
251

Chapter 13

Leased F1'1eC1ass1'fier

A dynamically extensible version of a file classifier will have methods to add and
remove MIME mappings:

package common;

import java.io.Serializable;

/>|<*

* LeaseFileClassifier.java
*/

import net.jini.core.1ease.Lease;

public interface LeaseFileClassifier extends Serializable {

public MIMEType getMIMEType(String fileName)

throws java.Imi.RemoteException;

Add the MIME type for the given suffix.

The suffix does not contain '.' e.g. "gif”.

@exception net.jini.core.lease.LeaseDeniedException

a previous MIME type for that suffix exists.

This type is removed on expiration or cancellation
of the lease.

*/

public Lease addType(String suffix, MIMEType type)
throws java.Imi.RemoteException,

net.jini.core.lease.LeaseDeniedException;

/*>l<

* Remove the MIME type for the suffix.

*/

public void removeType(String suffix)

throws java.rmi.RemoteException;

} // LeaseFileClasssifier

The addType() method returns a lease. We shall use the landlord leasing system

discussed in Chapter 7. The client and the service will be in different]avaVMs, prob-

ably on different machines. Figure 13-5 gives the object structure on the service side.

252

This should be compared to Figure 7-3 where we considered the “foo” implementa-

1 Fileclassifier
Server

tion of landlord leasing.

Fileclassifier
Leasedfiesource

Figure 13-5. Class diagram for leasing on the server

On the client side, the lease object will be a copy of the lease created on the

server (normally RM1 semantics), but the other objects from the service will be

stubs that call into the real objects on the service. This is shown in Figure 13-6.

Fileclassifier

|mpl_Stub
TestFile

ClassifierLease 7 7

Fileclassifier
Land|ord_Stub

Figure 13-6. Class diagram for leasing on the client

More Complex Examples

253

CWapwr13

The FileClassifierLeasedResource Class

The FileclassifierLeasedResource class acts as a wrapper around the actual

resource, adding cookie and time expiration fields around the resource. It adds a

unique cookie mechanism, in addition to making the wrapped resource visible.

/>i<*

* FileClassifierLeasedResource.java
*/

package lease;

import common.LeaseFileClassifier;

import com.sun.jini.lease.landlord.LeasedResource;

public class FileClassifierLeasedResource implements LeasedResource {

static protected int cookie = 0;

protected int thisCookie;

protected LeaseFileClassifier fi1eClassifier;

protected long expiration = 0;

protected String suffix = null;

public FileClassifierLeasedResource(LeaseFileClassifier fileclassifier;

String suffix) {

this.fileClassifier = fileClassifier;

this.suffix = suffix;

thiscookie = cookie++;

public void setExpiration(long newExpiIation) {

this.expiration = newExpiration;
}

public long getExpiration() {

return expiration;

}

public Object getCookie() {

return new Integer(thisCookie);

public LeaseFileClassifier getFileClassifier() {

return fileclassifier;

254

public String getSuffix() {

return suffix;

}

} // FileClassifierLeasedResource

The Fi1eClassifierLeaseManager Class

The FileClassifierLeaseManager class is Very similar to the code given for the

FooLeaseManager in Chapter 7:

/*>i<

* FileClassifierLeaseManager.java
*/

package lease;

import java.util.*;

import common.LeaseFileClassifier;

import net.jini.core.lease.Lease;

import com.sun.jini.lease.landlord.LeaseManager;

import com.sun.jini.lease.landlord.LeasedResource;

import com.sun.jini.1ease.landlord.LeaseDurationPolicy;

import com.sun.jini.lease.landlord.Landlord;

import com.sun.jini.1ease.landlord.LandlordLease;

import com.sun.jini.lease.land1ord.LeasePolicy;

public class FileClassifierLeaseManager implements LeaseManager {

protected static long DEFAULT_TIME = 30*1000L;

protected Vector tileClassifierResources = new Vector();

protected LeaseDurationPolicy policy;

public FileClassifierLeaseManager(Landlord landlord) {

policy = new LeaseDurationPolicy(Lease.FOREVER,

DEFAULT_TIME,

landlord,

this,

new LandlordLease.Factory());

new LeaseReaper().start();

public void register(LeasedResource r, long duration) {

More Complex Examples

255

Chapter 13

tileClassitierResouIces.add(r);

}

public void renewed(LeasedResource I, long duration, long olddur) {
// no smarts in the scheduling, so do nothing

}

public void cancelAl1(Object[] cookies) {
for (int n = cookies.1ength; --n >= 0;) {

cancel(cookies[]);

public void cancel(0bject cookie) {

for (int n = fileC1assitierResources.si2e(); --n >= 0;) {
FileClassitierLeasedResource I = (FileClassitierLeasedResource)

fileClassifieIResources.elementAt(n);

if (Ipo1icy.ensureCurrent(r)) {

System.out.println("Lease expired for cookie = " +
r.getCookie());

try {

r.getFileClassitieI().removeType(r.getSuffix());

} catch(java.Imi.RemoteException e) {

e.printStackTrace();

}

fi1eClassifierResources.removeElementAt(n);

public LeasePolicy getPolicy() {
return policy;

}

public LeasedResource getResource(0bject cookie) {
for (int n = fileClassifierResources.size()3 ~-n >= 0;) {

FileClassifierLeasedResource I = (FileClassitierLeasedResource)
fileC1assifierResources.elementAt(n);

if (r.getCookie().equals(cookie)) {
return I;

}

return null;

256

More Complex Examples

class Leasekeaper extends Thread {

public void run() {

while (true) {

try {

Thread.s1eep(DEFAULT_TIME) ;

}

catch (InterruptedException e) {

}

for (int n = fileClassifierResources.size()—1; n >= 0; n—-) {

Fi1eClassifierLeasedResource r = (FileclassifierLeasedResource)

fileClassifierResources.elementAt(n)

if (Ipolicy.ensuIeCurrent(r)) {

System.out.println("Lease expired for cookie = " +

r.getCookie()) ;

try {

r.getFileClassifier().removeType(r.getSuffix())5

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

}

fileC1assifierResouIces.removeElementAt(n);

} // FileClassifierLeaseManager

The F1'leClass1'f1'erLand1ord Class

The Fi1eClassifierLandlord class is very similar to the FooLandlord in Chapter 7:

/**

* FileClassifierLandloId.java
*/

package lease;

import common.LeaseFileClassifier;

257

Chapwr13

import com.sun.jini.lease.landlord.*;

import net.jini.core.lease.LeaseDeniedException;

import net.jini.core.lease.Lease;

import java.rmi.server.UnicastRemote0bject;

import java.rmi.Remote;

public class FileClassitierLandlord extends UnicastRemoteObject implements Land-

lord, Remote {

FileClassitierLeaseManager manager = null;

public FileClassifierLandlord() throws java.rmi.RemoteException {

manager = new FileClassifierLeaseManager(this);

public void cancel(0bject cookie) {

manager.cancel(cookie);

public void cancelAll(Object[] cookies) {

manager.cancelAll(cookies);

public long renew(java.lang.Object cookie,

long extension)

throws net.jini.core.lease.LeaseDeniedException,

net.jini.core.lease.UnknownLeaseException {

LeasedResource resource = manager.getResource(cookie);

if (resource != null) {

return manager.getPolicy().renew(resource, extension);

}

return -1;

public Lease newFileClassifierLease(LeaseFileClassifier tileClassifier,

String sutfixKey, long duration)

throws LeaseDeniedException {
FileclassifierLeasedResource r = new

Fi1eClassifierLeasedResource(tileClassitier,

suffixKey);

return manager.getPolicy().leaseFor(r, duration);

public Landlord.RenewResults renewAll(java.lang.Object[] cookie,

258

More Complex Examples

long[] extension) {

return null;

}

} // FileClassifierLandloId

Summary

Iini provides a framework for building distributed applications. Nevertheless,

there is still room for variation in how services and clients are written, and some of

these are better than others. This chapter has looked at some of the variations that
can occur and how to deal with them.

259

CHAPTER 14

Remote Events

COMPONENTS OF A SYSTEM CAN CHANGE STATE and may need to inform other compo-

nents that this change has happened. Java Beans and user—interface elements such

as AWT or Swing objects use events to signal these changes. Iini also has an event

mechanism, and this chapter looks at the distributed event model that is part of

Jini. It looks at how remote event listeners are registered with objects, and how

these objects notify their listeners of changes. Event listeners may disappear, and

so the Iini event mechanism uses leases to manage listener lists.

This chapter also looks at how leases are managed by event sources. Finally,

we’ll look at how events can be used by applications to monitor when services are

registered or discarded from service locators.

Event Models

lava has a number of event models, differing in various subtle ways. All of these

involve an object (an eventsource) generating an event in response to some

change of state, either in the object itself (for example, if someone has changed a
field), or in the external environment (such as when a user moves the mouse). At

some earlier stage, a listener (or set of listeners) will have registered interest in this

event. When the event source generates an event, it will call suitable methods on

the listeners with the event as parameter. The event models all have their origin

in the Observer pattern from Design Patterns, by Eric Gamma et al., but this is mod-

ified by other pressures, such as Iava Beans.

There are low—level input events, which are generated by user actions when

they control an application with a graphical user interface. These events—of type

KeyEvent and MouseEvent—are placed in an event queue. They are removed from the

queue by a separate thread and dispatched to the relevant objects. In this case, the

object that is responsible for generating the event is not responsible for dispatching

it to listeners, and the creation and dispatch of events occurs in different threads.

Input events are a special case caused by the need to listen to user interactions

and always deal with them without losing response time. Most events are dealt

with in a simpler manner: an object maintains its own list of listeners, generates its

own events, and dispatches them directly to its listeners. In this category fall all the

semantic events generated by the AWT and Swing toolkits, such as ActionEvent,

ListSe1ectionEvent, etc. There is a large range of these event types, and they all call

260

Chapwr14

different methods in the listeners, based on the event name. For example, an

ActionEvent is used in a listener’s actionPeItormed () method of an ActionListeneI.

There are naming conventions involved in this, specified by Java Beans.

Java Beans is also the influence behind Propertychange events, which get deliv-

ered whenever a Bean changes a “bound" or “constrained” property value. These

are delivered by the event source calling the listener’s Propertychange Listener's

propeItyChange() method or the VetoableChangeListeneI’s vetoab1eChange()

method. These are usually used to signal a change in a field of an object, where this

change may be of interest to the listeners either for information or for vetoing.

Iini objects may also be interested in changes in other Iini objects, and might

like to be listeners for such changes. The networked nature of Jim has led to a

particular event model that differs slightly from the other models already in Java.

The differences are caused by several factors:

9' Network delivery is unreliable—rnessages may be lost. Synchronous methods

requiring a reply may not work here.

° Network delivery is time—dependent—messages may arrive at different

times to different listeners. As a result, the state of an object as perceived by

a listener at any time may be inconsistent with the state of that object as

perceived by others. Passing complex object state across the network may

be more complex to manage than passing simpler information.

9 A remote listener may have disappeared by the time the event occurs.
Listeners have to be allowed to time out, like services do.

Java Beans can require method names and event types that vary and can use

many classes. This requires a large number of classes to be available across

the network, which is more complex than a single class with a single method

with a single event type as parameter (the original Observer pattern used a

single class with only one method, for simplicity).

Remote Events

Unlike the large number of event classes in the AWT and Swing, for example, Iini uses

events of one type, the RemoteEvent, or a small number of subclasses of RemoteEvent.

The RemoteEvent class has these public methods (and some inherited methods):

package net.jini.core.event;

public class RemoteEvent implements java.io.Serializable {

public long getID();

public long getSequenceNumbeI();

261

public java .Imi .MaIshal1ed0bject getkegistrationobject ();

Events in Beans and AWT convey complex object state information, and this is

enough for the listeners to act with full knowledge of the changes that have caused

the event to be generated. Iini events avoid this, and conveyjust enough informa-

tion to allow state information to be found if needed. A remote event is serializable

and is moved around the network to its listeners. The listeners then have to decide

whether or not they need more detailed information than the simple information

in each remote event. If they do need more information, they will have to contact

the event source to get it.

AWT events, such as MouseEvent, contain an id field that is set to values such as

MOUSE_PRESSED or MOUSE_RELEASED. These are not seen by the AWT programmer

because the AWT event dispatch system uses the id field to choose appropriate

methods, such as mousePressed () or mouseReleased (). Iini does not make these

assumptions about event dispatch, and just gives you the identifier. Either the

source or the listener (or both) will know what this value means. For example, a file

classifier that can update its knowledge of MIME types could have message types

ADD_TYPE and REMOVE_TYPE to reflect the sort of changes it is going through.

In a synchronous system with no losses, both sides of an interaction can keep

consistent ideas of state and order of events. In a network system this is not so

easy. Iini makes no assumptions about guarantees of delivery and does not even
assume that events are delivered in order. The Jim event mechanism does not

specify how events get from producer to listener—it could be by RMI calls, but it

may be through an unreliable third party. The event source supplies a sequence

number that could be used to construct state and ordering information if needed,

and this generalizes things such as time—stamps on mouse events. For example, a

message with id of ADD_TYPE and sequence number of 10 could correspond to the

state change “added MIME type text/xml for files with suffix .xml.” Another event

with id of REMOVE_TYPE and sequence number of 11 would be taken as a later event,

even if it arrived earlier. The listener will receive the event with id and sequence

number only. Either this will be meaningful to the listener, or it will need to contact

the event source and ask for more information about that sequence number. The

event source should be able to supply state information upon request, given the

sequence number.

An idea borrowed from systems such as the Xt Intrinsics and Motif is called

handback data. This is a piece of data that is given by the listener to the event

source at the time it registers itself for events. The event source records this hand-
back and then returns it to the listener with each event. This handback can be a

reminder of listener state at the time of registration.

This can be a little difficult to understand at first. The listener is basically

saying to the event source that it wants to be told whenever something interesting

happens, but when that does happen, the listener may have forgotten why it was

Remote Events

262

CWapwr14

interested in the first place, or what it intended to do with the information. So the

listener also the gives the event source some extra information that it wants
returned as a “reminder.”

For example, a lini taxi-driver might register interest in taxi—booking events

from the base station while passing through a geographical area. It registers itself

as a listener for booking events, and as part of its registration, it could include its

current location. Then, when it receives a booking event, it is told its old location,

and it could check to see if it is still interested in events from that old location. A

more novel possibility is that one object could register a different object for events,

so your stockbroker could register you for events about stock movements, and
when you receive an event, you would also get a reminder about who registered

your interest (plus a request for commission...).

Event Registration

Iini does not say how to register listeners with objects that can generate events.

This is unlike other event models in Java that specify methods, like this

public void addActionListener(Actionlistener listener);

for ActionEvent generators. What Iini does do is to specify a convenience class as a

return value from this registration. This is the convenience class Eventkegistrat ion:

package net.jini.core.event;

import net . j ini . core . lease . Lease;

public class EventRegistIation implements java.io.Serializable {

public EventRegistration(long eventID, Object source,
Lease lease, long seqNum);

public long getID();

public Object getSouIce();

public Lease getLease();

public long getSequenceNumber();

This return object contains information that may be of value to the object that

registered a listener. Each registration will typically only be for a limited amount of

time, and this information may be returned in the Lease object. If the event regis-

tration was for a particular type, this may be returned in the id field. A sequence

number may also be given. The meaning of these values may depend on the par-

ticular system—in other words, Iini gives you a class that is optional in use, and

whose fields are not tightly specified. This gives you the freedom to choose your

own meanings to some extent.

263

This means that as the programmer of a event producer, you have to define

(and implement) methods such as these:

public EventRegistration addRemoteEventListener(RemoteEventListener listener);

There is no standard interface for this.

Listener List

Each listener for remote events must implement the RemoteEventListener
interface:

public interface RemoteEventListener

extends java.rmi.Remote, java.util.EventListener {

public void notity(RemoteEvent theEvent)

throws UnknownEventException,

java.rmi.RemoteException;

Because it extends Remote, the listener will most likely be something like an RMI

stub for a remote object, so that calling notify() will result in a call on the remote

object, with the event being passed across to it.

In event generators, there are multiple implementations for handling lists of

event listeners all the way through the Java core and extensions. There is no public

API for dealing with event—listener lists, and so the programmer has to reinvent (or

copy) code to pass events to listeners. There are basically two cases:

° Only one listener can be in the list.

- Any number of listeners can be in the list.

Single Listener

The case where there is only one listener allowed in the list can be implemented by

using a single-valued variable, as shown in Figure 14— 1.

This is the simplest case of event registration:

protected RemoteEventListener listener = null;

public Eventkegistration addRemoteListener(RemoteEventListener listener)

throws java.util.TooManyListenersException {

Remote Events

264

Chapter 1 4

listener _
RemoteEventLIstener

Figure 14-1. A single listener‘

if (this.listener == null {

this.listener = listener;

} else {

throw new java.util.TooManyListenersException();

}

return new EventRegistration(0L, this, null, OL);

This is close to the ordinary Java event registration—no really useful informa-

tion is returned that wasn’t known before. In particular, there is no lease object, so

you could probably assume that the lease is being granted ‘‘forever,’' as would be

the case with non—networked objects.

When an event occurs, the listener can be informed by the event generator

calling fireNot ify():

protected void tireNotity(long eventID,

long seqNum) {

if (listener == null) {

return;

RemoteEvent remoteEvent = new RemoteEvent(this, eventID,

seqNum, null);

listener. notify(remoteEvent);

It is easy to add a handback to this: just add another field to the object, and set

and return this object in the registration and notify methods. Far more complex is

adding a non—null lease. Firstly, the event source has to decide on a lease policy,

that is, for what periods of time it will grant leases. Then it has to implement a

timeout mechanism to discard listeners when their leases expire. And finally, it has

to handle lease renewal and cancellation requests, possibly using its lease policy

again to make decisions. The landlord package would be of use here.

265

Remote Events

Multiple Listeners

For the case where there can be any number of listeners, the convenience class

javax. swing.event . Eventtistenerlist can be used. The object delegates some of

the list handling to the convenience class, as shown in Figure 14-2.

EventGenerator

addRemoteListener()

|istenerList _v RemoteEventL|stener

Figure 14-2. Multiple listeners

A version of event registration suitable for ordinary events is as follows:

import javax.swing.event.EventListenerList;

EventListenerList listenerList = new EventListenerList();

public EventRegistration addRemoteListener(RemoteEventListener l) {

listenerList.add(RemoteListener.class, 1);

return new EventRegistration(0L, this, null, OL);

public void removeRemoteListener(RemoteEventListener l) {

listenerList.remove(RemoteListener.class, l);

// Notify all listeners that have registered interest for

// notification on this event type. The event instance

// is lazily created using the parameters passed into
// the fire method.

protected void fireNotify(long eventID,

long seqNum) {

RemoteEvent remoteEvent = null;

// Guaranteed to return a non-null array

Object[] listeners = listenerList.getListenerList();

// Process the listeners last to first, notifying
// those that are interested in this event

266

Chapmr14

for (int n = listeners.1ength — 2; n >= 0; n -= 2) {

if (listeners[n] == RemoteEventListener.class) {
RemoteEventListener listener =

(RemoteEventListener) listeners[n+1];

if (IemoteEvent == null) {

remoteEvent = new RemoteEvent(this, eventID,

seqNum, null);

}

try {

listener.notify(remoteEvent);

} catch(UnknownEventException e) {

e . pIintStackTIace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

}

In this case, a source object need only call fireNotify() to send the event to all

listeners. (You may decide that it is easier to simply use a Vector of listeners.)

It is again straightforward to add hanclbacks to this. The only tricky point is

that each listener can have its own handback, so they will need to be stored in

some kind of map (say a HashMap) keyed on the listener. Then, before not ify() is
called for each listener, the handback will need to be retrieved for the listener and

a new remote event created with that handback.

Listener Source

The ordinary Java event model has all objects in a single address space, so that

registration of event listeners and notifying these listeners all takes place using

objects in the one space. We have already seen that this is not the case with Jim.

Jim is a networked federation of objects, and in many cases one is dealing with

proxy objects, not the real objects.
This is the same with remote events, except that in this case we often have the

direction of proxies reversed. To see what I mean by this, consider what happens if

a client wants to monitor any changes in the service. The client will already have a

proxy object for the service, and it will use this proxy to register itself as a listener.

However, the service proxy will most likely just hand this listener back off to the

service itself (that is what proxies, such as RMI proxies, do). So we need to get a

proxy for the client over to the service.

267

Consider the file classification problems we looked at in earlier chapters. The

file classifier had a hard—coded set of filename extensions built in. However, it

would be possible to extend these, if applications come along that know how to

define (and maybe handle) such extensions. For example, an application would

locate the file classification server, and using an exported method from the file

classification interface would add the new MIME type and file extension. This is

no departure from any standard Java or earlier Iini stuff. It only affects the imple-

mentation level of the file classifier, changing it from a static list of filename

extensions to a more dynamic one.

What it does affect is the poor application that has been blocked (and is prob—

ably sleeping) on an unknown filename extension.When the classifier installs a

new file type, it can send an event saying so. The blocked application could then

try again to see if the extension is now known. If so, it uses it, and if not, it blocks

again. Note that we don’t bother with identifying the actual state change, since it is

just as easy to make another query once you know that the state has changed.

More complex situations may require more information to be maintained. How-

ever, in order to get to this situation, the application must have registered its

interest in events, and the event producer must be able to find the listener.

How this gets resolved is for the client to first find the service in the same way

as we discussed in Chapter 6. The client ends up with a proxy object for the service

in the client's address space. One of the methods on the proxy will add an event lis-

tener, and this method will be called by the client.

For simplicity, assume that the client is being added as a listener to the service.

The client will call the add listener method of the proxy, with the client as parame—

ter. The proxy will then call the real object's add listener method, back on its server

side. But in doing this, we have made a remote call across the network, and the cli~

ent, which was local to the call on the proxy, is now remote to the real object, so

what the real object is getting is a proxy to the client. When the service makes noti-

fication calls to the proxy listeners, the client’s proxy can make a remote call back

to the client itself. These proxies are shown in Figure 14-3.

Client Service

Service

proxy

Figure 14—3. Proxies for services and listeners

Remote Events

268

Chapter 1 4

File Classifier with Events

Let’s make this discussion more concrete by looking at a new file classifier applica-

tion that can have its set of mappings dynamically updated.

The first thing to be modified is the FileC1assifier interface. This needs to be

extended to a MutableFileClassifier interface, known to all objects. This new

interface adds methods that will add and remove types, and that will also register

listeners for events. The event types are labeled with two constants. The listener

model is simple, and does not include handbacks or leases. The sequence identifier

must be increasing, so we just add 1 on each event generation, although we don’t

really need it here: it is easy for a listener to just make MIME type queries again.

package common;

import java.io.Serializable;

/*>i<

* MutableFi1eClassifier .java
*/

import net . j ini . core . event . RemoteEventListener;

import net.jini.coIe.event.EventRegistration;

public interface MutableFileClassifier extends FileClassifier {

static final public long ADD_TYPE = 1;

static final public long REMOVE_TYPE = 2;

/*

* Add the MIME type for the given suffix.

* The suffix does not contain '.' e.g. "gif".

* Overrides any previous MIME type for that suffix
*/

public void addType(String suffix, MIMEType type)

throws java.rmi.RemoteException;

/*

* Delete the MIME type for the given suffix.

* The suffix does not contain '.' e.g. "gif".

* Does nothing if the suffix is not known
*/

public void removeMIMEType(String suffix, MIMEType type)

throws java.rmi.RemoteException;

269

public EventRegistration addRemoteListener(RemoteEventListener listener)

throws java.rmi.RemoteException;

} // MutableFi1eClasssifier

The RemoteFi1eC1ass:'n‘ie:r interface is known only to services, and it just

changes its package and inheritance for any service implementation:

package mutable;

import common.MutableFileClassifier;

import java.Imi.Remote;

/*>l<

* RemoteFi1eC1assifier.java
*/

public interface RemoteFi1eClassifieI extends MutableFileClassifier, Remote {

} // RemoteFileC1asssifier

Previous implementations of file classifier services (such as in Chapter 8) use a

static list of if. . .then statements because they deal with a fixed set of types. For

this implementation, where the set of mappings can change, we change the imple-

mentation to a dynamic map keyed on file suffixes. It manages the event listener

list for multiple listeners in the simple way discussed earlier in this chapter, and it

generates events whenever a new suffix/ type is added or successfully removed.

The following code is an implementation of the file classifier service with this

alternative implementation and an event list:

package mutable;

import java.rmi.server.UnicastRemoteObject;

import java.Imi.MarshalledObject;

import net.jini.coIe.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.EventRegistration;

import java.rmi.RemoteException;

import net.jini.core.event.UnknownEventException ;

import javax.swing.event.EventListenerList;

import common.MIMEType;

Remote E1/en ts

270

Chapmr14

import common.MutableFileClassifier;

import java.util.Map;

import java.util.HashMap;

/>i<*

* FileClassifierImpl.java
*/

public class FileClassifieIImp1 extends Unicastkemoteobject

implements RemoteFileClassifier {

/**

* Map of String extensions to MIME types
*/

protected Map map = new HashMap();

/*>k

* Listeners for change events
*/

protected EventListenerList listenerList = new EventListenerList();

protected long seqNum = 0L;

public MIMEType getMIMEType(String fileName)

throws java.rmi.RemoteException {

System.out.println(”Called with " + fileName);

MIMEType type;

String fileExtension;

int dotIndex = fileName.lastIndexOf(‘.‘);

if (dotIndex == -1 || dotIndex + 1 == fileName.length()) {
// can't find suitable suffix

return null;

fileExtension= fileName.substring(dotIndex + 1);

type = (MIMEType) map.get(fileExtension);

return type;

public void addType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

271

Remote Events

map.put(suffix; type);

fireNotify(ADD_TYPE);

}

public void removeMIMEType(String suffix, MIMEType type)
throws java.rmi.RemoteException {

if (map.remove(suffix) != null) {

fireNotify(REMOVE_TYPE);

}

public Eventkegistration addRemoteListener(RemoteEventListener listener)
throws java.rmi.RemoteException {

listenerList.add(RemoteEventListener.class, listener);

return new EventRegistration(0, this, null, 0);

// Notify all listeners that have registered interest for

// notification on this event type. The event instance

// is lazily created using the parameters passed into
// the fire method.

protected void fireNotify(long eventID) {
RemoteEvent remoteEvent = null;

// Guaranteed to return a non—null array

0bject[] listeners = listenerList.getListenerList();

// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2; i >= 0; i -= 2) {

if (listeners[i] == RemoteEventListener.class) {

RemoteEventListener listener = (RemoteEventListener) listeners[i+1];

if (remoteEvent == null) {

remoteEvent = new RemoteEvent(this, eventID,

seqNum++, null);

}

try {

listener.notify(remoteEvent);

} catch(UnknownEventException e) {

e.printStackTrace();

} catch(RemoteException e) {

e.printStackTrace();

272

Chapwr14

}

public FileClassifierImpl() throws java.rmi.RemoteException {

// load a predefined set of MIME type mappings

map.put(”gif", new MIMEType("image“, "gif”));

map.put("jpeg", new MIMEType("image", ”jpeg"));

map.put(”mpg", new MIMEType("video", "mpeg"));

map.put("txt", new MIMEType(”text", "plain"));

map.put(”html", new MIMEType(“text", "html"));

}

} // FileClassifierImpl

The proxy changes its inheritance, and as a result has more methods to imple-

ment, which it just delegates to its server object. The following class is for the proxy:

package mutable;

import common.MutableFileClassifier;

import common.MIMEType;

import java.io.Serializable;

import java.io.IOException;

import java.rmi.Naming;

import net.jini.core.event.EventRegistration;

import net.jini.core.event.RemoteEventListener;

/>l<*

* FileClassifierProxy
*/

public class FileClassifierProxy implements MutableFileClassifier, Serializable {

RemoteFileClassifier server = null;

public FileClassifierProxy(FileC1assifieIImpl serv) {
this.server = serv;

if (serv==nul1) System.err.println("server is null”);

public MIMEType getMIMEType(String fileName)

273

Remote E1/en ts

throws java.rmi.RemoteException {

return server.getMIMEType(tileName);

public void addType(String suffix, MIMEType type)
throws java.rmi.RemoteException {

server.addType(suftix, type);

public void removeMIMEType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

server. removeMIMEType(suftix, type);

public Eventkegistration addRemoteListener(RemoteEventListener listener)

throws java.rmi.RemoteException {

return server.addRemoteListener(listener);

} // FileClassi'FierProxy

Monitoring Changes in Services

Services will start and stop. When they start, they will inform the lookup services,

and sometime after they stop, they will be removed from the lookup services. How-

ever, there are a lot of times when other services or clients will want to know when

services start or are removed. For example, an editor may want to know if a disk

service has started so that it can save its file; a graphics display program may want

to know when printer services start up; the user interface for a camera may want

to track changes in disk and printer services so that it can update the Save and
Print buttons.

A service registrar acts as a generator of ServiceEvent type events, which sub-

class from RemoteEvent. These events are generated in response to changes in the

state of services that match (or fail to match) a template pattern for services. This

event type has three categories from the ServiceEvent . getTransition() method:

° TRANSITION_NOMATCH_MATCH: A service has changed state so that whereas it

previously did not match the template, now it does, In particular, if it didn't

exist before, now it does. This transition type can be used to spot new ser—

vices starting or to spot wanted changes in the attributes of an existing

registered service; for example, an offline printer can change attributes to

being online, which now makes it a useful service.

274

Chapmr14

0 TRANSITION_MATCH_NOMATCH: A service has changed state so that whereas it

previously did match the template, now it doesn’t. This can be used to detect

when services are removed from a lookup service. This transition can also be

used to spot changes in the attributes of an existing registered service that

are not wanted; for example, an online printer can change attributes to

being offline.

TRANSITION_MATCH_MATCH: A service has changed state, but it matched both

before and after. This typically happens when an Entry value changes, and it

is used to monitor changes of state, such as a printer running out of paper,

or a piece of hardware signaling that it is due for maintenance work.

A client that wants to monitor changes of services on a lookup service must

first create a template for the types of services it is interested in. A client that wants

to monitor all changes could prepare a template such as this:

ServiceTemplate templ new ServiceTemplate(null, null, null); // or

ServiceTemplate templ new ServiceTemplate(null, new Class[] {}, new Entry[] {});
// or

ServiceTemplate templ new ServiceTemp1ate(null, new Class[] {0bject.class},

null);

It then sets up a transition mask as a bit—wise OR of the three service transi-

tions, and then calls notify() on the ServiceRegistrar object. The following is a

program to monitor all changes.

/**

* Registrar0bserver.java
*/

package observer;

import net.jini.core.event.RemoteEventListener;

inport net.jini.coIe.event.RemoteEvent;

import net.jini.core.lookup.SeIviceEvent;

import net.jini.core.lookup.ServiceRegistIar;

inport net.jini.core.lease.Lease;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.coIe.1ookup.SeIviceID;

inport net.jini.core.event.EventRegistration;

// import com.sun.jini.lease.LeaseRenewa1Manager; // Jini 1.0

inport net.jini.lease.LeaseRenewalManageI; // Jini 1.1

inport net.jini.coIe.1ookup.ServiceMatches;

import java .rmi . RemoteException;

275

Remote Even ts

import java.rmi.server.UnicastRemote0bject;

import net.jini.core.entry.Entry;

import net.jini.core.event.UnknownEventException;

public class Registrarobserver extends Unicastkemoteobject implements
RemoteEventListener {

protected static LeaseRenewalManager leaseManager = new LeaseRenewalManager();

protected Servicekegistrar registrar;

protected final int transitions = ServiceRegistrar.TRANSITION_MATCH_NOMATCH I
ServiceRegistrar.TRANSITION_NOMATCH_MATCH I

ServiceRegistrar.TRANSITION_MATCH_MATCH;

public RegistrarObserver() throws RemoteException {

}

public Registrarobserver(ServiceRegistrar registrar) throws RemoteException {

this.registrar = registrar;

ServiceTemplate templ = new ServiceTemplate(nul1, null, null);

Eventkegistration reg = null;

try {

// eventcatcher = new MyEventListener();

reg = registrar.notify(temp1,

transitions,

this,

null,

Lease.ANY);

System.out.println("notified id " + reg.getID());

} catch(RemoteException e) {

e.printStackTrace();

}

leaseManager.renewUnti1(reg.getLease(), Lease.FOREVER, null);

public void notify(RemoteEvent evt)

throws RemoteException, UnknownEventException {

try {

ServiceEvent sevt = (ServiceEvent) evt;

int transition sevt.getTransition();

System.out.println("transition

switch (transition) {

case ServiceRegistrar.TRANSITION_NOMATCH_MATCH:

System.out.println("nomatch —> match");

+ transition);

276

Chapter 1 4

break;

case Servicekegistrar.TRANSITION_MATCH_MATCH2

System.out.pIintln("match —> match”);
break;

case SeIviceRegistraI.TRANSITI0N_MATCH_NOMATCH:

System.out.println("match —> nomatch");
break;

}

System.out.pIintln(sevt.toStIing());

if (sevt.getSeIviceItem() == null) {

System.out.println("now null");

} else {

Object service = sevt.getServiceItem().seIvice;

System.out.println("Service is " + service.toString());
}

} catch(Exception e) {

e.printStackTrace();

} // Registrarobserver

The following is a suitable driver for the preceding observer class:

package client;

import java.Imi.RMISecuIityManageI;

import java.Imi.RemoteException;

import net.jini.discoveIy.LookupDiscovery;

import net.jini.discovery.DiscoveIyListener;

import net.jini.discovery.DiscoveIyEvent;

import net.jini.core.lookup.SeIviceRegistrar;

import net.jini.core.1ookup.SeIviceTemp1ate;

import net.jini.coIe.lookup.ServiceMatches;

import java.util.Vector;

import observer.Registrarobserver;

/*>i<

* ReggieMonitor.java
*/

public class ReggieMonitor implements DiscoveIyListener {

277

Remote E1/ents

protected Vector observers = new Vector();

public static void main(String argv[]) {
new ReggieMonitor();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(1000ooL);

} catch(java.lang.InterruptedException e) {
// do nothing

public ReggieMonitor() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.print1n(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

}

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service lookup found");

ServiceRegistrar registrar = registrars[n];

if (registrar == null) {

System.out.println("registrar null”);
continue;

}

try {

System.out.println("Lookup service at ” +

registrar.getLocator().getHost());

} catch(RemoteException e) {

278

Chapter 1 4

System.out.println(”Lookup service into unavailable");

try {

observers.add(new Registrarobserver(registrar));

} catch(RemoteException e) {

System.out.println("adding observer failed");

ServiceTemplate templ = new ServiceTemplate(null, new Class[]

{Object.class}, null);
ServiceMatches matches = null;

try {

matches = registrar.lookup(templ, 10);

} catch(RemoteException e) {

System.out.print1n("lookup failed”);

for (int m = 0; m < matches.items.length; m++) {

if (matches.items[m] l= null && matches.items[m].service |= null) {

System.out.println("Reg knows about " + matches.items[m].ser-

vice.toString() +

" with id ” + matches.items[m].serviceID);

public void discarded(DiscoveryEvent evt) {
// remove observer

}

} // ReggieMonitor

Summary

This chapter has looked at how the remote event differs from the other event

models in Java and at how to create and use them. Jini events allow distributed

components to inform other components when they change state and to supply

enough support information for listeners to determine the nature of the change.

This adds an asynchronous state-change mechanism to Iini, which can allow

more flexible systems to be built.

279

CHAPTER 15

ServiceDiscoveIyManager

BOTH CLIENTS AND SERVICES NEED TO FIND lookup services. Both can do this using

low-level core classes, or discovery utilities such as Lo0kupDiscoveIyManager. Once a

lookup service is found, a service just needs to register with it and try to keep the

lease alive for as long as it wants to. A service can make use of the JoinManager

class for this.

The ServiceDiscoveryManager class performs client—side functions similar to

that of JoinManager for services, and simplifies the task of finding services. The

ServiceDiscoveryManager class is only available in Jim 1.1.

ServiceDiscoveryManager Interface

The ServiceDiscoveIyManager class is a utility class designed to help in the various

c1ient—sidelookup cases that can occur:

° A client may wish to use a service immediately or later.

0 A client may want to use multiple services.

0 A client will want to find services by their interfaces, but may also want to

apply additional criteria, such as being a “fast enough” printer.

° A client ma 'ust wish to use a service if it is available at the time of theY]

request, but alternatively may want to be informed of new services becom-

ing available and to respond to this new availability (for example, a service
browser).

Due to the variety of possible cases, the ServiceD:iscoveryManager class is more
complex than JoinManager. Its interface includes the following:

package net.jini.lookup;

public class ServiceDiscoveryManager {

public SeIviceDiscoveIyManager(DiscoveIyManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException;

280

Chapwr15

LookupCache createLookupCache(ServiceTemplate tmpl,

ServiceItemFi1ter filter,

ServiceDiscoveryListener listener);

ServiceItem[] lookup(ServiceTemp1ate tmpl,

int maxMatches, ServiceItemFi1ter filter);

Serviceltem lookup(ServiceTemp1ate tmpl,

ServiceItemFi1ter filter);

Serviceltem lookup(ServiceTemplate tmpl,

ServiceItemFi1ter filter, long wait);

ServiceItem[] 1ookup(ServiceTemplate tmpl,

int minMaxMatch, int maxMatches,

ServiceItemFi1ter filter, long wait);

void terminate();

ServiceItemFi1ter Interface

Most methods of the client lookup manager require a ServiceItemFi1ter. This is a

simple interface designed to be an additional filter on the client side to help in

finding services. The primary way for a client to find a service is to ask for an

instance of an interface, possibly with additional entry attributes. This matching is

performed on the lookup service, and it only involves a form of exact pattern

matching. It allows the client to ask for a toaster that will handle two slices of toast

exactly, but not for one that will toast two or more.

Performing arbitrary Boolean matching on the lookup service raises a security

issue as it would involve running some code from the client or service in the

lookup service, and it also raises a possible performance issue for the lookup ser-

vice. This means that enhancing the matching process in the lookup service is

unlikely to ever occur, so any more sophisticated matching must be done by the

client. The ServiceItemFi1ter allows additional Boolean filtering to be performed

on the client side, by client code, so these issues are local to the client only.
The ServiceItemFi1ter interface is as follows:

package net.jini.lookup;

public interface ServiceItemFi1ter {

boolean check(ServiceItem item);

281

A client filter will implement this interface to perform additional checking.

Client—side filtering will not solve all of the problems of locating the “best” ser-

vice. Some situations will still require other services that know “local” information,

such as distances in a building.

Finding a Service Immediately

The simplest scenario for a client is that it wants to find a service immediately,

use it, and then (perhaps) terminate, The client will be prepared to wait a certain

amount of time before giving up. All issues of discovery can be given to the

SeIviceDiscoveIyManageI, and the task of finding a service can be given to a method

such as lookup() with a wait parameter. The lookup() method will block until a

suitable service is found or the time limit is reached. If the time limit is reached, a

null object will be returned; otherwise a non—null service object will be returned.

package client;

common.FileClassifier;

common.MIMEType;

import

import

import

import

java.Imi.RMISecurityManager;

net.jini.discoveIy.LookupDiscoveIy;

import

import

import

net.jini

net.jini

net.jini

net.jini

net.jini

.core.lookup.ServiceTemplate;

.discovery.LookupDiscoveIyManager;

.lookup.ServiceDiscoveryManager;

import

import

.core.lookup.ServiceItem;

.lease.LeaseRenewalManager;

/*>l<

* ImmediateClientLookup.java
*/

public class ImmediateC1ientLookup {

private static final long WAITFOR = 100000L;

public static void main(String argv[]) {

new ImmediateClientLookup();

// stay around long enough to receive replies

try {

ThIead.currentThread().sleep(2*wAITFOR);

SeruiceDiscauerj/Manager

282

Chapmr15

} catch(java.lang.InterIuptedException e) {

// do nothing

public ImmediateClientLookup() {

ServiceDiscoveryManager clientMgI = null;

System.setSecurityManager(new RMISecuIityManageI());

try {

LookupDiscoveryManager mgr

new LookupDiscoveryManageI(LookupDiscovery.ALL_GROUPS,
null /* unicast locators */,

null /* DiscoveryListener */);

clientMgr = new ServiceDiscoveryManager(mgr,

new LeaseRenewalManageI());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class [] classes = new Class[] {FileClassifier.class};

ServiceTemplate template = new SeIviceTemplate(null, classes,

null);

Serviceltem item = null;

// Try to find the service, blocking till timeout if necessary

try {

item = clientMgILlookup(template,

null, /* no filter */

WAITFOR /* timeout */);

} catch(Exception e) {

e.pIintStackTrace();

System.exit(1);

}

if (item == null) {
// couldn't find a service in time

System.out.println("no service");

System.exit(1);

// Get the service

Fileclassifier classifier = (Fileclassifier) item.seIvice;

283

Sen/iceDiscove2yManager

if (classifier == null) {

System.out.println("ClassifieI null");

System.exit(1);

// Now we have a suitable service, use it

MIMEType type;

try {

String fileName;

// Try several file types: .txt, .Itt, .abc

fileName = "file1.txt";

type = classifier.getMIMEType(tileName);

printType(fileName, type);

fileName = "file2.Itf”;

type = classifier.getMIMEType(fileName);

pIintType(tileName, type);

tileName = "file3.abc”;

type = classifier.getMIMEType(tileName);

printType(fileName, type);

} catch(java.Imi.RemoteException e) {

System.eIr.println(e.toString());

}

System.exit(0);

private void printType(String fileName, MIMEType type) {

System.out.print("Type of " + tileName + is ");

if (type == null) {

System.out.println(“nul1");

} else {

System.out.pIintln(type.toString());

}

} // ImmediateClientLookup

Using a Filter

An example in Chapter 13 discussed how to select a printer with a speed greater than a

certain Value. This type of problem is well suited to the ServiceDiscoveIyManager

284

Chapter 15

using a ServiceItemFilter. The ServiceItemFilter interface has a check() method,

which is called on the client side to perform additional filtering of services. This

method can accept or reject a service based on criteria supplied by the client.

The following program illustrates how this check() method can be used to

select only printer services with a speed greater than 24 pages per minute:

package client;

import common.Printer;

import java.rmi.RMISecuIityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.SeIviceTemplate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lookup.ServiceDiscoveryManageI;

import net.jini.core.lookup.SeIviceItem;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.ServiceItemFi1teI;
/*>k

* TestPrinterSpeedFi1ter.java
*/

public class TestPrinteISpeedFilter implements ServiceItemFilteI {

private static final long NAITFOR = 100000L;

public TestPrinterSpeedFilter() {

ServiceDiscoveryManageI clientMgI = null;

System.setSecurityManager(new RMISecurityManageI());

try {

LookupDiscoveryManager mgr =

new LookupDiscoveIyManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveIyListeneI */);

clientMgr = new SeIviceDiscoveryManageI(mgr,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class[] classes = new Class[] {Printer.class};

285

Seruz'ceDiscoz/eIyManager

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

Serviceltem item = null;

try {

item = clientMgr.lookup(template,

this, /* filter */

WAITFOR /* timeout */)5

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

}

if (item == null) {
// couldn't find a service in time

System.exit(1);

Printer printer = (Printer) item.service;

// Now use the printer
// ...

public boolean check(ServiceItem item) {
// This is the filter

Printer printer = (Printer) item.service;

if (printeI.getSpeed() > 24) {
return true;

} else {

return false;

public static void main(String[] args) {

TestPrinterSpeed f = new TestPrinterSpeed();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(2*wAITFOR);

} catch(java.lang.InterIuptedException e) {

// do nothing

} // TestPrinterSpeed

286

Chapter 15

Building a Cache of Services

A client may wish to make use of a service multiple times. If the client simply
found a suitable reference to a service, then before each use it would have to check

whether the reference was still valid, and if not, it would need to find another one.

The client may also want to use minor variants of a service, such as a fast printer
one time and a slow one the next. While this management can be done easily

enough in each case, the ServiceDiscoveryManager can supply a cache of services
that will do this work for you. This cache will monitor lookup services to keep the

cache as up—to—date as possible.
The cache is defined as an interface:

package net.jini.lookup;

public interface LookupCache {

public Serviceltem lookup(SeIviceItemFilter filter);

public ServiceItem[] lookup(ServiceItemFilter filter,
int maxMatches);

public void addListener(ServiceDiscoveryListener l);

public void IemoveListeneI(ServiceDiscoveryListener 1);
public void discard(Object serviceReference);
void terminate();

}

A suitable implementation object can be created by the ServiceDiscoveryManageI
method:

LookupCache createtookupcache(ServiceTemplate tmpl,
SeIviceItemFilter filter,

ServiceDiscoveryListener listener);

We will ignore the ServiceDiscoveryListener until the next section of this chapter.
It can be set to null in createLookupCache().

The LookupCache created by create LookupCache() takes a template for matching
against interface and entry attributes. In addition, it also takes a filter to perform
additional client—side Boolean filtering of services. The cache will then maintain a

set of references to services matching the template and passing the filter. These

references are all local to the client and consist of the service proxies and their

attributes downloaded to the client. Searching for a service can then be done by

local methods: LookupCache . lookup(). These can take an additional filter that can
be used to further refine the set of services returned to the client.

The search in the cache is done directly on the proxy services and attributes

already found by the client, and does not involve querying lookup services.

287

ServiceDiscove1yManager

Essentially, this involves a tradeoff of lookup service activity while the client is

idle to produce fast local response when the client is active.

There are versions of ServiceDiscoveryManager . lookup () with a time parameter,

which block until a service is found or the method times out. These methods do

not use polling, but instead use event notification because they are trying to find

services based on remote calls to lookup services. The 1ookup() methods of

Lookupcache do not implement such a blocking call because the methods mn

purely locally, and it is reasonable to poll the cache for a short time if need be.
Here is a version of the file classifier client that creates and examines the cache

for a suitable service:

package client;

import common.FileClassifier;

import common.MIMEType,-

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoveIyManager;

import net.jini.lookup.ServiceDiscoveIyManager;

import net.jini.lookup.LookupCache;

import net.jini.core.lookup.Serviceltem;

import net.jini.lease.LeaseRenewa1Manager;

/*>k

* CachedClientLookup . java
*/

public class Cachedclienttookup {

private static final long WAITFOR = 10000OL;

public static void main(String argv[]) {

new CachedClientLookup();

// stay around long enough to receive replies

try {

Thread . cuIrentThread() .sleep(wAITFOR);

} catch(java.lang.InterruptedException e) {

// do nothing

288

Chapmr15

public CachedClientLookup() {
ServiceDiscoveryManageI clientMgr = null;

Lookupcache cache = null;

System.setSecurityManager(new RMISecurityManager());

try {

LookupDiscoveryManager mgr

new LookupDiscoveryManager(LookupDiscoveIy.ALL_GROUPS,
null /* unicast locators */,

null /* DiscoveryListeneI */)5

clientMgr = new ServiceDiscoveryManageI(mgr,
new LeaseRenewalManageI());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class [] classes = new Class[] {FileClassifieI.class};

ServiceTemplate template = new ServiceTemplate(null, classes,
null);

try {

cache = clientMgr.createLookupCache(template,
null, /* no filter */

null /* no listener */);

} catch(Exception e) {

e.pIintStackTrace();

System.exit(1);

}

// loop until we find a service
Serviceltem item = null;

while (item == null) {

System.out.println(“no service yet");

try {

Thread.currentThIead().sleep(10o0);

} catch(java.lang.InterruptedException e) {
// do nothing

}

// see if a service is there now

item = cache.lookup(null);

}

FileClassifier classifier = (FileClassifier) item.service;

289

ServiceDiscoveryManager

if (classifier == null) {

System.out.println("C1assifier null");

System.exit(1);

}

// Now we have a suitable service, use it

MIMEType type;

try {

String tileName;

fileName = "file1.txt“;

type = classifier.getMIMEType(fileName);

pIintType(tileName, type);

fileName = "file2.rtf”;

type = classifier.getMIMEType(fileName);

printType(fileName, type);

fileName = "file3.abc”;

type = classifier.getMIMEType(fileName);

printType(fi1eName, type);

} catch(java.Imi.RemoteException e) {

System.err.println(e.toString());

}

System.exit(0);

}

private void printType(String tileName, MIMEType type) {
System.out.pIint("Type of " + fileName + " is ");
if (type == null) {

System.out.println("nu1l");

} else {

System.out . println(type.toString());

}

} // CachedClientLookup

Running the CachedC11'entLookup

While it is okay to poll the local cache, the cache itself must get its contents from

lookup services, and in general it is not okay to poll these because that involves pos-
sibly heavy network traffic. The cache itself gets its information by registering itself
as a listener for service events from the lookup services (as explained in Chapter 14).

290

Chapter 15

The lookup services will then call notify() on the cache listener. This call is a remote

call from the remote lookup service to the local cache, done (probably) using an RMI

stub. In fact, the Sun implementation of ServiceDiscoveryManager uses a nested class,

ServiceDiscoveryManager. LookupCacheImp1. LookupListener, which has an RMI stub.

In order for the cache to actually work, it is necessary to set the RMI codebase

property, java . rmi. server. codebase, to a suitable location for the class files (such as
an HTTP server), and to make sure that the class net/jini/1ookup/ ServiceDiscov-

eryManager$LookupCacheImp1$LookupListener_Stub . class is accessible from this

codebase. The stub file may be found in the lib/ j ini—ext . jar library in the Jim 1.1

distribution. It has to be extracted from there and placed in the codebase using a
command such as this:

unzip jini—ext.jar 'net/jini/lookup/ServiceDiscoveryManager$LookupCache—
Impl$LooKupListener__Stub.c1ass' —d /home/WWW/htdocs/classes

Note that the specification just says that this type of thing has to be done but does
not descend to details about the class name——that is left to the documentation of

the ServiceDiscoveryManager as implemented by Sun. If another implementation is
made of the]ini classes, then it would probably use a different remote class.

Monitoring Changes to the Cache

The cache uses remote events to monitor the state of loolcup services. It includes

a local mechanism to pass some of these changes to a client by means of the

ServiceDiscoveryListener interface:

package net.jini.lookup;

interface ServiceDiscoveryListener {

void serviceAdded(ServiceDiscoveryEvent event);

void serviceChanged(ServiceDiscoveryEvent event);

void serviceRemoved(ServiceDiscoveryEvent event);

The ServiceDiscoveryListeneI methods take a parameter of type

ServiceDiscoveryEvent. This class has methods:

package net.jini.1ookup;

class ServiceDiscoveryEvent extends Eventobject {

Serviceltem getPostEventServiceItem();

Serviceltem getPreEventServiceItem();

291

Clients are not likely to be interested in all events generated by lookup

services, even for the services in which they are interested. For example, if a new
service registers itself with ten lookup services, they will all generate transition
events from N0_MATCH to MATCH, but the client will usually only be interested in
seeing the first of these—the other nine are just repeated information. Similarly, if
a service’s lease expires from one lookup service, then that doesn’t matter much;
but if it expires from all lookup services that the client knows of, then it does mat-
tenbecausethesendceisnolongeravaflabkau)n.Thecacheconsequenflyprunes
events so that the client gets information about the real services rather than infor-
mation about the lookup services.

In Chapter 14, an example was given on monitoring changes to services from
a lookup service viewpoint, reporting each change to lookup services. A client-
oriented View just monitors changes in services themselves, which can be done
easily using ServiceDiscoveryEvent objects:

package client;

import java.Imi.RMISecurityManageI;

import net .jini . discovery. LookupDiscovery;

import net.jini.1ookup.SeIviceDiscoveIyListener;

import net.jini.lookup.ServiceDiscoveryEvent;

import net.jini.coIe.lookup.ServiceTemplate;

import net.jini.core.lookup.SeIviceItem;

import net.jini.1ookup.SeIviceDiscoveryManager;

import net.jini.discovery.LookupDiscoveryManager;

import net . j ini . lease . LeaseRenewalManager;

import net.jini.lookup. Lookupcache;

/>!<*

* ServiceMonitor.java
*/

public class SeIviceMonitor implements SeIviceDiscoveIyListener {

public static void main(String aIgv[]) {
new ServiceMonitoI();

// stay around long enough to receive replies

try {

Thread . currentThread() .sleep(1000O0L);

} catch(java.lang.InteIruptedException e) {
// do nothing

Sen/iceDiscovelj/Manager

292

Chapter 15

public ServiceMonitor() {

SeIviceDiscoveryManager clientMgI = null;

LookupCache cache null;

System.setSecuIityManager(new RMISecurityManager());

try {

LookupDiscoveIyManager mgr =

new LookupDiscoveIyManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListeneI */)3

clientMgr = new SeIviceDiscoveIyManager(mgr,

new LeaseRenewa1Manager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

SeIviceTemplate template = new SeIviceTemplate(null, null,

null);

try {

cache = clientMgr.cIeateLookupCache(template,
null, /* no filter */

this /* listener */);

} catch(Exception e) {

e.printStackTIace(),'

System.exit(1);

// methods for ServiceDiscoveryListener

public void serviceAdded(SeIviceDiscoveryEvent evt) {

// evt.getPreEventServiceItem() == null

Serviceltem postltem = evt.getPostEventServiceItem()5

System.out.println("SeIvice appeared: ” +

postltem.seIvice.getClass().toString());

public void servicechanged(ServiceDiscoveIyEvent evt) {

Serviceltem preltem = evt.getPostEventServiceItem();

Serviceltem postltem = evt.getPreEventServiceItem() ;

System.out.println("SeIvice changed: " +

postltem.seIvice.getClass().toString());

293

}

public void seIviceRemoved(ServiceDiscoveIyEvent evt) {
// evt.getPostEventServiceItem() == null

Serviceltem preltem = evt.getPreEventSeIviceItem();

System.out.pIintln("SeIvice disappeared: " +

preltem. service.getC1ass() .toString());

} // ServiceMonitor

Summary

The client lookup manager can handle a variety of common situations that arise as

clients need to find services under different situations.

ServiceDisc0ue7yMcmager

294

CHAPTER 16

Transactions

TRANSACTIONS ARE A NECESSARY PART of many distributed operations. Frequently

two or more objects may need to synchronize changes of state so that they all

occur, or none occur. This happens in situations such as control of ownership,

where one party has to give up ownership at the same time as another asserts

ownership. What has to be avoided is only one party performing the action, which

could result in the property having either no owners or two owners.

The theory of transactions often includes mention of the “ACID” properties:

Atomicity: All the operations of a transaction must take place, or none of
them do.

Consistency: The completion of a transaction must leave the participants in
a “consistent" state, whatever that means. For example, the number of own-
ers of a resource must remain at one.

Isolation: The activities of one transaction must not affect any other
transactions.

Durability: The results of a transaction must be persistent.

The practice of transactions is that they use the two—phase commit protocol.

This requires that participants in a transaction are asked to “vote” on a transac-

tion. If all participants agree to go ahead, then the transaction “commits,” which is

binding on all the participants. If any “abort” during this voting stage, this forces

abortion of the transaction for all participants.

Jini has adopted the syntax of the two—phase commit method. It is up to the

clients and services within a transaction to observe the ACID properties if they

choose to do so. Iini essentially supplies the mechanism of two—phase commit and

leaves the policy to the participants in a transaction.

Transaction Identifiers

Restricting Iini transactions to a two—phase commit model without associating a

particular semantics to it means that a transaction can be represented in a simple

way, as a long identifier. This identifier is obtained from a transaction manager and

295

Chapter 16

will uniquely label the transaction to that manager. (It is not guaranteed to be
unique between managers, though—unlike service IDs.) All participants in the
transaction communicate with the transaction manager using this identifier to

label which transaction they belong to.

The participants in a transaction may disappear, or the transaction manager
may disappear. As a result, transactions are managed by a lease, which will expire
unless it is renewed. V/Vhen a transaction manager is asked for a new transaction, it

returns a TransactionManager . Created object, which contains the transaction iden-
tifier and lease:

public interface TransactionManager {

public static class Created {

public final long id;

public final Lease lease;

A Created object may be passed around between participants in the lease, and
one of them will need to look after lease renewals. All the participants will use the

transaction identifier in communication with the transaction manager.

TransactionManager

A transaction manager looks after the two—phase commit protocol for all the par-

ticipants in a transaction. It is responsible for creating a new transaction with its
create() method. Any of the participants can force the transaction to abort by call-
ing abort(), or they can force it to the two—phase commit stage by calling commit().

public interface TransactionManager {

Created create(long leaseFoI) throws ...;

void join(long id, Transact.ionParticipant part,

long crashCount) throws ...;

void commit(long id) throws ...;

void abort(long id) throws ...;

When a participant joins a transaction, it registers a listener of type

TransactionParticipant. If any participant calls commit (), the transaction manager

starts the voting process using all of these listeners. If all of these are prepared to

296

commit, then the manager moves all of these listeners to the commit stage. Alterna-

tively, any of the participants can call abort ()» which forces all of the listeners to abort.

TransactionParticipant

when an object becomes a participant listener in a transaction, it allows the trans-

action manager to call various methods:

public interface TIansactionParticipant

int prepare(TransactionManager mgr, long id) throws ...;

void commit(TransactionManager mgr, long id) throws ...;

void abort(TransactionManager mgr, long id) throws ...;

int prepareAndCommit(TransactionManager mgr, long id) throws ..

}

These methods are triggered by calls made upon the transaction manager. For

example, if one client calls the transaction manager to abort, then the transaction

manager calls all the listeners to abort.

The “normal" mode of operation (that is, when nothing goes wrong with the

transaction) is for a call to be made on the transaction manager to commit. It then

enters the two—phase commit stage where it asks each participant listener to first

prepare() and then to either commit() or abort ().

Mahalo

Mahalo is a transaction manager supplied by Sun as part of the lini distribution. It

can be used without any changes. It runs as a Iini service, like reggie, and like all

Iini services it has two parts: the part that runs as a server, needing its own set of

class files in mahalo . jar, and the set of class files that need to be available to clients

in maha1o—dl .jar. It also needs a security policy, an HTTP server, and log files.

Mahalo can be started using a command line like this:

java —Djava.security.po1icy=policy.all \

—Dcom.sun.jini.mahalo.managerName=TIansactionManager \

—jar /home/jan/tmpdir/jini1_0/lib/mahalo.jar \

http://‘hostname’:8080/mahalo—dl.jar \

/home/jan/projects/jini/doc/policy.a1l \

/tmp/mahalo_1og public &

Trcmsactions

297

Chapter 1 6

A Transaction Example

The classic use of transactions is to handle money transfers between accounts. In

this scenario there are two accounts, one ofwhich is debited and the other credited.

This is not a very exciting example, so we shall try a more complex situation.

Suppose a service decides to charge for its use. If a client decides this cost is reason-

able, it will first credit the service and then request that the service be performed.

The actual accounts will be managed by an Accounts service, which will need

to be informed of the credits and debits that occur. A simple Accounts model is

one in which the service gets some sort of customer ID from the client, and passes

its own ID and the customer ID to the Accounts service, which manages both

accounts. This is simple, it is prone to all sorts of e—commerce issues that we will

not go into, and it is similar to the way credit cards work!

Figure 16-1 shows the messages in a normal sequence diagram. The client

makes a getCost() call to the service and receives the cost in return. It then makes

a cred it() call on the service, which makes a c:reditDebit() call on the Accounts

service before returning, The client then makes a final request Service() call on

the service and gets back a result.

Client Accounts

getCost()

creditDebit

requestService()

Figure 16-1. Sequence diagram for credit/debit example

There are a number ofproblems with the sequence of steps that can benefit by

using a transaction model. The steps of cred it() and creditDebit() should cer-

tainly be performed either both together or not at all. But in addition there is the

298

issue of the quality of the service—suppose the client is not happy with the results

from the service and would like to reclaim its money, or better yet, not spend it in
the first case! If we include the delivery of the service in the transaction, then there
is the opportunity for the client to abort the transaction before it is committed.

Figure 16-2 shows the larger set of messages in the sequence diagram for nor-
mal execution. As before, the client requests the cost from the service, and after

getting this, it asks the transaction manager to create a transaction and receives
back the transaction ID. It then joins the transaction itself. When it asks the service

to credit an amount, the service also joins the transaction. The service then asks

the account to creditDebit() the amount, and as part of this, the account also joins

the transaction. The client then requests the service and gets the result. If all is

fine, it then asks the transaction manager to commit(), which triggers the prepare-

and-commit phase. The transaction manager asks each participant to prepare (),

and if it gets satisfactory replies from each, it then asks each one to commit().

Accounts TxnManager

Figure 16-2. Sequence diagram for credit/debit example with transactions

Transactions

299

Chapmr16

There are several points of failure in this transaction:

The cost may be too high for the client. However, at this stage the client has

not created or joined a transaction, so this doesn’t matter.

The client may offer too little by way of payment to the service. The service

can signal this by joining the transaction and then aborting it. This will

ensure that the client has to roll back the transaction. (Of course, it could

instead throw a NotEnoughPayment exception—joining and aborting is used

for illustrating transaction possibilities.)

There may be a time delay between finding the price and asking for the ser~

vice. The price may have gone up in the meantime! The service would then

abort the transaction, forcing the client and the accounts to roll back.

° After the service is performed, the client may decide that the result was not

good enough, and refuse to pay. Aborting the transaction at this stage would
cause the service and accounts to roll back.

- The Accounts service may abort the transaction if sufficient client funds are
unavailable.

Payab1eFi1eClass1'f1'erImp1

The service we will use here is a version of the familiar file classifier that requires a

payment before it will divulge the MIME type for a filename. A bit unrealistic, per-

haps, but that doesn't matter for our purposes here.

There will be a PayableFileClassi1‘ier interface, which extends the

Fileclassifier interface. We will also make it extend the Payable interface, just in

case we want to charge for other services. In line with other interfaces, we shall

extend this to a RemotePayab1eFileclassifier and then implement this with a

PayableFileC1assifierImpl.

The PayableFileclassifierlmpl can use the implementation of the

rmi.Fi1eClass:'n‘ierImp1, so we shall make it extend this class. We also want it to be

a participant in a transaction, so it must implement the Transact ionParticipant

interface. This leads to the inheritance diagram shown in Figure 16-3, which isn’t

really as complex as it looks.

The first new element in this hierarchy is the interface Payable:

package common;

import java.io.Serializable;

300

PayabIeFiIe
Classifierlmpl

Figure 16-3. Class diagramfor transaction participcmt

import net.jini.core.transaction.server.TransactionManager;

/>l<*

* Payab1e.java
*/

public interface Payable extends Serializable {

void credit(1ong amount, long accoun’tID,

TransactionManager mgr,

long transactionID)

throws java.Imi.RemoteException;

long getCost() throws java.Imi.RemoteExcep’cior1;

} // Payable

Extending Payable is the Payab1eFileClassifieI interface:

package common;

/>l<*

* PayableFileC1assi1‘ier .java
*/

Transaction

Pan‘/‘cipant

Tmnsacnbns

301

Chapter 1 6

public interface PayableFileC1assifier extends Fileclassifier, Payable {

} // Payab1eFileClassi1’ier

Payab1eFileC1assi'FieI will be used by the client to search for the service. The ser-

vice will use a RemotePayableFileclassifier, which is a simple extension to this:

package txn;

import common.PayableFileClassifier;

import java . Imi . Remote;

/*>‘,<

* RemotePayableFileclassitier . java
*/

public interface RemotePayableFileC1assifier extends PayableFileClassifieI, Remote

{

} // RemotePayab1eFi1eC1asssifier

The implementation of this service joins the transaction, finds an Accounts

service from a known location (using unicast lookup), registers the money trans-

fer, and then performs the service. This implementation doesn’t keep any state

information that can be altered by the transaction. When asked to prepare () by the

transaction manager it can just return NOTCHANGED. If there was state, the prepare ()

and commit() methods would have more content. The prepareAndCommit() method

can be called by a transaction manager as an optimization, and the version given

in this example follows the specification given in the “Iini Transaction” chapter of

TheIini Specification by Ken Arnold et al. The following program gives this service

implementation:

package txn;

import common.MIMEType;

import common.Accounts;

import rmi.FileClassifierImpl;

//import common.PayableFileClassifier;

//import common.Payable;

import net.jini.c0re.transaction.server.TransactionManager;

import net.jini.core.transaction.server.TransactionParticipant;

import net.jini.core.transaction.server.Transactionconstantsg

import net.jini.core.transaction.UnknownTransactionException;

302

lransacfions

import net.jini.core.transaction.CannotJoinException;

import net.jini.core.transaction.CannotAbortException;

import net.jini.core.transaction.server.CrashCountException;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.SeIviceRegistrar;

import net.jini.core.discovery.LookupLocator;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

/**

* PayableFileClassifierImpl.java
*/

public class PayableFileClassifierlmpl extends Fileclassifierlmpl

implements RemotePayableFileClassifier, TransactionParticipant {

protected TransactionManageI mgr = null;

protected Accounts accts = null;

protected long crashCount = 0; // ???

protected long cost = 10;

protected final long myID = 54321;

public PayableFileClassifierImpl() throws java.rmi.RemoteException {

supeI();

System.setSecurityManager(new RMISecurityManager());

public void credit(long amount, long accountID,

TransactionManager mgr,

long transactionID) {

System.out.println(”crediting");

this.mgr = mgr;

// before findAccounts

System.out.println("Joining txn");

try {

mgr.join(transactionID, this, crashCount);

} catch(UnknownTIansactionException e) {

e.pIintStackTIace();

} catch(CannotJoinException e) {

e.printStackTrace();

} catch(CrashCountException e) {

303

Chapter 1 6

e.pIintStackTrace();

} catch(RemoteException e) {

e.printStackTIace();

}

System.out.println(”3oined txn");

findAccounts();

if (accts == null) {

try {

mgr.aboIt(transactionID);

} catch(UnknownTIansactionException e) {

e.printStackTrace();

} catch(CannotAbortException e) {

e.printStackTrace();

} catch(RemoteException e) {

e.printStackTrace();

try {

accts.creditDebit(amount, accountID, myID,

tIansactionID, mgr);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

public long getCost() {

return cost;

protected void tindAccounts() {
// find a known account service

LookupLocator lookup = null;

ServiceRegistrar registrar = null;

try {

lookup = new LookupLocator("jini://localhost");

} catch(java.net.MaltormedURLException e) {

System.err.println(”Lookup failed: " + e.toString());

304

Transactions

System.exit(1);

try {

registrar = 1ookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed: " + e.toString());

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.err.println(”Registrar search failed: " + e.toString());

System.exit(1);

}

System.out.println("Registrar found”);

Class[] classes = new Class[] {Accounts.class};

ServiceTemplate template = new ServiceTemp1ate(nul1, classes,

null);

try {

accts = (Accounts) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

System.exit(2);

public MIMEType getMIMEType(String fileName) throws RemoteException {

if (mgr == null) {

// don't process the request

return null;

return super.getMIMEType(fileName);

public int prepare(TransactionManager mgr, long id) {
System.out.println("Preparing...");
return Transactionconstants.PREPARED;

public void commit(TransactionManager mgr, long id) {

System.out.println("committing");

305

Chapmr16

public void abort(TIansactionManager mgr, long id) {

System.out . pIintln("aborting“);

public int prepareAndCommit(TransactionManager mgr, long id) {

int result = prepare(mgr, id);

if (result == TransactionConstants.PREPARED) {

commit(mgr, id);

result = Transactionconstants.COMMITTED;

}

return result;

} // PayableFileClassifierlmpl

Accountslmpl

We shall assume that all accounts in this example are managed by a single Accounts

service that knows about all accounts by using a long identifier. These should be

stored in permanent form, and there should be proper crash—recove1y mechanisms,

etc. For simplicity, we shall just use a hash table of accounts, with uncommitted

transactions kept in a “pending” list. When commitment occurs, the pending

transaction takes place.

Figure 16-4 shows the Accounts class diagram.

T A
I _ _ _ _ _ _ _ __I

I

’ RemoteAcc0unz‘s
UnicastRemote

Object A
A I

Accountslmpl

Figure 16-4. Class diagramforAccoun ts

Participant

306

fiznmacfions

The Accounts interface looks like this:

/**

* Accounts.java
*/

package common;

import net.jini.core.transaction.server.TransactionManager;

public interface Accounts {

void creditDebit(1ong amount, long cIeditorID,

long debitorID, long transactionID,

TransactionManager tm)

throws java.Imi.RemoteException;

} // Accounts

and this is the implementation:

/>|<>i<

* AccountsImpl.java
*/

package txn;

// import common.Accounts;

import net.jini.core.transaction.server.TransactionManageI;

import net.jini.core transaction.server.TransactionParticipant;

import net.jini.core.transaction.server.TransactionConstants;

import java.rmi.server.Unicastkemoteobject;

import java.util.Hashtable;

// import java.rmi.RMISecurityManager;

// debug

import net.jini.coIe.1ookup.ServiceTemp1ate;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.discovery.LookupLocator;

// end debug

public class Accountslmpl extends UnicastRemoteObject

implements RemoteAccounts, TransactionParticipant, java.io.Serializable {

protected long crashcount = 0; // value??

307

CWapwr16

protected Hashtable accountBalances new Hashtable();

protected Hashtable pendingCreditDebit = new Hashtable();

public AccountsImpl() throws java.rmi.RemoteException {

// System.setSecurityManager(new RMISecurityManageI());

public void cIeditDebit(1ong amount, long creditoIID,

long debitorID, long tIansactionID,

TransactionManageI mgr) {

// Ensure stub class is loaded by getting its class object.

// It has to be loaded from the same place as this object

java.rmi.Remote stub = null;

try {

stub = toStub(this);

} catch(Exception e) {

System.out.println(”To stub failed");

e.printStackTrace();

}

System.out.println("To stub found");

String annote =

java.Imi.server.RMIClassLoader.getClassAnnotation(stub.getClass());

System.out.println("fIom "

try {

Class cl = java.Imi.seIver.RMIClassLoader.loadClass(annote,

"txn.AccountsImpl_Stub");

+ annote);

} catch(Exception e) {

System.out.println("To stub class failed");

e.printStackTIace();

}

System.out.print1n("To stub class ok");

// mgr = findManager();

try { \

System.out.println("TIying to join");

mgr.join(tIansactionID, this, crashcount);

} catch(net.jini.core.transaction.UnknownTransactionException e) {

e.pIintStackTrace();

} catch(java.Imi.RemoteException e) {

e.printStackTIace();

} catch(net.jini.core.tIansaction.server.CrashCountException e) {

e.printStackTIace();

} catch(net.jini.core.transaction.Cannot3oinException e) {

308

e.pIintStackTIace();

}

System.out.pIintln("joined”);

pendingCreditDebit.put(new TransactionPair(mgI,
transactionID),

new CIeditDebit(amount, cIeditorID,

debitorID));

// findmanager debug hack

protected TIansactionManageI findManager() {
// find a known account service

LookupLocator lookup = null;

ServiceRegistraI registrar = null;

TIansactionManageI mgr null;

try {

lookup = new LookupLocator("jini://localhost”);

} catch(java.net.MalfoImedURLException e) {

System.err.print1n("Lookup failed: " + e.toString());

System.exit(1);

try {

registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.eIr.print1n("Registrar search failed: + e.toStIing());

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.eIr.println(”RegistIaI search failed: " + e.toString());

System.exit(1);

}

System.out.println(”RegistIar found");

Class[] classes = new Class[] {TIansactionManager.class};

ServiceTemplate template = new ServiceTemplate(null, classes,
null);

try {

mgr = (TransactionManager) registrar.1ookup(template);

} catch(java.Imi.RemoteException e) {

System.exit(2);

}

return mgr;

Trcmsacnbns

309

C%apmr16

public int prepare(TransactionManager mgr, long id) {

System.out.println("Preparing...");
return TIansactionConstants.PREPARED;

public void commit(TransactionManager mgr, long id) {

System.out.println("committing”);

public void abort(TransactionManager mgr, long id) {

System.out.println("aborting");

}

public int prepareAndCommit(TransactionManager mgr, long id) {

int result = prepare(mgr, id);

if (result == Transactionconstants.PREPARED) {

commit(mgr, id);
result = TransactionConstants.COMMITTED;

}

return result;

class CreditDebit {

long amount;

long creditorID;

long debitorID;

CreditDebit(long a, long c, long d) {
amount = a;

creditorID = c;

debitorID = d;

class TransactionPair {

TransactionPair(TransactionManager mgr, long id) {

}

} // Accountslmpl

310

Client

The final component in this application is the client that starts the transaction.

The simplest code for this would just use the blocking lookup() method of

c1ientLookupManager to find first the service and then the transaction manager. We

will use the longer way to show various ways of doing things.

This implementation uses a nested class that extends Thread. Because of this, it

cannot extend UnicastRemote0bj ect and so is not automatically exported. In order to

export itself, it has to call the UnicastRemoteObj ect . exportobject () method. This must
be done before the call to join the transaction, which expects a remote object.

package client;

import common.PayableFileClassifier;

import common.MIMEType;

import java.Imi.RMISecuIityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListeneI;

import net.jini.discovery.DiscoveIyEvent;

import net.jini.core.lookup.Servicekegistrar;

import net.jini.core.1ookup.ServiceTemplate;

import net.jini.core.transaction.server.TransactionManager;

import net.jini.core.transaction.server.TIansactionConstants;

import net.jini.core.tIansaction.server.TIansactionParticipant;

// import com.sun.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseRenewalManageI;

import net.jini.core.lease.Lease;

import net.jini.lookup.entry.Name;

import net.jini.core.entry.Entry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

/>k>i<

* TestTxn.java
*/

public class TestTxn implements DiscoveIyListeneI {

PayableFileClassifieI classifier = null;

TIansactionManager mgr = null;

long myClientID; // my account id

Transactions

311

Chapter 16

public static void main(String argv[]) {

new TestTxn();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(100000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public TestTxn() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscoveIy(LookupDiscovery.ALL_GR0UPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

new LookupThread(registrar).start();

// System.exit(O);

public void discarded(DiscoveryEvent evt) {

// empty

312

Transactions

public class LookupThread extends Thread implements TransactionParticipant,
java.io.Serializable {

SeIviceRegistrar registrar;

long crashcount = 0; // ???

LookupThread(ServiceRegistrar registrar) {

this.registrar = registrar;

public void run() {

long cost = O;

// try to find a classifier if we haven't already got one

if (classifier == null) {

System.out.println(”Searching for classifier”);

Class[] classes = new Class[] {PayableFileC1assifier.class};

ServiceTemplate template : new ServiceTemplate(null, classes,

null);

try {

Object obj = registrar.lookup(template);

System.out.print1n(obj.getClass().toStIing());

Class cls = obj.getClass();

Class[] clss = cls.getInterfaces();

for (int n = 0; n < clss.length; n++) {

System.out.println(clss[n].toString());

}

classifier = (PayableFileClassifier) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (classifier == null) {

System.out.print1n(”Classifier null");

} else {

System.out.println(”Getting cost");

try {

cost = classifier.getCost();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

}

it (cost > 20) {

313

Chapmr16

System.out.println("Costs too much: " + cost);
classifier = null;

// try to find a transaction manager if we haven't already got one

if (mgr == null) {

System.out.println("Searching for txnmgr");

Class[] classes = new Class[] {TransactionManager.class};

ServiceTemplate template = new ServiceTemplate(null, classes,
null);

/*

Entry[] entries = {new Name("TransactionManager")};

ServiceTemplate template = new ServiceTemplate(null, null,
entries);

*/

try {

mgr = (TransactionManager) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (mgr == null) {

System.out.println("Manager null”);
return;

if (classifier != null && mgr != null) {

System.out.println("Found both");

TransactionManager.Created tcs = null;

System.out.println("Creating transaction");

try {

tcs = mgr.create(Lease.FOREVER);

314

Transactions

} catch(java.Imi.RemoteException e) {

mgr = null;

return;

} catch(net.jini.core.lease.LeaseDeniedException e) {

mgr = null;

return;

long transactionID = tcs.id;

// join in ourselves

System.out.println("Joining transaction");

// but first, export ourselves since we

// don't extend UnicastRemoteObject

try {

UnicastRemoteObject.export0bject(this);

} catch(RemoteException e) {

e.printStackTIace();

try {

mgI.join(transactionID, this, crashCount);

} catch(net.jini.core.transaction.UnknownTransactionException e) {

e.printStackTrace();

} catch(java.Imi.RemoteException e) {

e.printStackTrace();

} catch(net.jini.core.transaction.server.CrashCountException e) {

e.printStackTrace();

} catch(net.jini.core.transaction.CannotJoinException e) {

e.printStackTrace();

new LeaseRenewalManager().renewUntil(tcs.lease,
Lease.FOREVER,

null);

System.out.pIintln(”crediting...");

try {

classifier.credit(cost, myClientID,

mgr, transactionID);

} catch(Exception e) {

System.err.println(e.toStIing());

315

Chapmr16

System.out.println("classifying...");

MIMEType type = null;

try {

type = classifier.getMIMEType("file1.txt");

} catch(java.Imi.RemoteException e) {

System.err.println(e.toStIing());

// if we get a good result, commit, else abort

if (type l= null) {

System.out.pIint1n("Type is + type.toString());

System.out.println("Calling commit”);

// new CommitThread(mgI, transactionID).run();

try {

System.out.println("mgr state " +

mgr.getState(transactionID));

mgr.commit(transactionID);

} catch(Exception e) {

e.printStackTrace();

} else {

try {

mgr.abort(transactionID);

} catch(java.Imi.RemoteException e) {

} catch(net.jini.core.transaction.CannotAboItException e) {

} catch(net.jini.core.transaction.UnknownTransactionException

e){

public int prepare(TransactionManager mgr, long id) {

System.out.print1n("PIepaIing...”);
return TransactionConstants.PREPARED;

public void commit(TransactionManager mgr, long id) {

System.out.println("committing”);

316

Transactions

public void abort(TransactionManager mgr, long id) {

System.out.println("aborting");

public int prepareAndCommit(TransactionManager mgr, long id) {

int result = prepare(mgI, id);

if (result == TransactionConstants.PREPARED) {

commit(mgr, id);
result = Transactionconstants.COMMITTED;

}

return result;

} // LookupThread

class CommitThread extends Thread {

TransactionManager mgr;

long tIansactionID;

public CommitThread(TransactionManager m, long id) {
mgr m;

transactionID = id;

try {

Thread.sleep(1000);

} catch(Exception e) {

}

public void run() {

try {

mgI.abort(transactionID);

} catch(Exception e) {

e.printStackTrace();

}

} // CommitThread

} // TestTxn

317

Chapter 1 6

Summary

Transactions are needed to coordinate changes of state across multiple clients and

services. The Iini transaction model uses a simple model of transactions, with

details of semantics being left to the clients and services. The Jini distribution

supplies a transaction manager, called Mahalo, that can be used.

318

CHAPTER 17

LEGO MINDSTORMS

LEGO MINDSTORMS IS A “ROBOTICS INVENTION SYSTEM” that allows you to

build LEGO toys with a programmable computer. This chapter looks at the issues

involved in interfacing with a specialized hardware device, using MINDSTORMS

as an example.

Making Hardware into Jini Services

Hardware devices and preexisting software applications can equally be turned into

Iini services. Alegacy piece of software can have a “wrapper” placed around it, and

this wrapper can act as a lini service. Remote method calls into this service can

then make calls into the application. Hardware devices are a little more complex

because they are defined at a lower level, and often have resource constraints that

do not apply to software.

There are two major categories of hardware services: those that can run a Java

virtual machine, and those that do not have enough memory or an adequate pro-

cessor. For example, an 8086 with 20-bit addressing and only 1 MB of addressable

memory would not be an adequate processor, while the owner of a Palm handheld

might not wish to squander too many of its limited resources running a IVM.

Devices capable of running a IVM may be further subdivided into those that are

capable of running a standard IDK 1.2 IVM and core libraries, and those that have

to run some stripped—down version. At the time of writing, the lightweight IVM

under development by Sun Microsystems called KVM does not support the fea-

tures of IDK 1.2 required to run Iini.

Iini does not require all the Core Java classes to run a service. For example, for

a service that engages in discovery and registration does not require the AWT.

However, it does require support for the newer RMI features found in IDK 1.2, and

it does require enough of the standard language features. Again, this is not inclu-

sive of all parts of Java; for example, floating point numbers are not required.

Because many of the current embedded or small IVMS have removed features and

standard core libraries, at present none of them have enough support for JDK 1.2

features to run Jim.

The current developments for embedded or small IVMs start with a minimal

set of features and classes and incrementally allow more to be added, up to the

319

Chapter 1 7

level of a full IDK 1.2 with Iini. In any case, a device capable of running lini will

have 8 MB of RAM or more, with networking capabilities, on a 32-bit processor.

If the device cannot run a IVM, then something else must run the IVM and act

as a proxy for the device. Your blender is unlikely to have 32 MB of RAM, but your

home control center (possibly located on the front of the fridge) may have this

capability. In that case, the blender service would be located in this WM, and the

fridge would have some means of sending commands to the blender.

MINDSTORMS

LEGO MINDSTORMS (http : / /www. LEGOMINDSTORMS . com) is a Robotics Invention Sys-

tem that consists of a number of LEGO parts, a microcomputer called the RCX, an

infrared transmitter (connected to the serial port of an ordinary computer), and

various sensors and motors. Using this system, one can build an almost infinite

variety of LEGO robots that can be controlled by the RCX. This RCX computer can

be sent “immediate” commands, or can have a (small) program downloaded and
then run.

MINDSTORMS is a pretty cool system that can be driven at a number of levels.

A primary audience for programming this system is children, and there is a visual

programming environment to help in this. This visual environment only runs on

Windows or Macintosh machines, which are connected to the RCX by their serial

port and the infrared transmitter. Behind this environment is aVisual Basic set of

procedures captured in an OCX, and behind that is the machine code of the RCX,

which can be sent as byte codes on the serial port.

The RCX computer is completely incapable of running Iini. It is a 16-bit

processor with a mere 32 K of RAM, and the default firmware will only allow

32 Variables. It can only be driven by a service running on, say, an ordinary PC.

MINDSTORMS as a Jini Service

As previously mentioned, a MINDSTORMS robot can be programmed and run

from an infrared transmitter attached to the serial port of a computer. There is no

security or real location for the RCX—it will accept commands from any transmit-

ter in range. We will assume that a robot is controlled by a single computer, and

that it always stays in range of this computer.

There must be a way of communicating with any hardware device. For a

MINDSTORMS robot, this is done via the serial port, but other devices may have

different mechanisms. Communication may be by Java code or by the native code

of the device. Even if Java code is used, at some stage it must drop down to the

native code level in order to communicate with the device—the only question is

320

whether you write the native code or someone else does it for you and wraps it up

in Java object methods.

For the serial port, Sun has an extension package——the commAPI—to talk to serial

and parallel ports (http : //java . sun . com/products/j avacomm/index . html). This pack-

age includes platform—independent Java code, and also platform-specific native

code libraries supplied as DLLs forwindows and Solaris. I am running Linux on

my laptop, so I am using a Linux version of the DLL. This has been made by Trent

Iarvi (trentjaIvi@yahoo. com) and can be found at

http : / /www . frii . com/“j arvi/rxtx/. The native code part of communicating with the

device has been done for us, and it is all wrapped up in a set of portable Java classes.

The RCX expects particular message formats that start with standard headers,

and so on. A Java package that makes generating messages in the correct format

easier has been created by Dario Laverde and is available at

http : //www.escape . com/“dario/java/Icx. There are other packages that will do the

same thing—see the “LEGO MINDSTORMS Internals” Web page by Russell Nelson

at http : //www. crynwr . com/LEGO-robotics/.

With this as background, we can look at how to make an RCX into a Iini ser~

vice. It will involve constructing an RCX program on a client and sending this

program back to the server where it can be sent on to the RCX via the serial port.

This program will then allow a client to control a MINDSTORMS robot remotely

The lini part is pretty easy——the hard part was tracking down all the bits and

pieces needed to drive the RCX from lava. With your own lumps of hardware, the

hard part will be writing the low-level code (probably using the Java Native Inter~

face, IND and Java code to drive it.

RCXPort

Version 1.1 of the rcx package by Dario Laverde defines various classes, of which

the most important is RCXPort:

package rcx;

public class RCXPort {

public RCXPort(String port);

public void addRCXListeneI(RCXListener I1);

public boolean open();

public void close();

public boolean isOpen();

public Outputstream getOutputStream();

public Inputstream getInputStream();

public synchronized boolean write(byte[] bArIay);

public String getLastError();

LEGO MINDSTORMS

321

The RCXOpcode class has a useful static method for creating byte code:

package rcx;

public class RCXOpcode {

public static byte[] parseStIing(String str);

The relevant methods for this project are the following:

The constructor RCXPort(). This takes the name of a port as parameter,

which should be something like COM1 forWindows and /dev/ttyS0 for Linux.

The write() method is used to send an array of opcodes and their argu-

ments to the RCX. This is machine code, and you can only read it with a

disassembler or a Unix tool like octal dump (od —t XC).

The static parseString() method of RCXOpcode can be used to translate a

string of instructions in readable form to an array of bytes for sending to the

RCX. It isn’t as good as an assembler, because you have to give strings such

as " 21 81" to start the A motor. To use this method for Jim, we will have to

use a non—static method in our interface, because static methods are not
allowed.

To handle responses from the RCX, a listener may be added with

addRCXListener(). The listener must implement this interface:

package rcx;

import java.util.*;

/*

* RCXListener

* @author Dario Laverde

* @version 1.1

* Copyright 1999 Dario Laverde, under terms of GNU LGPL
*/

public interface RCXListener extends EventListener {

public void receivedMessage(byte[] message);

public void receivedError(5tring error);

322

RCX Programs

At the lowest level, the RCX is controlled by machine-code programs sent via the

infrared link. It will respond to these programs by stopping and starting motors,

changing speed, and so on. As it completes commands or receives information

from sensors, it can send replies back to the host computer. The RCX can handle

instructions sent directly or have a program downloaded into firmware and run

from there.

Kekoa Proudfoot has produced a list of the opcodes understood by the RCX,

and it is available at http : //graphics . stantord . edu/“kekoa/rcx/. Using these and

the rcx package from Dario Laverde, we can control the RCX from a computer by

standalone programs such as this:

/>l<*

* TestRCX.java
*/

package standalone;

import rcx.*;

public class TestRCX implements RCXListener {

static final String PORT_NAME = "/dev/ttySO”; // Linux

public TestRCX() {

RCXPOIt port = new RCXP01't(PORT_NAME);

port.addRCXListener(this);

byte [] byteArray;

// send ping message, reply should be e7 or et

byteArray = RCXOpcode.parseString(“10"); // Alive

port .write(byteAIray);

// beep twice

byteArray = RCXOpcode.parseString("51 01"); // Play sound

port.write(byteArray);

// turn motor A on (forwards)

byteArray = RCXOpcode.parseString("e1 81"); // Set motor direction

port .write(byteArray);

byteArray = RCXOpcode.parseString("21 81"); // Set motor on

port.write(byteArray);

LEGO MINDSTORMS

323

Chapwr17

try {

Thread.currentThread().sleep(1000);

} catch(Exception e) {

}

// turn motor A off

byteArray = RCXOpcode.paIseString("21 41"); // Set motor off

port.write(byteArray);

// turn motor A on (backwards)

byteArray RCXOpcode.parseString(”e1 41"); // Set motor direction

port.write byteAIray);

byteArray — RCXOpcode.parseString(”21 81"); // Set motor on

port.write(byteArray);

try {

Thread.currentThread().sleep(1000);

} catch(Exception e) {

}

// turn motor A off

byteArray = RCXOpcode.parseString("21 41"); // Set motor off

port.write(byteArray);

/**

* listener method for messages from the RCX
*/

public void receivedMessage(byte[] message) {

it (message == null) {
return;

}

StringBuffer sbuffer = new StringBuffer();

foI(int n = O; n < message.length; n++) {

int newbyte (int) message[n];

it (newbyte < O) {.

newbyte += 256;

}

sbuffer.append(Integer.toHexString(newbyte) + ” ");

}

System.out.println("response: ” + sbuffer.toString());

/**

* listener method for error messages from the RCX

324

LEGO MINDS TOR1\/IS

w

public void receivedError(String error) {n

System.err.print1n("Error: + error);

}

public static void main(String[] args) {
new TestRCX();

} // TestRCX

Jini Classes

A simple Iini service can use an RMI proxy, where the service just remains in the

server and the client makes remote method calls on it. The service will hold an

RCXPort and will feed the messages through it. This involves constructing the hier-

archy of classes shown in Figure 17-1.

Figure 1 7-1. Class cliaglmn for MINDSTORMS with RMIproxies

The RCXPortIntertace just defines the methods we will be making available

from the Jim service. It doesn’t have to follow the RCXPort methods completely,

because these will be wrapped up in implementation classes, such as RCXPortImp1.
The interface is defined as follows:

/>+<>a<

* RCXPortInterface.java

325

Chapmr17

*/

package rcx.jini;

import net.jini.core.event.RemoteEventListener;

public interface RCXPortInterface extends java.io.Serializable {

/*>k

* constants to distinguish message types
*/

public final long ERROR_EVENT = 1;

public final long MESSAGE_EVENT = 2;

/*>!<

* write an array of bytes that are RCX commands
* to the remote RCX.

*/

public boolean write(byte[] bytecommand) throws java.rmi.RemoteException;

/>|<*

* Parse a string into a set of RCX command bytes
*/

public byte[] parseString(String command) throws java.Imi.RemoteException;

/>k*

* Add a RemoteEvent listener to the RCX for messages and errors
*/

public void addListener(RemoteEventListener listener)

throws java.rmi.RemoteException;

/>}<*

* The last message from the RCX
*/

public byte[] getMessage(long seqNo)

throws java.rmi.RemoteException;

/>|<*

* The error message from the RCX
*/

public String getError(long seqNo)

throws java.rmi.RemoteException;

} // RCXPOItIntertace

326

We have chosen to make a subpackage of the rcx package and to place the

preceding class in this package to make its role clearer. Note that the
RCXPoItInteIface has no static methods, but makes parseString() into an ordi-

nary instance method.

This interface contains two types of methods: those used to prepare and

send messages to the RCX (write() and parseString()J, and those used to handle

messages sent from the RCX (add Listener(), getMessage(), and getError()). Any

listener that is added will be informed of events generated by implementations

of this interface by having the listener’s not ify() method called. However, a

RemoteEvent does not contain detailed information about what has happened, as it

only contains an event type (MESSAGE_EVENT or ERROR_EVENT). It is up to the listener

to make queries back into the object to discover what the event meant, which it

does with getMessage() and getErIor().

The RemoteRCXPort interface just adds the Remote interface:

/>l<>i<

* RemoteRCXPort.java
*/

package rcx.jini;

import java . Imi . Remote;

public interface RemoteRCXPort extends RCXPortInterface, Remote {

} // RemoteRCXPoIt

The RCXPoIt Impl constructs its own RCXPort object and feeds methods, such as

write(), through to it. Since it extends UnicastRemoteObject, it also adds exceptions

to each method, which cannot be done to the original RCXPort class. In addition, it

picks up the value of the port name from the port property. (This follows the exam-

ple of the RCXLoader in the ICX package, which provides a GUI interface for driving

the RCX.) It looks for this port property in the parameters . txt file, which should
have lines such as this:

port=/dev/ttyS0

Note that the parameters file exists on the server side—no client would know this
information!

The RCXPortImp1 also acts as a listener for “ordinary” RCX events signaling

messages from the RCX. It uses the callback methods IeceivedMessage() and

receivedEIror() to create a new RemoteEvent object and send it to the implementa—

tion’s listener object (if there is one) by calling its notify() method.

LEGO MINDSTORMS

327

C%apwrl7

The implementation looks like this:

/**

* RCXPortImpl.java
*/

package rcx.jini;

import java.rmi.server.UnicastRemoteObject;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import rcx.*;

import java.io.*;

import java.util.*;

public class RCXPortImpl extends UnicastRemoteObject

implements RemoteRCXPort, RCXListener {

protected String error = null;

protected byte[] message = null;

protected RCXPort port = null;

protected RemoteEventListener listener = null;

protected long messageSeqNo, errorSeqNo;

public RCXPortImpl()

throws java.rmi.RemoteException {

Properties parameters;

String portName = null;

File f = new File("parameters.txt“);

it (!t.exists()) {

t = new File(System.getProperty("user.dir")

+ System.getProperty(”path.separator")

+ “parameters.txt");

}

it (f.exists()) {

try {

Filelnputstream {is = new FileInputStream(f);

parameters = new Properties();

parameters.load(fis);

tis.close();

portName = parameters.getProperty(”port");

} catch (IOException e) { }

} else {

328

LEGOAHNDSRMWWS

System.err println(”Can't find parameters.txt

with \"port=...\" specified");

System.exit(1);

port = new RCXPort(portName);

port.addRCXListener(this);

public boolean write(byte[] bytecommands)

throws java.rmi.RemoteException {

return port.write(byteCommands);

public byte[] parseString(String command)

throws java.rmi.RemoteException {

return RCXOpcode.parseString(command);

/**

* Received a message from the RCX.
* Send it to the listener

*/

public void receivedMessage(byte[] message) {

this.message = message;

// Send it out to listener

if (listener == null) {

return;

RemoteEvent evt = new RemoteEvent(this, MESSAGE_EVENT,

messageSeqNo++, null);

try {

listener.notify(evt);

} catch(net.jini.core.event.UnknownEventException e) {

e.printStackTrace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

329

Chapwr17

/**

* Received an error message from the RCX.
* Send it to the listener

*/

public void receivedError(String error) {

// System.err.println(error);

// Send it out to listener

if (listener == null) {

return;

}

this.error = error;

RemoteEvent evt = new RemoteEvent(this, ERROR_EVENT, errorSeqNo, null);

try {

1istener.notify(evt);

} catch(net.jini.core.event.UnknownEventException e) {

e.printStackTrace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

/**

* Expected use: the RCX has returned a message,

* and we have informed the listeners. They query

* this method to find the message for the message

* sequence number they were given in the RemoteEvent.

* We could use this as an index into a table of messages.
*/

public byte[] getMessage(long msgSeqNo) {

return message;

/**

Expected use: the RCX has returned an error message,

and we have informed the listeners. They query

sequence number they were given in the RemoteEvent.

*

*

* this method to find the error message for the error message
*

*
we could use this as an index into a table of messages.

*/

public String getError(long errSeqNo) {

return error;

330

/*>|<

* Add a listener for RCX messages.

* Should allow more than one, or throw

* TooManyListeners if more than one registers
*/

public void addListener(RemoteEventListener listener) {
this.listener = listener;

messageSeqNo = 0;

errorSeqNo = 0;

}

} // RCXPortImpl

Getting It Running

To make use of these classes, we need to provide a server to get the service put

onto the network, and we need some clients to make use of the service. This sec-

tion will just look at a simple way of doing this, and later sections in this chapter

will put in more structure.

The following is a simple server that follows the earlier examples of servers

using RMI proxies (such as in Chapter 9), just substituting RCXPort for

Fileclassifier and using a JoinManager. It creates an RCXPortImpl object and

registers it (or rather, the RMI proxy) with lookup services:

package rcx.jini;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.core.lookup.ServiceID;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lookup.JoinManager;

// import com.sun.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.JoinManageI;

import net jini.lookup.ServiceIDListener;

/*>l<

* RCXServer.java
W

public class RCXServer implements ServiceIDListener {

protected RCXPortImpl impl;

LEGO MINDSTORMS

331

Chapter 1 7

protected LeaseRenewalManageI leaseManager = new LeaseRenewalManager();

public static void main(String argv[]) {

new RCXServer();

// remember to keepalive

public RCXServer() {

try {

impl = new RCXPortImpl();

} catch(Exception e) {

System.err.println(”New impl:

System.exit(1);

II

+ e.toString());

// set RMI security manager

System.setSecurityManager(new RMISecurityManager());

// find, register, lease, etc

try {

LookupDiscoveryManageI mgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */)5

JoinManager joinMgr = new JoinManageI(impl,

null,

this,

mgr,

new LeaseRenewalManager());

} catch(java.io.IOException e) {

e.printStackTrace();

public void serviceIDNotify(ServiceID serviceID) {

System.out.println("Got service ID " + serviceID.toString());
}

} // RCXServeI

Why is this example simplistic as a service? Well, it doesn’t contain any infor-

mation to allow a client to distinguish one LEGO MINDSTORMS robot from

another, so that if there are many robots on the network, then a client could ask

thewnongonetodoflnngd

332

LEGOAHAIBTORMS

An equally simplistic client that makes the RCX perform a few actions is given

below. In addition to sending a set of commands to the RCX, the client must also

listen for replies from the RCX. I have separated out this listener as an EventHandler

for readability. The listener will act as a remote event listener, with its notify()

method called from the server. This can be done by letting it run an RMI stub on

the server, so I have subclassed it from UnicastRemoteObject.

This particular client is designed to drive a particular robot: the “RoverBot,”

described in the LEGO MINDSTORMS “Constructopedia” (the instruction manual

that comes with each MINDSTORMS set), is pictured in Figure 172.

Figure 17—2. RoverBotMINDSTORMS robot

The RoverBot has motors to drive tracks or wheels on either side. The client

can send instructions to make the RoverBot move forward or backward, stop, or

turn to the left or right. The set of commands (and their implementation as RCX

instructions) depends on the robot, and on what you want to do with it.
Here is the client code:

package client;

import rcx.jini.*;

import java.awt.*;

import java.awt.event.*;

import javax. swing.*;

import java.rmi.RMISecurityManager;

333

Chapter 1 7

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.event.RemoteEventListener;

import net.jini.coIe.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;
/>!<*

* TestRCX.java
*/

public class TestRCX implements DiscoveIyListener {

public static final int STOPPED = 1;

public static final int FORNARDS = 2;

public static final int BACKWARDS = 43

protected int state = STOPPED;

public static void main(String argv[]) {

new TestRCX();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public TestRCX() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

334

LEGO MINDSTORMS

discover.addDiscoveryListeneI(this);

}

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

Class [] classes = new Class[] {RCXPortInteIface.class};

RCXPoItInterface port = null;

ServiceTemplate template = new ServiceTemplate(null, classes,
null);

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

try {

port = (RCXPortInterface) registrar.1ookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (port == null) {

System.out.print1n(”poIt null”);
continue;

// add an EventHandler as an RCX Port listener

try {

port.addListener(new EventHandler(poIt));

} catch(Exception e) {

e.printStackTrace();

public void discaIded(DiscoveryEvent evt) {

// empty

class EventHandler extends UnicastRemoteObject

implements RemoteEventListeneI, ActionListeneI {

protected RCXP0ItInterface port = null;

335

Chapwr17

JFIame frame;

JTextAIea text;

public EventHandler(RCXPoItInterface port) throws RemoteException {

super() ;

this.port = port;

frame = new JFrame(”LEGO MINDSTORMS");

Container content = frame.getContentPane();

JLabe1 label = new JLabel(new ImageIcon("images/MINDSTORMS.ps"));

JPanel pane = new JPanel();

pane.setLayout(new GridLayout(2, 3));

content.add(label, ”North");

content.add(pane, ”Center");

JButton btn = new JButton("ForwaId”);

pane.add(btn);

btn.addActionListener(this);

btn = new JButton("Stop");

pane.add(btn);

btn.addActionListener(this);

btn = new JButton("Back");

pane.add(btn);

btn.addActionListener(this);

btn = new JButton("Left”);

pane.add(btn);

btn.addActionListener(this);

label = new JLabel("");

pane.add(label);

btn = new JButton("Right");

pane.add(btn);

btn.addActionListener(this);

fIame.pack();

frame.setVisible(true);

public void sendCommand(String comm) {

336

LEGOAHNDSTORNE

byte[] command;

try {

command = port.parseStIing(comm);

if (I poIt.write(command)) {

System.eIr.println("command failed");

}

} catch(RemoteException e) {

e.printStackTrace();

public void foIwards() {

sendCommand(”e1 85");

sendCommand("21 85");

state = FORNARDS;

public void backwaIds() {
sendCommand("e1 45”);

sendCommand("21 85");

state = BACKNARDS;

public void stop() {
sendCommand("21 45");

state = STOPPED;

public void restoreState() {

if (state == FORWARDS)

foIwaIds();

else if (state == BACKWARDS)

backwards();
else

St0P();

}

public void actionPerfoImed(ActionEvent evt) {

String name = evt.getActionCommand();

if (name.equals("Forward")) {

forwaIds();

} else if (name.equa1s("Stop")) {

St0P();

337

Chapter 1 7

} else if (name.equa1s(”Back")) {

backwards();

} else if (name.equals("Left")) {

sendCommand("e1 84”);

sendCommand("21 84");

sendCommand("21 41");

try {

Thread.sleep(100);

} catch(InterIuptedException e) {

}

rest0reState();

} else if (name.equals("Right")) {

sendCommand("e1 81");

sendCommand("21 81");

sendCommand(”21 44");

try {

Thread.sleep(100);

} catch(InteIIuptedException e) {

}

IestoIeState();

public void notify(RemoteEvent evt) throws UnknownEventException,

java.rmi.RemoteException {

// System.out.println(evt.toStIing());

long id = evt.getID();

long seqNo = evt.getSequenceNumbeI();

if (id == RCXP01”CInte1"FaCe.MESSAGE_EVENT) {

byte[] message = poIt.getMessage(seqNo);

StIingBuffer sbuffer = new StringBuffer();

foI(int n = 0; n < message.length; n++) {

int newbyte = (int) message[n];

if (newbyte < 0) {

newbyte += 256;

}

sbuffer.append(Integer.toHexString(newbyte) + " ");

}

System.out.println(”MESSAGE: ” + sbuffeI.toString());

} else if (id == RCXPoItInteIface.ERROR_EVENT) {

System.out.println("ERROR: " + port.getEIror(seqNo));

} else {

338

throw new UnknownEventException("Unknown message " + evt.getID());

}

} // TestRCX

Why is this a simplistic client? It tries to find all robots on the local network,

and creates a top-level window for each of them. If a robot has registered with, say,

half—a—dozen service locators, and the client finds all of these, then it will create six

top—level windows, one for each copy of the same robot. Some smarts are needed
here, such as using the Client LookupManager of Chapter 15.

Entry Objects for a Robot

The RCX was not designed for network visibility. It has no concept of identity or

location. The closest it comes to this is when it communicates to other RCXS by the

infrared transmitter—then one RCX may have to decide whether it is the master,

which it does by setting a local variable to “master" if it broadcasts before it

receives, and the other RCXs will set the variable to “slave” if they receive before

broadcasting. Then each waits for a random amount of time before broadcasting.
Crude, but it works.

In a Iini environment, there may be many RCX devices. These devices are not

tied to any particular computer, as they will respond to any infrared transmitter on

the correct frequency talking the right protocol. All the devices within range of a

transmitter will accept signals from the transmitter, although this can cause prob-

lems, because the source computers tend to assume that there is only one target at

a time, and they can get confused by responses from multiple RCXs. The solution

is to turn off all but one RCX when a program is being downloaded, to avoid this

confusion. Then turn on the next, and download to it, and so on. Not very elegant,

but it works.

An RCX may also be mobile—it can control motors, so if it is placed in a

mobile robot, it can drive itself out of the range of one PC and (maybe) into the

range of another. There are no mechanisms to signal either passing out of range or

coming into range.

The RCX is a poorly behaved animal from a network viewpoint. However, we

will need to distinguish between different RCXs in order to drive the correct ones.

An Entry class for distinguishing them should contain information such as this:

0 An identifier for robot type, such as “Robo 1", “Acrobot 1”, etc. This will allow
the robot that the RCX is built into to be identified. The RCX will have no

knowledge of its identifier——it must be externally supplied.

LEGO MINDSTORMS

339

ChapmrI7

° The RCX can be driven by direct commands or by executing a program

already downloaded (there may be up to five of these). An identifier for each

downloaded program should be available.

0 The RCX will have some sort of location, although it may move around to a

limited extent. This location information may be available from the control-

ling computer, using the Iini Location or Address classes.

There may be other useful attributes, and there are certainly issues to be
resolved about how the information could be stored and accessed from an RCX.

However, they stray beyond the bounds of this chapter.

A Client—Side RCX Class

In the simplistic client given earlier, there were many steps that will be the same

for all clients that can drive the RCX. Just as JoinManager simplifies repetitive code

on the server side, we can define a “convenience" class for the RCX that will do the

same on the client side. The aim is to supply a class that will make remote RCX

programming as easy as local RCX programming.

A class that encapsulates client-side behavior may as well look as much as

possible like the local RCXPort class. We define its (public) methods as follows:

public class JiniRCXPort {

public JiniRCXPort();

public void addRCXListener(RCXListener 1);

public boolean write(byte[] bArray);

public byte[] parseString(String str);

This class should have some control over how it looks for services by including

entry information, group information about locators, and any specific locators it

should try. There are a variety of possible constructors, all ending up calling a con-
structor that looks like this:

public JiniRCXPort (Entry[] entries,

java.lang.String[] groups,

LookupLocator[] locators)

The class is also concerned with uniqueness issues, as it should not attempt to

send the same instructions to an RCX more than once. However, it could send the

same instructions to more than one RCX if they match the search criteria. There-

fore, this class maintains a list of RCXs and does not add to the list if it has already

340

seen the RCX from another service locator. This requires that a single RCX should
be registered using the same SeIviceID with all locators, which will be the case
because the RCX server uses]oinManager.

Higher—Level Mechanisms: Not Quite C

“Not Quite C” (nqc) is a language and a compiler from David Baum, designed for
the RCX. It defines a language with C—like syntax that defines tasks that can be exe-

cuted concurrently. The RCXAPI also defines a number of constants, functions,

and macros targeted specifically to the RCX. These include constants such as OUT_A

(for output A) and functions such as On Fwd to turn a motor on forwards.
The following is a trivial nqc program to turn motor A on for 1 second (units

are 1/ 100th of a second):

task main () {

0nFwd(OUT_A);

wait(100) ;

0ff(0UT_A) ;

}

Writing programs using a higher—level language such as this is clearly preferable to
writing in Assembler!

nqc is not the only higher—level language for programming the RCX. There

are links to many others on the alternative MINDSTORMS site

(http : //www. crynwr . com/LEGO—robotics/). It is one of the earliest and more

popular ones, though, and it is a typical example of a standalone, non—GUI

program written in a language other than Iava that can still be used as a Iini
service.

The nqc compiler is written in C++ and needs to be compiled for each platform
that it will run on. Precompiled versions are available for a number of systems,

such as Windows and Linux. Once compiled, it is tied to a particular computer (at

least, to computers with a particular OS and shared library configuration). It is

software, not hardware like the MINDSTORMS robots, but it is nevertheless not

mobile. It cannot be moved around like Java code can. However, it can be turned

into a Iini service in exactly the same way as MINDSTORMS, by wrapping it in a

Java class that can be exported as a Jini service. This also fits the RMI proxy model,

with the client side using a thin proxy that makes calls to a service that invokes the

nqc compiler.

The class diagram follows other RMI proxy diagrams and is shown in Figure 17~3.

LEGO MINDSTORMS

341

ChapmrI7

Figure 1 7-3. Class diagmmfornqc with RMI proxy

The NotQuiteC and RemoteNotQuiteC interfaces are defined by

/10!‘

* NotQuiteC.java
*/

package rcx.jini,'

import java.rmi.RemoteException;

import java.io.SeIializable;

public interface NotQuiteC extends Serializable {

public byte[] compile(StIing program)

throws RemoteException, CompileException,'

} // NotQuiteC

and by

/>1=>I<

* RemoteNotQuiteC.java
*/

package Icx.jini;

import java.rmi.Remote;

public interface RemoteNotQuiteC extends NotQuiteC, Remote {

342

} // RemoteNotQuiteC

The compile exception is thrown when things go wrong:

pm

* CompileException.java
*/

package rcx.jini;

public class Compi1eException extends Exception {

protected String error;

public CompileException(String err) {
error = err;

public String toString() {
return error;

}

} // CompileException

An implementation of the RemoteNotQu iteC interface needs to encapsulate a

traditional application running in an environment ofjust reading and writing files.

GUI applications, or those nuisance Unix ones that insist on using an interactive

terminal (such as telnet), will need more complex encapsulation methods. The

nqc type of application will read from standard input or from a filo, often depend-

ing on command line flags. Similarly, it will write to a file or to standard output,

again depending on command line flags. Applications either succeed or fail in
their task; this should be indicated by what is known as an exit code, which by con-

vention is 0 for success and some other integer value for failure. If a failure occurs,

an application will usually write diagnostic output to the standard error channel.

The current version of nqc (version 2.0.2) is badly behaved for reading from

standard input (it crashes) and writing to standard output (no way of doing this).

So we can’t create a Process to run nqc and feed into its input and output. Instead,

we need to create temporary files and write to and read from these files so that the

Iini wrapper can communicate with nqc. These files also need to be cleaned up on
termination, whether the normal or exception routes are followed. On the other

hand, if errors occur, they will be reported on the error channel of the process, and

this needs to be captured in some way—in this example, we will do it via an excep-
tion constructor.

LEGO MINDSTORMS

343

Chapter 17

The hard part in this example is plowing your way through the Java 1/ O maze,

and deciding exactly how to hook up 1/ O streams and/or files to the external pro-

cess. The following code uses temporary files for ordinary 1/ O with the process

(the current Version I have of nqc has a bug with pipelines) and the standard error

stream for compile errors.

/**

* NotQuiteCImpl.java
*/

package rcx.jini;

import java.rmi.server.Unicastkemoteobject;

import javairmi.RemoteException;

import java.io.*;

public class NotQuiteCImpl extends UnicastRemoteObject

implements RemoteNotQuiteC {

protected final int SIZE = 1<<15; // 32k — the size of the RCX memory

public NotQuiteCImpl() throws RemoteException {

}

public byte[] compile(String program)

throws CompileException {

// This is the input file we read from — it is the output from nqc

File inFile = null;

// This is the output file that we write to - it is the input to nqc

File outFile = null;

byte[] buff = new byte[SIZE];

try {

outFile = File.createTempFile("jini", ".nqc");

inFile = File.createTempFile("jini", ".rcx");

Outputstreamwriter out = new 0utputStreamwriter(

new File0utputStream(

outFile));

out.write(program);

out.close();

Process p = Runtime.getRuntime().exec("nqc -0" +

344

LEGO MINDSTORMS

inFile.getAbsolutePath() +

” " + outFile.getAbsolutePath());

int status = p.waitFoI();

if (status != O) {
BufferedReader err new BufferedReader(

new InputStreamReader(p.

getEIrorStream()));

StringBuffer erIBuff = new StringBuffer();

String line;

while ((line = err.readLine()) != null) {

errBuff.append(line + ‘\n');

}

throw new CompileException(errBuff.toString());

}

Datalnputstream compiled = new DataInputStream(new
FileInputStream(outFile));

int nread = compiled.read(buff);

byte[] result = new byte[nread];

System.arraycopy(buff, 0, result, 0, nread);
return result;

} catch(IOException e) {

throw new CompileException(e.toString());

} catch(InterruptedException e) {

throw new CompileException(e.toString());

} finally {

// clean up files even if exceptions thrown

if (inFile l= null) {

inFile.delete();

}

if (outFile |= null) {

outFile.delete();

}

public static void main(String[] argv) {

String program = "task main() {\n" +
" 0nFwd(0UT_A);\n" +

” wait(100);\n" +

" 0ff(0UT_A);\n" +

"}";

NotQuiteCImpl compiler = null;

345

Chapwr17

try {

compiler = new NotQuiteCImpl();

byte[] bytes = compiler.compile(pIogIam);

} catch(Exception e) {

e.printStackTrace();

}

}

} // NotQuiteCImpl

This section does not give server and client implementations——the server is

the same as servers delivering other RMI services. A client will make a call on this

service, specifying the program to be compiled. It can then write the byte stream

to the RCX using the classes given earlier.

Summary

This chapter has considered some of the issues involved in using a piece of hard-

ware with a Jini service. This was illustrated with LEGO MINDSTORMS. where a

large part of the base work of native code libraries and encapsulation in Java

classes has already been done. Even then, there is much work involved in making

it a suitable Iini service, and these have been discussed. This work is not yet com-
plete, and more remains to be done for LEGO MINDSTORMS.

346

CHAPTER 18

CORBA and Jini

THERE ARE MANY DIFFERENT DISTRIBUTED SYSTEM ARCHITECTURES in addition to Iini.

Many have only limited use, but some such as DCOM and CORBA are widely used,
and there are many systems that have been built using these other distributed

frameworks. This chapter looks at the similarities and differences between Jini and

CORBA and shows how services built using one architecture can be used by another.

CORBA

Like Iini, CORBA is an infrastructure for distributed systems. CORBA was designed

out of a different background than Iini, and there are some minor and major dif-

ferences between the two.

CORBA allows for specification of objects that can be distributed. The con-

centration is on distributed objects rather than on distributed services.

CORBA is language-independent, using an Interface Definition Language

(IDL) for specifying interfaces.

CORBA objects can be implemented in a number of languages, including C,

C++, SmallTall<, and Java

Current versions of CORBA pass remote object references, rather than com—

plete object instances. Each CORBA object lives within a server, and the

object can only act within this server. This is more restricted than Iini,

where an object can have instance data and class files sent to a remote

location to execute there. This limitation in CORBA may change in future

with pass—by-value parameters to methods.

IDL is a language that allows the programmer to specify the interfaces of a

distributed object system. The syntax is similar to C++ but does not include any

implementationdevel constructs, so it allows definitions of data types (such as

structures and unions), constants, enumerated types, exceptions, and interfaces.

Within interfaces, it allows the declaration of attributes and operations (methods).

The complete IDL specification can be found on the Object Management Group

(OMG) Web site (http : //www . omg . org/).

347

Chapwrla

The bookJava Programming with CORBA by Andreas Vogel and Keith Duddy

(http : //www.wiley . com/compbooks/vogel) contains an example of a room—booking

service specified in CORBA IDL and implemented in Java. This defines interfaces for

Meeting, a MeetingFactory factory to produce them, and a Room. A room may have a

number of meetings in slots (hourly throughout the day), and there are support con-

stants, enumerations, and typedefs to support this. In addition, exceptions may be

thrown under various error conditions. The IDL that follows differs slightly from that

given in the book, in that definitions of some data types that occur within interfaces

have been “lifted" to a more global level, because the mapping from IDL to Java has

changed slightly for elements nested within interfaces since that book was written.

The following is the modified IDL for the room—bool<ing service:

module corba {

module RoomBooking {

interface Meeting {

// A meeting has two read—only attributes that describe

// the purpose and the participants of that meeting.

readonly attribute string purpose;

readonly attribute string participants;

oneway void destroy();

};

interface MeetingFactory {

// A meeting factory creates meeting objects.

Meeting CreateMeeting(in string purpose, in string participants);
};

// Meetings can be held between the usual business hours.

// For the sake of simplicity there are 8 slots at which meetings
// can take place.

enum Slot { am9, am10, am11, pm12, pml, pm2, pm3, pm4 };

// since IDL does not provide means to determine the cardinality

// of an enum, a corresponding Maxslots constant is defined.

const short Maxslots = 8;

348

CORBA andjini

exception NoMeetingInThisSlot {};

exception SlotAlreadyTaken {};

interface Room {

// A Room provides operations to view, make, and cancel bookings.

// Making a booking means associating a meeting with a time slot

// (for this particular room).

// Meetings associates all meetings (of a day) with time slots
// for a room.

typedef Meeting Meetings[Maxslots];

// The attribute name names a room.

readonly attribute string name;

// View returns the bookings of a room.

// For simplicity, the implementation handles only bookings

// for one day.

Meetings View();

void Book(in Slot a_slot, in Meeting a_meeting)

raises(SlotAlreadyTaken);

void Cance1(in Slot a_slot)

raises(NoMeetingInThisSlot);

CORBA to Java Mapping

CORBA has bindings to a number of languages. That is, there is a translation from

IDL to each language, and there is a runtime environment that supports objects

written in these languages. A recent addition is Java, and this binding is still under

active development (that is, the core is basically settled, but some parts are still

349

Chapter 18

changing). This binding must cover all elements of IDL. Here is a horribly brief

summary of the CORBA translations:

Module-—A module is translated to a Iava package. All elements within the

module becomes classes or interfaces within the package.

Basic types—Most of the basic types map in a straightforward manner—a
CORBA int becomes a Java int, a CORBA string becomes a Java

java . lang . String, and so on. Some are a little tricky, such as the unsigned

types, which have no Iava equivalent.

Constant——Constants within a CORBA IDL interface are mapped to con-

stants within the corresponding Iava interface. Constants that are “global"

have no direct equivalent in Java, and so are mapped to Java interfaces with

a single field that is the value.

Enum—-Enumerated types have no direct Java equivalent, and so are

mapped into a Java interface with the enumeration as a set of integer
constants.

Struct—A CORBA IDL structure is implemented as a Java class with instance
variables for all fields.

Interface—-A CORBA IDL interface translates into a Java interface.

Exception—A CORBA IDL exception maps to a final Java class.

This mapping does not conform to naming conventions, such as those estab-
lished for Java Beans. For example, the IDL declaration readonly string purpose

becomes the Java accessor method String purpose() rather than

String getPurpose() . Where Java code is generated, the generated names will be
used, but in methods that I write, I will use the more accepted naming forms.

Jini Proxies

A Iini service exports a proxy object that acts within the client on behalf of the

service. On the service provider side, there may be service backend objects, com-

plcting the service implementation. The proxy may be fat or thin, depending on
circumstances.

In Chapter 17 the proxy had to be thin: allit does is pass on requests to the
service backend, which is linked to the hardware device, and the service cannot

move, because it has to talk to a particular serial port. (The proxy may have an

extensive user interface, but the Jim community seems to feel that any user

350

interface should be in Entry objects rather than in the proxy itself.) Proxy objects

created as RMI proxies are similarly thin, just passing on method calls to the ser-

vice backend which is implemented as remote objects.

CORBA services can be delivered to any accessible client. Each service is lim-

ited to the server on which it is running, so they are essentially immobile, but they

can be found by a varie Ly of methods, such as a CORBA naming or trading service.

These search methods can be run by any client, anywhere. A search will return a

reference to a remote object, which is essentially a thin proxy to the CORBA ser-

vice. Similarly, if a CORBA method call creates and returns an object, then it will

return a remote reference to that object, and the object will continue to exist on

the server where it was created. (The new CORBA standards will allow objects to

be returned by value. This is not yet commonplace and will probably be restricted

to a few languages, such as C++ and Java.)

The simplest way to make a CORBA object available to a Iini federation is to

build a Iini service that is at the same time a CORBA client. The service acts as a

bridge between the two protocols. Really, this is just the same as MlNDSTORMS—

anything that talks a different protocol (hardware or software) will require a bridge

between itself and Iini clients.

Most CORBA implementations use a protocol called IIOP (Internet Inter—ORB

Protocol), which is based on TCP. The current Jini implementation is also TCP—

based, so there is a confluence of transport methods, which normally would not

occur. A bridge would usually be fixed to a particular piece of hardware, but here it

is not necessary due to this confluence.

A Iini service has a lot of flexibility in implementation and can choose to place

logic in the proxy, in the backend, or anywhere else for that matter. The combina-

tion of Iini flexibility and IIOP allows a larger variety of implementation

possibilities than is possible with fixed pieces of hardware such as MINDSTORMS.

Here are a couple of examples:

0 The Jim proxy could invoke the CORBA naming service lookup to locate the

CORBA service, and then make calls directly on the CORBA service from the

client. This is a fat proxy model in which the proxy contains all of the service

implementation. There is no need for a service backend, and the service

provider just exports the service object as proxy and then keeps the leases

for the lookup services alive.

The Iini proxy could be an RMI stub, passing on all method calls to a back—

end service running as an RMI remote object in the service provider. This

is a thin proxy with fat backend, where all service implementation is done

on the backend. The backend uses the CORBA naming service lookup to
find the CORBA service and then makes calls on this CORBA service from

the backend.

CORBA andJim’

351

Chapmr18

A Simple CORBA Example

The standard introductory example to any new system is "hello world.” and it

seems to get more complex with every advance that is made in computing tech-

nology! A CORBA Version can be defined by the following IDL:

module corba {

module HelloModule {

interface Hello {

string getHello();

h

};

};

This code can be compiled into Java using a compiler such as Sun’s idltoj ava

(or another CORBA 2.2 compliant compiler). This results in a corba . He1loModule

package containing a number of classes and interfaces. Hello is an interface that is

used by a CORBA client (in Java).

package corba.HelloModule;

public interface Hello

extends org.omg.CORBA.Object, org.omg.CORBA.poItable.IDLEntity {

String getHe1lo();

CORBA Server in Java

A server for the hello IDL can be written in any language with a CORBA binding,

such as C++. Rather than get diverted into other languages, though, we will stick to a

Java implementation. However, this language choice is not forced on us by CORBA.

The server must create an object that implements the Hello interface. This is

done by creating a servant that inherits from the HelloImplBase and then register-

ing it with the CORBA ORB (Object Request Broker—this is the CORBA backplcme,

which acts as the runtime link between different objects in a CORBA system). The

serucmtis the CORBA term for what we have been calling the “backend service” in

Jim, and this object is created and run by the server. The server must also find a

name server and register the name and the servant implementation. The servant

implements the Hello interface. The server can just sleep to continue existence

after registering the servant.

/>l<>l<

* CorbaHelloServer.java

352

CORBA andlini

*/

package corba;

import corba.HelloModule.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class CorbaHel1oServer {

public CorbaHelloServeI() {

public static void main(String[] args) {

try { ‘
// create a Hello implementation object

ORB orb = 0RB.init(aIgs, null);

Hellolmpl hello new HelloImpl();

orb.connect(hello);

// get the name server

org.omg.CORBA.0bject objRet =

orb.resolve_initial_references(”NameService”)5

NamingContext namingcontext = NamingContextHelper.naIrow(objRet);

// bind the Hello service to the name server

NameComponent nameComponent = new NameComponent("Hello", "");

Namecomponent path[] = {nameComponent};

namingContext.Iebind(path, hello);

// sleep

java.lang.0bject sleep = new java.lang.Object();

synchIonized(sleep) {

sleep.wait();

}

} catch(Exception e) {

e.printStackTIace();

} // CorbaHelloSeIver

class Hellolmpl extends _HelloImplBase {

353

public String getHel1o() {

return("hello world");

CORBA Client in Java

A standalone client finds a proxy implementing the Hello interface with methods

such as one that looks up a CORBA name server. The name server returns a

org. omg.CORBA.0bject, which is cast to the interface type by the He1loHe1per

method narrow() (the Java cast method is not used). This proxy object can then
be used to call methods back in the CORBA server.

/>u<*

* CorbaHelloClient.java
*/

package corba;

import corba.HelloModule.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

public class CorbaHelloClient {

public CorbaHelloClient() {

public static void main(String[] args) {

try {

ORB orb = 0RB.init(args, null);

// get the name server

org.omg.CORBA.Object objRet =

orb.resolve_initial_references(”NameSeIvice");

NamingContext namingcontext = NamingContextHelper.narrow(objRet);

// get the Hello proxy

NameComponent nameComponent = new NameComponent("Hel1o”, "");

Namecomponent path[] = {nameComponent};

org.omg.CORBA.0bject obj = namingContext.resolve(path);

Hello hello = HelloHelper.narrow(obj);

354

// now invoke methods on the CORBA proxy

String hello = he1lo.getHe11o(),'

System.out . println(hel1o);

} catch(Exception e) {

e . printStackTrace();

} // CorbaHe1loClient

Jini Service

In order to make the CORBA object accessible to the Jim world, it must be turned

into a Iini service. At the same time it must remain in a CORBA server, so that it can

be used by ordinary CORBA clients. So we can do nothing to the CORBA server.

Instead, we need to build a Iini service that will act as a CORBA client. This service

will then be able to deliver the CORBA service to Iini clients.

The Iini service can be implemented as a fat proxy delivered to a Jini client.

The Jim service implementation is moved from the Jim server to a Iini client as the

service object. Once in the client, the service implementation is responsible for

locating the CORBA service by using the CORBA naming service, and it then trans-

lates client calls on the Jini service directly into calls on the CORBA service. The

processes that run in this, with their associated Iini and CORBA objects, are shown

in Figure 18-1.

The Java interface for this service is quite simple and basically just copies the
interface for the CORBA service:

/**

* JiniHello . j ava
*/

package corba;

import java.io.Serializab1e;

public interface JiniHello extends Serializable {

public String getHe11o();

} // JiniHello

The getHe11o () method for the CORBA IDL returns a string. In the Java bind-

ing this becomes an ordinary lava String, and the Jim service can just use this type.

The next example (in the “Room—Booking Example” section) will show a more

CORBA andlini

355

CImpter18

Jini
server

CORBA
server

Jini lookup
service CORBA

A Helloservant

CORBA

hello CORBA
reference name server

Figure 18-1. CORBA andJim’ services

complex case where CORBA objects may be returned. Note that because this is a

fat service, any implementation will get moved across to a Iini client and will run

there, so the service only needs to implement Serializable, and its methods do not

need to throw Remote exceptions, since they will run locally in the client.

The implementation of this Jini interface will basically act as a CORBA client.

Its getHe1lo () method will contact the CORBA naming service, find a reference to

the CORBA Hello object, and call its getHello() method. The Jini service can just

return the string it gets from the CORBA service.

/**

* JiniHelloImpl . java
*/

package corba;

import org.omg.CosNaming.*;

import org . omg . CORBA. *;

import corba.HelloModule.*;

public class liniHe1loImpl implements Jinii-lello {

protected Hello hello = null;

protected String[] argv;

356

CCH&4and]hfi

public JiniHe1loImpl(String[] argv) {
this.argv = argv;

public String getHello() {

if (hello == null) {

hello = getHello();

}

// now invoke methods on the CORBA proxy

String hello = hello.getHello();

return hello;

protected Hello getHello() {
ORB orb = null;

// Act like a CORBA client

try {

orb = 0RB.init(argv, null);

// get the CORBA name server

org.omg.CORBA.Object objRet =

orb.resolve_initial_references("Nameservice");

NamingContext namingcontext = NamingContextHelper.narrow(objRef);

// get the CORBA Hello proxy

NameComponent nameComponent = new NameComponent(”Hello", "");

Namecomponent path[] = {namecomponent};

org.omg.CORBA.0bject obj = namingcontext.resolve(path);

Hello hello = He1loHelper.narrow(obj);

return hello;

} catch(Exception e) {

e.printStackTrace();
return null;

}

} // JiniHelloImpl

357

Chapwr18

Jini Server and Client

The Iini server that exports the service doesn’t contain anything new compared to

the other service providers we have discussed. It creates a new]iniHelloImpl

object and exports it using a JoinManager:

joinMgr new JoinManager(new JiniHelloImp1(argv), ...)

Similarly, the Jini client doesn’t contain anything new, except that it catches

CORBA exceptions. After lookup discovery, the code is as follows:

try {

hello = (JiniHello) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTIace();

System.exit(2);

}

it (hello == null) {

System.out.println("hello null”);
return;

}

String msg;

try {

msg = hello.getHello();

System.out.println(msg);

} catch(Exception e) {

// a CORBA runtime error may occur

System.eIr.print1n(e.toString());

Building the Simple CORBA Example

Compared to the]ini—only examples that have been looked at so far, the major

additional step in this CORBA example is to build the lava classes from the IDL

specification. There are a number of CORBA IDL-to—Iava compilers. One of these is

the Sun compiler idltojava, which is available from java . sun . com. This (or another

compiler) needs to be run on the IDL file to produce the lava files in the corba . Hel-

1oModu1e package. The files that are produced are standard Java files, and they can

be compiled using your normal lava compiler. They may need some CORBA files

in the CLASSPATH if required by your vendor’s implementation of CORBA. Files pro-

duced by idltojava do not need any extra classes.

The Iini server, service, and client are also normal Java files, and they can be

compiled like earlier Iini files, with the CLASSPATH set to include the Iini libraries.

358

CORBAandfini

Running the Simple CORBA Example

There are a large number of elements and processes that must be set running to

get this example working satisfactorily:

1. A CORBA name server must be set running. In the IDK 1.2 distribution is a

server, tnameserv. By default, this runs on TCP port 900. Under Unix,

access to this port is restricted to system supervisors. It can be set running

on this port by a supervisor, or it can be started during boot time. An ordi-

nary user will need to use the option —0RBInitialPort port to run it on a

port above 1024:

tnameserv -0RBInitia1PoIt 1055

All CORBA services and clients should also use this port number.

The lava version of the CORBA service can then be started with this
command:

java corba.CorbaHel1oSeIver —ORBInitialPort 1055

Typical Iini support services will need to be running, such as a Iini lookup

service, the RMI daemon rmid, and HTTP servers to move class definitions
around.

The Iini service can be started with this command:

java corba.JiniHelloSe:rver -0RBInitialPort 1055

Finally, the Iini client can be run with this command:

java client.TestCorbaHe11o —0RBInitia1Port 1055

CORBA Implementations

There are interesting considerations about what is needed in Java to support

CORBA. The example discussed previously uses the CORBAAPIS that are part of

the standard OMG binding of CORBA to Java. The packages rooted in org. omg are

in major distributions of IDK 1.2, such as the Sun SDK. This example should com-

pile properly with most Java 1.2 compilers using these OMG classes.

Sun’s IDK 1.2 runtime includes a CORBA ORB, and the example will run as is,

using this ORB. However, there are many implementations of CORBA ORBs, and

they do not always behave in quite the same way. This can affect compilation and

359

Chapter 18

runtime results. Which CORBA ORB is used is determined at runtime, based on

properties. If a particular ORB is not specified, then it defaults to the Sun—supplied

ORB (using Sun's SDK). To use another ORB, such as the Orbacus ORB, the follow-

ing code needs to be inserted before the call to ORB. init():

java.util.PIopeIties props = System.getPIopeIties();

props.put(“org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");

props.put("org.omg.CORBA.ORBSing1etonClass",

"com.ooc.CORBA.ORBSingleton");

System. setProperties(props);

Similar code is required for the ORBS from IONA and other vendors.

Variations in CORBA implementations could affect the runtime behavior of

the client: if the proxy expects to use a particular ORB other than the default, then
the class files for that ORB must be available to the client or be downloadable

across the network. Alternatively, the proxy could be written to use the default Sun

ORB, and then may need to make inter~ORB calls between the Sun ORB and the

actual ORB used by the CORBA service. Such issues take us beyond the scope of

this chapter, though. Vendor documentation for each CORBA implementation

should give more information on any additional requirements.

Room-Booking Example

The IDL for a room—bool<ing problem was briefly discussed in the introductory

“CORBA” section in this chapter. This room—booking example has a fewmore com~

plexities than the previous example. The problem here is to have a set of rooms, and

for each room have a set of bookings that can be made for that room. The bookings

may be made on the hour, from 9 a.m. until 4 p.m. (this only covers the bookings for

one day). Bookings may be cancelled after they are made. A room can be queried for

the set ofbookings it has: it returns an array of meetings, which are null if no booking

has been made, or non—null including the details of the participants and the purpose

of the meeting.

There are other things to consider in this example:

0 Each room is implemented as a separate CORBA object. There is also a

“meeting factory” that produces more objects. This is a system with multiple

CORBA objects residing on many CORBA servers. There are several possibil-

ities for implementing a system with multiple objects.

- Some of the methods return CORBA objects, and these may need to be

exposed to clients. This is not a problem if the client is a CORBA client, but

here we will have Iini clients.

360

CORBA and]im'

- Some of the methods throw user-defined exceptions, in addition to CORBA-

defined exceptions. Both of these need to be handled appropriately.

CORBA Objects

CORBA defines a set of“primitive" types in the IDL, such as integers ofvarious sizes,

chars, etc. The language bindings specify the primitive types in each language that

they are converted into. For example, the CORBA wide character (wchar) becomes a

Java Unicode char. Things are different for non—primitive objects, which depend on

the target language. For example, an IDL objectturns into a Java interface.

The room—booking IDL defines CORBA interfaces for Meeting, MeetingFactory,

and Room. These can be implemented in any suitable language and need not be in

Iava—the lava binding will convert these into Java interfaces. A CORBA client writ—

ten in Java will get objects that implement these interfaces, but these objects will

essentially be references to remote CORBA objects. Two things are certain about
these references:

° CORBA interfaces generate lava interfaces, such as Hello. These inherit from

org.omg.CORBA. portable. IDLEntity, which implements Serializable. As a

result, the references can be moved around like Jim objects, but they lose

their link to the CORBA ORB that created them and may end up in a differ-

ent namespace, where the reference makes no sense. Therefore, CORBA

references cannot be usefully moved around. At present, the best way to

move them around is to convert them to “stringified” form and move that

around, though this may change when CORBA pass—by-value objects

become common. Note that the serialization method that gives a string rep-

resentation of a CORBA object is not the same as the Java one: the CORBA

method serializes the remote reference, whereas the lava method serializes

the object’s instance data.

0 The references do not subclass from UnicastRemote0bj ect or Activatable. The

Java runtime will not use an RMI stub for them.

If a Iini client gets local references to these objects and keeps them local, then
it can use them via their Java interfaces. If they need to be moved around the net-

work, then appropriate “mobile" classes will need to be defined and the infor-

mation copied across to them from the local objects. For example, the CORBA

Meeting interface generates the following Java interface:

/>l<

* File: ./corba/RoomBooking/Meeting.java

* From: RoomBooking.idl

361

Chapter‘ 1 8

* Date: wed Aug 25 11:30:25 1999

* By: idltojava Java IDL 1.2 Aug 11 1998 02:00:18
*/

package corba.RoomBooking;

public interface Meeting

extends org.omg.CORBA.0bject, org.omg.CORBA.portable.IDLEntity {

String purpose();

String participants();

void destroy()

To make the information from a CORBA Meeting available as a mobile Iini

object, we would need an interface like this:

/**

* JavaMeeting .java
*/

package corba.common;

import java.io.Serializable;

import org . omg . CORBA. *;

import corba .RoomBooking . *;

import java.rmi.RemoteException;

public interface JavaMeeting extends Serializable {

String getPurpose();

String getParticipants();

Meeting getMeeting(ORB orb);

} // JavaMeeting

The first two methods in the preceding interface allow information about a

meeting to be accessible to applications that do not want to contact the CORBA

service. The third allows a CORBA object reference to be reconstructed within a

new ORB. A suitable implementation is as follows:

/>i<>i<

* JavaMeetingImp1 . java
*/

package corba.RoomBookingImpl;

import corba . RoomBooking. *;

import org.omg.CORBA.*;

362

CORBAandfini

import corba.common.*;

/>l<*

* A portable Java object representing a CORBA object.
*/

public class JavaMeetingImp1 implements]avaMeeting {
protected String purpose;

protected String participants;

protected String corbaobj;

/>l<*

* get the purpose of a meeting for a Java client
* unaware of CORBA

*/

public String getPurpose() {
return purpose;

/>{~‘*

* get the participants of a meeting for a Java client
* unaware of CORBA

*/

public String getParticipants() {
return participants;

/*$

* reconstruct a meeting using a CORBA orb in the target JVM
*/

public Meeting getMeeting(ORB orb) {

org.omg.CORBA.Object obj = orb.string_to_object(corbaobj);
Meeting m = MeetingHelper.narrow(obj);
return m;

/**

* construct a portable Java representation of the CORBA

* Meeting using the CORBA orb on the source JVM
*/

public JavaMeetingImpl(Meeting m, ORB orb) {

purpose = m.purpose();

participants = m.participants();

corbaobj = orb.object_to_string(m);

363

Chapter 18

} // JavaMeetingImp1

Multiple Objects

The implementation of the room—booking problem in the Vogel and Duddy book

(Java Programming with CORBA, http : / /www.wiley. com/compbooks/vogel) runs

each room as a separate CORBA object, each with its own server. A meeting factory

creates meeting objects that are kept within the factory server and passed around

by reference. So, for a distributed application with ten rooms, there will be eleven

CORBA servers running.

There are several possible ways of bringing this set of objects into the Iini

world so that they are accessible to a Iini client:

1. A Iini server may exist for each CORBA server.

Each Jini server may export fat proxies, which build CORBA refer-

ences in the same Iini client.

Each Iini server may export a thin proxy, with a CORBA reference held
in each of these servers.

2. A single Iini server may be built for the federation of all the CORBA

objects.

The single Iini server exports a fat proxy, which builds CORBA refer-
ences in the]ini client.

The single Iini server exports a thin proxy, with all CORBA references

within this single server.

The first of these pairs of options essentially isolates each CORBA service into

its own Iini service. This may be appropriate in an open—ended system where there

may be a large set of CORBA services, only some of which are needed by any
application.

The second pair of options deals with the case where services come logically

grouped together, such that one cannot exist without the other, even though they

may be distributed geographically.

Intermediate schemes exist, where some CORBA services have their own Iini

service, while others are grouped into a single Jini service. For example, rooms

may be grouped into buildings and cannot exist without these buildings, whereas

a client may only want to know about a subset of buildings, say those in NewYorl<.

364

Many Fat Proxies

We can have one Iini server for each of the CORBA servers. The Jini servers can be

running on the same machines as the CORBA ones, but there is no necessity from
either Jini or CORBA for this to be so. On the other hand, if a client is running as an

applet, then applet security restrictions may force all the Jim servers to run on a
single machine, the same one as an applet’s HTTP server.

The Iini proxy objects exported by each Iini server may be fat ones, which con-
nect directly to the CORBA server. Thus, each proxy becomes a CORBA client, as
was the case in the “hello world” example. Within the Iini client, we do not just

have one proxy, but many proxies. Because they are all running within the same
address space, they can share CORBA references—there is no need to package a
CORBA reference as a portable Jini object. In addition, the Jini client can just use

all of these CORBA references directly, as instance objects of interfaces. This situa~

tion is shown in Figure 18-2.

CORBA meeting
factory server

CORBA CORBA
room server room server

CORBA room CORBA room

Jini room Jini room
server server

Jini room Jini room

Jini client

CORBA meeting
factor

Jini meeting
factory server

Jini meeting
factor

ft room proxy fat room proxy factory P|”°XY

CORBA room CORBA room CORBA factory
reference reference reference

Figure 1 8-2. CORBA and Jini services forfat proxies

CORBA andIini

365

Chapter 18

The CORBA servers are all accessed from within the Jini client. This arrange-

ment may be ruled out if the client is an applet and the servers are on different
machines.

Many Thin Proxies

The proxies exported can be thin, such as RMI stubs. In this case, each Jini server is

acting as a CORBA client. This situation is shown in Figure 18-3.

CORBA CORBA
room server room server

CORBA room CORBA room

CORBA meeting
factory server

CORBA meeting
facto

Jini meeting
factor server

Jini meeting
factor

CORBA factory
reference

room rocmSerVeI' SerVer

Jini room Jini room

CORBA room
reference

CORBA room
reference

Jini client

thin room proxy thin room proxy thin factory proxy

Figure 18-3. CORBA andJini servicesfor thin proxies

If all the Iini servers are collocated on the same machine, then this becomes a

possible architecture suitable for applets. The downside of this approach is that all

the CORBA references are within different]VMs. In order to move the reference for

a meeting from the Jini meeting factory to one of the Jini rooms, it may be neces-

sary to wrap it in a portable Iini object, as discussed previously. The Jini client will

also need to get information about the CORBA objects, which can be gained from

these portable Iini objects.

366

CORBA andfini

single Fat Proxy

An alternative to Jim servers for each CORBA server is to have a single Jini bridge
server into the CORBA federation. This can be a feasible alternative when the set of

CORBA objects form a complete system or module, and it makes sense to treat

them as a unit. Then you have the choices again of where to locate the CORBA ref-

erences—either in the Jini server or in a proxy. Placing them in a fat proxy is shown

in Figure 18-4.

CORBA CORBA CORBA meeting
r00m Sel'Ver rOOm SerVer

CORBA meetingCORBA room CORBA room

factory server

Jini bridge server

Jini bridge

Jini client

‘ fat bridge proxy

CRBA room CORBA room CORBA factory
reference reference reference

Figure 18-4. CORBA andJini services for singlefat proxy

Single Thin Proxy

Placing all the CORBA references on the server side of a Iini service means that a

Jini client only needs to make one network connection to the service. This sce-

nario is shown in Figure 18-5. This is probably the best option from a security

viewpoint of a Jini client.

367

Chapter 18

CORBA meeting
factory server

CORBA meeting
factory

CORBA CORBA
room server room server

CORBA room CORBA room

Jini bridge server

Jini bridge

CORBA room CORBA room CORBA factory
reference reference reference

{ thin bridge proxy ’

Figure 18-5. CORBA cmdfini services for single thin proxy

Exceptions

CORBA methods can throw exceptions of two types: system exceptions and user

exceptions. System exceptions subclass from RuntimeException and so are

unchecked. They do not need to have explicit try. . .catch clauses around them. If

an exception is thrown, it will be caught by the Java runtime and will generally halt

the process with an error message. This would result in a CORBA client dying,

which would generally be undesirable. Many of these system exceptions will be

caused by the distributed nature of CORBA objects, and probably should be

caught explicitly. If they cannot be handled directly, then to bring them into line

with the Iini world, they can be wrapped as “nested exceptions” within a Remote

exception and thrown again.

User exceptions are declared in the IDL for the CORBA interfaces and meth-

ods. These exceptions are checked, and need to be explicitly caught (or re—thrown)

by Java methods. If a user exception is thrown, this will be because of some seman-

tic error within one of the objects and will be unrelated to any networking or

368

remote issues. User exceptions should be treated as they are, without wrapping

them in Remote exceptions.

Interfaces for Single Thin Proxy

This and the following sections build a single thin proxy for a federation of CORBA

objects. The Vogel and Duddy book gives a CORBA client to interact with the
CORBA federation, and this is used as the basis for the Iini services and clients.

Using a thin proxy means that all CORBA—related calls will be placed in the
service object, and will be made available to Iini clients only by means of portable
Iini versions of the CORBA objects. These portable objects are defined by two
interfaces, the JavaRoom interface

/>|<>l<

* JavaRoom.java
*/

package corba.common;

import corba . RoomBoo|<ing . *;

import java.io.Seria1izab1e;

import org.omg.CORBA.*;

import java . rmi . RemoteException;

public interface JavaRoom extends Serializable {
String getName();

Room getRoom(ORB orb);

} // Javakoom

and the 3avaMeet ing interface

/*>l<

* JavaMeeting.java
*/

package corba .common,'

import java.io.Seria1izab1e;

import org.omg.CORBA.*;

import corba . RoomBooking . *,'

import java.rmi.RemoteException;

public interface JavaMeeting extends Serializable {

String getPurpose();

String getPaIticipants();

CORBA andJim‘

369

Chapwr18

Meeting getMeeting(ORB orb);

} // JavaMeeting

The bridge interface between the CORBA federation and the Iini clients has to

provide methods for making changes to objects within the CORBA federation and

for obtaining information from them. For the room-booking system, this requires

the ability to book and cancel meetings within rooms, and also the ability to View the

current state of the system.Viewing is accomplished by three methods: updating the

current state, getting a list of rooms, and getting a list of bookings for a room.

/**

* RoomBookingBridge.java
*/

package corba.common;

import java .rmi. RemoteException,‘

import corba . RoomBooking . *,'

import org.omg.CORBA.*;

public interface RoomBookingBridge extends java.io.Serializable {

public void cancel(int se1ected_room, int selected_slot)

throws RemoteException, NoMeetingInThisSlot;

public void book(String purpose, String participants,

int selected_room, int selected_slot)

throws RemoteException, SlotAlreadyTaken;

public void update()

throws RemoteException, UserException;

public JavaRoom[] getRooms()

throws RemoteException;

public JavaMeeting[] getMeetings(int room_index)

throws RemoteException;

} // RoomBookingBridge

There is a slight legacy in this interface that comes from the original “mono-

block" CORBA client byV0gel and Duddy. In that client, because the GUI interface

elements and the CORBA references were all in the one client, simple shareable

structures, such as arrays of rooms and arrays of meetings, were used. Meetings

and rooms could be identified simply by their index in the appropriate array. In

splitting the client apart into multiple (and remote) classes, this is not really a good

idea anymore because it assumes a commonality of implementation across

objects, which may not occur. It doesn’t seem worthwhile being too fussy about

that here, though.

370

RoomBool<i'ngBr1'dge Implementation

The room~bool<ing Iini bridge has to perform all CORBA activities and to wrap

these up as portable Iini objects. A major part of this is locating the CORBA ser-
vices, which here are the meeting factory and the rooms. We do not want to get too
involved in these issues here. The meeting factory can be found in essentially the
same way as the hello server was earlier, by looking up its name. Finding the
rooms is harder, as these are not known in advance. Essentially, the equivalent of a

directory has to be set up on the name server, which is known as a “naming con-
text.” Rooms are registered within this naming context by their servers, and the

client gets this context and then does a search for its contents.
The Jim component of this object is that it subclasses from UnicastRemoteObj ect

and implements a RemoteRoomBookingBridge, which is a remote version of
RoomBookingBridge. It is also worthwhile noting how CORBA exceptions are caught
and wrapped in Remote exceptions.

/**

* RoomBookingBridgeImpl.java
*/

package corba.RoomBookingImpl;

import org.omg.CORBA.*;

import org.omg.CosNaming.*;

import corba.RoomBooking.*;

import corba.common.*;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.util.Vector;

public class RoomBookingBridgeImpl extends Unicastkemoteobject implements Remote-
RoomBookingBridge {

private MeetingFactory meeting_tactory;

private Room[] rooms;

private Meeting[] meetings;

private ORB orb;

private NamingContext room_context;

public RoomBookingBridgeImpl(String[] args)

throws RemoteException, UserException {

try {
// initialize the ORB

orb = ORB.init(args, null);

CORBAandflni

371

Chapter 18

}

catch(SystemException system_exception) { n

throw new RemoteException("constructor RoomBookingBridge: ,

system_exception);

}

init_from_ns();

update();

public void init_from_ns()

throws RemoteException, UserException {

// initialize from Naming Service

try {

// get room context

String str_name = "/BuildingApplications/Rooms/”5

org.omg.CORBA.Object objRef =

orb.reso1ve_initia1_references("NameService");

Namingcontext namingcontext = NamingContextHelper.narrow(objRef);

Namecomponent nc = new NameComponent(str_name, " ");

NameComponent path[] = {nc};

org.omg.CORBA.Object roomRef = namingContext.reso1ve(path);

room_context = NamingContextHe1per.narrow(roomRef);

if(room_context == null) {

System.err.println("Room context is null,”);

System.erI.println("exiting ...")5

System.exit(1);

// get MeetingFactory from Naming Service

str_name = ”/BuildingApplications/MeetingFactories/MeetingFactory“;

nc = new NameComponent(str_name, " ");

path[0] = nc;

meeting_factory =

MeetingFactoryHe1per.narrow(namingContext.resolve(path));

if(meeting_factoIy == null) {

System.err.println(

"No Meeting Factory registered at Naming Service");

System.err.print1n("exiting ...");

System.exit(1);

}

catch(SystemException system_exception) {

372

CORBAandfini

throw new RemoteException("Initialize ORB", system_exception);

}

public void update()
throws RemoteException, UserException {

try {
// list rooms

// initialize binding list and binding iterator

// Holder objects for out parameter

BindingListHolder blHolder = new BindingListHolder();
BindingIteratorHolder biHolder = new BindingIteratorHolder();
BindingHolder bHolder new BindingHolder();
Vector roomvector = new Vector();

Room aRoom;

// we are 2 rooms via the room list

// more rooms are available from the binding iterator

room_context.list(2, blHolder, biHolder);

// get rooms from Room context of the Naming Service

// and put them into the Ioomvector

for(int i = 0; i < blHo1der.value.length; i++) {
aRoom = RoomHelper.narrow(

room_context.resolve(blHoldeI.value[i].binding_name));
roomVector.addElement(aRoom);

}

// get remaining rooms from the iterator

it(biHolder.value != null) {

while(biHolder.value.next_one(bHolder)) {
aRoom = RoomHelper.narrow(

room_context.resolve(bHolder.value.binding_name))5
if(aRoom != null) {

roomVector.addElement(aRoom);

// convert the roomvector into a room array

rooms = new Room[roomVector.size()];

IoomVector.copyInto(rooms);

373

Chapter 18

// be friendly with system resources

if(biHoldeI.value != null)
biHolder.value.destroy();

}

catch(SystemException system_exception) {

throw new RemoteException("View”, system_exception);

// System.err.println(”View: " + system_exception);

}

public void cancel(int selected_room, int selected_slot)
throws RemoteException, NoMeetingInThisSlot {

try {

Iooms[selected_Ioom].Cancel(

Slot.trom_int(selected_slot));

System.out.println("Cancel called");

}

catch(SystemException system_exception) {

throw new RemoteException(“Cancel", system_exception);

}

public void book(StIing purpose, String participants,
int selected_room, int selected_slot)

throws RemoteException, SlotAlreadyTaken {

try {

Meeting meeting =

meeting_factory.CreateMeeting(purpose, participants);

System.out.println("meeting created");

String p = meeting.purpose();

System.out.println(”Purpose: ”+p);

rooms[selected_room].Book(

Slot.from_int(selected_slot), meeting);

System.out.println(Vroom is booked");

}

catch(SystemException system_exception) {
throw new RemoteException("Booking system exception", system_exception);

/*>I<

* return a list of the rooms as portable JavaRooms

*/

374

public JavaRoom[] getRooms() {
int len = rooms.length;

JavaRoom[] jrooms = new JavaRoom[len];

for (int n = 0; n < len; n++) {

jrooms[n] = new JavaRoomImpl(Iooms[n]);

}

return jrooms;

}

public JavaMeeting[] getMeetings(int room_index) {

Meeting[] meetings = rooms[room_index].View();

int len = meetings.length;

JavaMeeting[] jmeetings = new JavaMeeting[len];

for (int n = 0; n < len; n++) {

if (meetings[n] == null) { _

jmeetings[n] = null;

} else {

jmeetings[n] = new JavaMeetingImpl(meetings[n], orb);

}

return jmeetings;

}

} // RoomBookingBIidgeImpl

Other Classes

The Java classes and servers implementing the CORBA objects are mainly

unchanged from the implementations given in theVogel and Duddy book. They

can continue to act as CORBA servers to the original clients. I replaced the “easy

naming" naming service in their book with a later one with the slightly more com-

plex standard mechanism for creating contexts and placing names within this

context. This mechanism can use the tnameserv CORBA naming server, for example.

I have modified the Vogel and Duddy room—booking client a little bit, but its

essential structure remains unchanged. The GUI elements, for example, were not
altered. All CORBA—related code was removed from the client and placed into the

bridge classes.

The Vogel and Duddy code samples can all be downloaded from a public Web

site (http : //www.wi1ey. com/compbooks/Vogel) and come with no author attribution

or copyright claim. The client is also quite lengthy since it has plenty of GUI inside,

so Iwon’t complete the code listing here. The code for all my classes, and the mod-

ified code of the Vogel and Duddy classes, is given in the subdirectory corba of the

programs.zipfflethatcanloefouruiathttp://www.apress.com.

CORBAandfini

375

Chapmr18

Building the Room-Booking Example

The RoomBooking.id1 IDL interface needs to be compiled to Java by a suitable

IDL—to—}ava compiler, such as Sun’s idltojava. This produces classes in the

corba.RoomBooking package. These can then all be compiled using the standard

Java classes and any CORBA classes needed.

The Iini server, service, and client are also normal Java files and can be

compiled like earlier Iini files, with the CLASSPATH set to include the Jini libraries.

Running the Room-Booking Example

There are a large number of elements and processes that must be set running to

get this example working satisfactorily:

1. A CORBA name server must be set running, as in the earlier example. For

example, you could use the following command:

tnameserv -0RBInitialPort 1055

All CORBA services and clients should also use this port number.

A CORBA server should be started for each room, with the first parameter

being the “name” of the room:

java corba.RoomBookingImpl.RoomServer "freds room" -0RBInitia1Port 1055

A CORBA server should be started for the meeting factory:

java corba.RoomBookingImpl.MeetingFactoIySeIveI —0RBInitia1PoIt 1055

Typical Iini support services will need to be running, such as a lookup ser-
vice, the RMI daemon mid, and HTTP servers to move class definitions
around.

The Iini service can be started with this command:

java corba.RoomBookingImpl.RoomB0okingBridgeServeI —0RBInitialPort 1055

Finally, the Jim client can be run with this command:

java corba.RoomBookingImp1.RoomBookingClientApplication —ORBInitialPort
1055

376

CORBA andJim‘

Migrating a CORBA Client to Jini

Both of the examples in this chapter started life as pure CORBA systems written by

other authors, with CORBA objects delivered by servers to a CORBA client. The

clients were both migrated in a series of steps to Iini clients of a Iini service acting as

a front—end to CORBA objects. For those in a similar situation, it may be worthwhile

to spell out the steps I went through in doing this for the room—booking problem:

The original client was a single client, mixing GUI elements, CORBA calls,

and glue to hold it all together. This had a number of objects playing dif-

ferent roles all together, without a clear distinction about roles in some

cases. The first step was to decide on the architectural constraint: one Iini

service, or many.

A single Iini service was chosen (for no other reason than it looked to offer

more complexities). This implied that all CORBA—related calls had to be

collected into a single object, the RoomBookingBridgeImp1. At this stage, the

RoomBookingBridge interface was not defined—that came after the imple-

mentation was completed (okay, I hang my head in shame, but I was

trying to adapt existing code rather than starting from scratch). At this

time, the client was still running as a pure CORBA client—no Iini mecha-
nisms had been introduced.

Once all the CORBA related code was isolated into one class, another

architectural decision had to be made: whether this was to function as a

fat or thin proxy. The decision to make it thin in this case was again based
on interest rather than functional reasons.

The GUI elements left behind in the client needed to access information

from the CORBA objects. In the thin proxy model, this meant that porta-

ble Iini objects had to be built to carry information out of the CORBA

world. This led to interfaces such as JavaRoom and implementations such

as JavaRoomImp1. The GUI code in the client had no need to directly modify

fields in these objects, so they ended up as read~only versions of their

CORBA sources. (If a fat proxy had been used, this step of creating portable

Iini objects would not have been necessary.)

The client was modified to use these portable Iini objects, and the

RoomBookingBridgeImp1 was changed to return these objects from its

methods. Again, this was all still done within the CORBA world, and no

Iini services were yet involved. This looked like a good time to define the

RoomBookingBridge interface, when everything had settled down.

377

Chapter 18

6. Finally, the RoomBook:'LngBIidgeImp1 was turned into a UnicastRemoteObject
and placed into a Iini server. The client was changed to look up a

RoomBookingBridge service rather than create a RoomBookingBridgeImp1 object.

At the end of this, I had an implementation of a Iini service with a thin RMI

proxy. The CORBA objects and servers had not been changed at all. The original

CORBA client had been split into two, with the Jim service implementing all of

the CORBA lookups. These were exposed to the client through a set of facades

that gave it the information it needed.

The client was still responsible for all of the GUI aspects, and so was acting as

a “knowledgeable” client. If needed, these GUI elements could be placed into

Entry objects, and also could be exported as part of the service.

Jini Service as a CORBA Service

We have looked at making CORBA objects into Iini services. Is it possible to go the

other way, and make a Iini service appear as a CORBA object in a CORBA federation?

Well, it should be. Just as there is a mapping from CORBA IDL to Java, there is also

a mapping of a suitable subset of lava into CORBA IDL. Therefore, a Iini service

interface can be written as a CORBA interface. AJini client could then be written as

the implementation of a CORBA server to this IDL.

At present, with a paucity of Iini services, it does not seem worthwhile to

explore this in detail. This may change in the future, though.

Summary

CORBA is a separate distributed system from Jim. However, it is quite straight—

forward to build bridges between the two systems, and there are a number of

different possible architectures. This makes it possible for CORBA services to be

used by Iini clients.

378

CHAPTER 19

User Interfaces for

Jini Services

SOME EARLIER CHAPTERS HAVE USED CLIENTS with graphical user interfaces to ser-

vices. Clients may not always know which is the most appropriate user interface,

and sometimes may not even know of any suitable user interface. Services should

be able to define their own user interfaces, and the question of how they should

best do this is explored in this chapter. We’ll also look at how clients can discover,

download, and use these user interfaces.

User Interfaces as Entries

Interaction with a service is specified by its interface, and the interaction will be

the same across all implementations of the interface. This consistency doesn't

allow any flexibility in using the service, since a client will only know about the

methods defined in the interface. The interface is the defining level for using this

type of service.

However, services can be implemented in many different ways, and service

implementations do in fact differ. For example, one service may be offered on a

“take it or leave it” basis, while another might have a warranty attached. This does

not affect how the client calls a service, but it may affect whether or not the client

wants to use one service implementation or another. There is a need to allow for

this, and the mechanism used in Iini is to put these differences in Entry objects.

Typical objects supplied by vendors may include Name and Servicelnfo.

Clients can make use of the type interface and these additional entry items

primarily in the selection of a service. But once clients have the service, are they

just constrained to use it via the type interface? The type interface is designed to

allow a client application to use the service in a programmatic way by calling

methods. However, many services could probably benefit from some sort of user

interface (U1). For example, a printer may supply a method to print a file, but it

may have the capability to print multiple copies of the same file. Rather than rely-

ing on the client to be smart enough to figure this out, the printer vendor may

want to call attention to this option by supplying a user~interface object with a

special component for the number of copies.

379

Chapter 19

NOTE In this chapter] talk about interfaces we have been using throughout

the book, and also about user interfaces. To avoid possible confusion, in this
chapterI will use the term "type interface" to refer to a.]aua interface as used in

the restofthis book, and "user interface"for anysortofinteraction with the user:

A client can only be expected to know about the type interface of a service. If it

uses this to build a user interface, then at best it could only manage a fairly generic

one that will work for all service implementations. A vendor will know much more

detail about any particular implementation of a service, and so the vendor is best

placed to supply the user interface. In some cases, the service vendor may be

unwilling or incapable of supplying user interfaces for a service, and a third party

may supply it.

When your video player becomes Iini—enabled, it would be a godsend for

someone to supply a decent user interface for it, since the video—player vendors

seem generally incapable of doing so! The Entry objects are not just restricted to

providing static data; as Java objects, they are perfectly capable of running as user-

interface objects.

User interfaces are not yet part of the]ini standard, but the Iini community

(with a semi—formal organization as the “Iini Community”) is moving toward a

standard way of specifying many things, including user—interface standards and

guidelines. Guideline number one from the serviceUl group is this: user interfaces

for a service should be given in Entry objects.

User Interfaces from Factory Objects

In Chapter 13, some discussion was given to the location of code, using user—interface

components as examples. That chapter suggested that user interfaces should not
be created on the server side but on the client side—the user interface should be

exported as a factory object that can create the user—interface on the client side.

More arguments can be given to support this approach:

- A service exported from a low-resource computer, such as an embedded

Java engine, may not have the classes on the service side needed to create

the user—interface (it may not have the Swing or even the AWT libraries).

0 There may be many potential user interfaces for any particular service: Palm

handhelds (many with small grayscale screens) require a different interface

than a high—end workstation with a huge screen and enormous numbers of

colors. It is not reasonable to expect the service to create every one of these

user interfaces, but it could export factories capable of doing so.

380

User Interfacesfor Jim’ Services

v Localization of internationalized services cannot be done on the service

side, only on the client side.

The service should export zero or more user—interface factories, with methods
to create the interface, such as get]Frame(). The service and its user—interface fac-
tory will both be retrieved by the client. The client will then create the user inter-
face. Note that the factory will not know the service object beforehand; if the factory
was given one during its construction (on the service side), the factory would end
up with a service—side copy of the service instead of a client—side copy. Therefore,
when the factory is asked for a user-interface (on the client side), it should be
passed the service. In fact, the factory should probably be passed all of the infor-
mation about the service, as retrieved in the Serviceltem from a lookup service.

A typical factory is the one that returns a 3Frame. This is defined by the type
interface as follows:

package net.jini.1ookup.ui.factoIy;

import javax . swing. JFrame;

public interface JFrameFactory {
String TOOLKIT = "javax.swing";

String TYPE_NAME = "net.jini.lookup.ui.factory.JFrameFactoIy";

JFrame get] Frame (Object role0bject);

The factory imports the minimum number of classes needed to compile the
type interface. The JFrameFactoIy above needs to import javax. swing . 3 Frame because
the getJFrame() method returns a JFrame. An implementation of this type interface
will probably use many more classes. The roleobject passes any necessa1'yinfor—
mation to the U1 constructor. This is usually the Serviceltem, as it contains all the
information (including the service) that was retrieved from a lookup service. The
factory can then create an object that acts as a user interface to the service, and can
use any additional information in the Serviceltem, such as entries for Servicelnfo or
ServiceType, which could be shown, say, in an “About” box.

A factory that returns a visual component, such as a JFrame, should not make
the component visible. This will allow the client to set the JFrame’s size and place-
ment before showing it. Similarly, a “playable” user interface, such as an audio file,
should not be in a “playing" state.

381

Chapter 1 9

Current Factories

A service may supply lots of these user interface factories, each capable of creating

a different user interface object. This allows for the differing capabilities ofviewing

devices, or even for different user preferences. One user may always like aWeb—

style interface, another may be content with an AWT interface, a third may want

the accessibility mechanisms possible with a Swing interface, and so on.

The set of proposed factories currently includes the following:

Dia1ogFactory, which returns an instance of java . awt . Dialog (or one of its
subclasses)

FrameFactory, which returns an instance of java . awt . Frame (or one of its
subclasses)

JComponentFactory, which returns an instance of javax . swing. Jcomponent (or
one of its subclasses, such as a JList)

JDia1ogFactory, which returns an instance of javax. swing.]Dia1og (or one of
its subclasses)

JFrameFactory, which returns an instance of javax.swing . 3 Frame (or one of its
subclasses)

PanelFactory, which returns an instance ofjava . awt . Panel (or one of its
subclasses)

These factories are all defined as interfaces. An implementation will define a

getXXX() method that will return a user interface object. The current set of facto-

ries returns objects that belong to the Swing or AWT classes. Factories added in

later iterations of the specification may return objects belonging to other user

interface styles, such as speech objects. Although an interface may specify that a

method, such as get] Frame (), will return a JFrame, an implementation will in fact

return a subclass of this, which also implements a role interface.

Marshalling Factories

There may be many factories for a service, and each of them will generate a differ-
ent user interface. These factories and their user interfaces will be different for

each service. The standard factory interfaces will probably be known to both clients

and services, but the actual implementations of these will only be known to

services (or maybe to third—party vendors who add a user interface to a service).

382

User Interfacesforjini Services

If a client receives a Serviceltem containing entries with many factory imple-

mentation objects, it will need to download the class files for all of these as it

instantiates the Entry objects. There is a strong chance that each factory will be

bundled into a jar file that also contains the user interface objects themselves, so

if the entries directly contain the factories, then the client will need to download a

set of class files before it even goes about the business of deciding which of the

possible user interfaces it wants to select.

This downloading may take time on a slow connection, such as a wireless or

home network link. It may also cost memory, which may be scarce in small devices

s11ch as PDAs. Therefore, it is advantageous to hide the actual factory classes until

the client has decided that it does in fact want a particular class. Then, of course, it

will have to download all of the class files needed by that factory.

In order to hide the factories, they are wrapped in a Marsha lledobject. This

keeps a representation of the factory and also a reference to its codebase, so that

when it is unwrapped, the necessary classes can be located and downloaded.

Clients should have the class files for Marsha11ed0bject, because this class is part of

the lava core. By putting a factory object into entries in this form, no attempt is

made to download the actual classes required by the factory until it is
unmarshalled.

The decision as to whether or not to unmarshall a class can be made on a

separate piece of information, such as a set of Strings that hold the names of the

factory class (and all of its superclasses and interfaces). This level of indirection is

a bit of a nuisance, but not too bad:

if (typeNames.contains("net.jini.lookup.uinfactory.JFrameFacto:ry") {

factory = (JFrameFactory) marshalledObject.get();

A client that does not want to use a JFrameFactory will just not perform the

preceding Boolean test. It will not call the unmarshalling get () method and will

not attempt the coercion to JFrameFactory. This will avoid downloading classes

that are not wanted. This indirection does place a responsibility on service—side

programmers to ensure that the coercion will be correct. In effect, this is a maneuver

to circumvent the type-safe model of Java purely for optimization purposes.

There is one final wrinkle when loading the class files for a factory: a running

IVM may have many class loaders. When loading the files for a factory, you want to

make sure that the class loader is one that will actually download the class files

across the network as required. The class loader associated with the service itself

will be the most appropriate loader for this.

383

Chapter 1 9

UIDescriptor

An entry for a factory must contain the factory, itself, hidden in a Marshalledobj ect

and some string representation of the factory’s class(es). It may also need other

descriptive information about the factory. The UIDescriptor captures all this:

package net.jini.lookup.entry;

public class UIDescriptor extends AbstractEntIy {

public String role;

public String toolkit;

public Set attributes;

public Marshalledflbject factory;

public UIDescriptor();

public UIDescriptor(String role, String toolkit,

Set attributes, Marshalledobject factory);

public final Object getUIFactory(C1assLoader parenttoader)

throws IOException, ClassNotFoundException,'

There are several features in the UIDescriptor that we haven’t mentioned yet,

and the factory type appears to be missing (it is one of the attributes).

Toolkit

A user interface will typically require a particular package to be present or it will

not function. For example, a factory that creates a JFrame will require the

javax . swing package. These requirements can provide a quick filter for whether or

not to accept a factory——if it is based on a package the client doesn't have, then it

can just reject this factory.

This isn't a bulletproof means of selection. For example, the Java Media
Framework is a fixed-size package designed to handle lots of different media

types, so ifyour user interface is a QuickTime movie, you might specify the IMF

package. However, the media types handled by the IMF package are not fixed, and

they can depend on native code libraries. For example, the current Solaris version

of the IMF package has a native code library to handle MPEG movies, which is not

present in the Linux version. Having the package specified by the toolkit does not

guarantee that the class files for this user interface will be present. It is primarily

intended to narrow lookups based on the U13 offered.

384

User In te1fm:esf0r]z'nI' Services

Role

There are many possible roles for a user interface. For example, a typical user may

be using the service, in which case the UI plays the “main” role. Alternatively, a sys-

tem administrator may be managing the service, and he or she might require a

different user interface, in which case the UI then plays the “admin” role.

The role field in a UIDescriptor is intended to describe these possible varia—

tions in the use of a user interface. The value of this field is a string, and to reduce

the possibility of spelling errors that are not discovered until runtime, the value

should be one of several constant string values. These string constants are defined

in a set of type interfaces known as role interfaces. There are currently three role

interfaces:

- The net .jini .1ookup. ui.MainUI role is for the standard user interface used by

ordinary clients of the service:

package net.jini.lookup.ui;

public interface MainUI {

String ROLE = "net.jini.1ookup.ui.MainUI";

- The net.jini.1ookup. ui.AdminUI role is for use by the service’s administrator:

package net.jini.lookup.ui;

public interface AdminUI {

String ROLE = "net.jini.lookup.ui.AdminUI“;

° The net . jini . lookup. ui.AboutUI role is for information about the service,

which can be presented by a user interface object:

package net.jini.1ookup.ui;

public interface AboutUI {

String ROLE = "net.jini.lookup.ui.AboutUI";

A service will specify a role for each of the user interfaces it supplies. This role

is given in a number of ways for different objects:

° The role field in the UIDescriptor must be set to the String ROLE of one of
these three role interfaces.

385

Chapter 1 9

° The user interface indicates that it acts a role by implementing the particu-

lar role specified.

~ The factory does not explicitly know about the role, but the factory contained

in a UIDescriptor must produce a user interface implementing the role.

The service must ensure that the UIDescriptors it produces follows these

rules. How it actually does so is not specified. There are several possibilities,

including these:

0 When a factory is created, the role is passed in through a constructor. It

can then use this role to cast the roleobject in the getXXX() method to the

expected class (currently this is always a Serviceltem).

0 There could be different factories for different roles, and the UIDescriptor

should have the right factory for that role.

The factory could perform some sanity checking if desired; since all

ro1eObjects are (presently) the service items, it could search through these items

for the UIDescriptor, and then check that its role matches what the factory expects.

There has been much discussion about “flavors” of roles, such as an “expert"

role or a “learner” role. This has been deferred because it is too complicated, at

least for the first version of the specification.

Attributes

The attributes section of a UIDescriptor can carry any other information about

the user interface object that the service thinks might be useful to clients trying to

decide which user interface to choose. Currently this includes the following:

0 A UIFactoryTypes object, which contains a set of Strings for the fully quali-

fied class names of the factory that this entry contains. The current factory

hierarchy is very shallow, so this may be just a singleton set, like this:

Set attribs = new HashSet();

Set typeNames = new HashSet();

typeNames . add (JFrameFactory.TYPE_NAME);

attribs.add(new UIFactoryTypes(typeNames));

Note that a client is not usually interested in the actual type of the factory,

but rather in the interface it implements. This is just like Iini services them—

selves, where we only need to know the methods that can be called and are

not concerned with the implementation details.

386

User InterfacesforJim" Services

- An Accessibleul object. Inclusion of this object indicates that the user inter-

face implements javax . acces sibi1ity.Acces 5 ible and that the user interface

would work well with assistive technologies.

- A Locales object, which specifies the locales supported by the user interface.

e A RequiredPackages object, which contains information about all of the pack-

ages that the user interface needs to run. This is not a guarantee that the

user interface will actually run, nor a guarantee that it will be a usable inter-

face, but it may help a client decide whether or not to use a particular user
interface.

File Classifier UI Example

The file classifier has been used throughout this book as a simple example of a ser-

vice to illustrate various features of Jim. We can use it here too, by supplying simple

user interfaces to the service. Such a user interface would consist of a text field for

entering a filename, and a display to show the MIME type of the filename. There is

only a ’‘main” role for this service, as no administration needs to be performed.

Figure 19-1 shows what a user interface for a file classifier could look like.

Figure 1 9-1. FileClasszfier user in tezface

After the service has been invoked, it could pop up a dialog box, as shown in

Figure 19-2.

Figure 19-2. FileCla5sifier return dialog box

387

Chapter 1 9

A factory for the "main" role that will produce an AWT Frame is shown next:

/*7l<

* FileClassifierFrameFactory.java
*/

package ui;

import net.jini.lookup.ui.tactory.FrameFactory;

import net.jini.lookup.entry.UIDescriptor;

import java.awt.Frame;

import net.jini.core.entry.EntIy;

import net.jini.core.lookup.Serviceltem;

public class FileclassifieIFrameFactory implements FrameFactory {

/**

* Return a new FileClassifierFrame that implements the
* MainUI role

*/

public Frame getFrame(Object roleobject) {
// we should check to see what role we have to return

if (! (roleobject instanceof ServiceItem)) {

// unknown role type object
// can we return null?

return null;

}

Serviceltem item = (ServiceItem) Ioleobject;

// Do sanity checking that the UIDescriptor has a MainUI role

Entry[] entries = item.attributeSets;

for (int n = 0; n < entries.length; n++) {

if (entries[n] instanceof UIDescriptoI) {

UIDescriptor desc = (UIDescriptor) entries[n];

if (desc.role.equals(net.jini.lookup.ui.MainUI.ROLE)) {

// Ok, we are in the MainUI role, so return a UI for that

Frame frame = new FileClassifierFrame(item, "File Classifier");

return frame;

}

// couldn't find a role the factory can create
return null;

388

User Inrerfacesforjini Services

} // FileClassifieIFIameFactoIy

The user interface object that performs this role is as follows:

/*>l<

* FileClassifieIFIame.java
*/

package ui;

import java.awt.*;

import java.awt.event.*;

import net.jini.lookup.ui.MainU1;

import net.jini.core.1ookup.SeIviceItem;

import common.MIMEType;

import common.Fi1eClassifier;

import java.rmi.RemoteException;

/**

* Object implementing MainUI for Fileclassifier.
*/

public class FileClassitieIFrame extends Frame implements MainUI {

Serviceltem item;

TextField text;

public FileclassitierFIame(SeIviceItem item, String name) {

super(name);

Panel top = new Panel();

Panel bottom = new Pane1();

add(top, BorderLayout.CENTER);

add(bottom, BoIdeILayout.S0UTH);

top.setLayout(new BordeILayout());

top.add(new Label("Fi1ename"), BordeILayout.WEST);

text = new TextField(20);

top.add(text, BorderLayout.CENTER);

bottom.setLayout(new F1owLayout());

Button classify = new Button("Classify");

Button quit = new Button("Quit");

bottom.add(classify);

bottom.add(quit);

389

Chapwr19

// listeners

quit.addActionListener(new QuitListener());

classify.addActionListener(new ClassifyListener());

// we pack, but don't make it visible

PaCk();

}

class QuitListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {

System.exit(0);

}

class ClassifyListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {

String fileName = text.getText();

final Dialog dlg = new Dia1og((Frame) text.getParent().getParent());

dlg.setLayout(new BorderLayout());

TextArea response = new TextArea(3, 20);

// invoke service

FileClassifier classifier = (FileClassifier) item.service;

MIMEType type = null;

try {

type = classifier.getMIMEType(fileName);

if (type == null) {

response.setText("The type of file " + fileName +
is unknown");

} else {

response.setText(”The type of file " + fileName +

" is ” + type.toString());

}

} catch(RemoteException e) {

response.setText(e.toString());

Button ok = new Button(”ok");

ok.addActionListener(new ActionListeneI() {

public void actionPerformed(ActionEvent e) {

dlg.setVisible(false);

390

User In terfacesfor Jim’ Sen/1‘ces

dlg.add(Iesponse, BordeILayout.CENTER);

dlg.add(ok, BordeILayout.SOUTH);

d1g.setsize(30o, 100);

dlg.setVisible(true);

} // FileClassifierFrame

The server that delivers both the service and the user interface has to prepare

a UIDescriptor. In this case, it only creates one such object for a single user inter-

face, but if the server exported more interfaces, it would simply create more

descriptors. Here is the server code:

/>l<*

* Fileclassifierserver.java
*/

package ui;

import complete.Fileclassifierlmpl;

import net.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import net.jini.discoveIy.LookupDiscoveIy;

import net.jini.core.lookup.ServiceRegistrar;

import java.rmi.RemoteException;

import net.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewa1Manager;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.DiscoveryEvent;

import net.jini.discovery.DiscoveIyListener;

import net.jini.core.entIy.Entry;

import net.jini.lookup.ui.MainUI;

import net.jini.lookup.ui.factoIy.FrameFactory;

import net.jini.lookup.entry.UIDescriptor;

import net.jini.lookup.ui.attribute.UIFactoIyTypes;

import java.Imi.MarshalledObject;

import java.io.IOException;

import java.util.Set;

import java.uti1.HashSet;

391

Chapwr19

public class FileClassifierServeI

implements ServiceIDListener {

public static void main(String argv[]) {

new’FileC1assifierServer();

// stay around forever

Object keepA1ive = new 0bject();

synchIonized(keepAlive) {

try {

keepA1ive.wait();

} catch(InterruptedException e) {

// do nothing

public FileClassifierServeI() {

JoinManager joinMgI = null;

// The typenames for the factory

Set typeNames = new HashSet();

typeNames.add(FrameFactory.TYPE_NAME);

// The attributes set

Set attribs = new HashSet();

attribs.add(new UIFactoryTypes(typeNames));

// The factory

Marshalledobject factory = null;

try {

factory = new Marshalled0bject(new Fi1eC1assifierFrameFactory());

} catch(Exception e) {.

e.printStackTrace();

System.exit(2);

}

UIDescriptor desc = new UIDescriptor(MainUI.ROLE,

FileClassifierFrameFactory.TOOLKlT,

attribs,

factory);

EntIy[] entries = {desc};

392

try {

LookupDiscoveryManager mgr =

joinMgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,
null /* unicast locators */,

null /* DiscoveryListener */);

new JoinManager(new Fi1eClassifierImpl(), /* service */
entries /* attr sets */,

this /* ServiceIDListener*/,

mgr /* DiscoveryManagement */,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

public void serviceIDNotify(ServiceID serviceID) {
// called as a ServiceIDListener

// Should save the ID to permanent storage

System.out.println("got service ID " + serviceID.toString());

} // Fileclassifierserver

User InterfacesforJim’ Services

Ifinafly;acfientneedstolookforandLwethmimerhuenhceJThechentfindsa

service as usual and then does a search through the Entry objects, looking for a

UIDescriptor. Once it has a descriptor, it can check whether the descriptor meets

the requirements of the client. Here we shall check whether it plays a MainUI role

and can generate an AWT Frame:

package client;

import

import

import

import

import

import

import

import

import

import

common.FileClassitier;

common.MIMEType;

java.rmi.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

RMISecurityManager;

discovery.LookupDiscovery;

core.lookup.ServiceTemplate;

discovery.LookupDiscoveryManager;

lookup.ClientLookupManager;

core.lookup.ServiceItem;

lease.LeaseRenewalManager;

core.entIy.Entry;

393

Chapmr19

import net.jini.lookup.ui.MainUI;

import net.jini.lookup.ui.factory.FIameFactoIy;

import net.jini.lookup.entIy.UIDescriptor;

import net.jini.lookup.ui.attribute.UIFactoIyTypes;

import java.awt.*;

import javax.swing.*;

import java.util.Set;

import java.util.IteratoI;

import java.net.URL;

/**

* TestFrameUI.java
*/

public class TestFrameUI {

private static final long WAITFOR = 10000OL;

public static void main(StIing argv[]) {

new TestFrameUI();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(2*WAITFOR);

} catch(java.lang.InterruptedException e) {

// do nothing

public TestFrameUI() {

ClientLookupManager clientMgr = null;

System.setSecurityManager(new RMISecuIityManager());

try {

LookupDiscoveIyManager mgr =

new LookupDiscoveIyManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListeneI */);

clientMgr = new ClientLookupManager(mgr,

new LeaseRenewalManager());

394

User InterfacesforJini Services

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class [] classes = new Class[] {FileClassifier.class};

UIDescriptor desc = new UIDescriptor(MainUI.ROLE,
FrameFactory.TOOLKIT,

null, null);

Entry [] entries = {desc};

ServiceTemplate template = new ServiceTemplate(null, classes,
entries);

Serviceltem item = null;

try {

item = clientMgr.lookup(template,

null, /* no filter */

NAITFOR /* timeout */)3

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

if (item == null) {
// couldn't find a service in time

System.out.println(”no service");

System.exit(1);

// we now have a service that plays the MainUI role and

// uses the FrameFactory toolkit of "java.awt".

// we now have to find if there is a UIDescriptor

// with a Factory generating an ANT Frame

checkUI(item);

private void checkUI(ServiceItem item) {
// Find and check the UIDescriptors

Entry[] attributes = item.attributeSets;

for (int m = 0; m < attributes.length; m++) {

Entry attr = attributes[m];

if (attr instanceof UIDescriptor) {
// does it deliver an ANT Frame?

395

checkForAwTFIame(item, (UIDescIiptor) attr);

}

private void checkForAwTFrame(ServiceItem item, UIDescriptor desc) {
Set attributes = desc.attributes;

Iterator iter = attributes.iterator();

while (iteI.hasNext()) {

// search through the attributes, to find a UIFactoryTypes

Object obj = iter.next();

if (obj instanceof UIFactoryTypes) {

UIFactoryTypes types = (UIFactoryTypes) obj;

// see if it produces an ANT Frame Factory

if (types.isAssignableTo(FrameFactory.class)) {

FrameFactory factory = null;

try {

factory = (FrameFactory) desc.getUIFactory(this.getClass().
getC1assLoader());

} catch(Exception e) {

e.printStackTrace();
continue;

Frame frame = factory.getFrame(item);

fIame.setVisible(true);

} // TestFrameUI

Images

User interfaces often contain images. They may be used as icons in toolbars, as

general images on the screen, or as the icon image when the application is iconi-

fied. When a user interface is created on the client, these images will also need to

be created and installed in the relevant part of the application. Images are not seri-

alizable, so they cannot be created on the server and exported as live objects in

some manner. They need to be created from scratch on the client.

396

User Intelfacesforfini Services

The Swing package contains a convenience class called Imagelcon. This class

can be instantiated from a byte array, a filename, or most interestingly here, from a

URL. So, if an image is stored where an HTTP server can find it, the Imagelcon con-

structor can use this Version directly. There may be failures in this approach: the

URL may be incorrect or malformed or the image may not exist on the HTTP

server. Suitable code to create an image from a URL is as follows:

Imagelcon icon = null;

try {

icon = new ImageIcon(new URL(”http://localhost/images/MINDSTORMS.ps"));

switch (icon.getImageLoadStatus()) {
case MediaTracker.ABORTED:

case MediaTracker.ERRORED:

System.out.println(“ErIor");

icon = null;

break;
case MediaTracker.COMPLETE:

System.out.println(”Complete")5

break;
case MediaTracker.LOADING:

System.out.println(“Loading");

break;

}

} catch(java.net.MaltoImedURLException e) {

e.printStackTrace();

}

// icon is null or is a valid image

ServiceType

A user interface may use code like that in the previous section directly to include

images. The service may also supply useful images and other human—oriented infor-

mation in a ServiceType entry object. The ServiceType class is defined as follows:

package net.jini.lookup.entry;

public class ServiceType {

public String getDisplayName()} // Return the localized display
// name of this service.

public Image getIcon(int iconKind) // Get an icon for this service.

public String getShortDescription() // Return a localized short

// description of this service.

397

Chapmr19

The class is supplied with empty implementations, returning null for each

method. A service will need to supply a subclass with useful implementations of

the methods. This is a useful class that could be used to supply images and infor~

mation that may be common to a number of different user interfaces for a service,

such as a minimized image.

MINDSTORMS UI Example

In Chapter 17, an example was given, in the “Getting It Running" section, of a cli-

ent supplying a user interface to a MINDSTORMS service. This client not only

knew that the service was a MINDSTORMS robot, but that it was a particular robot

for which it could use a customized UI. In this section, we'll give two user inter-

faces for the MINDSTORMS “RoverBot,” one of which is fairly general and could

be used for any robot, and another that is customized to the RoverBot. The service

is responsible for creating and exporting both of these user interfaces to a client.

RCXLoaderFrame

A MINDSTORMS robot is primarily defined by the RCXPort interface. The Jini ver-

sion is defined by the RCXPortImplementation interface:

/>l<*

* RCXPortInteIface.java
*/

package rcx.jini;

import net.jini.core.event.RemoteEventListener;

public interface RCXPoItInterface extends java.io.Serializable {

/*>:<

* constants to distinguish message types
*/

public final long ERROR_EVENT = 1;

public final long MESSAGE_EVENT = 2;

/*>l<

* write an array of bytes that are RCX commands
* to the remote RCX.

*/

398

User InterfacesforIini Services

public boolean write(byte[] byteCommand) throws java.rmi.RemoteE><ception;

/>)<>l<

* Parse a string into a set of RCX command bytes
*/

public byte[] parseString(String command) throws java.rmi.RemoteException;

/>i<>l<

* Add a RemoteEvent listener to the RCX for messages and errors
*/

public void addListener(RemoteEventListener listener)
throws java.rmi.RemoteException;

/*>i<

* The last message from the RCX
*/

public byte[] getMessage(1ong seqNo)

throws java.rmi.RemoteException;

/*>!<

* The error message from the RCX
*/

public String getError(long seqNo)
throws java.rmi.RemoteException;

} // RCXPortInterface

This type interface allows programs to be downloaded and run and instruc-
tions to be sent for direct execution. As it stands, the client needs to call these

interface methods directly. To make it more useable for the human trying to drive a

robot, some sort of user interface would be useful.

There can be several general purpose user interfaces for the RCX robot,

including these:

° Enter machine code (somehow) and download that.

° Enter RCX assembler code in the form of strings, and then assemble and
download them.

° Enter NQC (Not Quite C) code, and then compile and download it.

The set of RCX classes by Laverde at http : //www. escape. com/"dario/java/rcx

includes a standalone application called RCXLoader, which does the second of these

399

Chapter 19

options. We can steal code from RCXLoader and some of his other classes to define
an RCXLoaderFrame class:

package rcx.jini;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.server.Unicastkemoteobject;

import java.rmi.RemoteException;

import rcx.*;

/*

* RCXLoaderFrame

* @author Dario Laverde

* @author Jan Newmarch

* @version 1.1

* Copyright 1999 Dario Laverde, under terms of GNU LGPL
*/

public class RCXLoaderFrame extends Frame

implements ActionListener, windowListener, RemoteEventListener

private String portName;

private RCXPortInterface rcxPort;

private Panel textPanel;

private Panel topPanel;

private TextArea textArea;

private TextField textField;

private Button tableButton;

private Properties parameters;

private int inByte;

private int charPerLine = 48;

private int 1enCount;

private StringBuffer sbuffer;

private byte[] byteArray;

private Frame opcodeFrame;

private TextArea opcodeTextArea;

public static Hashtable Opcodes=new Hashtable(55);

400

User InterfacesforJim’ Services

static {

0pcodes.put(new Byte((byte)0x10),”PING ,void, void,P”);

0pcodes.put(new Byte((byte)Ox12),"GETVAL ,

byte src byte arg, short val,P");

0pcodes.put(new Byte((byte)0x13),"SETMOTORPONER

byte motors byte src byte arg, void,CP");

Opcodes.put(new Byte((byte)Ox14),"SETVAL

byte index byte src byte arg, void,CP");

// Opcodes truncated to save space in listing

// added port interface parameter to Dario‘s code

public RCXLoadeIFrame(RCXPortInteIface port) {

super("RCX Loader");

// changed from Dario‘s code

rcxPoIt = port;

addNindowListener(this);

topPane1 = new Panel();

topPanel.setLayout(new BorderLayout());

tableButton = new Button("table");

tab1eButton.addActionListener(this)3

textField = new TextField();

// textField.setEditab1e(false);

// textFie1d.setEnabled(fa1se);

// tableButton.setEnabled(false);

textField.addActionListener(this);

textPanel = new Pane1();

textPanel.setLayout(new BoIderLayout(5,5));

topPane1.add(textField,”Center");

topPane1.add(tableButton,"East");

textPanel.add(topPane1,"North");

textArea = new TextArea();

// textArea.setEditab1e(false);

textArea.setFont(new Font(”CourieI",Font.PLAIN,12));

textPane1.add(textArea,"Center");

401

CWapwr19

add(textPanel, "Center”);

textArea.setText("initia1izing...\n");

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();

setBounds(screen.width/2-370/2,screen.height/2-370/2,370,370);

// setVisible(true);

// changed listener type from Dario's code

try {

// We are remote to the object we are listening to

// (the RCXPort), so the RCXPort must get a stub object
// for us. We have subclassed from Frame, not from

// UnicastRemoteObject. So we must export ourselves
// for the remote references to work

Unicastkemoteobject.export0bject(this);

rcxPort.addListener(this);

} catch(Exception e) {

textArea.append(e.toString());

}

tab1eButton.setEnabled(true);

public void actionPerformed(ActionEvent evt) {

Object obj = evt.getSource();

if(obj==textFie1d) {

String strlnput = textFie1d.getText();

textFie1d.setText("");

textArea.append(”> "+strInput+"\n");

try {

byteArray = rcxPort.parseString(strInput);

} catch(RemoteException e) {

textArea.append(e.toString());

} .

// byteArray = RCXOpcode.parseString(strInput);

if(byteArray==nul1) {

textArea.append("Error: illegal hex character or 1ength\n");
return;

}

it(rcxPort!=null) {

try {

if(!rcxPort.write(byteArray)) {

textArea.append("Error: writing data to port

402

User InterfacesforJini Services

"+portName+"\n");

}

} catch(Exception e) {

textAIea.append(e.toStIing());

}

else if(obj==tableButton) {
// make this all in the ui side

showTable();

setLocation(0,getLocation().y);

public void windowActivated(WindowEvent e) { }

public void windowClosed(windowEvent e) { }

public void windowDeactivated(windowEvent e) { }

public void windowDeiconified(windowEvent e) { }

public void windowlconified(windowEvent e) { }

public void windowOpened(WindowEvent e) { }

public void windowclosing(windowEvent e) {
/*

if(rcxPoIt!=null)

IcxPort.close();
*/

System.exit(0);

public void notify(RemoteEvent evt) throws UnknownEventException,
java.rmi.RemoteException {

long id = evt.getID();

long seqNo = evt.getSequenceNumber();

if (id == RCXPoItInterface.MESSAGE_EVENT) {

byte[] message = rcxPort.getMessage(seqNo);

StringBuffer sbuffer = new StringBuffer();

foI(int n = 0; n < message.length; n++) {

int newbyte = (int) message[n];

if (newbyte < 0) {

newbyte += 256;

}

sbuffer.append(Integer.toHexString(newbyte) + ” ");

}

textArea.append(sbuffer.toString());

System.out.pIintln("MESSAGE: ” + sbuffer.toStIing());

403

Chapmr19

} else it (id == RCXPortInterface.ERROR_EVENT) {

textArea.append(rcxPort.getError(seqNo));

} else {

throw new UnknownEventException("Unknown message " + evt.getID());

public void showTable()

{

if(opcodeFIameI=null)

{

opcodeFrame.dispose();

opcodeFIame=null;
return;

}

opcodeFIame = new Frame("RCX Opcodes Table");

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();

opcodeFrame.setBounds(scIeen.width/2—70,0,
screen.width/2+70,scIeen.height-25);

opcodeTextAIea = new TextArea(" Opcode

C=program command P=remote command\n",60,100);

opcodeTextArea.setFont(new Font(”Courier",Font.PLAIN,10));

opcodeFrame.add(opcodeTextAIea);

Enumeration k = Opcodes.keys();

,paIameters, response,

for (Enumeration e = 0pcodes.elements(); e.hasMoreElements();) {

String tmp = Integer.toHexString(((Byte)k.nextElement()).intValue());

tmp = tmp.substring(tmp.1ength()—2)+" "+(String)e.nextElement()+"\n";

opcodeTextArea.append(tmp);

}

opcodeTextArea.setEditable(false);

opcodeFrame.setVisib1e(true);

RCXLoaderFrameFactory V

The factory object for the RCX is now easy to define—it just returns a

RCXLoadeIFrame in the getUI() method:

/**

* RCXLoadeIFrameFactory.java
*/

404

User Inte1fa.cesfor]ini Services

package rcx.jini;

import net.jini.lookup.ui.factory.FrameFactory;

import net.jini.core.lookup.Serviceltem;

import java.awt.Frame;

public class RCXLoadeIFrameFactory implements FrameFactory {

public Frame getFrame(0bject roleobj) {

Serviceltem item: (ServiceItem) Ioleobj;

RCXPortInter+ace port = (RCXPortInterface) item.service;

return new RCXLoaderFrame(p0rt);

} // RCXLoaderFrameFactoIy

Exporting the FrameFactory

The factory object is exported by making it a part of a UIDescriptor entry object
with a role, toolkit, and attributes:

Set typeNames = new HashSet();

typeNames.add(FrameFactory.TYPE_NAME);

Set attribs = new HashSet();

attribs.add(new UIFactoIyTypes(typeNames))3

// add other attributes as desired

Marshalledobject factory = null;

try {

factory = new MarshalledObject(new
RCXLoadeIFrameFactory());

} catch(Exception e) {

e.printStackTrace();

System.exit(2);

UIDescriptor desc = new UIDescriptor(MainUI.ROLE,
FrameFactory.TO0LKIT,

attribs,

factory);

Entry[] entries = {desc};

405

Chapter 1 9

JoinManager joinMgr = new JoinManageI(impl,

entries,

this,

new LeaseRenewa1Manager());

Customized User Interfaces

The RCXLoaderFrame is a general interface to any RCX robot. Of course, there could

be many other such interfaces, differing in the classes used, the amount of inter-

national support, the appearance, etc. All the variations, however, will just use the

standard RCXPortInterface, because that is all they know about.

The LEGO pieces can be combined in a huge variety of ways, and the RCX

itself is programmable, so you can build an RCX car, an RCX crane, an RCX maze-

runner, and so on. Each different robot can be driven by the general interface, but

most could benefit from a custom—built interface for that type of robot. This is typ-

ical: for example, every blender could be driven from a general blender user

interface (using the possibly forthcoming standard blender interface 2-). But the
blenders from individual vendors would have their own customized user interface

for their brand of blender.

I have been using an RCX car. While it can do lots of things, it has been conve-

nient to use five commands for demonstrations: forward, stop, back, left, and

right, with a user interface as shown in Figure 19-3.

Figure 19-3. This is a control panel takenfrom the LEGO® MINDSTORMST“
Robotics Invention System RCX programming system.

In Chapter 17, this appearance was hard-coded into the client. Since the client

was just searching for any MINDSTORMS robot, it really shouldn’t know about this

sort of detail and should get this user interface from the robot service.

406

User InterfacesforJim’ Services

CarJFrame

The Carl Frame class produces the user interface as a Swing 3Frame, with the buttons

generating specific RCX code for this model.

package rcx.jini;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jini.core.event.RemoteEventListeneI;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.net.URL;

import java.rmi.RemoteException;

class CarJFrame extends JFIame

implements RemoteEventListener, ActionListener {

public static final int STOPPED = 1;

public static final int FORWARDS = 2;

public static final int BACKWARDS 2 4;

protected int state = STOPPED;

protected RCXPortInterface port = null;

JFrame frame;

JTextAIea text;

public Car]Frame(RCXPoItInterface port) {
supeI() ;

this.poIt = port;

frame = new JFrame(”LEGO MINDSTORMS");

Container content = frame.getContentPane();

JLabel label = null;

Imagelcon icon = null;

try {

icon = new ImageIcon(new

URL(”http://www.LEGOMINDSTORMS.com/images/home_logo.ps"));

switch (icon.getImageLoadStatus()) {
case MediaTIacker.ABORTED:

case MediaTIacker.ERRORED:

407

Chapwr19

System.out.pIintln("EIIoI");

icon = null;

break;
case MediaTracker.COMPLETE:

System.out.print1n("Complete“);

break;
case MediaTrackeI.LOADING:

System.out.print1n("Loading");

break;

}

} catch(java.net.Ma1foImedURLException e) {

e.printStackTrace();

}

if (icon != null) {

label = new JLabel(icon);

} else {

label = new JLabel("MINDSTORMS");

JPanel pane = new JPanel();

pane.setLayout(new GridLayout(2, 3));

content.add(label, "NoIth");

content.add(pane, "CenteI");

JButton btn = new JButton("FoIward");

pane.add(btn);

btn.addActionListener(this);

btn = new JButton("Stop");

pane.add(btn);

btn.addActionListener(this);

btn = new JButton(“Back");

pane.add(btn); ‘

btn.addActionListener(this);

btn = new 3Button("Left");

pane.add(btn);

btn.addActionListener(this);

label = new JLabel("");

pane.add(label);

408

User In terfczces for Jim’ Services

btn = new JButton("Right");

pane.add(btn);

btn.addActionListeneI(this);

frame.pack();

frame.setVisible(true);

public void sendCommand(StIing comm) {

byte[] command;

try {

command = poIt.paIseStIing(comm);

if (I poIt.wIite(command)) {

System.err.pIintln("command failed");

}

} catch(RemoteException e) {

e.printStackTIace();

public void foIwards() {

sendCommand("e1 85");

sendCommand("21 85");

state = FORWARDS;

public void backwards() {

sendCommand("e1 45");

sendCommand("21 85");

state = BACKWARDS;

public void stop() {

sendCommand("21 45");

state = STOPPED;

public void restoreState() {

if (state == FORNARDS)

foIwaIds();

else if (state == BACKWARDS)

backwaIds();
else

5t°P();

409

Chapmr19

}

public void actionPerformed(ActionEvent evt) {
String name = evt.getActionCommand();

byte[] command;

if (name.equals("FoIwaId")) {
foIwards();

} else if (name.equals("Stop”)) {

S’t0P();

} else if (name.equals("Back")) {
backwards();

} else if (name.equals("Left")) {
sendCommand("e1 84");

sendCommand("21 84”);

sendCommand("21 41");

try {

ThIead.sleep(100);

} catch(InterruptedException e) {
}

IestoIeState();

} else if (name.equals("Right”)) {
sendCommand("e1 81");

sendCommand("21 81");

sendCommand("21 44");

try {

ThIead.sleep(100);

} catch(InterIuptedException e) {

}

IestoreState();

}

public void notify(RemoteEvent evt) throws UnknownEventException,
java.rmi.RemoteException {

// System.out.pIintln(evt.toString());

long id = evt.getID();

long seqNo = evt.getSequenceNumber();

1+ (id == RCXPortIn‘cerface.MESSAGE_EVENT) {

byte[] message = port.getMessage(seqNo);
StringBuffer sbuffer = new StringBuffer();

for(int n = 0; n < message.length; n++) {

410

User InterfacesforIini Services

int newbyte = (int) message[n];

if (hewbyte < 0) {

newbyte += 256;

}

sbuffer.append(Integer.toHexString(newbyte) + " ");
}

System.out.println("MESSAGE: " + sbuffer.toString());

} else if (id == RCXPortInterface.ERROR_EVENT) {

System.out.println("ERROR: " + port.getError(seqNo));

} else {

throw new UnknownEventException("Unknown message “ + evt.getID());

CarJFrameFactory

The factory generates a Car] Frame object, like this:

/>I<*

* CarJFrameFactoIy.java
*/

package rcx.jini;

import net.jini.lookup.ui.factory.JFrameFactory;

import net.jini.core.lookup.Serviceltem;

import javaX.swing.JFrame;

public class CarJFrameFactory implements JFIameFactory {

public JFrame getJFrame(0bject roleobj) {
Serviceltem item = (serviceltem) roleobj;

RCXPortInteIface port = (RCXPortInterface) item.service;

return new CarJFrame(port);

} // CarJFIameFactory

411

Chapter 19

Exporting the FrameFactory

Both of the user interfaces discussed—the RCXLoaderFrame and the Car] Frame—can

be exported by expanding the set of Entry objects.

// generic UI

Set geneIicAttribs = new HashSet();

Set typeNames = new HashSet();

typeNames.add(FrameFactoIy.TYPE_NAME);

geneIicAttIibs.add(new UIFactoIyTypes(typeNames))5

Marshalledobject genericFactoIy = null;

try {

genericFactory = new MarshalledObject(new

RCXLoaderFrameFactory());

} catch(Exception e) {

e.printStackTrace();

System.exit(2);

}

UIDescriptor genericDesc = new UIDescIiptor(MainUI.ROLE,

FrameFactoIy.TOOLKIT,

genericAttribs,

genericFactory);

// cat UI

Set carAttribs = new HashSet();

typeNames = new HashSet();

typeNames.add(JFrameFactoIy.TYPE_NAME);

carAttribs.add(new UIFactoIyTypes(typeNames));

Marshalledobject caIFactoIy = null;

try {

carFactoIy = new Marshalled0bject(new CarJFrameFactory());

} catch(Exception e) {

e.printStackTIace();

System.exit(2);

}

UIDescIiptor carDesc = new UIDesctiptor(MainUI.ROLE,

3FrameFactory.TOOLKIT,

caIAttIibs,

carFactory);

Entry[] entries = {genericDesc, caIDesc};

JoinManageI joinMgI = new JoinManageI(imp1,

entries,

412

User Interfacesfor]l'm7 Services

this,

new LeaseRenewalManager());

The RCX Client

The following client will start up all user interfaces that implement the main UI
role and that use a Frame or JFIame:

package client;

import rcx.jini.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.rmi.RMISecurityManager;

import net.jini.discoveIy.LookupDiscovery;

import net.jini.discovery.DiscoveryListeneI;

import net.jini.discovery.DiscoveryEvent;

import net.jini.coIe.1ookup.ServiceRegistrar;

import net.jini.coIe.lookup.SeIviceTemplate;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.server.Unicastkemoteobject;

import java.Imi.RemoteException;

import net.jini.core.entIy.Entry;

import net.jini.coIe.lookup.SeIviceMatches;

import net.jini.core.lookup.Serviceltem;

import net.jini.lookup.entIy.UIDescIiptoI;

import net.jini.lookup.ui.MainUI;

import net.jini.lookup.ui.attIibute.UIFactoryTypes;

import net.jini.lookup.ui.factoIy.FrameFactory;

import net.jini.lookup.ui.factoIy.JFIameFactory;

import java.util.Set;

import java.uti1.IteIator;

/>l<*

* TestRCX2.java
*/

413

Chapter 19

public class TestRCX2 implements DiscoveryListener {

public static void main(String argv[]) {

new TestRCX2();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(100000OL);

} catch(java.lang.InteIruptedException e) {

// do nothing

public TestRCX2() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

Class [] classes = new Class[] {RCXPortlnterface.class};

RCXPortInterface port = null;

UIDescriptor desc = new UIDescriptor(MainUI.ROLE, null, null, null);

Entry[] entries = {desc};

ServiceTemplate template = new ServiceTemplate(null, classes,

entries);

for (int n 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

ServiceMatches matches = null;

414

User InterfacesforIini Services

try {

matches = registrar.lookup(template, 10);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

for (int nn = 0; nn < matches.items.length; nn++) {

Serviceltem item = matches.items[nn];

port = (RCXPoItInterface) item.seIvice;

if (port == null) {

System.out.println("poIt null");

continue;

Entry[] attributes = item.attIibuteSets;

for (int m = 0; m < attributes.length; m++) {

Entry attr = attributes[m];

if (attr instanceof UIDescriptoI) {

showUI(port, item, (UIDescIiptoI) attr);

public void discarded(DiscoveryEvent evt) {

// empty

private void showUI(RCXPortInterface port,
Serviceltem item,

UIDescriptor desc) {

Set attribs = desc.attributes;

Iterator iter = attribs.iterator();

while (iteI.hasNext()) {

Object obj = iter.next();

if (obj instanceof UIFactoryTypes) {

UIFactoIyTypes types (UIFactoryTypes) obj;

Set typeNames = types.getTypeNames();

if (typeNames.contains(FrameFactory.TYPE_NAME)) {

FrameFactory factory = null;

415

Chapwr19

try {

factory = (FrameFactory) desc.getUIFactory(this.getC1ass().

getClassLoader());

} catch(Exception e) {

e.printStackTrace();
continue;

}

Frame frame = factory.getFrame(item);

frame.setVisible(true);

} else if (typeNames.contains(JFrameFactory.TYPE_NAME)) {

JFrameFactoIy factory = null;

try {

factory = (JFrameFactory) desc.getUIFactory(this.getClass().

getClassLoader());

} catch(Exception e) {

e.printStackTrace();

continue;

}

JFrame frame = factory.getJFrame(item);

fIame.setVisib1e(true);

}

} else {

System.out.println("non—gui entry");

}

} // TestRCX

Summary

The serviceUI group is evolving a standard mechanism for services to distribute

user interfaces for Jini services. The preference is to do this by Entry objects that

contain factories for producing user interfaces.

416

CHAPTER 20

Activation

MANY OF THE EXAMPLES IN EARLIER CHAPTERS use RMI proxies for services. These ser-

vices subclass UnicastRemote0bject and live within a server whose principal task is to

keep the service alive and registered with lookup services. If the server fails to renew
leases, then lookup services will eventually discard it; if it fails to keep itself and its

service alive, then the service will not be available when a client wants to use it.

This results in a server and a service that will be idle most of the time, proba-

bly swapped out to disk, but still using virtual memory. In IDK 1.2, the memory
requirements on the server side can be enormous (hopefully this will be fixed, but
at the moment this is a severe embarrassment to lava and a potential threat to the

success of Iini). In IDK 1.2, there is an extension to RMI called Activation, which

allows an idle object to die and be recalled to life when needed. In this way, it does

not occupy virtual memory while idle. Of course, a process needs to be alive to
restore such objects, and RMI supplies a daemon mid to manage this. In effect,
Imid acts as another virtual memory manager because it stores information about

dormant Java objects in its own files and restores them from there as needed.
There is a serious limitation to mid: it is a Java program itself, and when run-

ning also uses enormous amounts of memory. So it only makes sense to use this
technique when you expect to be running a number of largely idle services on the
same machine. When a service is recalled to life, or activated, a new IVM may be

started to run the object. This again increases memory use.

If memory use were the only concern, there are a variety of other systems,
such as echidna, that run multiple applications within a single IVM. These may be

adequate to solve the memory issues. However, RMI Activation is also designed to
work with distributed objects and allows IVMS to hold remote references to objects

that are no longer active. Instead of throwing a remote exception when trying to

access these objects, the Activation system tries to resurrect the object using mid

to give a valid (and new) reference. Of course, if itfails to do this, it will throw an
exception anyway.

The principal place that this is used in the standard Iini distribution is with the
Ieggie lookup service. reggie is an activatable service that starts, registers itself
with mid, and then exits.Whenever lookup services are required, rmid restarts

Ieggie in a new IVM. Clients of the lookup service are unaware of this mechanism;
they simply make calls on their proxy Servicekegistration object and the Activa-

tion system looks after the rest. The main problem is for the system

administrator——getting reggie to work in the first place!

417

Chapter 20

A Service Using Activation

The major concepts in Activation are the activatable object itself (which extends
java . rmi . activation .Activatab1e) and the environment in which it runs, an
Activationcroup.

A IVM may have an activation group associated with it. If an object needs to be
activated and there is already a IVM running its group, then it is restarted within

that IVM. Otherwise, a new]VM is started. An activation group may hold a number

of cooperating objects.

The next sections show how to create a service as an activatable object that

starts life in a server that sets up the activation group. Issues related to activation,

such as security and state maintenance, will also be discussed.

The Service

An activable object subclasses from Activatable and uses a special two—argument
constructor that will be called when the object needs to be reconstructed. There is

a standard implementation of this constructor that just calls the superclass
constructor:

public Activatablelmpl(ActivationID id, Marshalledobject data)
throws RemoteE><ception {

super(id, 0);

(The use of the marshalled object parameter is discussed later in the “Main-

taining State" section). Adding this constructor is all that is normally needed to
change a remote service (that implements UnicastRemoteObject) into an activatable
service. For example, an activatable version of the remote file classifier described

in Chapter 9 in the “RMI Proxy for FileClassifier” section is as follows:

package activation;

import java.rmi.activation.Activatable;

import java.Imi.activation.ActivationID;

import java.rmi.Marshalled0bject;

import common.MIMEType;

import common.FileC1assifier;

import Imi.RemoteFileC1assitier;

/*$

418

Activation

* FileClassifierImpl.java

*/

public class Fileclassifierlmpl extends Activatable
implements RemoteFileClassifier {

public MIMEType getMIMEType(String tileName)
throws java.rmi.RemoteException {

if (fileName.endswith(".gif")) {

return new MIMEType("image", "gif");

} else if (fileName.endswith(".jpeg”)) {
return new MIMEType("image”, ”jpeg”);

} else if (ti1eName.endswith(".mpg")) {
return new MIMEType("video", ”mpeg");

} else if (fileName.endswith(".txt")) {
return new MIMEType("text", ”plain”);

} else if (fileName.endswith(".html")) {
return new MIMEType("text", "html");

} else

// fill in lots of other types,

// but eventually give up and

return new MIMEType(null, null);

public FileClassifieIImpl(ActivationID id, Marshalled0bject data)
throws java.rmi.RemoteException {

super(id, 0);

} // FileClassitierImpl

Note that an activatable object cannot have a default no—args constructor to

initialize itself, since this new constructor is required for the object to be con-

structed by the activation system.

The Server

The server needs to create an activation group for the objects to run in. The main
issue involved here is to set a security policy file. There are two security policies

in activatable objects: the policy used to create the server and export the service,
and the policy used to run the service. The activation group sets a policy file for
running methods of the service object. The policy file for the server is set using

419

Chapter 20

the normal —Djava . security. policy=. . . argument to start the server. After

setting various parameters, the activation group is set for the WM by

ActivationGIoup . createGroup().

Remote objects that subclass UnicastRemote0bject are created in the normal

way using a constructor on the server. Activatable objects are not constructed in

the server but are instead registered with rmid, which will look after construction
on an as—needed basis.

In order to create activatable objects, Imid needs to know the class name and

the location of the class files. The server wraps these up in an ActivationDesc,

and registers this with rmid by using Activatab1e.registe:r(). This returns an

RMI stub object that can be registered with lookup services using the

ServiceRegistIaI. register() methods. This is also a little different from subclasses

of UnicastRemoteObject, which pass an object that is converted to a stub by the RMI

runtime. The required actions, in point form, are as follows:

v A service creates a subclass of UnicastRemote0bject using its constructor.

A subclass of Activatable is created by mid using a special constructor.

For a UnicastRemoteObject object, the server needs to know the class files for
the class in its CLASSPATH and the client needs to know the class files for the

stub from an HTTP server.

For an Activatable object, rmid needs to know the class files from an HTTP

server, the server must be able to find the stub files from its CLASSPATH, and

the client must be able to get the stub files from an HTTP server.

A server hands a UnicastRemoteObj ect object to the ServiceRegistIar . registeI().

This is converted to the stub by the RMI runtime.

A server gets a stub for an Activatable object from Activatab1e.register().

This stub is given directly to ServiceRegistrar. register().

Changes need to be made to servers that export activatable objects instead of

unicast remote objects. The server in Chapter 9, in the “RMI Proxy for FileC1assi~

fier” section, creates a unicast remote object and exports its RMI proxy to lookup

services by passing the remote object to the ServiceRegistraI.reg:ister() method.

The changes for such servers to export activatable objects are as follows:

0 An activation group has to be created with a security policy file.

0 The service is not created explicitly but is instead registered with rmid.

420

Activation

- The return object from the registration is a stub that can be registered with
lookup services.

- Leasing vanishes——the server just exits. The service will just expire after a
while. See the “LeaseRenewalService” section later in the chapter for more
details on how to keep the service alive.

The file classifier server using an activatable service would look like this:

package activation;

import rmi.RemoteFi1eClassifier;

import net.jini.discoveIy.LookupDiscoveIy;

import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveIyEvent;

import net.jini.core.lookup.Servicekegistrar;

import net.jini.core.lookup.Serviceltem;

import net.jini.coIe.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

import java.Imi.RMISecurityManager;

import java.Imi.Marshalled0bject;

import java.rmi.activation.ActivationDesc;

import java.Imi.activation.ActivationGroupDesc;
import java.Imi.activation.ActivationGroupDesc.CommandEnviIonment;
import java.Imi.activation.Activatable;

import java.Imi.activation.ActivationGroup;

import java.Imi.activation.ActivationGroupID;

import java.util.PropeIties;

import java.Imi.activation.UnknownGroupException;
import java.Imi.activation.ActivationException;

import java.rmi.RemoteException;

/>l<*

* FileClassitieIServeI.java

*/

public class Fileclassifierserver implements DiscoveIyListener {

static final protected String SECURITY_POLICY_FILE =

"/home/jan/projects/jini/doc/policy.all";

// Don't forget the trailing '/'|

421

Chapter 20

static final protected String CODEBASE = "http://localhost/classes/";

// protected Fileclassifierlmpl impl;

protected RemoteFileClassifier stub;

public static void main(String argv[]) {
new FileClassifierServer(argv);

// stick around while lookup services are found

try {

Thread. sleep(1000OL);

} catch(InterruptedException e) {

// do nothing

}

// the server doesn't need to exist anymore

System.exit(0);

public Fi1eClassifierServer(String[] argv) {
// install suitable security manager

System.setSecurityManager(new RMISecurityManager());

// Install an activation group

Properties props = new Properties();

props.put("java.security.policy",

SECURlTY_POLICY_FI LE);

ActivationGroupDesc.CommandEnvironment ace = null;

ActivationGroupDesc group = new ActivationGroupDesc(props, ace);

ActivationGroupID groupID = null;

try {

groupID = ActivationGroup.getSystem().registerGroup(group);

} catch(RemoteException e) {

e.printStackTrace();

System.exit(1);

} catch(ActivationException e) {

e.printStackTIace();

System.exit(1);

try {

ActivationGroup.createGroup(groupID, group, 0);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

422

Activation

String codebase = CODEBASE;

Marshalledobject data = null;

ActivationDesc desc = null;

try {

desc = new ActivationDesc("activation.FileC1assifierImpl",

codebase, data);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

try {

stub = (RemoteFi1eClassifier) Activatable.register(desc);

} catch(UnknownGroupException e) {

e.printStackTrace();

System.exit(1);

} catch(ActivationException e) {

e.pIintStackTrace();

System.exit(1);

} catch(RemoteException e) {

e.printStackTrace();

System.exit(1);

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

}

public void discovered(DiscoveryEvent evt) {

ServiceRegisrrar[] registrars = evt.getRegistrars();
RemoteFileClassifier service;

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

423

// export the proxy service

Serviceltem item = new SeIviceItem(null,

stub,

null);

Servicekegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.Imi.RemoteException e) {

System.err.print("Register exception: ");

e.printStackTIace();

// System.exit(2);

continue;

}

try {

System.out.println("service registered at " +

registraI.getLocat0r().getHost());

} catch(Exception e) {

}

public void discarded(DiscoveryEvent evt) {

}

} // Fileclassifierserver

Running the Service

The service backend and the server must be compiled as usual, and in addition, an

RMI stub object must be created for the service backend using the rmic compiler (in

IDK 1.2, at least). The class files for the stub must be copied to somewhere where an

HTTP server can deliver them to clients. This is the same as for any other RMI stubs.

There is an extra step that must be performed for Activatable objects: the acti-

vation server rmid must be able to reconstruct a copy of the service backend (the

client must be able to reconstruct a copy of the service’s stub). This means that

rmid must have access to the class files of the service backend, either from an

HTTP server or from the file system. In the previous server, the codebase property

in the ActivationDesc is set to an HTTP URL, so the class files for the service back-

end must be accessible to an HTTP server. Note that rmid does not get the class

files for a service backend from the CLASSPATH, but from the codebase of the ser-

vice. The HTTP server need not be on the same machine as the service backend.

424

Before starting the service provider, an rmid process must be set running on
the same machine as the service provider. An HTTP server must be running on a
machine specified by the codebase property on the service. The service provider
can then be started. This will register the service with mid and will copy a stub
object to any lookup services that are found. The server can then terminate. (As
mentioned earlier, this will cause the service’s lease to expire, but techniques to
handle this are described later).

In summary, there are typically three processes involved in getting an activat-
able service running:

- The service provider, which specifies the location of class files in its
codebase.

0 rmid, which must be running on the same machine as the service provider
and must be started before the service provider. It gets class files using the
codebase of the service.

- An HTTP server, which can be on a different machine and is pointed to by
the codebase.

While the service remains registered with lookup services, clients can download
its RMI stub. The service will be created on demand by rmid.You only need to run the
server once, since rmid keeps information about the service in its own log files.

Security

The IVM for the service will be created by mid and will be running in the same
environment as rmid. Such things as the current directory for the service will be the
same as for mid, not from where the server ran. Similarly, the user ID for the ser-
vice will be the user ID of mid. This is a potential security problem in multi—user
systems. For example, any user on a Unix system could write a service that attempts
to read the shadow password file on the system, as an activatable service. Once
registered with rmid, this same user could write a client that calls the appropriate
methods on the service. If rmid is running in privileged mode, owned by the super-
user of the system, then the service will run in that same mode and will happily
read any file in the entire file system! For safety, rmid should probably be run using
the user ID nobody, much like the recommendations for HTTP servers.

Some of the security issues with rmid have been addressed in IDK 1.3. These
were discussed in Chapter 12, and they allow a security policy to be associated
with each activatable service.

Activation

425

Chapter 20

Non—Lazy Services

The types of services discussed in this chapter so far are “lazy” services, activated

on demand when their methods are called. This reduces memory use at the expense

of starting up a new IVM when required. Some services need to be continuously

alive but can still benefit from the logging mechanism of mid. If rmid crashes and

is restarted, or the machine is rebooted and rmid restarts, then the server is able to

use its log files to restart any “active” services registered with it, as well as to restore

“lazy” services on demand. By making services non—lazy and ensuring that rmid is

started on reboot, you can avoid messing around with boot configuration files.

Maintaining State

An activatable object is created afresh each time a method is called on it, using its

two~argument constructor. The default action, calling super(id , 0) will result in

the object being created in the same state on each activation. However, method

calls on objects (apart from get. . . () methods) usually result in a change of state of

the object. Activatable objects will need some way of reflecting this change on

each activation, and saving and restoring state using a disk file typically does this.

When an object is activated, one of the parameters passed to it is a

Mars halledobject instance. This is the same object that was passed to the activa—

tion system in the ActivationDesc parameter to Activation .register(). This object

does not change between different activations, so it cannot hold changing state,

but only data, which is fixed for all activations. A simple use for it is to hold the

name of a file that can be used for state. Then, on each activation the object can

restore state by reading stored information. On each subsequent method call that

changes state, the information in the file can be overwritten.

The mutable file classifier example was discussed in Chapter 14——it could be

sent addType() and removeType() messages. It begins with a given set of MIME type/

file extension mappings. State here is very simple; it is just a matter of storing all

the file extensions and their corresponding MIME types in a Map. If we turn this

into an activatable object, we store the state by just storing the map. This map can

be saved to disk using Objectoutputstream . writeobj ect (), and it can be retrieved by

Objectlnputstream . readobject (). More complex cases might need more complex

storage methods.

The very first time a mutable file classifier starts on a particular host, it should

build its initial state file. There are a variety of methods that could be used. For

example, if the state file does not exist, then the first activation could detect this

and construct the initial state at that time. Alternatively, a method such as init ()

could be defined, to be called once after the object has been registered with the

activation system.

426

The “normal” way of instantiating an object——through a constructor—doesn’t
work very well with activatable objects. If a constructor for a class doesn’t start by
calling another constructor with this (. . .) or super(. . .), then the no—argument
superclass constructor super() is called. However, the class Activatable doesn’t
have a no-args constructor, so you can’t subclass from Activatable and have a con-
structor such as Fileclassi1‘ierMutable(String stateFi1e) that doesn’t use the
activation system.

You can avoid this problem by not inheriting from Activatable and registering
explicitlywith the activation system, like this:

public FileC1assifierMutable(ActivationID id, Marshalledobject data)
throws java.rmi.RemoteException {

Activatable.expoItObject(this, id, 0);
// continue with instantiation

Nevertheless, this is a bit clumsy: you create an object solely to build up initial
state, and then discard it because the activation system will recreate it on demand.

The technique we’ll use here is to create initial state if the attempt to restore
state from the state file fails for any reason when the object is activated. This
is done in the re storeMap() method called from the constructor
Fi1eC1assi1‘ierMutable(ActivationID id, Marshalledobject data). The name
of the file is extracted from the marshalled object passed in as parameter.

package activation;

import java.io.*;

import java.Imi.activation.Activatab1e;

import java.rmi.activation.ActivationID;

import java.rmi.MaIshalled0bject;

import net.jini.coIe.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;

import net.jini.coIe.event.EventRegistIation;
import java.Imi.RemoteException;

import net.jini.core.event.UnknownEventException }

import javax.swing.event.EventListenerList;

import common.MIMEType;

import common.Mutab1eFileC1assifier;
import mutable.RemoteFileClassifieI;

import java.util.Map;

import java.uti1.HashMap;

Activation

427

Chapter 20

/**

* FileC1assifierMutab1e.java
*/

public class FileClassifierMutable extends Activatable

implements RemoteFileClassifier {

/*>|<

* Map of String extensions to MIME types
*/

protected Map map = new HashMap();

/**

* Permanent storage for the map while inactive
*/

protected String mapFile;

/**

* Listeners for change events
*/

protected EventListeneIList listenerList = new EventListenerList();

public MIMEType getMIMEType(String fi1eName)

throws java.rmi.RemoteException {

System.out.print1n("Called with “ + fileName);

MIMEType type;

String fileExtension;

int dotlndex = fileName.lastIndex0f('.');

if (dotlndex == -1 ll dotlndex + 1 == fileName.length()) {
// can't find suitable suffix

return null;

fileExtension= fileName.substring(dotIndex + 1);

type = (MIMEType) map.get(fileExtension);

return type;

public void addType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

428

Activation

map.put(suffix, type);

fireNotify(MutableFileClassifier.ADD_TYPE);

saveMap();

public void removeMIMEType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

if (map.remove(suffix) 1= null) {

fireNotity(MutableFileClassitier.REMOVE_TYPE);

saveMap();

public EventRegistration addRemoteListener(RemoteEventListener listener)

throws java.rmi.RemoteException {

listenerList.add(RemoteEventListener.class, listener);

return new EventRegistration(0, this, null, 0);

// Notify all listeners that have registered interest for

// notification on this event type. The event instance

// is lazily created using the parameters passed into
// the fire method.

protected void fireNotify(long eventID) {
RemoteEvent remoteEvent = null;

// Guaranteed to return a non—null array

0bject[] listeners = listenerList.getListenerList();

// Process the listeners last to first, notifying
// those that are interested in this event

for (int i = listeners.length — 2; 1 >= 0; i -= 2) {

if (listeners[i] == RemoteEventListener.class) {

RemoteEventListener listener = (RemoteEventListener) listeners[i+1];

if (remoteEvent == null) {

remoteEvent = new RemoteEvent(this, eventID,

OL, null);

}

try {

listener.notify(remoteEvent)5

} catch(UnknownEventException e) {

e.printStackTrace();

429

Chapwr20

} catch(RemoteException e) {

e.pIintStackTIace();

/**

* Restore map from file.

* Install default map if any errors occur
*/

public void restoIeMap() {

try {

Filelnputstream istream = new Fi1eInputStream(mapFi1e);

Objectlnputstream p = new 0bjectInputStream(istream);

map = (Map) p.Iead0bject();

istream.close();

} catch(Exception e) {

e.pIintStackTIace();
// restoration of state failed, so

// load a predefined set of MIME type mappings

map.put("gif", new MIMEType("image”, ”git"));

map.put("jpeg”, new MIMEType("image", "jpeg"))

map.put("mpg", new MIMEType("video", ”mpeg"));

map.put("txt“, new MIMEType("text”, ”p1ain”));

map.put("htm1", new MIMEType("text", "html"));

this.mapFi1e = mapFile;

saveMap();

/**

* Save map to file.
*/

public void saveMap() {

try {

Fileoutputstream ostream = new File0utputStIeam(mapFi1e);

Objectoutputstream p = new ObjectOutputStream(ostream);

p.writeObject(map);

p.tlush();

ostream.close();

} catch(Exception e) {

430

e.pIintStackTrace();

}

public Fi1eC1assifierMutab1e(ActivationID id, Marshalledobject data)
throws java.Imi.RemoteException {

supeI(id, 0);

try {

mapFile = (String) data.get();

} catch(Exception e) {

e.pIintStackTrace();

}

IestoIeMap();

}

} // FileClassitieIMutable

The difference between the server for this service and the last one is that we

now have to prepare a marshalled object for the state file and register it with the
activation system. Here the filename is hard-coded, but it could be given as a com-
mand line argument (as services such as reggie do).

package activation;

import mutable.RemoteFileClassifier;

import net .jini . discovery. LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveIyEvent;

import net.jini.core.lookup.SeIviceRegistraI;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.SeIviceRegistration;

import net.jini.core.lease.Lease;

import java.Imi.RMISecuIityManager;

import java.Imi.MaIsha1ledObject;

import java.Imi.activation.ActivationDesc;

import java.Imi.activation.ActivationGIoupDesc;

import java.Imi.activation.ActivationGroupDesc.CommandEnvironment;
import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationGroup;

import java.rmi.activation.ActivationGIoupID;

import java.uti1.Properties;

import java.rmi.activation.UnknownGroupException;

Activation

431

Chapmr20

import java.rmi.activation.ActivationException;

import java.rmi.RemoteException;

/>k*

* FileClassifierServerMutable.java
*/

public class FileClassifierServerMutable implements DiscoveryListener {

static final protected String SECURITY_POLICY_FILE =

"/home/jan/projects/jini/doc/policy.all";

// Don't forget the trailing '/'!

static final protected String CODEBASE ”http://localhost/classes/";

static final protected String LOG_FILE "/tmp/file_classitier";

// protected FileClassifierImpl impl;

protected RemoteFileClassifier stub;

public static void main(String argv[]) {

new FileClassifierServerMutable(argv);

// stick around while lookup services are found

try {

Thread.sleep(10000L);

} catch(InterruptedException e) {

// do nothing

}

// the server doesn't need to exist anymore

System.exit(0);

public FileClassifierServerMutable(String[] argv) {

// install suitable security manager

System.setSecurityManager(new RMlSecurityManager());

// Install an activation group

Properties props = new Properties();

props.put("java.security.policy",

SECURITY_POLICY_FILE);

ActivationGroupDesc.CommandEnvironment ace = null;

ActivationGroupDesc group = new ActivationGroupDesc(props, ace);

ActivationGroupID groupID = null;

try {

groupID = ActivationGroup.getSystem().registerGroup(group);

} catch(RemoteException e) {

432

1%ctiLu1tio11

e.printStackTIace();

System.exit(1);

} catch(ActivationException e) {

e.pIintStackTrace();

System.exit(1);

try {

ActivationGroup.createGroup(gIoupID, group, O);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

String codebase = CODEBASE;

Marshalledobject data = null;

try {

data = new Marshalledobject(LOG_FILE);

} catch(java.io.IOException e) {

e.printStackTrace();

ActivationDesc desc = null;

try {

desc = new ActivationDesc("activation.FileClassifierMutab1e",

codebase, data);

} catch(ActivationException e) {

e.pIintStackTrace();

System.exit(1);

try {

stub = (RemoteFileC1assifier) Activatable.registeI(desc);

} catch(UnknownGroupException e) {

e.printStackTIace();

System.exit(1);

} catch(ActivationException e) {

e.pIintStackTIace();

System.exit(1);

} catch(RemoteException e) {

e.printStackTrace();

System.exit(1);

433

Chapter 20

LookupDiscoveIy discover = null;

try {
discover new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());
System.exit(1);

}

discover.addDiscoveryListener(this);

}

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();
RemoteFileClassifier service;

for (int n = 0; n < registrars.length; n++) {
ServiceRegistrar registrar = registrars[n];

// export the proxy service
Serviceltem item = new ServiceItem(null,

stub,

null);

Servicekegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);
} catch(java.rmi.RemoteException e) {

System.err.print("Register exception: ")5
e.printStackTrace();

// System.exit(2);
continue;

}

try {

System.out.println("service registered at " +
registrar.getLocator().getHost());

} catch(Exception e) {

}

}

public void discarded(DiscoveryEvent evt) {

434

} // FileClassi1‘ierServeIMutab1e

This example used a simple way of storing state. Sun uses a far more complex

system in many of its services, such as reggie-—a “reliable log” in the package
com. sun .jini.re1iab1eLog. However, this package is not a part of standard Iini, so it
may change or even be removed in later versions of Jim. There is nothing to stop
you from using it, though, if you need a robust storage mechanism.

LeaseRenewalService

Activatable objects are an example of services that are not continuously alive. Mobile
services, such as those that will exist on mobile phones, are another. These services
will be brought to life on demand (as activatable objects), or will join the network on
occasion. These services raise a number of problems, and one was skirted around in
the last section: How do you renew leases when the object is not alive?

Activatable objects are brought back to life when methods are invoked on
them, and the expiration of a lease does not cause any methods to be invoked.
There is no “lease—expiring event” generated that could cause a listener method to
be invoked, either. It is true that a ServiceRegistrar such as reggie will generate an
event when a lease changes status, but this is a “service removed” event rather
than a “service about to be removed” event——at that point it is too late.

If a server is alive, then it can use a LeaseRenewa1Manager to keep leases alive,

but there are two problems with this: first the renewal manager works by sleeping
and waking up just in time to renew the leases, and second, if the server exits, then
no LeaseRenewa1Manager will continue to run.

Iini 1.1 supplies a lease renewal service that partly solves these problems.
Since it runs as a service, it has an independent existence that does not depend on

the server for any other service. it can act like a LeaseRenewa1Manager in keeping
track of leases registered with it, renewing them as needed. In general, it can keep
leases alive without waking the service itself, which can slumber until it is acti-

vated by clients calling methods.
There is a small hiccup in this system, though: how long should the

LeaseRenewa1Service keep renewing leases for a service? The LeaseRenewa1Manager

utility has a simple solution: keep renewing while the server for that service is
alive. If the server dies, taking down a service, then it will also take down the

LeaseRenewalManager running in the same IVM, so leases will expire, as expected,
after an interval.

But this mechanism won’t work for LeaseRenewa1Service because the managed

service can disappear without the Leasekenewalservice knowing about it. So the
lease renewal must be done on a leased basis itselfl The LeaseRenewa1Service will

renew leases for a service only for a particular amount of time, as specified by a
lease. The service will still have to renew its lease, but with a Leasekenewalservice

Activation

435

instead of a bunch of lookup services. The lease granted by this service will need to

be of much longer duration than those granted by the lookup services for this to be
of value.

Activatable services can only be woken by calling one of their methods. The

Lea seRenewa1Service accomplishes this by generating renewal events in advance

and calling a notify () method on a listener. If the listener is the activatable object,

this will wake it up so that it can perform the renewal. If the rmid process managing

the service has died or is unavailable, then the event will not be delivered and the

LeaseRenewa1SeIvice can remove this service from its renewal list.

This is not quite satisfactory for other types of “dormant” services, such as

might exist on mobile phones, since there is no equivalent of mid to handle activa-

tion. Instead, the mobile phone service might say that it will connect once a day

and renew the lease, as long as the LeaseRenewa1Service agrees to keep the lease for

at least a day. This is still “negotiable/' in that the service asks for a duration and

the LeaseRenewalService replies with a value that might not be so long. Still, it

should be better than dealing with the lookup services.

The Norm Service

Iini 1.1 supplies an implementation of LeaseRenewalService called norm. This is a

non—lazy Activatable service that requires rmid to be running. This is run with the

following command

java —jar [setup_jvm_options] executable_jar_file

codebase_arg norm_po1icy_fi1e_arg

log_directory_arg

[groups] [server_jvm] [server_jvm_args]

as in the following

java -jar \

—Djava.security.policy:/files/jini1_1/example/txn/policy.a1l \

/tiles/jini1_1/lib/norm.jar \

http://‘hostname‘ :8080/norm-dl.jar \

/files/jini1_1/example/books/policy.all /tmp/noIm_log

The first security file defines the policy that will be used for the server startup.

The norm .jar file contains the class files for the norm service. This exports RMI stubs,

and the class definitions for these are in norm—d1 . jar. The second security file defines

the policy file that will be used in the execution of the Leasekenewalservice methods.

Finally, the log file is used to keep state, so that it can keep track of the leases it is

managing.

436

The norm service will maintain a set of leases for a period of up to two hours.

The reggie lookup service only grants leases for five minutes, so using this service
increases the amount of time between renewing leases by a factor of over 20.

Using the LeaseRenewa1Serv1'ce

The norm service exports an object of type Leasekenewalservice, which is defined by

the following interface:

package net.jini.lease;

public interface Leasekenewalservice {
LeaseRenewalSet createLeaseRenewalSet(long leaseDuration)

throws java.rmi.RemoteException;

A server that wants to use the lease renewal service will first find this service and

then call the create Lea seRenewa1() method. The server requests a leaseburation

value, measured in milliseconds, for the lease service to manage a set of leases.

The lease service creates a lease for this request, but the lease time maybe less

than the requested time (for norm, it is a maximum of two hours). In order for the
lease service to continue to manage the set beyond the lease’s expiry, the lease

must be renewed before expiration. Since the service may be inactive at the time

of expiry, the LeaseRenewa1Set can be asked to register a listener object that will
receive an event containing the lease. This will activate a dormant listener so that

the listener can renew the lease in time. If the lease for the LeaseRenewa1Set is

allowed to lapse, then eventually all the leases for the services it was managing will

also expire, making the services unavailable.
The Leasekenewalset returned from createLeaseRenewa1Set has an interface

including the following:

package net . j ini . lease;

public interface LeaseRenewalSet {

public void renewFor(Lease leaseToRenew,

long membershipDuration)

throws RemoteException;

public EventRegistration setExpirationwarningListener(
RemoteEventListeneI listener,

long minwarning,

Marshalledobject handback)

throws RemoteException;

Activation

437

Chapwr20

The renewFor() method adds a new lease to the set being looked after.

The LeaseRenewalSet will keep renewing the lease until either the requested

membershipDurat ion expires or the lease for the whole LeaseRenewa1Set expires

(or until an exception happens, like a lease being refused).

Setting an expiration warning listener means that the notify() method of the

listener will be called at least minwarning milliseconds before the lease for the set

expires. The event argument will actually be an ExpirationwarningEvent:

package net.jini.lease;

public class ExpirationwarningEvent extends RemoteEvent {

Lease getLease();

This allows the listener to get the lease for the LeaseRenewa 1Set and (probably)

renew it. Here is a simple activatable class that can renew the lease:

package activation;

import java.rmi.

import java.rmi.

.Marshalled0bject;

import net.jini.

import java.rmi

import net.jini

import net.jini

import net.jini

activation.Activatab1e;

activation.ActivationID;

core.event.RemoteEvent;

.core.event.RemoteEventListener;

.core.lease. Lease;

.lease.ExpirationwarningEvent;

public class Renewtease extends Activatable

implements RemoteEventListener {

public RenewLease(ActivationID id, Marshalledobject data)

throws java.rmi.RemoteException {

super(id, 0);

public void

System.out.println("expiring...

notify(RemoteEvent evt) {

+ evt.toString());

ExpirationNarningEvent eevt = (ExpirationWarningEvent) evt;

Lease lease = eevt.getLease();

try {

// This is short, for testing. Try 2+ hours

438

lease.renew(20o00L);

} catch(Exception e) {

e.pIintStackTIace();
}

System.out.print1n("Lease renewed for " +

(lease.getExpiration() —

System.currentTimeMillis()));

The server will need to register the service and export it as an activatable object.
This is done in exactly the same way as in the Fileclassitierserver example of the
first section of this chapter. In addition, it will need to do a few other things:

- It will need to register the lease listener with the activation system as an
activatable object.

- It will need to find a LeaseRenewa1Service from a lookup service.

0 It will need to register all leases from lookup services with the

Leasekenewalservice. Since it may find lookup services before it finds the

renewal service, it will need to keep a list of lookup services found before
finding the service, in order to register them with it.

Adding these additional requirements to the Fi1eC1assifierSeIveI of the first
section results in this server:

package activation;

import Imi.RemoteFileClassifieI;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveIyListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.SeIviceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lockup.ServiceRegistration;

import net.jini.coIe.lookup.SeIviceTemplate;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.lease.Lease;

import net.jini.lease.Leasekenewalservice;

import net.jini.lease.LeaseRenewa1Set;

import java.rmi.RMISecurityManager;

Acfivafion

439

Chapter 20

import java. '.Marshalled0bject;

import java. '.activation.ActivationDesc;

import java. '.activation.ActivationGroupDesc;

import java. '.activation.ActivationGroupDesc.CommandEnvironment;

import java. '.activation.Activatable;

import java. '.activation.ActivationGroup;

import java. '.activation.ActivationGroupID;

import java. '.activation.ActivationID;

import java. '.MarshalledObject;

import java.util.Properties;

import java.util.Vector;

import java.rmi.activation.UnknownGroupException;

import java.rmi.activation.ActivationException;

import java.rmi.RemoteException;

/=l<*

* FileclassifierServerLease.java
*/

public class FileClassifierServerLease

implements DiscoveryListener {

static final protected String SECURITY_POLICY_FlLE =

"/home/jan/projects/jini/doc/policy.all";

// Don't forget the trailing '/'l

static final protected String CODEBASE = "http://localhost/classes/”;

protected RemoteFileClassifier stub;

protected RemoteEventListener leaseStub;

// Lease renewal management

protected LeaseRenewalSet leaseRenewalSet = null;

// List of leases not yet managed by a LeaseRenewalService

protected Vector leases = new Vector();

public static void main(String argv[]) {

new FileclassifierServerLease(argv);

// stick around while lookup services are found

try {

Thread.sleep(10000L);

440

Acfiuafion

} catch(InterruptedException e) {
// do nothing

}

// the server doesn't need to exist anymore

System.exit(O);

}

public FileClassifierServerLease(String[] argv) {
// install suitable security manager

System.setSecurityManager(new RMISecurityManager());

// Install an activation group

Properties props = new Properties();

props.put("java.security.policy",
SECURITY_POLlCY_FILE);

ActivationGroupDesc.CommandEnvironment ace = null;

ActivationGroupDesc group = new ActivationGroupDesc(props, ace);
ActivationGroupID groupID = null;

try {

groupID = Activationfiroup.getSystem().registerGroup(gIoup);
} catch(RemoteException e) {

e.printStackTrace();

System.exit(1);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

try {

ActivationGroup.createGroup(groupID, group, 0);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

String codebase = CODEBASE;

Marshalledobject data = null;
ActivationDesc desc = null;

ActivationDesc descLease = null;

try {

desc = new ActivationDesc("activation.FileClassifierImpl",
codebase, data);

descLease = new ActivationDesc("activation.RenewLease“,
codebase, data);

441

Chapmr20

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

= (RemoteFi1eClassifier) Activatable.register(desc);

leasestub = (RemoteEventListener) Activatable.register(descLease)5

} catch(UnknownGroupException e) {

e.printStackTrace();

System.exit(1);

} catch(ActivationException e) {

e,printStackTrace();

System.exit(1);

} catch(RemoteException e) {

e.printStackTrace();

System.exit(1);

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_QROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

RemoteFileClassifier service;

for (int n 0; n < Iegistrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

// export the proxy service

Serviceltem item = new ServiceItem(null,

stub,

null);

ServiceRegistration reg = null;

try {

442

Acfivafion

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {
System.err.print("Register exception: ”);
e.printStackTrace();

// System.exit(2);
continue;

}

try {

System.out.println("service registered at " +
registrar.getLocator().getHost());

} catch(Exception e) {

}

Lease lease = reg.getLease();

// it we have a lease renewal manager, use it

it (leaseRenewalSet != null) {
try {

leaseRenewalSet.renewFor(lease, Lease.FOREVER);

} catch(RemoteException e) {

e.printStackTrace();

}

} else {

// add to the list of unmanaged leases

leases.add(lease);

// see if this lockup service has a lease renewal manager

findLeaseService(registrar);

}

public void findLeaseService(servicekegistrar registrar) {
System.out.println(”Trying to find a lease service");
Class[] classes = {LeaseRenewalService.class};
ServiceTemplate template = new ServiceTemplate(null, classes,

null);

LeaseRenewalService leaseservice = null;

try {
leaseservice = (LeaseRenewalService) registrar.lookup(template);

} catch(RemoteException e) {

e.printStackTrace();
return;

}

if (leaseService == null) {

System.out.println("No lease service found");

443

Chapmrzo

return;

{

// This time is unrealistically small - try 1oooooooL

leaseRenewalSet = leaseservice.createLeaseRenewalSet(20000);

System.out.println("Found a lease service");

// register a timeout listener

leaseRenewalSet.setExpirationNarningListener(leasestub, S000,

null);

// manage all the leases found so far

for (int n = 0; n < leases.size(); n++) {

Lease 11 = (Lease) leases.elementAt(n);

leaseRenewalSet.renewFor(ll, Lease.FOREVER);

}

leases = null;

} catch(RemoteException e) {

e.printStackTrace();

}

Lease renewalLease = leaseRenewalSet.getRenewalSetLease();

System.out.println("Lease expires in ” +

(renewaltease.getExpiration() —

System.currentTimeMillis()));

public void discarded(DiscoveryEvent evt) {

}

} // FileClassifierServerLease

LookupDiscoveryService

It is easy enough for a server to discover all of the lookup services within reach at

the time it is started, by using LookupDiscoveIy. While the server continues to stay

alive, any new lookup services that start will also be found by LookupDiscovery. But

if the server terminates, which it will for activable services, then any new lookup

services will probably never be found. This will result in the service not being reg~

istered with them, which could mean that clients may not find it. This is analogous

to leases not being renewed if the server terminates.

Iini 1.1 supplies a service, the LookupDiscoveryService, that can be used to con-

tinuously monitor the state of lookup services. It will monitor them on behalf of a

service that will most likely want to register with each new lookup service as it starts.

If the service is an activatable one, the server that would have done registered the

444

service will have terminated, as its role would have just been to register the service

with rmid.

When there is a change to lookup services, the Lo0kupDiscoveIySeIvice needs

to notify an object about this by sending it a remote event (actually of type Remote-

DiscoveryEvent). But again, we do not want to have a process sitting around
waiting for such notification, so the listener object will probably also be an activat-
able object.

The LookupDiscoveryService interface has the following specification:

package net.jini.discovery;

public interface LookupDiscoveryService {

LookupDiscoveIyRegistration registeI(String[] groups,
LookupLocator[] locators,
RemoteEventListener listener,

Marshalledobject handback,

long leaseDuration);

Calling the register() method will begin a multicast search for the groups and
unicast lookup for the locators. The registration is leased and will need to be

renewed before expiring (a lease renewal service can be used for this). Note that
the listener cannot be nul1—this is simple sanity checking, for if the listener was

null, then the service could never do anything useful.

A lookup service in one of the groups can start or terminate, or it can change
its group membership in such a way that it now does (or doesn’t) meet the group
criteria. A lookup service in the locators list can also start or stop. These will gener-
ate RemoteDiscoveryEvent events and call the notity() method of the listener. The
event interface includes the following:

package net.jini.discovery;

public interface RemoteDiscoveIyEvent {

ServiceRegistrar[] getRegistrars();
boolean isDiscaIded();

The list of registrars is the set that triggered the event. The isDiscarded ()
method is used to check whether the lookup service is a “discovered” lookup service

or a “discarded” lookup service. An initial event is not posted when the listener is

registered: the set of lookup services that are initially found can be retrieved from
the LookupDiscoveryRegistration object returned from the register() method by
its getRegistrars ().

Activation

445

Chapmr20

The Fiddler Service

The Iini 1.1 release includes an implementation of the lookup discovery service

called fiddler. It is a non—lazy activatable service and is started much like other

services, such as reggie:

java —jar [setup_jvm_options] executable_jaI_file

codebase_arg fiddler_policy_file_arg

log_directory_arg [groups and locators]

[server_jvm] [server_jvm_args]

For example,

java —jar \

-Djava.security.policy:/files/jini1_1/example/txn/policy.all \

/files/jini1_1/lib/1‘iddler.jar \

http://‘hostname‘ :8080/norm—dl.jar \

/files/jini1_1/example/books/policy.all /tmp/fidd1er_log

Using the LookupDiscoveryService

An activatable service can make use of a lease renewal service to look after the

leases for discovered lookup services. It can find these lookup services by means of

a lookup discovery service. The logic that manages these two services is a little tricky.

While lease management can be done by the lease renewal service, the lease
renewal set will also be leased and will need to be renewed on occasion. The

lease renewal service can call an activatable RenewLease object to do this, as

shown in the preceding section of this chapter.

The lookup discovery service is also a leased se1vice—it will only report changes

to lookup services while its own lease is current. Therefore, the lease from this ser—

vice will have to be managed by the lease renewal service, in addition to the leases

for any lookup services discovered.

The primary purpose of the lookup discovery service is to call the notify()

method of some object when information about lookup services changes. This

object should also be an activatable object. We define a Discoverychange object

with a notify() method to handle changes in lookup services. If a lookup service

has disappeared, we don’t worry about it. If a lookup service has been discovered,

we want to register the service with it and then manage the resultant lease. This

means that the Discoverychange object must know both the service to be registered

and the lease renewal service. This is static data, so these two objects can be

passed in an array of two objects as the Marshalledobj ect to the activation
constructor.

446

Activation

The class itself can be implemented as shown here:

package activation;

import java.rmi.activation.Activatab1e;

import java.rmi.activation.ActivationID;

import java.rmi.Marsha11edObject;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.coIe.1ease.Lease;

import net.jini.lease.ExpirationwaIningEvent;

import net.jini.coIe.1ookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.SeIviceRegistration;

import net.jini.lease.LeaseRenewa1Set;

import net.jini.discovery.RemoteDiscoveryEvent;

import java.Imi.RemoteException;

import net.jini.discoveIy.LookupunmarshalException;

import rmi.RemoteFileClassifieI;

public class DiscoveIyChange extends Activatable

implements RemoteEventListener {

protected LeaseRenewalSet 1easeRenewa1Set;

protected RemoteFi1eC1assitieI service;

public DiscoveIyChange(ActivationID id, Marshalledobject data)
throws java.rmi.RemoteException {

supeI(id, 0);

Object[] objs = null;

try {

objs = (Object []) data.get();

} catch(C1assNotFoundException e) {

e.printStackTrace();

} catch(java.io.IOException e) {

e.printStackTrace();

}

service = (RemoteFi1eClassifier) objs[0];

1easeRenewa1Set= (Leasekenewalset) objs[1];

public void notify(RemoteEvent evt) {
System.out.print1n("1ookups changing... " + evt.toString());

447

Chapter 20

RemoteDiscoveryEvent revt = (RemoteDiscoveryEvent) evt;

if (! revt.isDiscarded()) {

// The event is a discovery event

Serviceltem item = new ServiceItem(nul1, service, null);

ServiceRegistrar[] registrars = null;

try {

registrars = revt.getRegistrars();

} catch(LookupUnmarshalException e) {

e.printStackTrace();
return;

}

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

leaseRenewalSet.renewFor(reg.getLease(), Lease.FOREVER);

} catch(java.Imi.RemoteException e) {

System.err.print1n("Register exception: ” + e.toString());

The server must install an activation group and then find activation proxies

for the service itself and also for the lease renewal object. After this, it can use a

Client Looku pMa nager to find the lease service and register the lease renewal object

with it. Now that it has a proxy for the service object, and also a lease renewal ser-

vice, it can create the marshalled data for the lookup discovery service and register

this with rmid. Then we can find the lookup discovery service and register our dis-

covery change listener Discoverychange with it. At the same time, we have to

register the service with all the lookup services the lookup discovery service finds
on initialization.

This all leads to the following server:

package activation;

import rmi.RemoteFileClassitier;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.LookupDiscoveryService;

448

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

import

/**

net.jini

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini.

net.jini

net.jini.

java.

java.

java

‘ava.

‘ava.

‘ava.

‘ava.

‘ava.

‘ava.

‘ava.

‘ava.

java.

java.

java.

rmi.

rmi.

rmi.

Imi.

.rmi.

Imi

rmi.

Imi.

rmi.

rmi.

rmi.

rmi

.discovery.DiscoveIyListener;

discovery.DiscoveIyEvent;

discovery.LookupDiscoveryManager;

discovery.LookupDiscoveIyRegistration;

discovery.LookupUnmarshalException5

core.1ookup.SeIviceRegistIar;

core.lookup.SeIviceItem;

.core.lookup.SeIviceRegistIation;

core.lookup.ServiceTemp1ate;
core.event.RemoteEvent;

core.event.RemoteEventListeneI;

coIe.lease.Lease;

lease.Leasekenewalservice;

1ease.LeaseRenewalSet;

.lease.LeaseRenewalManager;

lookup.C1ientLookupManageI;

RMISecurityManageI;
activation.ActivationDesc;

activation.ActivationGroupDesc;

activation.ActivationGIoupDesc.CommandEnvironment;

activati0n.Activatable;

.activation.ActivationGroup;

activation.ActivationGroupID;

activation.ActivationID;

Marshalledobject;

activation.UnknownGroupException;

activation.ActivationException;

.RemoteException;

uti1.Properties;
util.Vector;

* Fi1eC1assifierSeIverDiscovery.java
*/

public class FileClassifierServeIDiscoveIy

/* implements DiscoveIyListeneI */ {

Activation

449

Chapwr20

private static final long NAITFOR = 1ooooL;

static final protected String SECURITY_POLICY_FILE =

”/home/jan/projects/jini/doc/policy.all”;

// Don't forget the trailing '/'!

static final protected String CODEBASE = "http://localhost/classes/";

protected RemoteFileClassitier serviceStub;

protected RemoteEventListener leaseStub,

discoverystub;

// Services

protected LookupDiscoveryService discoveryservice = null;

protected LeaseRenewalService leaseService = null;

// Lease renewal management

protected LeaseRenewalSet leaseRenewalSet = null;

// List of leases not yet managed by a LeaseRenewalService

protected Vector leases = new Vector();

protected ClientLookupManager clientMgr = null;

public static void main(String argv[]) {

new FileC1assifierServerDiscovery();

// stick around while lookup services are found

try {

Thread . s1eep(2ooooL);

} catch(InterruptedException e) {

// do nothing

}

// the server doesn't need to exist anymore

System.exit(0);

public FileClassifierServerDiscovery() {

// install suitable security manager

System.setSecurityManager(new RMISecurityManager());

installActivationGroup();

serviceStub = (RemoteFileClassifier)

registerwithActivation("activation.FileClassitierImpl", null);

450

Acfivafion

leasestub = (RemoteEventListener)

registerwithActivation("activation.RenewLease", null)‘
J

initClientLookupManager();

findLeaseService();

// the discovery change listener needs to know

// the service and the lease service

0bject[] discoverylnfo = {serviceStub, leasekenewalset};
Marshalledobject discoveryData = null;

try {

discoveryData = new Marshalledobject(discoverylnfo);

} catch(java.io.IOException e) {

e.printStackTrace();

}

discoverystub = (RemoteEventListener)
registerwithActivation("activation.DiscoveryChange",

discoveIyData);

findDiscoveryService();

}

public void installActivationGroup() {

Properties props = new Properties();
props.put("java.security.policy",

SECURITY_POLICY_FILE);

ActivationGroupDesc.CommandEnvironment ace = null;
ActivationGroupDesc group = new ActivationGroupDesc(props, ace);
ActivationGIoupID groupID = null;

try {

gIoupID = ActivationGroup.getSystem(),registerGroup(gIoup);
} catch(RemoteException e) {

e.printStackTrace();

System.exit(1);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

try {

451

Chapwr20

Activationfiroup.cIeateGroup(groupID, group, 0);

} catch(ActivationException e) {

e.printStackTrace();

System.exit(1);

public Object registerwithActivation(String className, Marshalledobject data) {

String codebase = CODEBASE;

ActivationDesc desc = null;

Object stub = null;

try {

desc = new ActivationDesc(className,

codebase, data);

} catch(ActivationException e) {

e.printStackTIace();

System.exit(1);

try {

stub = Activatable.IegisteI(desc);

} catch(UnknownGroupException e) {

e.printStackTIace();

System.exit(1);

} catch(ActivationException e) {

e.printStackTIace();

System.exit(1);

} catch(RemoteException e) {

e.printStackTIace();

System.exit(1);

}

return stub;

}

public void initClientLookupManager() {

LookupDiscoveryManager lookupDiscoveIyMgI = null;

try {

lookupDiscoveIyMgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListeneI */)5

clientMgr = new ClientLookupManager(lookupDiscoveryMgr,

new LeaseRenewalManager());

452

Activation

} catch(Exception e) {

e.printStackTIace();

System.exit(1);

}

public void findLeaseService() {
leaseservice = (LeaseRenewalService)

findservice(LeaseRenewalSeIvice.class);

if (leaseservice == null) {

System.out.println(“Lease service null");
}

try {
leaseRenewalSet = leaseservice.createLeaseRenewalSet(20000);

leaseRenewalSet.setExpirationNarningListener(leasestub, 5000,
null);

} catch(RemoteException e) {

e.printStackTrace();

}

public void findDiscoverySeIvice() {
discoveryservice = (LookupDiscoveryService)

findservice(LookupDiscoveryService.class);

if (discoveryservice == null) {

System.out.println("DiscoveIy service null");
}

LookupDiscoveryRegistration registration = null;
try {

registration =

discoveryservice.register(LookupDiscovery.ALL_GROUPS,
null,

discoverystub,

null,

Lease.FOREVER);

} catch(RemoteException e) {

e.printStackTrace();

}

// manage the lease for the lookup discovery service
try {

leaseRenewalSet.renewFoI(registration.getLease(), Lease.FOREVER);

} catch(RemoteException e) {

e.printStackTrace();

453

Chapwr20

// register with the lookup services already found

Serviceltem item = new SeIviceItem(nu1l, servicestub, null);

ServiceRegistrar[] registrars = null;

try {

registrars = registration.getRegistrars();

} catch(RemoteException e) {

e.printStackTrace();

return;

} catch(LookupUnmarshalException e) {

e.printStackTrace();

return;

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

leaseRenewalSet.renewFor(reg.getLease(), Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.err.println("Register exception: ” + e.toString());

public Object findService(Class cls) {

Class [] classes = new Class[] {cls};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

Serviceltem item = null;

try {

item = clientMgr.lookup(template,

null, /* no filter */

WAITFOR /* timeout */);

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

}

if (item == null) {
// couldn't find a service in time

System.out.println("No service found for " + cls.toString());

return null;

454

Acfivafion

}
return item.service;

}

} // FileClassi1‘ierServerDiscoveIy

Summary

Some objects may not always be available, either because of mobility issues or
because they are aetivatable objects. This chapter has dealt with activatable
objects, and also with some of the special services that are needed to properly
support these transient objects.

455

Index

Symbols
* (asterisk) wildcard

using to grant permissions, 174-176

A

AbstractEntry class

implementation of Entry interface with, 46-47
abstract lease, 67-68

AbstractLease

LandlordLease as subclass of, 67

AccessibleUI object

of UIDescriptor, 363

Accounts

class diagram for, 282
Accounts interface

code for, 283

implementation of, 283-286

ACID properties, 271

Activatable class, 15

activatable class

simple for renewing a lease, 414-415

Activatable object

creating a service from, 396-397
activatable service

maintaining state, 402-411

processes involved in getting it running, 403

security issues, 403

security policies for, 181-182

Activation, 395-433

using to create a service, 394-411

activation group

creation of by server for objects to run in,
397—402

activation system

registering explicitly with to build up initial
state, 403

Address class

subclassed out ofAbstractEntry, 46-47

AllPermission

removing, 172-173

why this is bad security policy, 170-172

A Note on Distributed Computing

from Sun Microsystems, 87-88

application

as a collection of services, 12-13

partitioning, 11-13

Atomicity

in transactions, 27 1

attribute matching mechanism

implementation of, 45-46

attributeSetTemplates

elements used to match attributes, 58

attributes section

of UIDescriptor, 362-363

attrSets parameter

Serviceltem object, 50

attrSetTemplates field

ServiceTemplate object, 61

AWT event dispatch system

use of id field by, 237
AWT Frame

produced by a factory for the "main" role,
364-372

B

backend service

with RMI and non-RMI proxies, 114-115

basic directory

lava packages, 17-18

Baum, David

Not Quite C (nqc) from, 317-322

broadcast discovery, 32-39

456

broadcast range

LookupDiscovery class, 39

C

cache

monitoring changes to, 266-267

CachedClientLool<up

running, 265-266

cancel()

using to cancel a lease, 65

cancelling

leases, 65

Car]Frame

exporting, 387-388

Car]Frame class

RCX code for, 383-387

CarIFrameFactory

generation of CarJFrame object by, 387

Car]Frame object

generated by Car]FrameFactory, 387

check() method

using in ServiceltemFilter interface, 259-261

class diagram

for leasing on the client, 227

for leasing on the server, 227
classes

defined in simple example, 104-105

needed for client and service implementation,
87-88

class files

sources of, 193-203

using multiple, 201-203
client

class diagram for leasing on, 227

components needed in CLASSPATH, 106

implementation of, 104

implementation of transactions started by,
287-294

in a Jini system, 2-3

options for locating a suitable service, 86-87

uploading file—classifier service to, 98-107

client IVM

objects in, 92, 93

client leasing

class diagram for, 227

client lookup

querying for a service locator, 5-6

ClientLookupManager class

in Jim version 1.1, 18

client requirements

security permissions, 176-178
clients

class file sources, 193-203

example of building, 83-107

client search, 57-62

client-side RCX class

defining public methods for, 316-317

client structure, 8-9

client.TestFileClassifier class, 105

client threads

moving code into a new class, 207-209
Comment class

subclassed out of AbstractEnt1y, 46

common.FileClassifier class, 104

common.MIMEType class, 104

complete.FileClassifierImpl class, 104

complete.FileClassifierserver class, 105

com.sun package

Iini 1.0 IoinManage1' class in, 163-166

configuration problems

troubleshooting in Iini system, 17-22

consistency

in transactions, 27 1

convenience classes, 46-47

subclassed out ofAbstractEntry, 46-47

cookie

field in LandlordLease, 71-74

CORBA

building a simple example, 334

differences from Jim, 323

as distributed system architecture, 2-3

IDL used for specifying interfaces, 323

457

implementations, 335-336

and Iini, 323-354

running the simple example, 335

a simple hello world IDL example, 328

CORBA and Iini services, 332

CORBA backplane, 328

CORBA basic types

translation to a Java package, 326

CORBA client

implementation of lini interface to act as,
332-333

migrating to Jim, 353-354

CORBA client in Java

proxy object for calling methods in CORBA
server, 330-33 1

CORBA constant

translation to a Java package, 326

CORBA enumerated types

translation to a Java package, 326

CORBA exception

translation to a Java package, 326

CORBA interface

translation to a Java package, 326

CORBA meeting factory interface

CORBA and Jim services for fat proxies, 341

CORBA and Jim services for single fat proxy, 343

CORBA and Jim services for single thin proxy,
344

CORBA and Jim services for thin proxies, 342

exceptions, 344-345

making objects accessible to a Iini client,
340-345

many fat proxies exported, 341-342

many thin proxies exported, 342

multiple objects in, 340-345

single fat proxy for, 343

single thin proxy for, 343-344

CORBA meeting interface

making available as a mobile Iini object, 338

in room-booking example, 337-340
CORBA module

translation to a Java package, 326

CORBA object reference

reconstructing within a new ORB, 338-340

CORBA objects

languages for implementation of, 323

making accessible to the Iini world, 330-331

possibility of making into Iini service, 354

CORBA server in Java

for hello IDL, 328-330

CORBA service

copying the lava interface for, 331-332
CORBA structure

translation to a Java package, 326

CORBA to Java mapping, 325-326

CORBA translations

brief summary of, 326

credit/ debit example

sequence diagram for, 274

credit/ debit example with transactions

sequence diagram for, 275

D

DCOM

as distributed system architecture, 2-3

debugging

a lini application, 22

Design Patterns (Eric Gamma et al.)

origin of event models from, 235

DialogFactory, 358

digital signatures

creating, 187

for interfaces to other services, 188

_ signing standard files, 187-188
Web site address for information about, 187

discarded() method, 34

discovered() method, 34

discovery

running threads from, 204-206

DiscoveryEvent object, 35-37

DiscoveryGroupManagement interface, 154

DiscoveryListener, 34

Discove1yLocatorManagement interface, 155

458

Index

discovery management, 153-159

DiscoveryManagement interface, 154

discovery permission

granting, 176-178

DiscoveryPermission

granting, 174-176
distance interface

implementing, 218-219
distance service

finding after a printer is found, 213-221

program for starting up with two printers,
219-221

distributed systems

building with Jim, 1

distributed systems architectures

CORBA and Jim, 323-354

Iini as one of, 2-3

djinn

security risks, 169-191

durability

of transactions, 271

E

Editor class

diagram, 43

searching for suitable editors in, 44-45

Enterprise Java Beans (E]Bs)

function of, 2

Entry class, 43-46

information needed for distinguishing them,
315-316

Entry objects, 43-48

further uses of entries in, 47-48

passing into the Serviceltem object, 55

restrictions on entries, 46-47

entry objects

for robots, 315-316

equals() method

implementation of, 46
GITOIS

Iava packages, 17-18

typical Iini package. 19-20

typical lookup service, 20

typical RMI stubs, 20-22
event models

in Java, 235-236

naming conventions specified by Java Beans,
236

origin of, 235

event registration

a Version suitable for ordinary events, 241-242

EventRegistration

convenience class, 238-239

single listener, 239-240

example

of a Iini service and client, 83-107

problem description, 83-85

exception handling

in Iini programs, 96-97

expiration

of leases, 65

ExpirationWarningEvent, 412

ExtendedFileClassifierImpl object, 135-139

ExtendedFileClassifier interface, 134-135

F

factories

marshalling, 358-359

set of proposed, 358

factory implementation

for creating user interface, 199-200

HTTP server class files needed for, 201

what files are needed where, 201

factory objects

user interfaces from, 356-357

fiddler service

implementation of, 422
file classifier

with events, 244-249

FileClassifier

implementation of, 99

making available as network service, 85-87

459

non-RMI proxy for, 123-124

RM] and non-RMI proxies for, 133-140

RMI proxy for, 115-123

running, 106-107

Fileclassifier class

implementation of, 21-22
file classifier client

that creates and examines cache for suitable

services, 263-265

Fi1eClassifierImp1

for running the backend service, 116-117

Fileclassifierlmp object

exporting an implementation of a file classifier
service as, 10-11

FileClassifier interface

for Jim service and client example, 89-90

modifying to dynamically update mappings,
244-249

FileClassifierLandlord class

code for, 231-233

FileC1assifierLeasedResource class

code for, 228-229

FileClassifierLeaseManager class

code for, 229-23 1

file classifier problem

class diagram for, 110

FileClassifierProxy

code for, 124-126

FileClassifierProxy class

code for, 133-134

Fileclassifier return dialog box, 363
file classifier server

code for using an activatable service, 399-402

Fileclassifierserver, 117-120

adding additional requirements to, 415-420

implementation of, 99-104
file—classifier service

uploading to client, 98-107
what classes need to be where, 120-122,

139-140

Fileclassifier service

code for finding, 9

file classifier U1 example, 363-372

FileClassifier user interface, 363

file command utility (Unix)

for determining file type, 83-85

file editors

as services, 43-45

Fileserverlmpl

thread creation for, 126-128

file type

methods for determining, 83-85

FrameFactory, 358

exporting, 387-388

FrameFactory object

exporting, 380-381

G

getExpiration() method

expiration value returned from, 64

for lease object, 54

getGroups() method

ServiceRegistrar, 41

getLease() method

of ServiceRegistration object, 63-66

getLocator() method

ServiceRegistra1', 41

getMlME'1‘ype()

calling, 9

getRegistrar() method

search and lookup performed by, 30-32

getServiceID() method

‘ ServiceRegistrar, 41
.GIF file format, 11

grant blocks

for granting permissions to protection domains,
188-1 89

groups

broadcast discovery for, 33

460

H

handback data

defined, 237

hardware devices

making into Iini services, 295-296
Heart client

code for, 145-146

Heartlmpl class

code for, 147-151

Heart interface

method for, 142

heart monitor

making data into a Jini service, 140-151
Heartserver

code for, 142-144

hostile object

from bad security policy, 170-172
HTTP server

class needed to be accessable to, 106

for delivery of stub class files to clients, 24

as Jim support services, 13-15

required by Reggie, 24

I

IDL (Interface Definition Language)

used by CORBA for specifying interfaces, 323

IDL (Interface Definition Language) specification

Web site address for, 323

idltojava compiler

for converting CORBA IDL files to Java files, 334

IIOP (Inter-ORB Protocol)

used by CORBA implementations, 327

images

code for creating from a URL, 373

supplying in ServiceType entry objects, 373-374

in user interfaces, 372-373

initial state

creating if restoration from state file fails,
402-405

input events

generation of, 235-236

Interface Definition Language (IDL). See IDL (Inter-

face Definition Language)
interfaces

for exported stubs, 21

InvalidLookupLocator.java

program in Java basic directory, 17-18

InvalidLookupLocator program, 26-27

running, 29

sample for building and running a simple Jini

program, 27-28
isolation

in transactions, 27 1

I

.jar files

for Iini class files, 19-20

jarsigner

for signing classes and jar files, 187

Iarvi, Trent

Web site address for Linux version of DLL by,
297

Java

distributed computing environment for, 1

rmid support service as part of, 24

Java Media Framework (IMF) package, 360

Java packages

typical error, 17-18

Iczva Progran1ming1,uz'2‘,h CORBA (Vogel and Duddy)

room-booking service example in, 324

java.rmi.RemoteException

defining all methods to throw, 89-90

java.rmi.server.codebase property

specifiying protocol and class files location
with, 14

]avaRoom interface

for single thin proxy, 345-346

java.security.debug

setting, 173

IavaVirtual Machine. See JVM (]avaVirtual

Machine)

IComponentFactory, 358

461

jdb debugger

debugging Iini applications with, 22

IDialogFactory, 358

IDK 1.3

and rmid security issues, 183-185

starting rmid in, 26

]Frame

returned by a typical factory, 357

IFrameFactory, 358

Iini

class files, 19-20

components, 2-3

and CORBA, 323-354

differences from CORBA, 323

example of a service and client, 83-107

migrating a CORBA client to, 353-354

new classes in version 1.1, 18

overview of, 1-16

with protection, 173-174

support services, 13

troubleshooting configuration problems, 17-22

use of SecurityManager, 169-170

uses for, 1-2

Versions available, 18-19

Iini 1.0

IoinManager class, 163-166

Iini 1.1

]oinManagcr class, 161-163

ServiceDiscoveryManager class in, 255-256

Iini l'.2

security model options, 174

lini applications

debugging, 22

more complex examples, 193-233

problem domain in, 193-195

Iini classes

for MINDSTORMS with RMI proxies, 301-307

jini-core.jar jar file

major packages of Iini in, 19

lini Discovery Utilities Specification, 34

Iini djinn. See dj inn

Iini environments

client trust certificates required in, 176-178

trust levels of the client, 1 77

jini-ext.jar jar file

use of by Iini, 19-20

Iini federation

security, 173-176

Iini HTTP server

default port for, 24

Jim packages

typical package errors, 19-20

Iini programs

exception handling in, 96-97

Iini proxies, 326-327

examples of, 327

lini server and client, 334

Iini services

making hardware into, 295-296

possibility of making CORBA objects into, 354

user interfaces for, 355-393

join manager, 161-167

]oinManager

changes in Iiniversion 1.1, 18

IoinManager class

getting information from, 166-167

in Iini 1.0, 163-166

in Iini 1.1, 161-163

versus ServiceDiscoveryManager class, 255-256

IoinManager threads, 207

IVM (Java Virtual Machine), 3

WM objects

for factory implementation of user interface,
200

for multiple class files implementation, 203

for naive implementation of user interface, 198

for a non—RMI proxy, 131

IVMS

objects in, 110

objects in all, 104

Index

462

K

Kekoa Proudfoot

list of opcodes understood by the RCX by, 299

kcystorc

storing digital signatures in, 187

keytool

creating digital signatures with, 187

L

landlord

class diagram of an implementation, 71

field in LandlordLease, 71-74

Landlord interface, 79-81

LandlordLease

class diagram for, 72

as subclass ofAbstractLease, 67

LandlordLcasc class

AbstractLease extended by, 71-72

private fields, 71

landlord lease package, 68-81

class diagram of, 69

factors that drive it, 69-70

Lease.ANY value

register() method, 63
leased FileClassifier

for adding and removing MIME mapping,
226-227

LeasedResource interface

sample code, 73-74

leased system

objects in, 64
leaseDuration method

ServiceRegistrar, 49-55

LeaseDurationPolicy class

LeasePolicy interface, 74-75
Lease.FOREVER value

register() method, 63

leaseFor() factory method

in LeasePolicy interface, 74

LeaseManager interface, 74-79

lease object

getExpiration() method, 54

Lease object

principal methods of, 64

LeasePolicy interface, 74

implementation of, 69-70

LeaseRenewalManager

changes in Iini version 1.1, 18

LeaseRenewalManager class

renewing leases with, 65-66
LeaseRenewalService

for activatable objects, 411-420

norm service implementation of, 410-412

using, 413-420
LeaseRenewalSet

interface, 413-420

leases

cancelling, 65

expiration of, 65

granting and handling, 66-81

renewing, 65-66

requesting and receiving, 63-66

leasing, 63-81
LEGO MINDSTORMS

for building LEGO toys with programmable

computers, 295-322

as a Iini service, 296-297

user interface example, 374-393

Web site address, 296

LEGO MINDSTORMS Internals Web page

Web site address, 297

LEGO robots

building with LEGO MINDSTORMS, 296
listener lists

lini management of, 235-254
listener source

proxies for services and listeners, 242-243

Locales object

of UIDescriptor, 363

local services

matching using, 213-221

463

Location class

subclassed out of AbstractEntry, 47

long identifier

representation of transactions, 271-272

lookup—client-codebase parameter

for reggie, 25

Lool<upDirectoryService

interface specification, 421

for monitoring state of lookup services, 418-420

LookupDiscovery class

broadcast range, 39

use of for broadcast discovery, 33

Lool<upDiscoveryManager class

in Iini version 1.1, 18

Lool<upDiscoveryManager utility, 157-159

finding lookup services with, 255-256

Lool<upDiscove1yService

using, 420-429

LookupLocator class

constructors, 27

methods, 29

unicast discovery, 26-27

LookupLocatorDiscovery class

in Iini version 1.1, 18

specification, 155-157

lookup locators

components involved in finding, 153

finding, 153-155

interfaces for, 153-155

lookup-policy-file parameter

for reggie, 25

lookup-server-jarfile parameter

for reggie, 25

lookup service. See also service locator

discovering in Iini, 23-42

finding immediately, 257-259

finding once only, 221-225

finding to register a service object, 4-5

in a Iini system, 2-3

leases. 63-81

public, 24

registrar for, 4-5

running, 23-26

storage of service object on, 5

using network for connecting to, 26-27

lookup service errors

typical, 20

lookup-service-group parameter

for reggie, 25

M

mahalo

starting, 273

as a transaction manager, 14-15

maha1o.jar class files

using, 14-15

main() method

Discove1yListener, 34

marshalled object

preparing for state file and registering with acti-

vation system, 407-411

Marsha1ledObject

wrapping factories in, 359

Inarshalling factories, 358-359

matching services, 61-62
methods

of LookupLocator class, 29
Mime class

defining, 84-85

MIMEType class

adding the Serializable interface to, 88

MimeType class
for all clients and file-classifier services, 87-88

MimeType object
serialization of, 87-88

MIME types, 83-85

searching for, 135-139
MINDSTORMS. See also LEGO MINDSTORMS

MINDSTORMS car

control panel from Robotics Invention System
RCX programming system, 382

464

MINDSTORMS RoverBot. See also RoverBot

RCXPortImplementati0n interface for, 374-381

MINDSTORMS UI example, 374-393

MINDSTORMS with RMI proxies

class diagram for, 301

multicast announcement permission

granting, 176-178
multicast client

example, 94-96

possible sources of exceptions, 97

Mu1ticastRegister program

running, 38-39

that implements multicast searches, 36-37

multiple class files

using, 201-203

multiple class files implementation

IVM objects for, 203

multiple listeners

diagram of, 241

multithreading

improving responsiveness with, 204-206

MutableFileClassifie1' interface, 244-249

method for uploading new MIME type to a ser-
vice, 178-179

N

Name class

subclassed out ofAbstractEnt1'y, 47

name entry

implementation of user interface for, 194-195

user interface for, 194

NameEntry interface, 195-196

files needed for simple implementation, 198
naive implementation of, 196-198

NameEntry interface class

what files need to be where, 203

NameHandler class

using, 201-203

Nelson, Russell

LEGO MINDSTORMS Internals Web page BY,
297

net.jini.lookup.ui.AboutU1 role, 361

net.jini.lookup.ui.AdminUI role, 361

net.jini.lookup.ui.MainUI role, 361

network plug and play

using Iini to distribute services with, 2

network plug and work

lini advertised as, 17

non-Iini services

using on another host, 140-151

non—lazy services, 404

non-RMI and RMI proxies

class diagram for, 114

non-RMI proxy

class diagram for, 121

classes needed to deal with implementation,
13 1-132

communication with the server, 113

for FileClassifier, 123-124

IVM objects for, 131

non—static entry

example of, 48
norm service

of LeaseRenewa1Service, 414-415

notify() method

keeping MulticastRegister program alive with,
38

Not Quite C (nqc)

language and compiler designed for RCX,
3 17-322

limitations of Version 2.0.2, 3 19

NotQuiteC interface

code for, 318-319

nqc. See Not Quite C (nqc)

nqc compiler

limitations of, 3 17

turning into a Iini service, 317

nqc with RMI proxy

class diagram for, 318

465

0

Object Management Group (OMG) Web site

IDL specification on, 323
Orbacus ORB

code needed to use ORB other than CORBA, 336

output-log—dir parameter

for reggie, 25

P

PanelFactory, 358

parameters

compulsory for running reggie, 25-26

in LookupDiscovery constructor, 33

register() method, 50-51

Serviceltem object, 50

parseString() method

of RCXOpcode, 298

PayableFileC1assifierImpl interface

first element in, 276-277

Payab1eFileC1assifier interface

extending Payable with, 277-278

permissions

using (*) wildcard when granting, 174-176

policy. all

restricting use of, 169-170

prepareAndComit() method

implementation of, 278-282

printer interface

designing, 209-213

finding a fast printer, 21 1-213

PropertyChangeListener

propertyChange() method, 236

propertyChange() method

PropertyChangeListener, 236

protection domains

in Java 1.2 security model, 186-191

permissions granted to, 188-189

proxies

how they are primed, 7-8

service objects as, 7-8

proxy choices, 109-115

proxy service, 7-8

R

RCX

language for programming, 3 17-322

listener for handling responses from, 298
RCX car

RCX code for, 383-387

RCX class

client-side, 316-317

RCX client

for starting up all user interfaces, 389-392
RCXLoaderFrame

defining, 374-381

exporting, 387-388

RCXLoaderFrameFactory

defining, 381

RCX microcomputer

LEGO MINDSTORMS, 296

RCXOpcode class, 298
RCXPort

code for, 297-298

relevent methods for, 298

RCXPort() constructor, 298

RCXPortImpl

implementation, 303-307

RCXPortImplementation interface
for MINDSTORMS robot, 374-381

RCX programs

controlling from a computer by standalone pro-

grams, 299-30 1

simple client for getting RCX to perform
actions, 309-315

simple server for getting them running, 307-308
RCX robot

building customized user interfaces for, 381-382

general purpose user interfaces for, 375

reggie

compulsory parameters for running, 25-26

lookup service as part of Iini, 23-26

466

support services required by, 24

reggie service locator

exporting registrar objects with, 15

register() method

parameters, 50-51

ServiceRegistrar, 49-55

values, 63

registrar

as proxy to the lookup service, 4

returned to client, 6

registrar objects

exporting with reggie service locator, 15

registration code

moving to a seperate thread, 204-206

RemoteDiscoveryEVent

interface, 421

RemoteEvent class

public methods for, 236-238
RemoteEventListener interface

implementation of, 239

remote events, 235-254, 236-238

RemoteExtendedFileClassifier subinterface

adding remote interface with, 134-135

RemoteFileClassifier, 116

Remote Method Invocation (RMI)

in IDK 1.2, 15

use of by Iini, 1

RemoteNotQuiteC interface

code for implementation of, 318-319
RemoteRCXPort interface

adding remote interface with, 303

renew()

parameter for, 65

renewFor()

setting lease duration with, 66

renew() method

1.easePolicy interface, 74-79

RequiredPacl<ages object

of UIDescriptor, 363

Rich Text Format (.RTF), 11

RMI Activation. See Activation

running the service, 402-403

RMI and non-RMI proxies, 114-115

class diagram for, 114

for FileClassifier, 133-140

rmid

and IDK 1.3, 26

security issues in JDK 1.3, 183-185

security issues on activatable service, 182-183

securtiy issue on multiuser systems, 25
RMI daemon

as Jim support service, 13, 15

required by Reggie, 24

1'mid support service

default TCP port used, 25

options, 24-25

as part of standard Java distribution, 24

RMI parameters

for system security, 178-179

RMI proxy, 110-112

class diagram for, 111

configuration issues for implementation, 120-
122

IVM objects for, 111

RMI proxy Fileclassifier

1'unning, 122-123, 132-133

RMI proxy for

for FileClassifier, 115-123

RMISecurityManager

installing, 169
RMI stubs

typical error, 20-22
robot

entry objects for, 315-3 16

Robotics Intervention System

LEGO MINDSTORMS as, 295-322

role

played by user interface, 361-362

ways given for different objects, 361-362
role interfaces

number of, 361

467

R0omBookingBridge interface

implementation, 347-351

for single thin proxy, 346

room—booking examplc, 336-352

building, 352

considerations, 336-337

CORBA objects, 337-340

other classes in, 35 1

running, 352

room-booking service

modified IDL for, 324-325

RoverBot

client code, 309-3 15

MINDSTORMS robot, 309

user interface examples for, 374-393

.RTF file format, 1 1

RXCPortInterface

defines methods made available from Jim
service, 301-302

S

security

being paranoid about, 186

of Iini distributed systems, 169-191

in Jim federation, 173-176

forjoining groups, 175

reducing risks on Unix, 182-183

risks of not giving enough permission, 172-173

of ServiceRegistrar interface, 179

service requirements, 174-176

socket permission, 175

SecurityManager

security decisions made by, 169-170

statement for including in code, 169

security model

options in Jim 1.2, 174

security policy
for activatable service, 181-182

example of minimal, 175-176

to restrict possible attacks, 189-191

setting for transaction manager, 180-182
Serializable interface

implementation of, 87-88
server

class diagram for leasing on, 227

classes needed in the CLASSPATI-1 of, 105

class files needed for factory implementation,
201

communication with the non—RMI proxy, 113

creation of activation group by, 397-402

server IVM

objects in, 103

server leasing

class diagram for, 227
servers

class file sources, 193-203

server structure, 10-11

server threads

moving registration code to a separate, 204-206
service

creation of in a Iini system, 3-5

in a Iini system, 2-3

service architecture

choices for, 109-152

service backend objects, 7-8

ServiceDiscoveryEvent objects

monitoring changes in services with, 267-269

ServiceDiscoveryListener interface

monitoring changes to the cache, 266-267

ServiceDiscoveryManager, 255-269

ServiceDiscoveryManager interface, 255-256

building a cache of services in, 262-265

ServiceEvent.getTransition() method

categories from, 249-250

ServiceID, 54

using when registering with a service locator,
222-225

servicelD field

Se1'viceTemplate object, 61

ServiceIDListener

changes in Iini version 1.1, 18

468

serviceID parameter

Serviceltem object, 49-55
Servicelnfo class

subclassed out ofAbstractEntry, 47
ServiceItemFilter interface

client—side filter for finding services, 256-257

using check() method in, 259-261

Serviceltem object

creating, 49-50

parameters, 50

service locator. See also lookup service

class file sources, 193-203

discovering in Jim, 23-42

leasing changes to, 225-233

procedure to use when registering with, 222-
225

querying for, 4

service locato1' JVM

objects in, 93

ServiceMatches object

receiving, 60-61

service matching

inexact, 209-213

using local services, 213-221

service object

registration ofwith lookup services, 3-5

storing on the lookup service, 5

service parameter

Serviceltem object, 50

service() parameter

Serviceltem object, 49-55

service provider

choices for, 128-131

classes and interfaces needed to be known by,
105

creation of a service by, 3-5

role of, 3-5

service proxy

integration with service backend objects, 97-98

ServiceRegistrar

implementation of, 39-40

information from, 41

methods for, 40

methods used with, 57-58

searching for services with, 57-60

service registration with, 49

ServiceRegistrar interface

security issues, 179

service registration, 3-5

with lookup locators, 49-55

with ServiceRegistrar, 49

ServiceRegistration class

public methods for, 51

ServiceRegistration object

creating, 51-52

getting information from, 54

objects in, 51
services

building a cache of, 262-265

matching, 61-62

monitoring changes in, 249-254

program for monitoring all changes in, 250-254

searching for with ServiceRegistrar, 57-60

template for monitoring all changes, 250

service specification

for building a client, 86-87

ServiceTemplate class

for searching for services, 57-58

ServiceTemplate object

fields, 61

ServiceType class

defined, 373

subclassed out ofAbstractEntry, 47

Servicelype entry object

supplying images and other information in,
373-374

serviceTypes field

ServiceTemplate object, 61
setuid method

settings for security, 183-185

Simpleservice program

running, 53

469

for unicast server, 52-53

single listener

diagram of, 240

event registration, 239-240

single thin proxy

building for a federation of CORBA objects,
345-346

IavaRoom interface, 345-346

RoomBookingBridge interface, 346

sleep() method

keeping Mu1ticastRegister program alive with,
37-38

smart file View application, 11-13

SmartViewer application

use of, 12-13

software applications

making into Iini services, 295-296
Status class

subclassed out ofAbstractEntry, 47

Sun extension package

for talking to serial and parallel ports, 297

sun-util.jar jar file

contents of, 20

superclasses

for exported stubs, 21

support services

use of by Iini, 13

system exceptions
CORBA methods, 344

T

TCP/IP

implementation of Iini on, 2

TCP port

rmid default, 25

TheJim’ Specification. (Ken Arnold, et al.), 88
Thread

creating for Fileserverlmpl, 126-128

toolkit, 360

tools.jar file

Iini HTTP server stored in, 24

toString() method

implementation of, 46

transaction example

to handle money transfers, 274-294

transaction identifiers, 271-272

transaction manager

security issues, 180-182

TransactionManager, 272-273

TransactionManager.Created object

transaction identifier and lease contained in,
272

transaction manager proxy

reconstituting at the client, 14-15

transaction participant

class diagram for, 277

TransactionParticipant, 273

transactions, 271-294

TRANSITlON_MATCH_MATCH category

ServiceEvent.getTransition() method, 250

TRANSITION_MATCH_NOMATCH category

ServiceEvent.getTransition() method, 250

TRANSITION_NOMATCH_MATCH category

ServiceEvent.get”[ransition() method, 249

troubleshooting

Iini configuration problems, 17-22
trust certificates

required for clients in Iini environments,
176-178

trust levels

of client in Iini environment, 1 77

two-phase commit protocol

used by transactions, 271

type interface
as reference to Iava interface, 356

U

UDP multicast requests

finding lookup services with, 4-5

UI (user interface). See user interface; user
interfaces

470

UIDescriptor, 360

attributes section, 362-363

role field in, 361-362

rules for, 362

UIFactoryTypes object

of UIDescriptor, 362

UML class diagram

for smart file viewer application, 11-12

surrounded by the WM in which objects exist,
92

UML sequence diagram

for discovery, 35

for lookup, 30
unicast client

lookup techniques for service, 90-94

unicast discovery, 26-32

UnicastRegister program

running, 32

UnicastRemoteObject class, 15
unicast TCP

connecting to a lookup service w1'th, 4
Unix

reducing security risks on, 182-183

user exceptions

CORBA methods, 344-345

user interface

factory implementation, 199-200

for implementation of name entry, 194-195

roles, 361-362

toolkit, 360

user interfaces

as entries, 355-356

exporting as factory objects, 356-357

from factory objects, 356-357

images in, 372-373

for Jim services, 355-393

RCX client for starting, 389-392

suitable code to create an image from a URL,
373

V

Vetoab1eChangeListener

vetoableChange() method, 236

vetoableChange() method

VetoableChangeListener, 236

W

Waldo, Jim

A Note on Distributed Computing by, 87-88

Web site address

for digital signature information, 187

for Java package by Dario Laverde, 297

for The Iini Specification, 88

LEGO MINDSTORMS, 296

for LEGO MINDSTORMS Internals Web page,
297

for Linux version of DLL by Trent Iarvi, 297

for list of opcodes understood by the RCX, 299

for Sun extension package, 297

write() method

for RCXPort, 298

471

The Story Behind Apress

APRESS IS AN INNOVATIVE PUBLISHING COMPANY devoted to meeting the needs of existing

and potential programming professionals. Simply put, the “ ” in Apress stands for the
“author's pressTM.” Our unique author-centric approach to publishing grew from con-
versations between DanAppleman and Gary Cornell, authors of best—selling, highly

regarded computer books. Theywanted to create a publishing company that emphasized
quality above all~—a companywhose books would be considered the best in their market.

To accomplish this goal, they knew it was necessary to attract the very best
authors——established authors whose work is already highly regarded, and new authors

who have real-world practical experience that professional software developers want

in the books they buy. Dan and Gary’s vision of an author-centric press has already

attracted many leading software professionals—just look at the list ofApress titles on

the following pages.

472

would You Like

to write for Apress?

APRESS IS RAPIDLY EXPANDING its publishing program. Ifyou can write and refuse to com-

promise on the quality ofyour work, if you believe in doing more then rehashing

existing documentation, and ifyou are looking for opportunities and rewards that go far

beyond those offered by traditional publishing houses, we want to hear from you!

Consider these innovations that we offer every one of our authors:

0 Top royalties with no hidden switch statements. For example, authors typically

only receive half of their normal royalty rate on foreign sales. In contrast, Apress’

royalty rate remains the same for both foreign and domestic sales.

0 A mechanism for authors to obtain equity inApress. Unlike the software industry,

where stock options are essential to motivate and retain software professionals, the

publishing industry has stuck to an outdated compensation model based on roy-

alties alone. In the spirit of most software companies, Apress reserves a

significant portion of its equity for authors.

- Serious treatment of the technical review process. Each Apress book has a techni-

cal reviewing team whose remuneration depends in part on the success of the

book since they, too, receive a royalty.

Moreover, through a partnership with Springer—Verlag, one of the world’s major pub-

lishing houses, Apress has significant venture capital behind it. Thus, Apress has the

resources both to produce the highest quality books and to market them aggressively

If you fit the model of the Apress author who can write a book that gives the

“professional what he or she needs to knowTM," then please contact any one of our

editorial directors, Gary Cornell (gary__corne_1l@a press . com), Dan Appleman

(dan_app1eman@apress . com), or Karen Watterson (karen_watterson@apress . com), for more

information on how to become an Apress author.

473

Apress Titles

ISBN

1-893115-OI-1

1—893l15-23-2

1-893115-09-7

1—893115-84-4

1-B93115—82-8

1-893115-14-3

1—893115-85-2

1-893115—17—8

1-893115-86-0

1—893115—l0-0

1—893115—04—6

1-893115-79-8

1-893115-75-5

1~893115-19-4

1—893115—06-2

1-893115-22-4

L893115-76-3

L893115-80-1

1-893115-81-X

1«8931l5—20—8

1-893115-24-O

l—8931l5-16-X

LIST PRICE AVAILABLE AUTHOR

$39.95 Now Appleman

$29.95 Now Appleman

$24.95 Now Baum

$29.95 Now Baum, Gasperi,
Hempel, Villa

$59.95 Now Ben—Gan/Moreau

$39.95 Winter 2000 Cornell/Iezak

$34.95 Winter 2000 Gilmore

$59.95 Now Gross

$34.95 Now Gunnerson

$34.95 Now Holub

$34.95 Now Hyman/Vaddadi

$49.95 Now Kofler

$44.95 Now Kurniawan

$49.95 Now Macdonald

$39.95 Now MarquislSmith

$27.95 Now Mctjarter

$49.95 Now Morrison

$39.95 Now Newmarch

$39.95 Now Pike

$34.95 Now Rischpater

$49.95 Now Sinclair

$49.95 Now Vaughn

TITLE

Dan Appleman’s Win32 API Puzzle Book and
Tutorial for Visual Basic Programmers

How Computer Programming Works

Dave Baurn’s Definitive Guide to LEGO
MINDSTORMS

Extreme MINDSTORMS

Advanced Transact-SQL for SQL Server 2000

Visual Basic Add-Ins and Wizards: Increasing

Software Productivity

A Programmer’s Introduction to PHP 4.0

A Programmer's Introduction to
Windows DNA

A Programmer's Introduction to C#

Taming Java Threads

Mike and Phani's Essential C++ Techniques

Definitive Guide to Excel VBA

Internet Programming with VB

Serious ADO: Universal Data Access with
Visual Basic

AVisual Basic 6.0 Programmer's Toolkit

David McCarter‘s VB Tips and Techniques

C++ ForVB Programmers

A Programmer's Guide to Iini Technology

SQL Server: Common Problems,
Tested Solutions

Wireless Web Development

From Access to SQL Server

ADO Examples and Best Practices

474

ISBN

14393115-83-6

1—893115-05-4

14393115-02-X

1—8931l5—78—X

LIST PRICE

$44.95

$39.95

$49.95

$49.95

AVAILABLE

Winter 2000

Winter 2000

Now

Now

AUTHOR

Wells

Williamson

Zukowski

Zukowski

TITLE

Code Centric: T-SQL Programming with
Stored Procedures and Triggers

Writing Cross-Browser Dynamic HTML

Iohn Zukowski’s Definitive Guide to Swing
for Java 2

Definitive Guide to Swing for Iava 2,
Second Edition

To order, call (800) 777-4643 or email sa1es@ap:ress . com.

475

A Programmer’s Guide to

Jini“ Technology

Covers latest utilities and services of the newly released Iinim 1.1

Uses IDK 1.2 and 1.3

Deals with user interfaces with Iinim services

Shows how to transform hardware devices into]ini“‘ services

Expanded and revised version of the most popular online Iinim
tutorial

IINIW IS SUN’S ATTEMPT TO MAKE transparent distributed computing a

reality. So what does this mean? Imagine living in a world where

you could move to a new office in another country or check into a

hotel and plug your notebook or PDA directly into the network at

that location. Your notebook would be immediately recognized and

have access to the services at that location—without having you go

through complex setup procedures in an unknown environment.

Iinim is Sun’s]ava”‘—based technology that has the potential to

make this possible.

But this kind of technology, which will be so simple to use, is

not easy for the programmer to implement! Newmarch’s book is

the best place to learn exactly what you will need to know in order
to enter this brave new world. Newmarch’s comprehensive

treatment of Iinim technology starts with the basics of how Iinim
clients, services, and devices join a Jini'““ network and how clients

use the Iinim lookup service to see and use services in the network.

After covering the basics, Newmarch moves on to explain how

events and security are handled in the Iinim framework. The last

half of the book gives detailed coverage of many advanced topics

that most books skim over, including how to use]iniTM with

CORBA, transactions, user interfaces for services, and remote

events. There's even coverage of how to use Iinim for robotics appli-

cations, using the popular LEGO® MINDSTORMSW Robotics
Invention Kit as the vehicle!

All the sample code in this book can be downloaded from

http://www. apress . com.

Us $39.95

Shelve in

Computer Programming,

Software Engineering,

Distributed Computing

3!”
Apress"
www.apress.com

8 253 158016 2:

ISBN 1-8931 115-80-1

lllllli W111}
9 781893115804

7/12/2016 WebVoyage Record View 3

http://magik.gmu.edu/cgi-bin/Pwebrecon.cgi?v3=1&ti=1,1&SEQ=20160712092650&Search%5FArg=45821831&SL=None&Search%5FCode=SYSN&CNT=15&PI… 1/2

APPENDIX C

476

7/12/2016 WebVoyage Record View 3

http://magik.gmu.edu/cgi-bin/Pwebrecon.cgi?v3=1&ti=1,1&SEQ=20160712092650&Search%5FArg=45821831&SL=None&Search%5FCode=SYSN&CNT=15&PI… 2/2

477

