound, the DSP

Real-Time Processing Architecture

Page 88 of 500

Page 89 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

could take more time to execute the real-time tasks than is available in a given frame.

When this frame overrun occurs the DSP operating system will find the module that

specified its incorrect upper bound, remove the task that contains this module from the

execution stream, and then resume execution. This procedure is called guaranteed

processing bandwidth (GPB).

Since a task is made up of modules which typically share data, optimization is provided

to keep the data on—chip between modules, instead of saving it off—chip in one module

and then loading it back on-chip for the next module. This is accomplished by

connecting sections from one module to another, letting the DSP operating system

decide if data saving and loading is required. Data that must be shared between tasks,

such as the sound going to the speaker, is passed between tasks in intertask buffers

(ITBs). The only logical difference between ITBS and connected sections is that the
sections are in different tasks for ITBs and in the same task for connected sections. Both

ITBs and connected sections are managed by the Macintosh programmer, as described in

”Data Buffering,” later in this chapter.

Software Model

Page 89 of 500

The software model for real-time data processing in the Macintosh Quadra 840AV and

Macintosh Centris 660AV computers consists of three distinct pieces:

I The host toolbox is the Real Time Manager. The Real Time Manager runs on the main

processor and is written in C for portability.

The DSP Driver contains both main processor code and DSP code components. All

hardware-dependent functions are included in the drivers. They are written in the

68000 and DSP assembly languages for efficiency.

The DSP toolbox is called the DSP operating system. The DSP operating system runs

on the DSP, and is Written in DSP assembly language for efficiency.

Almost all routines in the Real Time Manager are reentrant and callable from interrupt

level. This is necessary, since communications between the DSP and main processor

often take the form of interrupt messages.

A major component of the model is a shared block of memory This memory consists of

local memory as well as main memory. The local memory is either in system DRAM or

in optional card memory. It is through data structures and semaphores in this shared

memory that the main processor and DSP toolboxes communicate. A more complete

diagram of the software model is shown in Figure 3-4.

Dual Programming Model

Figure 3-4 shows the dual programming interface for real-time data processing: the

application programming interface (API) in the Real Time Manager, and the module

programming interface (MPI) in the DSP operating system. These two interfaces are

completely separate, and designed to be used by different programmers. It is not

necessary for a programmer to be both a Macintosh programmer and a DSP programmer.

Software Model

Page 90 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-4 Real-time data processing organization

DSP module

Host application/client

DSP Manager DSP Operating System

Application programming interface Module programming interface

0 I/OClient and |/ Data GPB/control Caching
device services structure services services services

managers managers

Allocation managers Executive

Sh d , _
DSP host driver <:> se,:;’§,h;?§;“2,’gta <:> DSP os driver

ll
Interrupts Interrupts

It is usually better to have two programmers involved when programming an application

that requires DSP modules. This is because the two types of programming are very

different, and very specialized. The two programmers communicate with each other

by creating a DSP Module Specification document. This document provides a vehicle

for transferring all the information necessary to ensure a correct interface between the

main processor program and each DSP module. For more information about the data

this document should contain see ”DSP Program Information for the Macintosh

Programmer,” in Chapter 5.

Real Time Manager

The Real Time Manager uses the standard trap interface to call the Macintosh Toolbox.

The set of calls accessible to an application are labeled as the application programming

interface layer in Figure 3-4.

Three major functions of the Real Time Manager support I/0 services, client and device

management, and data structure management. These functions make calls on the Real

Time Manager's allocation routines at the lowest level.

The allocation layer is responsible for DSP cache and local memory allocation, for GPB
allocation, and for I/0 resource allocation.

Software Model

Page 90 of 500

Page 91 of 500Page 91 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

DSP Operating System

The DSP operating system also has an interface layer. This layer works in a similar

fashion to the Real Time Manager: a trap mechanism is used to make calls on the DSP

operating system from the DSP module.

The DSP operating system also provides services to the DSP module: 1/0 services,

including FIFO management, GPB and control services, and caching operations on the

DSP. The underlying function of the DSP operating system is contained in an executive

layer, which is responsible for managing task-sequencing and frame-handling functions.

DSP Driver

The DSP Driver has two distinct components. One works exactly like a standard

Macintosh driver, and is written in 68000 code. The other component performs a similar

function for the DSP operating system. It contains all DSP code that is hardware-

dependent, as Well as booting and restart code These two components are stored

together as one driver. The DSP driver also controls the I /0 drivers for any serial or

parallel I /0 ports included as part of the DSP system. These resources are accessed

using the Real Time Manager services.

Other Software Components

Additional system software that supports real—time data processing includes:

I A sound driver provides the interface between the Macintosh Sound Manager and the

Real Time Manager by means of a set of standard sound modules, including sound

input and output, compression, filtering, sample rate conversion, and mixing.

A telecom driver provides the interface between the telecommunications Manager/

Communications Toolbox and the Real Time Manager, including a set of standard

telecom modules, plus modem, fax, and speech.

Development tools include a DSP C compiler, assembler, libraries, linker, resource

generator, and include-files with macros and definitions.

Debugging and test tools include a graphical module installer, DSP code debugger, and

MacsBug extensions.

The purpose of the various toolbox drivers is to provide access to the capability of the

DSP at the highest possible toolbox level. This allows applications that are not written

for the DSP to use it automatically when it is available. Even with this level of toolbox

support, it is clear that many applications will work better by directly accessing the DSP

using the DSP API. Such applications provide significantly more functionality or speed

when a DSP is available. However, an application that uses the DSP API either cannot

run on a platform without the DSP, or must provide alternative main processor

programming if a DSP is not available.

Software Model

Page 92 of 500Page 92 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Software Layers

The basic Macintosh software model has four primary conceptual layers: the application

layer on top, the toolbox layer, the driver layer, and finally the hardware layer. The

separation of system software into toolbox and driver layers allows the separation of

hardware dependencies from the major system functions, and makes revisions in the

hardware easier to support. If this model is followed correctly, major changes in the

hardware can be made without breaking applications. For this reason, Apple encourages

developers to access functions at the highest possible toolbox layer, even if they could be

more efficient writing directly to the hardware. This separation allows Apple to improve

the hardware base without disrupting the application base. A diagram of the four-layer

Macintosh model is shown in Figure 3-5.

Figure 3-5 Four-layer Macintosh model

Applications

U
System software

Hardware

As shown in Figure 3-5, an application that accesses the Real Time Manager is

hardware-dependent. This means the application would require that a DSP coprocessor

be present in the system in order for it to operate. This is true even though the Real Time

Manager is hardware-independent. The emphasis here is on implementation. The Real

Time Manager assumes that there is a DSP available, otherwise there is no reason for

the manager to be installed. Additionally, it provides the necessary isolation from the

specific implementation details. By accessing a higher toolbox layer the application also

becomes DSP-independent and will operate across multiple Macintosh platforms.

Software Model

Page 93 of 500Page 93 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

If the original Macintosh model is combined with the DSP model, the DSP software and

hardware must be viewed as virtual hardware. This concept is illustrated in Figure 3-6.

Figure 3-6 Six-layer model

Applications

U
System software

Driver

U
Virtual DSP hardware

DSP Manager

DSP Driver

DSP hardware

The model shown in Figure 3-6 is used for the DSP software. Notice that the driver layer

is specific for the virtual hardware. If the DSP is available, this layer must be able to

install tasks in the task list and must deal with any specific characteristics of this

machine that may affect its operation. If there are no such characteristics, then the driver

is not dependent on the machine implementation, but only on the availability of the DSP.

In either case, the driver is specific for the Virtual hardware.

Figure 3-7 shows two sample toolbox / driver combinations for the Real Time Manager.

In the case of sound, there are no hardware-specific features that the Sound Driver needs

to deal with. Hence only a single—layer driver is needed. The driver is capable of working

with the DSP in any supported configuration, and does not need to deal with specific

implementation details. This results in a six-layer model.

Software Model

Page 94 of 500Page 94 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-7 Example of toolbox and driver layers

®
Applications

%
System software System software

Sound Toolbox Comm. Toolbox

Virtual DSP hardware

For the communications case, the Telecom Driver deals specifically with the way that the

DSP I/O subsystem is connected to the telephone line. Thus, specific bit input and

output (BIO) pins on the DSP perform functions that the Telecom Driver uses. The driver

takes control of these functions if the appropriate external hardware is present on the

telecom port. This makes the Telecom Driver hardware-specific relative to the telecom

subsystem. It is also hardware-dependent on the DSP virtual hardware.

To the extent that the same configurations are used for all CPUs and cards, the Telecom

Driver becomes universal, and seemingly hardware-independent. However, different

arrangements of telecom subsystems for different implementations of the DSP will

require a different telecom driver. Notice that a different telecom driver must be

supplied for a NuBus card and for a CPU, even if the configuration is identical. This is

because the CPU Driver can recognize a specific CPU but cannot recognize a specific

NuBus card. If the Wiring of the I/O subsystem is identical in both cases, then the only

change to the driver is the hardware recognition code.

To facilitate this, the driver layer should be divided into two separate parts: the DSP-

handling layer on top that uses Real Time Manager routines, and the hardware-specific

layer on the bottom that deals with specific hardware wiring. This allows simple

modification of the driver to support different hardware platforms. This arrangement

is shown in Figure 3-8.

Software Model

Page 95 of 500Page 95 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-8 Seven-layer real-time model

Applications

U
System software

Hardware independent

Driver

(DSP aware)

(Hardware aware)

Virtual DSP hardware

Hardware dependent

Hardware implementation dependent

DSP Manager DSP implementation independent

DSP Driver

DSP hardware

DSP implementation dependent

The addition of this seventh ”H /W driver” layer is only necessary if the driver requires

specific access to I / O subsystems.

DSP-Aware Applications

A DSP-aware application can be designed to operate in two different ways:

I to recognize and use the DSP if it is there, for enhanced performance of specific

application functions

I to require the DSP and not run at all if no DSP is available

There are many interesting applications in both categories. It is important to realize that

the Real Time Manager's implementation independence makes it possible to write a

DSP-aware application that will run, without change, on different DSP implementations,

Software Model

Page 96 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

assuming the same (instruction set compatible) DSP is used. Such an application can

make direct calls to the Real Time Manager for service. Different instruction sets can be

supported by the appropriate processing modules.

It is important to note that if a desired function is available from a high-level toolbox

then the DSP connection will be made automatically, providing enhanced performance

Without the application being Written for the DSP. A good example of this is any

application that plays sound. If it calls the Sound Manager then the processing will be

handed over to the DSP. However, if a sound application needs more service than the

Sound Manager provides then the application should directly access the Real Time

Manager. Depending on the application, either of these DSP-aware models could be used.

Software Architecture

Page 96 of 500

The real-time data processing software is based on a data flow model. It is important for

a real-time signal processing system to accept and process incoming samples at the

average rate that they are being produced by the input process. It is equally important

for it to create outgoing samples at the average rate that they are being consumed by the

output process.

By buffering the samples, it is possible to process groups of samples at a time rather than

single samples at a time. This approach is called frame-based processing. During each

frame the application loads the required program code, Variables, and input data into a

high—speed cache on the DSP. The program code is executed from this cache, and the

resulting output data is dumped from the cache back into off-chip memory. Alternately,

the input data may already be in the cache from a previous operation, and the output

data may be kept in the cache if it is needed for following operations.

The operating software for real-time data processing works on a team processing basis.

In particular, careful attention has been paid to the division of labor between the main

processor and the DSP. The goal is to maximize the processing throughput of the DSP

While minimizing the processing requirements and bus loading of the main processor.

The operating software consists of a part of the Macintosh toolbox (the Real Time

Manager and its driver) and a DSP control program (the DSP operating system and its

driver). A block diagram of this concept is shown in Figure 3-9.

These two programs interact with one another through shared memory, interrupt

processing, and semaphores. The Real Time Manager supports application software on

the main processor, while the DSP operating system supports DSP program modules

on the DSP. Thus, there are two completely separate application program interfaces

in real-time data processing: one for the main processor program and one for the

DSP program.

Software Architecture

Page 97 of 500

Music
FIFO

Speech
FIFO

Sound effect
FIFO

Page 97 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-9

®
Host application/client

DSP Manager

1
DSP host driver <j:>

l
Interrupts

Real-time software organization

DSP module

E
DSP Operating System

l

E
Interrupts

V
Shared memory,
semaphores, data

In most applications the DSP will need to run several different code modules or

algorithms in sequence to process blocks of data. For example, five different DSP

modules are required for a sound player to mix the following three channels of sound:

I

rate converter

compressed music requiring data decompression

compressed speech requiring a subband decoder and an 8-to-24 kHz sample

sound effects requiring a 22.2545—to—24 kHz sample rate converter

Each module must be cached and executed in the proper order to accomplish the desired

results. See Figure 3-10 for a diagram of the data flow in this process.

Figure 3-10

 > CD'X’°‘decompressor

m> Subbanddecoder

 > 22.254 to 24 SRC

Software Architecture

Sound player example data flow

 > 8 to 24 SRC

 >

24 kHz
audio mixer :> SpeakerFIFO

 >

Page 98 of 500

10 ms frame

CHAPTER 3

Introduction to Real-Time Data Processing

Frame Organization

Figure 3-11 shows the processing divisions that occur during a frame. Each frame begins

with the frame interrupt. If a timeshare task is running, its context is saved in external

memory. Then the list of real-time tasks is parsed and each of the active tasks are

executed in sequence. When all real-time tasks are completed, the timeshare processing

is resumed. If there was a task being executed when the frame interrupt occurred, it is
reloaded; otherwise, the list of timeshare tasks is checked. The next active task is located

using a round—robin scheduling algorithm. This selected task is then loaded and

executed. Processing continues until the next frame interrupt or until all timeshare tasks

are completed or become inactive.

Figure 3-11 Frame-based processing

Timeshare
save

Page 98 of 500

lnterrupt Timeshare
isochronous asynchronous
processing processing

Timeshare
load

If there are no active timeshare tasks to be done, the DSP goes into sleep mode (shuts

itself down), using the wait-for-interrupt instruction. The DSP will then be brought back

online automatically at the next frame interrupt. This provides automatic power control

for portable computers based on the DSP’s processing load. If no DSP tasks are active,

the Real Time Manager will go even further and shut down all DSP-related circuits,

including the timer, serial ports, and other related hardware.

Note

During a frame all real-time tasks are executed once and only once.

Timeshare tasks use cooperative multitasking, similar to Macintosh

applications, and are executed in sequence until all timeshare tasks
become inactive or the end of the frame is reached. 6

Using the sound player example given earlier, a detailed diagram of a frame is shown in

Figure 3-12. This figure is not to scale and shows only general content.

Software Architecture

Page 99 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-12 Multiple code module processing

Timeshare Caching Processing Sleep
swap

10 ms frame

L)l I JKIJK I K I JKIJK I JI
CD-XA Subband 8 to 24 22 to 24 Finish old Timeshare

SRC SRC timeshare
task

As Figure 3-12 shows, the five required real-time processing modules are run in

sequence. The timeshare algorithm that was running when the frame started is reloaded

and completed. One more timeshare algorithm is run, and since no more timeshare

algorithms are active in this example, the DSP goes to sleep and waits for the next

frame interrupt.

Frame Size Selection

Frame-based processing requires some latency in the data flow. In particular, the input

port must collect a full frame’s worth of samples before the DSP can process them.

Likewise, the DSP must generate a full frame’s Worth of samples before the output port

can start transmitting them. This requires a latency of two frames between input and

output data. Figure 3-13 illustrates this basic concept.

Figure 3-13 Process data flow

Frame n Frame n + 1 Frame n + 2

Input data n Input data n + 1 Input data n + 2

Process data n — 1 Process data n Process data n + 1

Output data n — 2 Output data n — 1 Output data n

There are four factors that influence the selection of the time interval of the frame.

They are:

I Size ofbuffer. This is proportional to the frame time interval. The longer the frame, the

more cache memory is needed for each buffer.

Overhead reduction. This is inversely proportional to the frame time interval. The

shorter the frame, the greater percentage of DSP processing time is used in overhead.

For example, if the frame represents 240 samples then the overhead is 1/240 of the

algorithm on a sample—by—sample basis. Algorithm caching is needed only once for

every 240 samples or 0.42% compared to processing a single sample at a time.

Software Architecture

Page 99 of 500

Page 100 of 500Page 100 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

I Gmnularity ofaccess. During a frame the processing sequence cannot be interrupted.

Changes in process configurations must happen on frame boundaries.

I Input/output latencyfor important algorithms. The longer the frame the higher the

latency between input to output data streams.

Buffer size and overhead reduction pull in opposite directions. Granularity of access

is dependent on the application; sound synthesis with MIDI is probably the most

demanding potential application, putting the lower limit at approximately 2 to 4 ms

per frame. Input/output latency sets the upper limit on the frame time. The most

demanding known algorithm for latency is the V32 data protocol, which sets an upper

limit of 13 ms per frame.

The default frame time for the Macintosh Quadra 84OAV and Macintosh Centris 660AV

is 10 ms. This is a convenient value for the following reasons:

I many common sample rates have an integer number of samples in 10 ms

I the buffers are small enough to have several in the cache at the same time (only 240

samples for 24 kHz)

I a decimal—based frame time is easier to work with

I a 10 ms frame time reduces the DSP operating system overhead

The software architecture of the Macintosh Quadra 840AV and Macintosh Centris 660AV

is flexible and supports multiple frame rates up to four. The standard alternate frame

rate is 5 ms. In the Macintosh Quadra 84OAV and Macintosh Centris 660AV implemen-

tation, the frame rate can be changed only when no programs are using the DSP.

Visible Caching

The basic assumption for visible caching is that there is not enough high-speed cache

to hold all of the code the DSP must execute each frame. This difficulty is overcome

without increasing hardware costs by caching each algorithm (module) from external

memory into high-speed cache when it is needed. Because most algorithms for the

DSP consist of some set-up code and a compact set of loops that take up most of

the processing time, this method of Visible caching results in only a small fraction of the

total main processor bus bandwidth being used by the DSP.

WARNING

If you are writing a system extension that uses real-time processing, be

aware there is only a limited amount of memory available because the

system heap is not expandable. You will need to include a 'zsys' resource

in your system extension to enlarge the system heap before the system

extensions run. The amount of memory needed may be more than

required by your system extension because some of the memory may be

used by LocalTalk, EtherTalk, TokenTalk, and A / ROSE. A

The Visible caching approach works for many signal processing algorithms. The

assumption is that only a small processing loop is needed with a small amount of data

per frame, resulting in a fairly short caching time overhead. The loop is run many times

per sample and takes considerable processing time. For audio and telecommunication

Software Architecture

Page 101 of 500Page 101 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

algorithms, the ratio of processing instruction cycles to caching cycles is often in the 40:1

range. Hence, the caching overhead cost in processing power is in the 10 percent range.

This is a fairly low impact considering the cost savings from eliminating fast SRAM and

its related support circuitry. However, this processing model does not work well for

applications where these assumptions do not hold.

The signal processing algorithms, variables, and data tables are all stored in locked

contiguous memory blocks (called sections) and are loaded into cache memory either

automatically or by calls to the DSP operating system's visible caching routines. With

this approach the DSP programmer has complete control of the caching process, unlike

most hardware caches that are invisible to the programmer and to the executing
program.

Code can also be executed directly from external memory. This is useful for small code

blocks, such as set-up and control code, or blocks that contain only single instruction

loops that are cached automatically on the DSP chip. It also allows very large code blocks

to be run by the DSP, although the execution speed will be substantially lower.

Assuming support for DRAM page mode is provided in the hardware, the caching

function (block move) is likely to be three times more efficient than single accesses.

Single external accesses are used when executing from external memory or when

fetching or updating data in external memory. Even for fairly short control and set-up

code blocks it is often faster to cache them before execution. The break-even point can be

calculated based on the cache speed, single access speed, and block move speed of any

given implementation, and is often as low as 25 instructions. For information about

DRAM timing, see ”Access Timing,” in Chapter 2.

Under normal circumstances, the DSP should demand only a low percentage of the CPU

bus bandwidth. This allows graphics and other main processor functions to proceed as

rapidly as possible. However, there are DSP applications that take a significant amount

of the CPU bus time, in which case the main processor runs slower. But since much of

the Work is being done on the DSP, the total system runs faster than a computer Without
a DSP.

As explained in ”Real-Time Processing Architecture,” earlier in this chapter, here are two

visible caching execution models that are supported by the DSP operating system:

AutoCache and DemandCache. With AutoCache the programmer specifies which code

and data blocks are to be loaded and saved. The DSP operating system performs all load

and save functions automatically. In DemandCache the programmer explicitly moves

code and data blocks on and off-chip whenever needed by making the appropriate calls

to the DSP operating system from the module. Both models have advantages and

disadvantages.

The AutoCache model provides a simple easy-to-use method of visible caching for small

DSP algorithms (for example, sample rate converters, compressors and expanders,

filters, and others). I/Vhenever possible, the AutoCache model should be used, for

simplicity of operation and programming.

In the DemandCache model, caching is explicitly handled by the DSP programmer. In

the simple case, the programmer provides a single main program and one or more

cacheable functions. A cacheable function is made up of one or more code blocks. The

Software Architecture

Page 102 of 500Page 102 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

main program resides in external memory and calls the DSP operating system to cache

functions on—chip and run them. The programmer can thus select functions in any order

and can repeat functions as needed, at the cost of increased program size and complexity.

DemandCache is used for algorithms that must select different signal processing

functions depending on conditions or commands. A good example of such an algorithm

is a multimode modem program. The actual data processing program selected depends

on the kind of modem on the other end of the telephone line. The required program

would be cached explicitly by the main program.

Another way to build complex functions is by combining multiple simple modules and

using the skip function. This is described in ”Grouped Modules,” later in this chapter.

DSP and Main Processor Addressing

Rea1—time data processing is designed for systems that include a memory management

unit (MMU). However, the DSP3210 does not use an MMU to translate logical addresses

to physical addresses. As a result, the main processor uses logical addresses for all of its

memory accesses while the DSP uses physical addresses. Addresses that are used by

both the Macintosh and DSP operating systems are stored in DSPAddres s structures

that contain both the logical and physical form of the address. A diagram of the structure

is shown in Figure 3-14.

Figure 3-14 DS PAddre s s structure

DSPAddress

_>Memory location

Physical ‘T

Note

The Real Time Manager is responsible for setting up and maintaining
these DSP]-xddres s data structures. Since the DSP uses locked—down

memory, this approach allows the DSP to operate in a virtual memory

(VM) system without actually having an MMU. The local memory

addresses are translated from logical to physical form by the Real Time

Manager before the DSP chip uses them. 9

All blocks of memory indicated by a DsPAddres s data structure are by definition

locked contiguous and non-cacheable. They are locked contiguous so that the DSP does

not have to Worry about scatter/ gather operations when using a DSPAddres s data
structure. The blocks are locked non—cacheable to eliminate conflicts that would occur

when the DSP modifies a memory location that the main processor had cached.

The DSPAddress is a general type. There are also specific types, including
DSPFIFOAddress, DSPTaskAddress, DSPModuleAddress, and

DS PSectionAddres s. Each has the same data structure as a DSPAddress but

points to a specific structure.

Software Architecture

Page 103 of 500Page 103 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Containers

Each memory location that a given section may occupy is called a container. For

example, if a section can be cached on-chip from an off-chip location it has two

containers—one in main memory and one in the DSP’s on-chip memory. Containers are

fully discussed in ”Sections Defined,” later in this chapter. The DSP operating system

keeps track of the active container by means of data structure called a section table.

Primary and Secondary Pointers

Each section has a primary and a secondary pointer. There are two possible values for

these pointers, depending on whether the section uses one container or two containers.

You must be careful when examining or using these pointers when DSP code is running

because in DemandCache the DSP operating system can change the sections from

one-container to two-container when caching sections on-chip, and from two-container

to one-container when moving sections off—chip. The pointers are summarized in

Table 3-1, where X and Y are pointers to sections.

Table 3-1 Primary and secondary pointers

Primary Secondary Where applicable

n i l One-container section

Two-container section

Not applicable

Not applicable

Not applicable

The pointer to the section in the exception Vector table is always the same as the primary

pointer. This invariant is maintained by the DSP operating system during both
AutoCache and DemandCache.

One-Container Sections

Sections that have only one container have a primary address and a nil secondary

address. The primary address can point either on-chip or off—chip. Whenever the section

data is accessed by the DSP, the primary address is used.

Two-Container Sections

Sections that have two containers are slightly more complicated. There are valid

addresses in both the primary and secondary pointers. The primary pointer is where the

DSP user code will access the section. The secondary pointer is where the DSP operating

system will load the section from and save it to. Both the primary and the secondary

address may point on-chip or off—chip.

Software Architecture

Page 104 of 500Page 104 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

On-Chip and Off-Chip Addressing

Initially the application will want to find out if the addresses discussed in the previous

section point to locations that are on-chip or off—chip. The following rules apply:

I The application can tell if the address points on-chip by looking at the physical and

logical components of DSPAddres s. If the logical value is nil and the physical Value

is not nil, the address points to on-chip memory.

Pointers to off—chip memory can be recognized because the logical and physical

pointers are both not ni 1.

It is not valid to have a logical address without a physical address.

If the logical and physical components of DSPAddres s are both nil, the pointer
is ni l.

These rules are summarized in Table 3-2, where X and Y are addresses.

Table 3-2 On-chip and off—chip addresses

Physical Logical
address address Where located

X ni l On-chip

X Y Off-chip

X X Off-chip

X Not valid

Not valid

Guaranteed Processing Bandwidth

A system of measuring and controlling execution time guarantees that real-time tasks

will execute completely every frame. This system is called guaranteed processing
bandwidth (GPB).

GPB is measured in processor instruction cycles. For example, with 10 ms frames,

166,666 cycles are available for a 60 ns instruction cycle and 125,000 cycles for an 80 ns

instruction cycle. Therefore, if a processor is running 60 ns instruction cycles instead of

80 ns instruction cycles, more instruction cycles are available for a given frame time.

Each code module is assigned a GPB number during development by the DSP

programmer. This number is called the GPB estimate. It is an estimate because certain

portions of the processing time depend on bus latency and other factors that are not the

same for different machines or implementations.

When the DSP program tries to install a task in the real-time task list, its estimated GPB

requirement is compared with the remaining GPB available (calculated by subtracting

the GPB values for real-time tasks already installed from the total available GPB). If there

is enough time available, the new real-time task is installed. Otherwise, an error message

is sent back to the application attempting to do the installation.

Software Architecture

Page 105 of 500Page 105 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Each time a real-time task runs, the DSP operating system calculates the GPB actual value

for the task. This actual value is used for future calculations in determining if additional
real-time tasks can be installed. Also, this revised GPB actual value can be used to

update the modules value in the DSP Prefs file to improve the GPB estimate for the

current target machine. In this way, the estimate becomes adapted to faster or slower

hardware implementations.

Smooth and Lumpy Algorithms

The simple model described above works well for smooth DSP algorithms. A smooth

algorithm is one that always takes the same or almost the same time to execute every

frame. The "almost” comes from variations outside the control of the algorithm,

including I /0 time handled by the DSP operating system, and bus overhead, which may

vary depending on other bus traffic. There can also be minor variations within the

algorithm, but these must be kept to a small percentage if the model is to work correctly.

The other type of DSP algorithm is called a lumpy algorithm. In this case, the algorithm

uses various levels of processing for each frame This may depend on the data being

processed, the status of the function it is controlling, or other variables. A diagram

comparing the two types of algorithms is shown in Figure 3-15.

Figure 3-15 Smooth and lumpy DSP algorithms

GPB estimate

GPB estimate

Time
Smooth DSP algorithm Lumpy DSP algorithm

As you can see from the diagram, the GPB estimate for the smooth algorithm is also the

GPB actually used on a regular basis. On the other hand, the GPB estimate for the lumpy

algorithm must indicate the maximum level of processing required. To guarantee DSP

processing availability, the maximum level of processing must always be used in GPB

calculations. Thus there is often additional timeshare processing available when a lumpy

algorithm is running. The DSP programmer must indicate Whether each module is using

a smooth or lumpy algorithm.

Calculating GPB

For real-time algorithms, the actual GPB is recalculated by the DSP operating system

every frame. If the new GPB actual value is larger than the stored GPB actual value from

previous frames, the new value is stored. This is called the peak detection algorithm. It is

designed to maintain the actual maximum GPB used, including any bus or I/0
Variations. The GPB actual value starts off at zero when the real-time task is installed.

Software Architecture

