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1. INTRODUCTION

A frequent problem arises when images
taken, at different times, by different
sensors or from different viewpoints need
to be compared. The images need to be
aligned with one another so that differ-

ences can be detected. A similar problem
occurs when searching for a prototype or
template in another image. To find the
optimal match for the template in the

image, the proper alignment between the
image and template must be found. All of
these problems, and many related varia-
tions. are solved by methods that per—
form image registration. A transforma—

tion must be found so that the points in
one image can be related to their corre—
sponding points in the other. The deter—

mination of the optimal transformation

for registration depends on the types of
variations between the images. The ob—
jective of this paper is to provide a frame—
work for solving image registration tasks
and to survey the classical approaches.

Registration methods can be viewed as
different combinations of choices for the

following four components:

(1) a feature space,

(2) a search space,

(3) a search strategy, and

(4) a similarity metric.
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The feature space extracts the informa—
tion in the images that will be used for

matching. The search space is the class
of transformations that is capable of
aligning the images. The search strategy
decides how to choose the next transfor-

mation from this space, to be tested in
the search for the optimal transforma-
tion. The similarity metric determines
the relative merit for each test. Search

continues according to the search strat-
egy until a transformation is found whose
similarity measure is satisfactory. As we
shall see, the types of variations present

in the images will determine the selec-

tion for each of these components.
For example, consider the problem of

registering the two x-ray images of chest
taken of the same patient at different

times shown in Figure 1. Properly align-
ing the two images is useful for detect-
ing, locating, and measuring pathological
and other physical changes. A standard
approach to registration for these images

might be as follows: the images might
first be reduced to binary images by de—
tecting the edges or regions of highest
contrast using a standard edge detection
scheme. This removes extraneous infor—
mation and reduces the amount of data

to be evaluated. If it is thought that the
primary difference in acquisition of the
images was a small translation of the
scanner, the search space might be a set
of small translations. For each transla—

tion of the edges of the left image onto
the edges of the right image, a measure
of similarity would be computed. A typi-
cal similarity measure would be the cor—

relation between the images. If the simi-
larity measure is computed for all trans-

lations then the search strategy is simply
exhaustive. The images are registered
using the translation which optimizes the
similarity criterion. However, the choice
of using edges for features, translations
for the search space, exhaustive search
for the search strategy and correlation
for the similarity metric will influence

the outcome of this registration. In fact,
in this case, the registration will un—
doubtably be unsatisfactory since the im-

ages are misaligned in a more complex

VALEO EX. 1026_002



VALEO EX. 1026_003

Image Registration Techniques °

   %
A . ~ 5‘

. ‘W;2 ,ammefifisfiwszm
g... . ,1
W512; x

Figure 1. X-ray images of a patient’s chest, taken
at different times. (Thanks to A. Goshtasby.)

way than translation. By establishing the
relationship between the variations be—
tween the images and the choices for the
four components of image registration,
this paper provides a framework for un-
derstanding the exisiting registration

techniques and also a methodology for
assisting in the selection of the appropri—
ate technique for a specific problem. By
establishing the relationship between the
variations among the images and the

choices for the four components of image
registration, this paper provides a frame—

work for understanding the existing reg-
istration techniques and also a methodol—
ogy for assisting in the selection of
the appropriate technique for a specific
problem.

The need to register images has arisen
in many practical problems in diverse
fields. Registration is often necessary for
(1) integrating information taken from

different sensors, (2) finding changes in
images taken at different times or under

different conditions, (3) inferring three-
dimensional information from images in
which either the camera or the objects in
the scene have moved, and (4) for model-
based object recognition [Rosenfeld and
Kak 1982].

An example of the first case is shown

in Figure 2. In this figure the upper right
image is a Magnetic Resonance Image
(MRI) of a patient’s liver. From this im-
age it is possible to discern the anatomi—
cal structures. Since this image is similar
to what a surgeon will see during an
operation, this image might be used to
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Figure 2. The top left image is a SPECT image of
a patient’s liver. The top right shows the same
region viewed by MRI. A contour was manually
drawn around the liver in the MRI image. The
location of this contour in the SPECT image shows
the mismatch between the two images. At the bot—
tom right the MRI image has been registered to the
SPECT image, and the location of the transformed
contour is shown on the SPECT image, bottom left.
A brief description of the registration method em—
ployed is in Section 3.3.3. (Courtesy of QSH, an
image display and processing toolkit [N02 1988]
and New York University; I would like to thank B.
A. Birnbaum, E. L. Kramer, M. E. N02, and J. J.
Sanger of New York University, and G. Q. Maguire,
Jr. of Columbia University.)

plan a medical procedure. The upper left
image is from single photon emission
computed tomography (SPECT). It shows
the same anatomical region after intra—
venous administration of a Tc-99m (a ra-

dionuclide) labeled compound. This im-
age depicts some of the functional behav-
ior of the liver (the Tc-99m compound
binds to red blood cells) and can more

accurately distinguish between cancers
and other benign lesions. Since the two
images are taken at different resolutions,
from different viewpoints, and at differ-
ent times, it is not possible to simply
overlay the two images. However, if the

images can be registered, then the func—
tional information of the SPECT image

can be structurally localized using the

MRI image. Indeed, the registration of
images which show anatomical struc—
tures such as MRI, CT (computed tomog-
raphy) and ultrasound, and images which
show functional and metabolic activity

such as SPECT, PET (positron emission

ACM Computing Surveys, Vol. 24, No. 4, December 1992
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tomography), and MRS (magnetic reso-
nance spectroscopy) has led to improved
diagnosis, better surgical planning, more
accurate radiation therapy, and count—
less other medical benefits [Maguire et
al. 1990].

In this survey, the registration meth-
ods from three major research areas are
studied:

(1) Computer Vision and Pattern Recog—
nition~for numerous different tasks

such as segmentation, object recogni—
tion, shape reconstruction, motion

tracking, stereomapping, and charac-
ter recognition.

(2) Medical Image Analysis—including
diagnostic medical imaging, such as
tumor detection and disease localiza-

tion, and biomedical research includ-

ing classification of microscopic im-
ages of blood cells, cervical smears,
and chromosomes.

(3) Remotely Sensed Data Processing—
for civilian and military applications
in agriculture, geology, oceanogra-
phy, oil and mineral exploration, pol-
lution and urban studies, forestry,
and target location and identifica-
tion.

For more information specifically related
to each of these fields, the reader may
consult Katuri and Jain [1991] or Horn

[1989] in computer vision, Stytz et al.
[1991] and Petra et al. [1992] in medical
imaging, and Jensen [1986] and Thomas

et al. [1986] in remote sensing. Although
these three areas have contributed a

great deal to the development of registra-
tion techniques, there are still many
other areas which have developed their
own specialized matching techniques. for

example, in speech understanding,
robotics and automatic inspection, com-

puter-aided design and manufacturing
(CAD/CAM), and astronomy. The three
areas studied in this paper include many
instances from the four classes of prob—

lems mentioned above and a good range
of distortion types including:

0 sensor noise

ACM Computing Surveys. Vol 24, No. 4, December 1992

0 perspective changes from sensor view—
point or platform perturbations

0 object changes such as movements, de—
formations, or growths

0 lighting and atmospheric changes in—
cluding shadows and cloud coverage

0 different sensors.

Tables 1 and 2 contain examples of
specific problems in registration for each
of the four classes of problems taken from

computer vision and pattern recognition,
medical image analysis, and remotely
sensed data processing. The four classes
are (1) multimodal registration, (2) tem-

plate matching, (3) viewpoint registra-

tion, and (4) temporal registration. In
classes (1), (3), and (4) the typical objec-
tive of registration is to align the images
so that the respective changes in sensors,
in viewpoint, and over time can be de-

tected. In class (2), template matching,
the usual objective is to find the optimal
location and orientation, if one exists, of

a template image in another image, often
as part of a larger problem of object
recognition. Each class of problems is de—
scribed by its typical applications and

the characteristics of methods commonly
used for that class. Registration prob-

lems are by no means limited by this
categorization scheme. Many problems
are combinations of these four classes of

problems; for example, frequently images
are taken from different perspectives and
under different conditions. Furthermore,
the typical applications mentioned for

each class of problems are often applica-
tions in other classes as well. Similarly,
method characteristics are listed only to
give an idea of some of the more common

attributes used by researchers for solving
these kinds of problems. In general,

methods are developed to match images
for a wide range of possible distortions,
and it is not obvious exactly for which
types of problems they are best suited.
One of the objectives of these tables is to

present to the reader the wide range of

registration problems. Not surprisingly,
this diversity in problems and their ap—
plications has been the cause for the de-
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Table 1. Registration Problemsi Part |

MULTIMODAL REGISTRATION

Class of Problems: Registration of images of the same scene acquired from different sensors.
Typical Application: Integration of information for improved segmentation and pixel classification.
Characteristics of Methods: Often use sensor models; need to preregister intensities; image acquisition
using subject frames and fiducial markers can simplify problem.

Example 1

 

 

Field: Medical Image Analysis
Problem: Integrate structural information from CT or MRI with functional information from radionucleic
scanners such as PET or SPECT for anatomically locating metabolic function.

Example 2
Field: Remotely Sensed Data Processing
Problem: Integrating images from different electromagnetic bands, e.g., microwave, radar, infrared, visual,
or multispectral for improved scene classification such as classifying buildings. roads, vehicles, and type of
vegetation. 

TEMPLATE REGISTRATION

Class of Problems: Find a match for a reference pattern in an image.
Typical Application: Recognizing or locating a pattern such as an atlas, map, or object model in an image.
Characteristics of Methods: Model—based approaches, preselected features, known properties of objects,
higher-level matching.

 

Example 1
Field: Remotely Sensed Data Processing
Problem: Interpretation of well—defined scenes such as airports; locating positions and orientations of
known features such as runways, terminals, and parking lots.

Example 2
Field: Pattern Recognition
Problem: Character recognition, signature verification, and waveform analysis. 

Table 2. Registration Problems— Part II

VIEWPOINT REGISTRATION

Class of Problems: Registration of images taken from different Viewpoints.
Typical Application: Depth or shape reconstruction.
Characteristics of Methods: Need local transformation to account for perspective distortions; often use
assumptions about Viewing geometry and surface properties to reduce search; typical approach is feature
correspondence, but problem of occlusion must be addressed.

Example 1

  

 

Field: Computer Vision
Problem: Stereomapping to recover depth or shape from disparities.

Example 2
Field: Computer Vision
Problem: Tracking object motion; image sequence analysis may have several images which differ only
slightly, so assumptions about smooth changes are justified.

TEMPORAL REGISTRATION

Class of Problems: Registration of images of same scene taken at different times or under different
conditions.

Typical Applications: Detection and monitoring of changes or growths.
Characteristics of Methods: Need to address problem of dissimilar images, i.e., registration must tolerate
distortions clue to change, best if can model sensor noise and Viewpoint changes; frequently use Fourier
methods to minimize sensitivity to dissimilarity.

Example 1

 

 

Field: Medical Image Analysis
Problem: Digital Subtraction Angiography (DSA)—registration of images before and after radio isotope
injections to characterize functionality, Digital Subtraction Mammiography to detect tumors. early cataract
detection.

Example 2
Field: Remotely Sensed Data Processing
Problem: Natural resource monitoring, surveillance of nuclear plants, urban growth monitoring. 

ACM Computing Surveys, Vol. 24, No. 4, December 1992
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velopment of enumerable independent
registration methodologies.

This broad spectrum of methodologies
makes it difficult to classify and compare
techniques since each technique is often
designed for specific applications and not

necessarily for specific types of problems
or data. However, most registration tech—

niques involve searching over the space
of transformations of a certain type to
find the optimal transformation for a

particular problem. In Figure 3, an ex—
ample of several of the major transforma-

tion classes are shown. In the top left of
Figure 3, an example is shown in which
images are misaligned by a small shift

due to a small change in the camera’s
position. Registration, in this case, in—
volves a search for the direction and
amount of translation needed to match

the images. The transformation class is
thus the class of small translations. The

other transformations shown in Figure 3
are a rotational, rigid body, shear, and a
more general global transformation due

to terrain relief. In general, the type of
transformation used to register images is
one of the best ways to categorize the
methodology and assist in selecting tech-
niques for particular applications. The
transformation type depends on the cause

of the misalignment which may or may
not account for all the variations be-

tween the images. This will be discussed
in more detail in Section 2.3.

A few definitions and important dis-
tinctions about the nomenclature used

throughout this survey may prevent some
confusion; see Table 3.

The distinctions to be clarified are be—

tween global/local transformations,

global/local variations, and global/local
computations. In addition, we will define

what we mean by transformation, varia—
tion, and computation in the context of
registration.

A transformation is a mapping of loca—
tions of points in one image to new loca—
tions in another. Transformations used

to align two images may be global or
local. A global transformation is given
by a single equation which maps the en-
tire image. Examples (to be described in

ACM Computing Surveys, Vol. 24, No. 4, December 1992
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Figure 3. Examples of typical geometric transfor-mations.

Section 2.2) are the affine, projective,
perspective, and polynomial transforma-

tions. Local transformations map the im—
age differently depending on the spatial
location and are thus much more difficult

to express succinctly. In this survey, since
we classify registration methods accord-
ing to their transformation type, a

method is global or local according to the
transformation type that it uses. This is

not always the case in other papers on
this subject.

Variations refer to the differences in

values and locations of pixels (picture
elements) between the two images. We
refer to differences in values as valumet-

ric differences. Typically, value changes
are differences in intensity or radiome—
try, but we use this more general term in
order to include the wide variety of exist-
ing sensors whose values are not intensi-

ties, such as many medical sensors which
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Table 3. Important Distinctions for Image Registration Methods 

TRANSFORMATION: a mapping of locations of points in one image to new locations of points in another.
GLOBAL: map is composed of a single equation that maps each point in the first image to new location

in the second image. The equation is a function of the locations of the first image, but it is the
same function for all parts of the image, i.e., the parameters of the function do not depend on
the location.

LOCAL: mapping of points in the image depends on their location—the map is composed of several
smaller maps (several equations) for each piece of the image that is considered. 

VARIATIONS: the differences in the values of pixels and their location between the images including
distortions which have corrupted the true measurements.
GLOBAL: the images differ similarly throughout the entire image. For example, variations due to

additive white noise affect the intensity values of all pixels in the same way. Each pixel will
be affected differently, but the difference does not depend on the location of the pixel.

LOCAL: the variation between images depends on the location in the image. For example, distortions
due to perspective depend on the depth of the objects projected onto the image. Regions in the
image which correspond to objects which are farther away are distorted in a different way
than regions which correspond to closer objects.

COMPUTATION: refers to the set of calculations performed to determine the parameters of the
registration transformation.

  

GLOBAL: uses all parts of the image to compute the parameters of the transformation. If a local
transformation is being calculated, then each set of local parameters is computed using the
entire image. This is generally a costly method but has the advantage of using more
information.

LOCAL: uses only the relevant local parts of the image for each set of local parameters in determining
a local transformation. By using only local parts of the image for each calculation, the method
is faster. It can also have the advantage of not being erroneously influenced by other parts of
the image.   

measure everything from hydrogen den-
sity (magnetic resonance imaging) to

temperature (thermography). Some of the
variations between the images are dis-
tortions. Distortions refer to the noise

that has corrupted or altered the true

intensity values and their locations in
the image. What is a distortion and What
is not depend on what assumptions are
made about the sensor and the condi—

tions under which the images are taken.
This will be discussed in more detail in

Section 2.3. The variations in the image

may be due to changes in the scene or

the changes caused by a sensor and its
position and viewpoint. We would like to
remove some of these changes via regis-

tration; but others may be difficult to
remove (such as the effects of illumina-

tion changes), or we are not interested in

removing them, i.e., there may be
changes that we would like to detect.
When we describe a set of variations as

global or local, we are referring to
whether or not the variations can be re-

moved by a global or a local transfor-
mation. However, since it is not always

possible to remove all the distortions be—
tween the images, and because we do not
want to remove some of the variations, it

is critical for the understanding of regis-
tration methods to recognize the differ-
ence between whether certain variations

are global or local and Whether the se-
lected transformation is global or local.
For example, images may have local vari-
ations, but a registration method may

use a global transformation to align them
because some of the variations are differ-

ences to be detected after registration.

The important distinctions between the
various types of variations will be ex—
plained in more detail in Section 2.3.

The final definition and distinction we

address are with respect to the registra—

tion computation. The registration com-
putation refers to the calculations per—
formed to determine the parameters of
the transformation. When a computation
is described as global or local this refers
to Whether the calculations needed to

determine the parameters of the trans-
formation require information from the
entire image or whether each subset of

ACM Computing Surveys, V01. 24, No. 4, December 1992
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parameters can be computed from small
local regions. This distinction only makes
sense when a local transformation is used

for registration, since when a global
transformation is required only one set of
parameters are computed. However, this

is again distinct from the type of trans—
formation used. For example, registra-
tion methods which search for the opti-
mal local transformation may be more

accurate and slower if they require global

computations in order to determine local
parameters since they use information
from the entire image to find the best
alignment.

One further comment is in order. In

this paper the registration techniques re—
viewed were developed for images which
are two dimensional. With the advent of

cheaper memory, faster computers, and
improved sensor capability, it has be—
come more and more common to acquire
three—dimensional images, for example,
with laser range finders, motion se—
quences, and the latest 3D medical mo—
dalities. Registration problems abound in
both 2D and 3D cases, but in this paper
only 2D techniques are examined. Al—
though many of the 2D techniques can be
generalized to higher-dimensional data,
there are several additional aspects that
inevitably need to be considered when
dealing with the immense amount of data
and the associated computational cost in
the 3D case. Furthermore, many of the
problems arising from the projection of
3—space onto a 2D image are no longer
relevant. Techniques developed to over—
come the unique problems of 3D registra-
tion are not surveyed in this paper.

In the next section of this paper the
basic theory of the registration problem
is given. Image registration is defined
mathematically as are the most com-
monly used transformations. Then image
variations and distortions and their rela-

tionship to solving the registration prob—
lem are described. Finally the related
problem of rectification, which refers to
the correction of geometric distortions
produced by the projection of a flat plane,
is detailed.

In Section 3 of this paper the major
approaches to registration are described

ACM Computing Surveys, Vol. 24, No 4, December 1992

based on the complexity of the type of
transformation that is searched. In Sec-

tion 3.1, the traditional technique of the
cross—correlation function and its close

relatives, statistical correlation, matched
filters, the correlation coefficient, and se—

quential techniques are described. These
methods are typically used for small
well-defined affine transformations, most

often for a single translation. Another

class of techniques used for affine trans—
formations, in cases where frequency—

dependent noise is present, are the
Fourier methods described in Section 3.2.
If an affine transformation is not suffi—

cient to match the images then a more
general global transformation is re-
quired. The primary approach in this case
requires feature point mapping to define
a polynomial transformation. These tech—

niques are described in 3.3. However, if
the source of misregistration is not global,
i.e., the images are misaligned in dif—
ferent ways over different parts of the
image, then a local transformation is
needed. In the last section of 3.3, the

techniques which use the simplest lo-
cal transformation based on piecewise in-

terpolation are described. In the most
complex cases, where the registration
technique must determine a local trans-
formation when legitimate local distor-

tions are present, i.e., distortions that
are not the cause of misregistration,

techniques based on specific transforma-
tion models such as an elastic membrane
are used. These are described in Section
3.4.

The methods described in Section 3 are

used as examples for the last section of
this survey. Section 4 offers a framework
for the broad range of possible registra—
tion techniques. Given knowledge of the
kinds of variations present, and those
which need to be corrected, registration
techniques can be designed, based on the
transformation class which will be suffi—

cient to align the images. The transfor—
mation class may be one of the classical
ones described in Section 2.2 or a specific
class defined by the parameters of the
problem. Then a feature space and simi-
larity measure are selected which are
least sensitive to remaining variations

VALEO EX. 1026_008
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and are most likely to find the best match.

Lastly, search techniques are chosen to
reduce the cost of computations and guide
the search to the best match given the

nature of the remaining variations. In
Section 4, several alternatives for each

component of a registration method are
discussed using the framework devel—
oped, in particular, with respect to the
characteristics of the variations between

the images as categorized in Section 2.3.

2. IMAGE REGISTRATION IN THEORY

2.1 Definition

Image registration can be defined as a
mapping between two images both spa-
tially and with respect to intensity. If we

define these images as two 2D arrays of a

given size denoted by I1 and 12 where
Il(x,y) and I2(x,y) each map to their
respective intensity (or other measure
ment) values, then the mapping between

images can be expressed as:

where f is a 2D spatial—coordinate trans-
formation, i.e., f is a transformation
which maps two spatial coordinates, x
and y, to new spatial coordinates x' and
y’,

(x’7y') =f(x,y)

and g is a 1D intensity or radiometric
transformation.

The registration problem is to find the

optimal spatial and intensity transfor—

mations so that the images are matched
either for the purposes of determining

the parameters of the matching transfor—
mation or to expose differences of inter—
est between the images. The intensity
transformation is not always necessary,
and often a simple lookup table deter-
mined by sensor calibration techniques is
sufficient [Bernstein 1976]. An example

where an intensity transformation is used
is in the case where there is a change in
sensor type (such as optical to radar
[Wong 1977]). Another example when an
intensity transformation is needed is
when objects in the scene are highly
specular (their reflectance is mirror-like)

333

and when there is a change in viewpoint

or surface orientation relative to the light
source. In the latter case, although an

intensity transformation is needed, in
practice it is impossible to determine the
necessary transformation since it re-
quires knowing the reflectance properties
of the objects in the scene and their shape
and distance from the sensor. Notice, that

in these two examples, the intensity vari-
ations are due to changes in the acquisi-

tion of the images of the scene: in the
first case by the change in sensors and in
the second by the change in reflectance
seen by the sensor. In many other in—
stances of variations in intensity, the

changes are due to differences in the
scene that are not due to how the scene

was projected by the sensor onto an im-

age, but rather the changes are intrinsic
differences in the scene, such as move—

ments, growths, or differences in relative
depths, that are to be exposed by the

registration process—not removed. After
all, if the images are matched exactly,
then besides learning the parameters of
the best transformation, what infor—

mation is obtained by performing the
registration?

Finding the parameters of the optimal
spatial or geometric transformation is
generally the key to any registration
problem. It is frequently expressed para—
metrically as two single-valued func—

tions, fwfy:

12(x7 : 11(fx(x7y)7

which may be more easily implemented.

2.2 Transformations

The fundamental characteristic of any

image registration technique is the type

of spatial transformation or mapping
used to properly overlay two images. Al-
though many types of variations may be
present in each image, the registration

technique must select the class of trans-
formation which will remove only the
spatial distortions between images due to
differences in acquisition and scene char-
acteristics which affect acquisition. Other
differences in scene characteristics that

are to be exposed by registration should

ACM Computing Surveys, Vol. 24, No. 4, December 1992
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not be used to select the class of transfor—

mation. In this section, we will define
several types of transformations and
their parameters, but we defer our dis—

cussion of how the transformation type is
selected for a specific problem and what
procedures are used to find its parame—
ters until later.

The most common general transforma-

tions are rigid, affine, projective, perspec—
tive, and global polynomial. Rigid trans-
formations account for object or sensor

movement in which objects in the images
retain their relative shape and size. A
rigid-body transformation is composed of
a combination of a rotation, a transla—

tion, and a scale change. An example is
shown in Figure 3. Affine transforma-
tions are more general than rigid and
can therefore tolerate more complicated
distortions while still maintaining some
nice mathematical properties. A shear

transformation, also shown in Figure 3,
is an example of one type of affine trans-
formation. Projective transformations
and the more general perspective trans-
formations account for distortions due to

the projection of objects at varying dis—
tances to the sensor onto the image plane.
In order to use the perspective transfor—
mation for registration, knowledge of the
distance of the objects of the scene rela-

tive to the sensor is needed. Polynomial
transformations are one of the most gen—
eral global transformations (of which
affine is the simplest) and can account

for many types of distortions so long as
the distortions do not vary too much over
the image. Distortions due to moderate

terrain relief (see the bottom example in

Figure 3) can often be corrected by a
polynomial transformation. The trans-
formations just described are all well—
defined mappings of one image onto an—
other. Given the intrinsic nature of

imagery of nonrigid objects, it has been
suggested (personal communication,
Maguire, G. Q., Jr., 1989) that some

problems, especially in medical diagno-
sis, might benefit from the use of fuzzy or
probabilistic transformations.

In this section we will briefly define
the different transformation classes and

ACM Computlng Surveys, Vol 24. No. 4, December 1992

their properties. A transformation T is
linear if,

T(x1 + x2) = T(x1) + T(X2)

and for every constant c,

CT(X) = chx).

A transformation is affine if T(x) — T(0)
is linear. Affine transformations are lin-

ear in the sense that they map straight
lines into straight lines. The most com—
monly used registration transformation
is the affine transformation which is suf-

ficient to match two images of a scene

taken from the same viewing angle but
from a different position, i.e., the camera
can be moved, and it can be rotated
around its optical axis. This affine trans-
formation is composed of the cartesian

operations of a scaling, a translation, and
a rotation. It is a global transformation

which is rigid since the overall geometric
relationships between points do not

change, i.e., a triangle in one image maps
into a similar triangle in the second im—
age. It typically has four parameters,

tx. ty, 3, 6, which map a point (x1, y1) of
the first image to a point (x2, y2) of the
second image as follows:

— sin (9) x1cos 0 y1 '(x2): tx +S(cos6y2 If“V sine

This can be rewritten as

1—22 : Z + 81351

where [31, 1—32 are the coordinate vectors
of the two images; 2 is the translation
vector; 8 is a scalar scale factor, and R is
the rotation matrix. Since the rotation

matrix R is orthogonal (the rows or

columns are perpendicular to each other),
the angles and lengths in the original
image are preserved after the registra-
tion. Because of the scalar scale factor 8.

the rigid—body transformation allows

changes in length relative to the original
image, but it is the same in both x and
y. Without the addition of the translation
vector, the transformation becomes
linear.
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The general 2D affine transformation

(§:)= (:;:)+ (5:: )(i:)
does not have the properties associated
with the orthogonal rotation matrix. An-

gles and lengths are no longer preserved,
but parallel lines do remain parallel. The
general affine transformation can ac—
count for more general spatial distortions
such as shear (sometimes called skew)

and changes in aspect ratio. Shear, which

can act either along the x—axis, Shearx,

or along the y-axis, Sheary, causes a
distortion of pixels along one axis, pro—
portional to their location in the other
axis. The shear component of an affine
transformation is represented by

_ 1 a _ 1 0
Shearx—(O 1), Sheary—(b 1).

5‘12

“22

Another distortion which can occur with

an affine transformation is a change in

aspect ratio. The aspect ratio refers to
the relative scale between the x and y

axes. By scaling each axis independently,

s Ox

08yScale = (  
the ratio between the x and y scale is

altered. By applying any sequence of
rigid-body transformations, shears and
aspect ratio changes, an affine transfor-
mation is obtained which describes the
cumulative distortions.

The perspective transformation ac—
counts for the distortion which occurs

when a 3D scene is projected through an
idealized optical image system as in Fig-
ure 4. This is a mapping from 3D to 2D.
In the special case, where the scene is a

flat plane such as in an aerial photo—
graph, the distortion is accounted for by
a projective transformation. Perspective
distortions cause imagery to appear
smaller the farther it is from the camera

and more compressed the more it is in-
clined away from the camera. The latter
effect is sometimes called foreshortening.

If the coordinates of the objects in the

scene are known, say (x0, ya, 20), then
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the corresponding point in the image

(35,, y,) is given by

_fyo_fxo

_ yl _ 20 __f‘ zo—f’

  
x

where f is the position of the center of
the camera lens. (If the camera is in

focus for distant objects, f is the focal

length of the lens.) In the special case
where the scene is composed of a flat

plane tilted with respect to the image
plane, the projective transformation is
needed to map the scene plane into an

image which is tilt free and of a desired
scale [Slama 1980]. This process, called

rectification, is described in more detail
in Section 2.4. The projective transforma—
tion maps a coordinate on the plane

(xp, yp) to a coordinate in the image
(x,, y,) as follows:

 

x _ aux]; + alZyp + 0‘13
L a31xp + “3239, + 033

yl “3195p " a32yp + “33

where the (1 terms are constants which

depend on the equations of the scene and
image plane.

If these transformations do not account
for the distortions in the scene or if not

enough information is known about the
camera geometry, global alignment can

be determined using a polynomial trans-
formation. This is defined in Section

3.3.3. For perspective distortion of com—

plex 3D scenes, or nonlinear distortions
due to the sensor, object deforma-
tions and movements and other domain-

specific factors, local transformations
are necessary. These can be constructed

via piecewise interpolation, e.g., splines
when matched features are known, or

model-based techniques such as elastic
warping and object/motion models.

If the geometric transformation f(x, y)
can be expressed as a pair of separable
functions, i.e., such that two consecutive
1D (scanline) operations can be used to
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Figure 4.

compute the transformation,

f(xay):f1(x)of2(y)7

then significant savings in efficiency and
memory usage can be realized during the

implementation. Generally, f2 is applied
to each row; then fl is applied to each
column. In classical separability the two
operations are multiplied, but for practi-

cal purposes any compositing operation
can offer considerable speedup [Wolberg
and Boult 1989].

2.3 Image Variations

Since image registration deals with the
removal of distortions and the detection

of changes between images, knowledge
about the types of variations between im—

ages plays a fundamental role in any
registration problem. We have found it
useful to‘ categorize these variations in

the images into three groups based on
their different roles in registration prob-
lems. These categories are described in
Table 4.

First, it is important to distinguish be-
tween distortions and other variations.
Distortions are variations which are the

source of misregistratz'on. By this, we
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Imaging system.

mean they are variations which have

caused the images to be misaligned and
have obscured the true measurement
values. It is the distortions between im—

ages which we would like to remove by
registration. The other variations are
usually changes that we are interested in

detecting after registration has been per-
formed; they are therefore not distor-

tions. Distortions may be due to a change
in the sensor viewpoint, noise introduced

by the sensor or its operation, changes in
the subject’s position, and other undesir—

able changes in the scene or sensor. They
almost always arise from differences in
the way or the circumstances under

which the images are acquired. This is in
contrast to variations of interest which
stem from intrinsic differences in

the scene, such as physical growths or
movements.

Second, we distinguish two categories
of distortions. In any registration prob-
lem, we would like to remove all the

distortions possible. However, this is sel-
dom possible or practical. What is typi-
cally done instead is remove the primary
spatial discrepancies and to limit the in-
fluence of valumetric and small local er-

rors. This is accomplished by choosing a
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Table 4. Categorlzatlon of Variations between Images to be Registered 

I. Corrected Distortions
These are distortions which can be modeled. The model of these distortions determines the class of

transformations that will register the images. These distortions are typically geometric, due to simple
viewpoint changes and sensor noise. 

II. Uncorrected Distortions

 

These are distortions which are difficult to model. They are often dependent on the scene and are often
valumetric. Typical examples are lighting and atmospheric variations, shadows, and valumetric
sensor noise. 

III. Variations of Interest

These are differences between the two images which we would like to detect. For some problems, the
purpose of registration is to expose these differences. Common examples include changes in the scene
such as object movements, growths or deformations, and differences in sensor measurements when
using sensors with varying sensitivities, or using sensors which measure different qualities. 

viable spatial transformation class and

by ignoring other variations by choosing

the appropriate feature space, similarity
measure, and search strategy. This effec—
tively splits the distortions into two cate-

gories. The first category is the spatial
distortions which can be satisfactorily
modeled by a practical transformation
class. We call these the corrected distor-

tions. The remaining distortions are of-

ten caused by lighting and atmospheric
changes. This is because their effects de-

pend on the characteristics of the physi-
cal objects in the scene, and hence they
are difficult to model effectively.

In summary, there are three categories
of variations that play important roles in
the registration of images. The first type
(Type I) are the variations, usually spa
tial, which are used to determine an ap-

propriate transformation. Since the ap-
plication of an optimal transformation in
this class will remove these distortions,
they are called corrected distortions. The

second type of variations (Type II) are
also distortions, usually valumetric, but

distortions which are not corrected by
the registration transformation. We call

these uncorrected distortions. Finally, the
third type (Type III) are variations of
interest, differences between the images
which may be spatial or valumetric but
are not to be removed by registration.
Both the uncorrected distortions and the

variations of interest, which together we
call uncorrected variations, affect the
choice of feature space, similarity meas-

 

ure, and search strategy that make up
the final registration method. The dis-
tinction between uncorrected distortions

and variations of interest is important,
especially in the case where both the
distortions and the variations of interest

are local, because the registration method
must address the problem of removing as
many of the distortions as possible while
leaving the variations of interest intact.

Table 5 decomposes registration meth—
ods based on the type of variations pre—
sent in the images. This table shows how
registration methods can be classified
based first on the transformation class

(Type I variations) and then subclassified
based on the other variations (Types II
and III). This table serves as an outline
for Section 3.

All variations can be further classified

as either static/dynamic, internal/exter—
nal, and geometric/photometric. Static
variations do not change for each image
and hence can be corrected in all images
in the same procedure via calibration
techniques. Internal variations are due

to the sensor. Typical internal geometric
distortions in earth observation sensors

[Bernstein 1976] are centering, size,
skew, scan nonlinearity, and radially
(pin-cushion) or tangentially symmetric
errors. Internal variations which are par—
tially photometric (effect intensity val-

ues) include those caused by camera-
shading effects (which effectively limit
the viewing window), detector gain varia-
tions and errors, lens distortions, sensor
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Table 5. Registration Methods Categorized by the Type of Varlatlons
Present between Images

Transformation Class Type of Variations Appropriate Methods
(Type I Variations) (Type II & III Variations) (Section 3)

Global

Small Rigid/Affine Frequency Independent Correlation-Based,
Valumetric Sequential

Translation/Rotation Frequency Dependent Fourier—Based
Valumetric

Small Rigid/Affine Local Point Mapping withFeedback

General/ Valumetric Pomt Mapping Without
Feedback

Global Polynomial Few Accurate Control Points Interpolation
(manual, specific domain)
Local Approximation
Many Inaccurate Control Points
(automatic, general domain)

Local

Local Basis Functions Global and Valumetric, Piecewise
Control Points Available Interpolation

Elastic Model Local Elastic Model Based 

imperfections, and sensor-induced filter-

ing (which can cause blemishes and
banding).

External errors, on the other hand,
arise from continuously changing sensor
operations and individual scene charac-

teristics. These might be due to platform

perturbations (i.e., changes in viewing
geometry) and scene changes due to
movement or atmospheric conditions. EX-

ternal errors can similarly be broken
down into spatial and value (intensity)
distortions. The majority of internal er-
rors and many of the photometric ones
are static and thus can be removed using
calibration.

Since registration is principally con—
cerned with spatially mapping one image
onto another, external geometric distor-
tions play the most critical role in regis—

tration. Internal distortions typically do
not cause misalignment between images,
and the effect on intensity from either
internal or external distortions is either
of interest or difficult to remove. Inten-

sity distortions that are not static usu—

ally arise from a change in sensor, which
might be of interest, or from varied light—
ing and atmospheric conditions. In the

cases where intensity distortions are cor—

ACM Computlng Surveys, Vol. 24, N0. 4, December 1992

rected, the intensity histogram and other
statistics about the distribution of inten-

sities are used. An example is presented
by the method developed by Wong [1977]

to register radar and optical data using
the Karhunen-Loeve transformation. In

Herbin [1989], intensity correction is per-
formed simultaneously with geometric
correction.

Since a common objective of registra—
tion is to detect changes between images,
it is important that images are matched
only with regards to the misregistration
source. Otherwise the changes of interest
will be removed at the same time. Im-

ages which contain variations of interest
(Type III variations) are sometimes re—

ferred to as dissimilar images because
the images remain substantially differ—
ent after they are registered. Registrar

tion of dissimilar images often has a spe-
cial need to model the misregistration
source. In hierarchical search techniques
described by Hall [1979], for example,
matching rules are selected which are
more invariant to natural or even man—

made changes in scenery. In general, reg—
istration of images obtained at different
times or under different scene conditions

is performed to extract changes in the
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scene. Examples are the detection of the

growth of urban developments in aerial
photography or of tumors in mammio-

grams. Registration of images acquired
from different sensors integrates the dif—
ferent measurements in order to classify

picture points for segmentation (whereby
regions of the image can be found that

correspond to meaningful objects in the
scene) and for object recognition (so that
these regions can be labeled according to
what they correspond to in the scene). In
both these instances, of multimodal or
temporal registration, variations exist

which are not to be removed by registra-
tion. This presents additional constraints
on matching which must find similarities
in the face of irrelevant variations.

Not surprisingly, the more that is
known about the type of distortions pres-
ent in a particular system, the more ef-

fective registration can be. For example,
Van Wie [1977] decomposes the error
sources in Landsat multispectral im-
agery into those‘due to sensor operation,
orbit and altitude anomalies, and earth
rotation. Errors are also categorized as
global continuous, swath continuous, or
swath discontinuous. Swath errors are

produced by differences between sweeps

of the sensor mirror in which only a cer—
tain number of scan lines are acquired.
This decomposition of the sources of mis-
registration is used in the generation of a
registration system with several special-

ized techniques which depend on the ap-
plication and classes of distortions to be
rectified. For example, a set of control
points can be used to solve an altitude
model, and swath errors can be corrected

independent of other errors, thus reduc-
ing the load of the global corrections and
improving performance.

In computer vision, images with differ-
ent viewing geometries, such as stereo
image pairs, are “registered” to deter-
mine the depth of objects in the scene or
their three-dimensional shape character-
istics. Surveys in stereomapping include
Barnard and Fischler [1982] and Dhond

and Aggarwal [1989]. This requires
matching features in the images and

finding the disparity between them; this

339

is often called the correspondence prob-
lem. In this case, the majority of the

variations are corrected by the mapping
between images, but on the other hand
the resulting mapping is highly complex.
Consider the problems of occlusion, the
different relative position of imaged ob-
jects and the complete unpredictability of
the mapping because of the unknown

depths and shapes of objects in the scene.
Hence, problems of stereo matching and
motion tracking also have a real need to
model the source of misregistration. By
exploiting camera and object model char—
acteristics such as viewing geometry,
smooth surfaces, and small motions,

these registration—like techniques be-
come very specialized. For example, in
stereomapping, images differ by their
imaging viewpoint, and therefore the
source of misregistration is due to differ-
ences in perspective. This greatly re—
duces the possible transformations and
allows registration methods to exploit the
properties of stereo imagery. Because of
the geometry imposed by the camera
Viewpoints, the location of any point in
one image constrains the location of the
point in the other image (which repre-
sents the same point in the 3D scene) to
a line. This is called the epipolar con-
straint, and the line in which the match-

ing point must lie is called the epipolar
line. If the surfaces in the scene are

opaque, continuous and if their scanlines

(the rows of pixels in the image) are par-
allel to the baseline (the line connecting

their two viewpoints), then an ordering
constraint is also imposed along corre—
sponding epipolar lines. See Figure 5.

Furthermore, the gradient of the dispar—
ity (the change in the difference in posi—
tion between the two images of a pro-

jected point) is directly related to the
smoothness of surfaces in the scene. By

using these constraints instead of looking
for an arbitrary transformation with a
general registration method, the stereo
correspondence problem can be solved
more directly, i.e., search is more effi-
cient and intelligent.

When sufficient information about the

misregistration source is available, it may
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Figure 5. Typical stereo imaging system, showing the epipolar constraint. If the surface is opaque and
continuous. then the ordering of points along the corresponding epipolar lines of the two images is
guaranteed to be the same (Based on a figure in Horn [1989].)

be possible to register images analyti-
cally and statically. For example, if the
scene is a flat plane and if the two im—

ages of the scene differ only in their
viewing geometries, and this relative dif—

ference is known, then an appropriate
sequence of elementary cartesian trans—
formations (namely, a translation, rota-
tion, and scale change or rigid transfor-
mation) can be found to align the two
images. It may be possible to determine

the difference in the viewing geometry
for each image, i.e., the position, orienta—

tion, and scale of one coordinate system
relative to the other, from orbit

ephemerides (star maps), platform sen—
sors, or backwards from knowing the
depth at three points. This is only possi-
ble if there is a simple optical system
without optical abberations, i.e., the
viewing sensor images a plane at a con-
stant distance from the sensor at a con—

stant scale factor. Registration in this
case is accomplished through image rec—
tification which will now be described in

detail. Although this form of registration
is closely related to calibration (where
the distortion is static and hence meas—

urable), it is a good example of the typi-
cal viewing geometry and the imaging
properties that can be used to determine
the appropriate registration transforma—

tion. This is the only example that will
be given however. where the source of

misregistration is completely known and

leads directly to an analytical solution
for registration.
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2.4 Rectification

One of the simplest types of registration
can be performed when the scene under

observation is relatively flat and the
viewing geometry is known. The former
condition is often the case in remote

sensing if the altitude is sufficiently high.
This type of registration is accomplished
by rectification, i.e., the process which
corrects for the perspective distortion in

an image of a flat scene. Perspective dis—

tortion has the effect of compressing the
image of scene features the farther they
are from the camera. Rectification is of-

ten performed to correct images so that

they conform to a specific map standard
such as the Universal Transverse Merca-

tor projection. But it can also be used to
register two images of a flat surface taken
from different viewpoints.

Given an imaging system in which the
image center 0 is at the origin and the
lens center L is at (0,0,f), any scene

point P0 : (x0, yo, 20) can be mapped to
an image point PZ : (96,, y) by the scale
factor f/(zO — f). This can be seen from
the similar triangles in the viewing ge—
ometry illustrated in Figure 4. If the
scene is a flat plane which is perpendicu-
lar to the camera axis (i.e., z is constant)
it is already rectified since the scale fac—

tor is now constant for all points in the
image. For any other flat plane S, given
by

Ax0+ByD+ZO=C
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Figure 6. Any plane can be decomposed into lines parallel to the image plane.

where A, B, and C are constants, rectifi-
cation can be performed by mapping the

intensity of the image point at (x1, yl)
into the new rectified image point loca-

tion (fact/Z, fyl/Z) where Z = f—- Ax, —
By, [Rosenfeld 1982]. This is because the
scene plane can be decomposed into lines

Axe + Bye = C" each at a constant dis—
tance (20 = C — C ’) from the image
plane. Each line then maps to a line in

the image plane, and since its perspec-
tive distortion is related to its distance

from the image, all points on this line

must be scaled accordingly by f/(C — C’
— f). Figure 6 shows how a plane is de-
composed into lines that are each paral—
lel to the image plane.

Two pictures of the flat plane taken
from different viewpoints can be regis—
tered by the following steps. First, the
scene coordinates (x1, y1, 21) are related
to their image coordinates in image 1 of a
point with respect to camera 1 by a scale
factor (21 — f )/f dependent on their

depth (the 21 coordinate) and the lens
center f because of similar triangles. This
gives us two equations. Since they must
also satisfy the equation of the plane, we
have three equations from which we can
derive the three coordinates of each scene

point using its corresponding image point

with respect to coordinate system of cam-
era 1. The scene coordinates are then

converted from the coordinate system
with respect to camera 1 to a coordinate
system with respect to camera 2 to ob-

tain (x2, 322, 22). Lastly7 these can be pro-
jected onto image 2 by the factor f/(z2 ~
f), again by similar triangles. Of course,
if these are discrete images, there is still
the problem of interpolation if the regis-
tered points do not fall on grid locations.
See Wolberg [1990] for a good survey of
interpolation methods.

3. REGISTRATION METHODS

3.1 Correlation and Sequential Methods

Cross-correlation is the basic statistical

approach to registration. If is often used
for template matching or pattern recog—
nition in which the location and orienta—

tion of a template or pattern is found in a
picture. By itself, cross—correlation is not

a registration method. It is a similarity
measure or match metric, i.e., it gives a
measure of the degree of similarity be—
tween an image and a template. How-
ever, there are several registration meth-
ods for which it is the primary tool, and
it is these methods and the closely re-
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lated sequential methods which are dis-
cussed in this section. These methods are

generally useful for images which are
misaligned by small rigid or affine
transformations.

For a template T and image I, where T
is small compared to I, the two-dimen-
sional normalized cross-correlation func—

tion measures the similarity for each
translation:

ZnyT(x,y)I(x ~ u,y v v)

x/[Zfiylgw * w r W] '

 

C(u,v)

 

covariance( I, T)

malize, as before, using the local image

energy szv12(x * u, y i 11). Notice
that if you expand this intuitive measure

D(u,v) into its quadratic terms, there
are three terms: a template energy term,
a product term of template and image,
and an image energy term. It is the prod—

uct term or correlation Z,ZVT(x,y)I(x
— u, y — U) which when normalized, de—
termines the outcome of this measure.

A related measure, which is advan-
tageous when an absolute measure is
needed, is the correlation coefficient

ZLZy(T(x,y) — ,LLT)(I(x — u,y # u) — ,ul)
  

0'1 at

If the template matches the image ex—
actly, except for an intensity scale factor,
at a translation of (i, j), the cross—corre—

lation will have its peak at C(i,j). (See
Rosenfeld and Kak [1982] for a proof of

this using the Cauchy—Schwarz inequal—
ity.) Thus, by computing C over all pos-
sible translations, it is possible to find
the degree of similarity for any
template-sized window in the image. No—
tice the cross-correlation must be nor—

malized since local image intensity would
otherwise influence the measure.

The cross-correlation measure is di-

rectly related to the more intuitive mea—
sure which computes the sum of the dif—
ferences squared between the template
and the picture at each location of the
template:

Dom»: ZZ(T(x,y)

*I(x * u,y * 11))2.

This measure decreases with the degree
of similarity since, when the template is
placed over the picture at the location
(11,11) for which the template is most simi—
lar. the differences between the corre-

sponding intensities will be smallest. The

template energy defined as ZnyTZUC, y)
is constant for each position (u, u) that
we measure. Therefore, we should nor-
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where MT and (IT are mean and stan—
dard deviation of the template and [LL]

and a] are mean and standard deviation
of the image.1 This statistical measure
has the property that it measures corre—
lation on an absolute scale ranging from

[~ 1, 1]. Under certain statistical as—
sumptions. the value measured by the
correlation coefficient gives a linear indi—
cation of the similarity between images.
This is useful in order to quantitatively
measure confidence or reliability in a
match and to reduce the number of mea-

surements needed when a prespecified
confidence is sufficient [Svedlow et al.
1976].

Consider a simple example of a binary
image and binary template, i.e., all the
pixels are either black or white, for which
it is possible to predict with some proba-
bility whether or not a pixel in the image
will have the same binary value as a

pixel in the template. Using the correla-
tion coefficient, it is possible to compute
the probability or confidence that the im-
age is an instance of the template. We
assume the template is an ideal repre—

1 The mean ,u of an image is the average intensity
value; if the image I is defined over a region x =
17 N; .V : 1, M then M1 : Eiliziififlxv W/
(N* MD. The standard deviation is a measure of
the variation there in the intensity values. It is
defined as of : if]: 1213/: 1((le, y) —
W>Z/<NA:M». '
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sentation of the pattern we are looking
for. The image may or may not be an
instance of this pattern. However, if we
can statistically characterize the noise
that has corrupted the image, then the
correlation coefficient can be used to

quantitatively measure how likely it is
that the image is an instance of the
template.

Another useful property of correlation
is given by the Correlation theorem. The
Correlation theorem states that the
Fourier transform of the correlation of

two images is the product of the Fourier
transform of one image and the complex
conjugate of the Fourier transform of the
other. This theorem gives an alternate
way to compute the correlation between
images. The Fourier transform is simply
another way to represent the image func-
tion. Instead of representing the image

in the spatial domain, as we normally do,
the Fourier transform represents the
same information in the frequency do-
main. Given the information in one do-

main we can easily convert to the other
domain. The Fourier transform is widely

used in many disciplines, both in cases
where it is of intrinsic interest and as a

tool, as in this case. It can be computed
efficiently for images using the Fast
Fourier Transform or FFT. Hence, an

important reason why the correlation
metric is chosen in many registration

problems is because the Correlation theo-
rem enables it to be computed efficiently,
with existing, well-tested programs using
the FFT (and occasionally in hardware
using specialized optics). The use of the
FFT becomes most beneficial for cases

where the image and template to be
tested are large. However there are two
major caveats. Only the cross-correlation
before normalization may be treated by
FFT. Second, although the FFT is faster
it also requires a memory capacity that
grows with the log of the image area.
Last, both direct correlation and correla-

tion using FFT have costs which grow at
least linearly with the image area.

Solving registration problems like tem—
plate matching using correlation has
many variations [Pratt 1978]. Typically
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the cross-correlation between the image

and the template (or one of the related
similarity measures given above) is com-
puted for each allowable transformation
of the template. The transformation

whose cross-correlation is the largest
specifies how the template can be opti-
mally registered to the image. This is

the standard approach when the allow-
able transformations include a small

range of translations, rotations, and scale
changes; the template is translated, ro—
tated, and scaled for each possible trans-
lation, rotation, and scale of interest. As
the number of transformations grows,

however, the computational costs quickly
become unmanageable. This is the rea—
son that the correlation methods are gen—
erally limited to registration problems in
which the images are misaligned only by
a small rigid or affine transformation. In
addition, to reduce the cost of each meas-
urement for each transformation in-

stance, measures are often computed on
features instead of the whole image area.
Small local features of the template which
are more invariant to shape and scale,

such as edges joined in a Y or a T, are
frequently used.

If the image is noisy, i.e., there are
significant distortions which cannot be
removed by the transformation, the peak
of the correlation may not be clearly dis-
cernible. The Matched Filter Theorem

states that for certain types of noise such
as additive white noise, the cross—
correlation filter that maximizes the ra-

tio of signal power to the expected noise
power of the image, i.e., the information

content, is the template itself. In other
cases however, the image must be pre—
filtered before cross—correlation to main—

tain this property. The prefilter and the
cross-correlation filter (the template) can

be used to produce a single filter which
can simultaneously perform both filter-

ing operations. The prefilter to be used
can sometimes be determined if the noise

in the image satisfies certain statistical
properties. These techniques, which pre-
filter based on the properties of the noise
of the image in order to maximize the
peak correlation with respect to this noise
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(using the Matched Filter Theorem) and
then cross-correlate, are called matched

filter techniques [Rosenfeld and Kak
1982]. The disadvantages of these tech—
niques are that they can be computation-
ally intensive, and in practice the statis—
tical assumptions about the noise in the
image are difficult to satisfy.

A far more efficient class of algorithms
than traditional cross—correlation, called
the sequential similarity detection algo-
rithms (SSDAS), was proposed by Barnea
and Silverman [1972]. Two major im-
provements are offered. First, they sug-
gest a similarity measure E(u, U), which
is computationally much simpler, based
on the absolute differences between the

pixels in the two images,

E(u,v) = Z Z]T(x,y)x

~I(x — u,y ~ 12)].

The normalized measure is defined as

E(u,v) = ZE]T(3c,y)~7A1
x y

—I(x— u,y — v) +f(u,v)]

where T and f are the average intensi—
ties of the template and local image win-
dow respectively. This is significantly
more efficient than correlation. Correla-

tion requires both normalization and the
added expense of multiplications. Even if
this measure is unnormalized a mini—

mum is guaranteed for a perfect match.

Normalization is useful, however, to get
an absolute measure of how the two im—

ages differ, regardless of their intensity
scales.

The second improvement Barnea and
Silverman [1972] introduce is a sequen-

tial search strategy. In the simplest case
of translation registration this strategy
might be a sequential thresholding. For
each window of the image (determined by
the translation to be tested and the tem-

plate size), one of the similarity meas-
ures defined above is accumulated until
the threshold is exceeded. For each win-

dow the number of points that were ex—
amined before the threshold was ex-
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ceeded is recorded. The window which

examined the most points is assumed to
have the lowest measure and is therefore

the best registration.
The sequential technique can signifi-

cantly reduce the computational com-
plexity with minimal performance degra-
dation. There are also many variations
that can be implemented in order to adapt
the method to a particular set of images
to be registered. For example, an order—
ing algorithm can be used to order the
windows tested which may depend on
intermediate results, such as a coarse-

to—fine search or a gradient technique.
These strategies will be discussed in more
detail in Section 4.3. The ordering of the
points examined during each test can also
vary depending on critical features to be
tested in the template. The similarity
measure and the sequential decision al—
gorithm might vary depending on the re-
quired accuracy, acceptable speed, and
complexity of the data.

Although the sequential methods im—
prove the efficiency of the similarity
measure and search, they still have in—
creasing complexity as the degrees of
freedom of the transformation is in—

creased. As the transformation becomes

more general the size of the search grows.
On the one hand, sequential search be-
comes more important in order to main—

tain reasonable time complexity; on the
other hand it becomes more difficult not

to miss good matches.
In comparison with correlation, the se—

quential similarity technique improves

efficiency by orders of magnitude. Tests
conducted by Barnea and Silverman
[1972], however, also showed differences

in results. In satellite imagery taken un—
der bad weather conditions, clouds

needed to be detected and replaced with
random noise before correlation would

yield a meaningful peak. Whether the
differences found in their small study
can be extended to more general cases
remains to be investigated.

A limitation of both of these methods is

their inability to deal with dissimilar im-
ages. The similarity measures described
so far, the correlation coefficient, and the
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sum of absolute differences are maxi—

mized and minimized, respectively for
identical matches. For this reason, fea-
ture-based techniques and measures
based on the invariant properties of the
Fourier transform are preferable when
images are acquired under different cir-
cumstances, e.g., varying lighting or at—
mospheric conditions. In the next section
the Fourier methods will be described.

Like the correlation and sequential

methods, the Fourier methods are appro-
priate for small translations, rotations,

or scale changes. The correlation meth-
ods can be used sometimes for more gen-
eral rigid transformations but become in-
efficient as the degrees of freedom of the
transformation grows. The Fourier meth-
ods can only be used where the Fourier
transform of an image which has under-
gone the transformation is related in a

nice mathematical way to the original
image. The methods to be described in
the next section are applicable for images
which have been translated or rotated or

both. They are specifically well suited
for images with low frequency or fre-
quency-dependent noise; lighting and
atmospheric variations often cause low-

frequency distortions. They are not ap-
propriate for images with frequency-in-
dependent noise (white noise) or for more
general transformations.

3.2 Fourier Methods

The methods to be described in this sec-

tion register images by exploiting several
nice properties of the Fourier Transform.
Translation, rotation, reflection, distri-
butivity, and scale all have their counter-
part in the Fourier domain. Further-
more, as mentioned in the previous
section, the transform can be efficiently

implemented in either hardware or using
the Fast Fourier Transform. These meth-
ods differ from the methods in the last

section because they search for the opti—
mal match according to information in
the frequency domain. The method de-
scribed in Section 3.1 used the Fourier

Transform as a tool to perform a spatial
operation, namely correlation.
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By using the frequency domain, the
Fourier methods achieve excellent ro-

bustness against correlated and fre—
quency—dependent noise. They are appli—
cable, however, only for images which
have been at most rigidly misaligned. In
this section we will first describe the most

basic method which uses Fourier Analy—
sis. It is called phase correlation and can
be used to register images which have
been shifted relative to each other. Then
we will describe an extension to this

method and several related methods

which handle images which have been
both shifted and rotated with respect to
each other.

Kuglin and Hines [1975] proposed an
elegant method, called phase correlation,
to align two images which are shifted
relative to one another. In order to de—

scribe their method, we will define a few

of the terms used in Fourier Analysis
which we will need. The Fourier trans—

form of an image f(x, y) is a complex
function; each function value has a real

part R(mx, my) and an imaginary part
1(a),“ my) at each frequency (wx, w ) of
the frequency spectrum:

F(wx9wy) :R(w'x’wy)+i1(wx’wy)

where i = i/ ~ 1. This can be expressed

alternatively using the exponential form
as

y

F( cox, my) =lF(wx, wy)|ez¢(w.,wy)

where |F(a)x, my)l is the magnitude or
amplitude of the Fourier transform and

where q!)( aux, Luv) is the phase angle. The
square of the magnitude is equal to the
amount of energy or power at each fre-
quency of the image and is defined as:

lF(wx,wy)IZ =R2(a)x,wy) +12(a)x,wy).

The phase angle describes the amount of
phase shift at each frequency and is de-
fined as

¢(wx, my) :

tan_1[I( wx, my)/R( cox, my”.
Phase correlation relies on the transla-

tion property of the Fourier transform,
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sometimes referred to as the Shift Theo—

rem. Given two images f1 and f2 which

differ only by a displacement (dmdy),
i.e.,

f2(xay) :f1(x_dx’y_dy)7

their corresponding Fourier transforms

F1 and F2 will be related by

F2(ww my) = 8*J(wxdx+cUydy)Fl(wx, my).

In other words, the two images have the
same Fourier magnitude but a phase dif—
ference directly related to their displace-
ment. This phase difference is given by

eJ‘fII‘f’Z). It turns out that if we compute
the cross—power spectrum of the two im—
ages defined as

F1(w,,wy)F2*(wx,wv) _ ethdfirwydw)
|F1(w,, w,)F;( (ox, w,)|

where F* is the complex conjugate of F,
the Shift Theorem guarantees that the
phase of the cross-power spectrum is

equivalent to the phase difference be—
tween the images. Furthermore, if we
represent the phase of the cross—power
spectrum in its spatial form, i.e., by tak-
ing the inverse Fourier transform of the
representation in the frequency domain,
then we will have a function which is an

impulse, that is, it is approximately zero
everywhere except at the displacement
which is needed to optimally register the
two images.

The Fourier registration method for

images which have been displaced with
respect to each other therefore entails
determining the location of the peak of
the inverse Fourier transform of the

cross—power spectrum phase. Since the
phase difference for every frequency con-
tributes equally, the location of the peak
will not change if there is noise which is
limited to a narrow bandwidth, i.e., a

small range of frequencies. Thus this
technique is particularly well suited to
images with this type of noise. Conse-
quently, it is an effective technique for
images obtained under differing condi—
tions of illumination since illumination

changes are usually slow varying and
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therefore concentrated at low—spatial fre—

quencies. Similarly, the technique is rel-
atively scene independent and useful for
images acquired from different sensors
since it is insensitive to changes in spec—
tral energy. This property of using only
the phase information for correlation is
sometimes referred to as a whitening of
each image. Among other things, whiten-
ing is invariant to linear changes
in brightness and makes the phase
correlation measure relatively scene
independent.

On the other hand, if the images have
significant white noise, noise which is
spread across all frequencies, then the
location of the peak will be inaccurate
since the phase difference at each fre-
quency is corrupted. In this case, the
methods described in the last section

which find the peak of the spatial cross—
correlation are optimal. Kuglin and Hines

[1975] suggest introducing a generalized
weighting function to the phase differ-
ence before taking the inverse Fourier
transform to create a family of correla-
tion techniques, including both phase
correlation and conventional cross—

correlation. In this way, a weighting
function can be selected according to the
type of noise immunity desired.

In an extension of the phase correla—
tion technique, De Castro and Morandi
[1987] have proposed a technique to reg-
ister images which are both translated
and rotated with respect to each other.
Rotational movement, by itself without
translation, can be deduced in a similar

manner as translation using phase corre—
lation by representing the rotation as a

translational displacement with polar co-
ordinates. But rotation and translation

together represent a more complicated
transformation. De Castro and Morandi

[1987] present the following two—step
process to first determine the angle of
rotation and then determine the transla—
tional shift.

Rotation is invariant with the Fourier

transform. Rotating an image rotates the
Fourier transform of that image by the

same angle. If we know the angle, then
we can rotate the cross-power spectrum
and determine the translation according
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to the phase correlation method. How-

ever, since we do not know the angle, we
compute the phase of the cross-power
spectrum as a function of the rotation

angle estimate (1) and use polar coordi-
nates (r, 0) to simplify the equation. This
gives us a function

F1(7"70)F2*(r,0~¢)G r 6' = ——
( ’ ’4’) |F1(r, 6)F;(r, 6 — ¢>|

which at the true angle of rotation should

have the form expected for images which
have only been translated. Therefore,

by first determining the angle cf) which
makes the inverse Fourier transform of

the phase of the cross-power spectrum
the closest approximation to an impulse,
we can then determine the translation as

the location of this pulse.

In implementing the above method, it
should be noted that some form of inter-

polation must be used to find the values

of the transform after rotation since they
do not naturally fall in the discrete grid.
Although this might be accomplished by
computing the transform after first rotat—
ing in the spatial domain, this would be
too costly. De Castro and Morandi [1987]

applied the transform to a zero-padded
image thus increasing the resolution and
improving the approximation of the
transform after rotation. The method is

also costly because of the difficulty in
testing for each d). Alliney and Morandi

[1986] presented a method which only
requires one-dimensional Fourier trans—

formations to compute the phase correla-
tion. By using the x— and y—projections of
each image, the Fourier transforms are
given by the projection slice theorem. The
1D transform of the x— and y—projections
is simply the row of the 2D transform

where cox : 0 and the column where a),
= 0 respectively. Although substantial
computational savings are gained, the
method is no longer robust except for
relatively small translations.

The Fourier methods, as a class, offer
advantages in noise sensitivity and com—
putational complexity. Lee et al. [1987]
developed a similar technique which uses
the power cepstrum of an image (the
power spectrum of the logarithm of the
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power spectrum) to register images for
the early detection of glaucoma. First the

images are made parallel by determining
the angle which minimizes the differ—
ences in their power spectra (which
should theoretically be zero if there is
only a translational shift between them).

Then the power spectrum is used to de—
termine the translational correspondence

in a similar manner to phase correlation.
This has the advantage over De Castro
and Morandi [1987] of the computational
savings gained by adding images instead
of multiplying them due to the use of
logarithms. The work of De Castro and

Morandi [1987] summarizes previous
work published in Italy before 1987, but
no direct comparison with Lee et al.

[1987] has yet been undertaken. Both
methods achieve better accuracy and ro-
bustness than the primary methods men-

tioned in Section 3.1 and for less compu—
tational time than classical correlation.

However, because the Fourier methods

rely on their invariant properties, they
are only applicable for certain well—de—
fined transformations such as rotation

and translation. In the following section
a more general technique is described

based on a set of matched control points.
These techniques can be used for arbi-
trary transformations including polyno-
mial and piecewise local. Furthermore,
even in the case of a small rigid transfor-

mation, it is not always possible to regis-
ter images using the techniques de-
scribed so far. If there exists a significant
amount of spatially local variation (even
though the misalignment is only due to a
small rigid transformation), then the cor—
relation and Fourier techniques break
down. The sophisticated use of feature
detection can help to overcome some of
these local variations, but in Section 3.3.2

we will introduce th e more powerful
methods which use point mapping with

feedback in order to tolerate these types
of variations.

3.3 Point Mapping

The point- or landmark-mapping tech-
nique is the primary approach currently
taken to register two images whose type

ACM Computing Surveys, Vol. 24, No. 4, December 1992

VALEO EX. 1026_023



VALEO EX. 1026_024

348 ' Lisa G. Brown

of misalignment is unknown. This occurs
if the class of transformations cannot be

easily categorized such as by a set of
small translations or rigid-body move—
ments. For example, if images are taken
from varying viewpoints of a scene with
smooth depth variations, then the two
images will differ depending on the per-
spective distortion. We cannot determine
the proper perspective transformation

because in general we do not know the
actual depths in the scene, but we can
use the landmarks that can be found in

both images and match them using a
general transformation. However, if the
scene is not composed of smooth surfaces,
but has large depth variations, then the
distortions will include occlusions which

differ between images, objects which ap-
pear in different relative positions be-
tween images, and other distortions
which are significantly more local. As
these distortions become more local, it

will become progressively more difficult

for a global point-mapping method to ac—
count for the misalignment between
the images. In this case, methods which
use a local transformation, such as the

local point—mapping methods, would be
preferable.

The general method for point mapping
consists of three stages. In the first stage
features in the image are computed. In
the second stage, feature points in the
reference image, often referred to as con—
trol points, are corresponded with feature
points in the data image. In the last
stage, a spatial mapping, usually two
2D polynomial functions of a specified
order (one for each coordinate in the

registered image) is determined using
these matched feature points. Resampl—
ing of one image onto the other is perfor—
med by applying the spatial mapping and
interpolation.

The above description of point map—
ping as a three—stage process is the
standard point-mapping technique used

for images which are misaligned by an
unknown transformation. However, there
is also a group of point-mapping methods
which are used for images whose mis—
alignment is a small rigid or affine trans-
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formation, but which contain significant
amounts of local uncorrected variations.

The techniques in Sections 3.1 and 3.2
are not adequate in this case because the
relative measures of similarity between

the possible matches become unreliable.
Point—mapping methods can overcome
this problem by the use of feedback be-
tween the stages of finding the corre-
spondence between control points and
finding the optimal transformation.

In the following four sections, we will
describe (I) the different types of control
points and how they are matched, (2)
point mapping with feedback for small
rigid or affine transformations with local
variations, (3) the global point-mapping
methods which find a general transfor-
mation from the matched control points,
and (4) more recent work in local

mapping that uses image—partition-
ing techniques and local piecewise
transformations.

3.3. 1 Control Points

Control points for point matching play an
important role in the efficacy of this ap-
proach. After point matching, the re-
maining procedure (of the three-stage
point mapping) acts only to interpolate or
approximate. Thus the accuracy of the
point matching lays the foundation for
accurate registration. In this section, we
will describe the various features used as

control points, how they are determined,
and how the correspondence between
control points in the reference and data
image is found.

There are many registration methods

other than point-mapping techniques
which also perform feature detection. The
features which are used in all of these

techniques, including point mapping, are
described in Section 4.1. In this section

the emphasis is on the aspects of fea-
tures which are used as control points for
point mapping and how they are matched
prior to the determination of the optimal
transformation.

Control points can either be intrinsic
or extrinsic. Intrinsic control points are
markers in the image which are not rele—

VALEO EX. 1026_024



VALEO EX. 1026_025

Image Registration Techniques '

vant to the data itself. They are often
placed in the scene specifically for regis-
tration purposes and are easily identi—
fied. If marks are placed on the sensor,
such as reseau marks which are small

crossbars inscribed on the faceplate of
the sensor, then they aid registration in—
sofar as they independently calibrate
each image according to sensor distor-
tions. In medical imaging, identifiable
structures, called fiducial markers, are

placed in known positions in the patients
to act as reference points. In magnetic
resonance imaging (MRI) systems [Evans
et al. 1988], chemical markers, such as
plastic N-shaped tubing filled with
CuSO4, are strategically placed to assist
in registration. In positron emission to—
mography (PET) [Bergstr'om et al. 1981;
Bohm et al. 1983; Bohm and Greitz 1988;
Fox et al. 1985] stereotactic coordinate
frames are used so that a three-dimen-
sional coordinate reference frame can be

identified. Although intrinsic control
points are preferable for obvious reasons,
there are not always intrinsic points that
can be used. For example, precisely plac—
ing markers internally is not always pos-
sible in diagnostic images [Singh et al.
1979].

Control points that are extrinsic are
determined from the data, either manu—
ally or automatically. Manual control
points, i.e., points recognized by human
intervention, such as identifiable land-

marks or anatomical structures, have
several advantages. Points can be se—
lected which are known to be rigid, sta—
tionary, and easily pin-pointed in both
data sets. Of course, they require some-
one who is knowledgeable in the domain.

In cases where there is a large amount of
data this is not feasible. Therefore many
applications use automatic location of
control points. Typical features that are

used are corners, line intersections,
points of locally maximum curvature on

contour lines, centers of windows having
locally maximum curvature, and centers
of gravity of closed-boundary regions
[Goshtasby 1988]. Features are selected
which are likely to be uniquely found in
both images (a more delicate issue when
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using multisensor data) and more toler-

ant of local distortions. Since computing

the proper transformation depends on
these features, a sufficient number must

be detected to perform the calculation.
On the other hand too many features will
make feature matching more difficult.
The number of features to use becomes a

critical issue since both the accuracy and
the efficiency of point-matching methods
will be strongly influenced. This will be
discussed in more detail in Section 3.3.3

for the case where a global polynomial
transformation is used.

After the set of features has been de-

termined, the features in each picture
must be matched, i.e., each feature in
one image is matched with its corre-

sponding feature in the other image. For
manually identified landmarks, finding
the points and matching them are done
simultaneously. For most cases, however,

a small-scale registration requiring only
translation such as template matching is
applied to find the match for each fea-
ture. Commonly, especially with manual
or intrinsic landmarks, if they are not
matched manually, this is done using
cross-correlation since high accuracy is
desired at this level and since the tem—

plate size is small enough so the compu-
tation is feasible. For landmarks which

are found automatically, matches can be
determined based on the properties of
these points, such as curvature or the
direction of the principal axes. Other
techniques combine the matching of fea-
tures and the determination of the opti—
mal transformation; these involve clus-
tering, relaxation, matching of minimum
spanning trees of the two sets, and

matching of convex hull edges of the two
sets [Goshtasby 1988]. Some of these
techniques are described in Section 3.3.2.
Instead of mapping each point individu-
ally, these techniques map the set of
points in one image onto the correspond—
ing set in the second image. Conse-
quently the matching solution uses the
information from all points and their rel—
ative locations. This results in a registra-
tion technique which matches control
points and determines the best spatial
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transformation simultaneously. In cases
where it is hard to match the control

points, e.g., ambiguous features such as
corners that are found automatically or
local variations which make matching
unreliable, this has the advantage that
the transformation type is used to con-
strain the match. However, in the cases
where an accurate set of point matches
can be determined a priori, an optimal
global transformation can be found di—

rectly using standard statistical tech—
niques. The latter is the major approach
to registration that has been taken his—

torically because control points were of-
ten manually determined and because of

its computational feasibility.

3.3.2 Point Mapping with Feedback

In this section, we will briefly describe a
few examples of methods which have been

developed for rigid and affine transfor-
mations for cases where feature detec—

tion and feature matching are difficult.
Through the use of feedback between the
stages of finding control point matches
and finding the optimal transformation,
these techniques can successfully regis-
ter images where automatically acquired
features are ambiguous or when there
are significant amounts of uncorrected
local variations. These techniques rely on
more sophisticated search strategies in-
cluding relaxation, cooperation, cluster-
ing, hierarchical search, and graph
matching. Search strategies are de-
scribed in more detail in Section 4.3.

An example of a point—mapping tech-
nique with feedback is the relaxation
technique described by Ranade and
Rosenfeld [1980], which can be used to
register images under translation. Point
matching and the determination of the
best spatial transformation are accom—

plished simultaneously. Each possible
match for a feature point defines a dis—
placement which is given a rating accord—
ing to how closely other pairs would
match under this displacement. The pro—
cedure is iterated, adjusting in parallel
the weights of each pair of points based
on their ratings until the optimal trans-
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lation is found. Each match whose dis—

placement is close to the actual displace-
ment will tend to have a higher rating,
causing it to have a larger influence as
the procedure iterates. This type of tech—
nique can tolerate global and local uncor-
rected variations. It was able to find the
correct translation for cases in which

shifted patterns were also rotated and
scaled and in cases where feature points
were each independently displaced using
a uniformly distributed direction and
jump size. However, the computational

complexity is 0(n4) where n is the num-
ber of control points. This was improved
on by Ton and Jain [1989], who per-
formed experiments on LANDSAT im—
ages, by taking advantage of the distin—
guishing properties of the features (in
addition to their relative displacements)
and by the use of two-way matching in
which points in both images initiate the
matching process. The time complexity of
their improved relaxation algorithm was
0(n3).

The clustering technique described by
Stockman et al. [1982] is another exam-

ple of a point—mapping method with feed-
back, or, in other words, a method which
determines the optimal spatial transfor—
mation between images by an evaluation
of all possible pairs of feature matches.
In this case the transformation is rigid,
i.e., a rotation, scaling, and translation,
although it could be extended to other
simple transformations. For each pos—
sible pair of matched features, the pa-
rameters of the transformation are deter-

mined which represent a point in the
cluster space. By finding the best cluster
of these points, using classical statistical
methods, the transformation which most

closely matches the largest number of
points is found. This technique, like the
relaxation method described above, can
tolerate uncorrected local variations but

also has a time complexity of 00%). Since
this becomes prohibitive as the number
of points grows, Goshtasby and Stock-
man [1985] suggested selecting a subset
of the points to reduce the search do—

main. Subsets were selected as points on
the boundary of the convex hulls of the
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point sets. (The convex hull is the small-
est convex shape that includes all the

points in the set.) Although the sets may
not be the same (if the images are noisy),
the expectation is that there will be some
common points.

Another refinement which was used by
[Goshtasby et al. 86] was to use the cen-

ter of gravity of closed—boundary regions
as control points that are iteratively up-
dated based on the current optimal rigid
transformation. Using a simple segmen-
tation scheme based on iteratively
thresholding the image, closed-boundary
regions are found. The centers of gravity
of these regions are used as control

points. The correspondence between con-
trol points in the two images was deter—
mined based on a clustering scheme like
the one used in [Stockman et al. 82].
These matches were used to find the best

rigid transformation based on a least

squares error analysis. This rigid trans-

formation was in turn used to improve
the segmentation of each region until it

was the most similar to its corresponding
region in the other image (based on its
shape, independent of its position, orien-
tation or scale.) In this way, the seg—
mented regions become optimally similar

to their corresponding region in the other
image. Furthermore, the centers of grav-
ity of each region can be computed with
subpixel accuracy with the expectation
that they are reasonably immune to ran-
dom noise and that this information can

be used to improve the registration.
An example of satellite images regis-

tered by this technique are shown in Fig-
ure 7. Figure 7(a) shows a Heat Capacity
Mapping Mission Satellite Day-Visible
(HCMM Day-Vis) image from an area
over Michigan acquired 9/26/79. Figure
7(b) shows an HCMM Night—IR image of

about the same area acquired on 7/4/78.
Figures 7(c) and (d) show the closed
boundary regions (whose perimiters are
not too large or small) found from the
initial segmentation of these images. Fig-
ure 7(e) shows the regions of (d), the
Night-IR image, after the application of
the refinement algorithm. Notice how the
regions in (e) are significantly more simi-
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lar to the regions of (c) than before re-

finement. Using the centers of gravity of
these regions as the final set of control

points, the results of mapping Figure 7(b)
to match Figure 7(a) are shown in (f). To
see the registration more clearly, the re—
sult of negating (f) and overlaying it onto
(a) are shown in (g). The mean square
error between the centers of gravity of
the corresponding regions in the two im—
ages was slightly less than one pixel.

Schemes of this type allow for global
matching which is less sensitive to un—

corrected local variations because (1) they
use control points and local similarity
measures, (2) they use information from
spatial relationships between control
points in the image, and (3) they are able
to consider possible matches based only
on supporting evidence. The implementa—
tion of these techniques requires more
sophisticated search algorithms because
the local uncorrected variations make the

search space more difficult to traverse.

Hence, these methods take advantage of
the more subtle information available

based on partial matches and the re-
lationships between matches and by
testing more possible combinations of
matches. However, without the use of

additional constraints, such as imposed
by camera geometry or the semantics of
the scene, these techniques are limited to
small affine transformations because

otherwise the search space becomes too
large and unmanageable.

3.3.3 Point Mapping without Feedback ——
G/oba/ Polynomial Methods

Standard point—mapping techniques, i.e.,
point mapping without feedback, can be
used to register images for which the
transformation necessary to align the im-

ages is unknown. Since it is often very
difficult to categorize and model the
source of misregistration, these tech-
niques are widely used.

Global methods based on point match-
ing use a set of matched points to gener-
ate a single optimal transformation.
Given a sufficient number of points we
can derive the parameters of any trans-
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Figure 7. An example of satellite images registered by a point—mapping technique with feedback. (a) and
(b) are the original images; (0) and ((1) show the closed—boundary regions found in the first iteration; (e)
shows the regions in (d) after they have been refined to make them as Similar to the regions in (c) as
poss1ble; (fl shows (b) transformed, based on these final regions to match (a); and (g) shows the final
registration, i.e., (f) is overlaid onto (a). (Reprinted with permission from Goshtasby et al. [1986], copyright
1986, IEEE.)

formation either through approximation

or interpolation. In approximation, pa-
rameters of the transformation are found

so the matched points satisfy it as nearly
as possible. This is typically done with a
statistical method such as least squares

ACM Computing Surveys, Vol 24, No‘ 4, December 1992

regression analysis or clustering. The ap—
proximation approach assumes that the
matches are distorted by local noise. This
noise cannot be removed by the transfor-
mation, either because the transforma-
tion cannot account for it or because the
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(g)

Figure 7. Continued

images contain differences of interest.
Therefore the transformation to be found

does not match the control points ex-
actly, but finds the best approximation.
The number of matched points must be
sufficiently greater than the number of
parameters of the transformation so that
sufficient statistical information is avail-

able to make the approximation reliable.
For large numbers of automatic control
points, approximation makes the most
sense since the matches are likely to be
inaccurate; but taken together they con-
tain a lot of statistical information. For

intrinsic or manual control points, there
are usually fewer but more accurate
matches, suggesting that interpolation
may be more applicable. Interpolation
finds the transformation which matches

the two images so that the matches found

for control points are exactly satisfied.
There must be precisely one matched
point for each independent parameter of
the transformation to solve the system of

equations. The resulting transformation
defines how the image should be resam-
pled. However, if there are too many con—
trol points then the number of con-
straints to be satisfied also increases. If

polynomial transformations are used, this
causes the order of the polynomial to
grow and the polynomial to have large
unexpected undulations. In this case,
least squares approximation or splines
and other piecewise interpolation meth-
ods are preferable.
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In many registration problems, the

precise form of the mapping function is
unknown, and therefore a general trans-
formation is needed. For this reason, bi-

variate polynomial transformations are
typically used. They can be expressed as
two spatial mappings

m i

Z Z aux’yH
L:O 1:0

M:

where (x,y) are indices into the refer-

ence image; (u,v) are indices into the

image to be mapped onto, and a” and b, I
are the constant polynomial coefficients
to be determined. The order of the poly—
nomial, m, depends on the trade—off be-
tween accuracy and speed needed for the
specific problem. For many applica—
tions, second or third order is sufficient
[Nack 1977; Van Wie and Stein 1977]. In
general, however, polynomial transfor-
mations are only useful to account for
low-frequency distortions because of their
unpredictable behavior when the degree
of the polynomial is high. A famous ex-

ample of this, discovered by C. Runge in
1901, is shown in Figure 9 [Forsythe
et a1. 1977].

If interpolation is used, the coefficients
of the polynomials are determined by a
system of N equations determined by the
mapping of each of the N control points.
In least squares approximation, the sum
over all control points of the squared dif—
ference between the left- and right-hand

side of the above equations is minimized.
In the simplest scheme, the minimum
can be determined by setting the partial

derivatives to zero, giving a system of
T : (m = 2)(m = 1)/2 linear equations
known as the normal equations. These

equations can be solved if the number of
control points is much larger than T.

Bernstein [1976] uses this method
to correct satellite imagery with low—

frequency sensor-associated distortions
as well as for distortions caused by earth
curvature and camera attitude and alti-
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20th degree

5th degree

  
Figure 8. The Simple function 1/(1 + 25x2) is interpolated by a 5th and 20th degree polynomial.
(Reprinted from Forsythe et al. [1977], with permission, Prentice—Hall. Inc.)

tude deviations. Maguire et al. [1990]
used this method for registration of med—
ical images from different modalities. The

CT and SPECT images shown in Figure
2 are an example of their method.
Anatomic landmarks, found manually, in
the first image, are cross-correlated with
pixels near the corresponding landmarks
in the second image to create a set of
matched control points. Linear regres—
sion is used to fit a low order polynomial

transformation which is applied to map
one image onto the other. In the bottom
of the figure, the MRI image (on the
right) is transformed to fit the SPECT
image. A contour drawn by hand around
the liver on the MRI image is shown on
the SPECT image to show the results of
the registration. Registration was able to
correct for affine distortions such as

translation, rotation, scale and shear, in
addition to other global distortions which
are more difficult to categorize. However,
in cases where more information is

known about the differences in acquisi—

ACM Computlng Surveys, Vol. 24. No 4, December 1992

tion of the two images, then a general
polynomial transformation may not be
needed. Merickel [1988] registers succes—
sive serial sections of biological tissue for
their 3D reconstruction using a linear
least squares fitting of feature points to a
transformation composed directly of a ro-
tation, translation, and scaling.

As the order of the polynomial trans—
formation increases and hence the de-

pendencies between the parameters mul—
tiplies, using the normal equations to
solve the least squares approximation can
become computationally costly and inac—
curate. This can be alleviated by using
orthogonal polynomials for the terms of

the polynomial mapping. This basically
involves representing the original poly-
nomial mapping as a combination of or-
thogonal polynomials which are in turn

constructed from linearly independent
functions. Because the polynomials are
orthogonal, the dependencies between
parameters are simplified, and the pa—
rameters of the new representation can
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Figure 9. An example of images that could not be satisfactorily registered using a global polynomial
mapping (bottom right), but required finding a local transformation (bottom left). Original aerial images
taken at different times and from different positions are shown at the top. The local registration technique
used was based on an approximation to the surface spline, but was much faster. (Reprinted from Flusser et
al. [1992] with permission from Pergamon Press, thanks to J. Flusser.)

be found analytically, i.e., there is no
longer any need to solve a system of lin-
ear equations. The orthogonal polynomi-
als have the additional nice property that

the accuracy of the transformation can
be increased as desired without recal-

culating all the coefficients by simply
adding new terms until the error is suffi—
ciently small [Goshtasby 1988].

The major limitation of the global
point-mapping approach is that a global
transformation cannot account for local

geometric distortions such as sensor non-
linearities, atmospheric conditions, and

local three—dimensional scene features

observed from different viewpoints. In the

next section, we will describe how to
overcome this drawback by computing lo-
cal transformations which depend only

on the control points in their vicinity.

3.3.4 Local Methods — Piecewise Interpolation

The global point—mapping methods dis-
cussed above cannot handle local distor-

tions. Approximation methods spread 10-
cal distortions throughout the image, and

polynomial interpolation methods used

ACM Computing Surveys. Vol 24, No. 4, December 1992
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with too many control points require
high-order polynomials which behave er—
ratically. These methods are character-
ized as global because a single transfor-

mation is used to map one image onto
the other. This transformation is gener-
ally found from a single computation us—

ing all the control points equally.
In the local methods to be discussed in

this section, multiple computations are

performed, either for each local piece
or iteratively, spreading computations

to different neighborhoods. Only control
points sufficiently close, or perhaps,
weighted by their proximity, influence
each part of the mapping transformation.

In other words, the mapping transforma-
tion is no longer a single mapping with
one set of parameters independent of po—

sition. The parameters of the local map—
ping transformation vary across the dif—

ferent regions of the image, thus account-
ing for distortions which differ across the
image. Local methods are more powerful
and can handle many distortions that
global methods cannot; examples include
complex 3D scenes taken from different

viewpoints, deformable Objects or mo—
tions, and the effects of different sensors

or scene conditions. On the other hand,
there is a trade—off between the power of
these methods and their corresponding
computational cost.

An example is shown in Figure 9 of
aerial images which could not be satis-
factorily registered using polynomial
mapping. In the top of the figure are two
images taken at different times from dif-

ferent positions of the aircraft. Using 17
control points, a 2nd-order, polynomial,
mapping function was fit using least
squares approximation. The results of

using this mapping are shown at the bot—
tom right. Because of the local distor-
tions, the average error is more than 5
pixels. Using a local method proposed by
Flusser [1992] the images were regis-
tered (bottom left) with less than 1 pixel
accuracy.

The class of techniques which can be

used to account for local distortion by
point matching is piecewise interpola-
tion. In this methodology, a spatial map-

ACM Computing Surveys. Vol 24, N0. 4, December 1992

 
Figure 10. The chest x-rays shown in Figure 1 are
shown here after registration using surface splines.
(Thanks to A. Goshtasby.)

ping transformation for each coordinate

is specified which interpolates between
the matched coordinate values. For N

control points whose coordinates are
mapped by

XL : Fx(xl>yz)

YZ :Fv(x,,y,) i= 1,...,N

two bivariate functions (usually smooth)
are constructed which take on these val-

ues at the prescribed locations. Methods
which can be applied in this instance

must be designed for irregularly spaced
data points since the control points are
inevitably scattered. A study of surface

approximation techniques conducted by
Franke [1979] compared these methods
exactly, testing each on several surfaces
and evaluating their performance char-
acteristics. As will be seen, the methods

used in Franke’s [1979] study, although
not designed for this purpose, underlie
much of the current work in local image
registration.

Most of the methods evaluated by
Franke [1979] use the general spline ap—
proach to piecewise interpolation. This
requires the selection of a set of basis

functions, B,‘ J, and a set of constraints to
be satisfied so that solving a system of
linear equations will specify the interpo-
lating function. In particular, the spline
surface S(x, y) can be defined as

: 2%,]BL,J(x’y)La]
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where VLJ. are the control points. For
most splines, the basis functions are con—

structed from low-order polynomials, and

the coefficients are computed using con-
straints derived by satisfying end condi—
tions and various orders of spatial conti—

nuity. In the simplest case, a weighted
sum of neighboring points is computed

where the weights are related inversely
with distance such as in linear interpola-
tion. These methods are called inverse-

distance weighted interpolation. Another

alternative is to have the set of neighbor—
ing points determined from some parti-
tioning of the image, such as triangula-

tion. In this case, the weights depend on
the properties of the subregions. These

methods are called triangle-based meth-
ods. Another set of methods considered

in Franke’s study are the global basis
function type methods. These methods
are characterized by global basis func-

tions G,’J( x, y) and coefficients A], which
are determined by enforcing that the

equation, S(x, y) = Z” A,,]Gi,j(x7 y)7
interpolates the data. These techniques
include the so called surface spline which
interpolates the data by representing it
as the surface of an infinite plate under
the imposition of point loads, i.e., the
data. Several variations of each method

were examined, altering the basis func-
tions, the weighting system, and the type
of image partitioning. This comprehen—
sive study is a good reference for compar-
ing the accuracy and complexity of sur-
face interpolation techniques for scat—
tered data.

Although all these methods compute
local interpolation values, they may or
may not use all points in the calculation.

Those which do are generally more costly
and may not be suitable for large data
sets. However, because global informa-
tion can be important, many local meth-
ods (i.e., methods which look for a local

registration transformation) employ pa-
rameters computed from global informa—

tion. The global basis function type
methods are an instance of this. The chest

x-ray images shown in Figure 1 which
have significant local distortions between

them, were registered by Goshtasby
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[1988] using the surface spline variety of

this technique. The results of this regis—
tration are shown in Figure 10. Among
the methods studied by Franke, most of

the global basis function methods, in—
cluding the surface spline, were among
the most accurate, albeit they were also
among the slowest.

Flusser [1992] has modified this ap-
proach to make it faster while maintain-

ing satisfactory accuracy by adaptively
subdividing the image, computing each
subregion with a simpler, i.e., faster

transformation but only using this trans—
formation if the error between it and the

results of using the surface spline are
sufficiently small. (The error is computed
by sampling and evaluating a subset of
random points in the region.) If the error
is too large, the region is recursively sub-
divided until the error criterion is met.

The images in Figure 9 were registered
using this technique. While global meth-
ods are often the most accurate, local
methods which rely only on local compu-
tations are not only more efficient but

they can also be locally controllable.
These methods can be very useful for
manual registration in a graphics envi-
ronment. Regions of the image can be
registered without influencing other por—
tions which have already been matched.
Furthermore, in some cases, e.g., if local
variations of interest exist which should

not influence the transformation, then
local computations may actually be
preferable.

From the set of surface interpolation

techniques discussed in the study, many
registration techniques are possible. For
instance, Goshtasby [1986] proposed us—
ing “optimal” triangulation of the control
points to partition the image into local
regions for interpolation. Triangulation
decomposes the convex hull of the control

points of the image into triangular re—
gions; in “optimal” triangulation, the

points inside each triangular region are
closer to one of its vertices than to the

vertices of any other triangle. The map—
ping transformation is then computed for
each point in the image from interpola—

tion of the vertices in the triangular patch
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to which it belongs. Later, Goshtasby
[1987] extended this method so that

mapping would be continuous and smooth
(C1) by using piecewise cubic polynomial
interpolation. To match the number of
constraints to the number of parameters
in the cubic polyonmials, Goshtasby
[1987] decomposed each triangle into
three subtriangles (using any point in-

side the triangle as the third vertex for
each subtriangle) as suggested by Clough
and Tocher [1965]. By ensuring that the

partial derivatives match at each point
and for each edge which belongs to two
triangular patches, the method can solve
for the parameters of each cubic patch
and provide a smooth transition between
patches.

The piecewise cubic polynomial method
can successively register images with 10—
cal geometric distortion assuming the
difference between images is continuous
and smooth. However, where discontinu—

ous geometric differences exist, such as
in motion sequences where occlusion has
occurred, the method fails. Also, the
Franke [1979] study concluded that
methods that use triangulation are prob-
lematic when long thin triangles occur
and that estimation of partial derivatives
can prove difficult. The cost of this tech—
nique is composed of the cost of the trian-
gulation, the cost of solving a system of
linear equations for each triangular

patch, and the cost of computing the
value of each registered point from the
resulting polynomial. Triangulation is the
preliminary “global” step whose complex—
ity grows with the number of control
points. Of the various algorithms that
can be used for triangulation, Goshtasby
[1987]selected one of the fastest and easi—

est to implement. It is based on a divide—
and-conquer algorithm with complexity
0(Nl0gN) where N is the number of
control points. Since the remaining com—
putation is purely local, it is relatively
efficient, but its success is strictly limited
by the number, location, and proximity of
the control points which completely con-
trol the final registration.

For many registration problems, both
local and global distortions exist, and it

ACM Computing Surveys, Vol. 24, No. 4. December 1992

is useful to take a hierarchical approach
in finding the optimal transformation.
Ratib [1988] suggests that it is sufficient
for the “elastic” matching of PET images
of the heart to match the images globally

by the best rigid transformation and then
improve this by a local interpolation
scheme which perfectly matches the con—
trol points. From the rigid transforma—
tion, the displacement needed to per—
fectly align each control point with the
nearest control point in the other image
is computed. Each image point is then
interpolated by the weighted average of
the displacements of each of the control
points, where the weights are inversely
proportional to its distance to each con-
trol point. This is very simple; however
the latter is still a global computation

and hence expensive. Franke [1979]
mentions several ways to make such

computations local by using disk—shaped
regions around each control point which

specifies its area of influence. Weights
are computed either as a parabolic func-
tion which decreases to zero outside the

disk or using a simpler function which

varies inversely with the distance rela-
tive to the disk size and decreases in a

parabolic—like manner to zero outside the
disk. These methods are all examples of

inverse-distance weighted interpolation.
They are efficient and simple, but accord-
ing to Franke’s [1979] study, they gener—
ally do not compare well with many of
the other surface interpolation tech-
niques such as the triangulation or fi-
nite—element—based methods. However,

based on tests of accuracy, appearance,
time, and storage costs conducted on six
data sets, a quadratic least squares fit at
each data point in conjunction with local-
ization of the weights (using a simple
function which is zero outside the disk

centered at the interpolation point) was
found to be one of the best methods of all.

Another registration technique pro-
posed by Goshtasby [1988], which is also
derived from the interpolation methods
discussed in Franke’s [1979] study is
called the local weighted—mean method.

Although Franke’s [1979] study is very
useful to compare the interpolation
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methods, the application of these tech—

niques to real registration problems ex—
poses other types of limitations and de-

pendencies. In the local weighted-mean
method, a polynomial of order n is found
for each control point which fits its n — 1
nearest control points. A point in the
registered image is then computed as the
weighted mean of all these polynomials
where the weights are chosen to corre-
spond to the distance to each of the

neighboring control points and to guar-
antee smoothness everywhere. The com~
putational complexity of the local

weighted method depends linearly on the
product of the number of controls points,
P, the square of the order of the polyno-
mial, M 2, and the size of the image, N 2,
i.e., it complexity is 0(PM2N2). Again,
the method relies on an entirely local
computation, each polynomial is based

on local information, and each point is
computed using only local polynomials.
Thus, the efficiency is good compared
with methods whose parameters rely on
global computations, but the procedure’s

success is limited by the accuracy and
selection of the control points. In fact,
during implementation, only a subset of
the known control points was used so
that each polynomial’s influence would

be spread far enough to cover image loca-
tions without points.

Notice that in comparison to the global
point-mapping methods of the previous
section, the complexity of local interpola-
tion methods is vastly slower. Because
the parameters of the transformation de-

pend on the location in the image, a sep—
arate calculation, which may or may not
be global, is effectively performed, for
each subregion, to determine its parame-
ters. Alternatively, when the mapping
transformation is computed, a more com—
plicated calculation must be performed
for each pixel which depends on its rela-
tive location with respect to the parti—
tioning or the other control points. This
is the price we pay if we want to register
images with local distortions.

Also, although these methods only use
a local computation for each mapping, we
have presumed that the control points
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have already been found and matched.

This is a critical part of the registration

and its final computational complexity.
Furthermore, the implementation of

these methods is often complicated by
missing control points and insufficient
information concerning how to find
matches. Yet, the accuracy of these
methods is highly dependent on the num-
ber, positions, and accuracy of the
matches. Although they are sometimes
capable of correcting local distortions, 10-
cal point-mapping methods do so in a
single pass; there is no feedback between

the point matching and the interpola-
tion or approximation. Nor do they take
advantage of several algorithmic tech—

niques which can improve and speed up
the extraction of local distortions.

Namely, these are iteration, a hierarchi—
cal approach, and cooperation. This is
because these techniques (by definition)
are based on control points which have

been found and matched prior to the de-
termination of the registration transfor—
mation. There is no relationship inherent
in the structure of these techniques which
relates the control point matches and the
optimal transformation. In the next sec—
tion, another class of methods is de—

scribed which overcome this dependence
on the accurate matching of control points
by exploiting these algorithmic tech-
niques and by the use of an elastic model

to constrain the registration process.

3.4 Elastic Model-Based Matching

The most recent work in image registra—
tion has been the development of tech—
niques which exploit elastic models. In-
stead of directly applying piecewise
interpolation to compute a transforma—
tion to map the control points of one
image onto another, these methods model

the distortion in the image as the defor-
mation of an elastic material. In other

words, the registration transformation is
the result of the deformation of an elastic

material with the minimal amount of

bending and stretching. The amount of
bending and stretching is characterized
by the energy state of the elastic mate-
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rial. Nevertheless, the methods of piece—
wise interpolation are closely related
since the energy minimization needed to
satisfy the constraints of the elastic model
can be solved using splines. Indeed,
the forebear of the mathematical spline

is the physical spline which was bent

around pegs (its constraints) and as—
sumed a shape which minimizes its strain
energy.

Generally, these methods approximate
the matches between images, and al—
though they sometimes use features, they
do not include a preliminary step in
which features are matched. The image
or object is modeled as an elastic body,
and the similarity between points or fea—
tures in the two images act as external
forces which “stretch” the body. These
are counterbalanced by stiffness or
smoothness constraints which are usu-

ally parameterized to give the user some
flexibility. The process is ultimately the
determination of a minimum—energy state
whose resulting deformation transforma-
tion defines the registration. The prob—
lems associated with finding the mini-
mum—energy state or equilibrium usually
involve iterative numerical methods.

Elastic methods, because they mimic

physical deformations, register images by
matching structures. Thus, it has been
developed and is often used for problems
in shape and motion reconstruction and
medical imaging. In these domains, the

critical task is to align the topological
structures in image pairs removing only
the differences in their details. Thus,
elastic methods are capable of registering
images with some of the most complex
distortions, including 2D projection of 3D
objects, their movements including the
effects of occlusion, and the deformations
of elastic objects.

One of the earliest attempts to correct
for local distortions using an elastic
model-based approach was called the
“rubber-mask” technique [Widros 1973].
This technique was an extension of tem-
plate matching for natural data and was

applied to the analysis of chromosome
images, chromatographic recordings, and
electrocardiogram waveforms. The flex—
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ible—template technique was imple-
mented by defining specific parameters
for the possible deformations in each
problem domain. For example, chromo—
somes had distortion parameters describ—
ing the length, width, angle, and curve
for each of its four “arms,” where angle
and curve described how the arm was

bent relative to a stereotypical chromo—
some. These parameters were used to
iteratively modify the template until the
best match was found.

However, it was not until the 1980’s

[Burr 1981] that automatic elastic—reg—
istration methods were developed. Burr
accomplished this by an iterative tech—

nique which depends on the local neigh-
borhood whose size is progressively
smaller with each iteration. At each iter-

ation, the distance between each edge or

feature point in one image and its near—
est neighbor in the second image are de—
termined. Similarly, these distances are
found starting with each edge or feature

point in the second image. The images
are then pulled together by a “smoothed”
composite of these displacements and
their neighboring displacements which
are weighted by their proximity. Since
after each iteration the images are closer
together, the neighborhood size is de—

creased thus allowing for more “elastic”
distortions until the two images have
been matched as closely as desired. This
method relies on a simple and inexpen-
sive measure to gradually match two
images which are locally distorted with
respect to each other. It was applied suc—
cessfully to hand-drawn characters and
other images composed only of edges. For
gray—scale images more costly local fea—
ture measures and their corresponding
nearest neighbor displacement values
needed to be computed at each iteration.

Burr applied this to two images of a girl’s
face in which his method effectively
“turned the girl’s head” and “closed her
mouth.”

There are three aspects of this method
which should be considered for any local

method, i.e., a method which determines
a local transformation. These techniques
are particularly relevant in cases where
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there is no additional knowledge to help
in finding matches for control points a
priori.

0 Iteration: The general point—mapping
method was described as a three—step

procedure: ( 1) feature points are deter—
mined, (2) their correspondence with
feature points in the second image is
found, and (3) a transformation which
approximates or interpolates this set of
matched points is found. For iter-

ative techniques such as this, this
sequence or the latter part of it are
iterated and often become intricately
interrelated. In Burr’s [1981] work, at
each iteration step features are found,
and a correspondence measure is deter-
mined which influences a transforma-

tion which is then performed before the
sequence is repeated. Furthermore, the
technique is dynamic in the sense that
the effective interacting neighborhoods
change with each iteration.

- Hierarchical Structure: Larger and
more global distortions are corrected
first. Then progressively smaller and
more local distortions are corrected un—

til a correspondence is found which is
as finely matched as desired. Global
distortions can be found as the optimal
match between the two whole images
perhaps at a lower resolution since for
this match details are not of interest.

Then, having crudely corrected for
these global distortions, we find pro—
gressively more local distortions by
matching smaller parts of the images
at higher resolutions. This has several
advantages, since for global distortions
we have reduced the resolution and

hence the amount of data to process,
and for more local distortions, we have
eliminated the more global distortions
and therefore reduced the search space
and the extent of the data that we
need to evaluate.

- Cooperation: Features in one location
influence decisions at others. This may
be implemented in many ways with

varying degrees of cooperation. In a
typical cooperative scheme, each possi—
ble feature match is weighted by the
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degree to which other neighboring fea—
tures agree, and then the process iter—

ates. In this fashion, the neighboring
features influence ‘(in a nonlinear way)
the determination of the best overall

match by “cooperating” when they
agree, or possibly, inhibiting when they
disagree.

Registration techniques which use these
algorithmic approaches are particularly

useful for the correction of images with
local distortion for basically the same
reason, namely, they consider and differ—
entiate local and global effects. Iterative
updating is important for finding optimal
matches that cannot be found efficiently
in a single pass since distortions are 10-
cally variant but depend on neighboring
distortions. Similarly, cooperation is a
useful method of propagating informa-
tion across the image. Most types of mis-
registration sources which include local
geometric distortion effect the image both
locally and globally. Thus hierarchical it-

eration is often appropriate; images mis-
registered by scene motion and elastic—
object deformations (such as in medical

or biological images)I are good examples
of distortions which are both local and

global. Furthermore hierarchical/multi-
resolutional/pyramidal techniques corre-
spond well with our intuitive approach to
registration. Manual techniques to per—
form matching are often handled this
way; images are first coarsely aligned,
and then in a step-by—step procedure

more detail is included. Most registration
methods which correct for local distor-

tions (except for the piecewise interpola—
tion methods) integrate these techniques
in one form or another.

One of the pioneers in elastic matching
is R. Bajscy and her various collaborators
[Bajscy and Broit 1982; Bajscy and
Kovacic 1989; Solina and Bajscy 1990].
In their original method, developed by
Broit in his Ph.D. thesis [Broit 1981], a

physical model is derived from the theory
of elasticity and deformation. The image
is an elastic grid, theoretically an elastic
membrane of a homogeneous medium, on
which a field of external forces act against
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a field of internal forces. The external

forces cause the image to locally deform
towards its most similar match while the

internal forces depend on the elasticity
model. From an energy minimization
standpoint, this amounts to:

cost = deformation energy

e similarity energy.

To find the minimum energy, a set of
partial differential equations are derived
whose solution is the set of displace-
ments which register the two images. For
example, to register a CT image of a
human brain (the reference image) with
a corresponding image from an atlas, a
regular grid is placed over the reference
image which can be thought of as the
elastic mesh. This mesh is deformed ac—

cording to the external forces, derived
from the differences between the con-

tours of the brains in the two images and
the internal forces which arise from the

properties of the elastic model. The de-
formation of this grid (and the necessary
interpolation) gives a mapping between

the reference image and the atlas. Bajcsy

and Broit [1982] applied this technique
to 2D and 3D medical images and claim
greater efficiency over Burr’s [1981]
method. As in Burr’s [1981] method

iteration and cooperation are clearly
utilized.

In more recent work with Bajscy and
Kovacic [1989] CT scans of the human
brain are elastically matched with a 3D

atlas. As with many local techniques, it
is necessary first to align images globally
using a rigid transformation before ap-
plying elastic matching. In this way it is
possible to limit the differences in the

images to small, i.e., local, changes. Their
work follows the earlier scheme proposed
by Broit [1981], but this is extended in a

hierarchical fashion. The same set of par-
tial differential equations describing the
elastic model serve as the constraint

equations. The external forces, which ul-
timately determine the final registration,

are computed as the gradient vector of a
local similarity function. These forces act

on the elastic grid by locally pulling it
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towards the maximum of the local simi-

larity function. In particular, for each
small region in one image, we measure
the correlation with this region with
nearby regions in the second image. The
change in these measures is used as the
external forces in the equations of the
elastic model. This requires that the 10—
cal-similarity function have a maximum
that contributes unambiguous informa-
tion for matching. Therefore, only forces
in regions where there is a substantial
maximum are used. The system of equa—
tions of the elastic model is then solved

numerically by finite—difference approxi—
mation for each level, starting at the
coarsest resolution. The solution at the

coarsest level is interpolated and used as
the first approximation to the next finer
level.

The hierarchical approach has several
advantages. If the elastic constants in
the equation are small, the solution is
controlled largely by the external forces.
This causes the image to warp unrealisti-
cally and for the effects of noise to be
amplified. By deforming the image step—
by—step, larger elastic constants can be

used, thereby producing a series of
smooth deformations which guide the fi-
nal transformation. The multiresolution

approach also allows the neighborhoods
for the similarity function to always be
small and hence cheap yet also to cover
both global and local deformations of var-
ious sizes. In general, the coarse-to-fine
strategy improves convergence since the
search for local-similarity function max—
ima is guided by results at coarser levels.
Thus, like Burr’s [1981] method, itera-
tion, cooperation, and a hierarchical
structure are exploited.

Recently, techniques similar to elastic
matching have been used to recover shape
and nonrigid body motion in computer
Vision and to make animation in com—

puter graphics. The major difference in
these techniques to the methods dis-
cussed so far is that the elastic model is

applied to an object as opposed to

the image grid. Hence, some sort of seg—
mentation, i.e., a grouping of adjacent
pixels in the image into meaningful units,
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namely, real-world objects, must precede
the analysis. The outcome is no longer a
deformation to register images but
parameters to match images to object
models. One example can be found in
Terzopoulos et al. [1987]. They proposed
a system of energy constraints for elastic
deformation for shape and motion recov-
ery which was applied to a temporal se—
quence of stereo images of a moving fin-
ger. The external forces of the de-
formable model are similar to those used

in elastic registration; they constrain the
match based on the image data. Ter—
zopoulos et al. [1987] use the deprojec-
tion of the gradient of occluding contours
for this purpose. However, the internal

forces are no longer varied with simple
elastic constants but involve a more com—

plicated model of expected object shape
and motion. In their case, the internal

forces induce a preference for surface
continuity and axial symmetry (a sort of
“loose” generalized cylinder using a rub-
ber sheet wrapped around an elastic
spine). This type of reconstruction has
the advantage of being capable of inte—
grating information in a straightforward
manner. For example, although occlud-
ing boundaries in stereo image pairs cor-
respond to different boundary curves of
smooth objects, they can appropriately be

represented by distinct external forces.
Higher-level knowledge can similarly be
incorporated. Although these techniques
are not necessary for the ordinary regis-
tration of 2D images, performing intelli—
gent segmentation of images before reg-
istration is potentially the most accurate
way to match images and to expose the
desired differences between them.

3.5 Summary

In Section 3, most of the basic registra—
tion techniques currently used have been
discussed. Methods are characterized by

the complexity of their corresponding
transformation class. The transformation

class can be determined by the source of

misregistration. Methods are then lim-

ited by their applicability to this trans-
formation class and the types of uncor-
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rected variations they can tolerate. The
early approaches using cross-correlation
and other statistical measures of point-
wise similarity are only applicable for
small well-defined affine transfor-

mations. Fourier methods are similarly
limited but can be more effective in the

presence of frequency—dependent noise. If
local uncorrected variations are present
then the search for the affine transfor—

mation must be more sophisticated. In
this case point mapping with feedback is
recommended so that search space is
more thoroughly investigated.

If the type of transformation is un—
known but the misalignment between the
images varies smoothly, i.e., the mis-
alignment is more complex than affine
but is still global, then point mapping
with feedback can be used. If it is pos—
sible to find accurate matches for control

points then point mapping by interpola~
tion is sufficient. For cases with local

uncorrected variation and many inaccu—

rate control point matches then approxi-
mation is necessary.

If global transformations are not suffi-
cient to account for the misalignment be-
tween the images, then local methods
must be used. In this case, if it is possible

to perform accurate feature matching,
then piecewise interpolation methods can
be successively applied. However, if un—
corrected local variations are present,
then it is often necessary to use addi-

tional knowledge to model the trans-
formation such as an elastic mem—

brane for modeling the possible image
deformations.

4. CHARACTERISTICS OF
REGISTRATION METHODS

The task of determining the best spatial
transformation for the registration of im-

ages can be broken down into major com-
ponents:

0 feature space

0 similarity metric

' search space

0 and search strategy.

Every registration technique can be
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thought of as a selection for each of these
four components. As described earlier, the
best available knowledge of the source of

misregistration determines the transfor-
mation needed, i.e.7 the search space.
This, in turn, determines the complexity
and kind of method. Knowledge of other
variations (which are not corrected for by
the transformation) can then be used to
decide on the best choices for the other

three major components listed above. Ta-
bles 6, 7, and 8 give several examples of
each of these components. In addition,
these tables briefly describe the at~
tributes for each technique and give ref-
erences to works which discuss their use

in more detail. In the following section,
each of the components of registration is
described more fully.

4.1 Feature Space

The first step in registering two images
is to decide on the feature space to use
for matching. This may be the raw pixel
values, i.e., the intensities, but other

common feature spaces include: edges,
contours, surfaces; salient features such

as corners, line intersections, and points
of high curvature; statistical features
such as moment invariants or centroids;

and higher-level structural and syntactic
descriptions. Salient features refer to
specific pixels in the image which contain
information indicating the presence of an
easily distinguished meaningful charac—
teristic in the scene. Statistical features

refer to measures over a region (the re-
gion may be the outcome from a prepro-
cessing segmentation step), which repre—
sent the evaluation of the region. The
feature space is a fundamental aspect of
image registration just as it is for almost
all other high—level image processing or
computer vision tasks. For image regis-
tration it influences

- which properties of the sensor and
scene the data are sensitive to (often,
features are chosen to reduce sensor

noise or other distortions, such as illu-

mination and atmospheric conditions,
i.e., Type II variations),

- which properties of the images will be
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matched (e.g., more interested in
matching structures than textural

properties, i.e., ignore Type III varia—
tions),

0 the computational cost by either reduc-

ing the cost of similarity measures or,
on the other hand, increasing the pre—
computations necessary.

The point is, by choosing the best feature
space it is possible to significantly im-
prove registration. Features can be found
on each image independently in a prepro-

cessing step, and this in turn reduces the
amount of data to be matched. It is often

possible to choose a feature space which
will eliminate uncorrected variations

Which might otherwise make matching
unreliable. If there are variations of in-

terests, the feature space can be limited
to the types of structures for which these
variations are not present. Similarly, fea-

tures can highlight those parts of the
image which represent scene elements
which have undergone the expected mis-
alignment. This is usually done by pre—
processing the images in an attempt to
extract intrinsic structure. By this we
mean finding the pixels in the images
which accurately represent significant
physical locations in the world as op-
posed to lighting changes, shadows, or
changes in reflectivity.

Extracting intrinsic structure reduces
the effects of scene and sensor noise,
forces matching to optimize structural
similarity, and reduces the correspond—
ing data to be matched. Image enhance—
ment techniques which process an image
to make it more suitable for a specific
application [Gonzalez and Wintz 1977]
can be used to emphasize structural in—
formation. Typical enhancement tech-
niques include contrast enhancement,

which increases the range of intensity
values, image smoothing, which removes
high-frequency noise, and image sharp-
ening, which highlights edges. An exam—
ple of an enhancement technique which
is particularly suitable for registration is
homomorphic filtering. This can be used
to control the effects of illumination and
enhance the effects of reflectance.
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Table 6. Feature Spaces Used in Image Registration 

Feature Spaces and Their Attributes

RAW INTENSITY~m0st information

 

 

EDGES~intrinsic structure, less sensitive to noise
Edges [Nack 1977]
Contours [Medioni and Nevatia 1984]
Surfaces [Pelizzari et al. 1989]

SALIENT FEATUREsiintrinsic structure. accurate positioning
Points of locally maximum curvature on contour lines [Kanal et a1. 1981]
Centers of windows having locally maximum variances [Moravec 1981]
Centers of gravity of closedrboundary regions [Goshtasby 1986]
Line intersections [Stockman et a1. 1982]
Fourier desctiptors [Kuhl and Giardina 1982]

 

 

STATISTICAL FEATUREsiuse of all information, good for rigid transformations, assumptions
concerning spatial scattering

Moment invariants [Goshtasby 1985]
Centroid/principal axes [Rosenfeld and Kak 1982]

HIGHER-LEVEL FEATURES—use relations and other higher-level information, good for inexact and
local matching

Structural features: graphs of subpattern configurations [Mohr et a1. 1990]
Syntactic features: grammars composed from patterns [Bunke and Sanfeliu 11990]
Semantic networks: scene regions and their relations [Faugeras and Price 1981]

MATCHING AGAINST MODELS—accurate intrinsic structure, noise in one image only
Anatomic atlas [Dann et a1. 1989]
Geographic map [Maitre and Wu 1987]
Object model [Terzopoulos et a1. 1987]

 

 

 

Table 7. Similarity Metrics Used in Image Registration 

 

 

 

 

 

 

 

 

 

Similarity Metric Advantages

Normalized cross-correlation function accurate for white noise but not tolerant of
[Rosenfeld and Kak 1982] local distortions, sharp peak in correlation

space difficult to find

Correlation coefficient [Svedlow et a1. 1976] similar to above but has absolute measure

Statistical correlation and matched filters if noise can be modeled
[Pratt 1978]

Phase—correlation [De Castro and Morandi 1987] tolerant of frequency—dependent noise

Sum of absolute differences of intensity efficient computation, good for finding
[Barnea and Silverman 1972] matches with no local distortions

Sum of absolute differences of contours can be efficiently computed using “chamfer”
[Barrow et a1. 1977] matching, more robust against local

distortionsfinot as sharply peaked

Contour/surface differences [Pelizzari et a1. 1989] for structural registration

Number of sign changes in pointwiSe intensity good for dissimilar images
difference [Venot et a1. 1989]

Higher-level metrics: structural matching: optimizes match based on features or relations
tree and graph distances [Mohr et a1. 1990], syne of interest
tactic matching: automata [Bunke and Sanfeliu 1990]
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Table 8. Search Strategies Used In image Registration 

Search Strategy Advantages and Reference Examples 

Decision Sequencing Improved efficiency for similarity optimization for rigid
transformations [Barnea and Silverman 1972] 

Relaxation Practical approach to find global transformations when
local distortions are present, exploits spatial relations
between features [Hummel and Zucker 1983; Price 1985'.
Ranade and Rosenfeld 1980; Shapiro and Haralick 1990] 

Dynamic Programming Good efficiency for finding local transformations when an
intrinsic ordering for matching is present [Guilloux 1986;
Maitre and Wu 1987; Milios 1989; Ohta et al. 1987] 

Generalized Hough Transform For shape matching of rigidly displaced contours by map—
ping edge space into “dual~parameter” space [Ballard 1981;
Davis 1982] 

Linear Programming For solving system of linear inequality constraints, used
for finding rigid transformation for point matching with
polygon—shaped error bounds at each point [Baird 1984] 

Hierarchical Techniques Applicable to improve and speed up many different
approaches by guiding search through progressively finer
resolutions [Bajscy and Kovacic 1989; Bieszk and Fram 1987;
Davis 1982; Paar and Kropatsch 1990] 

Tree and Graph Matching Uses tree/graph properties to minimize search, good
for inexact and matching of higher-level structures
[Gmur and Bunke 1990: Sanfeliu 1990] 

Edges, contours, and boundaries, be—
cause they represent much of the intrin-
sic structures of an image, are frequently
used as a feature space. Using the posi—
tion of edges in registration has the ad—
vantages of being fast and invariant to
many types of uncorrected variations.
However, edge points are not typically
distinguishable and therefore are not
good candidates for point matching. In
general using edges requires a region—
based similarity measure.

Salient features are chosen to be in-
variant to uncorrected variations and to

be highly distinguishable. Dominant
points along curves are frequently used
such as corners, intersections, inflection
points, points of high curvature, and
points along discontinuities [Katuri

1991]. Higher—level shape descriptors,
such as topological, morphological, and
Fourier descriptors are also used in order
to be more unique and discriminating
[Pavlidis 1978]. In the absence of shape
or curves interesting points in regions
are found. The most widely used meas-
ure of this sort is the Moravec interest
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operator which finds points of greatest
local variance [Moravec 1981].

Statistical measures describe charac—

teristics of regions which may or may not
specify a location in the image. One pos-
sibility is to assume objects are ellipsoid—
like scatters of particles uniformly dis—
tributed in space. In this case, the
centers of mass and the corresponding
principal axes (computed from their co—
variance matrices) can be used to glob-
ally register them. Another popular
choice is to use moment invariants al—

though they are computationally costly
(lower—order moments are sometimes

used first to guide the match and speed
the process [Goshtasby 1985; Mahs and
Rezaie 1987]) and can only be used to
match images which have been rigidly
transformed. They are one member of the
class of features used because their val-

ues are independent of the coordinate
system. However, as scalars they have no
spatial meaning. Matching is accom—
plished by maximizing the similarity be-
tween the values of the moments in the

two images. Mitchie and Aggarwal [1983]
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suggest the use of shape—specific points,
such as the centroid and the radius—

weighted mean, for preregistration to
simplify shape matching. These features

are more easily computed, are similarly
noise tolerant, but more important-

ly, they are spatially meaningful. They
can be used as control points in point-
mapping registration methods rather

than in similarity optimization.
When sufficient information or data are

available, it is useful to apply registra-
tion to an atlas, map, graph, or model
instead of between two data images. In
this way distortion is present in only one
image, and the intrinsic structures of in-

terest are accurately extracted.
The feature space is the representation

of the data that will be used for registra-
tion. The choice of feature space deter-
mines what is matched. The similarity
metric determines how matches are

rated. Together the feature space and
similarity metric can ignore many types
of variations which are not relevant to

the proper registration (Types II and III)
and optimize matching for features which
are important. But, while the feature

space is prccomputed on each image be-
fore matching, the similarity metric is
computed using both images and for each
test.

4.2 Similarity Measure

The second step made in designing or
choosing a registration method is the se-

lection of a similarity measure. This step
is closely related with the selection of the
matching feature since it measures the
similarity between these features. The
intrinsic structure, i.e., the invariance
properties of the image, are extracted by
both the feature space, and through the
similarity measure. Typical similarity
measures are cross-correlation with or

without prefiltering (e.g., matched filters
or statistical correlation), sum of abso-
lute differences (for better efficiency), and
Fourier invariance properties such as
phase correlation. Using curves and sur-
faces as a feature space requires meas—
ures such as sum of squares of differ-
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ences between nearest points. Structural
or syntactic methods have measures

highly dependent on their properties. For

example, the minimum change of en-
tropy between “random” graphs is used
as a similarity criteria by Wong and You

[1985] for noisy data in structural pat-
tern recognition.

The choice of similarity metric is one of
the most important elements of how the
registration transformation is deter-

mined. Given the search space of possible
transformations, the similarity metric
may be used to find the parameters of
the final registration transformation. For
cross—correlation or tlhe sum of the abso—
lute differences the transformation is

found at the peak value. Similarly, the
peak value determines the best control
point match for point—mapping methods.
Then the set of control point matches is
used to find the appropriate transforma—
tion. However, in elastic—model-based
methods, the transformation is found for

which the highest similarity is balanced
with an acceptable level of elastic stress.

Similarity measures, like feature
spaces, determine what is being matched
and what is not. First the feature space
extracts the information from each image

which will be used for matching. Then
the similarity measure evaluates this in—

formation from both images. The criteria
used by the similarity measure deter—
mines what types of matches are opti-
mal. The ability of a registration method
to ignore uncorrected variations ulti—

mately depends on both the feature space
and the similarity measure. If gray val~
ues are used, instead of features, a simi-

larity measure might be selected to be
more noise tolerant since this was not

done during feature detection. Correla-
tion and its sequential counterpart are
optimized for exact matches therefore re—
quiring image preprocessing if too much
noise is present. Edge correlation, i.e.,
correlation of edge images, is a standard
approach. Fourier methods, such as
phase correlation, can be used on raw
images when there is frequency—depen—
dent noise. Another possible similarity
measure, suggested by Venot et a1. [1984],
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is based on the number of sign changes
in the pointwise subtraction of the two

images. If the images are aligned and
noise is present, the number of sign
changes is high, assuming any point is
equally likely to be above zero as it is to
be below. This is most advantageous in
comparison to classical techniques when
the images are dissimilar. Differences in

the images affect the classical measures
according to the gray values in the loca-
tions which differ whereas the number of

sign changes decreases only by the spa-
tial size of these differences.

The feature space and similarity met-
ric, as discussed, can be selected to re-

duce the effects of noise on registration.
However, if the noise is extracted in the

feature space this is performed in a sin-
gle step precomputed independently on
each image prior to matching. Special
care must be taken so that image fea-
tures represent the same structures in

both images when, for example, images
are acquired from different sensors. On

the other hand, the proper selection of a
feature space can greatly reduce the
search space for subsequent calculations.
Because similarity measurements use

both images and are computed for each
transformation, it is possible to choose
similarity measures which increase the

desirability of matches even though dis-
tortions exist between the two correctly
registered images. The method based on
the number of sign differences described

above is an example. Similarity metrics
have the advantage that both images are
used and that its measurements are rela-
tive to the measurements at other trans—

formations. Of course, this is paid for by
an increase in computational cost since it
must be repeated for each test.

Lastly, using features reduces the ef-
fects of photometric noise but has little

effect on spatial distortions. Similarity
measures can reduce both types of distor—
tions such as with the use of region—based
correlation and other local metrics. It is

important to realize, however, that the

spatial distortions purposely not recog-
nized by similarity metrics must only be
those that are not part of the needed
transformation. For example, when simi-
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larity metrics are chosen for finding the
elastic transformation of images in which
certain differences between images are of
interest (such as those in the examples in
the second class of problems of Table 2)
they should find similarity in structure
but not in more random local differences.

4.3 Search Space and Strategy

Because of the large computational costs

associated with many of the matching
features and similarity measures, the last
step in the design of a registration
method is to select the best search strat-

egy. Remember. the search space is gen-
erally the class of transformations from
which we would like to find the optimal
transformation to align the images. We
can evaluate each transformation candi-

date using the similarity measure on the
preselected features. However, in many
cases, such as with the use of correlation

as the similarity measure, it is important
to reduce the number of measures to be

computed. The greater the complexity of
the misalignment between images the
more severe this requirement is. For in-
stance, if the only misalignment is trans-
lation, a single template correlated at all
possible shifts is sufficient. For more
general affine transformations, many
templates or a larger search area must
be used for classical correlation methods.

The problem gets even worse if local geo—
metric distortions are present. Finally, if
uncorrected variations have not been

eliminated by the feature space and simi-
larity metric, then the search for the op-
timum is also made more difficult, since
there are more likely to be several local

optima and a less monotonic space.
In most cases, the search space is the

space of all possible transformations.
Examples of common search strategies
include hierarchical or multiresolution

techniques, decision sequencing, relax-
ation, generalized Hough transforms, lin-
ear programming, tree and graph match-
ing, dynamic programming, and heuristic
search.

Search Space. The model of the

transformation class underlying each
registration technique determines the
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characteristics of the search space. The
model includes assumptions about the

distortions and other variations present
in the images. For example, if it is as-
sumed that to register a pair of images, a
translation must be performed, then the
search space is the set of all translations
over the range of reasonable distances.
However, if after translation, it is as-
sumed that uncorrected variations are

still present (perhaps there are differ—
ences in local geometry which are of in-
terest such as in aerial photographs
taken at different times) then traversing
the search space is made more difficult
since determining the relative merit of
each translation is more involved.

Models can be classified as allowing
either global or local transformations
since this directly influences the size and
complexity of the search space. Global
methods are typically either a search for
the allowable transformation which max-

imizes some similarity metric or a search
for the parameters of the transformation,
typically a low-order polynomial which
fit matched control points. By using
matched control points the search costs
can be significantly reduced while allow—
ing more general transformations. In 10-

cal methods, such as piecewise interpola-
tion or elastic—model—based methods, the

models become more comlex7 introducing
more constraints than just similarity
measures. In turn they allow the most
general transformations, i.e., with the

greatest number of degrees of freedom.
Consequently, local methods have the
largest and most complex search spaces,
often requiring the solution to large sys-
tems of equations.

Although most registration methods
search the space of allowable transforma—
tions, other types of searches may be
advantageous when other information is
available. When the source of misregis-
tration is known to be perspective distor-
tion, Barrow et a1. [1977] and Kiremed~

jian [1987] search the parameter space of
a sensor model to map an image to a
three-dimensional database. For each set

of sensor parameters, the 3D database is

projected onto the image, and its similar-
ity is measured. This search space ex-
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ploits knowledge of the imaging process
and its effects on three-dimensional

structures. Another example of very dif-
ferent search space is given by Mort and
Srinath [1988]. He uses a stochastic

model of the noise in the image to search,
probabilistically, for the maximum likeli-
hood image registration in images which
have been displaced relative to each
other.

Search Strategies. Table 8 gives
several examples of search strategies and
the kinds of problems for which they are
used. Alternatively, specialized architec-
tures have been designed to speed up the
performance of certain registration meth-
ods. Fu and Ichikawa [1982] contains

several examples of computer architec-
tures designed for registration problems
in pattern processing.

It is difficult to give a taxonomy of
search strategies; each strategy has its
advantages and disadvantages; some
have limited domains; some can be used
concurrently with others, and all of them
have a wide range of variations within
them. In large part, the choice of search
strategy is determined by the character-
istics of the search space including the
form of the transformation (what type of

constraints must we satisfy?) and how
hard it is to find the optimum. For exam-

ple, if we must satisfy linear inequalities
then linear programming is advisable. If
image features are composed of trees or
graphs to be matched then we need
search strategies which are specialized
for these data structures. The General—

ized Hough Transform was developed
specifically for matching shapes from
contours. Some things to consider are:
how does the strategy deal with missing
information; can the strategy be imple-
mented in parallel; does the strategy
make any assumptions, and what are the
typical computational and storage costs?

For this discussion, two of the most

frequently used search strategies have
been chosen to exemplify the kinds of
strategies used in registration: relax—
ation and dynamic programming. These
strategies have been applied in a variety
of different tasks, in a variety of different
ways. They were chosen to illustrate how
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the proper choice of a search strategy can
make a significant difference in the abil-

ity to register certain types of images.
Relaxation matching is most often used
in the case where a global transforma—
tion is needed, but local distortion is

present. If local distortion is not present,
global transformations can typically be
determined by the more standard hill—

climbing or decision—sequencing tech-
niques (see Section 3.1) to find maxima

and by linear equations or regression to
fit polynomials (see Section 3.3.3). Dy-
namic programming, on the other hand,
is used to register images where a local
transformation is needed. For dynamic
programming the ordering properties of
the problem are exploited to reduce the
searching computations. Other search

strategies used for local methods depend
largely on the specific model used, such
as the use of iterative methods for dis-

cretely solving a set of partial differen—
tial equations [Bajscy and Kovacic 1989],
linear programming for solving point
matching with polygonal-shaped point

errors [Baird 1984], generalized Hough
transforms for shape matching [Ballard
1981].

Relaxation Matching. Relaxation
gets its name from the iterative numeri—
cal methods which it resembles. It is a

bottom—up search strategy that involves

local ratings (of similarity) which depend
on the ratings of their neighbors. These
ratings are updated iteratively until
the ratings converge or until a suffi-
ciently good match is found. It is usually
used in registration to find a global maxi—

mum to a similarity criteria for rigid
transformations.2

Several researchers have investigated
the use of relaxation matching as a search
strategy for registration [Hummel and
Zucker 1983; Ranade and Rosenfeld
1980]. The advantage of this method lies
in its ability to tolerate local geometric
distortions. This is accomplished by the

 

2 The related technique. called relaxation labeling.
refers to the use of relaxation in the problem of
assigning labels consistently to objects in a scene.
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use of local-similarity measures. The lo-
cal—similarity measures are used to as-

sign heuristic, fuzzy, or probabilistic rat-
ings for each location. These ratings are
then iteratively strengthened or weak-
ened, potentially in parallel, in accor-
dance with the ratings of the neighboring
measures. Although, the convergence and
complexity of this approach are not al-
ways well defined, in practice it is often a
good short cut over more rigorous tech—

niques such as linear programming.
Relaxation-matching techniques have

been compared by Price [1985] for the

matching of regions of correspondence
between two scenes. Relaxation is a pre-
ferred technique in scene matching as
opposed to point matching since local dis-
tortions need to be tolerated. In their

study, objects and their relations are rep-
resented symbolically as feature values
and links in a semantic network. An au—

tomatic segmentation is performed to find
homogeneous regions from which a few
semantically relevant objects are interac-

tively selected. Feature values of objects
alone are inadequate for correctly match-
ing objects. They require contextual in-
formation which is gradually determined
by the relaxation process. The rate as-
signments (or probabilities) are itera-

tively updated based on an optimizing
criteria that evaluates the compatibility
of the current assignments with the as-

signments of their neighbors in the graph
(i.e., objects linked by relations). Four

relaxation techniques were compared
with varying optimization criteria and
updating schemes. The same general
matching system is used, i.e., the same

feature space and local similarity mea-
sure. Complexity and convergence are
measured empirically on several aerial
test images.

Price’s [1985] study is representative
of the studies undertaken to compare
search strategies for registration prob—
lems. Relaxation is not compared with
other strategies here, nor is its selection
for this problem explicitly justified. It is
empirically compared on aerial pho—
tographs, and thus their results cannot
necessarily be generalized. One of their
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primary contributions is their description
of the relative merits of the four meth—

ods. Although this would of course be
useful for future work Where relaxation

is applied to similar problems, the larger
questions of whether to apply relaxation
or some other search strategy for a given
problem remain unanswered.

Dynamic Programming. Another

commonly used search strategy for image
registration is dynamic programming
(DP). DP is an algorithmic approach to
solving problems by effectively using the
solutions to subproblems. Progressively
larger problems are solved by using the
best solutions to subproblems thus avoid—
ing redundant calculations and pruning
the search. This strategy can only be
applied when an intrinsic ordering of the
data/problem exists. Several examples
in which it has been applied include:
signature verification [Parizeau and
Plamondon 1990], the registration of geo-
graphic contours with maps [Maitre and
Yu 1987], shape matching [Milios 1989],
stereomapping [Ohta et al. 1987], and
horizontal—motion tracking [Guilloux
1986]. Notice that in each of these exam-

ples, the data can be expressed in a lin-

ear ordering. In the shape-matching
example this was done using a cyclic se-
quence of the convex and concave seg—
ments of contours for each shape. In
stereomapping, the two images were rec-
tified so that their scanlines were paral-
lel to the baseline (the line connecting to

the two viewpoints). Then, the scanlines
become the epipolar lines, so that all the

corresponding matches for points in the
scanline on one image lie in the corre—
sponding scanline of the other image.
Similarly in horizontal-motion tracking,
scanlines are the ordered data sets to be

matched. In each of these instances, dy-

namic programming is used to find the
correspondence between the points in the
two images, i.e., the segments in the

shape-matching example and feature
points in the stereo or motion example.

Notice also, that the matching to be

done in these problems is from many-to-
many. The problem is often posed as a
search for the optimal (lowest cost) path
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which matches each point along the or-
dering (scanline or contour etc.) of one
image with a point along the ordering of
the other image. The resulting search
space is therefore very large, exponential

to be precise. DP reduces this to 0(n3)
where n is the length of the longest or-

dering. In practice, the cost is reduced by
limiting the matches to an interval size
which reflects the largest expected dis-
parity between images. The cost of the
algorithm is also proportional to the cost
of the similarity measure which is the
elementary cost operation which is mini—
mized recursively. Typical measures in-
clude the absolute difference between

pixel intensities or their first-order
statistics. Similarity metrics often have
additional factors which depend on the
application in order to optimize other
characteristics such as minimal path
length, minimal disparity size, and inter-
val uniformity. As a search strategy, DP
offers an efficient scheme for matching

images whose distortions are nonlinear
including noisy features and missing
matches (such as occlusions) but which

can be constrained by an ordering.

4.4 Summary

This survey has offered a taxonomy of
existing registration techniques and a
framework to aid in the selection of the

appropriate technique for a specific prob-
lem. Knowledge of the causes of distor-
tions present in images to be registered
should be used as much as possible in

designing or selecting a method for a
particular application. Distortions which
are the source of misregistration can be
used to decide on the class of transforma-

tions which will optimally map the im-
ages onto each other. The class of trans-
formations and its complexity determine
the general type of method to be used.
Given the class of transformation, i.e.,

the search space, the types of variations
that remain uncorrected by this transfor-
mation can be used to further specify the
most suitable method.

Affine transformations can be found by
Fourier methods and techniques related
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to cross-correlation. When local uncor-

rected variations are present then point
mapping with feedback is used. Polyno-
mial transformations are generally de-
termined by point-mapping techniques
using either interpolation or approxima-
tion methods. Local transformations are

either determined with piecewise inter—

polation techniques when matched con-
trol points can be accurately found or
with model-based approaches exploiting
knowledge of the possible distortions. The
technique is completely specified by se—
lecting a particular feature space, simi—
larity metric, search space, and search
strategy from the types of methods avail—
able for registration. The choices for the

feature space, similarity metric, and
search strategy for a registration method
depend on the uncorrected variations,
spatial and valumetric, which obscure the
true registration.

Selecting a feature space instead of
matching on the raw intensities can be

advantageous when complex distortions
are present. Typically, the feature space
attempts to extract the intrinsic struc-
tures in the image. For small computa—
tional costs the search space is greatly
reduced, and irrelevant information is re—
moved.

The similarity metric defines the test
to be made for each possible match. For

white noise, cross-correlation is robust;
for frequency-dependent noise due to il-
lumination or changes in sensors, simi-
larity metrics based on the invariant
properties of the Fourier Transform are
good candidates. If features are used, ef—
ficient similarity metrics which measure
the spatial differences between the loca—

tions of the features in each image are
available. Other measures specialize in
matching higher-level structures such as
graphs or grammars.

The search space and strategy also eX—
ploit the knowledge available concerning
the source of distortion. Assumptions
about the imaging system and scene
properties can be used to determine the

set of possible or most probable transfor-
mations to guide the search for the best
transformation.
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The most difficult registration prob-
lems occur when local variations are pre-
sent. This can happen even when it is
known that a global transformation is
sufficient to align the two images. Feed—
back between feature detection, similar-

ity measurements, and computing the
optimal transformation can be used to

overcome many of these problems. Itera-
tion, cooperation, and hierarchical struc-
tures can be used to improve and speed
up registration when local distortions are
present by using global information with-

out the computational and memory costs
associated with global image operations.
The distinctions bewteen global and local
registration transformations and meth—
ods, global and local distortions, and
global and local computations should be
carefully considered when designing or

choosing techniques for given applica-
tions.

Over the years, techniques to perform
registration have become increasingly
automatic, efficient, and robust. Current

research efforts have begun to address
the more difficult problems in which local
variations, both correctable and not, are
present. The need for a taxonomy of these
techniques has arisen so that these

methods can be properly applied, their

capabilities can be more quickly as—
sessed, and comparisons among tech—

niques can be performed. This paper has
provided this taxonomy based on the
types of variations in the images. The
distinctions between corrected and un—

corrected, spatial and valumetric, and lo-
cal and global variations have been used
to develop a framework for registration
methods and its four components: fea-
ture space, similarity metric, search
space, and search strategy. This frame-
work should be useful in the future eval—

uation, development, and practice of reg-
istration.
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