
223

224

TX.3.6 Serialized Forms

Class ser-ia1Vers'ionUIlJ Serialized Fields

Transaction.Created —519929l723008952986L cdlpubhofiekb

Nestab1eTransact1on.Created ~297924754S926318953L cfllpubficfiekk

TransactionManager.Created —4233846033773471113L aflpmbficjkkfi

Se r'verTransact1' on 4552277137549765374L all public fields

Nestab1eServerTransaction —3438419132543972925L xfllpubflofiekk

TransactianException —5009935764793203986L none

CannotAbortException 3597101646737510009L none

CannotCommitException —4497341l52359563957L none

CannotJo1nException 5568393043937204939L none_
CannotNestExcept1' on 3409604500491735434L none

T1‘ meoutExp1' re dExcept1' on 3918773‘760682958000L all publicfields

UnknownTransactionException 443798629936327009[. none

CrashCountException 4299226125245015671L. none

225

1......__?~.E:....=m..._/V

226

The Jini Lookup Service

Specification

LU.1 Introduction

Tim Jini Lookup service is a fundamental part of the federation infrastructure
for a afliinn, the group of devices, resources, and users that are joined by the Jim
software infrastructure. The lockup service provides a central registry of services

available within the djinn. This lockup service is a primary means for programs to

find services within the djinn, and is the foundation for providing user interfaces

through which users and administrators can discover and interact with services in
the djinn.

Although the primary purpose of this specification is to define the interface to
the djinn’s central service registry, the interfaces defined here can readily be used

5- in other service registries.

LU.1.1 The Lookup Service Model

The lockup service maintains a flat collection of service items. Each service item
represents an instance of a service available within the djinn. The item contains
the RMI stub (if the service is implemented as a remote object) or other object (if

the service makes use of a local proxy) that programs use to access the service,
and an extensible collection of attributes that describe the service or provide sec-

ondary interfaces to the service.
When a new service is created (for example, when a new device is added to

the djinn), the service registers itself with the djimfs lockup service, providing an
initial collection of attributes. For example, a printer might include attributes indi-

ILTTJ (It1)}oo'[

227

ATTRIBUTES

eating speed (in pages per minute), resolution (in dots per inch), and whether

duplex printing is supported. Among the attributes might be an indicator that the

service is new and needs to be configured.

An administrator uses the event mechanism of the lookup service to receive

notifications as new services are registered. To configure the service, the adminis-

trator might look for an attribute that provides an applet for this purpose. The

administrator might also use an applet to add new attributes, such as the physical
location of the service and a common name for it; the service would receive these

attribute change requests from the applet and respond by making the changes at
the lookup service. -

Programs {including other services) that need a particular type of service can

use the lookup service to find an instance. A match can be made based on the spe-
cific data types for the Java programming language implemented by the service as

well as the specific attributes attached to the service. For example, a program that

needs to make use of transactions might look for a service that supports the type

net . j"I n'i'. core . transaction . server .Tr'ansact1'onManager' and might further
qualify the match by desired location.

Although the collection of service items is flat, a wide variety of hierarchical

views can be imposed on the collection by aggregating items according to service
types and attributes. The lookup service provides a set of methods to enable incre-

mental exploration of the collection, and a variety of user interfaces can be built

by using these methods, allowing users and administrators to browse. Once an

appropriate service is found, the user might interact with the service by loading a

user interface applet, attached as another attribute on the item.

If a service encounters some problem that needs administrative attention, such

as a‘ printer running out of toner, the service can add an attribute that indicates

what the problem is. Administrators again use the event mechanism to receive

notification of such problems.

LU.1.2 Attributes

The attributes of a service item are represented as a set of attribute sets. An indi-

vidual attribute set is represented as an instance of some class for the Java plat-
form, each attribute being a public field of that class. The class provides strong
typing of both the set and the individual attributes. A service item can contain

multiple instances of the same class with different attribute values, as well as mul-

tiple instances of different classes. For example, an item might have multiple

instances of a Name class, each giving the common name of the service in a differ-
ent language, plus an instance of a Location class, an Owner class, and various

service—specific classes. The schema used for attributes is not constrained by this

228

THE JEN! LOOKUP SERVICE SPECIFICATION

specification, but a standard foundation schema for Jini systems is defined in the
Jini Lookup Attribute Schema Specification.

Concretely, a set of attributes is implemented with a class that correctly imple-
ments the interface net . j 1' ni .core . entry . Entry, as described in the Jini Entry

Specification. Operations on- the lookup service are defined in terms of template
matching, using the same semantics as in the Jini Entry Specification, but the def-
inition is augmented to deal with sets of entries and sets of templates. A set of
entries matches a set of templates if there is at least one matching entry for every

template (with every entry usable as the match for more than one template).

LU.1.3 Dependencies

This specification relies on the following other specifications:

0 Java Remote Method Invocation Specification

9 Java Object Serialization Specification

0 Jini Entry Specification

9 Jini Distributed Event Specification

4 Jini Distributed Leasing Specification

9 Jini Discovery and Join Specification

229

THE JIM’ LOOKUP SERVICE SPECIFIC?! TION

-.su11::.~‘§1I£|;Ia=a:«|.v::::;'<;;:-1‘

LU.2 The Ser-V1‘ ceReg'i strar

THE types defined in this specification are in the net . j 1' n1‘ . core .1ookup pack-
age. The following types axe imported from other packages and are referenced in

unqualified form in the rest of this specification:

java.rmi.Marsha11edObject

java.rmi.RemoteException

java.rmi.Unmarsha1Exception

java.io.Seria11zab1e

java.io.DataInput

java.io.DataOutput

java.io.IOException

net.jini.core.discovery.LookupLocator

net.jini.core.entry.Entry

net.jini.core.1ease.Lease

net.j1ni.core.event.RemoteEvent

net.j1ni.core.event.EventRegistration

net.jini.core.event.RemoteEventListener

LU.2.1 Serv'i ceID

Every service is assigned a universally unique identifier OLJUID), represented as an
instance of the Serv'i ceID class.

pub‘! 1' c f1‘ rm} :1 ass Ser'v'i ceID 'imp'| ements Se r-1' a1 1‘zab1 e {

pub'| 'i c Servi ceID('| ong rnostS1' g , 1ong ‘I eastS“i g) {...}

pub'|1'c Se r'v'i ceID(DataInpu1: in) throws IOExcept1' on {...}

pub1'ic V0'i d wr1' teBytes (Data0utput out) throws I0Except1' on
{...}

pub1-ic ‘long getMostS1' gn'i f*i ca.ntB'i ts O {...}

pubiic long getLeastSignif1cantBits() {N}

230

Servfceitem

A service ID is a 128-bit value. Service IDs are equal (using the equals
method) if they represent tl1e same 128-bit value. For simplicity and reliability,
service IDs are intended to be generated only by lookup services, not by clients.
As such, the Sc rvi ceID constructor merely takes 128 bits of data, to be computed
in an implementation-dependent manner by the lookup service. The wri teBytes
method writes out 16 bytes in standard network byte order. The second construc-
tor reads in 16 bytes in standard network byte order.

The most significant long can be decomposed into the following unsigned
fields:

Ox FFFFFFFFO~8060@0@ ti me_'| ow

GXBBOOOGOOFFFFBOGO ti me_mi d

@x@00000000@@0F000 version

OXOBGBPJGEOQQOBO FFF ti me-_hi

The least significant long can be decomposed into the following unsigned fields:
BXCEIBGBGOOGGBOGGO va ri ant

8x3FFFO@0B00@009@0 clock_seq
OXBOBOFFFFFFFFFFFF node

The variant field must he OX2. The version field must be either 0x1 or 0x4. If
the version field is OX4, then the most significant bit of the node field must be set
to 1, and the remaining fields are set to values produced by a cryptographically
strong pseudo-random number generator. If the ve rsi on field is Oxl, then the
node field is set to an IEEE 802 address, the clock_seq field is set to a 14-bit ran-
dom number, and the ti me__low, ti me_m1’ cl, and ti me'_hi fields are set to the least,
middle, and most significant bits (respectively) of a 60-bit timestamp measured in
100—nanosecond units since midnight, October 15, 1582 UTC.

The tostri ng method returns a 36—character string of six fields separated by
hyphens, each field represented in lowercase hexadecimal with the same number
of digits as in the field. The order of fields is: ti me_l ow, ti me_mid, version and
ti me_hi treated -as a single field, va r1’ ant and c‘Iock_seq treated as a single field,
and node.

LU.2.2 Servi ce-Item

Items are stored in the lookup service using instances of the Servi celtem class.

public class Ser'viceIterng implements Serializable {
public Ser'viceItem(ServiceID serviceID,

Object service,

231

THE JINI LOOKUP SERVICE SPECIFICATYON

Entry[] attributesets) {...}

public Se rvi ceID servi ceID:

public Object service;

public Entr'y[] attributesets;
}

The constructor simply assigns each parameter to the corresponding field.
Each Entry represents an attribute set. The class must have a public no-arg

constructor, and all non—static, non-final, non-transient public fields must be-
declared with reference types, holding serializable objects. Each such field is seri-

alized separateiy as a Mars halledobject, and field equality is defined by
Marshalled0bject.equal 5. The only relationship constraint on attribute sets

within an item is that exact duplicates are eliminated; other than that, multiple
attribute sets of the same type are permitted, multiple attribute set types can have a
common superclass, and so on. '

The net.jini .core.entry.UnusableEntryException is not used in the

lookup service; alternate semantics for individual operations are defined later in
this section.

LU.2.3 Servi ceTemp1 ate and Item Matching

Items in the lookup service are matched using instances of the Servi ceTempl ate
class.

public class ServiceTemplate implements Serializable {
public ServiceTemplate(ServiceID serviceID,

Class[] serviceTypes,

Entry[] attributeSetTemplates) {m}
public ServiceID 5erviceID;

public Class[] serviceTypes;

public Entryl] attributeSetTemplates;
}

The constructor simply assigns each parameter to the corresponding field. A ser-
vice item (item) matches a service template (tm pl) if:

9 item . servi ceID equals tmpl . servi ceID (or if tmpl . servi ceID is null),
and

0 item. service is an instance of every type in tmpl .5er‘v1'ceTypes, and

9 i tem.attri butesets contains at least one matching entry for each entry
template in tmpl . att ri buteSetTemp'! ates.

232

OTHER SUPPORTING TYPES

An entry matches an entry template if the class of the template is the same as,
or a superclass of, the class of the entry, and every non-nul l field in the template
equals the corresponding field of the entry. Every entry can be used to match more
than one template. For both service types and entry classes, type matching is
based simply on fully qualified class names. Note that in a service template, for
servi ceTypes and attri buteSetTempl ates, a null field is equivalent to an
empty array; both represent a wildcard.

LU.2.4.- Other Supporting Types

The Se rvi ceMatches class is used for the return value when looking up mul-
tiple items.

public class ServiceMatches implements Serializable {
public Ser'viceMatchesCServ1'ceItem[] items,

int total!/latches) {...}
public ServiceItem[] items;
public int totallvlatches;

}

The constructor simply assigns each parameter to the corresponding field.
A Servi ceEvent extends Remote-Event with methods to obtain the service [D

of the matched item, the transition that triggered the event, and the new state of
the matched item.

public abstract class ServiceEvent extends RemoteEvent {
public ServiceEvent(Object source,

long eventID,

lmgsmmm,

Marshalledobject handback,

ServiceID serviceID,

int transition) {m}
public ServiceID getServiceID() {m}
public int getTransition() {W}

public abstract ServceItem getServiceItem() {m}
}

'The getservi ceID and getTr-ans1'tion methods return the value of the corre-
sponding constructor parameter. The remaining constructor parameters are the
same as in the Remote Event constructor.

The rest of the semantics of both these classes is explained in the next section.

233

THE JINI LOOKUP SERVICE SPECIFICATION

LU.2.5 Servi ceReg'i strar

The Servi ceRegi strar‘ defines the interface to the lookup service. The inter-

face is not a remote interface; each implementation of the Iookup service exports
proxy objects that implement the Se rvi ceReg'i strar interface local to the client,
using an implementaI:ion—specific protocol to communicate with the actual remote

server. All of the proxy methods obey normal RMI remote interface semantics

except where explicitly noted. Two proxy objects are equal (using the equals
method) if they are proxies for the same lockup service.

Methods are provided to register service items, find items that match a tem-

plate, receive event notifications when items are modified, and incrementally
explore the collection of items along the three major axes: entry class, attribute
value, and service type.

public interface Se rvi ceReg'i strar {

Servi ceReg'i st rati on regi ster(Se rvi ceItem item ,

long 'leaseDu ration)

throws RemoteException;

Object lookup(Servi ceTempT ate tmpl)

throws RemoteExcepti on;

Se rvi ceMatche5

'|ookup(ServiceTemp'|ate tmp'|, int maxMatches)
throws RemoteExce_ption;

int TRANSITION_MATCH_NOMATCH = 1 << 0:

‘int TRANSITI0N__N0MATCH_|V|ATCH = 1 << 1;

‘int TRAN5ITION_MATCH_MATCH = 1 << 2;

Eventkegistraticn notifyCServiceTemp1ate tmpl,

int transitions,

RemoteEventListener listener,

Marshalledobject handback,

1ong leaseDuration)

throws RemoteException;

C1 ass [] getEntryC'| asses (Se rvi ceTemp1 ate tmpl)

th rows Remote Excepti on;

Object [] getF'I' e'ldVa'| ues (Servi ceTempl ate tmpl ,

ti"t'1"1.‘.I (il"I}|l'I0"[

234

Servi ceflegfstrar

‘int setIndex,

String field)

throws NoSuchF'i elclExcept1'on, Remo1:eExcept'ion;

C1 ass [] getse r'v'i ceTypes(5erv'i ceTemp'| ate tmpl ,
String pref-ix)

throws RemoteExcep1:'fon;

Serv-i ceID getSer'v1' ceID();

LookupLocator' getLoca1:orO throws RemoteExcept'icn;

Stri ng[] getcroups O throws Remo1:eExcept1' on;
}

Every method invocation on Serv1'ceRegistr'ar and Servi ceReg1'strat1' on is
atomic with respect to other invocations.

The register method is used to register a new service and to re-register an
existing service. The method is defined so that it can be used in an idempotent
fashion. Specifically, if a call to register results in a RemoteExcep1:-i on (in
which case the item might or might not have been registered), the caller can sim-
ply repeat the call to register with the same parameters, until it succeeds.

To register a new service, item. servi ceID should be null. In that case, if
item.servi ce does not equal (using Marsha11ed0bject.equa1s) any existing
item’s service object, then a new service ID will be assigned and included in the
returned Se r'v1' ce Regi st rati on (described in the next section). The service ID is

unique over time and space with respect to all other service IDs generated by all
lockup services. If item . service does equal an existing ite1n‘s service object, the
existing item is first deleted from the lookup service (even if it has difierent
attributes) and its lease is cancelled, but that item's service ID is reused for the
newly registered item.

To re-register an existing service, or to register the service in any other lockup
service, item. serv1'ceID should be set to the same service ID that was returned

by the initial registration. If an item is already registered under the same service
ID, the existing item is first deleted (even if it has different attributes or a different

service instance) and its lease is cancelled by the lookup service. Note that service
object equality is not checked in this case, to allow for reasonable evolution of the

service (for example, the serialized form of the stub changes or the service imple-
ments a new interface).

Any duplicate attribute sets that are included in a service item are eliminated

in the stored representation of the item. The lease duration request (specified in
. milliseconds) is not exact; the returned lease is allowed to have a shorter (but not

235

THE JINI LOOKUP SERVICEISPECIFICATION

longer) duration than what was requested. The registration is persistent across

restarts (crashes) of the lookup service until the lease expires or is cancelled.

The single-parameter form of lookup returns the service object (i.e., just

Servi celtem. service) from an item matching the template or null if there is

no match. If multiple items match the template, it is arbitrary as to which service

object is returned by the invocation. If the returned object cannot be deserialized,
an Unmarshal Exception is thrown with the standard RMI semantics.

The two-parameter form of l ookup returns at most maxMatches items match-

ing the template and the total number of items that match the template. The return

value is never null, and the returned items array is null only if maxmatches is

zero. For each returned item, if the service object cannot be deserialized, the

servi ce field of the item is set to null and no exception is thrown. Similarly, if

an attribute set cannot be deserialized, that element of the att r'1' butese ts array is

set to null and no exception is thrown.

The notify method is used to register for event notification. The registration

is leased; the lease duration request (specified in milliseconds) is not exact. The

registration is persistent across restarts (crashes) of the lookup service until the

lease expires or is cancelled. The event ID in the returned EventReg1' strati on is

unique at least with respect to all other active event registrations at this loolcup ser-

vice with different service templates or transitions.

While the event registration is in effect, a Se rvi ce Event is sent to the speci-

fied listener whenever a regi ster, lease cancellation or expiration, or attribute

change operation results in an item changing state in a way that satisfies the tem—

plate and transition combination. The transitions parameter is the bitwise OR

of any non-empty set of transition values:

0 TRANSITION_MATCH_NOMATCH: An event is sent when the changed item

matches the template before the operation, but doesn’t match the template

after the operation (this includes deletion of the item).

6 TRAN SITI0N_N0MATCH_|VlATCH: An event is sent when the changed item
doesn’t match the template before the operation (this includes not existing),

but does match the template after the operation.

9 TRANSITION_MATCH_MATCH: An event is sent when the changed item

matches the template both before and after the operation.

The getTrans1't1' on method of Serv1'ceEvent returns the singleton transi-

tion value that triggered the match.

The getServ1'ceItem method of Se r'v1' ceEvent returns the new state of the

item (the state after the operation) or null if the item was deleted by the opera-

tion. Note that this method is declared abstract; a lookup service uses a subclass
of Se rvi Ce-Event to transmit the new state of the item however it chooses.

236

Serv1’ceRegfst.r-ar

Sequence numbers for a given event ID are strictly increasing. If there is no
gap between two sequence numbers, no events have been missed; if there is a gap,
events might (but might not) have been missed. For example, a gap might occur if
the lookup service crashes, even if no events are lost due to the crash.

As mentioned earlier, users are allowed to explore a collection of items down

each of the major axes: entry class, attribute value, and service type.
The getEnt r~yc1 asses method looks at all service items that match the spec-

ified template, finds every entry (among those service items) that either dcesn’t
match any entry templates or is a subclass of at least one matching entry template,
and returns the set of the (most specific) classes of those entries. Duplicate classes
are eliminated, and the order of classes within the returned array is arbitrary. A
null reference (not an empty array) is returned if there are no such entries or no

matching items. If a returned class cannot be deserialized, that element of the
returned array is set to null and no exception is thrown.

The get Fi el dval ues method looks at all service items that match the speci-
fied template, finds every entry (amcng those service items) that matches
tmpl .attr'1' buteSetTempl'ates [setlndex], and returns the set of values of the

specified field of those entries. Duplicate values are eliminated, and the crdercf

values within the returned array is arbitrary. a null reference (not an empty array)
is returned if there are no matching items. If a returned value cannot be deserial-

ized, that element of the returned array is set to null and no exception is thrown.
NoSuchF1‘eldExcept1' on is thrown if ‘F1’ eld does not name a field of the entry
template.

The getSer'v'iceTypes method looks at all service items that match the spec-
ified template and, for every service item, finds the most specific type (class or
interface) or types the service item is an instance of that are neither equal to, nor a
superclass of, any of the service types in the template and that have names that

start with the specified prefix, and returns the set of all such types. Duplicate types
are eliminated, and the order of types within the returned array is arbitrary. A
null reference (not an empty array) is returned if there are no such types. If a
returned type cannot be deserialized, that element of the returned array is set to
null and no exception is thrown.

Every lockup service assigns itself a service ID when it is first created; this
service ID is returned by the getServ1'ceID method. (Note that this does not
make a remote call.) A lockup service is always registered with itself under this

service ID, and if a lockup service is configured to register itself with other lockup
services, it will register with all of them using this same service ID.

The ge1:Locatcr method returns a LookupLocatcr that can be used if neces-

sary fcr unicast discovery of the lockup service. The definition of this class is
given in the Jim’ Technology Discovery and Join. Specification.

237

THE JINI LOOKUP SERVICE SPECIFICATION

The getc roups method returns the set of groups that this lookup service is
currently a member of. The semantics of these groups is defined in the Jim Tech-
nology Discovery and Join Specification.

LU.2.6 Ser-v-i ceReg'i stration

A registered service item is manipulated using a Servi ceReg1' st ration instance.

public interface Servicekegistration {
ServiceID getServiceID();

Lease getLease():

void addAttributes(Entry[] attrsets)
throws UnknownLeaseException, RemoteException:

void modifyAttribute5(Entry[] attrSetTemplates,
Entry[] attrsets)

throws UnknownLeaseException, RemoteException;

void setAttributes(Entry[] attrsets)
throws UnknownLeaseException, RemoteException:

Like Ser-v1‘ceReg-i strar, this is not a remote interface; each implementation of
the lookup service exports proxy objects that implement this interface local to the
client. The proxy methods obey normal RMI remote interface semantics.

The getservi ceID method returns the service ID for this service. (Note that
this does not make a remote call.)

The get Lease method returns the lease that controls the service registration,
allowing the lease to be renewed or cancelled. (Note that getLease does not make
a remote call.)

The addAt1:r'ibutes method adds the specified attribute sets (those that aren’t
duplicates of existing attribute sets) to the registered service item. Note that this
operation has no effect on existing attribute sets of the service item and can be
repeated in an idempotent fashion. UnknownLeaseEx cepti on is thrown if the reg-
istration lease has expired or been cancelled.

The n1od1'fyAttr-ibutes method is used to modify existing attribute sets. The
lengths of the att rSetTempl ates and attrsets arrays must be equal, or
I1 legal Ar'gun1entExcept'i on is thrown. The service item’s attribute sets are mod-
ified as follows. For each array index i 2 if attrSets[1'] is null, then every entry
that matches attrSetTemp'l ates [i] is deleted; otherwise, for every non-null
field in att rsets [i] , the value of that field is stored into the corresponding field
of every entry that matches attrSetTemp1 ates [-i]. The‘ class of attr'Sets[1']
must be the same as, or a superclass of, the class of attrSetTempl ates [i], or

238

SERBLIJZED FORMS

Il'|ega'lArgumentExcept1' on is thrown. If the modifications result in duplicate
entries within the service item, the duplicates are eliminated. An
UnknownLeaseExcept1° on is thrown if the registration lease has expired or been
cancelled.

Note that it is possible to use mod'i‘FyA1:tr"ibutes in ways that are not idem-
potent. The attribute schema should be designed in such a way that all intended
uses of this method can be performed in an idempotent fashion. Also note that
mod1'fyAttr1'butes does not provide a means for setting a field to null; it is
assumed that the attribute schema is designed in such a way that this is not neces-
saty. I

The 5etAttr1' butes method deletes all of the service item’s existing
attributes and replaces them with the specified attribute sets. Any duplicate
attribute sets are eliminated in the stored representation of the item.

UnknownLeaseExu:ept1'on is thrown if the registration lease has expired or been
cancelled.

LU.2.7 Serialized Forms

Class ser1'a1Ver-s-ionUID Serialized Fields j._

Se rv1' ceID —7803375959559762239L Tong mos tS1' [.1

long '|eastS1' g

Se rvi ce Item 71739545 1032330758L all public fields

Servi ceTemp1 ate 78544838078864832l6L all public fields

Se rvi ceMatch es —5518280843537399398L all publicfielals

Servi ce-Event 1304997274-O96842701L Serv1'ceID 5ery'iceID
- int transition

239

240

THE JIN! LOOKUP ATIRIBUTE SCHEMA SPECIFICATION defines a set ofattributes
that a local administrator might choose to place on a service. These are

“serving suggestions”—nobody is required to use these
attribute definitions, but they give a starting pointfor

A people who need such attributes to either use directly
or usefor inspiration. This also describes the common

U stylefor entry design, including the canonical way to
present your entry as a JavaBean object.

241

Schema Specification

LS.1 Introduction

TEEE Jini Lookup service provides facilities for services to advertise their avail-
ability and for would-be clients to obtain references to those services based on the

attributes they provide. The mechanism that it provides for registering and query-
ing based on attributes is centered on the Java platform type system, and is based
on the notion of an entry.

An entry is a class that contains a number of public fields of object type. Ser-
vices provide concrete values for each of these fields; each value acts as an

attribute. Entries thus provide aggregation of attributes into sets; a service may
provide several entries when registeiing itself in the lookup service, which means
that attributes on each service are provided in a set of sets.

The purpose of this document is to provide a framework in which services and

their would-be clients can interoperate. This framework takes two parts:

0 We describe a set of common predefined entries that span much of the basic
functionality that is needed both by services registering themselves and by
entities that are searching for services.

0 Since we cannot anticipate all of the future needs of clients of the lookup ser-
vice, we provide a set of guidelines and design patterns for extending, using,
and imitating this set in ways that are consistent and predictable. We also
construct some examples that illustrate the use of these patterns.

242

TERMINOLOGY

LS.1.1 Terminology -

Throughoutthis document, we will use the following terms in consistent ways:

0 Service-——a service that has registered, or will register, itself with the lookup
service

9 CZient——an entity that performs queries on the lookup service, in order to
find particular services

LS.1.2 Design Issues

Several factors influence and constrain the design of the lookup service schema.

Matching Carmot Always Be Automated

No matter how much information it has at its disposal, a client of the lookup ser-
vice will not always be able to find a single unique match without assistance when
it performs a lookup. In many instances we expect that more than one service will
match a particular query. Accordingly, both the lookup service and the attribute
schema are geared toward reducing the number of matches that are returned on a
given lookup to a minimum, and not necessarily to just one.

Attributes Are Mostly Static

We have designed the schema for the Iookup service with the assumption that
most attributes will not need to be changed frequently. For example, we do not
expect attributes to change more often than once every minute or so. This decision
is based on our expectation that clients that need to make a choice of service based
on more frequently updated attributes will be able to talk to whatever small set of
services the lookup service returns for a query, and on our belief that the benefit of
updating attributes frequently at the loolcup service is outweighed by the cost in
network traffic and processing.

Humans Need to Understand Most Attributes

A corollary of the idea that matching cannot always be automated is that
humans—whether they be users or administrators of services—must be able to
understand and interpret attributes. This has several implications:

243

THE IINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

9 We must provide a mechanism to deal with localization of attributes

0 Multiple-valued attributes must provide a way for humans to see only one
value (see Section LS.2)

We will cover human accessibility of attributes soon.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class we expect that attributes within that class will all be

set 01' modified either by the service, or via human intervention, but not both.

What do we mean by this? A service is unlikely to be able to determine that it has

been moved from one room to another, for example, so we would not expect the
fields of a “location” attiibute class to be changed by the service itself. Similarly,
we do not expect that a human operator will need to change the name of the ven-
dor of a particular service.

This idea has implications for our approach to ensuring that the values of
attributes are valid.

Attributes Must Interoperate with JavaBeans Components

The JavaBeans specification provides a number of facilities relating to the local-
ized display and modification of properties, and has been widely adopted. It is to
our advantage to provide a familiar set of mechanisms for manipulating attributes
in these ways.

l.."Il L’.tt.ta1|.1_r_.'; [[l‘l1-]_f)()"_[_

LS.1.3 Dependencies

This document relies on the following other specifications:

0 Jim‘ Entry Specification

O Jini Entry Utilities Specification

0- .IavaBeans Specification

244

THE JINI LOOKUPAYTRIBUTE SCHEMA SPECIFICATION

' " ‘. .F!_£‘fl‘KW&TEQ!mifi‘i

LS.2 Human Access to Attributes

LS.2.1 Providing a Single View of an Attribute’s Value

CONSIDER the following entry class:
public class Foo implements net.j1'n1'.cor-e.entry.Entry {

public Bar baz;
}

public class Bar {

int quux;

bcolean zot:

}

A visual search tool is going to have a difficult time rendering the value of an
instance of class Bar in a manner that is comprehensible to humans. Accordingly,
to avoid such situations, entry class irnplementors should use the following guide-
lines when designing a class that is to act as a value for an attribute:

9 Provide a property editor class of thenappropriate type, as described in Sec-
tion 9.2 of the JavaBeans Specification.

0 Extend the java . awt . Component class; this allows a value to be represented
by a JavaBeans component or some other “active” object.

0 Provide either a non—default implementation of the Object . toStr1' ng
method or inherit directly or indirectly from a class that does so (since the
default implementation of Object . tost ring is not useful).

One of me above guidelines should be followed for all attribute value classes.

Authors of entry classes should assume that any attribute value that does not sat-

isfy one of these guidelines will be ignored by some or all user interfaces.

t"S"lin t2l[I;‘!I['.'IS dm1oo*_[

245

IHE JINI LOOKUP ATTRIB UTE SCHEMA SPECIFICATION

LS.3 JavaBeans Components and Design
Patterns

LS.3.1 Allowing Display and Modification of Attributes

El’ E use JavaBeans components to provide a layer of abstraction on top of the
individual classes that implement the net. jini .core.entr'y.Entry interface.

This provides us with several benefits:

9 This approach uses an existing standard and thus reduces the amount of
unfamiliar material for programmers.

9 Iava.Beans components provide mechanisms for localized display of

attribute values and descriptions. '

0 Modification of attributes is also handled, via property editors.

LS.3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.

Our use of JavaBeans components provides a familiar mechanism for authors of

browseisearch tools to represent information about a service’s attributes, such as

its icons and appropriately localized descriptions of the meanings and values of its

attributes. JavaBeans components also play a role in permitting administrators of a

service to modify some of its attributes, as they can manipulate the values of its

attributes using standard JavaBeans component mechanisms.

For example, obtaining a java. beans . BeanDescr'i ptor for a JavaBeans

component that is linked to a “location” entry object for a particular service allows

a programmer to obtain an icon that gives a visual indication of what that entry

class is for, along with a short textual description of the class and the values of the

individual attributes in the location object. It also permits an administrative tool to

view and change certain fields in the location, such as the floor number.

246

ASSOCMIHWEJAMABEANSCOM?0NENTSH3IHEfiHRYC1A$Hfi

LS.3.2 Associating JavaBeans Components with Entry Classes

The pattern for establishing a link between an entry object and an instance of its
Java]3eans component is simple enough, as this example illustrates:

package org.examp1e.foo;

import java.io.Seria1izab1e;

import net.jini.1ookup.entry.EntryBean;
import net.jini.entry.Ab5tractEntry;

pub1ic c1ass Size {

pub1ic int va1ue;

}

pub1ic c1ass Cavenewt extends AbstractEntry {
pub1ic Cavenewt() {

}

pub1ic §avenewt(Size anvi1S1ze) {

this.anvi1Size = anvi1Size;
}

pub1ic Size anvi1Size;
}

pub1ic c1ass CavenewtBean implements EntryBean, Ser1aT1zabTe {
protected Cavenewt assoc;

pub1ic CavenewtBean() {
super();

assoc = new Cavenewt();
}

pubTic void setAnvi1Size(Size x) {
assoc.anvi1Size = x;

}

pub1ic Size getAnvi1Size() {

return assoc.anvi1Size;
}

pub1ic void makeLink(Entry obj) {
assoc = (Cavenewt) obj;

}

pub1ic Entry fo11owLink() {
return ESSOC;

}

247

THE JINI LOOKUP AITRIBUTE SCHEMA SPECIFICATION

From the above, the pattern should be relatively clear:

9 The name of a JavaBeans component is derived by taking the fully qualified

entry class name and appending the string Bean; for example, the name of

the JavaBeans component associated with the entry class Foo . bar.Baz is

foo . bar . BazBean. This implies that an entry class and its associated Java-

Beans component must reside in the same package.

The class has both a public no-arg constructor and a public constructor that

takes each public object field of the class and its superclasses as parameter.

The former constructs an empty instance of the class, and the latter initial-

izes each field of the new instance to the given parameter.

The class implements the net. j 1' n1‘ . co re . ent ry . Ent ry interface, prefera-

bly by extending the net . ji m" . entry .Abstr'actEntry class, and the Java-

Beans component implements the net . j 1‘ n1‘ . l ookup . entry. EntryBean
interface.

There is a one-to-one link between a JavaBeans component and a particular
entry object. The makeL1'nk method establishes this link and will throw an

exception if the association is with an entry class of the wrong type. The

FollowL'ink method returns the entry object associated with a particular

IavaBeans component.
‘ST! vtttaipg rlm[oo'1The no-arg public constructor for a JavaBeans component creates and makes

a link to an empty entry object.

For each public object field foo in an entry class, there exist both a setFoo

and a get Foo method in the associated IavaBeans component. The setFoo
method takes a single argument of the same type as the foo field in the asso-

ciated entry and sets the value of that field to its argument. The getFoa
method returns the value of that field.

LS.3.3 Supporting Interfaces and Classes

The following classes and interfaces provide facilities for handling entry classes

and their associated IavaBeans components.

package net.j'in'i .lookup.entry;

public class EntryBeans {

public static EntryBean createBean(En1:r'y e)

throws Cl assNotFoundExcept1' on , java. 1'0 . IOExcept1' on {..._}

248

SUPPORIYNG INTERFACESAND CLASSES

publi c static C'| ass getBeanC1 ass (Cl ass at)
throws _C'| assNotFoundExcept'i on {.._}

}

publ 1' c interface Entrysean {

void makeL1' nk(Entry e) ;

Entry fol 1 owL'i nk();
}

The Ent ryBean5 class cannot be instantiated. Its sole method, createBean, cre-
ates and initializes a new JavaBeans component and links it to the entry object it is
passed. If a problem occurs creating the JavaBeans component, the method throws
either java. 'io . IOExcepti on or C1 assNotFoundException.

The createBean method uses the same mechanism for instantiating a Java-
Beans component as the j ava.beans.Beans.'instant'i ate method. It will ini-
tially try to instantiate the JavaBeans component using the same class loader as
the entry it is passed. If that fails, it will fall back to using the default class loader.

The getBeanC1 ass method returns the class of the JavaBeans component
associated with the given attribute class. If the class passed in does not implement
the net .j1'n1° .core.entry. Entry interface, an I'IlegalArgumentExcept-i on is
thrown. If the given attribute class cannot be found, a C1 assNotFoundExcept1' on
is thrown.

The Ent ryBean interface must be implemented by all JavaBeans components
that are intended to be linked to entry objects. The makeL'i nk method establishes a
link between a JavaBeans component object and an entry object, and the
Fo1'lowL1'nk method returns the entry object linked to by a particular JavaBeans
component. Note that objects that implement the EntryBean interface should not
be assumed to perform any internal synchronization in their implementations of
the ma.keL'i nk or fo1'|owL1'nk methods, or in the setFoo or getFoo pattcms.

249

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

LS.4 Generic Attribute Classes

WE will now describe some attribute classes that are generic: to many or all ser-
vices, and the IavaBeans components that are associated with each. Unless other-

wise stated, all classes defined here live in the net . jini .lookup. entry

package. The definitions assume the following classes to have been imported:

java. io.Serializable

net .jini .entry.AbstractEntry

LS.4.1 Indicating User Modifiability

To indicate that certain entry classes should only be modified by the service that

registered itself with instances of these entry classes, we annotate them with the
Se rvi ceCont rol l ed interface.

public interface Servi cecontrol l ed {

}

Authors of administrative tools that modify fields of attribute objects at the lookup

service should not permit users to either modify any fields or add any new

instances of objects that implement this interface.

LS.4.2 Basic Service Information

The Se rvi ceIn'Fo attribute class provides some basic information about a service.

public class Servicelnfo extends AbstractEntry

implements Servicecontrolled '
{

public Ser'viceInfo() {...}

public ServiceIn'Fo(String name, String manufacturer,

String vendor, String version,

String model, String serialNumber) {...}

250

BASIC SER VICE INFORMATION

public String name;

public String manufacturer;

public String vendor;

public String version;

public String model;

public String serialflumber;
}

public class ServiceInfoBean

implements EntryBean, Serializable
{

T public String getName() {m}

public void setName(String s) {m}

public String getManufacturer(J {N}

public void setManufacturer(String 5) {m}

public String getVendor() {W}

public void 5etVendor(String 5) {m}

public String getVersion() {m}

public void setVersion(String s) {N}
public String getMode1C) {M}

public void setModel(String s) {m}

public String getSerialNumber() {m}

public void setSerialNumber(String s) {M}
}

Each service should register itself with only one instance of this class. The fields
of the Se rvi ceInfo class have the following meanings:

+ The name field contains a specific product name, such as "Ul tra 30" (for a
particular workstation) or " J avasafe" (for a specific configuration manage-
ment service). This string should not include the name of the manufacturer
or vendor.

The manufactu rer field provides the name of the company that “built” this
service. This might be a hardware manufacturer or a software authoring
company.

The vendor field contains the name of the company that sells the software
or hardware that provides this service. This may be the same name as is in
the manufactu re r field, or it could be the name of a reseller. This field exists

so that in cases in which resellers relabel products built by other companies,
users will be able to search based on either name.

251

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

e The version field provides information about the version of this service. It
is a free—form field, though we expect that service implementors will follow
normal version-naming conventions in using it.

4 The model field contains the specific model name or number of the product,

if any. ‘

9 The serial Number field provides the serial number of this instance of the

service, if any.

LS.4.3 More Specific Information

The Servi ceType class allows an author of a service to deliver information that is
specific to a particular instance of a service, rather than to services in general.

public class ServiceType extends AbstractEntry

implements Servicecontrolled

{

public ServiceType() {m}

public java.awt.Image getIcon(int iconKind) {m}

public String getDisplayNameC) {W}
public String getShortDescription() {N}

}

Each service may register itself with multiple instances of this class, usually with
' one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans
component.

The getlcon method returns an icon of the appropriate kind for the service; it
works in the same way as the getlcon method in the java.beans.BeanInfo
interface, with the value of iconKi nd being taken from the possibilities defined in
that interface. The getDispl ayName and getShortDescri ption methods return
a localized human-readable name and description for the service, in the same

manner as their counterparts in the java . beans . Featurenescri ptor class. Each
of these methods returns null if no information of the appropriate kind is defined.

In case the distinction between the information this class provides and that

provided by a JavaBeans component’:-1 metainformation is unclear, the class
Se r-vi ceType is meant to be used in the lookup service as one of the entry classes
with which a service registers itself, and so it can be customized on a per-service
basis. By contrast, the Featu r'eDescri ptor and Beanlnfo objects for all
Ent r'yBean classes provide only generic information about those classes and none
about specific instances of those classes.

l_'S"l.} m.t'i'aqog tIt1)1(_'.~tV]

252

NAMINGA SERVICE

LS.4.4 Naming a Service

People like to associate names with particular services and may do so using the
Name class. '

public class Name extends Abstr-actEn1:ry {
public Name() {...}

public Nametstring name) {...}

public St ri ng name;
}

public cl ass NameBean implements EntryBean . Seri al izabl e {
public Stri ng getName C) {...}

public void setName (St N‘ ng s) {...}
}

Services may register themselves with multiple instances of this class, and either
services or administrators may add, modify, or remove instances of this class from
the attribute set under which a service is registered.

The name field provides a short name for a particular instance of a service (for
example, “Bob ’ s toaster”).

LS.4.5 Adding a Comment to a Service

In cases in which some kind of comment is appropriate for a service (for example,
“this toaster tends to bu rn bagels”), the Comment class provides an appro-
priate facility.

public class Comment extends AbstractEntry {
public CommentO {...}

public Comment(Stri ng comment) {...}

public String comment;
}

public cl ass CommentBean implements Entr'yBean, Seri alizable {
public String getCommentO {...}

public void setcomment (Stri ng s) {...}

253

THE Jl'INI LOOKUP ATTRIBUTE SCHEME!-l SPECIFICATION

A service may have more than one comment associated with it, and comments

may be added, removed, or edited by either a service itself, administrators, or
users.

LS.4.6 Physical Location

The Location and Address classes provide information about the physical loca-

tion of a particular service.

Since many services have no physical location, some have one, and a few may

have more than one, it might make sense for a service to register itself with zero or

more instances of either of these classes, depending on its nature.

The Location class is intended to provide information about the physical

location of a service in a single building or on a small, unified campus. The

Address class provides more information and may be appropriate for use with the

Location class in a larger, more geographically distributed organization.

public cl ass , Location extends AbstractEnt ry -[

public Locati on() {...}

public Locati on(String Fl oor, String room,

String building) {...}

tlmlooj
public String floor;

public String room;

public String building;

}

public class LocationBean implements EntryBean, Serializable {

public String getFloor() {W}

public void setFloor(String 5) {m}

public String getRoom() {w}

public void setRoom(String 5) {m}

public String getBuilding() {m}

public void setBuilding(String s) {m}'

}

public class Address extends AbstractEntry {

public Address() {...}

public Acldress(String street, String organization,

String organi2at1'onalUnit, String locality,

String stateOrProvince, String postalcode,

254

STATUS INFORMA‘HON

String country) -{...}

public String street;

public String organization;

public String organizationalunit;

public String locality;

public String stateDrProvince;

public String postalcode;

public String country;
}

public class AddressBean implements EntryBean, Serializable {
public String getStreet() {m}

public void setStreet(String 5) {m}

public String getOrganization() {m}

public void setOrganization(String 5) {N}

public String get0rganizationa1Unit() {m}

public void setorganizationalUnit(String s) {m}

public String getLoca1ity() {m}

public void setLoca1ity(5tring s) {N}

public String getState0rProvince() {W}

public void setState0rProvince(String s)_{m}

public String getPosta1Code() {N}

public void setPosta1Code(String 5) {N}

public String getCountry() {m}

public void setCountry(String s) {m}
}

We believe the fields of these classes to be self-explanatory, with the possible
exception of the locality field of the Address class, which would typically hold
menmmeofacfiy

LS.4.7 Status Information

Some attributes of a service may constitute long-lived status, such as an indication

that a printer is out of paper. We provide a class, Status, that implementors can
use as a base for providing status—re1ated entry classes.

pubiic abstract class Status extends AbstractEntry {
protected Status() {m}

protected Status(StatusType severity) {...}

255

THE JINI LOOKUP AITRIBUTE SCHEMA SPECIFICATION

pubiic StatusType severity:
}

public c1ass StatusType imp1ements Seria1izab1e {
private finai int type;

private StatusType(int t) { type = t; }
public static fina1 StatusType ERROR =
pubiic static finai StatusType WARNING =

new StatusType(2);

public static finai StatusType NOTICE = new StatusType(3):
pubiic static finai StatusType NORMAL = new StatusType(4);

new StatusType-(1);

}

pub'|ic abstract :21 ass StatusBean

imp"! ements EntryBean , Seri a'l izab'l e
{

pub'|i c StatusType getseveri ty 0 {...}
pubiic void setSeverity(StatusType i) {...}

}

We define a separate StatusType class to make it possible to write a property edi-
tor that will work with the St atusBean class (we do not currently provide a prop-

erty editor implementation).

LS.4.8 Serialized Forms

 _e.

Class ser-ia'l Versi onUID Serialized Fields_

Add re ss 28961369033220-4-6578L all public fields

4491500432084550577L Address asoc

7138608904371928208L afllpubficfiekh

5272583409035-504625L

—3275276677967431315L

—4182591284470292829L

27432151-48071307201L

—6026791845102735793L Name asoc

Se rvi ceIn'Fo ~111666418S758541509L all public fields

Add ressBean

Comment

Comment asoc

all publicfields

Location asoc

all publicfields

CommentBean

Location

LocationBean

Name

NameBean

I.ST} Bttlolpg {i|13{(1{]r]

256

SERIAUZED FORMS

 é

Class ser‘ia1Vers'ionUID Serialized Fields

Servicelnfoflean 835254666336l067804L

—644380972l36739583fiL

—5193075846115040838L

—1975539395914887503L

—82687355085127l2203L

ServiceType

Status

StatusBean

StatusType

Servicelnfo asoc

all public fields

all public fieids

Status asoc

int typej;?j_

257

251

...:.:E1morn::..x,.

257

258

THE JAVASPACES SPECIFICATION describes the JavaSpaces service defined in the

package net. jim‘ . javaspace. A JavaSpaces service provides a simple

yetpowerfulpersistent coordination too!for

transacrionaily governed cooperation between loosely

A coupledplayers in distributed protocols.

259

‘P-i‘-.v--.€:\':§E'\ h

The JavaSpaces Specification

JS.1 Introduction

DISTRIBUTED systems are hard to build. They require careful thinking about
problems that do not occur in local computation. The primary problems are those

of partial failure, greatly increased latency, and language compatibility. The Java
programming language has a remote method invocation system called RMI that

lets you approach general distributed computation in the Java prograiruning lan-

guage using techniques natural to the Java programming language and application
environment. This is layered on the Java platfor-m’s object serialization mecha-

nism to marshal parameters of remote methods into a form that can be shipped
across the wire and unmarshalled in a remote server’s Java virtual machine (WM).

This specification describes the architecture of JavaSpaces technology, which

is designed to help you solve two related problems: distributed persistence and the
design of distributed algorithms. Javaspaces services use RMI and the serializa-
tion feature of the Java programming language to accomplish these goals.

JS.1.1 The Javaspaces Application Model and Terms

A Javaspaces service holds entries. An entry is a typed group of objects,
expressed in a class for the Java platform that implements the interface
net.j1'n1' .cor'e.entry. Entry. Entries are described in detail in the Jim" Entry

Specification.

An entry can be written into a Javaspaces service, which creates a copy of
that entry in the space1 that can be used in future lookup operations.

' The term “spaoe" is used to refer to a Javaspaces service implementation.

(.817) .l“:lo1ott'1:3|J ~_'»‘a31=:(lgt’..-m['

260

THE JAVASPACES APPLICATION MODEL AND TERMS

You can look up entries in a JavaSpaces service using templates, which are

entry objects that have some or all of its fields set to specified values that must be
matched exactly. Remaining fields are left as wiidcard.s'——these fields are not used

in the lookup.

There are two kinds of lookup operations: read and take. A read request to a

space returns either an entry that matches the template on which the read is done,
or an indication that no match was found. A take request operates like a read, but

if a match is found, the matching entry is removed from the space.

You can request a lavaspaces service to notify you when an entry that

matches a specified template is written. This is done using the distributed event
model contained in the package net . j1'n1' . core . event and described in the Jim‘

Distributed Event Specification.

All operations that modify a Javaspaces service are performed in a transac-
tionally secure manner with respect to that space. That is, if a write operation
returns successfully, that entry was written into the space (although an intervening.

take may remove it from the space before a subsequent lookup of yours). And if a
take operation returns an entry, that entry has been removed from the space, and
no future operation will read or take the same entry. In other words, each entry in
the space can be taken at most once. Note, however, that two or more entries in a
space may have exactly the same value.

The architecture of Javaspaces technology supports a simple transaction

mechanism that allows multi-operation andfor multi-space updates to complete

atomically. This is done using the two-phase commit model under the default
transaction semantics, as defined in the package net. jini .cor'e.transact'i on

and described in the Jim’ Transaction Specification.

Entries written into a Iavaspaces service are governed by a lease, as defined

in the package net . j 1' n1‘ . core . lease and described in the Jini Distributed Lease
Specification.

JS.1.1.1 Distributed Persistence

Implementations of Javaspaces technology provide a mechanism for storing a
group of related objects and retrieving them based on a value-matching lookup for

specified fields. This allows a Javaspaces service to be used to store and retrieve

objects on a remote system.

JS.l.1.2 Distributed Algorithms as Flaws of Objects

Many distributed algorithmscan be modeled as a flow of objects between partici-
pants. This is different from the traditional way of approaching distributed com-

261

THE JAVASPACES SPECIFICATION

puting, which is to create method-i.nvocation—sty1e protocols between participants.
In this architecture’s “flow of objects” approach, protocols are based on the move-

ment of objects into and out of implementations of Iavaspaces technology.
For example, a book-ordering system might look like this: i

9 A book buyer wants to buy 100 copies of a book. The buyer writes a request
for bids into a particular public Javaspaces service.

9 The broker runs a server that takes those requests out of the space and writes

them into a JavaSpaces service for each book seller who registered with the
broker for that service.

9 A server at each book seller removes the requests from its Javaspaces ser-

vice, presents the request to a human to prepare a bid, and writes the bid into
the space specified in the book buyer’s request for bids.

0 When the bidding period closes, the buyer takes all the bids from the space
and presents them to a human to select the winning bid.

A method-invocation-style design would create particular remote interfaces for
these interactions. With a “flow of objects” approach, only one interface is

required: the net. j'in1' .space. Javaspace interface.
In general, the Javaspaces application world looks like this:

"ra;5.;at;a;hi:eas '_
Iavaspaces

service

Transaction

Javaspaces
service

Javaspaces
service

262

BENEFITS

Clients perform operations that map entries or templates onto Javaspaces ser-
vices. These can be singleton operations (as with the upper client), or contained in
transactions (as with the lower client) so that all or none of the operations take
place. A single client can interact with as many spaces as it needs to. Identities are
accessed from the security subsystem and passed as parameters to method invoca-

tions. Notifications go to event catchers, which may be clients themselves or prox-
ies for a client (such as a store-and-forward mailbox).

JS.1.2 _ Benefits

JavaSpaces services are tools for building distributed protocols. They are designed
to work with applications that can model themselves as flows of objects through
one or more servers. If your application can be modeled this way, Javaspaces
technology<will provide many benefits.

JavaSpaces services can provide a reliable distributed storage system for the
objects. In the book—buying example, the designer of the system had to define the
protocol for the participants and design the various kinds of entries that must be

passed around. This effort is akin to designing the remote interfaces that an equiv-
alent customized service would require. Both the Iavaspaces system solution and
the customized solution would require someone to write the code that presented
requests and bids to humans in a GUI. And in both systems, someone would have
to write code to handle the seller’s registrations of interest with the broker.

The server for the model that uses the Javaspaces API would be implemented
at that point.

The customized system would need to implement the servers. These servers
would have to handle concurrent access from multiple clients. Someone would
need to design and implement a reliable storage strategy that guaranteed the
entries written to the server would not be lost in an unrecoverable or undetectable

way. If multiple bids needed to be made atomically. a distributed transaction sys-
tem would have to be implemented.

All these concerns are solved in JavaSpaces services. They handle concurrent
access. They store and retrieve entries atomically. And they provide an implemen-
tation of the distributed transaction mechanism.

This is the power of the Iavaspaces technology architecture—many common
needs are addressed in a simple platform that can be easily understood and used in
powerful ways.

Javaspaces services also help with data that would traditionally be stored in a
file system, such as user preferences, e—mail messages, and images. Actually, this
is not a different use of a Javaspaces service. Such uses of a file system can
equally be viewed as passing objects that contain state from one external object

263

THE JAVASPACES SPECIFICAHON

(the image editor) to another (the window system that uses the image as a screen
background). And JavaSpaces services enhance this functionality because they
store objects, not just data, so the image can have abstract behavior, not just infor-
mation that must be interpreted by some external application(s).

JavaSpaces services can provide distributed object persistence with objects in
the Java programming language. Because code written in the Java prograrnrning
language is downloadable, entries can store objects whose behavior will be trans-
mitted from the writer to the readers, just as in an RMI using Java technology. An

entry in a space may, when fetched, cause some active behavior in the reading cli— '
ent. This is the benefit of storing objects, not just data, in an accessible repository

for distributed cooperative computing.

JS.1.3 Javaspaces Technology and Databases

A JavaSpaces service can store persistent data which is later searchable. But a
JavaSpaces service is not a relational or object database. JavaSpaces services are
designed to help solve problems in distributed computing, not to be used primarily
as a data repository (although there are many data storage uses for JavaSpaces
applications). Some important differences are:

0 Relational databases understand the data they store and manipulate it

directly via query languages. JavaSpaces services store entries that they
understand only by type and the serialized form of each field. There are no

general queries in the JavaSpaces application design, only “exact match" or
“don’t care” for a given field. You design your flow of objects so that this is

sufficient and powerful.

9 Object databases provide an object oriented image of stored data that can be
modified and used, nearly as if it were transient memory. JavaSpaces sys-

tems do not provide a nearly transparent persistent/transient layer, and work

only on copies of entries.

These differences exist because JavaSpaces services are designed for a differ-

ent purpose than either relational or object databases. A JavaSpaces service can be
used for simple persistent storage, such as storing a user’s preferences that can be
looked up by the user’s [D or name. JavaSpaces service functionality is some-
where between that of a filesystem and a database, but it is neither.

264

JA VASPACES SYSTEM DESIGN AND LINDA SYSTEMS

JS.1.4 Javaspaces System Design and Linda2 Systems

The Javaspaces system design is strongly influenced by Linda systems, which
support a similar model of entry-based shared concurrent processing. In Section
IS .4.l you will find several references that describe Lirrda-style systems.

No knowledge of Linda systems is required to understand this specification.
This section discusses the relationship of Javaspaces systems with respect to
Linda systems for the benefit of those already familiar with Linda programming.
Other readers should feel free to skip ahead.

Javaspaces systems are similar to Linda systems in that they store collections
of information for future computation and are driven by value-based lookup. They
differ in some important ways:

0 Lindasystems have not used rich typing. JavaSpaces systems take a deep
concern with typing from the Java platform type-safe environment. In Java-
Spaces systems, entries themselves, not just their fields, are typed—two dif-
ferent entries with the same field types but with different data types for the
Java programming language are different entry types. For example, an entry
that had a string and two double values could be either a named point or a
named vector. In Javaspaces systems these two entry types would have spe-
cific different classes for the Java platform, and templates for one type would
never match the other, even if the values were compatible.

Entries are typed as objects in the Java programming language, so they may
have methods associated with them. This provides a way of associating
behavior with entries.

As another result of typed entries, Javaspaces services allow matching of
subtypes—a template match can return a type that is a subtype of the tem-
plate type. This means that the read or take may return more states than
anticipated. In combination with the previous point, this means that entry
behavior can be polymorphic in the usual object-oriented style that the Java
platform provides. .

The fields of entries are objects in the Java programming language. Any
object data type for the Java programming language can be used as a tem-
plate for matching entry loolrups as long as it has certain properties. This
means that computing systems constructed using the JavaSpaces API are

“Linda" is the name of a public domain technology originally propounded by Dr. David Gelernter of
Yale University. "Linda" is also claimed as a trademark for certain goods by Scientific Computing As-
sociates, Inc. This discussion refers to the public domain “Linda" technology.

265

THE M. VASPACES SPECIFICATION

object-oriented from top to bottom, and behavior-based (agent-like) applica-
tions can use JavaSpaces services for co-ordination.

vb Most environments will have more than one JavaSpaces service. Most Linda

tuple spaces have one tuple space for all cooperating threads. So transactions
in the JavaSp'aces system can span multiple spaces (and even non—Java-

Spaces system transaction participants).

0 Entries written into a Javaspaces service are leased. This helps keep the

space free of debris left behind due to system crashes and network failures.

0 The Javaspaces API does not provide an equivalent of “ev ” because it
would require the service to execute arbitrary computation on behalf of the
client. Such a general compute service has its own large number of require-
ments (such as security and fairness).

On the nomenclature side, the Javaspaces technology API uses a more acces-

sible set of terms than the traditional Linda terms. The term mappings are “entty"

for “tuple”, “value” for “actual”, “wildcat " for “formal”, “write” for "out”, and
“take” for “in”. So the Linda sentence “When you ‘out’ a tuple make sure that

actuals and formals in ‘in‘ and ‘read’ can do appropriate matching” would be

translated to “When you write an entry make sure that values and wildcards in
‘take’ and ‘read’ can do appropriate matching.” '

JS.1.5 Goals and Requirements

The goals for the design of Javaspaces technology are:

9 Provide a platform for designing distributed computing systems that simpli-
fies the design and implementation of those systems.

l.Sl'l ifiulntilpal 50".)?-:(lf.',‘l!.-\B['
o The client side should have few classes, both to keep the client-side model

simple and to make downloading of the client classes quick.
0 Theclient side should have a small footprint, because it will run on comput-

ers with limited local memory.

e A variety of implementations should be possible, including relational data-
base storage and object-oriented database storage.

0 It should be possible to create a replicated Javaspaces service.

266

DEPENDENCIES

The requirements for Javaspaces application clients are:

9 It must be possible to write a client purely in the Java programming lan-
guage.

0 Clients must be oblivious to the implementation details of the service. The
same entries and templates must work in the same ways no matter which
implementation is used.

JS.1.6 Dependencies

This document relies upon the following other specifications:

9 Java Remote Method Invocation Specification

9 Java Object Serialization Specification

4 Jim‘ Entry Specification

o Jini Entry Utiiities Specifications

0 Jim’ Distributed Event Specification

4 Jim’ Distributed Leasing Specification

6 Jim‘ Transaction Specification

267

THE IA VASPACES SPECIFICATION

JS.2 Operations

TEIERE are four piimary kinds of operations that you can invoke on a Java-
Spaces service. Each operation has parameters that are entries, including some

that are templates, which are a kind of entry. This chapter describes entries, tem-

plates, and the details of the operations, which are:

9 write: Write the given entry into this JavaSpaces service.

0 read: Read an entry from this Javaspaces service that matches the given

template.

0 take: Read an entry from this JavaSpaces service that matches the given
template, removing it from this space.

0 not'i fy: Notify a specified object when entries that match the given template

are written into this Javaspaces service.

As used in this document, the term “operation" refers to a single invocation of

a method; for example, two different take operations may have different tem-

plates.

JS.2.1 Entries

The types Entry and Unusabl eEntryExcept1' on that are used in this specification

are from the package net . jini . core.entr'y and are described in detail in the
Jim: Entry Specification. In the terminology of that specification wri te is a store

operation; read and take are combination search and fetch operations; and
notify sets up repeated search operations as entries are written to the space.

__(SI") ,.{?i'l'l[Ul.I[[331 sa.w(l§_.;a_.-\n['

268

net. ji'rn' .space . Jayaspace

JS.2.2 net . j ini . space. Javaspace

All operations are invoked on an object that implements the Javaspace interface.

For example, the following code fragment would write an entry of type
Attr'Entr‘y into the Javaspaces service referred to by the identifier space:

Javaspace space = getSpace();

AttrEntry e = new AttrEntry();

e.name = "Duke";

e.va1ue = new GIFImage("dukewave.gif“);

space.write(e, nu11, 60 * 60 * 1@0@);// one hour

// Tease is ignored ~— one hour wi11 be enough

The Javaspace interface is:

package net.jini.space;

Wmwtjmamm.fi

import net.jini.core.event.*;

import net.jini.core.transaction.*;

import net.jini.core.1ease.*;

pub1ic interface]avaSpace {

Lease write(Entry e, Transaction txn, Tong 1ease)

throws RemoteException, TransactionException;

pub1ic fina1 Tong NO_wAIT = 0: // don't wait at a11

Entry read(Entry tmp1. Transaction txn, Tong timeout)

throws TransactionException, Unusab1eEntryException,

RemoteException, InterruptedException;

Entry readIfExists(Entry tmp1, Transaction txn,

Tong timeout)

throws TransactionException, Unusab1eEntryException,
RemoteException, InterruptedException;

Entry take(Entry tmp1, Transaction txn, Tong timeout)

throws TransactionException, Unusab1eEntryException,

RemoteException, InterruptedException;

Entry takeIfExistsCEntry tmpi, Transaction txn,

Tong timeout)

throws TransactionException, Unusab1eEntryException,

RemoteException, InterruptedException;

Eventkegistration notify(Entry tmp1, Transaction txn,

RemoteEventListener Tistener, Tong Tease,

269

THE JAVASPACES SPECIFICATION

Marshalledobj ect handback)

throws RemoteExcept'ion, Tr'ansact1'onExcept‘ion;

Entry snapshot(Entr'y e) throws RemoteExcept'ion;

}

The Transaction and Tr'ansact'ionExcept1'on types in the above signatures are

imported from net . j1'n1' .cor'e.transact'i on. The Lease type is imported from

net. j-i n1’ . core . l ease. The RemoteEventL1' stener and EventReg1' st rati on

types are imported from net . j'i n1‘ . core. event.

In all methods that have the parameter, txn may be null , which means that no

Transaction object is managing the operation (see Section JS.3).

The Javaspace interface is not a remote interface. Each implementation of a

Javaspaces service exports proxy objects that implement the Javaspace interface

locally on the client, talking to the actual Javaspaces service through an imple-

mentation—specific interface. An implementation of any Javaspace method may

communicate with a remote Javaspaces service to accomplish its goal; hence,

each method throws Re-moteExcept1' on to allow for possible failures. Unless

noted otherwise in this specification, when you invoke Javaspace methods you

should expect Re-moteExcept1' ons on method calls in the same cases in which you

would expect them for methods invoked directly on an RMI remote reference. For

example, invoking snapshot might require talking to the remote JavaSpaces

server, and so might get a Remote Excepti on if the server crashes during the oper-
ation.

The details of each Javaspace method are given in the sections that follow.

JS.2.2.l Internal SpaceExcept'ion

The exception Inte r-nal Space-Excepti on may be thrown by a Javaspaces service

that encounters an inconsistency in its own internal state or is unable to process a

request because of internal limitations (such as storage space being exhausted).

This exception is a subclass of Runt"imeExcept1' on. The exception has two con-

structors: one that takes a String description and another that takes a String and

a nested exception; both constructors simply invoke the Runti meExcept1' on con-
structor that takes a String argument.

package net.jini.space;

public class Internal SpaceExcept1' on extends Runti meExcept'i on {

public fi nal Throwabl e nestedExcept'i on;

publ '5 c Internal SpaceExcept1'on (Stri ng msg) {...}

public Internal SpaceExcept'i on (Stri ng msg , Th rowabl e e) {...}

..-\B(}]t)llI['."_I9_]‘ samtlge.-xra['

270

_ public pr'intStackTrace() {...}

public pr1'ntStackTrace(Pr'intStream out) {...}
public printStackTrace(Printwriter out) {._.}

}

The nestedExcept'i on field is the one passed to the second constructor, or null if
the first constructor was used. The overridden pr'i ntStackTrace methods print
out the stack trace of the exception and, if nestedExcepti on is not null, print
out that stack trace as well. '

JS.2.3 write

A write places a copy of an entry into the given Javaspaces service. The Entry
passed to the write is not affected by the operation. Each write operation places
a new entry into the specified space, even if the same Entry object is used in more
than one wri te.

Each write invocation returns a Lease object that is lease milliseconds long.
If the requested time is longer than the‘ space is willing to grant, you will get a
lease with a reduced time. When the lease expires, the entry is removed from the
space. You will get an I‘! 1 ega1ArgumentExcept1’ on if the lease time requested is

If a wri te returns without throwing an exception, that entry is committed to
the space, possibly within a transaction (see Section JS.3). If a RemoteExcept1' on
is thrown, the write may or may not have been successful. If any other exception
is thrown, the entry was not written into the space.

Writing an entry into a space might generate notifications to registered objects
(see Section JS.2.7).

JS.2.4 r-eadIFEx'ists and read

The two forms of the read request search the Javaspaces service for an entry that
matches the template provided as an Entry. If a match is found, a reference to a
copy of the matching entry is returned. If no match is found, null is returned.
Passing a null reference for the template will match any entry.

Any matching entry can be returned. Successive read requests with the same
template in the same JavaSpaces service may or may not return equivalent objects,

271

THE JAVASPACES SPECIFICATION

A readIfEx-i sts request will return a matching entry, or null if there is cur-

rently no matching entry in the space. If the only possible matches for the tem-

plate have conflicting looks from one or more other transactions, ‘the t'i rneout

value specifies how long the client is willing to wait for interfering transactions to

settle before returning a value. If at the end of that time no value can be returned

that would not interfere with transactional state, null is returned. Note that, due to

the remote nature of JavaSpaces services, read and r'eadIfExi sts may throw a

RemoteEx cepti on if the network or server fails prior to the timeout expiration
A read request acts like a r'eadIfEx'i sts except that it will wait until a

matching entry is found or until transactions settle, whichever is longer, up to the

timeout period. .

In both read methods, a’ timeout of N0_wAIT means to return immediately,
with no waiting, which is equivalent to using a zero timeout.

JS.2.5 takeIfEx'i sts and take

The take requests perform exactly like the corresponding read requests (see Sec-

tion JS.2.4-), except that the matching entry is removed from the space. Two take

operations will never return copies of the same entry, although if two equivalent

entries were in the Javaspaces service the two take operations could return equiv-
alent entries.

If a take returns a non—nul'| value, the entry has been removed from the

space, possibly within a transaction (see Section JS.3). This modifies the claims to

once~only retrieval: A take is considered to be successful only if all enclosing

transactions commit successfully. If a RemoteExcept1' on is thrown, the take may

or may not have been successful. If an Unusab'leEntryExcep1:1'on is thrown, the

take removed the unusable entry from the space; the contents of the exception are

as described in the Jim" Entry Specification. If any other exception is thrown, the

take did not occur, and no entry was removed from the space.

With a RemoteExcept1' on, an entry can be removed from a space and yet

never returned to the client that performed the take, thus losing the entry in

between. In circumstances in which this is unacceptable, the take can be wrapped

inside a transaction that is committed by the client when it has the requested entry
in hand.

JS.2.6 snapshot

The process of serializing an entry for transmission to a Javaspaces service will

be identical if the same entry is used twice. This is most likely to be an issue with

saarrtlge.

272

nati fy

templates that are used repeatedly to search for entries with read or take. The cli-

ent-side implementations of read and take cannot reasonably avoid this dupli-
cated effort, since they have no efficient way of checking whether the same

template is being used without intervening modification.

The snapshot method gives the Javaspaces service implementor a way to

reduce the impact of repeated use of the same entry. Invoking snapshot with an

Entry will return another Entry object that contains a snapshot of the original

entry. Using the returned snapshot entry is equivalent to using the unmodified

original entry in all operations on the same Javaspaces service. Modifications to

the original entry will not affect the snapshot. You can snapshot a null template;

snapshot may or may not return null given a null template.

The entry returned from snapshot will be guaranteed equivalent to the origi-

nal unmodified object only when used with the space. Using the snapshot with any

other Javaspaces service will generate an IllegalArgumen1:Excep1:ion unless

the other space can use it because of knowledge about the JavaSpaces service that

generated the snapshot. The snapshot will be a different object from the original,

may or may not have the same hash code, and equal 5 may or may ‘not return true

when invoked with the original object, even if the original object is umnodified.

A snapshot is guaranteed to work only within the virtual machine in which it

was generated. If a snapshot is passed to another virtual machine (for example, in

a parameter of an RMI call), using it—even with the same JavaSpaces service-
may generate an Il l egal ArgumentExcept1' on.

We expect that an implementation of Javaspaces technology will return a spe-
cialized Entry object that represents a pre-serialized version of the object, either

in the object itself or as an identifier for the entry that has been cached on the

server. Although the client may cache the snapshot on the server, it must guaran-

tee that the snapshot returned to the client code is always valid. The implementa-

tion may not throw any exception that indicates that the snapshot has become

invalid because it has been evicted from a cache. An implementation that uses a

server-side cache must therefore guarantee that the snapshot is valid as long as it

is reachable (not garbage) in the client, such as by storing enough information in
the client to be able to re-insert the snapshot into the server-side cache.

- No other method returns a snapshot. Specifically, the return values of the read '

and take methods are not snapshots and are usable with any implementation of
JavaSpaces technology.

JS.2.7 notify

A notify request registers interest in future incoming entries to the .l_avaSpaces
service that match the specified template. Matching is done as it is for read. The

273

THE JAVASPA CES SPECIFICATION

not-i fy method is a particular registration method under the Jim‘ Distributed

Event Specification. When matching entries are written, the specified

RemcteEven1:L1' stener will eventually be notified. When you invoke notify you

provide an upper bound on the lease time, which is how long you want the regis-
tration to be remembered by the Javaspaces service. The service decides the

actual time for the lease. You will get an I11egalArgumentExcept1'on if the lease

time requested is not Lease.ANY and is negative. The lease time is expressed in
the standard millisecond units, although actual lease times will usually be of much

larger granularity. A lease time of Lease. FOREVER is a request for an indefinite
lease; if the service chooses not to grant an indefinite lease, it will return a

bounded (non-zero) lease.

Each noti fy returns a net .jin'i . cor'e.event. EventReg1' strati on object.

When an object is written that matches the template supplied in the notify invo-
cation, the listener’s notify method is eventually invoked, with a Remote-Event

object whose evID is the value returned by the Even1:Reg1' st rati on objects
getEventID method, fromwhom being the Iavaspaces service, seqNo being a

monotonically increasing number, and whose get-.Reg1' s1:ra1:1' onobject being

that passed as the handback parameter to notify. If you get a notification with a

sequence number of 103 and the EventRegID object's current sequence number is
100, there will have been three matching entries written since you invoked

notify. You may or may not have received notification of the previous entries due
to network failures or the space compressing multiple matching entry events into a

single call.

If the transaction parameter is null, the listener will be notified when match-

ing entries are written either under a null transaction or when a transaction coni-
mits. If an entry is written under a transaction and then taken under that same
transaction before the transaction is committed, listeners registered under a null

transaction will not be notified of that entry.

If the transaction parameter is not nu‘| ‘I, the listener will be notified of match-
ing entries written under that transaction in addition to the notifications it would
receive under a null transaction. A notify made with a non-nu'|'| transaction is

implicitly dropped when the transaction completes.

The request specified by a successful notify is as persistent as the entries of

the space. They will be remembered as long as an untaken entry would be, until
the lease expires, or until any governing transaction completes, whichever is
shorter.

The service will make a “best effort” attempt to deliver notifications. The ser-

vice will retry at most until the notification request’s lease expires. Notifications

may be delivered in any order.

See the Jim‘ Distributed Event Specification for details on the event types.

[___‘_‘J .-ifitJ[t'J11t[;)9l. sa3n(I_<;n.u-=.1'

274

OPERA TION ORDERING

JS.2.8 Operation Ordering '

Operations on a space are unordered. The only view of operation order can be a

thread’s view of the order of the operations it performs. A view of inter-thread

order can be imposed only by cooperating threads that use an app]ication—specific
protocol to prevent two or more operations being in progress at a single time on a

single Javaspaces service. Such means are outside the purview of this specifica-
non.

For example, given two threads T and U, if Tperforms a wri te operation and

U performs a read with a template that would match the written entry, the read
may not find the written entry even if the wri te returns before the read. Only if T
and U cooperate to ensure that the write returns before the read commences

would the read be ensured the opportunity to find the entry written by T (although
it still might not do so because of an intervening take from a third entity).

JS.2.9 Serialized Form

Class ser'ia'IVers'ionUID Serialized Fields

Internal SpaceExcept1'on —4167507833172939849L allpublicfieids

275

THE JAVASPACES SPECIFICATTON

JSQ3 Transactions

THE .lavaSpaces API uses the package net.j'in'i .core.transact'i on to pro-
vide basic atomic transactions that group multiple operations across multiple

JavaSpaces services into a bundle that acts as a single atomic operation. Java-

Spaces services are actors in these transactions; the client can be an actor as well,

as can any remote object that implements the appropriate interfaces.

Transactions wrap together multiple operations. Either all modifications

within the transactions will be applied or none will, whether the transaction spans

one or more operations andfor one or more]avaSpaces services.
The transaction semantics described here conform to the default transaction

semantics defined in the Jim Transaction Specification.

JS.3.1 Operations under Transactions

Any read, write, or take operations that have a null transaction act as if they

were in a committed transaction that contained exactly that operation. For exam-

ple, a take with a null transaction parameter performs as if a transaction was cre-

ated, the take performed under that transaction, and then the transaction was

committed. Any notify operations with a null transaction apply to write opera-

tions that are committed to the entire space.

Transactions affect operations in the following ways:

6 wri te: An entry that is written is not visible outside its transaction until the

transaction successfully commits. Ifthe entry is taken within the transaction,

the entry will never be visible outside the transaction and will not be added

to the space when the transaction commits. Specifically, the entry will not

generate notifications to listeners that are not registered under the writing
transaction. Entries written under a transaction that aborts are discarded.

9 read: A read may match any entry written under that transaction or in the

entire space. A JavaSpaces service is not required to prefer rnatching entries

written inside the transaction to those in the entire space. When read, an

__t.'§:t"} .-i'ts'tT:[tT»1It]Jo_L saacclgesc1"

276

TRAN.SACTl'0NS AND ACID PROPERTIES

entry is added to the set of entries read by the provided transaction. Such an

entry may be read in any other transaction to which the entry is visible, but
cannot be taken in another transaction.

take: A take matches like a read with the same template. When taken, an
entry is added to the set of entries taken by the provided transaction. Such

an entry may not be read or taken by any other transaction.

notify: A notify performed under a null transaction applies to write
operations that are committed to the entire space. A not1' fy performed
under a non—null transaction additionally provides notification of writes

performed within that transaction. When a transaction completes, any regis-
trations under that transaction are implicitly dropped. When a transaction
commits, any entries that were written under the transaction (and not taken)
will cause appropriate notifications for registrations that were made under a
null transaction.

If a transaction aborts while an operation is in progress under that transaction,
the operation will terminate with a Transacti onExcept1' on. Any statement made
in this chapter about read or take apply equally to r'eadIfEx1' sts or
takeIfEx1‘ sts, respectively.

JS.3.2 ‘Transactions and ACID Properties

The ACID properties traditionally ofiered by database transactions are preserved
in transactions on Javaspaces systems. The ACID properties are:

6 Atomz'ct'ty: All the operations grouped under a transaction occur or none of
them do. -

9 Consistency.‘ The completion of a transaction must leave the system in a
consistent state. Consistency includes issues known only to humans, such as
that an employee should always have a manager. The enforcement of con-
sistency is outside of the transaction—a transaction is a tool to allow consis-

tency guarantees, and not itself a guarantor of consistency.

9 Isolation: Ongoing transactions should not affect each other. Any observer
should be able to see other transactions executing in some sequential order
(although different observers may see different orders).

9 Durability: The results of a transaction should be as persistent as the entity
on which the transaction commits.

277

THE JAVASPACES SPECIFICATYON

The timeout Values in read and take allow a client to trade full isolation for

liveness. For example, if a read request has only one matching entry and that

entry is currently locked in a take from another transaction, read would block

indefinitely if the client wanted to preserve isolation. Since completing the trans-

action could take an indefinite amount of time, a client may choose instead to put

an upper bound on how long it is willing to wait for such isolation guarantees, and

instead proceed to either abort its own transaction or ask the user whether to con-
tinue or whatever else is appropriate for the client.

Persistence is not a required property of Javaspaces technology implementa-

tions. A transient implementation that does not preserve its contents between sys-

tem crashes is a proper implementation of the Javaspace interface’s contract, and

may be quite useful. If you choose to perform operations on such a space, your

transactions will guarantee as much durability as the Javaspaces service allows

for all its data, which is all that any transaction system can guarantee.

{S"J

|--‘:m,
P: .
:-
=
o1
3

Fl’:
‘-4.

‘—I
":5
-9.‘,

J.
'5
2*
ff.
CD

278

279

THE JAVASPACES SPECIFICATION

W‘-‘n -11-113‘

JS.4 Further Reading

JS.4.1 Linda Systems

1. How to Write Parallel Programs: A Guide to the Pe1_-plexed, Nicholas Car-
riero and David Gelernter, ACM Computing Surveys, Sept., 1989.

Generative Communication in Linda, David Gelernter, ACM Transactions
on Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112 (Jan»
nary 1985).

Persistent Linda: Linda + Transactions + Query Processing, Brian G.
Anderson and Dennis Shasha, Proceedings of the 13th Symposium on
Faul1‘—Toierant Distributed Systems, 1994.

Adding Fau1t—tolerant Transaction Processing to LINDA, Scott R. Cannon
and David Dunn, Software—Practice and Experience, Vol. 24(5), pp.
449-446 (May 1994).

ActorSpaces: An Open Distributed Programming Paradigm, Gul Agha,
Christian I. Callsen, University of Illinois at Urbana—Champaign, UILU-
ENG-92-1846.

JS.4.2 The Java Platform

6. The Java Programming Language, Second Edition, Ken Arnold and James
Gosling, Addison Wesley, 1998.

Tine Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
Addison Wesley, 1996.

The Java Virtual Machine Specification, Second Edition, Tim Lindholm
and Frank Yellin, Addison Wesley, 1999.

The Java Class Libraries, Second Edition, Patrick Chan, Rosanna Lee, and
Doug Kramer, Addison Wesley, 1998.

280

DISTRIBUTED COMPUTING

JS.4.3 Distributed Computing

10. Distributed Systems, Sape Mullender, Addison Wesley, 1993.

1]. Distributed Systems: Concepts and Design, George Coulouris, Jean Dolli-

more, and Tim Kindberg, Addison Wesley, 1993.

12. Distributed Aigorirhms, Nancy A. Lynch, Morgan Kaufmann Publishers,
1997.

281

.:.:._m_E_§._.mn_._..._..m.<2......

282

THE JINI DEVICE ARCHITECTURE SPECIFICATION describes several ways in which

a device (or any other service) can participate in a Jini system without the

device (or service) being a general Jini service. The

possibilities listed are not exhaustive—there could be

A other interesting models as well. The main point to pay
attention to here is that any service can participate in

n the Jim’ architecture, even with no modgication of the
service provider itself This “device architecture” applies

equally well to legacy systems and other software services.

283

~ -' " _ "

he ini vice

Specification

DA.1 Introduction

Tl{E Jini technology infrastructure is built around the model of clients looking
for services. The notion of a service encompasses access to information, computa-

tion, software that performs particular tasks, and in general any component that

helps a user accomplish some goa]. Services can themselves be clients of other
services, and can be grouped together to provide higher-level functionality.

The Jini architecture requires a service to be defined in terms of a data type for

the Java programming language that can then be implemented in different ways by
different instances of the service. A service can be a member of many different

types, allowing a single service instance to provide a variety of functionality to
clients. This is a standard practice in object-oriented software. However, the dis-

tributed nature of the Inn system allows data types for the Java progrannning lan-

guage to be implemented in a combination of software and hardware in a way that
is unique.

The core of the idea that enables this implementation flexibility is quite sim—

ple. Services are defined via an interface, and the implementation of a proxy sup-
porting the interface that will be seen by the service client will be uploaded into

the lookup service by the service provider. This implementation is then down-
loaded into the client as part of that client finding the service. This service-specific

implementation needs to be code written in the Java programming language (to
ensure portability). However, since this code comes from the actual instance of the
service being used, it can know in great detail the specifics of the particular ser-
vice implementation for which it is the proxy. Not only can the code that is down-
loaded know about the software used to implement the service, the code can know

284

REQUIREMENTS FROM THE JINI LOOKUP SERVICE

specifics about the hardware on which the service resides. In the limit case of this,
the hardware could be all that there is to the service, and the downloaded software

could act as a network-level device driver, taking method calls in the Java pro-
gramming language from the client and generating specific, hard-coded requests
to the hardware on the other end of the network wire.

This approach to services requires that there be a piece of code written in the
Java programming language that can be downloaded by the client of the service
and some hardware that ultimately runs the service. Between these two points,_
however, there are a number of options concerning the software structure, hard-
ware structure, and location of components that can be chosen by the service pro-
vider. These options allow trade-offs to be made in the functionality provided and
the cost of the underlying hardware.

In what follows we begin by discussing in more detail the requirements
placed on a service to be part of the Jini system. We then discuss some examples
of combinations of software and hardware that can be used to implement lini-
capable services once the specialized implementations in hardware begin to play a
role.

DA.1.l Requirements from the Jini Lookup Service

The actual offering of a service places very few requirements on the entity that
makes the offer; indeed, it is possible to implement a device using Jini software
services that offers a service m such a way that the code written in the Java pro-
gramming language that is downloaded by the client transmits bit patterns to the
hardware that are directly interpreted. In such cases the amount of intelligence
needed for a Jini device is minimal. The code written in the Java programming
language could talk directly to the device controller in much the same way that the
device would be talked to if it were on the local computer’s bus (with, of course,
some modifications for dealing with the network-centric aspects of the communi-
cation).

Unfortunately, providing a service is only part of what is needed to be a Jini

service. To be part of a Jini system grouping, a service must also be able to partic-
ipate in the Jini Discovery protocol and register itself into the local Jini Lookup
service. This is how a service makes itself known to the djinn, and how the service
is accessed by other members of the djinn.

These two requirements are intimately connected. The major goal of the Jini
Discovery protocol is to allow a device or service to obtain a Java Remote Method
Invocation (RM!) reference to the local Jini Lookup service. Once this reference
has been obtained, the service needs to register itself in that Jini Lookup service,
allowing other participants in the djinn to find. and use the service.

285

THE JIN7 DEVICE ARCHITECTURE SPECIFICATION

The interface to the Jini Lookup service is a full RMI interface, and the imple-
mentation of that service uses all of the mechanisms of RMI, including the distrib-

uted garbage collection and the dynamic downloading of code. As such, there is
an implicit assumption that the service that holds a reference to the Jini hookup
service lives inside a full JavaTM virtual machine (JVM) that is at least capable of

running the full RMI system.

'I'l1is assumption is most evident if we consider the possibility of alternate

implementations of the Jini Lookup service, which might support remote inter-
faces beyond that specified by the Jini Lookup service itself (currently the inter-
face net .j1'n'i .cor'e.‘|ookup . Serv-i ceReg'i strar). Such an implementation
would have a different RMI proxy than the current implementation, which would
be downloaded if the device had a full JVM and RMI runtime. Devices without a

full JVM and RMI runtime would need a different way of dealing with such imple-
mentations of the service.

In addition to the need to download the stub code for the Jini Lookup service,

registering with the service requires the creation of an object of type
net. jini . core. lockup. Serv-i ce-Item, which is itself made up of a set of
objects in the Java programming language. Maintenance of these entries in the
Jini Lookup service can require the creation of other objects in the Java program-
ming language of the type net .j'in1' . core . entry . Entry. All of these objects are
most easily constructed by using a running JVM.

Finally, registrations with the Jini Lookup service are leased, with the lease
that is returned requiring renewal for the service to continue to be shown in the
lookup service. The specification of the lookup service does not include a specifi-
cation of the lease object that is returned by a registration. All that is specified is
an interface written in the Java programming language that must be supported by

the (local) object that is returned as the lease. Thus the design of the Jini Lookup
service requires that the code that implements the class that in turn implements the
net . jini . core . lease . Lease interface be downloaded into the service that reg-
isters so that the lease can be renewed.

286

THE JINI DEVICE ARCHITECTURE SPECIFICATION

DA.2 Basic Device Architecture Examples

NOW we will look at three different approaches for implementing a Jini service
in hardware. Each of the approaches will look the same to a client of the service.

Each approach takes a different route to interacting with the Jini Lookup service
and in providing an interface written in the Iava programming language to clients
of that service. In each case, a different trade—off was made between the complex-

ity of the device, the flexibility of the device, and the directness of the communi-
cation between the ciient wanting to use the service and the device that

implements the service.

All but the first of the examples make use of interposition, that is, the ability

of a service to add a proxy between itself and the client of the service. The service

can use this proxy as an agent to the Jini technology infrastructure, off—loading '
from the service some of the work needed to join the Jini system federation.

The examples given in this chapter are not the only options available to the

service designer who wishes to produce a service that includes a hardware compo-
nent. Rather, the examples are meant to show some samples of the range of imple—

mentation possibilities that are open to such designers. In effect, this document is
meant to show that, within the overall Jini architecture, there is no single Jini

device architecture. Instead, the device space is freed up, allowing different ser-

vices to have hardware implementations with different price, performance, func-

tionality, and flexibility design points.

DA.2.1 Devices with Resident Java Virtual Machines

An obvious design for a device that can become part of a Jini system federation is

one that includes the computing power, memory, and nonvolatile store necessary

to have a full WM and those parts of the Java application environment necessary

to support the Jini infrastructure (in particular, those parts needed for code load-
ing, RMI, and any required security). This would make the device into a special—

ized computing entity, with part of the device dedicated to the parts of the Java

API required by the Jini architecture. On this approach, the hardware implementa-
tion is abstracted behind a device-local software abstraction, which in turn is

ifV-"('1l a.rn1;)93t1[o.rV o-;1r..io([

287

DEVICES WITH RESIDENT JAVA ‘VIRTUAL MACHINES

abstracted behind the proxy code used by the client to contact the service. This

sort of architecture is shown in Figure DA.2.1.

Service Client Service Provider

Hardware

Implementation

Natwork V (Communication via Rlvfl protocol)

FIGURE DA.2.1: A Full Jim’-Capable Device

Such a device would be able to make full use of Jini and Java technology,

uploading code that is used to communicate with the device and downloading

code that might be needed for the service provided by the device. Such a device

can make use of the native RM] protocol for communication over the network, and

has a loose tie between the communication protocol and the particular software

protocol governing the running of the device itself. On this approach, the device

becomes a specialized network appliance offering a particular service (or set of

services) via an embedded Java platform.

In effect, this approach uses a hardware implementation for the local imple-

mentation of an RMI server, isolating the hardware behind two levels of indirec-

tion. The first is that provided by the local proxy code that is uploaded into the Jini

Lookup service and then downloaded into the client of the service. Additionally,

the local WM and code written in the Java programming language resident on the

service device allow mediation between the client proxy and the hardware itself.

A device that took this approach could easily have multiple services imple-

mented on the device in a way that was mediated by the WM on the device. Fur-

ther, such a device could be evolved with no impact on the client or the network

288

THE JTNI DEVICE ARCHHECTURE SPECIFICATION

protocol used between the client and the service, since any change in the hardware
would be seen only by the JVM and any server—side code that talked directly to the
hardware.

While simple and flexible, this approach does add some cost to the device. In

particular, the device would need to have a microprocessor capable of running the
JVM, some memory in which to create and store classes, and some nonvolatile
store (either disk or NVRAM) from which to load the NM and Java“ Develop-

ment Kit (JDK) software classes. All of these are in addition to the hardware

needed to implement the Jini service that the device provides. This extra hardware
will increase the cost of producing the device.

Meeting these requirements does not call for a hosted version of the NM or a
full version of the JDK running on the device. The JVM could run on any form of

microkemel or" directly on the hardware of the device. Further, there are large

parts of the JDK that would not be required for the minimal device—such things
as the graphics and user interface classes, which fonn a significant chunk of the
current release, would not be needed. Other parts of that release could also be

dropped, allowing a stripped-down JDK to suffice for Jini devices. It would be
worthwhile to determine the exact definition of such a subset of the JDK and size

that component; it would be something close to the definition of embedded Java

technology with the additional classes needed to support RMI.
What is important for this kind of approach is for the device to be able to

download any code written in the Java programming language (although whether
that code is run could depend on the local security manager), utilize the RMI com-

munication system, and handle the requirements of a general virtual machine. By
presenting a standard WM, the device gets full membership in a Jini system feder-
ation and complete flexibility in the ways in which the machine communicates
between the proxy it provides other members of the federation and the device
itself.

DA.2.2 Devices Using Specialized Virtual Machines

We can lower the barrier to entry for a device manufacturer if that manufacturer is

willing to give up some of the flexibility given by the Jini distribution architecture.
This can be done by allowing the device to become part of a Jini system federation

with a specialized virtual machine that is tuned to allow only those operations.
needed by the Jim Discovery protocol and Jini Lookup service.

To do this, the device manufacturer would need to implement the interfaces to

the Jini Discovery and Jim Lookup service in the device itself, include specialized
knowledge of the kind of leases that are handed out by the lini Lookup service
and be able to renew those leases directly, and have sufficient functionality to

289

CLUSTERING DEVICES WITH A SHARED VIRTUAL MAC!-LIN'E {PHYSICAL OPTION)

download and use the stubs for these services. This is a particular set of function-
alities that is considerably smaller than that required by the whole of the JVM, and

should be possible to implement in much less code. For example, such a JVM
would not need to contain a security manager, a code verifier, or a number of the
other components that are required for a full IVM.

Such a device would contain a WM specialized for the Jini environment,
allowing the Jini Discovery and Jini Lookup services to be accessed and leases of

a particular sort to be renewed. This would limit the flexibility of such a device, as

the device would not be able to have software changes made over time to the pro-
tocol used by the proxy for the device. The specialized knowledge of the kind of
lease that is handed out by the lockup service would also tie such a device to a

particular implementation of the lookup service. However, this penalty in service-
ability might not outweigh the simplicity of the overall device.

DA.2.3 Clustering Devices with a Shared Virtual Machine

(Physical Option)

A third approach uses a full JVM, but amortizes the cost of the NM (both software

and hardware) over a number of different devices. In this approach, a group of
devices each uses a physically co-located JVM as an intermediate layer between
the device and the Jini system grouping. The device loads code written in the Java

programming language into this local virtual machine, allowing that local
machine to interact with the device, and then delegates to the local IVM the

requirements of interacting with the Jini Lookup service, Jini Discovery, and Jini
Leasing.

This approach is very much like the first one discussed in this section, except '
that the WM used by the devices is shared. It is still a full IVM, allowing the
downloading of code and complete Java platform functionality. However, the most
likely implementation of such a device would allow multiple (and perhaps differ-
ent) kinds of physical devices to be plugged into the overall device to get the shar-
ing of the Java application environment.

Such a device might best be thought of as a “Jini device bay.” This bay could
provide power, a network connection, and a processor running a WM and appro-
priate parts of the JDK. Physical devices that are used to provide a particular kind
of Jini service could be plugged into the device bay and announce themselves to

the bay in whatever way the two decided was appropriate. This could be using a
proprietary protocol (allowing a device manufacturer to produce both the basic
device or devices and the device bay) or some other industry standard, local-
device identification scheme.

290

THE JIM’ DEVICE ARCHITECTURE SPECIFICATION

As part of the local announcement, a new device would tell the device bay
where to find the code written in the Java programming language that is needed by

a client of the service, and (possibly) where to find code that would allow the

device bay to interact with the device. This allows devices to carry their own
“drivers ," both for the local machine and at the network level.

Upon detection of the new local device, the Jini device bay would register the
services provided by the new device (previously known by the device bay) with
the Jini Loolcup service. It would be the role of the device bay to renew leases on
the Jini Lookup service entries, and to detect removal of any of the devices for
which it was acting as proxy. The device bay would provide the Jini Lookup ser-
vice with the code handed to it by the device so that service clients could down-
load that code.

The client of the device service would believe that it is talking to the device

registered in the Jini Lookup service, but would actually be talking to the device
bay. The device bay would act as a dispatcher to the particular device for which it
was acting as a proxy, along with any translation of protocol between the network
protocol used by the service proxy and the protocol used between the device bay
and the actual device. Graphically, the architecture of such an approach is shown

in Figure DA.2.2.

Service Client Service Providers

FIGURE DA.2.2: Clustering Multiple Devices With a Single Proxy in One Device

291

CLUSTERING DEVICES WITH A SHARED ‘VIRTUAL MACHINE {NETWORK OPTION)

The savings for the device manufacturer in this case comes from the ability of
multiple physical devices to share a device bay, which contains the intelligence,
memory, and perhaps other components (such as the power supply). By sharing
these resources among multiple devices, the extra cost and engineering needed to
interact with the Jini system federation can be amortized over a large number of
devices.

The cost of this approach to the device manufacturers is that the protocol
between the device acting as the Jini device bay and the devices that are placed in
that bay must be defined in advance and cannot change over time. Because there is
no way of introducing dynamic behavior in the particular devices, the pairing of
device and Jini device bay must be controlled and known beforehand.

It should be noted that the Jini device bay itself is a Jini device, which can be
thought of as providing services to those devices housed within it. As such, it
could be a revenue item in its own right. Variations in the implementation could be
provided to support various internal announcement protocols (device bay, jetsend,
etc.) or hardware buses (including network-like buses such as firewire).

DA.2.4 Clustering Devices with a Shared Virtual Machine
(Network Option)

A variation on the device bay approach uses the network rather than a physical
enclosure and backplane. On this alternative, a proxy for the WM used by the var-
ious service devices would exist on the network. Service devices could be added

to the network, discover the existence of such a proxy device, and register with
that proxy. Such a registration could include the code written in the Java program-
ming language needed by a client of the device (either directly or as a URL to use
to obtain the code) and code needed by the proxy to communicate with the service
device.

When a service device registers with such a network proxy, the proxy device
would register with the Jini Lookup service on behalf of the service device, thus
allowing the service device to become a part of the Jini system federation.
Requests to the new service would go first to "the proxy for that device, which
could then forward the requests (after appropriate protocol translation) to the par-
ticular service device. In addition, the proxy could handle the Jini-specific tasks
such as renewing leases for the service. This alternative is shown in Figure
DA.2.3.

292

THE JINI DEVICE ARCHITECTURE SPECIFICATION

Service Client

Network Proxy

Network

Service Providers

FIGURE DA.2.3: Clustering Devices With a Jini-capable Proxy on the Network

This alternative requires somewhat more hardware for the individual device,
as it requires each service device using such a proxy to be able to be placed on the
network and have its own power supply and network connection. However, the
devices would not need individual CPUs, memory, or persistent store; all of that

would be provided by the networked Jini device proxy.
Devices using this option would need to have protocol parallel to the Jini

Discovery protocol between the individual service devices and the network proxy
for those devices. This could be a specialized code on the network, known in
advance, that the devices can use to identify themselves to the network proxy. This
will have to be particular to the device and the proxy for that device. However,
once this protocol has been decided upon, no other intelligence needs to be built
into the device. All of the intelligence can be built into the network proxy, perhaps

uploaded into the proxy by the service device (which could easily carry code writ~
ten in the Java prograrnming language, even though it cannot execute that code).

(\-"(Il ;).Il1).“l3]ll].).l\-" a3i.\a(1

293

JINI SOFTWARE SERWCES OVER THE INTERNETINTER-0PERA3Il1Tl’ PROTOCOL

The protocol the network proxy uses to talk to the devices for which it is a proxy
also needs to be statically defined in advance and cannot be changed. However, it
can be any protocol the particular device needs.

In this approach, the individual devices will be more complex than they would
be in the Jini device bay approach. However, the number of devices that can be
served by a network available proxy is not limited by the physical constraints of
the proxy device. Nor is there any requirement that the devices and the proxy
device he co-located, which is a requirement on the physical clustering scheme.

This is also the approach that can be taken to build “gateways” between the
Iini devices and other networlmrnanaged devices. Such devices, which already
speak a particular protocol, can be spliced into the Jini system federation by pro-
viding a network proxy that speaks the Jini protocol on behalf of such devices,
and the existing specialized protocol to such devices. This is the approach that can
be used to add consumer electronic devices, factory controls, or home environ-
ment controls into the Jini system grouping.

DA.2.5 Jini Software Services over the Internet
Inter-Operability Protocol

A final method for connecting devices or services that are not purely based on
Iava software into a Jim’ system centers on using the Object Management Group
(0MG)’s Internet Inter-Operability Protocol (HOP). This protocol defines a stan-
dard for data transmission that will be supported by a subset of RM.

This approach relies on the ability of a device to read an HOP stream directly,
either because the device includes an implementation of a Common Object
Request Broker Architecture (CORBA) Object Request Broker (ORB) or because
the device knows what IIOP streams to expect and can interpret streams of these

protocol and the HOP protocol. This is sup-
ported by RMI over IIOP as long as the interfaces conform to any subsetting
requirements established by the OMG. At the present time it appears that the Jini
Lookup service interfaces are in conformance with the RMI over HOP subset.

Devices that contain a CORBA ORB could directly interact with the Jini
Lookup service using the HOP protocol. The fact that the Jini Lookup service gen-
erated this protocol via RMI would be transparent to the service itself, and the fact
that the service was using a method other than

294

THE JINI DEVICE ARCHITECTURE SPECIFICATION

the device would not be able to download the implementation of the stub for the

Jini Lookup service, and would need an implementation of the Jini Lease class
used by the Jini Lookup service.

Devices that do not include a CORBA ORB could directly interpret the HOP

stream and attempt to interact with the Jini Lookup service. This approach
requires very little software support on the side of the device (since the bitstneam
from the wire is being directly interpreted). However, it is an approach that will
work only with known versions of the Jini Lookup service that exports known
implementations of a Jini Lease. Any alteration of either the Jini Lease implemen-
tation or the protocol used by the Jini Lookup service, even those that would be
invisible to other clients of the service, would make it impossible for the device

directly interpreting the HOP protocol to interact with the new version of the ser-
vice. Hence this alternative, while lowest in cost with respect to the hardware and

software needed by the device, is also the least reliable in the face of implementa-
tions that can change over time or that are open to alternate implementations.

(IVG) o.t:uoo]yqa.n;~" 3.3!,-m(1

295

PART

Supplemental
Material

296

LJini hoy Glossary

activation

The process of transforming a passive object into an active object. Activa-

tion requires that an object be associated with a Java“ virtual machine

(IVM), which may entail loading the class for that object into a WM and the

object restoring its persistent state (if any). (Java Remote Method Invoca-

tion Specification, Section 7.1.1)

activation descriptor

A class instance that holds an activatable object's group identifier {specifies

the JVM in which it is activated), the objcct’s class name, a location from

where to load the object’s class code, and ol3ject—specific initialization data

in rnarshalled form. (Java Remote Method Invocation Specification, Section
7.2)

activation group

The entity that receives a request to activate an object in the WM and

returns the activated object hack to the activator. (Java Remote Method

Invocation Specification, Section 7.2) A separate JVM is spawned for each
activation group. (Section 7.4.7)

activator

The entity that supervises activation by being both (1) a database of infor-

mation that maps activation identifiers to the information necessary to acti—

vate an object and (2) a manager of JVMs, that starts up a JVM (when

necessary) and forwards requests for object activation (along with the nec-

essary information) to the correct activation group inside a remote JVM.

There is usually only one -activator per host, started by rmi d. (Java Remote
Method Invocation Specification, Section 7.2)

.'\'.I't3sso[{f)

297

THE IINI TECHNOLOGY GLOSSARY

active object

A remote object that is instantiated and exported in a JVM on some sys-
tern.(Java Remote Method Invocation Specification, Section 7.1.1)

ancestor transaction

A transaction that is the parent of a specific nested transaction (a transac-
tion in which all its operations are contained, or executed, from within

another transaction), or the parent of such a parent, recursively (a grand-
parent, a great-grandparent, and so on). (Jini Transaction Specification,
Section TX.3.5)

attribute set

A strongly-typed set of fields in a service item (represented by a
net. ji‘ m‘ . core . entry. Entry) that describes the service or provide second-
ary interfaces to the service. A single attribute is a public field of an Entry.
(Jini Lookup Service Specification, Section LU.1.2)

channel _

The abstraction for a conduit between two address spaces in the RMI trans-

port layer. As such, it is responsible for managing connections between the
local address space and the remote address space for which it is a channel.

(Java Remote Method Invocation Specification, Section 3.5)

connection .

The stream-oriented (Java Remote Method Invocation Specification, Sec-

tion 3.-4) abstraction for transferring data (performing input/output) in the
RMI transport layer. (Section 3.5)

discovering entity

One or more cooperating objects in the Java programming language on the
same host that are about to start, or are in the process of, obtaining refer-
ences to one or more Jini Lookup services. (Jini Discovery and Join Speci-
fication, Section DJ.1.1)

discovery request service

A service that runs on a host in the djinn and accepts requests for a remote
reference to an instance of the Jim Lookup service. There are really two
discovery request services; one accepts multicast requests, and the other
accepts unicast requests. Both instances of the discovery request service are

present on every system in a djinn that hosts an instance of the Jini Lookupservice.

298

IHE JINI TECHNOLOGY GLOSSARY

discovery response service

A remote object that runs on a discovering entity and accepts references to
instances of the Jini Loolcup service. An instance of the discovery response
service is hosted on every system that wishes to establish communications

with a djinn.

distributed event adapter

An event adapter in which the event generator and the event listener
instances may exist in different virtual machines, possibly on different
hosts. The distributed event adapter is at least a remote event listener, but

may also be a remote event generator (see local event, remote event). (Jini
Distributed Event Specyicarion, Section EV3)

djinn Qironounced “gin”)
The group of devices, resources, and users joined by the Jim software infra-
structure. (Jini Lookup Service Specification, Section LU.l.1) This group,
controlled by the Jini system, agrees on basic notions of trust, administra-
tion, identification, and policy.

dynamic class loading _

The capability of the Java application environment to download files
(classes for the Java platform, audio, and images) from an HTTP server at
runtime if they are not already available to the client JVM. Dynamic class
loading may be used by the RMI runtime to download: stub classes; skele-
ton classes; classes that are passed as subtypes of declared method parame-
ters; and classes that are passed as subtypes of declared method return
types. (See dynamic stub loading)

dynamic stub loading
A subset of dynamic class loading, used to support client-side stubs that
implement the same set of remote interfaces as a remote object itself. (Java
Remote Method Invocation Specification, Section 3.1)

endpoint
The abstraction used to denote an address space or IVM in the RMI trans-

port layer. In the implernentation an endpoint can be mapped to its trans-
port. That is, given an endpoint, a specific transport instance can be
obtained. (Java Remote Method Invocation Specification, Section 3.5)

.-i.rnss0[§_)

299

THE JIN! TECHNOLOGY GLOSSARY

entry

An entry is a typed group of object references, expressed as a class for the

Java platform that implements the net. j‘in‘i .core .ent ry. Entry interface.

Entry fields must all be references to Seri alizable objects. (Jini Entry
Specification, Section EN. 1)

event

Something that happens in an object, corresponding to some change in the
abstract state of the object. Events are abstract occurrences that are not

directly observed outside of an object, and may not correspond to a change
in the actual state of the object that advertises the ability to register interest
in the event. (Jini Distributed Event Specflication, Section EV.2. 1)

event generator

An object that has some kinds of abstract state changes that might be of
interest to other objects and allows other objects to register interest in those
events. This is the object that will generate notifications when events of this

kind occur, sending those notifications to the event listeners that were indi-

cated as targets in the calls that registered interest in that kind of event. (Jini
Distributed Event Specification, Section EV.2.1) :

event listener

An object that has an interest in being notified when a particular event type
occurs. The event listener (1) implements the appropriate interface, and (2)
registers with an event generator. (See remote event listener)

export, -ed, -ing

The process of making a remote object available to accept incoming calls
on a specific port. An object can be exported (1) if the object is a subclass
of java. r'm'i . serve r- . Un'i castRemo1:e0bj ect, through the constructor; (2) if
the object is a subclass of java. rmi .act'ivation.Ac1:1'vatab1e, through
the constructor; (3) by passing the object to the static exportobject

method of Uni castkemoteobject (Java Remote Method Invocation Specy‘i-
cation, Section 5.3.l); or (4) by passing the object to the static
exportobj ect method of Activatabl e. (Section 7.3)

faulting remote reference

A faulting remote reference to a remote object, sometimes referred to as a

fault block, “faults in" the active object’s reference upon the first method
invocation to the object executed via the faulting reference. Each faulting
reference, contained in the remote object’s stub, holds both a persistent

300

THE JINI TECHNOLOGY GLOSSARY

object handle (a java. rmi . act1'vation.Act1'va1:'ionID) and a transient

remote reference to the target remote object. (Java Remote Method Invoca-

tion Specification, Section 7.1.2)

A hardware device that may be connected to one or more networks. An

individual host may house one or more JVMS. (Jini Discovery and Join
Specification, Section DJ. 1.2)

idempotent

A method that is idempotent can be called multiple times and produce only
the result as though it were called only a single time.

inferior transaction

The inverse of the transactional ancestor relationship: Transaction TI. is an
inferior of Ta if and only if Ta is an ancestor of Ti. (Jini Transaction
Specification, Section TX.3.5)

joining entity

One or more cooperating objects in the Java programming language on the

same host that have just received a reference to the Jim Lookup service and

are in the process of obtaining services from, and possibly exporting ser-
vices to, a djinn. (Jini Discovery and Join Specification, Section DJ.1.l)

join protocol

The protocol that allows entities to start communicating usefully with ser-
vices in a djinn, through the Jim Lookup service. (Jini Discovery and Join
Specification, Section DJ. 1 .3)

JVM

A common abbreviation for “Java Virtual Machine.”

lazy activation

The activation mechanism that the RMI system uses, which defers activat-

ing an object until a client‘s first use (that is, the first method invocation).

Lazy activation of remote objects is implemented using a faulting remote

reference. (Java Remote Method Invocation Specification, Section 7.1.1)

10380

A grant to use a resource, offered by one object in a distributed system, to

another object in that system for a certain period of time. The duration of

..-'\'.1essoi-L‘)

301

' THE JINI TECHNOLOGY GLOSSARY

the lease is negotiated by the two objects when access to the resource is first
requested and given. (Jini Distributed Leasing Specification, Section LE.l)
A lease ensures that the lease holder will have access to some resource for a
period of time. During the period of a lease, a lease can be cancelled by the
entity holding the lease. A lease holder can request that a lease be renewed,
or a lease can expire. (Jini Distributed Leasing Specification, Section
LB.2.l) In the current implementation of RMI, a lease term is not negoti-
ated, as described by the Jini Distributed Leasing Specification; the lease
term is mandated by the implementation server. Another difference is that
in RMI there is no notion of explicit lease cancellation; lease cancellation is
implicit when a remote reference becomes unreferenced by a specific cli-
ent. (Java Remote Method Invocation Specification, Section 9.1)

lease grantor

The object granting access to a resource for some period of time. (Jini Dis-
tributed Leasing Specification, Section LE2)

lease holder

The object asking for the leased resource. (Jini Distributed Leasing Specifi-
cation, Section LE2)

live reference

The concrete representation of a remote object reference (in the RMI trans-
port layer), which consists of an endpoint and an object identifier. Given a
live reference for a remote object, a transport can use the endpoint to set up
a connection to the address space in which the remote object resides. On
the server side, the transport uses the object identifier to look up the target
of the remote call. (Java Remote Method Invocation Specification, Section
3.5)

local event

An event object that is fired from an event generator to an event listener,
where both the generator and the listener instances exist in the same virtual
machine. (See event, remote event) (Jini Distributed Event Specification,
Section EV. 1 .1)

lookup discovery protocol

The protocol that governs the acquisition of a reference to one (or more)
instances of the Jim Lookup service. (Jini Discovery and Join Spectficaaon,
Section DJ. 1.3)

302

THE JIM TECHNOLOGY GLOSSARY

lookup service

The Jini Lookup service provides a central registry of service items, repre-

senting services, available Within the djinn. This Jini Lookup service is a

primary means for programs to find services within the djinn, and is the

foundation for providing user interfaces through which users and adminis-

trators can discover and interact with services in the djinn. (Jini Lookttp

Service Specification, Section LU.l)

marshal streams

Inputfoutput streams, used by the RMI remote reference layer, that employ
object serialization to enable objects in the Java programming language to

be transmitted between address spaces. (Java Remote Method Invocation

Specification, Section 3.3)

marshalled object

A container for an object that allows that object to be passed as a parameter

in an RMI call, but postpones deserializing the object at the receiver until

the application explicitly requests the object (via a callto the container

object). The seriaiizabie object contained in the Marshal ‘I edobj act is seri-

alized and deserialized (when requested) with the same semantics as

parameters passed in RM1 calls (Java Remote Method Invocation Specy‘ic:a—

tion, Section 7.4.8), which means that any remote object in the

Marshalledobject is represented by a serialized instance of its stub. The

object contained by the Marshal ‘I edobject may be a remote object, a non-

remote object, or an entire graph of remote and non-remote objects.

notification filter

A distributed event adapter that can be used by either the generator of a

notification or the recipient to intercept notification calls, do processing on

those calls, and act in accord with that processing (perhaps forwardilig the

notification, or even generating new notifications). (Jini Distributed Event

Specflicotion, Section EV.3.2) This filter may be used as an event multi-

plexer or demultiplexer.

notification mailbox .

A distributed event adapter that can be used to store the notifications sent to

an object until such time as the object for which the notifications were

intended desires delivery. Such delivery can be in a single batch, with the

mailbox storing any notifications received after the request for delivery

until the next request is given. Alternatively, a notification mailbox can be

viewed as a faucet, with notifications turned on (delivering any that have

..i".mss(1[{)

303

THE JINI TECHNOLOGY GLOSSARY

arrived since the notifications were last turned off) and then delivering any

subsequent notifications to an object immediately, until told to hold the

notifications. (Jini Distributed Event Specification, Section EV.3.3)

object serialization

The system that allows a bytestream to be produced from a graph of

objects, sent out of the Java application environment (either saved to disk or

sent over the network) and then used to re-create an equivalent set of

objects with the same state. (Java Object Serialization Specification, Sec-

tion A.1) In RM], objects transmitted using the object serialization system

are passed by copy to the remote address space, unless they are remote

objects, in which case they are passed by reference. (Java Remote Method

Invocation Specification, Section 3.3)

passive object

A remote object that is not yet instantiated (or exported) in a IVM, but that

can be brought into an active state (see active object). (Java Remote Method

Invocation Specification, Section 7.1.1)

pure transaction

A transaction in which all access to shared mutable state is performed under

transactional control. (Jini Transaction Specification. Section TX.3.5)

reference list

A reference list for a remote object is a list of client IVMs that hold refer-

ences to that remote object. A client IVM is removed from the object’s ref-

erence list when that client no longer references that object. (Java Remote

Method Invocation Specification, Section 9.1)

registry

A remote object that maps names to remote objects. The java. rm1' . Nam-i ng

class provides methods for lookup, binding, rebinding, unbinding, and list-

ing the contents of a registry. A regisny can be used in a virtual machine
shared with other server classes or in a standalone JVM. The methods of

java. rm1' . registry. LocateReg1' stry may be used to get a registry operat-

ing on a particular host or host and port. (Java Remote Method Invocation

Specification, Section 6)

remote event

An object that is passed from an event generator to a remote event listener

to indicate that an event of a particular kind has occurred. The remote event

304

THE JIN1 TECHNOLOGY GLOSSARY

generator and the remote event listener instances may exist in different vir-

tual machines, possibly on different hosts. (Jini Distributed Event Specifi-

cation, Section EV.2.l)

remote event generator

An object that is the source of remote events.

remote event listener

An object implementing the net. jini .core.event.RemoteEventL'istener'
interface, which is interested in the occurrence of remote events in some

other object. The major function of a remote event listener is to receive

notifications of the occurrence of a remote event in some other object (or

set of objects). (Jini Distributed Event Specification, Section EV.2.1)

remote interface

An interface written in the Iava programming language that extends

java. rmi . Remote, either directly or indirectly, which declares the methods

of a remote object. (Java Remote Method Invocation Specification, Section

2.1)

remote method invocation (RMI)

The action of invoking a method of a remote interface on a remote object.

(Java Remote Method Invocation Specification, Section 2.1)

remote object

An object whose methods can be invoked from another IVM, potentially on

a different host. An object of this type is described by one or more remote

interfaces. (Java Remote Method Invocation Specification, Section 2.1)

remote reference layer (RRL)

The layer of the RMI system that supports remote reference behavior (such

as invocation to a single object or to a replicated object) and carries out the

semantics of method invocation. This layer sits between the RMI stub/ske1-

eton layer and the RMI transport layer. Also handled by the remote refer-

ence layer are the reference semantics for the server. (Java Remote Method

Invocation Specification, Section 3.2)

The stub and skeleton compiler used to generate the appropriate stubs and

skeletons for a specific remote object implementation. The compiler is

invoked with the package-qualified class name of the remote object class.

.t'.tnsso[{)

305

THE JIM’ TECHNOLOGYGLOSSARY

The class must previously have been compiled successfully. (Java Remote
Method Invocation Specification, Section 5.11)

rmid

The activation system daemon which provides an implementation of the
activation system interfaces. To use activation, you must first run r'm1' d. This
is the WM with which activation descriptions get registered. (Java Remote
Method Invocation Specification, Section 7.2)

rmiregistry

The RMI system command that provides an implementation of the

java . r‘m1' . registry. Registry interface. The rmiregistry, run on a remote
host, can be accessed by calling methods of the java. rmi .Nam1’ ng class.

semantic transaction

A transaction with specific, associated semantics, as opposed to the proto-
col specified by the Tr'an5act‘i onMan ager interface, which does not specify
transaction semantics. A semantic transaction is contractual in nature and

implies a particular usage pattern, so if a program operates within the con-
straints of the contract, assumptions can be safely made about the transac-
tion’s behavior or state. (Jini Transaction Specification, Section TX.l.l)

serializable

Any data type that may be read from j ava.io.0bjec1:InputStr'ean1s and

written to java.‘i0.0bjeCt0utpu1:Streams. This includes primitive data
types in the Java programming language, remote objects in the Java pro-
gramming langiage, and non-remote objects in the Java programming lan-
guage that implement the java.'io. Ser"ia'|'izab'|e interface. (Java Remote
Method Invocation Specification, Section 2.6)

service

Something that can be used by a person, a program, or another service. It
can be computational, storage, a communication channel to another user, or

another service. Examples of services include devices such as printers, dis-
plays, disks, software (such as applications or utilities), information (such

as databases and files), and users of the system. Services will appear pro-
grannnatically as objects in the Java programming language, perhaps made
up of other objects in the Java programming language. A service will have
an interface, which defines the operations that can be requested of that ser-
vice. The type of the service determines the interfaces that make up that
service. (JiniArchn‘ecture Specification, Section AR.2.1.1)

306

THE JINI TECHNOLOGY GLOSSARY

service items

Each service item represents an instance of a service available within the

djinn. The item contains the stub (if the service is implemented as a remote

object) or serialized object (if the service makes use of a local proxy) that

programs use to access the service, and an extensible collection of attribute

sets that describe the service or provide secondary interfaces to the service.

A new service item is created in the Jini Lookup service when a new service

is added to the djinn. (Jim: Looknp Service Specification, Section LU.1.1)

service registrar

A synonym for Jim Lookup service. (See lookup service) (Jini Lookup Ser-

vice Specification, Section LU.2.S)

skeleton

The server-side entity that reads parameters from incoming method

requests and dispatches calls to the actual remote object implementation.
Note that in the Java Development Kit 1.2, skeleton functionality is now

handled by the remote object stub, but skeletons may still be used for com-

patibility with earlier releases of the JDK. (Java Remote Method Invocation

Specification, Section 3.3)

store-and-forward agent

A distributed event adapter that enables the object generating a notification

to hand the actual notification of those who have registered interest off to a

separate object. This agent can implement various policies for reliability.

(Jini Distributed Event Specification, Section EV.3. 1)

The proxy for a remote object, which implements all the interfaces that are

supported by the remote object implementation and forwards method invo-
cations to the actual remote object instance. (Java Remote Method Invoca-

tion Specification, Section 3.3)

stublskeleton layer

The layer of the RMI system that aids in carrying out method invocation.

The stublskeleton layer is the interface between the application layer and

the rest of the RMI system. (Java Remote Method Invocation Specification,

Section 3.3) This layer does not deal with specifics of any transport, but

transmits data to the remote reference layer via the abstraction of marshal

streams. This layer contains client—side stubs (proxies) and server—side skel-

etons. (Section 3.2) -

.\'.1nsso[f)

307

THE JINI TECHNOLOGY GLOSSAR Y

template

An entry object that has some or all of its fields set to specified values.
Templates may be used to find matching entries. A template will match an

entry if and only if the template’s non—null public fields match the entry’s
non-null public fields exactly. Remaining fields (those set to null) are not

used in the matching process but are left as wildcards. (Jini Entry Specifica-
tion, Section EN. 1 .5)

transaction

In general, a transaction is a tool that allows a set of operations to be

grouped in such a way as to make them all appear to either all succeed or all
fail; further, the operations in the set appear from outside the transaction to

occur simultaneously. In the Jim architecture model, the concrete represen-

tation of a transaction is encapsulated in an object. (Jini Transaction Speci-
fication, Section TX.1.1)

transaction client

An object that does either or both of the following: (1) requests that a trans-
action manager create a transaction, (2) invokes the commit or abort

method to complete a transaction. A single transaction may have more than
one client, since the object that completes a transaction may be different
from the object that requested its creation. An object that is a transaction

client may also be a transaction manager or participant. (Jini Transaction
Specification, Section TX. 1 . 1)

transaction manager

An object that (1) services requests from transaction clients to create trans-

actions and (2) tracks and manages the completion state of those transac-

tions by implementing the Transact1'onManager interface. An object that is
a transaction manager may also be a transaction client or participant. (Jini
Transaction Specification, Section TX.l .1)

transaction participant

An object that executes operations of a transaction and is able to interact

with the manager to complete transactions properly. An object providing
this service may implement the Transacti onPart1' ci pant interface. An

object that is a transaction participant may also be a transaction manager or
client. (Jini Transaction Specification, Section TX.l.l) '

308

THE JINI TECHNOLOGY GLOSSARY

transport

The abstraction that manages channels in the RMI transport layer. Each

channel is a virtual connection between two address spaces. Within a trans-

port, only one channel exists per pair of address spaces (the local address

space and a remote address space). Given an endpoint to a remote address

space, a transport sets up a channel to that address space. The transport

abstraction is also responsible for accepting calls on incoming connections

to the address space, setting up a connection object for the call, and dis-

patching to higher layers in the system. (Java Remote Method Invocation

Specification, Section 3.5)

transport layer

The layer of the RMI system that is responsible for connection set up, con-

nection management, and remote object tracking. (Java Remote Method

Invocation Specification, Section 3.2) The transport layer sits below the

remote reference layer:

weak reference

When a remote object is not referenced by any client, the RMI runtime

refers to it using a weak reference. The weak reference allows the .TVM’s

garbage collector to discard the object if no other strong references to the

object exist. The distributed garbage collection algorithm interacts with the

local JVM’s garbage collector in the usual ways by holding normal or weak
references to objects; thus, a Weak reference allows the RMI runtime to ref-

erence a remote object, but not prevent the object from being garbage col-

lected. (Java Remote Method Invocation Specification, Section 3 .7)

Krnssiilg}

309

NOTE on DISTRIBUTED COMPUTING describes the environmentfor which the Jim‘
architecture is designed—one offailure characteristics unknown in local

computing. The Jini architecture takes these dflferences
into account in its original design principles, which is

A one reason why the overall Jini architecture works.

This note was originally published as a Sun

Micnosystems Laboratories technical report (SMLI TR-
94-29). The note has been reformattedfor this book. Two

observations have been added, marked as ‘W and {B} in the

text, and presented at the end of the note.

310

APPENDIX

L A Note on Distribute
Computing

Jim Waldo, Geoff Wyant, Ann Wollrath,
and Sam Kendall

A.1 Introduction

MUCH of the current work in distributed, object-oriented systems is based on
the assumption that objects form a single ontological class. This class consists of

all entities that can be fully described by the specification of the set of interfaces

supported by the object and the semantics of the operations in those interfaces.

The class includes objects that share a single address space, objects that are in sep-

arate address spaces on the same machine, and objects that are in separate address
spaces on different machines (with, perhaps, different architectures). On the view

that all objects are essentially the same kind of entity, these differences in relative

location are merely an aspect of the implementation of the object. Indeed, the
location of an object may change over time, as an object migrates from one
machine to another or the implementation of the object changes.

It is the thesis of this note that this unified view of objects is mistaken. There

are fundamental differences between the interactions of distributed objects and the

interactions of non-distributed objects. Further, work in distributed object-ori-
ented systems that is based on a model that ignores or denies these differences is

doomed to failure, and could easily lead to an industry—wide rejection of the
notion of distributed object-based systems.

titnindt1l0_) P311111!-'lJ5'!(l ttoago\"

311

A NOTE ON Dl'.5'I'R1BUTED COMPUTYNG

A.1.1 Terminology

In what follows, we will talk about local and distributed computing. By local com-
puting (local object invocation, etc.), we mean programs that are confined to a sin-

gle address space. In contrast, we will use the term distributed computing (remote
object invocation, etc.) to refer to programs that make calls to other address

spaces, possibly on another machine. In the case of distributed computing, noth-

ing is known about the recipient of the call (other than that it supports a particular
interface). For example, the client of such a distributed object does not know the

hardware architecture on which the recipient of the call is running, or the language
in which the recipient was implemented.

Given the above characterizations of “local” and “distributed” computing, the
categories are not exhaustive. There is a middle ground, in which calls are made

from one address space to another but in which some characteristics of the called

object are known. An important class of this sort consists of calls from one

address space to another on the same machine; we will discuss these later in the
paper.

A.2 The Vision of Unified Objects

There is an overall vision of distributed object-oriented computing in which, from

the progrannner’s point of view, there is no essential distinction between objects
that share an address space and objects that are on two machines with different

architectures located on different continents. While this view can most recently be
seen in such works as the Object Management Group’s Common Object Request
Broker Architecture (CORBA)m, it has a history that includes such research sys-
tems as Arjunam, Emeraldm, and Cloudsm.

In such systems, an object, whether local or remote, is defined in terms of a

set of interfaces declared in an interface definition language. The implementation

of the object is independent of the interface and hidden from other objects. While
the underlying mechanisms used to make a method call may differ depending on
the location of the object, those mechanisms are hidden from the programmer who
writes exactly the same code for either type of call, and the system takes care of
delivery.

This vision can be seen as an extension of the goal of remote procedure call
(RPC) systems to the object—oriented paradigm. RPC systems attempt to make
cross—address space function calls look (to the client programmer) like local func-

tion calls. Extending this to the object-oriented programming paradigm allows
papering over not just the marshalling of parameters and the umnarshalling of
results (as is done in RPC systems) but also the locating and connecting to the tar— t

312

A NOTE ON DISTRIBUTED COMPUTING

get objects. Given the isolation of an object’s implementation from clients of the
object, the use of objects for distributed computing seems natural. Whether a
given object invocation is local or remote is a function of the implementation of
the objects being used, and could possibly change from one method invocation to
another on any given object.

Implicit in this vision is that the system will be “objects all the way down”;
that is, that all current invocations or calls for system services will be eventually

converted into calls that might be to an object residing on some other machine.

There is a single paradigm of object use and communication used no matter what
the location of the object might be.

In actual practice, of course, a local member function call and a cross—conti—
nent object invocation are not the same thing. The vision is that developers write
their applications so that the objects within the application are joined using the
same programmatic glue as objects between applications, but it does not require
that the two kinds of glue be implemented the same way. What is needed is a vari-

ety of implementation techniques, ranging from same-address-space implementa-
tions like Microsoft’s Object Linlcing and Embeddingm to typical network RPC;
different needs for speed, security, reliability, and object co—location can be met
by using the right “glue" implementation.

Writing a distributed application in this model proceeds in three phases. The
first phase is to write the application without worrying about where objects are
located and how their communication is implemented. The developer will simply

strive for the natural and correct interface between objects. The system will

choose reasonable defaults for object location, and depending on how perfor-

mance-critical the application is, it may be possible to alpha test it with no further
work. Such an approach will enforce a desirable separation between the abstract
architecture of the application and any needed performance tuning.

The second phase is to tune performance by “concretizing” object locations
and communication methods. At this stage, it may be necessary to use as yet

unavailable tools to allow analysis of the communication patterns between

objects, but it is certainly conceivable that such tools could be produced. Also dur-
ing the second phase, the right set of interfaces to export to various clients—such
as other applications—-can be chosen. There is obviously tremendous flexibility
here for the application developer. This seems to be the sort of development sce-
nario that is being advocated in systems like Ficscclfil, which claim that the deci-
sion to make an object local or remote can be put off until after initial system

implementation.

The final phase is to test with “real bullets” (e.g., networks being partitioned,
machines going down). Interfaces between carefully selected objects can be
beefed up as necessary to deal with these sorts of partial failures introduced by
distribution by adding replication, transactions, or whatever else is needed. The

3lI!3fldll.It.'l_’_) pé)1llq§.I'1S'[(]_ U0'-HUN

313

A NOTE ON DISTRIBUTED COMPUTING

exactset of these services can be determined only by experience that will be
gained during the development of the system and the first applications that will
work on the system.

A central part of the vision is that if an application is built using objects all the
way down, in a proper object—oriented fashion, the right “fault points” at which to
insert process or machine boundaries will emerge naturally. But if you initially
make the wrong choices, they are very easy to change.

One conceptual justification for this vision is that whether a call is local or

remote has no impact on the correctness of a program. If an object supports a par-
ticular interface, and the support of that interface is semantically correct, it makes
no difference to the correctness of the program whether the operation is carried
out within the same address space, on some other machine, or off-line by some
other piece of equipment. Indeed, seeing location as a part of the implementation
of an object and therefore as part of the state that an object hides from the outside
world appears to be a natural extension of the object-oriented paradigm.

Such a system would enjoy many advantages. It would allow the task of soft-

ware maintenance to be changed in a fundamental way. The granularity of change,
and therefore of upgrade, could be changed from the level of the entire system
(the current model) to the level of the individual object. As long as the interfaces
between objects remain constant, the implementations of those objects can be
altered at will. Remote services can be moved into an address space, and objects
that share an address space can be split and moved to different machines, as local
requirements and needs dictate. An object can be repaired and the repair installed
without worry that the change will impact the other objects that make up the sys-
tem. Indeed, this model appears to be the best way to get away from the “Big Wad
of Software” model that currently is causing so much trouble.

This vision is centered around the following principles that may, at first,
appear plausible:

9 There is a single natural object-oriented design for a given application,
regardless of the context in which that application will be deployed;

6 Failure and performance issues are tied to the implementation of the compo-
nents of an application, and consideration of these issues should be left out
of an initial design; and

9 The interface of an object is independent of the context in which that object
is used.

Unfortunately, all of these principles are false. In what follows, we will show why
these principles are mistaken, and why it is important to recognize the fundamen-
tal differences between distributed computing and local computing.

314

A NOTE ONDISTRIBUTED COMPUTING

A.3 Déja Vn Afl Over Again

For those of us either old enough to have experienced it or interested enough in

the history of computing to have learned about it, the vision of unified objects is

quite familiar. The desire to merge the programming and computational models of
local and remote computing is not new.

Communications protocol development has tended to follow two paths. One

path has emphasized integration with the current language model. The other path

has emphasized solving the problems inherent in distributed computing. Both are

necessary, and successful advances in distributed computing synthesize elements

from both camps. -

Historically, the language approach has been the less influential of the two

camps. Every ten years (approximately), members of the language camp notice

that the number of distributed applications is relatively small. They look at the

programming interfaces and decide that the problem is that the programming

model is not close enough to whatever programming model is currently in vogue

(messages in the 1970s[7*3], procedure calls in the 1980s[9*1°'”], and objects in the
l990s“'2]). A furious bout of language and protocol design takes place and a new

distributed computing paradigm is announced that is compliant with the latest

programming model. After several years, the percentage of distributed app1ica~
tions is discovered not to have increased significantly, and the cycle begins anew.

A possible explanation for this cycle is that each round is an evolutionary

stage for both the local and the distributed programming paradigm. The repetition

of the pattern is a result of neither model being sufficient to encompass both activ-

ities at any previous stage. However, (this explanation continues) each iteration

has brought us closer to a unification of the local and distributed computing mod-

els. The current iteration, based on the object-oriented approach to both local and

distributed programming, will be the one that produces a single computational
model that will suffice for both.

A less optimistic explanation of the failure of each attempt at unification holds

that any such attempt will fail for the simple reason that programming distributed

applications is not the same as programming 11on—distributed applications. Just

making the communications paradigm the same as the language paradigm is
insufficient to make programming distributed programs easier, because communi-

cating between the parts of a distributed application is not the difficult part of that

application.

The hard problems in distributed computing are not the problems of how to

get things on and off the wire. The hard problems in distributed computing con-

cern dealing with partial failure and the lack of a central resource manager. The

hard problems in distributed computing concern insuring adequate performance

and dealing with problems of concurrency. The hard problems have to do with dif-

3Il!}|1[lIIl0__") l3911“I!-115!([noo-tog

315

A NOTE ON DISTRIBUTED COMPUTING

ferences in memory access paradigms between local and distributed entities. Peo-
ple attempting to write distributed applications quickly discover that they are
spending all of their efforts in these areas and not on the communications protocol
programming interface.

This is not to argue against pleasant programming interfaces. However, the
law of diminishing returns comes into play rather quickly. Even with a perfect
programming model of complete transparency between “fine-grained” language-
level objects and “larger-grained” distributed objects, the number of distributed
applications would not be noticeably larger if these other problems have not been
addressed.

All of this suggests that there is interesting and profitable work to be done in
distributed computing, but it needs to be done at a much higher-level than that of
‘‘fine-grained’’ object integration. Providing developers with tools that help man-
age the complexity of handling the problems of distributed application develop-
ment as opposed to the generic application development is an area that has been
poorly addressed.

A.4 Local and Distributed Computing

The major differences between local and distributed computing concern the areas
of latency, memory access, partial failure, and concurrency.‘ The difference in
latency is the most obvious, but in many ways is the least fundamental. The often
overlooked differences concerning memory access, partial failure, and concur-
rency are far more difficult to explain away, and the differences concerning partial
failure and concurrency make unifying the local and remote computing models
impossible without making unacceptable compromises.

A.4.1 Latency

The most obvious difference between a local object invocation and the invocation
of an operation on a remote (or possibly remote) object has to do with the latency
of the two calls. The difference between the two is currently between four and five
orders of magnitude, and given the relative rates at which processor speed and net-
work latency speeds are changing, the difference in the future promises to be at
best no better, and will likely be worse. It is this disparity in efficiency that is often
seen as the essential diiference between local and distributed computing.

___jj_______;

1 We are not the first to notice these differences; indeed, they are clearly stated in [12].

