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Many approaches to simplification of triangulated terrains and surfaces 
have been proposed which permit bounds on the error introduced. A 
few algorithms additionally bound errors in auxiliary functions defined 
over the triangulation. We present an approach to simplification of scalar 
fields over unstructured grids which preserves the topology of functions 
defined over the triangulation, in addition to bounding of the errors. The 
topology of a 2D scalar field is defined by critical points (local maxima, 
local minima, saddle points), in addition to integral curves between them, 
which together segment the field into regions which vary monotonically. 
By preserving this shape description, we guarantee that isocontours of 
the scalar function maintain the correct topology in the simplified model. 
Methods for topology preserving simplification by both point-insertion 
(refinement) and point-deletion (coarsening) are presented and compared. 
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1 Introduction 

Scientific data is often sampled or computed over a dense mesh in order to cap­
ture high frequency components or achieve a desired error bound. Interactive 
display and navigation of such large meshes is impeded by the sheer num­
ber of triangles required to sufficiently model highly complex data. A number 
of simplification techniques have been developed which reduce the number 
of triangles to a particular desired triangle count or until a particular error 
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threshold is met. Given an initial triangulation M of a domain D and a func­
tion F(x) defined over the triangulation, the simplified mesh can be called M' 
and the resulting function .:F'(x). The measure of error in a simplified mesh 
Mi is usually represented as: 

E(M') = max(IF(x)- F'(x)l) 
xE'D 

(1) 

The ability to bound the error E(M') is very important , but the error defini­
tion (1) is inherently a local measure , neglecting to consider global features 
of the data. We introduce new criteria for the simplification of sampled func­
tions which preserves scalar field features in addition to bounding local errors. 
Two-dimensional scalar field topology is described by the critical points and 
arcs between them. Preserving the scalar field criticalities maintains an in­
variant of the connectivity and combinatorial structure (topological genus) of 
successively simplified isocontours. 

In Section 2 we discuss related work in mesh simplification and feature de­
tection . Section 3 introduces the definition of 2D scalar topology as it will be 
used in our simplification strategy. In Section 4 we introduce two algorithms 
for simplification with topology preserving characteristics. The first is an ex­
tension to existing coarsening techniques which iteratively delete vertices or 
contract edges in the mesh. The second algorithm adopts an inverse approach, 
iteratively introducing detail (refinement) to an initially sparse mesh, preserv­
ing the scalar topology of the fine mesh. 

2 Related Work 

2.1 Simplification 

A wide variety of algorithms have been developed for the simplification of 
meshes. We present a brief overview of the classes of algorithms which have 
been proposed for geometry and data simplification. 

Vertex insertion/ deletion 

A large class of data and geometry simplification algorithms are based on suc­
cessive application of one or more topological mesh operators, such as edge 
contraction, which contracts an edge of the mesh to a point, or vertex dele­
tion, in which a vertex and adjacent triangles are removed and replaced with 
a covering of the resulting hole. Point insertion and deletion approaches have 
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been explored by many researchers for application in Geographical Informa­
tion Systems (GIS). A common technique is to extract key points of data 
from the originally dense set of points, and compute a Delaunay triangula­
tion [7,11,12,33,39,41]. Silva et al. [37] use a greedy approach for inserting 
points into an initially sparse mesh. Schroeder et al. [36] compute reduced 
representations for dense triangular surface meshes such as those computed 
by Marching Cubes [25] or similar isosurfacing algorithms. Vertices in the 
dense mesh are examined and classified based on geometric features in the 
triangulation surrounding the vertex. If error criteria are satisfied, the vertex 
is deleted and the resulting hole is retriangulated. Retriangulation is guided 
by local edges detected in the classification stage and aspect ratios of new 
triangles. Several passes over the object successively remove vertices until no 
vertex satisfies the criteria for removal. There is no cumulative error measure, 
and therefore no guarantee on the amount of accumulated error in the final 
representation. Hamann [15] applies a similar technique in which triangles are 
considered for deletion based on curvature estimates at the vertices. Reduc­
tion may be driven by mesh resolution or, in the case of functional surfaces, 
root-mean-square (RMS) error. Ronfard et al. [34] apply successive edge con­
traction operations to compute a wide range of levels-of-detail for triangulated 
polyhedra. Edges are extracted from a priority queue based on a computed 
edge cost such that edges of lesser significance are removed first. Gueziec [14] 
introduces a tolerance volume for bounding the error resulting from successive 
edge contraction operations. The resulting merged vertex is positioned such 
that the volume remains constant. Cohen et al. [6] introduce Simplification 
Envelopes to guide mesh simplification with global error bounds. Envelopes 
are an extension of offset surfaces which serve as an extreme boundary for the 
desired simplified surface. 

Region Merging 

Rinker et al. [19] perform "geometric optimization" on triangular surface meshes 
by grouping faces into contiguous sets which are nearly co-planar. Points inte­
rior to a region and points along nearly lin ar boundaries of regions are deleted, 
and the resulting hole is retriangulated. Kalvin et al. [24] cluster mesh faces 
into superfaces, triangulating the resulting polygons for a simplified represen­
tation. 

Filtering 

Filtering techniques are capable of producing a large range of simplified mod­
els through application of grouping and merging rules. An attractive feature of 
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filtering techniques is the ability to simplify objects to a minimal representa­
tion through successive applications. Subsampling is a simple type of filtering 
which is easily applied to subdivision meshes for which there exists a natural 
remeshing when nested sets of vertices are successively deleted. The major 
drawback to subsampling is that there is no bound on the error which is intro­
duced through its application. Rossignac et al. [35] use clustering and merging 
of features of an object based on a regular spatial subdivision. Clustering ap­
proaches have the advantage that small features which are geometrically close 
but not topologically connected can be grouped and merged for higher rates 
of simplification. In this scheme long, thin objects may collapse to an edge 
and small objects may collapse to a point. He et al. [16] provide more control 
over subsampling of regular grids by filtering the simplified mesh at each step. 
The regular grid corresponds to a sampling of the signed-distance function of 
a 3D surface. A multi-resolution triangle mesh is extracted from the resulting 
multi-resolution volume buffer using traditional isosurfacing techniques. 

Optimization 

Optimization methods define measures of energies for point sets or triangula­
tions based on an original mesh, and use interactive optimization to minimize 
these energies in forming a simplified mesh. Thrk [40] computes simplified 
polygonal surfaces at a desired number of vertices. Contrast this with the 
point insertion and deletion methods which are usually driven by error com­
putations rather than desired resolution. Given the desired number of vertices, 
point repulsion on the polygonal surface spreads the points out. A mutual tes­
sellation of the original triangulation and the introduced points followed by 
deletion of the original vertices guarantees that the topology of the polyg­
onal surface is maintained. Point repulsion is adjusted based on estimated 
curvature of the surface, providing an adaptive triangulation which maintains 
geometric features. Hoppe et al. [21] perform time-intensive mesh optimization 
based on the definition of an energy function which balances the need for accu­
rate geometry with the desire for compactness in representation. The level of 
mesh simplification is controlled by a parameter in the energy function which 
penalizes meshes with large numbers of vertices, as well as a spring constant 
which helps guide the energy minimization to a desirable result. In [20], Hoppe 
applies the optimization framework to the simplification of scalar fields. 

Multi-resolution analysis 

Multi-resolution analysis is a structured mathematical decomposition of func­
tions into multiple levels of representation. Through the use of wavelet trans-
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forms [10 ,27], a hierarchical representation of functions can be obtained by 
repeatedly breaking the function into a coarser representation in addition to 
a set of perturbation coefficients which allow the full recovery of the original 
representation from the coarse representation. Generally, the wavelet basis is 
chosen such that the perturbation coefficients have desirable attributes such 
as direct correlation with some measure of error which is introduced at a 
given level of representation. During reconstruction from the wavelet repre­
sentation, sufficiently small wavelet coefficients can be left out, resulting in 
a coarser approximation to the original data, with a known bound on the 
amount of error [26,8 ,38]. Further extensions have provided similar basis for 
the decomposition of surfaces [9] . Muraki [31] applies wavelets in 3D to com­
pute multi-resolution models of 3D volume data. Isosurfaces and planar cross 
sections of the resulting data show little change in image quality with large 
reductions in the amount of data representing the volume. 

2. 2 Feature Detection 

The problem of detecting ridges and valleys in digital terrain has been con­
sidered in several papers [12]. McCormack et al. [29] consider the problem of 
detecting drainage patterns in geographic terrain. Interrante et al. [22] used 
ridge and valley detection on 3D surfaces to enhance the shape of transpar­
ently rendered surfaces. Extrema graphs were used by ltoh and Koyamada 
to speed isocontour extraction [23]. A graph containing extreme points and 
boundary points of a scalar field can be guaranteed to intersect every iso­
contour at least once, allowing seed points to be generated by searching only 
the cells contained in the extrema graph. Helman and Hesselink detect vector 
field topology by classifying the zeros of a vector field and performing particle 
tracing from saddle points [18]. The resulting partitioning consists of regions 
which are topologically equivalent to uniform flow. Globus et aldescribe a soft­
ware system for 3D vector topology and briefly note that the technique may 
also be applied to the gradient of a scalar field in order to identify maxima 
and minima [13]. Bader examines the gradient field of the charge density in 
a molecular system [1]. The topology of this scalar field represents the bonds 
linking together the atoms of the molecule. Bader goes on to show how fea­
tures higher level structures in the topology represent chains, rings, and cages 
in the molecule. 

2. 3 Our Approach 

Simplification techniques have advanced to the point at which it is useful to 
now consider preserving global mesh and data features. In the following sec-
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