
80

KEY CONCEPTS

as printers, displays, or disks; software such as applications or utilities; informa-

tion such as databases and files; and users of the system.

Services in a Jini system communicate with each other by using a service pro-

tocol, which is a set of interfaces written in the Java programming language. The
set of such protocols is open ended. The base Jini system defines a small number
of such protocols that define critical service interactions.

AR.2.l.2 Lookup Service

-Services are found and resolved by a lookup service. The lookup service is the

central bootstrapping mechanism for the system and provides the major point of
contact between the system and users of the system. In precise terms, a lookup

service maps interfaces indicating the functionality provided by a service to sets

of objects that implement the service. In addition, descriptive entries associated

with a service allow more fine-grained selection of services based on properties
understandable to people.

Objects in a lookup service may include other lookup services; this provides
hierarchical lookup. Further, a lookup service may contain objects that encapsu-
late other naming or directory services, providing a way for bridges to be built

between a Jini Loolrup service and other fonns of lookup service. Of course, ref-

erences to a Jini Lookup service may be placed in these other naming and direc-

tory services, providing a means for clients of those services to gain access to a
Jini system.

A service is added to a lookup service by a pair of protocols called discovery

andjoin—first the service locates an appropriate lookup service (by using the dis-
covery protocol), and then it joins it (by using the join protocol).

AR.2.1.3 Java Remote Method Invocation (RMI)

Communication between services can be accomplished using Java Remote

Method Invocation (RMI). The infrastructure to support communication between

services is not itself a service that is discovered and used but is, rather, a part of
the Jini technology infrastructure. R.MI provides mechanisms to find, activate, and

garbage collect object groups.

Fundamentally, RMI is a Java programming language-enabled extension to

traditional remote procedure call mechanisms. RMI allows not only data to be

passed from object to object around the network but full objects, including code.

Much of the simplicity of the Jini system is enabled by this ability to move code
around the network in a form that is encapsulated as an object.

81

1 JINIARCHITECTURE SPECIFICATION

I" AR.2.1.4 Security

I The design of the security model for Jini technology is built on the twin notions of

___a principal and an access control list. Jini services are accessed on behalf of some
entity-the prlncipal— which generally traces back to a particular user of the sys-
tem. Services themselves may request access to other services based on the iden-

tity of the object that implements the service. Whether access to a service is
allowed depends on the contents of an access control list that is associated with

_ the object.

_ AR.2.1.5 Leasing

Access to many of the services in the Jini system environment is lease based. A

lease is a grant of guaranteed access over a time period. Each lease is negotiated
between the user of the service and the provider of the service as part of the ser-

vice protocol: A service is requested for some period; access is granted for some

period, presumably taking the request period into account. If a lease is not

renewed before it is freed—either because the resource is no longer needed, the
client or network fails, or the lease is not permitted to be renewed—then both the

I ' user and the provider of the resource may conclude that the resource can be freed.
Leases are either exclusive or non-exclusive. Exclusive leases ensure that no

one else may take a lease on the resource during the period of the lease; non-

‘ exclusive leases allow multiple users to share a resource.

AR.2.1.6 ‘Transactions

A series of operations, either within a single service or spanning multiple services,

. can be wrapped in a transaction. The Jini Transaction interfaces supply a service
protocol needed to coordinate a two-phase commit. How transactions are imple-

mented—and indeed, the very semantics of the notion of a transactionmis left up
to the service using those interfaces.

AR.2.1.'7 Events

The Jini architecture supports distributed events. An object may allow other
objects to register interest in events in the object and receive a notification of the

occurrence of such an event. This enables distributed event—based programs to be

written with a variety of reliability and scalability guarantees.

IfHV’[I a.ll1'1.‘)J.|ll['._‘J.l

82

COMPONENT OVERVIEW

AR.2.2 Component Overview

The components of the Jini system can be segmented into three categories: infra-
structure, programming model, and services. The infrastructure is the set of com-
ponents that enables building a federated Jini system, while the services are the
entities within the federation. The programming model is a set of interfaces that
enables the construction of reliable services, including those that are part of the
infrastructure and those that join into the federation.

These three categories, though distinct and separable, are entangled to such an
extent that the distinction between them can seem blurred. Moreover, it is possible
to build systems that have some of the functionality of the Jini system with vari-
ants on the categories or without all three of them. But a Jini system gains its full
power because it is a system built with the particular infrastructure and program-
ming models described, based on the notion of a service. Decoupling the seg-
ments within the architecture allows legacy code to be changed minimally to take
part in a Jini system. Nevertheless, the full power of a Jini system will be available
only to new services that are constructed using the integrated model.

A Jini system can be seen. as a network extension of the infrastructur , pro-
gramming model, and services that made Java technology successful in the single-
machine case. These categories along with the corresponding components in the
familiar Java application environment are shown in Figure AR.2.1:

Infrastructure Programming Model

Java VM Java APIs INDI

RMI JavaBeans Enterprise Beans

Java Security . . . ITS I

Discoveryfloin Leasing Printing

Distributed Security Transactions Transaction Manager

Loolcup Events Iavaspaces Service

FIGURE AR.2.1: Jini Architecture Segmentation

83

' ‘HIE JHW ARCHITECTURE SPECIFICATION

AR.2.2.1 Infrastructure

file Jini technology infrastructure defines the minimal Jini technology core. The
' I infrastructure includes the following:

o A distributed security system, integrated into RMI, that extends the Java plat-
forrn’s security model to the world of distributed systems. -

4 The discovery andjoin protocols, service protocols that allow services (both
hardware and software) to discover, become part of, and advertise supplied
services to the other members of the federation.

o The lockup service, which serves as a repository of services. Entries in the
lockup service are objects written in the Java programming language; these
objects can be downloaded as part of a lookup operation and act as local
proxies to the service that placed the code into the lookup service.

The discovery and join protocols define the way a service of any kind
_ becomes part of a Jini system; RMI defines the base language within which the

Jim services communicate; the distributed security model and its implementation
_. define how entities are identified and how they get the rights to perform actions on

. ,, their own behalf and on the behalf of others; and the lookup service reflects the
current members of the federation and acts as the central marketplace for offering
and finding services by members of the federation.

ased, allowing

__ accurately the set of currently available services. services join or leave a
. l lockup service, events are signaled, and objects that have registered interest in

such events get notifications when new services become available or old services
cease to be active. The programming model rests on the ability to move code,

' which is supported by the base infrastructure.

' Both the infrastructure and the services that use that infrastructure are compu-
tational entities that exist in the physical environment of the Jim system. However,
services also constitute a set of interfaces which define communication protocols
that can be used by the services and the infrastructure to communicate between
themselves.

.; These interfaces, taken together, make up the distributed extension of the stan-
' dard Java programming language model that constitutes the Jim programming

84

COMPONENT O VERVTEW

model. Among the interfaces that make up the Jini programming model are the

following:

9 The leasing interface, which defines a way of allocating and freeing

resources using a renewable, duration-based model

0 The event and notification interfaces, which are an extension of the event

model used by JavaBeans components to the distributed environment,
enable event—based communication between Jini services

0 The transaction interfaces, which enable entities to cooperate in such a way

that either all of the changes made to the group occur atomically or none of
them occur

The lease interface extends the Java programming language model by adding

time to the notion of holding a reference to a resource, enabling references to be

reclaimed safely in the face of network failures.
The event and notification interfaces extend the standard event models used

by JavaBeans components and the Java application environment to the distributed

case, enabling events to be handled by third-party objects while making various

delivery and timeliness guarantees. The model also recognizes that the delivery of

a distributed notification may be delayed.

The transaction interfaces introduce a lightweight, object-oriented protocol

enabling Jini applications to coordinate state changes. The transaction protocol

provides two steps to coordinate the actions of a group of distributed objects. The

first step is called the voting phase, in which each object “votes” whether it has

completed its portion of the task and is ready to commit any changes it made. In

the second step. a coordinator issues a “connnit" request to each object.

The Jini Transaction protocol differs from most transaction interfaces in that it

does not assume that the transactions occur in a transaction processing system.

Such systems define mechanisms and programming requirements that guarantee

the correct implementation of a particular transaction semantics. The Jim‘ Transac-

tion protocol takes a more traditional object-oriented view, leaving the correct

implementation of the desired transaction semantics up to the implementor of the

particular objects that are involved in the transaction. The goal of the transaction

protocol is to define the interactions that such objects must have to coordinate

such groups of operations.

The interfaces that define the Jim programming model are used by the infra-

structure components where appropriate and by the initial Iini services. For exam-

ple, the loolcup service makes use of the leasing and event interfaces. Leasing

ensures that services registeredcontinue to be available, and events help adminis-

trators discover problems and devices that need configuration. The Javaspaces

85

IN1ARCHJ"TEC1"URE SPECIFICATION

-cc, one example of a Jini service, utilizes leasing and events, and also sup-
the Jini Transaction protocol. The transaction manager can be used to coor-

ate the voting phase of a transaction for those objects that support transaction
"($0.001-

The implementation of a service is not required to use the Jini programming
-mode], but such services need to use that model for their interaction with the Jini

7'!-fl'gh[]0]0g_y infrastructure. For example, every service interacts with the Jini

’L0o]g,1p service by using the programming model; and whether a service offers

ources on a leased basis or not, the service’s registration with the lockup ser-
'¢g_ will be leased and will need to be periodically renewed.

The binding of the programming model to the services and the infrastructure
is-.wfiat makes such a federation a Jini system not just a collection of services and

protocols. The combination of infrastructure, service, and programming model,
__I__designed to work together and constructed by using each other, simplifies the

-overall system and unifies it in a way that makes it easier to understand.

A_R.2.2.3 Services

The Jim’ technology infrastructure and programming model are built to enable ser-
vices to be offered and found in the network federation. These services make use

of the infrastructure to make calls to each other, to discover each other, and to
'- announce their presence to other services and users.

Services appear programmatically as objects written in the Java programming
'_ language, perhaps made up of other objects. A service has an interface that defines
_- the operations that can be requested of that service. Some of these interfaces are

intended to be used by programs, while others are intended to be run by the
. receiver so that the service can interact with a user. The type of the service deter-
mines the interfaces that make up that service and also define the set of methods

' that can be used to access the service. A single service may be implemented by
using other services.

Example Jini services include the following:

6 A printing service, which can print from Java applications and legacy appli-
cations

¢ A Javaspaces service, which can be used for simple communication and for
storage of related groups of objects written in the Java programming lan-
guage

0 A transaction manager, which enables groups of objects to participate in the
Jini Transaction protocol defined by the programming model

a;1iuoaii1{o.r\,r

86

1rHE JINI ARCHITECTURE SPECIFICATION

I. 581-Vice, one example of a Jini service, utilizes leasing and events, and also sup-
'.' ports the Jini Transaction protocol. The transaction manager can be used to coor«

dinate the voting phase of a transaction for those objects that support transaction

__ protocol.
The implementation of a service is not required to use the lini programming

model, but such services need to use that model for their interaction with the Jini
technology infrastructure. For example, every service interacts with the Jini

H ' 'L0o1;up service by using the programming model; and whether a service offers
resources on a leased basis or not, the service’s registration with the lookup ser-

_ vice will be leased and will need to be periodically renewed.
The binding of the programming model to the services and the infrastructure

is what makes such a federation a Jini system not just a collection of services and

protocols. The combination of infrastructure, service, and programming model,
all designed to work together and constructed by using each other, simplifies the

I overall system and unifies it in a way that makes it easier to understand.

AR.2.2.3 Services

The Jini technology infrastructure and programming model are built to enable ser-

' "vices to be offered and found in the network federation. These services make use

of the infrastructure to make calls to each other, to discover each other, and to

announce their presence to other services and users.

Services appear prograrnmatically as objects written in the Java programming

language, perhaps made up of other objects. A service has an interface that defines

the operations that can be requested of that service. Some of these interfaces are

intended to be used by programs, while others are intended to be run by the

receiver so that the service can interact with a user. The type of the service deter-

mines the interfaces that make up that service and also define the set of methods

i that can be used to access the service. A single service may be implemented by

using other services.

Example Jini services include the following:

9 A printing service, which can print from Java applications and legacy appli-
cations

0 A JavaSpaces service, which can be used for simple communication and for

storage of related groups of objects written in the Java programming lan-
guage

0 A transaction manager, which enables groups "of objects to participate in the

Jim Transaction protocol defined by the prograrnrning model

IHV} o.I1uaa1rt[.1.rV

87

SERVICE ARCHITECTURE

AR.2.3 Service Architecture

Services form the interactive basis for a Jini system, both at the programming and
user interface levels. The details of the service architecture are best understood

once the Jim Discovery and Jim Lookup protocols are presented.

AR.2.3.1 Discovery and Lookup Protocols

The heart of the Jini system is a trio of protocols called discovery, join, and
lockup. A pair of these protoco1s—discovery and join—occur when a device is

plugged in. Discovery occurs when a service is looking for a lookup service with
which to register. Join occurs when a service has located a lookup service and
wishes to join it. Loolcup occurs when a client or user needs to locate and invoke a

service described by its interface type (written in the Java programming language)
and possibly other attributes. Figure AR.2.2 outlines the discovery process.

A service provider seeks Lookup
a Iookup service Service

Service Object

Service Attributes

FIGURE AR.2.2: Discovery

Jini Discoverylloin is the process of adding a service to a Jini system. A ser-
vice provider is the originator of the service—~—a device or software, for example.
First, the service provider locates a lookup service by multicasting a request on the

local network for any lockup services to identify themselves (discovery, see Fig-
ure AR.2.2). Then, a service object for the service is loaded into the loolcup ser-

vice (join, see Figure AR.2.3)_. This service object contains the Java programming
language interface for the service, including the methods that users and applica-
tions will invoke to execute the service along with any other descriptive attributes.

88

my JIMARCHITECIURE SPECIFICATION

A service provider registers a
service object (proxy) and its

service attributes with

the lookup service 3611506 Objfict

Service Attributes

IHV) a.u11Je1i1[.S.erv1'ee I
Provider

Service Object

FIGURE AR.2.3: Join

Services must be able to find a lookup service; however, a service may dele-

_ gate the task of finding a lookup service to a third party. The service is now ready
to he looked up and used, as shown in the following diagram (Figure AR.2.4).

A client requests a service by
Java language type and,

perhaps, other service attributes. _ .
A copy of the service object is SBWICC Object

moved to the client and used bythe client to talk to the service Sewlce Ambutes

Client

Service Object

FIGURE AR.2.4: Lookup

A client locates an appropriate service by its type—that is, by its interface
written in tlie Java programming 1anguage——a1ong with descriptive attributes that

89

SERVICE ARCHITECTURE

are used in a user interface for the loolcup service. The service object is loaded
into the client.

The final stage is to invoke the service, as shown in the following diagram

(Figure AR.2.5).

The client interacts directly with

the service provider via the
service object (proxy)

Service Object

Service Attributes

Service Object

House AR.2.5: Client Uses Service

The service object’s methods may implement a private protocol between itself
and the original service provider. Different implementations of the same service

interface can use completely diflerent interaction protocols.

The ability to move objects and code from the service provider to the lookup
service and from there to the client of the service gives the service provider great

freedom in the communication patterns between the service and its clients. This

code movement also ensures that the service object held by the client and the ser-

vice for which it is a proxy are always synchronized because the service object is

supplied by the service itself. The client knows only that it is dealing with an
implementation of an interface written in the Java programming language, so the
code that implements the interface can do whatever is needed to provide the ser-
vice. Because this code came originally from the service itself, the code can take

advantage of implementation details of the service that are known only to the
code.

The client interacts with a service via a set of interfaces written in the Java

programming language. These interfaces define the set of methods that can be
used to interact with the service. Programmatic interfaces are identified by the

type system of the Java programming language, and services can be found in a
lookup service by asking for those that support a particular interface. Finding a
service this way ensures that the program looking for the service will know how to

90

THE JINIARCHITECTURE SPECIFIC.-lTION

use that service, because that use is defined by the set of methods that are defined

by the type.

Programmatic interfaces may be implemented either as RMI references to the

remote object that implements the service, as a local computation that provides all
of the service locally, or as some combination. Such combinations, called smart

proxies, implement some of the functions of a service locally and the remainder
through remote calls to a centralized implementation of the service.

A user interface can also be stored in the lookup service as an attribute of a
registered service. A user interface stored in the lookup service by a Jini service is

an implementation that allows the service to be directly manipulated by a user of
the system. _

In effect, a user interface for a service is a specialized form of the service

interface that enables a program, such as a browser, to step out of the way and let
the human user interact directly with a service.

In situations in which no lookup service can be found, a client could use a

technique calledpeer lockup instead. In such situations, the client can send out the

same identification packet that is used by a lookup service to request service pro-
viders to register. Service providers will then attempt to register with the client as
though it were a lookup service. The client can select the services it needs from

the registration requests it receives in response and drop or refuse the rest.

AR.2.3.2 Service Implementation

Objects that implement a service may be designed to run in a single address space
with other, helper, objects especially when there are certain location or security-
based requirements. Such objects make up an object group. An object group is
guaranteed to always reside in a single address space or virtual machine when

those objects are running. Objects that are not in the same object group are iso-
lated from each other, typically by nmning them in a different virtual machine or
address space.

A service may be implemented directly or indirectly by specialized hardware.
Such devices can be contacted by the code associated with the interface for the
service.

From the service client’s point of view, there is no distinction between ser-

vices that are implemented by objects on a different machine, services that are

downloaded into the local address space, and services that are implemented in
hardware. All of these services will appear to be available on the network, will

appear to be objects written in the Java programming language, and, only as far as
correct functioning is concerned, one kind of implementation could be replaced

91

SERVICE ARCHITECTURE

by another kind of implementation without change or knowledge by the client.
(Note that security permissions must be properly granted.)

' ,,&..,,5.....,,_.,...,.,l,.,..'..,,,,m,-.m..,mw.»..\.~.u.»...-a.»w_m»

92

THE JINI ARCHITECTURE SPECIFICATION

:“AR.3 An Example

I:)1J 3.1111notrt[;).I
THIS example shows how a Jini printing service might be used by a digital carn-
era to print a high-resolution color image. It will start with the printer joining an

existing Jini system, continue with its being configured, and end with printing the

image.

AR.3.1 Registering the Printer Service

I A printer that is either freshly connected to a Jini system or is powered up once it
has been connected to a Jini system grouping needs to discover the appropriate

. lockup service and register with it. This is the discovery andjoin phase.

'- AR.3.1.1 Discovering the Lookup Service

"The basic operations of discovering the lookup service are irnplernented by a Jini
software class. An instance of this class acts as a mediator between devices and

services on one hand and the lookup service on the other. In this example the

printer first registers itself with a local instance of this class. This instance then
multicasts a request on the local network for any lockup services to identify them-

selves. The instance listens for replies and, if there are any, passes to the printer an

array of objects that are proxies for the discovered lookup services.

. AR.3.1.2 Joining the Looknp Service

To register itself with the lookup service, the printer needs first to create a service

object of the correct type for printing services. This object provides the methods

that users and applications will invoke to print documents. Also needed is an array

of LookupEntry instances to specify the attributes that describe the printer, such

- as that it can print in color or black and white, what document formats it can print,

possible paper sizes, and printing resolution.

93

PRINIYNG

The printer then calls the regi ster method of the lookup service object that it
received during the discovery phase, passing it the printer service object and the

array of attributes. The printing service is new registered with the lookup service.

AR.3.l.3 Optional Configuration

At this point the printing service can be used, but the local system administrator

might want to add additional information about the printer in the form of addi-

tional attributes, such as a local name for the service, information about its physi-

cal location, and a list of who may access the service. The system administrator

might also want to register with the device to receive notifications for any errors

that arise, such as when the printer is out of paper.

One way the system administrator could do this would be to use a special util-

ity program to pass this additional information to the service. In fact this program
might have received notification from the lookup service that a new service was

being added and then alerted the system administrator.

AR.3.1.=t Staying Alive

When the printer registers with the Jim’ Lookup service it receives a tease. Period-

ically, the printer will need to renew this lease with the lookup service. If the

printer fails to renew the lease, then when the lease expires, the lookup service

will remove the entry for it, and the printer service will no longer be available.

AR.3.2 Printing

Some services provide a user interface for interaction with them; others rely on an

application to mediate such interaction. This exampleassumes that a person has a

digital camera that has taken a picture they want to print on a high—resolution

printer. The first thing that the camera needs to do after it is connected to the net-

work is locate a Jini printing service. Once a printing service has been located and

selected, the camera can invoke methods to print the image.

AR.3.2.1 Locate the Lookup Service

Before the camera can use a Jini service, it must first locate the Jini Lookup ser-

vice, just as the print service needed to do to register itself. The camera registers

)__q,._,,,,,.,_,,_,,,;.,._,,_,..s‘.,.-.

94

mg JINI ARCHITECTURE SPECIFICATION

‘itself with a local instance of the Jim software class LookupD1' scove ry, which will
"='n01jfy the camera of all discovered lockup services.

_. 53.3.2.2 Search for Printing Services

Finding an appropriate service requires passing a template that is used to match
_ -and filter the set of existing services. The template specifies both the type of the

required service, which is the first filter on possible services, and a set of attributes
which is used to reduce the number of matching services if there are several of the

-- right type. In this example, the camera supplies a template specifying the printer
type and an array of attribute objects. The type of each object specifies the
attribute type, and its fields specify values to be matched. For each attribute, fields

" that should be matched, such as color printing, are filled in; ones that don’t matter
- -are left null. The Jini Lookup service is passed this template and returns an array

of all of the printing services that match it. If there are several matching services,

the camera may further filter them—in this case perhaps to ensure high print reso-

' - 1ution—and present the user with the list of possible printers for choice. The final
result is a single service object for the printing service.

At this point the printing service has been selected, and the camera and the

printer service communicate directly with each other; the lookup service is no
longer involved.

' AR.3.2.3 Configuring the Printer

Before printing the image, the user might wish to configure the printer. This might
be done directly by the camera invoking the service object’s ccnfi gu re method;

this method may display a dialog box on the camera’s display with which the user

, . may specify printer settings. When the image is printed, the service object sends-

the configuration information to the printer service.

AR.3.2_.4 Requesting That the Image Be Printed

To print the image, the camera calls the print method of the service object, passing

it the image as an argument. The service object performs any necessary prepro-

ceasing and sends the image to the printer service to be printed.

lHV’F orIl1.131ll]3.l\.-’

95

PRINTING

AR.3.2.5 Registering for Notification

If the user wishes to be notified when the image has been printed, the camera

needs to register itself with the printer service using the service object. The cam-

era might also wish to register to be notified if the printer encounters any errors.

AR.3.2.6 Receiving Notification

When the printer has finished printing the image or encounters an error, it signals

an event to the camera. When the camera receives the event, it may notify the user
that the image has been printed or that an error has occurred.

96

I THE JHVI ARCHITECTURE SPECIFICATION

S t\R.4 For More Information

0.1t1'1.1'.11!tp.I.\..-'
Tms document does not provide a full specification of Jini technology. Each of
the Jim’ technology components is specified in a companion document. In particu-

_ lax, the reader is directed to the following documents:

0 The Java Rennote Method Invocation Specification

4» The Java Object Serialization Specification

o The Jini Discovery and Join Specification

6 The Jini Device Architecture Specification

4» The Jim’ Distributed Events Specification

0 The Jini Distributed Leasing Specification

0 The Jini Lookttp Service Specification

4» The Jini Lootaip Attribute Schema Specification
0

6

The Jini Entry Specification

The Jini Transaction Specification

97

THE JIM DISCOVERYAND JoIII SPECIFICATION defines how a service should

behave when itfirst starts up tofind the local lockup services with which

it should register; and how lookaps should advertise their

availability. The discovery protocol lets a service find

fl "discoverable ” lockup services. A service may also be
configured to register with specific lockup services or to

U register only with particular lockup services. Most
services will use discovery, since most will want to be

available to local clients. Clients will use discovery tofind

local services, but use explicit denotation to Contact specific

lookups that are useful even if they arefar away.

This discovery protocol is designedfor discovery on IP

networks. IP networks are widespread and so was thefirst

discovery protocol designed. Other networks will require

dfierent discovery protocols that will be designedfor their
distinct characteristics.

98

The Jini Discovery and Join
Specification

DJ.1 Introduction

ENTITIES that wish to start participating in a distributed Jini system, known as a
_djinn, must first obtain references to one or more Jini Lookup services. The proto-

cols that govern the acquisition of these references are known as the discovery

protocols. Once these references have been obtained, a number of steps must be

taken for entities to start communicating usefully with services in a djinn; these

steps are described by the join protocol.

I DJ.1.1 Terminology

A host is a single hardware device that may be connected to one or more net-

works. An individual host may house one or more Java virtual machines (JVM).

Throughout this document we make reference to a discovering entity, a join-
ing entity, or simply an entity.

9 A discovering entity is simply one or more cooperating objects in the Java
programming language on the same host that are about to start, or are in the

process of, obtaining references to Jini lookup services.

9 Ajoining entity comprises one or more cooperating objects in the Java tech-

nology programming language on the same host that have just received a ref-

erence to the lookup service and are in the process of obtaining services

from, and possibly exporting them to, a djinn.

uio1'].-‘C.1-.1.m3si(}

99

HOST REQUIREMENTS

6 An entity may be a discovering entity, a joining entity, or an entity that is

already a member of a djinn; the intended meaning should be clear from the
context.

0 A group is a logical name by which a group of djinns is identified.

Since all participants in a djinn are collectionsof one or more objects in the

Java programming language, this document will not make a distinction between

an entity that is a dedicated device using Jini technology or something running in

a IVM that is hosted on a legacy system. Such distinctions will be made only when

necessary. '

DJ.l.2 Host Requirements

Hosts that wish to participate in a djinn must have the following properties:

0 A functioning IVM, with access to all packages needed to run Jini software

0 A properly configured network protocol stack

The properties required of the network protocol stack will vary depending on

the network protocol(s) being used. Throughout this document we will assume

that IP is being used, and highlight areas that might apply differently to other net-

working protocols. I

DJ.1.2.1 Protocol Stack Requirements for IP Networks

Hosts that make use of IP for networking must have the following properties:

9 An IP address. IP addresses may be statically assigned to some hosts, but we

expect that many hosts will have addresses assigned to them dynamically.

Dynamic IP addresses are obtained by hosts through use of DI-ICP.

9 Support for unicast TCP and multicast UDP. The former is used by sub-

systems using Jini technology such as Java Remote Method Invocation

(RMI); both are used during discovery.

0 Provision of some mechanism (for example, a simple HTTP server) that

facilitates the downloading of Java RMI stubs and other necessary code by

remote parties. This mechanism does not have to be provided by the host

itself, but the code must be made available by some cooperating party.

100

_iINI DISCOVERYAND JOIN SPECIFICATION

-];)_J..1.3 Protocol Overview

There are three related discovery protocols, each designed with different pur-
poses:

' o The multicast request‘ protocol is employed by entities that wish to discover

nearby lookup services. This is the protocol used by services that are starting
up and need to locate whatever djinns happen to be close. It can also be used

to support browsing of local lockup services.

9 The multicasr announcement protocol is provided to allow lookup services
to advertise their existence. This protocol is useful in two situations. When

a new lookup service is started, it might need to announce its availability to
potential clients. Also, if a network failure occurs and clients lose track of a

lookup service, this protocol can be used to make them aware of its availabil-
ity after network service has been restored.

‘H . 9 The unicast discovery protocol makes it possible for an entity to_ communi-
' ' cate with a specific lookup service. This is useful for dealing with non-local

djinns and for using services in specific djinns over a long period of time.

The discovery protocols require support for multicast or restricted-scope
_-'-broadcast, along with support for reliable unicast delivery, in the transport layer.
_. The discovery protocols make use of the Java platform‘s object serialization to
exchange information in a platform—independent manner.

'l)J.1.4 Discovery in Brief

_ This section provides a brief overview of the operation of the discovery protocols.
For a detailed description suitable for use by implementors, see Section DJ.2.

DJ.1.4.1 Groups

' A group is an arbitrary string that acts as a name. Each lockup service has a set of
‘zero or more groups associated with it. Entities using the multicast request proto-
col specify a set of groups they want to communicate with, and lockup services

. advertise the groups they are associated with using the multicast announcement

protocol. This allows for flexibility in configuring entities: instead of maintaining
a set of URLs for specific lookup services to contact, and that need to be changed

" if any of these services moves, an entity can maintain a set of group names.

tIyi..i[',I.-\.i;).u_r..1srq

101

DISCOVERY IN BRIEF

Although group names are arbitrary strings, it is recommended that DNS—sty1e

names (for example, “eng.sun.com”) be used to avoid name conflicts. One group

name, represented by the empty string, is predefined as the public group. Unless

otherwise configured, lookup services should default to being members of the

public group, and discovering entities should attempt to find lockup services in

the public group.

DJ.1.4.2 The Multicast Request Protocol

The multicast request protocol, shown in Figure DJ. 1 . 1, proceeds as follows:

1. The entity that wishes to discover a djinn establishes a TCP-based server

that accepts references to the lookup service. This server is an instance of

the multicast response service.

. Lookup services listen for multicast requests for references to lookup ser-

vices for the groups they manage. These listening entities are instances of

the multicast request service. This is not an RMI—based service; the protocol
is described in Section DJ.2.

. The discovering entity performs a multicast that requests references to

lookup services; it provides a set of groups in which it is interested, and

enough information to allow listeners to connect to its multicast response
server. '

. Each multicast request server that receives the multicast will, if it is a

member of a group for which it receives a request, connect to the multicast

response server described in the request, and use the unicast discovery

protocol to pass an instance of the lookup service’s implementation of
net.jin'i .cor'e .1ookup.5erv'iceReg'istrar.

102

1'-7;g';1zw DISCOVERYAND JOINSPECIFICATION

I At this point, the discovering entity has one or more remote references to lookup
.-services.

Lookup Server ;

1. The discovering ' ' 2. Lookup servers run
entity sets up a , ' instances of the multicast
TCP server; this ' request service, which
is an instance of : listen for multicast requests
the multicast . I ' from discovering entities.
response service. = '

3. The discovering entity ""7,
performs a multicast that - '...._________,
requests references to -

loolcllp Services. X uio['/,C.1.).-\t;.3sg(]
1 e I

. l I
- 4. The lookup server I

_ connects to the dis—
- covering entity’s ' "

Z multicast response server, and uses dis- :
~ covery to provide a reference to itself.

H FIGURE DJ.1.1: The Multicast Request Protocol

DJ.1.4.3 The Mnlticast Announcement Protocol

The multicast announcement protocol follows these steps:

103

DEPENDENCIES

DJ.l.-'I.4 The Unicast Discovery Protocol

The unicast discovery protocol works as follows:

1. The lookup service listens for incoming connections and, when a

connection is made by a client, decodes the request and, if the request

is correct, responds with a marshalled object that implements the
net.jini .core. 'lookup.Ser'v1' ceReg'i strar interface.

. An entity that wishes to contact a particular Iookup service uses known host-

and port information to establish a connection to that service. It sends a dis-

covery request and listens for a marshalled object as above in response.

DJ.1.5 Dependencies

This document relies on the following other specifications:

0 Java Remote Method Invocation Specification

0 Jim‘ Lookup Service Specification

104

‘HIE JINI DISCOVERYAND JOIN SPECIFICATION

“DJ.2 The Discovery Protocols

' _ THERE are three closely related discovery protocols: one is used to discover one
or more lockup services on a local area network (LAN), another is used to

announce the presence of a lookup service on a local network, and the last is used
to establish communications with a specific lookup service over a wide-area net-

_ work (WAN).

DJ.2.1 Protocol Roles

The multicast discovery protocols work together over time. When an entity is ini-

tially started, it uses the multicast request protocol to actively seek out nearby
lockup services. After a limited period of time performing active discovery in this
way, it ceases using the multicast request protocol and switches over to listening

. for multicast lookup announcements via the multicast armouncement protocol.

DJ.2.2 The Multicast Request Protocol

The multicast request protocol allows an entity that has just been started, or that
needs to provide browsing capabilities to a user, to actively discover nearby

lookup services.

DJ.2.2.1 Protocol Participants

Several components take part in the multicast request protocol. Of these, two run

on an entity that is performing multicast requests, andtwo run on the entity that

listens for such requests and responds.

On the requesting side live the following components:

9 A multicast request client performs multicasts to discover nearby lockup
services.

{1'('l) ug(_>1';.-i‘.1o..\ossg(]

105

THE MULTICAST REQ UEST PROTOCOL

9 A multicast response server listens for responses from those lockup services.

These components are paired; they do not occur separately. Any number of

pairs of such components may coexist in a single IVM at any given time.

The lookup service houses the other two participants:

9 A multicast request server listens for incoming multicast requests.

9 A multicast response client responds to callers, passing each a proxy that
allows it to communicate with its loolcup service.

Although these components are paired, as on the client side, only a single pair

will typically be associated with each lookup service.

These local pairings apart, the remote client/server pairings should be clear from

the above description and the diagram of protocol participants in Figure DJ.2.1.

rnu ttcast response
server

‘"'fi'ifiItEia§t' réij1i'ésf "
client

rnu ticast response
client

_ ; rnulticast "request
' 1 server '

multicast request
client

WM of discovering IVM of lookup
entity service

FIGURE DJ.2.1: Multicast Request Protocol Porticrgpants

DJ.2.2.2 The Multicast Request Service

The multicast request service is not based on Java RMI; instead, it makes use of

the multicast datagram facility of the networking transport layer to request that

106

THE JINI DISCOVERYAND JOIN SPECIFIC4Ji"0N

lockup services advertise their availability to a requesting host. In a TCPIIP envi-
“ronment the network protocol used is multicast UDP. Request datagrams are
encoded as a sequence of bytes, using the data and object serialization facilities of

' the Java programming language to provide platform independence.

DJ.2.2.3 Request Packet Format

' A multicast discovery request packet body must:

- 9 Be 512 bytes in size or less, in order to fit into a single UDP datagrarn

4 Encapsulate its parameters in a platfonn-independent manner

0 Be straightforward to encode and decode

I accordingly, we define the packet format to be a contiguous series of bytes as
would be produced by a java.io.Data0utputStream object writing into a

_ java. 1'0 . Byt eAr‘r'ay0utputSt ream object. The contents of the packet, in order of
appearance, are illustrated by the following fragment of pseudocode which gener-
ates the appropriate byte array:

// protocol version

int port; // port to contact

java.'|ang.Str'ing[] groups; // groups of interest

net.j1'm'.cor-e.lookup.ServiceID[] heard: // known lookups

int pr'otoVer's'i on;

java.io.ByteArray0utputStr'ean1 byte‘Str =

new java. 1'o . ByteAr'ray0utputStream();

java.io.Data0utputStream objStr =

new java.io.Data0utputStream(byteStr):

objstr.writeInt(protoVersion);

objStr.writeInt(port);

objStr.writeInt(heard.length);

for (int i = 0; i < heard.1ength; i++) {

heard[i].writeBytes(ohjStr);

}

objStr.writeInt(groups.1ength);

for (int i = 0; i < groups.1ength; i++) {

objStr.writeUTF(groups[i]);

{".l‘(1"J ugo[';;-{.1n..u'msg{1

107

THE MULITCASTREQUESTPROTOCOL

}

byte[] packe1:Body = byteStr.toByteAr'ra.y(J; // the_f1'na'| result
To elaborate on the roles of the variables above:

6 The p rotoVe rsi on variable contains an integer that indicates the version of

the discovery protocol. This will permit interoperability between different

protocol versions. For the current version of the discovery protocol,

protoversi on must have the value 1.

0 The port variable contains the TCP port respondents must connect to in

order to continue the discovery process.

or The groups variable contains a set of strings (organized as an array) naming

the groups the entity wishes to discover. This set may be empty, which indi-

cates that all lookup services are being looked for.

0 The hear-d variable contains a set of net.j1' n'l .core.'|ookup.Ser'v1'ceID

objects (organized as an array) that identify lockup services from which this

entity has already heard and that do not need to respond to this request.

o The packetBody variable contains the marshalled discovery request in a

form that is suitable for putting into a datagram packet or writing to an out-

put stream.

The table below illustrates the contents of a multicast request packet body.

Count Serialized Type Description

1 int protocol version

1 ‘int port to connect to

1 ‘int - I count of lookups heard

net. j1'n'i .core. lockup .Ser'vi ceID lookups heard

1 -int count of groups

variable java. 1 my . Str'i ng groups

Ifthe size of the packet body should exceed 512 bytes, the set of lookups from

which an entity has heard must be left incomplete in the packet body, such that the

size of the packet body will come to 512 bytes or less. How this is done is not

specified. It is not permissible for implementations to simply truncate packets at

512 bytes.

108

I Vggymo JOIN SPECIFICA TION

3:1-ly, if the number of groups requested causes the size of a packet body
512 bytes, implementations must perform several separate rnulticasts,

.5, disjoint subset of the full set of groups to be requested, until the entire
been requested. Each request must contain the largest set of responses
gt'wi_'11 keep the size of the request below 512 bytes.

-4 -The Multicast Response Service

flqe: multicast request service, the multicast response service is a normal

ed-service. In this service the multicast response client contacts the multi-

_ spouse server specified in a multicast request, after which unicast discovery
' 91-med. The multicast response server to contact can be determined by using

bnrce address of the request that has been received, along with the port num-

eficapsulated in that request.
The only difference between the unicast discovery performed in this instance

' the normal case is that the entity being connected to initiates unicast discov-

;11ot the connecting entity. An alternative way of looking at this is that in both
‘ ‘es, once the connection has been established, the party that is looking for a

okup service proxy initiates unicast discovery.

' .2.3 Discovery Using the Multicast Request Protocol

Now we describe the discovery sequence for local area network (LAN)-based
environments that use the multicast request protocol to discover one or more

djinns.

]_)J.2.3.1 Steps Taken by the Discovering Entity

§The entity that wishes to discover a djinn takes the following steps:

_ _ 1. It establishes a multicast request client, which will send packets to the well-
known multicast network endpoint on which the multicast request service
operates.

. It establishes a TCP server socket that listens for incoming connections,

over which the unicast discovery protocol is used. This server socket is the

multicast response server socket.

109

DISCOVERY USING THE MULTICASTREQUEST PROTOCOL

. It creates a set of net.j1‘n1‘ .core.lookup.Serv1' ceID objects. This set

contains service IDs for lookup services from which it has already heard,

and is initially empty.

. It sends multicast requests at periodic intervals. Each request contains con-

nection information for its multicast response server, along with the most
recent set of service IDs for lockup services it has heard from.

. For each response it receives via the multicast response service, it adds the

service ID for that lockup service to the set it maintains.

_. The entity continues multicasting requests for some period of time. Once
this point has been reached, it unexports its multicast response server and

stops making multicast requests. '

. If the entity has received suflicient references to lookup services at this

point, it is now finished. Otherwise, it must start using the multicast
announcement protocol.

The interval at which requests are performed is not specified, though an inter-
val of five seconds is recommended for most purposes. Similarly, the number of

requests to perform is not mandated, but we recommend seven. Since requests
may be broken down into a number of separate multicasts, these recommenda-

tions do not pertain to the number of packets to be sent.

DJ.2.3.2 Steps Taken by the Multicast Request Server

The system that hosts an instance of the multicast request service takes the follow-
ing steps: '

1. It binds a datagrarn socket to the well—known multicast endpoint on which

the multicast request service lives so that it can receive incoming multicast
requests.

. When a multicast request is received, the discovery request server may use

the service [D set from the entity that is sending requests to determine
whether it should respond to that entity. If its own service ID is not in the

set, and any of the groups requested exactly matches-any of the groups it is

a member of or the set of groups requested is empty, it must respond. Oth-
erwise, it must not respond.

. If the entity must be responded to, the request server connects to the other

party’s multicast response server using the information provided in the

110

‘fig; JINI DISCOVERYAND JOIN SPECIFICA TION

request, and provides a lookup service registrar using the unicast discovery
protocol.

I])_].2.3.3 Handling Responses from Multiple Djinns

What happens when there are several djinns on a network, and calls to an entity’s
.- discovery response service are made by principals from more than one of those

- djj;ms,,wi]1 depend on the nature of the discovering entity. Possible approaches
include the following:

' If the entity provides a finder—style visual interface that allows a user to
choose one or more djirms for their system to join, it should loop at step DJ .4 in
section DJ.23.], and provide the ability to:

0 Display the names and descriptions of the djinns it has found out about

0 Allow the user to select zero or more djinns to join

9 Continue to dynamically update its display, until the user has finished their
selection

9 Attempt to join all of those djinns the user selected

011 the other hand, if the behavior of the entity is fully automated, it should follow

the join protocol described in Section D].3.

DJ.2.4 The Multicast Announcement Protocol

The multicast announcement protocol is used by Jini Lookup services to

announce their availability to interested parties within multicast radius. Partici-

' ' pants in this protocol are the multicast armouncement client, which resides on the
same system as a lookup service, and the multicast announcement server, at least
one instance of which exists on every entity that listens for such announcements.

The multicast announcement client is a long-lived process; it must start at

" about the same time as the lookup service itself and remain running as long as the

lockup service is alive.

DJ.2.4.1 The Multicast Announcement Service

- The multicast announcement service uses multicast datagrams to communicate

from a single client to an arbitrary number of servers. In a TCP/IP environment the
underlying protocol used is multicast UDP.

l__I‘(1'> uio1"/_l.1s.\o.)si{]

111

THE MULTICASTANNOUNCEMENT PROTOCOL _

Multicast announcement packets are constrained by the same requirements as

multicast request packets. The fields in a multicast announcement packet body are
as follows:

Count Serialized Type Description

1' nt protocol version

java. lang. Str-i ng host for unicast discovery

int port to connect to

net .ji m‘ .core . '| ookup . Serv1'ceID service ID of originator

1' nt count of groups

java.'|ang .Str1'ng groups represented by originator :m

The fields have the following purposes:

9 The protocol version field provides for possible future extensions to the pro-
tocol. For the current version of the multicast announcement protocol this

field must contain the value 1. This field is written as if using the method

java. 'io . Dataoutput .wr'i teInt.

o The host field contains the name of a host to be used by recipients to which

they may perform unicast discovery. This field is written as if using the
method java .1'o . Dataoutput . wr"i teUTF.

+ The port field contains the TCP port of the above host at which to perform
unicast discovery. This field is written as if using the method
java.'io.Da1:a0utput.wr-1' teInt.

0 The service ID field allows recipients to keep track of the services from

which they have received announcements so that they will not need to
unnecessarily perform unicast discovery. This field is written as if using the
method net.j1'n1' .core.'|ookup. Servi ceID.wr1' teBytes.

9 The count field indicates the number of groups of which the given lookup
service is a member. This field is written as if using the method

java.'io.Data0utput.wr'iteIn1:.

9 This is followed by a sequence of strings equal in number to the count field,
each of which is a group that the given lockup service is a member of. Each
instance of this field is written as if using the method

java . "I o .Data0utput . wri teUTF.

112

THE JEN! DISCO VER YAND JOIN SPECIFICA TION

If the size of the set of groups represented by a lookup service causes the size

of a multicast announcement packet body to exceed 512 bytes, several separate

packets must be multicast, each with a disjoint subset of the full set of groups,
such that the full set of groups is represented by all packets.

DJ.2.4.2 The Protocol

The details of the multicast announcement protocol are simple. The entity that

runs the lookup service takes the following steps:

. It constructs a datagram socket object, set up to send to the well—known

multicast endpoint on which the multicast announcement service operates.

. It establishes the server side of the unicast discovery service.

. It multicasts announcement packets at intervals. The length of the interval
is not mandated, but 120 seconds is recommended.

An entity that wishes to listen for multicast announcements performs the fol-

lowing set of steps:

1. It establishes a set of service IDs of lookup services from which it has

already heard, using the set discovered by using the multicast request pro-
tocol as the initial contents of this set.

. It binds a datagram socket to the Well-known multicast endpoint on which

the multicast announcement service operates and listens for incoming mul-
ticast announcements.

. For each announcement received, it determines whether the service ID in

that announcement is in the set from which it has already heard. If so, or if

the announcement is for a group that is not of interest, it ignores the

announcement. Otherwise, it performs unicast discovery using the host and

port in the announcement to obtain a reference to the announced lookup ser-

vice, and then adds this service ID to the set from which it has already
heard.

DJ.2.5 Unicast Discovery

While workgroup-level devices need to be able only to discover local djinns, a

user might need to be able to access services in djinns that may be dispersed more

widely (for example in offices in other cities or on other continents). To this end,

113

UNICAST DISCOVERY

the software at the user’s fingertips must be able to obtain a reference to the

lookup service of a remote djinn. This is done using the unicast discovery proto-
col.

The Jini Discovery unicast protocol uses the underlying reliable unicast trans-

port protocol provided by the network instead of the unreliable rnulticast trans-

port. In the case of IP-based networks this means that the unicast discovery

protocol uses unicast TCP instead of multicast UDP.

I)J.2.5.1 The Protocol

The unicast discovery protocol is a simple request—response protocol.

If an entity wishes to obtain a reference to a given djinn, the entity has a

lookup locator object for that djinn and makes a TCP connection to the host and

port specified by that lookup locator. It sends a unicast discovery request (see

below), to which the remote host responds.

If a lookup service is responding to a multicast request, the request to which it
is responding contains the address and port to respond to, and it makes a TCP con-

nection to that address and port. The respondee sends a unicast discovery request,

and the lookup service responds with a proxy.

The protocol diagram in Figure DJ.22 illustrates the flow when unicast dis-

covery is initiated by a discovering entity.

TCP connection established

unicast request sent

unicast IESPOIISB S61“

discovering lockup
entity service

FIGURE D.T.2.2: Unicast Discovery Initiated by a Discovering Entity

114

I IHE JINI DISCOVERY!-IND JOIN SPECIFICATION

The protocol diagram in Figure DJ.23 indicates the flow when a lookup ser-
vice initiates unicast discovery in response to a multicast request.

TCP connection established

nnicast request sent

unicast response sent

discovering lookup
entity service

FIGURE DJ.2.3: Unicast Discovery Initiated by a Laokup Service

. DJ.2.5.2 Request Format

A discovery request consists of a stream of data as would be obtained by writing
- .. code similar to the following:

int protoVer's'ion;_ // pr'otoco'l version

java.io.ByteArrayOutputStream bytestr =

new java.1'o. ByteArrayOutputStream();

java. io. Dataoutputstream objstr =

new java. io.Data0u1:putStrean1(byteStr') ;

objstr .wr'i te-In't(protoVers1' on);

byte[] requestBody = by1:eStr.toByteArr'ay(); // f1'na'| r'esu'|t

The protoversi on variable above must have a value of 1 for the current version
of the unicast discovery protocol. The r'equestBody variable contains the discov-
ery request as would be sent to the unicast discovery request service.

uiu[‘;.-\'.1o.-umsg([

115

UNTCASTDISCO PERI’

DJ.2.5.3 Response Format

The response to the above request consists of a stream of data as wouid be

obtained by writing code similar to the following:

net.j1'n1' .core.1ookup.Ser'viceRegistr'ar' reg;

Str'ing[] groups; // groups registrar w-i'|'| respond with

java.rmi.Marsha11edObject obj =

new java.rmi.MarshaT1ed0bject(reg);

java.io.ByteArray0utputStream byteStr =

new java.io.ByteArray0utputStream();

java.io.0bject0utputStream objStr = new

java.io.Object0utputStream(byteStr);

objStr.wr'1' te0bject(obj):

objStr.wr"1' teInt (groups .'ieng1:h);

for (1'nt1' = 0; 1' < groups.1ength; ‘i++) {

obj Str'.wr'i 1:eUTF(groups [‘i]):

}

byte[] re-sponseBody = byteStr'.toBy1:eArray(); // 'F'ina1 resu1t

When the discovering entity receives this data stream, it can deserialize the

Marsha11ed{Jbject it has been sent and use the get method of that object to _
obtain a lookup service registrar for that djinn.

116

I 1115 JINI DISCOVERYAND JOIN SPECIFICATION

DJ.3 The Join Protocol

HAVING covered the discovery protocols, we continue on to describe the join
protocol. This protocol makes use of the discovery protocols to provide a standard
sequence of steps that services should perform when they are starting up and reg-

istering themselves with a lookup service.-

DJ.3.1 Persistent State

A service must maintain certain items of state across restarts and crashes. These

items are as follows:

0 Its service ID. A new service will not have been assigned a service ID, so
this will be not be set when a service is started for the first time. After a ser-

vice has been assigned a service ID, it must continue to use it across all

lockup services.

0 A set of attributes that describe the service’s lockup service entry.

0 A set of groups in which the service wishes to participate. For most services

this set will initially contain a single entry: the empty string (which denotes

the public group).

O A set of specific lockup services to register with. This set will usually be

empty for new services.

Note that by “new service” here, we mean one that has never before been

started, not one that is being started again or one that has been moved from one

_ network to another.

'_ DJ.3.2 The Join Protocol

When a service initially starts up, it should pause a random amount of time (up to

' 15 seconds is a reasonable range). This will reduce the likelihood of a packet

uto[‘;.{.1;).u;n.)st(]

'.o.a-».-m-..—.....<....v».v=-e.~om..-....»e«»-p«>-w-‘-.--

117

THE JOIN PROTOCOL

stcnn occurring if power is restored to a network segment that houses a large
number of services.

DJ.3.2.1 Initial Discovery and Registration

For each member of the set of specific lockup services to register with, the service

attempts to perform unicast discovery of each one and to register with each one. If
any fails to respond, the implementcr may choose to either retry or give up, but
the non—respcnding lockup service should not be automatically removed from the
set if an implementation decides to give up.

Joining Groups

If the set of groups to join is not empty, the service performs multicast discovery
and registers with each of the lcokup services that either respond to requests or
announce themselves as members of one or more of the groups the service should

_]01I‘l.

Order of Discovery

The unicast and multicast discovery steps detailed above do not need to proceed in

any strict sequence. The registering service must register the same sets of
attributes with each lockup service, and must use a single service ID across all

registrations.

DJ.3.2.2 Lease Renewal and Handling of Communication Problems

Once a service has registered with a lockup service, it periodically renews the
lease on its registration. A lease with a particular lockup service is cancelled only
if the registering service is instructed to unregister itself.

If a service cannot communicate with a particular lockup service, the action it

takes depends on its relation to that lockup service. If the lockup service is in the
persistent set of specific lockup services to join, the service must attempt to 1'ereg—
ister with that lockup service. If the lookup service was discovered using multi-
cast discovery, it is safe for the registering service to forget about it and await a
subsequent multicast announcement.

118

335"_,Iim‘J' DISCOVERYAND JOIN SPECIFICATION

_2,3 Making Changes and Performing Updates

fill"-ibute Modification

a" service is asked to change the set of attributes with which it registers itself, it
aves the changed set in a persistent store, then performs the requested change at
act,“ lookup service with which it is registered.

, Rggiswfing and Unregistering with Lookup Services

' service is asked to register with a specific lockup service, it adds that lockup
Hgervice to the persistent set of lockup services it should join, and then registers

self with that lockup service as detailed above.

a service is asked to unregister from a specific lockup service and that ser-
c'e.I is in the persistent set of lockup services to join, it should be removed from

that set. Whether or not this step needs to be taken, the service cancels the leases
all entries it maintains at that lockup service.

1.3.2.4 Joining or Leaving a Group

aservice is asked to join a group, it adds the name of that group to the persistent

="et of groups to join and either starts or continues to perform multicast discovery

sing this augmented group. .
. Ifthe service is requested to leave a group, the steps are a little more complex:

" 1. It removes that group from the persistent set of groups to join.

"2. It removes all lockup services that match only that group in the set of

groups it is interested in from the set it has discovered using multicast dis-

covery, and unregisters from those lockup services.

3. It either continues to perform multicast discovery with the reduced set of
groups or, if the set has been reduced to empty. ceases multicast discovery.

119

DISCOVERYAND JOIN SPECJFICAITON

Network Issues

Now we will discuss various issues that pertain to the multicast network proto-
col used by the multicast discovery service. Much of the discussion centers on the
Internet protocols, as the lookup discovery protocol is expected to be most heavily

"sled on IP-based intemets and intranets.

I)J.4.1 Properties of the Underlying Transport

f,"I.‘he network protocol that is used to communicate between a discovering entity
-and an instance of the discovery request service is assumed to be unreliable and

iconnectionless, and to provide unordered delivery of packets.

This maps naturally onto both IP multicast and local-area [P broadcast, but
. should work equally well with connection-oriented reliable multicast protocols.

nJ'.4.1.1 Limitations on Packet Sizes

:' Since we assume that the underlying transport does not necessarily deliver packets

in order, we must address this fact. Although we could mandate that request pack-

-__et_s contain sequence numbers, such that they could be reassembled in order by
instances of the discovery request service, this seems excessive. Instead, we

[require that discovery requests not exceed 512 bytes in size, including headers for
_' lower-level protocols. This squeaks in below the lowest required MTU size that is

. required to be supported by IP implementations.

I DJ.4.2 Bridging Calls to the Discovery Request Service

Whether or not calls to the discovery request service will need to be bridged

across LAN or wide area network (WAN) segments will depend on the network

protocol being used and the topology of the local network.

120

LIMITING THE SCOPE OF MULTTCAST3 '

In an environment in which every LAN segment happens to host a Jini Lookup

service, bridging might not be necessary. This does not seem likely to be a typical
scenario.

Where the underlying transport is multicast IP, intelligent bridges and routers

must be able to forward packets appropriately. This simply requires that they sup.
port one of the multicast [P routing protocols; most router vendors already do so.

If the underlying transport were permitted to be local-area IP broadcast, some
kind of intelligent broadcast relay would be required, similar to that described in
the DHCP and BOOTP specifications. Since this would increase the complexity of
the infrastructure needed to support the Jini Discovery protocol, we mandate use
of multicast lP instead of broadcast]P.

DJ.4.3 Limiting the Scope of Multicasts

In an environment that makes use of IP multicast or a similar protocol, the joining

entity should restrict the scope of the rnulticasts it makes by setting the time-to-
live ('I'I'L) field of outgoing packets appropriately. The value of the TTL field is
not mandated, but we recommend that it be set to 15. '

DJ.4.4 Using Multicast IP as the Underlying Transport

If multicast IP is being used as the underlying transport, request packets are

encapsulated using UDP (checksums must be enabled). A combination of a well-
known multicast IP address and a well-known UDP port is used by instances of the

discovery request service and joining entities.

DJ.4.5 Address and Port Mappings for 'l'CP and Multicast UDP

The port number for Jini Lookup discovery requests is 4160. This applies to both
the multicast and unicast discovery protocols. For multicast discovery the IP

address of the multicast group over which discovery requests should travel is
224 . 0 . 1 . 85. Multicast announcements should use the address 224 . 0 . 1 . 84.

121

fig jgvI DISCOVERY AND JOIN SPECIFICATION

D15 LookupLocator Class

LookupLocator class provides a simple interface for performing unicast
__ iscovefyi

' package net . j*in'i .cor'e.d'i scovery;

- --import java.-'|o.I0Except1'on;

import java.1'o.Seria11'2ab'le;

-' import java.net.Ma'|formedURLException;

-import ne1:.j1'n1' .core.'|ookup.Serv1'ceReg1' strar;

(rmliifl['f.\.l3.-\('l'3S[('[
pub'| 1' c c'| ass LookupLocator 1'rnp'| ements Se r'i a1'i zab'| e {

pub11' c LookupLocator(S1:r'i ng host , ‘int port) {...}

pub1'ic Loo|<upLocato r(Str1' ng ur'|)
th rows Ma1 ‘F0 r'medU RLExcept1' on {...}

pub1 1' c Stri ng getHostO {...}

pub'|1' c int ge1:Port() {...}

pub"! 1' c Se N1‘ ceReg'i strar ge1:Reg'i straro

throws IOExcepti on , C1 as sNotFoundExcept-ion {...}

pub'|'i c Se-r'v'i ceReg'i st rar getReg1' 5trar‘('i nt timeout)
th rows IOExcept-i on , C1 assNotFoundExcept1' on {...}

}

Each constructor takes parameters that allow the object to detemflne what IP
address and TCP port number it should connect to. The first form takes a host
name and port number. The second form takes what should be a jinf-scheme
URL. If the URL is invalid, it throws a java . net .Ma1 for'medURLExcept1' on. Nei-

ther constructor performs the unicast discovery protocol, nor does either resolve

the host name passed as argument.

The gerHost method returns the name of the host with which this object

"attempts to perform unicast discovery, and the getPo rt method returns the TCP
- port at that host to which this object connects. The equa1s method returns true if
"both instances have the same host and port.

122

JINI TECHNOLOGY URL SYNTAX

There are two forms of getRegi st rar method. Each performs unicast discov-

ery and returns an instance of the proxy for the specified lookup service, or throws
either a java.io.IOExcepti on or a java. lang .Cl assNotFoundExcepti on if a

problem occurs during the discovery protocol. Each method performs unicast dis-

covery every time it is called.

The form of this method that takes a timeout parameter will throw a

java. io . InterruptedIOExcept-i on if it blocks for more than timeout millisec-

onds while waiting for a response. A similar timeout is implied for the no-arg
form of this method, but the value of the timeout in milliseconds may be specified

globally using the net . j i ni .di scove ry . timeout system property, with a
default equal to 60 seconds.

DJ.5.1 Jim’ Technology URL Syntax

While the Uniform Resource Locator (URL) specification merely demands that a

URL be of the form protocol :data, standard URL syntaxes tend to take one of
two forms:

9 protocol ://hast/da ta

0 protocol : //host:por‘t/data

The protocol component of a Iini technology URL is, not surprisingly, ji ni.
The host name component of the URL is an ordinaiy DNS name or IP address. If
the DNS name resolves to multiple IP addresses, it is assumed that a lookup ser-

vice for the same djinn lives at each address. If no port number is specified, the
default is 4160.]

The URL has no data component, since the lookup service is generally not

searchable by name. As a result, a Iini technology URL ends up looking like

jini ://examp'le.or'g

with the port defaulting to 4160 since it is not provided explicitly, or, to indicate a

non-default port,

ji ni ://exampl e . com : 4162

1 Ifyou speak hexadecimal, you will notice that 4160 is the decimal representation of (CAFE — BABE).

123

N THE mvr DISCOVERYAND JOHV SPECIFICATION

DJ.5.2 Serialized Form

Class set"! a‘! Vers-ionUID Serialized Fields

' LookupLocator 1448769379829432795[. String host
int port

124

THE JINI DISCOVERY UTILITIES SPECIFICATION describes a set ofulility classes
and interfaces that will help users discover lookup services. They

implement mechanisms that drive the discoveryprotocols
and that invoke your code at relevant moments, turning

A the network protocol into useful Java language
abstractions.

125

DU

The Jini Discovery Utilities

Specification

“DU.1 Introduction

EACH individual party in a Java Virtual Machine (JVM) on a given host is inde- '
pendeutly responsible for obtaining references to lookup services. In this specifi~

' cation we first coves utility classes that such parties can use to simplify multicast

discovery tasks. We then present lower-level utility classes that are useful in build-

ing these kinds of utilities.

DU.1.1 Dependencies

This specification relies on the following other specifications:

0 Java Object Serialization Specification

0 Jim‘ Lookup Service Specification

0 Jim’ Discovery and Join Specification

126

' fin: DISCOVERY UTILITIES SPECIFICATION

DtJ.2 Multicast Discovery Utility

PARTIES can obtain references to lookup services via the multicast discovery.
- protocols by making use of the LookupD'i scovery class.

package net.jini.discovery;

‘import net.jini.core.1ookup.ServiceRegistrar;
import java.io.IOException;

pub1ic fina1 c1ass Lookupfliscovery {
pub1ic static fina1 String[] ALL_GROUPS = nu11;
pub1ic static fina1 String[] N0_GROUPS = new String[0];

public LookupDiscovery(String[] groups)
throws IOException {m}

pub1ic void addDiscoveryListener(DiscoveryListener 1) {m}
pub11c void removeDiscoveryListener(DiscoveryListener 1)

{s}

pub1ic void discard(Serv1ceRegistrar reg) {m}
pub1ic String[] getGroups() {W}

pub11c void setGroups(String[] groups)
throws IOException {N}

pub11c void addGroups(String[] groups)
throws IOExcept1on {m}

pub1ic void removeGroups(Str1ng[] groups) {W}

pub1ic void terminate() {m}

}

The LookupDi scove ry class relies upon the D'i scoveryEvent class:

package net.j1ni.d1scovery:

import net.jini.core.1ookup.Serv1ceRegistrar;

import java.uti1.EventL1stener;

127

IHE Lookupfliscovery CLASS

import java. util . Eventobject;

public cl ass Di scove ryEvent extends Eventobject {

public D1" stove-r'yEvent (Obj ect source ,

Servi ceRegi st rar [] regs) {...}

public Servi ceReg'i s1:rar[] getReg'i strars O {...}
}

The LookupD1' scovery class also relies upon the D1 scove r'yL1' stener interface:

public interface Di scove r'yL'l stener extends EventL1' stener -[

public void d'i scover'ed(D‘i scover'yEven1: e);

public void d'i scarded (Di scover'yEvent e) ;

}

These classes and interfaces hide the details of the underlying protocol implemen-

tation, but provide enough information to the progranuner to be flexible and
useful.

DU.2.1 The LookupD'i scovery Class

The net .j1‘ ni . discovery . LookupD1' scovery class encapsulates the operation of

the multicast discovery protocols, including the automatic switch from use of the
multicast request protocol to the multicast announcement protocol. Each instance
of the LookupD1' scove ry class must behave as if it operated independently of all
other instances. The semantics of the methods on this class are:

9 The constructor takes a set of groups in which the caller is interested as

parameter. This set is represented as an array, none of whose elements may
be null. The empty set is represented by an empty array, and no set (indi-

cating that all lockup services should be discovered) is indicated by a null

reference. The constructor may throw a java . 1' o . I0Except1' on if a problem
occurs in starting discovery.

9 The addD1'scover'yListener' method adds alistener to the set of objects 1is~

tening for discovery events. Once a listener is registered, it is notified of all

lockup services that have been discovered to date, and is then notified as new
lockup services are discovered or existing loolrup services are discarded.

9 The r-emove-Di scoveryti stener method removes a listener from the set of

objects that are listening for discovery events.

128

7}-r,rg JINI DISCOVERY Urrtrrras spscrrrcanow

. The d1’ sca rd method removes a particular lookup service from the set that
is considered to already have been discovered. This allows the lookup ser-
vice to be discovered again; it is intended as a mechanism for programmers
to remove stale entries from the set so that they do not have to keep trying to
contact lookup services that no longer exist.

¢ The getc roups method returns the set of groups that this LookupD1' scovery
object is attempting to discover. If the set is empty, this method returns the
empty array, and if there is no set, it returns the null reference. '

o The terminate method ends discovery. After this method has been called,
no new lockup services will be discovered.

Discovery usually starts as soon as an instance of this class is created and ends
either when the instance is finalized prior to garbage collection, or when the
terminate method is called. However, if the empty set is passed to the construc-

'' tor, discovery will not be started until the setG roups method is called with either
no set or a non-empty set.

I DU.2.2 Useful Constants

The ALL__GROU PS constant can be passed to the LookupD1' scove ry constructor and
to the setcroups method to indicate that all loolcup services within range should

I ' be discovered. The N0__GROUPS constant indicates that no groups should be discov-
ered (implying that discovery should be postponed until another call to
setfiroupsy

If the getcroups method returns the empty array, that array is guaranteed to
be referentially equal to the N0_GROUPS constant (that is, it can be tested for equal-
ity using the == operator).

DU.2.3 Changing the Set of Groups to Discover

' Progratnmers may modify the set of groups to be discovered on the fly, using the
methods described below. In each case, a set of groups is represented as an array
of strings, none of whose elements may be nul l. The empty set is denoted by the
empty array, and no set (indicating that all lookup services should be discovered)
is indicated by null. Duplicated group names are ignored.

9 The setcroups method changes the set of groups to be discovered to the
given set (or to no set, if indicated).

129

THE DfscoveryEvent CLASS

0 The addcroups method augments the set of groups to be discovered. This
method throws a java .1 ang . Unsupportedoperati onExcep1:i on if there is
no set to be augmented.

0 The removecroups method removes members from the set of groups to be
discovered. No exception is thrown if an attempt is made to remove a group
that is not currently in the set to be discovered. This method throws a
java . ‘I ang . Unsupportedoperati on Exception if there is no set to remove
members from.

When groups are removed from the set to be discovered, any already discov-
ered lookup services that are no longer members of any of the groups to be discov-
ered are removed from the set maintained by the particular LookupDi scovery

object in use, and all listeners are notified that they have been discarded.
If groups are added to the set to be discovered, the multicast request protocol

is used to discover lookup services for those groups. If there are no responses to

multicast requests, the Lookupni scovery object switches over to listening for
multicast announcements for those groups.

Since calling either the setcroups or addcroups method may result in the
multicast request protocol being started afresh, either method may throw a
java. io . IOExcepti on if a problem occurs in starting the protocol.

If any of the setcroups, addcroups, or removecroups methods is called
after the terminate method has been called, the invocation will throw a

java .1 ang . Ill egal StateExcepti on.

I)U.2.4 The Di scoveryEvent Class T

The net . j i ni . di scove ry .Di scove ryEvent class encapsulates the information
made available by the multicast discovery protocols. The sole new method of the
Di scoven/Event class is getkegi st rars, which returns an array of lookup ser-
vice registrars. The getsource method returns the Lookupoi SCOVE ry object that
originated the given event.

DU.2.5 The Di scoveryL'i stener Interface

Objects that wish to register for notifications of multicast discovery events must
implement the net. ji ni .di scovery.D1' scoveryLi stener interface. Its
d1’ scove red method is called whenever new lockup services are discovered, with
an event containing a set of discovered lockup services represented as an array.

130

I THE JINI DISCOVERY UTILITIES SPECIFICATION

The discarded method is called whenever previously discovered lockup services

have been discarded by the originating Looku pDi scovery object; the event con-

[gins a set of discarded lookup services represented as an array. An event is deliv-

' _ ered to listeners Whenever the discard method is called on a LookupD_i scovery
object, and also if a call to either its removefi roups or setcroups method results
in lookup services being discarded.

DU.2.6 Security and Multicast Discovery

When a LookupDi scovery object is created, the creator must have permission

either to attempt discovery of each group specified in the set to discover, or to

attempt discovery of all groups if the set is null. This is also true for the

_ addGr'oups and setcroups methods on the Lookupniscovery class. Ifappropti-

ate permissions have not been granted, the constructor and these methods will
throw a java. 1 ang . Securi tyExcepti on.

Discovery permissions are controlled in security policy files using the

net . j i ni . di scovery. Di scover-yPer-mi ssi on permission.

package ne1:.ji ni .discovery;

import java. security. Permission;

import java. io.Ser'ia'|i zab'|e;

public final class Discover'yF’ermission extends Permission

implements Serializable

public Di scoveryPe rmi ssi on(Stri ng group) {...}

public Di scoveryPer'm-i ssi on(S1:ri ng group , String actions)
{...}

}

The actions parameter is ignored. The following examples illustrate the use of this
permission:

permission net.jini.discover'y.DiscoveryPer'mission "*";

All groups

permission net . ji ni .di scovery. Di scover'yPer'mi ssi on "":

Only the “public” group

permission net . j i ni . di scovery. Di scoveryPermi ssi on "foo" ;

The group “foo"

131

S DFORMS

permission net . j 1' n'i . discovery. D1" scoveryPerm'i ssi on "* . sun . corn";
Groups ending in “.sun.com”

Each declaration grants permission to attempt discovery of one name. A name
does not necessarily correspond to a single group:

0 The name * grants permission to attempt discovery of all groups.

0 A name beginning with * . grants permission to attempt discovery of all
groups that match the remainder of that name; for example, the name
"*.examp'|e.org" would match a group named "foon1y.examp1e.org"
and also a group named "sf . ca . exampl e. org".

9 The empty name '"' denotes the public group.

0 All other names are treated as individual groups and must match exactly.

A restriction of the Java Development Kit (JDK) 1.2 security model requires

that appropriate net . ji n'i .d'i scovery . Di scove ryPe r'a1'i ss'i on be granted to the
Jini software codebase itself, in addition to any codebases that may use Jini soft—
ware classes.

DU.2.7 Serialized Forms

m_.:

Class sarialver-s-lonUID Serialized Fields _.__..j:..

Di scover'yEvent S280303374696501479L Se rvi ceReg'i strar [] regs

Di scove ryPerm'i ssi on -303 69"I'802S008149170L none

132

fiU.3 Protocol Utilities

utilities we will now present are intended for use by implementors of mul-
ticast discovery utilities, and for others who might need to exercise more control

over their usage of the Jini Discovery protocols.

I DU.3.1 Marshalling Multicast Requests

The Outgoi ngMul t1‘ castRequest class provides facilities for marshalling multi-
cast discovery requests into a form suitable for transmission over a network. This

- class is useful for programmers who are implementing the component of one of

__the discovery protocols that sits on a device that wishes to join a djinn.

package net.jini.discovery;

import net . ji m" . core .1ookup . Se-rv1'ceID;

import java.-io.I0Except1'on:

import java. net . Da1:agramPacket;

public class 0u1:go'i ngMu'|t1' castRequest {

public stati c DatagramPacket [J

marshal (1' nt port , S1:r'ing[] groups , Serv1'ceID[] heard)

throws IOExcept'i on {...}
}

This class cannot be instantiated, and its sole method, marshal, is static. This

method takes as parameter the port of the multicast response service to advertise,

along with a set of groups to look for and a set of service IDs from which this sys-
tem has already heard. The latter two arguments are represented as arrays. No
parameter may be null, and the arrays must have no members that are null, and

none should be duplicated (implementations are not required to check for dupli-
cated members).

This method returns an array of Datag ramPacket objects; this array contains
at least one member, and will contain more if the request is not small enough to fit

133

UNMHRSHAILING MULTICAST REQUESTS

in a single packet. Each such object has been fully initialized; it contains a multi.

cast request as payload and is ready to send over the network.

In the event of error, this method may throw a java. io . IOExcept1' on if max.

shalljng fails. In some instances the exception thrown may be a more specific sub-

class of this exception.

DU.3.2 Unmarshalling Multicast Requests

The Incomi ng|'-‘lul ti castReques1: class provides facilities for unmarshalling mul-

ticast discovery requests into a form in which the individual parameters of the

request may be easily accessed. This class is useful for programmers who are

implementing the component of one of the discovery protocols that works with a

lookup service implementation within a djinn.

package net. jini .d'i scovery;

import java.1'o.I0Exception:

import java.net.Datagr'amPacket;

import ja\ra.net.InetAddre55:

import net.j'in'i .cor'e.lookup.Serv'iceID;

public class IncomingMulticastRequest {

public Incomi ngMul ti castReque-st (Datagr'amPacket dg ram)

throws IOException {N}

public InetAddress getAddress() {N}

public int getPort() {a}

public String[] getGroups() {N}

public ServiceID[] QetServiceIDs() {m}

}

This class may be instantiated using a javamet .Datagran1Packet. The payload

of the DatagramPacke1: is assumed to contain nothing but the rnarshalied discov-

ery request. If the marshalled request is corrupt, a java. 1'0. IOExcept'i on or a

java.l ang . Cl assNotFoundExcept'i on will be thrown. In some such instances a

more specific subclass of either exception may be thrown that will give more
detailed information. '

The methods of this class are mostly self-explanatory.

0 The getAddress method returns the IP address of the host to which the

caller should respond.

134

" THE JINI DISCOVERY UITUTTES SPECIFICATION

9 The getPort method returns the TCP port number on that host to which the
caller should connect.

o The getfiroups method returns the groups in which theoriginator of this

request is interested. The array returned by this method may be of zero

length; none of its fields will be null; and items may or may not be dupli-
cated.

0 The getservi ceIDs method returns the set of service IDs of lockup ser-

vices from which the originator has already heard. The array returned by this

method may have length equal to zero, but none of its fields will be null,

and items may or may not be duplicated.

o The equals method returns true if both instances have the same address,

port, groups, and service IDs.

DU.3.3 Marshalling Multicast Announcements

H The Outgoi ngMul t"i castAnnouncement class encapsulates details of announcing
a lookup service.

package net . :11‘ n1' . d'i scovery:

‘import java. 1'o . I0Except1'on;

‘import java.net.Datagran1Packet;

‘import net.j1‘n'i.core.lookup.Serv'iceID;

‘import net. j'i n'i . core . discovery. Lookuptocator;

public class Outgoinglilulticastfitnnouncement {

publ 1'c stati c DatagramPacket []

marshal (Serv1'ceID id, LookupLocator loc,

Str'1' ng[] groups)

throws I0Except1'on {...}

}

The sole method of this class, marshal, is static. It takes as parameters the service

ID of the lookup service being advertised, the locator via which unicast discovery

of that lockup service may be performed, and the names of the groups of which
that service is a member. If a problem occurs with marshalling the request, a

java. net. I0Except1' on will be thrown.

This method returns an array of DatagramPacket objects, each of which has

been initialized such that it is ready to be multicast.

135

UNMARSHALLJNG MULTICAST ANNOUNCEMENTS

DU.3.4 Unmarshalling Multicast Announcements

The Incomi ngMu1t'i castAnnouncement class permits access to the fields of a
multicast announcement datagram that has been received.

package net . ji ni . discovery;

‘import java.1'o.IOExcept'i on;
import java.net.Datagr-amPacket;

‘import net.j'in'i .cor'e.1ookup.Serv1'ceID;

‘import net.jini .cor'e.discovery.LookupLocator';

pubiic c1ass IncomingMu1ticastAnnouncement {
public IncomingMu1ticastAnnouncement(DatagramPacket p)

throws IOException {m}

pub1ic ServiceID getServiceID() {m}
pubiic LookupLocator getLocator() {N}
pub1ic String[] getGroups() {N}

}

The constructor takes a datagram packet as argument. If it cannot decode the con«
tents of the datagram packet, it throws a javafl ang.C'I assNotFoundExcept'ion
or a java. "1 o . I0Except1 on. The getSer'v1'ceID method returns the service ID of
the originator. The getLocator' method returns the locator via which unicast dis-
covery of the originator may be performed. The getcroups method returns the
groups represented by the originator; the array returned by this method may be
nu1 1, will not be empty, and will contain no nu1 ‘I elements. Elements may or may
not be duplicated. The equa'| 5 method returns true if both instances have the same
service ID.

DU.3.5 Easy Access to Constants

The Constants class provides easy access to some constants used during the
lookup discovery process.

package net. ji m’ .d1' scovery;

import java. net . InetAdd ress;

import java . net . UnknownHostExcept'i on:

pub1'ic ciass Constants -[

136

I THE IINI DISCOVERY UTILITIES SPECIFICATION

public static ‘Final short discoven/Port = 4160;

public static final InetAddr'ess getRequestAddress()
throws UnknownHostExce-ption {...}

public static ‘Final InetAddr'ess getAnnouncementAddr'ess()
throws UnknownHostException -[...}

}

I - The vaiue of the di scove ryPort variable is the UDP port number over which the
multicast request and announcement protocols operate, and also the TCP port

number over which the unicast discovery protocol operates by default.

The getRequestAddr'ess and getAnnouncementAdd ress methods return the

addresses of the multicast groups over which multicast request and multicast

announcement take place, respectively. These methods may throw a

java. net. UnknownHostExcepti on if called in a circumstance under which mul-
--ticast address resolution is not permitted.

DU.3.6 Marshalling Unicast Discovery Requests

The Outgoingunicastkequest class provides facilities for marshalling unicast

' ' discovery requests into a form suitable for transmission over a network.

package net .jin1' .di scovery;

import java. io. IOException;

import java.io.0utputStream;

pub'li c class Outgoi ngUni castRequest {

public static void marshal (0utputStream str)

throws IOExcepti on {...}

}

This class cannot be instantiated, and its only public method is static.

DU.3.7 Unmarshalling Unicast Discovery Requests

The Incomi ngUni castRequest class provides facilities for unmarshalling unicast

discovery requests.

package net. ji ni .discover‘y';

import java. io . Inputstream;

..iI-[a.u:r.1siq

137

MARSHALLING UNICAST DISCOVERY RESPONSES

import java. 'io. I0Except1'on;

public class Incomingunicastkequest {

public Incom'i ngUn'icastRequest(InputStream str)

throws I0Except1'on {...}

}

Since, under the current version of the unicast discovery protocol, no useful infor~

mation is transmitted in a request, this class has no public methods.

DU.3.8 Marshalling Unicast Discovery Responses

The 0utgo1'ngUn1'castResponse class provides marshalliug facilities for unicast
discovery responses.

package net.j'in'i .d1' scovery;

1'mpo rt java . 'io . IOExcept'i on;

import java . ‘lo . Outputstream;

import net.j1'n1' .core.'|ookup.Serv1' ceReg'i strar;

public class Outgoingunicastflesponse {

public static void marshal Coutputstream s,

Serv1'ceReg'istrar reg

Str1'ng[] groups)

throws IOExcept1'on {...}
}

This class may not be instantiated. The sole static method, marshal, writes the

given registrar proxy to the given output stream, and indicates that it is a member

of the given set of groups (which is represented as an array which should have no

nu'|'| members, but may contain duplicates). If a problem occurs during marshal-
ling or writing, it throws a java. 'io . IOExcept1' on.

DU.3.9 Unmarshalling Unicast Discovery Responses

The Incomi ngun-I castResponse class allows a caller to unmarshal a unicast dis-

COVC1'y ICSIJOIISC.

138

. E JIM DISCOVERY UTILITTES SPECIFICATION

'_ _ package net.j1'n'i .d'iscover'y;

import java.io.IOException;

.import java.io.InputStream;

import net.jini.core.Tookup.ServiceReg1strar;

pub1'ic c'Iass Incom1' ngUn1' castkesponse {

pub'| 1' c Incom1'ngUn1' castRespon5e(InputStr'ea.m 5)
throws IOExcept'i on , C1 assNotFoundExcepti on {._}

pub'l ‘I c Serv1‘ceReg1'strar' getReg-i strar'() {...}
pub"! 1' c Str'i ng [] getGroups O {...}

}

"I‘he constructor unmarshals a response from an input stream, and throws an
exception if the reading or the unmarshalling fails. The getflegistrar method
returns the unmarshalled registrar proxy. The getcroups method returns the set of
groups of which the given lookup service is a member. This set is represented as
an array of strings, with no nu'l1 members (duplicate members may appear, how-
ever). The equa1s method returns true if both instances have the same registrar.

139

THE JINI ENTRY SPECIFICATION defines the notion ofan entry, which is a typed

collection of objects that can be stored and-matched against with simple,

exact-match rules. As you will see, the lockup service

uses entries as attributes, so the matching rulesfor

A entries are the rulesfor matching a singte toakup
attfibute.

140

The Jini Entry Specification

ii EN.1 Entries and Templates

ENTRIES are designed to be used in distributed algorithnls for which exact-
- , match lockup semantics are useful. An entry is a typed set of objects, each of

which may be tested for exact match with a template.

I. EN.1.1 Operations

A service that uses entries will support methods that let you use entry objects. In

this document we will use the term “operation" for such methods. There are three

types of operations:

9 Store operatt'ons—operations that store one or more entries, usually for
future matches.

9 Match 0perations—operatioI1s that Search for entries that match one or more

templates.

9 Fetch operations—operations that return one or more entries.1

I It is possible for a single method to provide more than one of the operation
I types. For example, consider a method that returns an entty that matches a given
i template. Such a method can be logically split into two operation types (match

3 and fetch), so any statements made in this specification about either operation type
!_ would apply to the appropriate part of the Inethod’s behavior.5

I

5

i
5.
E

i

.5

141

EN.1.2 Entry

An entry is a typed group of object references represented by a class that imple-
ments the marker interface net . j'in'i .core. entr'y.Entry. Two different entries

have the same type if and only if they are of the same class.

package net.j'i n'i .core.entr'y;

public interface Entry extends java.'io.Ser'ia'|'izab'|e { }

For the purpose of this specification, the term “field” when applied to an entry
will mean fields that are public, non-static, non—transient, and non-final. Other
fields of an entry are not affected by entry operations. In particular, when an entry

object is created and filled in by a fetch operation, only the public non-static, non-
transient, and non—final fields of the entry are set. Other fields are not affected,

except as set by the class’s no—arg constructor.
Each Entry class must provide a public no-arg constructor. Entries may not

have fields of primitive type ("i nt, bool ean, etc), although the objects they refer
to may have primitive fields and non-public fields. For any type of operation, an
attempt to use a malformed entry type that has primitive fields or does not have a
no-arg constructor throws I1 ‘I ega‘|Arg umentExcept1' on. I

EN.1.3 Serializing Entry Objects

Entry obj ects are typically not stored directly by an entry-using service (one that
supports one or more entry operations). The client of the service will typically
turn an Entry into an implementation-specific representation that includes a seri-

alized form of the entry’s class and each of the entry’s fields. (This transformation

is typically not explicit but is done by a c1_ient—side proxy object for the remote ser-
vice.) It is these implenientation-specific forms that are typically stored and
retrieved from the service. These forms are not directly visible to the client, but

their existence has important effects on the operational contract. The semantics of
this section apply to all operation types, whether the above assumptions are true or
not for a particular service.

Each entry has its fields serialized separately. In other words, if two fields-of
the entry refer to the same object (directly or indirectly), the serialized form that is
compared for each field will have a separate copy of that object. This is true only
of different fields of an entry; if an object graph of a particular field refers to the

same object twice, the graph will be serialized and reconstituted with a single
copy of that object.

142

EHNI ENTRY SPECIFICA TION

A fetch operation returns an entry that has been created by using the entry
gas no—arg constructor, and whose fields have been filled in from such a serial-

ed f0rm_ Thus, if two fields, directly or indirectly, refer to the same underlying

ject, the fetched entry will have independent copies of the original underlying
Eobjcct

Thjs behavior, although not obvious, 15 both logically correct and practically

fivantageous. Logically, the fields can refer to object graphs, but the entry is not
itself a graph of objects and so should not be reconstructed as one. An entry (rela-
ufive to the service) is a set of separate fields, not a unit of its own. From a practical

"standpoint, viewing an entry as a single graph of objects requires a matching ser-
vice to parse and understand the serialized form, because the ordering of objects

in the written entry will be different from that in a template that can match it.

The serialized form for each field is a java. rmi .Mar5hal ledobject object

instance, which provides an equals method that conforms to the above matching

"semantics for a field. Marshal ledobj ect also attaches a codebase to class

descriptions in the serialized form, so classes written as part of an entry can be

- downloaded by a client when they are retrieved from the service. In a store opera-

fion, the class of the entry type itself is also written with a Marshalledobject,

ensuring that it, too, may be downloaded from a codebase.

EN.1.4 Unusabl eEntryExcept1"on

A net.jin1' .co re .entry. Unusabl eEn1:ryException will be thrown if the seri-

alized fields of an entry being fetched cannot be deserialized for any reason:

package net . ji m‘ . core . entry;

public cl ass UnusableEntryExcept1' on extends Exception {

public Entry part1'a'IEntry;

public String[] unusab'leF1'e'lds;

public Th rowabl e [] nestedExcept'ions;

public Unusabl eEnt ryExcept'i on(En1:ry partial ,

St ri ng E] badF1' el ds , Th rowabl e [] exceptions) {...}

public UnusableEntryExcept'ion(Throwable e) {...}

}

The partial Entry field will refer to an entry of the type that would have been
fetched, with all the usable fields filled in. Fields whose deserialization caused an

exception will be null and have their names listed in the unusabl eF'i el ds string

array. For each element in unusabl eF1' el ds the corresponding element of

143

Unusab leEntryExcep1:-$0,,

nestedExcepti ons will refer to the exception that caused the field to fail deseri.
alization.

If the retrieved entry is corrupt in such a way as to prevent even an attempt at
field deserialization (such as being unable to load the exact class for the entry),

partial Entry and unusabl eFi e'l ds will both be null, and nestedExcept'i ons
will be a single element array with the ofiending exception. '

The kinds of exceptions that can show up in nested Exc ept1‘ cns are:

9 Cl assNotFoundExcepti on: The class of an object that was serialized can-
not be found.

9 Instanti ati onExcept1' on: An object could not be created for a given type.

9 I1 1 egal A<:cessExcept1' on: The field in the entry was either inaccessible or
H na'| .

¢ java.'io.0bj ectStreamExcept1'on: The field could not be deserialized
because of object stream problems.

9 java. r'm1' . RemoteExcept1‘ on: When a Remo1:eExcept'i on is the nested
exception of an UnusableEntryExcepti on, it means that a remote refer-
ence in the entry’s state is no longer valid (more below). Remote errors asso-
ciated with a method that is a fetch operation (such as being unable to

contact a remote server) are not reflected by Unusabl eEntryExcept1' on but

in some other way defined by the method (typically by the method throwing
RemoteExcept1' on itself).

Generally speaking, storing a remote reference to a non—persistent remote
object in an entry is risky. Because entriesare stored in serialized form, entries
stored in an entry-based service will typically not participate in the garbage col-
lection that keeps such references valid. However, if the reference is not persistent
because the referenced server does not export persistent references, that garbage

collection is the only way to ensure the ongoing validity of a remote reference. If a
field contains a reference to a non-persistent remote object, either directly or indi—

rectly, it is possible that the reference will no longer be valid when it is deserial-
ized. In such a case the client code must decide whether to remove the entry from

the entry-fetching service, to store the entry back into the service, or to leave the
service as it is.

In the 1.2 Java Development Kit (JDK) software, activatable object references
fit this need for persistent references. If you do not use a persistent type, you will
have to handle the above problems with remote references. You may choose
instead to have your entries store information sufficient to look up the current ref-
erence rather-than putting actual references into the entry.

144

JIM1 ENTRY SPECIFICATION

e-:PJ.1.5 Templates and Matching

- gs. (references to objects) or wildcards (null references). When considering a
'- are T as a potential match against an entry E, fields with values in T must be

-when exactly by the value in the same field of E. Wildcards in T match any
fie in tlie same field of E.

' The type of E must be that of T or be a subtype of the type of T, in which case
9311 fields added by the subtype are considered to be wildcards. This enables a tem-

to match entries of any of its subtypes. If the matching is coupled with a
fetch operation, the fetched entry must have the type of E.

' The values of two fields match if MarshalledObject.equals returns true
for their Marshall edobject instances. This will happen if the bytes generated by

eir serialized form match, ignoring differences of serialization stream i1np1e—
mentation (such as blocking factors for bufiering). Class version differences that

. change the bytes generated by serialization will cause objects not to match‘. Nei-

-' "that entries nor their fields are matched using the Obj ect . equals method or any
' other form of type—specific value matching.

You can store an entry that has a nul l-valued field, but you cannot match
fexplicitly on a null value in that field, because null signals a wildcard field. If
" you have a field in an entry that may be variously null or not, you can set the field
" to null in your entry. If you need to write templates that distinguish between set
"I and unset values for that field, you can (for example) add a Boolean field that

' indicates whether the field is set and use a Boolean value for that field in tem-
plates.

An entry that has no wildcards is a valid template.

"EN.1.6 Serialized Form

_m

Class serial Vers'ionUID Serialized Fields

Unusabl eEntryExcept'i on —2l99083666668626172L all publicfields

145

THE JIM ENTRY UTIIJTIES SPECIFICATION defines exactly one utility: the - ' EU_1
Abs tractEn try class, which is a useful—but not required—superclass '

for Entry classes. This class uses the standard

propertiesfor Entry classes to provide default :ENTR1-E3
A implementations ofcommon methods, such as aqua Ts . match 100

and hashCode. I -a which ma
their sema

When

This speci

EU.1.1

The class

' ' Entry the

pack:

. pub'l'

146

The
Specification

.U.1 Entry Ut'

ENTRIES are designed to be used in distributed algorithms for which exact-
match lookup semantics are useful. An entry is a typed set of objects, each of

which may be tested for exact match with a template. The details of entries and
their semantics are discussed in the Jim‘ Entry Specification.

When designing entries, certain tasks are commonly done in similar ways.
This specification defines a utility class for such common tasks.

_ EU.1.1 Abstr'actEntr'y-

-"The class net. j1'm°.entry.'AbstractEn-try is a specific implementation of
Entry that provides useful implementations of eq ua1 s, has hcode, and tostr-'i ng:

package net.jini.entry;

pubiic abstract ciass AbstractEntry impiements Entry {

pub11'c bco'|ean equa1s(0bject o) {...}

pubiic int hashCode() {m} '

pubiic String toString() {m}

pub'|1'c static booiean equa1s(Entry e1, Entry e2) {...}

pub'|'ic static int hashCcde(Entry entry) {...}

pub'|'ic static String toString(Entry entry) {...}

147

SERLALJZED FORM

The static method Abs1:rac1:Entry.equa1s returns true if and only if the two

entries are of the same class and for each field F, the two objects’ values for F are

either both null or the invocation of equals on one object’s value for F with the

other object’s value for F as its parameter returns true. The static method
hashcode returns zero XOR the hashCode invoked on each non-nu'|1 field of the

entry. The static method tost r-i Hg returns a string that contains each fie1d’s name

and value. The non-static methods equals, hashCode, and toStr1' ng return a

result equivalent to invoking the corresponding static method with this as the

first argument.

EU.1.2 Serialized Form

Class ser"ia1Vers'ionUID Serialized Fields

Abst ractEnt ry 507 I 868345060424804L none

148

5.5..2:39..__#.... 5.5..2:39..__#....

149

THE JIN! DrsrsreUTED LEASING SPECIFICATION defines the leasing programming

model used throughout the Jini architecture to prevent the leakage of

E)

"N

resources. Creating a lease is a one-bid negotiation in

which the grantor of the lease decides thefine! answer

Leases allow a grantor ofa resource to give an upper

bound on how long it is willing to hold onto resources

that may have no interested users. As you will see, the
lockup service uses leases to ensure the timeliness of

each registered service.

LE.1

THE P...
and unify

' t tions. Thi
tem and u

use to the

I when ace:

a lease, at

in everyd:

"both the g

a detailing
approprim

' ':'There
. ‘the only I

grmnmer’
Intervals,

available I

150

8

Specification

-“iLE.1 Introduction

' THE purpose of the leasing interfaces defined in this document is to simplify
and unify a particular style of programming for distributed systems and applica-
tions. This style, in which a resource is offered by one object in a distributed sys-
tem and used by a second object in that system, is based on a notion of granting a
use to the resource for a certain period of time th '
when access to the resource is firs: requested an

a lease, and is meant to be similar to the notion of a lease used in everyday life. As
in everyday life, the negotiation of a lease entails responsibilities and duties for
both the grantor of the lease and the holder of the lease. Part of this specification is
a detailing of these responsibilities and duties, as well as a discussion of when it is
appropriate to use a lease in offering a distributed service.

There is no requirement that the leasing notions defined in this document be
the only time-based mechanism used in software. Leases are a part of the pro-
grammer’s arsenal, and other time-based techniques such as time—to-live, ping
intervals, and keep—alives can be useful in particular situations. Leasing is not
meant to replace these other techniques, but rather to enhance the set of tools
available to the programmer of distributed systems.

LE.1.l Leasing and Distributed Systems

Distributed systems differ fundamentally from non-distributed systems in that
there are situations in which different parts of a cooperating group are unable to

(EI'"[J 'E‘1usI’.a*[

151

LEASING AND DISTRIBUTED SYSTEMS

communicate, either because one of the members of the group has crashed or

because the connection between the members in the group has failed. This partial

failure can happen at any time and can be intermittent or long-lasting.

The possibility of partial failure greatly complicates the construction of dis

tributed systems in which components of the system that are not co-located pro-

vide resources or other services to each other. The programming model that is

used most often in non-distributed computing, in which resources and services are

granted until explicitly freed or given up, is open to failures caused by the inability

to successfully make the explicit calls that cancel the use of the resource or sys~

tern. Failure of this sort of system can result in resources never being freed, in ser-

vices being delivered long after the recipient of the service has forgotten that the

service was requested, and in resource consumption that can grow without
hounds. -.

To avoid these problems, we introduce the notion of a lease. Rather than

granting services or resources until that grant has been explicitly cancelled by the

party to whom the grant was made, a leased resource or service grant is time
based. When the time for the lease has expired, the service ends or the resource is

freed. The time period for the lease is determined when the lease is first granted,

using a request/response form of negotiation between the party wanting the lease

and the lease grantor. Leases may be renewed or cancelled before they expire by

the holder of the lease, but in the case of no action (or in the case of a network or

participant failure), the lease simply expires. When a lease expires, both the

holder of the lease and the grantor of the lease know that the service or resource
has been reclaimed.

Although the notion of a lease was originally brought into the system as a way

of dealing with partial failure, the technique is also useful for dealing with another

problem faced by distributed systems. Distributed systems tend to be long-lived.
In addition, since distributed systems are often providing resources that are shared

by numerous clients in an uncoordinated fashion, such systems are much more

difficult to shut down for maintenance purposes than systems that reside on a sin-

gle machine.

As a consequence of this, distributed systems, especially those with persistent

state, are prone to accumulations of outdated and unwanted information. The

accumulation of such information, which can include objects stored for future use '

and subsequently forgotten, may be slow, but the trend is always upward. Over the

(comparatively) long life of a distributed system, such unwanted information can

grow without upper bound, taking up resources and compromising the perfor-

mance of the overall system. _

A standard way of dealing with these problems is to consider the cleanup of

unused resources to be a system administration task. When such resources begin

to get scarce, a human administrator is given the task of finding resources that are

152

THE JINI DISTRIB UTED LEASING SPECIF1'CA TION

no longer needed and deleting them. This solution, however, is error prone (since

the administrator is often required to judge the use of a resource with no actual

evidence about whether or not the resource is being used) and tends to happen

only when resource consumption has gotten out of hand.

When such resources are leased, however, this accumulation of out-of-date

information does not occur, and resorting to manual cleanup methods is not

needed. Information or resources that are leased remain in the system only as long
as the lease for that information or resource is renewed. Thus information that is

forgotten (through either program error, inadvertence, or system crash) will be

deleted after some finite time. Note that this is not the same as garbage collection
(although it is related in that it has to do with freeing up resources), since the

information that is leased is not of the sort that would generally have any active

reference to it. Rather, this is information that is stored for (possible) later retrieval

but is no longer of any interest to the party that originally stored the information.

This model of persistence is one that requires renewed proof of interest to

maintain the persistence. Information is kept (and resources used) only as long as

someone claims that the information is of interest (a claim that is shown by the act

of renewing the lease). The interval for which the resource may be consumed

without a proof of interest can vary, and is subject to negotiation by the party stor-
ing the information (which has expectations for how long it will be interested in

the information) and the party in which the information is stored (which has

requirements on how long it is willing to store something without proof that some

party is interested). _ ‘
The notion of persistence of information is not one of storing the information

on stable storage (although it encompasses that notion). Persistent information, in

this case, includes any information that has a lifetime longer than the lifetime of

the process in which the request for storage originates.

Leasing also allows a form of programming in which the entity that reserves

the information or resource is not the same as the entity that makes use of the

information or resource. In such a model, a resource can be reserved (leased) by

an entity on the expectation that some other entity will use the resource over some

period of time. Rather than having to check back to see if the resource is used (or

freed), a leased version of such a reservation allows the entity granted the lease to

forget about the resource. Whether used or not, the resource will be freed when

the lease has expired.

Leasing such information storage introduces a prograrrnrnng paradigm that is
an extension of the model used by most programmers today. The current model is

essentially one of infinite leasing, with information being removed from persistent

stores only by the active deletion of such information. Databases and filesystcins

are perhaps the best known exemplars of such stores—both hold any information

placed in them until the information is explicitly deleted by some user or program.-

153

GOALS AND REQUIREMENTS

LE.1.2 Goals and Requirements

The requirements of this set of interfaces are:

0 To provide a simple way of indicating time-based resource allocation or
reservation

9 To provide a uniform way of renewing and cancelling leases

0 To show common patterns of use for interfaces using this set of interfaces

The goals of this document are:

9 To describe the notion of a lease, and show some of the applications of that

notion in distributed computing

+ To show the way in which this notion is used in a distributed system

0 To indicate appropriate uses of the notion in applications built to run in a dis-
tributed environment

LE.1.3 Dependencies

This document relies on the following specifications:

4 Java Remote Method Invocation Specification

154

THE JINI DISTRIBUTED LEASING SPECIFICATION

i i LE.2 Basic Leasing Interfaces

TIIE basic concept of leasing is that access to a resource or the request for some
action is not open ended with respect to time, but granted only for some particular

interval. In general (although not always), this interval is determined by some

negotiation between the object asking for the leased resource (which we will call

_ the lease holder) and the object granting access for some period (which we will
call the lease grantor).

In its most general form, a lease is used to associate a mutually agreed upon

time interval with an agreement reached by two objects. The kinds of agreements

that can be leased are varied and can include such things as agreements on access

to an object (references), agreements for taking future action (event notifications),

, agreements to supplying persistent storage (file systems, Javaspaces systems), or
agreements to advertise availability (naming or directory services).

While it is possible that a lease can be given that provides exclusive access to

some resource, this is not required with the notion of leasing being offered here.

Agreements that provide access to resources that are intrinsically sharable can

have multiple concurrent lease holders. Other resources might decide to grant

only exclusive leases, combining the notion of leasing with a concurrency control
mechanism.

LE.2.1 Characteristics of a Lease

There are a number of characteristics that are important for understanding what a

lease is and when it is appropriate to use one. Among these characteristics are:

0 A lease is a time period during which the grantor of the lease ensures (to the

best of the grantor’s abilities) that the holder of the lease will have access to

some resource. The time period of the lease can be determined solely by the

lease grantor, or can be a period of time that is negotiated between the holder

of the lease and the grantor of the lease. Duration negotiation need not be

multi-round; it often suffices for the requester to indicate the time desired

and the grantor to return the actual time of grant.

_131"!I1 fiiigslza-1

155

BASIC OPERATIONS

0 During the period of a lease, a lease can be cancelled by the entity holding
the lease. Such a cancellation allows the grantor of the lease to clean up any
resources associated with the lease and obliges the grantor of the lease to not
take any action involving the lease holder that was part of the agreement that
was the subject of the lease.

0 A lease holder can request that a lease be renewed. The renewal period can
be for a different time than the original lease, and is also subject to negotia-
tion with the grantor of the lease. The grantor may renew the lease for the
requested period or a shorter period or may refuse to renew the lease at all.
A renewed lease is just like any other lease, and is itself subject to renewal.

9 A lease can expire. If a lease period has elapsed with no renewals, the lease
expires, and any resources associated with the lease may be freed by the
lease grantor. Both the grantor and the holder are obliged to act as though
the leased agreement is no longer in force. The expiration of a lease is sim-
ilar to the cancellation of a lease, except that no communication is necessary
between the lease holder and the lease grantor.

failure, forgetting,
that can then be forgotten without the possibility of unbounded resource con-
sumption, and providing a flexible mechanism for duration-based agreement.

LE.2.2 Basic Operations

The Lease interface defines a type of object that is returned to the lease holder and
issued by the lease grantor. The basic interface may be extended in ways that offer
more functionality, but the basic interface is:

package net . ji m’ . core . l ease;

import java . rm'i . RemoteExcepti on;

public interface Lease {
long FOREVER = Long.MAX_VALUE:
long ANY = -1;

int DURATION = 1;

int ABSOLUTE = 2;

-;- - the begi

"H I indicate
" ing the

}

Partit

lease and

that alloc

ing the vs
the lease,

The 5

The first,

such a le

freed wh

to indica

should SI

If [ht

a lease 0

period 0:
A se

ized forr

resent tl

ivalue DU

duration

when tr:

an RMI

' --synchro
- ration vs.

The

-.-- --Sented

