
APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

APPENDIX P

Microsoft Corp. Exhibit 1009

Visualization of Large Terrains in Resource-Limited Computing

Environments

Boris Rabinovich Craig Gotsman

Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

[borisr|gotsman]@cs.technion.ac.il

Abstract

We describe a software system supporting interactive visualization
of large terrains in a resource-limited environment, i.e. a low-end
client computer accessing a large terrain database server through a
low-bandwidth network. By “large”, we mean that the size of the
terrain database is orders of magnitude larger than the computer
RAM. Superior performance is achieved by manipulating both ge-
ometric and texture data at a continuum of resolutions, and, at any
given moment, using the best resolution dictated by the CPU and
bandwidth constraints. The geometry is maintained as a Delaunay
triangulation of a dynamic subset of the terrain data points, and the
texture compressed by a progressive wavelet scheme.

A careful blend of algorithmic techniques enables our system
to achieve superior rendering performance on a low-end computer
by optimizing the number of polygons and texture pixels sent to
the graphics pipeline. It guarantees a frame rate depending only
on the size and quality of the rendered image, independent of the
viewing parameters and scene database size. An efficient paging
scheme minimizes data I/O, thus enabling the use of our system in
a low-bandwidth client/server data-streaming scenario, such as on
the Internet.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; D.4.4 [Operating Systems]:
Communications Management—Network Communication.
Keywords: Terrain rendering, level-of-detail, interactive graphics

1 Introduction

Terrain visualization is an important component of many civilian
and military applications [10, 3]. The input to the terrain visualiza-
tion problem is usually a large Digital Terrain Map (DTM), consist-
ing of elevation data sampled on a regular grid, and corresponding
aerial and/or satellite texture data, which is mapped onto the recon-
structed terrain surface. The output is rendered images of the terrain
surface, usually as part of a “flythrough” sequence.

The advent of the World-Wide-Web suggests the running of
this type of application over the Internet, in a client/server sce-
nario. The server is a very large remote database, accessed by the

client, usually a low-end computer, over a narrow-bandwidth line
(3 KByte/sec is typical for the contemporary Internet). The two
bottlenecks that have to be overcome are the bandwidth in deliver-
ing relevant terrain data from the server to the client, and the CPU
power required at the client for rendering this data.

The key to efficient terrain rendering is efficient online manipu-
lation of both the geometric and texture data, especially when the
scene database at the server is orders of magnitude larger that the
size of client system RAM. Naive terrain rendering algorithms con-
vert each DTM cell (bounded by four adjacent grid points) into two
3D triangles, and render (send through the graphics pipeline) all
such triangles in a region determined by the viewing frustum. They
also map the texture data at its highest resolution onto these poly-
gons. This is a very inefficient procedure, as for low pitch angles,
the number of these triangles and texture pixels (texels) may be ex-
tremely large. Each individual triangle projection to image space is
very small, and many texels may be condensed to one image pixel,
contributing negligibly to the image. One remedy to this prob-
lem, adopted in a number of works over the past few years (e.g.
[8]) is to maintain the scene data at a number of discrete levels-
of-detail. Since terrain areas at large viewing distances project to
small image areas, there is no point rendering them in full detail.
At any given moment during the animation, the appropriate level-
of-detail is used to render the image. To do this effectively, pieces
of the scene must be taken from multiple levels (foreground areas
from a high-detail version, and background areas from a low-detail
version), requiring methods to “stitch” together pieces of differ-
ent models in a continuous fashion, so that there are no holes or
breaks along the seams. This has proven to be a major problem
for the geometric data, since there usually is no topological corre-
lation between the different levels of detail. De Berg and Dobrint
[1], Cohen-Or and Levanoni [5], and Lindstrom et al. [12] have
provided partial solutions to the stitching problem.

In this paper we use a different approach to maintaining the
terrain geometry, proposed independently by Klein and Huttner
[11] and Delepine [6]. The geometry is treated in a continuous-
resolution fashion. We do not maintain multiple geometric models
(at different levels of detail), rather continuously update one model
online to represent in an optimal way the projection of the terrain
contained in the viewing frustum. As a result, the number of poly-

APPENDIX R

Microsoft Corp. Exhibit 1009

gons in the approximation is more or less constant, independent of
the viewing parameters (for a fixed frame rate). For the texture,we
employ a progressive wavelet compression scheme [2], which en-
ables the extraction of texture at a continuum of resolutions from
arbitrary prefixes of the encoded bit stream.

Our ultimate goal is to render any terrain image in time propor-
tional to the image resolution (in pixels), and not to the scene com-
plexity, number of DTM points in the viewing frustrum, texture
resolution, etc. We are motivated by the (simple) observation that
an image of fixed resolution can contain only a bounded amount
of information, therefore any algorithm rendering such an image
should not use more than a bounded number of polygons and tex-
els. Such algorithms are called output-sensitive. Most algorithms
are not output-sensitive, and in order that they be such, require care-
ful design. Our system contains a careful blend of techniques, some
borrowed from computational geometry, which together achieve a
high degree of output sensitivity, enabling adequate performance in
a limited-resource environment.

Since one server may be accessed simultaneously by a large
number of clients, is is crucial to minimize the amount of work the
server performs per client. If this load is minimized, the server will
be scalable, able to support a virtually unlimited number of clients.
We adhere to this principle throughout our implementation.

Using these methods, we have developed a client application
achieving terrain visualization at interactive rates on a low-end SGI
(O�)workstation, accessing a server database over a network with
bandwidth comparable to the Internet. This paper describes the ar-
chitecture and algorithms incorporated into our system.

2 System Overview

The large terrain scene resides on the server disk, partitioned into
geometry and texture tiles of fixed size. A raw geometry tile con-
tains a matrix of elevation heights, and a texture tile a matrix of
texels. Tiling schemes are standard in terrain visualization appli-
cations (e.g. [4]). The server processes requests for geometry and
texture data received from remote clients. In a preprocessing step
at the server, applied independently to each tile (thus enabling a
scene consisting of an unlimited number of tiles), the DTM points
are assigned “grades” related to their importance in approximating
the terrain surface. These grades are obtained from the simplifica-
tion algorithm of Heckbert and Garland [9]. Using these grades
as a third dimension, the DTM points in each tile are organized
into a 3D octree, which will enable efficient answers to future geo-
metric queries. The client maintains online a geometry cache con-
taining DTM points from a small subset of the server’s geometry
tiles. Even from these tiles, only the relevant upper levels of the
corresponding octrees are imported to the client. Which levels are
relevant is determined on the fly by the client.

At any given moment, a subset of the geometry cache points are
maintained at the client in a dynamic Delaunay triangulation, our
primary geometric data structure. To maintain the triangulation, we
use the algorithms of Devillers, Meiser and Teillaud [7] for efficient
insertion and deletion into a 2D Delaunay triangulation. Delaunay
triangulations are commonly considered to be suitable for terrain

visualization purposes. A DTM point deserves to be in the triangu-
lation if its grade is greater than a threshold, which is proportional
to the distance of the point from the viewpoint. Section 3 elaborates
on the details of how we handle the geometry.

The texture data is maintained at the server in tiles, compressed
using the progressive wavelet scheme of Buccigrossi and Simon-
celli [2]. This scheme compresses the data to approximately 30%
of its raw size with negligble loss, and, more important, allows the
decoding of the texture data from any prefix of the bit stream. Nat-
urally, using more bits will result in a higher quality result. Client
requests for texture data at a given resolution result in the streaming
of the prefix of minimal length sufficing for the required resolution.
Section 4 describes our handling of the texture in more detail.

The client graphics pipeline, sometimes supported in hardware,
is fed relevant triangles and texels. This pipeline takes care of the
basic rendering operations, e.g. perspective projection, hidden sur-
face elimination, and texture mapping. The main issues we ad-
dress in our implementation are the minimization of data transmit-
ted from the server to the client caches and subsequently fed to the
graphics pipeline.

Typical triangulations and rendered images generated by our
client system are shown in Fig. 2.

3 Geometry Processing

3.1 Data Reduction

A typical DTM is supplied on a regular grid, and this data is usu-
ally highly redundant. If the surface is to be approximated by a
piecewise-linear 2D function (a collection of planar polygons), a
small number of large polygons suffice to approximate the surface
well in planar regions. On the other hand, terrain areas with high
curvature, such as ridges and ravines, require a large number of
small polygons to achieve a satisfactory approximation (see Fig.
2). By this argument, is it obvious that some DTM points are more
important than others. Heckbert and Garland [9] have described
a procedure which starts off with a small number of DTM points
(usually the four corners of the DTM coverage), and incremen-
tally adds points whose contribution to the surface approximation
is most significant. The contribution of a point to the approxima-
tion is quantified by its vertical distance from the piecewise-linear
approximation built with all previous points. The larger this dis-
tance - the more important the point is. The incremental procedure
is done efficiently using a priority queue mechanism.

We use the Heckbert and Garland procedure at the server as a
preprocessing operation on each tile to assign each DTM point a
numeric “grade” - precisely the vertical distance described in the
previous paragraph. This grade is stored with the point, and used
later to determine online whether the point is required for the ter-
rain approximation. This decision is based on the grade and the
point’s distance from the viewpoint. To facilitate efficient decision-
making, we build a 3D octree of the DTM points, the grade serving
as the third dimension. The grid structure of the points in the XY
plane facilitates a fixed quadtree structure in this plane, which, in
turn, facilitates the organization of the data stored in the tile in a

APPENDIX R

Microsoft Corp. Exhibit 1009

record of fixed length. This hierarchical spatial data structure will
enable efficient range reporting of points.

3.2 View Frustum Culling

The first step in frame generation is to determine which DTM tiles
are relevant to the current view. In principle, if the terrain surface
were planar, the intersection of the viewing frustum with the terrain
surface (the view footprint) would be a trapezoid, whose four vertex
positions could be easily computed (see Fig. 3). Since the terrain
surface is not planar, the footprint terrain is bounded by a region
which is the union of two trapezoids, formed on horizontal planes
whose elevations coincide with the minimal and maximal elevations
in the projection area, repectively.

The footprint is “scan-converted” by the client to determine
which DTM tiles intersect it, and what resolution data (which levels
of the octree) are required. This data is requested from the server.
For every tile received, the octree structure of its points enables
to efficiently determine which tile points are actually contained in
the footprint. Efficiency is achieved by pruning off large sets of
the points corresponding to branches of the octree close to its root.
The remaining points are then tested, as described in Section 3.3,
to determine if they are required for the terrain approximation and
rendering.

3.3 Continuous Resolution

Each DTM point has a grade quantifying its importance in the ter-
rain approximation. This grade is traded off with distance from the
viewpoint. In other words, more distant points are considered less
significant. In practice, the client considers a virtual cone centered
at the viewpoint, and calculates which DTM points in the geome-
try cache have a grade positioning them inside the cone (see Fig.
3). We would like to be able to determine this set of points in time
proportional mainly to their number (and not to the total number of
points in the viewing frustum). In computational-geometric termi-
nology, this is called output-sensitive range reporting. We achieve
this again using the tile octree. The complexity of the range report-
ing procedure is O�

p
N � k�, where N is the number of points in

the viewing frustum, and k the number of points in the answer to
the query ([13], p.79). Using this virtual cone also implies that a
small change in the viewpoint induces a small change in the DTM
points used for the rendering, thus ensuring the temporal continuity
of the rendered images.

3.4 Caching

Portions of geometry tiles are imported from the server on demand
and stored in the client cache. Only the neccesary upper levels of
the tile octree are imported, possible due to the fixed structure of
the octree. Hence a typical snapshot of the client cache contents
would reveal a few (foreground) tiles from which almost the en-
tire data content has been read, and many (background) tiles with a
very sparse content. A prediction mechanism, based on the view-
point trajectory, enables the loading of tiles in advance, resulting in
smooth streaming of geometry from server to client.

3.5 Dynamic Delaunay Triangulation

The piecewise linear surface induced by the Delaunay triangulation
of the 2D projection of the DTM points is generally considered the
most suitable for surface approximation. This is because the mini-
mal angle in the triangulation is maximized, eliminating long “sliv-
ery” triangles. Hence, the client constantly maintains a Delaunay
triangulation of the DTM points contributing to the approximation
of the terrain in the footprint. Many O�n log n� time algorithms
exist for the Delaunay triangulation of n points, but not many are
able to efficiently support update of the triangulation upon insertion
or deletion of points. We use the algorithm of DeVillers et al [7],
which inserts points in O�log n� and deletes points in O�log log n�

average time using a hierarchical data structure. Care must be taken
to slightly perturb the spatial positions of the DTM points, other-
wise degeneracies in the Delaunay triangulation and unstable nu-
merics may occur.

At the client, points which were in the footprint corresponding
to the previous frame, and are no longer in the current footprint, are
removed from the triangulation - the main geometric data structure
maintained online by the client. New points which were previously
not in the footprint, and now are, are inserted into the triangulation.
The turnover of points in the triangulation depends on the viewpoint
velocity. Theoretically, very large velocities could cause successive
frames to see totally different regions of the terrain, requiring the
formation of an entirely different triangulation between frames. In
practice, however, this does not occur. Typically, 99% of the foot-
print areas overlap between successive frames.

Pseudo-code of the flow of control in the client while rendering
a single frame appears in Fig. 1.

4 Texture Processing

The texture data must also be manipulated at multiple resolutions,
since image foreground pixels contain high resolution texels, and
image background pixels contain low resolution texels. The reso-
lution of the texels contributing to any given image pixel is essen-
tially a function of the viewing distance to that scene point. The
server texture database is also organized in tiles, storing the texels
compressed to approximately 30% of their original volume, using
a progressive wavelet scheme. This results in a bit stream sorted by
importance.

A typical low-end client computer contains a texture buffer of
limited capacity (e.g. 1024x1024 pixels) with a pyramid struc-
ture on top of it. By supplying appropriate texture coordinates for
the rendered triangle vertices, the graphics hardware/software maps
texels from the texture buffer to the image pixels in the interior of
the projected triangles. Each level of the texture pyramid contains
texels representing the same terrain area, at decreasing resolutions.
However, since not all texels, especially not at all resolutions, will
contribute to the terrain image (see Fig. 4), there is no need to
import them from the server. We optimize network bandwidth by
loading only those texture tiles which intersect the view footprint,
at the appropriate resolution, if they are not yet loaded. By this
we mean we calculate the number of encoded bits of the texture
stream required to reconstruct the texture tile at the appropriate res-

APPENDIX R

Microsoft Corp. Exhibit 1009

olution (the lower the required resolution, the less bits required). In
any case, we use any bits available at rendering time, even though
there might be less than required (if the network temporarily slows
down). Which tiles are relevant can be easily determined from the
geometry of the footprint. Occasionally, it is neccesary to shift the
contents of the texture buffer, due to the movement of the view-
point.

5 Experimental Results

We have implemented the procedures described in Sections 2 - 4
as a prototype client/server system, the client running on a R5000
SGIO� , at 180MHz with 64MB RAM, based on the OpenGL API,
and an X/Motif GUI. This client accesses the scene database server
over a 3 KByte/sec network. The main parameters influencing the
overall performance of the system are the size of the visualization
window, i.e. the number of rendered image pixels, and the flight
velocity. This performance is measured in the client frame rate, and
the quality of the imagery delivered at that frame rate. There is an
obvious tradeoff between the two, which is controlled by two inde-
pendent “resolution” parameters, one for geometry, and one for tex-
ture. Increasing these parameters increases the number of triangles
and/or texture bytes used for the rendering process, thus increasing
the image quality, but decreasing the frame rate, due to higher ren-
dering and bandwidth overhead. There is, however, a point beyond
which the resolution parameter saturates, i.e. the marginal increase
in image quality is insignificant.

The geometric resolution parameter, namely, the average number
of triangles rendered per image pixel, is controlled by the angle
of the cone used for culling DTM points, as described in Section
3.3. The smaller the angle, the narrower the cone, admitting less
DTM points into the Delaunay triangulation, in turn implying less
triangles for the same number of image pixels (see also Fig. 3).
The texture resolution is controlled by specifying the fraction of
the texture tile bit stream imported and decoded to texels for the
foreground image pixels. The resolution of the background image
pixels is derived from this.

Keeping the resolution parameters and velocity fixed causes the
system to maintain a fixed frame rate. Increasing the velocity would
slow down the system, as the turnover of points in the Delaunay
triangulation and turnover of texture tiles in the texture buffer in-
creases, incurring more CPU and bandwidth overhead. By trial and
error, it seems that reasonable image quality is obtained at a geo-
metric resolution of 0.06 triangles and 0.5 texture bytes per output
image pixel. Any more than that imposes an unneccesary load on
the system, slowing it down, and any less than that results in poor
quality images (see Fig. 2). A telltale sign of insufficient geometric
resolution (triangles per image pixel) is if there are “jumps” (also
known as “popping”) in the terrain surface during animation, due to
the triangles being too large and crude. A telltale sign of insufficient
texture resolution (texels per image pixel) are blurred images.

Fig. 5 shows the speed/quality tradeoffs we are able to achieve
with our system at different “flight” velocity parameters, when
one of the geometric/texture resolution parameters is fixed, and
the other varied. Velocity is measured as the percentage of non-

overlapping area between footprints corresponding to successive
frames. The figure shows that approximately 3 frames/sec are
achievable with reasonable quality, when the image size is fixed at
300x400 pixels, and flying at an average (3%) velocity. Higher ve-
locities result in a larger turnover of geometry and texture, slowing
down the system frame rate. Our system accesses a scene database
server covering the northern part of Israel, containing a total of ���

DTM points and ��
� texels. The client uses a geometry cache of

size 2MB RAM, and texture buffer of 1024x1024 texels.

6 Conclusion

In the long-term, our techniques will support client/server terrain
visualization applications over the Internet. A large scene database
resides at a central server site, and is accessed (perhaps simultane-
ously) by a number of low-end clients over the Internet for visual-
ization purposes. This application requires tight optimization of the
available network bandwidth and client rendering power.

The ever-increasing user appetite for larger and richer geomet-
ric scenes has forced computer graphics practitioners to develop
output-sensitive rendering algorithms whose computational com-
plexity is not sensitive to the complexity of the input scene, rather
to the complexity of the output image. We have implemented this
for the terrain visualization application by rendering at geometric
and texture level-of-detail which changes continuously along the
spatial and temporal dimensions. Our algorithm satisfies almost all
of the five requirements from such an algorithm, as formulated in
[12].

Use of other sophisticated data optimization techniques, such as
occlusion culling [14], in which large portions of the geometry in-
side the view frustrum are efficiently culled because they are invis-
ible, can further reduce the rendering load.

Temporal aliasing sometimes occurs in our implementation. The
use of morphing techniques to alleviate this, such as that of Cohen-
Or and Levanoni [5], are not directly applicable, again due to the
dynamic nature of our Delaunay triangulation. Alternatives are be-
ing investigated.

Acknowledgements

We thank Olivier DeVillers for providing code implementing the al-
gorithm of [7], Paul Heckbert for code implementing the algorithm
of [9], and R. Buccigrossi for code implementing the algorithm of
[2].

This research was supported by the Technion V.P.R. Fund - Pro-
motion of Sponsored Research.

APPENDIX R

Microsoft Corp. Exhibit 1009

References

[1] M. De Berg and K. Dobrindt. On levels of detail in terrains. In
11th Annual ACM Symposium on Computational Geometry.
ACM, 1994.

[2] R.W. Buccigrossi and E.P. Simoncelli. Progressive wavelet
image coding based on a conditional probability model. In
Proceedings of Int’l Conf. Acoustics Speech and Signal Pro-
cessing. IEEE, 1997.

[3] D. Cohen and C. Gotsman. Photorealistic terrain imaging and
flight simulation. IEEE Computer Graphics and Applications,
14(2):10–12, March 1994.

[4] D. Cohen-Or, U. Lerner, E. Rich, and V. Shenkar. A real-time
photo-realistic visual flythrough. IEEE Transactions on Visu-
alization and Computer Graphics, 2(3):255–265, September
1996.

[5] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels
of detail in Delaunay triangulated terrain. In Proceedings of
Visualization ’96. IEEE Computer Society Press, 1996.

[6] T. Delepine. Online terrain level-of-detail. In Proceedings of
ITECH, 1997.

[7] O. Devillers, S. Meiser, and M.Teillaud. Fully dynamic De-
launay triangulation in logarithmic expected time per oper-
ation. Computational Geometry: Theory and Applications,
2:55–80, 1992.

[8] L. De Floriani. A pyramidal data structure for triangle-based
surface representation. IEEE Computer Graphics and Appli-
cations, 9(2):67–78, 1989.

[9] P. Heckbert and M. Garland. Fast polygonal approximation
of terrains and height fields. Technical Report CMU-CS-95-
181, School of Computer Science,Carnegie Mellon Univer-
sity,Pittsburg ,PA , 15213, 1995.

[10] K. Kaneda, F. Kato, E. Nakamae, T. Nishita, Tanaka, and No-
gushi. Three-dimensional terrain modeling and display for
environmental assessment. Computer Graphics (Proceedings
of SIGGRAPH’89), 23(3):207–214, 1989.

[11] R. Klein and T. Huttner. Simple camera-dependent approx-
imation of terrain surfaces for fast visualization and anima-
tion. In Proceedings of Visualization ’96 (late breaking top-
ics). IEEE Computer Society Press, 1996.

[12] P. Lindstrom, D. Koller, L.F. Hodges W. Ribarsky, N. Faust,
and G. Turner. Real-time, continuous level of detail rendering
of height fields. In Proceedings of SIGGRAPH ’96, 1996.

[13] M. Shamos and F. Preparata. Computational Geometry.
Springer, 1989.

[14] O. Sudarsky and C. Gotsman. Output-sensitive visibility algo-
rithms for dynamic scenes with applications to virtual reality.
Computer Graphics Forum, 15(3):249–258, 1996 (Proceed-
ings of Eurographics, Poitiers, France, August 1996).

1. Calculate view frustum and bound terrain footprint by rectangle.

2. Scan-convert the rectangle and for each geometry tile in it:

(a) If the tile is not in the footprint, but was in it in the previous

frame, then:

� Remove all its points from the Delaunay triangulation.

(b) If the tile is in the footprint, but was not in the previous frame,

then:

� Request tile from server at appropriate resolution.

� Search in tile octree for appropriate voxels.

� Insert the points from these voxels in Delaunay triangu-
lation.

(c) If tile is in the footprint and was also in the previous frame,
then:

� Search in tile octree for appropriate voxels.

� Find difference from previous frame.

� Insert (Delete) difference points in (from) Delaunay tri-

angulation.

3. For each texture tile in the bounding rectangle:

(a) If the texture tile is in the footprint, but was not in the previous
frame, then:

� Calculate required resolution.

� Request the appropriate bit stream prefix from the server.

(b) If texture tile is in the footprint, and was also in the previous
frame, then:

� Calculate its resolution.

� If this resolution is higher than that of the previous frame,
then request more of the bit stream from the server.

4. For every tenth frame check the actual performance (frames/sec)

against the required performance and adjust the geometric and/or tex-
ture resolution parameters to achieve that performance.

5. Render image.

Figure 1: Pseudo-code of the client algorithm.

APPENDIX R

Microsoft Corp. Exhibit 1009

(a) (b)

Figure 2: Terrain meshes (Delaunay triangulated) and views rendered at different data resolutions. (a) High resolution: 0.08 triangles/pixel
and 1 texels/pixel. (b) Equivalent quality at lower resolution: 0.02 triangles and 0.8 texels/pixels. Note how more DTM points are used in
foreground areas or areas of high curvature.

APPENDIX R

Microsoft Corp. Exhibit 1009

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Viewpoint

DTM tile

view footprint (trapezoid)

relevant DTM tiles

DTM point not rendered

DTM point rendered at low resolution

DTM point rendered at high resolution

Figure 3: Determining the DTM points of the rendered Delaunay triangulation for a given view at different geometric resolutions. The
narrow cone represents a low-resolution view, and the wide one a high resolution. The “elevations” of the DTM points are their precalculated
grades. All points within the footprint with grade above the relevant cone are included in the triangulation. This range-reporting operation is
performed efficiently using an octree structure on the points in each tile. Note that more points are admitted in the view foreground than in
its background.

rendered image

level 1

texture pyramid

level 3 level 4

level 2

Figure 4: The contribution of individual tiles in the texture buffer to the rendered image corresponding to the marked footprint. Those tiles
not contributing need not reside in the texture buffer at all, and are not streamed and decoded from the server.

APPENDIX R

Microsoft Corp. Exhibit 1009

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

frames/sec

tr
ia

ng
le

s/
pi

xe
l

1%

3%

5%

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

frames/sec

te
xt

ur
e

by
te

s/
pi

xe
l

1%

3%

5%

(a) (b)

Figure 5: Speed/resolution tradeoff in our prototype visualization client while rendering 300x400 pixel images on a R5000 SGIO�, accessing
the scene database server over a 3 KByte/sec network. (a) Varying only geometric resolution. The texture resolution is fixed to 0.5 compressed
texture bytes per pixel. (b) Varying only texture resolution. The geometric resolution is fixed to 0.06 triangles/pixel. The individual curves
correspond to different flight velocities, which influence the turnover of data in system caches and bandwidth overhead.

APPENDIX R

Microsoft Corp. Exhibit 1009

PROC E:' ED I N GS

V i s u a I i za t i o n ' 9 7

October 19 - 24,1997

Phoenix,, Arizona

Sponslored by
IEEE Computer Society Technical Committee on Computer Graphics

In cooperation with
ACMSIGGRAPH

APPENDIX R

Microsoft Corp. Exhibit 1009

The Association for Computing Machinery
1515 Broadway

New York, NY 10036

Copyright 0 1997 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the lim-
its of US copyright law, for private use of patrons, those articles in this volume that cany a code at the bottom of the first page,
provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Other copying, reprint or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors’
opinions and,” in the interests of timely dissemination, are published as presented and without change. Their inclusion in this pub-
lication does not necessarily constitute endorsement by the editors, the IEEE Computer Society Press, or the Institute of Electrical
and Electronics Engineers, Inc.

ACM ISBN: 1-58113-011-2
ACM Order Number: 428978

ACM Order Department
P.O. Box 12114
Church Street Station
New York, NY 10257 USA
Tel: +1-212-626-0500
Fax: +1-212-944- 13 18
E-mail: orders@acm.org

ACM European Service Center
108 Cowley Road
Oxford OX4 1JF
United Kingdom
E-mail: acm-europe@acm.org

IEEE Computer Society Press Order Number: PRO8262
IEEE Catalog Number: 97CB36155

IEEE ISBN - Library Binding: 0-8186-8263-9
IEEE ISBN - Microfiche: 0-8186-8264-7

IEEE ISBN: 0-8186-8262-0

ISSN: 1070-2385

Additional copies may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264 USA
Tel: +1-714-821-8380
Fax: +1-714-821-4641
E-mail: cs.books @computer.org

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331 USA
Tel: +1-908-981-1393
Fax: +1-908-981-9667
E-mail: mis.custserv@computer.org

IEEE Computer Society
13, Avenue de 1’Aquilon
B-1200 Brussels
Belgium
Tel: +32-2-770-2198
Fax: +32-2-770-8505
E-mail; euro.ofc @computer.org

IEEE Computer Society
Ooshima Building
2- 19- 1 Minami- Aoyama
Minato-ku, Tokyo 107
Japan
Tel: +81-3-3408-3118
Fax: +81-3-3408-3553
E-mail: tokyo.ofc@computer.org

APPENDIX R

Microsoft Corp. Exhibit 1009

mailto:orders@acm.org
mailto:acm-europe@acm.org
mailto:computer.org
mailto:mis.custserv@computer.org
mailto:computer.org
mailto:tokyo.ofc@computer.org

Table of Contents
Preface . 11
Conference Committee . 13
Programcommittee . 14

Keynote Address: Global Tele-Immersion . 15
Tom DeFanti

Capstone Address: Dissolving Descartes: Perception and the Construction of Reality . 16
Mark Pesce

Papers

Session 2B: Volume Rendering I

A Comparison of Normal Estimation Schemes . 19
Torsten Mollel; Raghu Machiraju. Klaus Muellel; Roni Yagel
ColorPlate . 525

Collision Detection for Volumetric Models . 27
Taosong He. Arie Kaufman
ColorPlate . 526

The VSBUFFER: Visibility Ordering of Unstructured Volume Primitives by Polygon Drawing 35
Riidiger Westermann. Thomas Ertl
ColorPlate . 527

Volume Rendering of Abdominal Aortic Aneurysms . 43
Roger C . Tam. Christopher G . Healey. Bops Flak. Fkter Cahoon
ColorPlate . 528

Session 3A: Vector Fields

Auralization of Streamline Vorticity in Computational Fluid Dynamics Data . 5 1

Singularities in Nonuniform Tensor Fields . 59

Visualization of Higher Order Singularities in Vector Fields . 67
Gerik Scheuermann. Hans Hagen. Heinz Kriigel; Martin Menzel. Alyn Rockwood

Principal Stream Surfaces . 75
Wenli Cui. Pheng-Ann Heng
ColorPlate . 529

Christopher R . Volpe. Ephraim F? Glinert

Yingmei Lavin. Yuval Levy. Lambertus Hesselink

Session 3B: Terrain Visualization

ROAMing Terrain: Real-time Optimally Adapting Meshes . 81

Visualization of Height Field Data with Physical Models and Texture Photomapping . 89

Mark A . Duchaineau. Murray Wolinsky. David E . Sigeti. Mark C . Millel; Charles Aldrich.
Mark B . Mineev- Weinstein

Dru Clark. Michael J . Bailey
ColorPlate . 530

Visualization of Large Terrains in Resource-Limited Computing Environments . 95

Building and Traversing a Surface at Variable Resolution . 103

Boris Rabinovitch. Craig Gotsman

Leila De Floriani. Paola Magillo. Enrico Puppo
ColorPlate . 531

APPENDIX R

Microsoft Corp. Exhibit 1009

Session 4A: Information Visualization

Multivariate Visualization Using Metric Scaling

Color Plate S32

Visualizing the Behavior of Higher Dimensional Dynamical Systems . .119

Color Plate 533

Displaying Data in Multidimensional Relevance Space with 2D Visualization Maps

ColorPlates34

Pak Chung Wong, R. Daniel Bergeron

Ruiner Wegenkittl, Helwig Loffelmann, Eduard Groller

. 127
Jackie Assa, Daniel Cohen-Or, Tova Milo

Session 4B: MultiResolution

Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data . .135
Yong Zhou, Baoquan Chen, Arie Kaufman
ColorPlate . 535

Haar Wavelets over Triangular Domains with Applications to Multiresolution Models for Flow over a Sphere . .143
Gregory M. Nielson, Il-Hong Jung, Junwon Sung
ColorPlate . S36

Wavelet-based Multiresolutional Representation of Computational Field Simulation Datasets1S1

ColorPlate . 537

*err

Zhifan Zhu, Raghu Machiraju, Bryan Fry, Robert J. Moorhead

Session 5A: User Interfaces & Interaction

Dynamic Color Mapping of Bivariate Qualitative Data 159
Penny Rheingans
ColorPlate . . .538

TheCon tourSpec t~m .
Chandrajit L. Bajaj, Valerio Pascucci, Daniel R. Schikore
ColorPlate .

Constrained 3D Navigation with 2D Controllers ,175
Andrew J. Hanson, Eric A. Wernert
Color Plate 540

Session 5B: Volume Rendering II

Two-Phase Perspective Ray Casting for Interactive Volume Navigation . .183
Martin L. Brady, Kenneth Jung, HT Nguyen, Thinh Nguyen
ColorPlate . S41

Accelerated Volume Rendering Using Homogenous Region Encoding . .19 1
Jason L. Freund, Kenneth Sloan
ColorPlates . S42-S43

An Anti-Aliasing Technique for Splatting . .197
J. Edward Swan II, Klaus Muellel; Torsten Mollel; Naeem ShareeJ Roger A. Crawfis, Roni Yagel
ColorPlate . S44

6

APPENDIX R

Microsoft Corp. Exhibit 1009

Session 6A: Zsosurfaces

A Topology Modifying Progressive Decimation Algorithm . 205
William J. Schroeder
ColorPlate . 545

Efficient Subdivision of Finite-Element Datasets into Consistent Tetrahedra . 213
Guy Albertelli. Roger A . Crawfis

Interval Volume Tetrahedrization . 221
Gregory M . Nielson. Junwon Sung
ColorPlate . 546

Computing the Separating Surface for Segmented Data . 229
Gregory M . Nielson. Richard Franke

Session 6B: Visualization Systems

Application-Controlled Demand Paging for Out-of-Core Visualization . 235
Michael B . Cox. David Ellsworth
ColorPlate . 547

GADGET Goal-Oriented Application Design Guidance for Modular Visualization Environments 245
Issei Fujishiro. Yuriko Takeshima. Yoshihiko Ichikawa. Kyoko Nakamura
ColorPlate . 548

Collaborative Visualization . 253
Jason D . Wood. Helen Wright. Ken W Brodlie
Colorplate . 549

VizWiz: A Java Applet for Interactive 3D Scientific Visualization on the Web . 261
Cherilyn K . Michaels. Michael J . Bailey
ColorPlate . 550

Session 7A: Data Extraction

Image Synthesis From A Sparse Set of Views . 269
Qian Chen. Gkrard G . Medioni
ColorPlate . 551

Virtualized Reality: Constructing Time-Varying Virtual Worlds from Real World Events 277
Peter W Randez PJ Narayanan, Takeo Kanade
ColorPlate . 552

Extracting Feature Lines from 3D Unstructured Grids . 285

I/O Optimal Isosurface Extraction . 293

Kwan-Liu Ma, Victoria L . Interrante
ColorPlate . 553

E-Jen Chiang, Claudio I: Silva
ColorPlate . 554

'7

APPENDIX R

Microsoft Corp. Exhibit 1009

Session 7B: Flow Visualization

CAVEvis: Distributed Real-Time Visualization of Time-Varying Scalar and Vector Fields Using the

Vzjendra S . Jaswal
ColorPlate . 555

CAVE Virtual Reality Theater . 301

Fast Oriented Line Integral Convolution for Vector Field Visualization via the Internet 309

UFLIC: A Line Integral Convolution Algorithm For Visualizing Unsteady Flows

Rainer Wegenkittl, Eduard Groller

. 317
Han-Wei Shen, David L . Kao
ColorPlate . 556

The Motion Map: Efficient Computation of Steady Flow Animations . 323
Bruno Jobard. Wilfrid Lefer

Session SA: Compression

Integrated Volume Compression and Visualization . 329
Tzi-cker Chiueh. Chuan-kai Yang. Taosong He. Hanspeter P$stel; Arie Kaujkan
ColorPlate . 557

Multiresolution Compression And Reconstruction . 337

ColorPlate . 558
Oliver G . Staadt. Markus H . Gross. Roger Weber h

Optimized Geometry Compression for Real-time Rendering . 347
Mike M . Chow
ColorPlate . 559

Session 9A: Polygonal Surfaces

Architectural Walkthroughs Using Portal Textures . 355
Daniel G . Aliaga. Anselmo A . Lustra
ColorPlate . 560

Repairing CADModels . 363
Gill Barequet. Subodh Kumar
ColorPlate . 561

Dynamic Smooth Subdivision Surfaces for Data Visualization . 371
Chhandomay Mandal. Hong Qin. Baba C . Vemuri
ColorPlate . 562

Session IOA: Surface Simplification

Smooth Hierarchical Surface Triangulations . 379
Tran S . Gieng. Bernd Hamann. Kenneth I . Joy. Gregory L . Schlussmann. Isaac J . Trotts

The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data 387
Roberto Grosso. Christoph Liirig. Thomas Ertl
ColorPlate . 563

Simplifying Polygonal Models Using Successive Mappings . 395
Jonathan Cohen. Dinesh Manocha. Marc Olano
ColorPlate . 564

Controlled Simplification of Genus for Polygonal Models . 403
Jihad El.Sana. Amitabh Varshney
ColorPlate . 565

8

APPENDIX R

Microsoft Corp. Exhibit 1009

Case Studies

Session 2C: Flow Visualization

Vortex Identification . Applications in Aerodynamics . 413
David Kenwright. Robert Haimes
ColorPlate . 566

exVis 1 . 0. Developing a Wind Tunnel Data Visualization Tool . 417
Samuel P. Uselton
ColorPlate . 567

Strategies for Effectively Visualizing 3D Flow with Volume LIC . 421
Vctoria Interrante. Chester Grosch
ColorPlate . 568

Towards Efficient Visualization Support for Single-block and Multi-block Datasets . 425
Jean M . Favre
ColorPlate . 569

Session 3C: Medical Visualization

Brushing Techniques for Exploring Volume Dataset!; . 429
Pak Chung Wong. R . Daniel Bergeron
ColorPlate . 570

Interactive Volume Rendering for Virtual Colonoscopy . 433
Suya You. Lichan Hong. Ming Wan. Kittiboon Junya.prasert. Arie Kaufman. Shigeru Mumki.
Yong Zhou. Mark W a . Zhengrong Liang
ColorPlate . 571

DNA Visual And Analytic Data Mining . 437
Patrick Hoffman. Georges Grinstein. Kenneth Marx. Ivo Grosse. Eugene Stanley
ColorPlate . 572

An Interactive Cerebral Blood Vessel Exploration System . 443
Anna Puig. Dani Tost. Isabel Navazo
ColorPlate . 573

Session 5C: Educational Visualization

Instructional Software for Visualizing Optical Phenomena . 447
David C . Banks. John 7: Foley. Kiril N . Mdimce. Ming-Hoe Kiu
ColorPlate . 574

WildfireVisualization . 451
James Ahrens. Patrick McCormick. James Bossert. Jon Reisnel; Judith Winterkamp
ColorPlate . 575

Visualization of Geometric Algorithms in an Electronic Classroom . 455
Maria Shneerson. Ayellet Tal
ColorPlate . 576

9

APPENDIX R

Microsoft Corp. Exhibit 1009

Session 6C: Web & Virtual Reality

Collaborative Augmented Reality: Exploring Dynamical Systems . .459
Anton Fuhrmann, Helwig Loffelmann, Dieter Schmalstieg
ColorPlate . 577

Visualizing Customer Segmentations Produced by Self Organizing Maps . .463
Holly Rushmeiel; Richard Lawrence, George Almasi
ColorPlate . S78

Pearls Found on the way to the Ideal Interface for Scanned-probe Microscopes . .467
Russell M. Taylor II, Jun Chen, Shoji Okimoto, Noel Llopis-Artime, Vernon L. Chi, Fredrick P: Brooks JK,
Mike Falvo, Scott Paulson, Pichet Thiansanthaporn, Dave Glick, Sean Washburn, Richard Superfine
ColorPlate . 579

ViewingIGESFilesThroughVRML . 471
Jed Marti

Session 7C: Engineering and Computational Geometry

Visualization of Plant Growth . .475
Jeremy J. Loomis, Xiuwen Liu, Zhaohua Ding, Kikuo Fujimura, Michael L. Evans, Hideo Ishikawa
ColorPlate . 580

Determination of Unknown Particle Charges in a Thunder Cloud Based Upon Detected Electric Field Vectors .479
Dun Drake, Thomas Simpson, Larry Smithmeil; Penny Rheingans
ColorPlate . 581

'+-

Interactive Visualization of Aircraft and Power Generation Engines . .483
Lisa Sobierajski Avila, William Schroeder
ColorPlate . S82,

Efficient visualization of physical and structural properties in crash-worthiness simulations ,487
Sven Kuschfeldt, Thomas Ertl, Michael Holzner
ColorPlate . 5 8 ~

Session 9B: Math & Statistics

Visualization of Rotation Fields . ,491
Mark A. Livingston
ColorPlate . 5 8 ~

Isosurface Extraction Using Particle Systems . ,495
Patricia Crossno, Edward Angel
ColorPlate . 585

A Visualization of Music . ,499
Sean M. Smith, Glen M. Williams

Panels

Terascale Visualization: Approaches, Pitfalls, and Issuesso7
Organizers: Carol Huntel; Roger Crawfis
Panelists: Michael Cox, Roger Crawfis, Bernd Hamann, Chuck Hansen, Carol Huntel; Mark Miller

Information Exploration Shootout Project and Benchmark Data Sets:
Evaluating how Visualization does in Analyzing Real-World Data Analysis ProblemsS 11 1
Organizer: Georges Grinstein
Panelists: Sharon Laskowski, Bernice Rogowitz, Graham Wills

Perceptual Measures for Effective Visualizations . .5 115
Organizer: Holly Rushmeier
Panelists: Harrison Barrett, Penny Rheingans, Sam Uselton, Andrew Watson

AuthorIndex . . . SI19
Cover Image Credits . 521
Color Plate Section 523

10

APPENDIX R

Microsoft Corp. Exhibit 1009

User Datagram Protocol (UDP) (Windows CE 5.0)

Send Feedback
UDP provides a connectionless, unreliable transport service. Connectionless means that a communication session between hosts is not established before exchanging data. UDP is often
used for one-to-many communications that use broadcast or multicast IP datagrams. The UDP connectionless datagram delivery service is unreliable because it does not guarantee data
packet delivery and no notification is sent if a packet is not delivered. Also, UDP does not guarantee that packets are delivered in the same order in which they were sent.

Because delivery of UDP datagrams is not guaranteed, applications using UDP must supply their own mechanisms for reliability, if needed. Although UDP appears to have some limitations,
it is useful in certain situations. For example, Winsock IP multicasting is implemented with UDP datagram type sockets. UDP is very efficient because of low overhead. Microsoft networking
uses UDP for logon, browsing, and name resolution. UDP can also be used to carry IP multicast streams for applications such as Microsoft® Windows Media®.

See Also
Core Protocol Stack for IPv4 | User Datagram Protocol (UDP) and Name Resolution for IPv4

Send Feedback on this topic to the authors

Feedback FAQs

© 2006 Microsoft Corporation. All rights reserved.

© 2015 Microsoft

Windows CE 5.0

Page 1 of 1User Datagram Protocol (UDP) (Windows CE 5.0)

4/28/2015https://msdn.microsoft.com/en-us/library/ms885773.aspx

APPENDIX S

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

The OpenGL
R

Graphics System:

A Speci�cation
(Version 1.2.1)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2, 1.2.1): Jon Leech

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Copyright c 1992-1999 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The "X" device and X Windows System are trademarks of
The Open Group.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Contents

1 Introduction 1

1.1 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1

1.3 Programmer's View of OpenGL 2

1.4 Implementor's View of OpenGL 2

1.5 Our View . 3

2 OpenGL Operation 4

2.1 OpenGL Fundamentals . 4

2.1.1 Floating-Point Computation 6

2.2 GL State . 6

2.3 GL Command Syntax . 7

2.4 Basic GL Operation . 9

2.5 GL Errors . 11

2.6 Begin/End Paradigm . 12

2.6.1 Begin and End Objects 15

2.6.2 Polygon Edges . 18

2.6.3 GL Commands within Begin/End 19

2.7 Vertex Speci�cation . 19

2.8 Vertex Arrays . 21

2.9 Rectangles . 28

2.10 Coordinate Transformations 28

2.10.1 Controlling the Viewport 30

2.10.2 Matrices . 31

2.10.3 Normal Transformation 34

2.10.4 Generating Texture Coordinates 36

2.11 Clipping . 38

2.12 Current Raster Position . 40

2.13 Colors and Coloring . 43

i

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

ii CONTENTS

2.13.1 Lighting . 44
2.13.2 Lighting Parameter Speci�cation 49

2.13.3 ColorMaterial . 51
2.13.4 Lighting State . 53

2.13.5 Color Index Lighting 53
2.13.6 Clamping or Masking 54

2.13.7 Flatshading . 54
2.13.8 Color and Texture Coordinate Clipping 55

2.13.9 Final Color Processing 56

3 Rasterization 57

3.1 Invariance . 59
3.2 Antialiasing . 59

3.3 Points . 60
3.3.1 Point Rasterization State 62

3.4 Line Segments . 62
3.4.1 Basic Line Segment Rasterization 64

3.4.2 Other Line Segment Features 66
3.4.3 Line Rasterization State 69

3.5 Polygons . 70
3.5.1 Basic Polygon Rasterization 70

3.5.2 Stippling . 72
3.5.3 Antialiasing . 72

3.5.4 Options Controlling Polygon Rasterization 73
3.5.5 Depth O�set . 73

3.5.6 Polygon Rasterization State 75
3.6 Pixel Rectangles . 75

3.6.1 Pixel Storage Modes 75
3.6.2 The Imaging Subset 76

3.6.3 Pixel Transfer Modes 78
3.6.4 Rasterization of Pixel Rectangles 88

3.6.5 Pixel Transfer Operations 100
3.7 Bitmaps . 110
3.8 Texturing . 111

3.8.1 Texture Image Speci�cation 112
3.8.2 Alternate Texture Image Speci�cation Commands . . 118

3.8.3 Texture Parameters 123
3.8.4 Texture Wrap Modes 124

3.8.5 Texture Mini�cation 125
3.8.6 Texture Magni�cation 131

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

CONTENTS iii

3.8.7 Texture State and Proxy State 131

3.8.8 Texture Objects . 132

3.8.9 Texture Environments and Texture Functions 135

3.8.10 Texture Application 138

3.9 Color Sum . 138

3.10 Fog . 138

3.11 Antialiasing Application . 140

4 Per-Fragment Operations and the Framebu�er 141

4.1 Per-Fragment Operations . 142

4.1.1 Pixel Ownership Test 142

4.1.2 Scissor test . 143

4.1.3 Alpha test . 143

4.1.4 Stencil test . 144

4.1.5 Depth bu�er test . 145

4.1.6 Blending . 146

4.1.7 Dithering . 149

4.1.8 Logical Operation . 150

4.2 Whole Framebu�er Operations 150

4.2.1 Selecting a Bu�er for Writing 150

4.2.2 Fine Control of Bu�er Updates 152

4.2.3 Clearing the Bu�ers 153

4.2.4 The Accumulation Bu�er 155

4.3 Drawing, Reading, and Copying Pixels 156

4.3.1 Writing to the Stencil Bu�er 156

4.3.2 Reading Pixels . 156

4.3.3 Copying Pixels . 162

4.3.4 Pixel Draw/Read state 162

5 Special Functions 164

5.1 Evaluators . 164

5.2 Selection . 170

5.3 Feedback . 173

5.4 Display Lists . 175

5.5 Flush and Finish . 179

5.6 Hints . 179

6 State and State Requests 181

6.1 Querying GL State . 181

6.1.1 Simple Queries . 181

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

iv CONTENTS

6.1.2 Data Conversions . 182

6.1.3 Enumerated Queries 182

6.1.4 Texture Queries . 184

6.1.5 Stipple Query . 185

6.1.6 Color Matrix Query 185

6.1.7 Color Table Query . 185

6.1.8 Convolution Query . 186

6.1.9 Histogram Query . 187

6.1.10 Minmax Query . 188

6.1.11 Pointer and String Queries 189

6.1.12 Saving and Restoring State 189

6.2 State Tables . 193

A Invariance 218

A.1 Repeatability . 218

A.2 Multi-pass Algorithms . 219

A.3 Invariance Rules . 219

A.4 What All This Means . 221

B Corollaries 222

C Version 1.1 225

C.1 Vertex Array . 225

C.2 Polygon O�set . 226

C.3 Logical Operation . 226

C.4 Texture Image Formats . 226

C.5 Texture Replace Environment 226

C.6 Texture Proxies . 227

C.7 Copy Texture and Subtexture 227

C.8 Texture Objects . 227

C.9 Other Changes . 227

C.10 Acknowledgements . 228

D Version 1.2 230

D.1 Three-Dimensional Texturing 230

D.2 BGRA Pixel Formats . 230

D.3 Packed Pixel Formats . 230

D.4 Normal Rescaling . 231

D.5 Separate Specular Color . 231

D.6 Texture Coordinate Edge Clamping 231

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

CONTENTS v

D.7 Texture Level of Detail Control 232
D.8 Vertex Array Draw Element Range 232
D.9 Imaging Subset . 232

D.9.1 Color Tables . 232
D.9.2 Convolution . 233
D.9.3 Color Matrix . 233
D.9.4 Pixel Pipeline Statistics 234
D.9.5 Constant Blend Color 234
D.9.6 New Blending Equations 234

D.10 Acknowledgements . 234

E Version 1.2.1 238

F ARB Extensions 239
F.1 Naming Conventions . 239
F.2 Multitexture . 240

F.2.1 Dependencies . 240
F.2.2 Issues . 240
F.2.3 Changes to Section 2.6 (Begin/End Paradigm) 240
F.2.4 Changes to Section 2.7 (Vertex Speci�cation) 241
F.2.5 Changes to Section 2.8 (Vertex Arrays) 243
F.2.6 Changes to Section 2.10.2 (Matrices) 244
F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-

dinates) . 245
F.2.8 Changes to Section 2.12 (Current Raster Position) . . 246
F.2.9 Changes to Section 3.8 (Texturing) 246
F.2.10 Changes to Section 3.8.5 (Texture Mini�cation) 248
F.2.11 Changes to Section 3.8.8 (Texture Objects) 248
F.2.12 Changes to Section 3.8.10 (Texture Application) . . . 249
F.2.13 Changes to Section 5.1 (Evaluators) 249
F.2.14 Changes to Section 5.3 (Feedback) 249
F.2.15 Changes to Section 6.1.2 (Data Conversions) 251
F.2.16 Changes to Section 6.1.12 (Saving and Restoring State)251

Index of OpenGL Commands 256

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

List of Figures

2.1 Block diagram of the GL. 9

2.2 Creation of a processed vertex from a transformed vertex and
current values. 13

2.3 Primitive assembly and processing. 13

2.4 Triangle strips, fans, and independent triangles. 16

2.5 Quadrilateral strips and independent quadrilaterals. 17

2.6 Vertex transformation sequence. 28

2.7 Current raster position. 41

2.8 Processing of RGBA colors. 43

2.9 Processing of color indices. 43

2.10 ColorMaterial operation. 51

3.1 Rasterization. 57

3.2 Rasterization of non-antialiased wide points. 61

3.3 Rasterization of antialiased wide points. 61

3.4 Visualization of Bresenham's algorithm. 64

3.5 Rasterization of non-antialiased wide lines. 67

3.6 The region used in rasterizing an antialiased line segment. . . 69

3.7 Operation of DrawPixels. 88

3.8 Selecting a subimage from an image 93

3.9 A bitmap and its associated parameters. 110

3.10 A texture image and the coordinates used to access it. 118

4.1 Per-fragment operations. 142

4.2 Operation of ReadPixels. 156

4.3 Operation of CopyPixels. 162

5.1 Map Evaluation. 166

5.2 Feedback syntax. 176

vi

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

LIST OF FIGURES vii

F.1 Creation of a processed vertex from a transformed vertex and
current values. 241

F.2 Current raster position. 246
F.3 Multitexture pipeline. 249

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

List of Tables

2.1 GL command su�xes . 8

2.2 GL data types . 10

2.3 Summary of GL errors . 13

2.4 Vertex array sizes (values per vertex) and data types 22

2.5 Variables that direct the execution of InterleavedArrays. . 26

2.6 Component conversions . 44

2.7 Summary of lighting parameters. 46

2.8 Correspondence of lighting parameter symbols to names. . . . 50

2.9 Polygon atshading color selection. 55

3.1 PixelStore parameters pertaining to one or more of Draw-
Pixels, TexImage1D, TexImage2D, and TexImage3D. . 76

3.2 PixelTransfer parameters. 78

3.3 PixelMap parameters. 79

3.4 Color table names. 80

3.5 DrawPixels and ReadPixels types 91

3.6 DrawPixels and ReadPixels formats. 92

3.7 Swap Bytes Bit ordering. 92

3.8 Packed pixel formats. 94

3.9 UNSIGNED BYTE formats. Bit numbers are indicated for each
component. 95

3.10 UNSIGNED SHORT formats . 96

3.11 UNSIGNED INT formats . 97

3.12 Packed pixel �eld assignments 98

3.13 Color table lookup. 103

3.14 Computation of �ltered color components. 104

3.15 Conversion from RGBA pixel components to internal texture,
table, or �lter components. 114

3.16 Correspondence of sized internal formats to base internal for-
mats. 115

viii

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

LIST OF TABLES ix

3.17 Texture parameters and their values. 124

3.18 Replace and modulate texture functions. 136

3.19 Decal and blend texture functions. 137

4.1 Values controlling the source blending function and the source
blending values they compute. f = min(As; 1�Ad). 148

4.2 Values controlling the destination blending function and the
destination blending values they compute. 148

4.3 Arguments to LogicOp and their corresponding operations. . 151

4.4 Arguments to DrawBu�er and the bu�ers that they indicate.152

4.5 PixelStore parameters pertaining to ReadPixels,
GetTexImage1D, GetTexImage2D, GetTexImage3D,
GetColorTable, GetConvolutionFilter, GetSeparable-
Filter, GetHistogram, and GetMinmax. 158

4.6 ReadPixels index masks. 160

4.7 ReadPixels GL Data Types and Reversed component con-
version formulas. 161

5.1 Values speci�ed by the target to Map1. 165

5.2 Correspondence of feedback type to number of values per vertex.174

6.1 Texture, table, and �lter return values. 185

6.2 Attribute groups . 191

6.3 State variable types . 192

6.4 GL Internal begin-end state variables (inaccessible) 194

6.5 Current Values and Associated Data 195

6.6 Vertex Array Data . 196

6.7 Transformation state . 197

6.8 Coloring . 198

6.9 Lighting (see also Table 2.7 for defaults) 199

6.10 Lighting (cont.) . 200

6.11 Rasterization . 201

6.12 Texture Objects . 202

6.13 Texture Objects (cont.) . 203

6.14 Texture Environment and Generation 204

6.15 Pixel Operations . 205

6.16 Framebu�er Control . 206

6.17 Pixels . 207

6.18 Pixels (cont.) . 208

6.19 Pixels (cont.) . 209

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

x LIST OF TABLES

6.20 Pixels (cont.) . 210
6.21 Pixels (cont.) . 211
6.22 Evaluators (GetMap takes a map name) 212
6.23 Hints . 213
6.24 Implementation Dependent Values 214
6.25 More Implementation Dependent Values 215
6.26 Implementation Dependent Pixel Depths 216
6.27 Miscellaneous . 217

F.1 Changes to State Tables . 252
F.2 Changes to State Tables (cont.) 253
F.3 New State Introduced by Multitexture 254
F.4 New Implementation-Dependent Values Introduced by Mul-

titexture . 255

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has
at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the speci�cation are
considered optional; an OpenGL implementation may or may not choose to
provide them (see section 3.6.2).

Portions of the speci�cation which are optional are so labelled where
they are de�ned. Additionally, those portions are typeset in gray, and state
table entries which are optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for \Open Graphics Library") is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, speci�cally color images
of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a frame-
bu�er. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such
as when antialiasing or texturing is enabled) relies on the existence of a

1

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2 CHAPTER 1. INTRODUCTION

framebu�er. Further, some of OpenGL is speci�cally concerned with frame-
bu�er manipulation.

1.3 Programmer's View of OpenGL

To the programmer, OpenGL is a set of commands that allow the speci�-
cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebu�er.
For the most part, OpenGL provides an immediate-mode interface, mean-
ing that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window
into the framebu�er into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-
text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others a�ect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user's
two- or three-dimensional model space to the two-dimensional screen. There
are also calls to e�ect direct control of the framebu�er, such as reading and
writing pixels.

1.4 Implementor's View of OpenGL

To the implementor, OpenGL is a set of commands that a�ect the opera-
tion of graphics hardware. If the hardware consists only of an addressable
framebu�er, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-
dimensional lines and polygons to sophisticated oating-point processors
capable of transforming and computing on geometric data. The OpenGL
implementor's task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This
state controls how objects are drawn into the framebu�er. Some of this
state is directly available to the user: he or she can make calls to obtain its
value. Some of it, however, is visible only by the e�ect it has on what is
drawn. One of the main goals of this speci�cation is to make OpenGL state

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

1.5. OUR VIEW 3

information explicit, to elucidate how it changes, and to indicate what its
e�ects are.

1.5 Our View

We view OpenGL as a state machine that controls a set of speci�c draw-
ing operations. This model should engender a speci�cation that satis�es
the needs of both programmers and implementors. It does not, however,
necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the speci�ed methods, but
there may be ways to carry out a particular computation that are more
e�cient than the one speci�ed.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the \GL") is concerned only with rendering into a
framebu�er (and reading values stored in that framebu�er). There is no
support for other peripherals sometimes associated with graphics hardware,
such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Each mode
may be changed independently; the setting of one does not a�ect the settings
of others (although many modes may interact to determine what eventually
ends up in the framebu�er). Modes are set, primitives speci�ed, and other
GL operations described by sending commands in the form of function or
procedure calls.

Primitives are de�ned by a group of one or more vertices. A vertex
de�nes a point, an endpoint of an edge, or a corner of a polygon where
two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is
processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive �ts within a speci�ed region; in this case vertex data may be
modi�ed and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received,
although there may be an indeterminate delay before the e�ects of a com-
mand are realized. This means, for example, that one primitive must be

4

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.1. OPENGL FUNDAMENTALS 5

drawn completely before any subsequent one can a�ect the framebu�er. It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-
eral, the e�ects of a GL command on either GL modes or the framebu�er
must be complete before any subsequent command can have any such e�ects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the
command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no e�ect on the
GL (unless the same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D
and 2D graphics. This includes speci�cation of such parameters as trans-
formation matrices, lighting equation coe�cients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-
eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted
and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is \network-
transparent." A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state. A client may choose to connect to
any one of these contexts. Issuing GL commands when the program is not
connected to a context results in unde�ned behavior.

The e�ects of GL commands on the framebu�er are ultimately controlled
by the window system that allocates framebu�er resources. It is the window
system that determines which portions of the framebu�er the GL may access
at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to con�gure the
framebu�er or initialize the GL. Similarly, display of framebu�er contents
on a CRT monitor (including the transformation of individual framebu�er
values by such techniques as gamma correction) is not addressed by the GL.
Framebu�er con�guration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window
system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we
specify ideal behavior instead of actual behavior for certain GL operations.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6 CHAPTER 2. OPENGL OPERATION

In cases where deviation from the ideal is allowed, we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebu�er con�gurations.

Finally, command names, constants, and types are pre�xed in the GL
(by gl, GL , and GL, respectively in C) to reduce name clashes with other
packages. The pre�xes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of oating-point operations during the
course of its operation. We do not specify how oating-point numbers are
to be represented or how operations on them are to be performed. We require
simply that numbers' oating-point parts contain enough bits and that their
exponent �elds are large enough so that individual results of oating-point
operations are accurate to about 1 part in 105. The maximum representable
magnitude of a oating-point number used to represent positional or normal
coordinates must be at least 232; the maximum representable magnitude for
colors or texture coordinates must be at least 210. The maximum repre-
sentable magnitude for all other oating-point values must be at least 232.
x � 0 = 0 � x = 0 for any non-in�nite and non-NaN x. 1 � x = x � 1 = x.
x+0 = 0+x = x. 00 = 1. (Occasionally further requirements will be speci-
�ed.) Most single-precision oating-point formats meet these requirements.

Any representable oating-point value is legal as input to a GL command
that requires oating-point data. The result of providing a value that is not
a oating-point number to such a command is unspeci�ed, but must not
lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL command yields
predictable results, while providing a NaN or an in�nity yields unspeci�ed
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspeci�ed result but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state
variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.3. GL COMMAND SYNTAX 7

function. Although we describe the operations that the GL performs on the
framebu�er, the framebu�er is not a part of GL state.

We distinguish two types of state. The �rst type of state, called GL
server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the
GL client. Unless otherwise speci�ed, all state referred to in this document
is GL server state; GL client state is speci�cally identi�ed. Each instance of
a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server
state.

While an implementation of the GL may be hardware dependent, this
discussion is independent of the speci�c hardware on which a GL is imple-
mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands
perform the same operation but di�er in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for
describing commands and their arguments.

GL commands are formed from a name followed, depending on the par-
ticular command, by up to 4 characters. The �rst character indicates the
number of values of the indicated type that must be presented to the com-
mand. The second character or character pair indicates the speci�c type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
oating-point, or double-precision oating-point. The �nal character, if
present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two speci�c
examples come from the Vertex command:

void Vertex3f(float x, float y, float z);

and

void Vertex2sv(short v[2]);

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form1

1The declarations shown in this document apply to ANSI C. Languages such as C++

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

8 CHAPTER 2. OPENGL OPERATION

Letter Corresponding GL Type

b byte

s short

i int

f float

d double

ub ubyte

us ushort

ui uint

Table 2.1: Correspondence of command su�x letters to GL argument types.
Refer to Table 2.2 for de�nitions of the GL types.

rtype Namef�1234gf� b s i f d ub us uigf�vg
([args ,] T arg1 , : : : , T argN [, args]);

rtype is the return type of the function. The braces (fg) enclose a series
of characters (or character pairs) of which one is selected. � indicates no
character. The arguments enclosed in brackets ([args ,] and [, args]) may
or may not be present. The N arguments arg1 through argN have type T,
which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments' type is given explic-
itly). If the �nal character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is �xed). If the �nal
character is v, then only arg1 is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).

For example,

void Normal3ffdg(T arg);

indicates the two declarations

void Normal3f(float arg1, float arg2, float arg3);
void Normal3d(double arg1, double arg2, double arg3);

while

and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.4. BASIC GL OPERATION 9

void Normal3ffdgv(T arg);

means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv(double arg[3]);

Arguments whose type is �xed (i.e. not indicated by a su�x on the
command) are of one of 14 types (or pointers to one of these). These types
are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL
on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most
commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are e�ectively sent through a processing
pipeline.

The �rst stage provides an e�cient means for approximating curve and
surface geometry by evaluating polynomial functions of input values. The
next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebu�er addresses
and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they �nally alter the framebu�er.
These operations include conditional updates into the framebu�er based
on incoming and previously stored depth values (to e�ect depth bu�ering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations, eventually causing a block of pixels to be written to the frame-
bu�er; values may also be read back from the framebu�er or copied from
one portion of the framebu�er to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

10 CHAPTER 2. OPENGL OPERATION

GL Type Minimum Number of Bits Description

boolean 1 Boolean

byte 8 signed 2's complement binary inte-
ger

ubyte 8 unsigned binary integer

short 16 signed 2's complement binary inte-
ger

ushort 16 unsigned binary integer

int 32 signed 2's complement binary inte-
ger

uint 32 unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

bitfield 32 Bit �eld

float 32 Floating-point value

clampf 32 Floating-point value clamped to
[0; 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to
[0; 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example,
GL type int is referred to as GLint outside this document, and is not
necessarily equivalent to the C type int. An implementation may use more
bits than the number indicated in the table to represent a GL type. Correct
interpretation of integer values outside the minimum range is not required,
however.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.5. GL ERRORS 11

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

organize the various operations of the GL. Objects such as curved surfaces,
for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered
errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a
numeric code. When an error is detected, a ag is set and the code is
recorded. Further errors, if they occur, do not a�ect this recorded code.
When GetError is called, the code is returned and the ag is cleared,
so that a further error will again record its code. If a call to GetError
returns NO ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several ag-
code pairs. In this case, after a call to GetError returns a value other
than NO ERROR each subsequent call returns the non-zero code of a distinct
ag-code pair (in unspeci�ed order), until all non-NO ERROR codes have been

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

12 CHAPTER 2. OPENGL OPERATION

returned. When there are no more non-NO ERROR error codes, all ags are
reset. This scheme requires some positive number of pairs of a ag bit and
an integer. The initial state of all ags is cleared and the initial value of all
codes is NO ERROR.

Table 2.3 summarizes GL errors. Currently, when an error ag is set,
results of GL operation are unde�ned only if OUT OF MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has
no e�ect on GL state or framebu�er contents. If the generating command
returns a value, it returns zero. If the generating command modi�es values
through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in
the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every
GL command. First, if a command that requires an enumerated value is
passed a symbolic constant that is not one of those speci�ed as allowable for
that command, the error INVALID ENUM results. This is the case even if the
argument is a pointer to a symbolic constant if that value is not allowable
for the given command. Second, if a negative number is provided where an
argument of type sizei is speci�ed, the error INVALID VALUE results. Finally,
if memory is exhausted as a side e�ect of the execution of a command, the
error OUT OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this speci�cation.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-
nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated
line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.

Each vertex is speci�ed with two, three, or four coordinates. In addi-
tion, a current normal, current texture coordinates, and current color may
be used in processing each vertex. Normals are used by the GL in light-
ing calculations; the current normal is a three-dimensional vector that may
be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive.

Primary and secondary colors are associated with each vertex (see sec-

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 13

Error Description O�ending com-
mand ignored?

INVALID ENUM enum argument out of range Yes

INVALID VALUE Numeric argument out of
range

Yes

INVALID OPERATION Operation illegal in current
state

Yes

STACK OVERFLOW Command would cause a stack
overow

Yes

STACK UNDERFLOW Command would cause a stack
underow

Yes

OUT OF MEMORY Not enough memory left to ex-
ecute command

Unknown

TABLE TOO LARGE The speci�ed table is too large Yes

Table 2.3: Summary of GL errors

tion 3.9). These associated colors are either based on the current color
or produced by lighting, depending on whether or not lighting is enabled.
Texture coordinates are similarly associated with each vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to
produce a processed vertex.

The current values are part of GL state. Vertices and normals are trans-
formed, colors may be a�ected or replaced by lighting, and texture coordi-
nates are transformed and possibly a�ected by a texture coordinate genera-
tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors
are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge ag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the current texture coordinates. Because color assignment is done vertex-
by-vertex, a processed vertex comprises the vertex's coordinates, its edge
ag, its assigned colors, and its texture coordinates.

Figure 2.3 shows the sequence of operations that builds a primitive
(point, line segment, or polygon) from a sequence of vertices. After a primi-

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

14 CHAPTER 2. OPENGL OPERATION

lighting

vertex / normal
transformation

Current
Normal

Current
Color and
Materials

Current
Texture
Coords

texgen texture
matrix

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
and Texture
Coordinates)

Vertex
Coordinates In

Current
Edge Flag

Figure 2.2. Association of current values with a vertex. The heavy lined
boxes represent GL state.

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 15

tive is formed, it is clipped to a viewing volume. This may alter the primitive
by altering vertex coordinates, texture coordinates, and colors. In the case
of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices de�ning a primitive to be rasterized have texture coordinates
and colors associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for
each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands
are

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be speci�ed between
a Begin and an End.

Points. A series of individual points may be speci�ed by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous
and following points.

Line Strips. A series of one or more connected line segments is speci�ed
by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE STRIP. In this case, the �rst vertex speci�es
the �rst segment's start point while the second vertex speci�es the �rst
segment's endpoint and the second segment's start point. In general, the
ith vertex (for i > 1) speci�es the beginning of the ith segment and the end
of the i� 1st. The last vertex speci�es the end of the last segment. If only
one vertex is speci�ed between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean ag indicating if the current vertex is
the �rst vertex.

Line Loops. Line loops, speci�ed with the LINE LOOP argument value to
Begin, are the same as line strips except that a �nal segment is added from
the �nal speci�ed vertex to the �rst vertex. The additional state consists of
the processed �rst vertex.

Separate Lines. Individual line segments, each speci�ed by a pair of
vertices, are generated by surrounding vertex pairs with Begin and End

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

16 CHAPTER 2. OPENGL OPERATION

when the value of the argument to Begin is LINES. In this case, the �rst
two vertices between a Begin and End pair de�ne the �rst segment, with
subsequent pairs of vertices each de�ning one more segment. If the number
of speci�ed vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used di�erently: a vertex holding the �rst
vertex of the current segment, and a boolean ag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line
segments are speci�ed in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or �lling its interior. A polygon described with
fewer than three vertices does not generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL.
If a speci�ed polygon is nonconvex when projected onto the window, then
the rendered polygon need only lie within the convex hull of the projected
vertices de�ning its boundary.

The state required to support polygons consists of at least two processed
vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices
arrive, before all of them have been speci�ed. The order of the vertices is sig-
ni�cant in lighting and polygon rasterization (see sections 2.13.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges. A triangle strip is speci�ed by giving a series of de�ning ver-
tices between a Begin/End pair when Begin is called with TRIANGLE STRIP.
In this case, the �rst three vertices de�ne the �rst triangle (and their order is
signi�cant, just as for polygons). Each subsequent vertex de�nes a new tri-
angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE STRIP

has been supplied to Begin, produces no primitive. See Figure 2.4.
The state required to support triangle strips consists of a ag indicating

if the �rst triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
will be replaced with the next vertex. After a Begin(TRIANGLE STRIP),
the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the �rst vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 17

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that in (a) and (b) triangle edge ordering is determined by the �rst
triangle, while in (c) the order of each triangle's edges is independent of the
other triangles.

exception: each vertex after the �rst always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are speci�ed by placing ver-
tices between Begin and End when the value of the argument to Begin
is TRIANGLES. In this case, The 3i + 1st, 3i + 2nd, and 3i + 3rd vertices (in
that order) determine a triangle for each i = 0; 1; : : : ; n� 1, where there are
3n+k vertices between the Begin and End. k is either 0, 1, or 2; if k is not
zero, the �nal k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i+1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-
sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD STRIP. If the m vertices between the Begin
and End are v1; : : : ; vm, where vj is the jth speci�ed vertex, then quad i has
vertices (in order) v2i, v2i+1, v2i+3, and v2i+2 with i = 0; : : : ; bm=2c. The
state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the �rst new vertex) of
the current quad, a ag to indicate when the �rst quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

18 CHAPTER 2. OPENGL OPERATION

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices speci�ed for a quadrilateral strip between Begin and
End is odd, the �nal vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips ex-
cept that each group of four vertices, the 4j+1st, the 4j+2nd, the 4j+3rd,
and the 4j + 4th, generate a single quad, for j = 0; 1; : : : ; n� 1. The total
number of vertices between Begin and End is 4n+ k, where 0 � k � 3; if
k is not zero, the �nal k vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, trian-
gle fan, separate triangle set, quadrilateral strip, or separate quadrilateral
set, is agged as either boundary or non-boundary. These classi�cations
are used during polygon rasterization; some modes a�ect the interpreta-
tion of polygon boundary edges (see section 3.5.4). By default, all edges are
boundary edges, but the agging of polygons, separate triangles, or separate
quadrilaterals may be altered by calling

void EdgeFlag(boolean ag);
void EdgeFlagv(boolean *ag);

to change the value of a ag bit. If ag is zero, then the ag bit is set to
FALSE; if ag is non-zero, then the ag bit is set to TRUE.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.7. VERTEX SPECIFICATION 19

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex speci�ed within a Begin and End pair
begins an edge. If the edge ag bit is TRUE, then each speci�ed vertex begins
an edge that is agged as boundary. If the bit is FALSE, then induced edges
are agged as non-boundary.

The state required for edge agging consists of one current ag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled
polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coor-
dinates, and texture coordinates (Vertex, Color, Index, Normal, Tex-
Coord), the ArrayElement command (see section 2.8), the EvalCoord
and EvalPoint commands (see section 5.1), commands for specifying light-
ing material parameters (Material commands; see section 2.13.2), display
list invocation commands (CallList and CallLists; see section 5.4), and
the EdgeFlag command. Executing any other GL command between the
execution of Begin and the corresponding execution of End results in the
error INVALID OPERATION. Executing Begin after Begin has already been
executed but before an End is executed generates the INVALID OPERATION

error, as does executing End without a previous corresponding Begin.
Execution of the commands EnableClientState, Dis-

ableClientState, PushClientAttrib, PopClientAttrib, EdgeFlag-
Pointer, TexCoordPointer, ColorPointer, IndexPointer, Normal-
Pointer, VertexPointer, InterleavedArrays, and PixelStore, is not
allowed within any Begin/End pair, but an error may or may not be gen-
erated if such execution occurs. If an error is not generated, GL operation
is unde�ned. (These commands are described in sections 2.8, 3.6.1, and
Chapter 6.)

2.7 Vertex Speci�cation

Vertices are speci�ed by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertexf234gfsifdg(T coords);
void Vertexf234gfsifdgv(T coords);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

20 CHAPTER 2. OPENGL OPERATION

A call to any Vertex command speci�es four coordinates: x, y, z, and w.
The x coordinate is the �rst coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the x and y coordinates; the z coordinate is
implicitly set to zero and the w coordinate to one. Vertex3 sets x, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,
allowing the speci�cation of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-
�ned behavior.

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords);
void TexCoordf1234gfsifdgv(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly,TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,
and r, with q set to 1, and TexCoord4 sets all four texture coordinates.

The current normal is set using

void Normal3fbsifdg(T coords);
void Normal3fbsifdgv(T coords);

Byte, short, or integer values passed to Normal are converted to oating-
point values as indicated for the corresponding (signed) type in Table 2.6.

Finally, there are several ways to set the current color. The GL stores
both a current single-valued color index, and a current four-valued RGBA
color. One or the other of these is signi�cant depending as the GL is in color
index mode or RGBA mode. The mode selection is made when the GL is
initialized.

The command to set RGBA colors is

void Colorf34gfbsifd ubusuig(T components);
void Colorf34gfbsifd ubusuigv(T components);

The Color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer
color components (R, G, B, and A) to oating-point values is discussed in
section 2.13.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 21

Versions of the Color command that take oating-point values accept
values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebu�er (see section 2.13 on colors and
coloring). Values outside [0; 1] are not clamped.

The command

void Indexfsifd ubg(T index);
void Indexfsifd ubgv(T index);

updates the current (single-valued) color index. It takes one argument, the
value to which the current color index should be set. Values outside the
(machine-dependent) representable range of color indices are not clamped.

The state required to support vertex speci�cation consists of four
oating-point numbers to store the current texture coordinates s, t, r, and
q, three oating-point numbers to store the three coordinates of the current
normal, four oating-point values to store the current RGBA color, and
one oating-point value to store the current color index. There is no notion
of a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial
value of q is one. The initial current normal has coordinates (0; 0; 1). The
initial RGBA color is (R;G;B;A) = (1; 1; 1; 1). The initial color index is 1.

2.8 Vertex Arrays

The vertex speci�cation commands described in section 2.7 accept data in
almost any format, but their use requires many command executions to spec-
ify even simple geometry. Vertex data may also be placed into arrays that
are stored in the client's address space. Blocks of data in these arrays may
then be used to specify multiple geometric primitives through the execution
of a single GL command. The client may specify up to six arrays: one each
to store edge ags, texture coordinates, colors, color indices, normals, and
vertices. The commands

void EdgeFlagPointer(sizei stride, void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

22 CHAPTER 2. OPENGL OPERATION

Command Sizes Types

VertexPointer 2,3,4 short, int, float, double

NormalPointer 3 byte, short, int, float, double

ColorPointer 3,4 byte, ubyte, short, ushort, int,
uint, float, double

IndexPointer 1 ubyte, short, int, float, double

TexCoordPointer 1,2,3,4 short, int, float, double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

void IndexPointer(enum type, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

void VertexPointer(int size, enum type, sizei stride,
void *pointer);

describe the locations and organizations of these arrays. For each com-
mand, type speci�es the data type of the values stored in the array. Because
edge ags are always type boolean, EdgeFlagPointer has no type argu-
ment. size, when present, indicates the number of values per vertex that
are stored in the array. Because normals are always speci�ed with three
values, NormalPointer has no size argument. Likewise, because color in-
dices and edge ags are always speci�ed with a single value, IndexPointer
and EdgeFlagPointer also have no size argument. Table 2.4 indicates
the allowable values for size and type (when present). For type the values
BYTE, SHORT, INT, FLOAT, and DOUBLE indicate types byte, short, int, float,
and double, respectively; and the values UNSIGNED BYTE, UNSIGNED SHORT, and
UNSIGNED INT indicate types ubyte, ushort, and uint, respectively. The er-
ror INVALID VALUE is generated if size is speci�ed with a value other than
that indicated in the table.

The one, two, three, or four values in an array that correspond to a single
vertex comprise an array element. The values within each array element are
stored sequentially in memory. If stride is speci�ed as zero, then array
elements are stored sequentially as well. Otherwise pointers to the ith and
(i+ 1)st elements of an array di�er by stride basic machine units (typically

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 23

unsigned bytes), the pointer to the (i+1)st element being greater. For each
command, pointer speci�es the location in memory of the �rst value of the
�rst element of the array being speci�ed.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to EDGE FLAG ARRAY, TEXTURE COORD ARRAY, COLOR ARRAY,
INDEX ARRAY, NORMAL ARRAY, or VERTEX ARRAY, for the edge ag, texture coor-
dinate, color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i);

For each enabled array, it is as though the corresponding command from sec-
tion 2.7 or section 2.6.2 were called with a pointer to element i. For the ver-
tex array, the corresponding command isVertex[size][type]v, where size is
one of [2,3,4], and type is one of [s,i,f,d], corresponding to array types short,
int, float, and double respectively. The corresponding commands for
the edge ag, texture coordinate, color, color index, and normal arrays are
EdgeFlagv, TexCoord[size][type]v, Color[size][type]v, Index[type]v,
and Normal[type]v, respectively. If the vertex array is enabled, it is as
though Vertex[size][type]v is executed last, after the executions of the
other corresponding commands.

Changes made to array data between the execution of Begin and the
corresponding execution of End may a�ect calls to ArrayElement that are
made within the same Begin/End period in non-sequential ways. That is,
a call to ArrayElement that precedes a change to array data may access
the changed data, and a call that follows a change to array data may access
original data.

The command

void DrawArrays(enum mode, int �rst, sizei count);

constructs a sequence of geometric primitives using elements first through
first+count�1 of each enabled array. mode speci�es what kind of primitives
are constructed; it accepts the same token values as the mode parameter of
the Begin command. The e�ect of

DrawArrays (mode; first; count);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

24 CHAPTER 2. OPENGL OPERATION

is the same as the e�ect of the command sequence

if (mode or count is invalid)

generate appropriate error
else f

int i;

Begin(mode);
for (i=0; i < count ; i++)

ArrayElement(first+ i);

End();
g

with one exception: the current edge ag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution of
DrawArrays, if the corresponding array is enabled. Current values corre-
sponding to disabled arrays are not modi�ed by the execution of DrawAr-
rays.

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED SHORT, or UNSIGNED INT, indicating that the values in indices are
indices of GL type ubyte, ushort, or uint respectively. mode speci�es
what kind of primitives are constructed; it accepts the same token values as
the mode parameter of the Begin command. The e�ect of

DrawElements (mode; count; type; indices);

is the same as the e�ect of the command sequence

if (mode; count; or type is invalid)

generate appropriate error
else f

int i;

Begin(mode);
for (i=0; i < count ; i++)

ArrayElement(indices[i]);
End();

g

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 25

with one exception: the current edge ag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution
of DrawElements, if the corresponding array is enabled. Current val-
ues corresponding to disabled arrays are not modi�ed by the execution of
DrawElements.

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices
match the corresponding arguments toDrawElements, with the additional
constraint that all values in the array indices must lie between start and end
inclusive.

Implementations denote recommended maximum amounts of vertex and
index data, which may be queried by callingGetIntegerv with the symbolic
constants MAX ELEMENTS VERTICES and MAX ELEMENTS INDICES. If end�start+1
is greater than the value of MAX ELEMENTS VERTICES, or if count is greater than
the value of MAX ELEMENTS INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start; end]
be referenced. However, the implementation may partially process unused
vertices, reducing performance from what could be achieved with an optimal
index set.

The error INVALID VALUE is generated if end < start. Invalidmode, count,
or type parameters generate the same errors as would the corresponding
call to DrawElements. It is an error for indices to lie outside the range
[start; end], but implementations may not check for this. Such indices will
cause implementation-dependent behavior.

The command

void InterleavedArrays(enum format, sizei stride,
void *pointer);

e�ciently initializes the six arrays and their enables to one of 14 con�gura-
tions. format must be one of 14 symbolic constants: V2F, V3F, C4UB V2F,
C4UB V3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F, T4F V4F, T2F C4UB V3F,
T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or T4F C4F N3F V4F.

The e�ect of

InterleavedArrays(format; stride; pointer);

is the same as the e�ect of the command sequence

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

26 CHAPTER 2. OPENGL OPERATION

format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UB V2F False True False 4 2 UNSIGNED BYTE

C4UB V3F False True False 4 3 UNSIGNED BYTE

C3F V3F False True False 3 3 FLOAT

N3F V3F False False True 3
C4F N3F V3F False True True 4 3 FLOAT

T2F V3F True False False 2 3

T4F V4F True False False 4 4
T2F C4UB V3F True True False 2 4 3 UNSIGNED BYTE

T2F C3F V3F True True False 2 3 3 FLOAT

T2F N3F V3F True False True 2 3

T2F C4F N3F V3F True True True 2 4 3 FLOAT

T4F C4F N3F V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UB V2F 0 c c+ 2f
C4UB V3F 0 c c+ 3f

C3F V3F 0 3f 6f
N3F V3F 0 3f 6f
C4F N3F V3F 0 4f 7f 10f
T2F V3F 2f 5f

T4F V4F 4f 8f
T2F C4UB V3F 2f c+ 2f c+ 5f
T2F C3F V3F 2f 5f 8f
T2F N3F V3F 2f 5f 8f

T2F C4F N3F V3F 2f 6f 9f 12f
T4F C4F N3F V4F 4f 8f 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f
is sizeof(FLOAT). c is 4 times sizeof(UNSIGNED BYTE), rounded up to
the nearest multiple of f . All pointer arithmetic is performed in units of
sizeof(UNSIGNED BYTE).

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 27

if (format or stride is invalid)
generate appropriate error

else f
int str;

set et; ec; en; st; sc; sv; tc; pc; pn; pv; and s as a function
of Table 2.5 and the value of format.

str = stride;
if (str is zero)

str = s;
DisableClientState(EDGE FLAG ARRAY);
DisableClientState(INDEX ARRAY);
if (et) f

EnableClientState(TEXTURE COORD ARRAY);
TexCoordPointer(st, FLOAT, str, pointer);

g else f
DisableClientState(TEXTURE COORD ARRAY);

g
if (ec) f

EnableClientState(COLOR ARRAY);
ColorPointer(sc, tc, str, pointer + pc);

g else f
DisableClientState(COLOR ARRAY);

g
if (en) f

EnableClientState(NORMAL ARRAY);
NormalPointer(FLOAT, str, pointer + pn);

g else f
DisableClientState(NORMAL ARRAY);

g
EnableClientState(VERTEX ARRAY);
VertexPointer(sv, FLOAT, str, pointer + pv);

g

The client state required to implement vertex arrays consists of six
boolean values, six memory pointers, six integer stride values, �ve symbolic
constants representing array types, and three integers representing values
per element. In the initial state the boolean values are each disabled, the
memory pointers are each null, the strides are each zero, the array types are
each FLOAT, and the integers representing values per element are each four.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

28 CHAPTER 2. OPENGL OPERATION

2.9 Rectangles

There is a set of GL commands to support e�cient speci�cation of rectangles
as two corner vertices.

void Rectfsifdg(T x1, T y1, T x2, T y2);
void Rectfsifdgv(T v1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive
pairs of (x; y) coordinates, or two pointers to arrays each of which contains
an x value followed by a y value. The e�ect of the Rect command

Rect (x1; y1; x2; y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1; y1);
Vertex2(x2; y1);
Vertex2(x2; y2);
Vertex2(x1; y2);

End();

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their
coordinates are used to produce an image in the framebu�er. We begin
with a description of how vertex coordinates are transformed and how this
transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these coordinates to
yield eye coordinates. Then another matrix, called the projection matrix, is
applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
�nal viewport transformation is applied to convert these coordinates into
window coordinates.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 29

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.6. Vertex transformation sequence.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of x, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4� 4.

If a vertex in object coordinates is given by

0
BB@
xo
yo
zo
wo

1
CCA and the model-view

matrix is M , then the vertex's eye coordinates are found as

0
BB@
xe
ye
ze
we

1
CCA =M

0
BB@
xo
yo
zo
wo

1
CCA :

Similarly, if P is the projection matrix, then the vertex's clip coordinates
are 0

BB@
xc
yc
zc
wc

1
CCA = P

0
BB@
xe
ye
ze
we

1
CCA :

The vertex's normalized device coordinates are then0
@xd
yd
zd

1
A =

0
@xc=wc

yc=wc

zc=wc

1
A :

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

30 CHAPTER 2. OPENGL OPERATION

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport's width and
height in pixels, px and py, respectively, and its center (ox; oy) (also in

pixels). The vertex's window coordinates,

0
@xw
yw
zw

1
A, are given by

0
@xw
yw
zw

1
A =

0
@ (px=2)xd + ox

(py=2)yd + oy
[(f � n)=2]zd + (n+ f)=2

1
A :

The factor and o�set applied to zd encoded by n and f are set using

void DepthRange(clampd n, clampd f);

Each of n and f are clamped to lie within [0; 1], as are all arguments of type
clampd or clampf. zw is taken to be represented in �xed-point with at least
as many bits as there are in the depth bu�er of the framebu�er. We assume
that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones).

Viewport transformation parameters are speci�ed using

void Viewport(int x, int y, sizei w, sizei h);

where x and y give the x and y window coordinates of the viewport's lower-
left corner and w and h give the viewport's width and height, respectively.
The viewport parameters shown in the above equations are found from these
values as ox = x+ w=2 and oy = y + h=2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent
maximums when speci�ed. The maximum width and height may be found
by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either w or h
is negative.

The state required to implement the viewport transformation is 6 inte-
gers. In the initial state, w and h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. ox and oy are set to
w=2 and h=2, respectively. n and f are set to 0:0 and 1:0, respectively.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 31

2.10.2 Matrices

The projection matrix and model-view matrix are set and modi�ed with
a variety of commands. The a�ected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-de�ned constants TEXTURE, MODELVIEW, COLOR,
or PROJECTION as the argument value. TEXTURE is described later in sec-
tion 2.10.2, and COLORis described in section 3.6.3. If the current matrix
mode is MODELVIEW, then matrix operations apply to the model-view matrix;
if PROJECTION, then they apply to the projection matrix.

The two basic commands for a�ecting the current matrix are

void LoadMatrixffdg(T m[16]);
void MultMatrixffdg(T m[16]);

LoadMatrix takes a pointer to a 4�4 matrix stored in column-major order
as 16 consecutive oating-point values, i.e. as

0
BB@
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
a4 a8 a12 a16

1
CCA :

(This di�ers from the standard row-major C ordering for matrix elements. If
the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The speci�ed matrix replaces the current matrix with the one pointed to.
MultMatrix takes the same type argument as LoadMatrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product. If C is the current matrix and M is the matrix pointed
to by MultMatrix's argument, then the resulting current matrix, C 0, is

C 0 = C �M:

The command

void LoadIdentity(void);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

32 CHAPTER 2. OPENGL OPERATION

e�ectively calls LoadMatrix with the identity matrix:

0
BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA :

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-
trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotateffdg(T �, T x, T y, T z);

� gives an angle of rotation in degrees; the coordinates of a vector v are given
by v = (x y z)T . The computed matrix is a counter-clockwise rotation about
the line through the origin with the speci�ed axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The
matrix is thus

0
BB@

0
R 0

0
0 0 0 1

1
CCA :

Let u = v=jjvjj = (x0 y0 z0)T . If

S =

0
@ 0 �z0 y0

z0 0 �x0
�y0 x0 0

1
A

then
R = uuT + cos �(I � uuT) + sin �S:

The arguments to

void Translateffdg(T x, T y, T z);

give the coordinates of a translation vector as (x y z)T . The resulting matrix
is a translation by the speci�ed vector:0

BB@
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

1
CCA :

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 33

void Scaleffdg(T x, T y, T z);

produces a general scaling along the x-, y-, and z- axes. The corresponding
matrix is 0

BB@
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

1
CCA :

For

void Frustum(double l, double r, double b, double t,
double n, double f);

the coordinates (l b � n)T and (r t � n)T specify the points on the near
clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)T). f
gives the distance from the eye to the far clipping plane. If either n or f is
less than or equal to zero, l is equal to r, b is equal to t, or n is equal to f ,
the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2n
r�l

0 r+l
r�l

0

0 2n
t�b

t+b
t�b

0

0 0 �f+n
f�n

� 2fn
f�n

0 0 �1 0

1
CCCA :

void Ortho(double l, double r, double b, double t,
double n, double f);

describes a matrix that produces parallel projection. (l b�n)T and (r t �n)T
specify the points on the near clipping plane that are mapped to the lower-
left and upper-right corners of the window, respectively. f gives the distance
from the eye to the far clipping plane. If l is equal to r, b is equal to t, or n
is equal to f , the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2
r�l

0 0 � r+l
r�l

0 2
t�b

0 � t+b
t�b

0 0 � 2
f�n

�f+n
f�n

0 0 0 1

1
CCCA :

There is another 4�4 matrix that is applied to texture coordinates. This
matrix is applied as

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

34 CHAPTER 2. OPENGL OPERATION

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s
t
r
q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32
model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry o� of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, a stack of at least two
4 � 4 matrices for each of COLOR, PROJECTION, and TEXTURE with associated
stack pointers, and a stack of at least 32 4� 4 matrices with an associated
stack pointer for MODELVIEW. Initially, there is only one matrix on each stack,
and all matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state
a�ect normals. Before use in lighting, normals are transformed to eye co-
ordinates by a matrix derived from the model-view matrix. Rescaling and
normalization operations are performed on the transformed normals to make

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 35

them unit length prior to use in lighting. Rescaling and normalization are
controlled by

void Enable(enum target);

and

void Disable(enum target);

with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M , then the normal is transformed to eye
coordinates by:

(nx
0 ny

0 nz
0 q0) = (nx ny nz q) �M�1

where, if

0
BB@
x
y
z
w

1
CCA are the associated vertex coordinates, then

q =

8>>>><
>>>>:

0; w = 0;

�(nx ny nz)

0
@x
y
z

1
A

w
; w 6= 0

(2.1)

Implementations may choose instead to transform (nx ny nz) to eye
coordinates using

(nx
0 ny

0 nz
0) = (nx ny nz) �Mu

�1

where Mu is the upper leftmost 3x3 matrix taken from M .

Rescale multiplies the transformed normals by a scale factor

(nx
00 ny

00 nz
00) = f (nx

0 ny
0 nz

0)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is com-
puted as (mij denotes the matrix element in row i and column j of M�1,
numbering the topmost row of the matrix as row 1 and the leftmost column
as column 1)

f =
1p

m31
2 +m32

2 +m33
2

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

36 CHAPTER 2. OPENGL OPERATION

Note that if the normals sent to GL were unit length and the model-view
matrix uniformly scales space, then rescale makes the transformed normals
unit length.

Alternatively, an implementation may chose f as

f =
1q

nx0
2 + ny 0

2 + nz 0
2

recomputing f for each normal. This makes all non-zero length normals
unit length regardless of their input length and the nature of the model-
view matrix.

After rescaling, the �nal transformed normal used in lighting, nf , is
computed as

nf = m (nx
00 ny

00 nz
00)

If normalization is disabled, then m = 1. Otherwise

m =
1q

nx00
2 + ny 00

2 + nz 00
2

Because we specify neither the oating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-
conditioned (nearly singular) model-view matrix M . In case of an exactly
singular matrix, the transformed normal is unde�ned. If the GL implementa-
tion determines that the model-view matrix is uninvertible, then the entries
in the inverted matrix are arbitrary. In any case, neither normal transfor-
mation nor use of the transformed normal may lead to GL interruption or
termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates. The command

void TexGenfifdg(enum coord, enum pname, T param);
void TexGenfifdgv(enum coord, enum pname, T params);

controls texture coordinate generation. coord must be one of the constants
S, T, R, or Q, indicating that the pertinent coordinate is the s, t, r, or q

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 37

coordinate, respectively. In the �rst form of the command, param is a sym-
bolic constant specifying a single-valued texture generation parameter; in the
second form, params is a pointer to an array of values that specify texture
generation parameters. pname must be one of the three symbolic constants
TEXTURE GEN MODE, OBJECT PLANE, or EYE PLANE. If pname is TEXTURE GEN MODE,
then either params points to or param is an integer that is one of the symbolic
constants OBJECT LINEAR, EYE LINEAR, or SPHERE MAP.

If TEXTURE GEN MODE indicates OBJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = p1xo + p2yo + p3zo + p4wo:

xo, yo, zo, and wo are the object coordinates of the vertex. p1; : : : ; p4 are
speci�ed by calling TexGen with pname set to OBJECT PLANE in which case
params points to an array containing p1; : : : ; p4. There is a distinct group of
plane equation coe�cients for each texture coordinate; coord indicates the
coordinate to which the speci�ed coe�cients pertain.

If TEXTURE GEN MODE indicates EYE LINEAR, then the function is

g = p01xe + p02ye + p03ze + p04we

where

(p01 p02 p03 p04) = (p1 p2 p3 p4)M
�1

xe, ye, ze, and we are the eye coordinates of the vertex. p1; : : : ; p4 are
set by calling TexGen with pname set to EYE PLANE in correspondence with
setting the coe�cients in the OBJECT PLANE case. M is the model-view matrix
in e�ect when p1; : : : ; p4 are speci�ed. Computed texture coordinates may
be inaccurate or unde�ned if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen
with TEXTURE GEN MODE indicating SPHERE MAP can simulate the reected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates
are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-
formation to eye coordinates, by n0. Let r = (rx ry rz)

T , the reection
vector, be given by

r = u� 2n0T
�
n0u

�
;

and let m = 2
q
r2x + r2y + (rz + 1)2. Then the value assigned to an s coor-

dinate (the �rst TexGen argument value is S) is s = rx=m + 1
2 ; the value

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

38 CHAPTER 2. OPENGL OPERATION

assigned to a t coordinate is t = ry=m + 1
2 . Calling TexGen with a co-

ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,
TEXTURE GEN R, or TEXTURE GEN Q (each indicates the corresponding texture
coordinate). When enabled, the speci�ed texture coordinate is computed
according to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP speci�ca-
tion, depending on the current setting of TEXTURE GEN MODE for that coordi-
nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-
valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coe�cients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state
has the texture generation function disabled for all texture coordinates. The
initial values of pi for s are all 0 except p1 which is one; for t all the pi are
zero except p2, which is 1. The values of pi for r and q are all 0. These values
of pi apply for both the EYE LINEAR and OBJECT LINEAR versions. Initially all
texture generation modes are EYE LINEAR.

2.11 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view
volume is de�ned by

�wc � xc � wc

�wc � yc � wc

�wc � zc � wc

:

This view volume may be further restricted by as many as n client-de�ned
clip planes to generate the clip volume. (n is an implementation dependent
maximum that must be at least 6.) Each client-de�ned plane speci�es a
half-space. The clip volume is the intersection of all such half-spaces with
the view volume (if there no client-de�ned clip planes are enabled, the clip
volume is the view volume).

A client-de�ned clip plane is speci�ed with

void ClipPlane(enum p, double eqn[4]);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.11. CLIPPING 39

The value of the �rst argument, p, is a symbolic constant, CLIP PLANEi, where
i is an integer between 0 and n � 1, indicating one of n client-de�ned clip
planes. eqn is an array of four double-precision oating-point values. These
are the coe�cients of a plane equation in object coordinates: p1, p2, p3, and
p4 (in that order). The inverse of the current model-view matrix is applied
to these coe�cients, at the time they are speci�ed, yielding

(p01 p02 p03 p04) = (p1 p2 p3 p4)M
�1

(where M is the current model-view matrix; the resulting plane equation is
unde�ned ifM is singular and may be inaccurate ifM is poorly-conditioned)
to obtain the plane equation coe�cients in eye coordinates. All points with
eye coordinates (xe ye ze we)

T that satisfy

(p01 p02 p03 p04)

0
BB@
xe
ye
ze
we

1
CCA � 0

lie in the half-space de�ned by the plane; points that do not satisfy this
condition do not lie in the half-space.

Client-de�ned clip planes are enabled with the generic Enable com-
mand and disabled with the Disable command. The value of the argument
to either command is CLIP PLANEi where i is an integer between 0 and n;
specifying a value of i enables or disables the plane equation with index i.
The constants obey CLIP PLANEi = CLIP PLANE0+ i.

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume.

This clipping produces a value, 0 � t � 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices' coordinates
are P1 and P2, then t is given by

P = tP1 + (1� t)P2:

The value of t is used in color and texture coordinate clipping (sec-
tion 2.13.8).

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

40 CHAPTER 2. OPENGL OPERATION

If the primitive is a polygon, then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-
gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume's boundary. Thus, clipping may
require the introduction of new vertices into a polygon. Edge ags are asso-
ciated with these vertices so that edges introduced by clipping are agged
as boundary (edge ag TRUE), and so that original edges of the polygon that
become cut o� at these vertices retain their original ags.

If it happens that a polygon intersects an edge of the clip volume's
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have wc values of di�ering signs
may generate multiple connected components after clipping. GL implemen-
tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of wc > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coe�cients (p01 p02 p03 p04) (or a
number of similarly speci�ed clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respeci�ed with co-
e�cients (�p01 �p02 �p03 �p04) (and correspondingly for any other clip
planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

The state required for clipping is at least 6 sets of plane equations (each
consisting of four double-precision oating-point coe�cients) and at least 6
corresponding bits indicating which of these client-de�ned plane equations
are enabled. In the initial state, all client-de�ned plane equation coe�cients
are zero and all planes are disabled.

2.12 Current Raster Position

The current raster position is used by commands that directly a�ect pixels in
the framebu�er. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster
position, however, shares some of the characteristics of a vertex.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 41

The state required for the current raster position consists of three window
coordinates xw, yw, and zw, a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and texture
coordinates. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords);
void RasterPosf234gfsifdgv(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set
to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).

The coordinates are treated as if they were speci�ed in a Vertex com-
mand. The x, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-
rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace
the color and texture coordinates stored in the current raster position's as-
sociated data. The distance from the origin of the eye coordinate system
to the vertex as transformed by only the current model-view matrix re-
places the current raster distance. This distance can be approximated (see
section 3.10).

The transformed coordinates are passed to clipping as if they represented
a point. If the \point" is not culled, then the projection to window coor-
dinates is computed (section 2.10) and saved as the current raster position,
and the valid bit is set. If the \point" is culled, the current raster position
and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires �ve single-precision oating-point
values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0; 0; 0; 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

42 CHAPTER 2. OPENGL OPERATION

Texture
Matrix

Rasterpos In

Current
Texture

Coordinates

Current
Normal

Lighting

Vertex/Normal
Transformation

Texgen

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Figure 2.7. The current raster position and how it is set.

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate
both primary and secondary vertex colors, which are processed in the same
fashion. See Table 2.6 for the interpretation of k.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 43

Convert to
float

[0,2n−1]

float

Current
Color
Index Lighting

Mask to

[0.0, 2n−1]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.9. Processing of color indices. n is the number of bits in a color
index.

2.13 Colors and Coloring

Figures 2.8 and 2.9 diagram the processing of RGBA colors and color in-
dices before rasterization. Incoming colors arrive in one of several formats.
Table 2.6 summarizes the conversions that take place on R, G, B, and A com-
ponents depending on which version of the Color command was invoked to
specify the components. As a result of limited precision, some converted
values will not be represented exactly. In color index mode, a single-valued
color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and
secondary colors. If lighting is disabled, the current color index or color
is used in further processing (the current color is the primary color, and
the secondary color is (0; 0; 0; 0)). After lighting, RGBA colors are clamped
to the range [0; 1]. A color index is converted to �xed-point and then its
integer portion is masked (see section 2.13.6). After clamping or masking,
a primitive may be atshaded, indicating that all vertices of the primitive
are to have the same color. Finally, if a primitive is clipped, then colors
(and texture coordinates) must be computed at the vertices introduced or
modi�ed by clipping.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

44 CHAPTER 2. OPENGL OPERATION

GL Type Conversion

ubyte c=(28 � 1)

byte (2c+ 1)=(28 � 1)

ushort c=(216 � 1)

short (2c+ 1)=(216 � 1)

uint c=(232 � 1)

int (2c+ 1)=(232 � 1)

oat c

double c

Table 2.6: Component conversions. Color, normal, and depth components,
(c), are converted to an internal oating-point representation, (f), using the
equations in this table. All arithmetic is done in the internal oating point
format. These conversions apply to components speci�ed as parameters to
GL commands and to components in pixel data. The equations remain the
same even if the implemented ranges of the GL data types are greater than
the minimum required ranges. (Refer to table 2.2)

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accom-
plished by applying an equation de�ned by a client-speci�ed lighting model
to a collection of parameters that can include the vertex coordinates, the
coordinates of one or more light sources, the current normal, and parameters
de�ning the characteristics of the light sources and a current material. The
following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.13.5.)

Lighting may be in one of two states:

1. Lighting O�. In this state, the current color is assigned to the vertex
primary color. The secondary color is (0; 0; 0; 0).

2. Lighting On. In this state, the vertex primary and secondary colors
are computed from the current lighting parameters.

Lighting is turned on or o� using the generic Enable orDisable commands
with the symbolic value LIGHTING.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 45

Lighting Operation

A lighting parameter is of one of �ve types: color, position, direction, real,
or boolean. A color parameter consists of four oating-point values, one
for each of R, G, B, and A, in that order. There are no restrictions on the
allowable values for these parameters. A position parameter consists of four
oating-point coordinates (x, y, z, and w) that specify a position in object
coordinates (w may be zero, indicating a point at in�nity in the direction
given by x, y, and z). A direction parameter consists of three oating-point
coordinates (x, y, and z) that specify a direction in object coordinates. A
real parameter is one oating-point value. The various values and their
types are summarized in Table 2.7. The result of a lighting computation is
unde�ned if a value for a parameter is speci�ed that is outside the range
given for that parameter in the table.

There are n light sources, indexed by i = 0; : : : ; n�1. (n is an implemen-
tation dependent maximum that must be at least 8.) Note that the default
values for dcli and scli di�er for i = 0 and i > 0.

Before specifying the way that lighting computes colors, we introduce
operators and notation that simplify the expressions involved. If c1 and
c2 are colors without alpha where c1 = (r1; g1; b1) and c2 = (r2; g2; b2),
then de�ne c1 � c2 = (r1r2; g1g2; b1b2). Addition of colors is accomplished
by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If d1 and d2 are directions, then
de�ne

d1 � d2 = maxfd1 � d2; 0g:
(Directions are taken to have three coordinates.) If P1 and P2 are (homoge-
neous, with four coordinates) points then let

���!
P1P2 be the unit vector that

points from P1 to P2. Note that if P2 has a zero w coordinate and P1 has
non-zero w coordinate, then

���!
P1P2 is the unit vector corresponding to the

direction speci�ed by the x, y, and z coordinates of P2; if P1 has a zero w
coordinate and P2 has a non-zero w coordinate then

���!
P1P2 is the unit vector

that is the negative of that corresponding to the direction speci�ed by P1.
If both P1 and P2 have zero w coordinates, then

���!
P1P2 is the unit vector

obtained by normalizing the direction corresponding to P2 �P1.
If d is an arbitrary direction, then let d̂ be the unit vector in d's direction.

Let kP1P2k be the distance between P1 and P2. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.
Let Pe be the eyepoint ((0; 0; 0; 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color cpri and a
secondary color csec. The values of cpri and csec depend on the light model

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

46 CHAPTER 2. OPENGL OPERATION

Parameter Type Default Value Description

Material Parameters

acm color (0:2; 0:2; 0:2; 1:0) ambient color of material

dcm color (0:8; 0:8; 0:8; 1:0) di�use color of material

scm color (0:0; 0:0; 0:0; 1:0) specular color of material

ecm color (0:0; 0:0; 0:0; 1:0) emissive color of material

srm real 0.0 specular exponent (range:
[0:0; 128:0])

am real 0:0 ambient color index

dm real 1:0 di�use color index

sm real 1:0 specular color index

Light Source Parameters

acli color (0:0; 0:0; 0:0; 1:0) ambient intensity of light i

dcli(i = 0) color (1:0; 1:0; 1:0; 1:0) di�use intensity of light 0
dcli(i > 0) color (0:0; 0:0; 0:0; 1:0) di�use intensity of light i

scli(i = 0) color (1:0; 1:0; 1:0; 1:0) specular intensity of light 0
scli(i > 0) color (0:0; 0:0; 0:0; 1:0) specular intensity of light i

Ppli position (0:0; 0:0; 1:0; 0:0) position of light i

sdli direction (0:0; 0:0;�1:0) direction of spotlight for light
i

srli real 0.0 spotlight exponent for light i
(range: [0:0; 128:0])

crli real 180.0 spotlight cuto� angle for
light i (range: [0:0; 90:0],
180:0)

k0i real 1.0 constant attenuation factor
for light i (range: [0:0;1))

k1i real 0.0 linear attenuation factor for
light i (range: [0:0;1))

k2i real 0.0 quadratic attenuation factor
for light i (range: [0:0;1))

Lighting Model Parameters

acs color (0:2; 0:2; 0:2; 1:0) ambient color of scene

vbs boolean FALSE viewer assumed to be at
(0; 0; 0) in eye coordinates
(TRUE) or (0; 0;1) (FALSE)

ces enum SINGLE COLOR controls computation of col-
ors

tbs boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color
components is (�1;+1).

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 47

color control, ces. If ces = SINGLE COLOR, then the equations to compute cpri
and csec are

cpri = ecm

+ acm � acs
+

n�1X
i=0

(atti)(spoti) [acm � acli
+ (n ���!VPpli)dcm � dcli
+ (fi)(n� ĥi)srmscm � scli]

csec = (0; 0; 0; 0)

If ces = SEPARATE SPECULAR COLOR, then

cpri = ecm

+ acm � acs
+

n�1X
i=0

(atti)(spoti) [acm � acli
+ (n���!VPpli)dcm � dcli]

csec =
n�1X
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm � scli

where

fi =

(
1; n���!VPpli 6= 0;
0; otherwise,

(2.2)

hi =

(��!
VPpli +

��!
VPe; vbs = TRUE;��!

VPpli + (0 0 1)T ; vbs = FALSE;
(2.3)

atti =

8><
>:

1
k0i + k1ikVPplik + k2ikVPplik2

; if Ppli's w 6= 0,

1:0; otherwise.

(2.4)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

48 CHAPTER 2. OPENGL OPERATION

spoti =

8><
>:

(
���!
PpliV � ŝdli)srli ; crli 6= 180:0;

���!
PpliV � ŝdli � cos(crli);

0:0; crli 6= 180:0;
���!
PpliV � ŝdli < cos(crli);

1:0; crli = 180:0:

(2.5)

(2.6)

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with
dcm. A is always associated with the primary color cpri; the alpha compo-
nent of csec is 0. Results of lighting are unde�ned if the we coordinate (w
in eye coordinates) of V is zero.

Lighting may operate in two-sided mode (tbs = TRUE), in which a front
color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with �n. If tbs = FALSE,
then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line
segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon's signed
area computed in window coordinates. One way to compute this area is

a =
1

2

n�1X
i=0

xiwy
i�1
w � xi�1w yiw (2.7)

where xiw and yiw are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and i� 1 is (i+1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the
projected polygon in window coordinates) indicates that if a � 0, then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if a > 0, then the front color is selected. If dir is CW, then
a is replaced by �a in the above inequalities. This requires one bit of state;
initially, it indicates CCW.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 49

2.13.2 Lighting Parameter Speci�cation

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.7). Sets
of lighting parameters are speci�ed with

void Materialfifg(enum face, enum pname, T param);
void Materialfifgv(enum face, enum pname, T params);
void Lightfifg(enum light, enum pname, T param);
void Lightfifgv(enum light, enum pname, T params);
void LightModelfifg(enum pname, T param);
void LightModelfifgv(enum pname, T params);

pname is a symbolic constant indicating which parameter is to be set (see
Table 2.8). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of
values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If
param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT AND BACK, indicating that the property name of the front or back ma-
terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHTi, indicating that light i is to have the
speci�ed parameter set. The constants obey LIGHTi = LIGHT0+ i.

Table 2.8 gives, for each of the three parameter groups, the correspon-
dence between the pre-de�ned constant names and their names in the light-
ing equations, along with the number of values that must be speci�ed with
each. Color parameters speci�ed with Material and Light are converted
to oating-point values (if speci�ed as integers) as indicated in Table 2.6
for signed integers. The error INVALID VALUE occurs if a speci�ed lighting
parameter lies outside the allowable range given in Table 2.7. (The sym-
bol \1" indicates the maximum representable magnitude for the indicated
type.)

The current model-view matrix is applied to the position parameter indi-
cated with Light for a particular light source when that position is speci�ed.
These transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is speci�ed using only the
upper leftmost 3x3 portion of the model-view matrix. That is, if Mu is the
upper left 3x3 matrix taken from the current model-view matrix M , then

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

50 CHAPTER 2. OPENGL OPERATION

Parameter Name Number of values

Material Parameters (Material)

acm AMBIENT 4

dcm DIFFUSE 4

acm;dcm AMBIENT AND DIFFUSE 4

scm SPECULAR 4

ecm EMISSION 4

srm SHININESS 1

am; dm; sm COLOR INDEXES 3

Light Source Parameters (Light)

acli AMBIENT 4

dcli DIFFUSE 4

scli SPECULAR 4

Ppli POSITION 4

sdli SPOT DIRECTION 3

srli SPOT EXPONENT 1

crli SPOT CUTOFF 1

k0 CONSTANT ATTENUATION 1

k1 LINEAR ATTENUATION 1

k2 QUADRATIC ATTENUATION 1

Lighting Model Parameters (LightModel)

acs LIGHT MODEL AMBIENT 4

vbs LIGHT MODEL LOCAL VIEWER 1

tbs LIGHT MODEL TWO SIDE 1

ces LIGHT MODEL COLOR CONTROL 1

Table 2.8: Correspondence of lighting parameter symbols to names.
AMBIENT AND DIFFUSE is used to set acm and dcm to the same value.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 51

the spotlight direction 0
@ dx
dy
dz

1
A

is transformed to 0
@ d0x
d0y
d0z

1
A =Mu

0
@ dx
dy
dz

1
A :

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHTi (i is in the range 0 to n� 1, where n is the
implementation-dependent number of lights). If light i is disabled, the ith
term in the lighting equation is e�ectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color,
so that they continuously track its component values. This behavior is
enabled and disabled by calling Enable or Disable with the symbolic value
COLOR MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating whether the front
material, back material, or both are a�ected by the current color. mode
is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT AND DIFFUSE and
speci�es which material property or properties track the current color. If
mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of ecm,
acm, dcm or scm, respectively, will track the current color. If mode is
AMBIENT AND DIFFUSE, both acm and dcm track the current color. The re-
placements made to material properties are permanent; the replaced values
remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that
particular value. When COLOR MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial(FRONT, AMBIENT)

while COLOR MATERIAL is enabled sets the front material acm to the value of
the current color.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

52 CHAPTER 2. OPENGL OPERATION

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode. Only the front material properties are included in this
�gure. The back material properties are treated identically, except that face
must be BACK or FRONT AND BACK.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 53

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the
front color should be computed, at least 8 bits to indicate which lights are
enabled, a �ve-valued variable indicating the current ColorMaterial mode,
a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all
lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT AND BACK and AMBIENT AND DIFFUSE,
and both lighting and COLOR MATERIAL are disabled.

2.13.5 Color Index Lighting

A simpli�ed lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA
material parameters. First, the RGBA di�use and specular intensities of
light i (dcli and scli, respectively) determine color index di�use and specular
light intensities, dli and sli from

dli = (:30)R(dcli) + (:59)G(dcli) + (:11)B(dcli)

and
sli = (:30)R(scli) + (:59)G(scli) + (:11)B(scli):

R(x) indicates the R component of the color x and similarly for G(x) and
B(x).

Next, let

s =
nX
i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

where atti and spoti are given by equations 2.4 and 2.5, respectively, and fi
and ĥi are given by equations 2.2 and 2.3, respectively. Let s0 = minfs; 1g.
Finally, let

d =
nX
i=0

(atti)(spoti)(dli)(n���!VPpli):

Then color index lighting produces a value c, given by

c = am + d(1� s0)(dm � am) + s0(sm � am):

The �nal color index is
c0 = minfc; smg:

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

54 CHAPTER 2. OPENGL OPERATION

The values am, dm and sm are material properties described in Tables 2.7
and 2.8. Any ambient light intensities are incorporated into am. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of tbs and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting.

The values am, dm, and sm are set with Material using a pname of
COLOR INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-
ditional state consists of three oating-point values. These values have no
e�ect on RGBA lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and
secondary colors are clamped to the range [0; 1].

For a color index, the index is �rst converted to �xed-point with an
unspeci�ed number of bits to the right of the binary point; the nearest
�xed-point value is selected. Then, the bits to the right of the binary point
are left alone while the integer portion is masked (bitwise ANDed) with
2n � 1, where n is the number of bits in a color in the color index bu�er
(bu�ers are discussed in chapter 4).

2.13.7 Flatshading

A primitive may be atshaded, meaning that all vertices of the primitive are
assigned the same color index or the same primary and secondary colors.
These colors are the colors of the vertex that spawned the primitive. For a
point, these are the colors associated with the point. For a line segment, they
are the colors of the second (�nal) vertex of the segment. For a polygon, they
come from a selected vertex depending on how the polygon was generated.
Table 2.9 summarizes the possibilities.

Flatshading is controlled by

void ShadeModel(enum mode);

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode
is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, atshading is turned on. ShadeModel thus requires one bit of state.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 55

Primitive type of polygon i Vertex

single polygon (i � 1) 1

triangle strip i+ 2

triangle fan i+ 2

independent triangle 3i

quad strip 2i+ 2

independent quad 4i

Table 2.9: Polygon atshading color selection. The colors used for atshad-
ing the ith polygon generated by the indicatedBegin/End type are derived
from the current color (if lighting is disabled) in e�ect when the indicated
vertex is speci�ed. If lighting is enabled, the colors are produced by lighting
the indicated vertex. Vertices are numbered 1 through n, where n is the
number of vertices between the Begin/End pair.

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible atshading, colors are
clipped. Those colors associated with a vertex that lies within the clip
volume are una�ected by clipping. If a primitive is clipped, however, the
colors assigned to vertices produced by clipping are clipped colors.

Let the colors assigned to the two vertices P1 and P2 of an unclipped
edge be c1 and c2. The value of t (section 2.11) for a clipped point P is
used to obtain the color associated with P as

c = tc1 + (1� t)c2:

(For a color index color, multiplying a color by a scalar means multiplying
the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar. Both primary and secondary colors are treated
in the same fashion.) Polygon clipping may create a clipped vertex along an
edge of the clip volume's boundary. This situation is handled by noting that
polygon clipping proceeds by clipping against one plane of the clip volume's
boundary at a time. Color clipping is done in the same way, so that clipped
points always occur at the intersection of polygon edges (possibly already
clipped) with the clip volume's boundary.

Texture coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

56 CHAPTER 2. OPENGL OPERATION

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies in [0; 1]) is converted
(by rounding to nearest) to a �xed-point value with m bits. We assume
that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the
corresponding component of the framebu�er. m must be at least 2 for A if
the framebu�er does not contain an A component, or if there is only 1 bit
of A in the framebu�er. A color index is converted (by rounding to nearest)
to a �xed-point value with at least as many bits as there are in the color
index portion of the framebu�er.

Because a number of the form k=(2m�1) may not be represented exactly
as a limited-precision oating-point quantity, we place a further requirement
on the �xed-point conversion of RGBA components. Suppose that lighting
is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When
these conditions are satis�ed, an RGBA component must convert to a value
that matches the component as speci�ed in the Color command: ifm is less
than the number of bits b with which the component was speci�ed, then the
converted value must equal the most signi�cantm bits of the speci�ed value;
otherwise, the most signi�cant b bits of the converted value must equal the
speci�ed value.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as
color and depth. Thus, rasterizing a primitive consists of two parts. The
�rst is to determine which squares of an integer grid in window coordinates
are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the
next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebu�er. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment's associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations
also refer to a fragment's center, which is o�set by (1=2; 1=2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not a�ected by the actual aspect ratio of the grid squares. Display of
non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simpli�es antialiasing and texturing.

Several factors a�ect rasterization. Lines and polygons may be stippled.
Points may be given di�ering diameters and line segments di�ering widths.
A point, line segment, or polygon may be antialiased.

57

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

58 CHAPTER 3. RASTERIZATION

Point
Rasterization

Line
Rasterization

Polygon
Rasterization

From
Primitive
Assembly

Pixel
Rectangle

Rasterization

Bitmap
RasterizationBitmap

DrawPixels

Texturing

Color Sum

Fog

Fragments

Figure 3.1. Rasterization.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.1. INVARIANCE 59

3.1 Invariance

Consider a primitive p0 obtained by translating a primitive p through an
o�set (x; y) in window coordinates, where x and y are integers. As long
as neither p0 nor p is clipped, it must be the case that each fragment f 0

produced from p0 is identical to a corresponding fragment f from p except
that the center of f 0 is o�set by (x; y) from the center of f .

3.2 Antialiasing

Antialiasing of a point, line, or polygon is e�ected in one of two ways de-
pending on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are
left una�ected, but the A value is multiplied by a oating-point value in
the range [0; 1] that describes a fragment's screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebu�er.

In color index mode, the least signi�cant b bits (to the left of the binary
point) of the color index are used for antialiasing; b = minf4;mg, where
m is the number of bits in the color index portion of the framebu�er. The
antialiasing process sets these b bits based on the fragment's coverage value:
the bits are set to zero for no coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed
are di�cult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebu�er are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the
coverage value computed for a fragment of some primitive may depend on
the primitive's relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment's grid square.
Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity. The square is called a fragment square and has
lower left corner (x; y) and upper right corner (x + 1; y + 1). We recognize

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

60 CHAPTER 3. RASTERIZATION

that this simple box �lter may not produce the most favorable antialiasing
results, but it provides a simple, well-de�ned model.

A GL implementation may use other methods to perform antialiasing,
subject to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some
primitive is a subset of the corresponding portion of f2 covered by
the primitive, then the coverage computed for f1 must be less than or
equal to that computed for f2.

2. The coverage computation for a fragment f must be local: it may
depend only on f 's relationship to the boundary of the primitive being
rasterized. It may not depend on f 's x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-
ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies
along window edges.

In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeo�.

3.3 Points

The rasterization of points is controlled with

void PointSize(float size);

size speci�es the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its xw and yw
coordinates (recall that the subscripts indicate that these are x and y window
coordinates) to integers. This (x; y) address, along with data derived from
the data associated with the vertex corresponding to the point, is sent as a
single fragment to the per-fragment stage of the GL.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.3. POINTS 61

The e�ect of a point width other than 1:0 depends on the state of point
antialiasing. If antialiasing is disabled, the actual width is determined by
rounding the supplied width to the nearest integer, then clamping it to
the implementation-dependent maximum non-antialiased point width. This
implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer
value, and in any event no less than 1. If rounding the speci�ed width results
in the value 0, then it is as if the value were 1. If the resulting width is odd,
then the point

(x; y) = (bxwc+ 1

2
; bywc+ 1

2
)

is computed from the vertex's xw and yw, and a square grid of the odd width
centered at (x; y) de�nes the centers of the rasterized fragments (recall that
fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

(x; y) = (bxw +
1

2
c; byw +

1

2
c);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (x; y). See �gure 3.2.

All fragments produced in rasterizing a non-antialiased point are as-
signed the same associated data, which are those of the vertex corresponding
to the point, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point's
(xw; yw) (�gure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corre-
sponding fragment square (but see section 3.2). This value is saved and
used in the �nal step of rasterization (section 3.11). The data associated
with each fragment are otherwise the data associated with the point being
rasterized, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

Not all widths need be supported when point antialiasing is on, but
the width 1:0 must be provided. If an unsupported width is requested, the
nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation
dependent. The range and gradations may be obtained using the query

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

62 CHAPTER 3. RASTERIZATION

000
000
000

000
000
000

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region. The dotted grid lines lie on half-integer coordinates.

mechanism described in Chapter 6. If, for instance, the width range is from
0.1 to 2.0 and the gradation width is 0.1, then the widths 0:1; 0:2; : : : ; 1:9; 2:0
are supported.

3.3.1 Point Rasterization State

The state required to control point rasterization consists of the oating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled
by several variables. Line width, which may be set by calling

void LineWidth(float width);

with an appropriate positive oating-point width, controls the width of ras-
terized line segments. The default width is 1:0. Values less than or equal

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 63

333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the speci�ed width.
The X marks indicate those fragment centers produced by rasterization. A
fragment's computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

64 CHAPTER 3. RASTERIZATION

to 0:0 generate the error INVALID VALUE. Antialiasing is controlled with En-
able and Disable using the symbolic constant LINE SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that
sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
x-major or y-major. x-major line segments have slope in the closed inter-
val [�1; 1]; all other line segments are y-major (slope is determined by the
segment's endpoints). We shall specify rasterization only for x-major seg-
ments except in cases where the modi�cations for y-major segments are not
self-evident.

Ideally, the GL uses a \diamond-exit" rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with
center at window coordinates xf and yf , de�ne a diamond-shaped region
that is the intersection of four half planes:

Rf = f (x; y) j jx� xf j+ jy � yf j < 1=2:g
Essentially, a line segment starting at pa and ending at pb produces those

fragments f for which the segment intersects Rf , except if pb is contained
in Rf . See �gure 3.4.

To avoid di�culties when an endpoint lies on a boundary of Rf we (in
principle) perturb the supplied endpoints by a tiny amount. Let pa and
pb have window coordinates (xa; ya) and (xb; yb), respectively. Obtain the
perturbed endpoints p0a given by (xa; ya)� (�; �2) and p0b given by (xb; yb)�
(�; �2). Rasterizing the line segment starting at pa and ending at pb produces
those fragments f for which the segment starting at p0a and ending on p0b
intersects Rf , except if p

0
b is contained in Rf . � is chosen to be so small

that rasterizing the line segment produces the same fragments when � is
substituted for � for any 0 < � � �.

When pa and pb lie on fragment centers, this characterization of frag-
ments reduces to Bresenham's algorithm with one modi�cation: lines pro-
duced in this description are \half-open," meaning that the �nal fragment
(corresponding to pb) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only
once rather than twice (as would occur with Bresenham's algorithm).

Because the initial and �nal conditions of the diamond-exit rule may
be di�cult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 65

00

00000
00000
00000
00000
0000000000

00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

Figure 3.4. Visualization of Bresenham's algorithm. A portion of a line
segment is shown. A diamond shaped region of height 1 is placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

1. The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either x or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may di�er
from that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the
same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either x-major (both left-to-right or both right-to-left) or y-major
(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-
ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment
center be given by pr = (xd; yd) and let pa = (xa; ya) and pb = (xb; yb). Set

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

66 CHAPTER 3. RASTERIZATION

t =
(pr � pa) � (pb � pa)

kpb � pak2
: (3.1)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum
f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, t, or r texture coordinate (the depth
value, window z, must be found using equation 3.3, below), is found as

f =
(1� t)fa=wa + tfb=wb

(1� t)�a=wa + t�b=wb

(3.2)

where fa and fb are the data associated with the starting and ending end-
points of the segment, respectively; wa and wb are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. �a = �b = 1
for all data except texture coordinates, in which case �a = qa and �b = qb
(qa and qb are the homogeneous texture coordinates at the starting and end-
ing endpoints of the segment; results are unde�ned if either of these is less
than or equal to 0). Note that linear interpolation would use

f = (1� t)fa=�a + tfb=�b: (3.3)

The reason that this formula is incorrect (except for the depth value) is
that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to �nd the corresponding value when
interpolated in clip space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion e�ects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFF16. We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 67

de�nes a line stipple. pattern is an unsigned short integer. The line stipple is
taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is
used to modify the e�ective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1; 256]. Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The
masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b = bs=rc mod 16;
Then a fragment is produced if the bth bit of p is 1, and not produced
otherwise. The bits of p are numbered with 0 being the least signi�cant and
15 being the most signi�cant. The initial value of s is zero; s is incremented
after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending
point). s is reset to 0 whenever a Begin occurs, and before every line
segment in a group of independent segments (as speci�ed when Begin is
invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning
of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the sup-
plied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased line width. This implementation-
dependent value must be no less than the implementation-dependent max-
imum antialiased line width, rounded to the nearest integer value, and in
any event no less than 1. If rounding the speci�ed width results in the value
0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized
by o�setting them in the minor direction (for an x-major line, the minor
direction is y, and for a y-major line, the minor direction is x) and replicating
fragments in the minor direction (see �gure 3.5). Let w be the width rounded
to the nearest integer (if w = 0, then it is as if w = 1). If the line segment has
endpoints given by (x0; y0) and (x1; y1) in window coordinates, the segment
with endpoints (x0; y0� (w�1)=2) and (x1; y1� (w�1)=2) is rasterized, but

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

68 CHAPTER 3. RASTERIZATION

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiasedwide lines. x-major line segments
are shown. The heavy line segment is the one speci�ed to be rasterized; the
light segment is the o�set segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.

instead of a single fragment, a column of fragments of height w (a row of
fragments of length w for a y-major segment) is produced at each x (y for
y-major) location. The lowest fragment of this column is the fragment that
would be produced by rasterizing the segment of width 1 with the modi�ed
coordinates. The whole column is not produced if the stipple bit for the
column's x location is zero; otherwise, the whole column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. Two of the edges
are parallel to the speci�ed line segment; each is at a distance of one-half the
current width from that segment: one above the segment and one below it.
The other two edges pass through the line endpoints and are perpendicular
to the direction of the speci�ed line segment. Coverage values are computed
for each fragment by computing the area of the intersection of the rectangle
with the fragment square (see �gure 3.6; see also section 3.2). Equation 3.2
is used to compute associated data values just as with non-antialiased lines;
equation 3.1 is used to �nd the value of t for each fragment whose square
is intersected by the line segment's rectangle. Not all widths need be sup-

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 69

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 3.6. The region used in rasterizing and �nding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

ported for line segment antialiasing, but width 1:0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the
last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where \fragment" is replaced
with \rectangle." Each rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the oating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating
whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or o�. In addition, during rasterization, an integer stipple
counter must be maintained to implement line stippling. The initial value
of the line width is 1:0. The initial value of the line stipple is FFFF16 (a
stipple of all ones). The initial value of the line stipple repeat count is one.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

70 CHAPTER 3. RASTERIZATION

The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-
lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is
controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON SMOOTH. The analog
to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The �rst step of polygon rasterization is to determine if the polygon is
back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.7 of section 2.13.1 (including the
possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if
either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained
by taking the x and y window coordinates of the polygon's vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-
tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either
side of a common edge (with identical endpoints) on which a fragment cen-
ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 71

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments
in a triangle. De�ne barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and c, each in the range [0; 1],
with a + b + c = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle's boundary as

p = apa + bpb + cpc;

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found
as

a =
A(ppbpc)

A(papbpc)
; b =

A(ppapc)

A(papbpc)
; c =

A(ppapb)

A(papbpc)
;

where A(lmn) denotes the area in window coordinates of the triangle with
vertices l, m, and n.

Denote a datum at pa, pb, or pc as fa, fb, or fc, respectively. Then the
value f of a datum at a fragment produced by rasterizing a triangle is given
by

f =
afa=wa + bfb=wb + cfc=wc

a�a=wa + b�b=wb + c�c=wc
(3.4)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data
are produced. �a = �b = �c = 1 except for texture s, t, and r coordinates,
for which �a = qa, �b = qb, and �c = qc (if any of qa, qb, or qc are less
than or equal to zero, results are unde�ned). a, b, and c must correspond
precisely to the exact coordinates of the center of the fragment. Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment's center.

Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa=�a + bfb=�b + cfc=�c;

this may yield acceptable results for color values (it must be used for depth
values), but will normally lead to unacceptable distortion e�ects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon's vertices can be used
to obtain the value assigned to each fragment produced by the rasterization

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

72 CHAPTER 3. RASTERIZATION

algorithm. That is, it must be the case that at every fragment

f =
nX
i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at
vertex i; for each i 0 � ai � 1 and

Pn
i=1 ai = 1. The values of the ai may

di�er from fragment to fragment, but at vertex i, aj = 0; j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a

polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satis�es the restrictions (in this case,
the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple(ubyte *pattern);

pattern is a pointer to memory into which a 32 � 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given
in section 3.6.4 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format
were COLOR INDEX. The unpacked values (before any conversion or arithmetic
would have been performed) form a stipple pattern of zeros and ones.

If xw and yw are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern (xw mod 32; yw mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment's square. A coverage

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 73

value is computed at each such fragment, and this value is saved to be applied
as described in section 3.11. An associated datum is assigned to a fragment
by integrating the datum's value over the region of the intersection of the
fragment square with the polygon's interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment's center may be
used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not. The polygon point sampling rule de�ned in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,
respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the
beginning of the �rst rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to
the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
a�ect only the �nal rasterization of polygons: in particular, a polygon's
vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-
tively, apply.

3.5.5 Depth O�set

The depth values of all fragments generated by the rasterization of a polygon
may be o�set by a single value that is computed for that polygon. The

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

74 CHAPTER 3. RASTERIZATION

function that determines this value is speci�ed by calling

void PolygonO�set(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation dependent constant that relates to the usable resolution of
the depth bu�er. The resulting values are summed to produce the polygon
o�set value. Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

s�
@zw
@xw

�2
+

�
@zw
@yw

�2
(3.5)

where (xw; yw; zw) is a point on the triangle. m may be approximated as

m = max

�����@zw@xw

���� ;
����@zw@yw

����
�
: (3.6)

If the polygon has more than three vertices, one or more values of m may be
used during rasterization. Each may take any value in the range [min,max],
wheremin and max are the smallest and largest values obtained by evaluat-
ing Equation 3.5 or Equation 3.6 for the triangles formed by all three-vertex
combinations.

The minimum resolvable di�erence r is an implementation constant. It
is the smallest di�erence in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth bu�er.
All pairs of fragments generated by the rasterization of two polygons with
otherwise identical vertices, but zw values that di�er by r, will have distinct
depth values.

The o�set value o for a polygon is

o = m � factor + r � units: (3.7)

m is computed as described above, as a function of depth values in the range
[0,1], and o is applied to depth values in the same range.

Boolean state values POLYGON OFFSET POINT, POLYGON OFFSET LINE, and
POLYGON OFFSET FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state val-
ues are enabled and disabled as argument values to the commands Enable
and Disable. If POLYGON OFFSET POINT is enabled, o is added to the depth
value of each fragment produced by the rasterization of a polygon in POINT

mode. Likewise, if POLYGON OFFSET LINE or POLYGON OFFSET FILL is enabled, o

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 75

is added to the depth value of each fragment produced by the rasterization
of a polygon in LINE or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by
clamping after o�set addition is performed (preferred), or by clamping the
vertex values used in the rasterization of the polygon.

3.5.6 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-
tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode
setting for each of front and back facing polygons, whether point, line, and
�ll mode polygon o�sets are enabled or disabled, and the factor and bias
values of the polygon o�set equation. The initial stipple pattern is all ones;
initially stippling is disabled. The initial setting of polygon antialiasing is
disabled. The initial state for PolygonMode is FILL for both front and
back facing polygons. The initial polygon o�set factor and bias values are
both 0; initially polygon o�set is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command (described in section 3.6.4).
Some of the parameters and operations governing the operation of Draw-
Pixels are shared by ReadPixels (used to obtain pixel values from the
framebu�er) and CopyPixels (used to copy pixels from one framebu�er
location to another); the discussion of ReadPixels and CopyPixels, how-
ever, is deferred until Chapter 4 after the framebu�er has been discussed
in detail. Nevertheless, we note in this section when parameters and state
pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in client mem-
ory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebu�er (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,
PixelTransfer, and PixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes a�ect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

76 CHAPTER 3. RASTERIZATION

Parameter Name Type Initial Value Valid Range

UNPACK SWAP BYTES boolean FALSE TRUE/FALSE

UNPACK LSB FIRST boolean FALSE TRUE/FALSE

UNPACK ROW LENGTH integer 0 [0;1)

UNPACK SKIP ROWS integer 0 [0;1)

UNPACK SKIP PIXELS integer 0 [0;1)

UNPACK ALIGNMENT integer 4 1,2,4,8

UNPACK IMAGE HEIGHT integer 0 [0;1)

UNPACK SKIP IMAGES integer 0 [0;1)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPix-
els, TexImage1D, TexImage2D, and TexImage3D.

these commands is issued. This may di�er from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStorefifg(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param
is the value to set it to. Table 3.1 summarizes the pixel storage parameters,
their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a oating-point value may be
used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0:0 and TRUE otherwise, while if the
parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the
passed value is 0 and TRUE otherwise, while if the parameter is a oating-
point value, then the passed value is converted to oating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in
GL implementations which incorporate the optional imaging subset. The
imaging subset includes both new commands, and new enumerants allowed
as parameters to existing commands. If the subset is supported, all of these

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 77

calls and enumerants must be implemented as described later in the GL spec-
i�cation. If the subset is not supported, calling any of the new commands
generates the error INVALID OPERATION, and using any of the new enumerants
generates the error INVALID ENUM.

The individual operations available only in the imaging subset are de-
scribed in section 3.6.3, except for blending features, which are described in
chapter 4. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in
subsections Color Table Speci�cation, Alternate Color Table
Speci�cation Commands, Color Table State and Proxy State,
Color Table Lookup, Post Convolution Color Table Lookup,
and Post Color Matrix Color Table Lookup, as well as the query
commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in
subsections Convolution Filter Speci�cation, Alternate Con-
volution Filter Speci�cation Commands, and Convolution, as
well as the query commands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in
subsectionsColor Matrix Speci�cation andColor Matrix Trans-
formation, as well as the simple query commands described in sec-
tion 6.1.6.

4. Histogram and minmax, including all commands and enumerants de-
scribed in subsectionsHistogram Table Speci�cation, Histogram
State and Proxy State, Histogram, Minmax Table Speci�ca-
tion, and Minmax, as well as the query commands described in sec-
tion 6.1.9 and section 6.1.10.

5. The subset of blending features described by Blend-
Equation, BlendColor, and the BlendFunc modes
CONSTANT COLOR, ONE MINUS CONSTANT COLOR, CONSTANT ALPHA, and
ONE MINUS CONSTANT ALPHA. These are described separately in sec-
tion 4.1.6.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "ARB imaging". Querying EXTENSIONS is described in sec-
tion 6.1.11.

If the imaging subset is not supported, the related pixel transfer opera-
tions are not performed; pixels are passed unchanged to the next operation.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

78 CHAPTER 3. RASTERIZATION

Parameter Name Type Initial Value Valid Range

MAP COLOR boolean FALSE TRUE/FALSE

MAP STENCIL boolean FALSE TRUE/FALSE

INDEX SHIFT integer 0 (�1;1)

INDEX OFFSET integer 0 (�1;1)

x SCALE oat 1.0 (�1;1)

DEPTH SCALE oat 1.0 (�1;1)

x BIAS oat 0.0 (�1;1)

DEPTH BIAS oat 0.0 (�1;1)

POST CONVOLUTION x SCALE oat 1.0 (�1;1)

POST CONVOLUTION x BIAS oat 0.0 (�1;1)

POST COLOR MATRIX x SCALE oat 1.0 (�1;1)

POST COLOR MATRIX x BIAS oat 0.0 (�1;1)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

3.6.3 Pixel Transfer Modes

Pixel transfer modes a�ect the operation of DrawPixels (section 3.6.4),
ReadPixels (section 4.3.2), and CopyPixels (section 4.3.3) at the time
when one of these commands is executed (which may di�er from the time
the command is issued). Some pixel transfer modes are set with

void PixelTransferfifg(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters
that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist
as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.

The pixel map lookup tables are set with

void PixelMapfui us fgv(enum map, sizei size, T values);

map is a symbolic map name, indicating the map to set, size indicates the
size of the map, and values is a pointer to an array of size map values.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 79

Map Name Address Value Init. Size Init. Value

PIXEL MAP I TO I color idx color idx 1 0.0

PIXEL MAP S TO S stencil idx stencil idx 1 0

PIXEL MAP I TO R color idx R 1 0.0

PIXEL MAP I TO G color idx G 1 0.0

PIXEL MAP I TO B color idx B 1 0.0

PIXEL MAP I TO A color idx A 1 0.0

PIXEL MAP R TO R R R 1 0.0

PIXEL MAP G TO G G G 1 0.0

PIXEL MAP B TO B B B 1 0.0

PIXEL MAP A TO A A A 1 0.0

Table 3.3: PixelMap parameters.

The entries of a table may be speci�ed using one of three types: single-
precision oating-point, unsigned short integer, or unsigned integer, depend-
ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is speci�ed. An entry giving a
color component value is converted according to table 2.6. An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to oating-point. An entry giving a stencil index is converted from
single-precision oating-point to an integer by rounding to nearest. The
various tables and their initial sizes and entries are summarized in table 3.3.
A table that takes an index as an address must have size = 2n or the error
INVALID VALUE results. The maximum allowable size of each table is speci�ed
by the implementation dependent value MAX PIXEL MAP TABLE, but must be at
least 32 (a single maximum applies to all tables). The error INVALID VALUE

is generated if a size larger than the implemented maximum, or less than
one, is given to PixelMap.

Color Table Speci�cation

Color lookup tables are speci�ed with

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be one of the regular color table names listed in table 3.4 to
de�ne the table. A proxy table name is a special case discussed later in

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

80 CHAPTER 3. RASTERIZATION

Table Name Type

COLOR TABLE regular
POST CONVOLUTION COLOR TABLE

POST COLOR MATRIX COLOR TABLE

PROXY COLOR TABLE proxy
PROXY POST CONVOLUTION COLOR TABLE

PROXY POST COLOR MATRIX COLOR TABLE

Table 3.4: Color table names. Regular tables have associated image data.
Proxy tables have no image data, and are used only to determine if an image
can be loaded into the corresponding regular table.

this section. width, format, type, and data specify an image in memory with
the same meaning and allowed values as the corresponding arguments to
DrawPixels (see section 3.6.4), with height taken to be 1. The maximum
allowable width of a table is implementation-dependent, but must be at least
32. The formats COLOR INDEX, DEPTH COMPONENT, and STENCIL INDEX and the
type BITMAP are not allowed.

The speci�ed image is taken from memory and processed just as if
DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the
four COLOR TABLE SCALE parameters, biased by the four COLOR TABLE BIAS pa-
rameters, and clamped to [0; 1]. These parameters are set by calling Col-
orTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The color lookup table is rede�ned to have width entries, each with the
speci�ed internal format. The table is formed with indices 0 through width�
1. Table location i is speci�ed by the ith image pixel, counting from zero.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE TOO LARGE is generated if the speci�ed color
lookup table is too large for the implementation.

The scale and bias parameters for a table are speci�ed by calling

void ColorTableParameterfifgv(enum target,
enum pname, T params);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 81

target must be a regular color table name. pname is one of COLOR TABLE SCALE

or COLOR TABLE BIAS. params points to an array of four values: red, green,
blue, and alpha, in that order.

A GL implementation may vary its allocation of internal component
resolution based on any ColorTable parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. Allocations must be invariant; the same allocation must be
made each time a color table is speci�ed with the same parameter values.
These allocation rules also apply to proxy color tables, which are described
later in this section.

Alternate Color Table Speci�cation Commands

Color tables may also be speci�ed using image data taken directly from the
framebu�er, and portions of existing tables may be respeci�ed.

The command

void CopyColorTable(enum target, enum internalformat,
int x, int y, sizei width);

de�nes a color table in exactly the manner of ColorTable, except that table
data are taken from the framebu�er, rather than from client memory. target
must be a regular color table name. x, y, and width correspond precisely to
the corresponding arguments of CopyPixels (refer to section 4.3.3); they
specify the image's width and the lower left (x; y) coordinates of the frame-
bu�er region to be copied. The image is taken from the framebu�er exactly
as if these arguments were passed to CopyPixels with argument type set
to COLOR and height set to 1, stopping after the �nal expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, be-
ginning with scaling by COLOR TABLE SCALE. Parameters target, internalfor-
mat and width are speci�ed using the same values, with the same meanings,
as the equivalent arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start,
sizei count, enum format, enum type, void *data);

void CopyColorSubTable(enum target, sizei start,
int x, int y, sizei count);

respecify only a portion of an existing color table. No change is made to the
internalformat or width parameters of the speci�ed color table, nor is any

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

82 CHAPTER 3. RASTERIZATION

change made to table entries outside the speci�ed portion. target must be a
regular color table name.

ColorSubTable arguments format, type, and data match the corre-
sponding arguments to ColorTable, meaning that they are speci�ed using
the same values, and have the same meanings. Likewise, CopyColorSub-
Table arguments x, y, and count match the x, y, and width arguments of
CopyColorTable. Both of the ColorSubTable commands interpret and
process pixel groups in exactly the manner of their ColorTable counter-
parts, except that the assignment of R, G, B, and A pixel group values to
the color table components is controlled by the internalformat of the table,
not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSub-
Table specify a subregion of the color table starting at index start and
ending at index start+ count� 1. Counting from zero, the nth pixel group
is assigned to the table entry with index count+n. The error INVALID VALUE

is generated if start+ count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For
each of the three tables, there is an array of values. Each array has associated
with it a width, an integer describing the internal format of the table, six
integer values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the table, and two groups of four
oating-point numbers to store the table scale and bias. Each initial array
is null (zero width, internal format RGBA, with zero-sized components). The
initial value of the scale parameters is (1,1,1,1) and the initial value of the
bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color
lookup tables are maintained. Each proxy table includes width and internal
format state values, as well as state for the red, green, blue, alpha, lumi-
nance, and intensity component resolutions. Proxy tables do not include
image data, nor do they include scale and bias parameters. When Col-
orTable is executed with target speci�ed as one of the proxy color table
names listed in table 3.4, the proxy state values of the table are recomputed
and updated. If the table is too large, no error is generated, but the proxy
format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corre-
sponding regular table name (COLOR TABLE is the regular name corresponding
to PROXY COLOR TABLE, for example), the proxy state values are set exactly as

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 83

though the regular table were being speci�ed. Calling ColorTable with a
proxy target has no e�ect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They can-
not be used as color tables, and they must never be queried using GetCol-
orTable. The error INVALID ENUM is generated if this is attempted.

Convolution Filter Speci�cation

A two-dimensional convolution �lter image is speci�ed by calling

void ConvolutionFilter2D(enum target,
enum internalformat, sizei width, sizei height,
enum format, enum type, void *data);

target must be CONVOLUTION 2D. width, height, format, type, and data spec-
ify an image in memory with the same meaning and allowed values as
the corresponding parameters to DrawPixels. The formats COLOR INDEX,
DEPTH COMPONENT, and STENCIL INDEX and the type BITMAP are not allowed.

The speci�ed image is extracted from memory and processed just as
if DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the four
two-dimensional CONVOLUTION FILTER SCALE parameters and biased by the
four two-dimensional CONVOLUTION FILTER BIAS parameters. These parame-
ters are set by calling ConvolutionParameterfv as described below. No
clamping takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The red, green, blue, alpha, luminance, and/or intensity components of
the pixels are stored in oating point, rather than integer format. They form
a two-dimensional image indexed with coordinates i; j such that i increases
from left to right, starting at zero, and j increases from bottom to top, also
starting at zero. Image location i; j is speci�ed by the Nth pixel, counting
from zero, where

N = i+ j � width
The error INVALID VALUE is generated if width or height is greater than

the maximum supported value. These values are queried with GetCon-
volutionParameteriv, setting target to CONVOLUTION 2D and pname to
MAX CONVOLUTION WIDTH or MAX CONVOLUTION HEIGHT, respectively.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

84 CHAPTER 3. RASTERIZATION

The scale and bias parameters for a two-dimensional �lter are speci�ed
by calling

void ConvolutionParameterfifgv(enum target,
enum pname, T params);

with target CONVOLUTION 2D. pname is one of CONVOLUTION FILTER SCALE or
CONVOLUTION FILTER BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution �lter is de�ned using

void ConvolutionFilter1D(enum target,
enum internalformat, sizei width, enum format,
enum type, void *data);

target must be CONVOLUTION 1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional
counterparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if Con-
volutionFilter2D were called with a height of 1, except that it is
scaled and biased by the one-dimensional CONVOLUTION FILTER SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are speci�ed ex-
actly as the two-dimensional parameters, except that ConvolutionParam-
eterfv is called with target CONVOLUTION 1D.

The image is formed with coordinates i such that i increases from left to
right, starting at zero. Image location i is speci�ed by the ith pixel, counting
from zero.

The error INVALID VALUE is generated if width is greater than the
maximum supported value. This value is queried using GetConvo-
lutionParameteriv, setting target to CONVOLUTION 1D and pname to
MAX CONVOLUTION WIDTH.

Special facilities are provided for the de�nition of two-dimensional sep-
arable �lters { �lters whose image can be represented as the product of
two one-dimensional images, rather than as full two-dimensional images. A
two-dimensional separable convolution �lter is speci�ed with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 85

target must be SEPARABLE 2D. internalformat speci�es the formats of the table
entries of the two one-dimensional images that will be retained. row points
to a width pixel wide image of the speci�ed format and type. column points
to a height pixel high image, also of the speci�ed format and type.

The two images are extracted from memory and processed as if
ConvolutionFilter1D were called separately for each, except that
each image is scaled and biased by the two-dimensional separable
CONVOLUTION FILTER SCALE and CONVOLUTION FILTER BIAS parameters. These
parameters are speci�ed exactly as the one-dimensional and two-dimensional
parameters, except that ConvolutionParameteriv is called with target
SEPARABLE 2D.

Alternate Convolution Filter Speci�cation Commands

One and two-dimensional �lters may also be speci�ed using image data taken
directly from the framebu�er.

The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

de�nes a two-dimensional �lter in exactly the manner of ConvolutionFil-
ter2D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 2D. x, y, width, and height
correspond precisely to the corresponding arguments of CopyPixels (refer
to section 4.3.3); they specify the image's width and height, and the lower left
(x; y) coordinates of the framebu�er region to be copied. The image is taken
from the framebu�er exactly as if these arguments were passed to CopyP-
ixels with argument type set to COLOR, stopping after the �nal expansion to
RGBA.

Subsequent processing is identical to that described for Convolution-
Filter2D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, width, and height are speci�ed using the same values,
with the same meanings, as the equivalent arguments of ConvolutionFil-
ter2D. format is taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, int y, sizei width);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

86 CHAPTER 3. RASTERIZATION

de�nes a one-dimensional �lter in exactly the manner of ConvolutionFil-
ter1D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 1D. x, y, and width cor-
respond precisely to the corresponding arguments of CopyPixels (refer to
section 4.3.3); they specify the image's width and the lower left (x; y) co-
ordinates of the framebu�er region to be copied. The image is taken from
the framebu�er exactly as if these arguments were passed to CopyPixels
with argument type set to COLOR and height set to 1, stopping after the �nal
expansion to RGBA.

Subsequent processing is identical to that described for Convolution-
Filter1D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, and width are speci�ed using the same values, with
the same meanings, as the equivalent arguments of ConvolutionFilter2D.
format is taken to be RGBA.

Convolution Filter State

The required state for convolution �lters includes a one-dimensional image
array, two one-dimensional image arrays for the separable �lter, and a two-
dimensional image array. The two-dimensional array has associated with
it a height. Each array has associated with it a width, an integer describ-
ing the internal format of the table, and six integer values describing the
resolutions of each of the red, green, blue, alpha, luminance, and intensity
components of the table. Each �lter (one-dimensional, two-dimensional,
and two-dimensional separable) also has associated with it two groups of
four oating-point numbers to store the �lter scale and bias.

Each initial convolution �lter is null (zero width and height, internal
format RGBA, with zero-sized components). The initial value of all scale
parameters is (1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Speci�cation

Setting the matrix mode to COLOR causes the matrix operations described
in section 2.10.2 to apply to the top matrix on the color matrix stack. All
matrix operations have the same e�ect on the color matrix as they do on
the other matrices.

Histogram Table Speci�cation

The histogram table is speci�ed with

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 87

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be speci�ed. target
value PROXY HISTOGRAM is a special case discussed later in this section. width
speci�es the number of entries in the histogram table, and internalformat
speci�es the format of each table entry. The maximum allowable width of the
histogram table is implementation-dependent, but must be at least 32. sink
speci�es whether pixel groups will be consumed by the histogram operation
(TRUE) or passed on to the minmax operation (FALSE).

If no error results from the execution of Histogram, the speci�ed his-
togram table is rede�ned to have width entries, each with the speci�ed inter-
nal format. The entries are indexed 0 through width � 1. Each component
in each entry is set to zero. The values in the previous histogram table, if
any, are lost.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of 2. The error TABLE TOO LARGE is generated if the speci�ed histogram
table is too large for the implementation. The error INVALID ENUM is gener-
ated if internalformat is not one of the values accepted by the correspond-
ing parameter of TexImage2D, or is 1, 2, 3, 4, INTENSITY, INTENSITY4,
INTENSITY8, INTENSITY12, or INTENSITY16.

A GL implementation may vary its allocation of internal component
resolution based on any Histogram parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. In particular, allocations must be invariant; the same allocation
must be made each time a histogram is speci�ed with the same parameter
values. These allocation rules also apply to the proxy histogram, which is
described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which
is associated a width, an integer describing the internal format of the his-
togram, �ve integer values describing the resolutions of each of the red,
green, blue, alpha, and luminance components of the table, and a ag in-
dicating whether or not pixel groups are consumed by the operation. The
initial array is null (zero width, internal format RGBA, with zero-sized com-
ponents). The initial value of the ag is false.

In addition to the histogram table, a partially instantiated proxy his-
togram table is maintained. It includes width, internal format, and red,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

88 CHAPTER 3. RASTERIZATION

green, blue, alpha, and luminance component resolutions. The proxy table
does not include image data or the ag. When Histogram is executed
with target set to PROXY HISTOGRAM, the proxy state values are recomputed
and updated. If the histogram array is too large, no error is generated, but
the proxy format, width, and component resolutions are set to zero. If the
histogram table would be accomodated by Histogram called with target
set to HISTOGRAM, the proxy state values are set exactly as though the ac-
tual histogram table were being speci�ed. Calling Histogram with target
PROXY HISTOGRAM has no e�ect on the actual histogram table.

There is no image associated with PROXY HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The
error INVALID ENUM results if this is attempted.

Minmax Table Speci�cation

The minmax table is speci�ed with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat speci�es the format of the table en-
tries. sink speci�es whether pixel groups will be consumed by the minmax
operation (TRUE) or passed on to �nal conversion (FALSE).

The error INVALID ENUM is generated if internalformat is not one of the
values accepted by the corresponding parameter of TexImage2D, or is 1, 2,
3, 4, INTENSITY, INTENSITY4, INTENSITY8, INTENSITY12, or INTENSITY16. The
resulting table always has 2 entries, each with values corresponding only to
the components of the internal format.

The state necessary for minmax operation is a table containing two el-
ements (the �rst element stores the minimum values, the second stores the
maximum values), an integer describing the internal format of the table, and
a ag indicating whether or not pixel groups are consumed by the operation.
The initial state is a minimum table entry set to the maximum representable
value and a maximum table entry set to the minimum representable value.
Internal format is set to RGBA and the initial value of the ag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
�gure 3.7. We describe the stages of this process in the order in which they
occur.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 89

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

unpack

convert
to float

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, or float pixel
data stream (index or component)

color
index

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes
may be enabled or disabled. RGBA and color index pixel paths are shown;
depth and stencil pixel paths are not shown.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

90 CHAPTER 3. RASTERIZATION

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel
rectangle to be drawn. data is a pointer to the data to be drawn. These
data are represented with one of seven GL data types, speci�ed by type.
The correspondence between the twenty type token values and the GL data
types they indicate is given in table 3.5. If the GL is in color index mode
and format is not one of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT,
then the error INVALID OPERATION occurs. If type is BITMAP and format is
not COLOR INDEX or STENCIL INDEX then the error INVALID ENUM occurs. Some
additional constraints on the combinations of format and type values that
are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (GL data types int
and uint), or oating point values (GL data type float). These elements
are grouped into sets of one, two, three, or four values, depending on the
format, to form a group. Table 3.6 summarizes the format of groups obtained
from memory; it also indicates those formats that yield indices and those
that yield components.

By default the values of each GL data type are interpreted as they would
be speci�ed in the language of the client's GL binding. If UNPACK SWAP BYTES

is enabled, however, then the values are interpreted with the bit orderings
modi�ed as per table 3.7. The modi�ed bit orderings are de�ned only if the
GL data type ubyte has eight bits, and then for each speci�c GL data type
only if that type is represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the �rst element of the �rst group
of the �rst row pointed to by the pointer passed to DrawPixels. If the
value of UNPACK ROW LENGTH is not positive, then the number of groups in
a row is width; otherwise the number of groups is UNPACK ROW LENGTH. If p
indicates the location in memory of the �rst element of the �rst row, then
the �rst element of the Nth row is indicated by

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 91

type Parameter Corresponding Special
Token Name GL Data Type Interpretation

UNSIGNED BYTE ubyte No

BITMAP ubyte Yes

BYTE byte No

UNSIGNED SHORT ushort No

SHORT short No

UNSIGNED INT uint No

INT int No

FLOAT float No

UNSIGNED BYTE 3 3 2 ubyte Yes

UNSIGNED BYTE 2 3 3 REV ubyte Yes

UNSIGNED SHORT 5 6 5 ushort Yes

UNSIGNED SHORT 5 6 5 REV ushort Yes

UNSIGNED SHORT 4 4 4 4 ushort Yes

UNSIGNED SHORT 4 4 4 4 REV ushort Yes

UNSIGNED SHORT 5 5 5 1 ushort Yes

UNSIGNED SHORT 1 5 5 5 REV ushort Yes

UNSIGNED INT 8 8 8 8 uint Yes

UNSIGNED INT 8 8 8 8 REV uint Yes

UNSIGNED INT 10 10 10 2 uint Yes

UNSIGNED INT 2 10 10 10 REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the
corresponding GL data types. Refer to table 2.2 for de�nitions of GL data
types. Special interpretations are described near the end of section 3.6.4.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

92 CHAPTER 3. RASTERIZATION

Format Name Element Meaning and Order Target Bu�er

COLOR INDEX Color Index Color

STENCIL INDEX Stencil Index Stencil

DEPTH COMPONENT Depth Depth

RED R Color

GREEN G Color

BLUE B Color

ALPHA A Color

RGB R, G, B Color

RGBA R, G, B, A Color

BGR B, G, R Color

BGRA B, G, R, A Color

LUMINANCE Luminance Color

LUMINANCE ALPHA Luminance, A Color

Table 3.6: DrawPixels andReadPixels formats. The second column gives
a description of and the number and order of elements in a group. Unless
speci�ed as an index, formats yield components.

Element Size Default Bit Ordering Modi�ed Bit Ordering

8 bit [7::0] [7::0]

16 bit [15::0] [7::0][15::8]

32 bit [31::0] [7::0][15::8][23::16][31::24]

Table 3.7: Bit ordering modi�cation of elements when UNPACK SWAP BYTES is
enabled. These reorderings are de�ned only when GL data type ubyte has
8 bits, and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the
least signi�cant.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 93

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated parameter
names are pre�xed by UNPACK for DrawPixels and by PACK for ReadPix-
els.

p+Nk (3.8)

where N is the row number (counting from zero) and k is de�ned as

k =

(
nl s � a;
a=s dsnl=ae s < a

(3.9)

where n is the number of elements in a group, l is the number of groups
in the row, a is the value of UNPACK ALIGNMENT, and s is the size, in units of
GL ubytes, of an element. If the number of bits per element is not 1, 2, 4,
or 8 times the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-
eters: UNPACK ROW LENGTH, UNPACK SKIP ROWS, and UNPACK SKIP PIXELS. Before
obtaining the �rst group from memory, the pointer supplied to DrawPixels
is e�ectively advanced by (UNPACK SKIP PIXELS)n+ (UNPACK SKIP ROWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory
(without advancing the pointer), after which the pointer is advanced by k
elements. height sets of width groups of values are obtained this way. See
�gure 3.8.

Calling DrawPixels with a type of UNSIGNED BYTE 3 3 2,
UNSIGNED BYTE 2 3 3 REV, UNSIGNED SHORT 5 6 5, UNSIGNED SHORT 5 6 5 REV,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

94 CHAPTER 3. RASTERIZATION

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats

UNSIGNED BYTE 3 3 2 ubyte 3 RGB

UNSIGNED BYTE 2 3 3 REV ubyte 3 RGB

UNSIGNED SHORT 5 6 5 ushort 3 RGB

UNSIGNED SHORT 5 6 5 REV ushort 3 RGB

UNSIGNED SHORT 4 4 4 4 ushort 4 RGBA,BGRA

UNSIGNED SHORT 4 4 4 4 REV ushort 4 RGBA,BGRA

UNSIGNED SHORT 5 5 5 1 ushort 4 RGBA,BGRA

UNSIGNED SHORT 1 5 5 5 REV ushort 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 uint 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 REV uint 4 RGBA,BGRA

UNSIGNED INT 10 10 10 2 uint 4 RGBA,BGRA

UNSIGNED INT 2 10 10 10 REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

UNSIGNED SHORT 4 4 4 4, UNSIGNED SHORT 4 4 4 4 REV, UNSIGNED SHORT 5 5 5 1,
UNSIGNED SHORT 1 5 5 5 REV, UNSIGNED INT 8 8 8 8, UNSIGNED INT 8 8 8 8 REV,
UNSIGNED INT 10 10 10 2, or UNSIGNED INT 2 10 10 10 REV is a special case in
which all the components of each group are packed into a single unsigned
byte, unsigned short, or unsigned int, depending on the type. The number of
components per packed pixel is �xed by the type, and must match the num-
ber of components per group indicated by the format parameter, as listed in
table 3.8. The error INVALID OPERATION is generated if a mismatch occurs.
This constraint also holds for all other functions that accept or return pixel
data using type and format parameters to de�ne the type and format of that
data.

Bit�eld locations of the �rst, second, third, and fourth components of
each packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each
bit�eld is interpreted as an unsigned integer value. If the base GL type is
supported with more than the minimum precision (e.g. a 9-bit byte) the
packed components are right-justi�ed in the pixel.

Components are normally packed with the �rst component in the most
signi�cant bits of the bit�eld, and successive component occupying progres-
sively less signi�cant locations. Types whose token names end with REV

reverse the component packing order from least to most signi�cant loca-
tions. In all cases, the most signi�cant bit of each component is packed in

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 95

the most signi�cant bit location of its location in the bit�eld.

UNSIGNED BYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED BYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each com-
ponent.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

96 CHAPTER 3. RASTERIZATION

UNSIGNED SHORT 5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED SHORT 5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED SHORT 4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED SHORT 5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10: UNSIGNED SHORT formats

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 97

UNSIGNED INT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED INT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11: UNSIGNED INT formats

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

98 CHAPTER 3. RASTERIZATION

Format First Second Third Fourth
Component Component Component Component

RGB red green blue

RGBA red green blue alpha

BGRA blue green red alpha

Table 3.12: Packed pixel �eld assignments

The assignment of component to �elds in the packed pixel is as described
in table 3.12

Byte swapping, if enabled, is performed before the component are ex-
tracted from each pixel. The above discussions of row length and image
extraction are valid for packed pixels, if \group" is substituted for \compo-
nent" and the number of components per group is understood to be one.

Calling DrawPixels with a type of BITMAP is a special case in which the
data are a series of GL ubyte values. Each ubyte value speci�es 8 1-bit ele-
ments with its 8 least-signi�cant bits. The 8 single-bit elements are ordered
from most signi�cant to least signi�cant if the value of UNPACK LSB FIRST is
FALSE; otherwise, the ordering is from least signi�cant to most signi�cant.
The values of bits other than the 8 least signi�cant in each ubyte are not
signi�cant.

The �rst element of the �rst row is the �rst bit (as de�ned above) of the
ubyte pointed to by the pointer passed to DrawPixels. The �rst element
of the second row is the �rst bit (again as de�ned above) of the ubyte at
location p+ k, where k is computed as

k = a

�
l

8a

�
(3.10)

There is a mechanism for selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the �rst element from mem-
ory, the pointer supplied to DrawPixels is e�ectively advanced by
UNPACK SKIP ROWS � k ubytes. Then UNPACK SKIP PIXELS 1-bit elements are
ignored, and the subsequent width 1-bit elements are obtained, without ad-
vancing the ubyte pointer, after which the pointer is advanced by k ubytes.
height sets of width elements are obtained this way.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 99

Conversion to oating-point

This step applies only to groups of components. It is not performed on in-
dices. Each element in a group is converted to a oating-point value accord-
ing to the appropriate formula in table 2.6 (section 2.13). For packed pixel
types, each element in the group is converted by computing c = (2N � 1),
where c is the unsigned integer value of the bit�eld containing the element
and N is the number of bits in the bit�eld.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a
group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE ALPHA, then
each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the �rst original element into each of the �rst three
new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group
is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer opera-
tions are performed equivalently during the drawing, copying, and reading of
pixels, and during the speci�cation of texture images (either from memory or
from the framebu�er), they are described separately in section 3.6.5. After
the processing described in that section is completed, groups are processed
as described in the following sections.

Final Conversion

For a color index, �nal conversion consists of masking the bits of the index
to the left of the binary point by 2n� 1, where n is the number of bits in an
index bu�er. For RGBA components, each element is clamped to [0; 1]. The

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

100 CHAPTER 3. RASTERIZATION

resulting values are converted to �xed-point according to the rules given in
section 2.13.9 (Final Color Processing).

For a depth component, an element is �rst clamped to [0; 1] and then
converted to �xed-point as if it were a window z value (see section 2.10.1,
Controlling the Viewport).

Stencil indices are masked by 2n � 1, where n is the number of bits in
the stencil bu�er.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom(float zx, float zy);

Let (xrp; yrp) be the current raster position (section 2.12). (If the current
raster position is invalid, then DrawPixels is ignored; pixel transfer opera-
tions do not update the histogram or minmax tables, and no fragments are
generated. However, the histogram and minmax tables are updated even if
the corresponding fragments are later rejected by the pixel ownership (sec-
tion 4.1.1) or scissor (section 4.1.2) tests.) If a particular group (index or
components) is the nth in a row and belongs to the mth row, consider the
region in window coordinates bounded by the rectangle with corners

(xrp + zxn; yrp + zym) and (xrp + zx(n+ 1); yrp + zy(m+ 1))

(either zx or zy may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-
respondence with this particular group of elements.

A fragment arising from a group consisting of color data takes on the
color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position's associated data. A frag-
ment arising from a depth component takes the component's depth value;
the color and texture coordinates are given by those associated with the
current raster position. In both cases texture coordinates s, t, and r are re-
placed with s=q, t=q, and r=q, respectively. If q is less than or equal to zero,
the results are unde�ned. Groups arising from DrawPixels with a format
of STENCIL INDEX are treated specially and are described in section 4.3.1.

3.6.5 Pixel Transfer Operations

The GL de�nes four kinds of pixel groups:

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 101

1. RGBA component: Each group comprises four color components: red,
green, blue, and alpha.

2. Depth component: Each group comprises a single depth component.

3. Color index: Each group comprises a single color index.

4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of
certain kinds; if an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups.
Each component is multiplied by an appropriate signed scale factor:
RED SCALE for an R component, GREEN SCALE for a G component, BLUE SCALE

for a B component, and ALPHA SCALE for an A component, or DEPTH SCALE

for a depth component. Then the result is added to the appropriate signed
bias: RED BIAS, GREEN BIAS, BLUE BIAS, ALPHA BIAS, or DEPTH BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the in-
dex is a oating-point value, it is converted to �xed-point, with an un-
speci�ed number of bits to the right of the binary point and at least
dlog2(MAX PIXEL MAP TABLE)e bits to the left of the binary point. Indices that
are already integers remain so; any fraction bits in the resulting �xed-point
value are zero.

The �xed-point index is then shifted by jINDEX SHIFTj bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-�lled.
Then, the signed integer o�set INDEX OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if
MAP COLOR is FALSE. First, each component is clamped to the range [0; 1].
There is a table associated with each of the R, G, B, and A component
elements: PIXEL MAP R TO R for R, PIXEL MAP G TO G for G, PIXEL MAP B TO B

for B, and PIXEL MAP A TO A for A. Each element is multiplied by an integer
one less than the size of the corresponding table, and, for each element, an

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

102 CHAPTER 3. RASTERIZATION

address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that
invokes the pixel transfer operation requires that RGBA component pixel
groups be generated, then a conversion is performed at this step. RGBA
component pixel groups are required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL MAP I TO R,
PIXEL MAP I TO G, PIXEL MAP I TO B, and PIXEL MAP I TO A. Each of these ta-
bles must have 2n entries for some integer value of n (n may be di�erent
for each table). For each table, the index is �rst rounded to the nearest
integer; the result is ANDed with 2n� 1, and the resulting value used as an
address into the table. The indexed value becomes an R, G, B, or A value,
as appropriate. The group of four elements so obtained replaces the index,
changing the group's type to RGBA component.

If RGBA component groups are not required, and if MAP COLOR is enabled,
then the index is looked up in the PIXEL MAP I TO I table (otherwise, the
index is not looked up). Again, the table must have 2n entries for some
integer n. The index is �rst rounded to the nearest integer; the result is
ANDed with 2n � 1, and the resulting value used as an address into the
table. The value in the table replaces the index. The oating-point table
value is �rst rounded to a �xed-point value with unspeci�ed precision. The
group's type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP STENCIL is enabled,
then the index is looked up in the PIXEL MAP S TO S table (otherwise, the
index is not looked up). The table must have 2n entries for some integer n.
The integer index is ANDed with 2n� 1, and the resulting value used as an
address into the table. The integer value in the table replaces the index.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 103

Base Internal Format R G B A

ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCE ALPHA Lt Lt Lt At

INTENSITY It It It It
RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup. Rt, Gt, Bt, At, Lt, and It are color table
values that are assigned to pixel components R, G, B, and A depending on
the table format. When there is no assignment, the component value is left
unchanged by lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is
only done if COLOR TABLE is enabled. If a zero-width table is enabled, no
lookup is performed.

The internal format of the table determines which components of the
group will be replaced (see table 3.13). The components to be replaced
are converted to indices by clamping to [0; 1], multiplying by an integer
one less than the width of the table, and rounding to the nearest integer.
Components are replaced by the table entry at the index.

The required state is one bit indicating whether color table lookup is
enabled or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D is
enabled, the one-dimensional convolution �lter is applied only to the one-
dimensional texture images passed to TexImage1D, TexSubImage1D,
CopyTexImage1D, and CopyTexSubImage1D, and returned by Get-
TexImage (see section 6.1.4) with target TEXTURE 1D. If CONVOLUTION 2D

is enabled, the two-dimensional convolution �lter is applied only to the
two-dimensional images passed to DrawPixels, CopyPixels, ReadPix-
els, TexImage2D, TexSubImage2D, CopyTexImage2D, CopyTex-
SubImage2D, and CopyTexSubImage3D, and returned byGetTexIm-
age with target TEXTURE 2D. If SEPARABLE 2D is enabled, and CONVOLUTION 2D

is disabled, the separable two-dimensional convolution �lter is instead ap-

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

104 CHAPTER 3. RASTERIZATION

Base Filter Format R G B A

ALPHA Rs Gs Bs As �Af

LUMINANCE Rs � Lf Gs � Lf Bs � Lf As

LUMINANCE ALPHA Rs � Lf Gs � Lf Bs � Lf As �Af

INTENSITY Rs � If Gs � If Bs � If As � If
RGB Rs �Rf Gs �Gf Bs � Bf As

RGBA Rs �Rf Gs �Gf Bs � Bf As �Af

Table 3.14: Computation of �ltered color components depending on �lter
image format. C � F indicates the convolution of image component C with
�lter F .

plied these images.

The convolution operation is a sum of products of source image pixels and
convolution �lter pixels. Source image pixels always have four components:
red, green, blue, and alpha, denoted in the equations below as Rs, Gs, Bs,
and As. Filter pixels may be stored in one of �ve formats, with 1, 2, 3, or
4 components. These components are denoted as Rf , Gf , Bf , Af , Lf , and
If in the equations below. The result of the convolution operation is the
4-tuple R,G,B,A. Depending on the internal format of the �lter, individual
color components of each source image pixel are convolved with one �lter
component, or are passed unmodi�ed. The rules for this are de�ned in
table 3.14.

The convolution operation is de�ned di�erently for each of the three
convolution �lters. The variables Wf and Hf refer to the dimensions of the
convolution �lter. The variables Ws and Hs refer to the dimensions of the
source pixel image.

The convolution equations are de�ned as follows, where C refers to the
�ltered result, Cf refers to the one- or two-dimensional convolution �lter,
and Crow and Ccolumn refer to the two one-dimensional �lters comprising
the two-dimensional separable �lter. C 0

s depends on the source image color
Cs and the convolution border mode as described below. Cr, the �ltered
output image, depends on all of these variables and is described separately
for each border mode. The pixel indexing nomenclature is decribed in the
Convolution Filter Speci�cation subsection of section 3.6.3.

One-dimensional �lter:

C[i0] =

Wf�1X
n=0

C 0
s[i
0 + n] � Cf [n]

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 105

Two-dimensional �lter:

C[i0; j0] =

Wf�1X
n=0

Hf�1X
m=0

C 0
s[i
0 + n; j0 +m] � Cf [n;m]

Two-dimensional separable �lter:

C[i0; j0] =

Wf�1X
n=0

Hf�1X
m=0

C 0
s[i
0 + n; j0 +m] � Crow[n] � Ccolumn[m]

If Wf of a one-dimensional �lter is zero, then C[i] is always set to zero.
Likewise, if either Wf or Hf of a two-dimensional �lter is zero, then C[i; j]
is always set to zero.

The convolution border mode for a speci�c convolution �lter is speci�ed
by calling

void ConvolutionParameterfifg(enum target,
enum pname, T param);

where target is the name of the �lter, pname is CONVOLUTION BORDER MODE,
and param is one of REDUCE, CONSTANT BORDER or REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE

are reduced by Wf � 1 and Hf � 1, respectively. If this reduction would
generate a resulting image with zero or negative width and/or height, the
output is simply null, with no error generated. The coordinates of the
image that results from a convolution with border mode REDUCE are zero
through Ws �Wf in width, and zero through Hs �Hf in height. In cases
where errors can result from the speci�cation of invalid image dimensions,
it is these resulting dimensions that are tested, not the dimensions of the
source image. (A speci�c example is TexImage1D and TexImage2D,
which specify constraints for image dimensions. Even if TexImage1D or
TexImage2D is called with a null pixel pointer, the dimensions of the
resulting texture image are those that would result from the convolution of
the speci�ed image).

When the border mode is REDUCE, C 0
s equals the source image color Cs

and Cr equals the �ltered result C.
For the remaining border modes, de�ne Cw = bWf=2c and Ch = bHf=2c.

The coordinates (Cw; Ch) de�ne the center of the convolution �lter.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

106 CHAPTER 3. RASTERIZATION

Border Mode CONSTANT BORDER

If the convolution border mode is CONSTANT BORDER, the output image has
the same dimensions as the source image. The result of the convolution is
the same as if the source image were surrounded by pixels with the same
color as the current convolution border color. Whenever the convolution �l-
ter extends beyond one of the edges of the source image, the constant-color
border pixels are used as input to the �lter. The current convolution border
color is set by calling ConvolutionParameterfv or ConvolutionParam-
eteriv with pname set to CONVOLUTION BORDER COLOR and params containing
four values that comprise the RGBA color to be used as the image border.
Integer color components are interpreted linearly such that the most positive
integer maps to 1.0, and the most negative integer maps to -1.0. Floating
point color components are not clamped when they are speci�ed.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is computed using the following equation for C 0
s[i
0]:

C 0
s[i
0] =

(
Cs[i

0]; 0 � i0 < Ws

Cc; otherwise

and Cc is the convolution border color.

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is computed using the following equation for C 0
s[i
0; j0]:

C 0
s[i
0; j0] =

(
Cs[i

0; j0]; 0 � i0 < Ws; 0 � j0 < Hs

Cc; otherwise

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE BORDER also produces an output
image with the same dimensions as the source image. The behavior of
this mode is identical to that of the CONSTANT BORDER mode except for the
treatment of pixel locations where the convolution �lter extends beyond the
edge of the source image. For these locations, it is as if the outermost one-
pixel border of the source image was replicated. Conceptually, each pixel in

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 107

the leftmost one-pixel column of the source image is replicated Cw times to
provide additional image data along the left edge, each pixel in the rightmost
one-pixel column is replicated Cw times to provide additional image data
along the right edge, and each pixel value in the top and bottom one-pixel
rows is replicated to create Ch rows of image data along the top and bottom
edges. The pixel value at each corner is also replicated in order to provide
data for the convolution operation at each corner of the source image.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is computed using the following equation for C 0
s[i
0]:

C 0
s[i
0] = Cs[clamp(i

0;Ws)]

and the clamping function clamp(val;max) is de�ned as

clamp(val;max) =

8><
>:

0; val < 0
val; 0 � val < max
max� 1; val >= max

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is computed using the following equation for C 0
s[i
0; j0]:

C 0
s[i
0; j0] = Cs[clamp(i

0;Ws); clamp(j
0;Hs)]

After convolution, each component of the resulting image is scaled by
the corresponding PixelTransfer parameters: POST CONVOLUTION RED SCALE

for an R component, POST CONVOLUTION GREEN SCALE for a G com-
ponent, POST CONVOLUTION BLUE SCALE for a B component, and
POST CONVOLUTION ALPHA SCALE for an A component. The result
is added to the corresponding bias: POST CONVOLUTION RED BIAS,
POST CONVOLUTION GREEN BIAS, POST CONVOLUTION BLUE BIAS, or
POST CONVOLUTION ALPHA BIAS.

The required state is three bits indicating whether each of one-
dimensional, two-dimensional, or separable two-dimensional convolution is
enabled or disabled, an integer describing the current convolution border
mode, and four oating-point values specifying the convolution border color.
In the initial state, all convolution operations are disabled, the border mode
is REDUCE, and the border color is (0; 0; 0; 0).

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

108 CHAPTER 3. RASTERIZATION

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST CONVOLUTION COLOR TABLE. The post convo-
lution table is de�ned by calling ColorTable with a target argument of
POST CONVOLUTION COLOR TABLE. In all other respects, operation is identical
to color table lookup, as de�ned earlier in section 3.6.5.

The required state is one bit indicating whether post convolution table
lookup is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST COLOR MATRIX RED SCALE

for an R component, POST COLOR MATRIX GREEN SCALE for a G com-
ponent, POST COLOR MATRIX BLUE SCALE for a B component, and
POST COLOR MATRIX ALPHA SCALE for an A component. The result is added to
a signed bias: POST COLOR MATRIX RED BIAS, POST COLOR MATRIX GREEN BIAS,
POST COLOR MATRIX BLUE BIAS, or POST COLOR MATRIX ALPHA BIAS. The result-
ing components replace each component of the original group.

That is, if Mc is the color matrix, a subscript of s represents the scale
term for a component, and a subscript of b represents the bias term, then
the components

0
BB@
R
G
B
A

1
CCA

are transformed to

0
BB@
R0

G0

B0

A0

1
CCA =

0
BB@
Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

1
CCAMc

0
BB@
R
G
B
A

1
CCA+

0
BB@
Rb

Gb

Bb

Ab

1
CCA :

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 109

with the symbolic constant POST COLOR MATRIX COLOR TABLE. The post color
matrix table is de�ned by calling ColorTable with a target argument of
POST COLOR MATRIX COLOR TABLE. In all other respects, operation is identical
to color table lookup, as de�ned in section 3.6.5.

The required state is one bit indicating whether post color matrix lookup
is enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant HISTOGRAM.

If the width of the table is non-zero, then indices Ri, Gi, Bi, and Ai

are derived from the red, green, blue, and alpha components of each pixel
group (without modifying these components) by clamping each component
to [0; 1] , multiplying by one less than the width of the histogram table, and
rounding to the nearest integer. If the format of the HISTOGRAM table includes
red or luminance, the red or luminance component of histogram entry Ri

is incremented by one. If the format of the HISTOGRAM table includes green,
the green component of histogram entry Gi is incremented by one. The blue
and alpha components of histogram entries Bi and Ai are incremented in
the same way. If a histogram entry component is incremented beyond its
maximum value, its value becomes unde�ned; this is not an error.

If the Histogram sink parameter is FALSE, histogram operation has no
e�ect on the stream of pixel groups being processed. Otherwise, all RGBA
pixel groups are discarded immediately after the histogram operation is
completed. Because histogram precedes minmax, no minmax operation is
performed. No pixel fragments are generated, no change is made to texture
memory contents, and no pixel values are returned. However, texture object
state is modi�ed whether or not pixel groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant MINMAX.

If the format of the minmax table includes red or luminance, the red
component value replaces the red or luminance value in the minimum table
element if and only if it is less than that component. Likewise, if the format
includes red or luminance and the red component of the group is greater

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

110 CHAPTER 3. RASTERIZATION

than the red or luminance value in the maximum element, the red group
component replaces the red or luminance maximum component. If the for-
mat of the table includes green, the green group component conditionally
replaces the green minimum and/or maximum if it is smaller or larger, re-
spectively. The blue and alpha group components are similarly tested and
replaced, if the table format includes blue and/or alpha. The internal type
of the minimum and maximum component values is oating point, with at
least the same representable range as a oating point number used to repre-
sent colors (section 2.1.1). There are no semantics de�ned for the treatment
of group component values that are outside the representable range.

If theMinmax sink parameter is FALSE, minmax operation has no e�ect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel
groups are discarded immediately after the minmax operation is completed.
No pixel fragments are generated, no change is made to texture memory
contents, and no pixel values are returned. However, texture object state is
modi�ed whether or not pixel groups are discarded.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of
fragments to be produced. Each of these fragments has the same associated
data. These data are those associated with the current raster position.

Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap,
respectively. (xbo; ybo) gives the oating-point x and y values of the bitmap's
origin. (xbi; ybi) gives the oating-point x and y increments that are added
to the raster position after the bitmap is rasterized. data is a pointer to a
bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according
to the procedure given in section 3.6.4 for DrawPixels; it is as if the width
and height passed to that command were equal to w and h, respectively, the
type were BITMAP, and the format were COLOR INDEX. The unpacked values
(before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones. See �gure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the cur-
rent raster position is invalid (the valid bit is reset), the bitmap is ignored.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 111

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333
333
333

333
333
333

333
333
333333
333
333

333
333
333333

333
333

333
333
333333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333 333

333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure 3.9. A bitmap and its associated parameters. xbi and ybi are not
shown.

Otherwise, a rectangular array of fragments is constructed, with lower left
corner at

(xll; yll) = (bxrp � xboc; byrp � yboc)
and upper right corner at (xll+w; yll+h) where w and h are the width and
height of the bitmap, respectively. Fragments in the array are produced if
the corresponding bit in the bitmap is 1 and not produced otherwise. The
associated data for each fragment are those associated with the current raster
position, with texture coordinates s, t, and r replaced with s=q, t=q, and r=q,
respectively. If q is less than or equal to zero, the results are unde�ned. Once
the fragments have been produced, the current raster position is updated:

(xrp; yrp) (xrp + xbi; yrp + ybi):

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a speci�ed image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

112 CHAPTER 3. RASTERIZATION

an image at the location indicated by a fragment's (s; t; r) coordinates to
modify the fragment's primary RGBA color. Texturing does not a�ect the
secondary color.

Texturing is speci�ed only for RGBA mode; its use in color index mode
is unde�ned.

The GL provides a means to specify the details of how texturing of a
primitive is e�ected. These details include speci�cation of the image to be
texture mapped, the means by which the image is �ltered when applied
to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

3.8.1 Texture Image Speci�cation

The command

void TexImage3D(enum target, int level,
int internalformat, sizei width, sizei height,
sizei depth, int border, enum format, enum type,
void *data);

is used to specify a three-dimensional texture image. target must be either
TEXTURE 3D, or PROXY TEXTURE 3D in the special case discussed in section 3.8.7.
format, type, and data match the corresponding arguments to DrawPixels
(refer to section 3.6.4); they specify the format of the image data, the type
of those data, and a pointer to the image data in host memory. The formats
STENCIL INDEX and DEPTH COMPONENT are not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are speci�ed by the width and height parameters to TexIm-
age3D. The values of UNPACK ROW LENGTH and UNPACK ALIGNMENT control the
row-to-row spacing in these images in the same manner as DrawPixels. If
the value of the integer parameter UNPACK IMAGE HEIGHT is not positive, then
the number of rows in each two-dimensional image is height; otherwise the
number of rows is UNPACK IMAGE HEIGHT. Each two-dimensional image com-
prises an integral number of rows, and is exactly adjacent to its neighbor
images.

The mechanism for selecting a sub-volume of a three-dimensional image
relies on the integer parameter UNPACK SKIP IMAGES. If UNPACK SKIP IMAGES is
positive, the pointer is advanced by UNPACK SKIP IMAGES times the number of
elements in one two-dimensional image before obtaining the �rst group from

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 113

memory. Then depth two-dimensional images are processed, each having a
subimage extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping
just before �nal conversion. Each R, G, B, and A value so generated is
clamped to [0; 1].

Components are then selected from the resulting R, G, B, and A values
to obtain a texture with the base internal format speci�ed by (or derived
from) internalformat. Table 3.15 summarizes the mapping of R, G, B, and
A values to texture components, as a function of the base internal format
of the texture image. internalformat may be speci�ed as one of the six base
internal format symbolic constants listed in table 3.15, or as one of the sized
internal format symbolic constants listed in table 3.16. internalformat may
(for backwards compatibility with the 1.0 version of the GL) also take on
the integer values 1, 2, 3, and 4, which are equivalent to symbolic constants
LUMINANCE, LUMINANCE ALPHA, RGB, and RGBA respectively. Specifying a value
for internalformat that is not one of the above values generates the error
INVALID VALUE.

The internal component resolution is the number of bits allocated to
each value in a texture image. If internalformat is speci�ed as a base in-
ternal format, the GL stores the resulting texture with internal component
resolutions of its own choosing. If a sized internal format is speci�ed, the
mapping of the R, G, B, and A values to texture components is equivalent
to the mapping of the corresponding base internal format's components, as
speci�ed in table 3.15, and the memory allocation per texture component is
assigned by the GL to match the allocations listed in table 3.16 as closely
as possible. (The de�nition of closely is left up to the implementation. Im-
plementations are not required to support more than one resolution for each
base internal format.)

A GL implementation may vary its allocation of internal component res-
olution based on any TexImage3D, TexImage2D (see below), or TexIm-
age1D (see below) parameter (except target), but the allocation must not be
a function of any other state, and cannot be changed once it is established.
Allocations must be invariant; the same allocation must be made each time a
texture image is speci�ed with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.7.

The image itself (pointed to by data) is a sequence of groups of values.
The �rst group is the lower left back corner of the texture image. Subse-
quent groups �ll out rows of width width from left to right; height rows are
stacked from bottom to top forming a single two-dimensional image slice;
and depth slices are stacked from back to front. When the �nal R, G, B,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

114 CHAPTER 3. RASTERIZATION

Base Internal Format RGBA Values Internal Components

ALPHA A A

LUMINANCE R L

LUMINANCE ALPHA R,A L,A

INTENSITY R I

RGB R,G,B R,G,B

RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA pixel components to internal texture,
table, or �lter components. See section 3.8.9 for a description of the texture
components R, G, B, A, L, and I.

and A components have been computed for a group, they are assigned to
components of a texel as described by table 3.15. Counting from zero, each
resulting Nth texel is assigned internal integer coordinates (i; j; k), where

i = (N mod width)� bs

j = (b N

width
c mod height) � bs

k = (b N

width � height
c mod depth) � bs

and bs is the speci�ed border width. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a �xed-
point value with n bits, where n is the number of bits of storage allocated to
that component in the image array. We assume that the �xed-point repre-
sentation used represents each value k=(2n�1), where k 2 f0; 1; : : : ; 2n�1g,
as k (e.g. 1.0 is represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number.
Levels of detail are discussed below, underMipmapping. The main texture
image has a level of detail number of 0. If a level-of-detail less than zero is
speci�ed, the error INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The signi�-
cance of borders is described below. The border width a�ects the required
dimensions of the texture image: it must be the case that

ws = 2n + 2bs (3.11)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 115

Sized Base R G B A L I
Internal Format Internal Format bits bits bits bits bits bits

ALPHA4 ALPHA 4

ALPHA8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16

LUMINANCE4 LUMINANCE 4

LUMINANCE8 LUMINANCE 8

LUMINANCE12 LUMINANCE 12

LUMINANCE16 LUMINANCE 16

LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4

LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6

LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8

LUMINANCE12 ALPHA4 LUMINANCE ALPHA 4 12

LUMINANCE12 ALPHA12 LUMINANCE ALPHA 12 12

LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16

INTENSITY4 INTENSITY 4

INTENSITY8 INTENSITY 8

INTENSITY12 INTENSITY 12

INTENSITY16 INTENSITY 16

R3 G3 B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGB8 RGB 8 8 8

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5 A1 RGBA 5 5 5 1

RGBA8 RGBA 8 8 8 8

RGB10 A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal for-
mats, and desired component resolutions for each sized internal format.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

116 CHAPTER 3. RASTERIZATION

hs = 2m + 2bs (3.12)

ds = 2l + 2bs (3.13)

for some integers n, m, and l, where ws, hs, and ds are the speci�ed image
width, height, and depth. If any one of these relationships cannot be satis�ed,
then the error INVALID VALUE is generated.

Currently, the maximum border width bt is 1. If bs is less than zero, or
greater than bt, then the error INVALID VALUE is generated.

The maximum allowable width, height, or depth of a three-dimensional
texture image is an implementation dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2k�lod+
2bt for image arrays of level-of-detail 0 through k, where k is the log base
2 of MAX 3D TEXTURE SIZE, lod is the level-of-detail of the image array, and
bt is the maximum border width. It may be zero for image arrays of any
level-of-detail greater than k. The error INVALID VALUE is generated if the
speci�ed image is too large to be stored under any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least 2k�lod+2bt for image arrays of
level 0 through k, where k is the log base 2 of MAX TEXTURE SIZE.

Furthermore, an implementation may allow a one-, two-, or three-
dimensional image array of level 1 or greater to be created only if a complete1

set of image arrays consistent with the requested array can be supported.
Likewise, an implementation may allow an image array of level 0 to be cre-
ated only if that single image array can be supported.

The command

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must be ei-
ther TEXTURE 2D, or PROXY TEXTURE 2D in the special case discussed in sec-
tion 3.8.7. The other parameters match the corresponding parameters of
TexImage3D.

1For this purpose the de�nition of \complete", as provided underMipmapping, is aug-
mented as follows: 1) it is as though TEXTURE BASE LEVEL is 0 and TEXTURE MAX LEVEL

is 1000. 2) Excluding borders, the dimensions of the next lower numbered array are all
understood to be twice the corresponding dimensions of the speci�ed array.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 117

For the purposes of decoding the texture image, TexImage2D is equiv-
alent to calling TexImage3D with corresponding arguments and depth of
1, except that

� The depth of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

� UNPACK SKIP IMAGES is ignored.

Finally, the command

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data);

is used to specify a one-dimensional texture image. target must be ei-
ther TEXTURE 1D, or PROXY TEXTURE 1D in the special case discussed in sec-
tion 3.8.7.)

For the purposes of decoding the texture image, TexImage1D is equiv-
alent to calling TexImage2D with corresponding arguments and height of
1, except that

� The height of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width) only if CONVOLUTION 1D is enabled.

An image with zero width, height (TexImage2D and TexImage3D
only), or depth (TexImage3D only) indicates the null texture. If the null
texture is speci�ed for the level-of-detail speci�ed by TEXTURE BASE LEVEL, it
is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL's internal memory. This copying e�ectively places the
decoded image inside a border of the maximum allowable width bt whether
or not a border has been speci�ed (see �gure 3.10) 2. If no border or a
border smaller than the maximum allowable width has been speci�ed, then
the image is still stored as if it were surrounded by a border of the maximum
possible width. Any excess border (which surrounds the speci�ed image,

2Figure 3.10 needs to show a three-dimensional texture image.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

118 CHAPTER 3. RASTERIZATION

including any border) is assigned unspeci�ed values. A two-dimensional
texture has a border only at its left, right, top, and bottom ends, and a
one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the
texture array. A three-dimensional texture array has width, height, and
depth

wt = 2n + 2bt

ht = 2m + 2bt

dt = 2l + 2bt

where bt is the maximum allowable border width and n, m, and l are de�ned
in equations 3.11, 3.12, and 3.13. A two-dimensional texture array has depth
dt = 1, with height ht and width wt as above, and a one-dimensional texture
array has depth dt = 1, height ht = 1, and width wt as above.

An element (i; j; k) of the texture array is called a texel (for a two-
dimensional texture, k is irrelevant; for a one-dimensional texture, j and
k are both irrelevant). The texture value used in texturing a fragment is
determined by that fragment's associated (s; t; r) coordinates, but may not
correspond to any actual texel. See �gure 3.10.

If the data argument of TexImage1D, TexImage2D, or TexImage3D
is a null pointer (a zero-valued pointer in the C implementation), a one-,
two-, or three-dimensional texture array is created with the speci�ed target,
level, internalformat, width, height, and depth, but with unspeci�ed image
contents. In this case no pixel values are accessed in client memory, and
no pixel processing is performed. Errors are generated, however, exactly as
though the data pointer were valid.

3.8.2 Alternate Texture Image Speci�cation Commands

Two-dimensional and one-dimensional texture images may also be speci-
�ed using image data taken directly from the framebu�er, and rectangular
subregions of existing texture images may be respeci�ed.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 119

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. � and �, values used in blending
adjacent texels to obtain a texture value, are also shown.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

120 CHAPTER 3. RASTERIZATION

de�nes a two-dimensional texture array in exactly the manner of TexIm-
age2D, except that the image data are taken from the framebu�er rather
than from client memory. Currently, target must be TEXTURE 2D. x, y, width,
and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image's width and height,
and the lower left (x; y) coordinates of the framebu�er region to be copied.
The image is taken from the framebu�er exactly as if these arguments were
passed to CopyPixels, with argument type set to COLOR, stopping after pixel
transfer processing is complete. Subsequent processing is identical to that
described for TexImage2D, beginning with clamping of the R, G, B, and
A values from the resulting pixel groups. Parameters level, internalformat,
and border are speci�ed using the same values, with the same meanings, as
the equivalent arguments of TexImage2D, except that internalformat may
not be speci�ed as 1, 2, 3, or 4. An invalid value speci�ed for internalfor-
mat generates the error INVALID ENUM. The constraints on width, height, and
border are exactly those for the equivalent arguments of TexImage2D.

The command

void CopyTexImage1D(enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

de�nes a one-dimensional texture array in exactly the manner of TexIm-
age1D, except that the image data are taken from the framebu�er, rather
than from client memory. Currently, target must be TEXTURE 1D. For the
purposes of decoding the texture image, CopyTexImage1D is equivalent
to calling CopyTexImage2D with corresponding arguments and height of
1, except that the height of the image is always 1, regardless of the value
of border. level, internalformat, and border are speci�ed using the same val-
ues, with the same meanings, as the equivalent arguments of TexImage1D,
except that internalformat may not be speci�ed as 1, 2, 3, or 4. The con-
straints on width and border are exactly those of the equivalent arguments
of TexImage1D.

Six additional commands,

void TexSubImage3D(enum target, int level, int xo�set,
int yo�set, int zo�set, sizei width, sizei height,
sizei depth, enum format, enum type, void *data);

void TexSubImage2D(enum target, int level, int xo�set,
int yo�set, sizei width, sizei height, enum format,
enum type, void *data);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 121

void TexSubImage1D(enum target, int level, int xo�set,
sizei width, enum format, enum type, void *data);

void CopyTexSubImage3D(enum target, int level,
int xo�set, int yo�set, int zo�set, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xo�set, int yo�set, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D(enum target, int level,
int xo�set, int x, int y, sizei width);

respecify only a rectangular subregion of an existing texture array. No
change is made to the internalformat, width, height, depth, or border pa-
rameters of the speci�ed texture array, nor is any change made to texel
values outside the speci�ed subregion. Currently the target arguments of
TexSubImage1D and CopyTexSubImage1D must be TEXTURE 1D, the
target arguments of TexSubImage2D and CopyTexSubImage2D must
be TEXTURE 2D, and the target arguments of TexSubImage3D and Copy-
TexSubImage3D must be TEXTURE 3D. The level parameter of each com-
mand speci�es the level of the texture array that is modi�ed. If level is
less than zero or greater than the base 2 logarithm of the maximum texture
width or height, the error INVALID VALUE is generated.

TexSubImage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that
they are speci�ed using the same values, and have the same meanings. Like-
wise, TexSubImage2D arguments width, height, format, type, and data
match the corresponding arguments to TexImage2D, and TexSubIm-
age1D arguments width, format, type, and data match the corresponding
arguments to TexImage1D.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y,
width, and height match the corresponding arguments to CopyTexIm-
age2D3. CopyTexSubImage1D arguments x, y, and width match the cor-
responding arguments to CopyTexImage1D. Each of the TexSubImage
commands interprets and processes pixel groups in exactly the manner of its
TexImage counterpart, except that the assignment of R, G, B, and A pixel
group values to the texture components is controlled by the internalformat
of the texture array, not by an argument to the command.

3Because the framebu�er is inherently two-dimensional, there is no CopyTexIm-

age3D command.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

122 CHAPTER 3. RASTERIZATION

Arguments xo�set, yo�set, and zo�set of TexSubImage3D and Copy-
TexSubImage3D specify the lower left texel coordinates of a width-wide by
height-high by depth-deep rectangular subregion of the texture array. The
depth argument associated with CopyTexSubImage3D is always 1, be-
cause framebu�er memory is two-dimensional - only a portion of a single s; t
slice of a three-dimensional texture is replaced by CopyTexSubImage3D.

Negative values of xo�set, yo�set, and zo�set correspond to the coor-
dinates of border texels, addressed as in �gure 3.10. Taking ws, hs, ds,
and bs to be the speci�ed width, height, depth, and border width of the
texture array, (not the actual array dimensions wt, ht, dt, and bt), and tak-
ing x, y, z, w, h, and d to be the xo�set, yo�set, zo�set, width, height, and
depth argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

z < �bs
z + d > ds � bs

(Recall that ds, ws, and hs include twice the speci�ed border width bs.)
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i; j; k], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width � height c mod d

Arguments xo�set and yo�set of TexSubImage2D and CopyTex-
SubImage2D specify the lower left texel coordinates of a width-wide by
height-high rectangular subregion of the texture array. Negative values of
xo�set and yo�set correspond to the coordinates of border texels, addressed
as in �gure 3.10. Taking ws, hs, and bs to be the speci�ed width, height,
and border width of the texture array, (not the actual array dimensions wt,
ht, and bt), and taking x, y, w, and h to be the xo�set, yo�set, width, and

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 123

height argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

(Recall that ws and hs include twice the speci�ed border width bs.) Counting
from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i; j], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

The xo�set argument of TexSubImage1D and CopyTexSubIm-
age1D speci�es the left texel coordinate of a width-wide subregion of the
texture array. Negative values of xo�set correspond to the coordinates of
border texels. Taking ws and bs to be the speci�ed width and border width
of the texture array, and x and w to be the xo�set and width argument val-
ues, either of the following relationships generates the error INVALID VALUE:

x < �bs
x+ w > ws � bs

Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i], where

i = x+ (n mod w)

3.8.3 Texture Parameters

Various parameters control how the texture array is treated when applied
to a fragment. Each parameter is set by calling

void TexParameterfifg(enum target, enum pname,
T param);

void TexParameterfifgv(enum target, enum pname,
T params);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

124 CHAPTER 3. RASTERIZATION

Name Type Legal Values

TEXTURE WRAP S integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE WRAP T integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE WRAP R integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE MIN FILTER integer NEAREST,
LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER integer NEAREST,
LINEAR

TEXTURE BORDER COLOR 4 oats any 4 values in [0; 1]

TEXTURE PRIORITY oat any value in [0; 1]

TEXTURE MIN LOD oat any value

TEXTURE MAX LOD oat any value

TEXTURE BASE LEVEL integer any non-negative integer

TEXTURE MAX LEVEL integer any non-negative integer

Table 3.17: Texture parameters and their values.

target is the target, either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. pname is
a symbolic constant indicating the parameter to be set; the possible con-
stants and corresponding parameters are summarized in table 3.17. In the
�rst form of the command, param is a value to which to set a single-valued
parameter; in the second form of the command, params is an array of pa-
rameters whose type depends on the parameter being set. If the values for
TEXTURE BORDER COLOR are speci�ed as integers, the conversion for signed in-
tegers from table 2.6 is applied to convert the values to oating-point. Each
of the four values set by TEXTURE BORDER COLOR is clamped to lie in [0; 1].

3.8.4 Texture Wrap Modes

If TEXTURE WRAP S, TEXTURE WRAP T, or TEXTURE WRAP R is set to REPEAT, then
the GL ignores the integer part of s, t, or r coordinates, respectively, using
only the fractional part. (For a number f , the fractional part is f � bfc,
regardless of the sign of f ; recall that the oor function truncates towards
�1.) CLAMP causes s, t, or r coordinates to be clamped to the range [0; 1].

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 125

The initial state is for all of s, t, and r behavior to be that given by REPEAT.

CLAMP TO EDGE clamps texture coordinates at all mipmap levels such that
the texture �lter never samples a border texel. The color returned when
clamping is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range [min;max]. The mini-
mum value is de�ned as

min =
1

2N

where N is the size of the one-, two-, or three-dimensional texture image in
the direction of clamping. The maximum value is de�ned as

max = 1�min

so that clamping is always symmetric about the [0; 1] mapped range of a
texture coordinate.

3.8.5 Texture Mini�cation

Applying a texture to a primitive implies a mapping from texture image
space to framebu�er image space. In general, this mapping involves a recon-
struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebu�er space, then a �ltering, followed �-
nally by a resampling of the �ltered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one
of two simple �ltering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebu�er space is deemed to
magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor �(x; y) and the level of detail pa-
rameter �(x; y), de�ned as

�0(x; y) = log2[�(x; y)]

� =

8>>><
>>>:

TEXTURE MAX LOD; �0 > TEXTURE MAX LOD

�0; TEXTURE MIN LOD � �0 � TEXTURE MAX LOD

TEXTURE MIN LOD; �0 < TEXTURE MIN LOD

undefined; TEXTURE MIN LOD > TEXTURE MAX LOD

(3.14)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

126 CHAPTER 3. RASTERIZATION

If �(x; y) is less than or equal to the constant c (described below in
section 3.8.6) the texture is said to be magni�ed; if it is greater, the texture
is mini�ed.

The initial values of TEXTURE MIN LOD and TEXTURE MAX LOD are chosen so
as to never clamp the normal range of �. They may be respeci�ed for a
speci�c texture by calling TexParameter[if].

Let s(x; y) be the function that associates an s texture coordinate with
each set of window coordinates (x; y) that lie within a primitive; de�ne
t(x; y) and r(x; y) analogously. Let u(x; y) = 2ns(x; y), v(x; y) = 2mt(x; y),
and w(x; y) = 2lr(x; y), where n, m, and l are as de�ned by equations 3.11,
3.12, and 3.13 with ws, hs, and ds equal to the width, height, and depth
of the image array whose level is TEXTURE BASE LEVEL. For a one-dimensional
texture, de�ne v(x; y) � 0 and w(x; y) � 0; for a two-dimensional texture,
de�ne w(x; y) � 0. For a polygon, � is given at a fragment with window
coordinates (x; y) by

� = max

8<
:
s�

@u

@x

�2
+

�
@v

@x

�2
+

�
@w

@x

�2
;

s�
@u

@y

�2
+

�
@v

@y

�2
+

�
@w

@y

�29=
;

(3.15)
where @u=@x indicates the derivative of u with respect to window x, and
similarly for the other derivatives.

For a line, the formula is

� =

s�
@u

@x
�x+

@u

@y
�y

�2
+

�
@v

@x
�x+

@v

@y
�y

�2
+

�
@w

@x
�x+

@w

@y
�y

�2�
l;

(3.16)
where �x = x2 � x1 and �y = y2 � y1 with (x1; y1) and (x2; y2) being the
segment's window coordinate endpoints and l =

p
�x2 +�y2. For a point,

pixel rectangle, or bitmap, � � 1.
While it is generally agreed that equations 3.15 and 3.16 give the best

results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal � with a function f(x; y)
subject to these conditions:

1. f(x; y) is continuous and monotonically increasing in each of j@u=@xj,
j@u=@yj, j@v=@xj, j@v=@yj, j@w=@xj, and j@w=@yj

2. Let

mu = max

�����@u@x
���� ;
����@u@y

����
�

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 127

mv = max

�����@v@x
���� ;
����@v@y

����
�

mw = max

�����@w@x
���� ;
����@w@y

����
�
:

Then maxfmu;mv;mwg � f(x; y) � mu +mv +mw.

When � indicates mini�cation, the value assigned to TEXTURE MIN FILTER

is used to determine how the texture value for a fragment is selected.
When TEXTURE MIN FILTER is NEAREST, the texel in the image array of level
TEXTURE BASE LEVEL that is nearest (in Manhattan distance) to that speci�ed
by (s; t; r) is obtained. This means the texel at location (i; j; k) becomes the
texture value, with i given by

i =

(
buc; s < 1
2n � 1; s = 1

(3.17)

(Recall that if TEXTURE WRAP S is REPEAT, then 0 � s < 1.) Similarly, j is
found as

j =

(
bvc; t < 1
2m � 1; t = 1

(3.18)

and k is found as

k =

(
bwc; r < 1
2l � 1; r = 1

(3.19)

For a one-dimensional texture, j and k are irrelevant; the texel at location
i becomes the texture value. For a two-dimensional texture, k is irrelevant;
the texel at location (i; j) becomes the texture value.

When TEXTURE MIN FILTER is LINEAR, a 2 � 2 � 2 cube of texels in the
image array of level TEXTURE BASE LEVEL is selected. This cube is obtained by
�rst clamping texture coordinates as described above under Texture Wrap
Modes (if the wrap mode for a coordinate is CLAMP or CLAMP TO EDGE) and
computing

i0 =

(
bu� 1=2c mod 2n; TEXTURE WRAP S is REPEAT
bu� 1=2c; otherwise

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

128 CHAPTER 3. RASTERIZATION

j0 =

(
bv � 1=2c mod 2m; TEXTURE WRAP T is REPEAT
bv � 1=2c; otherwise

and

k0 =

(
bw � 1=2c mod 2l; TEXTURE WRAP R is REPEAT
bw � 1=2c; otherwise

Then

i1 =

(
(i0 + 1) mod 2n; TEXTURE WRAP S is REPEAT
i0 + 1; otherwise

j1 =

(
(j0 + 1) mod 2m; TEXTURE WRAP T is REPEAT
j0 + 1; otherwise

and

k1 =

(
(k0 + 1) mod 2l; TEXTURE WRAP R is REPEAT
k0 + 1; otherwise

Let

� = frac(u� 1=2)

� = frac(v � 1=2)

 = frac(w � 1=2)

where frac(x) denotes the fractional part of x.

For a three-dimensional texture, the texture value � is found as

� = (1� �)(1 � �)(1 �)�i0j0k0 + �(1 � �)(1�)�i1j0k0
+ (1� �)�(1 �)�i0j1k0 + ��(1 �)�i1j1k0

+ (1� �)(1 � �)�i0j0k1 + �(1� �)�i1j0k1

+ (1� �)��i0j1k1 + ���i1j1k1

where �ijk is the texel at location (i; j; k) in the three-dimensional texture
image.

For a two-dimensional texture,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 129

� = (1� �)(1� �)�i0j0 + �(1� �)�i1j0 + (1� �)��i0j1 + ���i1j1 (3.20)

where �ij is the texel at location (i; j) in the two-dimensional texture image.
And for a one-dimensional texture,

� = (1� �)�i0 + ��i1

where �i is the texel at location i in the one-dimensional texture.
If any of the selected �ijk, �ij , or �i in the above equations refer to a

border texel with i < �bs, j < �bs, k < �bs, i � ws � bs, j � hs � bs,
or j � ds � bs, then the border color given by the current setting of
TEXTURE BORDER COLOR is used instead of the unspeci�ed value or values. The
RGBA values of the TEXTURE BORDER COLOR are interpreted to match the tex-
ture's internal format in a manner consistent with table 3.15.

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of a
mipmap. A mipmap is an ordered set of arrays representing the same image;
each array has a resolution lower than the previous one. If the image array of
level TEXTURE BASE LEVEL, excluding its border, has dimensions 2n� 2m� 2l,
then there are maxfn;m; lg + 1 image arrays in the mipmap. Each array
subsequent to the array of level TEXTURE BASE LEVEL has dimensions

�(i� 1)� �(j � 1)� �(k � 1)

where the dimensions of the previous array are

�(i) � �(j) � �(k)

and

�(x) =

(
2x x > 0
1 x � 0

until the last array is reached with dimension 1� 1� 1.
Each array in a mipmap is de�ned using TexImage3D, TexImage2D,

CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

130 CHAPTER 3. RASTERIZATION

through p = maxfn;m; lg + TEXTURE BASE LEVEL with each unit increase
indicating an array of half the dimensions of the previous one as already
described. If texturing is enabled (and TEXTURE MIN FILTER is one that re-
quires a mipmap) at the time a primitive is rasterized and if the set of
arrays TEXTURE BASE LEVEL through q = minfp; TEXTURE MAX LEVELg is incom-
plete, then it is as if texture mapping were disabled. The set of arrays
TEXTURE BASE LEVEL through q is incomplete if the internal formats of all
the mipmap arrays were not speci�ed with the same symbolic constant, if
the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where k < TEXTURE BASE LEVEL or k > q are insigni�cant.

The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL may be re-
speci�ed for a speci�c texture by calling TexParameter[if]. The error
INVALID VALUE is generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approxi-
mate the application of an appropriately �ltered texture to a fragment. Let
c be the value of � at which the transition from mini�cation to magni�cation
occurs (since this discussion pertains to mini�cation, we are concerned only
with values of � where � > c). In the following equations, let

b = TEXTURE BASE LEVEL

For mipmap �lters NEAREST MIPMAP NEAREST and LINEAR MIPMAP NEAREST,
the dth mipmap array is selected, where

d =

8><
>:

b; � � 1
2

db+ �+ 1
2e � 1; � > 1

2 ; b+ � � q + 1
2

q; � > 1
2 ; b+ � > q + 1

2

(3.21)

The rules for NEAREST or LINEAR �ltering are then applied to the selected
array.

For mipmap �lters NEAREST MIPMAP LINEAR and LINEAR MIPMAP LINEAR, the
level d1 and d2 mipmap arrays are selected, where

d1 =

(
q; b+ � � q
bb+ �c; otherwise

(3.22)

d2 =

(
q; b+ � � q
d1 + 1; otherwise

(3.23)

The rules for NEAREST or LINEAR �ltering are then applied to each of the
selected arrays, yielding two corresponding texture values �1 and �2. The
�nal texture value is then found as

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 131

� = [1� frac(�)]�1 + frac(�)�2:

3.8.6 Texture Magni�cation

When � indicates magni�cation, the value assigned to TEXTURE MAG FILTER

determines how the texture value is obtained. There are two possible val-
ues for TEXTURE MAG FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER (equations 3.17, 3.18, and 3.19 are used);
LINEAR behaves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.20 is
used). The level-of-detail TEXTURE BASE LEVEL texture array is always used
for magni�cation.

Finally, there is the choice of c, the mini�cation vs. magni�cation switch-
over point. If the magni�cation �lter is given by LINEAR and the mini�cation
�lter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then c =
0:5. This is done to ensure that a mini�ed texture does not appear \sharper"
than a magni�ed texture. Otherwise c = 0.

3.8.7 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First,
there are the three sets of mipmap arrays (one-, two-, and three-dimensional)
and their number. Each array has associated with it a width, height (two-
or three-dimensional only), and depth (three-dimensional only), a border
width, an integer describing the internal format of the image, and six inte-
ger values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the image. Each initial texture
array is null (zero width, height, and depth, zero border width, internal
format 1, with zero-sized components). Next, there are the two sets of
texture properties; each consists of the selected mini�cation and magni�-
cation �lters, the wrap modes for s, t (two- and three-dimensional only),
and r (three-dimensional only), the TEXTURE BORDER COLOR, two integers de-
scribing the minimum and maximum level of detail, two integers describing
the base and maximum mipmap array, a boolean ag indicating whether
the texture is resident and the priority associated with each set of prop-
erties. The value of the resident ag is determined by the GL and may
change as a result of other GL operations. The ag may only be queried,
not set, by applications. See section 3.8.8). In the initial state, the value
assigned to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the value for
TEXTURE MAG FILTER is LINEAR. s, t, and r wrap modes are all set to REPEAT.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

132 CHAPTER 3. RASTERIZATION

The values of TEXTURE MIN LOD and TEXTURE MAX LOD are -1000 and 1000 re-
spectively. The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL are 0
and 1000 respectively. TEXTURE PRIORITY is 1.0, and TEXTURE BORDER COLOR is
(0,0,0,0). The initial value of TEXTURE RESIDENT is determined by the GL.

In addition to the one-, two-, and three-dimensional sets of image ar-
rays, partially instantiated one-, two-, and three-dimensional sets of proxy
image arrays are maintained. Each proxy array includes width, height (two-
and three-dimensional arrays only), depth (three-dimensional arrays only),
border width, and internal format state values, as well as state for the red,
green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties.
When TexImage3D is executed with target speci�ed as PROXY TEXTURE 3D,
the three-dimensional proxy state values of the speci�ed level-of-detail are
recomputed and updated. If the image array would not be supported by
TexImage3D called with target set to TEXTURE 3D, no error is generated,
but the proxy width, height, depth, border width, and component resolu-
tions are set to zero. If the image array would be supported by such a call to
TexImage3D, the proxy state values are set exactly as though the actual
image array were being speci�ed. No pixel data are transferred or processed
in either case.

One- and two-dimensional proxy arrays are operated on in the same way
when TexImage1D is executed with target speci�ed as PROXY TEXTURE 1D,
or TexImage2D is executed with target speci�ed as PROXY TEXTURE 2D.

There is no image associated with any of the proxy textures. Therefore
PROXY TEXTURE 1D, PROXY TEXTURE 2D, and PROXY TEXTURE 3D cannot be used
as textures, and their images must never be queried using GetTexImage.
The error INVALID ENUM is generated if this is attempted. Likewise, there
is no nonlevel-related state associated with a proxy texture, and GetTex-
Parameteriv or GetTexParameterfv may not be called with a proxy
texture target. The error INVALID ENUM is generated if this is attempted.

3.8.8 Texture Objects

In addition to the default textures TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D

named one-, two-, and three-dimensional texture objects can be created and
operated upon. The name space for texture objects is the unsigned integers,
with zero reserved by the GL.

A texture object is created by binding an unused name to TEXTURE 1D,
TEXTURE 2D, or TEXTURE 3D. The binding is e�ected by calling

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 133

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused
name. The resulting texture object is a new state vector, comprising all
the state values listed in section 3.8.7, set to the same initial values. If
the new texture object is bound to TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D

respectively, it is and remains a one-, two-, or three-dimensional texture
until it is deleted.

BindTexture may also be used to bind an existing texture object to
either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. The error INVALID OPERATION

is generated if an attempt is made to bind a texture object of di�erent
dimensionality than the speci�ed target. If the bind is successful no change
is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which
it is bound a�ect the bound object, and queries of the target to which it
is bound return state from the bound object. If texture mapping of the
dimensionality of the target to which a texture object is bound is enabled,
the state of the bound texture object directs the texturing operation.

In the initial state, TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D have one-,
two-, and three-dimensional texture state vectors associated with them. In
order that access to these initial textures not be lost, they are treated as
texture objects all of whose names are 0. The initial one-, two-, or three-
dimensional texture is therefore operated upon, queried, and applied as
TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

textures contains n names of texture objects to be deleted. After a texture
object is deleted, it has no contents or dimensionality, and its name is again
unused. If a texture that is currently bound to one of the targets TEXTURE 1D,
TEXTURE 2D, or TEXTURE 3D is deleted, it is as though BindTexture had been
executed with the same target and texture zero. Unused names in textures
are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *textures);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

134 CHAPTER 3. RASTERIZATION

returns n previously unused texture object names in textures. These names
are marked as used, for the purposes ofGenTextures only, but they acquire
texture state and a dimensionality only when they are �rst bound, just as
if they were unused.

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher performance.
A texture object that is currently part of the working set is said to be
resident. The command

boolean AreTexturesResident(sizei n, uint *textures,
boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident,
or if the implementation does not distinguish a working set. If at least one
of the texture objects named in textures is not resident, then FALSE is re-
turned, and the residence of each texture object is returned in residences.
Otherwise the contents of residences are not changed. If any of the names in
textures are unused or are zero, FALSE is returned, the error INVALID VALUE is
generated, and the contents of residences are indeterminate. The residence
status of a single bound texture object can also be queried by calling Get-
TexParameteriv or GetTexParameterfv with target set to the target
to which the texture object is bound, and pname set to TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is cur-
rently resident, not whether it could not be made resident. An implemen-
tation may choose to make a texture object resident only on �rst use, for
example. The client may guide the GL implementation in determining which
texture objects should be resident by specifying a priority for each texture
object. The command

void PrioritizeTextures(sizei n, uint *textures,
clampf *priorities);

sets the priorities of the n texture objects named in textures to the values
in priorities. Each priority value is clamped to the range [0,1] before it is
assigned. Zero indicates the lowest priority, with the least likelihood of being
resident. One indicates the highest priority, with the greatest likelihood of
being resident. The priority of a single bound texture object may also be
changed by calling TexParameteri, TexParameterf, TexParameteriv,
or TexParameterfv with target set to the target to which the texture
object is bound, pname set to TEXTURE PRIORITY, and param or params

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 135

specifying the new priority value (which is clamped to the range [0,1] before
being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

3.8.9 Texture Environments and Texture Functions

The command

void TexEnvfifg(enum target, enum pname, T param);
void TexEnvfifgv(enum target, enum pname, T params);

sets parameters of the texture environment that speci�es how texture values
are interpreted when texturing a fragment. target must currently be the
symbolic constant TEXTURE ENV. pname is a symbolic constant indicating the
parameter to be set. In the �rst form of the command, param is a value
to which to set a single-valued parameter; in the second form, params is a
pointer to an array of parameters: either a single symbolic constant or a
value or group of values to which the parameter should be set. The pos-
sible environment parameters are TEXTURE ENV MODE and TEXTURE ENV COLOR.
TEXTURE ENV MODE may be set to one of REPLACE, MODULATE, DECAL, or BLEND;
TEXTURE ENV COLOR is set to an RGBA color by providing four single-precision
oating-point values in the range [0; 1] (values outside this range are clamped
to it). If integers are provided for TEXTURE ENV COLOR, then they are converted
to oating-point as speci�ed in table 2.6 for signed integers.

The value of TEXTURE ENV MODE speci�es a texture function. The result
of this function depends on the fragment and the texture array value. The
precise form of the function depends on the base internal formats of the
texture arrays that were last speci�ed. In the following two tables, Rf , Gf ,
Bf , and Af are the primary color components of the incoming fragment;
Rt, Gt, Bt, At, Lt, and It are the �ltered texture values; Rc, Gc, Bc, and Ac

are the texture environment color values; and Rv, Gv, Bv, and Av are the
primary color components computed by the texture function. All of these
color values are in the range [0; 1]. The REPLACE and MODULATE texture func-
tions are speci�ed in table 3.18, and the DECAL and BLEND texture functions
are speci�ed in table 3.19.

The state required for the current texture environment consists of the
four-valued integer indicating the texture function and four oating-point
TEXTURE ENV COLOR values. In the initial state, the texture function is given
by MODULATE and TEXTURE ENV COLOR is (0; 0; 0; 0).

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

136 CHAPTER 3. RASTERIZATION

Base REPLACE MODULATE

Internal Format Texture Function Texture Function

ALPHA Rv = Rf Rv = Rf

Gv = Gf Gv = Gf

Bv = Bf Bv = Bf

Av = At Av = AfAt

LUMINANCE Rv = Lt Rv = RfLt

(or 1) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = Af Av = Af

LUMINANCE ALPHA Rv = Lt Rv = RfLt

(or 2) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = At Av = AfAt

INTENSITY Rv = It Rv = RfIt
Gv = It Gv = GfIt
Bv = It Bv = BfIt
Av = It Av = AfIt

RGB Rv = Rt Rv = RfRt

(or 3) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = Af Av = Af

RGBA Rv = Rt Rv = RfRt

(or 4) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = At Av = AfAt

Table 3.18: Replace and modulate texture functions.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 137

Base DECAL BLEND

Internal Format Texture Function Texture Function

ALPHA unde�ned Rv = Rf

Gv = Gf

Bv = Bf

Av = AfAt

LUMINANCE unde�ned Rv = Rf (1� Lt) +RcLt

(or 1) Gv = Gf (1� Lt) +GcLt

Bv = Bf (1� Lt) +BcLt

Av = Af

LUMINANCE ALPHA unde�ned Rv = Rf (1� Lt) +RcLt

(or 2) Gv = Gf (1� Lt) +GcLt

Bv = Bf (1� Lt) +BcLt

Av = AfAt

INTENSITY unde�ned Rv = Rf (1� It) +RcIt
Gv = Gf (1� It) +GcIt
Bv = Bf (1� It) +BcIt
Av = Af (1� It) +AcIt

RGB Rv = Rt Rv = Rf (1�Rt) +RcRt

(or 3) Gv = Gt Gv = Gf (1�Gt) +GcGt

Bv = Bt Bv = Bf (1�Bt) +BcBt

Av = Af Av = Af

RGBA Rv = Rf (1�At) +RtAt Rv = Rf (1�Rt) +RcRt

(or 4) Gv = Gf (1�At) +GtAt Gv = Gf (1�Gt) +GcGt

Bv = Bf (1�At) +BtAt Bv = Bf (1�Bt) +BcBt

Av = Af Av = AfAt

Table 3.19: Decal and blend texture functions.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

138 CHAPTER 3. RASTERIZATION

3.8.10 Texture Application

Texturing is enabled or disabled using the generic Enable andDisable com-
mands, respectively, with the symbolic constants TEXTURE 1D, TEXTURE 2D, or
TEXTURE 3D to enable the one-, two-, or three-dimensional texture, respec-
tively. If both two- and one-dimensional textures are enabled, the two-
dimensional texture is used. If the three-dimensional and either of the
two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-
tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.5 and 3.8.6. This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment's primary R, G, B, and A values.
These are the color values passed to subsequent operations. Other data
associated with the incoming fragment remain unchanged, except that the
texture coordinates may be discarded.

The required state is three bits indicating whether each of one-, two-, or
three-dimensional texturing is enabled or disabled. In the initial state, all
texturing is disabled.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary
color cpri (which texturing, if enabled, may have modi�ed) and a secondary
color csec. The components of these two colors are summed to produce a
single post-texturing RGBA color c. The components of c are then clamped
to the range [0; 1].

Color sum has no e�ect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment's post-texturing
color using a blending factor f . Fog is enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f = exp(�d � z); (3.24)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

3.10. FOG 139

f = exp(�(d � z)2); or (3.25)

f =
e� z

e� s
(3.26)

(z is the eye-coordinate distance from the eye, (0; 0; 0; 1) in eye coordinates,
to the fragment center). The equation, along with either d or e and s, is
speci�ed with

void Fogfifg(enum pname, T param);
void Fogfifgv(enum pname, T params);

If pname is FOG MODE, then param must be, or params must point to an integer
that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.24, 3.25, or 3.26, respectively, is selected for the fog calculation (if,
when 3.26 is selected, e = s, results are unde�ned). If pname is FOG DENSITY,
FOG START, or FOG END, then param is or params points to a value that is d,
s, or e, respectively. If d is speci�ed less than zero, the error INVALID VALUE

results.
An implementation may choose to approximate the eye-coordinate dis-

tance from the eye to each fragment center by jzej. Further, f need not
be computed at each fragment, but may be computed at each vertex and
interpolated as other data are.

No matter which equation and approximation is used to compute f , the
result is clamped to [0; 1] to obtain the �nal f .

f is used di�erently depending on whether the GL is in RGBA or color
index mode. In RGBA mode, if Cr represents a rasterized fragment's R, G,
or B value, then the corresponding value produced by fog is

C = fCr + (1� f)Cf :

(The rasterized fragment's A value is not changed by fog blending.) The R,
G, B, and A values of Cf are speci�ed by calling Fog with pname equal to
FOG COLOR; in this case params points to four values comprising Cf . If these
are not oating-point values, then they are converted to oating-point using
the conversion given in table 2.6 for signed integers. Each component of Cf

is clamped to [0; 1] when speci�ed.
In color index mode, the formula for fog blending is

I = ir + (1� f)if

where ir is the rasterized fragment's color index and if is a single-precision
oating-point value. (1 � f)if is rounded to the nearest �xed-point value

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

140 CHAPTER 3. RASTERIZATION

with the same number of bits to the right of the binary point as ir, and the
integer portion of I is masked (bitwise ANDed) with 2n � 1, where n is the
number of bits in a color in the color index bu�er (bu�ers are discussed in
chapter 4). The value of if is set by calling Fog with pname set to FOG INDEX

and param being or params pointing to a single value for the fog index. The
integer part of if is masked with 2n � 1.

The state required for fog consists of a three valued integer to select the
fog equation, three oating-point values d, e, and s, an RGBA fog color and
a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, FOG MODE is EXP, d = 1:0, e = 1:0, and
s = 0:0; Cf = (0; 0; 0; 0) and if = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized
fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment's alpha
(A) value to yield a �nal alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Chapter 4

Per-Fragment Operations

and the Framebu�er

The framebu�er consists of a set of pixels arranged as a two-dimensional
array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the
framebu�er is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GL implementation or
context.

Corresponding bits from each pixel in the framebu�er are grouped to-
gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical bu�ers. These are the color,
depth, stencil, and accumulation bu�ers. The color bu�er actually consists
of a number of bu�ers: the front left bu�er, the front right bu�er, the back
left bu�er, the back right bu�er, and some number of auxiliary bu�ers. Typ-
ically the contents of the front bu�ers are displayed on a color monitor while
the contents of the back bu�ers are invisible. (Monoscopic contexts display
only the front left bu�er; stereoscopic contexts display both the front left
and the front right bu�ers.) The contents of the auxiliary bu�ers are never
visible. All color bu�ers must have the same number of bitplanes, although
an implementation or context may choose not to provide right bu�ers, back
bu�ers, or auxiliary bu�ers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation bu�ers.

Color bu�ers consist of either unsigned integer color indices or R, G, B,
and, optionally, A unsigned integer values. The number of bitplanes in each
of the color bu�ers, the depth bu�er, the stencil bu�er, and the accumulation
bu�er is �xed and window dependent. If an accumulation bu�er is provided,

141

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

142CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 4.1. Per-fragment operations.

it must have at least as many bitplanes per R, G, and B color component
as do the color bu�ers.

The initial state of all provided bitplanes is unde�ned.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw; yw)
modi�es the pixel in the framebu�er at that location based on a number of
parameters and conditions. We describe these modi�cations and tests, dia-
grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modi�cations and tests.

4.1.1 Pixel Ownership Test

The �rst test is to determine if the pixel at location (xw; yw) in the frame-
bu�er is currently owned by the GL (more precisely, by this GL context). If
it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the
subsequent per-fragment operations are applied to the fragment. This test

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 143

allows the window system to control the GL's behavior, for instance, when
a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (xw; yw) lies within the scissor rectangle de�ned
by four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left � xw < left + width and bottom � yw < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.
The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR TEST. When disabled, it is as if the scissor test always passes.
If either width or height is less than zero, then the error INVALID VALUE is
generated. The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the
GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the
next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment's alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a refer-
ence value. ref is clamped to lie in [0; 1], and then converted to a �xed-point
value according to the rules given for an A component in section 2.13.9. For
purposes of the alpha test, the fragment's alpha value is also rounded to
the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning
pass the fragment never, always, if the fragment's alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not
equal to the reference value, respectively.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

144CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The required state consists of the oating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value
to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil bu�er at location (xw; yw) and
a reference value. The test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with the Enable andDisable commands, us-
ing the symbolic constant STENCIL TEST. When disabled, the stencil test and
associated modi�cations are not made, and the fragment is always passed.

ref is an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0; 2s � 1], where s is the number of bits
in the stencil bu�er. func is a symbolic constant that determines the stencil
comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test
passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked
stored value in the stencil bu�er. The s least signi�cant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The
ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass. sfail
indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of
increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same
symbolic values are given to indicate the stencil action if the depth bu�er
test (below) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-
cilOp, and a bit indicating whether stencil testing is enabled or disabled.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 145

In the initial state, stenciling is disabled, the stencil reference value is zero,
the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil bu�er, no
stencil modi�cation can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth bu�er test

The depth bu�er test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth bu�er
value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modi�ed as indicated below as if the depth bu�er
test passed. If enabled, the comparison takes place and the depth bu�er and
stencil value may subsequently be modi�ed.

The comparison is speci�ed with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth bu�er test
passes never, always, if the incoming fragment's zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal
to the depth value stored at the location given by the incoming fragment's
(xw; yw) coordinates.

If the depth bu�er test fails, the incoming fragment is discarded. The
stencil value at the fragment's (xw; yw) coordinates is updated according to
the function currently in e�ect for depth bu�er test failure. Otherwise, the
fragment continues to the next operation and the value of the depth bu�er
at the fragment's (xw; yw) location is set to the fragment's zw value. In this
case the stencil value is updated according to the function currently in e�ect
for depth bu�er test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth bu�ering is enabled or disabled. In the initial state the
function is LESS and the test is disabled.

If there is no depth bu�er, it is as if the depth bu�er test always passes.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

146CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

4.1.6 Blending

Blending combines the incoming fragment's R, G, B, and A values with the
R, G, B, and A values stored in the framebu�er at the incoming fragment's
(xw; yw) location.

This blending is dependent on the incoming fragment's alpha value and
that of the corresponding currently stored pixel. Blending applies only in
RGBA mode; in color index mode it is bypassed. Blending is enabled or
disabled using Enable or Disable with the symbolic constant BLEND. If it
is disabled, or if logical operation on color values is enabled (section 4.1.8),
proceed to the next stage.

In the following discussion, Cs refers to the source color for an incoming
fragment, Cd refers to the destination color at the corresponding framebu�er
location, and Cc refers to a constant color in the GL state. Individual
RGBA components of these colors are denoted by subscripts of s, d, and c
respectively.

Destination (framebu�er) components are taken to be �xed-point values
represented according to the scheme given in section 2.13.9 (Final Color Pro-
cessing), as are source (fragment) components. Constant color components
are taken to be oating point values.

Prior to blending, each �xed-point color component undergoes an implied
conversion to oating point. This conversion must leave the values 0 and
1 invariant. Blending computations are treated as if carried out in oating
point.

The commands that control blending are

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);

void BlendEquation(enum mode);

void BlendFunc(enum src, enum dst);

Using BlendColor

The constant color Cc to be used in blending is speci�ed with BlendColor.
The four parameters are clamped to the range [0; 1] before being stored.
The constant color can be used in both the source and destination blending
factors.

BlendColor is an imaging subset feature (see section 3.6.2), and is only
allowed when the imaging subset is supported.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 147

Using BlendEquation

Blending capability is de�ned by the blend equation. BlendEquation mode
FUNC ADD de�nes the blending equation as

C = CsS + CdD

where Cs and Cd are the source and destination colors, and S and D are
quadruplets of weighting factors as speci�ed by BlendFunc.

If mode is FUNC SUBTRACT, the blending equation is de�ned as

C = CsS � CdD

If mode is FUNC REVERSE SUBTRACT, the blending equation is de�ned as

C = CdD � CsS

If mode is MIN, the blending equation is de�ned as

C =min(Cs; Cd)

Finally, if mode is MAX, the blending equation is de�ned as

C = max(Cs; Cd)

The blending equation is evaluated separately for each color component
and the corresponding weighting factors.

BlendEquation is an imaging subset feature (see section 3.6.2). If
the imaging subset is not available, then blending always uses the blending
equation FUNC ADD.

Using BlendFunc

BlendFunc src indicates how to compute a source blending factor, while
dst indicates how to compute a destination factor. The possible arguments
and their corresponding computed source and destination factors are sum-
marized in Tables 4.1 and 4.2. Addition or subtraction of quadruplets means
adding or subtracting them component-wise.

The computed source and destination blending quadruplets are applied
to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination
blending quadruplets be S and D, respectively. Then a quadruplet of values
is computed using the blend equation speci�ed by BlendEquation. Each

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

148CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Value Blend Factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

DST COLOR (Rd; Gd; Bd; Ad)

ONE MINUS DST COLOR (1; 1; 1; 1) � (Rd; Gd; Bd; Ad)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1) � (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1) � (Ad; Ad; Ad; Ad)

CONSTANT COLOR (Rc; Gc; Bc; Ac)

ONE MINUS CONSTANT COLOR (1; 1; 1; 1) � (Rc; Gc; Bc; Ac)

CONSTANT ALPHA (Ac; Ac; Ac; Ac)

ONE MINUS CONSTANT ALPHA (1; 1; 1; 1) � (Ac; Ac; Ac; Ac)

SRC ALPHA SATURATE (f; f; f; 1)

Table 4.1: Values controlling the source blending function and the source
blending values they compute. f = min(As; 1 �Ad).

Value Blend factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

SRC COLOR (Rs; Gs; Bs; As)

ONE MINUS SRC COLOR (1; 1; 1; 1) � (Rs; Gs; Bs; As)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1) � (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1) � (Ad; Ad; Ad; Ad)

CONSTANT COLOR (Rc; Gc; Bc; Ac)

ONE MINUS CONSTANT COLOR (1; 1; 1; 1) � (Rc; Gc; Bc; Ac)

CONSTANT ALPHA (Ac; Ac; Ac; Ac)

ONE MINUS CONSTANT ALPHA (1; 1; 1; 1) � (Ac; Ac; Ac; Ac)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 149

oating-point value in this quadruplet is clamped to [0; 1] and converted
back to a �xed-point value in the manner described in section 2.13.9. The
resulting four values are sent to the next operation.

BlendFunc arguments CONSTANT COLOR, ONE MINUS CONSTANT COLOR,
CONSTANT ALPHA, and ONE MINUS CONSTANT ALPHA are imaging subset features
(see section 3.6.2), and are only allowed when the imaging subset is provided.

Blending State

The state required for blending is an integer indicating the blending equa-
tion, two integers indicating the source and destination blending functions,
four oating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blending
equation is FUNC ADD. The initial blending functions are ONE for the source
function and ZERO for the destination function. The initial constant blend
color is (R;G;B;A) = (0; 0; 0; 0). Initially, blending is disabled.

Blending occurs once for each color bu�er currently enabled for writing
(section 4.2.1) using each bu�er's color for Cd. If a color bu�er has no A
value, then Ad is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-
sider the value of any of the color components as a �xed-point value with m
bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebu�er; call each such value c. For each c,
dithering selects a value c1 such that c1 2 fmaxf0; dce � 1g; dceg (after this
selection, treat c1 as a �xed point value in [0,1] with m bits). This selec-
tion may depend on the xw and yw coordinates of the pixel. In color index
mode, the same rule applies with c being a single color index. c must not be
larger than the maximum value representable in the framebu�er for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment's x
and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a �xed-point value with as many bits as there are in the
corresponding component in the framebu�er; a color index is rounded to the
nearest integer representable in the color index portion of the framebu�er.

Dithering is enabled with Enable and disabled with Disable using the

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

150CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment's color
or index values and the color or index values stored at the corresponding
location in the framebu�er. The result replaces the values in the framebu�er
at the fragment's (x; y) coordinates. The logical operation on color indices
is enabled or disabled with Enable or Disable using the symbolic constant
INDEX LOGIC OP. (For compatibility with GL version 1.0, the symbolic con-
stant LOGIC OP may also be used.) The logical operation on color values is
enabled or disabled with Enable or Disable using the symbolic constant
COLOR LOGIC OP. If the logical operation is enabled for color values, it is as if
blending were disabled, regardless of the value of BLEND.

The logical operation is selected by

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding opera-
tions are enumerated in Table 4.3. In this table, s is the value of the incoming
fragment and d is the value stored in the framebu�er. The numeric values
assigned to the symbolic constants are the same as those assigned to the
corresponding symbolic values in the X window system.

Logical operations are performed independently for each color index
bu�er that is selected for writing, or for each red, green, blue, and alpha
value of each color bu�er that is selected for writing. The required state is
an integer indicating the logical operation, and two bits indicating whether
the logical operation is enabled or disabled. The initial state is for the logic
operation to be given by COPY, and to be disabled.

4.2 Whole Framebu�er Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebu�er. This section describes operations
that control or a�ect the whole framebu�er.

4.2.1 Selecting a Bu�er for Writing

The �rst such operation is controlling the bu�er into which color values are
written. This is accomplished with

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 151

Argument value Operation

CLEAR 0
AND s ^ d
AND REVERSE s ^ :d
COPY s
AND INVERTED :s ^ d
NOOP d
XOR s xor d
OR s _ d
NOR :(s _ d)
EQUIV :(s xor d)
INVERT :d
OR REVERSE s _ :d
COPY INVERTED :s
OR INVERTED :s _ d
NAND :(s ^ d)
SET all 1's

Table 4.3: Arguments to LogicOp and their corresponding operations.

void DrawBu�er(enum buf);

buf is a symbolic constant specifying zero, one, two, or four bu�ers for writ-
ing. The constants are NONE, FRONT LEFT, FRONT RIGHT, BACK LEFT, BACK RIGHT,
FRONT, BACK, LEFT, RIGHT, FRONT AND BACK, and AUX0 through AUXn, where n+1
is the number of available auxiliary bu�ers.

The constants refer to the four potentially visible bu�ers front left,
front right, back left, and back right, and to the auxiliary bu�ers. Argu-
ments other than AUXi that omit reference to LEFT or RIGHT refer to both left
and right bu�ers. Arguments other than AUXi that omit reference to FRONT

or BACK refer to both front and back bu�ers. AUXi enables drawing only to
auxiliary bu�er i. Each AUXi adheres to AUXi = AUX0+ i. The constants and
the bu�ers they indicate are summarized in Table 4.4. If DrawBu�er is
is supplied with a constant (other than NONE) that does not indicate any of
the color bu�ers allocated to the GL context, the error INVALID OPERATION

results.

Indicating a bu�er or bu�ers usingDrawBu�er causes subsequent pixel
color value writes to a�ect the indicated bu�ers. If more than one color
bu�er is selected for drawing, blending and logical operations are computed

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

152CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic front front back back aux
constant left right left right i

NONE

FRONT LEFT �
FRONT RIGHT �
BACK LEFT �
BACK RIGHT �
FRONT � �
BACK � �
LEFT � �
RIGHT � �
FRONT AND BACK � � � �
AUXi �

Table 4.4: Arguments to DrawBu�er and the bu�ers that they indicate.

and applied independently for each bu�er. Calling DrawBu�er with a
value of NONE inhibits the writing of color values to any bu�er.

Monoscopic contexts include only left bu�ers, while stereoscopic contexts
include both left and right bu�ers. Likewise, single bu�ered contexts include
only front bu�ers, while double bu�ered contexts include both front and back
bu�ers. The type of context is selected at GL initialization.

The state required to handle bu�er selection is a set of up to 4 + n bits.
4 bits indicate if the front left bu�er, the front right bu�er, the back left
bu�er, or the back right bu�er, are enabled for color writing. The other n
bits indicate which of the auxiliary bu�ers is enabled for color writing. In
the initial state, the front bu�er or bu�ers are enabled if there are no back
bu�ers; otherwise, only the back bu�er or bu�ers are enabled.

4.2.2 Fine Control of Bu�er Updates

Four commands are used to mask the writing of bits to each of the logical
framebu�ers after all per-fragment operations have been performed. The
commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,

boolean a);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 153

control the color bu�er or bu�ers (depending on which bu�ers are currently
indicated for writing). The least signi�cant n bits of mask, where n is the
number of bits in a color index bu�er, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index bu�er (or bu�ers) is
written; where a 0 appears, the bit is not written. This mask applies only in
color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color bu�er or bu�ers. r, g, b, and a indicate
whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all
bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.

The depth bu�er can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth bu�er is enabled for writing; otherwise, it is
disabled. In the initial state, the depth bu�er is enabled for writing.

The command

void StencilMask(uint mask);

controls the writing of particular bits into the stencil planes. The least
signi�cant s bits of mask comprise an integer mask (s is the number of bits
in the stencil bu�er), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and
a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing.

4.2.3 Clearing the Bu�ers

The GL provides a means for setting portions of every pixel in a particular
bu�er to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which bu�ers
are to be cleared. The values are COLOR BUFFER BIT, DEPTH BUFFER BIT,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

154CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the bu�ers currently
enabled for color writing, the depth bu�er, the stencil bu�er, and the accu-
mulation bu�er (see below), respectively. The value to which each bu�er is
cleared depends on the setting of the clear value for that bu�er. If the mask
is not a bitwise OR of the speci�ed values, then the error INVALID VALUE is
generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for the color bu�ers in RGBA mode. Each of the speci�ed
components is clamped to [0; 1] and converted to �xed-point according to
the rules of section 2.13.9.

void ClearIndex(float index);

sets the clear color index. index is converted to a �xed-point value with
unspeci�ed precision to the left of the binary point; the integer part of this
value is then masked with 2m � 1, where m is the number of bits in a color
index value stored in the framebu�er.

void ClearDepth(clampd d);

takes a oating-point value that is clamped to the range [0; 1] and con-
verted to �xed-point according to the rules for a window z value given in
section 2.10.1. Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil
bu�er. s is masked to the number of bitplanes in the stencil bu�er.

void ClearAccum(float r, float g, float b, float a);

takes four oating-point arguments that are the values, in order, to which
to set the R, G, B, and A values of the accumulation bu�er (see the next
section). These values are clamped to the range [�1; 1] when they are spec-
i�ed.

When Clear is called, the only per-fragment operations that are applied
(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also e�ective. If
a bu�er is not present, then a Clear directed at that bu�er has no e�ect.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 155

The state required for clearing is a clear value for each of the color bu�er,
the depth bu�er, the stencil bu�er, and the accumulation bu�er. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the
stencil bu�er and accumulation bu�er clear values are all 0. The depth
bu�er clear value is initially 1.0.

4.2.4 The Accumulation Bu�er

Each portion of a pixel in the accumulation bu�er consists of four values: one
for each of R, G, B, and A. The accumulation bu�er is controlled exclusively
through the use of

void Accum(enum op, float value);

(except for clearing it). op is a symbolic constant indicating an accumula-
tion bu�er operation, and value is a oating-point value to be used in that
operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pix-
els within the current scissor box are updated by any Accum operation;
otherwise, all pixels in the window are updated. The accumulation bu�er
operations apply identically to every a�ected pixel, so we describe the e�ect
of each operation on an individual pixel. Accumulation bu�er values are
taken to be signed values in the range [�1; 1]. Using ACCUM obtains R, G,
B, and A components from the bu�er currently selected for reading (sec-
tion 4.3.2). Each component, considered as a �xed-point value in [0; 1]. (see
section 2.13.9), is converted to oating-point. Each result is then multiplied
by value. The results of this multiplication are then added to the corre-
sponding color component currently in the accumulation bu�er, and the
resulting color value replaces the current accumulation bu�er color value.

The LOAD operation has the same e�ect as ACCUM, but the computed values
replace the corresponding accumulation bu�er components rather than being
added to them.

The RETURN operation takes each color value from the accumulation
bu�er, multiplies each of the R, G, B, and A components by value, and
clamps the results to the range [0; 1] The resulting color value is placed
in the bu�ers currently enabled for color writing as if it were a fragment
produced from rasterization, except that the only per-fragment operations
that are applied (if enabled) are the pixel ownership test, the scissor test
(section 4.1.2), and dithering (section 4.1.7). Color masking (section 4.2.2)
is also applied.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

156CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The MULT operation multiplies each R, G, B, and A in the accumulation
bu�er by value and then returns the scaled color components to their corre-
sponding accumulation bu�er locations. ADD is the same as MULT except that
value is added to each of the color components.

The color components operated on by Accum must be clamped only if
the operation is RETURN. In this case, a value sent to the enabled color bu�ers
is �rst clamped to [0; 1]. Otherwise, results are unde�ned if the result of an
operation on a color component is out of the range [�1; 1]. If there is no
accumulation bu�er, or if the GL is in color index mode, Accum generates
the error INVALID OPERATION.

No state (beyond the accumulation bu�er itself) is required for accumu-
lation bu�ering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebu�er using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a
block of pixels from one portion of the framebu�er to another.

4.3.1 Writing to the Stencil Bu�er

The operation of DrawPixels was described in section 3.6.4, except if the
format argument was STENCIL INDEX. In this case, all operations described for
DrawPixels take place, but window (x; y) coordinates, each with the corre-
sponding stencil index, are produced in lieu of fragments. Each coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing
the texture, fog, and antialiasing application stages of rasterization. Each
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebu�er, subject
to the current setting of StencilMask.

The error INVALID OPERATION results if there is no stencil bu�er.

4.3.2 Reading Pixels

The method for reading pixels from the framebu�er and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Pixels are read using

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 157

post
convolution

convert
to float

RGBA pixel
data in

color index pixel
data in

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, or float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be
enabled or disabled. RGBA and color index pixel paths are shown; depth
and stencil pixel paths are not shown.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

158CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Parameter Name Type Initial Value Valid Range

PACK SWAP BYTES boolean FALSE TRUE/FALSE

PACK LSB FIRST boolean FALSE TRUE/FALSE

PACK ROW LENGTH integer 0 [0;1)

PACK SKIP ROWS integer 0 [0;1)

PACK SKIP PIXELS integer 0 [0;1)

PACK ALIGNMENT integer 4 1,2,4,8

PACK IMAGE HEIGHT integer 0 [0;1)

PACK SKIP IMAGES integer 0 [0;1)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetTex-
Image1D, GetTexImage2D, GetTexImage3D, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, and Get-
Minmax.

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels correspond to those of Draw-
Pixels. The pixel storage modes that apply to ReadPixels and other
commands that query images (see section 6.1) are summarized in Table 4.5.

Obtaining Pixels from the Framebu�er

If the format is DEPTH COMPONENT, then values are obtained from the depth
bu�er. If there is no depth bu�er, the error INVALID OPERATION occurs.

If the format is STENCIL INDEX, then values are taken from the stencil
bu�er; again, if there is no stencil bu�er, the error INVALID OPERATION occurs.

For all other formats, the bu�er from which values are obtained is one of
the color bu�ers; the selection of color bu�er is controlled withReadBu�er.

The command

void ReadBu�er(enum src);

takes a symbolic constant as argument. The possible values are FRONT LEFT,
FRONT RIGHT, BACK LEFT, BACK RIGHT, FRONT, BACK, LEFT, RIGHT, and AUX0

through AUXn. FRONT and LEFT refer to the front left bu�er, BACK refers
to the back left bu�er, and RIGHT refers to the front right bu�er. The other
constants correspond directly to the bu�ers that they name. If the requested

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 159

bu�er is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBu�er is FRONT if there is no back bu�er and BACK

otherwise.

ReadPixels obtains values from the selected bu�er from each pixel with
lower left hand corner at (x + i; y + j) for 0 � i < width and 0 � j <
height; this pixel is said to be the ith pixel in the jth row. If any of these
pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are unde�ned. Results are also unde�ned
for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected bu�er, regardless of how those
values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE ALPHA, then red, green, blue,
and alpha values are obtained from the selected bu�er at each pixel location.
If the framebu�er does not support alpha values then the A that is obtained
is 1.0. If format is COLOR INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is
not DEPTH COMPONENT or STENCIL INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format
is neither STENCIL INDEX nor DEPTH COMPONENT. The R, G, B, and A values
form a group of elements. Each element is taken to be a �xed-point value in
[0; 1] with m bits, where m is the number of bits in the corresponding color
component of the selected bu�er (see section 2.13.9).

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT. An element is taken to
be a �xed-point value in [0,1] with m bits, where m is the number of bits in
the depth bu�er (see section 2.10.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in
section 3.6.5. After the processing described in that section is completed,
groups are processed as described in the following sections.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

160CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

type Parameter Index Mask

UNSIGNED BYTE 28 � 1

BITMAP 1

BYTE 27 � 1

UNSIGNED SHORT 216 � 1

SHORT 215 � 1

UNSIGNED INT 232 � 1

INT 231 � 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not
masked.

Conversion to L

This step applies only to RGBA component groups, and only if the format
is either LUMINANCE or LUMINANCE ALPHA. A value L is computed as

L = R+G+B

where R, G, and B are the values of the R, G, and B components. The
single computed L component replaces the R, G, and B components in the
group.

Final Conversion

For an index, if the type is not FLOAT, �nal conversion consists of masking
the index with the value given in Table 4.6; if the type is FLOAT, then the
integer index is converted to a GL oat data value.

For an RGBA color, each component is �rst clamped to [0; 1]. Then the
appropriate conversion formula from table 4.7 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from mem-
ory for DrawPixels. That is, the ith group of the jth row (corresponding
to the ith pixel in the jth row) is placed in memory just where the ith group
of the jth row would be taken from for DrawPixels. See Unpacking un-
der section 3.6.4. The only di�erence is that the storage mode parameters
whose names begin with PACK are used instead of those whose names be-
gin with UNPACK . If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 161

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED BYTE ubyte c = (28 � 1)f

BYTE byte c = [(28 � 1)f � 1]=2

UNSIGNED SHORT ushort c = (216 � 1)f

SHORT short c = [(216 � 1)f � 1]=2

UNSIGNED INT uint c = (232 � 1)f

INT int c = [(232 � 1)f � 1]=2

FLOAT float c = f

UNSIGNED BYTE 3 3 2 ubyte c = (2N � 1)f

UNSIGNED BYTE 2 3 3 REV ubyte c = (2N � 1)f

UNSIGNED SHORT 5 6 5 ushort c = (2N � 1)f

UNSIGNED SHORT 5 6 5 REV ushort c = (2N � 1)f

UNSIGNED SHORT 4 4 4 4 ushort c = (2N � 1)f

UNSIGNED SHORT 4 4 4 4 REV ushort c = (2N � 1)f

UNSIGNED SHORT 5 5 5 1 ushort c = (2N � 1)f

UNSIGNED SHORT 1 5 5 5 REV ushort c = (2N � 1)f

UNSIGNED INT 8 8 8 8 uint c = (2N � 1)f

UNSIGNED INT 8 8 8 8 REV uint c = (2N � 1)f

UNSIGNED INT 10 10 10 2 uint c = (2N � 1)f

UNSIGNED INT 2 10 10 10 REV uint c = (2N � 1)f

Table 4.7: Reversed component conversions - used when component data
are being returned to client memory. Color, normal, and depth components
are converted from the internal oating-point representation (f) to a datum
of the speci�ed GL data type (c) using the equations in this table. All arith-
metic is done in the internal oating point format. These conversions apply
to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even
if the implemented ranges of the GL data types are greater than the mini-
mum required ranges. (See Table 2.2.) Equations with N as the exponent
are performed for each bit�eld of the packed data type, with N set to the
number of bits in the bit�eld.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

162CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

only the corresponding single element is written. Likewise if the format is
LUMINANCE ALPHA, RGB, or BGR, only the corresponding two or three elements
are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebu�er to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels(int x, int y, sizei width, sizei height,
enum type);

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,
indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The �rst four arguments have the same interpretation
as the corresponding arguments to ReadPixels.

Values are obtained from the framebu�er, converted (if appropriate),
then subjected to the pixel transfer operations described in section 3.6.5,
just as if ReadPixels were called with the corresponding arguments. If the
type is STENCIL or DEPTH, then it is as if the format for ReadPixels were
STENCIL INDEX or DEPTH COMPONENT, respectively. If the type is COLOR, then if
the GL is in RGBA mode, it is as if the format were RGBA, while if the GL
is in color index mode, it is as if the format were COLOR INDEX.

The groups of elements so obtained are then written to the framebu�er
just as if DrawPixels had been given width and height, beginning with
�nal conversion of elements. The e�ective format is the same as that already
described.

4.3.4 Pixel Draw/Read state

The state required for pixel operations consists of the parameters that are
set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of ReadBu�er,
an integer, is also required, along with the current raster position (sec-
tion 2.12). State set with PixelStore is GL client state.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 163

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

convert
to float

RGBA pixel
data from framebuffer

color index pixel
data from framebuffer

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be
enabled or disabled. Index-to-RGBA lookup is currently never performed.
RGBA and color index pixel paths are shown; depth and stencil pixel paths
are not shown.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not �t easily
into any of the preceding chapters. This functionality consists of evalua-
tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-
ization), display lists (used to designate a group of GL commands for later
execution by the GL), ushing and �nishing (used to synchronize the GL
command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-
ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not a�ected by the use
of evaluators.

Consider the Rk-valued polynomial p(u) de�ned by

p(u) =
nX
i=0

Bn
i (u)Ri (5.1)

with Ri 2 Rk and

Bn
i (u) =

n

i

!
ui(1� u)n�i;

the ith Bernstein polynomial of degree n (recall that 00 � 1 and
�n
0

� � 1).
Each Ri is a control point. The relevant command is

164

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 165

target k Values

MAP1 VERTEX 3 3 x, y, z vertex coordinates

MAP1 VERTEX 4 4 x, y, z, w vertex coordinates

MAP1 INDEX 1 color index

MAP1 COLOR 4 4 R, G, B, A

MAP1 NORMAL 3 x, y, z normal coordinates

MAP1 TEXTURE COORD 1 1 s texture coordinate

MAP1 TEXTURE COORD 2 2 s, t texture coordinates

MAP1 TEXTURE COORD 3 3 s, t, r texture coordinates

MAP1 TEXTURE COORD 4 4 s, t, r, q texture coordinates

Table 5.1: Values speci�ed by the target to Map1. Values are given in the
order in which they are taken.

void Map1ffdg(enum type, T u1, T u2, int stride,
int order, T points);

type is a symbolic constant indicating the range of the de�ned polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n+ 1; The error INVALID VALUE is generated
if order is less than one or greater than MAX EVAL ORDER. points is a pointer
to a set of n+1 blocks of storage. Each block begins with k single-precision
oating-point or double-precision oating-point values, respectively. The
rest of the block may be �lled with arbitrary data. Table 5.1 indicates how
k depends on type and what the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate)
in each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

u1 and u2 give two oating-point values that de�ne the endpoints of the
pre-image of the map. When a value u0 is presented for evaluation, the
formula used is

p0(u0) = p(
u0 � u1
u2 � u1

):

The error INVALID VALUE results if u1 = u2.

Map2 is analogous to Map1, except that it describes bivariate polyno-

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

166 CHAPTER 5. SPECIAL FUNCTIONS

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

mials of the form

p(u; v) =
nX
i=0

mX
j=0

Bn
i (u)B

m
j (v)Rij :

The form of the Map2 command is

void Map2ffdg(enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, T points);

target is a range type selected from the same group as is used for Map1,
except that the string MAP1 is replaced with MAP2. points is a pointer to
(n+ 1)(m + 1) blocks of storage (uorder = n+ 1 and vorder = m+ 1; the
error INVALID VALUE is generated if either uorder or vorder is less than one
or greater than MAX EVAL ORDER). The values comprising Rij are located

(ustride)i+ (vstride)j

values (either single- or double-precision oating-point, as appropriate) past
the �rst value pointed to by points. u1, u2, v1, and v2 de�ne the pre-image
rectangle of the map; a domain point (u0; v0) is evaluated as

p0(u0; v0) = p(
u0 � u1
u2 � u1

;
v0 � v1
v2 � v1

):

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if u1 is equal to u2, or if v1 is equal to v2.

Figure 5.1 describes map evaluation schematically; an evaluation of en-
abled maps is e�ected in one of two ways. The �rst way is to use

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 167

void EvalCoordf12gffdg(T arg);
void EvalCoordf12gffdgv(T arg);

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The
argument is the value (or a pointer to the value) that is the domain coor-
dinate, u0. EvalCoord2 causes evaluation of the enabled two-dimensional
maps. The two values specify the two domain coordinates, u0 and v0, in that
order.

When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,
it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important di�erence. The di�erence is that when an
evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current values
are used). The order of the e�ective commands is immaterial, except that
Vertex (for vertex coordinate evaluation) must be issued last. Use of eval-
uators has no e�ect on the current color, normal, or texture coordinates. If
ColorMaterial is enabled, evaluated color values a�ect the result of the
lighting equation as if the current color was being modi�ed, but no change
is made to the tracking lighting parameters or to the current color.

No command is e�ectively issued if the corresponding map (of the indi-
cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1 TEXTURE COORD 1 and MAP1 TEXTURE COORD 2),
then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2 VERTEX 3 or MAP2 VERTEX 4 is enabled, then the
normal to the surface is computed. Analytic computation, which sometimes
yields normals of length zero, is one method which may be used. If auto-
matic normal generation is enabled, then this computed normal is used as
the normal associated with a generated vertex. Automatic normal gener-
ation is controlled with Enable and Disable with symbolic the constant
AUTO NORMAL. If automatic normal generation is disabled, then a correspond-
ing normal map, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map are enabled, then no normal is sent
with a vertex resulting from an evaluation (the e�ect is that the current
normal is used).

For MAP VERTEX 3, let q = p. For MAP VERTEX 4, let q = (x=w; y=w; z=w),
where (x; y; z; w) = p. Then let

m =
@q

@u
� @q

@v
:

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

168 CHAPTER 5. SPECIAL FUNCTIONS

Then the generated analytic normal, n, is given by n =m=kmk.
The second way to carry out evaluations is to use a set of commands

that provide for e�cient speci�cation of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The �rst step is to de�ne
a grid in the domain. This is done using

void MapGrid1ffdg(int n, T u01, T u02);

for a one-dimensional map or

void MapGrid2ffdg(int nu, T u01, T u02, int nv, T v01,
T v02);

for a two-dimensional map. In the case of MapGrid1 u01 and u02 describe
an interval, while n describes the number of partitions of the interval. The
error INVALID VALUE results if n � 0. For MapGrid2, (u01; v

0
1) speci�es one

two-dimensional point and (u02; v
0
2) speci�es another. nu gives the number of

partitions between u01 and u
0
2, and nv gives the number of partitions between

v01 and v02. If either nu � 0 or nv � 0, then the error INVALID VALUE occurs.

Once a grid is de�ned, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMesh1(enum mode, int p1, int p2);

mode is either POINT or LINE. The e�ect is the same as performing the fol-
lowing code fragment, with �u0 = (u02 � u01)=n:

Begin(type);
for i = p1 to p2 step 1:0

EvalCoord1(i * �u0 + u01);
End();

where EvalCoord1f or EvalCoord1d is substituted for EvalCoord1 as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type
is LINE STRIP. The one requirement is that if either i = 0 or i = n, then the
value computed from i ��u0 + u01 is precisely u

0
1 or u

0
2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p1, int p2, int q1,
int q2);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 169

modemust be FILL, LINE, or POINT. Whenmode is FILL, then these commands
are equivalent to the following, with �u0 = (u02 � u01)=n and �v0 = (v02 �
v01)=m:

for i = q1 to q2 � 1 step 1:0
Begin(QUAD STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);
EvalCoord2(j * �u0 + u01 , (i+ 1) * �v0 + v01);

End();

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = q1 to q2 step 1:0
Begin(LINE STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);

End();;
for i = p1 to p2 step 1:0

Begin(LINE STRIP);

for j = q1 to q2 step 1:0
EvalCoord2(i * �u0 + u01 , j * �v0 + v01);

End();

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step 1:0

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);

End();

Again, in all three cases, there is the requirement that 0 � �u0 + u01 = u01,
n ��u0 + u01 = u02, 0 ��v0 + v01 = v01, and m ��v0 + v01 = v02.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1(int p);

Calling it is equivalent to the command

EvalCoord1(p * �u0 + u01);

with �u0 and u01 de�ned as above.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

170 CHAPTER 5. SPECIAL FUNCTIONS

void EvalPoint2(int p, int q);

is equivalent to the command

EvalCoord2(p * �u0 + u01 , q * �v0 + v01);

The state required for evaluators potentially consists of 9 one-
dimensional map speci�cations and 9 two-dimensional map speci�cations,
as well as corresponding ags for each speci�cation indicating which are en-
abled. Each map speci�cation consists of one or two orders, an appropriately
sized array of control points, and a set of two values (for a one-dimensional
map) or four values (for a two-dimensional map) to describe the domain.
The maximum possible order, for either u or v, is implementation dependent
(one maximum applies to both u and v), but must be at least 8. Each con-
trol point consists of between one and four oating-point values (depending
on the type of the map). Initially, all maps have order 1 (making them con-
stant maps). All vertex coordinate maps produce the coordinates (0; 0; 0; 1)
(or the appropriate subset); all normal coordinate maps produce (0; 0; 1);
RGBA maps produce (1; 1; 1; 1); color index maps produce 1.0; texture co-
ordinate maps produce (0; 0; 0; 1); In the initial state, all maps are disabled.
A ag indicates whether or not automatic normal generation is enabled for
two-dimensional maps. In the initial state, automatic normal generation is
disabled. Also required are two oating-point values and an integer number
of grid divisions for the one-dimensional grid speci�cation and four oating-
point values and two integer grid divisions for the two-dimensional grid
speci�cation. In the initial state, the bounds of the domain interval for 1-D
is 0 and 1:0, respectively; for 2-D, they are (0; 0) and (1:0; 1:0), respectively.
The number of grid divisions is 1 for 1-D and 1 in both directions for 2-D. If
any evaluation command is issued when no vertex map is enabled, nothing
happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is de�ned by the current model-
view and perspective matrices.

Selection works by returning an array of integer-valued names. This
array represents the current contents of the name stack. This stack is con-
trolled with the commands

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.2. SELECTION 171

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name
o� the top of the name stack. PushName causes name to be pushed
onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-
ror INVALID OPERATION. Popping a name o� of an empty stack generates
STACK UNDERFLOW; pushing a name onto a full stack generates STACK OVERFLOW.
The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebu�er. The
GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER
is the default, corresponding to rendering as described until now. SELECT

speci�es selection mode, and FEEDBACK speci�es feedback mode (described
below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no e�ect.

Selection is controlled using

void SelectBu�er(sizei n, uint *bu�er);

bu�er is a pointer to an array of unsigned integers (called the selection
array) to be potentially �lled with names, and n is an integer indicating the
maximum number of values that can be stored in that array. Placing the GL
in selection mode before SelectBu�er has been called results in an error of
INVALID OPERATION as does calling SelectBu�er while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates pro-
duced by a RasterPos command intersects the clip volume (section 2.11)
then this primitive (or RasterPos command) causes a selection hit. In the
case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,
then a hit record is written into the selection array.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

172 CHAPTER 5. SPECIAL FUNCTIONS

A hit record consists of the following items in order: a non-negative
integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack
with the bottommost element �rst. The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the
clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0; 1]) are each multiplied by
232 � 1 and rounded to the nearest unsigned integer to obtain the values
that are placed in the hit record. No depth o�set arithmetic (section 3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer
into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as
much of the record as �ts in the array is written and an overow ag is set.

Selection mode is exited by calling RenderMode with an argument
value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array
and resets the SelectBu�er pointer to its last speci�ed value. Values are
not guaranteed to be written into the selection array until RenderMode
is called. If the selection array overow ag was set, then RenderMode
returns �1 and clears the overow ag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a
minimum and maximum depth value, and several ags. One ag indicates
the currentRenderMode value. In the initial state, the GL is in the RENDER
mode. Another ag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This ag is reset upon entering
selection mode and whenever a name stack manipulation takes place. One
�nal ag is required to indicate whether the maximum number of copied
names would have been exceeded. This ag is reset upon entering selection
mode. This ag, the address of the selection array, and its maximum size
are GL client state.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.3. FEEDBACK 173

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling
RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-
ments are written to the framebu�er. Instead, information about primitives
that would have been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBu�er(sizei n, enum type, float *bu�er);

bu�er is a pointer to an array of oating-point values into which feedback in-
formation will be placed, and n is a number indicating the maximum number
of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBu�er has been made, or if a call to FeedbackBu�er
is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or
bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to �ll the array (if there is any room left at
all). The �rst block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-
lowed by values that describe the primitive's vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons
with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). x, y, and z
coordinates returned by feedback are window coordinates; if w is returned,
it is in clip coordinates. No depth o�set arithmetic (section 3.5.5) is per-
formed on the z values. In the case of bitmaps and pixel rectangles, the
coordinates returned are those of the current raster position.

The texture coordinates and colors returned are these resulting from the
clipping operations described in Section 2.13.8. The colors returned are
the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its e�ects on both GL

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

174 CHAPTER 5. SPECIAL FUNCTIONS

Type coordinates color texture total values

2D x, y { { 2

3D x, y, z { { 3

3D COLOR x, y, z k { 3 + k

3D COLOR TEXTURE x, y, z k 4 7 + k

4D COLOR TEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex.
k is 1 in color index mode and 4 in RGBA mode.

state and the values to be written to the feedback bu�er completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK. When called while in feedback mode,
RenderMode returns the number of values placed in the feedback array
and resets the feedback array pointer to be bu�er. The return value never
exceeds the maximum number of values passed to FeedbackBu�er.

If writing a value to the feedback bu�er would cause more values to be
written than the speci�ed maximum number of values, then the value is not
written and an overow ag is set. In this case, RenderMode returns �1
when it is called, after which the overow ag is reset. While in feedback
mode, values are not guaranteed to be written into the feedback bu�er before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-
ber of vertices. A vertex is fed back as some number of oating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-
tween feedback bu�er and the number of values returned for each vertex.

The command

void PassThrough(float token);

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering
of any PassThrough commands with respect to primitive speci�cation is
maintained by feedback. PassThrough may not occur between Begin and
End. It has no e�ect when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the
maximum number of values that may be placed there, and the feedback type.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 175

An overow ag is required to indicate whether the maximum allowable
number of feedback values has been written; initially this ag is cleared.
These state variables are GL client state. Feedback also relies on the same
mode ag as selection to indicate whether the GL is in feedback, selection,
or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The GL may be instructed to process
a particular display list (possibly repeatedly) by providing a number that
uniquely speci�es it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains
to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the
client state in e�ect at that time applies to the command. Only server state
is a�ected when the command is executed. As always, pointers which are
passed as arguments to commands are dereferenced when the command is
issued. (Vertex array pointers are dereferenced when the commands Ar-
rayElement, DrawArrays, or DrawElements are accumulated into a
display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during
display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE AND EXECUTE then
commands are executed as they are encountered, then placed in the display
list. If n = 0, then the error INVALID VALUE is generated.

After calling NewList all subsequent GL commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state.
It is only whenEndList occurs that the speci�ed display list is actually asso-
ciated with the index indicated withNewList. The error INVALID OPERATION

is generated if EndList is called without a previous matching NewList,

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

176 CHAPTER 5. SPECIAL FUNCTIONS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT TOKEN vertex

line-segment:
LINE TOKEN vertex vertex
LINE RESET TOKEN vertex vertex

polygon:
POLYGON TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKEN vertex

pixel-rectangle:
DRAW PIXEL TOKEN vertex
COPY PIXEL TOKEN vertex

passthrough:
PASS THROUGH TOKEN f

vertex:
2D:

f f
3D:

f f f
3D COLOR:

f f f color
3D COLOR TEXTURE:

f f f color tex
4D COLOR TEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax. f is a oating-point number. n is a oating-
point integer giving the number of vertices in a polygon. The symbols
ending with TOKEN are symbolic oating-point constants. The labels under
the \vertex" rule show the di�erent data returned for vertices depending
on the feedback type. LINE TOKEN and LINE RESET TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line
segment.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 177

or if NewList is called a second time before calling EndList. The error
OUT OF MEMORY is generated if EndList is called and the speci�ed display list
cannot be stored because insu�cient memory is available. In this case GL
implementations of revision 1.1 or greater insure that no change is made to
the previous contents of the display list, if any, and that no other change
is made to the GL state, except for the state changed by execution of GL
commands when the display list mode is COMPILE AND EXECUTE.

Once de�ned, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued
without using a display list. If n = 0, then the error INVALID VALUE is
generated.

The command

void CallLists(sizei n, enum type, void *lists);

provides an e�cient means for executing a number of display lists. n is
an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of o�sets. Each o�set is constructed as
determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED BYTE, SHORT, UNSIGNED SHORT, INT, UNSIGNED INT, or FLOAT indicating
that the array pointed to by lists is an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or oats, respectively. In this
case each o�set is found by simply converting each array element to an
integer (oating point values are truncated). Further, type may be one of
2 BYTES, 3 BYTES, or 4 BYTES, indicating that the array contains sequences of
2, 3, or 4 unsigned bytes, in which case each integer o�set is constructed
according to the following algorithm:

offset 0
for i = 1 to b

offset offset shifted left 8 bits
offset offset+ byte
advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.
Each of the n constructed o�sets is taken in order and added to a display

list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

178 CHAPTER 5. SPECIAL FUNCTIONS

void ListBase(uint base);

to specify the o�set.
Indicating a display list index that does not correspond to any display

list has no e�ect. CallList or CallLists may appear inside a display list. (If
the mode supplied to NewList is COMPILE AND EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists'
constituent commands, is placed in the list under construction.) To avoid
the possibility of in�nite recursion resulting from display lists calling one
another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integer n such that the indices n; : : : ; n + s � 1 are previously
unused (i.e. there are s previously unused display list indices starting at n).
GenLists also has the e�ect of creating an empty display list for each of
the indices n; : : : ; n+s�1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the �rst display list to be deleted and range is
the number of display lists to be deleted. All information about the display
lists is lost, and the indices become unused. Indices to which no display list
corresponds are ignored. If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not
compiled into the display list but are executed immediately. These are:
IsList, GenLists, DeleteLists, FeedbackBu�er, SelectBu�er, Ren-
derMode, VertexPointer, NormalPointer, ColorPointer, Index-
Pointer, TexCoordPointer, EdgeFlagPointer, InterleavedArrays,
EnableClientState, DisableClientState, PushClientAttrib, Pop-
ClientAttrib, ReadPixels, PixelStore, GenTextures, DeleteTex-
tures, AreTexturesResident, IsTexture, Flush, Finish, as well as
IsEnabled and all of the Get commands (see Chapter 6).

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

5.5. FLUSH AND FINISH 179

TexImage3D, TexImage2D, TexImage1D, Histogram,
and ColorTable are executed immediately when called
with the corresponding proxy arguments PROXY TEXTURE 3D,
PROXY TEXTURE 2D, PROXY TEXTURE 1D, PROXY HISTOGRAM, and
PROXY COLOR TABLE, PROXY POST CONVOLUTION COLOR TABLE, or
PROXY POST COLOR MATRIX COLOR TABLE.

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display
list creation, an index is required to indicate the current display list being
de�ned. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.
One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are
currently in use as display list indices. In the initial state, no indices are in
use.

5.5 Flush and Finish

The command

void Flush(void);

indicates that all commands that have previously been sent to the GL must
complete in �nite time.

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until
all e�ects from previously issued commands on GL client and server state
and the framebu�er are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is speci�ed using

void Hint(enum target, enum hint);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

180 CHAPTER 5. SPECIAL FUNCTIONS

target is a symbolic constant indicating the behavior to be controlled, and
hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired
quality of parameter interpolation; POINT SMOOTH HINT, indicating the desired
sampling quality of points; LINE SMOOTH HINT, indicating the desired sampling
quality of lines; POLYGON SMOOTH HINT, indicating the desired sampling quality
of polygons; and FOG HINT, indicating whether fog calculations are done per
pixel or per vertex. hint must be one of FASTEST, indicating that the most
e�cient option should be chosen; NICEST, indicating that the highest quality
option should be chosen; and DONT CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-
tation may ignore them entirely.

The initial value of all hints is DONT CARE.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2.
Most state is set through the calls described in previous chapters, and can
be queried using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identi�ed by symbolic constants. The
values of these state variables can be obtained using a set ofGet commands.
There are four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void GetIntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, oating-point, or double-precision
state variables. value is a symbolic constant indicating the state variable to
return. data is a pointer to a scalar or array of the indicated type in which
to place the returned data. In addition

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or
disabled.

181

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

182 CHAPTER 6. STATE AND STATE REQUESTS

6.1.2 Data Conversions

If a Get command is issued that returns value types di�erent from the
type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a oating-point or integer value converts to FALSE if
and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted
as either 1 or 0, and a oating-point value is rounded to the nearest integer,
unless the value is an RGBA color component, a DepthRange value, a
depth bu�er clear value, or a normal coordinate. In these cases, the Get
command converts the oating-point value to an integer according the INT
entry of Table 4.7; a value not in [�1; 1] converts to an unde�ned value.
If GetFloatv is called, a boolean value is interpreted as either 1:0 or 0:0,
an integer is coerced to oating-point, and a double-precision oating-point
value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that
it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are
returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed toMap1. Map2
returns Rij in the [(uorder)i + j]th block of values (see page 166 for i, j,
uorder, and Rij).

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identi�ed by a
category (clip plane, light, material, etc.) as well as a symbolic constant.
These are

void GetClipPlane(enum plane, double eqn[4]);
void GetLightfifgv(enum light, enum value, T data);
void GetMaterialfifgv(enum face, enum value, T data);
void GetTexEnvfifgv(enum env, enum value, T data);
void GetTexGenfifgv(enum coord, enum value, T data);
void GetTexParameterfifgv(enum target, enum value,

T data);
void GetTexLevelParameterfifgv(enum target, int lod,

enum value, T data);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 183

void GetPixelMapfui us fgv(enum map, T data);
void GetMapfifdgv(enum map, enum value, T data);

GetClipPlane always returns four double-precision values in eqn; these
are the coe�cients of the plane equation of plane in eye coordinates (these
coordinates are those that were computed when the plane was speci�ed).

GetLight places information about value (a symbolic constant) for light
(also a symbolic constant) in data. POSITION or SPOT DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed
when the position or direction was speci�ed).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter
are similar toGetLight, placing information about value for the target indi-
cated by their �rst argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-
TexGen, EYE LINEAR coe�cients are returned in the eye coordinates that
were computed when the plane was speci�ed; OBJECT LINEAR coe�cients are
returned in object coordinates.

GetTexParameter and GetTexLevelParameter parameter target
may be one of TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D, indicating the
currently bound one-, two-, or three-dimensional texture object. For
GetTexLevelParameter, target may also be one of PROXY TEXTURE 1D,
PROXY TEXTURE 2D, or PROXY TEXTURE 3D, indicating the one-, two-, or three-
dimensional proxy state vector. value is a symbolic value indicat-
ing which texture parameter is to be obtained. The lod argument to
GetTexLevelParameter determines which level-of-detail's state is re-
turned. If the lod argument is less than zero or if it is larger than
the maximum allowable level-of-detail then the error INVALID VALUE oc-
curs. Queries of TEXTURE RED SIZE, TEXTURE GREEN SIZE, TEXTURE BLUE SIZE,
TEXTURE ALPHA SIZE, TEXTURE LUMINANCE SIZE, and TEXTURE INTENSITY SIZE

return the actual resolutions of the stored image array components, not
the resolutions speci�ed when the image array was de�ned. Queries of
TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE DEPTH, and TEXTURE BORDER return
the width, height, depth, and border as speci�ed when the image ar-
ray was created. The internal format of the image array is queried as
TEXTURE INTERNAL FORMAT, or as TEXTURE COMPONENTS for compatibility with
GL version 1.0.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

184 CHAPTER 6. STATE AND STATE REQUESTS

value must be one of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat di�erent from the other get
commands; tex is a symbolic value indicating which texture is to be obtained.
TEXTURE 1D indicates a one-dimensional texture, TEXTURE 2D indicates a two-
dimensional texture, and TEXTURE 3D indicates a three-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.6, type
is a pixel type from Table 3.5, and img is a pointer to a block of memory.

GetTexImage obtains component groups from a texture image with
the indicated level-of-detail. The components are assigned among R, G, B,
and A according to Table 6.1, starting with the �rst group in the �rst row,
and continuing by obtaining groups in order from each row and proceeding
from the �rst row to the last, and from the �rst image to the last for three-
dimensional textures. These groups are then packed and placed in client
memory. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as
if the image were two-dimensional, except that the additional pixel storage
state values PACK IMAGE HEIGHT and PACK SKIP IMAGES are applied. The cor-
respondence of texels to memory locations is as de�ned for TexImage3D
in section 3.8.1.

The row length, number of rows, image depth, and number of images
are determined by the size of the texture image (including any borders).
Calling GetTexImage with lod less than zero or larger than the maxi-
mum allowable causes the error INVALID VALUE . CallingGetTexImage with
format of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT causes the error
INVALID ENUM.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is
a non-zero value that is not the name of a texture object, or if an error condi-
tion occurs, IsTexture returns FALSE. A name returned by GenTextures,
but not yet bound, is not the name of a texture object.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 185

Base Internal Format R G B A

ALPHA 0 0 0 Ai

LUMINANCE (or 1) Li 0 0 1

LUMINANCE ALPHA (or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1

RGB (or 3) Ri Gi Bi 1

RGBA (or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and �lter return values. Ri, Gi, Bi, Ai, Li, and Ii
are components of the internal format that are assigned to pixel values R,
G, B, and A. If a requested pixel value is not present in the internal format,
the speci�ed constant value is used.

6.1.5 Stipple Query

The command

void GetPolygonStipple(void *pattern);

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height
and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried usingGetFloatv with pname set to
the appropriate variable name. The top matrix on the color matrix stack is
returned by GetFloatv called with pname set to COLOR MATRIX. The depth
of the color matrix stack, and the maximum depth of the color matrix stack,
are queried with GetIntegerv, setting pname to COLOR MATRIX STACK DEPTH

and MAX COLOR MATRIX STACK DEPTH respectively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

186 CHAPTER 6. STATE AND STATE REQUESTS

target must be one of the regular color table names listed in table 3.4. format
and type accept the same values as do the corresponding parameters of
GetTexImage. The one-dimensional color table image is returned to client
memory starting at table. No pixel transfer operations are performed on
this image, but pixel storage modes that are applicable to ReadPixels are
performed. Color components that are requested in the speci�ed format,
but which are not included in the internal format of the color lookup table,
are returned as zero. The assignments of internal color components to the
components requested by format are described in Table 6.1.

The functions

void GetColorTableParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query.

target must be one of the regular or proxy color table names listed
in table 3.4. pname is one of COLOR TABLE SCALE, COLOR TABLE BIAS,
COLOR TABLE FORMAT, COLOR TABLE WIDTH, COLOR TABLE RED SIZE,
COLOR TABLE GREEN SIZE, COLOR TABLE BLUE SIZE, COLOR TABLE ALPHA SIZE,
COLOR TABLE LUMINANCE SIZE, or COLOR TABLE INTENSITY SIZE. The value of
the speci�ed parameter is returned in params.

6.1.8 Convolution Query

The current contents of a convolution �lter image are queried with the com-
mand

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION 1D or CONVOLUTION 2D. format and type accept the
same values as do the corresponding parameters of GetTexImage. The
one-dimensional or two-dimensional images is returned to client memory
starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable �lter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 187

target must be SEPARABLE 2D. format and type accept the same values as
do the corresponding parameters of GetTexImage. The row and column
images are returned to client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping
are identical to those of GetTexImage.

The functions

void GetConvolutionParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must
be CONVOLUTION 1D, CONVOLUTION 2D, or SEPARABLE 2D. pname
is one of CONVOLUTION BORDER COLOR, CONVOLUTION BORDER MODE,
CONVOLUTION FILTER SCALE, CONVOLUTION FILTER BIAS, CONVOLUTION FORMAT,
CONVOLUTION WIDTH, CONVOLUTION HEIGHT, MAX CONVOLUTION WIDTH, or
MAX CONVOLUTION HEIGHT. The value of the speci�ed parameter is returned in
params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, void* values);

target must be HISTOGRAM. type and format accept the same values as do
the corresponding parameters of GetTexImage. The one-dimensional his-
togram table image is returned to values. Pixel processing and component
mapping are identical to those of GetTexImage.

If reset is TRUE, then all counters of all elements of the histogram are
reset to zero. Counters are reset whether returned or not.

No counters are modi�ed if reset is FALSE.
Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. target must
be HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with
zero entries.

The functions

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

188 CHAPTER 6. STATE AND STATE REQUESTS

void GetHistogramParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must be HISTOGRAM or
PROXY HISTOGRAM. pname is one of HISTOGRAM FORMAT, HISTOGRAM WIDTH,
HISTOGRAM RED SIZE, HISTOGRAM GREEN SIZE, HISTOGRAM BLUE SIZE,
HISTOGRAM ALPHA SIZE, or HISTOGRAM LUMINANCE SIZE. pname may be
HISTOGRAM SINK only for target HISTOGRAM. The value of the speci�ed
parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset,
enum format, enum type, void* values);

target must be MINMAX. type and format accept the same values as do the
corresponding parameters of GetTexImage. A one-dimensional image of
width 2 is returned to values. Pixel processing and component mapping are
identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum rep-
resentable value, and each maximum value is reset to the minimum repre-
sentable value. All values are reset, whether returned or not.

No values are modi�ed if reset is FALSE.

Calling

void ResetMinmax(enum target);

resets all minimum and maximum values of target to to their maximum and
minimum representable values, respectively, target must be MINMAX.

The functions

void GetMinmaxParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must be MINMAX. pname
is MINMAX FORMAT or MINMAX SINK. The value of the speci�ed parameter is
returned in params.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 189

6.1.11 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the array
params. The possible values for pname are SELECTION BUFFER POINTER,
FEEDBACK BUFFER POINTER, VERTEX ARRAY POINTER, NORMAL ARRAY POINTER,
COLOR ARRAY POINTER, INDEX ARRAY POINTER, TEXTURE COORD ARRAY POINTER,
and EDGE FLAG ARRAY POINTER. Each returns a single pointer value.

Finally,

ubyte *GetString(enum name);

returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,
and EXTENSIONS. The format of the RENDERER and VERSION strings is imple-
mentation dependent. The EXTENSIONS string contains a space separated list
of extension names (The extension names themselves do not contain any
spaces); the VERSION string is laid out as follows:

<version number><space><vendor-speci�c information>

The version number is either of the form major number.minor number or
major number.minor number.release number, where the numbers all have
one or more digits. The vendor speci�c information is optional. However, if
it is present then it pertains to the server and the format and contents are
implementation dependent.

GetString returns the version number (returned in the VERSION string)
and the extension names (returned in the EXTENSIONS string) that can be
supported on the connection. Thus, if the client and server support di�erent
versions and/or extensions, a compatible version and list of extensions is
returned.

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. ThePushAt-
trib, PushClientAttrib, PopAttrib and PopClientAttrib commands
are used for this purpose. The commands

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

190 CHAPTER 6. STATE AND STATE REQUESTS

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack. PushAttrib uses a server at-
tribute stack while PushClientAttrib uses a client attribute stack. Each
constant refers to a group of state variables. The classi�cation of each vari-
able into a group is indicated in the following tables of state variables. The
error STACK OVERFLOW is generated if PushAttrib or PushClientAttrib is
executed while the corresponding stack depth is MAX ATTRIB STACK DEPTH or
MAX CLIENT ATTRIB STACK DEPTH respectively. The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last cor-
responding PushAttrib or PopClientAttrib. Those not saved remain
unchanged. The error STACK UNDERFLOW is generated if PopAttrib or Pop-
ClientAttrib is executed while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic
constant names and stacks.

When PushAttrib is called with TEXTURE BIT set, the priorities, border
colors, �lter modes, and wrap modes of the currently bound texture objects,
as well as the current texture bindings and enables, are pushed onto the
attribute stack. (Unbound texture objects are not pushed or restored.)
When an attribute set that includes texture information is popped, the
bindings and enables are �rst restored to their pushed values, then the bound
texture objects' priorities, border colors, �lter modes, and wrap modes are
restored to their pushed values.

The depth of each attribute stack is implementation dependent but must
be at least 16. The state required for each attribute stack is potentially 16
copies of each state variable, 16 masks indicating which groups of variables
are stored in each stack entry, and an attribute stack pointer. In the initial
state, both attribute stacks are empty.

In the tables that follow, a type is indicated for each variable. Table 6.3
explains these types. The type actually identi�es all state associated with
the indicated description; in certain cases only a portion of this state is
returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is
returned, with parameters describing lights, where only the value pertaining

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 191

Stack Attribute Constant

server accum-bu�er ACCUM BUFFER BIT

server color-bu�er COLOR BUFFER BIT

server current CURRENT BIT

server depth-bu�er DEPTH BUFFER BIT

server enable ENABLE BIT

server eval EVAL BIT

server fog FOG BIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server pixel PIXEL MODE BIT

server point POINT BIT

server polygon POLYGON BIT

server polygon-stipple POLYGON STIPPLE BIT

server scissor SCISSOR BIT

server stencil-bu�er STENCIL BUFFER BIT

server texture TEXTURE BIT

server transform TRANSFORM BIT

server viewport VIEWPORT BIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEX ARRAY BIT

client pixel-store CLIENT PIXEL STORE BIT

client select can't be pushed or pop'd

client feedback can't be pushed or pop'd

client ALL CLIENT ATTRIB BITS

Table 6.2: Attribute groups

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

192 CHAPTER 6. STATE AND STATE REQUESTS

Type code Explanation

B Boolean

C Color (oating-point R, G, B, and A values)

CI Color index (oating-point index value)

T Texture coordinates (oating-point s, t, r, q
values)

N Normal coordinates (oating-point x, y, z val-
ues)

V Vertex, including associated data

Z Integer

Z+ Non-negative integer

Zk, Zk� k-valued integer (k� indicates k is minimum)

R Floating-point number

R+ Non-negative oating-point number

R[a;b] Floating-point number in the range [a; b]

Rk k-tuple of oating-point numbers

P Position (x, y, z, w oating-point coordinates)

D Direction (x, y, z oating-point coordinates)

M4 4� 4 oating-point matrix

I Image

A Attribute stack entry, including mask

Y Pointer (data type unspeci�ed)

n� type n copies of type type (n� indicates n is mini-
mum)

Table 6.3: State variable types

to the selected light is returned; with textures, where only the selected
texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a \{" in the attribute column
indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib).

The M and m entries for initial minmax table values represent the max-
imum and minimum possible representable values, respectively.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 193

6.2 State Tables

The tables on the following pages indicate which state variables are ob-
tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands { the one that is most appropriate given
the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv,
GetIntegerv, GetFloatv, and GetDoublev. State variables for which
any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see
section 3.6.2) are typeset against a gray background .

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

194 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

{

Z
1
1

{

0

W
h
en
6=
0
,
in
d
ic
a
te
s

b
e
g
in
/
e
n
d
o
b
je
ct

2
.6
.1

{

{

V

{

{

P
re
v
io
u
s
v
er
te
x
in

B
e
g
in
/
E
n
d
li
n
e

2
.6
.1

{

{

B

{

{

In
d
ic
a
te
s
if
li
n
e-
ve
rt
ex

is
th
e
�
rs
t

2
.6
.1

{

{

V

{

{

F
ir
st
v
er
te
x
o
f
a

B
e
g
in
/
E
n
d
li
n
e
lo
o
p

2
.6
.1

{

{

Z
+

{

{

L
in
e
st
ip
p
le
co
u
n
te
r

3
.4

{

{

n
�
V

{

{

V
er
ti
ce
s
in
si
d
e
o
f

B
e
g
in
/
E
n
d
p
o
ly
g
o
n

2
.6
.1

{

{

Z
+

{

{

N
u
m
b
er
o
f

po
ly
go
n
-v
er
ti
ce
s

2
.6
.1

{

{

2
�
V

{

{

P
re
v
io
u
s
tw
o
v
er
ti
ce
s

in
a
B
e
g
in
/
E
n
d

tr
ia
n
g
le
st
ri
p

2
.6
.1

{

{

Z
3

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
tr
ia
n
g
le
st
ri
p
:
0
,

1
,
o
r
m
o
re

2
.6
.1

{

{

Z
2

{

{

T
ri
a
n
g
le
st
ri
p
A
/
B

v
er
te
x
p
o
in
te
r

2
.6
.1

{

{

3
�
V

{

{

V
er
ti
ce
s
o
f
th
e
q
u
a
d

u
n
d
er
co
n
st
ru
ct
io
n

2
.6
.1

{

{

Z
4

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
q
u
a
d
st
ri
p
:
0
,
1
,

2
,
o
r
m
o
re

2
.6
.1

{

Table 6.4. GL Internal begin-end state variables (inaccessible)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 195

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
U
R
R
E
N
T

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
u
rr
en
t
co
lo
r

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1

C
u
rr
en
t
co
lo
r
in
d
ex

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
te
x
tu
re

co
o
rd
in
a
te
s

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

N
O
R
M
A
L

N

G
e
tF
lo
a
tv

0
,0
,1

C
u
rr
en
t
n
o
rm
a
l

2
.7

cu
rr
en
t

{

C

{

-

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

la
st
v
er
te
x

2
.6

{

{

C
I

{

-

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
la
st
v
er
te
x

2
.6

{

{

T

{

-

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
la
st

v
er
te
x

2
.6

{

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

R
4

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

D
IS
T
A
N
C
E

R
+

G
e
tF
lo
a
tv

0

C
u
rr
en
t
ra
st
er
d
is
ta
n
ce

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
ra
st
er

p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

V
A
L
ID

B

G
e
tB
o
o
le
a
n
v

T
ru
e

R
a
st
er
p
o
si
ti
o
n
va
li
d

b
it

2
.1
2

cu
rr
en
t

E
D
G
E

F
L
A
G

B

G
e
tB
o
o
le
a
n
v

T
ru
e

E
d
g
e

a
g

2
.6
.2

cu
rr
en
t

Table 6.5. Current Values and Associated Data

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

196 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

V
E
R
T
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

V
er
te
x
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
o
rd
in
a
te
s
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
v
er
te
x
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
v
er
ti
ce
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
v
er
te
x
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

N
o
rm
a
l
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
n
o
rm
a
l
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
n
o
rm
a
ls

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
n
o
rm
a
l
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
lo
rs
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

T
Y
P
E

Z
8

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
co
lo
r
co
m
p
o
n
en
ts

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
co
lo
rs

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
co
lo
r
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
in
d
ex
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
o
rd
in
a
te
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
o
rd
in
a
te
s
p
er
el
em
en
t

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
te
x
tu
re
co
o
rd
in
a
te

a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

E
d
g
e

a
g
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
ed
g
e

a
g
s

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
ed
g
e

a
g
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

Table 6.6. Vertex Array Data

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 197

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
O
L
O
R

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

C
o
lo
r
m
a
tr
ix
st
a
ck

3
.6
.3

{

M
O
D
E
L
V
IE
W

M
A
T
R
IX

3
2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

T
E
X
T
U
R
E

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
a
tr
ix
st
a
ck

2
.1
0
.2

{

V
IE
W
P
O
R
T

4
�
Z

G
e
tI
n
te
g
e
rv

se
e
2
.1
0
.1

V
ie
w
p
o
rt
o
ri
g
in
&

ex
te
n
t

2
.1
0
.1

v
ie
w
p
o
rt

D
E
P
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

0
,1

D
ep
th
ra
n
g
e
n
ea
r
&

fa
r

2
.1
0
.1

v
ie
w
p
o
rt

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

C
o
lo
r
m
a
tr
ix
st
a
ck

p
o
in
te
r

3
.6
.3

{

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

T
ex
tu
re
m
a
tr
ix
st
a
ck

p
o
in
te
r

2
.1
0
.2

{

M
A
T
R
IX

M
O
D
E

Z
4

G
e
tI
n
te
g
e
rv

M
O
D
E
L
V
I
E
W

C
u
rr
en
t
m
a
tr
ix
m
o
d
e

2
.1
0
.2

tr
a
n
sf
o
rm

N
O
R
M
A
L
IZ
E

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

n
o
rm
a
li
za
ti
o
n
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

R
E
S
C
A
L
E

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

re
sc
a
li
n
g
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

C
L
IP

P
L
A
N
E
i

6
�
�
R
4

G
e
tC
li
p
P
la
n
e

0
,0
,0
,0

U
se
r
cl
ip
p
in
g
p
la
n
e

co
e�
ci
en
ts

2
.1
1

tr
a
n
sf
o
rm

C
L
IP

P
L
A
N
E
i

6
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

it
h
u
se
r
cl
ip
p
in
g
p
la
n
e

en
a
b
le
d

2
.1
1

tr
a
n
sf
o
rm
/
en
a
b
le

Table 6.7. Transformation state

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

198 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

F
O
G

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

F
o
g
co
lo
r

3
.1
0

fo
g

F
O
G

IN
D
E
X

C
I

G
e
tF
lo
a
tv

0

F
o
g
in
d
ex

3
.1
0

fo
g

F
O
G

D
E
N
S
IT
Y

R

G
e
tF
lo
a
tv

1
.0

E
x
p
o
n
en
ti
a
l
fo
g

d
en
si
ty

3
.1
0

fo
g

F
O
G

S
T
A
R
T

R

G
e
tF
lo
a
tv

0
.0

L
in
ea
r
fo
g
st
a
rt

3
.1
0

fo
g

F
O
G

E
N
D

R

G
e
tF
lo
a
tv

1
.0

L
in
ea
r
fo
g
en
d

3
.1
0

fo
g

F
O
G

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

E
X
P

F
o
g
m
o
d
e

3
.1
0

fo
g

F
O
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
fo
g
en
a
b
le
d

3
.1
0

fo
g
/
en
a
b
le

S
H
A
D
E
M
O
D
E
L

Z
+

G
e
tI
n
te
g
e
rv

S
M
O
O
T
H

S
h
a
d
e
M
o
d
e
l
se
tt
in
g

2
.1
3
.7

li
g
h
ti
n
g

Table 6.8. Coloring

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 199

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IG
H
T
IN
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
ti
n
g

is
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r

tr
a
ck
in
g
is

en
a
b
le
d

2
.1
3
.3

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L
P
A
R
A
M
E
T
E
R

Z
5

G
e
tI
n
te
g
e
rv

A
M
B
I
E
N
T
A
N
D
D
I
F
F
U
S
E

M
a
te
ri
a
l

p
ro
p
er
ti
es

tr
a
ck
in
g
cu
rr
en
t

co
lo
r

2
.1
3
.3

li
g
h
ti
n
g

C
O
L
O
R

M
A
T
E
R
IA
L
F
A
C
E

Z
3

G
e
tI
n
te
g
e
rv

F
R
O
N
T
A
N
D
B
A
C
K

F
a
ce
(s
)
a
�
ec
te
d

b
y
co
lo
r

tr
a
ck
in
g

2
.1
3
.3

li
g
h
ti
n
g

A
M
B
IE
N
T

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.8
,0
.8
,0
.8
,1
.0
)

D
i�
u
se
m
a
te
ri
a
l

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

S
p
ec
u
la
r

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

E
M
IS
S
IO
N

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

E
m
is
si
v
e
m
a
t.

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
H
IN
IN
E
S
S

2
�
R

G
e
tM
a
te
ri
a
lf
v

0
.0

S
p
ec
u
la
r

ex
p
o
n
en
t
o
f

m
a
te
ri
a
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
A
M
B
IE
N
T

C

G
e
tF
lo
a
tv

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t
sc
en
e

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
L
O
C
A
L
V
IE
W
E
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
ie
w
er
is
lo
ca
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
T
W
O

S
ID
E

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

U
se
tw
o
-s
id
ed

li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
C
O
L
O
R

C
O
N
T
R
O
L

Z
2

G
e
tI
n
te
g
e
rv

S
I
N
G
L
E
C
O
L
O
R

C
o
lo
r
co
n
tr
o
l

2
.1
3
.1

li
g
h
ti
n
g

Table 6.9. Lighting (see also Table 2.7 for defaults)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

200 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
M
B
IE
N
T

8
�
�
C

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

A
m
b
ie
n
t
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

D
i�
u
se
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

S
p
ec
u
la
r
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

P
O
S
IT
IO
N

8
�
�
P

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,1
.0
,0
.0
)

P
o
si
ti
o
n
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

C
O
N
S
T
A
N
T

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
.0

C
o
n
st
a
n
t
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

L
IN
E
A
R

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

L
in
ea
r
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

Q
U
A
D
R
A
T
IC

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

Q
u
a
d
ra
ti
c
a
tt
en
.

fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

D
IR
E
C
T
IO
N

8
�
�
D

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,-
1
.0
)

S
p
o
tl
ig
h
t
d
ir
ec
ti
o
n
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

E
X
P
O
N
E
N
T

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

S
p
o
tl
ig
h
t
ex
p
o
n
en
t
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

C
U
T
O
F
F

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
8
0
.0

S
p
o
t.
a
n
g
le
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T
i

8
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
t
i
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

IN
D
E
X
E
S

2
�
3
�
R

G
e
tM
a
te
ri
a
lf
v

0
,1
,1

a
m
,
d
m

,
a
n
d
s
m

fo
r

co
lo
r
in
d
ex
li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

Table 6.10. Lighting (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 201

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
IN
T

S
IZ
E

R
+

G
e
tF
lo
a
tv

1
.0

P
o
in
t
si
ze

3
.3

p
o
in
t

P
O
IN
T

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
in
t
a
n
ti
a
li
a
si
n
g
o
n

3
.3

p
o
in
t/
en
a
b
le

L
IN
E

W
ID
T
H

R
+

G
e
tF
lo
a
tv

1
.0

L
in
e
w
id
th

3
.4

li
n
e

L
IN
E

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
a
n
ti
a
li
a
si
n
g
o
n

3
.4

li
n
e/
en
a
b
le

L
IN
E
S
T
IP
P
L
E

P
A
T
T
E
R
N

Z
+

G
e
tI
n
te
g
e
rv

1
's

L
in
e
st
ip
p
le

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E
R
E
P
E
A
T

Z
+

G
e
tI
n
te
g
e
rv

1

L
in
e
st
ip
p
le
re
p
ea
t

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
st
ip
p
le
en
a
b
le

3
.4
.2

li
n
e/
en
a
b
le

C
U
L
L
F
A
C
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
cu
ll
in
g

en
a
b
le
d

3
.5
.1

p
o
ly
g
o
n
/
en
a
b
le

C
U
L
L
F
A
C
E

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

B
A
C
K

C
u
ll
fr
o
n
t/
b
a
ck
fa
ci
n
g

p
o
ly
g
o
n
s

3
.5
.1

p
o
ly
g
o
n

F
R
O
N
T

F
A
C
E

Z
2

G
e
tI
n
te
g
e
rv

C
C
W

P
o
ly
g
o
n
fr
o
n
tf
a
ce

C
W
/
C
C
W

in
d
ic
a
to
r

3
.5
.1

p
o
ly
g
o
n

P
O
L
Y
G
O
N

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
a
n
ti
a
li
a
si
n
g

o
n

3
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

M
O
D
E

2
�
Z
3

G
e
tI
n
te
g
e
rv

F
I
L
L

P
o
ly
g
o
n
ra
st
er
iz
a
ti
o
n

m
o
d
e
(f
ro
n
t
&
b
a
ck
)

3
.5
.4

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
A
C
T
O
R

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
fa
ct
o
r

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

U
N
IT
S

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
b
ia
s

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

P
O
IN
T

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
P
O
I
N
T
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

L
IN
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
L
I
N
E
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
IL
L

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
F
I
L
L
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

{

I

G
e
tP
o
ly
g
o
n
S
ti
p
p
le

1
's

P
o
ly
g
o
n
st
ip
p
le

3
.5

p
o
ly
g
o
n
-s
ti
p
p
le

P
O
L
Y
G
O
N

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
st
ip
p
le
en
a
b
le

3
.5
.2

p
o
ly
g
o
n
/
en
a
b
le

Table 6.11. Rasterization

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

202 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

x
D

3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g
is

en
a
b
le
d
;
x
is
1
,
2
,
o
r
3

3
.8
.1
0

te
x
tu
re
/
en
a
b
le

T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

3
�
Z
+

G
e
tI
n
te
g
e
rv

0

T
ex
tu
re
o
b
je
ct
b
o
u
n
d

to
T
E
X
T
U
R
E
x
D

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

x
D

n
�
I

G
e
tT
e
x
Im
a
g
e

se
e
3
.8

x
D
te
x
tu
re
im
a
g
e
a
t

l.
o
.d
.
i

3
.8

{

T
E
X
T
U
R
E

W
ID
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
w
id
th

3
.8

{

T
E
X
T
U
R
E

H
E
IG
H
T

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

2
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
h
ei
g
h
t

3
.8

{

T
E
X
T
U
R
E

D
E
P
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

3
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
d
ep
th

3
.8

{

T
E
X
T
U
R
E

B
O
R
D
E
R

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
b
o
rd
er
w
id
th

3
.8

{

T
E
X
T
U
R
E

IN
T
E
R
N
A
L
F
O
R
M
A
T

(T
E
X
T
U
R
E

C
O
M
P
O
N
E
N
T
S
)

n
�
Z
4
2

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

1

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
rn
a
l
im
a
g
e
fo
rm
a
t

3
.8

{

T
E
X
T
U
R
E

R
E
D

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

re
d
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

G
R
E
E
N

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

g
re
en
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

B
L
U
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

b
lu
e
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

A
L
P
H
A

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

a
lp
h
a
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

L
U
M
IN
A
N
C
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

lu
m
in
a
n
ce
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

IN
T
E
N
S
IT
Y

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
n
si
ty
re
so
lu
ti
o
n

3
.8

{

Table 6.12. Texture Objects

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 203

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

B
O
R
D
E
R

C
O
L
O
R

2
+
�
C

G
e
tT
e
x
P
a
ra
m
e
te
r

0
,0
,0
,0

T
ex
tu
re
b
o
rd
er
co
lo
r

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

F
IL
T
E
R

2
+
�
Z
6

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
in
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.5

te
x
tu
re

T
E
X
T
U
R
E

M
A
G

F
IL
T
E
R

2
+
�
Z
2

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
a
g
n
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.6

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

S

3
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
S

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

T

2
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
T

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

R

1
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
R

3
.8

te
x
tu
re

T
E
X
T
U
R
E

P
R
IO
R
IT
Y

2
+
�
R
[0
;1
]

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1

T
ex
tu
re
o
b
je
ct
p
ri
o
ri
ty

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

R
E
S
ID
E
N
T

2
+
�
B

G
e
tT
e
x
P
a
ra
m
e
te
ri
v

se
e
3
.8
.8

T
ex
tu
re
re
si
d
en
cy

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

L
O
D

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

-1
0
0
0

M
in
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
A
X

L
O
D

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1
0
0
0

M
a
x
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

T
E
X
T
U
R
E

B
A
S
E

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

0

B
a
se
te
x
tu
re
a
rr
ay

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
A
X

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1
0
0
0

M
a
x
im
u
m
te
x
tu
re

a
rr
ay
le
v
el

3
.8

te
x
tu
re

Table 6.13. Texture Objects (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

204 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

E
N
V

M
O
D
E

Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
a
p
p
li
ca
ti
o
n

fu
n
ct
io
n

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

C

G
e
tT
e
x
E
n
v
fv

0
,0
,0
,0

T
ex
tu
re
en
v
ir
o
n
m
en
t

co
lo
r

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
g
en
en
a
b
le
d
(x
is

S
,
T
,
R
,
o
r
Q
)

2
.1
0
.4

te
x
tu
re
/
en
a
b
le

E
Y
E

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
p
la
n
e
eq
u
a
ti
o
n

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
o
b
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
g
en
(f
o
r
S
,
T
,
R
,

a
n
d
Q

2
.1
0
.4

te
x
tu
re

Table 6.14. Texture Environment and Generation

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 205

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

S
C
IS
S
O
R

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
ci
ss
o
ri
n
g
en
a
b
le
d

4
.1
.2

sc
is
so
r/
en
a
b
le

S
C
IS
S
O
R

B
O
X

4
�
Z

G
e
tI
n
te
g
e
rv

se
e
4
.1
.2

S
ci
ss
o
r
b
ox

4
.1
.2

sc
is
so
r

A
L
P
H
A

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

A
lp
h
a
te
st
en
a
b
le
d

4
.1
.3

co
lo
r-
b
u
�
er
/
en
a
b
le

A
L
P
H
A

T
E
S
T

F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

A
lp
h
a
te
st
fu
n
ct
io
n

4
.1
.3

co
lo
r-
b
u
�
er

A
L
P
H
A

T
E
S
T

R
E
F

R
+

G
e
tI
n
te
g
e
rv

0

A
lp
h
a
te
st
re
fe
re
n
ce

va
lu
e

4
.1
.3

co
lo
r-
b
u
�
er

S
T
E
N
C
IL
T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
te
n
ci
li
n
g
en
a
b
le
d

4
.1
.4

st
en
ci
l-
b
u
�
er
/
en
a
b
le

S
T
E
N
C
IL
F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

S
te
n
ci
l
fu
n
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
V
A
L
U
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

S
te
n
ci
l
m
a
sk

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
R
E
F

Z
+

G
e
tI
n
te
g
e
rv

0

S
te
n
ci
l
re
fe
re
n
ce
va
lu
e

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
F
A
IL

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

F
A
IL

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

P
A
S
S

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

p
a
ss
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

D
E
P
T
H

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

D
ep
th
b
u
�
er
en
a
b
le
d

4
.1
.5

d
ep
th
-b
u
�
er
/
en
a
b
le

D
E
P
T
H

F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

L
E
S
S

D
ep
th
b
u
�
er
te
st

fu
n
ct
io
n

4
.1
.5

d
ep
th
-b
u
�
er

B
L
E
N
D

B

Is
E
n
a
b
le
d

F
a
ls
e

B
le
n
d
in
g
en
a
b
le
d

4
.1
.6

co
lo
r-
b
u
�
er
/
en
a
b
le

B
L
E
N
D

S
R
C

Z
1
3

G
e
tI
n
te
g
e
rv

O
N
E

B
le
n
d
in
g
so
u
rc
e

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

D
S
T

Z
1
2

G
e
tI
n
te
g
e
rv

Z
E
R
O

B
le
n
d
in
g
d
es
ti
n
a
ti
o
n

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

E
Q
U
A
T
IO
N

Z
5

G
e
tI
n
te
g
e
rv

F
U
N
C
A
D
D

B
le
n
d
in
g
eq
u
a
ti
o
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
n
st
a
n
t
b
le
n
d
co
lo
r

4
.1
.6

co
lo
r-
b
u
�
er

D
IT
H
E
R

B

Is
E
n
a
b
le
d

T
ru
e

D
it
h
er
in
g
en
a
b
le
d

4
.1
.7

co
lo
r-
b
u
�
er
/
en
a
b
le

IN
D
E
X

L
O
G
IC

O
P
(v
1
.0
:
G
L
L
O
G
IC

O
P
)

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

C
O
L
O
R

L
O
G
IC

O
P

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

L
O
G
IC

O
P

M
O
D
E

Z
1
6

G
e
tI
n
te
g
e
rv

C
O
P
Y

L
o
g
ic
o
p
fu
n
ct
io
n

4
.1
.8

co
lo
r-
b
u
�
er

Table 6.15. Pixel Operations

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

206 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

D
R
A
W

B
U
F
F
E
R

Z
1
0
�

G
e
tI
n
te
g
e
rv

se
e
4
.2
.1

B
u
�
er
s
se
le
ct
ed
fo
r

d
ra
w
in
g

4
.2
.1

co
lo
r-
b
u
�
er

IN
D
E
X

W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

C
o
lo
r
in
d
ex
w
ri
te
m
a
sk

4
.2
.2

co
lo
r-
b
u
�
er

C
O
L
O
R

W
R
IT
E
M
A
S
K

4
�
B

G
e
tB
o
o
le
a
n
v

T
ru
e

C
o
lo
r
w
ri
te
en
a
b
le
s;
R
,

G
,
B
,
o
r
A

4
.2
.2

co
lo
r-
b
u
�
er

D
E
P
T
H

W
R
IT
E
M
A
S
K

B

G
e
tB
o
o
le
a
n
v

T
ru
e

D
ep
th
b
u
�
er
en
a
b
le
d

fo
r
w
ri
ti
n
g

4
.2
.2

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

S
te
n
ci
l
b
u
�
er

w
ri
te
m
a
sk

4
.2
.2

st
en
ci
l-
b
u
�
er

C
O
L
O
R

C
L
E
A
R

V
A
L
U
E

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
lo
r
b
u
�
er
cl
ea
r

va
lu
e
(R
G
B
A
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

IN
D
E
X

C
L
E
A
R

V
A
L
U
E

C
I

G
e
tF
lo
a
tv

0

C
o
lo
r
b
u
�
er
cl
ea
r
va
lu
e

(c
o
lo
r
in
d
ex
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

D
E
P
T
H

C
L
E
A
R

V
A
L
U
E

R
+

G
e
tI
n
te
g
e
rv

1

D
ep
th
b
u
�
er
cl
ea
r

va
lu
e

4
.2
.3

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
C
L
E
A
R

V
A
L
U
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
te
n
ci
l
cl
ea
r
va
lu
e

4
.2
.3

st
en
ci
l-
b
u
�
er

A
C
C
U
M

C
L
E
A
R

V
A
L
U
E

4
�
R
+

G
e
tF
lo
a
tv

0

A
cc
u
m
u
la
ti
o
n
b
u
�
er

cl
ea
r
va
lu
e

4
.2
.3

a
cc
u
m
-b
u
�
er

Table 6.16. Framebu�er Control

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 207

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

U
N
P
A
C
K

S
W
A
P
B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

R
O
W
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
rv

4

V
a
lu
e
o
f

U
N
P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

R
O
W
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
rv

4

V
a
lu
e
o
f

P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

Table 6.17. Pixels

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

208 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
P

C
O
L
O
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
co
lo
rs
a
re

m
a
p
p
ed

4
.3

p
ix
el

M
A
P

S
T
E
N
C
IL

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
st
en
ci
l
va
lu
es

a
re
m
a
p
p
ed

4
.3

p
ix
el

IN
D
E
X

S
H
IF
T

Z

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f
I
N
D
E
X
S
H
I
F
T

4
.3

p
ix
el

IN
D
E
X

O
F
F
S
E
T

Z

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f
I
N
D
E
X
O
F
F
S
E
T

4
.3

p
ix
el

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

V
a
lu
e
o
f
x
S
C
A
L
E
;
x
is

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

x
B
IA
S

R

G
e
tF
lo
a
tv

0

V
a
lu
e
o
f
x
B
I
A
S
;
x
is

o
n
e
o
f
R
E
D
,
G
R
E
E
N
,

B
L
U
E
,
A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st

co
n
v
o
lu
ti
o
n
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st
co
lo
r

m
a
tr
ix
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
L
O
R

T
A
B
L
E

3
�
I

G
e
tC
o
lo
rT
a
b
le

em
p
ty

C
o
lo
r
ta
b
le
s

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

F
O
R
M
A
T

2
�
3
�
Z
4
2

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

R
G
B
A

C
o
lo
r
ta
b
le
s'
in
te
rn
a
l

im
a
g
e
fo
rm
a
t

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

W
ID
T
H

2
�
3
�
Z
+

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

0

C
o
lo
r
ta
b
le
s'
sp
ec
i�
ed

w
id
th

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

x
S
IZ
E

6
�
2
�
3
�
Z
+

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

0

C
o
lo
r
ta
b
le
co
m
p
o
n
en
t

re
so
lu
ti
o
n
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
A
L
P
H
A
,

L
U
M
I
N
A
N
C
E
,
o
r

I
N
T
E
N
S
I
T
Y

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

S
C
A
L
E

3
�
R
4

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
rf
v

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

p
ix
el

C
O
L
O
R

T
A
B
L
E

B
IA
S

3
�
R
4

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

p
ix
el

Table 6.18. Pixels (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 209

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
O
N
V
O
L
U
T
IO
N

1
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
1
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
N
V
O
L
U
T
IO
N

2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
2
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

S
E
P
A
R
A
B
L
E
2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
se
p
a
ra
b
le
2
D

co
n
v
o
lu
ti
o
n
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tC
o
n
v
o
lu
ti
o
n
-

F
il
te
r

em
p
ty

C
o
n
v
o
lu
ti
o
n
�
lt
er
s

3
.6
.3

{

C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tS
e
p
a
ra
b
le
-

F
il
te
r

em
p
ty

S
ep
a
ra
b
le
co
n
v
o
lu
ti
o
n

�
lt
er

3
.6
.3

{

C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

C
O
L
O
R

3
�
C

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

co
lo
r

4
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

M
O
D
E

3
�
Z
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

R
E
D
U
C
E

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

m
o
d
e

4
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

S
C
A
L
E

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

B
IA
S

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
O
R
M
A
T

3
�
Z
4
2

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

R
G
B
A

C
o
n
v
o
lu
ti
o
n
�
lt
er

in
te
rn
a
l
fo
rm
a
t

4
.3

{

C
O
N
V
O
L
U
T
IO
N

W
ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

w
id
th

4
.3

{

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

h
ei
g
h
t

4
.3

{

Table 6.19. Pixels (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

210 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x
B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x
B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

H
IS
T
O
G
R
A
M

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

is
en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

H
IS
T
O
G
R
A
M

I

G
e
tH
is
to
g
ra
m

em
p
ty

H
is
to
g
ra
m
ta
b
le

3
.6
.3

{

H
IS
T
O
G
R
A
M

W
ID
T
H

2
�
Z
+

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

0

H
is
to
g
ra
m
ta
b
le
w
id
th

3
.6
.3

{

H
IS
T
O
G
R
A
M

F
O
R
M
A
T

2
�
Z
4
2

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

R
G
B
A

H
is
to
g
ra
m
ta
b
le

in
te
rn
a
l
fo
rm
a
t

3
.6
.3

{

H
IS
T
O
G
R
A
M

x
S
IZ
E

5
�
2
�
Z
+

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

0

H
is
to
g
ra
m
ta
b
le

co
m
p
o
n
en
t
re
so
lu
ti
o
n
;

x
is
R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
L
U
M
I
N
A
N
C
E

3
.6
.3

{

H
IS
T
O
G
R
A
M

S
IN
K

B

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Table 6.20. Pixels (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 211

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
IN
M
A
X

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
m
in
m
a
x
is

en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

M
IN
M
A
X

R
n

G
e
tM
in
m
a
x

(M
,M
,M
,M
),
(m
,m
,m
,m
)

M
in
m
a
x
ta
b
le

3
.6
.3

{

M
IN
M
A
X

F
O
R
M
A
T

Z
4
2

G
e
tM
in
m
a
x
-

P
a
ra
m
e
te
ri
v

R
G
B
A

M
in
m
a
x
ta
b
le
in
te
rn
a
l

fo
rm
a
t

3
.6
.3

{

M
IN
M
A
X

S
IN
K

B

G
e
tM
in
m
a
x
-

P
a
ra
m
e
te
ri
v

F
a
ls
e

T
ru
e
if
m
in
m
a
x

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Z
O
O
M

X

R

G
e
tF
lo
a
tv

1
.0

x
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

Z
O
O
M

Y

R

G
e
tF
lo
a
tv

1
.0

y
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

x

8
�
3
2
�
�
R

G
e
tP
ix
e
lM
a
p

0
's

R
G
B
A
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x

2
�
3
2
�
�
Z

G
e
tP
ix
e
lM
a
p

0
's

In
d
ex
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x
S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

1

S
iz
e
o
f
ta
b
le
x

4
.3

{

R
E
A
D

B
U
F
F
E
R

Z
3

G
e
tI
n
te
g
e
rv

se
e
4
.3
.2

R
ea
d
so
u
rc
e
b
u
�
er

4
.3

p
ix
el

Table 6.21. Pixels (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

212 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

O
R
D
E
R

9
�
Z
8
�

G
e
tM
a
p
iv

1

1
d
m
a
p
o
rd
er

5
.1

{

O
R
D
E
R

9
�
2
�
Z
8
�

G
e
tM
a
p
iv

1
,1

2
d
m
a
p
o
rd
er
s

5
.1

{

C
O
E
F
F

9
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

1
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

C
O
E
F
F

9
�
8
�
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

2
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
2
�
R

G
e
tM
a
p
fv

se
e
5
.1

1
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
4
�
R

G
e
tM
a
p
fv

se
e
5
.1

2
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

M
A
P
1
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

1
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
2
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

2
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
1
G
R
ID

D
O
M
A
IN

2
�
R

G
e
tF
lo
a
tv

0
,1

1
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
2
G
R
ID

D
O
M
A
IN

4
�
R

G
e
tF
lo
a
tv

0
,1
;0
,1

2
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
1
G
R
ID

S
E
G
M
E
N
T
S

Z
+

G
e
tF
lo
a
tv

1

1
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

M
A
P
2
G
R
ID

S
E
G
M
E
N
T
S

2
�
Z
+

G
e
tF
lo
a
tv

1
,1

2
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

A
U
T
O

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
a
u
to
m
a
ti
c

n
o
rm
a
l
g
en
er
a
ti
o
n

en
a
b
le
d

5
.1

ev
a
l/
en
a
b
le

Table 6.22. Evaluators (GetMap takes a map name)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 213

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
E
R
S
P
E
C
T
IV
E

C
O
R
R
E
C
T
IO
N

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
er
sp
ec
ti
v
e
co
rr
ec
ti
o
n

h
in
t

5
.6

h
in
t

P
O
IN
T

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
in
t
sm
o
o
th
h
in
t

5
.6

h
in
t

L
IN
E

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

L
in
e
sm
o
o
th
h
in
t

5
.6

h
in
t

P
O
L
Y
G
O
N

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
ly
g
o
n
sm
o
o
th
h
in
t

5
.6

h
in
t

F
O
G

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

F
o
g
h
in
t

5
.6

h
in
t

Table 6.23. Hints

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

214 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
X

L
IG
H
T
S

Z
+

G
e
tI
n
te
g
e
rv

8

M
a
x
im
u
m
n
u
m
b
er
o
f

li
g
h
ts

2
.1
3
.1

{

M
A
X

C
L
IP

P
L
A
N
E
S

Z
+

G
e
tI
n
te
g
e
rv

6

M
a
x
im
u
m
n
u
m
b
er
o
f

u
se
r
cl
ip
p
in
g
p
la
n
es

2
.1
1

{

M
A
X

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
co
lo
r
m
a
tr
ix

st
a
ck
d
ep
th

3
.6
.3

{

M
A
X

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

3
2

M
a
x
im
u
m
m
o
d
el
-v
ie
w

st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
p
ro
je
ct
io
n

m
a
tr
ix
st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
n
u
m
b
er

d
ep
th
o
f
te
x
tu
re

m
a
tr
ix
st
a
ck

2
.1
0
.2

{

S
U
B
P
IX
E
L
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

4

N
u
m
b
er
o
f
b
it
s
o
f

su
b
p
ix
el
p
re
ci
si
o
n
in

sc
re
en
x
w

a
n
d
y
w

3

{

M
A
X

3
D

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

1
6

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

6
4

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

P
IX
E
L
M
A
P

T
A
B
L
E

Z
+

G
e
tI
n
te
g
e
rv

3
2

M
a
x
im
u
m
si
ze
o
f
a

P
ix
e
lM
a
p
tr
a
n
sl
a
ti
o
n

ta
b
le

3
.6
.3

{

M
A
X

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

6
4

M
a
x
im
u
m
se
le
ct
io
n

n
a
m
e
st
a
ck
d
ep
th

5
.2

{

M
A
X

L
IS
T

N
E
S
T
IN
G

Z
+

G
e
tI
n
te
g
e
rv

6
4

M
a
x
im
u
m
d
is
p
la
y
li
st

ca
ll
n
es
ti
n
g

5
.4

{

M
A
X

E
V
A
L
O
R
D
E
R

Z
+

G
e
tI
n
te
g
e
rv

8

M
a
x
im
u
m
ev
a
lu
a
to
r

p
o
ly
n
o
m
ia
l
o
rd
er

5
.1

{

M
A
X

V
IE
W
P
O
R
T

D
IM
S

2
�
Z
+

G
e
tI
n
te
g
e
rv

se
e
2
.1
0
.1

M
a
x
im
u
m
v
ie
w
p
o
rt

d
im
en
si
o
n
s

2
.1
0
.1

{

M
A
X

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

se
rv
er
a
tt
ri
b
u
te
st
a
ck

6

{

M
A
X

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

cl
ie
n
t
a
tt
ri
b
u
te
st
a
ck

6

{

{

3
�
Z
+

-

3
2

M
a
x
im
u
m
si
ze
o
f
a

co
lo
r
ta
b
le

3
.6
.3

{

{

Z
+

-

3
2

M
a
x
im
u
m
si
ze
o
f
th
e

h
is
to
g
ra
m
ta
b
le

3
.6
.3

{

Table 6.24. Implementation Dependent Values

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 215

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
U
X

B
U
F
F
E
R
S

Z
+

G
e
tI
n
te
g
e
rv

0

N
u
m
b
er
o
f
a
u
x
il
ia
ry

b
u
�
er
s

4
.2
.1

{

R
G
B
A

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
rg
b
a

2
.7

{

IN
D
E
X

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
in
d
ex
es

2
.7

{

D
O
U
B
L
E
B
U
F
F
E
R

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
fr
o
n
t
&
b
a
ck

b
u
�
er
s
ex
is
t

4
.2
.1

{

S
T
E
R
E
O

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
le
ft
&
ri
g
h
t

b
u
�
er
s
ex
is
t

6

{

A
L
IA
S
E
D

P
O
IN
T

S
IZ
E

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

S
M
O
O
T
H

P
O
IN
T

S
IZ
E

R
A
N
G
E

(v
1
.1
:
P
O
IN
T

S
IZ
E

R
A
N
G
E
)

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

S
M
O
O
T
H

P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y

(v
1
.1
:
P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y
)

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
p
o
in
t
si
ze

g
ra
n
u
la
ri
ty

3
.3

{

A
L
IA
S
E
D

L
IN
E

W
ID
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

S
M
O
O
T
H

L
IN
E

W
ID
T
H

R
A
N
G
E

(v
1
.1
:
L
IN
E

W
ID
T
H

R
A
N
G
E
)

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

S
M
O
O
T
H

L
IN
E

W
ID
T
H

G
R
A
N
U
L
A
R
IT
Y

(v
1
.1
:
L
IN
E

W
ID
T
H

G
R
A
N
U
L
A
R
IT
Y
)

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
li
n
e
w
id
th

g
ra
n
u
la
ri
ty

3
.4

{

M
A
X

C
O
N
V
O
L
U
T
IO
N

W
ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

3

M
a
x
im
u
m
w
id
th
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

M
A
X

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

3

M
a
x
im
u
m
h
ei
g
h
t
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

M
A
X

E
L
E
M
E
N
T
S
IN
D
IC
E
S

Z
+

G
e
tI
n
te
g
e
rv

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
ra
w
R
a
n
g
e
E
le
-

m
e
n
ts
in
d
ic
es

2
.8

{

M
A
X

E
L
E
M
E
N
T
S
V
E
R
T
IC
E
S

Z
+

G
e
tI
n
te
g
e
rv

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
ra
w
R
a
n
g
e
E
le
-

m
e
n
ts
v
er
ti
ce
s

2
.8

{

Table 6.25. More Implementation Dependent Values

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

216 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

x
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
b
it
s
in
x

co
lo
r
b
u
�
er

co
m
p
o
n
en
t;
x
is
o
n
e
o
f

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
I
N
D
E
X

4

{

D
E
P
T
H

B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
d
ep
th

b
u
�
er
p
la
n
es

4

{

S
T
E
N
C
IL
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
st
en
ci
l

p
la
n
es

4

{

A
C
C
U
M

x
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
b
it
s
in
x

a
cc
u
m
u
la
ti
o
n
b
u
�
er

co
m
p
o
n
en
t
(x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

4

{

Table 6.26. Implementation Dependent Pixel Depths

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 217

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IS
T

B
A
S
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
et
ti
n
g
o
f
L
is
tB
a
se

5
.4

li
st

L
IS
T

IN
D
E
X

Z
+

G
e
tI
n
te
g
e
rv

0

n
u
m
b
er
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;
0

if
n
o
n
e

5
.4

{

L
IS
T

M
O
D
E

Z
+

G
e
tI
n
te
g
e
rv

0

M
o
d
e
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;

u
n
d
e�
n
ed
if
n
o
n
e

5
.4

{

{

1
6
�
�
A

{

em
p
ty

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

6

{

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

{

1
6
�
�
A

{

em
p
ty

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

6

{

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

N
a
m
e
st
a
ck
d
ep
th

5
.2

{

R
E
N
D
E
R

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

R
E
N
D
E
R

R
e
n
d
e
rM
o
d
e
se
tt
in
g

5
.2

{

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

S
el
ec
ti
o
n
b
u
�
er

p
o
in
te
r

5
.2

se
le
ct

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
el
ec
ti
o
n
b
u
�
er
si
ze

5
.2

se
le
ct

F
E
E
D
B
A
C
K

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

F
ee
d
b
a
ck
b
u
�
er

p
o
in
te
r

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

0

F
ee
d
b
a
ck
b
u
�
er
si
ze

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
rv

2
D

F
ee
d
b
a
ck
ty
p
e

5
.3

fe
ed
b
a
ck

{

n
�
Z
8

G
e
tE
rr
o
r

0

C
u
rr
en
t
er
ro
r
co
d
e(
s)

2
.5

{

{

n
�
B

{

F
a
ls
e

T
ru
e
if
th
er
e
is
a

co
rr
es
p
o
n
d
in
g
er
ro
r

2
.5

{

Table 6.27. Miscellaneous

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Appendix A

Invariance

The OpenGL speci�cation is not pixel exact. It therefore does not guarantee
an exact match between images produced by di�erent GL implementations.
However, the speci�cation does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix
is to identify and provide justi�cation for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebu�er state vector, and for
any GL command, the resulting GL and framebu�er state must be identical
whenever the command is executed on that initial GL and framebu�er state.

One purpose of repeatability is avoidance of visual artifacts when a
double-bu�ered scene is redrawn. If rendering is not repeatable, swapping
between two bu�ers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon
changed in position might di�er at every pixel. Such a di�erence, while
within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

218

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

A.2. MULTI-PASS ALGORITHMS 219

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a di�erent GL mode vec-
tor, to eventually produce a result in the framebu�er. Examples of these
algorithms include:

� \Erasing" a primitive from the framebu�er by redrawing it, either in
a di�erent color or using the XOR logical operation.

� Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity
of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement signi�cantly constrains a parallel implementation of the GL.
Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something
that may be very di�cult to achieve (for example, if the hardware does
oating-point operations with di�erent precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to
port to OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebu�er state vector, and for any given
GL command, the resulting GL and framebu�er state must be identical each
time the command is executed on that initial GL and framebu�er state.

Rule 2 Changes to the following state values have no side e�ects (the use
of any other state value is not a�ected by the change):

Required:

� Framebu�er contents (all bitplanes)

� The color bu�ers enabled for writing

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

220 APPENDIX A. INVARIANCE

� The values of matrices other than the top-of-stack matrices

� Scissor parameters (other than enable)

� Writemasks (color, index, depth, stencil)

� Clear values (color, index, depth, stencil, accumulation)

� Current values (color, index, normal, texture coords, edgeag)

� Current raster color, index and texture coordinates.

� Material properties (ambient, di�use, specular, emission, shini-
ness)

Strongly suggested:

� Matrix mode

� Matrix stack depths

� Alpha test parameters (other than enable)

� Stencil parameters (other than enable)

� Depth test parameters (other than enable)

� Blend parameters (other than enable)

� Logical operation parameters (other than enable)

� Pixel storage and transfer state

� Evaluator state (except as it a�ects the vertex data generated by
the evaluators)

� Polygon o�set parameters (other than enables, and except as they
a�ect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state val-
ues marked with � in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments
are also invariant with respect to

Required:

� Current values (color, color index, normal, texture coords, edge-
ag)

� Current raster color, color index, and texture coordinates

� Material properties (ambient, di�use, specular, emission, shini-
ness)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

A.4. WHAT ALL THIS MEANS 221

Rule 3 The arithmetic of each per-fragment operation is invariant except
with respect to parameters that directly control it (the parameters that control
the alpha test, for instance, are the alpha test enable, the alpha test function,
and the alpha test reference value).

Corollary 3 Images rendered into di�erent color bu�ers sharing the same
framebu�er, either simultaneously or separately using the same command
sequence, are pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak
repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine.

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when
blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because oating point values may be represented using di�erent formats
in di�erent renderers (hardware and software), many OpenGL state values
may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Appendix B

Corollaries

The following observations are derived from the body and the other ap-
pendixes of the speci�cation. Absence of an observation from this list in no
way impugns its veracity.

1. The CURRENT RASTER TEXTURE COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and
when the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are
always valid, including periods while texture mapping is not enabled,
and when the GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may
change. Otherwise, only additions can be made to upward compat-
ible revisions.

4. GL query commands are not required to satisfy the semantics of the
Flush or the Finish commands. All that is required is that the
queried state be consistent with complete execution of all previously
executed GL commands.

5. Application speci�ed point size and line width must be returned as
speci�ed when queried. Implementation dependent clamping a�ects
the values only while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask speci�ed as the third argument to StencilFunc a�ects the
operands of the stencil comparison function, but has no direct e�ect on

222

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

223

the update of the stencil bu�er. The mask speci�ed by StencilMask
has no e�ect on the stencil comparison function; it limits the e�ect of
the update of the stencil bu�er.

8. Polygon shading is completed before the polygon mode is interpreted.
If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

9. A display list is just a group of commands and arguments, so errors
generated by commands in a display list must be generated when the
list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

10. RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not
change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster
color can be queried, however, regardless of the color mode of the GL
context.

11. A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to
change that material property via Material calls have no e�ect.

12. Material and ColorMaterial can be used to modify the RGBA ma-
terial properties, even in a color index context. Likewise, Material
can be used to modify the color index material properties, even in an
RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-
terized in FILLmode, and the fragments generated by the rasterization
of \narrow" polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the
object coordinate system is right-handed; (2) the only commands used
to manipulate the model-view matrix are Scale (with positive scaling
values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

224 APPENDIX B. COROLLARIES

is less than the far value for DepthRange. If these conditions are all
satis�ed, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

16. ColorMaterial has no e�ect on color index lighting.

17. (No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,
and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),
and the state of the the coordinate transfomations is identical when
A, B, C, and D are speci�ed). Then, when the fragments produced
by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.

18. OpenGL state continues to be modi�ed in FEEDBACK mode and in
SELECT mode. The contents of the framebu�er are not modi�ed.

19. The current raster position, the user de�ned clip planes, the spot direc-
tions and the light positions for LIGHTi, and the eye planes for texgen
are transformed when they are speci�ed. They are not transformed
during a PopAttrib, or when copying a context.

20. Dithering algorithms may be di�erent for di�erent components. In
particular, alpha may be dithered di�erently from red, green, or blue,
and an implementation may choose to not dither alpha at all.

21. For any GL and framebu�er state, and for any group of GL commands
and arguments, the resulting GL and framebu�er state is identical
whether the GL commands and arguments are executed normally or
from a display list.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Appendix C

Version 1.1

OpenGL version 1.1 is the �rst revision since the original version 1.0 was
released on 1 July 1992. Version 1.1 is upward compatible with version 1.0,
meaning that any program that runs with a 1.0 GL implementation will also
run unchanged with a 1.1 GL implementation. Several additions were made
to the GL, especially to the texture mapping capabilities, but also to the
geometry and fragment operations. Following are brief descriptions of each
addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer com-
mands than were previously necessary. Six arrays are de�ned, one each
storing vertex positions, normal coordinates, colors, color indices, texture
coordinates, and edge ags. The arrays may be speci�ed and enabled inde-
pendently, or one of the pre-de�ned con�gurations may be selected with a
single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was
to improve the e�ciency of the transfer; especially to allow direct memory
access (DMA) hardware to be used to e�ect the transfer. The additions
match those of the EXT vertex array extension, except that static array data
are not supported (because they complicated the interface, and were not
being used), and the pre-de�ned con�gurations are added (both to reduce
subroutine count even further, and to allow for e�cient transfer of array
data).

225

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

226 APPENDIX C. VERSION 1.1

C.2 Polygon O�set

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an a�ne function of the window
coordinate depth slope of the polygon. Shifted depth values allow copla-
nar geometry, especially facet outlines, to be rendered without depth bu�er
artifacts. They may also be used by future shadow generation algorithms.

The additions match those of the EXT polygon offset extension, with two
exceptions. First, the o�set is enabled separately for POINT, LINE, and FILL

rasterization modes, all sharing a single a�ne function de�nition. (Shifting
the depth values of the outline fragments, instead of the �ll fragments, allows
the contents of the depth bu�er to be maintained correctly.) Second, the
o�set bias is speci�ed in units of depth bu�er resolution, rather than in the
[0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the frame-
bu�er using a logical operation, just as color index fragments are in GL
version 1.0. Blending is disabled during such operation because it is rarely
desired, because many systems could not support it, and to match the se-
mantics of the EXT blend logic op extension, on which this addition is loosely
based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather
than a simple count of components. The internal format is represented as
a single enumerated value, indicating both the organization of the image
data (LUMINANCE, RGB, etc.) and the number of bits of storage for each image
component. Clients can use the internal format speci�cation to suggest the
desired storage precision of texture images. New base formats, ALPHA and
INTENSITY, provide new texture environment operations. These additions
match those of a subset of the EXT texture extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be speci�ed only indirectly

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

C.6. TEXTURE PROXIES 227

in GL version 1.0, which required that client speci�ed \white" geometry
be modulated by a texture. GL version 1.1 allows such replacement to be
speci�ed explicitly, possibly improving performance. These additions match
those of a subset of the EXT texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise di�erent maximum
texture image sizes as a function of some other texture parameters, especially
of the internal image format. Clients may use the proxy query mechanism
to tailor their use of texture resources at run time. The proxy interface is
designed to allow such queries without adding new routines to the GL inter-
face. These additions match those of a subset of the EXT texture extension,
except that implementations return allocation information consistent with
support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be speci�ed from framebu�er memory, as well as
from client memory, and rectangular subregions of texture arrays can be
rede�ned either from client or framebu�er memory. These additions match
those de�ned by the EXT copy texture and EXT subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a
single object. Such treatment allows for greater implementation e�ciency
when multiple arrays are used. In conjunction with the subtexture capabil-
ity, it also allows clients to make gradual changes to existing texture arrays,
rather than completely rede�ning them. These additions match those of the
EXT texture object extension, with slight additions to the texture residency
semantics.

C.9 Other Changes

1. Color indices may now be speci�ed as unsigned bytes.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

228 APPENDIX C. VERSION 1.1

2. Texture coordinates s, t, and r are divided by q during the rasterization
of points, pixel rectangles, and bitmaps. This division was documented
only for lines and polygons in the 1.0 version.

3. The line rasterization algorithm was changed so that vertical lines on
pixel borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were
combined into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel
in the texture array. This behavior was unspeci�ed in the 1.0 version,
and was incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if
ColorMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs
Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D'Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics
Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM
Phil Huxley, 3Dlabs

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

C.10. ACKNOWLEDGEMENTS 229

Dale Kirkland, Intergraph
Hock San Lee, Microsoft
Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM
Tim Misner, SunSoft
Jeremy Morris, 3Dlabs
Israel Pinkas, Intel
Bimal Poddar, IBM
Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel
Je� Stevenson, Hewlett Packard
Bill Sweeney, SunSoft
Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs
Linas Vepstas, IBM
Andy Vesper, Digital Equipment
Henri Warren, Megatek
Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since
the original version 1.0. Version 1.2 is upward compatible with version 1.1,
meaning that any program that runs with a 1.1 GL implementation will also
run unchanged with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping ca-
pabilities and the pixel processing pipeline. Following are brief descriptions
of each addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be de�ned and used. In-memory formats
for three-dimensional images, and pixel storage modes to support them, are
also de�ned. The additions match those of the EXT texture3D extension.

One important application of three-dimensional textures is rendering
volumes of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Speci�cally, it pro-
vides a component order matching �le and framebu�er formats common on
Windows platforms. The additions match those of the EXT bgra extension.

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The �elds with the packed pixel

230

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

D.4. NORMAL RESCALING 231

are not proper machine types, but the pixel as a whole is. Thus the pixel
storage modes and their unpacking counterparts all work correctly with
packed pixels.

The additions match those of the EXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,
while resulting in the same unit normals.

The additions are based on the EXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modi�ed to produce a primary color consisting of
emissive, ambient and di�use terms of the usual GL lighting equation, and
a secondary color consisting of the specular term. Only the primary color
is modi�ed by the texture environment; the secondary color is added to
the result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather
than surface properties.

The additions match those of the EXT separate specular color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly
the range [0; 1]. When a texture coordinate is clamped using this algorithm,
the texture sampling �lter straddles the edge of the texture image, taking
half its sample values from within the texture image, and the other half from
the texture border. It is sometimes desirable to clamp a texture without
requiring a border, and without using the constant border color.

A new texture clamping algorithm, CLAMP TO EDGE, clamps texture coor-
dinates at all mipmap levels such that the texture �lter never samples a
border texel. The color returned when clamping is derived only from texels
at the edge of the texture image.

The additions match those of the SGIS texture edge clamp extension.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

232 APPENDIX D. VERSION 1.2

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter � are added.
One constraint clamps � to a speci�ed oating point range. The other limits
the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

Together these constraints allow a large texture to be loaded and used
initially at low resolution, and to have its resolution raised gradually as more
resolution is desired or available. Image array speci�cation is necessarily in-
tegral, rather than continuous. By providing separate, continuous clamping
of the � parameter, it is possible to avoid "popping" artifacts when higher
resolution images are provided.

The additions match those of the SGIS texture lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the
range of vertices referred to by the index set is added. Implementations can
take advantage of this additional information to process vertex data without
having to scan the index data to determine which vertices are referenced.

The additions match those of the EXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image pro-
cessing applications, and may not be present in all GL implementations.
The are collectively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is de�ned in the pixel trans-
fer process, providing additional lookup capabilities beyond the existing
lookup. The key di�erence is that the new lookup tables are treated as
one-dimensional images with internal formats, like texture images and con-
volution �lter images. Thus the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal for-
mat ALPHA modi�es only the A component of each pixel group, leaving the
R, G, and B components unmodi�ed.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

D.9. IMAGING SUBSET 233

Three independent lookups may be performed: prior to convolution;
after convolution and prior to color matrix transformation; after color matrix
transformation and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebu�er, in
addition to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be rede�ned without reinitializing
the entire table. The a�ected portions may be speci�ed either from host
memory or from the framebu�er.

The additions match those of the EXT color table and
EXT color subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the
�rst color table lookup in the pixel transfer process. The convolution kernels
are themselves treated as one- and two-dimensional images, which can be
loaded from application memory or from the framebu�er.

The convolution framework is designed to accommodate three-
dimensional convolution, but that API is left for a future extension.

The additions match those of the EXT convolution and
HP convolution border modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the
pixel transfer path. The matrix operates on RGBA pixel groups, using the
equation

C 0 =MC;

where

C =

0
BB@
R
G
B
A

1
CCA

andM is the 4�4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased
by a programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components.
It can also be used to implement simple color space conversions.

The additions match those of the SGI color matrix extension.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

234 APPENDIX D. VERSION 1.2

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of speci�c color component values
(histogram) and that track the minimum and maximum color component
values (minmax) are performed at the end of the pixel transfer pipeline. An
optional mode allows pixel data to be discarded after the histogram and/or
minmax operations are completed. Otherwise the pixel data continues on
to the next operation una�ected.

The additions match those of the EXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to de�ne blend weighting factors may be
de�ned. A typical usage is blending two RGB images. Without the constant
blend factor, one image must have an alpha channel with each pixel set to
the desired blend factor.

The additions match those of the EXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and des-
tination components may be used.

Two of the new equations produce the minimum (or maximum) color
components of the source and destination colors. Taking the maximum is
useful for applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation,
but produce the di�erence of its left and right hand sides, rather than the
sum. Image di�erences are useful in many image processing applications.

The additions match those of the EXT blend minmax and
EXT blend subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 235

Pierre-Luc Bisaillon, Matrox Graphics
Drew Bliss, Microsoft
David Blythe, Silicon Graphics
Jon Brewster, Hewlett Packard
Dan Brokenshire, IBM
Pat Brown, IBM
Newton Cheung, S3
Bill Cli�ord, Digital
Jim Cobb, Parametric Technology
Bruce D'Amora, IBM
Kevin Dallas, Microsoft
Mahesh Dandapani, Rendition
Daniel Daum, AccelGraphics
Suzy De�eyes, IBM
Peter Doyle, Intel
Jay Duluk, Raycer
Craig Dunwoody, Silicon Graphics
Dave Erb, IBM
Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI
Ken Garnett, NCD
Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link
Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics
Paul Ho, Silicon Graphics
Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel
Phil Huxley, 3Dlabs
Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx
Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics
Tim Kelley, Real3D
Jon Khazam, Intel
Louis Khouw, Sun
Dale Kirkland, Intergraph
Chris Kitrick, Raycer

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

236 APPENDIX D. VERSION 1.2

Don Kuo, S3
Herb Kuta, Quantum 3D
Phil Lacroute, Silicon Graphics
Prakash Ladia, S3
Jon Leech, Silicon Graphics
Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics
Kent Lin, S3
Dan McCabe, S3
Jack Middleton, Sun
Tim Misner, Intel
Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs
Gene Munce, Intel
William Newhall, Real3D
Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter P�ster, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel
Rob Putney, IBM
Mike Quinlan, Real3D
Nate Robins, University of Utah
Detlef Roettger, Elsa
Randi Rost, Hewlett Packard
Kevin Rushforth, Sun
Richard S. Wright, Real3D
Hock San Lee, Microsoft
John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA
Mark Segal, Silicon Graphics
Bob Seitsinger, S3
Min-Zhi Shao, S3
Colin Sharp, Rendition
Igor Sinyak, Intel
Bill Sweeney, Sun
William Sweeney, Sun
Nathan Tuck, Raycer
Doug Twillenger, Sun
John Tynefeld, 3dfx

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 237

Kartik Venkataraman, Intel
Andy Vesper, Digital Equipment
Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics
Steve Wright, Microsoft
David Yu, Silicon Graphics
Randy Zhao, S3

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB ex-
tensions (see Appendix F). The only ARB extension de�ned in this version
is multitexture, allowing application of multiple textures to a fragment in
one rendering pass. Multitexture is based on the SGIS multitexture exten-
sion, simpli�ed by removing the ability to route texture coordinate sets to
arbitrary texture units.

A new corollary discussing display list and immediate mode invariance
was added to Appendix B on April 1, 1999.

238

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Appendix F

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural
Review Board (ARB) are described in this chapter. These extensions are
not required to be supported by a conformant OpenGL implementation, but
are expected to be widely available; they de�ne functionality that is likely
to move into the required feature set in a future revision of the speci�cation.

In order not to compromise the readability of the core speci�cation,
ARB extensions are not integrated into the core language; instead, they are
presented in this chapter, as changes to the core.

F.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
speci�c extensions, the following naming conventions are used:

� A unique name string of the form "GL ARB name" is associated with
each extension. If the extension is supported by an implementation,
this string will be present in the EXTENSIONS string described in sec-
tion 6.1.11.

� All functions de�ned by the extension will have names of the form
FunctionARB

� All enumerants de�ned by the extension will have names of the form
NAME ARB.

239

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

240 APPENDIX F. ARB EXTENSIONS

F.2 Multitexture

Multitexture adds support for multiple texture units. The capabilities of
the multiple texture units are identical, except that evaluation and feedback
are supported only for texture unit 0. Each texture unit has its own state
vector which includes texture vertex array speci�cation, texture image and
�ltering parameters, and texture environment application.

The texture environments of the texture units are applied in a pipelined
fashion whereby the output of one texture environment is used as the input
fragment color for the next texture environment. Changes to texture client
state and texture server state are each routed through one of two selectors
which control which instance of texture state is a�ected.

The speci�cation is written using four texture units though the actual
number supported is implementation dependent and can be larger or smaller
than four.

The name string for multitexture is GL ARB multitexture.

F.2.1 Dependencies

Multitexture requires features of OpenGL 1.1.

F.2.2 Issues

The extension currently requires a separate texture coordinate input for each
texture unit. Modi�cation to allow routing and/or broadcasting texcoords
and TexGen output would be useful, possibly as a future extension layered
on multitexture.

F.2.3 Changes to Section 2.6 (Begin/End Paradigm)

Amend paragraphs 2 and 3
Each vertex is speci�ed with two, three, or four coordinates. In addition,

a current normal, multiple current texture coordinate sets, and current color
may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that
may be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive. Multiple sets
of texture coordinates may be used to specify how multiple texture images
are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least one. The number of active
textures supported can be queried with the state MAX TEXTURE UNITS ARB.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 241

Primary and secondary colors are associated with each vertex (see sec-
tion 3.9). These associated colors are either based on the current color or
produced by lighting, depending on whether or not lighting is enabled. Tex-
ture coordinates are similarly associated with each vertex. Multiple sets of
texture coordinates may be associated with a vertex. Figure F.1 summa-
rizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.
Amend paragraph 6

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge ag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the multiple current texture coordinate sets. Because color assignment is
done vertex-by-vertex, a processed vertex comprises the vertex's coordinates,
its edge ag, its assigned colors, and its multiple texture coordinate sets.

F.2.4 Changes to Section 2.7 (Vertex Speci�cation)

Amend paragraph 2
Current values are used in associating auxiliary data with a vertex as

described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords);
void TexCoordf1234gfsifdgv(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly, TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,
and r, with q set to 1, and TexCoord4 sets all four texture coordinates.

Implementations may support more than one texture unit, and thus more
than one set of texture coordinates. The commands

void MultiTexCoordf1234gfsifdgARB(enum texture,T
coords)

void MultiTexCoordf1234gfsifdgvARB(enum texture,T
coords)

take the coordinate set to be modi�ed as the texture parameter. texture
is a symbolic constant of the form TEXTUREi ARB, indicating that texture
coordinate set i is to be modi�ed. The constants obey TEXTUREi ARB =

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

242 APPENDIX F. ARB EXTENSIONS

lighting

vertex / normal
transformation

Current
Normal

Current
Color and
Materials

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
and Texture
Coordinates)

Vertex
Coordinates In

Current
Edge Flag

texgen texture
matrix 1

Current
Texture

Coord Set 1

texgen texture
matrix 2

Current
Texture

Coord Set 2

texgen texture
matrix 3

Current
Texture

Coord Set 3

texgen texture
matrix 4

Current
Texture

Coord Set 4

Figure F.1. Association of current values with a vertex. The heavy lined
boxes represent GL state. Four texture units are shown; however, multitex-
turing may support a di�erent number of units depending on the implemen-
tation.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 243

TEXTURE0 ARB+ i (i is in the range 0 to k�1, where k is the implementation-
dependent number of texture units de�ned by MAX TEXTURE UNITS ARB).

The TexCoord commands are exactly equivalent to the corresponding
MultiTexCoordARB commands with texture set to TEXTURE0 ARB.

Gets of CURRENT TEXTURE COORDS return the texture coordinate set de�ned
by the value of ACTIVE TEXTURE ARB.

Specifying an invalid texture coordinate set for the texture argument of
MultiTexCoordARB results in unde�ned behavior.

F.2.5 Changes to Section 2.8 (Vertex Arrays)

Amend paragraph 1

The vertex speci�cation commands described in section 2.7 accept data
in almost any format, but their use requires many command executions to
specify even simple geometry. Vertex data may also be placed into arrays
that are stored in the client's address space. Blocks of data in these arrays
may then be used to specify multiple geometric primitives through the ex-
ecution of a single GL command. The client may specify up to 5 plus the
value of MAX TEXTURE UNITS ARB arrays: one each to store vertex coordinates,
edge ags, colors, color indices, normals, and one or more texture coordinate
sets. The commands . . .

Insert between paragraph 2 and 3

In implementations which support more than one texture unit, the com-
mand

void ClientActiveTextureARB(enum texture);

is used to select the vertex array client state parameters to
be modi�ed by the TexCoordPointer command and the array af-
fected by EnableClientState and DisableClientState with parame-
ter TEXTURE COORD ARRAY. This command sets the client state variable
CLIENT ACTIVE TEXTURE ARB. Each texture unit has a client state vector which
is selected when this command is invoked. This state vector includes the
vertex array state. This call also selects which texture units' client state
vector is used for queries of client state.

Specifying an invalid texture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoordARB commands
described in section 2.7.

Amend �nal paragraph

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

244 APPENDIX F. ARB EXTENSIONS

If the number of supported texture units (the value of
MAX TEXTURE UNITS ARB) is k, then the client state required to imple-
ment vertex arrays consists of 5 + k boolean values, 5 + k memory pointers,
5 + k integer stride values, 4 + k symbolic constants representing array
types, and 3 + k integers representing values per element. In the initial
state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are each FLOAT, and the
integers representing values per element are each four.

F.2.6 Changes to Section 2.10.2 (Matrices)

Amend paragraph 8

For each texture unit, a 4 � 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s
t
r
q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is also a corresponding texture matrix stack for each texture unit.
To change the stack a�ected by matrix operations, set the active texture
unit selector by calling

void ActiveTextureARB(enum texture);

The selector also a�ects calls modifying texture environment state, texture
coordinate generation state, texture binding state, and queries of all these
state values as well as current texture coordinates and current raster texture
coordinates.

Specifying an invalid texture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoordARB commands
described in section 2.7.

The active texture unit selector may be queried by callingGetIntegerv
with pname set to ACTIVE TEXTURE ARB.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 245

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode,
the stack depth is at least 32 (that is, there is a stack of at least 32 model-
view matrices). For the other modes, the depth is at least 2. Texture matrix
stacks for all texture units have the same depth. The current matrix in any
mode is the matrix on the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry o� of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

When the current matrix mode is TEXTURE, the texture matrix stack of
the active texture unit is pushed or popped.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, one stack of at least
two 4�4 matrices for each of COLOR, PROJECTION, each texture unit, TEXTURE,
and a stack of at least 32 4 � 4 matrices for MODELVIEW. Each matrix stack
has an associated stack pointer. Initially, there is only one matrix on each
stack, and all matrices are set to the identity. The initial matrix mode is
MODELVIEW. The initial value of ACTIVE TEXTURE ARB is TEXTURE0 ARB.

F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-
dinates)

Amend paragraph 4
The state required for texture coordinate generation for each texture

unit comprises a three-valued integer for each coordinate indicating coor-
dinate generation mode, and a bit for each coordinate to indicate whether
texture coordinate generation is enabled or disabled. In addition, four co-
e�cients are required for the four coordinates for each of EYE LINEAR and
OBJECT LINEAR. The initial state has the texture generation function dis-
abled for all texture coordinates. The initial values of pi for s are all 0
except p1 which is one; for t all the pi are zero except p2, which is 1.
The values of pi for r and q are all 0. These values of pi apply for both

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

246 APPENDIX F. ARB EXTENSIONS

the EYE LINEAR and OBJECT LINEAR versions. Initially all texture generation
modes are EYE LINEAR.

For implementations which support more than one texture unit, there is
texture coordinate generation state for each unit. The texture coordinate
generation state which is a�ected by the TexGen, Enable, and Disable
operations is set with ActiveTextureARB.

F.2.8 Changes to Section 2.12 (Current Raster Position)

Amend paragraph 2
The state required for the current raster position consists of three window

coordinates xw, yw, and zw, a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and multiple
texture coordinate sets. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords);
void RasterPosf234gfsifdgv(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set
to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT RASTER TEXTURE COORDS are a�ected by the setting of the
state ACTIVE TEXTURE ARB.
Modify �gure 2.7
Amend paragraph 5

The current raster position requires �ve single-precision oating-point
values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for each texture unit. In the initial state,
the coordinates and texture coordinates are all (0; 0; 0; 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

F.2.9 Changes to Section 3.8 (Texturing)

Amend paragraphs 1 and 2
Texturing maps a portion of one or more speci�ed images onto each

primitive for which texturing is enabled. This mapping is accomplished by
using the color of an image at the location indicated by a fragment's (s; t; r)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 247

Rasterpos In

Current
Normal

Lighting

Vertex/Normal
Transformation

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Texture
Matrix 0Current

Texture
Coord Set 0

Texgen

Texture
Matrix 3Current

Texture
Coord Set 3

Texgen

Texture
Matrix 2Current

Texture
Coord Set 2

Texgen

Texture
Matrix 1Current

Texture
Coord Set 1

Texgen

Figure F.2. The current raster position and how it is set. Four texture units
are shown; however, multitexturing may support a di�erent number of units
depending on the implementation.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

248 APPENDIX F. ARB EXTENSIONS

coordinates to modify the fragment's primary RGBA color. Texturing does
not a�ect the secondary color.

An implementation may support texturing using more than one image at
a time. In this case the fragment carries multiple sets of texture coordinates
(s; t; r) which are used to index separate images to produce color values
which are collectively used to modify the fragment's RGBA color. Texturing
is speci�ed only for RGBA mode; its use in color index mode is unde�ned.
The following subsections (up to and including Section 3.8.5) specify the
GL operation with a single texture and Section 3.8.10 speci�es the details
of how multiple texture units interact.

F.2.10 Changes to Section 3.8.5 (Texture Mini�cation)

Amend second paragraph under the Mipmapping subheading

Each array in a mipmap is de�ned using TexImage3D, TexImage2D,
CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array
through p = maxfn;m; lg + TEXTURE BASE LEVEL with each unit increase in-
dicating an array of half the dimensions of the previous one as already de-
scribed. If texturing is enabled (and TEXTURE MIN FILTER is one that requires
a mipmap) at the time a primitive is rasterized and if the set of arrays
TEXTURE BASE LEVEL through q = minfp; TEXTURE MAX LEVELg is incomplete,
then it is as if texture mapping were disabled for that texture unit. The set
of arrays TEXTURE BASE LEVEL through q is incomplete if the internal formats
of all the mipmap arrays were not speci�ed with the same symbolic constant,
if the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where k < TEXTURE BASE LEVEL or k > q are insigni�cant.

F.2.11 Changes to Section 3.8.8 (Texture Objects)

Insert following the last paragraph

The texture object name space, including the initial one-, two-, and
three-dimensional texture objects, is shared among all texture units. A
texture object may be bound to more than one texture unit simultaneously.
After a texture object is bound, any GL operations on that target object
a�ect any other texture units to which the same texture object is bound.

Texture binding is a�ected by the setting of the state ACTIVE TEXTURE ARB.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 249

If a texture object is deleted, it as if all texture units which are bound
to that texture object are rebound to texture object zero.

F.2.12 Changes to Section 3.8.10 (Texture Application)

Amend second paragraph

Each texture unit is enabled and bound to texture objects independently
from the other texture units. Each texture unit follows the precendence
rules for one-, two-, and three-dimensional textures. Thus texture units can
be performing texture mapping of di�erent dimensionalities simultaneously.
Each unit has its own enable and binding states.

Each texture unit is paired with an environment function, as shown
in �gure F.3. The second texture function is computed using the texture
value from the second texture, the fragment resulting from the �rst texture
function computation and the second texture unit's environment function.
If there is a third texture, the fragment resulting from the second texture
function is combined with the third texture value using the third texture
unit's environment function and so on. The texture unit selected by Ac-
tiveTextureARB determines which texture unit's environment is modi�ed
by TexEnv calls.

Texturing is enabled and disabled individually for each texture unit. If
texturing is disabled for one of the units, then the fragment resulting from
the previous unit, is passed unaltered to the following unit.

The required state, per texture unit, is three bits indicating whether
each of one-, two-, or three-dimensional texturing is enabled or disabled. In
the intial state, all texturing is disabled for all texture units.

F.2.13 Changes to Section 5.1 (Evaluators)

Amend paragraph 7

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The evaluator map generates only coordinates for texture unit TEXTURE0 ARB.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if u1 is equal to u2, or if v1 is equal to v2. If the value of ACTIVE TEXTURE ARB

is not TEXTURE0 ARB, callingMap[12] generates the error INVALID OPERATION.

F.2.14 Changes to Section 5.3 (Feedback)

Amend paragraph 4

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

250 APPENDIX F. ARB EXTENSIONS

TE0

TE1

TE2

TE3

Cf

CT0

CT1

CT2

CT3

C’f

CTi = texture color from texture lookup i

Cf = fragment color input to texturing

C’f = fragment color output from texturing

TEi = texture environment i

Figure F.3. Multitexture pipeline. Four texture units are shown; however,
multitexturing may support a di�erent number of units depending on the
implementation. The input fragment color is successively combined with each
texture according to the state of the corresponding texture environment, and
the resulting fragment color passed as input to the next texture unit in the
pipeline.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 251

The texture coordinates and colors returned are those resulting from the
clipping operations described in Section 2.13.8. Only coordinates for tex-
ture unit TEXTURE0 ARB are returned even for implementations which support
multiple texture units. The colors returned are the primary colors.

F.2.15 Changes to Section 6.1.2 (Data Conversions)

Insert following the last paragraph

Most texture state variables are quali�ed by the
value of ACTIVE TEXTURE ARB to determine which server texture state vector
is queried. Client texture state variables such as texture coordinate array
pointers are quali�ed by the value of CLIENT ACTIVE TEXTURE ARB. Tables 6.5,
6.6, 6.7, 6.12, 6.14, and 6.25 indicate those state variables which are quali�ed
by ACTIVE TEXTURE ARB or CLIENT ACTIVE TEXTURE ARB during state queries.

F.2.16 Changes to Section 6.1.12 (Saving and Restoring
State)

Insert following paragraph 3

Operations on groups containing replicated texture state push or pop
texture state within that group for all texture units. When state for a
group is pushed, all state corresponding to TEXTURE0 ARB is pushed �rst,
followed by state corresponding to TEXTURE1 ARB, and so on up to and in-
cluding the state corresponding to TEXTUREk ARB where k + 1 is the value of
MAX TEXTURE UNITS ARB. When state for a group is popped, the replicated tex-
ture state is restored in the opposite order that it was pushed, starting with
state corresponding to TEXTUREk ARB and ending with TEXTURE0 ARB. Identical
rules are observed for client texture state push and pop operations. Matrix
stacks are never pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib.

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

252 APPENDIX F. ARB EXTENSIONS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
5

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

1
��
T

G
e
tF
lo
a
tv

0,
0,
0,
1

C
u
rr
en
t
te
x
tu
re

co
or
d
in
at
es

2.
7

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

1
��
T

G
e
tF
lo
a
tv

0,
0,
0,
1

T
ex
tu
re
co
or
d
in
at
es

as
so
ci
at
ed
w
it
h

ra
st
er
p
os
it
io
n

2.
12

cu
rr
en
t

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
6

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

1
��
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
or
d
in
at
e

ar
ra
y
en
ab
le

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

1
��
Z
+

G
e
tI
n
te
g
e
rv

4

C
o
or
d
in
at
es
p
er

el
em
en
t

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

1
��
Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
of
te
x
tu
re

co
or
d
in
at
es

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

1
��
Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n

te
x
tu
re
co
or
d
in
at
es

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

1
��
Y

G
e
tP
o
in
te
rv

0

P
oi
n
te
r
to
th
e

te
x
tu
re
co
or
d
in
at
e

ar
ra
y

2.
8

ve
rt
ex
-a
rr
ay

Table F.1. Changes to State Tables

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 253

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
7

T
E
X
T
U
R
E

M
A
T
R
IX

1
��
2
��
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
at
ri
x
st
ac
k

2.
10
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

1
��
Z
+

G
e
tI
n
te
g
e
rv

1

T
ex
tu
re
m
at
ri
x
st
ac
k

p
oi
n
te
r

2.
10
.2

{

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
12

T
E
X
T
U
R
E

x
D

1
��
3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g

is
en
ab
le
d
;
x
is
1
,
2
,

or
3

3.
8.
10

te
x
tu
re
/e
n
ab
le

T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

1
��
3
�
Z
+

G
e
tI
n
te
g
e
rv

0

T
ex
tu
re
ob
je
ct

b
ou
n
d
to
T
E
X
T
U
R
E
x
D

3.
8.
8

te
x
tu
re

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
14

T
E
X
T
U
R
E

E
N
V

M
O
D
E

1
��
Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
ap
p
li
ca
ti
on

fu
n
ct
io
n

3.
8.
9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

1
��
C

G
e
tT
e
x
E
n
v
fv

0,
0,
0,
0

T
ex
tu
re
en
v
ir
on
m
en
t

co
lo
r

3.
8.
9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

1
��
4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
ge
n
en
ab
le
d
(x
is

S
,
T
,
R
,
or
Q
)

2.
10
.4

te
x
tu
re
/e
n
ab
le

E
Y
E

P
L
A
N
E

1
��
4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2.
10
.4

T
ex
ge
n
p
la
n
e

eq
u
at
io
n
co
e�
ci
en
ts

(f
or
S
,
T
,
R
,
an
d
Q
)

2.
10
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

1
��
4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2.
10
.4

T
ex
ge
n
ob
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
or
S
,
T
,

R
,
an
d
Q
)

2.
10
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

1
��
4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
ge
n
(f
or
S
,
T
,
R
,

an
d
Q

2.
10
.4

te
x
tu
re

Table F.2. Changes to State Tables (cont.)

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

254 APPENDIX F. ARB EXTENSIONS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

A
d
d
ed
to
ta
b
le
6.
6

C
L
IE
N
T

A
C
T
IV
E

T
E
X
T
U
R
E

A
R
B

Z
1
�

G
e
tI
n
te
g
e
rv

T
E
X
T
U
R
E
0
A
R
B

C
li
en
t
ac
ti
ve
te
x
tu
re

u
n
it
se
le
ct
or

2.
7

ve
rt
ex
-a
rr
ay

A
d
d
ed
to
ta
b
le
6.
14

A
C
T
IV
E

T
E
X
T
U
R
E

A
R
B

Z
1
�

G
e
tI
n
te
g
e
rv

T
E
X
T
U
R
E
0
A
R
B

A
ct
iv
e
te
x
tu
re
u
n
it

se
le
ct
or

2.
7

te
x
tu
re

Table F.3. New State Introduced by Multitexture

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 255

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

A
d
d
ed
to
ta
b
le
6.
25

M
A
X

T
E
X
T
U
R
E

U
N
IT
S
A
R
B

Z
+

G
e
tI
n
te
g
e
rv

1

N
u
m
b
er
of
te
x
tu
re

u
n
it
s
(n
ot
to
ex
ce
ed

32
)

2.
6

{

Table F.4. New Implementation-Dependent Values Introduced by Multitexture

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

Index of OpenGL Commands

x BIAS, 78, 208
x SCALE, 78, 208
2D, 174, 176, 217
2 BYTES, 177
3D, 174, 176
3D COLOR, 174, 176
3D COLOR TEXTURE, 174, 176
3 BYTES, 177
4D COLOR TEXTURE, 174, 176
4 BYTES, 177

1, 113, 120, 131, 136, 137, 185, 202,
253

2, 113, 120, 136, 137, 185, 202, 253
3, 113, 120, 136, 137, 185, 202, 253
4, 113, 120, 136, 137, 185

ACCUM, 155
Accum, 155, 156
ACCUM BUFFER BIT, 154, 191
ACTIVE TEXTURE ARB, 243{246,

248, 249, 251
ActiveTextureARB, 244, 246, 249
ADD, 155, 156
ALL ATTRIB BITS, 191
ALL CLIENT ATTRIB BITS, 191
ALPHA, 78, 92, 103, 104, 114, 115,

136, 137, 159, 160, 185, 208,
210, 216, 226, 232

ALPHA12, 115
ALPHA16, 115
ALPHA4, 115
ALPHA8, 115
ALPHA BIAS, 101
ALPHA SCALE, 101
ALPHA TEST, 143

AlphaFunc, 143
ALWAYS, 143{145, 205
AMBIENT, 50, 51
AMBIENT AND DIFFUSE, 50, 51,

53
AND, 151
AND INVERTED, 151
AND REVERSE, 151
AreTexturesResident, 134, 178
ArrayElement, 19, 23, 24, 175
AUTO NORMAL, 167
AUXi, 151, 152
AUXn, 151, 158
AUX0, 151, 158

BACK, 49, 51, 52, 70, 73, 151, 152,
158, 159, 183, 201

BACK LEFT, 151, 152, 158
BACK RIGHT, 151, 152, 158
Begin, 12, 15{20, 23, 24, 28, 55, 62,

67, 70, 73, 168, 169, 174
BGR, 92, 159, 162
BGRA, 92, 94, 98, 159, 230
BindTexture, 133
BITMAP, 72, 80, 83, 90, 91, 98, 110,

160, 185
Bitmap, 110
BITMAP TOKEN, 176
BLEND, 135, 137, 146, 150
BlendColor, 77, 146
BlendEquation, 77, 146, 147
BlendFunc, 77, 146, 147, 149
BLUE, 78, 92, 159, 160, 208, 210, 216
BLUE BIAS, 101
BLUE SCALE, 101
BYTE, 22, 91, 160, 161, 177

256

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

INDEX 257

C3F V3F, 25, 26
C4F N3F V3F, 25, 26
C4UB V2F, 25, 26
C4UB V3F, 25, 26
CallList, 19, 177, 178
CallLists, 19, 177, 178
CCW, 48, 201
CLAMP, 124, 127
CLAMP TO EDGE, 124, 125, 127,

231
CLEAR, 151
Clear, 153, 154
ClearAccum, 154
ClearColor, 154
ClearDepth, 154
ClearIndex, 154
ClearStencil, 154
CLIENT ACTIVE TEXTURE

ARB, 243, 251
CLIENT PIXEL STORE BIT, 191
CLIENT VERTEX ARRAY BIT,

191
ClientActiveTextureARB, 243
CLIP PLANEi, 39
CLIP PLANE0, 39
ClipPlane, 38
COEFF, 184
COLOR, 31, 34, 81, 85, 86, 120, 162,

245
Color, 19{21, 43, 56
Color3, 20
Color4, 20
COLOR ARRAY, 23, 27
COLOR ARRAY POINTER, 189
COLOR BUFFER BIT, 153, 191
COLOR INDEX, 72, 80, 83, 90, 92,

102, 110, 159, 162, 184, 185
COLOR INDEXES, 50, 54
COLOR LOGIC OP, 150
COLOR MATERIAL, 51, 53
COLOR MATRIX, 185
COLOR MATRIX STACK DEPTH,

185
COLOR TABLE, 80, 82, 103
COLOR TABLE ALPHA SIZE, 186

COLOR TABLE BIAS, 80, 81, 186
COLOR TABLE BLUE SIZE, 186
COLOR TABLE FORMAT, 186
COLOR TABLE GREEN SIZE, 186
COLOR TABLE INTENSITY

SIZE, 186
COLOR TABLE LUMINANCE

SIZE, 186
COLOR TABLE RED SIZE, 186
COLOR TABLE SCALE, 80, 81, 186
COLOR TABLE WIDTH, 186
ColorMask, 152, 153
ColorMaterial, 51{53, 167, 223, 228
ColorPointer, 19, 21, 22, 27, 178
ColorSubTable, 81, 82
ColorTable, 79, 81{83, 108, 109, 179
ColorTableParameter, 80
ColorTableParameterfv, 80
Colorub, 56
Colorui, 56
Colorus, 56
COMPILE, 175, 223
COMPILE AND EXECUTE, 175,

177, 178
CONSTANT ALPHA, 77, 148, 149
CONSTANT ATTENUATION, 50
CONSTANT BORDER, 105, 106
CONSTANT COLOR, 77, 148, 149
CONVOLUTION 1D, 84, 86, 103,

117, 186, 187
CONVOLUTION 2D, 83{85, 103,

117, 186, 187
CONVOLUTION BORDER

COLOR, 106, 187
CONVOLUTION BORDER

MODE, 105, 187
CONVOLUTION FILTER BIAS,

83{85, 187
CONVOLUTION FILTER SCALE,

83{86, 187
CONVOLUTION FORMAT, 187
CONVOLUTION HEIGHT, 187
CONVOLUTION WIDTH, 187
ConvolutionFilter1D, 84{86
ConvolutionFilter2D, 83{86

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

258 INDEX

ConvolutionParameter, 84, 105
ConvolutionParameterfv, 83, 84, 106
ConvolutionParameteriv, 85, 106
COPY, 150, 151, 205
COPY INVERTED, 151
COPY PIXEL TOKEN, 176
CopyColorSubTable, 81, 82
CopyColorTable, 81, 82
CopyConvolutionFilter1D, 85
CopyConvolutionFilter2D, 85
CopyPixels, 75, 78, 81, 85, 86, 103,

120, 156, 162, 163, 173
CopyTexImage1D, 103, 120, 121, 129,

248
CopyTexImage2D, 103, 118, 120, 121,

129, 248
CopyTexImage3D, 121
CopyTexSubImage1D, 103, 121, 123
CopyTexSubImage2D, 103, 121, 122
CopyTexSubImage3D, 103, 121, 122
CULL FACE, 70
CullFace, 70
CURRENT BIT, 191
CURRENT RASTER

TEXTURE COORDS, 222,
246

CURRENT TEXTURE COORDS,
243

CW, 48

DECAL, 135, 137
DECR, 144
DeleteLists, 178
DeleteTextures, 133, 178
DEPTH, 162, 208
DEPTH BIAS, 78, 101
DEPTH BUFFER BIT, 153, 191
DEPTH COMPONENT, 80, 83, 90,

92, 112, 158, 159, 162, 184
DEPTH SCALE, 78, 101
DEPTH TEST, 145
DepthFunc, 145
DepthMask, 153
DepthRange, 30, 182, 224
DIFFUSE, 50, 51

Disable, 35, 38, 39, 44, 51, 60, 64,
67, 70, 72, 74, 108, 109, 138,
143{146, 149, 150, 166, 167,
246, 249

DisableClientState, 19, 23, 27, 178,
243

DITHER, 150
DOMAIN, 184
DONT CARE, 180, 213
DOUBLE, 22
DRAW PIXEL TOKEN, 176
DrawArrays, 23, 24, 175
DrawBu�er, 151, 152
DrawElements, 24, 25, 175, 232
DrawPixels, 72, 75, 76, 78, 80, 83, 89{

93, 98, 100, 103, 110, 112,
113, 156, 158, 160, 162, 173

DrawRangeElements, 25, 215
DST ALPHA, 148
DST COLOR, 148

EDGE FLAG ARRAY, 23, 27
EDGE FLAG ARRAY POINTER,

189
EdgeFlag, 18, 19
EdgeFlagPointer, 19, 21, 22, 178
EdgeFlagv, 18
EMISSION, 50, 51
Enable, 35, 38, 39, 44, 51, 60, 64,

67, 70, 72, 74, 108, 109, 138,
143{146, 149, 150, 166, 167,
181, 246, 249

ENABLE BIT, 191
EnableClientState, 19, 23, 27, 178,

243
End, 12, 15{20, 23, 24, 28, 55, 62, 70,

73, 168, 169, 174
EndList, 175, 177
EQUAL, 143{145
EQUIV, 151
EVAL BIT, 191
EvalCoord, 19, 167
EvalCoord1, 167{169
EvalCoord1d, 168
EvalCoord1f, 168

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

INDEX 259

EvalCoord2, 167, 169, 170
EvalMesh1, 168
EvalMesh2, 168, 169
EvalPoint, 19
EvalPoint1, 169
EvalPoint2, 170
EXP, 139, 140, 198
EXP2, 139
EXT bgra, 230
EXT blend color, 234
EXT blend logic op, 226
EXT blend minmax, 234
EXT blend subtract, 234
EXT color subtable, 233
EXT color table, 233
EXT convolution, 233
EXT copy texture, 227
EXT draw range elements, 232
EXT histogram, 234
EXT packed pixels, 231
EXT polygon o�set, 226
EXT rescale normal, 231
EXT separate specular color, 231
EXT subtexture, 227
EXT texture, 226, 227
EXT texture3D, 230
EXT texture object, 227
EXT vertex array, 225
EXTENSIONS, 77, 189, 239
EYE LINEAR, 37, 38, 183, 204, 245,

246, 253
EYE PLANE, 37

FALSE, 18, 19, 46{48, 76, 78, 87, 88,
98, 101, 109, 110, 134, 158,
182, 184, 187, 188

FASTEST, 180
FEEDBACK, 171, 173, 174, 224
FEEDBACK BUFFER POINTER,

189
FeedbackBu�er, 173, 174, 178
FILL, 73{75, 169, 201, 223, 226
Finish, 178, 179, 222
FLAT, 54, 223

FLOAT, 22, 26, 27, 91, 160, 161, 177,
196, 244, 252

Flush, 178, 179, 222
FOG, 138
Fog, 139, 140
FOG BIT, 191
FOG COLOR, 139
FOG DENSITY, 139
FOG END, 139
FOG HINT, 180
FOG INDEX, 140
FOG MODE, 139, 140
FOG START, 139
FRONT, 49, 51, 70, 73, 151, 152, 158,

159, 183
FRONT AND BACK, 49, 51{53, 70,

73, 151, 152
FRONT LEFT, 151, 152, 158
FRONT RIGHT, 151, 152, 158
FrontFace, 48, 70
Frustum, 32, 33, 223
FUNC ADD, 147, 149, 205
FUNC REVERSE SUBTRACT, 147
FUNC SUBTRACT, 147

GenLists, 178
GenTextures, 133, 134, 178, 184
GEQUAL, 143{145
Get, 30, 178, 181, 182, 243, 246
GetBooleanv, 181, 182, 193
GetClipPlane, 182, 183
GetColorTable, 83, 158, 185
GetColorTableParameter, 186
GetConvolutionFilter, 158, 186
GetConvolutionParameter, 187
GetConvolutionParameteriv, 83, 84
GetDoublev, 181, 182, 193
GetError, 11
GetFloatv, 181, 182, 185, 193
GetHistogram, 88, 158, 187
GetHistogramParameter, 188
GetIntegerv, 25, 181, 182, 185, 193,

244
GetLight, 182, 183
GetMap, 183

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

260 INDEX

GetMaterial, 182, 183
GetMinmax, 158, 188
GetMinmaxParameter, 188
GetPixelMap, 183
GetPointerv, 189
GetPolygonStipple, 185
GetSeparableFilter, 158, 186
GetString, 189
GetTexEnv, 182, 183
GetTexGen, 182, 183
GetTexImage, 103, 132, 184, 186{188
GetTexImage1D, 158
GetTexImage2D, 158
GetTexImage3D, 158
GetTexLevelParameter, 182, 183
GetTexParameter, 182, 183
GetTexParameterfv, 132, 134
GetTexParameteriv, 132, 134
GL ARB multitexture, 240
GREATER, 143{145
GREEN, 78, 92, 159, 160, 208, 210,

216
GREEN BIAS, 101
GREEN SCALE, 101

Hint, 179
HINT BIT, 191
HISTOGRAM, 87, 88, 109, 187, 188
Histogram, 87, 88, 109, 179
HISTOGRAM ALPHA SIZE, 188
HISTOGRAM BLUE SIZE, 188
HISTOGRAM FORMAT, 188
HISTOGRAM GREEN SIZE, 188
HISTOGRAM LUMINANCE SIZE,

188
HISTOGRAM RED SIZE, 188
HISTOGRAM SINK, 188
HISTOGRAM WIDTH, 188
HP convolution border modes, 233

INCR, 144
INDEX, 216
Index, 19, 21
INDEX ARRAY, 23, 27
INDEX ARRAY POINTER, 189

INDEX LOGIC OP, 150
INDEX OFFSET, 78, 101, 208
INDEX SHIFT, 78, 101, 208
IndexMask, 152, 153
IndexPointer, 19, 22, 178
InitNames, 171
INT, 22, 91, 160, 161, 177
INTENSITY, 87, 88, 103, 104, 114,

115, 136, 137, 185, 208, 226
INTENSITY12, 87, 88, 115
INTENSITY16, 87, 88, 115
INTENSITY4, 87, 88, 115
INTENSITY8, 87, 88, 115
InterleavedArrays, 19, 25, 26, 178
INVALID ENUM, 12, 13, 38, 49, 77,

83, 87, 88, 90, 120, 132, 184,
243, 244

INVALID OPERATION, 13, 19, 77,
90, 94, 133, 151, 156, 158,
159, 171, 173, 175, 249

INVALID VALUE, 12, 13, 22, 25, 30,
33, 49, 60, 64, 76, 78{80, 82{
84, 87, 113, 114, 116, 121{
123, 130, 134, 139, 143, 154,
165, 166, 168, 175, 177, 183,
184, 249

INVERT, 144, 151
IsEnabled, 178, 181, 193
IsList, 178
IsTexture, 178, 184

KEEP, 144, 145, 205

LEFT, 151, 152, 158
LEQUAL, 143{145
LESS, 143{145, 205
Light, 49, 50
LIGHTi, 49, 51, 224
LIGHT0, 49
LIGHT MODEL AMBIENT, 50
LIGHT MODEL COLOR

CONTROL, 50
LIGHT MODEL LOCAL VIEWER,

50
LIGHT MODEL TWO SIDE, 50

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

INDEX 261

LIGHTING, 44
LIGHTING BIT, 191
LightModel, 49, 50
LINE, 73{75, 168, 169, 201, 226
LINE BIT, 191
LINE LOOP, 15
LINE RESET TOKEN, 176
LINE SMOOTH, 64
LINE SMOOTH HINT, 180
LINE STIPPLE, 67
LINE STRIP, 15, 168
LINE TOKEN, 176
LINEAR, 124, 127, 130, 131, 139
LINEAR ATTENUATION, 50
LINEAR MIPMAP LINEAR, 124,

129, 130
LINEAR MIPMAP NEAREST, 124,

129, 130
LINES, 16, 67
LineStipple, 66
LineWidth, 62
LIST BIT, 191
ListBase, 178, 179
LOAD, 155
LoadIdentity, 31
LoadMatrix, 31, 32
LoadName, 171
LOGIC OP, 150
LogicOp, 150, 151
LUMINANCE, 92, 99, 103, 104, 113{

115, 136, 137, 159, 160, 185,
208, 210, 226

LUMINANCE12, 115
LUMINANCE12 ALPHA12, 115
LUMINANCE12 ALPHA4, 115
LUMINANCE16, 115
LUMINANCE16 ALPHA16, 115
LUMINANCE4, 115
LUMINANCE4 ALPHA4, 115
LUMINANCE6 ALPHA2, 115
LUMINANCE8, 115
LUMINANCE8 ALPHA8, 115
LUMINANCE ALPHA, 92, 99, 103,

104, 113{115, 136, 137, 159,
160, 162, 185

Map1, 165, 166, 182
MAP1 COLOR 4, 165
MAP1 INDEX, 165
MAP1 NORMAL, 165
MAP1 TEXTURE COORD 1, 165,

167
MAP1 TEXTURE COORD 2, 165,

167
MAP1 TEXTURE COORD 3, 165
MAP1 TEXTURE COORD 4, 165
MAP1 VERTEX 3, 165
MAP1 VERTEX 4, 165
Map2, 165, 166, 182
MAP2 VERTEX 3, 167
MAP2 VERTEX 4, 167
Map[12], 249
MAP COLOR, 78, 101, 102
MAP STENCIL, 78, 102
MAP VERTEX 3, 167
MAP VERTEX 4, 167
MapGrid1, 168
MapGrid2, 168
Material, 19, 49, 50, 54, 223
MatrixMode, 31
MAX, 147
MAX 3D TEXTURE SIZE, 116
MAX ATTRIB STACK DEPTH,

190
MAX CLIENT ATTRIB STACK

DEPTH, 190
MAX COLOR MATRIX STACK

DEPTH, 185
MAX CONVOLUTION HEIGHT,

83, 187
MAX CONVOLUTION WIDTH,

83, 84, 187
MAX ELEMENTS INDICES, 25
MAX ELEMENTS VERTICES, 25
MAX EVAL ORDER, 165, 166
MAX PIXEL MAP TABLE, 79, 101
MAX TEXTURE SIZE, 116
MAX TEXTURE UNITS ARB, 240,

243, 244, 251
MIN, 147
MINMAX, 88, 109, 188

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

262 INDEX

Minmax, 88, 110
MINMAX FORMAT, 188
MINMAX SINK, 188
MODELVIEW, 31, 34, 245
MODULATE, 135, 136
MULT, 155, 156
MultiTexCoord, 241
MultiTexCoordARB, 243, 244
MultMatrix, 31, 32

N3F V3F, 25, 26
NAND, 151
NEAREST, 124, 127, 130, 131
NEAREST MIPMAP LINEAR, 124,

129{131
NEAREST MIPMAP NEAREST,

124, 129{131
NEVER, 143{145
NewList, 175, 177, 178
NICEST, 180
NO ERROR, 11, 12
NONE, 151, 152
NOOP, 151
NOR, 151
Normal, 19, 20
Normal3, 8, 9, 20
Normal3d, 8
Normal3dv, 9
Normal3f, 8
Normal3fv, 9
NORMAL ARRAY, 23, 27
NORMAL ARRAY POINTER, 189
NORMALIZE, 35
NormalPointer, 19, 22, 27, 178
NOTEQUAL, 143{145

OBJECT LINEAR, 37, 38, 183, 245,
246

OBJECT PLANE, 37
ONE, 148, 149, 205
ONE MINUS CONSTANT ALPHA,

77, 148, 149
ONE MINUS CONSTANT COLOR,

77, 148, 149
ONE MINUS DST ALPHA, 148

ONE MINUS DST COLOR, 148
ONE MINUS SRC ALPHA, 148
ONE MINUS SRC COLOR, 148
OR, 151
OR INVERTED, 151
OR REVERSE, 151
ORDER, 184
Ortho, 32, 33, 223
OUT OF MEMORY, 12, 13, 177

PACK ALIGNMENT, 158, 207
PACK IMAGE HEIGHT, 158, 184,

207
PACK LSB FIRST, 158, 207
PACK ROW LENGTH, 158, 207
PACK SKIP IMAGES, 158, 184, 207
PACK SKIP PIXELS, 158, 207
PACK SKIP ROWS, 158, 207
PACK SWAP BYTES, 158, 207
PASS THROUGH TOKEN, 176
PassThrough, 174
PERSPECTIVE CORRECTION

HINT, 180
PIXEL MAP A TO A, 79, 101
PIXEL MAP B TO B, 79, 101
PIXEL MAP G TO G, 79, 101
PIXEL MAP I TO A, 79, 102
PIXEL MAP I TO B, 79, 102
PIXEL MAP I TO G, 79, 102
PIXEL MAP I TO I, 79, 102
PIXEL MAP I TO R, 79, 102
PIXEL MAP R TO R, 79, 101
PIXEL MAP S TO S, 79, 102
PIXEL MODE BIT, 191
PixelMap, 75, 78, 79, 162
PixelStore, 19, 75, 76, 78, 158, 162,

178
PixelTransfer, 75, 78, 107, 162
PixelZoom, 100
POINT, 73, 74, 168, 169, 201, 226
POINT BIT, 191
POINT SMOOTH, 60
POINT SMOOTH HINT, 180
POINT TOKEN, 176
POINTS, 15, 168

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

INDEX 263

PointSize, 60
POLYGON, 16, 19
POLYGON BIT, 191
POLYGON OFFSET FILL, 74
POLYGON OFFSET LINE, 74
POLYGON OFFSET POINT, 74
POLYGON SMOOTH, 70
POLYGON SMOOTH HINT, 180
POLYGON STIPPLE, 72
POLYGON STIPPLE BIT, 191
POLYGON TOKEN, 176
PolygonMode, 69, 73, 75, 171, 173
PolygonO�set, 74
PolygonStipple, 72
PopAttrib, 189, 190, 192, 224, 251
PopClientAttrib, 19, 178, 189, 190,

192, 251
PopMatrix, 34, 245
PopName, 171
POSITION, 50, 183
POST COLOR MATRIX x BIAS,

78
POST COLOR MATRIX x SCALE,

78
POST COLOR MATRIX ALPHA

BIAS, 108
POST COLOR MATRIX ALPHA

SCALE, 108
POST COLOR MATRIX BLUE

BIAS, 108
POST COLOR MATRIX BLUE

SCALE, 108
POST COLOR MATRIX COLOR

TABLE, 80, 109
POST COLOR MATRIX GREEN

BIAS, 108
POST COLOR MATRIX GREEN

SCALE, 108
POST COLOR MATRIX RED

BIAS, 108
POST COLOR MATRIX RED

SCALE, 108
POST CONVOLUTION x BIAS, 78
POST CONVOLUTION x SCALE,

78

POST CONVOLUTION ALPHA
BIAS, 107

POST CONVOLUTION ALPHA
SCALE, 107

POST CONVOLUTION BLUE
BIAS, 107

POST CONVOLUTION BLUE
SCALE, 107

POST CONVOLUTION COLOR
TABLE, 80, 108

POST CONVOLUTION GREEN
BIAS, 107

POST CONVOLUTION GREEN
SCALE, 107

POST CONVOLUTION RED
BIAS, 107

POST CONVOLUTION RED
SCALE, 107

PrioritizeTextures, 134, 135
PROJECTION, 31, 34, 245
PROXY COLOR TABLE, 80, 82,

179
PROXY HISTOGRAM, 87, 88, 179,

188
PROXY POST COLOR MATRIX

COLOR TABLE, 80, 179
PROXY POST CONVOLUTION

COLOR TABLE, 80, 179
PROXY TEXTURE 1D, 117, 132,

179, 183
PROXY TEXTURE 2D, 116, 132,

179, 183
PROXY TEXTURE 3D, 112, 132,

179, 183
PushAttrib, 189, 190, 192, 251
PushClientAttrib, 19, 178, 189, 190,

192, 251
PushMatrix, 34, 245
PushName, 171

Q, 36, 38, 183
QUAD STRIP, 17
QUADRATIC ATTENUATION, 50
QUADS, 18, 19

R, 36, 38, 183

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

264 INDEX

R3 G3 B2, 115
RasterPos, 41, 171, 223, 246
RasterPos2, 41, 246
RasterPos3, 41, 246
RasterPos4, 41, 246
ReadBu�er, 158, 159, 162
ReadPixels, 75, 78, 91{93, 103, 156{

160, 162, 178, 184{186
Rect, 28, 70
RED, 78, 92, 159, 160, 208, 210, 216
RED BIAS, 101
RED SCALE, 101
REDUCE, 105, 107, 209
RENDER, 171, 172, 217
RENDERER, 189
RenderMode, 171{174, 178
REPEAT, 124, 125, 127, 128, 131,

203
REPLACE, 135, 136, 144
REPLICATE BORDER, 105, 106
RESCALE NORMAL, 35
ResetHistogram, 187
ResetMinmax, 188
RETURN, 155, 156
RGB, 92, 94, 98, 103, 104, 113{115,

136, 137, 159, 162, 185, 226
RGB10, 115
RGB10 A2, 115
RGB12, 115
RGB16, 115
RGB4, 115
RGB5, 115
RGB5 A1, 115
RGB8, 115
RGBA, 81, 82, 85{88, 92, 94, 98, 103,

104, 113{115, 136, 137, 159,
162, 185, 208{211

RGBA12, 115
RGBA16, 115
RGBA2, 115
RGBA4, 115
RGBA8, 115
RIGHT, 151, 152, 158
Rotate, 32, 223

S, 36, 37, 183
Scale, 32, 33, 223
Scissor, 143
SCISSOR BIT, 191
SCISSOR TEST, 143
SELECT, 171, 172, 224
SelectBu�er, 171, 172, 178
SELECTION BUFFER POINTER,

189
SEPARABLE 2D, 85, 103, 117, 187
SeparableFilter2D, 84
SEPARATE SPECULAR COLOR,

47
SET, 151
SGI color matrix, 233
SGIS multitexture, 238
SGIS texture edge clamp, 231
SGIS texture lod, 232
ShadeModel, 54
SHININESS, 50
SHORT, 22, 91, 160, 161, 177
SINGLE COLOR, 46, 47, 199
SMOOTH, 54, 198
SPECULAR, 50, 51
SPHERE MAP, 37, 38
SPOT CUTOFF, 50
SPOT DIRECTION, 50, 183
SPOT EXPONENT, 50
SRC ALPHA, 148
SRC ALPHA SATURATE, 148
SRC COLOR, 148
STACK OVERFLOW, 13, 34, 171,

190, 245
STACK UNDERFLOW, 13, 34, 171,

190, 245
STENCIL, 162
STENCIL BUFFER BIT, 154, 191
STENCIL INDEX, 80, 83, 90, 92,

100, 112, 156, 158, 159, 162,
184

STENCIL TEST, 144
StencilFunc, 144, 222
StencilMask, 153, 156, 223
StencilOp, 144, 145

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

INDEX 265

T, 36, 183
T2F C3F V3F, 25, 26
T2F C4F N3F V3F, 25, 26
T2F C4UB V3F, 25, 26
T2F N3F V3F, 25, 26
T2F V3F, 25, 26
T4F C4F N3F V4F, 25, 26
T4F V4F, 25, 26
TABLE TOO LARGE, 13, 80, 87
TexCoord, 19, 20, 241, 243
TexCoord1, 20, 241
TexCoord2, 20, 241
TexCoord3, 20, 241
TexCoord4, 20, 241
TexCoordPointer, 19, 21, 22, 27, 178,

243
TexEnv, 135, 249
TexGen, 36{38, 240, 246
TexImage, 121
TexImage1D, 76, 103, 105, 113, 117,

118, 120, 121, 129, 132, 179,
248

TexImage2D, 76, 87, 88, 103, 105,
113, 116{118, 120, 121, 129,
132, 179, 248

TexImage3D, 76, 112{114, 116{118,
121, 129, 132, 178, 184, 248

TexParameter, 123
TexParameter[if], 126, 130
TexParameterf, 134
TexParameterfv, 134
TexParameteri, 134
TexParameteriv, 134
TexSubImage, 121
TexSubImage1D, 103, 121, 123
TexSubImage2D, 103, 120{122
TexSubImage3D, 120{122
TEXTURE, 31, 34, 244, 245
TEXTUREi ARB, 241
TEXTURE0 ARB, 243, 245, 249,

251, 254
TEXTURE1 ARB, 251
TEXTURE xD, 202, 253
TEXTURE 1D, 103, 117, 120, 121,

124, 132, 133, 138, 183, 184

TEXTURE 2D, 103, 116, 120, 121,
124, 132, 133, 138, 183, 184

TEXTURE 3D, 112, 121, 124, 132,
133, 138, 183, 184

TEXTURE ALPHA SIZE, 183
TEXTURE BASE LEVEL, 116, 117,

124, 126, 127, 129{132, 248
TEXTURE BIT, 190, 191
TEXTURE BLUE SIZE, 183
TEXTURE BORDER, 183
TEXTURE BORDER COLOR, 124,

129, 131, 132
TEXTURE COMPONENTS, 183
TEXTURE COORD ARRAY, 23,

27, 243
TEXTURE COORD ARRAY

POINTER, 189
TEXTURE DEPTH, 183
TEXTURE ENV, 135, 183
TEXTURE ENV COLOR, 135
TEXTURE ENV MODE, 135
TEXTURE GEN MODE, 37, 38
TEXTURE GEN Q, 38
TEXTURE GEN R, 38
TEXTURE GEN S, 38
TEXTURE GEN T, 38
TEXTURE GREEN SIZE, 183
TEXTURE HEIGHT, 183
TEXTURE INTENSITY SIZE, 183
TEXTURE INTERNAL FORMAT,

183
TEXTURE LUMINANCE SIZE,

183
TEXTURE MAG FILTER, 124, 131
TEXTURE MAX LEVEL, 116, 124,

130, 132, 248
TEXTURE MAX LOD, 124{126,

132
TEXTURE MIN FILTER, 124, 127,

129{131, 248
TEXTURE MIN LOD, 124{126, 132
TEXTURE PRIORITY, 124, 132,

134
TEXTURE RED SIZE, 183
TEXTURE RESIDENT, 132, 134

APPENDIX T

Microsoft Corp. Exhibit 1009

Version 1.2.1 - April 1, 1999

266 INDEX

TEXTURE WIDTH, 183
TEXTURE WRAP R, 124, 128
TEXTURE WRAP S, 124, 127, 128
TEXTURE WRAP T, 124, 128
TRANSFORM BIT, 191
Translate, 32, 223
TRIANGLE FAN, 17
TRIANGLE STRIP, 16
TRIANGLES, 17, 19
TRUE, 18, 19, 40, 46{48, 76, 78, 87,

88, 134, 153, 158, 178, 182,
184, 187, 188

UNPACK ALIGNMENT, 76, 93,
112, 207

UNPACK IMAGE HEIGHT, 76,
112, 207

UNPACK LSB FIRST, 76, 98, 207
UNPACK ROW LENGTH, 76, 90,

93, 112, 207
UNPACK SKIP IMAGES, 76, 112,

117, 207
UNPACK SKIP PIXELS, 76, 93, 98,

207
UNPACK SKIP ROWS, 76, 93, 98,

207
UNPACK SWAP BYTES, 76, 90, 92,

207
UNSIGNED BYTE, 22, 24, 26, 91,

95, 160, 161, 177
UNSIGNED BYTE 2 3 3 REV, 91,

93{95, 161
UNSIGNED BYTE 3 3 2, 91, 93{95,

161
UNSIGNED INT, 22, 24, 91, 97, 160,

161, 177
UNSIGNED INT 10 10 10 2, 91, 94,

97, 161
UNSIGNED INT 2 10 10 10 REV,

91, 94, 97, 161
UNSIGNED INT 8 8 8 8, 91, 94, 97,

161
UNSIGNED INT 8 8 8 8 REV, 91,

94, 97, 161

UNSIGNED SHORT, 22, 24, 91, 96,
160, 161, 177

UNSIGNED SHORT 1 5 5 5 REV,
91, 94, 96, 161

UNSIGNED SHORT 4 4 4 4, 91, 94,
96, 161

UNSIGNED SHORT 4 4 4 4 REV,
91, 94, 96, 161

UNSIGNED SHORT 5 5 5 1, 91, 94,
96, 161

UNSIGNED SHORT 5 6 5, 91, 93,
94, 96, 161

UNSIGNED SHORT 5 6 5 REV, 91,
93, 94, 96, 161

V2F, 25, 26
V3F, 25, 26
VENDOR, 189
VERSION, 189
Vertex, 7, 19, 20, 41, 167
Vertex2, 20, 28
Vertex2sv, 7
Vertex3, 20
Vertex3f, 7
Vertex4, 20
VERTEX ARRAY, 23, 27
VERTEX ARRAY POINTER, 189
VertexPointer, 19, 22, 27, 178
Viewport, 30
VIEWPORT BIT, 191

XOR, 151

ZERO, 144, 148, 149, 205

APPENDIX T

Microsoft Corp. Exhibit 1009

Appendix U - Claim Chart Showing Teachings of Potmesil, Hornbacker, and Lindstrom
Pertinent to Challenged Claims of U.S. Patent No. 7,908,343

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

1.Preamble: A
method of
retrieving large-
scale images
over network
communications
channels for
display on a
limited
communication
bandwidth
computer
device, said
method
comprising:

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better located
and visualized when displayed directly or via clickable anchors on top of 2D
maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser
capable of continuous scroll and zoom of an arbitrarily large sheet and a
3D flight-simulator browser capable of continuous flight around the
Earth. Both browsers download and cache geographical information,
geometrical models, and URL anchors in small regions called tiles. The
tile caching process is based on the user’s current position, velocity, and
acceleration in 2D/3D space as well as on the latency of server replies. A
user can program these browsers by adding small application programs
- mapplets.

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or quadtrees.
We have also developed a metadata server which contains, in hierarchical
layers, URL pointers and geographical coordinates of various WWW
documents, geographical information and geometrical models.

Potmesil at 1328:

The geographical system outlined in this paper is based on these
assumptions:

• the amount of available geographical data by far exceeds the storage

1 For easier readability, color figures from Potmesil are copied from an online copy of the reference available at
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html. The figures are identical to those in Ex. [XX].

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 2 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

capacity of any one client machine: the system needs to be network
based with data stored in server hosts (An extreme example is the
USGS's 1-meter resolution monochrome image of the United States -
when completed it will be available on 3,300 CD-ROM's!),

• the system is model based: servers provide clients with models of
spatial and other data and all image rendering is done locally by client
hosts,

• there is a large variety of data, relevant to this system, located on many
servers in many formats: a directory system is needed to find such
data,

• some geography-related data (weather satellite and radar images,
traffic reports, news, hotel reservations) need to be accessed in
(almost) real time: the system must be network-based to obtain such
data,

• the system will used in traditional computers (PC's, workstations,
NC's) as well as in many unforeseen or futuristic devices (ITV's, game
boxes, exercise bicycles, multi-media kiosks, cellular phones,
sunglasses, heads-up displays on car windshields),

• a user may need to write custom application programs to visualize
some particular data while applications developed by others display
related data.

Hornbacker, Abstract:

A computer network server using HTTP (Web) server software combined
with foreground view composer software (50), background view composer
software (80), view tile cache (60), view tile cache garbage collector (70) and
image files (90) provides image view data to client workstations (20)
using graphical web browsers to display the view of an image from the
server. Problems with specialized client workstation image view software
are eliminated by using the internet and industry standards based

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 3 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
graphical web browsers for the client software. Network and system
performance problems that previously existed when accessing large image
files from a network file server are eliminated by tiling the image view so
that computation and transmission of the view data can be done in an
incremental fashion. The vied tiles are cached on the client workstation to
further reduce network traffic. View tiles are cached on the server to reduce
the amount to view tile computation and to increase responsiveness of the
image view server.

Hornbacker at 6:20-7:1:

The preferred view tile format is 128 pixel by 128 pixel GIF image files.
The GIF image file format is preferred because of Web browser compatibility
and image file size. The GIF image file format is the most widely supported
format for graphical Web browsers and therefore gives the maximum client
compatibility for the image view server. The GIF image format has the
desirable properties of loss-less image data compression, reasonable data
compression ratios, color and grayscale support, and a relatively small
image file header, which relates to the selection of view tile size. With a
raw image data size for monochrome view tiles of 2,048 bytes and a
typical GIF compression of 4 to 1, the compressed data for a view tile is
approximately 512 bytes. With many image file formats, such as TIFF and
JPEG, the image file header (and other overhead information such as data
indexes) can be as large or larger than the image data itself for small images
such as the view tiles; whereas a GIF header for a monochrome image adds
as little as 31 bytes to the GIF image file. Alternate view tile formats such as
Portable Network Graphics (PNG) may be used, especially as native browser
support for the format becomes common.

Hornbacker at 13:28-14:11:

With a low-bandwidth 28.8 kilobaud modem network connection with
approximately 3 kilobytes-per-second throughput, it 83 seconds (250 KB /
3KB/second) to transfer the image file to the workstation application for

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 4 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
viewing. With the image view server only the image data to be displayed
needs to be transmitted. A typical view size of 896 by 512 pixels is made up
of a 7 by 4 array of 128 pixel x 128 pixel view tiles. The monochrome view
tiles are transmitted in a compressed format that typically yields tiles
that are 512 bytes each so the entire view is approximately 14 kilobytes
(0.5 KB x 28 tiles) and the transfer takes approximately 4.8 seconds (14
KB /3 KB/second). This method of image viewing provides better
response to the user with much lower demand on the network
connection. A local-area-network typically utilizes a 10 megabit-per-second
media so the savings from the efficiency of the image view server does not
seem obvious. However, if the 10 megabit-per-second network is shared by
100 users, then the average bandwidth per user is only about 12.5 kilobytes-
per-second so the efficiency of the image view server is still a benefit.

Hornbacker at 14:26-28:

The graphical Web browser is available on all common workstation types as
well other devices such as notebook computers, palm-top computers,
Network Computers and Web television adapters to provide a widely
available solution.

1.A: issuing,
from a limited
communication
bandwidth
computer
device to a
remote
computer, a
request for an
update data
parcel

Potmesil at 1328:

The geographical system outlined in this paper is based on these
assumptions:

• the amount of available geographical data by far exceeds the storage
capacity of any one client machine: the system needs to be network
based with data stored in server hosts (An extreme example is the
USGS's 1-meter resolution monochrome image of the United States -
when completed it will be available on 3,300 CD-ROM's!),

• the system is model based: servers provide clients with models of
spatial and other data and all image rendering is done locally by client
hosts,

• there is a large variety of data, relevant to this system, located on many

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 5 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

servers in many formats: a directory system is needed to find such
data,

• some geography-related data (weather satellite and radar images,
traffic reports, news, hotel reservations) need to be accessed in
(almost) real time: the system must be network-based to obtain such
data,

• the system will used in traditional computers (PC's, workstations,
NC's) as well as in many unforeseen or futuristic devices (ITV's, game
boxes, exercise bicycles, multi-media kiosks, cellular phones,
sunglasses, heads-up displays on car windshields),

• a user may need to write custom application programs to visualize
some particular data while applications developed by others display
related data.

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better located
and visualized when displayed directly or via clickable anchors on top of 2D
maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser
capable of continuous scroll and zoom of an arbitrarily large sheet and a
3D flight-simulator browser capable of continuous flight around the
Earth. Both browsers download and cache geographical information,
geometrical models, and URL anchors in small regions called tiles. The
tile caching process is based on the user’s current position, velocity, and
acceleration in 2D/3D space as well as on the latency of server replies. A
user can program these browsers by adding small application programs

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 6 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
- mapplets.

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or quadtrees.
We have also developed a metadata server which contains, in hierarchical
layers, URL pointers and geographical coordinates of various WWW
documents, geographical information and geometrical models.

Potmesil at 1327:

In this paper, we describe a WWW-based system - consisting of browsers,
servers, and connecting protocols - which allows users to view, search and
post geographically-indexed information.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D map
browser capable of continuous scroll and zoom of an arbitrarily large sheet of
2D information and a 3D flight-simulator browser. Both browsers download
and cache geographical information, geometrical models, and URL
anchors in small regions called tiles. The tile caching process is based on
the user’s current position, velocity, and acceleration in a 2D/3D space as
well as on the latency of server replies. The browsers query servers only
for relevant data around the user’s current and predicted future
locations and expect to receive such data and to prepare them for display
before the user reaches it. Around this core concept of tile caching, various
specialized visualization applets - written in C, C++ or Java - are developed.
Such applets run simultaneously on top of the browser and convert all their
respective data into a common coordinate system specified by the browser.
Examples of such applets are weather and traffic reports, bird migrations, and
a spatial bulletin board applet which displays an anchor of any WWW
document at any geographical location. Each applet typically queries two
servers: a spatial meta server, which knows what information is available at
what geographical location and where on the WWW to find it, and the server
which contains the information itself.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 7 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
Potmesil at 1329-30:

2. Geospatial Servers

The concept of a geography server system recognizes that a digital map or a
3D geographical model is held by many independent sources, distributed
over a network. The objective of a browser is to gather all the necessary
geographical layers, on as-needed basis, without having to store them
locally and to display them. Our architecture of a geography server system
has three major components: a directory scheme for finding servers, a
common interface protocol for talking to the servers, and a strategy for
implementing the servers themselves. We have developed four different types
of servers, so far, in this project: the first three contain actual geographical
geometry - (1) points sampled on grids, (2) random points with names, and
(3) lines and polygons with names - while the last type stores metadata -
information about where to find spatial and geographical information.

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data set
have usually the same size with the possible exception of tiles along the
edges of the data set. Tiles in an index are stored in a power-of-two pyramid
to allow fast access and scroll and zoom operations [Figure 1]. Storing data in
a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ... = 1/3
additional storage space. A data set may also be stored on one or more
compressed formats. The index of each tile data set is read into the server at
startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large number
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first process

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 8 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
receives tile requests from the client. Tiles, which have been recently read
from discs, are saved in shared memory so that other clients can obtain them
more quickly. This is useful when multiple clients are browsing in the same
data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query:
(a) send me a description of the requested tile index, (b) send me the
contents of the requested tile. The output of the server has several pipelined
stages which: (a) reformat the tile if the requested tile is not aligned with tiles
stored in the server; (b) resample the tile if the requested tile is not in the
same coordinate system; (c) dither the tile if the requesting client has only a
limited number of colors; (d) add a digital watermark [2] if the tile data is
copyrighted or encrypt the tile if it is to be seen only by the client; (e)
compress the tile if the network bandwidth requires it.

Potmesil at 1332-33:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The concept
of prefiltered power-of-two images for texture mapping was introduced by
Williams [17] who named them mip maps. Since his seminal paper, it has

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 9 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
become a rendering standard implemented, for example, in OpenGL software
[12] and hardware [1]. In the 2D browser we use any type of data sampled on
a 2D lattice. However, our techniques are applicable to any other model
representations such as TIN's (Triangulated Irregular Networks) of terrain or
VRML models which are clipped to rectangular regions. In more complex
environments, such as furnished interiors of buildings, one must use more
sophisticated data structures and display algorithms to maintain interactive
display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the
latter process reads tracking data, synchronizes all application mapplets,
and composites the final image. It also makes space (data and user) and
time (either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and
time. This cache allocation is currently based on five parameters: x, y, z,
level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Figure 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the user,
least-recently visible tiles, or least-recently arrived tiles.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 10 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
(a) (b)

(c) (d)

Figure 2 Contents of the browser's cache memory after (a) flying from Egypt
to Britain,
(b) to Alaska, (c) to Australia, and (d) hovering above Australia.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location and scale
of a map. A 3D browser may have also multiple windows opened, each with
a different perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one user
(e.g., left and right views from a cockpit, or the view of a tail gunner). The
caching process computes one or more estimated positions of each view and
intersects their bounding volume with the tile coordinate system. Any
intersected tiles not present in the cache are sorted by distance from the
user, and the caching algorithm determines how many of them can be
loaded into the cache. This depends on the total number of allocated tiles for
we need to prevent tile thrashing. The more disc and memory space the host
machine has available, the more tiles can be brought into the cache and
remain there. There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and
disappearing tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 11 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be cached,
each mapplet can start loading its data into each tile. Mapplets also
provide feedback to the cache process: each tile is marked by each mapplet
when it has been drawn, and each mapplet saves the average time it takes to
receive and draw the tile data.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser.
It obtains tile data from the tile server described in Section 2.1 and
converts them into images in the cached tiles. The tiles received from the
server are processed in three pipelined steps: (1) an optional decompression,
(2) mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of
the network connection justifies the additional time spent by the mapplet in
tile decompression. The elevation data are usually compressed using a
wavelet compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 12 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images,
from several WWW servers. The mapplet obtains a GIF image, decodes
it and draws it on top of the current tile contents. Optionally, in addition
to the GIF transparency value, an alpha-blending value can be specified to
make the image background partially visible.

Currently, the mapplet can obtain maps and images from three outside
sources: (1) the well-known Xerox PARC map server which contains
data from the DMA's Digital Chart of the World and the USGS's
1:2,000,000 Digital Line Graph, (2) the U.S. Bureau of the Census
TIGER street map server, and (3) the multi-resolution Mars image
server at the Los Alamos National Laboratory.

Hornbacker, 14:26-28:

The graphical Web browser is available on all common workstation types as

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 13 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
well other devices such as notebook computers, palm-top computers,
Network Computers and Web television adapters to provide a widely
available solution.

Hornbacker, Abstract:

A computer network server using HTTP (Web) server software combined
with foreground view composer software (50), background view composer
software (80), view tile cache (60), view tile cache garbage collector (70) and
image files (90) provides image view data to client workstations (20) using
graphical web browsers to display the view of an image from the server.
Problems with specialized client workstation image view software are
eliminated by using the internet and industry standards based graphical web
browsers for the client software. Network and system performance problems
that previously existed when accessing large image files from a network file
server are eliminated by tiling the image view so that computation and
transmission of the view data can be done in an incremental fashion. The
vied tiles are cached on the client workstation to further reduce network
traffic. View tiles are cached on the server to reduce the amount to view tile
computation and to increase responsiveness of the image view server.

Hornbacker, 3:10-27:

These objects, and others which will become apparent from the following
disclosure, are achieved by this invention which comprises in one aspect
method of identifying and delivering a graphical image from a computer
network file server comprising providing a network file server on which are
stored digital document image files, said server adapted to receive requests
from a Web browser in Uniform Resource Locator (URL) code, to
identify the image file and format selections being requested, to compose
the requested view into a grid of view tiles, and to transmit HTML code
for view tiles to the requesting Web browser.

Another aspect of the invention comprises apparatus comprising a computer
network server adapted to store digital document image files, programmed to

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 14 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
receive requests from a client Web browser in URL code, the URL
specifying a view which identifies an image file and format, to compose
the requested view, and to transmit HTML code for the resultant view to the
client Web browser to display.

A further aspect of the invention is the computer program recorded on
magnetic or optical media for use on a network server comprising code which
interprets HTTP requests from a workstation for a particular view of a digital
document image file stored in memory, retrieves the digital document image
file, composes a grid of view tiles corresponding to the requested view of
the image, computes HTML code for the grid of view tiles in a form which
can be transmitted from the server to the workstation.

Hornbacker, 5:16-25

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user requests
an image view 110 (FIG. 2) having a scale and region specified by by
means of a specially formatted Uniformed Resource Locator (URL) code
using HTTP language which the Web server can decode as a request to
be passed to the image view composition software and that identifies the
image file to be viewed, the scale of the view and the region of the image to
view. The network image server sends HTML data to the client with pre-
computed hyperlinks, such that following a hyperlink by clicking on an area
of an image will send a specific request to the server to deliver a different
area of the drawing or to change the resolution of the image. The resultant
HTML from this request will also contain pre-computed hyperlinks for other
options the user may exercise.

Hornbacker, 6:13-19

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the image
view server context). These tiles are computed for distinct resolutions (FIG

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 15 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
3B) of a given image at the server according to the URL request received
from the browser software on the workstation. The use of tiling enables
effective image data caching 60 at the image view server and by the browser
10 at the client workstation.

Hornbacker, 7:26-8:6

The use of view tiling also allows the image view server to effectively pre-
compute view tiles that may be required by the next view request. The
image view server background view composer computes view tiles that
surround the most recent view request in anticipation a request for a shifted
view. When the shifted view is requested, the foreground view composer can
use the pre-computed view tiles and eliminate the time to compute new view
tiles for the view. For frequently accessed images there is a good chance
that the view tiles for a view may already exist in the view tile cache since
the view tile cache maintains the most recently accessed view tiles. Since
millions of view tiles may be created and eventually exceed the storage
capacity of the image view server, the view tile cache garbage collector
removes the least recently accessed view tiles in the case where the
maximum storage allocation or minimum storage free space limits are
reached.

Hornbacker, 8:30-9:28

To support the tiling and caching of many images on the same image
view server, each view tile must be uniquely identified for reference by
the Web browser with a view tile URL. This uniqueness is accomplished
through a combination of storage location and view tile naming. Uniqueness
between images is accomplished by having a separate storage subdirectory in
the view tile cache for each image. Uniqueness of view tiles for each scale of
view is accomplished through the file name for each view tile. The view tile
name is preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale number

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 16 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
as expressed in parts per 256. The < TILE NUMBER > value is a 5 character
string formed from the base 36 encoding of the tile number as determined by
the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE COLUMN
The TILE ROW and TILE COLUMN values start at 0 for this computation.
For example the second tile of the first row for a view scaled 2: 1 would be
named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first row
for image number 22 on the image view server would be: http :
//hostname/view-tile-cache-path/000022/ V3 J00001. GIF In addition to
the view tile position and view scale, other view attributes that may be
encoded in the view tile storage location or in the view tile name. These
attributes are view rotation angle, view x-mirror, view y-mirror, invert
view. A view tile name with these extra view attributes can be encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> < Y_
MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR, and
INVERT are encoded by the single characters X, Y, and I respectively. An
example is: V3J00001A90XYI.GIF The Web server 30 is configured to
recognize the above-described specially formatted request Uniform Resource
Locators (URL) to be handled by the image view server request broker 40.
This is done by association of the request broker 40 with the URL path or
with the document filename extension.

Hornbacker, 10:24-28

For example, a specific view request might include tiles B2, C2, B3, and C3
(FIG 4A and FIG 5A). If, after viewing those tiles, the client decides that the
view to the immediate left is desired, then the server would send tiles A2 and
A3 (FIG 4B and FIG 5B). This assumes that the client retains in a cache the
other tiles. If the client does not cache then tiles A2, A3, B2, and B3 are sent.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 17 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
Hornbacker, 12:24-13:10

Performance and usability of document viewing can be increased by
using progressive display of tiled images. By using an image file format
that allows a rough view of the image to be displayed while the remainder of
the image content is downloaded, a rough view of the document can be seen
more quickly.

Since most Web browsers can only transfer 1 to 4 GIF images at a time,
usually not all of the view tiles in the view array can be progressively
displayed at the same time. Therefore, it is preferred that to implement
progressive display, algorithms at the client are provided to accept an
alternate data format that would allow the whole document viewing area
screen to take advantage of the progressive display while still taking
advantage of the benefits of tiling and caching at the client. This can be
accomplished in a Web browser environment using algorithms written in
Java, JavaScript, or ActiveX technologies. By using client software to
enhance the client viewer, additional enhancements to performance can be
made by using alternate view tile image formats and image compression
algorithms. A significant example would be to use the Portable Network
Graphics (PNG) format with the optimization of having the image view
server and client transfer only one image header common to be shared by all
view tiles and then sending the low-resolution compressed image data for
each view tile followed by the full-resolution image data for each view tile.

1.B: wherein
the update data
parcel is
selected based
on an operator
controlled
image
viewpoint on
the computer
device relative
to a

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information available
on the WWW, such as weather reports, home pages of National Parks,
VRML models of cities, home pages of Holiday Inn hotels, Yellow and
White Page directory listings or traffic and news reports, is better located and
visualized when displayed directly or via clickable anchors on top of 2D
maps or in full 3D environments.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 18 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

predetermined
image and

We have developed two geographical browsers: a 2D map browser capable of
continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process is
based on the user's current position, velocity, and acceleration in the
2D/3D space as well as on the latency of server replies. A user can program
these browsers by adding small application programs - mapplets.

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or quadtrees.
We have also developed a metadata server which contains, in hierarchical
layers, URL pointers and geographical coordinates of various WWW
documents, geographical information and geometrical models.

Potmesil at 1327-29:

Internet-based computers and communications can be very effective in
enhancing our ability to visualize and to search 3D environments in the great
outdoors where we move, work, play and learn. In this paper, we describe a
WWW-based system - consisting of browsers, servers and connecting
protocols - which allows users to view, search and post geographically-
indexed information.

Much information available on the WWW, such as weather reports, home
pages of National Parks, VRML models of cities, home pages of Holiday Inn
hotels, Yellow and White Page directory listings or traffic and news reports,
is better located and visualized when displayed directly or via clickable
anchors on top of 2D maps or in full 3D environments. In addition, very large
data bases of geographical information itself, such as terrain elevation,
satellite and aerial images, detailed street maps and geometrical models of
buildings and similar man-made structures (present, past and future) are also
becoming available. We seek to build an integrated system which will allow
its users to browse in such spatial data, make queries and post new data.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 19 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Two geographical browsers have been developed for this system: a 2D map
browser capable of continuous scroll and zoom of an arbitrarily large sheet of
2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models, and URL
anchors in small regions called tiles. The tile caching process is based on
the user's current position, velocity, and acceleration in a 2D/3D space as
well as on the latency of server replies. The browsers query servers only for
relevant data around the user's current and predicted future locations and
expect to receive such data and to prepare them for display before the user
reaches it. Around this core concept of tile caching, various specialized
visualization applets - written in C, C++ or Java - are developed. Such
applets run simultaneously on top of the browser and convert all their
respective data into a common coordinate system specified by the browser.
Examples of such applets are weather and traffic reports, bird migrations, and
a spatial bulletin board applet which displays an anchor of any WWW
document at any geographical location. Each applet typically queries two
servers: a spatial meta server, which knows what information is available at
what geographical location and where on the WWW to find it, and the server
which contains the information itself.

Potmesil at 1332:

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-of-
detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Figure 2. When the tile cache is full, some

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 20 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
resident tiles need to be deleted. These can be tiles furthermost from the user,
least-recently visible tiles, or least-recently arrived tiles.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location and
scale of a map. A 3D browser may have also multiple windows opened,
each with a different perspective projection. Each window can be
moving completely independently of all the others, or they may be
different views from one user (e.g., left and right views from a cockpit, or
the view of a tail gunner). The caching process computes one or more
estimated positions of each view and intersects their bounding volume
with the tile coordinate system. Any intersected tiles not present in the
cache are sorted by distance from the user, and the caching algorithm
determines how many of them can be loaded into the cache. This depends
on the total number of allocated tiles for we need to prevent tile thrashing.
The more disc and memory space the host machine has available, the more
tiles can be brought into the cache and remain there. There are several
implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the cached
tiles look like a snake with a growing head and disappearing tail
[Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be used
in low speeds (hovering) when the direction of flight is uncertain
[Figure 2(d)],

obtain as many tiles ahead as possible, in a widening wedge, and delete
any tiles already visited; this may be used during high-speed flight.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 21 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
It obtains tile data from the tile server described in Section 2.1 and
converts them into images in the cached tiles. The tiles received from the
server are processed in three pipelined steps: (1) an optional decompression,
(2) mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of
the network connection justifies the additional time spent by the mapplet in
tile decompression. The elevation data are usually compressed using a
wavelet compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 22 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
monochrome image is displayed.

Potmesil at 1340-41:

3.4 A 3D Geographical Browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server. The browser uses the OpenGL library to
render 3D graphics. To make the three-dimensional browser truly global, we
represent the Earth as an ellipsoid or geodetic datum called World Geodetic
System 1984 (WGS84) [4].

Potmesil, Fig. 2:

Potmesil, Fig. 8:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 23 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

1.C: the update
data parcel
contains data
that is used to
generate a
display on the
limited
communication
bandwidth
computer
device;

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information available
on the WWW, such as weather reports, home pages of National Parks,
VRML models of cities, home pages of Holiday Inn hotels, Yellow and
White Page directory listings or traffic and news reports, is better located and
visualized when displayed directly or via clickable anchors on top of 2D
maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser
capable of continuous scroll and zoom of an arbitrarily large sheet and a
3D flight-simulator browser capable of continuous flight around the
Earth. Both browsers download and cache geographical information,
geometrical models, and URL anchors in small regions called tiles. The tile
caching process is based on the user's current position, velocity, and
acceleration in the 2D/3D space as well as on the latency of server replies. A
user can program these browsers by adding small application programs -
mapplets.

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or quadtrees.
We have also developed a metadata server which contains, in hierarchical

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 24 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
layers, URL pointers and geographical coordinates of various WWW
documents, geographical information and geometrical models.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D map
browser capable of continuous scroll and zoom of an arbitrarily large sheet
of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models, and
URL anchors in small regions called tiles. The tile caching process is
based on the user's current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers query
servers only for relevant data around the user's current and predicted future
locations and expect to receive such data and to prepare them for display
before the user reaches it. Around this core concept of tile caching, various
specialized visualization applets - written in C, C++ or Java - are
developed. Such applets run simultaneously on top of the browser and
convert all their respective data into a common coordinate system specified
by the browser. Examples of such applets are weather and traffic reports, bird
migrations, and a spatial bulletin board applet which displays an anchor of
any WWW document at any geographical location. Each applet typically
queries two servers: a spatial meta server, which knows what information is
available at what geographical location and where on the WWW to find it,
and the server which contains the information itself.

Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 25 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally.

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

Potmesil at 1333-1335:

3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image. While compositing tiles, it
checks whether all mapplets have drawn their layer(s). If there are layers that
have to be drawn before a tile can be shown, the process must wait. This
process is also responsible for synchronizing all mapplets, obtaining the
user's tracking data from a tracking device and obtaining real time or
computing simulated time. This assures that all mapplets are in the same
space and time. Directions where and how the browser should move in space
can come from one of these sources:

• a user can click on an anchor in an HTML document concurrently
displayed by an HTML browser,

• a user can use a mouse or some other tracking device (hand gestures,
force-feedback joystick, GPS receiver), or

• a mapplet can take control of the browser and compute directions
procedurally (e.g., the great circle) or in any other way, perhaps even
including the two above methods.

The two processes run independently and asynchronously. The cache
manager keeps rearranging the cache memory even while the user has

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 26 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
stopped and the image is not regenerated.

3.3 Mapplets: Geographical Applets

The core of the geographical browser, which consists of the display and
caching processes, is programmable with small application programs called
mapplets. They are preferably written in a platform-independent and down-
loadable code such as Java. The programmability of the browser gives a user
the ability to mix-and-match mapplets and to view data in novel ways - not
foreseen by the authors of the browser. In this section, we describe some of
the mapplets that we have developed.

Mapplets obtain pertinent geographical and other data from Internet
servers, convert them, if needed, from external representations, and
render them via the browser's graphical and image-processing libraries.
These are the basic rules that apply to mapplets:

• After the core browser has been started, a user may launch additional
mapplets - typically, from a mapplet HTML page. By default, the
image mapplet, described in Section 3.3.1, is always started with the
core browser.

• Mapplets are ordered top to bottom in a stack, a mapplet can draw into
one or more top-to-bottom ordered adjacent layers.

• Before drawing a layer, a mapplet may have to wait for specified lower
layers to be drawn first.

• A mapplet draws static data (which changes infrequently) into the
off-screen tiles, and dynamic data (which changes from frame to
frame) into the on-screen window.

• If a mapplet needs to redraw one of its layers in a cached tile, it
invalidates the contents of the tile. All other running mapplets must
then redraw their layers in that tile. This means that the mapplets may
have to reload their server's data or must maintain their own

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 27 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

independent tile cache.

• Before compositing the cached tiles into the final window image,
the browser may have to wait for specified layers to be drawn. By
default it always waits for the image mapplet to draw its layer(s).

• When a mapplet draws directly into the on-screen window, it likely
requires a separate drawing process, in order to maintain the browser's
interactive update rate.

• A mapplet can register with the core browser to receive events from
the user's tracking device. An event can be received by all the
registered mapplets or can be passed from top to bottom mapplets until
a mapplet acts on it.

There are several libraries that the core browser makes available to the user
mapplets:

• a socket library provides a general client/server network connection
functions,

• an HTTP library provides an interface for the HTTP/1.0 protocol [3]
on both the client and server sides. This library also implements an
interface to an HTML browser (Netscape Navigator, Mosaic) running
concurrently. Moreover, it provides a uniform interface for filling out
URL templates.

• a caching library allows HTTP documents to be cached in the local
client machine in memory or on disc,

• a graphical library draws geometrical primitives either to the off-
screen tiles or directly to the on-screen window, as it clips
geometrical primitives to within a tile, it puts any clipped parts on
a waiting list and draws them later when the adjacent tiles become
available,

• an image processing library performs some elementary image

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 28 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

processing functions; as in the graphical library case, if an image-
processing function, such as a filter, needs pixels from adjoining
tiles, the library needs to preserve them and provide them to
adjacent tiles,

• a geographical library converts the coordinates of geometrical
primitives among various geographical coordinates systems; it is based
on the USGS cartographic library [5].

An individual mapplet may consist of several processes, usually 1-3, which
divide the typical mapplet tasks into 3 stages: (1) obtaining metadata and data
from servers, (2) converting obtained data into an internal representation, and
(3) drawing the data. If a mapplet also needs to obtain meta information from
a server or data from multiple information servers, additional processes may
have to be spawn. Much of this design depends on the number of
simultaneous requests a mapplet will be making and the size and latency of
the returned data.

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser.
It obtains tile data from the tile server described in Section 2.1 and
converts them into images in the cached tiles. The tiles received from the
server are processed in three pipelined steps: (1) an optional decompression,
(2) mapping into an image, (3) conversion to the local display format.
The mapplet may request compressed tiles from the tile server if the speed of
the network connection justifies the additional time spent by the mapplet in
tile decompression. The elevation data are usually compressed using a
wavelet compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 29 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

shading based on the local surface gradient - via a second lookup
table; Horn [10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table
above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images, from
several WWW servers. The mapplet obtains a GIF image, decodes it and
draws it on top of the current tile contents. Optionally, in addition to the
GIF transparency value, an alpha-blending value can be specified to make the
image background partially visible.

Currently, the mapplet can obtain maps and images from three outside
sources: (1) the well-known Xerox PARC map server which contains data
from the DMA's Digital Chart of the World and the USGS's 1:2,000,000
Digital Line Graph, (2) the U.S. Bureau of the Census TIGER street map
server, and (3) the multi-resolution Mars image server at the Los Alamos

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 30 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
National Laboratory.

Potmesil at 1340:

3.4 A 3D Geographical Browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server. The browser uses the OpenGL library
to render 3D graphics. To make the three-dimensional browser truly global,
we represent the Earth as an ellipsoid or geodetic datum called World
Geodetic System 1984 (WGS84) [4].

Hornbacker, Abstract:

A computer network server using HTTP (Web) server software combined
with foreground view composer software (50), background view composer
software (80), view tile cache (60), view tile cache garbage collector (70) and
image files (90) provides image view data to client workstations (20) using
graphical web browsers to display the view of an image from the server.
Problems with specialized client workstation image view software are
eliminated by using the internet and industry standards based graphical web
browsers for the client software. Network and system performance problems
that previously existed when accessing large image files from a network file
server are eliminated by tiling the image view so that computation and
transmission of the view data can be done in an incremental fashion. The
vied tiles are cached on the client workstation to further reduce network
traffic. View tiles are cached on the server to reduce the amount to view tile
computation and to increase responsiveness of the image view server.

1.D: processing,
on the remote
computer,
source image
data to obtain a

Potmesil at 1329-30:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 31 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

series K1-N of
derivative
images of
progressively
lower image
resolution and

This may be satellite and aerial images, terrain elevations and gradients
or geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in a
data set have usually the same size with the possible exception of tiles along
the edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ...
= 1/3 additional storage space. A data set may also be stored on one or more
compressed formats. The index of each tile data set is read into the server at
startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large number
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first process
receives tile requests from the client. Tiles, which have been recently read
from discs, are saved in shared memory so that other clients can obtain them
more quickly. This is useful when multiple clients are browsing in the same
data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query: (a)
send me a description of the requested tile index, (b) send me the contents of
the requested tile. The output of the server has several pipelined stages
which: (a) reformat the tile if the requested tile is not aligned with tiles
stored in the server; (b) resample the tile if the requested tile is not in the
same coordinate system; (c) dither the tile if the requesting client has
only a limited number of colors; (d) add a digital watermark [2] if the
tile data is copyrighted or encrypt the tile if it is to be seen only by the
client; (e) compress the tile if the network bandwidth requires it.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 32 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Potmesil, 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers, which
are described here, have the ability to cache parts of the geospatial models
before a user needs to display them. The servers can generate the models in
small sections - called tiles - because they store them in hierarchical
representations or have the ability to clip all parts of a model outside the
requested area (or volume). We base this approach on the assumption that the
amount of such models far exceeds the ability to store these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or
gradients. Quadtree data structures and algorithms, many of them for
geographical applications, are described in books and papers by Samet [14].
The concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 33 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
seminal paper, it has become a rendering standard implemented, for
example, in OpenGL software [12] and hardware [1]. In the 2D browser
we use any type of data sampled on a 2D lattice. However, our
techniques are applicable to any other model representations such as
TIN's (Triangulated Irregular Networks) of terrain or VRML models
which are clipped to rectangular regions. In more complex environments,
such as furnished interiors of buildings, one must use more sophisticated data
structures and display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The former
process is responsible for managing the local cache while the latter process
reads tracking data, synchronizes all application mapplets, and composites
the final image. It also makes space (data and user) and time (either real or
simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as
a discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

Potmesil, 1335:

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images, from
several WWW servers. The mapplet obtains a GIF image, decodes it and
draws it on top of the current tile contents. Optionally, in addition to the GIF
transparency value, an alpha-blending value can be specified to make the
image background partially visible.

Currently, the mapplet can obtain maps and images from three outside

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 34 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
sources: (1) the well-known Xerox PARC map server which contains data
from the DMA's Digital Chart of the World and the USGS's 1:2,000,000
Digital Line Graph, (2) the U.S. Bureau of the Census TIGER street map
server, and (3) the multi-resolution Mars image server at the Los Alamos
National Laboratory.

Hornbacker also discloses that view tiles are generated at the server by an
image tiling routine that divides a given image into a grid of smaller images,
which are further computed for distinct resolutions. The view tiles may either
be pre-processed at the server (pre-cached) or newly computed in response to
a request:

Hornbacker, 3:22-27:

A further aspect of the invention is the computer program recorded on
magnetic or optical media for use on a network server comprising code
which interprets HTTP requests from a workstation for a particular view of a
digital document image file stored in memory, retrieves the digital document
image file, composes a grid of view tiles corresponding to the requested
view of the image, computes HTML code for the grid of view tiles in a form
which can be transmitted from the server to the workstation.

Hornbacker, 5:3-8:

Referring first to FIG. 1, a network comprising client workstations 10 and 20
are connected through network connections to a network image view server
100 comprising a network server interface, preferably a web server 30 which
uses the Hypertext Transfer Protocol (HTTP), a request broker 40, a
foreground view composer 50, a view tile cache 60, a background view
composer 80, a garbage collector 70, and a document repository 90 having
image files.

Hornbacker, 5:16-6:19:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 35 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
The code is sent over the network to the network server where the web server
software interprets the request 120, passes the view request URL to the
foreground view composer software through a common gateway interface
(CGI) that is designed to allow processing of HTTP requests external to the
Web server software, and thereby instructs the request broker 130 to get the
particular requested view, having the scale and region called for by the URL.
The foreground view composer is initialized 140 and composes the
requested view 150 after recovering it from memory on the network
server. The foreground view composer software interprets the view
request, computes which view tiles are needed for the view, creates the
view tiles 160 needed for the view, and then creates Hypertext Markup
Language (HTML) output file to describe the view composition to the Web
browser, unless the necessary view tiles to fulfill the request are already
computed and stored in cache memory of the workstation, in which case the
already-computed tiles are recovered by the Web browser. In either case, the
foreground view composer formats the output 170 and then intitializes
backgound view composer 180 which passes the formatted output to the
Web server, which in turn transmits the formatted output over the network to
the Web browser 200 on the requesting workstation 10, where the requesting
browser displays any view tiles already cached 210, combined with newly
computed view tiles 220 which are fetched from the server.

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the
image view server context). These tiles are computed for distinct
resolutions (FIG 3B) of a given image at the server according to the URL
request received from the browser software on the workstation. The use
of tiling enables effective image data caching 60 at the image view server
and by the browser 10 at the client workstation.

Hornbacker further teaches that the image tiles created at the server are
processed into a series of images of progressively lower resolutions based on
the source data:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 36 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
Hornbacker, 6:20-7:25
The preferred view tile format is 128 pixel by 128 pixel GIF image files.
The GIF image file format is preferred because of Web browser compatibility
and image file size. The GIF image file format is the most widely supported
format for graphical Web browsers and therefore gives the maximum client
compatibility for the image view server. The GIF image format has the
desirable properties of loss-less image data compression, reasonable data
compression ratios, color and grayscale support, and a relatively small image
file header, which relates to the selection of view tile size. With a raw image
data size for monochrome view tiles of 2,048 bytes and a typical GIF
compression of 4 to 1, the compressed data for a view tile is approximately
512 bytes. With many image file formats, such as TIFF and JPEG, the image
file header (and other overhead information such as data indexes) can be as
large or larger than the image data itself for small images such as the view
tiles; whereas a GIF header for a monochrome image adds as little as 31
bytes to the GIF image file. Alternate view tile formats such as Portable
Network Graphics (PNG) may be used, especially as native browser support
for the format becomes common.

The 128 pixel view tile size is a good compromise between view tile
granularity and view tile overhead. The view tile granularity of 128 pixels
determines the minimum view shift distance (pan distance) that can be
achieved with standard graphical Web browser and level 2 HTML
formatting. This allows the adjustment of the view position on a 0.64 inch
grid when viewing a 200 pixel-per-inch image at 1 to 1 scale. Reducing the
size of the view tiles allows finer grid for view positioning, but has the
problem that the view tile overhead becomes excessive.

A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view
tile will represent a 256 x 256 pixel area of the image file that has been
scaled down to 128 x 128 pixels. For each possible scale factor there is an
array of tiles to represent the view. Fixed size view tiling is beneficial
because it allows more effective use of the caching mechanism at the
server and at the client. For example, consider a view of 512 pixels by 512

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 37 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
pixels. Without tiling, this view is composed of a single GIF file that is
displayed by the Web browser, and so if the user asks for the view to be
shifted by 256 pixels, then a new GIF image of 512 x 512 pixels needs to be
created and transmitted to the Web browser. With tiling, the first view would
cause 16 view tiles to be computed and transmitted for display by the Web
browser. When the request for the view to be shifted by 256 pixels is made,
only 8 view tiles representing an area of 256 by 512 pixels need to be
computed. In addition only the 8 new view tiles need to be transmitted to the
Web browser since the shifted view will reuse 8 view tiles that are available
from the Web browser cache. The use of tiling cuts the computation and data
transmission in half for this example.

Hornbacker, 8:30-9:28

To support the tiling and caching of many images on the same image view
server, each view tile must be uniquely identified for reference by the Web
browser with a view tile URL. This uniqueness is accomplished through a
combination of storage location and view tile naming. Uniqueness between
images is accomplished by having a separate storage subdirectory in the view
tile cache for each image. Uniqueness of view tiles for each scale of view is
accomplished through the file name for each view tile. The view tile name is
preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale
number as expressed in parts per 256. The < TILE NUMBER > value is a
5 character string formed from the base 36 encoding of the tile number as
determined by the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE COLUMN
The TILE ROW and TILE COLUMN values start at 0 for this computation.
For example the second tile of the first row for a view scaled 2: 1 would be
named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first row for

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 38 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
image number 22 on the image view server would be: http : //hostname/view-
tile-cache-path/000022/ V3 J00001. GIF In addition to the view tile position
and view scale, other view attributes that may be encoded in the view tile
storage location or in the view tile name. These attributes are view rotation
angle, view x-mirror, view y-mirror, invert view. A view tile name with these
extra view attributes can be encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> < Y_
MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR, and
INVERT are encoded by the single characters X, Y, and I respectively. An
example is: V3J00001A90XYI.GIF The Web server 30 is configured to
recognize the above-described specially formatted request Uniform Resource
Locators (URL) to be handled by the image view server request broker 40.
This is done by association of the request broker 40 with the URL path or
with the document filename extension.

Hornbacker, 10:3-10
The foreground view composer 50 interprets the view request command 140
to determine what view needs to be composed. The view request may be
absolute by defining scale and position, relative by defining scale and
position as a delta to a previous view, or implied by relying on system
defaults to select the view.

View computation software routine 150 is illustrated in FIG 7 wherein the
command interpreter 151 takes the view request and determines 152
what scale view tile grid is needed for the view and what view tiles within
the grid are needed for the view 150 (FIG. 2), and generates the view tile 153,
resulting in formatted view output 154.
Hornbacker, 11:19-28
FIG 6 A illustrates how the background view composer algorithm works.
Assuming that for a given view requested by the client, tiles C3, C4, D3 and

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 39 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
D4 are delivered, after those tile are delivered to the Web browser, the
background view composer routine within the server program creates the tiles
around these tiles, starting at E4, by composing or computing such
surrounding tiles. As long as the client continues to view this page at this
scale factor, the server will compute view tiles expanding outward from the
tiles requested last. FIG 6B illustrates another request made by a client, after
the two rotations of tiles were generated. The request asked for tiles G3, G4,
H3, and H4. When the tile pre-computation begins for this request it will
create tiles G5, H5, 15, 14, 13, 12, H2, and G2 in the first rotation, but it will
not attempt to create tiles in the F column.

Hornbacker, 12:21-13:10
Performance and usability of document viewing can be increased by using
progressive display of tiled images. By using an image file format that allows
a rough view of the image to be displayed while the remainder of the image
content is downloaded, a rough view of the document can be seen more
quickly.

Since most Web browsers can only transfer 1 to 4 GIF images at a time,
usually not all of the view tiles in the view array can be progressively
displayed at the same time. Therefore, it is preferred that to implement
progressive display, algorithms at the client are provided to accept an
alternate data format that would allow the whole document viewing area
screen to take advantage of the progressive display while still taking
advantage of the benefits of tiling and caching at the client. This can be
accomplished in a Web browser environment using algorithms written in
Java, JavaScript, or ActiveX technologies. By using client software to
enhance the client viewer, additional enhancements to performance can be
made by using alternate view tile image formats and image compression
algorithms. A significant example would be to use the Portable Network
Graphics (PNG) format with the optimization of having the image view
server and client transfer only one image header common to be shared by all
view tiles and then sending the low-resolution compressed image data for

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 40 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
each view tile followed by the full-resolution image data for each view tile.
Hornbacker, 13:26-14:6
For example an E-size engineering drawing raster image file is 8 million
bytes in size when imaged in monochrome at 200 pixels-per-inch. With
commonly used data compression the image file can be reduced to 250
kilobytes. With a low bandwidth 28.8 kilobaud modem network connection
with approximately 3 kilobytes-per-second throughput, it 83 seconds (250
KB / 3 KB/second) to transfer the image file to the workstation application
for viewing. With the image view server only the image data to be displayed
needs to be transmitted. A typical view size of 896 by 512 pixels is made up
of a 7 by 4 array of 128 pixel x 128 pixel view tiles. The monochrome view
tiles are transmitted in a compressed format that typically yields tiles that are
512 bytes each so the entire view is approximately 14 kilobytes (0.5 KB x 28
tiles) and the transfer takes approximately 4.8 seconds (14 KB / 3
KB/second).

1.E: wherein
series image K0
being
subdivided into
a regular array

Potmesil, Fig. 1:

Potmesil at 1329-1330:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 41 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
2.1 A Tile Server
The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data set
have usually the same size with the possible exception of tiles along the
edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32
+ ... = 1/3 additional storage space. A data set may also be stored on one or
more compressed formats. The index of each tile data set is read into the
server at startup time and stored in a quadtree [14].
Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers, which
are described here, have the ability to cache parts of the geospatial models
before a user needs to display them. The servers can generate the models in
small sections - called tiles - because they store them in hierarchical
representations or have the ability to clip all parts of a model outside the
requested area (or volume). We base this approach on the assumption that the
amount of such models far exceeds the ability to store these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or
gradients. Quadtree data structures and algorithms, many of them for
geographical applications, are described in books and papers by Samet [14].
The concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his
seminal paper, it has become a rendering standard implemented, for
example, in OpenGL software [12] and hardware [1]. In the 2D browser
we use any type of data sampled on a 2D lattice. However, our

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 42 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
techniques are applicable to any other model representations such as
TIN's (Triangulated Irregular Networks) of terrain or VRML models
which are clipped to rectangular regions. In more complex environments,
such as furnished interiors of buildings, one must use more sophisticated data
structures and display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The former
process is responsible for managing the local cache while the latter process
reads tracking data, synchronizes all application mapplets, and composites
the final image. It also makes space (data and user) and time (either real or
simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as
a discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

Hornbacker teaches that view tiles are generated by an image tiling routine
which divides a source image into an array of 128 X 128 pixel tiles at varying
resolutions.

Hornbacker, 6:13-19

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the image
view server context). These tiles are computed for distinct resolutions (FIG
3B) of a given image at the server according to the URL request received
from the browser software on the workstation. The use of tiling enables
effective image data caching 60 at the image view server and by the browser
10 at the client workstation.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 43 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
Hornbacker, 7:11-15

A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view tile
will represent a 256 x 256 pixel area of the image file that has been scaled
down to 128 x 128 pixels. For each possible scale factor there is an array of
tiles to represent the view. Fixed size view tiling is beneficial because it
allows more effective use of the caching mechanism at the server and at the
client.

Hornbacker, 8:30-9:28

To support the tiling and caching of many images on the same image view
server, each view tile must be uniquely identified for reference by the Web
browser with a view tile URL. This uniqueness is accomplished through a
combination of storage location and view tile naming. Uniqueness between
images is accomplished by having a separate storage subdirectory in the view
tile cache for each image. Uniqueness of view tiles for each scale of view is
accomplished through the file name for each view tile. The view tile name is
preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale number
as expressed in parts per 256. The < TILE NUMBER > value is a 5 character
string formed from the base 36 encoding of the tile number as determined by
the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE COLUMN
The TILE ROW and TILE COLUMN values start at 0 for this computation.
For example the second tile of the first row for a view scaled 2: 1 would be
named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first row for
image number 22 on the image view server would be: http : //hostname/view-
tile-cache-path/000022/ V3 J00001. GIF In addition to the view tile position
and view scale, other view attributes that may be encoded in the view tile

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 44 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
storage location or in the view tile name. These attributes are view rotation
angle, view x-mirror, view y-mirror, invert view. A view tile name with these
extra view attributes can be encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> < Y_
MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR, and
INVERT are encoded by the single characters X, Y, and I respectively. An
example is: V3J00001A90XYI.GIF The Web server 30 is configured to
recognize the above-described specially formatted request Uniform Resource
Locators (URL) to be handled by the image view server request broker 40.
This is done by association of the request broker 40 with the URL path or
with the document filename extension.

Hornbacker, 10:7-10

View computation software routine 150 is illustrated in FIG 7 wherein the
command interpreter 151 takes the view request and determines 152 what
scale view tile grid is needed for the view and what view tiles within the grid
are needed for the view 150 (FIG. 2), and generates the view tile 153,
resulting in formatted view output 154.

1.F: wherein
each resulting
image parcel of
the array has a
predetermined
pixel resolution

Potmesil, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 45 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Potmesil at 1329-1330:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data
set have usually the same size with the possible exception of tiles along
the edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32
+ ... = 1/3 additional storage space. A data set may also be stored on one
or more compressed formats. The index of each tile data set is read into the
server at startup time and stored in a quadtree [14].

Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers, which

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 46 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
are described here, have the ability to cache parts of the geospatial models
before a user needs to display them. The servers can generate the models in
small sections - called tiles - because they store them in hierarchical
representations or have the ability to clip all parts of a model outside the
requested area (or volume). We base this approach on the assumption that the
amount of such models far exceeds the ability to store these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or
gradients. Quadtree data structures and algorithms, many of them for
geographical applications, are described in books and papers by Samet [14].
The concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his
seminal paper, it has become a rendering standard implemented, for
example, in OpenGL software [12] and hardware [1]. In the 2D browser
we use any type of data sampled on a 2D lattice. However, our techniques are
applicable to any other model representations such as TIN's (Triangulated
Irregular Networks) of terrain or VRML models which are clipped to
rectangular regions. In more complex environments, such as furnished
interiors of buildings, one must use more sophisticated data structures and
display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The former
process is responsible for managing the local cache while the latter process
reads tracking data, synchronizes all application mapplets, and composites
the final image. It also makes space (data and user) and time (either real or
simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-of-
detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 47 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
discrete time slices.

Hornbacker, 6:20-7:25
The preferred view tile format is 128 pixel by 128 pixel GIF image files.
The GIF image file format is preferred because of Web browser compatibility
and image file size. The GIF image file format is the most widely supported
format for graphical Web browsers and therefore gives the maximum client
compatibility for the image view server. The GIF image format has the
desirable properties of loss-less image data compression, reasonable data
compression ratios, color and grayscale support, and a relatively small image
file header, which relates to the selection of view tile size. With a raw image
data size for monochrome view tiles of 2,048 bytes and a typical GIF
compression of 4 to 1, the compressed data for a view tile is approximately
512 bytes. With many image file formats, such as TIFF and JPEG, the image
file header (and other overhead information such as data indexes) can be as
large or larger than the image data itself for small images such as the view
tiles; whereas a GIF header for a monochrome image adds as little as 31
bytes to the GIF image file. Alternate view tile formats such as Portable
Network Graphics (PNG) may be used, especially as native browser support
for the format becomes common.

The 128 pixel view tile size is a good compromise between view tile
granularity and view tile overhead. The view tile granularity of 128 pixels
determines the minimum view shift distance (pan distance) that can be
achieved with standard graphical Web browser and level 2 HTML
formatting. This allows the adjustment of the view position on a 0.64 inch
grid when viewing a 200 pixel-per-inch image at 1 to 1 scale. Reducing the
size of the view tiles allows finer grid for view positioning, but has the
problem that the view tile overhead becomes excessive.

A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view
tile will represent a 256 x 256 pixel area of the image file that has been
scaled down to 128 x 128 pixels. For each possible scale factor there is an
array of tiles to represent the view. Fixed size view tiling is beneficial

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 48 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
because it allows more effective use of the caching mechanism at the
server and at the client. For example, consider a view of 512 pixels by 512
pixels. Without tiling, this view is composed of a single GIF file that is
displayed by the Web browser, and so if the user asks for the view to be
shifted by 256 pixels, then a new GIF image of 512 x 512 pixels needs to be
created and transmitted to the Web browser. With tiling, the first view would
cause 16 view tiles to be computed and transmitted for display by the Web
browser. When the request for the view to be shifted by 256 pixels is made,
only 8 view tiles representing an area of 256 by 512 pixels need to be
computed. In addition only the 8 new view tiles need to be transmitted to the
Web browser since the shifted view will reuse 8 view tiles that are available
from the Web browser cache. The use of tiling cuts the computation and data
transmission in half for this example.

Hornbacker, 8:30-9:28

To support the tiling and caching of many images on the same image view
server, each view tile must be uniquely identified for reference by the Web
browser with a view tile URL. This uniqueness is accomplished through a
combination of storage location and view tile naming. Uniqueness between
images is accomplished by having a separate storage subdirectory in the view
tile cache for each image. Uniqueness of view tiles for each scale of view is
accomplished through the file name for each view tile. The view tile name is
preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale
number as expressed in parts per 256. The < TILE NUMBER > value is a
5 character string formed from the base 36 encoding of the tile number as
determined by the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE COLUMN
The TILE ROW and TILE COLUMN values start at 0 for this computation.
For example the second tile of the first row for a view scaled 2: 1 would be

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 49 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first row for
image number 22 on the image view server would be: http : //hostname/view-
tile-cache-path/000022/ V3 J00001. GIF In addition to the view tile position
and view scale, other view attributes that may be encoded in the view tile
storage location or in the view tile name. These attributes are view rotation
angle, view x-mirror, view y-mirror, invert view. A view tile name with these
extra view attributes can be encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> < Y_
MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR, and
INVERT are encoded by the single characters X, Y, and I respectively. An
example is: V3J00001A90XYI.GIF The Web server 30 is configured to
recognize the above-described specially formatted request Uniform Resource
Locators (URL) to be handled by the image view server request broker 40.
This is done by association of the request broker 40 with the URL path or
with the document filename extension.

Hornbacker, 10:3-10
The foreground view composer 50 interprets the view request command 140
to determine what view needs to be composed. The view request may be
absolute by defining scale and position, relative by defining scale and
position as a delta to a previous view, or implied by relying on system
defaults to select the view.

View computation software routine 150 is illustrated in FIG 7 wherein the
command interpreter 151 takes the view request and determines 152
what scale view tile grid is needed for the view and what view tiles within
the grid are needed for the view 150 (FIG. 2), and generates the view tile 153,
resulting in formatted view output 154.
Hornbacker, 11:19-28

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 50 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
FIG 6 A illustrates how the background view composer algorithm works.
Assuming that for a given view requested by the client, tiles C3, C4, D3 and
D4 are delivered, after those tile are delivered to the Web browser, the
background view composer routine within the server program creates the tiles
around these tiles, starting at E4, by composing or computing such
surrounding tiles. As long as the client continues to view this page at this
scale factor, the server will compute view tiles expanding outward from the
tiles requested last. FIG 6B illustrates another request made by a client, after
the two rotations of tiles were generated. The request asked for tiles G3, G4,
H3, and H4. When the tile pre-computation begins for this request it will
create tiles G5, H5, 15, 14, 13, 12, H2, and G2 in the first rotation, but it will
not attempt to create tiles in the F column.

Hornbacker, 12:21-13:10
Performance and usability of document viewing can be increased by using
progressive display of tiled images. By using an image file format that allows
a rough view of the image to be displayed while the remainder of the image
content is downloaded, a rough view of the document can be seen more
quickly.

Since most Web browsers can only transfer 1 to 4 GIF images at a time,
usually not all of the view tiles in the view array can be progressively
displayed at the same time. Therefore, it is preferred that to implement
progressive display, algorithms at the client are provided to accept an
alternate data format that would allow the whole document viewing area
screen to take advantage of the progressive display while still taking
advantage of the benefits of tiling and caching at the client. This can be
accomplished in a Web browser environment using algorithms written in
Java, JavaScript, or ActiveX technologies. By using client software to
enhance the client viewer, additional enhancements to performance can be
made by using alternate view tile image formats and image compression
algorithms. A significant example would be to use the Portable Network
Graphics (PNG) format with the optimization of having the image view

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 51 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
server and client transfer only one image header common to be shared by all
view tiles and then sending the low-resolution compressed image data for
each view tile followed by the full-resolution image data for each view tile.
Hornbacker, 13:26-14:6
For example an E-size engineering drawing raster image file is 8 million
bytes in size when imaged in monochrome at 200 pixels-per-inch. With
commonly used data compression the image file can be reduced to 250
kilobytes. With a low bandwidth 28.8 kilobaud modem network connection
with approximately 3 kilobytes-per-second throughput, it 83 seconds (250
KB / 3 KB/second) to transfer the image file to the workstation application
for viewing. With the image view server only the image data to be displayed
needs to be transmitted. A typical view size of 896 by 512 pixels is made up
of a 7 by 4 array of 128 pixel x 128 pixel view tiles. The monochrome view
tiles are transmitted in a compressed format that typically yields tiles that are
512 bytes each so the entire view is approximately 14 kilobytes (0.5 KB x 28
tiles) and the transfer takes approximately 4.8 seconds (14 KB / 3
KB/second).

1.G: wherein
image data has
a color or bit
per pixel depth
representing a
data parcel size
of a
predetermined
number of
bytes,

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser. It
obtains tile data from the tile server described in Section 2.1 and converts
them into images in the cached tiles. The tiles received from the server are
processed in three pipelined steps: (1) an optional decompression, (2)
mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of the
network connection justifies the additional time spent by the mapplet in tile
decompression. The elevation data are usually compressed using a wavelet
compression [7], while the gradient and image data are usually compressed
using JPEG. When using a slower network, the gradient data may be
computed locally by the mapplet rather than downloaded from the server.
When all the tile components are decompressed, they are converted into an
image using one of these mappings:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 52 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

Hornbacker at 6:20-7:3:

The preferred view tile format is 128 pixel by 128 pixel GIF image files. The
GIF image file format is preferred because of Web browser compatibility and
image file size. The GIF image file format is the most widely supported
format for graphical Web browsers and therefore gives the maximum client
compatibility for the image view server. The GIF image format has the
desirable properties of loss-less image data compression, reasonable data
compression ratios, color and grayscale support, and a relatively small
image file header, which relates to the selection of view tile size. With a
raw image data size for monochrome view tiles of 2,048 bytes and a

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 53 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
typical GIF compression of 4 to 1, the compressed data for a view tile is
approximately 512 bytes. With many image file formats, such as TIFF and
JPEG, the image file header (and other overhead information such as data
indexes) can be as large or larger than the image data itself for small images
such as the view tiles; whereas a GIF header for a monochrome image adds
as little as 31 bytes to the GIF image file. Alternate view tile formats such as
Portable Network Graphics (PNG) may be used, especially as native browser
support for the format becomes common.

1.H: resolution
of the series K1-

N of derivative
images being
related to that of
the source
image data or
predecessor
image in the
series by a
factor of two,
and

Potmesil and Hornbacker both teach storing image data tiles in fixed-size,
power-of-two arrays:

Potmesil, Fig. 1:

Potmesil at 1329-1330:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 54 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
set have usually the same size with the possible exception of tiles along
the edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32
+ ... = 1/3 additional storage space. A data set may also be stored on one
or more compressed formats. The index of each tile data set is read into the
server at startup time and stored in a quadtree [14].

Hornbacker, 6:13-7:25

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the image
view server context). These tiles are computed for distinct resolutions
(FIG 3B) of a given image at the server according to the URL request
received from the browser software on the workstation. The use of tiling
enables effective image data caching 60 at the image view server and by the
browser 10 at the client workstation. The preferred view tile format is 128
pixel by 128 pixel GIF image files. The GIF image file format is preferred
because of Web browser compatibility and image file size. The GIF image
file format is the most widely supported format for graphical Web browsers
and therefore gives the maximum client compatibility for the image view
server. The GIF image format has the desirable properties of loss-less image
data compression, reasonable data compression ratios, color and grayscale
support, and a relatively small image file header, which relates to the
selection of view tile size. With a raw image data size for monochrome view
tiles of 2,048 bytes and a typical GIF compression of 4 to 1, the compressed
data for a view tile is approximately 512 bytes. With many image file
formats, such as TIFF and JPEG, the image file header (and other overhead
information such as data indexes) can be as large or larger than the image
data itself for small images such as the view tiles; whereas a GIF header for a
monochrome image adds as little as 31 bytes to the GIF image file. Alternate
view tile formats such as Portable Network Graphics (PNG) may be used,
especially as native browser support for the format becomes common.
The 128 pixel view tile size is a good compromise between view tile

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 55 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
granularity and view tile overhead. The view tile granularity of 128 pixels
determines the minimum view shift distance (pan distance) that can be
achieved with standard graphical Web browser and level 2 HTML
formatting. This allows the adjustment of the view position on a 0.64 inch
grid when viewing a 200 pixel-per-inch image at 1 to 1 scale. Reducing the
size of the view tiles allows finer grid for view positioning, but has the
problem that the view tile overhead becomes excessive.
A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view tile
will represent a 256 x 256 pixel area of the image file that has been scaled
down to 128 x 128 pixels. For each possible scale factor there is an array of
tiles to represent the view. Fixed size view tiling is beneficial because it
allows more effective use of the caching mechanism at the server and at the
client. For example, consider a view of 512 pixels by 512 pixels. Without
tiling, this view is composed of a single GIF file that is displayed by the Web
browser, and so if the user asks for the view to be shifted by 256 pixels, then
a new GIF image of 512 x 512 pixels needs to be created and transmitted to
the Web browser. With tiling, the first view would cause 16 view tiles to be
computed and transmitted for display by the Web browser. When the request
for the view to be shifted by 256 pixels is made, only 8 view tiles
representing an area of 256 by 512 pixels need to be computed. In addition
only the 8 new view tiles need to be transmitted to the Web browser since the
shifted view will reuse 8 view tiles that are available from the Web browser
cache. The use of tiling cuts the computation and data transmission in half for
this example.

1.I: said array
subdivision
being related by
a factor of two

Potmesil, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 56 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Potmesil at 1329-1330:
2.1 A Tile Server
The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data set
have usually the same size with the possible exception of tiles along the
edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32
+ ... = 1/3 additional storage space. A data set may also be stored on one or
more compressed formats. The index of each tile data set is read into the
server at startup time and stored in a quadtree [14].
Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers, which
are described here, have the ability to cache parts of the geospatial models

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 57 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
before a user needs to display them. The servers can generate the models in
small sections - called tiles - because they store them in hierarchical
representations or have the ability to clip all parts of a model outside the
requested area (or volume). We base this approach on the assumption that the
amount of such models far exceeds the ability to store these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The concept
of prefiltered power-of-two images for texture mapping was introduced
by Williams [17] who named them mip maps. Since his seminal paper, it
has become a rendering standard implemented, for example, in OpenGL
software [12] and hardware [1]. In the 2D browser we use any type of data
sampled on a 2D lattice. However, our techniques are applicable to any other
model representations such as TIN's (Triangulated Irregular Networks) of
terrain or VRML models which are clipped to rectangular regions. In more
complex environments, such as furnished interiors of buildings, one must use
more sophisticated data structures and display algorithms to maintain
interactive display rates [8].

1.J: such that
each image
parcel being of
a fixed byte
size,

Potmesil, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 58 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Potmesil, p. 1329-30:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data
set have usually the same size with the possible exception of tiles along the
edges of the data set. Tiles in an index are stored in a power-of-two pyramid
to allow fast access and scroll and zoom operations [Figure 1]. Storing data in
a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ... = 1/3
additional storage space. A data set may also be stored on one or more
compressed formats. The index of each tile data set is read into the server at
startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large number

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 59 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first process
receives tile requests from the client. Tiles, which have been recently read
from discs, are saved in shared memory so that other clients can obtain them
more quickly. This is useful when multiple clients are browsing in the same
data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query: (a)
send me a description of the requested tile index, (b) send me the contents of
the requested tile. The output of the server has several pipelined stages
which: (a) reformat the tile if the requested tile is not aligned with tiles stored
in the server; (b) resample the tile if the requested tile is not in the same
coordinate system; (c) dither the tile if the requesting client has only a limited
number of colors; (d) add a digital watermark [2] if the tile data is
copyrighted or encrypt the tile if it is to be seen only by the client; (e)
compress the tile if the network bandwidth requires it.

Potmesil, p. 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser. It
obtains tile data from the tile server described in Section 2.1 and converts
them into images in the cached tiles. The tiles received from the server are
processed in three pipelined steps: (1) an optional decompression, (2)
mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of
the network connection justifies the additional time spent by the mapplet in
tile decompression. The elevation data are usually compressed using a
wavelet compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 60 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

Hornbacker at 6:20-7:3:

The preferred view tile format is 128 pixel by 128 pixel GIF image files.
The GIF image file format is preferred because of Web browser
compatibility and image file size. The GIF image file format is the most
widely supported format for graphical Web browsers and therefore
gives the maximum client compatibility for the image view server. The
GIF image format has the desirable properties of loss-less image data

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 61 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
compression, reasonable data compression ratios, color and grayscale
support, and a relatively small image file header, which relates to the
selection of view tile size. With a raw image data size for monochrome
view tiles of 2,048 bytes and a typical GIF compression of 4 to 1, the
compressed data for a view tile is approximately 512 bytes. With many
image file formats, such as TIFF and JPEG, the image file header (and
other overhead information such as data indexes) can be as large or
larger than the image data itself for small images such as the view tiles;
whereas a GIF header for a monochrome image adds as little as 31 bytes
to the GIF image file. Alternate view tile formats such as Portable
Network Graphics (PNG) may be used, especially as native browser
support for the format becomes common.

Hornbacker at 7:14-15:

Fixed size view tiling is beneficial because it allows more effective use of
the caching mechanism at the server and at the client.

Hornbacker at 14:2-16:

A typical view size of 896 by 512 pixels is made up of a 7 by 4 array of 128
pixel x 128 pixel view tiles. The monochrome view tiles are transmitted in
a compressed format that typically yields tiles that are 512 bytes each so
the entire view is approximately 14 kilobytes (0.5 KB x 28 tiles) and the
transfer takes approximately 4.8 seconds (14 KB / 3 KB/second). This
method of image viewing provides better response to the user with much
lower demand on the network connection. A local-area-network typically
utilizes a 10 megabit-per-second media so the savings from the efficiency of
the image view server does not seem obvious. However, if the 10 megabit-
per-second network is shared by 100 users, then the average bandwidth per
user is only about 12.5 kilobytes-per-second so the efficiency of the image
view server is still a benefit. Another benefit of the image view server is
that the data transfer size remains constant even if the size of the view
image is increased. If the image file size was 4 times larger than with the
previous example as may be the case with a larger image, a higher resolution

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 62 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
image or a less compressible image then the network load by the image view
server would remain unchanged while network load of the traditional image
viewer would quadruple.

1.K: wherein
the processing
further
comprises
compressing
each data parcel
and

As discussed above in regard to claim element 1.J, both Potmesil and
Hornbacker teach compression of image tiles, and the same teachings apply
to this limitation.

1.L: storing
each data parcel
on the remote
computer in a
file of defined
configuration
such that a data
parcel can be
located by
specification of
a KD, X, Y
value that
represents the
data set
resolution index
D and
corresponding
image array
coordinate;

Potmesil, Abstract:

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points
and polygons stored in tiles structured into hierarchical pyramids or
quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D map
browser capable of continuous scroll and zoom of an arbitrarily large sheet of
2D information and a 3D flight-simulator browser. Both browsers download
and cache geographical information, geometrical models, and URL
anchors in small regions called tiles. The tile caching process is based on
the user's current position, velocity, and acceleration in a 2D/3D space as
well as on the latency of server replies. The browsers query servers only
for relevant data around the user's current and predicted future
locations and expect to receive such data and to prepare them for display
before the user reaches it. Around this core concept of tile caching, various
specialized visualization applets - written in C, C++ or Java - are developed.
Such applets run simultaneously on top of the browser and convert all
their respective data into a common coordinate system specified by the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 63 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
browser. Examples of such applets are weather and traffic reports, bird
migrations, and a spatial bulletin board applet which displays an anchor of
any WWW document at any geographical location. Each applet typically
queries two servers: a spatial meta server, which knows what information is
available at what geographical location and where on the WWW to find it,
and the server which contains the information itself.

Potmesil at 1329-30:

2. Geospatial Servers

The concept of a geography server system recognizes that a digital map or a
3D geographical model is held by many independent sources, distributed over
a network. The objective of a browser is to gather all the necessary
geographical layers, on as-needed basis, without having to store them locally
and to display them. Our architecture of a geography server system has three
major components: a directory scheme for finding servers, a common
interface protocol for talking to the servers, and a strategy for implementing
the servers themselves. We have developed four different types of servers, so
far, in this project: the first three contain actual geographical geometry - (1)
points sampled on grids, (2) random points with names, and (3) lines and
polygons with names - while the last type stores metadata - information about
where to find spatial and geographical information.

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients
or geoid corrections. A data set is stored in a tile index. A data set may
have several components such as: elevation, gradient, and rgb image. All
tiles in a data set have usually the same size with the possible exception of
tiles along the edges of the data set. Tiles in an index are stored in a power-
of-two pyramid to allow fast access and scroll and zoom operations
[Figure 1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16
+ 1/32 + ... = 1/3 additional storage space. A data set may also be stored on
one or more compressed formats. The index of each tile data set is read into

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 64 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
the server at startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large number
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first process
receives tile requests from the client. Tiles, which have been recently read
from discs, are saved in shared memory so that other clients can obtain them
more quickly. This is useful when multiple clients are browsing in the same
data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query: (a)
send me a description of the requested tile index, (b) send me the contents of
the requested tile. The output of the server has several pipelined stages
which: (a) reformat the tile if the requested tile is not aligned with tiles stored
in the server; (b) resample the tile if the requested tile is not in the same
coordinate system; (c) dither the tile if the requesting client has only a limited
number of colors; (d) add a digital watermark [2] if the tile data is
copyrighted or encrypt the tile if it is to be seen only by the client; (e)
compress the tile if the network bandwidth requires it.

Potmesil, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 65 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Potmesil at 1332:

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching process receives information about the current view from the
compositing process. A 2D browser may have multiple windows opened,
each with an orthographic projection of a different location and scale of a
map. A 3D browser may have also multiple windows opened, each with a
different perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one user

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 66 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
(e.g., left and right views from a cockpit, or the view of a tail gunner). The
caching process computes one or more estimated positions of each view and
intersects their bounding volume with the tile coordinate system. Any
intersected tiles not present in the cache are sorted by distance from the user,
and the caching algorithm determines how many of them can be loaded into
the cache. This depends on the total number of allocated tiles for we need to
prevent tile thrashing. The more disc and memory space the host machine has
available, the more tiles can be brought into the cache and remain there.
There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the cached
tiles look like a snake with a growing head and disappearing tail
[Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be used
in low speeds (hovering) when the direction of flight is uncertain
[Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and delete
any tiles already visited; this may be used during high-speed flight.

When the caching process has generated a new list of tiles to be cached, each
mapplet can start loading its data into each tile. Mapplets also provide
feedback to the cache process: each tile is marked by each mapplet when it
has been drawn, and each mapplet saves the average time it takes to receive
and draw the tile data.

Potmesil, Fig. 2:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 67 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Hornbacker teaches that tiles may be located and requested by providing
requests in URL format specifying the zoom level and x, y coordinates of the
tile.

Hornbacker at 3:17-21:

Another aspect of the invention comprises apparatus comprising a computer
network server adapted to store digital document image files, programmed
to recieve requests from a client Web browser in URL code, the URL
specifying a view which identifies an image file and format, to compose
the requested view, and to transmit HTML code for the resultant view to the
client Web browser to display.

Hornbacker at 5:16-24:

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user requests
an image view 110 (FIG. 2) having a scale and region specified by by
means of a specially formatted Uniformed Resource Locator (URL) code
using HTTP language which the Web server can decode as a request to

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 68 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
be passed to the image view composition software and that identifies the
image file to be viewed, the scale of the view and the region of the image
to view. The network image server sends HTML data to the client with pre-
computed hyperlinks, such that following a hyperlink by clicking on an area
of an image will send a specific request to the server to deliver a different
area of the drawing or to change the resolution of the image.

Hornbacker at 8:16-23:

The HTML output file produced by the foreground view composer is passed
to the Web server software to be transmitted to the Web browser. The
graphical Web browser serves as the image viewer by utilizing the
HTML output from the image view server to compose and display the
array of view tiles that form a view of an image. The HTML page data
list the size, position and the hyperlink for each view tile to be displayed.
The view tiles are stored in the GIF image file format that can be
displayed by all common graphical Web browsers. The Web browser will
retrieve each view tile to be displayed from a local cache if the view tile is
present, otherwise from the image view server.

Hornbacker at 8:30-10:6:

To support the tiling and caching of many images on the same image
view server, each view tile must be uniquely identified for reference by
the Web browser with a view tile URL. This uniqueness is accomplished
through a combination of storage location and view tile naming. Uniqueness
between images is accomplished by having a separate storage subdirectory in
the view tile cache for each image. Uniqueness of view tiles for each scale of
view is accomplished through the file name for each view tile. The view tile
name is preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale number
as expressed in parts per 256. The < TILE NUMBER > value is a 5 character
string formed from the base 36 encoding of the tile number as determined by

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 69 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE COLUMN
The TILE ROW and TILE COLUMN values start at 0 for this computation.
For example the second tile of the first row for a view scaled 2: 1 would be
named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first row
for image number 22 on the image view server would be: http :
//hostname/view-tile-cache-path/000022/ V3 J00001. GIF In addition to
the view tile position and view scale, other view attributes that may be
encoded in the view tile storage location or in the view tile name. These
attributes are view rotation angle, view x-mirror, view y-mirror, invert
view. A view tile name with these extra view attributes can be encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> < Y_
MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR, and
INVERT are encoded by the single characters X, Y, and I respectively. An
example is: V3J00001A90XYI.GIF The Web server 30 is configured to
recognize the above-described specially formatted request Uniform Resource
Locators (URL) to be handled by the image view server request broker 40.
This is done by association of the request broker 40 with the URL path or
with the document filename extension.

The foreground view composer 50 interprets the view request command 140
to determine what view needs to be composed. The view request may be
absolute by defining scale and position, relative by defining scale and
position as a delta to a previous view, or implied by relying on system
defaults to select the view.

Hornbacker at 10:24-28:

For example, a specific view request might include tiles B2, C2, B3, and
C3 (FIG 4A and FIG 5A). If, after viewing those tiles, the client decides that

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 70 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
the view to the immediate left is desired, then the server would send tiles A2
and A3 (FIG 4B and FIG 5B). This assumes that the client retains in a cache
the other tiles. If the client does not cache then tiles A2, A3, B2, and B3 are
sent.

1.M: receiving
said update data
parcel from the
data parcel
stored in the
remote
computer over a
communications
channel; and

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information available
on the WWW, such as weather reports, home pages of National Parks,
VRML models of cities, home pages of Holiday Inn hotels, Yellow and
White Page directory listings or traffic and news reports, is better located and
visualized when displayed directly or via clickable anchors on top of 2D
maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser capable of
continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and acceleration in
the 2D/3D space as well as on the latency of server replies. A user can
program these browsers by adding small application programs - mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations, lines,
points and polygons stored in tiles structured into hierarchical pyramids
or quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D map

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 71 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
browser capable of continuous scroll and zoom of an arbitrarily large sheet of
2D information and a 3D flight-simulator browser. Both browsers download
and cache geographical information, geometrical models, and URL
anchors in small regions called tiles. The tile caching process is based on
the user’s current position, velocity, and acceleration in a 2D/3D space as
well as on the latency of server replies. The browsers query servers only for
relevant data around the user’s current and predicted future locations and
expect to receive such data and to prepare them for display before the user
reaches it. Around this core concept of tile caching, various specialized
visualization applets - written in C, C++ or Java - are developed. Such
applets run simultaneously on top of the browser and convert all their
respective data into a common coordinate system specified by the browser.
Examples of such applets are weather and traffic reports, bird migrations, and
a spatial bulletin board applet which displays an anchor of any WWW
document at any geographical location. Each applet typically queries two
servers: a spatial meta server, which knows what information is available at
what geographical location and where on the WWW to find it, and the server
which contains the information itself.

Potmesil at 1329-30:
2. Geospatial Servers
The concept of a geography server system recognizes that a digital map or a
3D geographical model is held by many independent sources, distributed
over a network. The objective of a browser is to gather all the necessary
geographical layers, on as-needed basis, without having to store them
locally and to display them. Our architecture of a geography server system
has three major components: a directory scheme for finding servers, a
common interface protocol for talking to the servers, and a strategy for
implementing the servers themselves. We have developed four different types
of servers, so far, in this project: the first three contain actual geographical
geometry - (1) points sampled on grids, (2) random points with names, and
(3) lines and polygons with names - while the last type stores metadata -
information about where to find spatial and geographical information.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 72 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
2.1 A Tile Server
The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients
or geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in a
data set have usually the same size with the possible exception of tiles along
the edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ...
= 1/3 additional storage space. A data set may also be stored on one or more
compressed formats. The index of each tile data set is read into the server at
startup time and stored in a quadtree [14].
The server was designed to maintain maximum tile output to a large number
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first
process receives tile requests from the client. Tiles, which have been
recently read from discs, are saved in shared memory so that other clients can
obtain them more quickly. This is useful when multiple clients are browsing
in the same data as would happen in a networked game.
The server, using the HTTP/1.0 protocol [3], accepts two types of query:
(a) send me a description of the requested tile index, (b) send me the
contents of the requested tile. The output of the server has several pipelined
stages which: (a) reformat the tile if the requested tile is not aligned with tiles
stored in the server; (b) resample the tile if the requested tile is not in the
same coordinate system; (c) dither the tile if the requesting client has only a
limited number of colors; (d) add a digital watermark [2] if the tile data is
copyrighted or encrypt the tile if it is to be seen only by the client; (e)
compress the tile if the network bandwidth requires it.

Potmesil at 1332-33:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 73 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. the servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally….

The browser consists of two processes: caching and compositing. The former
process is responsible for managing the local cache while the latter process
reads tracking data, synchronizes all application mapplets, and composites
the final image. It also makes space (data and user) and time (either real or
simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-of-
detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching algorithm uses the user’s current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Fig. 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the user:
least-recently visible tiles, or least-recently arrived tiles. The caching process
receives information about the current view from the compositing process. A
2D browser may have multiple windows opened, each with an orthographic
projection of a different location and scale of a map. A 3D browser may have
also multiple windows opened, each with a different perspective projection.
Each window can be moving completely independently of all the others, or

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 74 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
they may be different views from one user (e.g., left and right views from a
cockpit, or the view of a tail gunner). The caching process computes one or
more estimated positions of each view and intersects their bounding
volume with the tile coordinate system. Any intersected tiles not present
in the cache are sorted by distance from the user, and the caching
algorithm determines how many of them can be loaded into the cache.
This depends on the total number of allocated tiles for we need to
prevent tile thrashing. The more disc and memory space the host
machine has available, the more tiles can be brought into the cache and
remain there. There are several implemented caching strategies:

• Obtain only tiles in a narrow corridor along the user’s path; the cached
tiles look like a snake with a growing head and disappearing tail (Fig.
2a-c),

• Obtain as many tiles as close to the view as possible; this may be used
in low speeds (hovering) when the direction of flight is uncertain (Fig.
2d),

• Obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be cached, each
mapplet can start loading its data into each tile. Mapplets also provide
feedback to the cache process: each tile is marked by each mapplet when it
has been drawn, and each mapplet saves the average time it takes to receive
and draw the tile data.

3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image…

The two processes run independently and asynchronously. The cache
manager keeps rearranging the cache memory even while the user has

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 75 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
stopped and the image is not regenerated.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser.
It obtains tile data from the tile server described in Section 2.1 and
converts them into images in the cached tiles. The tiles received from the
server are processed in three pipelined steps: (1) an optional decompression,
(2) mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of
the network connection justifies the additional time spent by the mapplet in
tile decompression. The elevation data are usually compressed using a
wavelet compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 76 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images,
from several WWW servers. The mapplet obtains a GIF image, decodes
it and draws it on top of the current tile contents. Optionally, in addition
to the GIF transparency value, an alpha-blending value can be specified to
make the image background partially visible.

Currently, the mapplet can obtain maps and images from three outside
sources: (1) the well-known Xerox PARC map server which contains
data from the DMA's Digital Chart of the World and the USGS's
1:2,000,000 Digital Line Graph, (2) the U.S. Bureau of the Census
TIGER street map server, and (3) the multi-resolution Mars image
server at the Los Alamos National Laboratory.

Potmesil at 1340-41:

3.4. A 3D geographical browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server.

Hornbacker teaches that tiles are received over the internet:

Hornbacker, 3:10-27:

These objects, and others which will become apparent from the following
disclosure, are achieved by this invention which comprises in one aspect

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 77 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
method of identifying and delivering a graphical image from a computer
network file server comprising providing a network file server on which are
stored digital document image files, said server adapted to receive requests
from a Web browser in Uniform Resource Locator (URL) code, to
identify the image file and format selections being requested, to compose
the requested view into a grid of view tiles, and to transmit HTML code
for view tiles to the requesting Web browser.

Another aspect of the invention comprises apparatus comprising a computer
network server adapted to store digital document image files, programmed to
receive requests from a client Web browser in URL code, the URL
specifying a view which identifies an image file and format, to compose
the requested view, and to transmit HTML code for the resultant view to the
client Web browser to display.

A further aspect of the invention is the computer program recorded on
magnetic or optical media for use on a network server comprising code which
interprets HTTP requests from a workstation for a particular view of a digital
document image file stored in memory, retrieves the digital document image
file, composes a grid of view tiles corresponding to the requested view of
the image, computes HTML code for the grid of view tiles in a form which
can be transmitted from the server to the workstation.

Hornbacker, 5:3-6:19:

Referring first to FIG. 1, a network comprising client workstations 10 and
20 are connected through network connections to a network image view
server 100 comprising a network server interface, preferably a web server 30
which uses the Hypertext Transfer Protocol (HTTP), a request broker 40, a
foreground view composer 50, a view tile cache 60, a background view
composer 80, a garbage collector 70, and a document repository 90 having
image files.

The network image view server, i.e. , client workstation, or
"workstation," 100 can be implemented on a computer, for example a
personal computer configured with a processor, I/O, memory, disk

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 78 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
storage, and a network interface. The network image view server 100 is
configured with a network server operating system and Web server
software 30 to provide the network HTTP protocol link with the client
workstations 10 and 20. Typical networks include many workstations
served by one, and sometimes more than one, network server, the server
functioning as a library to maintain files which can be accessed by the
workstations.

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user requests an
image view 110 (FIG. 2) having a scale and region specified by by means of
a specially formatted Uniformed Resource Locator (URL) code using HTTP
language which the Web server can decode as a request to be passed to the
image view composition software and that identifies the image file to be
viewed, the scale of the view and the region of the image to view. The
network image server sends HTML data to the client with pre-computed
hyperlinks, such that following a hyperlink by clicking on an area of an
image will send a specific request to the server to deliver a different area of
the drawing or to change the resolution of the image. The resultant HTML
from this request will also contain pre-computed hyperlinks for other options
the user may exercise.

The code is sent over the network to the network server where the web server
software interprets the request 120, passes the view request URL to the
foreground view composer software through a common gateway interface
(CGI) that is designed to allow processing of HTTP requests external to the
Web server software, and thereby instructs the request broker 130 to get the
particular requested view, having the scale and region called for by the URL.
The foreground view composer is initialized 140 and composes the requested
view 150 after recovering it from memory on the network server. The
foreground view composer software interprets the view request, computes
which view tiles are needed for the view, creates the view tiles 160 needed
for the view, and then creates Hypertext Markup Language (HTML) output
file to describe the view composition to the Web browser, unless the
necessary view tiles to fulfill the request are already computed and stored in

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 79 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
cache memory of the workstation, in which case the already-computed tiles
are recovered by the Web browser. In either case, the foreground view
composer formats the output 170 and then intitializes backgound view
composer 180 which passes the formatted output to the Web server, which in
turn transmits the formatted output over the network to the Web
browser 200 on the requesting workstation 10, where the requesting
browser displays any view tiles already cached 210, combined with newly
computed view tiles 220 which are fetched from the server.

Hornbacker, 8:1-6

For frequently accessed images there is a good chance that the view tiles
for a view may already exist in the view tile cache since the view tile
cache maintains the most recently accessed view tiles. Since millions of
view tiles may be created and eventually exceed the storage capacity of the
image view server, the view tile cache garbage collector removes the least
recently accessed view tiles in the case where the maximum storage
allocation or minimum storage free space limits are reached.

Hornbacker, 8:16-23

The HTML output file produced by the foreground view composer is passed
to the Web server software to be transmitted to the Web browser. The
graphical Web browser serves as the image viewer by utilizing the HTML
output from the image view server to compose and display the array of view
tiles that form a view of an image. The HTML page data list the size, position
and the hyperlink for each view tile to be displayed. The view tiles are stored
in the GIF image file format that can be displayed by all common graphical
Web browsers. The Web browser will retrieve each view tile to be
displayed from a local cache if the view tile is present, otherwise from the
image view server.

Hornbacker, 10:13-28

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 80 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
The view tile generator routine 160 performs the actual creation of the view
tiles according to the preferred steps shown in FIG 8. The view tile generator
receives information from the view computation as to what view tiles are
needed for the view. It has access to records in the cache 80 that
determine which tiles have already been created and are resident in the
cache. If a needed view tile is in the cache then its last access time is updated
to prevent the cache garbage collector from deleting the view tile. If a needed
view tile is not in the cache, then the view tile generator creates the view tile
from the image file 90. The view tile generator uses a software imaging
library that supports rendering many digital document file formats including
monochrome raster images, grayscale raster images, color raster images as
well as many content rich non-raster formats such as Adobe Portable
Document Format (PDF), PostScript, HPGL, etc. When rendering
monochrome image data the imaging library scale-to-gray scaling is used to
provide a more visually appealing rendition of the reduced image.

For example, a specific view request might include tiles B2, C2, B3, and C3
(FIG 4A and FIG 5A). If, after viewing those tiles, the client decides that the
view to the immediate left is desired, then the server would send tiles A2 and
A3 (FIG 4B and FIG 5B). This assumes that the client retains in a cache the
other tiles. If the client does not cache then tiles A2, A3, B2, and B3 are sent.

Hornbacker, 11:29-12:9

Preferably a view tile cache garbage collector algorithm 70 manages the use
of the storage for view tiles (FIGS 10A, 10B, 10C). The garbage collector
maintains the view tile cache 60 (FIG. 1) to keep the view tile cache storage
usage below a storage limit and to keep the storage free space above a free
space limit. The garbage collector constantly scans the cache to accumulate
size and age statistics for the view tiles. When the cache size needs to be
reduced, the garbage collector selects the least recently accessed view tiles
for deletion until the cache size is within limits. The garbage collector runs at
a low priority to minimize interference with more critical system tasks. The
storage free space limit is designed as a failsafe limit to prevent the system
from running out of storage. The free space limit is checked on a periodic

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 81 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
basis and if it is exceeded the garbage collector becomes a critical system
task and runs at a high priority until the storage free space is greater than the
free space limit.

Hornbacker, 12:17-23

The graphical Web browser on the client workstation 10 receives HTML data
from the image view server 210 that contains hyperlinks to the view tiles
within the view tile cache 60 to be displayed and formatting that
describes the layout of the of the tiles to form the image view. The Web
browser initially must fetch each view tile 220 for a view from the view
server. After the initial view, whenever a view overlaps with a previous
view at the same scale, the Web browser preferably retrieves view tiles
that have been previously displayed from the Web browser's local cache
210 rather than from the server.

Hornbacker, 13:19-23

By using image tiling and caching according to the preferred method,
relatively small amounts of data need to be transmitted when the user
selects a new view of an image already received and viewed. The server
sends the requested image in the request format to the workstation and then
allows viewing the image from the local copy of the image file.

1.N: displaying
on the limited
communication
bandwidth
computer
device using the
update data
parcel that is a
part of said
predetermined
image, an image

Potmesil, Abstract:
We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information available
on the WWW, such as weather reports, home pages of National Parks,
VRML models of cities, home pages of Holiday Inn hotels, Yellow and
White Page directory listings or traffic and news reports, is better located and
visualized when displayed directly or via clickable anchors on top of 2D
maps or in full 3D environments.
We have developed two geographical browsers: a 2D map browser capable of

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 82 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

wherein said
update data
parcel uniquely
forms a discrete
portion of said
predetermined
image.

continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and acceleration in
the 2D/3D space as well as on the latency of server replies. A user can
program these browsers by adding small application programs - mapplets.
On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or quadtrees.
We have also developed a metadata server which contains, in hierarchical
layers, URL pointers and geographical coordinates of various WWW
documents, geographical information and geometrical models.
Potmesil at 1327-28:
Much information available on the WWW, such as weather reports, home
pages of National Parks, VRML models of cities, home pages of Holiday Inn
hotels, Yellow and White Page directory listings or traffic and news reports,
is better located and visualized when displayed directly or via clickable
anchors on top of 2D maps or in full 3D environments. In addition, very
large data bases of geographical information itself, such as terrain
elevation, satellite and aerial images, detailed street maps and
geometrical models of buildings and similar man-made structures
(present, past and future) are also becoming available. We seek to build
an integrated system which will allow its users to browse in such spatial data,
make queries and post new data.
Two geographical browsers have been developed for this system: a 2D map
browser capable of continuous scroll and zoom of an arbitrarily large sheet of
2D information and a 3D flight-simulator browser. Both browsers download
and cache geographical information, geometrical models, and URL
anchors in small regions called tiles. The tile caching process is based on
the user's current position, velocity, and acceleration in a 2D/3D space as
well as on the latency of server replies. The browsers query servers only for
relevant data around the user's current and predicted future locations and

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 83 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
expect to receive such data and to prepare them for display before the user
reaches it. Around this core concept of tile caching, various specialized
visualization applets - written in C, C++ or Java - are developed. Such
applets run simultaneously on top of the browser and convert all their
respective data into a common coordinate system specified by the browser.
Examples of such applets are weather and traffic reports, bird migrations, and
a spatial bulletin board applet which displays an anchor of any WWW
document at any geographical location. Each applet typically queries two
servers: a spatial meta server, which knows what information is available at
what geographical location and where on the WWW to find it, and the server
which contains the information itself. The geographical system outlined in
this paper is based on these assumptions:

• the amount of available geographical data by far exceeds the
storage capacity of any one client machine: the system needs to be
network based with data stored in server hosts (An extreme
example is the USGS's 1-meter resolution monochrome image of
the United States - when completed it will be available on 3,300
CD-ROM's!),

• the system is model based: servers provide clients with models of
spatial and other data and all image rendering is done locally by client
hosts,

• there is a large variety of data, relevant to this system, located on many
servers in many formats: a directory system is needed to find such
data,

• some geography-related data (weather satellite and radar images,
traffic reports, news, hotel reservations) need to be accessed in
(almost) real time: the system must be network-based to obtain such
data,

• the system will used in traditional computers (PC's, workstations,
NC's) as well as in many unforeseen or futuristic devices (ITV's, game
boxes, exercise bicycles, multi-media kiosks, cellular phones,
sunglasses, heads-up displays on car windshields),

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 84 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

• a user may need to write custom application programs to visualize
some particular data while applications developed by others display
related data.

Potmesil, Fig. 1:

Potmesil at 1329-1330:
2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients
or geoid corrections. A data set is stored in a tile index. A data set may
have several components such as: elevation, gradient, and rgb image. All
tiles in a data set have usually the same size with the possible exception of
tiles along the edges of the data set. Tiles in an index are stored in a power-
of-two pyramid to allow fast access and scroll and zoom operations [Figure
1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 +
... = 1/3 additional storage space. A data set may also be stored on one or
more compressed formats. The index of each tile data set is read into the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 85 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
server at startup time and stored in a quadtree [14].
The server was designed to maintain maximum tile output to a large number
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first process
receives tile requests from the client. Tiles, which have been recently read
from discs, are saved in shared memory so that other clients can obtain them
more quickly. This is useful when multiple clients are browsing in the same
data as would happen in a networked game.
The server, using the HTTP/1.0 protocol [3], accepts two types of query: (a)
send me a description of the requested tile index, (b) send me the contents of
the requested tile. The output of the server has several pipelined stages
which: (a) reformat the tile if the requested tile is not aligned with tiles stored
in the server; (b) resample the tile if the requested tile is not in the same
coordinate system; (c) dither the tile if the requesting client has only a limited
number of colors; (d) add a digital watermark [2] if the tile data is
copyrighted or encrypt the tile if it is to be seen only by the client; (e)
compress the tile if the network bandwidth requires it.
Potmesil at 1334-35:
3.3.1 An Image Applet
This is the fundamental mapplet, by default always enabled by the browser. It
obtains tile data from the tile server described in Section 2.1 and converts
them into images in the cached tiles. The tiles received from the server are
processed in three pipelined steps: (1) an optional decompression, (2)
mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of the
network connection justifies the additional time spent by the mapplet in tile
decompression. The elevation data are usually compressed using a wavelet
compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 86 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.
Potmesil at 1340-41:

3.4 A 3D Geographical Browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server. The browser uses the OpenGL library to
render 3D graphics. To make the three-dimensional browser truly global, we
represent the Earth as an ellipsoid or geodetic datum called World Geodetic
System 1984 (WGS84) [4].

Potmesil, Fig. 8:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 87 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

Hornbacker, 6:7-19
In either case, the foreground view composer formats the output 170 and then
intitializes backgound view composer 180 which passes the formatted output
to the Web server, which in turn transmits the formatted output over the
network to the Web browser 200 on the requesting workstation 10, where the
requesting browser displays any view tiles already cached 210, combined
with newly computed view tiles 220 which are fetched from the server.

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the
image view server context). These tiles are computed for distinct resolutions
(FIG 3B) of a given image at the server according to the URL request
received from the browser software on the workstation. The use of tiling
enables effective image data caching 60 at the image view server and by the
browser 10 at the client workstation.
Hornbacker, 7:11-25
A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view tile
will represent a 256 x 256 pixel area of the image file that has been scaled
down to 128 x 128 pixels. For each possible scale factor there is an array
of tiles to represent the view. Fixed size view tiling is beneficial because it
allows more effective use of the caching mechanism at the server and at the
client. For example, consider a view of 512 pixels by 512 pixels. Without
tiling, this view is composed of a single GIF file that is displayed by the Web

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 88 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13421 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
browser, and so if the user asks for the view to be shifted by 256 pixels, then
a new GIF image of 512 x 512 pixels needs to be created and transmitted to
the Web browser. With tiling, the first view would cause 16 view tiles to be
computed and transmitted for display by the Web browser. When the request
for the view to be shifted by 256 pixels is made, only 8 view tiles
representing an area of 256 by 512 pixels need to be computed. In addition
only the 8 new view tiles need to be transmitted to the Web browser since the
shifted view will reuse 8 view tiles that are available from the Web browser
cache. The use of tiling cuts the computation and data transmission in half for
this example.
Hornbacker, 8:7-15
The number of view tiles needed to render a given view size increases in
inverse proportion to the square of the view tile size. A 64 pixel view tile
would require 4 times as many view tiles to render the same view area, and
so is less preferred. The view tile overhead exists as quantity of data and as
the number of network transactions. The data quantity overhead comes from
the image file header size as a proportion of the total image file size as
described above and as data needed to make the view tile references in the
HTML text file. The network transaction overhead increases with smaller
view tiles since each of the view tiles requires a network transaction. The
increased number of network transactions required with a smaller view tile
size would slow the response to render a view.

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

2. The method
of claim 1,

Potmesil, Abstract:

2 For easier readability, color figures from Potmesil are copied from an online copy of the reference available at
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html. The figures are identical to those in Ex. [XX].

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 89 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

wherein the
update data
parcel further
comprises one
of an image
parcel textual
mapping, a
map parcel, a
navigation cue,
a text overlay
and a
topography.

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser capable of
continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and acceleration in the
2D/3D space as well as on the latency of server replies. A user can program
these browsers by adding small application programs - mapplets.

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or
quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1329:

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or
geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in a
data set have usually the same size with the possible exception of tiles along
the edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ...

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 90 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
= 1/3 additional storage space. A data set may also be stored on one or more
compressed formats. The index of each tile data set is read into the server at
startup time and stored in a quadtree [14].

Potmesil at 1330-31:

2.2 Geographical Name, Point, Line and Polygon Servers

A geographical name server provides clients with geographical names
and their locations. The server loads its index of points from data files into
virtual memory at startup time. The index is also sorted into a quadtree. Three
versions of the server are being used with different data bases: full GNIS -
currently about 1.7 million names in the U.S., short GNIS - about 44,000
names in the U.S. and DCW gazetteer - about 200,000 names world wide. The
server is queried by a regular expression name, a type, a distance and a
bounding rectangle or circle. An HTML page can be used to search directly
the name data bases and to start the geographical browsers from an HTML
browser. The line server is similar to the name server but uses lines, polylines
and polygons as data elements. This server is queried by a type and a
bounding rectangle.

2.3 A Spatial Bulletin Board Server

To provide a spatial browser with a directory system of spatially-indexed
documents available on the WWW, including the above geographical servers,
we have developed a Spatial Bulletin Board (SBB) server. Here, a WWW user
can metaphorically take any Web document and pin to any place on Earth and
place it into a layer with a unique name. The server contains geographical
layers in named tree hierarchies such as:

 /Regional/Countries/United States/National Parks
 /Travel/Lodging/Motels/Best Western
 /Travel/Lodging/Motels/Holiday Inn

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 91 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
 /Travel/Lodging/Bed & Breakfast
 /Commerce/Car Dealers/Toyota
 /Architecture/Lighthouses
 /Geography/Terrain/United States/30-meters
 /Geography/Terrain/United States/3-arc-seconds
 /Geography/Terrain/Earth/30-arc-seconds

At the leaf node of each layer, there is a list of anchors, a procedure or a URL.
The tree hierarchy of layers can contain symbolic links so that a layer can
appear in more than one location of the layer hierarchy. When the server is
started, it reads a layer file which contains the layer hierarchy and builds the
layer tree. At each populated leaf node, it reads an anchor file and builds a
quadtree of anchors. Quadtrees are again used for fast anchor query. A layer
has read/write rights and owner and password fields to allow multiple users to
own and to post their data. The anchors are currently limited to points with
names, polylines, polygons and icons. At startup time, they are read from files
that store them in a home-grown SGML format:

 <!-- US National Park System -->

 <LAYER type=POINTS,
 layer="/Regional/Countries/United States/National Parks",
 comment="U.S. National Parks",
 url="http://www.nps.gov"
 icon="/icons/nps-large.gif" >

 <!-- Abraham Lincoln Birthplace NHS, Hodgenville, KY -->

 <APOINT type=ANCHOR_DEFINED,
 name="Abraham Lincoln Birthplace NHS",
 comment="Hodgenville, Kentucky",
 url="http://www.nps.gov/parklists/index/abli.html",
 ll="-85.6381,37.6114", icon="/icons/nps.gif" >

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 92 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

 <!-- Acadia NP, Bar Harbor, ME -->

 <APOINT type=ANCHOR_DEFINED,
 name="Acadia NP",
 comment="Mount Desert Island, Maine",
 url="http://www.nps.gov/parklists/index/acad.html",
 ll="-68.2833,44.3560", icon="/icons/nps.gif" >

The server also uses the HTTP/1.0 protocol. When it receives a request from
an HTML browser, it generates an HTML page from its layer and anchor data
and a user can browse all the layers and see all the anchors in the HTML
browser. The current organization of the layers looks much like that in the
Yahoo directory system. When or if a spatial metadata standard, such as that
proposed in [6] or being developed in [15], is widely accepted, we will adapt it
in this server.

2.4 Posting Spatial Meta Information on the Server

In order to populate this server with meaningful information, we had to
develop a number of tools. They allow us to scan various text documents,
including HTML pages, for geographical names or postal addresses and
to convert them to spatial coordinates, typically, longitude and latitude,
possibly with a bounding rectangle or circle.

We use the traditional Unix tools such as awk and sed to extract specified
fields using regular expressions from HTML and ASCII files. The appropriate
files are usually manually downloaded from the Web. The HTML files
typically include a long list of anchors pointing to other HTML pages or Web
documents. We extract three fields from a list item: a geographical name or
postal address, a Web document URL and an optional comment. Next, another
tool which queries one of our geographical name servers (Section 2.2) finds
spatial coordinates of each geographical name. A final tool generates the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 93 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
SBB anchors in our SGML format. If the geographical name field contains a
U.S. postal address we query a conversion service available on the Web which
presumably uses address information from the TIGER census data base. We
have also developed a tool that automatically extracts business information
from the NYNEX Yellow Pages and residence information from the AT&T
Rainbow Pages.

Since the leaf node of a layer can contain, in place of a local anchor file, a
URL to a WWW document, it is possible for users to own, create and edit
their own SBB layers in their own HTTP servers.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser. It
obtains tile data from the tile server described in Section 2.1 and converts
them into images in the cached tiles. The tiles received from the server are
processed in three pipelined steps: (1) an optional decompression, (2) mapping
into an image, (3) conversion to the local display format. The mapplet may
request compressed tiles from the tile server if the speed of the network
connection justifies the additional time spent by the mapplet in tile
decompression. The elevation data are usually compressed using a wavelet
compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 94 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a monochrome
shaded relief image using only the second lookup table above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-bits
deep, a true-color image is displayed. However, if the frame buffer is only 8-
bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images, from
several WWW servers. The mapplet obtains a GIF image, decodes it and
draws it on top of the current tile contents. Optionally, in addition to the GIF
transparency value, an alpha-blending value can be specified to make the
image background partially visible.

Currently, the mapplet can obtain maps and images from three outside
sources: (1) the well-known Xerox PARC map server which contains data
from the DMA's Digital Chart of the World and the USGS's 1:2,000,000
Digital Line Graph, (2) the U.S. Bureau of the Census TIGER street map
server, and (3) the multi-resolution Mars image server at the Los Alamos
National Laboratory.

3.3.3 A Geographical Name Applet

This mapplet obtains geographical names and coordinates from the server

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 95 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
of Section 2.2 and draws them into the cached tiles or the on-screen window.
The received names are kept in a per-tile quadtree which is created by the
mapplet when the cache manager allocates a new tile and deleted by the
mapplet when the cache manager deletes the corresponding tile. The names
can be clickable with a URL query attached to them by the mapplet. The
names are drawn simply as a horizontal text; currently, no additional text
layout is done. Because of this simple minded layout and potentially high
density of names, the mapplet can also draw only the name nearest to the
cursor or names in a small region around the cursor directly into the on-screen
window. Queries can also be triggered by the user's movements: if the user
hovers near a name, its query can be automatically executed.

Figure 4 shows names on Attu Island, Alaska; if the names are used to
query the Encyclopedia Britannica, clicking on the Attu Island name
produces a reply which is received by our HTML browser. A 3D version
of this mapplet displays the geographical names as text floating in the air,
always facing the viewer, with a pointer to the surface [Figure 8(b)].

.3.4 A Line and Polygon Applet

This mapplet draws lines, polylines and polygons into the cached tiles. The
line segments and their textual labels can be clickable and an attached URL
query can be executed. In addition, crossing inside or outside of a polygon
can be detected and a query automatically executed. For example, crossing a
country's border or crossing a city limit can download an appropriate home
page.

3.3.5 A Spatial Bulletin Board Applet

This mapplet draws layers of pushpins obtained from the Spatial Bulletin
Board server as clickable icons and text. The size of the icons and appearance
of the text depend on the current resolution of the image in the browser. The
mapplet works in conjunction with an HTML browser which obtains HTML
pages from the SBB server. A user browses in HTML pages of the SBB server
by clicking on layer names. A user can enable and disable layers by clicking
on appropriate anchors in an HTML page. The mapplet listens on a well-

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 96 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
known port with the HTTP protocol for a request from the HTML browser to
enable or disable a layer. When the mapplet receives such a request, it adds or
removes the layer to or from a list of active layers. Whenever a new tile is
allocated by the cache system, the mapplet makes a request to the SBB
server for all active layer information inside the tile and draws the
received data. Since all layers are hierarchical, enabling or disabling a layer
also enables or disables all layers below it in the layer hierarchy.

Figure 5 shows an image of Cape Hatteras, North Carolina, with these layers
enabled:

 /Regional/Countries/United States/National Parks
 /Travel/Lodging/Motels/Holiday Inn
 /Architecture/Lighthouses

Clicking on the Holiday Inn icon or address brings the motel's home
page, which contains a reservation form, from the Holiday Inn server, clicking
on the telephone number makes a phone call to the motel. Similarly, clicking
on the Boddie Island Lighthouse icon or name produces its home page.

Potmesil, Fig. 3:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 97 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 98 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

3. The method
of claim 1,
wherein the
limited
communication
bandwidth

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D map
browser capable of continuous scroll and zoom of an arbitrarily large sheet of
2D information and a 3D flight-simulator browser. Both browsers download
and cache geographical information, geometrical models, and URL anchors in

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 99 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

computer
device further
comprises one
of a mobile
computer
system, a
cellular
computer
system, an
embedded
computer
system, a
handheld
computer
system, a
personal digital
assistants and
an internet-
capable digital
phone.

small regions called tiles. The tile caching process is based on the user's
current position, velocity, and acceleration in a 2D/3D space as well as on the
latency of server replies. The browsers query servers only for relevant data
around the user's current and predicted future locations and expect to receive
such data and to prepare them for display before the user reaches it. Around
this core concept of tile caching, various specialized visualization applets -
written in C, C++ or Java - are developed. Such applets run simultaneously on
top of the browser and convert all their respective data into a common
coordinate system specified by the browser. Examples of such applets are
weather and traffic reports, bird migrations, and a spatial bulletin board applet
which displays an anchor of any WWW document at any geographical
location. Each applet typically queries two servers: a spatial meta server,
which knows what information is available at what geographical location and
where on the WWW to find it, and the server which contains the information
itself. The geographical system outlined in this paper is based on these
assumptions:

• the amount of available geographical data by far exceeds the
storage capacity of any one client machine: the system needs to be
network based with data stored in server hosts (An extreme example is
the USGS's 1-meter resolution monochrome image of the United States
- when completed it will be available on 3,300 CD-ROM's!),

• the system is model based: servers provide clients with models of
spatial and other data and all image rendering is done locally by client
hosts,

• there is a large variety of data, relevant to this system, located on many
servers in many formats: a directory system is needed to find such data,

• some geography-related data (weather satellite and radar images, traffic
reports, news, hotel reservations) need to be accessed in (almost) real
time: the system must be network-based to obtain such data,

• the system will used in traditional computers (PC's, workstations, NC's)
as well as in many unforeseen or futuristic devices (ITV's, game boxes,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 100 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

exercise bicycles, multi-media kiosks, cellular phones, sunglasses,
heads-up displays on car windshields),

a user may need to write custom application programs to visualize some
particular data while applications developed by others display related data.

Hornbacker, 14:26-28:

The graphical Web browser is available on all common workstation types as
well other devices such as notebook computers, palm-top computers,
Network Computers and Web television adapters to provide a widely available
solution.

4. The method
of claim 1,
wherein the
predetermined
pixel
resolution for
each data
parcel is a
power of 2.

Potmesil at 1329-30:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data set
have usually the same size with the possible exception of tiles along the edges
of the data set. Tiles in an index are stored in a power-of-two pyramid to
allow fast access and scroll and zoom operations [Figure 1]. Storing data
in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ... = 1/3
additional storage space. A data set may also be stored on one or more
compressed formats. The index of each tile data set is read into the server at
startup time and stored in a quadtree [14].

Potmesil at 1332:

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 101 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
applications, are described in books and papers by Samet [14]. The concept of
prefiltered power-of-two images for texture mapping was introduced by
Williams [17] who named them mip maps. Since his seminal paper, it has
become a rendering standard implemented, for example, in OpenGL
software [12] and hardware [1]. In the 2D browser we use any type of data
sampled on a 2D lattice. However, our techniques are applicable to any other
model representations such as TIN's (Triangulated Irregular Networks) of
terrain or VRML models which are clipped to rectangular regions. In more
complex environments, such as furnished interiors of buildings, one must use
more sophisticated data structures and display algorithms to maintain
interactive display rates [8]…

Potmesil, Fig. 1:

5. The method
of claim 4,
wherein the

See teachings for claim 4. Hornbacker further teaches that tiles may be 128 X
128 or 64X64, and that this size is chosen as a compromise between view tile
granularity and packet transmission overhead.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 102 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

predetermined
pixel
resolution is
one of 32×32,
64×64,
128×128 and
256×256.

6. The method
of claim 1
wherein said
communication
s channel is a
packetized
communication
s channel and
wherein said
update data
parcel is
received from
said packetized
communication
s channel in
one or more
data packets.

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information available
on the WWW, such as weather reports, home pages of National Parks,
VRML models of cities, home pages of Holiday Inn hotels, Yellow and White
Page directory listings or traffic and news reports, is better located and
visualized when displayed directly or via clickable anchors on top of 2D maps
or in full 3D environments.

We have developed two geographical browsers: a 2D map browser capable of
continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process is
based on the user's current position, velocity, and acceleration in the 2D/3D
space as well as on the latency of server replies. A user can program these
browsers by adding small application programs - mapplets.

On the server side, we have developed geographical and geometrical servers
which contain very large data bases of images, elevations, lines, points and
polygons stored in tiles structured into hierarchical pyramids or quadtrees. We
have also developed a metadata server which contains, in hierarchical layers,
URL pointers and geographical coordinates of various WWW documents,
geographical information and geometrical models.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 103 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
Potmesil at 1330:

The server, using the HTTP/1.0 protocol [3], accepts two types of query:
(a) send me a description of the requested tile index, (b) send me the
contents of the requested tile. The output of the server has several pipelined
stages which: (a) reformat the tile if the requested tile is not aligned with tiles
stored in the server; (b) resample the tile if the requested tile is not in the same
coordinate system; (c) dither the tile if the requesting client has only a limited
number of colors; (d) add a digital watermark [2] if the tile data is copyrighted
or encrypt the tile if it is to be seen only by the client; (e) compress the tile if
the network bandwidth requires it.

Potmesil at 1333-34:

3.3 Mapplets: Geographical Applets

The core of the geographical browser, which consists of the display and
caching processes, is programmable with small application programs called
mapplets. They are preferably written in a platform-independent and down-
loadable code such as Java. The programmability of the browser gives a user
the ability to mix-and-match mapplets and to view data in novel ways - not
foreseen by the authors of the browser. In this section, we describe some of
the mapplets that we have developed.

Mapplets obtain pertinent geographical and other data from Internet
servers, convert them, if needed, from external representations, and render
them via the browser's graphical and image-processing libraries. These are the
basic rules that apply to mapplets:

• After the core browser has been started, a user may launch additional
mapplets - typically, from a mapplet HTML page. By default, the
image mapplet, described in Section 3.3.1, is always started with the
core browser.

• Mapplets are ordered top to bottom in a stack, a mapplet can draw into
one or more top-to-bottom ordered adjacent layers.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 104 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

• Before drawing a layer, a mapplet may have to wait for specified lower
layers to be drawn first.

• A mapplet draws static data (which changes infrequently) into the off-
screen tiles, and dynamic data (which changes from frame to frame)
into the on-screen window.

• If a mapplet needs to redraw one of its layers in a cached tile, it
invalidates the contents of the tile. All other running mapplets must then
redraw their layers in that tile. This means that the mapplets may have
to reload their server's data or must maintain their own independent tile
cache.

• Before compositing the cached tiles into the final window image, the
browser may have to wait for specified layers to be drawn. By default it
always waits for the image mapplet to draw its layer(s).

• When a mapplet draws directly into the on-screen window, it likely
requires a separate drawing process, in order to maintain the browser's
interactive update rate.

• A mapplet can register with the core browser to receive events from the
user's tracking device. An event can be received by all the registered
mapplets or can be passed from top to bottom mapplets until a mapplet
acts on it.

There are several libraries that the core browser makes available to the user
mapplets:

• a socket library provides a general client/server network connection
functions,

• an HTTP library provides an interface for the HTTP/1.0 protocol
[3] on both the client and server sides. This library also implements
an interface to an HTML browser (Netscape Navigator, Mosaic)
running concurrently. Moreover, it provides a uniform interface for

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 105 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

filling out URL templates.

• a caching library allows HTTP documents to be cached in the local
client machine in memory or on disc,

• a graphical library draws geometrical primitives either to the off-screen
tiles or directly to the on-screen window, as it clips geometrical
primitives to within a tile, it puts any clipped parts on a waiting list and
draws them later when the adjacent tiles become available,

• an image processing library performs some elementary image
processing functions; as in the graphical library case, if an image-
processing function, such as a filter, needs pixels from adjoining tiles,
the library needs to preserve them and provide them to adjacent tiles,

• a geographical library converts the coordinates of geometrical
primitives among various geographical coordinates systems; it is based
on the USGS cartographic library [5].

An individual mapplet may consist of several processes, usually 1-3, which
divide the typical mapplet tasks into 3 stages: (1) obtaining metadata and data
from servers, (2) converting obtained data into an internal representation, and
(3) drawing the data. If a mapplet also needs to obtain meta information from
a server or data from multiple information servers, additional processes may
have to be spawn. Much of this design depends on the number of simultaneous
requests a mapplet will be making and the size and latency of the returned
data.

7. The method
of claim 6
wherein the
data packet
contains an
update image
parcel as a

Potmesil, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 106 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

compressed
data
representation
of said discrete
portion of said
predetermined
image.

Potmesil, p. 1329-30:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data set
have usually the same size with the possible exception of tiles along the
edges of the data set. Tiles in an index are stored in a power-of-two pyramid to
allow fast access and scroll and zoom operations [Figure 1]. Storing data in a
power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 + ... = 1/3 additional
storage space. A data set may also be stored on one or more compressed
formats. The index of each tile data set is read into the server at startup time
and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large number

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 107 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
of clients which are connected by fast networks. The server is multi-threaded:
it serves multiple clients simultaneously. For each opened connection it
spawns a separate process. If a connection is permanently kept opened, a
second process is spawned to send tiles to the client while the first process
receives tile requests from the client. Tiles, which have been recently read
from discs, are saved in shared memory so that other clients can obtain them
more quickly. This is useful when multiple clients are browsing in the same
data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query: (a)
send me a description of the requested tile index, (b) send me the contents of
the requested tile. The output of the server has several pipelined stages which:
(a) reformat the tile if the requested tile is not aligned with tiles stored in the
server; (b) resample the tile if the requested tile is not in the same coordinate
system; (c) dither the tile if the requesting client has only a limited number of
colors; (d) add a digital watermark [2] if the tile data is copyrighted or encrypt
the tile if it is to be seen only by the client; (e) compress the tile if the
network bandwidth requires it.

Potmesil, p. 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the browser. It
obtains tile data from the tile server described in Section 2.1 and converts
them into images in the cached tiles. The tiles received from the server are
processed in three pipelined steps: (1) an optional decompression, (2)
mapping into an image, (3) conversion to the local display format. The
mapplet may request compressed tiles from the tile server if the speed of
the network connection justifies the additional time spent by the mapplet in
tile decompression. The elevation data are usually compressed using a
wavelet compression [7], while the gradient and image data are usually
compressed using JPEG. When using a slower network, the gradient data
may be computed locally by the mapplet rather than downloaded from the
server. When all the tile components are decompressed, they are converted

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 108 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
into an image using one of these mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief shading
based on the local surface gradient - via a second lookup table; Horn
[10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a monochrome
shaded relief image using only the second lookup table above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the shaded-
relief is added to a monochrome image (typically a DOQ image).

Finally, following the above mappings, if the local display buffer is 24/32-bits
deep, a true-color image is displayed. However, if the frame buffer is only 8-
bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

Hornbacker at 6:20-7:3:

The preferred view tile format is 128 pixel by 128 pixel GIF image files. The
GIF image file format is preferred because of Web browser compatibility
and image file size. The GIF image file format is the most widely
supported format for graphical Web browsers and therefore gives the
maximum client compatibility for the image view server. The GIF image
format has the desirable properties of loss-less image data compression,
reasonable data compression ratios, color and grayscale support, and a
relatively small image file header, which relates to the selection of view
tile size. With a raw image data size for monochrome view tiles of 2,048

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 109 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
bytes and a typical GIF compression of 4 to 1, the compressed data for a
view tile is approximately 512 bytes. With many image file formats, such
as TIFF and JPEG, the image file header (and other overhead
information such as data indexes) can be as large or larger than the image
data itself for small images such as the view tiles; whereas a GIF header
for a monochrome image adds as little as 31 bytes to the GIF image file.
Alternate view tile formats such as Portable Network Graphics (PNG)
may be used, especially as native browser support for the format becomes
common.

Hornbacker at 7:14-15:

Fixed size view tiling is beneficial because it allows more effective use of the
caching mechanism at the server and at the client.

Hornbacker at 14:2-16:

A typical view size of 896 by 512 pixels is made up of a 7 by 4 array of 128
pixel x 128 pixel view tiles. The monochrome view tiles are transmitted in
a compressed format that typically yields tiles that are 512 bytes each so
the entire view is approximately 14 kilobytes (0.5 KB x 28 tiles) and the
transfer takes approximately 4.8 seconds (14 KB / 3 KB/second). This method
of image viewing provides better response to the user with much lower
demand on the network connection. A local-area-network typically utilizes a
10 megabit-per-second media so the savings from the efficiency of the image
view server does not seem obvious. However, if the 10 megabit-per-second
network is shared by 100 users, then the average bandwidth per user is only
about 12.5 kilobytes-per-second so the efficiency of the image view server is
still a benefit. Another benefit of the image view server is that the data
transfer size remains constant even if the size of the view image is
increased. If the image file size was 4 times larger than with the previous
example as may be the case with a larger image, a higher resolution image or a
less compressible image then the network load by the image view server
would remain unchanged while network load of the traditional image viewer
would quadruple.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 110 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)

8. The method
of claim 7
wherein said
data packet
contains said
update image
parcel as a
fixed
compression
ratio
representation
of said discrete
portion of said
predetermined
image.

The teachings discussed above in regard to claim 7 apply here. Each of
Potmesil and Hornbacker teaches that the tiles are representations of a discrete
portion of said predetermined image.

9. The method
of claim 7,
wherein said
update image
parcel contains
pixel data in a
fixed size array
independent of
the pixel
resolution of
said
predetermined
image.

Potmesil, Fig. 1:

Potmesil at 1329-1330:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 111 -

7,908,343
Patent Claim
Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information on
the WWW,” Computer Networks and ISDN Systems 29 (1997) 1327-
13422 in view of PCT Publication No. WO 99/41675, Pub. Aug. 19, 1999
(“Hornbacker”)
2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid. This
may be satellite and aerial images, terrain elevations and gradients or geoid
corrections. A data set is stored in a tile index. A data set may have several
components such as: elevation, gradient, and rgb image. All tiles in a data set
have usually the same size with the possible exception of tiles along the
edges of the data set. Tiles in an index are stored in a power-of-two
pyramid to allow fast access and scroll and zoom operations [Figure 1].
Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 + 1/32 +
... = 1/3 additional storage space. A data set may also be stored on one or
more compressed formats. The index of each tile data set is read into the
server at startup time and stored in a quadtree [14].

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

13.Preamble: A
display system for
displaying a large-
scale image
retrieved over a
limited bandwidth
communications
channel, said
display system
comprising:

See teachings for claim 1, preamble.

3 For easier readability, color figures from Potmesil are copied from an online copy of the reference available at
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html. The figures are identical to those in Ex. [XX].

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 112 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

13.A: a display of
defined screen
resolution for
displaying a
defined image;

Potmesil at 1332-33:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or
gradients. Quadtree data structures and algorithms, many of them for
geographical applications, are described in books and papers by Samet
[14]. The concept of prefiltered power-of-two images for texture
mapping was introduced by Williams [17] who named them mip maps.
Since his seminal paper, it has become a rendering standard
implemented, for example, in OpenGL software [12] and hardware
[1]. In the 2D browser we use any type of data sampled on a 2D lattice.
However, our techniques are applicable to any other model representations
such as TIN's (Triangulated Irregular Networks) of terrain or VRML
models which are clipped to rectangular regions. In more complex
environments, such as furnished interiors of buildings, one must use more
sophisticated data structures and display algorithms to maintain interactive
display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 113 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Figure 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user, least-recently visible tiles, or least-recently arrived tiles.

The caching process receives information about the current view from the
compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location
and scale of a map. A 3D browser may have also multiple windows
opened, each with a different perspective projection. Each window can
be moving completely independently of all the others, or they may be
different views from one user (e.g., left and right views from a cockpit,
or the view of a tail gunner). The caching process computes one or
more estimated positions of each view and intersects their bounding
volume with the tile coordinate system. Any intersected tiles not present
in the cache are sorted by distance from the user, and the caching
algorithm determines how many of them can be loaded into the cache. This
depends on the total number of allocated tiles for we need to prevent tile
thrashing. The more disc and memory space the host machine has
available, the more tiles can be brought into the cache and remain there.
There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and disappearing

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 114 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be cached,
each mapplet can start loading its data into each tile. Mapplets also provide
feedback to the cache process: each tile is marked by each mapplet when it
has been drawn, and each mapplet saves the average time it takes to
receive and draw the tile data.

Potmesil, Fig. 2:

Potmesil at 1340-41:

3.4 A 3D Geographical Browser

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 115 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server. The browser uses the OpenGL library
to render 3D graphics. To make the three-dimensional browser truly
global, we represent the Earth as an ellipsoid or geodetic datum called
World Geodetic System 1984 (WGS84) [4].

Potmesil, Fig. 8:

Hornbacker, 7:4-25

The 128 pixel view tile size is a good compromise between view tile
granularity and view tile overhead. The view tile granularity of 128 pixels
determines the minimum view shift distance (pan distance) that can be
achieved with standard graphical Web browser and level 2 HTML
formatting. This allows the adjustment of the view position on a 0.64
inch grid when viewing a 200 pixel-per-inch image at 1 to 1 scale.
Reducing the size of the view tiles allows finer grid for view positioning,
but has the problem that the view tile overhead becomes excessive.
A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view
tile will represent a 256 x 256 pixel area of the image file that has been
scaled down to 128 x 128 pixels. For each possible scale factor there is an
array of tiles to represent the view. Fixed size view tiling is beneficial
because it allows more effective use of the caching mechanism at the
server and at the client. For example, consider a view of 512 pixels by

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 116 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
512 pixels. Without tiling, this view is composed of a single GIF file that
is displayed by the Web browser, and so if the user asks for the view to be
shifted by 256 pixels, then a new GIF image of 512 x 512 pixels needs to
be created and transmitted to the Web browser. With tiling, the first view
would cause 16 view tiles to be computed and transmitted for display by
the Web browser. When the request for the view to be shifted by 256
pixels is made, only 8 view tiles representing an area of 256 by 512 pixels
need to be computed. In addition only the 8 new view tiles need to be
transmitted to the Web browser since the shifted view will reuse 8 view
tiles that are available from the Web browser cache. The use of tiling cuts
the computation and data transmission in half for this example.

Hornbacker, 11:19-28

FIG 6 A illustrates how the background view composer algorithm works.
Assuming that for a given view requested by the client, tiles C3, C4, D3
and D4 are delivered, after those tile are delivered to the Web browser, the
background view composer routine within the server program creates the
tiles around these tiles, starting at E4, by composing or computing such
surrounding tiles. As long as the client continues to view this page at this
scale factor, the server will compute view tiles expanding outward from
the tiles requested last. FIG 6B illustrates another request made by a client,
after the two rotations of tiles were generated. The request asked for tiles
G3, G4, H3, and H4. When the tile pre-computation begins for this request
it will create tiles G5, H5, 15, 14, 13, 12, H2, and G2 in the first rotation,
but it will not attempt to create tiles in the F column.

Hornbacker, 13:4-10

By using client software to enhance the client viewer, additional
enhancements to performance can be made by using alternate view tile
image formats and image compression algorithms. A significant example
would be to use the Portable Network Graphics (PNG) format with the
optimization of having the image view server and client transfer only one
image header common to be shared by all view tiles and then sending the
low-resolution compressed image data for each view tile followed by the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 117 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
full-resolution image data for each view tile.

Hornbacker, 14:2-6

A typical view size of 896 by 512 pixels is made up of a 7 by 4 array of
128 pixel x 128 pixel view tiles. The monochrome view tiles are
transmitted in a compressed format that typically yields tiles that are 512
bytes each so the entire view is approximately 14 kilobytes (0.5 KB x 28
tiles) and the transfer takes approximately 4.8 seconds (14 KB / 3
KB/second).

13.B: a memory
providing for the
storage of a
plurality of image
parcels

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user’s current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user’s current and predicted
future locations and expect to receive such data and to prepare them for
display before the user reaches it. Around this core concept of tile
caching, various specialized visualization applets - written in C, C++
or Java - are developed. Such applets run simultaneously on top of the
browser and convert all their respective data into a common coordinate
system specified by the browser. Examples of such applets are weather and
traffic reports, bird migrations, and a spatial bulletin board applet which
displays an anchor of any WWW document at any geographical location.
Each applet typically queries two servers: a spatial meta server, which
knows what information is available at what geographical location and
where on the WWW to find it, and the server which contains the
information itself.

Potmesil at 1332-33:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 118 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

In this paper, we describe a system for viewing geospatial models which
reside in serer hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. the servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally….

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by
all mapplets. It controls how the cached tiles are allocated in space and
time. This cache allocation is currently based on five parameters: x, y, z,
level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user’s current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Fig. 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user: least-recently visible tiles, or least-recently arrived tiles. The caching
process receives information about the current view from the compositing
process. A 2D browser may have multiple windows opened, each with an
orthographic projection of a different location and scale of a map. A 3D
browser may have also multiple windows opened, each with a different

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 119 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one
user (e.g., left and right views from a cockpit, or the view of a tail gunner).
The caching process computes one or more estimated positions of each
view and intersects their bounding volume with the tile coordinate
system. Any intersected tiles not present in the cache are sorted by
distance from the user, and the caching algorithm determines how
many of them can be loaded into the cache. This depends on the total
number of allocated tiles for we need to prevent tile thrashing. The
more disc and memory space the host machine has available, the more
tiles can be brought into the cache and remain there. There are several
implemented caching strategies:

• Obtain only tiles in a narrow corridor along the user’s path; the
cached tiles look like a snake with a growing head and disappearing
tail (Fig. 2a-c),

• Obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain (Fig. 2d),

• Obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be
cached, each mapplet can start loading its data into each tile. Mapplets
also provide feedback to the cache process: each tile is marked by each
mapplet when it has been drawn, and each mapplet saves the average time
it takes to receive and draw the tile data.

3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image…

The two processes run independently and asynchronously. The cache

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 120 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
manager keeps rearranging the cache memory even while the user has
stopped and the image is not regenerated.

Potmesil at 1334:

There are several libraries that the core browser makes available to the user
mapplets:…

• A caching library allows HTTP documents to be cached on the
local client machine in memory or on disc…

3.3.1 An image applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles.

3.4. A 3D geographical browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server.

Hornbacker teaches that retrieved tiles may be stored in a local cache.

Hornbacker, 6:1-19

The foreground view composer is initialized 140 and composes the
requested view 150 after recovering it from memory on the network server.
The foreground view composer software interprets the view request,
computes which view tiles are needed for the view, creates the view tiles
160 needed for the view, and then creates Hypertext Markup Language
(HTML) output file to describe the view composition to the Web browser,
unless the necessary view tiles to fulfill the request are already
computed and stored in cache memory of the workstation, in which
case the already-computed tiles are recovered by the Web browser. In
either case, the foreground view composer formats the output 170 and then

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 121 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
intitializes backgound view composer 180 which passes the formatted
output to the Web server, which in turn transmits the formatted output over
the network to the Web browser 200 on the requesting workstation 10,
where the requesting browser displays any view tiles already cached 210,
combined with newly computed view tiles 220 which are fetched from the
server.

Hornbacker, 8:1-6

For frequently accessed images there is a good chance that the view
tiles for a view may already exist in the view tile cache since the view
tile cache maintains the most recently accessed view tiles. Since
millions of view tiles may be created and eventually exceed the storage
capacity of the image view server, the view tile cache garbage collector
removes the least recently accessed view tiles in the case where the
maximum storage allocation or minimum storage free space limits are
reached.

Hornbacker, 8:16-23

The HTML output file produced by the foreground view composer is
passed to the Web server software to be transmitted to the Web browser.
The graphical Web browser serves as the image viewer by utilizing the
HTML output from the image view server to compose and display the
array of view tiles that form a view of an image. The HTML page data list
the size, position and the hyperlink for each view tile to be displayed. The
view tiles are stored in the GIF image file format that can be displayed by
all common graphical Web browsers. The Web browser will retrieve
each view tile to be displayed from a local cache if the view tile is
present, otherwise from the image view server.

Hornbacker, 10:13-28

The view tile generator routine 160 performs the actual creation of the
view tiles according to the preferred steps shown in FIG 8. The view tile

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 122 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
generator receives information from the view computation as to what view
tiles are needed for the view. It has access to records in the cache 80 that
determine which tiles have already been created and are resident in
the cache. If a needed view tile is in the cache then its last access time is
updated to prevent the cache garbage collector from deleting the view tile.
If a needed view tile is not in the cache, then the view tile generator creates
the view tile from the image file 90. The view tile generator uses a
software imaging library that supports rendering many digital document
file formats including monochrome raster images, grayscale raster images,
color raster images as well as many content rich non-raster formats such as
Adobe Portable Document Format (PDF), PostScript, HPGL, etc. When
rendering monochrome image data the imaging library scale-to-gray
scaling is used to provide a more visually appealing rendition of the
reduced image.

For example, a specific view request might include tiles B2, C2, B3, and
C3 (FIG 4A and FIG 5A). If, after viewing those tiles, the client decides
that the view to the immediate left is desired, then the server would send
tiles A2 and A3 (FIG 4B and FIG 5B). This assumes that the client retains
in a cache the other tiles. If the client does not cache then tiles A2, A3, B2,
and B3 are sent.

Hornbacker, 11:29-12:9

Preferably a view tile cache garbage collector algorithm 70 manages the
use of the storage for view tiles (FIGS 10A, 10B, 10C). The garbage
collector maintains the view tile cache 60 (FIG. 1) to keep the view tile
cache storage usage below a storage limit and to keep the storage free
space above a free space limit. The garbage collector constantly scans the
cache to accumulate size and age statistics for the view tiles. When the
cache size needs to be reduced, the garbage collector selects the least
recently accessed view tiles for deletion until the cache size is within
limits. The garbage collector runs at a low priority to minimize
interference with more critical system tasks. The storage free space limit is
designed as a failsafe limit to prevent the system from running out of

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 123 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
storage. The free space limit is checked on a periodic basis and if it is
exceeded the garbage collector becomes a critical system task and runs at a
high priority until the storage free space is greater than the free space limit.

Hornbacker, 12:17-23

The graphical Web browser on the client workstation 10 receives HTML
data from the image view server 210 that contains hyperlinks to the view
tiles within the view tile cache 60 to be displayed and formatting that
describes the layout of the of the tiles to form the image view. The Web
browser initially must fetch each view tile 220 for a view from the view
server. After the initial view, whenever a view overlaps with a previous
view at the same scale, the Web browser preferably retrieves view tiles
that have been previously displayed from the Web browser's local
cache 210 rather than from the server.

Hornbacker, 13:19-23

By using image tiling and caching according to the preferred method,
relatively small amounts of data need to be transmitted when the user
selects a new view of an image already received and viewed. The server
sends the requested image in the request format to the workstation and then
allows viewing the image from the local copy of the image file.

13.C: displayable
over respective
portions of a mesh
corresponding to
said defined
image;

Potmesil, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 124 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user's current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user's current and predicted
future locations and expect to receive such data and to prepare them for
display before the user reaches it. Around this core concept of tile caching,
various specialized visualization applets - written in C, C++ or Java - are
developed. Such applets run simultaneously on top of the browser and
convert all their respective data into a common coordinate system specified
by the browser. Examples of such applets are weather and traffic reports,
bird migrations, and a spatial bulletin board applet which displays an
anchor of any WWW document at any geographical location. Each applet
typically queries two servers: a spatial meta server, which knows what
information is available at what geographical location and where on the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 125 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
WWW to find it, and the server which contains the information itself.

Potmesil at 1329-30:

2. Geospatial Servers

The concept of a geography server system recognizes that a digital map or
a 3D geographical model is held by many independent sources, distributed
over a network. The objective of a browser is to gather all the necessary
geographical layers, on as-needed basis, without having to store them
locally and to display them. Our architecture of a geography server system
has three major components: a directory scheme for finding servers, a
common interface protocol for talking to the servers, and a strategy for
implementing the servers themselves. We have developed four different
types of servers, so far, in this project: the first three contain actual
geographical geometry - (1) points sampled on grids, (2) random points
with names, and (3) lines and polygons with names - while the last type
stores metadata - information about where to find spatial and geographical
information.

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients or
geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in
a data set have usually the same size with the possible exception of tiles
along the edges of the data set. Tiles in an index are stored in a power-
of-two pyramid to allow fast access and scroll and zoom operations
[Figure 1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 +
1/16 + 1/32 + ... = 1/3 additional storage space. A data set may also be
stored on one or more compressed formats. The index of each tile data
set is read into the server at startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large
number of clients which are connected by fast networks. The server is

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 126 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
multi-threaded: it serves multiple clients simultaneously. For each opened
connection it spawns a separate process. If a connection is permanently
kept opened, a second process is spawned to send tiles to the client while
the first process receives tile requests from the client. Tiles, which have
been recently read from discs, are saved in shared memory so that other
clients can obtain them more quickly. This is useful when multiple clients
are browsing in the same data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query:
(a) send me a description of the requested tile index, (b) send me the
contents of the requested tile. The output of the server has several
pipelined stages which: (a) reformat the tile if the requested tile is not
aligned with tiles stored in the server; (b) resample the tile if the
requested tile is not in the same coordinate system; (c) dither the tile if
the requesting client has only a limited number of colors; (d) add a digital
watermark [2] if the tile data is copyrighted or encrypt the tile if it is to be
seen only by the client; (e) compress the tile if the network bandwidth
requires it.

Potmesil at 1332-35:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons
and image pyramids for 2D lattice data such as images, elevations or

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 127 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
gradients. Quadtree data structures and algorithms, many of them for
geographical applications, are described in books and papers by
Samet [14]. The concept of prefiltered power-of-two images for texture
mapping was introduced by Williams [17] who named them mip maps.
Since his seminal paper, it has become a rendering standard implemented,
for example, in OpenGL software [12] and hardware [1]. In the 2D
browser we use any type of data sampled on a 2D lattice. However,
our techniques are applicable to any other model representations such
as TIN's (Triangulated Irregular Networks) of terrain or VRML
models which are clipped to rectangular regions. In more complex
environments, such as furnished interiors of buildings, one must use more
sophisticated data structures and display algorithms to maintain interactive
display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z,
level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Figure 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user, least-recently visible tiles, or least-recently arrived tiles.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 128 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
The caching process receives information about the current view from the
compositing process. A 2D browser may have multiple windows opened,
each with an orthographic projection of a different location and scale of a
map. A 3D browser may have also multiple windows opened, each with a
different perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one
user (e.g., left and right views from a cockpit, or the view of a tail gunner).
The caching process computes one or more estimated positions of each
view and intersects their bounding volume with the tile coordinate
system. Any intersected tiles not present in the cache are sorted by
distance from the user, and the caching algorithm determines how many of
them can be loaded into the cache. This depends on the total number of
allocated tiles for we need to prevent tile thrashing. The more disc and
memory space the host machine has available, the more tiles can be
brought into the cache and remain there. There are several implemented
caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and disappearing
tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be cached,
each mapplet can start loading its data into each tile. Mapplets also provide
feedback to the cache process: each tile is marked by each mapplet when it
has been drawn, and each mapplet saves the average time it takes to
receive and draw the tile data.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 129 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image. While compositing tiles,
it checks whether all mapplets have drawn their layer(s). If there are layers
that have to be drawn before a tile can be shown, the process must wait.
This process is also responsible for synchronizing all mapplets, obtaining
the user's tracking data from a tracking device and obtaining real time or
computing simulated time. This assures that all mapplets are in the same
space and time. Directions where and how the browser should move in
space can come from one of these sources:

• a user can click on an anchor in an HTML document concurrently
displayed by an HTML browser,

• a user can use a mouse or some other tracking device (hand gestures,
force-feedback joystick, GPS receiver), or

• a mapplet can take control of the browser and compute directions
procedurally (e.g., the great circle) or in any other way, perhaps
even including the two above methods.

The two processes run independently and asynchronously. The cache
manager keeps rearranging the cache memory even while the user has
stopped and the image is not regenerated.

3.3 Mapplets: Geographical Applets

The core of the geographical browser, which consists of the display
and caching processes, is programmable with small application
programs called mapplets. They are preferably written in a platform-
independent and down-loadable code such as Java. The programmability
of the browser gives a user the ability to mix-and-match mapplets and to
view data in novel ways - not foreseen by the authors of the browser. In

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 130 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
this section, we describe some of the mapplets that we have developed.

Mapplets obtain pertinent geographical and other data from Internet
servers, convert them, if needed, from external representations, and render
them via the browser's graphical and image-processing libraries. These are
the basic rules that apply to mapplets:

• After the core browser has been started, a user may launch
additional mapplets - typically, from a mapplet HTML page. By
default, the image mapplet, described in Section 3.3.1, is always
started with the core browser.

• Mapplets are ordered top to bottom in a stack, a mapplet can draw
into one or more top-to-bottom ordered adjacent layers.

• Before drawing a layer, a mapplet may have to wait for specified
lower layers to be drawn first.

• A mapplet draws static data (which changes infrequently) into the
off-screen tiles, and dynamic data (which changes from frame to
frame) into the on-screen window.

• If a mapplet needs to redraw one of its layers in a cached tile, it
invalidates the contents of the tile. All other running mapplets must
then redraw their layers in that tile. This means that the mapplets
may have to reload their server's data or must maintain their own
independent tile cache.

• Before compositing the cached tiles into the final window image, the
browser may have to wait for specified layers to be drawn. By
default it always waits for the image mapplet to draw its layer(s).

• When a mapplet draws directly into the on-screen window, it likely
requires a separate drawing process, in order to maintain the
browser's interactive update rate.

• A mapplet can register with the core browser to receive events from

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 131 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

the user's tracking device. An event can be received by all the
registered mapplets or can be passed from top to bottom mapplets
until a mapplet acts on it.

There are several libraries that the core browser makes available to the user
mapplets:

• a socket library provides a general client/server network connection
functions,

• an HTTP library provides an interface for the HTTP/1.0 protocol [3]
on both the client and server sides. This library also implements an
interface to an HTML browser (Netscape Navigator, Mosaic)
running concurrently. Moreover, it provides a uniform interface for
filling out URL templates.

• a caching library allows HTTP documents to be cached in the local
client machine in memory or on disc,

• a graphical library draws geometrical primitives either to the off-
screen tiles or directly to the on-screen window, as it clips
geometrical primitives to within a tile, it puts any clipped parts on a
waiting list and draws them later when the adjacent tiles become
available,

• an image processing library performs some elementary image
processing functions; as in the graphical library case, if an image-
processing function, such as a filter, needs pixels from adjoining
tiles, the library needs to preserve them and provide them to adjacent
tiles,

• a geographical library converts the coordinates of geometrical
primitives among various geographical coordinates systems; it is
based on the USGS cartographic library [5].

An individual mapplet may consist of several processes, usually 1-3, which
divide the typical mapplet tasks into 3 stages: (1) obtaining metadata and

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 132 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
data from servers, (2) converting obtained data into an internal
representation, and (3) drawing the data. If a mapplet also needs to
obtain meta information from a server or data from multiple information
servers, additional processes may have to be spawn. Much of this design
depends on the number of simultaneous requests a mapplet will be making
and the size and latency of the returned data.

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles. The tiles received
from the server are processed in three pipelined steps: (1) an optional
decompression, (2) mapping into an image, (3) conversion to the local
display format. The mapplet may request compressed tiles from the tile
server if the speed of the network connection justifies the additional time
spent by the mapplet in tile decompression. The elevation data are usually
compressed using a wavelet compression [7], while the gradient and image
data are usually compressed using JPEG. When using a slower network,
the gradient data may be computed locally by the mapplet rather than
downloaded from the server. When all the tile components are
decompressed, they are converted into an image using one of these
mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief
shading based on the local surface gradient - via a second lookup
table; Horn [10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table
above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 133 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images, from
several WWW servers. The mapplet obtains a GIF image, decodes it
and draws it on top of the current tile contents. Optionally, in addition
to the GIF transparency value, an alpha-blending value can be specified to
make the image background partially visible.

Currently, the mapplet can obtain maps and images from three
outside sources: (1) the well-known Xerox PARC map server which
contains data from the DMA's Digital Chart of the World and the
USGS's 1:2,000,000 Digital Line Graph, (2) the U.S. Bureau of the
Census TIGER street map server, and (3) the multi-resolution Mars
image server at the Los Alamos National Laboratory.

Hornbacker at 6:13-19:

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the
image view server context). These tiles are computed for distinct

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 134 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
resolutions (FIG 3B) of a given image at the server according to the URL
request received from the browser software on the workstation.

13.D: a
communications
channel interface
supporting the
retrieval of a
defined data parcel
over a limited
bandwidth
communications
channel;

Potmesil and Hornbacker both teach a communications channel interface
for receiving data over a limited bandwidth communications channel, as
discussed in regard to the preamble of claim 1.

13.E: a processor
coupled between
said display,
memory and
communications
channel interface,

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user’s current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user’s current and predicted
future locations and expect to receive such data and to prepare them for
display before the user reaches it. Around this core concept of tile caching,
various specialized visualization applets - written in C, C++ or Java - are
developed. Such applets run simultaneously on top of the browser and
convert all their respective data into a common coordinate system specified
by the browser. Examples of such applets are weather and traffic reports,
bird migrations, and a spatial bulletin board applet which displays an
anchor of any WWW document at any geographical location. Each applet
typically queries two servers: a spatial meta server, which knows what
information is available at what geographical location and where on the
WWW to find it, and the server which contains the information itself.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 135 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
Hornbacker at 5:3:

Referring first to FIG. 1, a network comprising client workstations 10
and 20 are connected through network connections to a network image
view server 100 comprising a network server interface, preferably a web
server 30 which uses the Hypertext Transfer Protocol (HTTP), a request
broker 40, a foreground view composer 50, a view tile cache 60, a
background view composer 80, a garbage collector 70, and a document
repository 90 having image files.

The network image view server, i.e. , client workstation, or "workstation,"
100 can be implemented on a computer, for example a personal computer
configured with a processor, I/O, memory, disk storage, and a network
interface. The network image view server 100 is configured with a network
server operating system and Web server software 30 to provide the
network HTTP protocol link with the client workstations 10 and 20.
Typical networks include many workstations served by one, and
sometimes more than one, network server, the server functioning as a
library to maintain files which can be accessed by the workstations.

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user
requests an image view 110 (FIG. 2) having a scale and region specified by
by means of a specially formatted Uniformed Resource Locator (URL)
code using HTTP language which the Web server can decode as a request
to be passed to the image view composition software and that identifies the
image file to be viewed, the scale of the view and the region of the image
to view.

13.F: said
processor
operative to select
said defined data
parcel,

See teachings for claim element 1.B.

13.G: retrieve said Potmesil at 1328:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 136 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

defined data parcel
via said limited
bandwidth
communications
channel interface
for storage in said
memory, and

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user’s current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user’s current and predicted
future locations and expect to receive such data and to prepare them for
display before the user reaches it. Around this core concept of tile
caching, various specialized visualization applets - written in C, C++
or Java - are developed. Such applets run simultaneously on top of the
browser and convert all their respective data into a common coordinate
system specified by the browser. Examples of such applets are weather and
traffic reports, bird migrations, and a spatial bulletin board applet which
displays an anchor of any WWW document at any geographical location.
Each applet typically queries two servers: a spatial meta server, which
knows what information is available at what geographical location and
where on the WWW to find it, and the server which contains the
information itself.

Potmesil at 1332-33:

In this paper, we describe a system for viewing geospatial models which
reside in serer hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. the servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally….

The browser consists of two processes: caching and compositing. The

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 137 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by
all mapplets. It controls how the cached tiles are allocated in space and
time. This cache allocation is currently based on five parameters: x, y, z,
level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user’s current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Fig. 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user: least-recently visible tiles, or least-recently arrived tiles. The caching
process receives information about the current view from the compositing
process. A 2D browser may have multiple windows opened, each with an
orthographic projection of a different location and scale of a map. A 3D
browser may have also multiple windows opened, each with a different
perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one
user (e.g., left and right views from a cockpit, or the view of a tail gunner).
The caching process computes one or more estimated positions of each
view and intersects their bounding volume with the tile coordinate
system. Any intersected tiles not present in the cache are sorted by
distance from the user, and the caching algorithm determines how
many of them can be loaded into the cache. This depends on the total
number of allocated tiles for we need to prevent tile thrashing. The
more disc and memory space the host machine has available, the more
tiles can be brought into the cache and remain there. There are several

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 138 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
implemented caching strategies:

• Obtain only tiles in a narrow corridor along the user’s path; the
cached tiles look like a snake with a growing head and disappearing
tail (Fig. 2a-c),

• Obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain (Fig. 2d),

• Obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be
cached, each mapplet can start loading its data into each tile. Mapplets
also provide feedback to the cache process: each tile is marked by each
mapplet when it has been drawn, and each mapplet saves the average time
it takes to receive and draw the tile data.

3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image…

The two processes run independently and asynchronously. The cache
manager keeps rearranging the cache memory even while the user has
stopped and the image is not regenerated.

Potmesil at 1334:

There are several libraries that the core browser makes available to the user
mapplets:…

• A caching library allows HTTP documents to be cached on the
local client machine in memory or on disc…

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 139 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
3.3.1 An image applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles.

3.4. A 3D geographical browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server.

Hornbacker, 6:1-19

The foreground view composer is initialized 140 and composes the
requested view 150 after recovering it from memory on the network server.
The foreground view composer software interprets the view request,
computes which view tiles are needed for the view, creates the view tiles
160 needed for the view, and then creates Hypertext Markup Language
(HTML) output file to describe the view composition to the Web browser,
unless the necessary view tiles to fulfill the request are already
computed and stored in cache memory of the workstation, in which
case the already-computed tiles are recovered by the Web browser. In
either case, the foreground view composer formats the output 170 and then
intitializes backgound view composer 180 which passes the formatted
output to the Web server, which in turn transmits the formatted output over
the network to the Web browser 200 on the requesting workstation 10,
where the requesting browser displays any view tiles already cached 210,
combined with newly computed view tiles 220 which are fetched from the
server.

Hornbacker, 8:1-6

For frequently accessed images there is a good chance that the view
tiles for a view may already exist in the view tile cache since the view
tile cache maintains the most recently accessed view tiles. Since

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 140 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
millions of view tiles may be created and eventually exceed the storage
capacity of the image view server, the view tile cache garbage collector
removes the least recently accessed view tiles in the case where the
maximum storage allocation or minimum storage free space limits are
reached.

Hornbacker, 8:16-23

The HTML output file produced by the foreground view composer is
passed to the Web server software to be transmitted to the Web browser.
The graphical Web browser serves as the image viewer by utilizing the
HTML output from the image view server to compose and display the
array of view tiles that form a view of an image. The HTML page data list
the size, position and the hyperlink for each view tile to be displayed. The
view tiles are stored in the GIF image file format that can be displayed by
all common graphical Web browsers. The Web browser will retrieve
each view tile to be displayed from a local cache if the view tile is
present, otherwise from the image view server.

Hornbacker, 10:13-28

The view tile generator routine 160 performs the actual creation of the
view tiles according to the preferred steps shown in FIG 8. The view tile
generator receives information from the view computation as to what view
tiles are needed for the view. It has access to records in the cache 80 that
determine which tiles have already been created and are resident in
the cache. If a needed view tile is in the cache then its last access time is
updated to prevent the cache garbage collector from deleting the view tile.
If a needed view tile is not in the cache, then the view tile generator creates
the view tile from the image file 90. The view tile generator uses a
software imaging library that supports rendering many digital document
file formats including monochrome raster images, grayscale raster images,
color raster images as well as many content rich non-raster formats such as
Adobe Portable Document Format (PDF), PostScript, HPGL, etc. When
rendering monochrome image data the imaging library scale-to-gray

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 141 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
scaling is used to provide a more visually appealing rendition of the
reduced image.

For example, a specific view request might include tiles B2, C2, B3, and
C3 (FIG 4A and FIG 5A). If, after viewing those tiles, the client decides
that the view to the immediate left is desired, then the server would send
tiles A2 and A3 (FIG 4B and FIG 5B). This assumes that the client retains
in a cache the other tiles. If the client does not cache then tiles A2, A3, B2,
and B3 are sent.

Hornbacker, 11:29-12:9

Preferably a view tile cache garbage collector algorithm 70 manages the
use of the storage for view tiles (FIGS 10A, 10B, 10C). The garbage
collector maintains the view tile cache 60 (FIG. 1) to keep the view tile
cache storage usage below a storage limit and to keep the storage free
space above a free space limit. The garbage collector constantly scans the
cache to accumulate size and age statistics for the view tiles. When the
cache size needs to be reduced, the garbage collector selects the least
recently accessed view tiles for deletion until the cache size is within
limits. The garbage collector runs at a low priority to minimize
interference with more critical system tasks. The storage free space limit is
designed as a failsafe limit to prevent the system from running out of
storage. The free space limit is checked on a periodic basis and if it is
exceeded the garbage collector becomes a critical system task and runs at a
high priority until the storage free space is greater than the free space limit.

Hornbacker, 12:17-23

The graphical Web browser on the client workstation 10 receives HTML
data from the image view server 210 that contains hyperlinks to the view
tiles within the view tile cache 60 to be displayed and formatting that
describes the layout of the of the tiles to form the image view. The Web
browser initially must fetch each view tile 220 for a view from the view
server. After the initial view, whenever a view overlaps with a previous

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 142 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
view at the same scale, the Web browser preferably retrieves view tiles
that have been previously displayed from the Web browser's local
cache 210 rather than from the server.

Hornbacker, 13:19-23

By using image tiling and caching according to the preferred method,
relatively small amounts of data need to be transmitted when the user
selects a new view of an image already received and viewed. The server
sends the requested image in the request format to the workstation and then
allows viewing the image from the local copy of the image file.

13.H: render said
defined data parcel
over a discrete
portion of said
mesh to provide
for a progressive
resolution
enhancement of
said defined image
on said display;
and

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser capable
of continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and acceleration in
the 2D/3D space as well as on the latency of server replies. A user can
program these browsers by adding small application programs - mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations, lines,
points and polygons stored in tiles structured into hierarchical
pyramids or quadtrees. We have also developed a metadata server which

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 143 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
contains, in hierarchical layers, URL pointers and geographical coordinates
of various WWW documents, geographical information and geometrical
models.

Potmesil, Fig. 1:

Potmesil at 1329-1330:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients or
geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in
a data set have usually the same size with the possible exception of tiles
along the edges of the data set. Tiles in an index are stored in a power-
of-two pyramid to allow fast access and scroll and zoom operations
[Figure 1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 +
1/16 + 1/32 + ... = 1/3 additional storage space. A data set may also be
stored on one or more compressed formats. The index of each tile data
set is read into the server at startup time and stored in a quadtree [14].

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 144 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching algorithm uses the user’s current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Fig. 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user: least-recently visible tiles, or least-recently arrived tiles. The caching
process receives information about the current view from the compositing
process. A 2D browser may have multiple windows opened, each with an
orthographic projection of a different location and scale of a map. A 3D
browser may have also multiple windows opened, each with a different
perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one
user (e.g., left and right views from a cockpit, or the view of a tail gunner).
The caching process computes one or more estimated positions of each
view and intersects their bounding volume with the tile coordinate
system. Any intersected tiles not present in the cache are sorted by
distance from the user, and the caching algorithm determines how
many of them can be loaded into the cache. This depends on the total
number of allocated tiles for we need to prevent tile thrashing. The
more disc and memory space the host machine has available, the more
tiles can be brought into the cache and remain there. There are several
implemented caching strategies:

• Obtain only tiles in a narrow corridor along the user’s path; the
cached tiles look like a snake with a growing head and disappearing
tail (Fig. 2a-c),

• Obtain as many tiles as close to the view as possible; this may be

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 145 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

used in low speeds (hovering) when the direction of flight is
uncertain (Fig. 2d),

• Obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be cached,
each mapplet can start loading its data into each tile. Mapplets also provide
feedback to the cache process: each tile is marked by each mapplet when it
has been drawn, and each mapplet saves the average time it takes to
receive and draw the tile data.

Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The
concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his
seminal paper, it has become a rendering standard implemented, for
example, in OpenGL software [12] and hardware [1]. In the 2D

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 146 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
browser we use any type of data sampled on a 2D lattice. However, our
techniques are applicable to any other model representations such as TIN's
(Triangulated Irregular Networks) of terrain or VRML models which are
clipped to rectangular regions. In more complex environments, such as
furnished interiors of buildings, one must use more sophisticated data
structures and display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

Hornbacker, 12:24-13:10

Performance and usability of document viewing can be increased by
using progressive display of tiled images. By using an image file
format that allows a rough view of the image to be displayed while the
remainder of the image content is downloaded, a rough view of the
document can be seen more quickly.

Since most Web browsers can only transfer 1 to 4 GIF images at a time,
usually not all of the view tiles in the view array can be progressively
displayed at the same time. Therefore, it is preferred that to implement
progressive display, algorithms at the client are provided to accept an
alternate data format that would allow the whole document viewing area
screen to take advantage of the progressive display while still taking

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 147 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
advantage of the benefits of tiling and caching at the client. This can be
accomplished in a Web browser environment using algorithms written in
Java, JavaScript, or ActiveX technologies. By using client software to
enhance the client viewer, additional enhancements to performance can be
made by using alternate view tile image formats and image compression
algorithms. A significant example would be to use the Portable Network
Graphics (PNG) format with the optimization of having the image view
server and client transfer only one image header common to be shared by
all view tiles and then sending the low-resolution compressed image data
for each view tile followed by the full-resolution image data for each view
tile.

13.I: a remote
computer, coupled
to the limited
bandwidth
communications
channel, that
delivers the
defined data parcel

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers
and connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser capable
of continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and acceleration in
the 2D/3D space as well as on the latency of server replies. A user can
program these browsers by adding small application programs - mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations,
lines, points and polygons stored in tiles structured into hierarchical
pyramids or quadtrees. We have also developed a metadata server which

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 148 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
contains, in hierarchical layers, URL pointers and geographical coordinates
of various WWW documents, geographical information and geometrical
models.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user’s current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user’s current and predicted
future locations and expect to receive such data and to prepare them for
display before the user reaches it. Around this core concept of tile caching,
various specialized visualization applets - written in C, C++ or Java - are
developed. Such applets run simultaneously on top of the browser and
convert all their respective data into a common coordinate system specified
by the browser. Examples of such applets are weather and traffic reports,
bird migrations, and a spatial bulletin board applet which displays an
anchor of any WWW document at any geographical location. Each applet
typically queries two servers: a spatial meta server, which knows what
information is available at what geographical location and where on the
WWW to find it, and the server which contains the information itself.

Potmesil at 1329-30:
2. Geospatial Servers
The concept of a geography server system recognizes that a digital map
or a 3D geographical model is held by many independent sources,
distributed over a network. The objective of a browser is to gather all
the necessary geographical layers, on as-needed basis, without having
to store them locally and to display them. Our architecture of a

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 149 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
geography server system has three major components: a directory scheme
for finding servers, a common interface protocol for talking to the servers,
and a strategy for implementing the servers themselves. We have
developed four different types of servers, so far, in this project: the first
three contain actual geographical geometry - (1) points sampled on grids,
(2) random points with names, and (3) lines and polygons with names -
while the last type stores metadata - information about where to find
spatial and geographical information.
2.1 A Tile Server
The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and
gradients or geoid corrections. A data set is stored in a tile index. A data
set may have several components such as: elevation, gradient, and rgb
image. All tiles in a data set have usually the same size with the possible
exception of tiles along the edges of the data set. Tiles in an index are
stored in a power-of-two pyramid to allow fast access and scroll and
zoom operations [Figure 1]. Storing data in a power-of-two pyramid
requires 1/4 + 1/8 + 1/16 + 1/32 + ... = 1/3 additional storage space. A data
set may also be stored on one or more compressed formats. The index of
each tile data set is read into the server at startup time and stored in a
quadtree [14].
The server was designed to maintain maximum tile output to a large
number of clients which are connected by fast networks. The server is
multi-threaded: it serves multiple clients simultaneously. For each opened
connection it spawns a separate process. If a connection is permanently
kept opened, a second process is spawned to send tiles to the client
while the first process receives tile requests from the client. Tiles,
which have been recently read from discs, are saved in shared memory so
that other clients can obtain them more quickly. This is useful when
multiple clients are browsing in the same data as would happen in a
networked game.
The server, using the HTTP/1.0 protocol [3], accepts two types of
query: (a) send me a description of the requested tile index, (b) send

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 150 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
me the contents of the requested tile. The output of the server has several
pipelined stages which: (a) reformat the tile if the requested tile is not
aligned with tiles stored in the server; (b) resample the tile if the requested
tile is not in the same coordinate system; (c) dither the tile if the requesting
client has only a limited number of colors; (d) add a digital watermark [2]
if the tile data is copyrighted or encrypt the tile if it is to be seen only by
the client; (e) compress the tile if the network bandwidth requires it.

Potmesil at 1332-33:

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. the servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally….

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 151 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
The caching algorithm uses the user’s current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Fig. 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user: least-recently visible tiles, or least-recently arrived tiles. The caching
process receives information about the current view from the compositing
process. A 2D browser may have multiple windows opened, each with an
orthographic projection of a different location and scale of a map. A 3D
browser may have also multiple windows opened, each with a different
perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one
user (e.g., left and right views from a cockpit, or the view of a tail gunner).
The caching process computes one or more estimated positions of each
view and intersects their bounding volume with the tile coordinate
system. Any intersected tiles not present in the cache are sorted by
distance from the user, and the caching algorithm determines how
many of them can be loaded into the cache. This depends on the total
number of allocated tiles for we need to prevent tile thrashing. The
more disc and memory space the host machine has available, the more
tiles can be brought into the cache and remain there. There are several
implemented caching strategies:

• Obtain only tiles in a narrow corridor along the user’s path; the
cached tiles look like a snake with a growing head and disappearing
tail (Fig. 2a-c),

• Obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain (Fig. 2d),

• Obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be cached,
each mapplet can start loading its data into each tile. Mapplets also provide

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 152 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
feedback to the cache process: each tile is marked by each mapplet when it
has been drawn, and each mapplet saves the average time it takes to
receive and draw the tile data.

3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image…

The two processes run independently and asynchronously. The cache
manager keeps rearranging the cache memory even while the user has
stopped and the image is not regenerated.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles. The tiles received
from the server are processed in three pipelined steps: (1) an optional
decompression, (2) mapping into an image, (3) conversion to the local
display format. The mapplet may request compressed tiles from the tile
server if the speed of the network connection justifies the additional time
spent by the mapplet in tile decompression. The elevation data are usually
compressed using a wavelet compression [7], while the gradient and image
data are usually compressed using JPEG. When using a slower network,
the gradient data may be computed locally by the mapplet rather than
downloaded from the server. When all the tile components are
decompressed, they are converted into an image using one of these
mappings:

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief
shading based on the local surface gradient - via a second lookup
table; Horn [10] describes many relief shading techniques,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 153 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table
above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images,
from several WWW servers. The mapplet obtains a GIF image,
decodes it and draws it on top of the current tile contents. Optionally,
in addition to the GIF transparency value, an alpha-blending value can be
specified to make the image background partially visible.

Currently, the mapplet can obtain maps and images from three
outside sources: (1) the well-known Xerox PARC map server which
contains data from the DMA's Digital Chart of the World and the
USGS's 1:2,000,000 Digital Line Graph, (2) the U.S. Bureau of the
Census TIGER street map server, and (3) the multi-resolution Mars
image server at the Los Alamos National Laboratory.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 154 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
Potmesil at 1340-41:

3.4. A 3D geographical browser

We have developed a preliminary version of a three-dimensional browser
which displays terrain data cached from the tile server and geographical
names cached from the name server.

Hornbacker teaches that tiles are received over the internet:

Hornbacker, 3:10-27:

These objects, and others which will become apparent from the following
disclosure, are achieved by this invention which comprises in one aspect
method of identifying and delivering a graphical image from a computer
network file server comprising providing a network file server on which
are stored digital document image files, said server adapted to receive
requests from a Web browser in Uniform Resource Locator (URL)
code, to identify the image file and format selections being requested,
to compose the requested view into a grid of view tiles, and to transmit
HTML code for view tiles to the requesting Web browser.

Another aspect of the invention comprises apparatus comprising a
computer network server adapted to store digital document image files,
programmed to receive requests from a client Web browser in URL
code, the URL specifying a view which identifies an image file and
format, to compose the requested view, and to transmit HTML code for
the resultant view to the client Web browser to display.

A further aspect of the invention is the computer program recorded on
magnetic or optical media for use on a network server comprising code
which interprets HTTP requests from a workstation for a particular view of
a digital document image file stored in memory, retrieves the digital
document image file, composes a grid of view tiles corresponding to the
requested view of the image, computes HTML code for the grid of view
tiles in a form which can be transmitted from the server to the workstation.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 155 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

Hornbacker, 4:26-31:

The preferred embodiment is a server PC consisting of an Intel Pentium
Pro 200MHz processor, with at least 128MB of RAM, an Ultra-wide Fast
SCSI disk controller with at least 4GB of hard disk space, and LAN/
WAN/Internet network interface controllers. The server runs the Windows
NT Server Version 4 operating system with NT File System, Microsoft
Internet Information Server Version 3, and the network image server
software. The server and client are configured with TCP/IP network
protocols to support the HTTP (Web) protocol.

Hornbacker, 5:3-6:19:

Referring first to FIG. 1, a network comprising client workstations 10
and 20 are connected through network connections to a network
image view server 100 comprising a network server interface, preferably a
web server 30 which uses the Hypertext Transfer Protocol (HTTP), a
request broker 40, a foreground view composer 50, a view tile cache 60, a
background view composer 80, a garbage collector 70, and a document
repository 90 having image files.

The network image view server, i.e. , client workstation, or
"workstation," 100 can be implemented on a computer, for example a
personal computer configured with a processor, I/O, memory, disk
storage, and a network interface. The network image view server 100
is configured with a network server operating system and Web server
software 30 to provide the network HTTP protocol link with the client
workstations 10 and 20. Typical networks include many workstations
served by one, and sometimes more than one, network server, the server
functioning as a library to maintain files which can be accessed by the
workstations.

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user requests

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 156 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
an image view 110 (FIG. 2) having a scale and region specified by by
means of a specially formatted Uniformed Resource Locator (URL) code
using HTTP language which the Web server can decode as a request to be
passed to the image view composition software and that identifies the
image file to be viewed, the scale of the view and the region of the image
to view. The network image server sends HTML data to the client with
pre-computed hyperlinks, such that following a hyperlink by clicking on
an area of an image will send a specific request to the server to deliver a
different area of the drawing or to change the resolution of the image.
The resultant HTML from this request will also contain pre-computed
hyperlinks for other options the user may exercise.

The code is sent over the network to the network server where the web
server software interprets the request 120, passes the view request URL to
the foreground view composer software through a common gateway
interface (CGI) that is designed to allow processing of HTTP requests
external to the Web server software, and thereby instructs the request
broker 130 to get the particular requested view, having the scale and region
called for by the URL. The foreground view composer is initialized 140
and composes the requested view 150 after recovering it from memory on
the network server. The foreground view composer software interprets the
view request, computes which view tiles are needed for the view, creates
the view tiles 160 needed for the view, and then creates Hypertext Markup
Language (HTML) output file to describe the view composition to the
Web browser, unless the necessary view tiles to fulfill the request are
already computed and stored in cache memory of the workstation, in which
case the already-computed tiles are recovered by the Web browser. In
either case, the foreground view composer formats the output 170 and then
intitializes backgound view composer 180 which passes the formatted
output to the Web server, which in turn transmits the formatted output
over the network to the Web browser 200 on the requesting
workstation 10, where the requesting browser displays any view tiles
already cached 210, combined with newly computed view tiles 220
which are fetched from the server.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 157 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

Hornbacker, 7:26-8:6:

The use of view tiling also allows the image view server to effectively
pre-compute view tiles that may be required by the next view request.
The image view server background view composer computes view tiles
that surround the most recent view request in anticipation a request
for a shifted view. When the shifted view is requested, the foreground
view composer can use the pre-computed view tiles and eliminate the
time to compute new view tiles for the view. For frequently accessed
images there is a good chance that the view tiles for a view may
already exist in the view tile cache since the view tile cache maintains
the most recently accessed view tiles. Since millions of view tiles may be
created and eventually exceed the storage capacity of the image view
server, the view tile cache garbage collector removes the least recently
accessed view tiles in the case where the maximum storage allocation or
minimum storage free space limits are reached.

Hornbacker, 8:16-23

The HTML output file produced by the foreground view composer is
passed to the Web server software to be transmitted to the Web browser.
The graphical Web browser serves as the image viewer by utilizing the
HTML output from the image view server to compose and display the
array of view tiles that form a view of an image. The HTML page data list
the size, position and the hyperlink for each view tile to be displayed. The
view tiles are stored in the GIF image file format that can be displayed by
all common graphical Web browsers. The Web browser will retrieve
each view tile to be displayed from a local cache if the view tile is
present, otherwise from the image view server.

Hornbacker, 9:29-10:2:

The Web server 30 is configured to recognize the above-described
specially formatted request Uniform Resource Locators (URL) to be

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 158 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
handled by the image view server request broker 40. This is done by
association of the request broker 40 with the URL path or with the
document filename extension.

Hornbacker, 10:13-28

The view tile generator routine 160 performs the actual creation of the
view tiles according to the preferred steps shown in FIG 8. The view tile
generator receives information from the view computation as to what view
tiles are needed for the view. It has access to records in the cache 80 that
determine which tiles have already been created and are resident in
the cache. If a needed view tile is in the cache then its last access time is
updated to prevent the cache garbage collector from deleting the view tile.
If a needed view tile is not in the cache, then the view tile generator creates
the view tile from the image file 90. The view tile generator uses a
software imaging library that supports rendering many digital document
file formats including monochrome raster images, grayscale raster images,
color raster images as well as many content rich non-raster formats such as
Adobe Portable Document Format (PDF), PostScript, HPGL, etc. When
rendering monochrome image data the imaging library scale-to-gray
scaling is used to provide a more visually appealing rendition of the
reduced image.

For example, a specific view request might include tiles B2, C2, B3, and
C3 (FIG 4A and FIG 5A). If, after viewing those tiles, the client decides
that the view to the immediate left is desired, then the server would send
tiles A2 and A3 (FIG 4B and FIG 5B). This assumes that the client retains
in a cache the other tiles. If the client does not cache then tiles A2, A3, B2,
and B3 are sent.

Hornbacker, 12:17-23

The graphical Web browser on the client workstation 10 receives HTML
data from the image view server 210 that contains hyperlinks to the view
tiles within the view tile cache 60 to be displayed and formatting that

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 159 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
describes the layout of the of the tiles to form the image view. The Web
browser initially must fetch each view tile 220 for a view from the view
server. After the initial view, whenever a view overlaps with a previous
view at the same scale, the Web browser preferably retrieves view tiles
that have been previously displayed from the Web browser's local cache
210 rather than from the server.

Hornbacker, 13:17-14:16:

The method, apparatus, and software article of the invention provide an
improved client-server architecture using a graphical Web browser to
access the image view server which makes efficient use of the network.
By using image tiling and caching according to the preferred method,
relatively small amounts of data need to be transmitted when the user
selects a new view of an image already received and viewed. The server
sends the requested image in the request format to the workstation and
then allows viewing the image from the local copy of the image file. The
image view server provides a better solution by utilizing lower cost
graphical Web browsers for the workstations to access a network image
view server that provides views of the image that can be displayed on the
workstation by the graphical Web browser. For example an E-size
engineering drawing raster image file is 8 million bytes in size when
imaged in monochrome at 200 pixels-per-inch. With commonly used data
compression the image file can be reduced to 250 kilobytes. With a low
bandwidth 28.8 kilobaud modem network connection with approximately
3 kilobytes-per-second throughput, it 83 seconds (250 KB / 3 KB/second)
to transfer the image file to the workstation application for viewing. With
the image view server only the image data to be displayed needs to be
transmitted. A typical view size of 896 by 512 pixels is made up of a 7 by
4 array of 128 pixel x 128 pixel view tiles. The monochrome view tiles are
transmitted in a compressed format that typically yields tiles that are 512
bytes each so the entire view is approximately 14 kilobytes (0.5 KB x 28
tiles) and the transfer takes approximately 4.8 seconds (14 KB / 3
KB/second). This method of image viewing provides better response to the
user with much lower demand on the network connection. A local-area-

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 160 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)
network typically utilizes a 10 megabit-per-second media so the savings
from the efficiency of the image view server does not seem obvious.
However, if the 10 megabit-per-second network is shared by 100 users,
then the average bandwidth per user is only about 12.5 kilobytes-per-
second so the efficiency of the image view server is still a benefit. Another
benefit of the image view server is that the data transfer size remains
constant even if the size of the view image is increased. If the image file
size was 4 times larger than with the previous example as may be the case
with a larger image, a higher resolution image or a less compressible
image then the network load by the image view server would remain
unchanged while network load of the traditional image viewer would
quadruple.

13.J: wherein
delivering the
defined data parcel
further comprises
processing source
image data to
obtain a series K1-

N of derivative
images of
progressively
lower image
resolution and

See teachings cited for claim 1.D.

13.K: wherein
series image K0
being subdivided
into a regular
array

See teachings cited for claim 1.E.

13.L: wherein
each resulting
image parcel of
the array has a

See teachings cited for claim 1.F.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 161 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

predetermined
pixel resolution

13.M: wherein
image data has a
color or bit per
pixel depth
representing a data
parcel size of a
predetermined
number of bytes,

See teachings cited for claim 1.G.

13.N: resolution of
the series K1-N of
derivative images
being related to
that of the source
image data or
predecessor image
in the series by a
factor of two, and

See teachings cited for claim 1.H.

13.O: said array
subdivision being
related by a factor
of two

See teachings cited for claim 1.I.

13.P: such that
each image parcel
being of a fixed
byte size,

See teachings cited for claim 1.J.

13.Q: wherein the
processing further
comprises
compressing each

See teachings cited for claim 1.K.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 162 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13423 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

data parcel and

13.R: storing each
data parcel on the
remote computer
in a file of defined
configuration such
that a data parcel
can be located by
specification of a
KD, X, Y value
that represents the
data set resolution
index D and
corresponding
image array
coordinate.

See teachings cited for claim 1.L.

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13424 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”)

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

4 For easier readability, color figures from Potmesil are copied from an online copy of the reference available at
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html. The figures are identical to those in Ex. [XX].
5 For easier readability, color figures from Potmesil are copied from an online copy of the reference available at
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html. The figures are identical to those in Ex. [XX].

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 163 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

10.A: The method
of claim 1,
wherein issuing
the request for an
update data parcel
further comprises
preparing the
request by
associating a
prioritization
value to said
request,

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers
and connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser
capable of continuous scroll and zoom of an arbitrarily large sheet and
a 3D flight-simulator browser capable of continuous flight around the
Earth. Both browsers download and cache geographical information,
geometrical models, and URL anchors in small regions called tiles.
The tile caching process is based on the user’s current position,
velocity, and acceleration in 2D/3D space as well as on the latency of
server replies. A user can program these browsers by adding small
application programs - mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations, lines,
points and polygons stored in tiles structured into hierarchical pyramids or
quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1327:

In this paper, we describe a WWW-based system - consisting of browsers,
servers, and connecting protocols - which allows users to view, search and
post geographically-indexed information.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 164 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user’s current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user’s current and
predicted future locations and expect to receive such data and to
prepare them for display before the user reaches it. Around this core
concept of tile caching, various specialized visualization applets - written
in C, C++ or Java - are developed. Such applets run simultaneously on top
of the browser and convert all their respective data into a common
coordinate system specified by the browser. Examples of such applets are
weather and traffic reports, bird migrations, and a spatial bulletin board
applet which displays an anchor of any WWW document at any
geographical location. Each applet typically queries two servers: a spatial
meta server, which knows what information is available at what
geographical location and where on the WWW to find it, and the server
which contains the information itself.

Potmesil at 1329-30:

2. Geospatial Servers

The concept of a geography server system recognizes that a digital map
or a 3D geographical model is held by many independent sources,
distributed over a network. The objective of a browser is to gather all
the necessary geographical layers, on as-needed basis, without having
to store them locally and to display them. Our architecture of a
geography server system has three major components: a directory scheme
for finding servers, a common interface protocol for talking to the servers,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 165 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
and a strategy for implementing the servers themselves. We have
developed four different types of servers, so far, in this project: the first
three contain actual geographical geometry - (1) points sampled on grids,
(2) random points with names, and (3) lines and polygons with names -
while the last type stores metadata - information about where to find
spatial and geographical information.

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients or
geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in
a data set have usually the same size with the possible exception of tiles
along the edges of the data set. Tiles in an index are stored in a power-of-
two pyramid to allow fast access and scroll and zoom operations [Figure
1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 +
1/32 + ... = 1/3 additional storage space. A data set may also be stored on
one or more compressed formats. The index of each tile data set is read
into the server at startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large
number of clients which are connected by fast networks. The server is
multi-threaded: it serves multiple clients simultaneously. For each opened
connection it spawns a separate process. If a connection is permanently
kept opened, a second process is spawned to send tiles to the client while
the first process receives tile requests from the client. Tiles, which have
been recently read from discs, are saved in shared memory so that other
clients can obtain them more quickly. This is useful when multiple clients
are browsing in the same data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of
query: (a) send me a description of the requested tile index, (b) send
me the contents of the requested tile. The output of the server has several

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 166 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
pipelined stages which: (a) reformat the tile if the requested tile is not
aligned with tiles stored in the server; (b) resample the tile if the requested
tile is not in the same coordinate system; (c) dither the tile if the requesting
client has only a limited number of colors; (d) add a digital watermark [2]
if the tile data is copyrighted or encrypt the tile if it is to be seen only by
the client; (e) compress the tile if the network bandwidth requires it.

Potmesil at 1332-33:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the
geospatial models before a user needs to display them. The servers can
generate the models in small sections - called tiles - because they store
them in hierarchical representations or have the ability to clip all parts of a
model outside the requested area (or volume). We base this approach on
the assumption that the amount of such models far exceeds the ability to
store these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The
concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his seminal
paper, it has become a rendering standard implemented, for example, in
OpenGL software [12] and hardware [1]. In the 2D browser we use any
type of data sampled on a 2D lattice. However, our techniques are
applicable to any other model representations such as TIN's (Triangulated
Irregular Networks) of terrain or VRML models which are clipped to
rectangular regions. In more complex environments, such as furnished

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 167 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
interiors of buildings, one must use more sophisticated data structures and
display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the
latter process reads tracking data, synchronizes all application
mapplets, and composites the final image. It also makes space (data and
user) and time (either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by
all mapplets. It controls how the cached tiles are allocated in space and
time. This cache allocation is currently based on five parameters: x, y,
z, level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new
tiles there. This process is shown in Figure 2. When the tile cache is full,
some resident tiles need to be deleted. These can be tiles furthermost from
the user, least-recently visible tiles, or least-recently arrived tiles.

(a) (b)

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 168 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

(c) (d)

Figure 2 Contents of the browser's cache memory after (a) flying from
Egypt to Britain,
(b) to Alaska, (c) to Australia, and (d) hovering above Australia.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location and
scale of a map. A 3D browser may have also multiple windows opened,
each with a different perspective projection. Each window can be moving
completely independently of all the others, or they may be different views
from one user (e.g., left and right views from a cockpit, or the view of a
tail gunner). The caching process computes one or more estimated
positions of each view and intersects their bounding volume with the tile
coordinate system. Any intersected tiles not present in the cache are
sorted by distance from the user, and the caching algorithm
determines how many of them can be loaded into the cache. This
depends on the total number of allocated tiles for we need to prevent tile
thrashing. The more disc and memory space the host machine has
available, the more tiles can be brought into the cache and remain there.
There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and
disappearing tail [Figure 2(a,b,c)],

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 169 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-
speed flight.

When the caching process has generated a new list of tiles to be
cached, each mapplet can start loading its data into each tile. Mapplets
also provide feedback to the cache process: each tile is marked by each
mapplet when it has been drawn, and each mapplet saves the average time
it takes to receive and draw the tile data.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles. The tiles received
from the server are processed in three pipelined steps: (1) an optional
decompression, (2) mapping into an image, (3) conversion to the local
display format. The mapplet may request compressed tiles from the tile
server if the speed of the network connection justifies the additional time
spent by the mapplet in tile decompression. The elevation data are usually
compressed using a wavelet compression [7], while the gradient and image
data are usually compressed using JPEG. When using a slower network,
the gradient data may be computed locally by the mapplet rather than
downloaded from the server. When all the tile components are
decompressed, they are converted into an image using one of these
mappings:

• elevation + gradient -> color shaded relief - maps elevations into

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 170 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

ambient colors - via an elevation lookup table - and adds relief
shading based on the local surface gradient - via a second lookup
table; Horn [10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table
above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images,
from several WWW servers. The mapplet obtains a GIF image,
decodes it and draws it on top of the current tile contents. Optionally,
in addition to the GIF transparency value, an alpha-blending value can be
specified to make the image background partially visible.

Currently, the mapplet can obtain maps and images from three
outside sources: (1) the well-known Xerox PARC map server which

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 171 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
contains data from the DMA's Digital Chart of the World and the
USGS's 1:2,000,000 Digital Line Graph, (2) the U.S. Bureau of the
Census TIGER street map server, and (3) the multi-resolution Mars
image server at the Los Alamos National Laboratory.

Hornbacker, Abstract:

A computer network server using HTTP (Web) server software combined
with foreground view composer software (50), background view composer
software (80), view tile cache (60), view tile cache garbage collector (70)
and image files (90) provides image view data to client workstations (20)
using graphical web browsers to display the view of an image from the
server. Problems with specialized client workstation image view software
are eliminated by using the internet and industry standards based graphical
web browsers for the client software. Network and system performance
problems that previously existed when accessing large image files from a
network file server are eliminated by tiling the image view so that
computation and transmission of the view data can be done in an
incremental fashion. The vied tiles are cached on the client workstation to
further reduce network traffic. View tiles are cached on the server to
reduce the amount to view tile computation and to increase responsiveness
of the image view server.

Hornbacker, 3:10-27:

These objects, and others which will become apparent from the following
disclosure, are achieved by this invention which comprises in one aspect
method of identifying and delivering a graphical image from a computer
network file server comprising providing a network file server on which
are stored digital document image files, said server adapted to receive
requests from a Web browser in Uniform Resource Locator (URL)
code, to identify the image file and format selections being requested,
to compose the requested view into a grid of view tiles, and to transmit

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 172 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
HTML code for view tiles to the requesting Web browser.

Another aspect of the invention comprises apparatus comprising a
computer network server adapted to store digital document image files,
programmed to receive requests from a client Web browser in URL
code, the URL specifying a view which identifies an image file and
format, to compose the requested view, and to transmit HTML code for
the resultant view to the client Web browser to display.

A further aspect of the invention is the computer program recorded on
magnetic or optical media for use on a network server comprising code
which interprets HTTP requests from a workstation for a particular view of
a digital document image file stored in memory, retrieves the digital
document image file, composes a grid of view tiles corresponding to the
requested view of the image, computes HTML code for the grid of view
tiles in a form which can be transmitted from the server to the workstation.

Hornbacker, 5:16-25

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user requests
an image view 110 (FIG. 2) having a scale and region specified by by
means of a specially formatted Uniformed Resource Locator (URL)
code using HTTP language which the Web server can decode as a
request to be passed to the image view composition software and that
identifies the image file to be viewed, the scale of the view and the region
of the image to view. The network image server sends HTML data to the
client with pre-computed hyperlinks, such that following a hyperlink by
clicking on an area of an image will send a specific request to the server to
deliver a different area of the drawing or to change the resolution of the
image. The resultant HTML from this request will also contain pre-
computed hyperlinks for other options the user may exercise.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 173 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Hornbacker, 6:13-19

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the
image view server context). These tiles are computed for distinct
resolutions (FIG 3B) of a given image at the server according to the URL
request received from the browser software on the workstation. The use of
tiling enables effective image data caching 60 at the image view server and
by the browser 10 at the client workstation.

Hornbacker, 7:26-8:6

The use of view tiling also allows the image view server to effectively
pre-compute view tiles that may be required by the next view request.
The image view server background view composer computes view tiles
that surround the most recent view request in anticipation a request for a
shifted view. When the shifted view is requested, the foreground view
composer can use the pre-computed view tiles and eliminate the time to
compute new view tiles for the view. For frequently accessed images
there is a good chance that the view tiles for a view may already exist
in the view tile cache since the view tile cache maintains the most
recently accessed view tiles. Since millions of view tiles may be created
and eventually exceed the storage capacity of the image view server, the
view tile cache garbage collector removes the least recently accessed view
tiles in the case where the maximum storage allocation or minimum
storage free space limits are reached.

Hornbacker, 8:30-9:28

To support the tiling and caching of many images on the same image
view server, each view tile must be uniquely identified for reference by
the Web browser with a view tile URL. This uniqueness is accomplished

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 174 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
through a combination of storage location and view tile naming.
Uniqueness between images is accomplished by having a separate storage
subdirectory in the view tile cache for each image. Uniqueness of view
tiles for each scale of view is accomplished through the file name for each
view tile. The view tile name is preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale
number as expressed in parts per 256. The < TILE NUMBER > value is a
5 character string formed from the base 36 encoding of the tile number as
determined by the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE
COLUMN The TILE ROW and TILE COLUMN values start at 0 for this
computation. For example the second tile of the first row for a view scaled
2: 1 would be named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first
row for image number 22 on the image view server would be: http :
//hostname/view-tile-cache-path/000022/ V3 J00001. GIF In addition
to the view tile position and view scale, other view attributes that may
be encoded in the view tile storage location or in the view tile name.
These attributes are view rotation angle, view x-mirror, view y-mirror,
invert view. A view tile name with these extra view attributes can be
encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> <
Y_ MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR,
and INVERT are encoded by the single characters X, Y, and I respectively.
An example is: V3J00001A90XYI.GIF The Web server 30 is configured
to recognize the above-described specially formatted request Uniform
Resource Locators (URL) to be handled by the image view server request

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 175 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
broker 40. This is done by association of the request broker 40 with the
URL path or with the document filename extension.

Hornbacker, 10:24-28

For example, a specific view request might include tiles B2, C2, B3, and
C3 (FIG 4A and FIG 5A). If, after viewing those tiles, the client decides
that the view to the immediate left is desired, then the server would send
tiles A2 and A3 (FIG 4B and FIG 5B). This assumes that the client retains
in a cache the other tiles. If the client does not cache then tiles A2, A3, B2,
and B3 are sent.

Hornbacker, 12:24-13:10

Performance and usability of document viewing can be increased by
using progressive display of tiled images. By using an image file format
that allows a rough view of the image to be displayed while the remainder
of the image content is downloaded, a rough view of the document can be
seen more quickly.

Since most Web browsers can only transfer 1 to 4 GIF images at a time,
usually not all of the view tiles in the view array can be progressively
displayed at the same time. Therefore, it is preferred that to implement
progressive display, algorithms at the client are provided to accept an
alternate data format that would allow the whole document viewing area
screen to take advantage of the progressive display while still taking
advantage of the benefits of tiling and caching at the client. This can be
accomplished in a Web browser environment using algorithms written in
Java, JavaScript, or ActiveX technologies. By using client software to
enhance the client viewer, additional enhancements to performance can be
made by using alternate view tile image formats and image compression
algorithms. A significant example would be to use the Portable Network
Graphics (PNG) format with the optimization of having the image view

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 176 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
server and client transfer only one image header common to be shared by
all view tiles and then sending the low-resolution compressed image data
for each view tile followed by the full-resolution image data for each view
tile.

Lindstrom, §§ 3, 4.2.1, Fig. 1.

10.B: wherein said
prioritization
value is based on
the resolution of
said update data
parcel relative to
that of other data
parcels previously
received by the
limited
communication
bandwidth
computer device,
and

Potmesil, Fig. 1:

Potmesil at 1329-30:

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients or
geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in
a data set have usually the same size with the possible exception of tiles
along the edges of the data set. Tiles in an index are stored in a power-
of-two pyramid to allow fast access and scroll and zoom operations
[Figure 1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 +
1/16 + 1/32 + ... = 1/3 additional storage space. A data set may also be

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 177 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
stored on one or more compressed formats. The index of each tile data set
is read into the server at startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large
number of clients which are connected by fast networks. The server is
multi-threaded: it serves multiple clients simultaneously. For each opened
connection it spawns a separate process. If a connection is permanently
kept opened, a second process is spawned to send tiles to the client while
the first process receives tile requests from the client. Tiles, which have
been recently read from discs, are saved in shared memory so that other
clients can obtain them more quickly. This is useful when multiple clients
are browsing in the same data as would happen in a networked game.

The server, using the HTTP/1.0 protocol [3], accepts two types of query:
(a) send me a description of the requested tile index, (b) send me the
contents of the requested tile. The output of the server has several
pipelined stages which: (a) reformat the tile if the requested tile is not
aligned with tiles stored in the server; (b) resample the tile if the requested
tile is not in the same coordinate system; (c) dither the tile if the requesting
client has only a limited number of colors; (d) add a digital watermark [2]
if the tile data is copyrighted or encrypt the tile if it is to be seen only by
the client; (e) compress the tile if the network bandwidth requires it.

Potmesil at 1332-33:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 178 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
assumption that the amount of such models far exceeds the ability to store
these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The
concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his
seminal paper, it has become a rendering standard implemented, for
example, in OpenGL software [12] and hardware [1]. In the 2D
browser we use any type of data sampled on a 2D lattice. However, our
techniques are applicable to any other model representations such as TIN's
(Triangulated Irregular Networks) of terrain or VRML models which are
clipped to rectangular regions. In more complex environments, such as
furnished interiors of buildings, one must use more sophisticated data
structures and display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the latter
process reads tracking data, synchronizes all application mapplets, and
composites the final image. It also makes space (data and user) and time
(either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z,
level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 179 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Figure 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user, least-recently visible tiles, or least-recently arrived tiles.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location and
scale of a map. A 3D browser may have also multiple windows opened,
each with a different perspective projection. Each window can be moving
completely independently of all the others, or they may be different views
from one user (e.g., left and right views from a cockpit, or the view of a
tail gunner). The caching process computes one or more estimated
positions of each view and intersects their bounding volume with the
tile coordinate system. Any intersected tiles not present in the cache
are sorted by distance from the user, and the caching algorithm
determines how many of them can be loaded into the cache. This
depends on the total number of allocated tiles for we need to prevent
tile thrashing. The more disc and memory space the host machine has
available, the more tiles can be brought into the cache and remain
there. There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and disappearing
tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 180 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

flight.

Lindstrom, § 4.2.1.
10.C: wherein
issuing said
request is
responsive to said
prioritization
value for issuing
said request in a
predefined
prioritization
order.

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers
and connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser
capable of continuous scroll and zoom of an arbitrarily large sheet and
a 3D flight-simulator browser capable of continuous flight around the
Earth. Both browsers download and cache geographical information,
geometrical models, and URL anchors in small regions called tiles.
The tile caching process is based on the user’s current position,
velocity, and acceleration in 2D/3D space as well as on the latency of
server replies. A user can program these browsers by adding small
application programs - mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations, lines,
points and polygons stored in tiles structured into hierarchical pyramids or
quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1327:

In this paper, we describe a WWW-based system - consisting of browsers,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 181 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
servers, and connecting protocols - which allows users to view, search and
post geographically-indexed information.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both browsers
download and cache geographical information, geometrical models,
and URL anchors in small regions called tiles. The tile caching process
is based on the user’s current position, velocity, and acceleration in a
2D/3D space as well as on the latency of server replies. The browsers
query servers only for relevant data around the user’s current and
predicted future locations and expect to receive such data and to
prepare them for display before the user reaches it. Around this core
concept of tile caching, various specialized visualization applets - written
in C, C++ or Java - are developed. Such applets run simultaneously on top
of the browser and convert all their respective data into a common
coordinate system specified by the browser. Examples of such applets are
weather and traffic reports, bird migrations, and a spatial bulletin board
applet which displays an anchor of any WWW document at any
geographical location. Each applet typically queries two servers: a spatial
meta server, which knows what information is available at what
geographical location and where on the WWW to find it, and the server
which contains the information itself.

Potmesil at 1329-30:

2. Geospatial Servers

The concept of a geography server system recognizes that a digital map
or a 3D geographical model is held by many independent sources,
distributed over a network. The objective of a browser is to gather all
the necessary geographical layers, on as-needed basis, without having

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 182 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
to store them locally and to display them. Our architecture of a
geography server system has three major components: a directory scheme
for finding servers, a common interface protocol for talking to the servers,
and a strategy for implementing the servers themselves. We have
developed four different types of servers, so far, in this project: the first
three contain actual geographical geometry - (1) points sampled on grids,
(2) random points with names, and (3) lines and polygons with names -
while the last type stores metadata - information about where to find
spatial and geographical information.

2.1 A Tile Server

The tile server stores data that was obtained by sampling on a 2D grid.
This may be satellite and aerial images, terrain elevations and gradients or
geoid corrections. A data set is stored in a tile index. A data set may have
several components such as: elevation, gradient, and rgb image. All tiles in
a data set have usually the same size with the possible exception of tiles
along the edges of the data set. Tiles in an index are stored in a power-of-
two pyramid to allow fast access and scroll and zoom operations [Figure
1]. Storing data in a power-of-two pyramid requires 1/4 + 1/8 + 1/16 +
1/32 + ... = 1/3 additional storage space. A data set may also be stored on
one or more compressed formats. The index of each tile data set is read
into the server at startup time and stored in a quadtree [14].

The server was designed to maintain maximum tile output to a large
number of clients which are connected by fast networks. The server is
multi-threaded: it serves multiple clients simultaneously. For each opened
connection it spawns a separate process. If a connection is permanently
kept opened, a second process is spawned to send tiles to the client while
the first process receives tile requests from the client. Tiles, which have
been recently read from discs, are saved in shared memory so that other
clients can obtain them more quickly. This is useful when multiple clients
are browsing in the same data as would happen in a networked game.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 183 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
The server, using the HTTP/1.0 protocol [3], accepts two types of
query: (a) send me a description of the requested tile index, (b) send
me the contents of the requested tile. The output of the server has several
pipelined stages which: (a) reformat the tile if the requested tile is not
aligned with tiles stored in the server; (b) resample the tile if the requested
tile is not in the same coordinate system; (c) dither the tile if the requesting
client has only a limited number of colors; (d) add a digital watermark [2]
if the tile data is copyrighted or encrypt the tile if it is to be seen only by
the client; (e) compress the tile if the network bandwidth requires it.

Potmesil at 1332-33:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the
geospatial models before a user needs to display them. The servers can
generate the models in small sections - called tiles - because they store
them in hierarchical representations or have the ability to clip all parts of a
model outside the requested area (or volume). We base this approach on
the assumption that the amount of such models far exceeds the ability to
store these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The
concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his seminal
paper, it has become a rendering standard implemented, for example, in
OpenGL software [12] and hardware [1]. In the 2D browser we use any
type of data sampled on a 2D lattice. However, our techniques are

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 184 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
applicable to any other model representations such as TIN's (Triangulated
Irregular Networks) of terrain or VRML models which are clipped to
rectangular regions. In more complex environments, such as furnished
interiors of buildings, one must use more sophisticated data structures and
display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the
latter process reads tracking data, synchronizes all application
mapplets, and composites the final image. It also makes space (data and
user) and time (either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by
all mapplets. It controls how the cached tiles are allocated in space and
time. This cache allocation is currently based on five parameters: x, y,
z, level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new
tiles there. This process is shown in Figure 2. When the tile cache is full,
some resident tiles need to be deleted. These can be tiles furthermost from
the user, least-recently visible tiles, or least-recently arrived tiles.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 185 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
(a) (b)

(c) (d)

Figure 2 Contents of the browser's cache memory after (a) flying from
Egypt to Britain,
(b) to Alaska, (c) to Australia, and (d) hovering above Australia.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location and
scale of a map. A 3D browser may have also multiple windows opened,
each with a different perspective projection. Each window can be moving
completely independently of all the others, or they may be different views
from one user (e.g., left and right views from a cockpit, or the view of a
tail gunner). The caching process computes one or more estimated
positions of each view and intersects their bounding volume with the tile
coordinate system. Any intersected tiles not present in the cache are
sorted by distance from the user, and the caching algorithm
determines how many of them can be loaded into the cache. This
depends on the total number of allocated tiles for we need to prevent tile
thrashing. The more disc and memory space the host machine has
available, the more tiles can be brought into the cache and remain there.
There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 186 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

disappearing tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-
speed flight.

When the caching process has generated a new list of tiles to be
cached, each mapplet can start loading its data into each tile. Mapplets
also provide feedback to the cache process: each tile is marked by each
mapplet when it has been drawn, and each mapplet saves the average time
it takes to receive and draw the tile data.

Potmesil at 1334-35:

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles. The tiles received
from the server are processed in three pipelined steps: (1) an optional
decompression, (2) mapping into an image, (3) conversion to the local
display format. The mapplet may request compressed tiles from the tile
server if the speed of the network connection justifies the additional time
spent by the mapplet in tile decompression. The elevation data are usually
compressed using a wavelet compression [7], while the gradient and image
data are usually compressed using JPEG. When using a slower network,
the gradient data may be computed locally by the mapplet rather than
downloaded from the server. When all the tile components are
decompressed, they are converted into an image using one of these
mappings:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 187 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

• elevation + gradient -> color shaded relief - maps elevations into
ambient colors - via an elevation lookup table - and adds relief
shading based on the local surface gradient - via a second lookup
table; Horn [10] describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into elevation
colors without gradient shading using only the first lookup table
above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup table
above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color image
(typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is 24/32-
bits deep, a true-color image is displayed. However, if the frame buffer is
only 8-bits deep, a dithered image - using ordered dither algorithm - or a
monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images,
from several WWW servers. The mapplet obtains a GIF image,
decodes it and draws it on top of the current tile contents. Optionally,
in addition to the GIF transparency value, an alpha-blending value can be
specified to make the image background partially visible.

Currently, the mapplet can obtain maps and images from three

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 188 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
outside sources: (1) the well-known Xerox PARC map server which
contains data from the DMA's Digital Chart of the World and the
USGS's 1:2,000,000 Digital Line Graph, (2) the U.S. Bureau of the
Census TIGER street map server, and (3) the multi-resolution Mars
image server at the Los Alamos National Laboratory.

Hornbacker, Abstract:

A computer network server using HTTP (Web) server software combined
with foreground view composer software (50), background view composer
software (80), view tile cache (60), view tile cache garbage collector (70)
and image files (90) provides image view data to client workstations (20)
using graphical web browsers to display the view of an image from the
server. Problems with specialized client workstation image view software
are eliminated by using the internet and industry standards based graphical
web browsers for the client software. Network and system performance
problems that previously existed when accessing large image files from a
network file server are eliminated by tiling the image view so that
computation and transmission of the view data can be done in an
incremental fashion. The vied tiles are cached on the client workstation to
further reduce network traffic. View tiles are cached on the server to
reduce the amount to view tile computation and to increase responsiveness
of the image view server.

Hornbacker, 3:10-27:

These objects, and others which will become apparent from the following
disclosure, are achieved by this invention which comprises in one aspect
method of identifying and delivering a graphical image from a computer
network file server comprising providing a network file server on which
are stored digital document image files, said server adapted to receive
requests from a Web browser in Uniform Resource Locator (URL)
code, to identify the image file and format selections being requested,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 189 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
to compose the requested view into a grid of view tiles, and to transmit
HTML code for view tiles to the requesting Web browser.

Another aspect of the invention comprises apparatus comprising a
computer network server adapted to store digital document image files,
programmed to receive requests from a client Web browser in URL
code, the URL specifying a view which identifies an image file and
format, to compose the requested view, and to transmit HTML code for
the resultant view to the client Web browser to display.

A further aspect of the invention is the computer program recorded on
magnetic or optical media for use on a network server comprising code
which interprets HTTP requests from a workstation for a particular view of
a digital document image file stored in memory, retrieves the digital
document image file, composes a grid of view tiles corresponding to the
requested view of the image, computes HTML code for the grid of view
tiles in a form which can be transmitted from the server to the workstation.

Hornbacker, 5:16-25

In operation according to an embodiment of the method of the invention,
using the Web browser software on the client workstation, a user requests
an image view 110 (FIG. 2) having a scale and region specified by by
means of a specially formatted Uniformed Resource Locator (URL)
code using HTTP language which the Web server can decode as a
request to be passed to the image view composition software and that
identifies the image file to be viewed, the scale of the view and the region
of the image to view. The network image server sends HTML data to the
client with pre-computed hyperlinks, such that following a hyperlink by
clicking on an area of an image will send a specific request to the server to
deliver a different area of the drawing or to change the resolution of the
image. The resultant HTML from this request will also contain pre-
computed hyperlinks for other options the user may exercise.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 190 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

Hornbacker, 6:13-19

The generation of the view tiles 160 is handled by an image tiling routine
which divides a given page, rendered as an image, into a grid of smaller
images (FIG 3 A) called view tiles Al , A2, Bl, etc. (or just tiles in the
image view server context). These tiles are computed for distinct
resolutions (FIG 3B) of a given image at the server according to the URL
request received from the browser software on the workstation. The use of
tiling enables effective image data caching 60 at the image view server and
by the browser 10 at the client workstation.

Hornbacker, 7:26-8:6

The use of view tiling also allows the image view server to effectively
pre-compute view tiles that may be required by the next view request.
The image view server background view composer computes view tiles
that surround the most recent view request in anticipation a request for a
shifted view. When the shifted view is requested, the foreground view
composer can use the pre-computed view tiles and eliminate the time to
compute new view tiles for the view. For frequently accessed images
there is a good chance that the view tiles for a view may already exist
in the view tile cache since the view tile cache maintains the most
recently accessed view tiles. Since millions of view tiles may be created
and eventually exceed the storage capacity of the image view server, the
view tile cache garbage collector removes the least recently accessed view
tiles in the case where the maximum storage allocation or minimum
storage free space limits are reached.

Hornbacker, 8:30-9:28

To support the tiling and caching of many images on the same image
view server, each view tile must be uniquely identified for reference by

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 191 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
the Web browser with a view tile URL. This uniqueness is accomplished
through a combination of storage location and view tile naming.
Uniqueness between images is accomplished by having a separate storage
subdirectory in the view tile cache for each image. Uniqueness of view
tiles for each scale of view is accomplished through the file name for each
view tile. The view tile name is preferably of the following form:

V < SCALE > < TILE NUMBER > .GIF The < SCALE > value is a 2
character string formed from the base 36 encoding of the view scale
number as expressed in parts per 256. The < TILE NUMBER > value is a
5 character string formed from the base 36 encoding of the tile number as
determined by the formula:

TILE NUMBER = TILE ROW * IMAGE TILE WIDTH + TILE
COLUMN The TILE ROW and TILE COLUMN values start at 0 for this
computation. For example the second tile of the first row for a view scaled
2: 1 would be named under the preferred protocol:

V3J00001.GIF The full URL reference for the second tile of the first
row for image number 22 on the image view server would be: http :
//hostname/view-tile-cache-path/000022/ V3 J00001. GIF In addition
to the view tile position and view scale, other view attributes that may
be encoded in the view tile storage location or in the view tile name.
These attributes are view rotation angle, view x-mirror, view y-mirror,
invert view. A view tile name with these extra view attributes can be
encoded as:

V < SCALE > < TILE_NUMBER> <VIEW_ANGLE> <X_MIRROR> <
Y_ MIRROR > < INVERT > . GIF

VIEW ANGLE is of the form A < ANGLE > . X MIRROR, Y MIRROR,
and INVERT are encoded by the single characters X, Y, and I respectively.
An example is: V3J00001A90XYI.GIF The Web server 30 is configured
to recognize the above-described specially formatted request Uniform

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 192 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Resource Locators (URL) to be handled by the image view server request
broker 40. This is done by association of the request broker 40 with the
URL path or with the document filename extension.

Hornbacker, 10:24-28

For example, a specific view request might include tiles B2, C2, B3, and
C3 (FIG 4A and FIG 5A). If, after viewing those tiles, the client decides
that the view to the immediate left is desired, then the server would send
tiles A2 and A3 (FIG 4B and FIG 5B). This assumes that the client retains
in a cache the other tiles. If the client does not cache then tiles A2, A3, B2,
and B3 are sent.

Hornbacker, 12:24-13:10

Performance and usability of document viewing can be increased by
using progressive display of tiled images. By using an image file format
that allows a rough view of the image to be displayed while the remainder
of the image content is downloaded, a rough view of the document can be
seen more quickly.

Since most Web browsers can only transfer 1 to 4 GIF images at a time,
usually not all of the view tiles in the view array can be progressively
displayed at the same time. Therefore, it is preferred that to implement
progressive display, algorithms at the client are provided to accept an
alternate data format that would allow the whole document viewing area
screen to take advantage of the progressive display while still taking
advantage of the benefits of tiling and caching at the client. This can be
accomplished in a Web browser environment using algorithms written in
Java, JavaScript, or ActiveX technologies. By using client software to
enhance the client viewer, additional enhancements to performance can be
made by using alternate view tile image formats and image compression
algorithms. A significant example would be to use the Portable Network

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 193 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Graphics (PNG) format with the optimization of having the image view
server and client transfer only one image header common to be shared by
all view tiles and then sending the low-resolution compressed image data
for each view tile followed by the full-resolution image data for each view
tile.

11. The method of
claim 10, wherein
said prioritization
values is based on
the relative
distance of said
update data parcel
from said operator
controlled image
viewpoint.

Potmesil at 1332:

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new
tiles there. This process is shown in Figure 2. When the tile cache is full,
some resident tiles need to be deleted. These can be tiles furthermost from
the user, least-recently visible tiles, or least-recently arrived tiles.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location
and scale of a map. A 3D browser may have also multiple windows
opened, each with a different perspective projection. Each window can
be moving completely independently of all the others, or they may be
different views from one user (e.g., left and right views from a cockpit,
or the view of a tail gunner). The caching process computes one or
more estimated positions of each view and intersects their bounding
volume with the tile coordinate system. Any intersected tiles not

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 194 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
present in the cache are sorted by distance from the user, and the
caching algorithm determines how many of them can be loaded into
the cache. This depends on the total number of allocated tiles for we need
to prevent tile thrashing. The more disc and memory space the host
machine has available, the more tiles can be brought into the cache and
remain there. There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and disappearing
tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

obtain as many tiles ahead as possible, in a widening wedge, and delete
any tiles already visited; this may be used during high-speed flight.

Lindstrom, §§ 1, 4.2.1, 4.2.6.

12. The method of
claim 1, wherein
displaying the
image further
comprises multi-
threading on the
limited
communication
bandwidth
computer device
using the update
data parcel to
display the image.

Potmesil at 1330:

The server was designed to maintain maximum tile output to a large
number of clients which are connected by fast networks. The server is
multi-threaded: it serves multiple clients simultaneously. For each
opened connection it spawns a separate process. If a connection is
permanently kept opened, a second process is spawned to send tiles to
the client while the first process receives tile requests from the client.
Tiles, which have been recently read from discs, are saved in shared
memory so that other clients can obtain them more quickly. This is useful
when multiple clients are browsing in the same data as would happen in a
networked game.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 195 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models which
reside in server hosts across the Internet network. The client browsers,
which are described here, have the ability to cache parts of the geospatial
models before a user needs to display them. The servers can generate the
models in small sections - called tiles - because they store them in
hierarchical representations or have the ability to clip all parts of a model
outside the requested area (or volume). We base this approach on the
assumption that the amount of such models far exceeds the ability to store
these models locally.

Much work in this paper is centered around two data representations:
quadtrees for geometrical elements such as points, lines and polygons and
image pyramids for 2D lattice data such as images, elevations or gradients.
Quadtree data structures and algorithms, many of them for geographical
applications, are described in books and papers by Samet [14]. The
concept of prefiltered power-of-two images for texture mapping was
introduced by Williams [17] who named them mip maps. Since his seminal
paper, it has become a rendering standard implemented, for example, in
OpenGL software [12] and hardware [1]. In the 2D browser we use any
type of data sampled on a 2D lattice. However, our techniques are
applicable to any other model representations such as TIN's (Triangulated
Irregular Networks) of terrain or VRML models which are clipped to
rectangular regions. In more complex environments, such as furnished
interiors of buildings, one must use more sophisticated data structures and
display algorithms to maintain interactive display rates [8].

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the
latter process reads tracking data, synchronizes all application
mapplets, and composites the final image. It also makes space (data

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 196 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
and user) and time (either real or simulated) consistent among all the
mapplets.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows
opened, each with an orthographic projection of a different location and
scale of a map. A 3D browser may have also multiple windows opened,
each with a different perspective projection. Each window can be moving
completely independently of all the others, or they may be different views
from one user (e.g., left and right views from a cockpit, or the view of a
tail gunner). The caching process computes one or more estimated
positions of each view and intersects their bounding volume with the tile
coordinate system. Any intersected tiles not present in the cache are sorted
by distance from the user, and the caching algorithm determines how many
of them can be loaded into the cache. This depends on the total number of
allocated tiles for we need to prevent tile thrashing. The more disc and
memory space the host machine has available, the more tiles can be
brought into the cache and remain there. There are several implemented
caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and disappearing
tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

• obtain as many tiles ahead as possible, in a widening wedge, and
delete any tiles already visited; this may be used during high-speed
flight.

When the caching process has generated a new list of tiles to be
cached, each mapplet can start loading its data into each tile. Mapplets

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 197 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
also provide feedback to the cache process: each tile is marked by each
mapplet when it has been drawn, and each mapplet saves the average
time it takes to receive and draw the tile data.

Lindstom at Abstract:

This paper reports on an integrated visual simulation system supporting
visualization of global multiresolution terrain elevation and imagery data,
static and dynamic 3D objects with multiple levels of detail, non-
protrusive features such as roads and rivers, distributed simulation and
real-time sensor input, and an embedded geographic information system.
The requirements of real-time rendering, very large datasets, and
heterogeneous detail management strongly affect the structure of this
system. Use of hierarchical spatial data structures and multiple coordinate
systems allow for visualization and manipulation of huge terrain datasets
spanning the entire surface of the Earth at resolutions well below one
meter. The multithreaded nature of the system supports multiple
windows with independent, stereoscopic views. The system is portable,
built on OpenGL, POSIX threads, and X11/Motif windowed interface. It
has been tested and evaluated in the field with a variety of terrain data,
updates due to real-time sensor input, and display of networked DIS
simulations.

Lindstrom, Fig. 1:

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 198 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

Lindstrom, ¶ 1:

In this paper we describe a visual simulation system that provides a
structure supporting all the parts described above. We also discuss in detail
our implementations for some of these parts, concentrating especially on
global terrain visualization. The structure is in a multithreaded form to
facilitate balanced and separable management of the system parts. It is
also quite portable, due to standard libraries such as Pthreads and OpenGL,
and has been ported to multiple workstation environments, including SGI
and Sun plat- forms.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 199 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

Lindstrom, § 3:

The user is given the ability to visualize the scene through multiple views
which map onto separate windows. Each such view may display the scene
from a different viewpoint, e.g. as a 3D immersive view or a 2D overview
map, or may display different aspects of the same scene, e.g. as
phototextured terrain or as a contour map with surface features such as
roads and rivers turned on. In order to conserve memory, view-
independent data is shared among the views and is accessed from a single
primary cache.

To further obtain a high degree of interactivity, the system is broken
down into a number of asynchronous threads that are prioritized
according to their relevance to the final display update rate, which is
one of the most important constraints in the system. For example, a
dedicated render thread is used whose single task it is to update one or
more views at the highest possible rate; level of detail (LOD)
management is distributed over several threads according to the data
they operate on, which generally update the scenes at a rate lower than the
rendering rate; while a number of server threads execute only when data
requests are made. This fine-grained subdivision of tasks ensures a high
degree of CPU utilization and eliminates the bottlenecks often
associated with blocking system calls (e.g. disk I/O, input device polling)
in the real-time components of the system.

Lindstrom, § 4.2:

The run-time part of VGIS has been designed to support highly interactive
frame rates. As such, it relies heavily on a multithreaded, fine-grained
task distribution. Since the display update rate is often of higher
importance than the scene update rate, including level of detail selection
and animation, more resources are allocated towards satisfying a minimum

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 200 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
frame rate. In [20], we propose a terrain geometry level of detail algorithm
that generates “continuous” levels of detail on-the-fly. While being highly
efficient in selecting the vertices and triangles that make up the terrain
surface for a given view, the recursive traversal of the terrain data
structures for triangle stripping is a bottleneck that limits the rendering rate
to approximately 10 frames per second for pixel-accurate full-screen
views. As a lot of frame-to-frame coherence is evident in the resulting
triangle strips, it is often satisfactory to perform the LOD management less
frequently, say 1–5 times per second, and trade the scene update rate for
higher display rates. We accomplish this by decoupling the two tasks
and separate them into two different, asynchronous threads. This
scheme allows the scene to be redisplayed (with potential changes to
the view between frames) until new parts of the scene have been
generated and submitted by a scene manager. In addition, we further
segregate different data types, recognizing that different data products may
require different display update rates. For example, animated vehicles may
be updated at a higher rate than the terrain geometry.

By and large, our approach has been to identify the major bottlenecks, such
as blocking system calls, and isolate them from the time-critical
components. This means offloading the I/O intensive, high latency data
paging from the scene managers, and feeding the render thread with
“ready to render” display lists. The resulting architecture forms a
hierarchy of successively lower priority tasks. Each of these tasks is
discussed in the following sections.

Lindstrom, § 4.2.1:

For each view, there is a terrain manager thread, part of which is a
client module. The client module is responsible for making data requests
to the terrain server whenever data of some type and resolution is needed
for a particular area, and taking the appropriate actions upon notification
by the terrain server that the request has been serviced. When data is

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 201 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
needed for a node in a quadtree, the client allocates space for the data
within a shared cache and sends a message via a shared memory priority
queue to the server.

Lindstrom, § 4.2.5:

Monoscopic and stereo rendering in VGIS is handled by a single
thread, which renders into one or more windows. The scene managers
communicate with the render thread via buffering of graphics
commands that are encapsulated in display lists. For each connection with
the render thread, there is a buffer of three dynamically growing/shrinking
display lists, called a “triple buffer”. One of the three display lists
corresponds to what the renderer is currently drawing, a second display list
is used by the scene manager to buffer graphics commands, while the third
display list contains data that is ready to be displayed. This scheme allows
both the renderer and the scene managers to run simultaneously without
having to be synchronized. Consider, for example, if only two display lists
per connection were used. In such a case, the scene manager, upon
submitting a display list, would have to wait for the renderer to finish
rendering a frame before the lists could be swapped. When triple buffers
are used, the scene managers have to stall only when they produce scenes
faster than the renderer can process them.

At the beginning of each frame, the renderer fetches the most current
view parameters from the user interface thread. Typically, the UI
thread runs at least as fast as the renderer. For each window, the
renderer then fetches the most recently updated associated display list, and
begins parsing it. For stereo views, the same display list is used twice, with
different view parameters for each eye. Nearly all of the commands and
parameters in the display list map directly to OpenGL function calls.
However, there are a few commands that have special meanings, which
will be described below.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 202 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Because the scene managers and the renderer work asynchronously, there
is no single consistent set of view parameters among them. They all fetch
the most current parameters from the UI thread at the beginning of
each frame/pass…

A number of policies are enforced such that texture allocation and
deallocation are synchronized among threads, ensuring that the
thread deallocating the image data is the only remaining thread with a
reference to the texture.

Lindstrom, § 4.2.6:

The user interface thread handles input events from steering de- vices and
interface widgets such as menus and sliders, performs navigation, and also
acts as the overall manager of the run-time system. The decoupling of the
user interface from other threads ensures high responsiveness to user
input, while letting the most time-critical threads bypass expensive
systems calls such as device polling. The user interface is otherwise
mostly callback driven and is based on the X11/Motif mechanisms for
event handling in the Unix version. Menus, sliders, and forms are provided
to the user for interacting with and navigating the environment, with real-
time re- sponses to user input. Several input devices, such as mouse, space-
ball, and 3D position and orientation tracking are supported. Two modes of
navigation are currently in use: orbital mode, in which the user
manipulates the globe via rotations and zooming, and free flight mode,
which provides a six degree of freedom navigation interface. For each
view, the UI thread maintains a master copy of the view parameters,
which are fetched frequently by the renderer and scene managers. The
UI thread additionally oversees system-wide tasks such as system
initialization, resource allocation (e.g. texture memory, polygon budgets,
thread and message queue creation, CPU time, etc.), and coordinates both
internal threads and external connections.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 203 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Lindstrom, § 6:

We have designed and implemented a real-time 3D visualization system,
VGIS, which integrates visual simulation techniques for interactive
rendering and management of huge graphical databases with query and
manipulation capabilities for spatial geographic data. The system allows
visualization of terrain and other data types over the entire surface of
the Earth, and manages very high resolution datasets at real-time
rates, by taking advantage of hierarchical, multiresolution spatial data
structures and asynchronous multithreading. The system has met its
original requirements for high interactivity and the ability to handle huge
databases, and has proved useful for military planning and visualization
tasks in Army exercises.

14. The display
system of claim
13, wherein said
processor is
responsive to said
defined screen
resolution and
wherein said
processor is
operative to limit
selection of said
defined data parcel
to where the
resolution of said
defined data parcel
is less than or
equal to said
defined screen

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post
geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser
capable of continuous scroll and zoom of an arbitrarily large sheet and
a 3D flight-simulator browser capable of continuous flight around the
Earth. Both browsers download and cache geographical information,
geometrical models, and URL anchors in small regions called tiles. The
tile caching process is based on the user's current position, velocity, and
acceleration in the 2D/3D space as well as on the latency of server replies.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 204 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

resolution. A user can program these browsers by adding small application programs -
mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations, lines,
points and polygons stored in tiles structured into hierarchical pyramids or
quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1328:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and
acceleration in a 2D/3D space as well as on the latency of server replies.
The browsers query servers only for relevant data around the user's current
and predicted future locations and expect to receive such data and to
prepare them for display before the user reaches it. Around this core
concept of tile caching, various specialized visualization applets - written
in C, C++ or Java - are developed. Such applets run simultaneously on top
of the browser and convert all their respective data into a common
coordinate system specified by the browser. Examples of such applets are
weather and traffic reports, bird migrations, and a spatial bulletin board
applet which displays an anchor of any WWW document at any
geographical location. Each applet typically queries two servers: a spatial
meta server, which knows what information is available at what
geographical location and where on the WWW to find it, and the server
which contains the information itself.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 205 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
Potmesil at 1332:

3. A Geographical Browser

In this paper, we describe a system for viewing geospatial models
which reside in server hosts across the Internet network. The client
browsers, which are described here, have the ability to cache parts of
the geospatial models before a user needs to display them. The servers
can generate the models in small sections - called tiles - because they store
them in hierarchical representations or have the ability to clip all parts of a
model outside the requested area (or volume). We base this approach on
the assumption that the amount of such models far exceeds the ability to
store these models locally.

The browser consists of two processes: caching and compositing. The
former process is responsible for managing the local cache while the
latter process reads tracking data, synchronizes all application
mapplets, and composites the final image. It also makes space (data and
user) and time (either real or simulated) consistent among all the mapplets.

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z,
level-of-detail and time. In a 2D mode, the level-of-detail parameter is
used as a discrete z level in a 3D pyramid. Time in this context is
interpreted as discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new tiles
there. This process is shown in Figure 2. When the tile cache is full, some
resident tiles need to be deleted. These can be tiles furthermost from the
user, least-recently visible tiles, or least-recently arrived tiles.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 206 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

The caching process receives information about the current view from the
compositing process. A 2D browser may have multiple windows opened,
each with an orthographic projection of a different location and scale of a
map. A 3D browser may have also multiple windows opened, each with a
different perspective projection. Each window can be moving completely
independently of all the others, or they may be different views from one
user (e.g., left and right views from a cockpit, or the view of a tail gunner).
The caching process computes one or more estimated positions of each
view and intersects their bounding volume with the tile coordinate
system. Any intersected tiles not present in the cache are sorted by
distance from the user, and the caching algorithm determines how many
of them can be loaded into the cache. This depends on the total number of
allocated tiles for we need to prevent tile thrashing. The more disc and
memory space the host machine has available, the more tiles can be
brought into the cache and remain there.

Potmesil at 1333-1335:

3.2 Tile Compositing

The tile compositing process composites tile data from the off-screen
cached tiles into the on-screen window image. While compositing tiles,
it checks whether all mapplets have drawn their layer(s). If there are layers
that have to be drawn before a tile can be shown, the process must wait.
This process is also responsible for synchronizing all mapplets, obtaining
the user's tracking data from a tracking device and obtaining real time or
computing simulated time. This assures that all mapplets are in the same
space and time. Directions where and how the browser should move in
space can come from one of these sources:

• a user can click on an anchor in an HTML document concurrently
displayed by an HTML browser,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 207 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

• a user can use a mouse or some other tracking device (hand gestures,
force-feedback joystick, GPS receiver), or

• a mapplet can take control of the browser and compute directions
procedurally (e.g., the great circle) or in any other way, perhaps
even including the two above methods.

The two processes run independently and asynchronously. The cache
manager keeps rearranging the cache memory even while the user has
stopped and the image is not regenerated.

3.3 Mapplets: Geographical Applets

The core of the geographical browser, which consists of the display and
caching processes, is programmable with small application programs
called mapplets. They are preferably written in a platform-independent and
down-loadable code such as Java. The programmability of the browser
gives a user the ability to mix-and-match mapplets and to view data in
novel ways - not foreseen by the authors of the browser. In this section, we
describe some of the mapplets that we have developed.

Mapplets obtain pertinent geographical and other data from Internet
servers, convert them, if needed, from external representations, and
render them via the browser's graphical and image-processing
libraries. These are the basic rules that apply to mapplets:

• After the core browser has been started, a user may launch
additional mapplets - typically, from a mapplet HTML page. By
default, the image mapplet, described in Section 3.3.1, is always
started with the core browser.

• Mapplets are ordered top to bottom in a stack, a mapplet can draw
into one or more top-to-bottom ordered adjacent layers.

• Before drawing a layer, a mapplet may have to wait for specified

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 208 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

lower layers to be drawn first.

• A mapplet draws static data (which changes infrequently) into
the off-screen tiles, and dynamic data (which changes from
frame to frame) into the on-screen window.

• If a mapplet needs to redraw one of its layers in a cached tile, it
invalidates the contents of the tile. All other running mapplets must
then redraw their layers in that tile. This means that the mapplets
may have to reload their server's data or must maintain their own
independent tile cache.

• Before compositing the cached tiles into the final window image,
the browser may have to wait for specified layers to be drawn. By
default it always waits for the image mapplet to draw its layer(s).

• When a mapplet draws directly into the on-screen window, it
likely requires a separate drawing process, in order to maintain the
browser's interactive update rate.

• A mapplet can register with the core browser to receive events from
the user's tracking device. An event can be received by all the
registered mapplets or can be passed from top to bottom mapplets
until a mapplet acts on it.

There are several libraries that the core browser makes available to the user
mapplets:

• a socket library provides a general client/server network connection
functions,

• an HTTP library provides an interface for the HTTP/1.0 protocol [3]
on both the client and server sides. This library also implements an
interface to an HTML browser (Netscape Navigator, Mosaic)
running concurrently. Moreover, it provides a uniform interface for

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 209 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

filling out URL templates.

• a caching library allows HTTP documents to be cached in the local
client machine in memory or on disc,

• a graphical library draws geometrical primitives either to the
off-screen tiles or directly to the on-screen window, as it clips
geometrical primitives to within a tile, it puts any clipped parts
on a waiting list and draws them later when the adjacent tiles
become available,

• an image processing library performs some elementary image
processing functions; as in the graphical library case, if an
image-processing function, such as a filter, needs pixels from
adjoining tiles, the library needs to preserve them and provide
them to adjacent tiles,

• a geographical library converts the coordinates of geometrical
primitives among various geographical coordinates systems; it is
based on the USGS cartographic library [5].

An individual mapplet may consist of several processes, usually 1-3, which
divide the typical mapplet tasks into 3 stages: (1) obtaining metadata and
data from servers, (2) converting obtained data into an internal
representation, and (3) drawing the data. If a mapplet also needs to obtain
meta information from a server or data from multiple information servers,
additional processes may have to be spawn. Much of this design depends
on the number of simultaneous requests a mapplet will be making and the
size and latency of the returned data.

3.3.1 An Image Applet

This is the fundamental mapplet, by default always enabled by the
browser. It obtains tile data from the tile server described in Section
2.1 and converts them into images in the cached tiles. The tiles received

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 210 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
from the server are processed in three pipelined steps: (1) an optional
decompression, (2) mapping into an image, (3) conversion to the local
display format. The mapplet may request compressed tiles from the tile
server if the speed of the network connection justifies the additional time
spent by the mapplet in tile decompression. The elevation data are usually
compressed using a wavelet compression [7], while the gradient and image
data are usually compressed using JPEG. When using a slower network,
the gradient data may be computed locally by the mapplet rather than
downloaded from the server. When all the tile components are
decompressed, they are converted into an image using one of these
mappings:

elevation + gradient -> color shaded relief - maps elevations into ambient
colors - via an elevation lookup table - and adds relief shading based
on the local surface gradient - via a second lookup table; Horn [10]
describes many relief shading techniques,

• elevation -> elevation-mapped color - maps elevations into
elevation colors without gradient shading using only the first
lookup table above,

• gradient -> grey-tone shaded relief - maps gradients into a
monochrome shaded relief image using only the second lookup
table above,

• rgb + gradient -> shaded-relief image - maps gradients into a
monochrome shaded-relief image which is added to a color
image (typically a LANDSAT image),

• mono + gradient -> shaded-relief image - same as above but the
shaded-relief is added to a monochrome image (typically a DOQ
image).

Finally, following the above mappings, if the local display buffer is

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 211 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
24/32-bits deep, a true-color image is displayed. However, if the frame
buffer is only 8-bits deep, a dithered image - using ordered dither
algorithm - or a monochrome image is displayed.

3.3.2 A GIF Applet

This mapplet obtains image tiles, stored or generated as GIF images, from
several WWW servers. The mapplet obtains a GIF image, decodes it
and draws it on top of the current tile contents. Optionally, in addition
to the GIF transparency value, an alpha-blending value can be specified to
make the image background partially visible.

Currently, the mapplet can obtain maps and images from three outside
sources: (1) the well-known Xerox PARC map server which contains data
from the DMA's Digital Chart of the World and the USGS's 1:2,000,000
Digital Line Graph, (2) the U.S. Bureau of the Census TIGER street map
server, and (3) the multi-resolution Mars image server at the Los Alamos
National Laboratory.

Potmesil at 1340:

3.4 A 3D Geographical Browser

We have developed a preliminary version of a three-dimensional
browser which displays terrain data cached from the tile server and
geographical names cached from the name server. The browser uses the
OpenGL library to render 3D graphics. To make the three-dimensional
browser truly global, we represent the Earth as an ellipsoid or geodetic
datum called World Geodetic System 1984 (WGS84) [4].

Hornbacker at 7:4-25:
The 128 pixel view tile size is a good compromise between view tile
granularity and view tile overhead. The view tile granularity of 128

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 212 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
pixels determines the minimum view shift distance (pan distance) that
can be achieved with standard graphical Web browser and level 2
HTML formatting. This allows the adjustment of the view position on
a 0.64 inch grid when viewing a 200 pixel-per-inch image at 1 to 1
scale. Reducing the size of the view tiles allows finer grid for view
positioning, but has the problem that the view tile overhead becomes
excessive.

A view tile typically represents more or less than 128 x 128 pixels of the
image file. If the view being displayed is reduced 2 to 1 , then each view
tile will represent a 256 x 256 pixel area of the image file that has been
scaled down to 128 x 128 pixels. For each possible scale factor there is an
array of tiles to represent the view. Fixed size view tiling is beneficial
because it allows more effective use of the caching mechanism at the
server and at the client. For example, consider a view of 512 pixels by
512 pixels. Without tiling, this view is composed of a single GIF file
that is displayed by the Web browser, and so if the user asks for the
view to be shifted by 256 pixels, then a new GIF image of 512 x 512
pixels needs to be created and transmitted to the Web browser. With
tiling, the first view would cause 16 view tiles to be computed and
transmitted for display by the Web browser. When the request for the view
to be shifted by 256 pixels is made, only 8 view tiles representing an area
of 256 by 512 pixels need to be computed. In addition only the 8 new view
tiles need to be transmitted to the Web browser since the shifted view will
reuse 8 view tiles that are available from the Web browser cache. The use
of tiling cuts the computation and data transmission in half for this
example.

Hornbacker, 11:19-28

FIG 6 A illustrates how the background view composer algorithm works.
Assuming that for a given view requested by the client, tiles C3, C4, D3
and D4 are delivered, after those tile are delivered to the Web browser, the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 213 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
background view composer routine within the server program creates the
tiles around these tiles, starting at E4, by composing or computing such
surrounding tiles. As long as the client continues to view this page at
this scale factor, the server will compute view tiles expanding outward
from the tiles requested last. FIG 6B illustrates another request made by
a client, after the two rotations of tiles were generated. The request asked
for tiles G3, G4, H3, and H4. When the tile pre-computation begins for this
request it will create tiles G5, H5, 15, 14, 13, 12, H2, and G2 in the first
rotation, but it will not attempt to create tiles in the F column.

Hornbacker, 13:4-10

By using client software to enhance the client viewer, additional
enhancements to performance can be made by using alternate view tile
image formats and image compression algorithms. A significant example
would be to use the Portable Network Graphics (PNG) format with the
optimization of having the image view server and client transfer only one
image header common to be shared by all view tiles and then sending the
low-resolution compressed image data for each view tile followed by
the full-resolution image data for each view tile.

Hornbacker, 14:2-6

A typical view size of 896 by 512 pixels is made up of a 7 by 4 array of
128 pixel x 128 pixel view tiles. The monochrome view tiles are
transmitted in a compressed format that typically yields tiles that are 512
bytes each so the entire view is approximately 14 kilobytes (0.5 KB x 28
tiles) and the transfer takes approximately 4.8 seconds (14 KB / 3
KB/second).

Lindstrom, § 4.2.1, Fig. 1.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 214 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

15.A: The display
system of claim
13, wherein said
processor is
operative to
prioritize the
retrieval of said
data parcel among
a plurality of
selected data
parcels pending
retrieval,

See teachings cited for claim 10.A

15.B: wherein the
relative priority of
the data parcel is
based on the
difference in the
resolution of the
image parcel and
the resolution of
said plurality of
selected data
parcels.

See teachings cited for claim 10.B.

16.A: The display
system of claim
13, wherein said
processor is
response to user
navigation
commands to

Potmesil teaches a three-dimensional terrain visualization application
which renders views of terrain based on user navigational commands:

Potmesil, Abstract:

We describe a WWW-based system - consisting of browsers, servers and
connecting protocols - which allows users to view, search and post

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 215 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

define an image
viewpoint relative
to said defined
image and

geographically-indexed information of the Earth. Much information
available on the WWW, such as weather reports, home pages of National
Parks, VRML models of cities, home pages of Holiday Inn hotels, Yellow
and White Page directory listings or traffic and news reports, is better
located and visualized when displayed directly or via clickable anchors on
top of 2D maps or in full 3D environments.

We have developed two geographical browsers: a 2D map browser capable
of continuous scroll and zoom of an arbitrarily large sheet and a 3D flight-
simulator browser capable of continuous flight around the Earth. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and
acceleration in the 2D/3D space as well as on the latency of server
replies. A user can program these browsers by adding small application
programs - mapplets.

On the server side, we have developed geographical and geometrical
servers which contain very large data bases of images, elevations, lines,
points and polygons stored in tiles structured into hierarchical pyramids or
quadtrees. We have also developed a metadata server which contains, in
hierarchical layers, URL pointers and geographical coordinates of various
WWW documents, geographical information and geometrical models.

Potmesil at 1328-29:

Two geographical browsers have been developed for this system: a 2D
map browser capable of continuous scroll and zoom of an arbitrarily large
sheet of 2D information and a 3D flight-simulator browser. Both
browsers download and cache geographical information, geometrical
models, and URL anchors in small regions called tiles. The tile caching
process is based on the user's current position, velocity, and
acceleration in a 2D/3D space as well as on the latency of server replies.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 216 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
The browsers query servers only for relevant data around the user's current
and predicted future locations and expect to receive such data and to
prepare them for display before the user reaches it. Around this core
concept of tile caching, various specialized visualization applets - written
in C, C++ or Java - are developed. Such applets run simultaneously on top
of the browser and convert all their respective data into a common
coordinate system specified by the browser. Examples of such applets are
weather and traffic reports, bird migrations, and a spatial bulletin board
applet which displays an anchor of any WWW document at any
geographical location. Each applet typically queries two servers: a spatial
meta server, which knows what information is available at what
geographical location and where on the WWW to find it, and the server
which contains the information itself.

Potmesil at 1332:

3.1 Tile Caching

The cache process allocates a common tile memory that is shared by all
mapplets. It controls how the cached tiles are allocated in space and time.
This cache allocation is currently based on five parameters: x, y, z, level-
of-detail and time. In a 2D mode, the level-of-detail parameter is used as a
discrete z level in a 3D pyramid. Time in this context is interpreted as
discrete time slices.

The caching algorithm uses the user's current position, velocity, and
acceleration to estimate where the user is moving and allocates new
tiles there. This process is shown in Figure 2. When the tile cache is full,
some resident tiles need to be deleted. These can be tiles furthermost from
the user, least-recently visible tiles, or least-recently arrived tiles.

The caching process receives information about the current view from
the compositing process. A 2D browser may have multiple windows

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 217 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
opened, each with an orthographic projection of a different location
and scale of a map. A 3D browser may have also multiple windows
opened, each with a different perspective projection. Each window can
be moving completely independently of all the others, or they may be
different views from one user (e.g., left and right views from a cockpit,
or the view of a tail gunner). The caching process computes one or
more estimated positions of each view and intersects their bounding
volume with the tile coordinate system. Any intersected tiles not
present in the cache are sorted by distance from the user, and the
caching algorithm determines how many of them can be loaded into
the cache. This depends on the total number of allocated tiles for we need
to prevent tile thrashing. The more disc and memory space the host
machine has available, the more tiles can be brought into the cache and
remain there. There are several implemented caching strategies:

• obtain only tiles in a narrow corridor along the user's path; the
cached tiles look like a snake with a growing head and disappearing
tail [Figure 2(a,b,c)],

• obtain as many tiles as close to the view as possible; this may be
used in low speeds (hovering) when the direction of flight is
uncertain [Figure 2(d)],

obtain as many tiles ahead as possible, in a widening wedge, and delete
any tiles already visited; this may be used during high-speed flight.

Lindstrom, §§ 3, 4, 4.2.1, 4.2.3, 4.2.6.

16.B: wherein said
processor is
operative to
prioritize the
retrieval of said
data parcel based
on the distance

See teachings cited for claim 11.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 218 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

between said
image parcel and
said image
viewpoint relative
to said defined
image.

17. The display
system of claim
13, wherein the
data parcel further
comprises one of
an image parcel
textual mapping, a
map parcel, a
navigation cue, a
text overlay and a
topography.

See teachings cited for claim 2.

18. The display
system of claim
13, wherein the
predetermined
pixel resolution
for each data
parcel is a power
of 2.

See teachings cited for claim 4.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 219 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).

19. The display
system of claim
18, wherein the
predetermined
pixel resolution is
power of 2 and
one of 32×32,
64×64, 128×128
and 256×256.

See teachings cited for claim 5.

20. The display
system of claim
13, wherein the
processor
performs multi-
threading to render
said defined data
parcel over the
discrete portion of
said mesh to
provide for the
progressive
resolution
enhancement of
said defined image
on said display.

See teachings cited for claim 12. In addition, Lindstrom teaches that multi-
threading is perform rendering including progressive resolution
enhancement using hierarchical data structures and continuous level-of-
detail:

Lindstrom, § 1:

The visual simulation system described above implies very large, even
huge amounts of data. Automatic paging and caching techniques handling
heterogeneous data from the different parts of the system must be in place.
If, for example, the system is to visualize urban scenes, it must manage
hundreds to thousands of buildings, plus their textures, and also street
layouts. For flexibility the terrain visualization sub-system should
handle terrain from any part of the world and integrate these terrains
into a common coordinate system without seams or gaps (e.g. between
levels of detail or due to multiple coordinate systems). All this should
be in a hierarchical organization structure so that the terrain detail
can be continuously adapted based on user viewpoint and scene
content. Yet the hierarchy must be flexible so that detail can be added or
deleted as needed. Such flexibility is quite important due to database size
as the global datasets used with VGIS often require ten or more gigabytes.

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 220 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
In this paper we describe a visual simulation system that provides a
structure supporting all the parts described above. We also discuss in detail
our implementations for some of these parts, concentrating especially on
global terrain visualization. The structure is in a multithreaded form to
facilitate balanced and separable management of the system parts. It is
also quite portable, due to standard libraries such as Pthreads and OpenGL,
and has been ported to multiple workstation environments, including SGI
and Sun platforms. We are now working on a PC version using Windows
NT. The system has wide applicability, having been used for battlefield
visualizations, tactical planning, and complex urban visualizations.

Lindstrom, § 3:

To further obtain a high degree of interactivity, the system is broken down
into a number of asynchronous threads that are prioritized according to
their relevance to the final display update rate, which is one of the most
important constraints in the system. For example, a dedicated render
thread is used whose single task it is to update one or more views at
the highest possible rate; level of detail (LOD) management is
distributed over several threads according to the data they operate on,
which generally update the scenes at a rate lower than the rendering
rate; while a number of server threads execute only when data
requests are made. This fine-grained subdivision of tasks ensures a high
degree of CPU utilization and eliminates the bottlenecks often associated
with blocking system calls (e.g. disk I/O, input device polling) in the real-
time components of the system.

To accommodate data paging, level of detail management, and view
culling, a quadtree data structure [25] is used to spatially subdivide
and organize the terrain raster data. The globe is subdivided into a
small number of pre-determined areas, each corresponding to a separate
quadtree. The tiles associated with the quadtree nodes, or quadnodes, are

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 221 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
stored in a file format that closely matches the internal representation,
which allows for good paging performance. Rather than using a single
global coordinate system, a large number of local coordinate systems is
used. This is necessary as the precision afforded by current graphics
hardware is insufficient for representing detailed geometry distributed over
a large volume in a single coordinate system. Different branches within the
quadtrees are assigned to different local coordinate systems, which are
centered such that precision is maximized, and oriented to locally preserve
natural directions such as “up”, which can be exploited by the terrain
geometry level of detail algorithm.

Lindstrom, § 4.2:

The run-time part of VGIS has been designed to support highly interactive
frame rates. As such, it relies heavily on a multithreaded, fine-grained
task distribution. Since the display update rate is often of higher
importance than the scene update rate, including level of detail
selection and animation, more resources are allocated towards
satisfying a minimum frame rate. In [20], we propose a terrain
geometry level of detail algorithm that generates “continuous” levels
of detail on-the-fly. While being highly efficient in selecting the vertices
and triangles that make up the terrain surface for a given view, the
recursive traversal of the terrain data structures for triangle stripping is a
bottleneck that limits the rendering rate to approximately 10 frames per
second for pixel-accurate full-screen views. As a lot of frame-to-frame
coherence is evident in the resulting triangle strips, it is often satisfactory
to perform the LOD management less frequently, say 1–5 times per
second, and trade the scene update rate for higher display rates. We
accomplish this by decoupling the two tasks and separate them into
two different, asynchronous threads. This scheme allows the scene to
be redisplayed (with potential changes to the view between frames) until
new parts of the scene have been generated and submitted by a scene
manager. In addition, we further segregate different data types,

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 222 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
recognizing that different data products may require different display
update rates. For example, animated vehicles may be updated at a higher
rate than the terrain geometry.

By and large, our approach has been to identify the major bottlenecks, such
as blocking system calls, and isolate them from the time-critical
components. This means offloading the I/O intensive, high latency data
paging from the scene managers, and feeding the render thread with
“ready to render” display lists. The resulting architecture forms a
hierarchy of successively lower priority tasks. Each of these tasks is
discussed in the following sections.

Lindstrom, § 4.2.1:

For each view, there is a terrain manager thread, part of which is a
client module. The client module is responsible for making data
requests to the terrain server whenever data of some type and
resolution is needed for a particular area, and taking the appropriate
actions upon notification by the terrain server that the request has
been serviced. When data is needed for a node in a quadtree, the client
allocates space for the data within a shared cache and sends a message via
a shared memory priority queue to the server. Message priorities in this
queue are changed dynamically according to the importance of the
associated request as determined by the level of detail manager. Thus,
requests that gradually become less important, or even obsolete, sift
towards the end of the queue and get serviced only when no higher priority
requests remain in the queue. This is important as the paging rate, during
short bursts of requests, is typically much lower than the request rate. The
server dequeues the highest priority request and either reads the data from
disk if it exists, or synthesizes the data from other sources (or possibly a
combination of both). After transferring the data from disk, the server may
have to do additional processing. In the case of elevation data, the server
reads a height field raster from disk, and then proceeds to transform the

APPENDIX U

Microsoft Corp. Exhibit 1009

DECLARATION OF DR. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX U

- 223 -

7,908,343 Patent
Claim Language

Prior Art: M. Potmesil, “Maps alive: viewing geospatial information
on the WWW,” Computer Networks and ISDN Systems 29 (1997)
1327-13425 in view of PCT Publication No. WO 99/41675, Pub. Aug.
19, 1999 (“Hornbacker”) and further in view of An Integrated Global
GIS and Visual Simulation System by P. Lindstrom et al., Tech. Rep.
GIT-GVU-97-07, March 1997 (“Lindstrom”).
height field lat/lon/height coordinates into an array of Cartesian vertices.
LOD state and other parameters are also generated and initialized before
the request is completed, and the terrain client making the request is
notified by returning an acknowledgement message.

APPENDIX U

Microsoft Corp. Exhibit 1009

1

Appendix V - Claim Chart Showing Teachings of Rutledge, Ligtenberg and
Cooper Pertinent to Challenged Claims of U.S. Patent No. 7,908,343

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

1. Pre A method of retrieving
large-scale images over network
communications channels for
display on a limited
communication bandwidth
computer device, said method
comprising:

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

1.A issuing, from a limited
communication bandwidth
computer device to a remote
computer, a request for an update
data parcel

Rutledge:
2:25-30, 3:17-20, 5:13-17 ,8:37-42,10:1-
7,7:48-62,10:10-19

Ligtenberg, 8:36-43.

Cooper:
Abstract, 3:49-53; 4:61-5:8; 6:5-10; 6:16-20,
FIG. 2, 4:34-37, 4:48-51, 6:27-32

1.B wherein the update data parcel
is selected based on an operator
controlled image viewpoint on the
computer device relative to a
predetermined image and

Rutledge:
1:21-24, 2:62-64, 3:12-15 , 4:29-31, 4:41-47,
7:48-62, :52-56, 7:38-47, 7:48-62, 7:63 - 7:8,
3:5-10, 5:14-23, 4:41-47, 7:63 - 8:6, 9:11-17

Ligtenberg:

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 2 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
 4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12

Cooper:
1:13-16, 1:16-21, 4:39-41, 4:48-51, 5:34-36,
3:44-49, Abstract, 1:6-10, 1:16-21, 1:23-29,
1:34-38, 3:16-54, 3:59-65, 4:14-19, 4:27-29,
4:39-47, 4:48-51, 5:26-36, 5:35-57

1. C the update data parcel
contains data that is used to
generate a display on the limited
communication bandwidth
computer device;

Rutledge:
 6:38-40, 6:45-50, 7:48-62, 10:10-17

Ligtenberg:
1:16-19, 1:34-42, 4:28-34, 5:1-8, 5:13-17

Cooper:
1:13-22, 1:31-35, 4;14-18, 5:26-36, 5:58-67

1.D processing, on the remote
computer, source image data to
obtain a series K1-N of derivative
images of progressively lower
image resolution and

Rutledge:
4:41-47, 5:15-24, 5:50-64; 7:48-62

Ligtenberg:
4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12,
7:18-21, 7:48-62, FIG. 3, 2:31-38, 5:39-43,
5:54-65; 6:7-12

Cooper:
1:29-33, 1:49-64, 2:9-12, 2:19-26, 2:45-50,
5;1-8, 5:65-6:4

1.E wherein series image K0 being
subdivided into a regular array

Rutledge:
4:41-47, 5:15-24, 5:50-64, FIG. 3

Ligtenberg:
Abstract, 2:9-22, 2:25-30, 5:21-27, 5:34-53,
7:19-21, 9:6-20, Appendix A

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 3 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

1.F wherein each resulting image
parcel of the array has a
predetermined pixel resolution

Rutledge:
Abstract, 5:9-13, 5:14-22; 5:52-64, 8:27-30,
9:15-17

Ligtenberg:
Abstract, 2:56-62, 6:52-57, 7:19-21, 7:57-
8:11, 11:62-66

1.G wherein image data has a
color or bit per pixel depth
representing a data parcel size of a
predetermined number of bytes,

Rutledge:
4:41-47, 5:15-24, 5:50-64, FIG. 3

Ligtenberg:
Abstract, 2:9-22, 2:25-30, 5:21-27, 5:34-53,
7:19-21, 9:6-20, Appendix A

1.H resolution of the series K1-N of
derivative images being related to
that of the source image data or
predecessor image in the series by
a factor of two, and

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.I said array subdivision being
related by a factor of two;

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.J such that each image parcel
being of a fixed byte size,

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 4 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
5:34-53, 7:19-21, 9:6-20, Appendix A

1.K wherein the processing further
comprises compressing each data
parcel and

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.L storing each data parcel on the
remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate;

Rutledge:
Fig. 5, 7:63-8:44

Ligtenberg:
Appendix A, 12:60:66; 13:29-38

1.M receiving said update data
parcel from the data parcel stored
in the remote computer over a
communications channel; and

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

1.N displaying on the limited
communication bandwidth
computer device using the update
data parcel that is a part of said

Rutledge:
6:38-40, 6:45-50, 4:41-47, 5:14-64, 7:48-62

Ligtenberg:

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 5 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

predetermined image, an image
wherein said update data parcel
uniquely forms a discrete portion
of said predetermined image.

1:16-19, 10:1-7, Appendix A, 10:9-21

2. The method of claim 1, wherein
the update data parcel further
comprises one of an image parcel
textual mapping, a map parcel, a
navigation cue, a text overlay and
a topography.

Rutledge:
4:16-28, 4:41-64, 6:6-10, Table 1

4. The method of claim 1, wherein
the predetermined pixel resolution
for each data parcel is a power of
2.

Ligtenberg:
6:7-12, 7:18-21, 7:8-21

5. The method of claim 4, wherein
the predetermined pixel resolution
is one of 32×32, 64×64, 128×128
and 256×256.

Ligtenberg:
6:7-12, 7:18-21

6. The method of claim 1 wherein
said communications channel is a
packetized communications
channel and wherein said update
data parcel is received from said
packetized communications
channel in one or more data
packets.

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 6 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
2:50-52; 4:61-5:6

7. The method of claim 6 wherein
the data packet contains an update
image parcel as a compressed data
representation of said discrete
portion of said predetermined
image.

Ligtenberg:
1:16-19, 1:34-56, 5:13-17, Appendix A

Rutledge:
1:21-24, 2:62-64

8. The method of claim 7 wherein
said data packet contains said
update image parcel as a fixed
compression ratio representation
of said discrete portion of said
predetermined image.

Ligtenberg:
2:31-38, 6:7-12, Appendix A, 6:51-57

9. The method of claim 7, wherein
said update image parcel contains
pixel data in a fixed size array
independent of the pixel resolution
of said predetermined image.

Ligtenberg:
2:56-62, 6:52-57, Abstract, 7:19-21

10.A The method of claim 1,
wherein issuing the request for an
update data parcel further
comprises preparing the request by
associating a prioritization value to
said request,

Rutledge:
7:10-16

Cooper:
Abstract, 4:34-37, 4:48-51, 4:61 - 5:6, 6:16-
21, 6:27-32, 4:48-60, 6:27-32, 7:16-44, 9:65-
10:2

Ligtenberg:
11:67-12:2

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 7 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

10. B wherein said prioritization
value is based on the resolution of
said update data parcel relative to
that of other data parcels
previously received by the limited
communication bandwidth
computer device, and

Rutledge:
7:38-50

Ligtenberg:
1:63 - 2:3, 2:51-55,10:9-22, 11:66- 12:4,
9:64-10:21

Cooper:
1:13-21, 4:39-41, 4:48-51, 5:34-36, 3:44-49,
Abstract, 5:65-6:4; 6:13-21; 6:51-61; 7:12-
20; 10:7-11; 10:40-45; 11:15-19

10.C wherein issuing said request
is responsive to said prioritization
value for issuing said request in a
predefined prioritization order.

Rutledge:
 7:10-30

Cooper:
4:48-51, Abstract, 4:61-62, 5:2-6, 5:16-19,
7:6-11

11. The method of claim 10,
wherein said prioritization values
is based on the relative distance of
said update data parcel from said
operator controlled image
viewpoint.

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47 ,
7:48-62

Ligtenberg:
 4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12

Cooper:
1:13-16, 1:16-21, 4:39-41, 4:48-51, 5:34-36,
3:44-49, 7:48-52, 8:23-32, 9:1-12

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 8 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

13.Preamble A display system for
displaying a large-scale image
retrieved over a limited bandwidth
communications channel, said
display system comprising:

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

13.A a display of defined screen
resolution for displaying a defined
image;

Rutledge:
5:24-47, 7:38-47

Ligtenberg:
Fig. 1, 1:63-67, 5:1-8

13.B a memory providing for the
storage of a plurality of image
parcels

Rutledge:
6:38-40, 6:45-50:

Ligtenberg:
1:16-19, 10:1-7

Cooper:
6:11-10:45, FIG. 5, 6:28-38, 5:59-65, 1:54-
65, 5:6-8, 6:28-32, 5:1-8, 10:2-6

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 9 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

13.C displayable over respective
portions of a mesh corresponding
to said defined image;

Rutledge:
7:48-62

Ligtenberg,:
4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12,
7:18-21, 4:16-17, 5:39-43, 5:54-65, 6:7-12,
7:18-21

13.D communications channel
interface supporting the retrieval
of a defined data parcel over a
limited bandwidth
communications channel;

Rutledge:
1:21-24, 2:62-64 , 3:12-15, 4:29-31 , 4:41-47

Ligtenberg:
1:16-19, 1:34-42, 5:13-17, 1:22-23,. 3:50-55,
4:41-47, 6:38-43, Fig. 4D, 7:41-45,
Appendix A

13.E a processor coupled between
said display, memory and
communications channel interface,

Ligtenberg:
11:66-12:2, 4:28-34

13.F said processor operative to
select said defined data parcel,

Rutledge:
7:48-62

Ligtenberg:
4:28-34

13.G retrieve said defined data
parcel via said limited bandwidth
communications channel interface
for storage in said memory, and

 Ligtenberg:
1:16-19, 1:32-42, 10:1-7

13.H render said defined data
parcel over a discrete portion of
said mesh to provide for a

Rutledge:
7:48-62, 10:10-17

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 10 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

progressive resolution
enhancement of said defined
image on said display; and

Ligtenberg:
7:7-21

Cooper:
Abstract, 4:34-38, 4:48-58, 4:61-5:6, 6:16-
24, 6:27-32, 7:12-16, 9:65-10:5

13.I a remote computer, coupled to
the limited bandwidth
communications channel, that
delivers the defined data parcel

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

13.J wherein delivering the
defined data parcel further
comprises processing source
image data to obtain a series K1-N
of derivative images of
progressively lower image
resolution and

See claim 1.D

13.K wherein series image K0
being subdivided into a regular
array

See claim 1.E

13.L wherein each resulting image
parcel of the array has a

See claim 1.F

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 11 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

predetermined pixel resolution
13.M wherein image data has a
color or bit per pixel depth
representing a data parcel size of a
predetermined number of bytes,

See claim 1.G

13.N resolution of the series K1-N
of derivative images being related
to that of the source image data or
predecessor image in the series by
a factor of two, and

See claim 1.H

13.O ; said array subdivision being
related by a factor of two;

See claim 1.I

13.P such that each image parcel
being of a fixed byte size,

See claim 1.J

13.Q wherein the processing
further comprises compressing
each data parcel and

See claim 1.K

13.R storing each data parcel on
the remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate.

See claim 1.L

14. The display system of claim
13, wherein said processor is
responsive to said defined screen
resolution and wherein said
processor is operative to limit
selection of said defined data
parcel to where the resolution of

Rutledge:
7:38-47, 2:25-30, 3:17-20, 5:13-17, 8:37-42,
10:1-7

Ligtenberg:
4:28-34, 5:1-8, 8:37-42, 8:60-65, 9:2-3

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 12 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

said defined data parcel is less
than or equal to said defined
screen resolution.

15.A The display system of claim
13, wherein said processor is
operative to prioritize the retrieval
of said data parcel among a
plurality of selected data parcels
pending retrieval,

Rutledge:
7:10-16

Ligtenberg:
8:36-43.

Cooper:
3:44-49, 4:47-60, 6:51-59

15.B wherein the relative priority
of the data parcel is based on the
difference in the resolution of the
image parcel and the resolution of
said plurality of selected data
parcels.

Rutledge:
7:38-50

Ligtenberg:
1:63 - 2:3, 2:51-55, 10:9-22, 11:66- 12:4,
9:64-10:21

Cooper:
Abstract, 5:65-6:4; 6:13-21; 6:51-61; 7:12-
20; 10:7-11; 10:40-45; 11:15-19

16.A The display system of claim
13, wherein said processor is
response to user navigation
commands to define an image
viewpoint relative to said defined
image and

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31 , 4:41-47,
7:48-62, 7:10-30, :5-10, 5:14-23, 4:41-47,
7:48 - 8:6, 9:11-17

Cooper:
1:13-16, 1:16-21, 4:48-51, 5:34-36, 3:44-49,
Abstract, 1:6-10, 1:23-29, 1:34-38, 3:16-54,

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 13 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
3:59-65, 4:14-19, 4:27-29, 4:39-47, 4:48-51,
5:26-36, 5:48-57

16.B wherein said processor is
operative to prioritize the retrieval
of said data parcel based on the
distance between said image
parcel and said image viewpoint
relative to said defined image.

See claim 11

17. The display system of claim
13, wherein the data parcel further
comprises one of an image parcel
textual mapping, a map parcel, a
navigation cue, a text overlay and
a topography.

See claim 2

18. The display system of claim
13, wherein the predetermined
pixel resolution for each data
parcel is a power of 2.

See claim 4

19. The display system of claim
18, wherein the predetermined
pixel resolution is power of 2 and
one of 32×32, 64×64, 128×128
and 256×256.

See claim 5

APPENDIX V

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX V

- 14 -

APPENDIX V

Microsoft Corp. Exhibit 1009

1

Appendix W - Claim Chart Showing Teachings of Rutledge, Ligtenberg,
Cooper, Hassan and Austreng Pertinent to Challenged Claims of U.S. Patent

No. 7,908,343

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

1. Pre A method of retrieving
large-scale images over network
communications channels for
display on a limited
communication bandwidth
computer device, said method
comprising:

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

1.A issuing, from a limited
communication bandwidth
computer device to a remote
computer, a request for an update
data parcel

Rutledge:
2:25-30, 3:17-20, 5:13-17 ,8:37-42,10:1-
7,7:48-62,10:10-19

Ligtenberg, 8:36-43.

Cooper:
Abstract, 3:49-53; 4:61-5:8; 6:5-10; 6:16-20,
FIG. 2, 4:34-37, 4:48-51, 6:27-32

1.B wherein the update data parcel
is selected based on an operator
controlled image viewpoint on the
computer device relative to a
predetermined image and

Rutledge:
1:21-24, 2:62-64, 3:12-15 , 4:29-31, 4:41-47,
7:48-62, :52-56, 7:38-47, 7:48-62, 7:63 - 7:8,
3:5-10, 5:14-23, 4:41-47, 7:63 - 8:6, 9:11-17

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 2 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
Ligtenberg:
 4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12

Cooper:
1:13-16, 1:16-21, 4:39-41, 4:48-51, 5:34-36,
3:44-49, Abstract, 1:6-10, 1:16-21, 1:23-29,
1:34-38, 3:16-54, 3:59-65, 4:14-19, 4:27-29,
4:39-47, 4:48-51, 5:26-36, 5:35-57

1. C the update data parcel
contains data that is used to
generate a display on the limited
communication bandwidth
computer device;

Rutledge:
 6:38-40, 6:45-50, 7:48-62, 10:10-17

Ligtenberg:
1:16-19, 1:34-42, 4:28-34, 5:1-8, 5:13-17

Cooper:
1:13-22, 1:31-35, 4;14-18, 5:26-36, 5:58-67

1.D processing, on the remote
computer, source image data to
obtain a series K1-N of derivative
images of progressively lower
image resolution and

Rutledge:
4:41-47, 5:15-24, 5:50-64; 7:48-62

Ligtenberg:
4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12,
7:18-21, 7:48-62, FIG. 3, 2:31-38, 5:39-43,
5:54-65; 6:7-12

Cooper:
1:29-33, 1:49-64, 2:9-12, 2:19-26, 2:45-50,
5;1-8, 5:65-6:4

1.E wherein series image K0 being
subdivided into a regular array

Rutledge:
4:41-47, 5:15-24, 5:50-64, FIG. 3

Ligtenberg:
Abstract, 2:9-22, 2:25-30, 5:21-27, 5:34-53,

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 3 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
7:19-21, 9:6-20, Appendix A

1.F wherein each resulting image
parcel of the array has a
predetermined pixel resolution

Rutledge:
Abstract, 5:9-13, 5:14-22; 5:52-64, 8:27-30,
9:15-17

Ligtenberg:
Abstract, 2:56-62, 6:52-57, 7:19-21, 7:57-
8:11, 11:62-66

1.G wherein image data has a
color or bit per pixel depth
representing a data parcel size of a
predetermined number of bytes,

Rutledge:
4:41-47, 5:15-24, 5:50-64, FIG. 3

Ligtenberg:
Abstract, 2:9-22, 2:25-30, 5:21-27, 5:34-53,
7:19-21, 9:6-20, Appendix A

1.H resolution of the series K1-N of
derivative images being related to
that of the source image data or
predecessor image in the series by
a factor of two, and

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.I said array subdivision being
related by a factor of two;

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.J such that each image parcel
being of a fixed byte size,

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 4 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.K wherein the processing further
comprises compressing each data
parcel and

Rutledge:
2:31-38; 5:15-24, 4:41-47, 5:50-64, FIG. 3

Ligtenberg:
2:56-62; 5:39-43, 2:9-22, 2:25-38, 5:21-27,
5:34-53, 7:19-21, 9:6-20, Appendix A

1.L storing each data parcel on the
remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate;

Rutledge:
Fig. 5, 7:63-8:44

Ligtenberg:
Appendix A, 12:60:66; 13:29-38

1.M receiving said update data
parcel from the data parcel stored
in the remote computer over a
communications channel; and

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

1.N displaying on the limited
communication bandwidth
computer device using the update

Rutledge:
6:38-40, 6:45-50, 4:41-47, 5:14-64, 7:48-62

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 5 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

data parcel that is a part of said
predetermined image, an image
wherein said update data parcel
uniquely forms a discrete portion
of said predetermined image.

Ligtenberg:
1:16-19, 10:1-7, Appendix A, 10:9-21

13.Preamble A display system for
displaying a large-scale image
retrieved over a limited bandwidth
communications channel, said
display system comprising:

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

13.A a display of defined screen
resolution for displaying a defined
image;

Rutledge:
5:24-47, 7:38-47

Ligtenberg:
Fig. 1, 1:63-67, 5:1-8

13.B a memory providing for the
storage of a plurality of image
parcels

Rutledge:
6:38-40, 6:45-50:

Ligtenberg:
1:16-19, 10:1-7

Cooper:
6:11-10:45, FIG. 5, 6:28-38, 5:59-65, 1:54-

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 6 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)
65, 5:6-8, 6:28-32, 5:1-8, 10:2-6

13.C displayable over respective
portions of a mesh corresponding
to said defined image;

Rutledge:
7:48-62

Ligtenberg,:
4:16-17, 2:31-38, 5:39-43, 5:54-65, 6:7-12,
7:18-21, 4:16-17, 5:39-43, 5:54-65, 6:7-12,
7:18-21

13.D communications channel
interface supporting the retrieval
of a defined data parcel over a
limited bandwidth
communications channel;

Rutledge:
1:21-24, 2:62-64 , 3:12-15, 4:29-31 , 4:41-47

Ligtenberg:
1:16-19, 1:34-42, 5:13-17, 1:22-23,. 3:50-55,
4:41-47, 6:38-43, Fig. 4D, 7:41-45,
Appendix A

13.E a processor coupled between
said display, memory and
communications channel interface,

Ligtenberg:
11:66-12:2, 4:28-34

13.F said processor operative to
select said defined data parcel,

Rutledge:
7:48-62

Ligtenberg:
4:28-34

13.G retrieve said defined data
parcel via said limited bandwidth
communications channel interface

 Ligtenberg:
1:16-19, 1:32-42, 10:1-7

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 7 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

for storage in said memory, and
13.H render said defined data
parcel over a discrete portion of
said mesh to provide for a
progressive resolution
enhancement of said defined
image on said display; and

Rutledge:
7:48-62, 10:10-17

Ligtenberg:
7:7-21

Cooper:
Abstract, 4:34-38, 4:48-58, 4:61-5:6, 6:16-
24, 6:27-32, 7:12-16, 9:65-10:5

13.I a remote computer, coupled to
the limited bandwidth
communications channel, that
delivers the defined data parcel

Rutledge:
1:21-24, 2:62-64, 3:12-15, 4:29-31, 4:41-47,
1:21-23, 3:2-10, 3:54-57; 4:43-47; 6:11-13,
2:62-65; 3:21-23, 4:51-54; 12:4-6

Ligtenberg:
1:16-19, 1:34-42, 2:62-64, 5:13-17, 11:1-2,
1:39-41; 4:40-42; 5:14-17, 11:67-12:2

Cooper:
2:50-53, 4:9-11, 2:27-30; 3:19-22, 4:21-23,
2:50-52; 4:61-5:6

13.J wherein delivering the
defined data parcel further
comprises processing source
image data to obtain a series K1-N
of derivative images of
progressively lower image
resolution and

See claim 1.D

13.K wherein series image K0 See claim 1.E

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 8 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”)
in view of U. S. 5,682,441 (“Ligtenberg”)
and U. S. 6,118,456 (“Cooper”)

being subdivided into a regular
array
13.L wherein each resulting image
parcel of the array has a
predetermined pixel resolution

See claim 1.F

13.M wherein image data has a
color or bit per pixel depth
representing a data parcel size of a
predetermined number of bytes,

See claim 1.G

13.N resolution of the series K1-N
of derivative images being related
to that of the source image data or
predecessor image in the series by
a factor of two, and

See claim 1.H

13.O ; said array subdivision being
related by a factor of two;

See claim 1.I

13.P such that each image parcel
being of a fixed byte size,

See claim 1.J

13.Q wherein the processing
further comprises compressing
each data parcel and

See claim 1.K

13.R storing each data parcel on
the remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate.

See claim 1.L

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 9 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”) in
view of U. S. 5,682,441 (“Ligtenberg”), U.
S. 6,118,456 (“Cooper”) and U.S. 5,940,117
(“Hassan”)

3. The method of claim 1, wherein
the limited communication
bandwidth computer device
further comprises one of a mobile
computer system, a cellular
computer system, an embedded
computer system, a handheld
computer system, a personal
digital assistants and an internet-
capable digital phone.

See Claim 1

Ligtenberg:
4:25-54

Hassan:
Abstract, 1:20-25, 1:44-48, 1:55-57, 2:26-32,
Fig. 5

7,908,343 Patent Claim
Language

Teachings of U.S. 6,650,998 (“Rutledge”) in
view of U. S. 5,682,441 (“Ligtenberg”), U.
S. 6,118,456 (“Cooper”) and
WO1998015920 (“Austreng”)

12. The method of claim 1,
wherein displaying the image
further comprises multi-threading
on the limited communication
bandwidth computer device using
the update data parcel to display
the image.

See claim 1,

Austreng:
Abstract, p. 4:11-16, p. 6:18-22

20. The display system of claim
13, wherein the processor
performs multi-threading to render
said defined data parcel over the
discrete portion of said mesh to
provide for the progressive
resolution enhancement of said
defined image on said display.

See Claim 13,

Austreng:
Abstract, 4:11-16, 6:18-22

APPENDIX W

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX W

- 10 -

APPENDIX W

Microsoft Corp. Exhibit 1009

The Challenges of
Mobile Computing
George H. Forman and John Zahorjan
University of Washington

ecent advances in technology have provided portable computers with wire-
less interfaces that allow networked communication even while a user is mo-
bile. Whereas today’s first-generation notebook computers and personal

digital assistants (PDAs) are self-contained, networked mobile computers are part of
a greater computing infrastructure. Mobile computing - the use of a portable com-
puter capable of wireless networking - will very likely revolutionize the way we use
computers.

Wireless networking greatly enhances the utility of a portable computing device.
It allows mobile users versatile communication with other people and expedient no-
tification of important events, yet with much more flexibility than with cellular phones
or pagers. It also permits continuous access to the services and resources of land-
based networks. The combination of networking and mobility will engender new ap-
plications and services, such as collaborative software to support impromptu meet-
ings, electronic bulletin boards whose contents adapt to the current viewers, lighting
and heating that adjust to the needs of those present, and navigation software to
guide users in unfamiliar places and on tours.’

The technical challenges that mobile computing must surmount to achieve this po-
tential are hardly trivial, however. Some of the challenges in designing software for
mobile computing systems are quite different from those involved in the design of soft-
ware for today’s stationary networked systems. In this article we focus on the issues
pertinent to software designers without delving into the lower level details of the
hardware realization of mobile computers. We look at some promising approaches
under investigation and also consider their limitations.

The many issues to be dealt with stem from three essential properties of mobile
computing: communication, mobility, and portability. Of course, special-purpose
systems may avoid some design pressures by doing without certain desirable prop-
erties. For instance, portability would be less of a concern for mobile computers
installed in the dashboards of cars than with hand-held mobile computers. However, we
concentrate on the goal of large-scale, hand-held mobile computing as a way to reveal
a wide assortment of issues.

0018-91621 $4.00 D 1994 IEEE COMPUTER

APPENDIX X

Microsoft Corp. Exhibit 1009

Wireless
communication

Mobile computers require wireless net-
work access, although sometimes -
when in meeting rooms or at a user’s desk
- they may remain stationary long
enough to be physically attached to the
network for a better or cheaper connec-
tion.

Wireless networks communicate by
modulating radio waves or pulsing in-
frared light. Wireless communication is
linked to the wired network infrastruc-
ture by stationary transceivers. The area
covered by an individual transceiver’s
signal is known as a cell. Cell sizes vary
widely; for example, an infrared trans-
ceiver can cover a small meeting room, a
cellular telephone transceiver has a range
of a few miles, and a satellite beam can
cover an area more than 400 miles in di-
ameter.

Wireless communication faces more
obstacles than wired communication be-
cause the surrounding environment in-
teracts with the signal, blocking signal
paths and introducing noise and echoes.
As a result, wireless communication is
characterized by lower bandwidths,
higher error rates, and more frequent
spurious disconnections. These factors
can in turn increase communication la-
tency resulting from retransmissions, re-
transmission time-out delays, error-con-
trol protocol processing, and short
disconnections.

Mobility can also cause wireless con-
nections to be lost or degraded. Users
may travel beyond the coverage of net-
work transceivers or enter areas of high
interference. Unlike typical wired net-
works, the number of devices in a net-
work cell varies dynamically, and large
concentrations of mobile users, say, at
conventions and public events, may over-
load network capacity.

The need for wireless communication
leads to design challenges in several areas.

Disconnection. Today’s computer sys-
tems often depend heavily on a network
and may cease to function during net-
work failures. For example, distributed
file systems may lock up waiting for other
servers, and application processes may

fail altogether if the network stays down
too long.

Network failure is a greater concern in
mobile computing than in traditional
computing because wireless communica-
tion is so susceptible to disconnection.
Designers must decide whether to spend
available resources on the network, try-
ing to prevent disconnections, or to spend
them trying to enable systems to cope
with disconnections more gracefully and
work around them where possible.

The more autonomous a mobile com-
puter, the better it can tolerate network
disconnection. For example, certain ap-
plications can reduce communication by
running entirely locally on the mobile
unit rather than by splitting the applica-
tion and the user interface across the net-
work. In environments with frequent dis-
connections, it is better for a mobile
device to operate as a stand-alone com-
puter than as a portable terminal.

In some cases, both round-trip latency
and short disconnections can be hidden by
asynchronous operation. The X11 Win-
dow System uses this technique to achieve
good performance. With the synchronous
remote procedure call paradigm, the client
waits for a reply after each request; in asyn-
chronous operation, a client sends multiple
requests before asking for acknowledg-
ment. Similarly, prefetching and delayed
write-back also decouple the act of com-

munication from the actual time a program
consumes or produces data, allowing it to
proceed during network disconnections.
These techniques, therefore, have the po-
tential to mask some network failures.

The Coda file system provides a good
example of how to handle network dis-
connections, although it is designed for
today’s notebook computers in which
disconnections may be less frequent,
more predictable, and longer lasting than
in mobile computing.2 Information from
the user’s profile helps in keeping the
best selection of files in an on-board
cache. It is important to cache whole files
rather than blocks of files so that entire
files can be read during a disconnection.
When the network reconnects, Coda at-
tempts to reconcile the cache with the
replicated master repository.

With Coda, files can be modified even
during disconnections. More conserva-
tive file systems disallow this to prevent
multiple users from making inconsistent
changes. Coda’s optimism is justified by
studies showing that only rarely are files
actually shared in a distributed system;
fewer than 1 percent of all writes are fol-
lowed by a write from a different user.2
If strong consistency guarantees are
needed, clients can ask for them explic-
itly. Hence, providing flexible consistency
semantics can allow greater autonomy.

Of course, not all network disconnec-

April 1994 39

APPENDIX X

Microsoft Corp. Exhibit 1009

Figure 1. Application bandwidth requirements in bits per second. The vertical
dashed lines show the bandwidth capability of certain network technologies. Cellu-
lar modems are becoming fast enough for mobile users’ everyday information
needs, such as e-mail, and someday may be able to support remote file systems.

tions can be masked. In these cases, good
user interfaces can help by providing feed-
back about which operations are unavail-
able because of network disconnections.

Low bandwidth. Mobile computing de-
signs need to reflect a greater concern for
bandwidth consumption and constraints
than do designs for stationary comput-
ing. Wireless networks deliver lower
bandwidth than wired networks: Cutting-
edge products for portable wireless com-
munications achieve only 1 megabit per
second for infrared communication, 2
Mbps for radio communication, and 9-14
kilobits per second for cellular telephony,
while Ethernet provides 10 Mbps, fast
Ethernet and FDDI 100 Mbps, and ATM
(asynchronous transfer mode) 155 Mbps
(see Figure 1). Even nonportable wire-
less networks, such as the Motorola Al-
tair, barely achieve 5.7 Mbps.

Network bandwidth is divided among

the users sharing a cell. The deliverable
bandwidth per user, therefore, is an im-
portant measure of network capacity in
addition to the raw transmission band-
width. But because this measure depends
on the size and distribution of a user pop-
ulation, Weiser and others recommend
measuring a wireless network’s capacity
by its bandwidth per cubic meter.’

Improving network capacity means in-
stalling more wireless cells to service a user
population. There are two ways to do this:
Overlap cells on different wavelengths, or
reduce transmission ranges so that more
cells fit in a given area (see Figure 2).

The scalability of the first technique is
limited because the electromagnetic
spectrum available for public consump-
tion is scarce. This technique is more flex-
ible, however, because it allows (in fact,
requires) software to allocate bandwidth
among users.

The second technique is generally pre-

ferred. It is arguably simpler, reduces
power requirements, and may decrease
signal corruption because there are fewer
objects in the environment to interact
with. Also, it involves a hardware trade-
off between bandwidth and coverage
area: Transceivers covering less area can
achieve higher bandwidths.

Certain software techniques can also
help cope with the low bandwidth of
wireless links. Modems typically use com-
pression to increase their effective band-
width, sometimes almost doubling
throughput. Because bulk operations are
usually more efficient than many short
transfers, buffering can improve band-
width usage by making large requests out
of many short ones. Buffering in con-
junction with compression can further
improve throughput because larger
blocks compress better.

Certain software techniques for cop-
ing with disconnection can also help cope
with low bandwidth. Network usage typ-
ically occurs in bursts, and disconnections
are similar to bursts in that demand tem-
porarily exceeds available bandwidth.
For example, delayed write-back and
prefetching use the periods of low net-
work activity to reduce demand at the
peaks. Delayed write-back can even re-
duce overall communication if the data
to be transmitted is further mutated or
deleted before it is transmitted. Prefetch-
ing involves knowing or guessing which
files will be needed soon and download-
ing them over the network before they
are demanded.3 Bad guesses can waste
network bandwidth, however.

System performance can be improved
by scheduling communication intelli-
gently. When available bandwidth does
not satisfy the demand, processes the user
is waiting for should be given priority.
Backups should be performed only with
“leftover” bandwidth. Mail can be trickle
fed onto the mobile computer slowly be-
fore the user is notified. Although these
techniques do not increase effective
bandwidth, they improve user satisfac-
tion just the same.

High bandwidth variability. Mobile
computing designs also contend with
much greater variation in network band-
width than do traditional designs. Band-

40 COMPUTER

APPENDIX X

Microsoft Corp. Exhibit 1009

Cell area covered by frequency 1. Mobile computer using frequency 1.

Cell area covered by frequency 2. Mobile computer using frequency 2.

I I

Figure 2. Suppose that a single frequency provides only enough wireless bandwidth for two users. Then two frequencies can
support (a) four users with two large coincident cells or (h) eight users with four small noninterfering cells that use the same
frequency in nonadjacent cells. The latter scheme requires more transceivers and installation effort but is more scalable and
allows higher bandwidth technology and lower transmission power.

width can shift one to four orders of mag-
nitude, depending on whether the system
is plugged in or using wireless access.
Fluctuant traffic load seldom causes this
much variation in available bandwidth on
today's networks.

An application can approach this vari-
ability in one of three ways: It can assume
high-bandwidth connections and operate
only while plugged in, it can assume low-
bandwidth connections and not take ad-
vantage of higher bandwidth when it is
available, or it can adapt to currently avail-
able resources, providing the user with a
variable level of detail or quality. For ex-
ample, a video-conferencing application
could display only the current speaker or
all the participants, depending on the
available bandwidth. Different choices
make sense for different applications.

Heterogeneous network. In contrast to
most stationary computers, which stay
comected to a single network, mobile
computers encounter more heteroge-
neous network connections in several
ways. First, as they leave the range of one

network transceiver and switch to an-
other, they may also need to change
transmission speeds and protocols. Sec-
ond, in some situations a mobile com-
puter may have access to several network
connections at once, for example, where
adjacent cells overlap or where it can be
plugged in for concurrent wired access.

Also, mobile computers may need to
switch interfaces, for example, when go-
ing between indoors and outdoors. In-
frared interfaces cannot be used outside
because sunlight drowns out the signal.
Even with radio frequency transmission,
the interface may still need to change ac-
cess protocols for different networks, for
example, when switching from cellular
coverage in a city to satellite coverage in
the country. This heterogeneity makes
mobile networking more complex than
traditional networking.

Security risks. Precisely because con-
nection to a wireless link is so easy, the se-
curity of wireless communication can be
compromised much more easily than that
of wired communication, especially if

transmission extends over a large area.
This increases pressure on mobile com-
puting software designers to include se-
curity measures.

Security is further complicated if users
are allowed to cross security domains.
For example, a hospital may allow pa-
tients with mobile computers to use
nearby printers but prohibit access to dis-
tant printers and resources designated for
hospital personnel only.

Secure communication over insecure
channels is accomplished by encryption,
which can be done in software or, more
quickly, by specialized hardware such as
the recently proposed Clipper chip. Se-
curity depends on a secret encryption key
known only to the authorized parties.
Managing these keys securely is difficult,
but it can be automated by software such
as the Massachusetts Institute of Tech-
nology's K e r b e r ~ s . ~

Kerberos provides secure authentica-
tion services, as long as the Kerberos
server itself is trusted. It authenticates
users without exposing their passwords
on the network and generates secret en-

April 1994 41

APPENDIX X

Microsoft Corp. Exhibit 1009

cryption keys that can be selectively
shared between mutually suspicious par-
ties. It also allows mobile units to au-
thenticate themselves in domains where
they are unknown, thus enhancing the
scale of mobility. Methods have also been
devised to use Kerberos for authoriza-
tion control and accounting. Its security
is limited, however. For example, the cur-
rent version is susceptible to off-line
password-guessing attacks and to replay
attacks for a limited time window.

Mobility
The ability to change locations while

connected to the network increases the
volatility of some information. Certain
data considered static for stationary com-
puting becomes dynamic for mobile com-
puting. For example, a stationary com-
puter can be configured statically to
prefer the nearest server, but a mobile
computer needs a mechanism for deter-
mining which server to use.

As volatility increases, cost-benefit
trade-off points shift, calling for appro-
priate modifications in the design. For ex-
ample, a highly volatile data object has
fewer uses per modification. For such ob-
jects it makes little sense to cache the
data. As another example, consider static
information, which is often managed by
hand; to handle higher rates of change,
automated methods are required. How-
ever, even where such methods exist,
they may be ill-suited for the dynamism
of mobile computing.

Mobility introduces several problems:
A mobile computer’s network address
changes dynamically, its current location
affects configuration parameters as well
as answers to user queries, and the com-
munication path grows as it wanders
away from a nearby server.

Address migration. As people move,
their mobile computers will use different
network access points, or “addresses.”
Today’s networking is not designed for
dynamically changing addresses. Active
network connections usually cannot be
moved to a new address. Once an address
for a host name is known to a system, it is
typically cached with a long expiration

time and with no way to invalidate out-of-
date entries. In the Internet Protocol, for
example, a host IP name is inextricably
bound with its network address; moving
to a new location means acquiring a new
IP name. Human intervention is com-
monly required to coordinate the use of
addresses.

To communicate with a mobile com-
puter, messages must be sent to its most
recent address. Four basic mechanisms
determine a mobile computer’s current
address: broadcast,5,6 central services,’
home base,8 and forwarding p0inters.j

As people move, their
mobile computers will
use different network

access points, or
“addresses.”

These are the building blocks of the
current proposals for “mobile-IP”
schemes.

Selective broadcast. With the broadcast
method, a message is sent to all network
cells asking the mobile computer sought
to reply with its current address. This be-
comes too expensive for frequent use in
a large network, but if the mobile com-
puter is known to be in some small set of
cells, selectively broadcasting in just
those cells is workable. Hence, the meth-
ods described below can use selective
broadcast to obtain the current address
when only approximate location infor-
mation is known. For example, a slightly
out-of-date cell address may suffice if ad-
jacent cells are known.

Central services. With the central ser-
vice method, the current address for each
mobile computer is maintained in a logi-
cally centralized database. Each time a
mobile computer changes its address, it
sends a message to update the database.
Even with the database’s centralized lo-
cation, the common techniques of distri-

bution, replication, and caching can be
used to improve availability and response
time.

H o m e bases. The home base method
is essentially the limiting case of dis-
tributing a central service; that is, the lo-
cation of a given mobile computer is
known by a single server. This aggressive
distribution without replication can lead
to low availability of information. For ex-
ample, if a home base is down or inac-
cessible, the mobile computers it tracks
cannot be contacted. If users sometimes
change home bases, the address migra-
tion problem arises again, albeit with
much lower volatility.

Forwarding pointers. With the for-
warding pointer method, each time a mo-
bile computer changes its address, a copy
of the new address is deposited at the old
location. Each message is forwarded
along the chain of pointers until it reaches
the mobile computer. To avoid the inef-
ficient routing that can result from long
chains, pointers at message forwarders
can be updated gradually to reflect more
recent addresses.

Although the forwarding pointer
method is among the fastest, it is prone to
failures anywhere along the trail of point-
ers, and in its simplest form it does not
allow forwarding pointers to be deleted
unless all possible message sources have
been updated. Hence, forwarding point-
ers are often used only to speed the com-
mon case, and another method is used to
fall back on for failures and to allow
reclamation of old pointers.

The forwarding pointer method re-
quires an active entity at the old address
to receive and forward messages. This
does not fit standard networking models,
where either a network address is a pas-
sive entity, such as an Ethernet cable, or
it’s specific to the mobile computer,
which cannot remain to forward its own
messages. This mismatch introduces sub-
tle difficulties in implementing forward-
ing efficiently (for example, with intra-
cell traffic or when multiple gateways are
attached to a network address).

Location-dependent information. Be-
cause traditional computers do not move,

42 COMPUTER

APPENDIX X

Microsoft Corp. Exhibit 1009

information that depends on location,
such as the local name server, available
printers, and the time zone, is typically
configured statically. One challenge for
mobile computing is to factor out this in-
formation intelligently and provide
mechanisms for obtaining configuration
data appropriate to each location. Addi-
tionally, a mobile computer carried with
a user is likely to be used in a wide vari-
ety of administrative domains. Dealing
with the multitude of conventions that
current computing systems rely on is an-
other challenge to building mobile sys-
tems.

Besides this dynamic configuration
problem, mobile computers need access
to more location-sensitive information
than stationary computers do. If they are
to serve as guides in places unfamiliar to
their users, mobile computers may need
to answer queries such as “where is the
fiction section (in this particular li-
brary)?” or “where is the nearest open
gas station heading north?”

Queries of this sort require static loca-
tion information about the world. Other
information needs can be even more
complex: Badrinath and Imielinski are
studying a related class of queries that
depend on the dynamic locations of other
mobile objects, for example, the location
of the nearest taxi.6

Privacy. Answering dynamic location
queries requires knowing the location
of another mobile user. In some cases
this may be sensitive information, more
so if given at a fine resolution. Even
where it is not particularly sensitive,
such information should be protected
against misuse; for example, we do not
want a burglar to be able to determine
when the inhabitants of a house are far
away.

Privacy can be ensured by denying
users the ability to know another’s loca-
tion. The challenge for mobile comput-
ing is to allow more flexible access to this
information without violating privacy.
Legitimate uses of location information
include contacting colleagues, routing
telephone calls, logging meetings in per-
sonal diaries, and tailoring the content of
electronic announcement displays to the
current viewers.’

Migrating locality. Mobile computing
engenders a new kind of locality that mi-
grates as users move. Even if a mobile
computer is equipped to find the nearest
server for a given service, over time mi-
gration may alter this condition. Because
the physical distance between two points
does not necessarily reflect the network
distance, the communication path can
grow disproportionately to actual move-
ment. For example, a small movement
can result in a much longer path when
crossing network administrative bound-
aries, and a longer network path means

Mobile computers need
access to more

location-sensitive
information than do

stationary computers.

communication traverses more interme-
diaries, resulting in longer latency and
greater risk of disconnection. A longer
communication path also consumes more
network capacity, even though the band-
width between the mobile unit and the
server may not degrade.

To avoid these disadvantages, service
connections may be dynamically trans-
ferred to servers that are c10ser.~ When
many mobile units converge, during
meetings, for example, load-balancing
concerns may outweigh the importance
of communication locality.

Portability
Today’s desktop computers are not

meant to be carried, so designers take a
liberal approach to space, power, cabling,
and heat dissipation. In contrast, design-
ers of hand-held mobile computers
should strive for the properties of a wrist-
watch: small, light, durable, operational
under wide environmental conditions,
and requiring minimal power usage for
long battery life. Concessions can be

made in each of these areas to enhance
functionality, but ultimately the user
must receive value that exceeds the trou-
ble of carrying the device. Similarly, any
specialized hardware to offload such
tasks as data compression or encryption
from the CPU should justify its con-
sumption of power and space.

Below, we describe the design pres-
sures caused by portability constraints.
These pressures are evident in the de-
signs of the recent PDA products listed in
Table 1.

Low power. Batteries are the largest
single source of weight in a portable com-
puter. While reducing battery weight is
important, too small a battery can un-
dermine the value of portability by caus-
ing users to recharge frequently, carry
spare batteries, or use their mobile com-
puters less. Minimizing power consump-
tion can improve portability by reducing
battery weight and lengthening the life
of a charge.

Power consumption of dynamic com-
ponents is proportional to CV2F, where
Cis the capacitance of the circuit, Vis the
voltage swing, and F is the clock fre-
quency. This function suggests three ways
to save power:

(1) Capacitance can be reduced by
greater levels of VLSI integration
and multichip module technology.

(2) Voltage can be reduced by re-
designing chips to operate at lower
voltages. Historically, chips operate
at 5 volts, but some, like those in the
Apple Messagepad, save power by
operating at 3 volts. Manufacturers
are rapidly developing a line of low-
power chip sets for 2.5V and 3.3V
operation.

(3) Clock frequency can be reduced,
thereby trading computational
speed for power savings. PDA prod-
ucts have adopted this concession,
as shown in Table 1. In some note-
book computers, the clock fre-
quency can be changed dynamically,
providing a flexible trade-off; for ex-
ample, the Sharp PC 6785 can save
power by dynamically shifting its
clock from 25 MHz to 10 MHz or
even 5 MHz, as shown in Table 2. To

April 1994 43

APPENDIX X

Microsoft Corp. Exhibit 1009

Table 1. Characteristics of personal digital assistant products and the AT&T EO tablet computer. Each has a pen interface and
a black-and-white reflective LCD screen. The portable PC is included for comparison.

Product RAM MHz CPU Batteries Weight Display
(No. hours) (type) (lbs.) (pixels) (sq. in.)

Amstrad Pen 128 Kbytes
Pad PDA600

Apple Newton 640 Kbytes
MessagePad

Apple Newton 1 Mbyte
MessagePad 110

Casio 2-7000 PDA 1 Mbyte

Sharp Expert Pad 640 Kbytes

Tandy Z-550 1 Mbyte
Zoomer PDA

AT&T EO 440 4-12 Mbytes
Personal
Communicator

Portable PC 4-16
Mbytes

*Advanced RISC microprocessor

20 2-80

20 ARM*

20 ARM*

7.4 8086

20 ARM*

8 8086

20 Hobbit

33-66 486

40 3AA’s

6-8 4AAA’s

50 4AA‘s

100 3AA’s

20 4AAA’s

100 3AA’s

1-6 NiCad

1-6 NiCad

0.9 240 x 320 10.4

0.9 240 x 336 11.2

1.25 240 x 320 11.8

1.0 320 x 256 12.4

0.9 240 x 336 11.2

1 .o 320 x 256 12.4

2.2 640 x 480 25.7

5-10 64Ox480to 40
1,024 x 768
(color)

retain more computational power at
lower frequencies, processors are
being designed that perform more
work on each clock cycle.1°

Power can be conserved not only by
the design but also by efficient operation.
Power management software can power
down individual components when they
are idle, for example, spinning down the
internal disk or turning off screen light-
ing. Recently, Li et al. determined that
for today’s notebook computing it is
worthwhile to spin down the internal disk
drive after it has been idle for just a few
seconds.ll

Applications can conserve power by
reducing their appetite for computation,
communication, and memory, and by
performing their periodic operations in-
frequently to amortize the start-up over-

head. Since radio modem transmission
typically requires about 10 times as much
power as reception, power can be saved
by trading transmission for reception. For
example, base stations might periodically
broadcast information that otherwise
would have to be requested frequently.
In this way, mobile computers can obtain
this information without expending
power to transmit a request.

The potential savings of these tech-
niques can be evaluated using Tables 2
and 3, which break down power con-
sumption in notebook computers by
component and subsystem, respectively.
Although screen lighting consumes a
large amount of power, it has been
found to greatly improve readability; for
example, on EO models it enhances con-
trast from 6:l to 13:l. Nevertheless,
PDA products have elected to omit

screen lighting in favor of longer battery
life.

Risks to data. Making computers
portable increases the risk of physical
damage, unauthorized access, loss, and
theft. Breaches of privacy or total loss of
data become more likely. These risks can
be reduced by minimizing the essential
data kept on board. Obviously, a mobile
device that serves only as a portable ter-
minal is less prone to data loss than a
stand-alone computer. This is the ap-
proach taken for Xerox PARC’s Tabs
and the portable multimedia terminal
project at the University of California,
Berkeley.lo

To help prevent unauthorized disclo-
sure of information, data stored on disks
and removable memory cards can be en-
crypted. For this to be effective, users

44 COMPUTER

APPENDIX X

Microsoft Corp. Exhibit 1009

must not leave authenti-
cated sessions (logins)
unattended.

Keeping a copy that
does not reside on the
portable unit can safe-
guard against data loss.
However, users often ne-
glect to make backup
copies, and even when
they do, data modified
between backups is not
protected. With the addi-
tion of wireless networks
to portable computers,
new or modified data can
be copied immediately to
secure, remote media.
This can be accomplished
with replicated file sys-
tems such as Echo and
Coda.2

Display edge-light 35
CPU/memory 31
Hard disk 10
Floppy disk 8
Display 5
Keyboard 1

~

*Data was obtained from the Compaq LTE
386/s20 manual.

Small user interface.
Size constraints on a
portable computer re-
quire a small user inter-
face. Desktop windowing
environments may be
sufficient for today’s note-
book computers, but for
smaller, more portable de-
vices, current windowing
technology is inadequate.
On small displays it is im-
practical to have several
windows open at a time
regardless of screen res-
olution, and it can be dif-
ficult to locate windows
or icons deeply stacked
one on another. Also,
window title bars and
borders either consume

Table 2. Power consumption of portable-computer components
and accessories.*

Device Power (watts)

Base system (2 Mbytes, 25-MHz CPU)
Base system (2 Mbytes, 10-MHz CPU)
Base system (2 Mbytes, 5-MHz CPU)
Screen backlight
Hard drive motor
Math coprocessor
Floppy drive
External keyboard
LCD screen
Hard drive active (head seeks)
IC card slot
Additional memory (per Mbyte)
Parallel port
Serial port

Accessories

1.8-inch PCMCIA hard drive
Cellular telephone (active)

Cellular telephone (standby)
Infrared network, 1 Mbit per second**
PCMCIA modem, 14,400 bits per second
PCMCIA modem, 9,600 bits per second
PCMCIA modem, 2,400 bits per second
Global positioning receiver**

3.650
3.150
2.800
1.425
1.100
0.650
0.500
0.490
0.315
0.125
0.100
0.050
0.035
0.030

0.7-3.0
5.400

0.300
0.250
1.365
0.625
0.565
0.670

*Data for computer components was derived from the Sharp PC 6785
manual; data for accessories was obtained from the manufacturers.
**Estimate for soon-to-he-released product.

I

significant portions of screen space or, if
reduced, become difficult to operate with
the pointing device.

Duchamp, Feiner, and Maguire inves-
tigated the use of head-mounted virtual
reality displays for portable computer^.^
As the user’s head turns, the image dis-
played to the eye shifts to give the sensa-
tion of a surrounding screen. This effec-
tively increases the screen area available
for windowing systems; however, wear-
ing head gear is cumbersome, resolution

is low (one-tenth that of conventional dis-
plays), eyes succumb to fatigue, and dim
lighting is required.

Buttons versus analog ircput. The short-
age of surface area on a small computer
leads designers to sacrifice buttons in fa-
vor of analog input devices for communi-
cating user commands. These communi-
cation mechanisms include handwriting
recognition, gesture recognition, and
voice recognition. Although on average

handwriting is about three
times slower than typing, it al-
lows the keyboard to be elim-
inated, thus reducing size and
improving durability. This ap-
proach has been adopted by
all the PDA products listed in
Table 1.

Handwriting recognition
rates for high-end systems are
typically 96-98 percent accu-
rate when trained to a specific
user.12 With context informa-
tion, recognition rates can be
enhanced effectively to 100
percent, but context con-
straints do not help for all
kinds of input, for example,
when entering words that are
not in the on-line dictionary.
The Apple Newton’s hand-
writing recognition, while
among the best of the PDAs,
is nevertheless reputedly a
source of frustration. Recog-
nizing a user’s intention in a
general setting is inherently
hard because the interpreta-
tion of pen strokes is ambigu-
ous. For example, a user
drawing a circle may intend to
select an object or an area, or
write a zero, a degree sign, or
the letter o.

Speech generation and rec-

Table 3. Power consumption
of the major components in
a portable compnter.*

System Power
(percent)

April 1994 45

APPENDIX X

Microsoft Corp. Exhibit 1009

ognition seem an ideal user interface for a
mobile computer in that they require no
surface area and allow hands-free and
even eye-free operation. The voice-com-
manded VCR programmer by Voice Pow-
ered Technology demonstrates the feasi-
bility of speech input to a hand-held device
for a narrow domain. The Sphinx research
project at Carnegie Mellon University has
reported speaker-independent recogni-
tion rates of nearly 96 percent, and 98 per-
cent for speaker-trained recognition.
However, general-purpose speech input
and output places substantial storage and
processing demands on a mobile device.
Also, speech may often be inappropriate:
It disturbs others in quiet environments, it
cannot be recognized clearly in noisy en-
vironments, and it can compromise pri-
vacy. Finally, because of its sequential na-
ture, speech is ill-suited for skimming data.

Pointing devices. The mouse is the
standard pointing device for desktop
computers, but it doesn’t suit mobile
computers. Pens have become the stan-
dard input device for PDAs because of
their ease of use while mobile, their ver-
satility, and their ability to supplant the
keyboard.

Switching to pens requires changing
both the user interface and the software
interface because a mouse and a pen are
really quite different.9 Users can jump to
absolute screen positions and enter path
information more easily with a pen than
with a mouse, and it is nearly impossible
to write with a mouse. Pen-positioning
resolution on current tablet computers is
several times more accurate than screen
resolution; for example, pen resolution
on the EO is 0.10 mm, while screen reso-
lution is 0.23-0.30 mm. Also, parallax be-
tween the pen tip and the screen image
can mislead when pointing; with a mouse
there is no parallax because the mouse
cursor provides feedback in the image
plane. Finally, the mouse cursor obscures
much less of the screen than the user’s
hand does when writing with a pen.

Small storage capacity. Storage space
on a portable computer is limited by
physical size and power requirements.
Traditionally, disks provide large amounts
of nonvolatile storage. In a mobile com-

puter, however, disk drives are a liabil-
ity. They consume more power than
memory chips, except when off line, and
they may not really be nonvolatile when
subject to the indelicate treatment a
portable device receives. Hence, none of
the PDA products have disk drives.

Coping with limited storage is not a
new problem. Solutions include com-
pressing files automatically, accessing re-
mote storage over the network, sharing
code libraries, and compressing virtual
memory pages. Although today’s net-
worked computers have had great success
with distributed file systems and remote
paging, mobile computers that regularly
encounter network disconnections are
less capable of relying on a network.

A novel approach to reducing the size
of program code is to interpret script lan-
guages instead of executing compiled ob-
ject codes, which are typically many times
larger than the source code. This ap-
proach is embodied by General Magic’s
Telescript and Apple Technology Group’s
Dylan and Newtonscript. An equally im-
portant goal of such languages is to en-
hance portability by supporting a com-
mon programming model across different
machines.

M obile computing is a technol-
ogy that enables access to dig-
ital resources at any time,

from any location. From a narrow view-
point, mobile computing represents a
convenient addition to wire-based local
area distributed systems. Taken more
broadly, mobile computing represents
the elimination of time-and-place re-
strictions imposed by desktop computers
and wired networks.

In forecasting the impact of mobile
technology, we would do well to observe
recent trends in the use of the wired in-
frastructure, in particular, the Internet.
In the past year, the advent of convenient
mechanisms for browsing Internet re-
sources has engendered an explosive
growth in the use of those resources. The
ability to access them at all times through
mobile computing will allow their use to
be integrated into all aspects of life and
will accelerate the demand for network
services. The challenge for computing de-

signers is to adapt the system structures
that have worked well for traditional
computing so that mobile computing can
be integrated as well. W

Acknowledgments
Support for this work was provided in part by

the National Science Foundation (grants CCR-
9123308 and CCR-9200832), Tektronix Inc. (a
graduate fellowship), the Washington Tech-
nology Center, and Digital Equipment Corp.
(Systems Research Center and External Re-
search Program). We thank Robert Bedichek,
Brian Bershad, Blake Hannaford, Marc Fi-
uczynski, Brian Pinkerton, and Steian Savage
for helpful pointers and clanfying discussions
that significantly improved this article.

References
1. M. Weiser, “Some Computer Science Is-

sues in Ubiquitous Computing,” Comm.
ACM, Vol. 36, NO. 7, July 1993, pp. 75-84.

2. J.J. Kistler and M. Satyanarayanan, “Dis-
connected Operation in the Coda File Sys-
tem,” ACM Trans. Computer Systems,
Vol. 10, No. 1, Feb. 1992, pp. 3-25.

3. C.D. Tait and D. Duchamp, “Detection
and Exploitation of File Working Sets,”
Proc. 11th Int’l Conf Distributed Comput-
ing Systems, IEEE CS Press, Los Alami-
tos, Calif., Order No. 2144,1991, pp. 2-9.

4. B.C. Neuman, “Protection and Security Is-
sues for Future Systems,” in Workshop on
Operating Systems of the 90s and Beyond,
Lecture Notes in Computer Science #563,
Springer-Verlag, New York, 1991, pp. 184-
201.

5. J. Ioannisdis, D. Duchamp, and G.Q.
Maguire Jr., “IP-Based Protocols for Mo-
bile Internetworking,” Proc. SIGComm 91
Symp., ACM,New York, 1991, pp. 235-245.

6. T. Imielinski and B.R. Badrinath, “Data
Management for Mobile Computing,”
SIGMOD Record, Vol. 22, No. 1, Mar.
1993, pp. 34-39.

7. C. Ma, “On Building Very Large Naming
Systems,” Proc. Fifth ACM SIGOPS
Workshop Models and Paradigms for Dis-
tributed Systems Structuring, ACM, New
York, 1992,5 pp.

8. F. Teraoka and M. Tokoro, “Host Migra-
tion Transparency in IP Networks: The
VIP Approach,” Computer Comm. Rev.,
Vol. 23, No. 1, Jan. 1993, pp. 45-65.

46 COMPUTER

APPENDIX X

Microsoft Corp. Exhibit 1009

9. D. Duchamp, S.K. Feiner, and G.Q. Maguire Jr., “Software Tech-
nology for Wireless Mobile Computing,” IEEE Network Maga-
zine, Vol. 5, No. 6, Nov. 1991, pp. 12-18.

IO. A. Chandrakasan, S. Sheng, and R.W. Brodersen, “Design Con-
siderations for a Future Portable Multimedia Terminal,” in Third-
Generation Wireless Information Networks, S. Nanda and D.J.
Goodman, eds., Kluwer Academic Publishers, Hingham, Mass.,
1992, pp. 75-97.

I I . K. Li et al., “A Quantitative Analysis of Disk Drive Power Man-
agement in Portable Computers,” tech. report, Computer Science
Division, University of California, Berkeley, Calif., 1993.

12. C.C. Tappert, C.Y. Suen, and T. Wakahara, “On-Line Handwriting
Recognition - A Survey,’’ Proc. Ninth Int’l Con5 Pattern Recog-
nition, Vol. 2, IEEE CS Press, Los Alamitos, Calif., Order No. 878.
1988, pp. 1,123 ,132.

George Forman is a PhD candidate in the Department of Computer Sci-
ence and Engineering at the University of Washington. His research in-
terests include mobile computing and compilers for parallel computers.

Forman received his BA in mathematics from Pomona College, Cal-
ifornia, in 1988. The following year he received a Fulbright fellowship
for study at the Swiss Federal Institute of Technology, Zurich. He is a
member of Sigma Xi and Phi Beta Kappa.

John Zahorjan is a professor of computer science and engineering at the
University of Washington. His research interests include performance
modeling and experimental evaluations, as well as issues in mobile
computing, runtime support for parallel computing, and resource
scheduling for continuous-media applications.

Zahorjan received an ScB in applied mathematics from Brown Uni-
versity in 1975 and MSc and PhD degrees in computer science from the
liniversity of Toronto in 1976 and 1980, respectively. In 1984 he re-
ceived a Presidential Young Investigator Award from the National Sci-
ence Foundation. He is a member of the IEEE Computer Society.

The authors can be contacted at the Department of Computer Sci-
cnce and Engineering, FR-35, University of Washington, Seattle, WA
981 95, e-mail (forman, zahorjan)@cs.washington.edu.

April 1994

R I D T ’ 9 4

RASTER
IMAGING

&
DIGITAL

TYPOGRAPHY

Darmstadt, Germany
11-14 April, 1994

S e s s i o n s

Font modeling, parametrisation of fonts
Variables width splines, digital halftoning

Readibility, symbols for displays
Intelligent outline-fonts
Optical font recognition

Constraints, string matching techniques

T u t o r i a l s
Desktop colour reproduction, colorimetry

Modeling human vision
Typography and Multimedia

G u e s t s p e a k e r s

Chuck Bigelow

Hermann Zapf

I n f o r m a t i o n
Jacques Andre

INRIA-Rennes, campus de Beaulieu
F-35042 Rennes cedex, France

Fax: +33 99 38 38 32
email: ridt94dirisa.fr

APPENDIX X

Microsoft Corp. Exhibit 1009

mailto:zahorjan)@cs.washington.edu
http://ridt94dirisa.fr

A Network Architecture for Mobile Computing�

Kevin Brown

Dept� of Computer Science

Univ� of South Carolina

Columbia� SC �����

kbrown�cs�sc�edu

Suresh Singh

Dept� of Computer Science

Univ� of South Carolina

Columbia� SC �����

singh�cs�sc�edu

September �� 	��

Submitted for publication

Abstract

In this paper we report on an ongoing project to design and build the network and transport

layers for mobile networking� The network architecture used is unique in that it separates the

mobile network�s� from �xed networks and provides connectivity between the two via special

gateways� These gateways provide QOS guarantees to mobile users for all their open connec�

tions� We provide summaries of all the protocols we are implementing �or have implemented�

and discuss possible improvements�

Technical area : Wireless Networks and
 Protocols

Corresponding author: Suresh Singh

Telephone: (803)777-2596
 Fax: (803)777-3767

� Introduction

Mobile computing is an emerging new computing environment incorporating both wireless and

high�speed networking technologies� Users equipped with personal digital assistants or PDAs

�Funding for this work was provided by the NSF under grant number NCR�������	

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

�palm�top computers� will have access to a wide variety of services that will be made available

over national and international communication networks� Mobile users will be able to access

their data and other services such as electronic mail� electronic news� yellow pages� map services�

electronic banking and videotelephony services while on the move� To receive these services�

mobile users will be connected to �xed networks via wireless networks �or mobile networks��

The goal of this paper is to present a comprehensive solution to the problem of wireless

networking for mobile computing� We propose a mobile network architecture� network layer

design and transport protocols that� we believe� will make it possible to o	er all of the above

services in an integrated manner� Such a system is currently being built at University of S�

Carolina and� in this paper� we discuss the design in detail�

��� Challenges in Mobile Networking

Providing the type of services discussed above to mobile users requires high data rates on the

wireless link and several authors �see for example Goodman
�� � Joseph
��� have proposed an

average data rate of between ���Mbps per mobile user� The third generation cellular system

being developed in Europe �UMTS � Universal Mobile Communication System�� for instance�

also propose bandwidth in the same range �see DaSilva
��� In order to support such high data

rates� a microcellular network architecture has been proposed� see Goodman
� and Duchamp
��

Here� a geographical region such as a campus is divided into microcells with a diameter of the

order of hundreds of meters� All mobile users within a microcell communicate with a central host

machine within that cell who serves as a gateway to the wired networks� this machine is called a

mobile support station �MSS��

What are some of the networking issues we need to address in order to provide the di	erent

types of service discussed above� Two broad issues that need to be considered are the following�

� Design of an e�cient network architecture to support mobility and corresponding network

layer protocols� The problems here include�

� Tracking mobile users as they roam�

� Routing messages and forwarding them to the current location of the mobile user�

� Providing �ow�control and bu	ering for open connections�

� Developing transport layer protocols that mesh easily with protocols that will be made

available over high�speed networks� Some requirements here include�

� Developing mobile network analogues of commonly used protocols such as TCP and

UDP�

� Developing protocols that support real�time applications such as voice and video or

on�line data services�

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

� Maintaining quality of service guarantees for applications even in the presence of mo�

bility�

Some of the problems mentioned above have been addressed by other researchers as we discuss

below�

Routing in Mobile Networks� In mobile networks� since the hosts are mobile� routing is a

problem� Ioanidis
� proposes a solution called the IPIP ��IP�within�IP�� protocol� Here every

MH has a unique IP address called its �home address�� To deliver a packet to a remote MH� the

source MSS �rst broadcasts an ARP to all other MSS nodes to locate the MH� Eventually some

MSS responds� The source MSS then encapsulates each packet from the source MH within another

packet containing the IP address of the MSS in whose cell the destination MH is located� Upon

receiving this packet the destination MSS extracts the original packet and attempts to deliver it

to the destination MH� If the MH has moved away� the destination MSS attempts to locate it by

broadcasting an ARP request� As discussed in Teraoka
�� this method is not easily scalable�

Teraoka
�� proposes a more �exible solution to the problem called � the Virtual Internet

Protocol orVIP� Here every host has a virtual network address �VIP address� that is unchanging�

In addition� hosts have associated physical network addresses �traditional IP addresses� that may

change as the host moves around� At the transport layer� the target node is always speci�ed by

its VIP address only� The address resolution from the VIP address to the IP address takes place

at either the network layer of the same machine or at a gateway� Both� the host machines and

gateways� maintain a cache of VIP to IP mappings with associated time stamps� This information

is in the form of a table and is called AMT �or address mapping table�� Routing is achieved by

referring to these AMT tables�

Transport Protocols for Mobile Networks� Since mobile hosts will expect the same services that

are o	ered to �xed hosts� it is necessary to implement transport services in the mobile domain

that are similar to those o	ered in the �xed networks� TCP is one such protocol� If we use TCP

without any modi�cation in mobile networks we have a serious problem of e�ciency� This is

because in TCP the sender begins retransmission of packets if they are not acknowledged within

a short amount of time �hundreds of milliseconds�� In a mobile environment� as a user moves

between cells� there is a brief blackout period while the mobile unit performs a �handshake� with

the new MSS� These blackout periods may also be caused by physical obstacles in the environment

that interfere with radio signals� These periods can be of the order of � second thus delaying the

transmission of acknowledgements for packets received� This results in the TCP sender timing

out and retransmitting the unacknowledged packets thus greatly reducing the e�ciency of the

connection� A solution to this problem is the I�TCP protocol �Indirect�TCP�� implemented at

Rutgers University as part of the DataMan project �see Barke
��� that provides e�cient reliable

communication for the wireless environment� A bene�t of the above implementation is that it

allows mobile hosts to be connected over the Internet� We examine the I�TCP protocol in more

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

detail in section ����� where we compare it against our own proposal�

��� Summary of Paper

We are currently building a mobile network from the ground up and this paper discusses our

design and initial experience� Speci�cally� we propose a design for the network layer and transport

layers for �rd generation wireless systems and provide arguments in support of this design� The

implementation of the protocol stack is been done under Unix �we use NetBSD� running on

Pentium PCs�

� In section � we discuss our architecture for the mobile subnetwork that� we feel� best ad�

dresses the various issues raised in section ����

� Our network layer design is presented in section ���� The sketch of our transport layer is

presented in section ���� We also address management and control questions speci�c to the

mobile environment �e�g�� feedback of dynamic bandwidth changes to applications� etc���

Special protocols for noti�cation applications �e�g�� pager service� and continuous media are

also incorporated�

� Overview of our Proposed Architecture

The solutions discussed in section ��� use a microcellular architecture where the base station for

each cell is a node on the internet� The solutions proposed for routing and TCP implementations

thus assume that the underlying subnetwork is a datagram network� We believe that this as�

sumption has only one justi�cation � compatibility with existing technology � which� in our view�

is insu�cient� Some of the problems with this approach are�

� The base stations �or MSSs� are responsible for tracking mobile users and forwarding packets

to their new locations� This adds to the cost and complexity of the base stations and since we

expect cell sizes to be small ����m�� in order to accommodate high�bandwidth applications�

the total cost of a mobile network will be very high�

� As a user roams between cells� the bandwidth available in each cell may also vary� If the

user has open connections� it will have to renegotiate QOS parameters frequently� This is

clearly an undesirable situation�

� Cell latency times �staying time in a cell� are typically small �several seconds�� This exac�

erbates both of the above problems�

Our architecture is discussed in detail in Singh
��� We summarize the main points in this

section� Our architecture may be viewed as a three�level hierarchy �see Figure ��� At the lowest

level are the mobile hosts �MH� who communicate with MSS nodes in each cell� Several MSSs are

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

controlled by a machine called the Supervisor Host �SH�� The SH is connected to the wired network

and it handles most of the routing and other protocol details for the mobile users� In addition

it maintains connections for mobile users� handles �ow�control and is responsible for maintaining

the negotiated quality of service� A single SH may thus control all MSS nodes within a small

building� Our architecture separates the mobile network from the high�speed wired network and

provides connectivity between the two via supervisor hosts �SHs� who serve the function of a

gateway�

SH
SH

Supervisor Host
Mobile Support
Station (MSS)

Cells

Cells shared by both
supervisor hosts

High-speed Network

Mobile Host
(MH)

Figure �� Proposed Architecture�

A mobile user may set up connections where the other end�point is either another mobile

user or a �xed host �e�g�� a service�provider� in the �xed network� In either case the connection

is managed by the current SH of the mobile host�s� �see Figure ��� The reason for splitting the

connection between the MH and the service�provider is to shield �xed nodes from the idiosyncrasies

of the mobile environment� Thus� the service�provider sets up a connection with the SH assuming

the SH is the other end�point of the connection� The SH sets up another connection to the MH�

Thus for everyMH � service�provider connection the QOS parameters are de�ned separately

for theMH � SH part and for the SH � service�provider part of the connection� Connections

between two MHs are broken in three �if the two MHs are controlled by di	erent SHs� �MH� �

SH�� SH� � SH� and SH� � MH�� Note that the SH�SH part of any connection is established

over the �xed network� The bene�ts of our architecture� thus� are�

� The MSSs are simple and cheap devices because they merely serve as a point of attachment

for MHs�

� Since several MSSs are controlled by a single SH� the roaming MH remains within the

domain of the same SH for long time periods�� This makes it easier to guarantee QOS

�e
g
� a MH may roam frequently between rooms in an o�ce building but remain for many hours within the

building each room is a cell and all cells in the building are controlled by one SH

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

MH

Fixed Network

Mobile Network

SH

MSSMSSMSS

Service
Provider

SH to Service Provider
part of the connection

MH to SH part
of the connection

(a) Connection between MH and service provider

MH1

Fixed Network

Mobile Network

SH1

MSSMSSMSS

MH to SH part
of the connection SH2

MH2

SH to SH part of
the connection

(b) Connection between two MH nodes

Figure �� Connections for MHs are managed by SHs�

parameters for MH connections�

� Network and Transport Layer Protocols

Our view of the mobile network in relation to �xed wired networks is illustrated in Figure �� The

mobile network is actually composed of many sub�networks each of which is connected to the �xed

networks via a SH node� SH nodes communicate with one another over the �xed network� Each

SH controls several MSS nodes� Physical communication between a SH node and its MSS nodes

is accomplished either over a dedicated network consisting of dedicated wiring �perhaps several

MSSs are connected via twisted�pair to a hub and several hubs are connected directly to the SH�

or over the �xed network itself � i�e�� the MSS nodes are regular hosts on the �xed network and

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

can be addressed with IP addresses� The latter is a cheaper solution and provides a migration

path to having dedicated mobile networks�

Fixed Network

SH

SHSH

Mobile
Networks

Figure �� Relationship of mobile networks to �xed networks�

��� Network Layer Design

����� Routing and Tracking

Recall that all connections set up by a MH pass through its SH� For instance� a connection between

MH M� and M� located within the same mobile network �i�e�� same SH S� is set up as M��S�

M�� If the two MHs are in di	erent mobile networks S� and S� the connection is M��S��S��M��

The S��S� portion of the connection passes over the �xed network� A connection from M� to a

�xed host F is set up as� M��S�F �� In all of these cases� notice that routing consists of two

components � routing within a given mobile network from the SH to the MH and routing over

the �xed network between SHs or between SHs and �xed hosts� Let us consider each of these two

components separately�

In our design we implement virtual circuits at the network layer in each mobile sub�network�

This means that the network layer will deliver all packets in order to the current MSS of the MH�

Thus even if the MH moves between cells� so long as the MH remains within the same mobile

sub�network� all packets will be delivered to its MSS in order� It is important to observe that the

network layer does not guarantee delivery of packets to the MH� it only guarantees delivery to

the MSS� This is because the wireless link is very unreliable and error recovery is best left to the

transport layer which is responsible for implementing service guarantees� We discuss this point

in greater detail in section ���� Moreover� if the MH moves into the domain of another SH� there

are no guarantees made regarding the delivery of packets in transit�

To route within one mobile sub�network �i�e�� within the domain of one SH�� the network

layer at the SH maintains a location table consisting of entries for each MH currently within

its domain and the location of the MH �i�e�� the identity of its MSS�� This table is updated via

control messages passed between the MSS and SH every time a MH moves� If the MSS nodes are

�The reason for routing all connections through a SH is that the SH can provide network level bu�ering and

�ow�control
 If we set up a connection directly between two MHs� for instance� �ow�control and retransmission of

lost packets will require an exchange of control messages between the MHs consuming scarce wireless bandwidth

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

connected via dedicated links to the SH� there is no need for them to have IP numbers� The SH

simply transmits on the appropriate port� If the MSS nodes are nodes on the �xed network� then

the SH needs to route messages to the MSS nodes on the �xed network� In our implementation

all MH nodes have unique IP addresses �with some �home� network as part of the address�� Here

the SH nodes route messages to the MH by using the IP loose source routing option �following

the work of Johnson
���� The destination address in the header is set to the IP address of the

MSS and the MH IP address is contained as the �rst IP address in the option part of the header�

The MSS examines the datagram and delivers it to the MH �if it is present in its cell�� If it has

moved away� the MSS discards the datagram�

To implement reliable delivery �in the sense discussed earlier�� every datagram is given a

sequence number� A MSS sends an ACK for each datagram transmitted to the MH �note that

the datagram may not be received by the MH because of fading or other interference�� Until a

datagram is ACKed� it is bu	ered at the network layer of the SH� If a MH moves away from its

current MSS to a new MSS� the old MSS discards all messages but simultaneously informs the

SH of the sequence numbers of these discarded messages� These messages are then retransmitted

to the new location of the MH� A detailed protocol is presented in Gahi
� �though our current

implementation contains many changes��

For routing over the �xed network �e�g�� between SHs or between an SH and a service provider��

the existing routing protocol provided over the �xed network is used� Thus the network layer

shown in Figure � is local to the mobile sub�networks only� The network layer shown in Figure

� consists of two sub�layers � a tracking and VC maintenance sub�layer sitting on top of IP� The

tracking sub�layer is responsible for maintaining location information for each MH currently in

that mobile sub�network� VC maintenance refers to the task of guaranteeing reliable delivery of

datagrams� It is noteworthy that we currently use IP for routing purposes� This choice is dictated

more by budgetary constraints than scienti�c ones�

Local Tracking, VC Setup
and Maintenance

Transport Layer

IP

Figure �� Network Layer�

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

��� Transport Layer Design

When developing transport layer protocols for the mobile environment� it is important to keep

the following constraints in mind�

� The wireless link is very fragile and error�prone� This means that any reliable protocol must

perform a signi�cant amount of error�recovery�

� The bandwidth of the wireless link will always be a limited resource� Thus� all protocols

need to be �lean�� For instance� in the case of TCP�like protocols� it is not a good idea

to have end�to�end �ow control �where one end is mobile� because of the high number of

control messages that will be sent�

� Available bandwidth within a cell may change dynamically �because it is impossible to

control the number of users per cell�� This leads to all kinds of problems in guaranteeing

QOS parameters such as delay bounds and bandwidth guarantees�

� Mobile hosts frequently encounter extended periods of disconnection �caused due to hand�

shake or due to physical interference with the signal� and this will result in signi�cant losses

of data for UDP�like protocols� We need to rede�ne best�e	ort service for such cases�

� Mobile hosts may move between SHs after opening transport connections� Should the old

SH continue to be responsible for these connections or should control be transferred to the

new SH�

All of the above issues can be summarized in the form of two questions� The answer to these

questions will determine the transport layer design�

��	 Should the transport layer be aware of the mobility of MHs

��	 Should the transport layer be aware of bandwidth �uctuations at the

wireless link

If we were to strictly follow the layering idea of the OSI hierarchy� mobility and bandwidth

�uctuations will have to be concealed from the transport layer� For mobile networks� however�

even though we can adhere to this philosophy� it will result in degraded performance and increased

message overhead� To see why this is the case� let us consider two scenarios that will be com�

monplace in a mobile environment� In the �rst� a MH with open data connection�s� moves into

a cell where there are many other MHs� It is likely that the negotiated QOS for the connections

of this MH can no longer be satis�ed and will have to be renegotiated� Since renegotiation of

QOS parameters involves the transport layer �and the network layer�� it is not possible to conceal

bandwidth �uctuations from the transport layer� We discuss this problem further in section ������

�

APPENDIX Y

Microsoft Corp. Exhibit 1009

For the second scenario� consider what happens if a MH with an open TCP connection moves

from its current SH �where the TCP connection was established� to another SH� In this case

it is not necessary to re�establish the TCP connection �because the network layer can forward

datagrams from the old SH to the new SH�� However� the e�ciency of the TCP connection will be

degraded for reasons discussed in section ��� �recall that I�TCP attempts to alleviate this e�ciency

problem by breaking the TCP connection in two�� In our architecture� as we discuss in section

����� and section �� since we perform a great deal of bandwidth management within each mobile

sub�network �controlled by a single SH�� it becomes necessary to re�establish connections when a

MH moves from the sub�network of one SH into the sub�network of another� Thus� we believe�

the transport layer will need to be aware of the mobility of MHs and bandwidth �uctuations for

each open connection�

Our view for the transport layer of the mobile sub�network is shown in Figure �� The pre�x

M stands for �mobile�� Thus we have a version of mobile�TCP and mobile�UDP� M�CM refers

to the mobile�continuous media protocol and is useful for implementing real�time services such

as voice or video� It is loosely based on the continuous media protocol of Moran
��� The

mobility management module deals with the problems of mobility �i�e�� re�establishing transport

connections when a MH moves between sub�networks and renegotiating QOS parameters��

LPTSL

M-UDP M-CM
M-TCP

Application Layer

Network Layer

Transport Layer

RAFT

Notify

Mobility Management Module

Figure �� Transport Layer�

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

����� M�TCP

In section ��� we touched upon the problems associated with providing TCP�like service over

mobile networks� Speci�cally� if the receiver is a MH� the TCP sender times out frequently because

of the �blackout� periods in mobile networks� The solution of Barke
� breaks the connection in

two �similar to our idea with the di	erence that they consider mobile networks to be part of the

internet� � from the �xed host to the MSS and from the MSS to the MH� The MSS e	ectively

serves as the TCP connection end�point from the point of view of the �xed host� The MSS

is then responsible for forwarding all data reliably to the MH� Note that the semantics of this

implementation di	er from TCP semantics � it is possible for the sender to think that all data has

been correctly delivered to the MH �since the MSS has sent ACKs� even if this is not the case�

In our design� the TCP connection is broken in two � �xed host to SH and SH to MH� The �xed

host to SH part of the connection uses regular TCP while M�TCP is used for the SH to MH part

of the connection� Since M�TCP is layered on top of a reliable virtual circuit connection �reliable

within one mobile sub�network�� its design is relatively simpli�ed� Even though this design looks

similar to I�TCP� unlike Brake
�� we implement almost TCP�like semantics that make it easier

for the sending application to recover from the type of error described above� The TCP client

on the SH always ACKs all but the last byte of data received from the sender� The last byte is

ACKed only after it has been successfully sent to the MH by M�TCP at the SH� In this scenario�

if the MH disconnects before receiving all data from the SH� the sender will never receive an ACK

for the last byte� Thus� the sending application will know that the connection has failed and can

take remedial action� In addition to the above change� we ensure that the bu	ers at the SH are

not exhausted �which can happen� for instance� if the MH has been temporarily disconnected� by

linking bu	er availability �i�e�� receiver window size� to the available bandwidth on the wireless

link� This causes the TCP client to automatically choke the sender when the MH is in a crowded

cell� This linkage between expected wireless bandwidth and TCP bu	ers is another unique feature

of our design�

It is important to note� however� that M�TCP semantics are still slightly di	erent from TCP

semantics� This is best illustrated by considering a talk application� The application displays

data on the user screen as and when it is received over the TCP connection� If the SH crashes� it

is possible for the sender to think that almost all the lines it has typed thus far have appeared on

the receiver�s screen �because ACKs have been received for all but the last byte� even though this

may not be the case �i�e�� the SH crashed before that data was sent to the MH�� This situation

is not completely hopeless� however� because the sender will eventually realize that the SH has

crashed and it can then take remedial action�

What happens when a MH moves from the sub�network of one SH into the sub�network

of another� In our implementation this is handled in a manner similar to I�TCP� The old SH

transfers TCP state to the new SH after it has been informed by the mobility management module

about the move �recall that whenever a MH enters a new cell� it performs a handshake procedure

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

with the new MSS� The information exchanged during this handshake includes the identity of the

previous SH and information about all open connections� see Ghai
��� Meanwhile all datagrams

arriving at the old SH are sent on to the new SH via IP loose source routing�

In our implementation� we require the MH to maintain the identity of the original SH �who

�rst set up the TCP connection�� If the MH moves from SHoriginal to SH� to SH�� after SH�

has transferred TCP�state to SH�� SHoriginal is given the IP address of SH� so that it can route

datagrams directly to SH� without going through SH� �rst� This method keeps the cost of

forwarding datagrams small� In the future� if IP is replaced by a protocol like VIP� we will not

have to worry about this particular problem� This is because the intermediate routers in the �xed

network will automatically associate the IP address of SH� with the VIP address of the MH �see

Singh
�� for more details� and route datagrams accordingly�

����� M�UDP

If we were to implement UDP in the mobile network without any changes� the performance seen

by a MH would be very poor� This is because packets transmitted while the MH is moving

between cells or is blocked by some physical obstruction are lost �note that in TCP these packets

would be retransmitted�� Only a small percentage of loss is due to lack of bandwidth� A high�level

view of our M�UDP protocol as implemented is the following �a detailed protocol may be found

in Brown
���

� Every UDP packet is bu	ered at the SH�

� The SH discards a packet if it has run out of bu	er space or if it has been transmitted n

times to the MSS�

The semantics of M�UDP are almost identical to UDP in the sense that delivery is not guar�

anteed� However� M�UDP attempts a �best e	ort� service that is constrained only by bu	er space

availability at the SH and by bandwidth availability on the wireless link� In our experiments we

observed a � to � fold improvement in the number of packets delivered by M�UDP in comparison

to UDP �for mobile hosts��

����� M�CM

A large percentage of future applications will require transmission of data at regular intervals�

This kind of data is referred to as continuous media and some examples include voice communi�

cation� video communication� etc� Continuous media applications have severe time deadlines and

bandwidth requirements and thus cannot be implemented on top of message�based transport pro�

tocols such as M�TCP or M�UDP� Following Moran
�� we propose a separate transport protocol

suite called M�CM �mobile�continuous media� that will provide the functionality required by such

applications� Unfortunately� however� the protocols proposed in Moran
�� and other solutions

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

proposed for the high�speed network domain cannot be adapted to the mobile networks because

of two reasons�

� bandwidth availability varies in an unpredictable manner as hosts roam�

� fading and hando	 cause periods of disconnection�

All proposals for CM�type protocols require the network layer to provide strict guarantees regard�

ing bandwidth availability and delay bounds for each connection� Because of the above reasons�

however� this is not possible in the mobile domain�

Our approach is to provide a �best�possible� service to M�CM connections� Intuitively� this

means that the SH will arbitrate between various MH connections to determine how much band�

width must be allocated to each open connection� Thus� if a MH has an open ftp connection �via

M�TCP� and an open video connection �via M�CM�� a scheduler process �CS process� see section

�� will starve the ftp connection in favor of the video connection if the available bandwidth� within

the current cell of the MH� gets reduced� The scheduler also interfaces with LPTSL in case some

fraction of data along the M�CM connection�s� need to be discarded� This M�CM protocol has

not yet been fully speci�ed�

����� LPTSL �Loss Pro�le Transport Sub�Layer	

Future applications to be provided to mobile users will include audio �e�g�� telephone� audio

conferencing� etc�� and video applications �e�g�� map information� viewing movies� etc��� These

applications have real�time constraints and therefore need to be implemented over M�CM� How�

ever� we have a unique problem of dynamic bandwidth changes during the lifetime of a connection

caused due to the unpredictable mobility of mobile hosts�

To illustrate a consequence of this unpredictable mobility� consider a situation where several

mobile users have opened high�bandwidth connections� When these connections are set up� the

network ensures that the users receive some guaranteed bandwidth� Since these users are all

mobile� it is possible that many of them could move into the same cell� In such a situation� it is

very likely that the requested bandwidth of the cell will exceed available bandwidth resulting in

the original QOS �quality of service� parameters being violated� This situation does not arise in

high�speed networks because users are not mobile during the life�time of a connection�

To deal with this situation� we propose that most open connections� than can tolerate losses�

within the choked cell be penalized �either equally or di	erentially� based on some need�based

policy�� Thus� a penalized connection will see a x reduction in available bandwidth� The

question now is � does the MH renegotiate the QOS parameters to force the sender to reduce the

connection bandwidth �e�g�� use a higher compression ratio for a video connection� or is data for

that connection discarded by the SH� The �rst option sounds attractive but is not necessarily the

right choice for the following reasons�

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

� The bandwidth crunch is probably temporary and will be alleviated as soon as a MH roams

out of the cell� When this happens� the QOS parameters will have to be renegotiated�

� The cell latency of a MH is of the order of several seconds� The end�to�end renegotiation

process is time consuming and thus the bandwidth available may change even before this

renegotiation is completed�

� While the renegotiation is going on� data will continue to be sent at the old rate� Since the

wireless bandwidth is small� the bu	ers at the SH will possibly over�ow�

We propose that the SH judiciously discard data for each penalized connection� Since the SH

operates at the transport layer �it is a gateway�� it can do this� Note� however� that indiscriminate

discarding of data may result in garbage at the MH �e�g�� if data is randomly thrown out of a

compressed video stream� no video can be reconstructed�� To solve this problem� we have proposed

a new sub�layer called the Loss Pro�le Transport Sub�Layer� The sending application puts �ags

in the data stream by making calls to LPTSL� All data between a pair of �ags represents a logical

segment �e�g�� one logical segment may be a single compressed frame in JPEG�video�� The LPTSL

at the SH discards entire logical segments in the event of a bandwidth crunch to ensure a x

reduction in bandwidth �note that the application at the MH can be informed of the location of

the discarded segments in case that information is required � as in MPEG�� video�� A detailed

protocol is presented in Seal
��� See Figure � for an explanation of the operation of this layer�

Here the data stream at the sender is broken into data segments �logical segments� separated

by special �ags� These �ags are inserted by the LPTSL layer at the sender� The LPTSL layer

at the SH is informed of the available bandwidth in the current cell of the MH and determines

if any data needs to be discarded� If so� it discards entire logical segments �all data between

consecutive �ags�� The LPTSL at the MH passes up the arriving data to its receiving application

and indicates the location and size of the discarded segments�

A reason for discarding data at the LPTSL is because LPTSL provides di	erent discarding

functions� When a connection is set up� a QOS parameter negotiated is the discarding function�s�

to be used in the event of a bandwidth crunch� For instance� if the connection is an audio

connection� the user may prefer uniform random loss as opposed to bursty loss� On the other

hand� if the data is compressed video� random loss will prove to be disastrous� In this case the

user may opt for bursty loss �i�e�� discard entire frames rather than random bytes from several

frames�� These discarding functions are provided in the form of a indexed library of sub�routines

at the LPTSL layer of the SH�

���� RAFT �Repetitive Almost�reliable Fast Transport	

In addition to applications discussed in section �� PDAs will be used as devices whereby critical

data can be transmitted to the user quickly � much like today�s pagers or beepers but with a

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

Application

LPTSL

Transport

underlying network

Service
provider SH MH

data stream data stream

Application

LPTSL

Transport

Application

LPTSL

Transport

Discarded data
segments

flags

data segments

Figure �� Loss Pro�le Transport Sub�Layer�

greater degree of sophistication� These type of noti�cation applications need to be able to transmit

data quickly and reliably to the mobile user� To facilitate the development of such applications we

propose a transport sub�layer called RAFT that is built on top of M�UDP� The approach we use

is the following � RAFT at the SH sends data several times� When the MH eventually receives

all data correctly it sends a shut o� message to RAFT at the SH� RAFT data takes precedence

over all other connections�

� Management and Control

In Figure �� we show the transport and network layer control and management functions at the SH�

The SH needs to ensure that QOS parameters for open connections are maintained� This implies

appropriate bandwidth management within each cell and bu	er allocation for each connection at

the SH� In Figure � the management and control functions of the protocol stack for the mobile

sub�network is shown in detail� The di	erent arrows indicate control paths� management paths�

data paths and QOS negotiation paths�

At the network layer we have a process �CBM� that monitors the bandwidth utilization within

each cell controlled by the SH and passes this information up to a transport layer process �CS�

via a management path� The CS process arbitrates bandwidth within each cell between all open

connections� Thus� if there is a real�time connection �e�g�� audio� and a data connection into

a cell� the CS may choose to starve the data connection in order to ensure the delay bounds

for the real�time connection are met� Another control process at the network layer �NL QOS�

monitors the QOS being delivered to each VC and sends this information to the CS as well� This

management path is required to ensure that QOS parameters �such as bandwidth usage or delays�

for M�CM connections are met� If some M�CM connection has not been receiving its negotiated

QOS� the CS process allocates more bandwidth to that connection�

CS is the process which is responsible for maintaining QOS for all M�CM connections and

ensuring that data connections �M�UDP or M�TCP� do not get starved in the process� The CS

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

receives information for each M�CM connection�s QOS contract� Note that this contract may be

renegotiated during the lifetime of the connection and thus CS needs to be informed of this change

via the management path� M�UDP connections are subject to data discarding �via LPTSL� in

the event of a bandwidth crunch� Thus� we assume that some QOS negotiation also takes place

for UDP connections and this information is passed on to the CS process as well� CS periodically

informs M�CM� M�UDP and M�TCP of the available bandwidth for each connection via control

paths� It is up to these protocols to ensure that they control each open connection �either choke

the sender as in M�TCP� or discard data via LPTSL as in M�CM� adequately�

QOS negotiations take place between M�CM�s QOS process� NL QOS and possibly the QOS

process on the �xed network �in case the connection is to a �xed host� via QOS negotiation paths�

QOS control information is also exchanged between LPTSL and the QOS processes of M�UDP

and M�CM� Finally� the bu	er manager processes at both� the network layer and the transport

layer� are responsible for bu	er allocation to di	erent connections� The data paths followed for

some typical connections are illustrated in the �gure as well�

Buffer
Manager

Cell-by-cell
Scheduler

Cell-by-cell
bandwidth
monitor

LPTSL RAFT

M-UDP
M-TCP

M-CM

QOS QOS

Network
Layer QOS

CM

TCP

UDP

Mobile
Transport
Layer

Network
Layer

Fixed
network
Transport
Layer

Fixed network
Network Layer

Control Paths

Management Paths

Data Paths

QOS Negotiation

Transport
protocols
in fixed
network QOS

Buffer
Manager

CBM
NL_QOS

CS

Figure �� Management and Data �ow at the transport and network layers of the SH�

� Conclusions

In this paper we have proposed a complete design of the network layer and transport layer in

a manner that best addresses the problems of the mobile environment� Our design is a radical

departure from other researchers in that we propose that mobile networks be viewed as separate

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

from wired networks with connectivity being provided by special gateway nodes� These nodes

provide a variety of transport level services that best meet the constraints of the mobile environ�

ment� A complete implementation of this architecture is underway and Figure � indicates the

current status of this implementation�

IP

Transport

Network

Key

Implementation
done

Implementation
in progress

Yet to be
specified

Figure �� Current status of implementation�

References

� A� Bakre and B� R� Badrinath��I�TCP� Indirect TCP for Mobile Hosts�� Technical Report

DCS�TR����� Rutgers University� Piscataway� NJ ������

� K� Brown and S� Singh��M�UDP� Mobile UDP�� Manuscript�

� I� Arieh Cimet� �How to Assign Service Areas in a Cellular Mobile Telephone System�� IEEE

ICC���� pp� �������� May �����

� J� S� DaSilva and B� E� Fernandes��The European Research Program for Advanced Mobile

Systems�� IEEE Personal Communications Magazine� February ����� pp� ������

� D� Duchamp� Steven K� Feiner and G� Q� Maguire� �Software technology for wireless Mobile

computing� IEEE Network Mag	� pp ������ November �����

� R� Ghai and S� Singh��An Architecture and Communication Protocol for Picocellular Net�

works��IEEE Personal Communications Magazine� Vol� ����� ����� pp� ������

� David J� Goodman� �Cellular Packet Communications�� IEEE Trans	 on Comm	� vol� ���

no� �� pp ���������� August �����

� David J� Goodman� �Trends in Cellular and Cordless Communications��IEEE Communica�

tions Magazine� pp ������ June �����

� J� Ioanidis� D� Duchamp and G� Q� Maguire� �IP�based protocols for mobile internetworking�

Proc	 of ACM SIGCOMM��
� pp �������� September �����

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

�� D� B� Johnson��Mobile Host Internetworking Using IP Loose Source Routing�� Technical

Report CMU�CS�������� Carnegie Mellon University� Pittsburgh� PA ������ �����

�� C�S� Joseph� et al� �Propagation Measurement to Support Third Generation Mobile Radio

Network Planning�� ��rd IEEE Vehicular Tech	 Conf	� May ����� pp� ������

�� M� Moran and B� Wol�nger��Design of a Continuous Media Data Transport Service and

Protocol�� Technical Report TR�������� Computer Science Division� University of California

Berkeley� April �����

�� K� Seal and S� Singh��Loss Pro�les� A Quality of Service Measure in Mobile Computing�� J	

Wireless Networks� �submitted��

�� S� Singh��Quality of Service Guarantees in Mobile Computing�� Journal Computer Commu�

nications� �to appear��

�� F� Teraoka and M� Tokoro� �Host Migration Transparency in IP Networks� The VIP Ap�

proach�� SIGCOMM� Vol� ��� No� �� Jan ����� pp� ������

��

APPENDIX Y

Microsoft Corp. Exhibit 1009

Abstract
The ongoing European ACTS project OnTheMove provides support services for distributed mobile multimedia applications. The project defines,
implements, and demonstrates a mobile middleware called a Mobile Application Support Environment (MASE) which is based on UMTS con-

cepts. The mobile application programming interface (mobile M I) of MASE, which will be submitted for standardization, allows common access
to the underlying operating systems and network infrastructure, and facilitates the development of new, mobile-aware, multimedia applications.

BIRGIT KRELLER, SIEMENS AG

UM PARK AND J E N S MEGGERS, AACHEN NIVERSITY OF

TECHNOLOGY
GUNNAR FORSGREN, ERICSSON RADIO SYSTEMS AB

OVACS AND MICHAEL ROSINUS, SONY INTERNATIONAL (EUROPE) GM

I ny information at m v time. i t
- . I

any place, in any form. This promise of mobile multimedia
will be realized through third-generation mobile communica-
tion networks, which will offer high-bit-rate data services,
guaranteed on-demand bandwidth, and low delays. The Euro-
pean Telecommunication Standards Institute (ETSI) is work-
ing on the Universal Mobile Telecommunications System
(UMTS) [l, 21, which belongs to the family of similar or com-
patible standards developed within the International Telecom-
munication Union (ITU) called International Mobile
Telecommunication in the year 2000 (IMT-2000) [3].

Today, mobile users already utilize a wide variety of
mobile terminals ranging from simple mobile phones and per-
sonal digital assistants (PDA) to high-end multimedia note-
books. UMTS and the Mobile Broadband System (MBS) will
offer suitable bandwidth and global connectivity to enable
true mobile multimedia. As an early contribution to the
UMTS service specifications, and in order to provide a
smooth evolution path from second- to third-generation com-
munication systems, the Advanced Communications Tech-
nologies and Services (ACTS) project OnTheMove has
developed a mobile middleware system called the Mobile
Application Support Environment (MASE). Along with the
MASE, an application programming interface (API) has been
defined that allows applications to access the MASE compo-
nents. This API, called the mobile AH, will be submitted for
standardization. The purpose of the MASE middleware is to
ease the development of mobile-aware applications by provid-
ing a common underlying platform. Furthermore, the middle-
ware approach enables a smooth transition from current
wireless networks, such as Global System for Mobile Commu-
nications (GSM) and Digital European Cordless Telecommu-
nications (DECT) to future UMTS networks. Instead of
directly accessing the operating system, mobile-aware applica-
tions make use of the mobile API and benefit from simple
access to MASE services, which hide the complexity of het-
erogeneous networks and operating systems from the applica-
tions. Thus, MASE simplifies the development of
mobile-aware applications and frees them from the complex

processing caused by additional needs when accessing hetero-
geneous networks and running on mobile devices. Further-
more, MASE eases the evolution of multimedia applications
toward UTMS [4] and enables legacy applications to benefit
from a subset of its functionality.

In this article we focus on the services provided by MASE
and their relation to UMTS. We demonstrate the intenvork-
ing between different parts of MASE through a typical
mobile-aware application, the CityGuide. The CityGuide
uses geographical information provided by the MASE Loca-
tion Manager module to display a map of the current geo-
graphical surroundings of the mobile user. Several different
layers of interesting places (e.g., public transportation,
administration buildings, accommodation, restaurants, and
much more) are shown on the map and are linked to corre-
sponding Web pages.

We will first elaborate on the generic MASE architecture.
We will outline a possible scenario for the ongoing UMTS
service definitions and then explain, step by step, the MASE
components accessed by the CityGuide implementation.

MASE
The Mobile Application Support Environment is a distributed
system that runs on both the mobile device and the so-called
mobility gateway. The latter acts as a mediator between the
wireless and fixed network infrastructures. I t works as an
agent for mobile clients which are typically connected over
unreliable wireless access networks with low bandwidth.
MASE enables access to the UMTS adaptation layer (UAL,),
which provides applications and middleware components uni-
fied access to all possible underlying networks. An additional
general support layer provides the functionality required for
distributed systems. On top of both layers several manager
components are installed, providing different dedicated ser-
vices. Figure 1 shows the overall MASE architecture with its
corresponding building blocks. All the components shown
have been implemented.

MASE is built around the concepts of awareness, adapta-

32 1070-9916/98/$10.00 0 1998 IEEE IEEE Personal Communications April 1998

APPENDIX Z

Microsoft Corp. Exhibit 1009

up the challenges of mobile multimedia
and prepares for UMTS.

The CitvGuide
A p p Zica tioh Scenario

H Figure 1 . Overall architecture of MASE.

tion, and abstraction. MASE applications are aware of the
current network quality of service (QoS) through sophisticat-
ed monitoring and management facilities which are provided
by the UAL. The UAL hides network specific details by
selecting the appropriate bearer service and protocol stack
according to the requested QoS. The general functional fea-
tures of the UAL are:

Selecting appropriate transport protocols and configuring them
for efficient use (e.g., adjusting packet size and timers to the
bearer service parameters)
Selecting and configuring an appropriate bearer service
Managing roaming between different networks and bearer
services as well as bearer service switching
Details of the UAL have been published elsewhere (e.g.,

[5]). The General support layer implements object storing and
caching as well as event handling and security services. These
services will also not be described in detail here.

Awareness - End terminal characteristics and user pref-
erences are stored in profiles. They are managed by the
Profile Manager, a part of the System Adaptability Manag-
er (SAM), and are available on demand at all nodes of the
system.

Adaptation - Profile information and monitored QoS are
used by the MASE communication facilities to adapt their
usage to the current QoS situation and user requirements.
This adaptation is transparent to the application.

Abstraction - The MASE provides high-level abstrac-
tions, for example, an alerting function or location manage-
ment. An alert is an abstraction of an important short
message which has to be sent to the user. Depending on the
current network situation, the alert manager

The CityGuide is part of a set of
mobile-aware applications (Fig. 2) . It is
a typical mobile user application pro-
viding access to a map of the surround-
ings of the mobile user. This map
displays several information layers, such
as hotels, restaurants, automated teller
machines, bus stops, and phone booths.
These information sources are linked to
Web pages to allow instant access to
further information about a particular
location.

The CityGuide runs as a Java applet
within a Web browser and provides access to maps describing
the current surroundings. This application uses the mobile
API to ask the MASE Location Manager for the actual coor-
dinates (longitude and latitude) of the user. This information
will be checked against the coordinates stored in the server.
The most suitable map and the associated geographical
objects will be loaded using HTTP. Since the browser is a
legacy application and normal HTTP is not well suited to
mobile communication, the MASE integrates these calls using
an HTTP proxy system. In the following we describe the
MASE components participating in this process.

location Manager
The Location Manager (LM) helps users navigate in new
environments. It enables applications and other MASE com-
ponents to determine the parameters of the current geograph-
ical position of a mobile device as well as the accuracy of
these values. This is another example of the abstractions pro-
vided by MASE because the geographical information is
accessible through a simple uniform API and independent of
the mechanism used by the LM to gather location data. A
subset of the LM API calls is shown in Table 1.

The current LM implementation supports the Global Posi-
tioning System (GPS), a satellite-based radio navigation sys-
tem developed and operated by the U.S. Department of
Defense [6], and uses WaveLAN (a wireless LAN device from
Lucent Technology [7]) cell identifier information. GPS pro-
vides latitude and longitude coordinates, velocity, and the
user’s moving direction with an accuracy of about 10-300 m.

maps an alert to different network services. If
the user is connected to the network over
TCP/IP, the message will be delivered directly
to an alert server on the mobile device messag-
ing service, or as a GSM short message service
(SMS) notification if no such connection is
available. The final version of MASE will deal
with adaptation to varying degrees of QoS,
robustness in the face of disconnected links,
roaming between different operators and net-
work types, personalized information filtering,
and location-aware applications using various
location trackers.

MASE also integrates legacy communication
applications and improves communication over

location information
.

wireless networks. In this way, the MASE takes Table 1. A subset of the Location ManagerAPI.

IEEE Personal Communications April 1998 33

APPENDIX Z

Microsoft Corp. Exhibit 1009

Figure 2. OnTheMove desktop and mobile-aware applications.

In wireless communication systems cell identifiers can help
determine the position of the mobile device. The accuracy
depends on the network cell size and varies from about 30 m
(wireless LAN) up to a few kilometers using GSM. A table
lookup maps these cell identifiers to the physical position of
the terminal. A central LM process communicates with the
available location information sources. The retrieved values
are made available to MASE-aware applications and other
MASE components by stub interfaces to the central process.
This architecture is shown in Fig. 3.

Communication Manager
The Communication Manager (CM) of the MASE architec-
ture supports HTTP and e-mail communication, HTTP pre-
fetching, alerting, messaging, and disconnected operations. In
the following we will focus on the HTTP proxy. The HTTP
proxy system improves the performance and usability of
HTTP over low-bandwidth network connections (cellular,
radio LAN, modem). Requested multimedia objects can be
processedlconverted by MASE to match the current network
bandwidth, terminal characteristics (display capability, storage
capacity, etc.), and user requirements. This adaptation is per-
formed at the mobility gateway before transmitting the data to
the mobile terminal. The distribution of the HTTP proxy
functionality is shown in Fig. 4.

Multiple users simultaneously access Web-based informa-
tion using the HTTP protocol. Each mobile terminal runs a
client-side HTTP proxy (CSP) that requests Web objects from
the server-side HTTP proxy (SSP). SSP can serve multiple
client connections in parallel, with each connection being han-
dled by a separate connection handler thread. Each such han-
dler communicates with a peer process on the CSP over a
multiplexed logical communication session. Multiple sessions

run on top of a single TCP/IP connection between a mobile
terminal and the mobility gateway. The multiplexing scheme
allows data transfer for all logical sessions from one terminal
to be transmitted in parallel over a single full-duplex TCP/IP
connection.

In a typical scenario, an HTTP client on the mobile termi-
nal (such as the CityGuide application) will request HTML
pages and related graphic objects from a remote HTTP serv-
er. The HTTP Proxy system intercepts these calls and commu-
nicates with the SAM to adapt the requested objects to the
current QoS and user requirements. The application (in this
case the browser) is configured to use the CSP as an HTTP
proxy server.

As shown in Fig. 4, for each HTTP request the client will

Figure 3. Location Manager architecture.

34 IEEE Personal Communications April 1998

APPENDIX Z

Microsoft Corp. Exhibit 1009

establish a TCP/IP connection to the CSP 0 .
The CSP checks whether the requested object is
available locally by calling the checkcache ()
methods of the SAM 0 . See Table 2 for the
description of the SAM API. If the SAM indi-
cates local availability, the object will be returned
by the CSP to the requesting client.

Otherwise, the CSP will create a logical com-
munication session to the SSP side and will pass
the HTTP request to the SSP 0. Another
c h e c k c a c h e () call @ checks whether the
requested object is available on the Mobility

W Table 3. Profile values.

Profile Manager
The terminal characteristics of the mobile device are stored in
a terminal profile. The network characteristics of the mobile
device’s current (wireless) connections are stored in the net-
workprofile. The network profile is constantly updated by the
UAL. User-specific preferences are stored in a userprofile. A
profile generally contains a hierarchical tree of properties
(namehahe pairs), each describing a certain property. Pro-
files are replicated on demand and stored persistently through-
out the MASE system.

A MASE-aware application can access the profile values at
either the mobile device or the mobility gateway. Consistency
can be enforced independently at every host and for each node
to reduce the communication overhead. Table 3 shows exam-
ples of profile values for the user, system and network tree.

QoS Trader
The QoS trader adapts the MASE communication services
according to the user’s preferences and the current

terminallnetwork situation as reflected in the
profile. Instead of transmitting multimedia
objects directly to the mobile client, the HTTP
proxy calls the QoS Trader to perform a trad-
ing process. This process consists of the steps
illustrated in Fig. 5 .

During the QoS gathering phase the QoS
trader accesses the current terminal and net-
work QoS which are stored in the profile. The
profile also contains the user’s preferences,
which are later used to compute filters and
preferences for the planning process. It further
examines the properties of the current multi-
media object, and then enters the planning
phase, during which it decides about the actions
to perform on the current multimedia object.
This process generates a “new” plan from a
knowledge base (plan generation) and the gath-
ered QoS parameters.

A plan consists of one or more compression,
conversion or reduction steps. During the plan W Figure 4. Thepartitioning of the HTTPproq.

W Table 2. A subset of the QoS traderAPI.
Gateway. If not, the object is fetched from thk
HTTP server 0 and inserted into the local cache
using the c r e a t e M M O () method. The SSP now calls the
trade () method to adapt the multimedia object. This trading
process is described in the next section. The SAM creates a
variant of the original object and inserts it into the family of
related objects managed by the local cache. The variant
together with instructions for the post trading phase (e.g.,
which decompression method to use) is returned and trans-
ferred to the CSP. Here a post trading phase is initiated and
the resulting object passed to the requesting client.

System Adaptability Manager
The System Adaptability Manager (SAM) is responsible for
the provision of optimized and personalized mobile services.
User-, network-, and terminal-specific QoS parameters are
managed in profiles handled by the Profile Manager. These
profiles a re used to compute the best adaptation of the
MASE communication services, taking into account the cur-
rent network and end system QoS parameters as well as to the
user’s personal preferences. The S A M has several adaptation
possibilities:

It can make a choice between different available networks
based on the available bandwidth, bandwidth guarantees,
and cost.
It can compress, convert, transcode, or reduce the multime-
dia objects prior to transmission.
For example, an image is supposed to be transmitted to a

terminal with a black and white screen. In this case color infor-
mation can be eliminated by the mobility gateway. Other rea-
sons for adaptation can arise, for example, from the available
network bandwidth and the cost involved. These decisions are
made by the QoS trader within the SAM.

IEEE Personal Communications April 1998 35

APPENDIX Z

Microsoft Corp. Exhibit 1009

filtering phase the static properties of t he new plan a re
matched against the user preferences and terminal require-
ments. Small devices, for instance, might have implemented
only one or two decompression methods. The plan filtering
phase will only select plans suitable for this particular device.

Subsequently, the QoS trader predicts the prospective out-
come of the current plan using knowledge provided by the
multimedia conversion (MMC) routines. MMC works online.
It offers lookup functions that enable it to estimate conversion
time, and execute conversions if appropriate. MMC provides
some general-purpose methods for image manipulation, such
as conversion of images to other image formats by means of
scaling, graining, and color reductions.

Two methods that support the QoS prediction and filtering
phases of the QoS trader, by estimating the required conver-
sion time and the size of the reduced objects, are important
for the SAM, which checks whether varying the reduction R
of an object x can fulfill Eq. 1.

TT,,,(x$?) is the transmission time of an object x at band-
width B (b/s), T R ~ ~ , ~ ~ (X , R) is the estimated reduction time of
the original object x at reduction R. Tseek(x) is the time used
to estimate the reduction time of an object x to the requested
file size (planning process). T M ~ ~ ~ ~ ~ ~ (stored in the profile
under u s e r . image .maxWaitTime) is a user preference
parameter which defines the maximal time the mobile client
wants to wait for an image. If T M ~ w ~ ~ ~ > T T ~ ~ ~ ~ (x ~ ~ ~ , B) , there
is no need to reduce the file size, and the SAM transmits the
original image.

A set of suitable conversion commands have been select-
ed for our purpose. For images we use scaling, reducing col-
ors, dithering, and converting to black and white to reduce
image sizes. Some formats like JPEG allow conversion by
scaling and reducing the overall quality. All those com-
mands are “lossy”; they reduce the quality of an image and
hence reduce the file size. To obtain a table of relative val-

Figure 5. The QoS tradingprocess.

ues for conversion predictions we have measured a set of
images with all available conversion commands.

Using this knowledge the trader can estimate the QoS
parameters resulting from converting and transmitting the
converted multimedia object (e.g., the overall processing
time). These predicted QoS parameters are matched against
the filters derived from the profile setting. During the plan
selection phase a preference index is computed for each plan
which has passed the filters. The used preference function is
selected according to a user-defined criterion (e.g., the
smallest resulting object size, the shortest time required for
converting and transmitting the result, the best quality
remaining).

When the planning is finished, the best plan with the high-
est preference index is executed. The resulting object is either
returned to the application (local trading) or stored locally
and will be marshaled for transmission.

Table 4. Subset of multimedia object conversion API

Example - The plan generation phase generated
the plan “SCF(0.5); TRA; SCF(2),” which defines
a scaling operation by the factor of 0.5, the trans-
fer of the image, and the rescaling of the image
to the original size during the pos tTrad ing ()
call on the mobile terminal. During the plan filter-
ing phase this plan is compared with user prefer-
ences stored in the profile. For example, the
parameter user.image.reso1utionReduction
defines whether or not the user accepts resolu-
tion reductions (scaling). If the user does not
allow scaling, the filter derived from that value
will prevent the above plan to be selected.

During the QoS prediction phase, the time
required to execute the above plan will be com-
puted by predicting the time required for the
conversion SCF (0.5), for the transmission of the
reduced image, and for the reconversion (SCF
(2)) on the mobile device. The time and resulting
image size for both conversions are computed by
using average results derived from former conver-
sions which were initially performed offline. Fur-
thermore, the computing power of the mobile
device is taken into account by using relative
computing indices from the terminal profile for
this device. In addition, the time to transfer the
original image and a user-specific quality factor
are computed.

During the QoS filtering phase, these results
are used in Eq. 1 to check whether the user’s

36 IEEE Personal Communications April 1998

APPENDIX Z

Microsoft Corp. Exhibit 1009

Figure 6. Measurements of a MASE-supported browser over GSM.

requirement maxTransmissionTime is fulfilled and whether
the reduction will result in a faster transmission. If the plan is
still valid, a preference index will be computed. Several pref-
erence functions are possible, ranging from a selection based
purely on the processing time to a mixture of processing time
and the quality of the reduced image. Finally, the plan with
the best preference index will be executed.

Figure 6 shows the achieved measurements over the
actual cellular system, GSM, that has data transport capabil-
ities of up to 9600 bls. The results show the advantage of
the QoS trading and multimedia conversion. Depending on
the automatically chosen conversion method the interaction
of CM, SAM, and UAL achieve up to 70 percent accelera-
tion of the HTTP transmission time. Table 4 represents a
small subset of the SAM API that application programmers
may use to realize conversions offline, or even during online
connections.

Future Work
Future work will deal with the downsizing of the current
architecture and implementation to fit the requirements of
small mobile devices (e.g., PDAs and PICs), which usually
have only limited memory and CPU power. The implementa-
tion of the Location Manager will be extended by supporting
more input devices, such as an interface to a DECT system
which holds information concerning the actual intenvorking
unit. Further development will be done on a Session Manager
that provides a higher abstraction of connections than TCP/IP
does. The Session Manager controls the ongoing communica-

tion sessions and allows scheduling of different MASE opera-
tions like prefetching and caching. Results of the project’s
field trials will be used to improve the current status.

Conclusions
The data services of future third-generation mobile telecommu-
nication systems play a critical role in facilitating new and inno-
vative mobile-aware applications and services. UMTS will define
a set of services enabling seamless roaming between different
networks, QoS monitoring, and bandwidth on demand. In this
article we have introduced the OnTheMove approach, which
employs middleware to support the special needs of mobile-
aware applications. This middleware not only allows the devel-
opment of mobile-aware applications in an easy way, it also
shields today’s application developer from the ongoing devel-
opments toward UMTS. The MASE mobile middleware will
pave the road to future mobile telecommunication systems.

Acknowledgments
The authors would like to acknowledge all contributing part-
ners of the OnTheMove project [SI which is sponsored par-
tially by the European Commission in the ACTS program
under contract AC034. The project participants are Ericsson
Radio Systems AB, T-Mobil GmbH, Ericsson Eurolab GmbH,
Siemens AG, Rheinisch-Westfalische Technische Hochschule
Aachen (RWTH), IBM France, Tecsi, BT, Bonnier Business
Press, Royal Institute of Technology (KTH), Sony Interna-
tional (Europe) GmbH, Burda Com Media Solutions GmbH,
Centre for Wireless Communications (CWC), and Iona.

IEEE Personal Communications April 1998 37

APPENDIX Z

Microsoft Corp. Exhibit 1009

References
[I] EC DG XIII/B (1/3/96), "UMTS Task Force Final Report," Brussels,Belgium, ACTS

InfoWin, http://www.infowin,org/ACTS/.
[2] J. Schwarz da Silva e t al., "Evolut ion Towards UMTS," ACTS

InfoWin,http://www.infowin.org/ACTS/IENM/CONCERTATlON/MOBl LITY/
umts0.htm.

[31 M. H. Callendar, Ed., /€E€ Pers. Commun., Special Issue on International
Mobile Telecommunications-2000: Standards Efforts o f the ITU, vol. 4,
no. 4, Aug. 1997.

[4] J. Meggers and A. S . Park, "Mobile Middleware: Additional Functionality
t o Cover Wireless Terminals," froc. 3rd /nt% Wkshp. Mobile Multimedia
Commun. (MoMuC-3), Princeton, NJ, Sept. 1996; D. J. Goodman and D.
Raychaudhuri, Eds., Mobile Multimedia Communications, Plenum, 1997,

[51 J. Meggers, A. S. Park, and R. Ludwig, "Roaming between GSM and
Wireless LAN," ACTS Mobile Commun. Summit, Granada, Spain, Nov.

161 U.S. Coast Guard Navigation center, "GPS, DGPS, LORAN, OMEGA, LNM,"

171 WaveLAN Wireless Computing, http://www.wavelan.com.
[SI OnTheMove home page, http://www.sics.se/-onthemove.

pp. 151-57.

1996, pp. 828-34.

http://www.navcen.uscg.mil/gps/gps.htm.

Bioqraphies - .
BIRGIT KRELLER (birgit.kreller@mchp.siemens.de) received her Dipl.-Inform.
(Master's in computer science) from the University of Magdeburg, Ger-
many, in 1996 on the subject o f mobile agents for load balancing in large
telecommunication systems. She joined the Siemens Corporate Research
and Development Department in March 1996, where she is working in the
ACTS project OnTheMove. Her current research interests include mobile
computing architectures, wireless networks, geographical positioning sys-
tems for mobile devices, and mobile agents.

ANTHONY SANG-BUM PARK received his Dipl.-Inform. from Aachen University of
Technology (RWTH), Germany, in 1995, previously studying at the University
of Koblenz. From 1989 t o 1992 he was with Philips Communication Industry

AG in quality control, and with Parsytec Computer GmbH focusing on mas-
sive parallel computing. Since 1995 he has been a researcher and Ph.D. can-
didate at RWTH, Department o f Computer Science, responsible for agent
technology research projects and working in ACTS projects. Research topics
are mobile computing and personal multimedia communications. Activities
concerning distributed systems and middleware architectures are mainly in
the area of mobile agent technology.

JENS MEGGERS received his Dipl.-Inform. i computer science from RWTH,
Germany, in 1995. He joined the D e p a r t A n t o f Computer Science of the
same university as a Ph.D. candidate in computer science in 1995. He par-
ticipates in various internal and external research activities, including the
ACTS project OnTheMove. His main research focus lies in QoS supporting
network and transport protocols for mobile multimedia communications.

GUNNAR FORSGREN received his 6.S.E.E degree from Harnosand Gymnasium,
Sweden, in 1978 and has been with Ericsson in various R&D positions since
1980. His research interests include information/communication services on
wireless devices and their interaction with agent services.

ERNO KOVACS received his Dipl.-lnform.from the University of Kaiserslautern,
Germany in 1991. During 1986-1990 he worked at IBM's European Network-
ing Centre (ENC) in various research projects concerning multimedia e-mail,
multimedia documents, and distributed hypermedia systems. From 1991 t o
1996 he worked at the Institute of Parallel and Distributed High-Performance
Systems (IPVR) of the University of Stuttgart. He conducted several projects in
the area of middleware for distributed systems. In 1997 he joined Sony's
Research and Development Department in Stuttgart and worked in the ACTS
project OnTheMove. His current research interests include mobile multimedia,
quality-of-service trading, and mobile agent systems.

MICHAEL ROSINUS received his Dipl.-Inform. at the Universitat des Saarlandes,
Germany, in 1996 and worked at the German Research Center for Artificial
Intelligence (DFKI) in the area of intelligent agents. In May 1996 he joined
the Sony Research and Development Department where he i s working in
the OnTheMove project. His current research interests include mobile and
intelligent agents, multimedia data processing, and wireless networks.

38 IEEE Personal Communications * April 1998

APPENDIX Z

Microsoft Corp. Exhibit 1009

http://www.infowin,org/ACTS
http://www.wavelan.com
http://www.sics.se/-onthemove
http://www.navcen.uscg.mil/gps/gps.htm

Real-time synthetic vision cockpit display for general aviation

Andrew J. Hansen, W. Garth Smith, and Richard M. Rybacki

MetaVR, Inc.
http://www.metavr.com1

ABSTRACT
Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic
vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual
image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area
Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline
GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically
specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95%positioning, sub degree pointing),
high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational
awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight.

This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the
navigation/display interface, real-time 60Hz rendering of terrain with multiple levels of detail under demand paging, and
construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings
ofthe navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as
well as synchronized multiple display channels with different views from the same flight. PC-based solutions which
integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general
aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

Keywords: situational awareness, real-time visualization, correlated terrain databases, geographically specific satellite
imagery

1. JNrRODUCTION
A remarkable transition in state-of-the-art image generation is taking place as single purpose, specialized rendering hardware
is being replaced with off the shelf components driven by PC-based processors. The dramatic performance improvements
realized by the PC graphics industry in the last two years has leveraged the broad base of innovation across the industry. The
rich mix of focused development efforts in chip design, bus architecture, software driver standards, and processor technology
feeds the continuous improvement in PC graphics capability that is reaching the upper echelons of visualization-simulation
(VizSim) performance standards. This paper focuses on the underlying capabilities needed to render the virtual environment
in a mobile platform such as an aircraft. Primarily these are the image generator hardware and software implementation and
the generation ofa three-dimensional database ofthe environment including terrain, aircraft, and cultural features. It does not
address symbology and information content that should be displayed and interested readers are referred to [1,2].

These low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering both
moving map displays and synthetic out-the-window views of a moving vehicle with an extremely high degree of realism. By
coupling with a GPS navigation/attitude payload the virtual image can be fully correlated to the physical world in real time.
In particular, differential GPS services such as the FAA's Wide Area Augmentation System (WAAS) [4] will provide users
with highly accurate 3D navigation information. The WAAS position solution is specified to have accuracy better than 7.5m
95% and a guaranteed (99.99999%) confidence interval [5]. Prototype implementations of WAAS are achieving nominal
accuracy of about 1-2m 1-sigma in all three dimensions [6]. Carrier phase GPS based attitude heading references system
(AHRS) prototypes are also being implemented [7,8,9] which can provide sub degree accuracy in all three axes,
roll/pitch/yaw. Integration of accurate positionlvelocity/attitude state information and a highly capable rendering engine
enables synthetic image generation of the physical scene.

1
Correspondence: Email: {ahansen,wgsmith,rmrybacki}metavr.com; Telephone: (617)739-2667

Part of the SPIE Conference on Enhanced and Synthetic Vision 1999

70 Orlando, Florida • April 1999 SPIE Vol. 3691 • 0277-786X199/$1O.0O

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

The underlying resource that ties these two pieces together is an accurate and reliable geographic database that describes the
physical environment. It must be accessed efficiently to serve the real time application but also have the fidelity to enhance
rather than detract from the pilot's situational awareness. Our solution incorporates geographically specific satellite imagery
and cultural features into an efficient terrain database. The satellite imagery provides contextual information for situational
awareness while specific cultural features such as runways can be inserted as additional objects with higher resolution and
special properties. For run time flexibility, the resulting database can be stored in memory or demand paged off of a storage
device using a "look ahead" algorithm.. Real time performance for extremely high-resolution terrain (lOOm post) and
imagery (5m) is supported using hierarchical level of detail switching. In addition the render engine has variable field of
view and far horizon clipping plane parameters so that the necessary display refresh rates can be maintained. The solution
we describe below borrows heavily from the visual simulation concepts developed in distributed interactive simulation (DIS)
research with the new twist that high fidelity high performance can be achieved on PC platforms. The economies of scale in
this arena provide low cost systems and the impetus to move toward embedded solutions. While all of the features currently
supported by 3D VizSim applications may not be appropriate in the cockpit, we identify them here as candidates for use and
leave their designation to the community at large.

The remainder of this paper first touches briefly on the linkage of positionlvelocity/attitude state information and the virtual
environment in the computer. We then focus on the visualization hardware and the innovations in the graphics industry
which now provide the power to render one or more 3D out-the-window scenes or 2D top down moving maps (so called plan
view displays). The next section focuses on our database construction process, database storage requirements, and its
correlation to truth. We close with some comments on the opportunity to extend the cockpit display to a networked solution
where, given a low bandwidth communication channel, information from multiple entities could be included in the display.
In this mode the display could provide additional situational awareness vis-a-vis TCAS I/Il systems that have a cockpit
display oftraffic information (CDTI).

2. LINKING AfflCRAIT STATE TO VIRTUAL ENVIRONMENT

2.1 Navigation: Position, Velocity, and Attitude
In order to place the virtual aircraft at the appropriate position and orientation in the virtual environment, sensor system
outputs of the aircraft's position, velocity, and attitude must be available to the graphical render engine in real time.
Differential GPS navigation and attitude determination is a low cost option for obtaining these states in the aircraft. The
geographical extents covered in aviation applications are well served by wide area differential GPS (WADGPS) systems for
real time positioning. Likewise the global coverage of GPS allows a user with multiple antennas to compute an attitude
solution at any position within aviation capability.

The FAA is specifically developing the Wide Area Augmentation System (WAAS) for seamless, high integrity navigation in
all phases of flight. Successful prototype signal-in-space flight tests have already been implemented and carried out by the
FAA Technical Center with Stanford Telecommunications [13] and Stanford University [5]. The WAAS uses a
geosynchronous satellite broadcast channel for continental scale coverage and high data link availability. In cooperation with
the FAA and industrial representatives, RTCA, Inc. has written the WAAS Minimum Operational Performance Standards
[12] (WAAS MOPS) to specify the WAAS signal structure and the application of the differential corrections to stand alone
GPS measurements. The WAAS navigation payload includes a GPS receiver capable of receiving an additional 250 bps
WAAS data stream from a geosynchronous satellite. The WAAS message stream is unpacked to form differential
corrections for satellite clock and ephemeris errors as well as a differential ionospheric correction. These corrections are then
applied to the standard GPS measurements for each satellite in view. The differentially corrected signals form the basis for
the navigation solution and its associated confidence interval. This navigation solution, which contains both position and
velocity, is fed directly to the image generator in the form ofWGS84 coordinates.

Synthetic vision applications are very sensitive to errors in attitude determination because the entire field of view is
controlled by the orientation of the viewpoint. Low cost Al-IRS based on carrier phase GPS are now incorporating rate or
inertial aiding [7,8] to provide the accuracy and noise performance necessary to drive cockpit displays. Strapdown AHRSs
are also shrinking the antenna baselines needed to achieve sub degree accuracy in all three directions [9]. The resulting
attitude solution in body coordinates can be input directly to the image generator. Adequate systems require an update rate
on navigation and attitude of at least 10 Hz [1] in order to reach suspension of disbelief for the operator. Of course the faster
the better, but in any case if the sensor inputs do not update at the frame rate of the display system a model of theaircraft is
propagated forward to update the synthetic vision viewpoint to maintain the 60 Hz visual update rate.

71

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

72

In flight, updating the aircraft model which must reside in the same coordinate system as the terrain database requires a
transformation of the navigation solution from WGS84 coordinates to the local coordinates of the database. This does
require some additional but necessary computation. The virtual environment database needs sufficient fidelity to fully

correlate the sensor states with the terrain in the rendered image. Spheroidal coordinate systems such as WGS84 cannot
provide that level of fidelity and the database must use local coordinate system based on a geoid.

2.1 Distributed Interactive Simulation Protocol
As briefly mentioned above the sensor states may need to be propagated forward some number of epochs as the render engine
my update faster than the navigation and attitude updates are available. Our implementation abstracts the input linkage from
the sensor systems to the render engine. We utilize the IEEE standardized [14} Distributed Interactive Simulation (DIS)
protocol for inserting new sensor updates into the virtual environment. This DIS protocol exists at the application layer of
the communications stack. It is built upon User Datagram Protocol (UDP) packets called Protocol Data Units (PDUs).
These PDUs are well defined in the DIS standard and include necessary elements such as kinematic model parameters as well
as graphical information in the form oftexture and polygonal models.

One added benefit to the DIS approach is that multiple views from the same entity can be added simply by plugging in
another render engine. Mother, and we believe more powerful benefit, is that multiple entities can appear in the same virtual
environment exactly as they do in the physical environment. An entire suite of functionality including multicasting, loss
tolerance, forward state prediction, and communication protocol is already defined and implemented by the VizSim
community. DIS is abstracted from the physical layer so that the network could be a high speed wired intranet or just as
easily a low bandwidth wireless LAN so far as the application is concerned. In fact, DIS is expressly designed for a
heterogeneous network where some paths have much greater bandwidth than others. This flexibility has direct benefits for
future applications that include multiple entities (other air traffic).

An additional feature ofthe DIS network solution is the ability to log PDU packets being transmitted. By logging the state
information in PDU form, the entire flight can be captured for playback. This is particularly useful for experimental or

Synthetic image (jenerator
- DIS Networked interface
- LOD Switching
- Demand Paging

Sateilite imagery

Flat Panel Screen

3D Out-the-window
or

21) Plan View Display

Figure 1. The image generator ingests the 3D-database and real time data from position/attitude sensors to
determine the viewpoint for the synthetic scene and pushed onto graphics card for rendering.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

testing purposes in early development of operational systems to replay and view from any vantage point using a six-degree-
of-freedom pointing device.

3. IMAGE GENERATION
The image generator is the core of the cockpit display. As shown in Figure 1 it ingests the terrain database and aircraft
models and accepts input from the navigation and attitude payloads. One or more graphics engines slaved to the image
generator can then render images to the screen with one viewpoint for each engine. The baseline mode is a single 3D out-the-
window view out the front ofthe aircraft showing the terrain and cultural features in the environment. Adding an additional
graphics engine or switching modes to the plan view display provides the pilot with a top down moving map. This approach
is very appealing as it can immediately utilize advances in hardware performance offered by the industry as it continues to
improve.

The image generator is currently hosted on a PC platform. It requires a graphics card that supports the DirectX API and can
utilize either the PCI or AGP bus as the graphics pipeline. A host platform consisting of a 450MHz Pentium II processor
with 512Mb of RAM and a Canopus Spectra 2500 with 16Mb of VRAM consistently maintains 60Hz frame rates for fields
of view covering a 50 km radius at velocities up to Mach 3. Note that these frame rates are significantly higher than the
update rates that the navigationlattitude sensors support. An important consideration in the software development of the
image generator was the graceful degradation in performance as either the host platform is scaled back or the fidelity of the
database is scaled up. We have already implemented laptop PCs rendering 3D out-the-window views ofthe virtual world.

DirectX and OpenGL capable graphics cards are designed to render polygonal shapes as triangular patches in hardware.
Textures may also be stored in memory and applied to these polygons as part of the hardware processing of the render
engine. The image generator is responsible for pushing the textures up into video memory and then pipelining the polygonal
shapes from the terrain database up to the graphics card using in our case either the PCI or AGP bus under the DirectX
protocol. As such there is a balance that needs to be struck to ensure that the central processor and the graphics chip set are
reasonably well matched in performance. The CPU must index and arrange the terrain polygons based on the current aircraft
state and the graphics card is responsible for rendering the textured polygons.

The importance of the level of detail (LOD) switching and demand paging now becomes clear. LOD switching aids in
balancing the load between the CPU and graphics card. If the current field of view has too many textured polygons for the
graphics card to handle then the CPU can switch some of the far field regions to lower resolution and thereby reduce the
number of polygons being rendered. This LOD switching is an improvement over the simplest form of switching which is
the insertion of a clipping plane that limits the field of view. To accomplish LOD switching the image generator and
database must be intimately coupled as not only does the polygon resolution switch but also the textures applied to them. For
platforms that have memory limitations the image generator can invoke demand paging of regions of the database that are
coming into the field of view. Knowing velocity states allows the image generator to look ahead in the database to see if
upcoming regions are loaded into memory and ingest them in the event that they are not.

The core process in the image generator is to continuously update the viewpoint of the virtual aircraft at each epoch. Under
the DIS paradigm the aircraft state is propagated forward from the last PDU update. In the host platform this is nominally
never longer than 20 msec. The local region of the terrain database which is stored in memory is then interrogated to
assemble the textured polygons for pipelining up to the graphics renderer. If other entities besides the host aircraft are in
view they are also updated and their virtual representation is pushed up the graphics pipeline.

There are many other features available from ViZSim applications that are probably not useful in the cockpit such as variable
visible spectrum, DirectSound output, atmospheric emulation of fog and clouds, and six degree of freedom input device
compatibility. However, the existence of these features demonstrates the head room available in this implementation which
can be converted into other more pertinent features such as situational awareness symbology, tunnel-in-the-sky guidance [2],
and traffic information.

Neglecting the navigation and attitude platforms, the hardware necessary for the image generator is currently on the order of
$4000. Once available, projections for WAAS and AHRS system prices are in the ones of thousands of dollars. This places
hardware costs for first generation integrated cockpit displays at around $lO-15k plus installation. Our expectation on cost
trends is that they would follow the precedence set in the rest of the ViZSim market: continual improvement in the
price/performance point at market. There are also certification and recurring costs associated with any avionics systems
which we do not have sufficient experience to comment on with the exception of generating and updating the 3D databases.

73

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

Because of the proliferation of the underlying resources (elevation data and satellite imagery) and competing utilities for
database construction we also expect the database generation costs to decline. The ultimate goal for a cockpit display is the
integration ofthe attitude/navigation/renderer into a single embedded system which could drive a flat panel display

4. TERRAIN AND IMAGERY RESOURCES
Terrain information is typically available in raw form as digital elevation maps (DEMs) or digital terrain elevation data
(DTED) at various levels of resolution. In order to create a terrain database that can be rendered on a computer this
information must be converted into polygonal surfaces that represent the surface of the terrain. These polygonal elements are
well suited to image generation as the industry has optimized graphics chip sets to handle them in hardware. This optimized
hardware is now readily available on PC platforms. One of the most important considerations in this conversion is the need
for extreme efficiency in both the size and accessibility of the resulting database so that the image generator can ingest and
render the virtual scene. For even medium fidelity terrain information, say 125m, post, and a reasonable coverage area for
aviation, say 5° x 5° cells, the raw data for elevation information alone can run into the hundreds of megabytes in size. We
defer the discussion of our conversion process and the resulting database to the next section.

Mother important part of generating a convincing image for the user is the texture overlay on the terrain surface. Our
approach is to apply geographically specific satellite imagery on the terrain polygons. By overlaying real imagery that is
coordinated directly to the terrain data, the scene that is eventually rendered by the visualization engine has a very high
degree ofrealism. The sources for satellite imagery are increasing rapidly and we anticipate that the vast majority ifnot all of
the national air space (NAS) will be covered and in fact frequently and continuously renewed with world wide coverage soon
to follow. Even at this time custom imagery for any particular location can be ordered directly off of the World Wide Web
from commercial vendors.

Our secondary approach to overlays follows the standard approach of texture mapping each surface. Here synthetic textures
are created and used in place of the satellite imagery where it is not available. In either case, real imagery or synthetic
textures, rendering of terrain polygons is treated exactly the same by the render engine as the database is responsible for
arbitrating the virtual world including the overlays.

There are several sources ofelevation maps in digital form. NIMA outputs Digital Terrain Elevation Data (DIED) at various
levels of resolution, typically only the lowest level is openly available. The USGS supplies elevation data in the form of
Digital Elevation Maps (DEMs) which can be purchased on the web. ERDAS Imagine, CTDB, and other formats commonly
used for GIS applications are also available commercially. We utilize primarily DIED, CTDB, and soon DEM data formats
as the raw elevation resource for constructing the terrain database.

Satellite an aerial imagery is the other commodity we rely on for generating high fidelity databases. The commercial
availability ofhigh-resolution geographically specific imagery is growing. Individual providers are already offering photo to
order imagery purchases over the web. We have already worked with products from hnageLinks in the lO-50m range.
Although not openiy available classified customers also have access to high resolution (im) satellite imagery from NIMA.
The important and necessary condition of the imagery is that it be geographically specific, that is ortho-rectified and pin-
pointed to a reference in a standard coordinate system. This real imagery can then be draped onto the terrain surface and
replace older approaches using synthetic textures.

For application specific information such as that needed for aviation, cultural features may be inserted into the database as
explicit objects. An example is the runway and markings at a specific airport. These types of features can be created in a
number of different formats. The industry standard is the OpenFlight format from MultiGen, Inc. but many other new and
heritage formats such as VMAP, AGRD formats. The importance ofthe OpenFlight format is that it also supports models for
dynamic entities such as aircraft. We invoke the OpenFlight format to ingest cultural features generated from graphics and
modeling tools available in the industry as well as the ARDG format for cultural features on the plan view display. Although
some models are already available commercially, most of the creation of cultural features and object models is carried out on
a specific project basis. We see this approach eventually converging to a pool of models openly available to the community.

74

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

5. DATABASE CONSTRUCTION
The elegance of our terrain database construction which uses geographically specific imagery is that it provides a real world
source for constructing cultural features such as buildings, road networks, vegetation, bridges, even power grids if the image
resolution is high enough. We are currently developing a palette base utility for constructing 3D terrain databases that
integrate these three elements, digital elevation maps, geographically specific imagery, and automated cultural feature
generation into one umbrella application. This utility will be capable of directly feeding the image generator during database
design for viewing the construction on the fly. As such it 'will provide a suitable facility for mission planning, mission
briefing, and mission rehearsal. The current database construction utility functions as a wizard type application which allows
the user to enter raw data resource file names and then automatically generates the resulting database.

The three ftindamental components of our database construction are the ingest of the digital elevation information, ingest of
bitmap based geographically specific imagery, recognition and conversion of imagery details into cultural features (not yet
available), and export to any of four database formats: MDB, MDX (both MetaVR specific), CTDB, and OpenFlight. To
support the highest levels of image rendering, the MDX database format supports hierarchical levels of detail with switching
controlled by range thresholds on both terrain and textures. This allows the central processor in the image generator to match
the rendering capabilities of the highest end graphics cards that have l8OMpixel fill rates. The database format also allows
terrain information to be loaded by the render engine incrementally using look-ahead demand paging.

The most important consideration is full correlation between entity state coordinates and the terrain database. As noted by
Barrows [2] and Ourston [10], lack of correlation in some current implementations is unacceptable, particularly in exercises
as the virtual scene is not convincing and detracts heavily from the qualitative performance of the simulation. MetaVR's

75

Figure 2. The database construction process assembles a 3D environmental database suitable for input to the image
generator from three basic resources: digital elevation data, geospecific imagery, and designated cultural features.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

76

MDB and MDX database formats are fully correlated terrain databases that eliminate any such anomalous behavior. By
using a local geoid coordinate system and transforming the WGS84 coordinate aircraft states in the image generator the
entities are guaranteed to be consistent with the terrain. This of course does not mitigate errors due to the level of resolution
for the terrain elevation data.

The raw elevation data is tessellated into triangular patches [11] using a Delaunay triangulation where the vertices of the
triangluation are the locations of the elevation data in the local coordinate system. This is a fast routine and is computed
repeatedly on sub sampled intervals to generate various levels of detail. The geographically specific imagery is then cut into
patches corresponding to the levels and indexed to the appropriate triangular surfaces.

The incorporation ofcultural features is currently supported on an internal format (MetaVR CLT). Development of a VMAP
capable module is in process to support interoperable ingest/export of cultural features. This will provide a clear path for an
imagery to cultural feature format that is sharable. We envision the downstream capability, given adequate imagery, to
professionally construct and modify scenarios for training and planning.

The 3D virtual environment database also contains the models of physical entities, e.g. aircraft. These are critical for the
image generator as they provide the mechanism by which the virtual scene can be propagated at very high rates (60 Hz) for
rendering to the screen. At each epoch, if new state information is not available from the navigation or attitude subsystem,
the states are propagated according to the properties specified in the aircraft model. This of course leads to models which are
specific to the type of aircraft being simulated, e.g. Cessna 152 versus Boeing 737, in order to capture the pertinent physical
properties. The inclusion of such models is particularly important if one desires to render other aircraft in the virtual scene
as we describe in the next section.

The following four figures depict the underlying terrain database and its full rendering with the satellite imagery overlay.
Figures 3 and 4 show a relatively flat region with the satellite imagery capturing the road network and surrounding buildings.
The contextual information in the satellite imagery proiides very strong situational awareness that is not available in texture
mapping and extremely user intensive to design by hand in graphical models. The pair of images in Figure 5 is the wire frame
and full imagery of a coastal region in Alaska, Prince William Sound, and demonstrate the LOD capability. The
geographically specific satellite imagery is 25m at highest resolution. Figure 6 is a screen capture of the 2D plan view
display mode ofthe graphical render engine. It is most useful in applications that require a moving map display with a great
deal ofcultural information and possibly other traffic information for situational awareness.

6. POTENTIAL FORCOLLISION AVOIDANCE APPLICATIONS
The network capable image generator described in Sections 3 and 4 provides the possibility ofdisplaying other entities on the
cockpit display to realize a CDTI. That is, given a low bandwidth communications channel upon which other aircraft could
transmit time tagged state information the display could render those aircraft on the display. The DIS protocol mentioned
above is well suited for such an application because it codifies the packet format and content necessary to propagate entities
in the virtual environment. Indeed this was its designated purpose in simulated training applications for the U.S. military
where it originated.

In the current application each aircraft would broadcast its identity, type, and state information over a given communication
channel, eventually say the automatic dependent surveillance ADS-B data link. Gazit [1 1] gives general overview of this
type of improved aircraft tracking and avoidance as well as the data link implications. The image generator would have an
internal model of all other aircraft types or at least the capability to request and incorporate such a model. An instantiation of
any one of these models may be propagated by the image generator for each unique aircraft broadcasting state information
intermittently in the local region. The high level offidelity already available in aircraft models reduces the bandwidth burden
ofupdating other entities in the virtual environment. Unlike the host aircraft whose state information must be tightly coupled
to the image generator, other traffic would require much lower update rates to realistically render their modeled entities.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

Figure 4. Geographically specific satellite imagery is applied to the terrain polygons in patches. Multiple patch sizes
are encoded into the database for varvng levels of detaiL This image is a BIWscreen capture from the real time
image generator.

77

Figure 3. The wire frame image of the underlying terrain polygons shows the varying levels of detail that are stored
within the virtual environment database. This image is a screen capture from the real time image generator.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

78

Figure 5. Terrain with extreme amounts of structure can be accommodated with high fidelity. The bottom
graphic is a wire frame image of the Alaskan coastline. On the top is the fully rendered scene with imagery.

St S..

55

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

7. CONCLUSIONS
The integration of fully capable low-cost image generators, high fidelity terrain databases, and differential GPS
navigation/attitude determination provides a viable path to the production of 3D glass cockpit displays for aviation
applications, and general aviation in particular. The end goal of such a system is ultimately to aid the pilot by providing
enhanced situational awareness. We have described here the basic components of the underlying system: low cost/high
accuracy navigation and attitude sensors that are reliable, ftilly capable image generators that degrade gracefully, and high
fidelity virtual environment databases that have complete correlation with the navigation system.

In the fullness of time the FAA's WAAS will provide high accuracy navigation solution with integrity to all equipped
aircraft. The continuous, incremental improvement in PC graphics capability will, we predict, push this type of prototype
implementation into the realm of an embedded system. At that point the economies of scale would again dramatically reduce
the cost of an integrated solution.

79

Figure 6. Top down views of additional cultural features are also possible using the plan view display mode. This
image displays a moving map that is shifting underneath the aircraft's viewpoint.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

08

c661 'UJ 'sJu!&Ia 3LUoipo!1 pu IEO!Jp31a
Jo 'U!1'I 'E8LI PP"S HE1II '?°!P'd UOUJ3U11A4 S3JX[SKI,, '331 c1

9661 ItU3dS '96 SdD NOl 'H1SN tJ SjflSJ ISO1 WS jIUB 14!iL, 'i 3 'S '3j.IOOd N
L661 JIUAON '.3111 'VDflI ' UI4D 6Z-OUN3flI 'uo•qvJuauL8nvaI ap,uaisefg U!UOiJ!SOj

vqo Xuis juawLjnb auJoq4JoJspJvpuvJg aauvuuoftaj puozw.iadrj wnuizuzpty '6cr I!3dS VJflI I 9661 'Ic!s13A!un p1oJus 's!s3t11 U4d SdrD XULS[) adUVP!0tV UOZSZflO3 put, /bJJZJ/ ')J 'IZ j . 1661 '# 'I' 'aJVeKJfOg U! SUV4p/ 'UOI3JU 4SUI iU1Wj3J &IUIJOJUO3 11(3,, 'UA31 d P' 'V 11
8661 4°W1 'doqspo AjiqJ3doiq

uop,tjnuq 'suqwoj IP!A!PtI I'WA IEP!Jp.Iv pU A!1 UEJUJ q3iM AjOAU SflSSJ,, '33O)J pu UOSJfl(ØJ
8661 °"S '86SdD

NOT 'SWSAS pni upsq .IO14S Enjn JoJ sJoJJ sqd iuuu jo uoiqj ui jj,, 'jpMo I ')J 'pmMA}j 6
866T judy '86 SMV1d EI3I uo!3giAg

(SIF{Y) wsAs uijai &upq opn Jp.uySd9 SO3-MOj y,, 'jIMod pu 'pitr 'j 'j 'ioqqrnz-oiq
6661 judy 'uoS!A !4W'S PU 'I69 'E1MSfi su;po.ij

'SUOi3!jdd AS/AR OJ (siiiv) uis&s ouaijai &npq pu pnp IP"/SdD SO3-MO',, 'H ''°I L
8661 iU1dS '86SdD NOl 'SdOV1 SVVM 0J UOi1Enb p2iu psodoid y,, 'usuj y pu 'u d 'L ''4iM 9

8661 t1S '86SdD NOl 'E)IsBW "! '!P"I P l4OBOJddE JEiOJ! SVVA J UO!t1JSUOUIU,, 'I i 'D 'dwoj ç
9661 '8# 'I'S 'i?I at Jo suzpaaaoj 'W.4S &RUO!VSOd jEOj) O!{1JO UOLWV1LU1W P!M 'i i 'd 'U •j7

'866! LtUdS '86SdO NO! 'U!I.1
SflOUiEUflOtU U UOflIA jwu8 ioj sjdsip !dpoo ci-,, 'II9MOd U PU 'O&I['d 'S&qUUOf '3 'SMOi1 ' ')I '11V 'E

'966! ciW3dS '96 SdO NO! 'JWJ iqq pioquo
su Ajds!p U-E :s3qoto1dd1 p3ss!ui pu s3qooJdd 9A1T1 uIAjd,, '!IMod 'f pui 'uosuDpBd a '&a d 'y 'SM0JJEH

L66! UIS 'L6SdO NO! 'J31I 4Jj 1OJ 1jdsip js-q!-u!
-JOUUfl4 01 S1UUIA0JdUII Pug t12P jU0!NJd,, 'IjOMOd 'f j)U 'U0Sw)1md 'H '3&I['d '101jv '{ "y 'SMOJJI3H

saaiaia'a 8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2015 Terms of Use: http://spiedl.org/terms

APPENDIX AA

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX BB

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

APPENDIX CC

Microsoft Corp. Exhibit 1009

Appendix DD - Claim Chart Showing Teachings of Fuller, Hornbacker and
Lawless Pertinent to Challenged Claims of U.S. Patent No. 7,908,343

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

1.Preamble: A method of
retrieving large-scale images
over network communications
channels for display on a limited
communication bandwidth
computer device, said method
comprising:

Fuller at Abstract; 15, 18-19, 21, 25, Fig. 1.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

1.A: issuing, from a limited
communication bandwidth
computer device to a remote
computer, a request for an update
data parcel

Fuller at Abstract, 15, 17, 18, 25, Figs. 1, 3.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

1.B: wherein the update data
parcel is selected based on an
operator controlled image
viewpoint on the computer
device relative to a
predetermined image and

Fuller at 17-19, Figs. 3-5.

Hornbacker at 5:16-25; 7:11-25; 13:11-14:16;
Fig. 2.

1.C: the update data parcel
contains data that is used to
generate a display on the limited
communication bandwidth
computer device;

Fuller at 18.

Hornbacker at Abstract; 8:7-15.

1.D: processing, on the remote
computer, source image data to
obtain a series K1-N of derivative
images of progressively lower
image resolution and

Fuller at p. 17, 25; Fig. 3.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 2 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

1.E: wherein series image K0
being subdivided into a regular
array

Fuller at p. 17; Fig. 3.

Hornbacker at 6:13-19; 7:11-15; 8:30-9:28;
10:7-10.

1.F: wherein each resulting
image parcel of the array has a
predetermined pixel resolution

Fuller at 17, 21, Fig. 3.

Hornbacker at 6:20-7:25, 8:30-9:28, 10:3-10,
11:19-28, 12:21-13:10, 13:26-14:6.

1.G: wherein image data has a
color or bit per pixel depth
representing a data parcel size of
a predetermined number of
bytes,

Fuller at p. 21.

Hornbacker, 6:13-7:25, 8:7-15, 10:11-23; 12:2-
16.

1.H: resolution of the series K1-N
of derivative images being
related to that of the source
image data or predecessor image
in the series by a factor of two,
and

Fuller at Fig. 3.

Hornbacker at 6:13-7:25, 8:7-15.

1.I: said array subdivision being
related by a factor of two

Fuller at Fig. 3.

Hornbacker at 6:13-7:25, 8:7-15.

1.J: such that each image parcel
being of a fixed byte size,

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

1.K: wherein the processing
further comprises compressing
each data parcel and

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

1.L: storing each data parcel on
the remote computer in a file of
defined configuration such that a

Fuller at 17, 19; Figs. 3, 5.

See Ground 1 for relevant teachings of

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 3 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate;

Hornbacker for this claim element.

1.M: receiving said update data
parcel from the data parcel stored
in the remote computer over a
communications channel; and

Fuller at 15, 17, 19-21, Fig. 1.

Hornbacker at Abstract, 3:10-27, 5:3-6:19.

1.N: displaying on the limited
communication bandwidth
computer device using the
update data parcel that is a part
of said predetermined image, an
image wherein said update data
parcel uniquely forms a discrete
portion of said predetermined
image.

Fuller at 17, 18, Figs. 3, 4.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

2. The method of claim 1,
wherein the update data parcel
further comprises one of an
image parcel textual mapping, a
map parcel, a navigation cue, a
text overlay and a topography.

Fuller at 17-19, Figs. 4 and 5.

3. The method of claim 1,
wherein the limited
communication bandwidth

Fuller at p. 25.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 4 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

computer device further
comprises one of a mobile
computer system, a cellular
computer system, an embedded
computer system, a handheld
computer system, a personal
digital assistants and an internet-
capable digital phone.

4. The method of claim 1,
wherein the predetermined pixel
resolution for each data parcel is
a power of 2.

Fuller at p. 21.

Hornbacker at 6:20-7:25; 8:30-9:16; 14:2-6.

5. The method of claim 4,
wherein the predetermined pixel
resolution is one of 32×32,
64×64, 128×128 and 256×256.

Fuller at p. 21.

Hornbacker at 6:20-7:25; 8:30-9:16; 14:2-6.

6. The method of claim 1
wherein said communications
channel is a packetized
communications channel and
wherein said update data parcel
is received from said packetized
communications channel in one
or more data packets.

Fuller at pp. 16-17.

Hornbacker at Abstract; 4:24-5:25; 6:20-7:25;
8:7-15; 13:26-14:6.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 5 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

7. The method of claim 6
wherein the data packet contains
an update image parcel as a
compressed data representation
of said discrete portion of said
predetermined image.

See discussions for claim element 1.K in this
Ground and discussions for claim 7 in Ground
1.

8. The method of claim 7
wherein said data packet
contains said update image
parcel as a fixed compression
ratio representation of said
discrete portion of said
predetermined image.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

9. The method of claim 7,
wherein said update image parcel
contains pixel data in a fixed size
array independent of the pixel
resolution of said predetermined
image.

See discussions for claim element 1.L in this
Ground and discussions for claim 9 in Ground
1.

10.A: The method of claim 1,
wherein issuing the request for
an update data parcel further
comprises preparing the request
by associating a prioritization
value to said request,

Fuller at 19.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 6 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

10.B: wherein said prioritization
value is based on the resolution
of said update data parcel
relative to that of other data
parcels previously received by
the limited communication
bandwidth computer device, and

Fuller at 19.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

10.C: wherein issuing said
request is responsive to said
prioritization value for issuing
said request in a predefined
prioritization order.

Fuller at Abstract, 17-19, Fig. 5.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

11. The method of claim 10,
wherein said prioritization values
is based on the relative distance
of said update data parcel from
said operator controlled image
viewpoint.

Fuller at 17-19, Fig. 3, 5.

13.Preamble: A display system
for displaying a large-scale
image retrieved over a limited
bandwidth communications
channel, said display system
comprising:

See discussions for claim element 1.Preamble.

13.A: a display of defined screen
resolution for displaying a
defined image;

Fuller at 18, 21.

See Ground 1 for relevant teachings of

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 7 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)
Hornbacker for this claim element.

13.B: a memory providing for
the storage of a plurality of
image parcels

Fuller at 18.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

13.C: displayable over respective
portions of a mesh corresponding
to said defined image;

See discussions for claim element 1.E.

13.D: a communications channel
interface supporting the retrieval
of a defined data parcel over a
limited bandwidth
communications channel;

Fuller at 16; Figs 1 and 2.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

13.E: a processor coupled
between said display, memory
and communications channel
interface,

See generally Fuller and Hornbacker.

13.F: said processor operative to
select said defined data parcel,

See discussions for claim element 1.B.

13.G: retrieve said defined data
parcel via said limited bandwidth
communications channel
interface for storage in said
memory, and

Fuller at 18.

See Ground 1 for relevant teachings of
Hornbacker for this claim element.

13.H: render said defined data
parcel over a discrete portion of
said mesh to provide for a
progressive resolution
enhancement of said defined

Fuller at 19, Figs. 3, 5.

Hornbacker at 12:24-13:10.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 8 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

image on said display; and

13.I: a remote computer, coupled
to the limited bandwidth
communications channel, that
delivers the defined data parcel

See discussions for claim element 1.M.

13.J: wherein delivering the
defined data parcel further
comprises processing source
image data to obtain a series K1-N
of derivative images of
progressively lower image
resolution and

See discussions for claim element 1.D.

13.K: wherein series image K0
being subdivided into a regular
array

See discussions for claim element 1.E.

13.L: wherein each resulting
image parcel of the array has a
predetermined pixel resolution

See discussions for claim element 1.F.

13.M: wherein image data has a
color or bit per pixel depth
representing a data parcel size of
a predetermined number of
bytes,

See discussions for claim element 1.G.

13.N: resolution of the series K1-

N of derivative images being
related to that of the source
image data or predecessor image
in the series by a factor of two,
and

See discussions for claim element 1.H.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 9 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

13.O: said array subdivision
being related by a factor of two

See discussions for claim element 1.I.

13.P: such that each image parcel
being of a fixed byte size,

See discussions for claim element 1.J.

13.Q: wherein the processing
further comprises compressing
each data parcel and

See discussions for claim element 1.K.

13.R: storing each data parcel on
the remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate.

See discussions for claim element 1.L.

14. The display system of claim
13, wherein said processor is
responsive to said defined screen
resolution and wherein said
processor is operative to limit
selection of said defined data
parcel to where the resolution of
said defined data parcel is less
than or equal to said defined
screen resolution.

Fuller at 17-19, Figs. 3, 5.

Hornbacker at 7:4-25, 11:19-28, 13:4-10, 14:2-

6.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 10 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

15.A: The display system of
claim 13, wherein said processor
is operative to prioritize the
retrieval of said data parcel
among a plurality of selected
data parcels pending retrieval,

See discussions for claim element 10.A.

15.B: wherein the relative
priority of the data parcel is
based on the difference in the
resolution of the image parcel
and the resolution of said
plurality of selected data parcels.

See discussions for claim element 10.B.

16.A: The display system of
claim 13, wherein said processor
is response to user navigation
commands to define an image
viewpoint relative to said defined
image and

See discussions for claim 11.

16.B: wherein said processor is
operative to prioritize the
retrieval of said data parcel based
on the distance between said
image parcel and said image
viewpoint relative to said defined
image.

See discussions for claim 11.

17. The display system of claim
13, wherein the data parcel
further comprises one of an

See discussions for claim 2.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 11 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”)

image parcel textual mapping, a
map parcel, a navigation cue, a
text overlay and a topography.

18. The display system of claim
13, wherein the predetermined
pixel resolution for each data
parcel is a power of 2.

See discussions for claim 4.

19. The display system of claim
18, wherein the predetermined
pixel resolution is power of 2
and one of 32×32, 64×64,
128×128 and 256×256.

See discussions for claim 5.

APPENDIX DD

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX DD

- 12 -

7,908,343 Patent Claim
Language

Teachings of The MAGIC Project: From
Vision to Reality (“Fuller”) in view of WO
99/41675 (“Hornbacker”) and U.S. Pat. No.
5,818,469 (“Lawless”)

12. The method of claim 1,
wherein displaying the image
further comprises multi-
threading on the limited
communication bandwidth
computer device using the
update data parcel to display the
image.

Lawless at Abstract; 2:8-35; 3:6-24; Fig. 1.

20. The display system of claim
13, wherein the processor
performs multi-threading to
render said defined data parcel
over the discrete portion of said
mesh to provide for the
progressive resolution
enhancement of said defined
image on said display.

See discussions for claim 12.

APPENDIX DD

Microsoft Corp. Exhibit 1009

Appendix EE - Claim Chart Showing Teachings of Yap and Rabinovich
Pertinent to Challenged Claims of U.S. Patent No. 7,908,343

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

1.Preamble: A method of
retrieving large-scale images
over network communications
channels for display on a limited
communication bandwidth
computer device, said method
comprising:

Yap at Abstract; 1:8-11.

Rabinovich at 1.

1.A: issuing, from a limited
communication bandwidth
computer device to a remote
computer, a request for an update
data parcel

Yap at 9:1-11.

Rabinovich at p.2, System Overview.

1.B: wherein the update data
parcel is selected based on an
operator controlled image
viewpoint on the computer
device relative to a
predetermined image and

Yap at 8:55-9:5.

Rabinovich at Fig. 3.

1.C: the update data parcel
contains data that is used to
generate a display on the limited
communication bandwidth
computer device;

Yap at 10:45-48.

Rabinovich at pp.3-4.

1.D: processing, on the remote
computer, source image data to
obtain a series K1-N of derivative
images of progressively lower

Yap at 4:21-24; 7:6-8:7.

Rabinovich at p. 2, System Overview; p. 3,
Texture Processing; Fig. 4.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 2 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

image resolution and

1.E: wherein series image K0
being subdivided into a regular
array

Yap at 7:10-15.

Rabinovich at p. 2, § 2, System Overview; Fig.
4.

1.F: wherein each resulting
image parcel of the array has a
predetermined pixel resolution

Yap at 4:21-24; 7:6-8:7.

Rabinovich at p. 2, System Overview; p. 3,
Texture Processing; Fig. 4.

1.G: wherein image data has a
color or bit per pixel depth
representing a data parcel size of
a predetermined number of
bytes,

Yap at 7:6-10; 8:4-7.

Rabinovich at p. 4, Experimental Results; Fig.
5.

1.H: resolution of the series K1-N
of derivative images being
related to that of the source
image data or predecessor image
in the series by a factor of two,
and

Yap at 7:36-40; Fig. 2A.

Rabinovich at Fig. 4.

1.I: said array subdivision being
related by a factor of two

Yap at 7:36-40; Fig. 2A.

Rabinovich at Fig. 4.

1.J: such that each image parcel
being of a fixed byte size,

Yap at 8:4-7.

Rabinovich at 2, § 2, System Overview.

1.K: wherein the processing
further comprises compressing

Yap at 8:3-4.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 3 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

each data parcel and Rabinovich at 2, § 2, System Overview.

1.L: storing each data parcel on
the remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate;

Rabinovich at Fig. 4.

1.M: receiving said update data
parcel from the data parcel stored
in the remote computer over a
communications channel; and

Yap at 10:25-44; see also Yap at Abstract.

Rabinovich at p.3, Caching; p.4, Experimental
Results.

1.N: displaying on the limited
communication bandwidth
computer device using the
update data parcel that is a part
of said predetermined image, an
image wherein said update data
parcel uniquely forms a discrete
portion of said predetermined
image.

Yap at 10:45-48.

Rabinovich at pp. 3-4, Texture Processing.

2. The method of claim 1,
wherein the update data parcel
further comprises one of an
image parcel textual mapping, a
map parcel, a navigation cue, a

Yap at 1:19-23.

Rabinovich at p.1, § 1, Introduction.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 4 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

text overlay and a topography.

3. The method of claim 1,
wherein the limited
communication bandwidth
computer device further
comprises one of a mobile
computer system, a cellular
computer system, an embedded
computer system, a handheld
computer system, a personal
digital assistants and an internet-
capable digital phone.

Yap at Abstract; 1:8-11.

Rabinovich at 1.

4. The method of claim 1,
wherein the predetermined pixel
resolution for each data parcel is
a power of 2.

Yap at 8:11-37; 9:31-36; Fig. 5.

Rabinovich at p.3, § 4, Texture Processing.

5. The method of claim 4,
wherein the predetermined pixel
resolution is one of 32×32,
64×64, 128×128 and 256×256.

Yap at 8:11-37; 9:31-36; Fig. 5.

Rabinovich at p.3, § 4, Texture Processing.

6. The method of claim 1
wherein said communications

Yap at 5:29-46.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 5 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

channel is a packetized
communications channel and
wherein said update data parcel
is received from said packetized
communications channel in one
or more data packets.

Rabinovich at p.1, § 1, Introduction.

7. The method of claim 6
wherein the data packet contains
an update image parcel as a
compressed data representation
of said discrete portion of said
predetermined image.

Yap at 8:3-4.

Rabinovich at 2, § 2, System Overview.

8. The method of claim 7
wherein said data packet
contains said update image
parcel as a fixed compression
ratio representation of said
discrete portion of said
predetermined image.

Rabinovich at p.2, § 2, System Overview; p.3,
§ 4, Texture Processing.

9. The method of claim 7,
wherein said update image parcel
contains pixel data in a fixed size
array independent of the pixel
resolution of said predetermined

Rabinovich at Fig. 4.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 6 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

image.

10.A: The method of claim 1,
wherein issuing the request for
an update data parcel further
comprises preparing the request
by associating a prioritization
value to said request,

Yap at 9:1-11.

Rabinovich at p.2, System Overview; p.2, Data
Reduction.

10.B: wherein said prioritization
value is based on the resolution
of said update data parcel
relative to that of other data
parcels previously received by
the limited communication
bandwidth computer device, and

Rabinovich at 3, § 4, Texture Processing.

10.C: wherein issuing said
request is responsive to said
prioritization value for issuing
said request in a predefined
prioritization order.

Yap at 9:1-11; 9:12-10:9; Fig. 5.

Rabinovich at p.2, Data Reduction; p.2, System
Overview; p.3, Continuous Resolution; Fig. 3.

11. The method of claim 10,
wherein said prioritization values
is based on the relative distance
of said update data parcel from
said operator controlled image
viewpoint.

Yap at 2:18-20; 3:20-22; 8:55-9:5; 9:57-59.

Rabinovich at p. 2, System Overview; p. 2,
Data Reduction.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 7 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

12. The method of claim 1,
wherein displaying the image
further comprises multi-
threading on the limited
communication bandwidth
computer device using the
update data parcel to display the
image.

Yap at 4:34-42; 8:41-54; 11:6-12.

13.Preamble: A display system
for displaying a large-scale
image retrieved over a limited
bandwidth communications
channel, said display system
comprising:

See discussions for claim element 1.Preamble.

13.A: a display of defined screen
resolution for displaying a
defined image;

Yap at 5:58-67.

Rabinovich at 4, Experimental Results.

13.B: a memory providing for
the storage of a plurality of
image parcels

Yap at 10:25-44; see also Yap at Abstract.

Rabinovich at p.3, Caching; p.4, Experimental
Results.

13.C: displayable over respective
portions of a mesh corresponding
to said defined image;

See discussions for claim element 1.E.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 8 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

13.D: a communications channel
interface supporting the retrieval
of a defined data parcel over a
limited bandwidth
communications channel;

Yap at Fig. 1.

13.E: a processor coupled
between said display, memory
and communications channel
interface,

Yap at 6:5-10.

Rabinovich at p. 1, § 1, Introduction.

13.F: said processor operative to
select said defined data parcel,

See discussions for claim element 1.B.

13.G: retrieve said defined data
parcel via said limited bandwidth
communications channel
interface for storage in said
memory, and

Yap at 10:25-44; see also Yap at Abstract.

Rabinovich at p.3, Caching; p.4, Experimental
Results.

13.H: render said defined data
parcel over a discrete portion of
said mesh to provide for a
progressive resolution
enhancement of said defined
image on said display; and

Yap at 3:31-34; 10:45-48; 10:65-67.

13.I: a remote computer, coupled
to the limited bandwidth
communications channel, that
delivers the defined data parcel

See discussions for claim element 1.M.

13.J: wherein delivering the
defined data parcel further

See discussions for claim element 1.D.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 9 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

comprises processing source
image data to obtain a series K1-N
of derivative images of
progressively lower image
resolution and

13.K: wherein series image K0
being subdivided into a regular
array

See discussions for claim element 1.E.

13.L: wherein each resulting
image parcel of the array has a
predetermined pixel resolution

See discussions for claim element 1.F.

13.M: wherein image data has a
color or bit per pixel depth
representing a data parcel size of
a predetermined number of
bytes,

See discussions for claim element 1.G.

13.N: resolution of the series K1-

N of derivative images being
related to that of the source
image data or predecessor image
in the series by a factor of two,
and

See discussions for claim element 1.H.

13.O: said array subdivision
being related by a factor of two

See discussions for claim element 1.I.

13.P: such that each image parcel
being of a fixed byte size,

See discussions for claim element 1.J.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 10 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

13.Q: wherein the processing
further comprises compressing
each data parcel and

See discussions for claim element 1.K.

13.R: storing each data parcel on
the remote computer in a file of
defined configuration such that a
data parcel can be located by
specification of a KD, X, Y value
that represents the data set
resolution index D and
corresponding image array
coordinate.

See discussions for claim element 1.L.

14. The display system of claim
13, wherein said processor is
responsive to said defined screen
resolution and wherein said
processor is operative to limit
selection of said defined data
parcel to where the resolution of
said defined data parcel is less
than or equal to said defined
screen resolution.

Yap at 1:21-23; 1:62-65; 11:19-22.

Rabinovich at pp. 3-4, Texture Processing.

15.A: The display system of
claim 13, wherein said processor
is operative to prioritize the
retrieval of said data parcel
among a plurality of selected

See discussions for claim element 10.A.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 11 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

data parcels pending retrieval,

15.B: wherein the relative
priority of the data parcel is
based on the difference in the
resolution of the image parcel
and the resolution of said
plurality of selected data parcels.

See discussions for claim element 10.B.

16.A: The display system of
claim 13, wherein said processor
is response to user navigation
commands to define an image
viewpoint relative to said defined
image and

See discussions for claim 11.

16.B: wherein said processor is
operative to prioritize the
retrieval of said data parcel based
on the distance between said
image parcel and said image
viewpoint relative to said defined
image.

See discussions for claim 11.

17. The display system of claim
13, wherein the data parcel
further comprises one of an
image parcel textual mapping, a
map parcel, a navigation cue, a

See discussions for claim 2.

APPENDIX EE

Microsoft Corp. Exhibit 1009

DECLARATION OF PROF. WILLIAM R. MICHALSON
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,908,343 B2
APPENDIX EE

- 12 -

7,908,343 Patent Claim
Language

Teachings of U.S. 6,182,114 (“Yap”) in view
of Boris Rabinovich et al., Visualization of
Large Terrains in Resource-Limited
Computing Environments, Proceedings of
Visualization ‘97 (“Rabinovich”)

text overlay and a topography.

18. The display system of claim
13, wherein the predetermined
pixel resolution for each data
parcel is a power of 2.

See discussions for claim 4.

19. The display system of claim
18, wherein the predetermined
pixel resolution is power of 2
and one of 32×32, 64×64,
128×128 and 256×256.

See discussions for claim 5.

20. The display system of claim
13, wherein the processor
performs multi-threading to
render said defined data parcel
over the discrete portion of said
mesh to provide for the
progressive resolution
enhancement of said defined
image on said display.

See discussions for claim 12.

APPENDIX EE

Microsoft Corp. Exhibit 1009

This report appeared in a special issue of the International Journal of Geographic Information
Sciences, issue 4 of volume 13, in 1999.

A Commentary on GeoVRML: A Tool for 3D
Representation of GeoReferenced Data on the

Web
Theresa-Marie Rhyne

ACM SIGGRAPH Director at Large
Lockheed Martin Technical Services

US EPA Scientific Visualization Center
86 Alexander Drive

Research Triangle Park, North Carolina 27711
(trhyne@vislab.epa.gov)

Abstract:

GeoVRML techniques have the potential to provide functional and transparent communication
between geographic information and 3D Web visualization tools. This report outlines recommended
practices and modifications to the VRML 97 standard to consider pre-existing cartographic
projections and georeferenced data. The concepts outlined for incorporating georeferenced coordinate
systems in VRML worlds have generic applicability to 3D Web technologies like MPEG-4, Java3D
and Chrome.

Introduction:

The interactive three dimensional (3D) representation of georeferenced data on the World Wide Web
(Web) is achieved with tools like the Virtual Reality Modeling Language (VRML). VRML97 is the
approved International Standard (ISO/IEC 14772) file format for describing interactive multimedia on
the Internet. In general, a VRML file is also called a "world". Users explore these "worlds" with Web
browsers that support the viewing of VRML files. More information on VRML can be found at the
Web3D Consortium Web pages, see: (http://www.web3d.org).

The VRML97 standard was designed primarily by the computer graphics community. Typical
computer graphics imagery focuses on locally bounded regions and small screen sizes where
maximum pixel ranges are approximately 1600 by 1280 pixels. As a result, VRML97 relies on single-
precision (32 bit) IEEE floating point data values. The coordinate system for VRML97 is based on the
simple Cartesian local (X,Y,Z) coordinate system with the orgin being at (0,0,0) and Y representing
up. This coordinate system is often sufficient for many computer graphics problems.

These two parameters of the VRML 97 standard provide limitations for the representation of
geographic and cartographic data as well as georeferenced computational modeling simulations in
VRML. For example, since the earth's diameter approximates 12 million meters, it is not possible to
present geographic data resolutions greater than 10 to 100 meters with single-precision data values.
This means that data obtained from global positioning systems (GPS) with absolute locations within 1

Page 1 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX FF

Microsoft Corp. Exhibit 1009

meter resolution cannot be accurately presented in VRML97. The heavy reliance on Cartesian
coordinates also poses difficulties with data in Geodetic (GDC or lattitude/longitude), Universal
Transverse Mercator (UTM), Lambert Conformal Conic (LCC) or other pre-existing cartographic
projections. In February 1998, the VRML Consortium approved the formation of the GeoVRML
Working Group to discuss and develop tools, recommended practices and standards necessary to
generate, display and exchange georeferenced data in VRML, (Iverson & GeoVRML, 1998). In
December 1998, the VRML Consortium expanded its charter and renamed itself as the "Web 3D
Consortium".

This report reviews the major recommended practices and modifications to the VRML standard under
consideration and development by the GeoVRML Working Group. Additional emerging 3D Web
technologies and their relation to geospatial data visualization will also be highlighted. GeoVRML
techniques have the potential to provide functional and transparent communication between
geographic information and 3D visualization tools, (Rhyne, 1997).

Figure #1: Example VRML world with a TIFF image of a USGS map drapped over the 3D surface is
shown on the left. On the right is a similar image made with a visualization toolkit package. Notice
how the map is inverted in the VRML browser. We hope to improve this situation with GeoVRML
Coordinate systems. Images developed by Theresa-Marie Rhyne and Thomas Fowler of Lockheed
Martin Technical Services at the United States Environmental Protection Agency's Scientific
Visualization Center. See: (http://www.epa.gov/gisvis).

Moving towards GeoVRML Coordinate Systems:

The geographic information systems, cartographic and military simulation communities have
developed a number of standards for the representation of geospatial information and georeferencing
of arbitrary data, (Rhyne, 1998). The Open GIS Consortium is presently moving forward with efforts
to support the full integration of geospatial data into mainstream computing and the widespread usage
of interoperable commercial geoprocessing software, see: (http://www.opengis.org/). There are also
International Organization for Standardization (ISO) efforts in the Geographic information/Geomatics
arenas, see: (http://www.iso.ch/meme/TC211.html).

In order to attempt to include a methodology for supporting georeferenced data in the upcoming
(1999) revision to the VRML97 standard, the GeoVRML Working Group decided to base its efforts
on a currently existing reference model and software package entitled the SEDRIS Geographic

Page 2 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX FF

Microsoft Corp. Exhibit 1009

Reference Model (GRM). The Synthetic Environment Data Representation & Interchange
Specification (SEDRIS) is a project funded by the United States' Defense Modeling and Simulation
Office. The SEDRIS GRM supports twelve different coordinate systems and provides tools to
automatically convert reference marks between them. The software source for GRM is publically
available and is currently implemented in the C programming language. More information on the
SEDRIS GRM can be found on the SEDRIS Web site at: (http://www.sedris.org/).

The GeoVRML Working Group is thus recommending a Level 1 practice whereby geographical
coordinates based on the SEDRIS GRM are converted into a local Cartesian coordinate system for
improved level of detail in GeoVRML visualizations. The GeoVRML Working Group is also
exploring a Level 2 practice whereby geo-referenced data is transparently and seamlessly converted
from a wider and multiple variety of sources, (Iverson & GeoVRML, 1998).

Researchers at the SRI International - Artificial Intelligence Center, have recently developed, for
public release, the GeoTransform Java class file hierarchy based on the SEDRIS GRM. With the
GeoTransform Java package, it is possible to perform efficient and accurate geographic coordinate
transformations for the Geodetic Coordinate System (GDC), GeoCentric Coordinate System (GCC),
and Universal Transverse Mercator (UTM) System. GeoTransform allows for authoring VRML
worlds that read coordinates in any of these systems and tranparently convert the geographic data into
Cartesian Coordinates for display in a VRML browser. More information on the GeoTranform Java
package can be found at: (http://www.ai.sri.com/~reddy/geovrml/geotransform/) .

Defining the GeoOrigin Node:

In order to build a georeferenced VRML world, a GeoOrigin node is defined in the VRML file. This
GeoOrigin allows for converting coordinates from cartographic earth-based coordinate systems into
the existing VRML97 Cartesian reference frame, (Iverson & GeoVRML, 1998). A single GeoOrigin
node, representing a single georeferenced point, becomes the reference frame identified with the
VRML world's zero-based (0,0,0) origin.

GeoOrigin

 EXTERNPROTO GeoOrigin [
 field MFString geoSystem ["GDC"]
 field SFString geoCoords ""
] "urn:geovrml:protos#GeoOrigin"

The geoSystem field selects a geographic reference system from the naming conventions based on the
SEDRIS GRM. Some of these georeference coordinate systems require additional arguments to fully
designate the coordinates. As an example, the Geodetic (GDC) system involves the selection of
ellipsoid, geoid, and datum references. Additional strings in the geoSystem field support this
requirement.

The geoCoords field is a sequence of 64-bit precision values seperated by spaces that define an
absolute location using the coordinate system selected in the geoSystem field. Optional strings in the
geoSystem field determine the interpretation of the geoCoords field. As an example, "DMS" can
specify that the geoCoords string will include degree, minute and second fields for each latitute and
longitude value in a GDC coordinate. Every geospatial location determined by a geoSystem and
geoCoords pair defines an implicit orthogonal Cartesian reference frame indexed by x,y,z in meters

Page 3 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX FF

Microsoft Corp. Exhibit 1009

with the designated geospatial location at the origin and with y being the up direction. This allows for
conformance with the VRML97 standard.

A more detailed discussion about the GeoOrigin node can be found in the Request for Comment
document on GeoVRML Coordinate Systems. This discussion is located at the GeoVRML Working
Group's Web site at: (http://www.ai.sri.com/~leei/geovrml/).

During the past year, SRI International developed a series of VRML97 nodes for improved support of
terrain visualization. These contributions were developed as part of the GeoVRML Working Group
and are in the public domain. A comprehensive discussion of these efforts can be found in the SRI
International - Artificial Intelligence Center Report No. 559, which is cited the the references below,
(Reddy, et. al., 1998). These new GeoVRML nodes can be accessed on the Web at:
(http://www.ai.sri.com/geovrml/protos) .

Integrating Spatial Data Repositories and GeoVRML Visualizations:

There are a number of efforts underway to examine the use of the Virtual Reality Modeling Language
(VRML) for the interactive exploration of geospatial data repositories (Rhyne & Fowler, 1996). In the
United States, some of this work is being done in conjunction with the Federal Geographic Data
Committee (FGDC) 's National Geospatial Data Clearinghouse (see: (http://fgdc.er.usgs.gov/)). In
addition to the use of intelligent agents, data mining techniques are being employed to assist with the
retrieval of spatial data. The development of GeoOrgin nodes in VRML will support the use of agent
and data mining technology for rapid creation of interactive web-based visualizations. This will
greatly facilitate visual information retrieval of geospatial data.

Reaching out to other Interactive 3D Web Technologies:

In addition to VRML, there are other 3D Web technologies under development. Three examples
include (a) the development of the MPEG-4 standard; (b) Java 3D and (c) Chrome. In early 1998, the
International Organization for Standardization (ISO) announced that it will use Apple Computer's
QuickTime file format as the basis for a unified digital media storage format for the MPEG-4 standard
for graphics content on the Web. The VRML Consortium has established a Working Group to
examine MPEG-4 and VRML integration. Java3D, from Sun Microsystems, supports the
development of 3D computer graphics applications in the Java programming language. This includes
the development of VRML browsers with Java 3D. Another emerging 3D Web technology is Chrome
from Microsoft Corporation. Chrome is a Windows 98 add-on that uses the Extensible Markup
Language (XML) to access Windows 98 multimedia capabilities for creating 3D content on the Web.
The concepts outlined above for incorporating georeferenced coordinate systems in VRML worlds
have generic applicability to 3D Web technologies like MPEG-4, Java3D and Chrome. Details about
the QuickTime file format and its adoption by ISO as the starting point for MPEG-4 can be found at
the Apple Computer web site, see: (http://www.apple.com/quicktime/). More information on Java and
Java 3D can be found at the Javasoft Web site, see: (http://www.javasoft.com/products/java-
media/3D/). Additional information on Chrome can be found by searching the Microsoft web site at:
(http://www.microsoft.com).

Concluding Remarks:

The use of VRML for cartographic and geographic presentation is currently being examined by
research groups participating in the International Cartographic Association's Commission on
Visualization, (Fairburn and Parsley, 1997). Preliminary definitions of the needs for geofunctions in

Page 4 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX FF

Microsoft Corp. Exhibit 1009

virtual reality and VRML were done at Leicester University in July 1997, (Moore, et. al.). The
Commission has also explored other multimedia and web-based technologies for developing mapping
products, (Cartwright, 1998) and (Andrienko & Andrienko, 1998). The Association for Computing
Machinery's Special Interest Group on Graphics (ACM - SIGGRAPH)'s collaboration with the ICA
Commission on Visualization has attempted to examine how computer graphics technology can be
effectively adapted to meet cartographic needs and requirements. This project, entitled the ACM
SIGGRAPH Carto Project, is pleased that the VRML Consortium chose to create the GeoVRML
Working Group to actualize effective exchange of georeferenced data in VRML. We anticipate
GeoVRML techniques expanding to address many 3D Web Technologies as the VRML Consortium
redefines itself as the Web 3D Consortium. The issues discussed here are important steps toward
functional integration of geographic information and 3D visualization tools. We hope similar efforts
will continue to emerge in the future.

Acknowledgements:

We would like to acknowledge the efforts of Lee Iverson, founding Chair of the GeoVRML Working
Group of the Web 3D Consortium, Don Brutzman, Vice President for Technology of the Web 3D
Consortium, and Martin Reddy (who built many of the new GeoVRML nodes for VRML97). We are
also appreciative to Judy Brown, Past Chair of Special Projects for ACM SIGGRAPH, for all the
encouragement she provided during the first two years of the ACM SIGGRAPH Carto Project.

References:

ACM SIGGRAPH Carto Project Web Site: (http://www.siggraph.org/~rhyne/carto/).

Andrienko & Andrienko. 1998, Descartes -Intelligent Mapping and Visual Data Exploration on the
Internet, Proceedings of the 1998 Polish Spatial Information Association Conference, May 1998,
Warsaw Poland, : 339 - 340.

Cartwright, W. 1997. New media and their application to the production of map products. Computers
&; Geosciences, special issue on Exploratory Cartographic Visualization 23(4) : 447-456.

Fairbairn, D. and Parsley, S. 1997. The use of VRML for cartographic presentation. Computers &;
Geosciences, special issue on Exploratory Cartographic Visualization 23(4): 475-482.

GeoVRML Working Group of the VRML Consortium Web Site: (http://www.ai.sri.com/geovrml/).

Iverson, Lee & the GeoVRML Working Group of the VRML Consortium. 1998, GeoVRML RFC1:
Coordinate Systems, (http://www.ai.sri.com/geovrml/rfc1.html).

ICA Commission on Visualization Web Site: (http://www.geog.psu.edu/ica/ICAvis.html).

Moore, K., Dykes, J., Wood, J., Bastin, L., Fisher, P. 1997, VR Geofunctions,
(http://www.geog.le.ac.uk/mek/VRGeoFunctions.html).

Reddy, M., Leclerc, Y. G., Iverson, L., Bletter, N., and Vidimce, K. 1998, Modeling the Digital Earth
in VRML, AIC Technical Report No. 559. SRI International, Menlo Park, CA. November 1998.

Rhyne, T.-M. and Fowler, T. 1996, Examining Dynamically Linked Geographic Visualization,
Proceedings of the 1996 Computing in Environmental Resource Management Speciality Conference

Page 5 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX FF

Microsoft Corp. Exhibit 1009

sponsored by the Air & Waste Management Association, Dec. 1996, Research Triangle Park, North
Carolina (USA), : 571 - 573.

Rhyne, T.-M. 1997. Going virtual with geographic information and scientific visualization.
Computers & Geosciences, special issue on Exploratory Cartographic Visualization 23(4): 489-492.

Rhyne, T.-M. 1998, Open Spatial Data Standards for the Information Highway (Examining
Dynamically Linked Geographic Visualization), Proceedings of the 1998 Polish Spatial Information
Association Conference, May 1998, Warsaw Poland, : 297 - 299.

Biography of the Author:

Theresa-Marie Rhyne is a Director at Large of the ACM SIGGRAPH Executive Committee and is the
Project Director of the ACM SIGGRAPH Carto Project. She is a lead scientific visualization
researcher for Lockheed Martin Technical Services at the United States Environmental Protection
Agency's Scientific Visualization Center.

--

Page 6 of 6A Commentary on GeoVRML: A Tool for 3D Representation of GeoReferenced Data on ...

5/12/2015http://www.siggraph.org/~rhyne/carto/3D/3D-geovrml.html

APPENDIX FF

Microsoft Corp. Exhibit 1009

	App _P - Wu - US5987256
	App _R - Rabinovich - Visualization of Large Terrains
	App _S - User Datagram Protocol (UDP) (Windows CE 5.0)
	App _T - opengl1.2.1
	App _U- Claim chart Potmesil + Hornbacker vs 343 patent
	App _V Rutledge Ligtenber Cooper Claim Chart
	App _W Rutledge Ligtenberg Cooper Hassan Austreng Claim Chart
	App _X - Forman - The Challenges of Mobile Computing
	App _Y - Brown - A Network Architecture for Mobile Computing
	App _Z - Kreller - UMTS a middleware architecture and mobile API approach
	App AA - Hansen - Real-time synthetic vision cockpit display for general aviation
	App BB - Migdal - US5760783
	App CC - Lawless - US5818469
	App DD Fuller Hornbacker Lawless Claim Chart
	App EE Yap and Rabinovich Claim Chart
	App FF - Rhyne - A Commentary on GeoVRML

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

