
VALEO EXHIBIT 1031

Valeo v. Magna

IPR2015-____

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computer Graphics Volume 18, Number3 July 1984m

Compositing Digital Images

Thomas Porter

Tom Duff 1’

Computer Graphics Project
Lucasfilm Ltd.

ABSTRACT

Most computer graphics pictures have been computed all
at once, so that the rendering program takes care of all
computations relating to the overlap of objects. There are
several applications. however, where elements must be
rendered separately, relying on compositing techniques for
the anti-aliased accumulation of the full image. This paper
presents the case for four-channel pictures, demonstrating
that a matte component can be computed similarly to the
color channels. The paper discusses guidelines for the
generation of elements and the arithmetic for their arbi-
trary compositing.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generations ~
Display algorithms; 1.3.4 [Computer Graphics]:
Graphics Utilities — Software support; 1.4.1 [Image
Processing]: Digitization — Sampling.

General Terms: Algorithms

Additional Key Words and Phrases: compositing, matte
channel, matte algebra, visible surface algorithms,
graphics systems

fAuthor’s current address: AT&T Bell Laboratories, Murray Hill, NJ 07974, Room 20465

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-8979]-138-5/84/007/0253 $00.75

1. Introduction

Increasingly, we find that a complex three dimensional
scene cannot be fully rendered by a single program. The
wealth of literature on rendering polygons and curved
surfaces, handling the special cases of fractals and spheres
and quadrics and triangles, implementing refinements for
texture mapping and bump mapping, noting speed-ups on
the basis of coherence or depth complexity in the scene,
suggests that multiple programs are necessary.

In fact, reliance on a single program for rendering an
entire scene is a poor strategy for minimizing the cost of
small modeling errors. Experience has taught us to break
down large bodies of source code into separate modules in
order to save compilation time. An error in one routine
forces only the recompilation of its module and the rela-
tively quick reloading of the entire program. Similarly,
small errors in coloration or design in one object should
not force the ”recompilation” of an entire image.

Separating the image into elements which can be
independently rendered saves enormous time. Each ele-
ment has an associated matte, coverage information
which designates the shape of the element. The compo-
siting of those elements makes use of the mattes to accu-
mulate the final image.

The compositing methodology must not induce aliasing in
the image; soft edges of the elements must be honored in
computing the final image. Features should be provided
to exploit the full associativity of the compositing pro-
cess; this affords flexibility, for example, for the accumu—
lation of several foreground elements into an aggregate
foreground which can be examined over different back-
grounds. The compositor should provide facilities for
arbitrary dissolves and fades of elements during an
animated sequence.

Several highly successful rendering algorithms have
worked by reducing their environments to pieces that can
be combined in a 2 1/2 dimensional manner, and then
overlaying them either front-to—back or back-to-front [3].
Whitted and Weimar's graphics test-bed [6] and Crow’s
image generation environment [2] are both designed to
deal with heterogenously rendered elements. Whitted

253

VALEO EX. 1031_002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

.SIGGRAPH’84a
and Weimar’s system reduces all objects to horizontal
spans which are composited using a Warnock—like algo-
rithm. In Crow’s system a supervisory process decides
the order in which to combine images created by indepen-
dent special—purpose rendering processes. The imaging

system of Warnock and Wyatt [5] incorporates 1-bit
mattes. The Hanna-Barbera cartoon animation system

[4] incorporates soft-edge mattes, representing the opacity
information in a less convenient manner than that pro-
posed here. The present paper presents guidelines for
rendering elements and introduces the algebra for compo-
siting.

2. The Alpha Channel

A separate component is needed to retain the matte
information, the extent of coverage of an element at a
pixel. In a full color rendering of an element, the RGB
components retain only the color. In order to place the
element over an arbitrary background, a mixing factor is
required at every pixel to control the linear interpolation
of foreground and background colors. In general, there is
no way to encode this component as part of the color
information. For anti—aliasing purposes, this mixing fac-
tor needs to be of comparable resolution to the color
channels. Let us call this an alpha channel, and let us
treat an alpha of 0 to indicate no coverage, 1 to mean full
coverage, with fractions corresponding to partial cover-
age.

In an environment where the compositing of elements is
required, we see the need for an alpha channel as an
integral part of all pictures. Because mattes are naturally
computed along with the picture, a separate alpha com-
ponent in the frame buffer is appropriate. Off-line
storage of alpha information along with color works con-
veniently into run-length encoding schemes because the
alpha information tends to abide by the same runs.

What is the meaning of the quadruple (r,g,b,a) at a pixel?
How do we express that a pixel is half covered by a full
red object? One obvious suggestion is to assign (l,0,0,.5)
to that pixel: the .5 indicates the coverage and the (1,0,0)
is the color. There are a few reasons to dismiss this pro-
posal, the most severe being that all compositing opera-
tions will involve multiplying the l in the red channel by
the .5 in the alpha channel to compute the red contribu-
tion of this object at this pixel. The desire to avoid this
multiplication points up a better solution, storing the
pre-multipIied value in the color component, so that
(.5,0,0,.5) will indicate a full red object half covering a
pixel.

The quadruple (r,g,b,a) indicates that the pixel is a
covered by the color (r/a, g/a, b/a). A quadruple where
the alpha component is less than a color component indi-
cates a color outside the [0,1] interval, which is somewhat

unusual. We will see later that luminescent objects can be
usefully represented in this way. For the representation
of normal objects, an alpha of 0 at a pixel generally
forces the color components to be 0. Thus the RGB
channels. record the true colors where alpha is l, linearly

254

darkened colors for fractional alphas along edges, and
black where alpha is 0. Silhouette edges of RGBA ele-
ments thus exhibit their anti—aliased nature when viewed
on an RGB monitor.

It is important to distinguish between two key pixel
representations:

black = (0,0,0,l);
clear = (0,0,0,0).

The former pixel is an opaque black; the latter pixel is
transparent.

3. RGBA Pictures

If we survey the variety of elements which contribute to a
complex animation, we find many complete background
images which have an alpha of 1 everywhere. Among
foreground elements, we find that the color components
roll off in step with the alpha channel, leaving large areas
of transparency. Mattes, colorless stencils used for con-
trolling the compositing of other elements, have 0 in their
RGB components. Off-line storage of RGBA pictures
should therefore provide the natural data compression for
handling the RGB pixels of backgrounds, RGBA pixels of
foregrounds, and A pixels of mattes.

There are some objections to computing with these
RGBA pictures. Storage of the color components pre
multiplied by the alpha would seem to unduly quantize
the color resolution, especially as alpha approaches 0.
However, because any compositing of the picture will
require that multiplication anyway, storage of the pro-
duct forces only a very minor loss of precision in this
regard. Color extraction, to compute in a different color
space for example, becomes more difficult. We must
recover (r/a, g/a, b/a), and once again, as alpha
approaches 0, the precision falls ofl sharply. For our
applications, this has yet to affect us.

4. The Algebra of Compositing

Given this standard of RGBA pictures, let us examine
how compositing works. We shall do this by enumerating
the complete set of binary compositing operations. For
each of these, we shall present a formula for computing
the contribution of each of two input pictures to the out-

put composite at each pixel. We shall pay particular
attention to the output pixels, to see that they remain
pre—multiplied by their alpha.

4. 1 . Assumptions

When blending pictures together, we do not have infor-
mation about overlap of coverage information within a
pixel; all we have is an alpha value. When we consider
the mixing of two pictures at a pixel, we must make some
assumption about the interplay of the two alpha values
In order to examine that interplay, let us first consider
the overlap of two semi-transparent elements like haze,
then consider the overlap of two opaque, hard-edged ele-
ments.

VALEO EX. 1031_003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

If (14 and (IE represent the opaqueness of semi-
transparent objects which fully cover the pixel, the com-

putation is well known. Each object lets (l—a) of the
background through, so that the background shows

through only (l—aA)(l~aB) of the pixel. 01A(1—OB) of the
background is blocked by object A and passed by object
B; (l—aA)a3 of the background is passed by A and
blocked by B. This leaves 01,103 of the pixel which we
can consider to be blocked by both.

If (1A and 03 represent subpixel areas covered by opaque
geometric objects, the overlap of objects within the pixel
is quite arbitrary. We know that object A divides the

pixel into two subpixel areas of ratio aAzl—aA. We know
that object B divides the pixel into two subpixel areas of
ratio agzl—aB. Lacking further information, we make the

following assumption: there is nothing special about the
shape of the pixel; we expect that object B will divide each
of the subpixel areas inside and outside of object A into
the same ratio agzl—aB. The result of the assumption is
the same arithmetic as with semi-transparent objects and
is summarized in the following table:

The assumption is quite good for most mattes, though it
can be improved if we know that the coverage seldom
overlaps (adjacent segments of a continuous line) or
always overlaps (repeated application of a picture). For
ease in presentation throughout this paper, let us make
this assumption and consider the alpha values as
representing subpixel coverage of opaque objects.

4.2. Compositing Operators

Consider two pictures-A and B. They divide each pixel
into the 4 subpixel areas

EI-lm__'-*

listed in this table along with the choices in each area for
contributing to the composite. In the last area, for exam-
ple, because both input pictures exist there, either could

survive to the composite. Alternatively, the composite
could be clear in that area.

A particular binary compositing operation can be
identified as a quadruple indicating the input picture
which contributes to the composite in each of the four
subpixel areas 0, A, B, AB of the table above. With
three choices where the pictures intersect, two where only
one picture exists and one outside the two pictures, there
are 3X2X2Xl=12 distinct compositing operations listed

Volume 18, Number 3 July 1984Computer GraphicsM

in the table below. Note that pictures A and B are

diagrammed as covering the pixel with triangular wedges
whose overlap conforms to the assumption above.

(D’A’B’B) I

A in B (0,0,0,A)

B atop A w.
(O’A,B’0)

Useful operators include A over B, A in B, and A held
out by B. A over B is the placement of foreground A in
front of background B. A in B refers only to that part of
A inside picture B. A held out by B, normally shor-
tened to A out B, refers only to that part of A outside
picture B. For completeness, we include the less useful
operators A atop B and A xor B. A atop B is the union
of A in B and Bout A. Thus, paper atop table includes
paper where it is on top of table, and table otherwise; area
beyond the edge of the table is out of the picture.
A xor B is the union of A out B and B out A.

255

VALEO EX. 1031_004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 //// .SIGGRAPH’84
4.3. Compositing Arithmetic

For each of the compositing operations, we would like to
compute the contribution of each input picture at each
pixel. This is quite easily solved by recognizing that each
input picture survives in the composite pixel only within
its own matte. For each input picture, we are looking for
that fraction of its own matte which prevails in the out-
put. By definition then, the alpha value of the composite,
the total area of the pixel covered, can be computed by
adding 01A times its fraction FA to 013 times its fraction
FB-

The color of the composite can be computed on a com-
ponent basis by adding the color of the picture A times
its fraction to the color of picture B times its fraction.

To see this, let cA, CB, and c0 be some color component

of pictures A, B and the composite, and let CA, CB, and
00 be the true color component before pre—multiplication
by alpha. Then we have

60 = 0000

Now 00 can be computed by averaging contributions
made by CA and 03, so

6 _ a aAFACA+aBFBCB
O O OAFA‘l'aBFB

but the denominator is just 010, so

Co = aAFAoA—l'aBFBCB

CA CE
= a F — a F —-

A AaA'l' B 803

= CAFA‘l‘cBFB (1)

Because each of the input colors is pre—multiplied by its
alpha, and we are adding contributions from non-
overlapping areas, the sum will be effectively pre
multiplied by the alpha value of the composite just com—
puted. The pleasant result that the color channels are
handled with the same computation as alpha can be
traced back to our decision to store pre—multiplied RGBA
quadruples. Thus the problem is reduced to finding a.
table of fractions FA and FB which indicate the extent of
contribution of A and B, plugging these values into equa-
tion 1 for both the color and the alpha components.

By our assumptions above, the fractions are quickly
determined by examining the pixel diagram included in
the table of operations. Those fractions are listed in the
FA and FB columns of the table. For example, in the
A over B case, picture A survives everywhere while pic-
ture B survives only outside picture A, so the correspond-
ing fractions are 1 and (1—0:A). Substituting into equa-
tion 1, we find

60 = cAXl+c3X(l—aA).

This is almost the well used linear interpolation of fore-
ground F with background B

B’ = FXa+BX(l~a),

except that our foreground is pre—multiplied by alpha.

256

4.4. Unary operators

To assist us in dissolving and in balancing color bright-
ness of elements contributing to a composite, it is useful
to introduce a darken factor 9*) and a dissolve factor 6:

darken(A,¢)E(¢rA,¢gA,¢bA,aA)
‘ dissolve(A,6).=_(6rA,6gA,6bA,6aA) .

Normally, 03¢,6_<_1 although none of the theory requires
it.

As ¢ varies from 1 to 0, the element will change from
normal to complete blackness. If (it)! the element will
be brightened. As 6 goes from 1 to 0 the element will
gradually fade from view.

Luminescent objects, which add color information
without obscuring the background, can be handled with
the introduction of a opaqueness factor a), OSwS l:

Opaque(Avw)E(rAugAabAawaA) '
As w varies from 1 to 0, the element will change from
normal coverage over the background to no obscuration.
This scaling of the alpha channel alone will cause pixel
quadruples where a is less than a color component, indi-
cating a representation of a color outside of the normal

range. This possibility forces us to clip the output compo-
site to the [0,1] range.

An w of 0 will produce quadruples (r,g,b,0) which do have
meaning. The color channels, pre-multiplied by the origi-
nal alpha, can be plugged into equation 1 as always. The
alpha channel of 0 indicates that this pixel will obscure
nothing. In terms of our methodology for examining sub-
pixel areas, we should understand that using the opaque
operator corresponds to shrinking the matte coverage
with regard to the color coverage.

4.5. The PLUS operator

We find it useful to include one further binary composit-
ing operator plus. The expression A plus B holds no
notion of precedence in any area covered by both pic-
tures; the components are simply added. This allows us
to dissolve from one picture to another by specifying

dissolve(A,a) plus dissolve(B,l—a).

In terms of the binary operators above, plus allows
both pictures to survive in the subpixel area AB. The
operator table above should be appended:

VALEO EX. 1031_005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

