Page 67 of 500

CHAPTER 2

Hardware Details

The pin assignments for the 96-pin Euro-DIN NuBus accessory card connectors in the
NuBus interface are shown in Table 2-17.

Table 2-17 NuBus pin assignments

Pin Name Pin Name Pin Name
al -12v bl -12vV cl /RESET
a2 SBO b2 GND 2 GND
a3 /SPV b3 GND c3 +5V

a4 /SP b4 +5V c4 +5V

a5 /TM1 b5 +5V c5 /TMO
a6 /AD1 b6 +5V c6 / ADO
a7 /AD3 b7 +5V 7 /AD2
a8 / AD5 b8 /TMO02 c8 /AD4
a9 / AD7 b9 /CMO 9 / AD6
al0 / AD9 b10 /CM1 c10 /ADS8
all /AD11 b1l /CM2 cl1 /AD10
al2 /AD13 b12 GND c12 /AD12
al3 /AD15 b13 GND c13 /AD14
al4 /AD17 bl4 GND cl4 /AD16
al5 /AD19 b15 GND c15 /AD18
alé /AD21 b16 GND clé / AD20
al7 /AD23 b17 GND cl7 /AD22
al8 /AD25 b18 GND c18 /AD24
al9 / AD27 b19 GND c19 / AD26
a20 / AD29 b20 GND c20 /AD28
a2l /AD31 b21 GND 21 /AD30
a22 GND b22 GND 22 GND
a23 GND b23 GND 23 /PFW
a24 / ARB1 b24 /CLK2X c24 / ARBO
a25 /ARB3 b25 STDBYPWR' 25 /ARB2
a26 /GA1 b26 /CLK2XEN 26 /GAO
a27 /GA3 b27 /CBUSY 27 /GA2
a28 /ACK b28 +5V 28 /START

NuBus Interface

continued

41

PUMA EXHIBIT 2005
PART 2 OF 10

acaswell
Typewritten Text
PUMA EXHIBIT 2005
PART 2 OF 10

42

Page 68 of 500

CHAPTER 2

Hardware Details

Table 2-17 NuBus pin assignments (continued)

Pin Name Pin Name Pin Name
a29 +5V b29 +5V c29 +5V
a30 /RQST b30 GND c30 +5V
a3l /NMRQx b31 GND c31 GND
a32 +12V b32 +12V c32 /CLK

" Aslash before a signal name indicates that it is in the low state when active.
t Trickle +5 V supply.

The power available and maximum capacitance loading for each expansion card are
shown in Table 2-18.

Table 2-18 Power budget for each slot card

Maximum Maximum
Voltage (V) current (A) capacitance (uF)
+5 2.0 1513
+12 0.175 536
-12 0.15 698

Digital Audio/Video Expansion Connector

In the Macintosh Quadra 840Av, a digital audio/video (DAV) expansion connector is
mounted on the main circuit board in line with NuBus slot address $C (the slot nearest
the center of the computer), to let an accessory card access sound and video data directly.
In the Macintosh Centris 660Av, the DAV connector is mounted on the optional NuBus
adapter card (shown in Figure 2-13). Both models can accept a short NuBus accessory
card that accesses the DAV connector; the Macintosh Quadra 840Av can also accept a
long card.

Figure 2-14 illustrates the lower-right portion of a standard short or long NuBus card
that has a connector added to plug into the DAV connector. It shows the mechanical
relation between the DAV connector and the normal NuBus connector, with dimensions
given in inches.

The DAV connector provides access to the system’s 4:2:2 unscaled YUV video input
signal and to the digital audio signal input for the Singer codec. One use for this feature
is to provide a hardware audio or video compression capability on an accessory card,
which could write out compressed data to NuBus. The DAV connector is a 40-pin type,
model KEL 8801-40-170L. Table 2-19 gives its pin assignments.

NuBus Interface

CHAPTER 2

Hardware Details

Page 69 of 500

Figure 2-14 DAV connection on a NuBus card
12.689
- 7.000 -
— 3.800
o ° _°J
Long board Short board
+.003
-000 ol !SI §3885858¢9 - 200
7 r"m ‘7—334 w
8% 25
S »© o o
~ N
Table 2-19 DAV connector pin assignments
Pin Signal Pin Signal Pin Signal
1 Y bit 7 15 Y bit 0 29 UV bit 1
2 LLClk 16 Ground 30 NC (reserved)
3 Y bit 6 17 UV bit 7 31 UV bit 0
4 Ground 18 FEI~ 32 Ground
5 Y bit 5 19 UV bit 6 33 SingerSync
6 VS 20 Ground 34 Ground
7 Y bit 4 21 UV bit5 35 SingerSerOut
8 Ground 22 iicSDA 36 SingerBitClk
9 Y bit 3 23 UV bit 4 37 SingerSerIn
10 HRef 24 Ground 38 Ground
11 Y bit 2 25 UV bit 3 39 Ground
12 Ground 26 iicSCL 40 SingerMClk
13 Y bit 1 27 UV bit 2
14 vdcCRef 28 Ground
NuBus Interface 43

CHAPTER 2

Hardware Details

DAV Sound Interface

The Singer sound codec uses time-division multiplexing to transfer multiple audio
channels between the DAV connector, the Singer chip, and the PSC for DMA transfers to
and from RAM memory. The sound signals that appear at the DAV connector are listed
in Table 2-20. These signals have a minimum setup time of 10 ns and a minimum hold
time of 8 ns; they can tolerate a maximum load of 20 pF.

Table 2-20 DAV connector sound signals

Signal Description

singerMClk 24.576 MHz master clock

singerBitClk Bit clock that clocks serial data on singerSerOut and singerSerIn;
256 times the sample rate; also used to clock singerSync

singerSync Signal that marks the beginning of a frame and a word

singerSerOut Sound output from PSC to DAV connector

singerSerIn Sound input from DAV connector to PSC

The Singer codec transfers data in 256-bit frames, each of which contains four subframes
of 64 bits each. Each subframe carries two 32-bit audio samples, one left and one right.
Each sample contains 20 data bits and 12 auxiliary bits. Subframe 1 is reserved for the
Macintosh system sound I/O; the other subframes are available for applications and
accessory cards to use. The Singer frame structure is shown in Figure 2-15

Figure 2-15 Singer sound frame

44

Page 70 of 500

256 bits
\
()
Subframe 1 Subframe 2 Subframe 3 Subframe 4
Frame Word syncs

sync

Left channel (20) bits | (aux. 12 bits) | Right channel (20 bits) | (aux. 12 bits)

NuBus Interface

CHAPTER 2

Hardware Details

The signals singerSync, singerSerOut, and singerSerIn are clocked by the singerBitClk
signal. The falling edge of the clock is used to clock the signals, and the rising edge is
used to sample them. As shown in Figure 2-16, a frame sync is marked by a pulse two
singerBitClk cycles wide; a word sync is marked by a pulse one singerSync cycle wide.

Figure 2-16 Sound frame and word synchronization

256 1 2 3

singerBitClk
singerSync N
T(

| |

Frame Word
sync sync

The singerSync synchronization signals for each subframe are shown in Figure 2-17.

Figure 2-17 Sound subframe synchronization

Frame = 256 singerBitClk cycles
\

\
Subframe 1 Subframe 2 Subframe 3 Subframe 4
64 bits 64 bits 64 bits 64 bits
\ \ \ \
(A e s)
singerSync [[[[[[[
Frame Word syncs
sync
DAV Video Interface
At the DAV connector, the digital video signal data format conforms to CCIR
Specification 601 and is compatible with most video compression chips. In the DAV
interface, video lines are defined by the HRef signal; it goes high during the image
transmission and low during the blanking interval. The DAV video signal timing
relations are shown in Figure 2-18.
NuBus Interface 45

Page 71 of 500

CHAPTER 2

Hardware Details

Figure 2-18 DAV video timing

Start of a video line

conLLClk

vecref [[T [L[L[LT L[[_]
HRef J
Y 7:0 0 X X1 X X2 XX X v X X ya X X s X

g¢

uv 7.0

0 X X0 X X2 X X vz X X X X X

—m= Y and UV data valid on the rising edge of conLLClk
when HRef and CRef are high

End of a video line

e T v
wecRef | [[L[L[L[L[1]
HRef |
Y70
v 70

Processor-Direct Cards for the Macintosh Centris 660AV

The Macintosh Centris 660AV (but not the Macintosh Quadra 840Av) can accept an
accessory card that plugs directly into the main circuit board instead of into the adapter
card shown in Figure 2-13. An accessory card plugged into the main circuit board can
gain access to the processor as well as to the DAV bus. The resulting processor-direct slot
(PDS) capability is similar to that of the Macintosh Centris 610 computer, described in
the Macintosh Centris 610 Developer Note.

The Macintosh Centris 610 computer uses an AMP type 650231-5 connector for PDS
cards; the Macintosh Centris 660AV uses an AMP type 650231-3 connector. Because
the corresponding pins are aligned, it is possible to design PDS cards that work on
both models.

46 Processor-Direct Cards for the Macintosh Centris 660AV

Page 72 of 500

Page 73 of 500

CHAPTER 2

Hardware Details

The Macintosh Centris 660Av PDS Connector

The pin assignments for the Macintosh Centris 660AV PDS connector are given in

Table 2-21. Pin numbers preceded by an asterisk have signals that are different from
those in the Macintosh Centris 610. Pin numbers preceded by a minus sign are not used
by the Macintosh Centris 660AV.

Table 2-21 Macintosh Centris 660AvV PDS connector pin assignments

Pin number Signal name Pin number Signal name
1 GND 26 +5V
2 A1) 27 D(19)
3 A3) 28 D(17)
4 A(4) 29 GND
5 A(6) 30 D(14)
6 A7) 31 D(13)
7 A(9) 32 D(11)
8 A(11) 33 D(9)
9 A(13) 34 D(8)
10 A(15) 35 D(6)
11 GND 36 D(4)
12 A(18) 37 +5V
13 A(19) 38 D(1)
14 A(21) 39 GND
15 A(23) 40 SIZE(1)
16 A(24) 41 RW
17 A(26) —42 /TIP.CPU"
18 A(29) *43 GND*
19 A(31) 44 /TEA
20 D(31) *45 /NC
21 D(29) *46 GND
22 D(27) 47 /TRST
23 D(25) —48 /CLOUT
24 D(24) 49 GND
25 D(22) *50 NC
continued
Processor-Direct Cards for the Macintosh Centris 660AV 47

CHAPTER 2

Hardware Details

Table 2-21 Macintosh Centris 660AvV PDS connector pin assignments (continued)

Pin number Signal name Pin number
=51 /BR.40SLOT 82
52 /BB 83
53 /LOCK 84
54 /MEM.RESET 85
55 /CPURESETOUT 86
56 +5V 87
*57 040INPROGRESS 88
58 /NMRQ(6) 89
59 GND 90
60 /IPL(0) 91
61 /TPL(1) 92
62 /TPL(2) 93
63 -12V 94
64 GND 95
*65 NC 96
*66 NC 97
*67 /NMRQ(5) 98
*68 /NMRQ(4) 99
*69 /040LOCKE 100
70 +5V 101
71 AUX.CPUCLK 102
72 A(0) 103
73 AQ2) 104
74 +5V 105
75 A(B) 106
76 GND 107
77 A(8) 108
78 A(10) 109
79 A(12) 110
80 A(14) 111
81 A(16) *112
48 Processor-Direct Cards for the Macintosh Centris 660AV

Page 74 of 500

Signal name
A(17)
+5V
A(20)
A(22)
GND
A(25)
A(27)
A(28)
A(30)
D(30)
D(28)
D(26)
GND
D(23)
D(21)
D(20)
D(18)
D(16)
D(15)
+5V
D(12)
D(10)
GND
D(7)
D(5)
D(3)
D(2)
D(0)
SIZE(0)
+5V
+5V

continued

Page 75 of 500

CHAPTER 2

Hardware Details

Table 2-21 Macintosh Centris 660Av PDS connector pin assignments (continued)

Pin number Signal name Pin number Signal name
113 / TA 127 /SYS.RESET
114 GND -128 TM(0)

115 /TS -129 TM(1)

*116 GND -130 TM(2)

*117 +5V 131 +5V

*118 +5V *132 NC

-119 /BG.40SLOT 133 +12V
120 /BG.CPU 134 GND
121 +5V 135 BS.CLK
122 TT(0) 136 /BS.MODE
123 TT(1) *137 MUNI/RQ
124 GND *138 NC

-125 TLN(0) 139 reserved

-126 TLN(1) 140 +5V

" Aslash before a signal name indicates that it is in the low state when active.
¥ GND on pin 43 identifies the Macintosh Centris 660AV; on the Macintosh Centris 610 pin 43 is
not connected.

Most of the signals listed in Table 2-21 are connected directly to the computer’s
processor. Table 3-22 lists the PDS signals that are connected to the computer’s processor
but that should not be connected to a processor on a PDS card. Table 3-23 lists the PDS
signals that are not directly connected to the computer’s processor.

Table 3-22 Restricted microprocessor signals on the PDS connector

Signal name Direction Function

/IPL(0-2) I Interrupt priority lines from the PSC; not to be used as
wire-OR lines; can be monitored by a PDS card

/TIP.CPU I From the MC68040 on the main circuit board; not

connected to any other part of the computer

I indicates input to the PDS card.

Observe the following additional cautions when designing PDS cards for the Macintosh
Centris 660AV:

Processor-Direct Cards for the Macintosh Centris 660AV 49

CHAPTER 2

Hardware Details

Table 3-23 Nonmicroprocessor signals on the PDS connector

Signal name Direction Function

*

/SYS.RESET I/0 Enables PDS to drive system reset signal; used only
for testing

AUX.CPU.CLK I Buffered version of main processor’s bus clock (BClk)
/BG.CPU @) Bus grant for main processor
/BG.40SLOT | Bus grant for PDS card
/BR.40SLOT O Bus request for PDS card
/MEM.RESET I Fast reset generated for memory controller IC
/MLSLOT @) Memory inhibit from PDS card to memory
controller IC
/NMRQ(6) O NuBus slot $E interrupt; also connected to

NuBus slot $E

* Tindicates input to the PDS card; O indicates output from the PDS card.

m Most signals on the PDS connector are connected directly to the main processor
with no buffers. Therefore, the PDS card must present capacitive loads of not more
than 40 pF on the address, data, and clock lines and not more than 20 pF on the
control lines.

m The AUX.CPUCLK line (pin 71) is terminated with a series resistor. To reduce
reflections on this line, all loads on the card should be lumped.

m /DLE (pin 45) is not connected because DLE-type read actions are not supported by
some Macintosh Centris 660AV bus masters.

m The Macintosh Centris 660AV does not support snooping; pins 46 and 116 are
grounded.

m /BR.CPU (pin 50) is not connected because the Macintosh Centris 660AV system bus
arbiter always grants bus control to the microprocessor when there are no other
high-priority bus requests.

m The Macintosh Centris 660AV does not support /BG.40SLOT (pin 119) and /
BR.40SLOT (pin 51) because it does not support using an accessory card as a bus
master in addition to the existing bus masters (the processor, the DSP, the PSC, and
the MUNI).

m /TBI (pin 112) is connected to +5 V because the TBI signal is not allowed by some
bus masters.

m /PDS.SLOT.E.EN (pin 132) is not connected because the MUNI is programmed to
decode or ignore individual slots.

The 040INPROGRESS signal (pin 57) is high when the main processor is the bus master.
When this signal is low, a different bus master can use the alternate burst write timing
protocol described in the next section.

50 Processor-Direct Cards for the Macintosh Centris 660AV

Page 76 of 500

CHAPTER 2

Hardware Details

Processor Bus Burst Write Timing

The Macintosh Centris 660AV computer’s processor bus supports two different timing
protocols for burst write actions. When pin 57 of the PDS connector is high, the main
processor is bus master and burst write actions must use the timing shown in the

top half of Figure 2-19. When pin 57 of the PDS connector is low, an alternate bus
master may perform burst write actions using the timing shown in the bottom half

of Figure 2-19.

Figure 2-19 Burst write timing

Motorola 68040 burst write timing

BCLK

RW _|_/,)

S1Z[1:0] (burst) /

TA \‘
D[31:0]

_\L‘

Valid

_\L‘

Valid

Cyclone alternate bus master burst write timing

BCLK

. #)

S1Z[1:0] (burst)

/ /
TA \‘ |_| \‘ |]
D[31:0] Valid Valid Valid Valid

Processor-Direct Cards for the Macintosh Centris 660AV 51

Page 77 of 500

CHAPTER 2

Hardware Details

RAM Expansion Cards

The user can expand RAM capacity by inserting 72-pin SIMM cards in RAM expansion
slots. Table 3-24 shows the RAM SIMM pin assignments.

Table 3-24 RAM SIMM pin assignments

Pin Name Pin Name Pin Name

1 GND 25 DQ22 49 DQ8

2 DQO 26 DQ7 50 DQ24

3 DQ16 27 DQ23 51 DQ9

4 DQ1 28 A7 52 DQ25

5 DQ17 29 NC 53 DQ10

6 DQ2 30 +5V 54 DQ26

7 DQ18 31 A8 55 DQ11

8 DQ3 32 A9 56 DQ27

9 DQI19 33 /RAS3 57 DQI2
10 +5V 34 /RAS2 58 DQ28
11 NC 35 Reserved 59 +5V
12 A0 36 Reserved 60 DQ29
13 Al 37 Reserved 61 DQ13
14 A2 38 Reserved 62 DQ30
15 A3 39 GND 63 DQ14
16 A4 40 /CASO 64 DQ31
17 A5 41 /CAS2 65 DQ15
18 Ab 42 /CAS3 66 NC
19 NC 43 /CAS1 67 Reserved
20 DQ4 44 /RASO 68 Reserved
21 DQ20 45 /RAS1 69 Reserved
22 DQ5 46 NC 70 Reserved
23 DQ21 47 WE 71 Reserved
24 DQ6 48 NC 72 GND

" Aslash before a signal name indicates that it is in the low state when active.

52 RAM Expansion Cards

Page 78 of 500

CHAPTER 2

Hardware Details

Figure 2-20 shows the mechanical dimensions of SIMM modules for expanding RAM.

Dimensions are given in millimeters, with inch equivalents in brackets.

Figure 2-20 RAM SIMM mechanical dimensions
_B-
- =1 32.0[1.26]
R 1.57 + 0.1 ~—=—10.16£0.20 MAX
[.062 + .004] [.400 + .008]
— 6.35 +0.20 3.38
' ' [.250 +.008] [-133]
(6.35) -A-
[.250] ’ ?
L 203020
[.080 + .008]
/ 10119+ 0.20
SEE DETAIL A [3.98 +.008]
35 X 1.27 [.050] =
44.45 + 0.20
[1.75 £ .008] 107.95 + 0.20
[4.25 + .008]
6.35+0.05 0.10[.004]M A B
[.250 +.002] & 0041 /
R 1.57 £0.12 =
[.062 + .005] =
35 X 1.27 [.050] = —
44.45 + 0.20 =
[1.75 + .008] —
2X @3.18 + 0.1
[.125 + .004]
—2.03 . 0.90 +017
L080] ‘ 90~ 5o
+.003
] 7 [035 - .003}
' | 254 1.100] g 127
| MIN I : —r
1 Y ;” i ? -050
Toaran >~ 7
L 0.25 4>| |<* 1.27 +£0.10 gfﬂgi7] \ Device on this
.050 + .004] g ;
[I\%?(] [side optional.
DETAIL A
ROTATED 90°CCW

RAM Expansion Cards

Page 79 of 500

+0.10
—-0.08
+.004
—-.003

L1

53

CHAPTER 2

Hardware Details

Because of signal loading limits, there may not be more than eight chips per bank of
RAM; composite SIMM cards cannot be used.

The Macintosh Quadra 840Av also accepts SIMM cards of a different configuration to
expand its VRAM, as shown in the next section.

VRAM Expansion Cards

The Macintosh Quadra 840AvV lets the user expand VRAM capacity by inserting 68-pin
SIMM cards in its two VRAM expansion slots. Figure 2-21 shows the mechanical
dimensions of SIMM modules for expanding VRAM, which are different from the RAM
cards discussed in the previous section. Dimensions are given in millimeters, with inch
equivalents in brackets.

Figure 2-21 VRAM SIMM mechanical dimensions

T T T <
~— 102.87 [4.050] 0.151006] @[A[B] —
96.11 £ 0.10 [3.784 £.004]
2X3.15[.124] —=| |[——
MIN
R 1,57 +0.05
[.062 £ .002]
635 ONg 2X 3.8 +0.05
[250] [125 £ 002]
1 } | ‘ | | 0.10[.004] W|A|B
A
o ﬂ ‘ ‘ ‘ | V ‘ ‘ ‘6} 254 [100]
[.700] 10.16 +0.08 ~—— B4 [
1,400 £ .003] & & r MIN
? *Hi‘ &
- SEE
DETAIL A
R157 —=| |~ 6.35£0.03[.250 £ .001]
1.062] 4| 01010041 @[A8
-~ .| sxseaseaces |
@ 1.27 £0.03 [050 £ .001]
=41.92 [1.650]
TOL NON-ACCUM
|~ 90.17 +0.05 [3.550 £ .002]

[] o.101004 @[A [B]

— | |~— 68X 1.04 £ 0.03
[.041 £ .001]

[€] 0101004 ©c[A EB]

Contact zone
must be free

of holes l
Card D —

edge H
0.20 [.008] —=Il=~— J
MIN 0.25[.010]
MAX
2.54[.100] MIN
DETAIL A
54 VRAM Expansion Cards

Page 80 of 500

Page 81 of 500

CHAPTER 2

Hardware Details

VRAM SIMM pin assignments are shown in Table 3-25.

Table 3-25 VRAM SIMM pin assignments

Pin Name Pin Name

1 +5V 25 DQ5

2 DSF 26 SDQ7

3 SDQO 27 SDQ6

4 SDQ1 28 NC

5 /DT-OE0 29 45V

6 DQO 30 DQ7

7 DQ1 31 DQ6

8 SDQ3 32 /CASO

9 SDQ2 33 A4
10 /WEQ 34 A5
11 /RAS 35 GND
12 /SEO 36 SC
13 DQ3 37 SDQ8
14 DQ2 38 SDQ9
15 AQ 39 /DT-OE1
16 Al 40 DQ8
17 A2 41 DQ9
18 A3 42 SDQ11
19 GND 43 SDQ10
20 GND 44 /WE1
21 SDQ4 45 /SE1
22 SDQ5 46 DQ11
23 NC 47 DQ10
24 DQ4 48 Ab

Pin
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Name
A7

A8

NC
+5V
GND
GND
SDQ12
SDQ13
NC
DQ12
DQ13
SDQ15
SDQ14
NC
NC
DQ15
DQ14
/CAS1
GND
GND

" Aslash before a signal name indicates that it is in the low state when active.

VRAM Expansion Cards

55

56

Page 82 of 500

CHAPTER 2

Hardware Details

VRAM access times in numbers of clock cycles are shown in Table 3-26. The Random
columns in Table 3-26 show the times required for random accesses; the Second columns
show the times required for immediately succeeding accesses.

Table 3-26 VRAM access times

Macintosh Quadra 840Av

Access type Random
Single write 5

Burst write 5-3-3-3
Single read 7

Burst read 7-3-3-3
VDC write 19

VRAM Expansion Cards

Second
7
7-3-3-3
7
7-3-3-3
20

Macintosh Centris 660AV

Random Second
3 4
3-2-2-2 4-2-2-2
4 4
4-2-2-2 4-2-2-2
19 20

P

ART T W O

Real-Time Data Processing

Page 83 of 500

This part of the Macintosh Quadra 8404v and Macintosh Centris 660Av Developer
Note covers the software technology of the Macintosh Quadra 840Av and
Macintosh Centris 660Av digital signal processing facilities. It contains

three chapters:

Chapter 3, “Introduction to Real-Time Data Processing,” describes the
software architecture of the real-time data processing facility in the
Macintosh Quadra 840Av and Macintosh Centris 660Av. This facility
consists of an AT&T DSP3210 chip that performs data-processing
operations for applications that contain digital signal processor (DSP) code.

Chapter 4, “Real Time Manager,” describes a new part of the Macintosh
system software that supplies all the services an application requires to use
the DSP, including loading and running DSP code and performing DSP
memory management.

Chapter 5, “DSP Operating System,” covers the DSP operating system,
contained in the DSP chip. It provides the services every DSP program
needs to work with the Macintosh Operating System.

CHAPTETR 3

Introduction to Real-Time
Data Processing

Page 84 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

This chapter describes the new real-time data processing software architecture for the
Macintosh Quadra 840Av and Macintosh Centris 660AV computers, including the
functional specifications, features, programming interface, capabilities, and performance.
For hardware information about these computers’ DSP implementation, see Chapter 2,
“Hardware Details.”

For the novice in digital signal processing, this chapter begins with an overview of the
AT&T DSP3210 digital signal processor and the architecture of real-time data processing.
It provides the basics for understanding the rest of the chapter, which provides a more
complete discussion of all the concepts and fuller architectural details.

The serious programmer of real-time data processing should read this entire chapter. You
must understand several concepts introduced in the section “Real-Time Processing
Architecture” to handle real-time programming and data flow properly.

Other parts of this book supplement this chapter. Chapter 4, “Real Time Manager,”
provides information to the Macintosh programmer and can be skipped by the DSP
programmer. Chapter 5, “DSP Operating System,” provides information to the DSP
programmer and can be skipped by the Macintosh programmer. However, for a
complete understanding of the interrelationships and dependencies between the two
types of programming anyone doing system debugging or integration should read both
chapters. For information about installing and debugging DSP programs in the
Macintosh Quadra 840Av and Macintosh Centris 660AV, see Appendix A, “DSP d
Commands for MacsBug,” Appendix B, “BugLite User’s Guide,” and Appendix C,
“Snoopy User’s Guide.”

Introduction to Digital Signal Processors

60

Page 85 of 500

Real-time data processing requires a hardware and software architecture for integrating
digital signal processing technology into the Macintosh Quadra 840Av and Macintosh
Centris 660AV computers. The architecture supports the computer’s digital signal
processor as a coprocessor that has its own operating system but is capable of accessing
the same data memory as the main processor.

Concepts of Digital Signal Processing

Digital signal processing is the manipulation and conversion of digitized data. Digitized
data are digital representations of analog signals, which may represent sounds, images,
speech, or other analog forms. To correctly process these signals it is necessary to know
at what rate they were converted (the sample rate) and the format of the digital bits used
to represent the original data. With this information the signal can be manipulated by a
conventional program using the digitized data as its input. The result can then be stored
on disk or converted back into an analog signal.

Introduction to Digital Signal Processors

Page 86 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

All such processing accomplished by a computer is called digital signal processing. The
digital signal processor supports the math routines required in a special chip designed
specifically for signal processing applications. The multiply /accumulate operation is the
basic ingredient of signal processing programs. The digital signal processor is designed
to perform this operation very rapidly.

The equivalent of digital signal processing in the analog domain is accomplished using
electronic components, such as inductors, capacitors, resistors, and transistors. The
advantage of doing the processing in the digital domain is that the functions can be very
precise, reliable, elaborate, and software-configurable. It is difficult and costly to achieve
these same goals in the analog domain.

Real-Time Processing Capability

The Macintosh Quadra 840Av and Macintosh Centris 660AV computers’ real-time
capability uses a multi-tasking coprocessor to give high-performance processing of
sound, communications, speech, and images (both graphic and video) while utilizing
the system’s low-cost dynamic random-access memory (DRAM) for primary storage

of data and code. The standard hardware is the AT&T DSP3210 and the audio and
telephone input/output (I/O) ports. The software is a custom operating system
designed to perform isochronous (real-time) and asynchronous (timeshare) algorithms.
The operating system is based on a team processing approach where the work of the total
system is carefully separated and delegated between the main processor and the digital
signal processor.

This approach has the benefit of
m greatly reducing implementation and hardware costs

m simplifying and speeding up interprocessor communications and data sharing or data
streaming

m allowing flexible dynamic load sharing between the main processor and the DSP on
selected algorithms

®m maximizing the potential to meet future needs for higher performance and multiple
CoOprocessors

m increasing the range of possible application functions the DSP can provide

The DSP software architecture supports dual threaded processing streams. Real-time
processing uses interrupt-level isochronous algorithms with guaranteed processing
bandwidth to execute real-time functions requiring precisely timed signal generation or
inputs such as sound and communications. (Guaranteed processing bandwidth is
defined in the next section.) Timeshare processing uses asynchronous algorithms that
employ the excess DSP bandwidth for functions not requiring time-correlated
processing, such as still image decompression or scientific computing.

Additionally, the architecture supports the implementation of NuBus cards to make
configurations of multiple DSPs possible.

Introduction to Digital Signal Processors 61

CHAPTER 3

Introduction to Real-Time Data Processing

Real-Time Processing Architecture

Program execution on the DSP is divided into segments of time called frames, typically
10 ms in length, as diagrammed in Figure 3-1. During each frame an attempt is made to
run all of the code that is installed on the DSP. Tasks are blocks of DSP code that are
grouped together by the programmer to perform a specific function.

Figure 3-1 Frames
Time N
' Y
Frame n —2 Frame n—1 Frame n Frame n + 1 Frame n + 2

There are two types of tasks: real-time and timeshare. During each frame all of the
real-time tasks are executed and then any remaining time in the frame is used for
executing timeshare tasks, as diagrammed in Figure 3-2. Real-time tasks are useful for
sound, modem, and video processing where there is a fixed amount of data that must be
processed during each frame; if more processing time were available it would not be
used. However, timeshare tasks use as much processing power as they can get each
frame. Image decompression is an example of a timeshare task, since it should
decompress the image as fast as possible. This means that when a faster version of the
DSP3210 is available timeshare tasks run faster but real-time tasks continue to process
the same amount of data.

Figure 3-2 Real-time and timeshare tasks

10 ms frame

Task 1

Task 2 Task 3 Task 4

 —

62

Page 87 of 500

Real-time tasks [> <] Timeshare tasks I:>

Each task is assembled out of modules, which are the functions that the DSP
programmer creates, and each module is composed of sections. This relationship is
shown in Figure 3-3.

Real-Time Processing Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-3 Task list

DSP task I:#::} DSP task > DSP task

Module

Module Module Module Module

Section

Page 88 of 500

Section| Section Section Section| Section| Section| Section

To understand the need for sections, it is necessary to understand how the memory
system of the DSP works. To keep hardware costs down, the DSP uses the same DRAM
as the main processor. Because the DSP can access memory at a much higher rate than
the RAM can provide, and must also compete with the main processor for RAM access,
some type of caching on the DSP is needed. The DSP does not have a hardware cache
like that in the 68040 main processor. It has a small amount of memory on the DSP

chip that is accessed in the same way as main RAM. It is called on-chip memory, in
contrast to main memory, which is off-chip. The lack of DSP hardware caching means
that caching must be managed by the DSP program and the DSP operating system.
This is called visible caching as opposed to the transparent operation of most main
processor caches.

To accomplish visible caching, the DSP programmer must mark which sections of the
code are loaded in on-chip memory before execution and which sections are saved
off-chip after execution. Visible caching operates in one of two modes. In AutoCache
mode, loading and saving are controlled by the DSP operating system; there is only

one set of sections on-chip during the execution of a module. In DemandCache mode,
loading and saving are controlled by the DSP program, so sections can be moved on and
off-chip during the execution of the module. Caching modes are discussed in more detail
in “Visible Caching” and “Execution Models,” later in this chapter.

To make modules slightly more general, a mechanism is provided for a single module

to work at different frame rates and sample rates. This is done by making sections
individually scalable. The DSP programmer has the option of saying which sections are
scalable and the possible sizes of the scalable sections. For example, if a reverberation
module works with both 24k Hz and 48k Hz sound at a 10 millisecond frame rate it
would have an input and an output section, both of which would be scalable to either
240 or 480 samples per frame. When the Macintosh program loads the module from disk,
it specifies the module scale of operation.

To ensure that all of the real-time tasks are executed during each frame, the DSP
programmer must specify an upper bound for the execution time of the module. If there
is enough processing power on the DSP, the task that contains this module will be
installed and executed. As long as every module’s estimate is correct, the DSP will
execute frames evenly. However, if a module’s estimate is not its upper bound, the DSP

Real-Time Processing Architecture 63

CHAPTER 3

Introduction to Real-Time Data Processing

could take more time to execute the real-time tasks than is available in a given frame.
When this frame overrun occurs the DSP operating system will find the module that
specified its incorrect upper bound, remove the task that contains this module from the
execution stream, and then resume execution. This procedure is called guaranteed
processing bandwidth (GPB).

Since a task is made up of modules which typically share data, optimization is provided
to keep the data on-chip between modules, instead of saving it off-chip in one module
and then loading it back on-chip for the next module. This is accomplished by
connecting sections from one module to another, letting the DSP operating system
decide if data saving and loading is required. Data that must be shared between tasks,
such as the sound going to the speaker, is passed between tasks in intertask buffers
(ITBs). The only logical difference between ITBs and connected sections is that the
sections are in different tasks for ITBs and in the same task for connected sections. Both
ITBs and connected sections are managed by the Macintosh programmer, as described in
“Data Buffering,” later in this chapter.

Software Model

64

Page 89 of 500

The software model for real-time data processing in the Macintosh Quadra 840Av and
Macintosh Centris 660AV computers consists of three distinct pieces:

m The host toolbox is the Real Time Manager. The Real Time Manager runs on the main
processor and is written in C for portability.

m The DSP Driver contains both main processor code and DSP code components. All
hardware-dependent functions are included in the drivers. They are written in the
68000 and DSP assembly languages for efficiency.

m The DSP toolbox is called the DSP operating system. The DSP operating system runs
on the DSP, and is written in DSP assembly language for efficiency.

Almost all routines in the Real Time Manager are reentrant and callable from interrupt
level. This is necessary, since communications between the DSP and main processor
often take the form of interrupt messages.

A major component of the model is a shared block of memory. This memory consists of
local memory as well as main memory. The local memory is either in system DRAM or
in optional card memory. It is through data structures and semaphores in this shared
memory that the main processor and DSP toolboxes communicate. A more complete
diagram of the software model is shown in Figure 3-4.

Dual Programming Model

Figure 3-4 shows the dual programming interface for real-time data processing: the
application programming interface (API) in the Real Time Manager, and the module
programming interface (MPI) in the DSP operating system. These two interfaces are
completely separate, and designed to be used by different programmers. It is not
necessary for a programmer to be both a Macintosh programmer and a DSP programmer.

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-4 Real-time data processing organization

DSP module
Host application/client
DSP Manager H DSP Operating System
%
Application programming interface Module programming interface
Client and /0 Data 110 GPB/control Caching
device services structure services services services
managers managers
Allocation managers & > Executive
[] []

| |

Shared : ;
DSP hostdriver <) | comaphores, data | <===| DSP OS driver

Interrupts Interrupts

It is usually better to have two programmers involved when programming an application
that requires DSP modules. This is because the two types of programming are very
different, and very specialized. The two programmers communicate with each other

by creating a DSP Module Specification document. This document provides a vehicle

for transferring all the information necessary to ensure a correct interface between the
main processor program and each DSP module. For more information about the data

this document should contain see “DSP Program Information for the Macintosh
Programmer,” in Chapter 5.

Real Time Manager

The Real Time Manager uses the standard trap interface to call the Macintosh Toolbox.
The set of calls accessible to an application are labeled as the application programming
interface layer in Figure 3-4.

Three major functions of the Real Time Manager support I/O services, client and device
management, and data structure management. These functions make calls on the Real
Time Manager’s allocation routines at the lowest level.

The allocation layer is responsible for DSP cache and local memory allocation, for GPB
allocation, and for I/ O resource allocation.

Software Model 65

Page 90 of 500

66

Page 91 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

DSP Operating System

The DSP operating system also has an interface layer. This layer works in a similar
fashion to the Real Time Manager: a trap mechanism is used to make calls on the DSP
operating system from the DSP module.

The DSP operating system also provides services to the DSP module: I/O services,
including FIFO management, GPB and control services, and caching operations on the
DSP. The underlying function of the DSP operating system is contained in an executive
layer, which is responsible for managing task-sequencing and frame-handling functions.

DSP Driver

The DSP Driver has two distinct components. One works exactly like a standard
Macintosh driver, and is written in 68000 code. The other component performs a similar
function for the DSP operating system. It contains all DSP code that is hardware-
dependent, as well as booting and restart code These two components are stored
together as one driver. The DSP driver also controls the I/O drivers for any serial or
parallel I/O ports included as part of the DSP system. These resources are accessed
using the Real Time Manager services.

Other Software Components

Additional system software that supports real-time data processing includes:

m A sound driver provides the interface between the Macintosh Sound Manager and the
Real Time Manager by means of a set of standard sound modules, including sound
input and output, compression, filtering, sample rate conversion, and mixing.

m A telecom driver provides the interface between the telecommunications Manager/
Communications Toolbox and the Real Time Manager, including a set of standard
telecom modules, plus modem, fax, and speech.

m Development tools include a DSP C compiler, assembler, libraries, linker, resource
generator, and include-files with macros and definitions.

m Debugging and test tools include a graphical module installer, DSP code debugger, and
MacsBug extensions.

The purpose of the various toolbox drivers is to provide access to the capability of the
DSP at the highest possible toolbox level. This allows applications that are not written
for the DSP to use it automatically when it is available. Even with this level of toolbox
support, it is clear that many applications will work better by directly accessing the DSP
using the DSP API. Such applications provide significantly more functionality or speed
when a DSP is available. However, an application that uses the DSP API either cannot
run on a platform without the DSP, or must provide alternative main processor
programming if a DSP is not available.

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

Software Layers

The basic Macintosh software model has four primary conceptual layers: the application
layer on top, the toolbox layer, the driver layer, and finally the hardware layer. The
separation of system software into toolbox and driver layers allows the separation of
hardware dependencies from the major system functions, and makes revisions in the
hardware easier to support. If this model is followed correctly, major changes in the
hardware can be made without breaking applications. For this reason, Apple encourages
developers to access functions at the highest possible toolbox layer, even if they could be
more efficient writing directly to the hardware. This separation allows Apple to improve
the hardware base without disrupting the application base. A diagram of the four-layer
Macintosh model is shown in Figure 3-5.

Figure 3-5 Four-layer Macintosh model

Page 92 of 500

Applications

J

System software

Toolbox

g

Driver

[——

Hardware

As shown in Figure 3-5, an application that accesses the Real Time Manager is
hardware-dependent. This means the application would require that a DSP coprocessor
be present in the system in order for it to operate. This is true even though the Real Time
Manager is hardware-independent. The emphasis here is on implementation. The Real
Time Manager assumes that there is a DSP available, otherwise there is no reason for

the manager to be installed. Additionally, it provides the necessary isolation from the
specific implementation details. By accessing a higher toolbox layer the application also
becomes DSP-independent and will operate across multiple Macintosh platforms.

Software Model 67

CHAPTER 3

Introduction to Real-Time Data Processing

If the original Macintosh model is combined with the DSP model, the DSP software and
hardware must be viewed as virtual hardware. This concept is illustrated in Figure 3-6.

Figure 3-6 Six-layer model

68

Page 93 of 500

Applications

{

System software

Toolbox

g

Driver

Virtual DSP hardware

DSP Manager

g

DSP Driver

g

DSP hardware

The model shown in Figure 3-6 is used for the DSP software. Notice that the driver layer
is specific for the virtual hardware. If the DSP is available, this layer must be able to
install tasks in the task list and must deal with any specific characteristics of this
machine that may affect its operation. If there are no such characteristics, then the driver
is not dependent on the machine implementation, but only on the availability of the DSP.
In either case, the driver is specific for the virtual hardware.

Figure 3-7 shows two sample toolbox/driver combinations for the Real Time Manager.

In the case of sound, there are no hardware-specific features that the Sound Driver needs
to deal with. Hence only a single-layer driver is needed. The driver is capable of working
with the DSP in any supported configuration, and does not need to deal with specific
implementation details. This results in a six-layer model.

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-7 Example of toolbox and driver layers

Page 94 of 500

Applications

Il

{ !

System software System software
Sound Toolbox Comm. Toolbox
Sound Driver Telecom Driver

! !

Virtual DSP hardware

For the communications case, the Telecom Driver deals specifically with the way that the
DSP I/ 0O subsystem is connected to the telephone line. Thus, specific bit input and
output (BIO) pins on the DSP perform functions that the Telecom Driver uses. The driver
takes control of these functions if the appropriate external hardware is present on the
telecom port. This makes the Telecom Driver hardware-specific relative to the telecom
subsystem. It is also hardware-dependent on the DSP virtual hardware.

To the extent that the same configurations are used for all CPUs and cards, the Telecom
Driver becomes universal, and seemingly hardware-independent. However, different
arrangements of telecom subsystems for different implementations of the DSP will
require a different telecom driver. Notice that a different telecom driver must be
supplied for a NuBus card and for a CPU, even if the configuration is identical. This is
because the CPU Driver can recognize a specific CPU but cannot recognize a specific
NuBus card. If the wiring of the I/ O subsystem is identical in both cases, then the only
change to the driver is the hardware recognition code.

To facilitate this, the driver layer should be divided into two separate parts: the DSP-
handling layer on top that uses Real Time Manager routines, and the hardware-specific
layer on the bottom that deals with specific hardware wiring. This allows simple
modification of the driver to support different hardware platforms. This arrangement
is shown in Figure 3-8.

Software Model 69

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-8 Seven-layer real-time model

70

Page 95 of 500

Applications

U

System software

Toolbox

g

Driver

(DSP aware)
(Hardware aware)

Virtual DSP hardware

DSP Manager

g

DSP Driver

g

DSP hardware

Hardware independent

Hardware dependent
Hardware implementation dependent

DSP implementation independent

DSP implementation dependent

The addition of this seventh “H/W driver” layer is only necessary if the driver requires
specific access to I/ O subsystems.

DSP-Aware Applications

A DSP-aware application can be designed to operate in two different ways:

m to recognize and use the DSP if it is there, for enhanced performance of specific

application functions

m to require the DSP and not run at all if no DSP is available

There are many interesting applications in both categories. It is important to realize that
the Real Time Manager’s implementation independence makes it possible to write a
DSP-aware application that will run, without change, on different DSP implementations,

Software Model

CHAPTER 3

Introduction to Real-Time Data Processing

assuming the same (instruction set compatible) DSP is used. Such an application can
make direct calls to the Real Time Manager for service. Different instruction sets can be
supported by the appropriate processing modules.

It is important to note that if a desired function is available from a high-level toolbox
then the DSP connection will be made automatically, providing enhanced performance
without the application being written for the DSP. A good example of this is any
application that plays sound. If it calls the Sound Manager then the processing will be
handed over to the DSP. However, if a sound application needs more service than the
Sound Manager provides then the application should directly access the Real Time
Manager. Depending on the application, either of these DSP-aware models could be used.

Software Architecture

Page 96 of 500

The real-time data processing software is based on a data flow model. It is important for
a real-time signal processing system to accept and process incoming samples at the
average rate that they are being produced by the input process. It is equally important
for it to create outgoing samples at the average rate that they are being consumed by the
output process.

By buffering the samples, it is possible to process groups of samples at a time rather than
single samples at a time. This approach is called frame-based processing. During each
frame the application loads the required program code, variables, and input data into a
high-speed cache on the DSP. The program code is executed from this cache, and the
resulting output data is dumped from the cache back into off-chip memory. Alternately,
the input data may already be in the cache from a previous operation, and the output
data may be kept in the cache if it is needed for following operations.

The operating software for real-time data processing works on a team processing basis.
In particular, careful attention has been paid to the division of labor between the main
processor and the DSP. The goal is to maximize the processing throughput of the DSP
while minimizing the processing requirements and bus loading of the main processor.
The operating software consists of a part of the Macintosh toolbox (the Real Time
Manager and its driver) and a DSP control program (the DSP operating system and its
driver). A block diagram of this concept is shown in Figure 3-9.

These two programs interact with one another through shared memory, interrupt
processing, and semaphores. The Real Time Manager supports application software on
the main processor, while the DSP operating system supports DSP program modules
on the DSP. Thus, there are two completely separate application program interfaces

in real-time data processing: one for the main processor program and one for the

DSP program.

Software Architecture 71

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-9 Real-time software organization

DSP module
Host application/client
A A
DSP Manager DSP Operating System
N A
Shared memory, i
DSP hostdriver | (> semaphores, dayta {———>| DSP OS Driver

Interrupts Interrupts

In most applications the DSP will need to run several different code modules or
algorithms in sequence to process blocks of data. For example, five different DSP
modules are required for a sound player to mix the following three channels of sound:

m compressed music requiring data decompression

m compressed speech requiring a subband decoder and an 8-to-24 kHz sample
rate converter

m sound effects requiring a 22.2545-to-24 kHz sample rate converter

Each module must be cached and executed in the proper order to accomplish the desired
results. See Figure 3-10 for a diagram of the data flow in this process.

Figure 3-10 Sound player example data flow

Music
FIFO

Speech
FIFO

Sound effect
FIFO

72

Page 97 of 500

> CD-XA ‘ >

Subband Speaker
|:> decoder I:> 8to 24 SRC |:> audio mixer |:> FIFO

decompressor

24 kHz

> | 22.254 to 24 SRC

A\

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

Frame Organization

Figure 3-11 shows the processing divisions that occur during a frame. Each frame begins
with the frame interrupt. If a timeshare task is running, its context is saved in external
memory. Then the list of real-time tasks is parsed and each of the active tasks are
executed in sequence. When all real-time tasks are completed, the timeshare processing
is resumed. If there was a task being executed when the frame interrupt occurred, it is
reloaded; otherwise, the list of timeshare tasks is checked. The next active task is located
using a round-robin scheduling algorithm. This selected task is then loaded and
executed. Processing continues until the next frame interrupt or until all timeshare tasks
are completed or become inactive.

Figure 3-11 Frame-based processing

10 ms frame

N ‘ AN ‘ J

) Interrupt) Timeshare
Timeshare isochronous I'I'm:jeshare asynchronous Sleep
save processing oa processing

If there are no active timeshare tasks to be done, the DSP goes into sleep mode (shuts
itself down), using the wait-for-interrupt instruction. The DSP will then be brought back
online automatically at the next frame interrupt. This provides automatic power control
for portable computers based on the DSP’s processing load. If no DSP tasks are active,
the Real Time Manager will go even further and shut down all DSP-related circuits,
including the timer, serial ports, and other related hardware.

Note

During a frame all real-time tasks are executed once and only once.
Timeshare tasks use cooperative multitasking, similar to Macintosh
applications, and are executed in sequence until all timeshare tasks
become inactive or the end of the frame is reached. &

Using the sound player example given earlier, a detailed diagram of a frame is shown in
Figure 3-12. This figure is not to scale and shows only general content.

Software Architecture 73

Page 98 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Figure 3-12 Multiple code module processing

10 ms frame

Timeshare Caching Processing Sleep
swap

L‘JK‘JKM‘JK‘JK‘JK ‘)
CD-XA Subband 8to24 22t024 Mixer Finish old Timeshare
SRC SRC timeshare
task

As Figure 3-12 shows, the five required real-time processing modules are run in
sequence. The timeshare algorithm that was running when the frame started is reloaded
and completed. One more timeshare algorithm is run, and since no more timeshare
algorithms are active in this example, the DSP goes to sleep and waits for the next
frame interrupt.

Frame Size Selection

Frame-based processing requires some latency in the data flow. In particular, the input
port must collect a full frame’s worth of samples before the DSP can process them.
Likewise, the DSP must generate a full frame’s worth of samples before the output port
can start transmitting them. This requires a latency of two frames between input and
output data. Figure 3-13 illustrates this basic concept.

Figure 3-13 Process data flow

74

Page 99 of 500

Frame n Frame n +1 Frame n + 2
Input data n Input datan + 1 Inputdatan + 2
Process datan -1 Process data n Process datan + 1

o |
Output data n — 2 Output data n -1 Output data n

There are four factors that influence the selection of the time interval of the frame.
They are:

m Size of buffer. This is proportional to the frame time interval. The longer the frame, the
more cache memory is needed for each buffer.

m Overhead reduction. This is inversely proportional to the frame time interval. The
shorter the frame, the greater percentage of DSP processing time is used in overhead.
For example, if the frame represents 240 samples then the overhead is 1/240 of the
algorithm on a sample-by-sample basis. Algorithm caching is needed only once for
every 240 samples or 0.42% compared to processing a single sample at a time.

Software Architecture

Page 100 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

m Granularity of access. During a frame the processing sequence cannot be interrupted.
Changes in process configurations must happen on frame boundaries.

m Inputfoutput latency for important algorithms. The longer the frame the higher the
latency between input to output data streams.

Buffer size and overhead reduction pull in opposite directions. Granularity of access

is dependent on the application; sound synthesis with MIDI is probably the most

demanding potential application, putting the lower limit at approximately 2 to 4 ms

per frame. Input/output latency sets the upper limit on the frame time. The most

demanding known algorithm for latency is the V.32 data protocol, which sets an upper

limit of 13 ms per frame.

The default frame time for the Macintosh Quadra 840Av and Macintosh Centris 660AV
is 10 ms. This is a convenient value for the following reasons:

m many common sample rates have an integer number of samples in 10 ms

m the buffers are small enough to have several in the cache at the same time (only 240
samples for 24 kHz)

m a decimal-based frame time is easier to work with
m a 10 ms frame time reduces the DSP operating system overhead

The software architecture of the Macintosh Quadra 840Av and Macintosh Centris 660AV
is flexible and supports multiple frame rates up to four. The standard alternate frame
rate is 5 ms. In the Macintosh Quadra 840Av and Macintosh Centris 660AV implemen-
tation, the frame rate can be changed only when no programs are using the DSP.

Visible Caching

The basic assumption for visible caching is that there is not enough high-speed cache
to hold all of the code the DSP must execute each frame. This difficulty is overcome
without increasing hardware costs by caching each algorithm (module) from external
memory into high-speed cache when it is needed. Because most algorithms for the

DSP consist of some set-up code and a compact set of loops that take up most of

the processing time, this method of visible caching results in only a small fraction of the
total main processor bus bandwidth being used by the DSP.

WARNING

If you are writing a system extension that uses real-time processing, be
aware there is only a limited amount of memory available because the
system heap is not expandable. You will need to include a 'zsys' resource
in your system extension to enlarge the system heap before the system
extensions run. The amount of memory needed may be more than

required by your system extension because some of the memory may be
used by LocalTalk, EtherTalk, TokenTalk, and A/ROSE. a

The visible caching approach works for many signal processing algorithms. The
assumption is that only a small processing loop is needed with a small amount of data
per frame, resulting in a fairly short caching time overhead. The loop is run many times
per sample and takes considerable processing time. For audio and telecommunication

Software Architecture

75

76

Page 101 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

algorithms, the ratio of processing instruction cycles to caching cycles is often in the 40:1
range. Hence, the caching overhead cost in processing power is in the 10 percent range.
This is a fairly low impact considering the cost savings from eliminating fast SRAM and
its related support circuitry. However, this processing model does not work well for
applications where these assumptions do not hold.

The signal processing algorithms, variables, and data tables are all stored in locked
contiguous memory blocks (called sections) and are loaded into cache memory either
automatically or by calls to the DSP operating system’s visible caching routines. With
this approach the DSP programmer has complete control of the caching process, unlike
most hardware caches that are invisible to the programmer and to the executing
program.

Code can also be executed directly from external memory. This is useful for small code
blocks, such as set-up and control code, or blocks that contain only single instruction
loops that are cached automatically on the DSP chip. It also allows very large code blocks
to be run by the DSP, although the execution speed will be substantially lower.

Assuming support for DRAM page mode is provided in the hardware, the caching
function (block move) is likely to be three times more efficient than single accesses.
Single external accesses are used when executing from external memory or when
fetching or updating data in external memory. Even for fairly short control and set-up
code blocks it is often faster to cache them before execution. The break-even point can be
calculated based on the cache speed, single access speed, and block move speed of any
given implementation, and is often as low as 25 instructions. For information about
DRAM timing, see “Access Timing,” in Chapter 2.

Under normal circumstances, the DSP should demand only a low percentage of the CPU
bus bandwidth. This allows graphics and other main processor functions to proceed as
rapidly as possible. However, there are DSP applications that take a significant amount
of the CPU bus time, in which case the main processor runs slower. But since much of
the work is being done on the DSF, the total system runs faster than a computer without
a DSP.

As explained in “Real-Time Processing Architecture,” earlier in this chapter, here are two
visible caching execution models that are supported by the DSP operating system:
AutoCache and DemandCache. With AutoCache the programmer specifies which code
and data blocks are to be loaded and saved. The DSP operating system performs all load
and save functions automatically. In DemandCache the programmer explicitly moves
code and data blocks on and off-chip whenever needed by making the appropriate calls
to the DSP operating system from the module. Both models have advantages and
disadvantages.

The AutoCache model provides a simple easy-to-use method of visible caching for small
DSP algorithms (for example, sample rate converters, compressors and expanders,
filters, and others). Whenever possible, the AutoCache model should be used, for
simplicity of operation and programming.

In the DemandCache model, caching is explicitly handled by the DSP programmer. In
the simple case, the programmer provides a single main program and one or more
cacheable functions. A cacheable function is made up of one or more code blocks. The

Software Architecture

CHAPTER 3

Introduction to Real-Time Data Processing

main program resides in external memory and calls the DSP operating system to cache
functions on-chip and run them. The programmer can thus select functions in any order
and can repeat functions as needed, at the cost of increased program size and complexity.

DemandCache is used for algorithms that must select different signal processing
functions depending on conditions or commands. A good example of such an algorithm
is a multimode modem program. The actual data processing program selected depends
on the kind of modem on the other end of the telephone line. The required program
would be cached explicitly by the main program.

Another way to build complex functions is by combining multiple simple modules and
using the skip function. This is described in “Grouped Modules,” later in this chapter.

DSP and Main Processor Addressing

Real-time data processing is designed for systems that include a memory management
unit (MMU). However, the DSP3210 does not use an MMU to translate logical addresses
to physical addresses. As a result, the main processor uses logical addresses for all of its
memory accesses while the DSP uses physical addresses. Addresses that are used by
both the Macintosh and DSP operating systems are stored in DSPAddress structures
that contain both the logical and physical form of the address. A diagram of the structure
is shown in Figure 3-14.

Figure 3-14 DSPAddress structure

Page 102 of 500

DSPAddress

Logical

Me| 10ry locatio
J

Physical

Note

The Real Time Manager is responsible for setting up and maintaining
these DSPAddress data structures. Since the DSP uses locked-down
memory, this approach allows the DSP to operate in a virtual memory
(VM) system without actually having an MMU. The local memory
addresses are translated from logical to physical form by the Real Time
Manager before the DSP chip uses them.

All blocks of memory indicated by a DSPAddress data structure are by definition
locked contiguous and non-cacheable. They are locked contiguous so that the DSP does
not have to worry about scatter/gather operations when using a DSPAddress data
structure. The blocks are locked non-cacheable to eliminate conflicts that would occur
when the DSP modifies a memory location that the main processor had cached.

The DSPAddress is a general type. There are also specific types, including
DSPFIFOAddress, DSPTaskAddress, DSPModuleAddress, and
DSPSectionAddress. Each has the same data structure as a DSPAddress but
points to a specific structure.

Software Architecture 77

78

Page 103 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

Containers

Each memory location that a given section may occupy is called a container. For
example, if a section can be cached on-chip from an off-chip location it has two
containers—one in main memory and one in the DSP’s on-chip memory. Containers are
fully discussed in “Sections Defined,” later in this chapter. The DSP operating system
keeps track of the active container by means of data structure called a section table.

Primary and Secondary Pointers

Each section has a primary and a secondary pointer. There are two possible values for
these pointers, depending on whether the section uses one container or two containers.
You must be careful when examining or using these pointers when DSP code is running
because in DemandCache the DSP operating system can change the sections from
one-container to two-container when caching sections on-chip, and from two-container
to one-container when moving sections off-chip. The pointers are summarized in

Table 3-1, where X and Y are pointers to sections.

Table 3-1 Primary and secondary pointers

Primary Secondary Where applicable

X nil One-container section
X Y Two-container section
X X Not applicable

nil X Not applicable

nil nil Not applicable

The pointer to the section in the exception vector table is always the same as the primary
pointer. This invariant is maintained by the DSP operating system during both
AutoCache and DemandCache.

One-Container Sections

Sections that have only one container have a primary address and a nil secondary
address. The primary address can point either on-chip or off-chip. Whenever the section
data is accessed by the DSP, the primary address is used.

Two-Container Sections

Sections that have two containers are slightly more complicated. There are valid
addresses in both the primary and secondary pointers. The primary pointer is where the
DSP user code will access the section. The secondary pointer is where the DSP operating
system will load the section from and save it to. Both the primary and the secondary
address may point on-chip or off-chip.

Software Architecture

Page 104 of 500

CHAPTER 3

Introduction to Real-Time Data Processing

On-Chip and Off-Chip Addressing

Initially the application will want to find out if the addresses discussed in the previous
section point to locations that are on-chip or off-chip. The following rules apply:

m The application can tell if the address points on-chip by looking at the physical and
logical components of DSPAddress. If the logical value is nil and the physical value
is not nil, the address points to on-chip memory.

m Pointers to off-chip memory can be recognized because the logical and physical
pointers are both not nil.

m [tis not valid to have a logical address without a physical address.

m If the logical and physical components of DSPAddress are both nil, the pointer
isnil.

These rules are summarized in Table 3-2, where X and Y are addresses.

Table 3-2 On-chip and off-chip addresses

Physical Logical

address address Where located
X nil On-chip

X Y Off-chip

X X Off-chip

nil X Not valid

nil nil Not valid

Guaranteed Processing Bandwidth

A system of measuring and controlling execution time guarantees that real-time tasks
will execute completely every frame. This system is called guaranteed processing
bandwidth (GPB).

GPB is measured in processor instruction cycles. For example, with 10 ms frames,
166,666 cycles are available for a 60 ns instruction cycle and 125,000 cycles for an 80 ns
instruction cycle. Therefore, if a processor is running 60 ns instruction cycles instead of
80 ns instruction cycles, more instruction cycles are available for a given frame time.

Each code module is assigned a GPB number during development by the DSP
programmer. This number is called the GPB estimate. It is an estimate because certain
portions of the processing time depend on bus latency and other factors that are not the
same for different machines or implementations.

When the DSP program tries to install a task in the real-time task list, its estimated GPB
requirement is compared with the remaining GPB available (calculated by subtracting
the GPB values for real-time tasks already installed from the total available GPB). If there
is enough time available, the new real-time task is installed. Otherwise, an error message
is sent back to the application attempting to do the installation.

Software Architecture 79

CHAPTER 3

Introduction to Real-Time Data Processing

Each time a real-time task runs, the DSP operating system calculates the GPB actual value
for the task. This actual value is used for future calculations in determining if additional
real-time tasks can be installed. Also, this revised GPB actual value can be used to
update the modules value in the DSP Prefs file to improve the GPB estimate for the
current target machine. In this way, the estimate becomes adapted to faster or slower
hardware implementations.

Smooth and Lumpy Algorithms

The simple model described above works well for smooth DSP algorithms. A smooth
algorithm is one that always takes the same or almost the same time to execute every
frame. The “almost” comes from variations outside the control of the algorithm,
including I/O time handled by the DSP operating system, and bus overhead, which may
vary depending on other bus traffic. There can also be minor variations within the
algorithm, but these must be kept to a small percentage if the model is to work correctly.

The other type of DSP algorithm is called a lumpy algorithm. In this case, the algorithm
uses various levels of processing for each frame This may depend on the data being
processed, the status of the function it is controlling, or other variables. A diagram
comparing the two types of algorithms is shown in Figure 3-15.

Figure 3-15 Smooth and lumpy DSP algorithms

80

Page 105 of 500

GPB estimate

| T F

GPB estimate

m m
o o
? > ? >
. Time i Time
Smooth DSP algorithm Lumpy DSP algorithm

As you can see from the diagram, the GPB estimate for the smooth algorithm is also the
GPB actually used on a regular basis. On the other hand, the GPB estimate for the lumpy
algorithm must indicate the maximum level of processing required. To guarantee DSP
processing availability, the maximum level of processing must always be used in GPB
calculations. Thus there is often additional timeshare processing available when a lumpy
algorithm is running. The DSP programmer must indicate whether each module is using
a smooth or lumpy algorithm.

Calculating GPB

For real-time algorithms, the actual GPB is recalculated by the DSP operating system
every frame. If the new GPB actual value is larger than the stored GPB actual value from
previous frames, the new value is stored. This is called the peak detection algorithm. It is
designed to maintain the actual maximum GPB used, including any bus or I/O
variations. The GPB actual value starts off at zero when the real-time task is installed.

Software Architecture

