
1 SAMSUNG 1009

The Jini” Specification

1 SAMSUNG 1009

2

The Jini“ Technology Series

Lisa Friendly, Series Editor

Ken Arnold, Technical Editor

For more information see: http://java.sun.com/docslhooks/jinif

This series, written by those who design, implement, and document the Jini” technology,

shows how to use, deploy, and create Jini applications. Jini technology aims to erase the
hardware/software distinction, to foster spontaneous networking among devices, and to

make pervasive a service-based architecture. In doing so, the Jini architecture is radically

changing the way we think about computing. Books in The Jini Technology Series are

aimed at serious developers looking for accurate, insightful, thorough, and practical
material on Jini technology.

The Jini Technology Series web site contains detailed information on the Series,

including existing and upcoming titles, updates, errata, sources, sample code, and
other Series-related resources.

Ken Arnold, Bryan O’Su1]ivan, Robert W. Scheifler, Jim Waldo, Ann Wollrath, The Jim“ Specification
ISBN 0-201-61634-3

Eric Freeman, Susanne Hupfer, and Ken Arnold, JavaS_paces“‘ Principles, Patterns, and Practice
ISBN 0-201-30955-6 -»v°-wéivir-3-'-Ia-'.-..a-‘m-5-.4..-

E

//

3

Ken Arnold

Bryan O’Su11ivan

Robert W. Scheifler
Jim Waldo

Ann Wollrath

A
77

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.
Reading, Massachuseus - Harlow, England - Menlo Park, California

Berknley, California - Don Mills, Ontario - Sydney
' Bonn 0 Amsterdam 0 Tokyo - Mexico City

4

This book is dedicated to the Jini team

without whom this book

would not have been necessary

5

Contents

Foreword . xvii

Preface . xix

1» A R T 1 Overview and Examples

The Jini Architecture: An Introduction 3

1 Overview . 3

1.1 - Goals ._ 4

1.2 Architecture . 5

1.3 What the Jini Architecture Depends Upon 7

1.4 TheValueofaProxy.....‘ ..7
1.5 The Lookup Service . 9

1.5.1 Attributes . 10

1.5.2 Membership Management . 11

1.5.3 Lookup Groups . 12

1.5.4 Lookup Service Compared to Naming/Directory
Services .. .' 13

1.6 Conclusion . 14-

1.7 Notes on the Example Code . 16

1.7.1 Package Structure . 16

Writing a Client . 19
2.1 The Messagestream Interface . 19
2.2 The Client . 20

2.3 In Conclusion . . . _ . 27

6

Writing a Service . 29
3.1

3.2

Good Lookup Citizenship . 29
3.1.1 The Joi nhflanager Utility . 30
The Fortunest ream Service . 30

3.2.1 The Implementation Design _. . 32

3.2.2 Creating the Service . 32

3.2.3 The Running Service . 34
The Chatstream Service . 37

3.3.1 “Service” versus “Server” . 41

3.3.2 Creating the Service . 41
3.3.3 The Chat Server_ 43

3.3.4 Implementing nextInL1' ne 50

3.3.5 Notes on Improving ChatServer'Imp'| 51
3.3.6 The Clients . 52

The Rest of This Book . 57

PART 2 The Jini Specification

AR The Jini Architecture Specification 61
AR.1 Introduction .. 61

AR.1.1 Goals of the System . 61

AR.1_2 Environmental Assumptions .. 63
AR.2

AR.2.1

AR.2.3

System Overview . 65
Key Concepts .. 65
AR.2.1.1 Services .. 65

AR.2.1.2 Lookup Service .. 66
A.R.2.1.3 Java Remote Method Invocation (RMI) 66

AR.2.1.4 Security .. 67

AR.2.1.5 Leasing .. 67
AR.2.l.6 Transactions .. 67

AR.2.1.7 Events .. 67

Component Overview .. 68
AR.2.2.1 Infrastructure . 69

AR.2.2.2 Programming Model .. 69
AR.2.2.3 Services .. 71

Service Architecture .. 72

AR.2.3.1 Discovery and Lookup Protocols'. 72

AR.2.3.2 Service Implementation .. '75

An Example .. 7'7
AR.3.1 Registering the Printer Service . 77

AR.3.1.1 Discovering the Lookup Service 77

7

AR.3.l.2 Joining the Lookup Service 77

AR.3.l.3 Optional Configuration . 78

AR.3.1.4 Staying Alive . 78
Printing . 78

AR.3.2.l Locate the Lookup Service . 78

AR.3.2.2 Search for Printing Services . _ 79

AR.3.2.3 Configuring the Printer . 79

AR.3.2.4 Requesting That the Image Be Printed 79

AR.3.2.5 Registering for Notification 80

AR.3.2.6 Receiving Notification . 80

AR.4 For More Information .81

DJ The Jini Discovery and Join Specification 83

DJ.1 Introduction' .83
DJ.1.1

DJ.1.2

DJ.1.3

DJ.1.4

DJ.1.5

Tenniuology . 83

Host Requirements . 84

DJ’.1.2.1 Protocol Stack Requirements for[P Networks. 84
Protocol Overview . 85

Discovery in Brief . 85

DI.l.4.1 Groups .. 85

DJ.1.4.2 The Multicast Request Pmtocol 86
DI.1.4.3 The Multicast Announcement Protocol 87

DJ.1.4.4 The Unicast Discovery Protocol 88

Dependencies .. 88

The Discovery Protocols . 89
DJ.2.1

DJ2.2
Protocol Roles . 89

The Multicast Request Protocol . 89

DJ.2.2.l Protocol Participants . 89

DJ.2.2.2 The Multicast Request Service 90

DJ2.2.3 Request Packet Format . 91

DJ2.2.4 The Multicast Response Service 93

Discovery Using the Multicast Request Protocol 93

DJ2.3.1 Steps Taken by the Discovering Entity 93

DJ2.3.2 Steps Taken by the Multicast Request Server 94

DJ.2.3.3 Handling Responses from Multiple Djinns 95
The Multicast Announcement Protocol 95

DJ.2.4.1 The Multicast Announcement Service 95

DJ2.4.2 The Protocol . 97

Unicast Discovery . 97
DJ.2.5.l The Protocol . 98

DJ.2.5.2 Request Format . 99

DJ2.5.3 Response Format . 100

8

DJ.3

DJ.5

The Join Protocol . 101
DJ.3.1 Persistent State , . 101

DI.3.2 The Join Protocol , .. 101

DJ3.2.1 Initial Discovery and Registration 102

DJ3.2.2 Lease Renewal and Handling of Communication

DJ3.2.3 Making Changes and Performing Updates 103

DJ3.2.4 Joining or Leaving a Group 103

Network Issues .. 105

DI.4.1 Properties of the Underlying Transport 105
DJ.4.1.1 Limitations on Packet Sizes 105

Bridging Calls to the Discovery Request Service 105

Limiting the Scope of Multicasts . 106

DJ.4.4 Using Mu1ticastIP as the Underlying Transport 106

D].4.5 Address and Port Mappings for TCP and Multicast UDP . . . 106

LookupLocator Class .. 107

DJ.5.1 Jini Technology URL Syntax . 108

DI.5.2 Serialized Form .. 109

DJ.4.2

DI.4.3

DU The Jini Discovery Utilities Specification 111
DU.1

DU.2

Introduction .. 111

DU.1.1 Dependencies .. 111

Multicast Discovery Utility .. 113

DU.2.1 The LookupD1' scovery Class_ 114-
DU.2.2 Useful Constants . 115

DU.2.3 Changing the Set of Groups to Discover 115

DU.2.4 The D1'scoveryEvent Class . 116

DU.2.S The D1‘ s::overyL1'stener Interface . 116

DU.2.6 Security and Multicast Discovery . 117
DU.2.7 Serialized Forms _ 118

Protocol Utilities . _ _ _ 119

DU.3.1 Marshalling Multicast Requests . 119

DU.3.2 Unmarshalling Multicast Requests .. 120

DU.3.3 Marshalling Multicast Announcements 121

DU.3.4 Urnmarshalling Multicast Announcements 122

DU.3.5 Easy Access to Constants . 122

DU.3.6 Marshalling Unicast Discovery Requests 123

DU.3.7 Unmarshalling Unicast Discovery Requests 123

DU.3.8 Marshalling Unicast Discovery Responses 124

DU.3.9 Unrnarshalling Unicast Discovery Responses 124

9

EN The Jini Entry Specification .. 127

EN.1 Entries and Templates .. 127
EN.1.1 Operations .. 127

EN.1.2 Entry .. 128

EN.1.3 Serializing Entry Objects . 128
EN.].4 Unusab'|eEntr'yExcept1'on- 129

EN.I.5 Templates and Matching .. 131
EN.1.6 Serialized Form .. 131

EU The Jini Entry Utilities Specification 133
EU.l Entry Utilities .. 133

EU.1.1 Abstrac1:Entry .. 133

EU.1.2 Serialized Form .. 134

LE The Jini Distributed Leasing Specification 137

LE.l Introduction .. 137

LE.l.1 Leasing and Distributed Systems . 137

LE.l.2 Goals and Requirements . 140

LE.1.3 Dependencies . 140

Basic Leasing Interfaces . 141_
LE.2.1 Characteristics of a Lease . 141

LE.2.2 Basic Operations . 142

LE.2.3 Leasing and Time . 147

LE.2.4 Serialized Forms . 143

Example Supporting Classes . 149
LE.3.1 A Renewal Class . I49

LE.3.2 A Renewal Service . 151

EV The Jini Distributed Event Specification 155

EV.1 Introduction . 155
EV.l.1 Distributed Events and Notifications . 155

EV.1.2. Goals and Requirements . 156
EV.1.3 Dependencies .. 157

The Basic Interfaces . 159

EV.2.1 Entities Involved . 159

EV.2.2 Overview of the Interfaces and Classes 161

EV.2.3 Details of the Interfaces and Classes ._. 163
EV.2.3.1 The RemoteEventL'i stener Interface 163

EV_2.3.2 The Remo1:eEvent Class .. 164

EV.2.3.3 The UnknownEventExcept1'on 165

EV.2.3.4 An Example Eventcenerator Interface 166

EV.2.3.5 The Even1:Reg'istra1:1' on Class 168

10

EV.2.4 Sequence Numbers, Leasing and Transactions 169
EV.2.5 Serialized Forms .. 170

Third-Party Objects _ . 171
EV.3.l Store—and-Forward Agents . 171
EV.3.2 Notification Filters .. 173

EV.3.2.l Notification Multiplexing 174
EV.3.2.2 Notification Demultiplexing 174

EV.3.3 Notification Mailboxes .. 175

EV.3.4 Compositionality . 176

EV.4 Integration with JavaBeans Components 179
EV.4.l Differences with the JavaBeans Component Event Model . . 180

EVA-.2 Converting Distributed Events to IavaBeans Events 182

TX The Jini Transaction Specification 185
TX.1 Introduction . 185

TX.1.1 Model and Terms_. .. 186

TX.1.2 Distributed Transactions and ACID Properties 188

TX.1.3 Requirements . 189
'I'X.l.4 Dependencies . 190
The Two-Phase Commit Protocol . 191
TX.2.1 Starting a Transaction . 192
TX.2.2 Starting a Nested Transaction . 193
TX.2.3 Joining a Transaction . 195
TX.2.4 Transaction States . 196

TX.2.5 Completing a Transaction: The C1ient’s View 197
TX.2.6 Completing a Transaction: A Participant's View 199
TX.2.7 Completing a Transaction: The Manager's View 202
TX.2.8 Crash Recovery . '. . . 204

TX.2.8.1 The Roll Decision . 205

TX.2.9 Durability . 205
Default Transaction Semantics . 207
TX.3.1 Transaction and Nestabl eTransact1'on Interfaces 207

TX.3.2 Tr‘ansac1:1'onFac1:ory Class . 209
TX.3.3 Serve r'Transact'i on and Nestabl eSe We r'Transact1' on

Classes . , 210

TX.3.4 CannotNestExcept1' on Class . "212
TX.3.5 Semantics . 212

TX.3.6 Serialized Forms . 214

LU The Jini Lookup Service Specification 217
LU.1 Introduction . 217

LU.1.1 The Lookup Service Model . 217'
LU.l.2 Attributes .. 218

11

LU.1.3 Dependencies . 219

The Ser'v'iceReg1'str'ar' .. 221
LU.2.1 Servi ceID' . _ 221

LU.2.2 Serviceltem .. 222

LU.2.3 Se rvi ceTemp'| ate and Item Matching 223

LU.2.4 Other Supporting Types . 224

LU.2.5 Servi ceReg'i strar . 225

LU.2.6 Servi ceReg'i strati on _ . 229
LU.2.7 Serialized Forms .. 230

The Jini Lookup Attribute Schema Specification 233
LS.1 Introduction. .. 233

LS.l.1 Terminology . 234

LS.l.2 Design-Issues . 234

LS.l.3 Dependencies .. 235
Human Access to Attributes . 237

LS.2.1 Providing a Single View of an Att:ribute‘s Value 237

JavaBeans Components and Design Patterns 239
LS.3.1 Allowing Display and Modification of Attributes 239

LS.3.l.1 Using .TavaBeans Components with Entry Classes 239

LS.3.2 Associating JavaBeans Components with Entry Classes 240

LS.3.3 Supporting Interfaces and Classes . 241

Generic Attribute Classes . . _ . 243

LS.4.1 Indicating User Modifiability . 243

LS.4.2 Basic Service Information . 243

LS.4.3 More Specific Information . 245

LS.4.4 Naming a Service . 246

LS.4.5 Adding a Comment to a Service_ 246

LS.4.6 Physical Location . 247
LS.4.'.«' Status Information . 248

LS.4.8 Serialized Forms . , 249

JS The Javaspaces Specification 253

JS.l Introduction. 253

JS.1.l The Javaspaces Application Model and Terms . . _‘- . 253
JS.1.1.1 Distributed Persistence . 254

JS.1.1.2 Distributed Algorithms as Flows of Objects 254
JS.1.2 Benefits . 256

JS.l.3 Javaspaces Technology and Databases 257

JS.1.4 Javaspaces System Design and Linda Systems 258

JS.1.5 Goals and Requirements . 259

JS.l.6 Dependencies . 260

12

JS.2 Operations . 261
JS.2.l Entries . , . 261

JS.2.2 net.j1'n'i .space.'JavaSpace . 262

JS.2.2.1 Interna'|5paceExcept-ion 263
write . 264

re-adIfEx1'sts and read . 264

takeIfEx1' 51:5 and take . 265

snapshot . 265

notify . 266

JS.2.8 Operation Ordering . 268

JS.2.9 Serialized Form . 268

Transactions . . _ . 269
JS.3.1 Operations under Transactions . 269

JS.3.2 Transactions and ACID Properties . 270

Further Reading . 273
JS.4.1 Linda Systems . 273

ISA-.2 The Java Platform . 273

JS.4.3 Distributed Computing . 274

JS.2.3

JS.2.4

JS.2.5

.lS.2.6
JS.2.7

DA The Jini Device Architecture Specification 277
DA.1

DA.2

PART 3

Introduction .. 277

DA.1.l Requirements from the Jini Lookup Service 2'78

Basic Device Architecture Examples 281
DA.2.1 Devices with Resident Java Virtual Machines 281

DA.2.2 Devices Using Specialized Virtual Machines 28

DA.2.3 Clustering Devices with a Shared Virtual Machine '

(Physical Option) . 284

Clustering Devices with a Shared Virtual Machine

(Network Option) . 286

Jini Software Services over the Internet Inter—Operabi1ity
Protocol . 238

DA.2.4

DA.2.S

Supplemental Material

The Jini Technology Glossary . 293

Appendix A: A Note on Distributed Computing' . .. 307
A.1 Introduction .. 307

A. 1 .1 Terminology . 308

13

A.2

A.3

A.4

A.5

A.6

A.7

A3

A3

A.10

All

The Vision of Unified Objects . 308

Déjii Vu All Over Again . 311
Local and Distributed Computing 312
A.4.1 Latency .. 312

A.4.2 Memory Access . 314

Partial Failure and Concurrency . 316

The Myth of “Quality of Service” . 318
Lessons From NFS . 320

Taking the Difference Seriously . 322
A Middle Ground . 324

References . 32.5

Observations for this Reprinting . 326

Appendix B: The Example Code . 327

Index ..3’71

Colophon _ .. 385

14

Foreword

TIIE emergence of the Internet has led computing into a new era. It is no longer
. what your computer can do that matters. Instead, your computer can have access
to the power of everything that is connected to the network: The Network is the
Computer“. This network of devices and services is the computing environment

' of the future.

The Java” programming language brought reliable object—oriented programs
' to the net. The power of the Java platform is its simplicity, which allows program-

..mers to be fully fluent in the language. This simplicity allows debugged Java pro-

grams to be written in about a quarter the time it takes to write programs in C++.
We believe that use of the Java platform is the key to the emergence of a “best

practices" discipline in software construction to give us the reliability we need in
our software systems as they become more and more widely used.

The Jinim architecture is designed to bring reliability and simplicity to the
construction of networked devices and services. The philosophy behind Jini is lan-

guage-based systems: a Jini system is a collection of interacting Java programs,
and you can understand the behavior of this Jini system completely by under-
standing the semantics of the Java programrning language and the nature of the
network, namely that networks have limited bandwidth, inherent latency, and par-
tial failure.

Because the Jini architecture focuses on a few simple principles, we can teach

-- Java language programmers the full power of the Jim technology in a few days. To
do this, we introduce remote objects (they just throw a RamoteExcept1' on), leas-

ing (commitments in a Jini system are of limited duration), distributed events (in
the network events aren’t as predictable on a single machine), and the need for
two-phase commit (because the network is a world of partial failures). This small
set of additional concepts allows distributed applications to be written, and we can

- illustrate this with the JavaSpacesTM service, which is also specified here.
For me, the Jim -architecture represents the results of almost 20 years of yearn-

ing for a new substrate for distributed computing. Ever since I shipped the first

15

FOREWORD

widely used implementation of TCP/IP with the Berkeley UNIX system, I have
wanted to raise the level of discourse on the network from the bits and bytes of
TCP/IP to the level of objects. Objects have the enormous advantage of combining
the data with the code, greatly improving the reliability and integrity of systems.
For me, the Jini architecture represents the culmination of this dream.

I would like to thank the entire Jini team for their continuing hard work and
commitment. I would especially like to thank my longtime collaborator Mike
Clary for helping to get the Jini project started and for directing the project; the
Jini architects Jim Waldo, Ken Arnold, Bob Scheiffler, and Ann Wollrath for

designing and implementing such a simple and elegant system; Mark Hodapp for
his excellent engineering management; and Sarnir Mitra for committing early to
the Jini project, helping us understand how to explain it and what problems it
would solve, and for driving the key business development that helped give Jini
technology the momentum it has in the marketplace today. I would also like to
thank Mark Tolliver, the head of the Consumer and Embedded Division, which
the Jini project became part of, for his support.

Finally, I would like to thank Scott McNeaJy, with me a founder of Sun
Microsystemsm, Inc., and its longtime CEO. It is his continuing support for
breakthrough technologies such as Java and Jini that makes them possible. As
Machiavelli noted, it is hard to introduce new ideas, and support like Scott’s is
essential to our continuing success.

THE Jini :
Networks 3

existing thi
are therefor

tiple proces
These

changes ap

A distribut

change. Tl:
This b

architectur

following '

first sectio

cal manag
The Si

you withir
of them a:

tem. As vi

can start 5
The S

specificat
ture.

The I

defines ta

design, a‘.

16

Preface

Perfection is reached, not when there is no longer anything to add,
but when there is no longer anything to take away.

+1-'u1t0l_1'IE de Saint-Exupery

TEIE Jiui architecture is designed for deploying and using services in a network.
Networks are by nature dynamic: new things are added, old things are removed,

existing things are changed, and parts of the network fail and are repaired. There

are therefore problems unlike any that will appear in a single process or even mul-

tiple processes in a single machine.

These differences require an approach that takes them into account, makes

changes apparent, and allows older parts to work with newer parts that are added.

A distributed system must adapt as the network changes since the network will

change. The Jini architecture is designed to be adaptable. _

This book contains three parts. The first part gives an overview of the Jim

architecture, its design philosophy, and its application. This overview sets up the

following sections, which contain examples of programming in a Iini system. The

first section of the introduction is also usable as a high-level overview for techni-

cal managers.

The sections of the introduction that contain examples are designed to orient

you within the Jini technology and architecture. They are not a full tutorial: Think

of them as a tour through the process of design and implementation in a JiI1i sys—

tem. As with any tour, you can get the flavor of how things work and where you

can start your own investigation.

The second part of the book is the specification itself. Each chapter of the

specification has a brief introduction describing its place in the overall architec~
ture.

The third part of the book contains supplementary material: a glossary that

defines terms used in the specifications and in talking about Jini architecture,

design, and technology, and two appendices. Appendix A is a reprint of “A Note

17

PREFACE

on Distributed Computing,” which describes critical differences between local and

remote programming. Appendix B contains the full source code for the examples
in the introductory material.

HISTORY

The Jini architecture is the result of a rather extraordinary string of events. But
then almost everything is. The capriciousness of life—and to the fortunate, its

occasional serendipity—is always extraordinary. It is only in retrospect that we
examine the causes and antecedents of something interesting and decide that,

because they shaped that interesting result, we will call them “extraordinary.”
Other events, however remarkable, go unremarked because they are unexamined.

Those of us who wrote the Jini architecture, along with the many who contributed

to its growth, are lucky to have a reason to examine our particular history to notice
its pleasures.

This is not the proper place for a long history of the project, but it seems
appropriate to give a brief summary of the highlights. The project had its origins
in Sun Microsystems Laboratories, where Jim Waldo ran the Large Scale Distri-
bution research project. Jim Waldo and Ken Arnold had previously been involved
with the Object Management Group’s first CORBA specification while working
for Hewlett—Packard. Jim brought that experience and a long-term background in
distributed computing with him to Sun Labs.

Soon after joining the Labs, Jim made Ann Wollrath part of the team. Soon
after, observations about many common approaches in the field of distributed
computing led Jim, Ann, and the other authors to write “A Note on Distributed

Computing,” which outlined core distinctions between local and distributed

design. Many people had been trying to hide those differences under the general
rubric of “localfremote transparency.” The “Note” argued that this was not possi-
ble. It has become the most cited Sun Laboratories technical report, and the les-
sons it distills are at the core of the design approach taken by the project.

At this time the project was using Modula 3 Network Objects for experiments
in distributed computing. As Modula 3 ceased to be developed, the team looked
around for a replacement language. At that time Oak, the language an internal Sun
project, seemed a viable replacement with some interesting new properties. To a
research project, the fact that Oak was commercially insignificant was irrelevant.
It was at this time that Ken rejoined Jim on his new team.

Soon after, Oak was renamed “Java.”

When it was still Oak, it once had a remote method invocation mechanism,
but that was removed when the mechanism failed—it, too, had fallen into the

localfremote transparency trap. When Bill Joy and James Gosling wanted to cre-
ate a working distributed computing mechanism, they asked Jim to lead the effort,

18

PREFACE

which switched our team from the laboratories into the Javasoft product group.

As the first result of this effort, Ann, as the Java RMI architect, steered the team on

an exploration of what could be done with a language-centric approach to distrib-

uted computing (most distributed computing systems are built on language-new

tral approaches).

After RM] became part of the Java platform, Bill Joy asked the team to expand

its horizons to include a platform for easier distributed computing, coining the

name “Jini.”' He convinced Sun management to put the RMI and Jini project into

a separate unit. This new unit started with Jim, Ann, Ken, and Peter Jones, and

was soon joined by Bob Scheiflier who had extensive distributed computing expe-

rience from the X Windows project that he ran. This put together the original core
architectural team: Jim, Ann, Ken, and Bob.

As the team grew, many people had a hand in the direction of various parts of

the architecture, including Bryan O’Su]livan who took over the design of the

lockup discovery protocol. Mike Clary took the project under his wing to give it

time to grow. Mark Hodapp joined the team to manage its software development

and run it in partnership with its technical leadership. Gary Holness, Zane Pan,

Brian Murphy, John McClain, and Bob Resendes all reviewed the primary archi-

tecture documents and had responsibility for various parts of the tool design,

implementation design, and the implementations themselves. Laird Dornin and

Adrian Colley joined the RMI sub—team to continue and expand its development.

Charlie Lamb joined the architectural team to oversee work with outside compa-

nies, starting with printing and storage service standards. Jen McGinn joined the

team to document what we had done, later with the help of Susan Snyder on pro-

duction support. Jimmy Torres started out as our release engineer and has changed

to working on helping build our public developer community. Frank Barnaby took

over the release engineering duties. Helen Leary joined early and kept our infra-

structure humming along.

Our QA team was Mark Schuldenfrei and Anand Dhingra, managed by Bren-

dan Daly. Alan Mortensen wrote the conformance tests and their irifrastmcture. _

Emily Suter and Theresa Lanowitz started out our marketing team, with Franc

Romano, Donna Michael, Joan MacEachem, and Paula Kozak joining later. Jim

Hurley started setting up our support organization, and Keith Thompson and Peter

Marks joined to work on sales engineering. Samir Mitra led a marketing and busi-

ness development team that included Jon Bostrom, Jaclyn Dahlby, Mike

McNerny, Miko Matsamura, Darryl Mocek, Sharam Moradpour, and Vince

Vasquez. Many others, too numerous to mention, did important work that made

the Jini architecture possible and real.

1 Jini is not an acronym. To remember this, think of it as standing for “Jini Is Not Initials."
It is pronounced the same as “genie.”

19

ACKNOWLEDGMENTS

As the specifications were written, almost every member of the team made impor-
tant contributions. Their names are listed above; we note the fact here to express
our gratitude. A good idea and a dollar will buy a bad cup of espresso-——you need
people who will make that idea live, sand off any rough edges, and help you
rework any bad parts of the idea into good ones. We had those people——some of
the best we’ve ever worked with. ‘Without them the Jim architecture would be
some rather nice ideas on paper. Because of their commitment to adopt the vision
as their own, to make it better, and to make it real, there are people (like you, the
reader) who care about these ideas and can do something with them. We thank the
entire team for what they have done to improve the Jim architecture and to help us
write and release the Jim technology. -

Bill Joy created the environment in which the Jim architecture could be devel-
oped and nurtured, and fed the architecture with his own reviews and ideas. His
vision and support inside and outside of Sun made the project possible. This book
itselfis also his idea.

Bob Sproull gave the Large Scale Distribution project scope and support that
has continued to this day, through all its many twists and turns, even after we were
no longer were part of his Sun Labs organization. Mike Clary’s protection and
guidance was critical to fostering the creative atmosphere around the Jini project.

Jen McGinn and Susan___Snyder did a lot of work to make this book possible,
including hours in front of a screen converting the specification documents from
their original form into that of the book. Jen also worked hard to improve the con-
tent of the specifications and introductory material during their creation, making
them clearer and their English more correct. Dick Gabriel contributed to the con-
tent and organization of the Jim‘ Architecnme Specification, making it clearer and
easier to use.

Many people reviewed the introductory material, making comments that
improved it tremendously: Liz Blair, Charlie Lamb, John McClain, Bob
Resendes, and Bob Sproull. Lisa Friendly has applied her experience as series edi-
tor with the Java Series to help us create this sibling Jim’ Series. We would also
like to thank the people at Addison-Wesley's Professional Computing group who
worked with us on this book and the series: Mike Hendrickson, Julie DeBaggis,
Sarah Weaver, Marina Lang, and Diane Freed. And without Susan Stambaugh’s
help, communicating with Bill (and sometimes Mike) is not merely difficult, but
probably theoretically impossible.

To these and many others too numerous to mention we give our thanks and
appreciation for what they did to make these ideas and this book possible.

20

PART 1

Overview and

Examples

21

The Jini Architecture:

An Introduction

1 Overview

The man who sets out to carry a car by its tail
learns something that will always be usefid
and which never will grow dim or doubtful.

—Mark Twain

JINI technology is a simple infrastructure for providing services in a network,
and for creating spontaneous interactions between programs that use these ser-

vices. Services can join or leave the network in a robust fashion, and clients can

rely upon the availability of visible services, or at least upon clear failure condi-

tions. When you interact with a service, you do so through a Java object provided

by that service. This object is downloaded into your program so that you can talk

to the service even if you have never seen its kind before—the downloaded object

knows how to do the talking.

That’s the whole system in a nutshell. It's not very much to say (although you

will learn a lot more about the details). But like many ideas that are relatively sirn—

ple to explain, there is a lot of power in those few ideas. Together, they allow you

to build systems that are dynamic, flexible, and robust, and to build them out of

many parts, created independently by many providers.

This book contains the formal specifications for the Jim technology, preceded

by this introductory part that gives you an overview of the design and basic usage.

The specifications that follow give you the details that make this flexibility possi-

ble. Each specification has a brief introduction that places it in context.

In this section you will find discussion of several examples. Some of these

will come from standard office environments and talk about printers, fax

sagdiutzxg :9.-lA3[A.I3A(_)

22

GOALS ms JINIA

machines, and desktop systems. But others will come from less traditional net- In
working environments: home entertainment systems, cars, and houses. These

E:

environments are quickly becoming networked, and Jini systems, with their rela- m
tively small size, are ideal for such use.

ii .2 if1.] Goals ' 1

Each Iin
The Jim architecture is designed to allow a service on a network be available to is where
anyone who can reach it, and to do so in a type-safe and robust way. The goals of

be one o
the architecture are: ‘ Whf

find the:

lookup s

implemé
a proxy

also ca]
6 Erase the hardware./software distinction: You want a service. You don’t Fa>cRec<

particularly care what part of it is software and what part is hardware as long
as it does what you need. A service on the network should be available in the
same way under the same rules whether it is implemented in hardware, soft-
ware, or a combination of the two.

9 Network plug-and-work: You should be able to plug a service into the net-
work and have it be visible and available to those who want to use it. Plug-
ging something into a network should be all or almost all you need to do to
deploy the service.

4 Enable spontaneous networking: When services plug into the network and
are available, they can be discovered and used by clients and by other ser-
vices. When clients and services work in a flexible network of services, they
can organize themselves in the most appropriate way for the set of services
that are actually available in the environment.

0 Promote service-based architecture: with a simple mechanism for
deploying services in a network, more products can be designed as services
instead of stand-alone applications. Inside almost every application is a ser-
vice or two struggling to get out. An application lets people who are in par-
ticular places (such as in front of a keyboard and monitor) use its underlying
service. The easier it is to make the service itself available on the network,
the more services you will find on the network.

9 Simplicity: We are aesthetically driven to make things simple because sim-
ple systems please us. Much of our design time is spent trying to throw
things out of a design. We try to throw out everything we can, and where we
can’t throw something out, we try to invent reusable pieces so that one idea
can do duty in many places. You benefit because the resulting system is eas-
ier to learn to use and easier to provide systems in. Being a well-behaved Jini
service is relatively simple, and much of what you need to do can be auto-

23

yin: JIMA.RCHITEC‘TURE: AN nvraooocrrow

mated by other tools, leaving you with a few necessary pieces of work to do.

Equally important, a large system built on simple principles is going to be
more robust than a large complicated system.

1.2 Architecture

Each Iini system is built around one or more lockup services. The lookup service
is where services advertise their availability so that you can find them. There may
be one or more lookup services running in a network.

When a service is booted on the network, it uses a process called discovery to
find the local lookup services. The service then registers its pnoxy object with each
lookup service. The proxy object is a Java object, and its types—the interfaces it

implements and its superc1asses—define the service it is providing. For example,
a proxy object for a printer willimplernent a Printer interface. If the printer is
also capable of receiving faxes, the proxy object will also implement the
FaxRecei ver interface.

Loolrup Service

Printer Service

A client program asks for services by the Java language type the client will
use. A client wanting a printer will ask the lookup service for a service that imple-
ments the Pr1' nte r interface. When the lookup service returns the printers proxy

S-T-![{Il1ll’.XE[_zgM3[A.laA(_)

24

ARCHITECTURE ' THE HM

object, the client will automatically download the code for that object if it doesn’t ' In
have it already. - deman.

. encour

Lookup Service '.: ent’s CI
needed

1.3

The client issues printer requests by invoking methods on the proxy object.
The proxy communicates with the printer as it needs to in order to execute the

requests. The Jim system does not define what the protocol between the proxy and
its service should be; that is defined by the printer and its proxy object.

Printer

Interface

Printer Service

In fact, the proxy may talk to any number of remote systems to implement a
single method, including zero. Whoever writes the proxy object determines when
it talks to whom to get what, constrained, of course, by the security environment
in which it executes. As long as the proxy object provides the services advertised

by its interfaces andfor classes, the client will be satisfied. This encapsulation is
one of the basic powers of object—oriented programming. The invoker of a method
cares only that the method implementation does what is expected, not how it does
it. The proxy object in a Jini system extends the benefits of this encapsulation to
services on the network.

25

THE JINI ARCHHFC'I'URE.' AN INTRODUCTION

In effect, the proxy object is a driver for the printer that is downloaded on

demand. This allows a client to speak to a kind of printer it has never before

encountered without any human having to install the printer's driver on the cli-
ent‘s computer. When the driver is needed, it is downloaded. When it is no longer
needed, it can be disposed of automatically.

1.3 What the Jini Architecture Depends Upon

The Jini architecture relies upon several properties of the Java virtual machine:

9 Homogeneity: The Java virtual machine provides a homogeneous plat-
forIn—a single execution environment that allows downloaded code to

behave the same everywhere.

9 A Single Type System: This homogeneity results in types that mean the
same thing on all platforms. The same typing system can be used for local

and remote objects and the objects passed between them.

9 Serialization: Java objects typically can be serialized into a transportable
form that can later be deserialized.

¢ Code Downloading: Serialization can mark an object with a codebase: the

place or places from which the object’s code can be downloaded. Deserial—

ization can then download the code for an object when needed.

0 Safety and Security: The Java virtual machine protects the client machine
from viruses that could otherwise come with downloaded code. Downloaded

code is restricted to operations that the virtual machines security allows.

Taken together, these properties mean that objects can be moved around the net-

work in a consistent and trustable manner. These properties enable a system built
on dynamic service proxies moving object state and implementation to the most

useful parts of a system when they are needed. Such proxies are part of the foun-
dation on which the Jini architecture is built.

1.4 The Value of a Proxy

The proxy object is central to the benefit of using a Jini system. The proxy defines

a service type by being of a particular lava type. It implements that type in what-
ever way is appropriate for the service implementation that registered it. This is

basic object-oriented philosophy: You know what the object does because you
know its Java language type, but you don’t know how it implements the methods

s-aftitutaxfl an'M8!A..I3.A(__)

26

rm: VALUE om PROXY

defined by that type. The proxy is the part of tlie service that runs in the client’s
virtual machine.

This encapsulation allows the Pr1' nte r' interface to be designed as a good cli-
ent API without requiring it to be a good network protocol for talking to a remote

printer. The Printer interface should be designed at the abstraction level appro-
priate for client code. Each proxy object that implements the Printer interface

does so in the right way for the particular printer, using that printer’s network pro-
tocol. While it is very useful for everyone to agree on the design of the Printer
interface, nobody needs to agree on the network protocol. The Pri nte r inter-

face’s pri ntText method would be implemented differently for a PostScript
printer than for one that had a different printer language. The proxy object encap-
sulates such differences so the client can simply invoke the method.

And anyone can write a proxy object. If the printer manufacturer does not pro-
vide a Jinj service proxy, you can write your own or buy one from someone else.

As long as the proxy correctly implements the appropriate interface it is" a valid

proxy for the printer. If your use of a Jini system relies upon, say, a video camera,

and the camera’s manufacturer hasn’t yet provided a proxy implementation you

need, you can write it yourself or find someone else who has already done so. This

works for integration of legacy services of any lcind, not just devices. An existing ‘

database server can be made available through a Jini service’s proxy, usually with-
out modifying tlie server.

The service defines where the proxy code is loaded from. This allows the ser-

vice to be its own HTTP server for its classes or to rely on an HTTP server some-
where else in the network. The service can, in fact, be unrelated to the hardware

and software on which it is based. A service might, for example, be built from a

server that monitors the network for some legacy hardware and when the hard-

ware is present, registers a proxy on that hardware’s behalf, unregistering the ser-

vice when the hardware is disconnected. In such a model the service is completely
uncoupled from the hardware on which it relies.

27

THE JINIARCHITECTURE: AN INTRODUCTION

1.5 The Lookup Service

Each lockup service provides a list of available services, the proxy objects that
know how to talk to the service, and attributes defined by either the local adminis-
trator or the service itself.

Client - Client

3 E
Lookup Service

When a service is first booted up, it uses a discovery protocol to find local

lockup services. This protocol will vary depending upon the kind of network, but
its basic outline is:

9 The service sends a “looking for lockup services” message to the local net-

work. This is repeated for some period of time after initial startup.

0 Each lockup service on the network responds with a proxy for itself.

0 The service registers with each lockup service using its proxy by providing
the service’s proxy object and any desired initial attributes.

A client that wants a service goes through a matching protocol:

0 The client sends a “looking for lockup services" message to the local net-
work.

» Each lockup service in the network responds with a proxy for itself.

Sa{dElll’.\f._.| 25-_a.\cg.\.ta.s()

28

THE LOOKUP SERVICE

9 The client searches for types of services it needs using the proxies of one or
more lockup services. The lockup service returns one or more matching
proxy objects, whose code is downloaded to the client if necessary.

The discovery protocol is how services and clients find nearby lockup ser-
vices. A client or service can also be configured to locate specific lockup services

as well as (or instead of) ones discovered on the local network. For example, when
you plug in your laptop in a hotel, you might want not only to find the lockup ser-
vice for your hotel room, but also to contact the lockup service in your home so
you can interact with services there (such as programming the “Call Me" button
on your hcrne’s telephone to call your hotel and ask for your room). Once a
lookup service is located, rather than discovered, the registration and lockup steps
are the same for service and client.

Matching in the lockup service is performed using standard Java language
typing rules. If you ask for Printer objects, you will get only objects that imple-
ment the Printer interface. The actual object you get may also implement other

interfaces, including subinterfaces of Printer, such as Co'lorPr1' nter. As with
any other object you can check to see what types it supports. For example, you
could check to see whether the Printer proxy implements the Cc1orPr--inter

interface, printing in color if it does, and otherwise printing in black and white.
Sometimes a service will be attached to a network when no lockup service

can be found, for example in a broken network. The service's “looking for lockup
services” message will therefore not reach the lockup service, and so the service
cannot register. When the network is repaired, the service will be available but
invisible. In order that this invisibility be temporary, each lockup service intermit-

tently sends a “here I am” message to the network. When a service gets such a
message, it registers with that lockup service if it isn’t currently registered.

1.5.1 Attributes

When you look up an object by type you will get an object with the capabilities
you need, but it might not be the one you want. If you have two television sets in
your house connected on one network, you will want to connect your VCR to the
one you are about to watch. Both televisions will be Vi deoD1' spl ay objects, so
how do you distinguish between them?

Each proxy object in the lockup service can have attributes. These are objects
that describe features relevant to distinguish one service from another in ways that

are not reflected by the interfaces supported by the service. These often reflect
ways to choose among services of the same type but are diflerent in some way that
is important to a human. In a home entertainment service, naming each television
set by its location is probably enough—-«you can set the VCR to send its output to

29

THE JINIARCHITECTURE: AN INTRODUCTYON

the V1‘ deoD'isp'lay object with the Name attribute "living room". In an office

environment you might use Location attributes to help you choose the printer
that is near your office, not at the other end of the hallway.

The Jim architecture does not define which attributes a service should have.

The local administrator will decide which attributes are helpful in the local envi-
ronment, and the service designer will decide which ones help users and clients
find the right service. The Jim architecture does define a few example attributes in
the package net .j1'n-i . lockup. entry as suggestions, but whether to use these,
or others, or none, is up to service designers and local administrative policies.

An attribute is an object that is an entry, that is, it must implement the inter-
face net.j1'n1' .core.entry.Entry, and have the associated semantics, which
are:

9 All non-static, non-transient, non-final fields must be public.

0 Each field must be of an object type, not a primitive type (int, char, . . .).

9 The class must be public and have a public no—arg constructor.

- An entry may have other kinds of fields, but they will not be saved when an

attribute (entry) is stamped on a proxy or considered when matching attributes in
-- lockup requests.

Attribute matching is done with simple expressions that use exact matching.
You can say one of two things about an attribute: You require an attribute of that

' class (including a subclass) to be stamped on the proxy, or you don’t care. Within
each attribute you require, you can say a similar thing about each field: You
require the field to have exactly some value or you don’t care about its value. If

you specify more than one attribute, the lookup service will return only proxies
that match all the attributes you specify.

Attributes are properties of the service, not of its proxy in each individual
lockup service. A service will have the same attributes in all lockup services in
which it is registered (although network delays may allow you to see inconsistent

sets of attributes in different lockup services while the service is updating its
registrations).

1.5.2 Membership Management

When a service registers with a lookup service, it gets back (among other things) a
lease on its presence in the lookup service. Leases are a programming model
within the Jim architecture designed to allow providers of resources to clean up
when the resource is no longer needed. In the lookup service case, for example,
the lease keeps the list of available services fresh-——as long as a service is up and

S3](iIIIIl’.h’.[E[23>.—uara.ro.-i()

30

THE LOOKUP SERVICE

running, it will renew its lease. If the service crashes or the network between the

service and the lookup service breaks, the service will fail to renew its-lease and

thus be evicted from the lookup service. .

This means that the list of services you find in a lookup service is a list of ser-

vices that are available to you, modulo the time allowed by the lease. For example,

if the lease time given to services by the lookup service (both initially and upon

renewal) is five minutes, each service you see in the lookup service spoke to the

lookup service within the last five minutes. Most lockup service implementations
will let you tune this time to your required tolerances.

When combined with discovery of lookup services, the leased membership

gives a powerful result: The list of services is current, self-healing, and self-repli-
catmg:

o It is current (modulo the lease times) because the leases make it so. Any net-
work or host failure will force the removal of unreachable services.

0 It is self-healing because if a network failure isolates a service from a lookup
service, when the network is fixed, the service will receive a “here I am”

message from the lookup service and rej oin.

9 It is self-replicating because a service joins each lockup service it belongs

to. If you want replication to increase robustness, just start another lockup
service. All the services will simply register with both lockup services. If the

only host running your lockup service crashes, just start a new one on a new

host, and all the services will register with the new lockup service.

These features work together. If you run two lockup services on different

hosts and the network between them fails, after the leases expire each will have
the available services on its part of the network. When the network is fixed, each

loolcup service’s “here I am” message will reconnect it with the services that were
lost. '

1.5.3 Lookup Groups

The discovery request may encounter many lookup services, but you might want a

service to be visible in only a few of them. For example, if you have a lookup ser-
vice that represents those services available to users of a conference room (fax

machine, printer, projector, telephone, web server), you do not want those services

available as default resources for the people who sit in offices next to the confer-

ence room. Nor do you want the people in the conference room to accidentally use
a printer down the hall.

31

THE JINI ARCHITECTURE: AN INTRODUCITON

To limit a lookup service’s scope, you place the lockup service in the confer-

ence room in its own group and configure each of the room’s services to join only

lookups in that group. The lockup discovery messages include the groups of the

parties involved. Lookup services ignore discovery messages that are for groups
they are not in, and services ignore “here I am” messages of lockup services in
groups they are not configured to join. So when new services are added to the
neighborhood, they will not be registered in the conference rocm’s lockup service
unless they are explicitly configured to join lookups in the right group.

1.5.4 Lookup Service Compared to NamingIDi1-ectory Services

A lockup service in a Iini system is the nexus where clients locate network ser-

vices. In this sense its role is analogous to what are called naming or directory ser-

vices in other distributed systems. The analogy is real, but it fails at some crucial

junctures. In discussing the failures of the analogy we will use the term “naming
services” to mean both naming and directory services, which are equivalent for
this discussion.

In a directory system, services are stored by name, a hurnan—readable string.

The string is split up by conventional symbols that separate the components. For

example, all printers may be stored under the directory “ /dew’ ces/p r1‘ nters".

If you want to see the printers that are available in the directory service, you ask it

for all the references to remote objects in this directory. Each installed printer will

be placed in the directory when it is installed.

This system starts becoming unwieldy as you increase the number of services

and their types. Color primers, for example, might be placed in the printers’ direc-

tory, or possibly in a separate "/devi ces/pr1' nters/color" directory, or both
so that people finding regular printers can find color printers, which after all can

also be used as printers. Printers that are also fax machines would certainly be

placed in at least two directories, since nobody would think to look for a fax
machine in the printers’ directory.

Also, note that the correlation between "/devices/pr1'nter's“ and print ser-

vices is purely conventional. Should someone mistakenly place a fax service in

the directory, clients will get very confused when the remote reference they get
back is not actually a printer.

To find a service in a directory—based system, your client does the following:

1. - Takes a suing that is bound by convention to printers.

2. Asks the directory service what it has bound under that string.

sogduxnxg 3}stop-s;to.s{)

32

CONCLUSION

3. Takes what it gets back and tries to use it as a Printer object (in the Java
programming language this would be by casting it to the type Pri nte r after
checking, if you want a robust program, to be sure that it is a Printer).

Because the strings in a directory service are related only by convention to the
type you need, failures to follow convention lead to errors for the client. The
human-readable strings are actually of no value to the client except as a (risky)
means to an end. The Jini Lookup service architecture gives your client a way to

get at that end directly:

1. Asks the lookup service for a Pri nter object.

2. Takes the PM‘ nte r object it gets back and uses it.

This directness also provides the benefits of object—oriented polymorphism:
The object you get back will be at least a Pri nter, but it may in addition be some-
thing more: a ColorPr'ln1:er', possibly, or a Faxsender, FaxRece'i ver. or
Scanner. You can use it as a Pri nter without regard to these extra capabilities, or

you can test for their presence using the 1' nstanceof operator in the language.
People want to name things, of course. Most computers, printers, and other

major systems in network are named. In a Jini system those names are attributes
on the service that help humans distinguish between services. As attributes, names
can be used to distinguish between services of identical type, but the primary

mechanism a program uses to find services is the thing the program most cares

about: the type of the service it will use.

1.6 Conclusion

The Jini architecture provides a platform for deploying services in a network. This

platform is robust at many levels:

9 It is robust in the face of network failures. The set of services automatically

adapts the actual state of the network and service topology.

0 It is robust in the face of changes in the implementation of services. As long

as the service interface is implemented correctly, the details of the service

implementation can change as you buy new equipment and as equipment
generally becomes more capable.

0 It is robust in the face of old services. It is relatively easy to incorporate old

devices and servers seamlessly instead of leaving them as an impediment to
progress.

.,,,_.__AA,.-.\'-Ca|'P.\':i-'-i‘,kti;"J'uA.‘L£"<:(|}3ldIPIqmwmmwrrew
THE JINI ARCHIT:

4 It is rob

cooper:

service

vice)—
on con

compa

Mycom

generin

9 It is ro

and ca

The Jini

a few ways i

4» You c
exam

ask fa

simpi
tions

vice

as a '

0 You

prov
travc

Ex pl

soft‘

0 You
sevc

to 1’.

the!

33

I THEJINIARCHITECTURE:ANINTRODUCHON

6 It is robust in the face of competition. The minimum standards necessary for

cooperation are defined in the architecture—the definition of what defines a
service (a Java language type) and how you find a service (in a lookup ser-
vice)——and lets variation exist where it needs to. An industry can standardize
on common ground (such as the basic Printer interface) and individual

companies can add specific features in company-specific interfaces (such as
MyCompanysPr'i nte r) for clients that want to use them, without breaking
generic clients that want only the common Printer functionality.

sairiuttzxjq 2;;.aa';.-ma.-t()

It is robust in the face of scale. Jini services can be very large or very small,
and can work with small devices via a supporting virtual machine.

The Jini architecture is not only robust, it is also flexible. Here are sketches of

a few ways in which it can be used.

0 You could design a kiosk that allowed the user to download information. For

example, I might plug my PDA (personal digital assistant) into the kiosk and
ask for directions to someplace. The kiosk can publish the information as a

simple Text Publ isher service which I would use to download the direc-
tions onto a text device such as a pager, as well as an HTMLPubl "i sher ser-

vice which I would use to download them onto a more capable device, such

as a laptop computer.

You could have expense sources (such as a taxi meter or credit card scanner)

provide an Expensesou rce service that my PDA could use to download
travel expense details. When [return to my office, my PDA could be its own

Expensesou rce service that my spreadsheet or company expense report

software could use as a source for expense report information.

You could make sensors in a water supply system be Jini services and have

several monitoring and report—generating applications adapt automatically
to new sensors that are added to the network. Adding a new sensor would

then be as simple as plugging it into the network: The monitoring applica-
tions would find the new service and incorporate it into the data flow. New

“sensors” could be software services that aggregate and analyze information

from sensors into higher-level data. The clients will be blissfully unaware of
this hardware—software distinction.

These examples suggest the flavor of the benefits you can find using Jini tech-
nology. The example code that follows introduces you to the design of Jim clients

and services. The specification that comes afterwards give you the details.

34

NOTES ON THE EXAMPLE CODE

1.7 Notes on the Example Code

In the following two sections you will see an example service, an example client
that uses that service. and two example implementations of that service. There are

a few things you should know before we get started.

First, we have kept the examples as simple as possible. This means, for exam-

ple, that we are using command line programs instead of graphical user interfaces.
Graphical user interfaces require a good deal of programming, and explaining that

part of the code would teach you nothing about using the Jini technology. We have
also used very simple error—checking and handling except where more sophisti-
cated techniques help us explain how you should use the Jini architecture.

We have also not shown some parts of the code that do not explain anything
about programming in a Jini system—file system manipulation, string parsing,
and so on. The full code for all the examples is in‘ Appendix B.

1.7.1 Package Structure

The Jini technology is expressed in Java language interfaces and classes that live
in three major package categories:

0 net . j 1' ni . core: Standard interfaces and classes that are central (“core”) to
the Jini architecture live in subpackages of net . j 1' n1’ . core.

9 net . j-i ni: Interfaces and classes that are standards in the Jini architecture

are in subpackages of net . j'i ni (except the net . ji ni . core subpackage).

0 com.sun.jin'i: Some interfaces and classes that are non—standard but

potentially useful live in the subpackages of com . sun. ji ni. These pack-
ages may contain utility classes that help you write clients and services,

example implementations of standard services, or utility classes used inside
the example implementations.

As an example, there are actually three separate ‘lockup packages:

9 net . j ‘i n'i . core . lookup: The interfaces and class that comprise the lookup
service that is at the heart of the Jini architecture.

0 net. j ini .'lookup: An interface (Di scover'yAdn1'i n) that lockup services
can support to allow administrators to configure which lockup groups the
service will he a member of. This interface is advisory but standard: you
need not use it, but it is a common, traditional way to enable such changes.

THE JINI A

-0 cc

in

These pa

(defined.

(useful 1."

4» nu

si

911'

on

in

35

THE JINIARCH.:’TECTURE.'ANIN'I1RODUC’I'ION

9 corn. sun.ji n'i .lookup: A utility class (Jo1°nManager) that helps service

implementations to manage registration with appropriate lookup services.
sagduir-x3 up_.a.op\.r-.1.=t0

These packages progress from the core (the lookup service itself) to the standard
(defined, though optional, ways to administer a lookup service) to the extended

(useful utilities you may choose to use). Broken out these ways, the packages are:

c net . j1°n'i .core . discovery: A class (LookupLocator) that connects to a

single lookup service

net . j 1' ni . co re . entry: The Entry interface that defines attributes

net . ji ni .co re . event: The interfaces and classes for distributed events

net . j'in'i .co re . l ease: The interfaces and classes for distributed leases

net . j'i n'i . core . lookup: The interfaces and classes for the loolcup service

net . j 1' ni . co re . t ransacti on: The interfaces and classes for the clients of
the transaction service

net .j1'm' . core . transaction . server: The interfaces and classes for the
manager and participants in the transaction service

9 net . j 1' n-i .adm1' n: Some standard administrative interfaces for services

9 net . j1' ni .d1’ scove ry: Some standard utility classes that help clients and

service implementations with the discovery protocol

9 net.j'i n'i .entry: A useful base utility class (AbstractEn1:ry) for entry
(attribute) classes

9 net . j 'i ni . lookup: A standard administrative interface (Di scoveryAdm'i n)

for lookup services

9 net. jini .lookup.entry: Some standard attribute interfaces and classes

you can use

-9 net.j1'n1' .space: The interfaces and classes that define the Javaspaces

technology

9 com . sun . j -i n1‘ .adm'i n: Interfaces for administering some common service
necessities

com. sun . j-ini . discovery: A utility class (LookupLocatorD1' scove ry)

that helps you contact specific lookup services

com . sun . j 1' ni . l ease: Some utility classes that may help your client man-

age the leases that it gets from services (such as a lookup service)

com . sun . jini . lease . '| andl ord: Some utility classes that may help your

service implement and manage the leases it exports to its clients

36

NOTES ON THE EXAMPLE CODE

9 corn . sun . j 'i n'i . ‘lockup: A utility class (J 01' n_Manage r') to help your service
implementation discover and join lockup services in the network, and man-
age its attributes in those lockup services

9 com.sun.j1'n1'.lookup.entry: Some utility classes for working with
lockup service attributes.

Other com . sun . ji n1‘ classes exist. We have listed here the ones that you are most
likely to find valuable in implementing your own clients and services.

As you will notice, we have taken a fine-grained approach to package struc-
ture——we make each package contain only related interfaces and classes. This

leads to many well—focused packages instead of a few packages with many loosely
related interfaces and classes. As the Jini architecture evolves, other packages will
be added to this list. The notions of “core,” “standard,” and “extend ” are cur-

rently mapped directly to package names. Future additions might not be able to
follow this. For example, if a standard evolves that becomes core to the Jim archi-

tecture it could be viewed as “core” without renaming the package with a

net . ji n1’ .co re name. Such decisions are still in the future, and we cannot yet
define a fixed policy until we have examples to consider.

You will see code from many of these packages in our example code. We will

name the package of each Jini architecture interface or class when it first appears.
The packages of the example classes themselves will be described at the begin-
ning of the example. To keep the code to a reasonable size for the text, we will not

show the import statements in the chapters. The full source (including import
statements) is in Appendix B.

THE JINI AR C

37

THE JINI ARCHITECTURE: AN INTRODUCTION

2 Writing a Client

A successful [software] tool is one that was used to do something wtdreamed ofby its author.—S.C. Johnson

LET’S make this architecture more concrete, first by showing how- you would
write a client that uses the Jini arc 'tecture. The next section will show how you
would write two corresponding service implementations that are usable by this
client. We will first describe the service being performed.

2.1 The Messagest ream Interface

The example interface Messagest ream provides an iterator through a stream of
messages. It provides one method that returns the next message in the stream:

package message;

public interface Messagestream {
Object nextMessage()

throws EOFExcept1'on, RemoteExcept'i on;

}

The nextMessage method returns the next message as an object whose toStr"'I rug
method prints out its default printed form. An EOFExcep'c'ion signals the end of
the stream. A Remote Excepti on reflects failures in network messaging.

This simple interface could be used for many situations‘, in the next section we
will show two: a “fortune cookie” service that returns a random saying, and a chat
service whose messages are the utterances of the speakers in the discussion.
Because the stream interface is general, the client that reads it can worlt with any
type of message stream. The implementations of each stream will vaiy, but the cli-
ent can do the same thing.

Our example client will simply find a user—specified stream and print out the
requested number of messages. Other general clients could be fancier in many
ways. In fact, many design features of our example client and service implementa-

sotdtttexg 3%’."lL\u'.‘!}i._.['r}.-\[:}

38

THE CLIENT‘

tions are optimized for simplicity to keep the focus on the relevant Jini architec-

ture and technology. You will see command line applications instead of graphical
user interfaces, basic choices available rather than rich ones, and simple error han-
dling. These simplifying choices help teaching by keeping the focus on the rele-
vant parts of the code, even if they are sometimes unrealistic for product design
(although simple choices for products are very often correct ones, too). The com-
plete code for all examples is in Appendix B.

2.2 The Client

- Now let’s look at how you would write a client that finds and uses a message
stream. Your users will need to give you enough information to pick the correct
stream from among the available streams. Our example client allows the user to
specify:

0 Lookup groups that will be used in discovery or a specific lockup service
o The type of the service

9 Attributes to use in selecting the service

The client bundles the service type and attribute information into a search tem-

plate, queries the appropriate lookup services to find a matching service, and
prints out one or more messages.

We will examine the client from the top down. Parts of the code that have little

to do with learning the Jim architecture have been left out of the code presented
here. The complete source to all examples is in Appendix B.

The command line syntax looks like this:

java [java—opt1'ons] cl'ient.Str'eamReader' [—c count]

Egroupsl lockup-url] [stream—type|attr1'butes ...]

The java—opt1'ons will typically include setting a security policy file. The name
of our client class is client. StreamRea.der' (the Streamkeader class in the

client package). The —c option lets the user specify a count of messages to read;
the default is one message. The user must choose from the set of lockup services
by providing either a group specification for lockup discovery or an explicit
lcokup locator; which specifies a particular lockup service by its URL, which has
the form j1' n'i ://hos t[: port]. The user may also specify a type of stream,
which must be a subtype of Messagest ream, andfor a list of attributes. To sim-

plify parsing, attributes are specified by either their type name, or their type name
and a Stri ng parameter for the constructor. This means that only attributes with

39

THE J}'NTARCHITECTURE.' AN INTRODUCTION

no-arg constructors or with single-argument String constructors can be used with
Streamkeade r- (a fancier client could let the user specify a richer set of

attributes.)

A typical invocation might look like this:

java —Djava . security . pol i cy=/pol 1' c1‘ es/pol 1‘ cy
client . Streamkeader " " Fortune . Fo rtuneSt ream

fortune . FortuneTheme : General

In this invocation the group will be the empty string, which is the name of the

public group; the type of the stream must be at least fo rtune . Fortunestream;
and the registration in the lookup service must at least have an attribute of the type
‘Fortune . FortuneTheme that matches an attribute created with the string

"Gene ral We will discuss the fortune package types when we show how the
service is written.

When a user invokes the client command line, the main method of the class

client .StreamReader will be invoked:

package cli ent:

public class StreamReader implements D'iscoveryListener {

private int count; '

private String[] groups = new String[@];

private String lookupURL;

private Stri ng[] typeArgs;

public static void main(String[] args) throws Exception

{

StreamReader reader = new StreamReader(args);

reader.execute();

//...

}

The main method simply creates a St reamReader object with the command line

arguments and then invokes the object’s execute method. The Str'eamReader

constructor parses the command line to set the fields count, groups, lookupURL,

and typeArgs. This parsing is shown only in the full source.

sa}d.tIIux3 :31A-\3!:\.I-1.~\(')

40

THE CLIENT

The execute method starts discovering lockup services:

public void executeo throws Exception {

‘if (System.getSecuri tyMa.nagerO == null)

System. setsecuri tyManager(new RMISecu ri tyManager());

// Create lockup discovery object and have it notify us
Lookupfliscovery ld = new LookupDiscovery(groups);
ld . a.ddDi scove ryLi stener (thi 5);

searchDiscovered(): // search discovered lockup services
}

First we set a security manager to protect the client against misbehaving down-
loaded code. RMI requiies a security manager to be in place during calls to ensure
that you have thought about the security aspects of the code it will download. This

code uses the RMISecu ri tymanage r, which is quite conservative about what it
permits.

LookupDi scove ry is a utility class that you can use to help you perform the
lookup discovery protocol. It lives in the net. jini .di scovery package. Each
LookupDi scovery object starts a thread that notifies listeners when new lockup
services are discovered or when known ones have gone away. We create a
LookupDi scove ry object and tell it that this Streamkeader object is a listener.
Once this is set up, we will have two threads of control running in parallel: the
main thread in which execute was invoked and a separate thread in which
Loo kupDi scovery will invoke callback methods. Our implementation uses a sim-
ple model to coordinate these threads—the registrars field contains a list of

known net.jini .lookup.Servi ceRegistrar objects (the main interface for
the lookup service).

LookupDi scove ry does its callbacks via the Di scove ryLi stener interface
(also in the net. ji ni .discovery package), which declares the methods
discovered and discarded. We use these methods to maintain the registrars
list:

public synchronized void discovered(DiscoveryEvent ev) {
ServiceRegistrar[] regs = ev.getRegistrars();
for (int i = 0; i < regs.length; i++)

registrars.add(regs[i]);

notifyAll(); // notify waiters that the list has changed
} .

public synchronized void discarded(DisccveryEvent ev) {

41

THE JINIARCHITECTURE: AN INTRODUCTYON

ServiceRegistrar[] regs = ev.getRegistrars();

for (int i = 0; i < regs.length; i++)

registrars.remove(regs[i]);

notifyAll(); // notify waiters that the list has changed
}

Each invocation of di scove red represents one or more newly discovered lockup

services. Our implementation gets the array of Servi ceRegi strar objects (the
lookup service’s primary interface) and adds each to the list of known registrars.
When it is complete, it invokes noti fyAl l in case searchDi scove red is blocked

waiting for the list to have some elements. Our discarded implementation
removes elements from the list.

The searchDi scovered method invoked by execute loops checking out

members of that list until it finds a matching service or until MAX_WAIT millisec-

onds have passed:

private List registrars = new LinkedList();

private ‘Final static int MAX__WAIT = 5800; // five seconds

private synch roni zed void se-archDi scove red O

throws Exception

{

Se rvi ceTempl ate servi ceTmpl = bui 1 dTmpl (typeArgs);

// Loop searching in discovered lockup services

long end = System.currentTimeMillis() + MAX_wAIT;
for 0;) {

// wait until a lookup is discovered or time expires

long timeLeft = end - System.currentTimeMillis();

while (timeLeft > 0 && registrars.isEmpty()) {

wait(timeLeft);

timeLeft = end — System.currentTimeMillis();

}

if (timeLeft <= 0)

break;

// Check out the next lockup service

Se rvi ceRegi strar reg =

(Se rvi ce-Regi st rar) regi st rars . remove (3);

try {

Messagestream stream =

<.a]dtur\g 39.nogA..Io,:\Q

42

(Messagest ream) reg . 'Iookup(servi ceTmp'|) :
if (stream != null) {

readStream(stream);
return;

}

} catch (Ren1oteException e) {

continue; // skip on to next
}

}

System. err. printl n("No service found");

System.exit(1): // nothing happened in time
}

First the method uses the command line arguments to build up a template. It then
starts looping. Each time through the loop the list of registrars is checked. If it is
empty, we wait until either the remaining time expires or the list ceases to be

empty. During the invocation of wait the discovered method can be invoked by
Looku pDi scovery in its thread, adding registrars to the list. When registrars are
added, the noti fyA'|1 in the discovered method will allow the wait in
searchniscovered to return. The code in searchDiscovered then takes the
first element from the list and asks it to look up a service that matches our tem-
plate. If it finds one, it asks readst ream to tiy and read messages from the stream
(you will see r'eadSt re am shortly).

If readst ream executes successfully, sea rchDi scovered will return, which
signals successful execution. If sea rch Di scove red does not find a readable
stream within the allotted time, it prints out an error message and exits with a non-
zero status, indicating failure of the command.

The bui '1 dTmpl method creates the net . ji ni . "I ookup . Se rvi ceTemp'l ate
object that is passed to the lookup service’s lookup method. Let‘s look at how the
template is built:

private Servi ceTempl ate bui'|dTmp1(String[] typehlames)
th rows Cl assNotFoundException , I1 '1 egal AccessExcepti on ,

InstantiationException, NoSuchMethodException,
Invocati onTargetExcepti on

Set typeset = new HashSetO; // service types
Set attrset = new HashSet(); // attribute objects

// Messagestream class is always required
typeset . add (MessageSt ream . cl ass);

THE JINIARCJ

ft

}

The buil

line. The

name fol

typefial"

has an 01:

the argur
has been

C1 as s 01

so an 01‘.

method 2

must be

port. W?
and att

priate a

43

IHE JIN! ARCHITECTURE; AN INTRODUCTION

for (int i = 0; i < typeNames.length; i++) {

// break the type name up into name and argument

StringTokenizer tokens = // breaks up string

new StringTokenizer(typeNames[i], “:”);

String typeName = tokens.nextToken();

String arg = null; // string argument
if (tokens.hasMoreTokens())

arg = tokens.nextToken():

Class cl = Class.forName(typeName);

// test if it is a type of Entry (an attribute)

if (Entry.class.isAssignab1eFrom(cl))

attrSet.add(attribute(cl, arg));
else

typeSet.add(cl);

}

// create the arrays from the sets

Entry[] attrs = (Entry[])

attrSet.toArray(new Entry[attrSet.size()]);

Class[] types = (Class[])

typeSet.toArray(new C1ass[typeSet.size()]);

return new Serv-iceTemp'late(nu'|'|, types, attrs);

}

The bui ‘I dTmp1 method loops through the type arguments given on the command

line. The arguments can be either a type name or, in the case of attributes, a type
name followed by a String argument to pass to the constructor, of the form

type(arg). The first part of the loop takes the name and checks to see whether it
has an open parenthesis. If it does, it strips any closing parenthesis and remembers
the argument in the variable arg, which is otherwise null. Once any argument
has been stripped off from the class name in cName, we translate the name into a
Class object for the type. If the type is assignable to Entry it is an attribute, and
so an object is created of that attribute type, using an; if it was present—the
method attribute (not shown) does this work. If it is not assignable to Entry, it

must be a service type, and so we add its type to the types the service must sup-

port. When the loop is finished, typeset contains all the required service types
and attrset contains all the required attribute templates. We then create appro-

priate arrays from the contents of these sets and pass the arrays to the

soldtrrtaxg rg.=na§.-ua..-s(_)

44

THECHEWT

Se rv1' ceTemp1 ate constructor (the first nu1 1 argument would be the service ID if
we needed to match on a specific one).

As you have seen, when searchD'i scove red finds a matching service, it tries .
to read the stream by invoking the readSt ream method:

private fina1 static int MAX_RETRIES = 5;

pub1ic void readStream(MessageStream stream)
throws RemoteException

{

int errorcount = 0:

int msgNum = 0;

wh‘i'|e (msgNum < count) {
try {

Object msg = stream.nextMessage();
pr1ntMessage(msgNum, msg);

msgNum++; - // successfu'| read

errorcount = 0; // c1ear error count

} catch (EOFException e) {

System.out.print1n("-—-EOF-—-");
break;

} catch (RemoteException e) {

e.printStackTrace();

if (++errorCount > MAX_RETRIES) {

if (msgNum == 0) // got no messages
throw e;

e1se {

System.err.print1n("too many errors");
System.exit(1);

// # of errors seen this message
// # of messages

}

}

try {

Thread.s1eep(10B@); // wait 1 second, retry
} catch (InterruptedException ie) {

System.err.print1n("-—-Interrupted;-—“);
System.exit(1);

1;»:v»iwa:uram»:~3:;~z'<;:.:»\-s1,2‘:-«:—v=_-»-'.-.-.:;.‘nnu---‘-rd
}

The re

reads‘

ingont

gle me
confinl

hsfam

and at

berof

2.3

Letus

flmtct

(anint
fortu

condu

are _fo1
ourdi
searc

ing st:
H out

match

A.

users;
attribt

works

wfllp
proxy
servic

nexts

Strei

45

THE JINI ARCHITECTURE: AN IMRODUCHON

public void pr"i ntMessage('int msgNum, Object msg) {
if (msgNum > 0) // print separator

System.out.println("——-");

System.out. pri nt'| n(msg):

}

The readstream method will try to read the number of messages desired. If

readstream gets a RemoteExcept1' on, it retries up to MAx_RETRIES times, wait-
ing one second (1,000 milliseconds) between each try. If it fails to read even a sin-
gle message it throws RemoteExcept'i on, letting the loop in 5ear'chD'i scove red
continue looking for a usable stream. If it reads at least one message, it prints out
its failure and exits, so that the user will not see some messages from one stream

and a few more from the next one should a failure occur before the desired num-

her of messages are read.

2.3 In Conclusion

Let us revisit the example execution of St reamReader from page 21. If you use
that command line, the client will look for a ‘Fortune . Fortunestreamu service
(an interface that we will define in the next section) with an attribute that is of type
fortune. Fo rtuneTheme created with the string "General". This search will be

conducted in lockup services that manage the public group. If any such lookups
are found, the Lookupni scovery utility object we created in execute will invoke
our discovered method, which adds it to the list of known lockup services. The

sear-chD1' scove red method looks in each discovered lookup service for a match-

ing stream, and invokes readstream to read one message from a stream and print
it out. When all this is complete, you should (assuming there is an available

matching fortune cookie service) have a fortune cookie message on your screen.
Again, notice that this client can work with any Messagest ream service. The

user specifies which particular service to use by the service’s type and any desired
attributes. Each message stream service implementation provides a proxy that

works properly for the service’s needs. The St reamReader client you have seen
will print messages from any implementation of a message stream, using the
proxy as an adaptor from the service definition (Messagest ream) to the particular
service that was matched (Fortunest ream, Chatst ream, or whatever). You will

next see how to write two different message stream services that can be used by

StreamReader' or any other Me-ssagest ream client.

1"?MBf.-\.l'3A

46

I THE JINIARCHHECTURE: AN INTRODUCTION

saldltlevg rg.-i\3l.:\.I3A()
3 Writing a Service

Dare to be naive.

—R. Buckminster Fuller

THE Messagestream interface is designed to work for many purposes. We will
now show you two example implementations of a message stream service. The
first will be a Fo rtunestream subinterface that returns randomly selected “for—
tune cookie” messages. The second will provide a chat stream that records a his-
tory of a conversation among several speakers. First, though, we must talk about
what it means to be a Jini service.

A service differs from a client in that a service registers a proxy object with a

lookup service, thereby advertising its services—the interfaces and classes that
make up its type. A client finds one or more services in a lookup service that it
wants to use. Of course, a service might rely on other services and therefore be
both a service and a client of those other services.

3.1 Good Lookup Citizenship

To be a usable service, the service implementation must register with appropriate

lookup services. In other words, it must be a good lookup citizen, which means:

0 When starting, discovering lookup services of appropriate groups and regis-
tering with any that reply

0 When running, listening for lookup service “here I am" messages and, after
filtering by group, registering with any new ones

9 Remembering its join configuration—the list of groups it shouldjoin and the
lookup locators for specific lookup services

9 Remembering all attributes stamped on it and informing all lookups of
changes in those attributes

9 Maintaining all leases in lookup services for as long as the service is avail-
able

47

THE Fartunes tream SERVICE

0 Remembering the service ID assigned to the service by the first lookup ser-
vice, so that all registrations of the same service, no matter when made, will
be under the same service ID

3.1.1 The Jcri nnanager Utility

Although the work for these tasks is not a vast amount of labor, it is also more
than trivial. Services may provide these behaviors in a number of ways. The utility
class com. sun .j1'm' .1ookup.Jo'i nManager (part of the first release of the Jini
Technology Software Kit) handles most of these tasks on a service’s behalf,
except for the management of storage for attributes and service IDs which the ser-
vice implementation must provide.

Our example service implementations use 301' nManager to manage lookup
membership. You are not required to do so——you might find other mechanisms
more to your liking, or you might want or need to invent your own.

..,..,,:,.,_.__;,,.s_;,.;.ev;,a-gsmgweevi5<~’ra<?W2s':%.’»§£‘x3-

3.2 The Fortunestream Service

Our first example service will extend Messagestream to provide a “fortune
cookie” service, which returns a randomly selected message from a set of mes-
sages. Typically, such messages are intended to be amusing, informative, or
inspiring. The collections are often broken up into various themes. The most gen-
eral theme is to be amusing, but collections drawn from particular television
shows, movie types, comic strips, or inspirational speakers also exist. Our
F0 rtunest ream interface looks like this:

package fortune;

interface Fortunestream extends Messagestream, Remote {
String getTherne() throws RemoteExcept1'on;

}

As with all the classes defined in this example, this interface is in the fortune
package. The Fortunestream interface extends the Messagestream interface
because it is a particular kind of message stream. Fo rtunest ream extends the
interface Remote, which indicates to RMI that objects implementing the
Fe rtunest re am interface are accessible remotely using RMI.

The getTh eme method returns the theme of the particular stream. As you will
see, the theme is primarily reflected as an attribute on the service so that a user can

48

publ'i c- class FortuneTheme extend
5 AbstractEntry

implements ServiceControlled
{

public Str"i ng theme;

public FortuneThemeO { }

public FortuneTheme(Strin
this.theme = theme;

}

as public
arg constructor. It adds another constructor for
am service expresses its theme ‘as both a

value returned by the F

object-typed fields and a public no-
convenience. Each Fo rtunest re
FortuneTheme attribute and a

ne stream client to display
uneTheme attribute.

Far'tuneTheme extends net.

49

THE Fortunes tream SERVICE

3.2.1 The Implementation Design

The overall fortune service implementation looks like this:

Lookup Service

Fortunestreamlmpl Stub

For'tuneStreamImp'l
For-tunest ream

Interface

nextfllessage

The running service is composed of three parts:

0 A database of fortunes, consisting of the collection of fortunes and position

offsets for the start of each fortune. The position information is built by read-
ing the fortune collection.

4 -A server that runs on the same system that contains the database. This server

reads the database, choosing a fortune at random each time it needs to return

the next message.

9 A proxy for the service. This proxy is the object installed in the lookup ser-
vice to represent the fortune stream service in the Jim system. In this partic-
ular case, the proxy is simply a Java RMI stub that passes method invocations
directly to the remote server. '

3.2.2 Creating the Service

Our Fortunestream implementation is provided by the Fortunestreamlmpl
class, which is a Java RM] remote object. Requests for the next message in the

50

THE JINI ARCHITECTURE: AN INTRODUCTION

stream will be sent directly to this remote object that will return a random fortune

selected from its database.

The fortune database lives in a particular directory, which is set up by a sepa-

rate Fo rtuneAdmi n program that creates the database of fortunes from the raw

data. The Fo rtu neAdmi n program is run before the service is created to set up the

database a running Fo rtunest ream service will use. When the database is ready,

you will run Fortunestreamlmpl to get the service going.
The FortuneStreamAdmi n command line looks like this:

java [java—options] fortu ne . Fo rtuneAdmi n database-dir

The database—di r parameter is the directory in which the database lives. This

directory must initially contain a file named fortunes, which contains fortunes

separated by lines that start with 96%, as in:

"As an adolescent I aspired to lasting fame, I craved

factual certainty, and I thi rsted for a meaningful vision
of human life —— so I became a scientist. This is like

becoming an archbishop so you can meet girls."
-- Matt Cartmill

9%

As far as the laws of mathematics refer to reality, they

are not certain, and as far as they are certain, they do

not refer to reality.
-- Albert Einstein

96%

As far as we know. our computer has never had an undetected
EI"l"0|".

The FortuneAdmi n program creates the position database in that directory if it

does not already exist or if it is older than the fortune database file. The position

database is stored in a file named pos. A typical invocation might look like this:

java fortune.FortuneAdmin /files/fortunes/general

FortuneAdmin will look in the directory /files/fortunes/general for a
fortunes file and will read it to create a /fi les/fortunes/general/pos file}

The source to F0 rtuneAdmin just manipulates files, so we will not describe it
here.

1 On a Windows system it would be something like C'.\fi les\fortunes\general; on a
Mac0S system it would be more like Hard Di sk:fo rtunes :general. We use POSIX-
style pathsin this book.

so}tiutexgg 19.Mo§.i.J:m(_)

51

THE Forttmestrearn SERVICE

3.2.3 The Running Service

The fortune service is started by the main method of FortuneStreamImp‘l. The
command line looks like this:

java [java-options] ‘Fortune.FortuneStr'eamIn1pl database—d1'r
groupsl l'ookup—url theme ;ta;4:-»'2~;>:4;,_-w:e_;-;a.:'¢>-.'v.zja'»‘-:=&-'-.2tv'»-':

The java—c-ptions must include a security policy file and the RMI server code-
base URL. The database-di r should be the directory given to FortuneAdm-i n.
The running service will join lookup services with the given groups or the speci-
fied lockup service, with a FortuneTheme attribute with the given name. A typi-
‘cal invocation might look like this:

java —Djava.secur'ity.pol'icy=/‘File/pol'icies/policy

—Dj ava. rmi . server. codebase=http://server‘/‘F0 rtune—dl . jar
fortune.Fortunestreamlmpl /‘Files/fortunes/general
General

Our implementation of the fortune stream service executes in the virtual

machine this command creates, and therefore lives only as long as that virtual
machine is running. Later you will see how to write services that live longer than
the life of a single virtual machine.

Here is the code that starts the service running:

public class Fortunestreamlmpl implements Fortunestream {

private String[] groups = new String[0];
private String lookupURL;

private String dir:

private String theme;

private Random random = new Random();

private long[] positions;

private RandomAccessFile fortunes;

private JoinManager joinMgr;

public static void main(String[] args) throws Exception
{

Fortunestreamlmpl F = new Fortunestreamlrnpl Cargs);
f.execute();

52

THE JINIARCHITECTURE: AN INTRODUCTION

The main method creates a Fortunestreamlmpl object, whose constructor ini-

tializes the groups, lookupURL, d1’ r, theme, and 1'n'itia'|Attr's fields from the

command line arguments. The rest of the work is done in the object’s execute
method:

private void execute() throws IOExcepti on {

System . setsecuri tyManager(new RI‘-'IISecuri tyManager());

Uni castRemote0bject . exportflbj ect (thi 5) ;

// Set up the fortune database

setupFortunes();

// set our FortuneTheme attribute

I’-‘ortuneTheme themeAttr- new FortuneTheme(theme);

Entry[] 1°n1'tialAttrs = new Entr'y[] { themeAttr };

LookupLocator[] locators = null;

if (lookupURL != null) {

LookupLocator loc = new LookupLocator(lookupURL);

locators new LookupLocator[] { loc };

}

joinMgr = new JoinManager(this, initialAttrs,

groups, locators, null, null);

}

First execute sets a security manager, as you saw done in the client. Next we

export the For'tuneStreamImp'| object as an RMI object. Specifically, we export

the object as a Un1'castRemote0bject, which means that as long as this virtual
machine is running, the object will be usable remotely. When the virtual machine

dies, the remote object that it represents dies too. RMI provides a mechanism for
activatable servers that will be restarted when necessary; most Jini software ser-

vices are actually best written as activatable services. You will see an activatable

service in the next example.

We then call setupFortunes to initialize this server’s use of its fortune data-
base. We do not show the code for that here because it is not relevant to the exam-

ple; setupFo rtunes sets the positions and fortunes fields that are used by the

implementation of nexthlessage.
The next two lines create the service—owned FortuneTheme attribute that will

identify the theme of this fortune stream in the lookup service. Then we create the
Jo1'nManager', which manages all the interactions with lookup services in the net-

sajdttlexfq :5;Maim3A0

53

THE Fcrtunestreats SER WCE

work. To do so, you must tell the Jo1' nMa.nager several things. The constructor
used by execute (there are others) takes the following parameters:

c The proxy object for the service. We use this because RMI will convert

th'i s to the remote st11b for the Fortunestreamlmpl object, which is what
we want in this case. (Fortunestreamlmpl implements a Remote inter-

face—For'tuneSt ream extends Remote»-—so when a Fortunestreamlmpl
object is marshailed, it gets replaced by its stub.)

0 An Entry array that is the initial set of attributes to be associated with the

service. Here we provide an array that contains only our FortuneTh eme.

0 A Stri ng array that is the initial set of lookup groups. In our case this will

be taken from the command line and be either an array of the groups speci-
fied or an empty array if a URL was specified instead.

9 A net . j1'n'i .d1' scovery . LookupLocator array. LookupLoca.tor' is a

class that locates lookup services by URL. The array has a LookupLocator
for the URL specified, or null if groups were specified instead.

4» A com. sun . j "E n'i . lockup . Servi ceIDL'i stener object. The interface
Se r'v'i ceIDL1' stener provides a method to be called when the service’s ID

is assigned. This is a hook that lets the service store its ID persistently if it
needs to. Since our particular service does not outlive its virtual machine

there is no need to store the ID. We therefore pass nul 1, meaning the service
will not be notified. (The next example will show this feature in action.)

A com . sun . j1' ni . lease . LeaseRenewal Manager object to manage
renewing the leases returned by lookup services. We use null, which tells

the J01’ nManager- to create and use its own LeaseRenewal Manager. In

another situation (for example, exporting multiple services in the same vir-

tual machine) you might want to specify this parameter (in our example, by
using the same object in each service’s Joi nMan ager to reduce the number
of lease manager objects).

When execute is finished we have a service ready to receive messages and,
Jy virtue of its Joi nManager', the service registers with all appropriate lockup ser-
vices and will continue to register appropriately so as long as the service is run-
ting. In other words, at this point we have a running Jini service. When execute

‘etums, so does main. RMI will keep the virtual machine running in another
hread, waiting to receive requests.

The rest of the code implements nextl-lessage by picking a random fortune
md getTh eme by returning the theme field. Again, since these parts show no Jini
tervice code, we leave them to Appendix B.

-...-s:s.z—;;....>«.a;«.;e-ii..;a:5~::.+.‘:3.-...-A-:..-::-3:.w3s«.2L.-as-.3‘‘""\‘:-t\'i'\-El»=I.‘§t4‘4i'-zk1:»'i1‘§v’\z>t-1i‘£i\}7n'Ji?'é'I.

THEJINIARCHFTEV

3.3 The CI

For a more invu

the utterances I

there must be a

at random, so :

will want the Ir

Consider vs

occurs. Either (

o The new

9 The reqn

response

Client

These are ver

guish betweet
was stored at

either messag

54

THE JINI ARCHITECTURE: AN INTRODUCTION

3.3 The Chatst ream Service

For a more involved example, we provide a message stream whose messages are
the utterances of people in a conversation, such as in a chat room. In this case
there must be an order to the messages. The fortune stream was picking a message
at random, so any message was as good as any other. For a conversation clients
will want the messages in the order in which they were spoken.

Consider what happens when nextifles sage is invoked and a network failure
occurs. Either of two interesting situations may have occurred:

0 The network failure prevented the request from getting to the remove server:

Network Failure

0 The request made it to the remote server, but the network failure blocked the
response:

Client

Network Failure

These are very different situations, but the client has no possible way to distin-
guish between the two cases. If the current position in the stream for each client
was stored at the server, the next call to nextmessage by the client could return

either message 29 (in the first case, in which the server never got the original,

55

THE Chatstream SERWCE

failed request) or message 30 (in the second case, in which the server thought it

had returned message 29 but it didI1’t get to the client).

The nextMessage method of I’-1essa.geStr'eam is documented to be idempo-

tent, that is, it can be re—invoked after an error to get the same result that would

have come had there been no error. For Fo rtunest ream idempotency was easy—

the fortune was picked at random, so the next message will be equally random, no

matter which of the failure situations actually happened.

But for Chatstre-am, this is not good enough. If the proxy was designed

naively, an utterance might be skipped, and the utterance skipped could be the

most important one of the discussion. If a call to nextllllessage throws an excep-
tion because of a communication failure, the next time the client invokes

nextMes sage it should get the same message from the list that it would have got-

ten on the previous call had there been no failure. Suppose, for example, that we

used the same strategy for a Chatst ream proxy that we did for the

F0 r'tuneStreamImp'l proxy—an RMI stub. Then, after getting message number

28 from the server, a network exception is thrown when trying to get message
number 29.

So the proxy object registered with lockup services for a Chatst ream cannot

be a simple RM1 stub. It must contain enough state to help the service return the

right message even in the face of a network failure. To accomplish this, the proxy

object will implement the Chatstream interface for the client to use, but the
server will have an implementation-specific interface that the proxy uses to tell the

server which message should be next. It will look like this:

Lookup Service

Cha1:Pr'oxy

. :

chatse We... Chat5erver'Imp1
Chatstream

Interface

nextlllessage

THE mvr ARCHITE(

The proxy will
cessfully retriex

interface. That I

the Chatstreai

maintain the id:
The Chats‘

inherits nextMe

ods of its own:

package C

public "i r

publ

publ‘

publ

}

Like all the cc

method lets pt

is the name of

what the subje

These last tw-

used to look u
When a rr

public t

prix

prix

pub"

56

1% JINTARCHHECTURE: AN INTRODUCTION

The proxy will use its internal stored state (the number of the last message suc-
cessfully retrieved) as an argument to the nextInLi ne method of the Chatserver

interface. That method is hidden from the client, and different implementations of
the Chatst ream service are welcome to use a different mechanism so long as they
maintain the idempotency of nextMessage.

The Ch atSt ream interface—the public service interface that the clients use-
inherits nextMessage from the Messagest ream interfaces, and adds a few meth~
ods of its own:

package chat;

public interface Chatst ream extends Messagest ream {
public voi d add(Stri ng speaker , Stri 119 E] message)

throws RemoteExcepti on;

public String getSubjectO throws RemoteExcepti on :
public String[] getspeakers () th rows RemoteExcepti on ;

}

Like all the code in this example this class is part of the chat package. The add
method lets people add new messages to the discussion. The speaker parameter
is the name of the speaker; message is what they say. You can ask a Chatstreani
what the subject of the chat is, and for the names of the people who have spoken.
These last two things are also stored as attributes of the service so they can be
used to look up streams.

When a message is read, it will be a Chatmessage object:

public class ChatMessage implements Serializable {
private String speaker;

private string[] content;

public ChatMessage(String speaker, String[] content) {
this.speaker = speaker; '

this.content = content;
}

public String getspeakert) { return speaker; }

public String[] getContent() { return content; }

public String toString() {

StringBuffer buf = new Stri ngBuffer(speaker);
buf.append(": “);

s:a[tIIut2x3 ".75!.M3!A.'I'3A('_)

57

THE Chatstream SERVICE

For (int i = 0; i < content.length; i++)

buf.append(content[i]).append(’\n’);
buf.setLength(buf.length() - 1); // strip newline
return buf.toString();

}

ChatMessage has methods to pick out the pieces of the message——its speaker and
the content—and its tostri ng method prints out a reasonable default representa-
tion of the message.

When looking for a Chatst ream, a user might want to choose the subject, so
wedefineaChatSubjectafiflbuwtypa '

public class Chatsubject extends AbstractEntry
implements Servicecontrolled

{

public Stri ng subject ;

public Chatsubjecto { }

public ChatSubject(String subject) {
this.subject = subject;

}

}

A ChatS1: ream service should mark itself as being on a certain subject-—the same
subject that getsubj ect would return. A user might also want to search for chats
that had particular speakers, so a stream should also mark itself with a
Chatspeaker attribute for each speaker:

public class Chatspeaker extends AbstractEntry
implements Se rvi cecontrel 1 ed

{

public String speaker;

public Chatspeakero { }

public ChatSpeaker(String speaker) {
this.speaker = speaker;

}

58

"- my IINIARCHHECTURE: AN INTRODUCTION Elf

(Remember that we have chosen to use sI1ing—based attributes to simplify the
examples in this text. Fields in attributes can be any serializable type, so when you
design your own attributes, don’t use the string~based nature of our examples with

-a-requirement of attributes in general. Use the types you need, not just strings.)

:‘s‘a[(l'll.(I£X 29.-11-3!_..1.I3.~\[)
3.3.1 “Service” versus “Server”

At this point it is important to ‘discuss the difference between the word “service”

and the word “server.” A service is a logical notion that has at least one object-—
‘ the object registered in the lookup service. It usually has other parts as well. Often
at least one of those parts will be a Server——a process running on a machine in the
network.

Our fortune service is made up of a proxy object (the RMI stub), a fortune
‘server (the Fortunestreamlmpl object running on some host), and the underly-
ing storage. A service may use one or more servers to provide its service. In both
the fortune and chat examples, each service uses exactly one remote object, which
in mm uses an underlying store. Other services might talk to no remote servers

(doing all computation locally in the proxy) or several (combining the information
from more than one server).

3.3.2 Creating the Service

"As we stated before, the chat service’s proxy (which runs on the client) needs to
hold some state so that it can tell the server which message was last returned suc-
cessfully. The communication between the proxy and the server must include this
information. The nextMessage method has no way to impart that data, so the
proxy will need a different way to talk to the server in order to pass it along. For
this purpose the implementation of our service adds an internal, package-accessi
ble interface:

interface Chatserver extends Remote {

ChatMessage nextInLine(int lastlndex)

throws EOFException, RemoteException;

void add(String speaker, String[] msg)
throws RemoteException;

String getSubject() throws RemoteException;

String[] getSpeakers() throws RemoteException;
}

The proxy will use the nextInLi ne method to get the message following the last
successful one, which it represents by index. The message is returned to the client

_ by the proxy’s nextMessage method, and the new index is remembered for the

S.

i
|
i

l

l

i
!

i

i

59

THE Chatstream SERVICE

next invocation. The other methods do not require any difierent treatment from
those in the Chatst ream interface, and so they are declared identically.

The proxy implementation is pretty simple: The proxy object contains an RMI
reference to the server that implements Ch atServer and the index of the last suc-
C€SSfl.l1].y returned message:

class ChatProxy implements Chatstream, Serializable {
private final Chatserver server;

private int lastlndex = -1;

private transient String subject;

ChatProxy(ChatServer server) {
this.server = server;

}

public synchronized Object nextMessage()

throws RemoteException, EOFException
{

ChatMessage msg = server.nextInLine(lastIndex);
lastIndex++;

return msg;
}

public void add(String speaker, String[] msg)
throws RemoteException

{

server.add(speaker, msg);
}

public synchronized String getSubject()
throws RemoteException

{

if (subject == null)

subject = server.getSubject();
return subject;

}

public String[J getSpeakers() throws RemoteException {
return server.getSpeakers();

}

60

THE JINI ARCHITECTURE: AN INTRODUCTION

When the client invokes nextMessage, the proxy invokes the remote server’s -

nextInL'i ne method, passing in the '|astIndex field. If nextInL'i ne returns suc-

cessfully, it increments its notion of the last message index and then returns the

message. If instead nextInL-i ne throws an exception, the code following the

invocation will not be executed, leaving the value of ‘I astlndex unchanged. So in

our example, even if a network failure happens after the request reaches the

server, the client will get an exception and so the next invocation of nextMes5age

by the client will cause a nextInL1'ne to be sent that gets the same message
again? .

The proxy’s add and getspeakers methods simply forward the request along

to the remote server. The proxy’s-getsubj ect method uses the fact that the sub-

ject of a single ChatStr‘eam never changes—once the proxy gets the subject it can
be remembered to avoid a round trip to the server to get it again. Here again the

proxy adds value.

3.3.3 The Chat Server

Now let us look at the server side. Our chat server implementation is decidedly

simple to keep the example focused on the Jini service. We will allow an adrninis—

trator to create a new chat service, which means creating a remotely accessible

Chatserve I-Impl object that implements the Chatserver interface. This object

registers a ChatProxy object with the lookup service, giving it the appropriate

Chatsubj ect attribute and (initially) no Chatspeaker attributes. The ChatProxy

object contains a reference to its Chatserve rImp'| object.

The ChatSer've r'Imp'| object will be activatable, that is, it will use the RMI

activation mechanism to ensure that it is always available, even if the system it is

running on crashes and reboots. The fortune service you saw before lives only as

long as its virtual machine, Should the machine on which it runs die, it will die

too. This may be acceptable for some services, but not others. Many Jini services

will need to be activatable, or use some other mechanism to outlast reboots.

This service will be activatable, but this is not the place for a full tutorial on

writing activatable services. We will give an overview, point out the places in the

code where activation is visible, and provide the full code in Appendix B.

Activation works by having an activation system that starts virtual machines

for remotely accessible objects when needed. Each activatable object is part of an

activation groupmremotely accessible objects that are part of the same group will

2 Note that the p1'oxy’s implementation of nexthlessage is synchronized. This ensures that
two threads in the same virtual machine invoking nextrdessage at the same time on the
same proxy object will not both use or modify lastlndex inconsistently.

61

THE Chatsrream SERVICE

always be activated‘ in the same virtual machine, while objects that are in different

groups will always be in different virtual machines.

An activatable object is created by registering it with the activation system,

telling the system which group the object belongs to, providing a storage key that

can be used by the object when it is activated to find its persistent state, and

optionally _a “keep active” flag. This registration returns a remote reference to a

newly available remote object. The reference can be sent around the network like
any other remote reference.

If the “keep active” flag is true, the activation system will always keep the

object active when it can. For example, when a system is rebooted, the activation

system will activate each “keep active” object. If the flag is false, the activation

system will wait until it gets the first message for the object and then activate it. In

our example we will set the “keep active” flag to be true so the active service can

register with the lookup service and maintain its lease. Otherwise the service
would be inactive, unable to renew its leases, and so would never be found by any-

one looking for a chat stream.

Activation of an object is done via its activation con.s'truct0r—a constructor

with the following signature:

public Act1FvatableClass(Act'ivati onID id,

Marshalledobject state)

{

// III

}

During activation the activation system first either creates a virtual machine to

-manage the group, or finds the existing virtual machine that is already doing so. It

then has that virtual machine create a new local object of the correct class using its
activation constructor.

An activatable class must extend java . rmi . activation .Act'ivatab'| emin

which case the activation constructor must invoke super(id)—or invoke the

static method java. rm‘ .ac1:-ivat-i on.Acti vatab'| eobject. exportobject.

Either of these actions lets the activation system lctlow that the object is ready to

receive incoming messages.

Once the activation constructor returns, the activation system will tell clients

of the remote object to talk directly to the running server object. This means that

at most the first message from a client to an activatable object requires talking to

the_activation system (unless there is an intervening server crash). All subsequent

requests go directly to the running service.

62

THE JINI .-1RCHITE‘CTURE.' AN INTRODUCZUON

In our example we will provide a Chatserverlmpl class that provides a
chatstream service by registration with the activation system. You create a new
server with the following command:

java [java—oprfons] chat.ChatServerAdmin directory subject
[groupsf Tc-okup—url classpath code-base pol'r'cy—ff Te]

ChatServerAdm1' n is a class that creates an activatable Chatserverlmpl object
for the server. The java—oprions typically include the security policy file used
during creation. The directory will define an activation group. If the directory
does not exist it will be created; a new activation group will also be created and its
information written into a file in that directory. If the directory does exist and con-
tains such a file, that information will be used to place the new chat stream into the
same activation group. A typical chat stream will not significantly occupy a single
virtual machine, so grouping multiple activatable ChatServer'Impl objects for
different subjects into the same virtual machine will keep overall overhead low.

If you want to create a new activation group for the stream, you must give the
last four parameters: the groups or lookup—ur7 to specify the lookup services
you want the chat registered with, and the classpa th, code-base, and policy»-
fi 7.9 for the activated virtual machine. The classpath will be the one for the run-
ning server, the codebase will be where clients will download the remote parts of
the service from, and the policy file will be the one used by the rumring server.
This is different from the policy file provided in the java-options, which is the
policy file used only during creation. The polr'cy- ff le parameter defines the
policy file that will be used by the activated virtual machine.

So a typical invocation to create a new chat stream in a new group would look
like this:

java —Djava.security.policy=/policies/creation
chat.ChatServerAdmin /files/chats/technical "Cats" ""
/jars/chat.jar http://server/chat—dl.jar
/policies/runtime '

sary), create a new activation group, store the group information in it, and put the
storage for the "Cats" chat in that directory. The service would register with the
public group, The server would run using classes from /jars/chat . jar, cli~
ents would download code from the codebase http://server‘/chat-dl . j ar,
and the server’s security policy file would be /pol ici es/runti me. The subse-
quent command

java ~Djava.secur1'ty.pol1'cy=/policies/creation

chat.ChatServerAdmin /files/chats/technical "Dogs"

63

THE Chatstream SERVICE

would create a "Dogs" chat stream in the same activation group as the stream for

the subject "Cats", and therefore with the same lookup group, classpath, code-

base, and security policy because these are defined by the activation gt-oup——a]1
objects sharing an activation group will, by virtue of sharing a single Virtual

machine, have the same loolcup registration, classpath, codebase, and security
poficy

LetuslookatChatServerAdmin.main:

}

Themai

a new gt

that cor

that is 9

ing it to
rnation

true h

getSub
this firs

server I

Thi

Vvhenl

setup 0
hithat:
stream.

gwent

pmceo
its acti‘

itwhet

the act

future,

way,m

public static void main(String[] args) throws Exception
{

if (args.lengtl1 != 2 && args.length != 6) {

usage(); // print usage message
System . exi t(1);

-..;.c3»-39.4.«.-.-;y.=,;.'»;1;:».:¢;..=_zg‘.-'q?:~.;\3'{»;;hemmi»-.aetao;»2;eex:«'a»:-vm~‘«<~'-‘<'-~'v
} ;.-_.,'.-.;;-,,.-.._«.-;'.:-‘we.’.»~g.'1',;_=-
File dir = new Fi'|e(args[0]);

String subject = args[1];

ActivationGroupID group = null;

if (args.length == 2)‘
group = getGroup(dir);

else {

Stringi] groups = Par'seUti1.parseGroups(args[2]);

String lookupURL =

(args[2].index0F(’:’) > B ? args[2] : null);

String classpath = args[3];

String codebase = args [4]; Th

String policy = args[5]; ChaT5

group = cr'eateGr'oup(dir, groups. lookupURL, *- 103133

classpath, codebase, policy); the 210'
systen‘.
itiszfl

sentdi

messa;
Tl

._,___._._W;-._,.__ma,W;,._;,,p,;,Mm,-,,..w;.,,;....-;t:..-a.;¢z..-\;,;-x:-‘N'&-(V:’W«lL|;iLn(§?N|\\\-.iuy_\;_;t,g4.nun-
}. st:"‘.".Srt"rv1'»y-:-a:v:-:e--»
File data = new File(dir, subject);

Marshalledobject state = new P-1ar'sha'|1ed0bject(data);
Acti vationDesc desc =

new Activat1'onDesc(group , "chat . Chatserverlmpl " ,

null, state, true);

Remote newobj = Activatable.register(desc):

Chatserver server = (ChatServer')new0bj;
.--- ._,-“.3-..'m-J:_..;,,,t:,%>g.-h-A3,:..¢vg:J.,-1-,_-.:!»A>>4-A~A.lt<\.\Q3\}'-ft-‘b-‘.‘JI4!‘-«(IL/If-‘:A-I-I».-W

64

THE JINI ARCHHFCTURE: AN fN'TRODUC'I'ION

String 5 = server.getSubject(); // force server up

System.out.println(“server created for " + 5);

}

The main method first figures out whether it is using an existing group or creating

a new group, and gets the group accordingly. It then creates a Mars ha'| '|edObj ect

that contains the directory and subject; this Marshal ‘ledobject will be the one

mat is passed in to the activation constructor when each stream is activated, allow-

ing it to recover its state, as you will see shortly? With the group and startup infor-
mation in hand, we can tell the activation system to register this new object. The

true in the registration call is the “keep active” flag. We then invoke the

getsubject method to force the chat stream to be active for the first time. Until

this first call, the chat stream object will be inactive. Once getSubj ect forces the

server to be active, it will start its discovery and registration.

This process of creation and subsequent activating is shown in Figure 3-1.

When main invokes createcroup, the activation system remembers the group

setup options. After register, the activation system has a record of a new object

in that activation group. When main invokes getsubject on the newly registered

stream, the activation system (1) starts up a new virtual machine using the settings

given when the group was created; and then (2) tells the virtual machine (via a

piece of its own code running in it) to create a new Ch atSt reamIm pl object using

its activation constructor, passing the persistent state Marshal ledobj ect given to

it when the object was registered. When the constructor invokes export0bject,

the activation system views the object as ready for incoming messages. In the

future, when the activation system starts up it will start up the object in the same

way, but without requiring any method invocation to get things going.

The figure shows all this work being handled internally by the client’s

Chatse rverImp1 stub. A stub for an activatable object contains a direct reference

to the remote service. When the stub is first used, it sets this reference by asking

the activation system for a direct reference to the remote server. The activation

system either activates the service to get a direct reference and then returns it or, if

it is already active, simply returns the direct reference. The actual messages are

sent directly to the service. Once the stub has a direct reference, it sends all future

messages directly to the remote server without contacting the activation system.

The crea1:u=_-Group method creates the activation group, setting up the com-

mand line that will start the virtual machine to use the correct classpath, codebase, '

3 A java. rm-i .Marsha'I1ed0bjec1: stores an object in the same way as it would be mar-
shalled to be passed as an argument m an RMI method call. Its get method returns the un-
marshalled object. The activation system uses a Marshall edflbject for the persistence

parameter because it does not use the object—it just holds on to it and passes it back-so
it has no need to download any required code for the persistence parameter.

smdumxn] mg,.na1..u-a

65

THE Chat3tream SERVICE

ChatServerAdm-in Activation System ChatServerImp'| server

register(group, state,‘
execution setup, g
“keep active”)

invokes getsubj ect
get direct reference

 achine

 onconstructor
return irect

reference

gedsubject

-in

s

"a5'.‘-.

:1Q)
:-

asU‘:4-:

.3k;

3

§
5::
.5
"re

s

FIGURE 3-1: Registration and Activation in ChatAdm1'n

and policy file. It then serializes the group descriptor into a file so that future cre-

ations that want to share it can find it, adding the lookup groups and URL to the

file for the server to use. The getG roup method finds an existing group by open-

ing up the directory’s group description file and returning the deserialized
Act1'vat1'onGr'0upID. The details of this activation and file work are in the full

code in Appendix B.

THE LINE ARCH

When C

system rest:
to create the

public

‘th

}

The activat

find the dir

the director

The C!‘

server is fir

to know W‘.

provide a c
when the

Chatserve

store for fu

cl ass

‘it

66

THE JINIARCHITECIURE: AN INTRODUCTION

When ChatServerAdmi n .mai :1 invokes getsubj ect or when the activation

system restarts, the Chatse rverlmpl class's activation constructor gets invoked
to create the local object in the activated virtual machine:

public Chatserverlmpl(ActivationID actID,
Marshalledobject state)

throws IOException, ClassNotFoundException

File dir = (File) state.get();

store = new ChatStor'e(di r);

ChatPr'oxy proxy new ChatPr'oxy(this):

LookupLocator[] locators = null;

if (lookupURL != null) {

LookupLocator loc = new LookupLocator(lookupURL);
locators = new LookupLocator[] { loc };

}

joinMgr = new JoinManager(proxy, getAttrs(). groups,
locators, store, renewer);

Activatable.export0bject(this, actID, 0);

}

The activation constructor uses the state object stored by Chatse rver'Admi n to

find the directory in which the chat record is stored and to find its record within
the directory (by the subject name).

The Chatstore object manages the server’s persistent storage. When the
server is first activated, the Jim service ID has not yet been assigned, so we want

to know when the ID gets assigned. The Joi nilanager constructor allows us to

provide a com . sun. ji ni .lookup. Servi_ceIDLi stener object that will be told
when the identifier is assigned. The Chatstore class is an inner class of
Chatse rver-Impl that implements this interface, adding the ID to the persistent
store for future use. The relevant part of Chatsto re looks like this:

class Chatstore extends LogHandler

implements ServiceIDListener

//...

public void serviceIDNotify(ServiceID serviceID) {
try {

log.update(serviceID);

} catch (IOException e) {

unexpectedException(e);

ssidtunxg fig.'l=\i7J!;l.I}}:\0

67

THE Chatstream SERVICE

}

Chatserverlmpl.this.serviceID = serviceID;

}

The servi ceIDNoti fy method is invoked by the join manager when the service
ID is first allocated. Our implementation stores it in the file system for future use.

The log field and the LogHand'l e r interface are part of a “reliable log" subsystem
from the com . sun . jini . r'e1iableLog package in the release of the Jini technol-
ogy; the details are left for the full source in Appendix B.

3.3.4 Implementing nextInL'i ne

The nextInLi ne method of the chat server takes the incoming message number,
looks up the message associated with it, and returns it: -

public synchronized ChatMessage nextInLine(int index) {
try {

int nextlndex = index + 1;

while Cnextlndex >= message5.size())
waitc);

return (ChatMessage)messages.get(nextIndex);

} catch (InterruptedException e) {
unexpectedException(e);

return null; // keeps the compiler happy

}

If the next message isn’t available yet, nextInLi ne waits until someone has put
one in using add:

pubiic synchronized void add(String speaker, S1:ring[] lines)
{

Chatmessage msg = new ChatMessage(speaker, lines);
store.add(msg);

addSpeaker(speaker);

messages.add(msg);

notifyA11();

}

private synchronized void addSpeaker(String speaker) {
if (speakers . contai ns (speaker-))

68

I I THE JINIARCHITECTURE: ANINTRODUCNON

return:

speakers.add(speaker);

Entry speakerAttr = new ChatSpeaker(speaker);

attrs.add(speakerAttr);

joinMgr.addAttributestnew Entry[] { speakerAttr });

so]dr.1II=.:x31 rgsnag.-\.1a.s()

When a new message is added, we create the ChatMessage object for the message

and then store it in the log. We then add the speaker (addSp eake r' ignores already

known speakers), add the message to our in-memory list of messages, and notify

- any waiting nextInL1' ne method that there is a new message to return.
If the speaker is a new one, addspeaker creates a new Chatspeaker attribute

object and stamps it on itself by using the join manager’s addAtt r'i bu tes

method. The join manager will add this attribute to all current and future lookup

service registrations.

We have not shown the store .add method because it consists only of file-

system and data structure management, not Jini service implementation. The full

code in Appendix B, of course, shows its implementation.

3.3.5 Notes on Improving Chatse rve r-Impl

As shown Chatserve r'In_1p'| works, but it does not scale to large systems well.
Each client uses up a thread in the server virtual machine when ne-xtInL1° ne

' blocks waiting for a future message. Ifthere are hundreds of observers of a discus-

sion, the number of threads blocked in the server will also be hundreds as each cli-

ent waits for its invocation of nextInL1' me to return. There are many possible

solutions to this problem. The most interesting is to rewrite the proxy/server inter-

action to use event notification as described in the distributed event specification.

The design would look something like this:

9 The nextInL'i ne method takes a RemoteEventL'i stener object. When

nextIn L1‘ ne has no message to return, it returns an event registration instead

of a message.

0 When a new message is added, all registered listeners are notified.

0 A proxy that gets an event registration will renew the regist:ration’s lease

until it receives notification from the server that a new message is available.

It will then resume asking for the nextInL-i ne until it is blocked again.

We leave an actual implementation of this as an exercise to the reader, as well as

other things that could be done to improve the service, such as:

69

THE Cha t5 tr-eam SERVICE

9 Making add idempotent.

9 Handling the results of system crashes that result in partial creation of the
service. The activation constructor should detect such corrupt data and

unregister itself.

4 A way to mark a chat as being completed so that people can see a record of
it without adding to it. This might require adding a new method or two in
ChatSt r'e am.

4 Administrative interfaces to allow users and administrators to add their own

attributes to the service and to configure a running service as to which

lookup groups and loolcup URLs it will join. As examples, see the interface
net . jini . admin . Joi nAdmi n.

Other improvements could be made as well. You might find it useful to get the
existing source compiled and running, and then try adding one or more improve-
ments to it to get a better feel for Jini service implementation.

3.3.6 The Clients

When a chat stream service is created, we will have a service that can be used any-

where in the network that can reach the relevant lockup services. The generic

St reamReader' client can read a chat discussion stream from the beginning. A

~ more specialized client would let users add messages to the chat stream. The
generic client has more limited functionality but can work across a broader array
of services. A specialized chat client uses the extended features of a Chatstream.
Both use the same service in different ways.

As an example of a specialized client, here is a Chatter client that will use a
command line to provide access to a Chatstream:

package chatter;

public class Chatter extends Streamkeader {
public static void main(String[] args) throws Exception
{

String[] fullargs = new String[args.length + 3};

fullargs[0] = "-c";

fullargs[1] = String.value0f(Integer.MAX_VALUE);

System.arraycopy(args, 0, fullargs, 2, args.length);
fullargs[fullargs.length — 1] = "chat.ChatStream”;
Chatter chatter = new Chatter(fu1larg5);

chatter.execute();

70

THE JINI ARCHH"ECTURE.- AN HVTRODUCTION

}

private Chatter(String[] args) {

super(args);

}

pubiic void readStream(Me5sageStream msgstream)

throws RemoteException

{

Chatstream stream = (ChatStream)msgStream;

new ChatterThread(stream).start(); '

super.readStream(stream);

}

pub1ic void printMessage(int msgNum, Object msg) {

if (!(msg instanceof ChatMessage))

super.printMessage(msgNum. msg);

e1se {

ChatMessage cmsg = CChatMessage)msg;

System.out.print1n(cmsg.getSpeaker() + ”:");

String[] 1ines cmsg.getContent();

for (int i = Q; i < 11nes.1ength; i++) {
' System.out.print(" ");

System.out.print1n(1ines[i]):

}

All the client code in this section is in the chatter package. Chatter extends

St r'ea.mReader (the generic client described in Section 2) to force an effectively

infinite count of messages to read, and to require that the stream found be at least

a Chatstrearn, not simply a Messagestream. It overrides readstream so that

when the stream is found, a new thread will be created to read the user’s input.

The pri ntMessage method is overridden to take advantage of the knowledge that

the message object is a ChatMes sage.

Chatter‘Th read uses the stream’s add method when the user types some-

flnng:

ciass ChatterThread extends Thread {

private Chatstream stream;

S"3[(Il'lIl3X'}[:5».-lAi3§..:’\.I3Af_)

71

THE Chatstream SERVICE

ChatterThread(ChatStream stream) {

this.stream = stream;

}

pub1ic void run() {

BuFferedReader in = new BufferedReader(

new InputStreamReader(System.in));

String user = System.getProperty("user.name");

List msg = new ArrayList(); _

String[] msgArray = new String[@];

1"or(;:) {

try {

String 1ine = in.readLine();

if (iine == nu11)

System.exit(@);

booiean more = 1ine.endswith(”\\");

if (more) { // strip trai1ing backs1ash

int stripped = 1ine.1ength() — 1;

iine = 1ine.substring(0, stripped);

}

msg.add(1ine);

if (!more) {

msgArray = (String[])

msg.toArray(new String[msg.size()]);

stream.add(user. msgArray):

msg.c1ear();

}

} catch (RemoteException e) {

System.out.print1n("RemoteException:retry");

for (:;) {

try {

Thread.s1eep(109@);

stream.add(user, msgArray);

msg.c1ear();

break:

} catch (RemoteException re) {

continue: // try again

} catch (InterruptedException ie) {

System.exit(1);

}

72

' THE JIM’ ARCHITECTURE: AN INTRODUCTION

}

} catch (IOException e) {

System.exit(1);

}

}

I The run method will be invoked by the virtual machine when the thread is started.
It reads lines from the user to build up messages and uses add to add each mes-

. sage to the chat. Lines that end in \ (backslash) mean that the message continues
on the next line. When the user types a line that doesn’t end in backslash that line

is put together with any preceding lines to create the message. The value defined
in the user . name property (provided by the virtual machine) will be user’s name

- in the chat. If add throws a Re-moteExcept1' on we retry adding the message until
we succeed or until the user kills the application.

When the end of input has been reached, r'eadL1' ne returns null, and this

thread will invoke System. ex‘: t to bring down the entire virtual machine, includ-

ing the thread that is reading other speakers’ messages.

73

E91

133His;ARCHITECTURE: AN awnooocrron

s.)[d1ucs.-' mg.no§.-mo.-\()
4, The Rest of This Book

A good question is never answered.

I: is not a bolt to be tightened into place but a seed to be planted
and to bear more seed toward the hope ofgreening the landscape of idea.

—John Ciardi

BY now you should have an overview of how the Jini technology works and
what it takes to write a client and service. The rest of this book contains the speci-
fication of the Iini architecture. Each subpart of the specification is prefaced by a

' short paragraph describing where it fits into the architecture. After the specifica-
tion you will find a glossary that defines terms used in the specifications. Appen-
djx A is a reprint of “A Note on Distributed Computing,” whose thinking

undergirds the Jim architecture. You can follow the Jim architecture and related
technical discussions at http : //j1' n-i .org. Appendix B contains the full code for

; the examples. a - -
" Each specification has a two-letter code. For example, the Jim Architecture
Specification has the code “AR.” This provides a common name for each part of
the specification (for example AR.2.1) no matter what order the parts are placed
in. For example, in this book we have placed the parts in a reasonable reading
order. In another book it might be best to publish only relevant parts of the specifi-
cation, or publish the parts in a different order. The common names let you talk

H with others about specification sections using the same section names no matter
where each of you read the work. The two letter codes are shown at the beginning
of each specification part, in the section and figure numbers within that part, and
on the black thumb tabs at the edge of the right-hand pages.

This book is the first in a series that will come “...from the source”— from

those who design, implement, and document the Jini system. These books will all
be written either by the originators of the work in question or by people who work
closely with them to document the designs and technologies. Other good books
and web sites will, we expect, also follow from other sources. We hope that the
Jini system and its designs prove useful to you both as user and as developer. At
our series’ web site http://java.sun.com/docs/books/jinfl you will find

74

THE Chatstream SERVICE

related resources including a downloadable Version of the source in the series’

books (including this book’s source), errata, and other series-related information.

:.'
"i

75

THE JIM ARCHITECTURE SPECIFICATION defines the top-level view of the Jim‘

architecture, its components, and the systems on which the Jim'

architecture is layered. This will give you a high-level

view of the architecture that will befiiled out in the

A following specifications.

76

The Jim Architecre
Specification

AR.1 Introduction

THIS document describes the high-level architecture of a Jirii software system,
defines the different components that make up the system, characterizes the use of
those components, discusses some of the component interactions, and gives an
example. This document identifies those parts of the system that are necessary
infrastructure, those that are part of the programming model, and those that are
optional services that can live within the system.

AR.1.1 Goals of the System

A Jini system is .a distributed system based on the idea of federating groups of
users and the resources required by those users. The overall goal is to turn the net-
work into a flexible, easily administered tool with which resources can be found
by human and computational clients. Resources can be implemented as either
hardware devices, software programs, or a combination of the two. The focus of
the system is to make the network a more dynamic entity that better reflects the
dynamic nature of the workgroup by enabling the ability to add and delete ser-
vices flexibly.

A Jini system consists of the following parts:

0 A set of components that provides an infrastructure for federating services
in a distributed system

1ElVJ a.rr11o;)1g.L|;).1\.-'

77

GOALS OF THE SYSTEM

9 A programming model that supports and encourages the production of reli-
able disnibuted services

c Services that can be made part of a federated Jini system and that offer func~

tionality to any other member of the federation

Although these pieces are separable and distinct, they are interrelated, which

can blur the distinction in practice. The components that make up the Jini technol-

ogy infrastructure make use of the Jini programming model; services that reside
within the infrastructure also use that model; and the programming model is well

supported by components in the infrastructure.

The end goals of the system span a number of different audiences; these goals
include the following:

9 Enabling users to share services and resources over a network

9 Providing users easy access to resources anywhere on the network while

allowing the network location of the user to change

9 Simplifying the task of building, maintaining, and altering a network of
devices, software, and users

The Jini system extends the Java application environment from a single vir-
tual machine to a network of machines. The Java application environment pro-

vides a good computing platform for distributed computing because both code
and data can move from machine to machine. The environment has built-in secu-

rity that allows the confidence to run code downloaded from another machine.

Strong typing in the Java application environment enables identifying the class of

an object to be run on a virtual machine even when the object did not originate on
that machine. The result is a system in which the network supports a fluid config-

uration of objects that can move from place to place as needed and can call any

part of the network to perform operations.

The Jim architecture exploits these characteristics of the Java application

environment to simplify the construction of a distributed system. The Jini archi-

tecture adds mechanisms that allow fluidity of all components in a distributed sys-

tem, extending the easy movement of objects to the entire networked system.
The Jini technology infrastructure provides mechanisms for devices, services,

and users to join and detach from a network. Joining and leaving a Jini system are

easy and natural, often automatic, occurrences. Jini systems are far more dynamic
than is currently possible in networked groups where configuring a network is a

centralized function done by hand.

78

I .1.‘HE JJNIARCHITECTURE SPECIFICATION

' __AR.1.2 Environmental Assumptions

The Jini system federates computers and computing devices into what appears to
the user as a single system. It relies on the existence of a network of reasonable

speed connecting those computers and devices. Some devices require much higher
bandwidth and others can do with much less—disp1ays and printers are examples

. of extreme points. We assume that the latency of the network is reasonable.
We assume that each Jini technology—enabled device has some memory and

processing power. Devices without processing power or memory may be con-
nected to 3. Jim system, but those devices are controlled by another piece of hard-
ware audfor software, called a proxy, that presents the device to the Jini system
and itself contains both processing power and memory. The architecture for

. ' devices not equipped with a Java virtual machine (JVM) is discussed more fully in

-a separate document.
The Jini system is Java technology centered. The Jini architecture gains much

of its simplicity from assuming that the Java programming language is the imple-
7 -mentation language for components. The ability to dynamically download and run

code is central to a number of the features of the Jini architecture. However, the

Java technology-centered nature of the Jini architecture depends on the Java appli-
'- - cation environment rather than on the Java programming language. Any program-

' ming language can be supported by a Jini system if it has a compiler that produces
compliant bytecodes for the Java programming language.

79

THE JINIARCHITECTURE SPECIFICATTON

AR.2 System Overview

AR.2.1 Key Concepts

TEEE purpose of the Jini architecture is to federate groups of devices and soft-
ware components into a single, dynamic distributed system. The resulting federa-
tion provides the simplicity of access, ease of administration, and support for
sharing that are provided by a large monolithic system while retaining the fIexibil—
ity, uniform response, and control provided by a personal computer or worksta-
tion.

The architecture of a single Jini system is targeted to the workgroup. Mem-

bers of the federation are assumed to agree on basic notions of trust, administra-

tion, identification, and policy. It is possible to federate Jini systems themselves

for larger organizations.

AR.2.l.1 Services

The most important concept within the Jini architecture is that of a service. A ser-

vice is an entity that can be used by a person, a program, or another service. A ser-
vice may be a computation, storage, a communication charmel to another user, a
software filter, a hardware device, or another user. Two examples of services are

printing a document and translating from one word-processor format to some
other.

Members of a Jim’ system federate to share access to services. A Jini system

should not be thought of as sets of clients and servers, users and programs, or even

programs and files. Instead, a Jini system consists of services that can be collected
together for the performance of a particular task. Services may make use of other
services, and a client of one service may itselfbe a service with clients of its own.

The dynamic nature of a Jini system enables services to be added or withdrawn
from a federation at any time according to demand, need, or the changing require-

ments of the workgroup using the system.

Jini systems provide mechanisms for service construction, lookup, communi—
cation, and use in a distributed system. Examples of services include: devices such

