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Creation of Omnimax animation by computer opens

up fantastic new visual possibilities. Unfortunately, the

fish-eye distortion of Omnimax film images compli-
cates synthesis by computer, since most image—synthe-
sis programs can create only perspective views.

As an alternative to modifying existing image-synthe-

sis programs to produce Omnimax projections directly.
we present a method for creating them from multiple
perspective views. Four perspective views of the em
vironment are created, each a projection onto a face of
a cube centered at the camera, and then a mapping

program creates an Omnimax projection from them.
To minimize aliasing during resampling, the mapping
program uses the elliptical weighted average filter, a
space—variant filter we developed for this applicatiori
that computes a weighted average over an arbitrarily
oriented elliptical area. This filter can also be used for
texture mapping 3D surfaces.

The methods described in this article were used to

make two animation sequences for The Magic Egg, a

compilation of computer—generated Omnimax anima-
tion sponsored by SiGGRAPH 84.
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Rendering programs usually perform a perspective
transformation which simulates a pinhole camera and

transforms straight lines to straight lines and planes to

planes. However, the Omnimax projection of a 3D en-
vironment is a 180° fish-eye projection that does not

preserve linearity or planarity, so rendering programs
must be modified to perform an Omnimax projection
rather than a perspective projection.

Rendering programs work in a variety of ways and
handle a variety of geometric primitives. Because they
are independent from the perspective projection, ray
tracers are easily converted for Omnimaxl projection,

but their high computational expense makes them im-
practical for many applications.

On the other hand, standard polygon renderers rely

heavily on the perspective projection to simplify and
speed the scan conversion process. Among other things,
they take advantage of the fact that the perspective
projection preserves the convexity of polygons and the
linearity of their edges, properties not preserved by the
Omnimax projection. In short, standard polygon render-
ers are much more difficult to convert for Omnimax

projection than ray tracers and conversion reduces their
computational efficiency.

The problem of software conversion should be exam-
ined in the context of whole image generation systems.

Some systems generate the final frames of animation
using a single program, while other systems create images
piece by piece using a variety of programs. We use the
latter approach at NYIT: One program renders polygons,
another renders quadric surfaces, and dozens of other

programs process rendered images to produce final
frames.2

To convert all the programs in this graphics system to

 

‘Heckbert is now with Pixar, Inc. Material in this article was
presented orally by the authors at the 126th SMPTE Technical
Conference in November 1984. Omnimax is a registered trade-
mark of Imax Corp, Toronto, Canada.
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Figure 1. An Omnimax film frame.

 
 

 
Figure 2. A three-
dimensional

scene projected
onto four faces
of a cube.
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Figure 3. The unfolded cube of texture. The brighter
area is the Omnimax field of view. The left half

of the left panel, the right half of the right panel,

and the top half of the top panel lie outside the field
of view, so these regions need not be rendered.

handle Omnimax projection would be prohibitively time

consuming, would complicate existing software, and
would make maintenance more difficult. For these rea-

sons we sought a method for creating Omnimax projec-
tions from perspective views.
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We were interested in general techniques for creating

Omnimax images that would allow high resolution, high
scene complexity, and a variety of geometric modeling
primitives. We were willing to sacrifice speed for gener-

ality and quality. Others have developed more efficient
techniques for specific applications. Max has generated
Omnimax animation of molecules using a local linear

approximation to the distortion,3 and methods for real-
time Omnimax distortion of low-resolution images have
also been developed.4

The Omnimax projection

Max has described the Omnimax projection lens and
theater geometry in detail;1 the following description has
been condensed from his account.

In an Omnimax theater, film is projected through a

fish-eye lens onto a hemispherical screen that fills the
audience's field of View. This extreme field of view

necessitates a large film format to provide sufficient
resolution. Omnimax is the largest motion picture film
format in use today—frames are oriented lengthwise on
70-mm film stock.

A 180° fish-eye lens (round type) projects half of the
environment into a circular image. The Omnimax film

image shown in Figure 1 is a 180° fish-eye projection with
the bottom of the frame cropped to an approximately

elliptical arc. The projected Omnimax image covers a full
180° horizontally but, due to the cropping of the frame,
covers less vertically—about 135°. In a typical Omnimax

theater the axis of projection (which pierces the film
frame at the "projection center” shown in Figure 1) is
elevated 1 1° from the horizontal.

Each pixel in the raster grid of an Omnimax image
corresponds to a ray projected through the Omnimax
lens. Pixels are mapped to rays by simulating the C430

Omnimax projection lens as follows:
The limiting circle of the 180° fish-eye projection is

assigned a unit radius, and its center is chosen as the
image origin. Because the projection lens is rotationally
symmetric about the axis of projection, the effect of the
lens can be described by a single function that relates

radial displacement from the center of the circle to the
angle of the projected ray from the axis of projection.
Points in the image are assigned polar coordinates (130)
and are converted to spherical coordinates with angular
coordinates 6 and 42, where 0 is longitude and d) is the

angle from the axis of projection. The transformation
from polar to spherical coordinates keeps 0 the same and
transforms r into d). The expression for qb as a function of
r, adapted from Max,1 is

4) (r) = 1.411269r— .094389r3 + .256747’5

See Max' for a more detailed discussion of Omnimax lens

and theater geometry, and film frame layout.

Omnimax projection

from cube projection

To produce an Omnimax projection, standard image
generation programs are used to project the environment
onto four faces of a cube centered at the viewpoint,5 and
this cube of texture is then processed to obtain an
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Omnimax projection. The cube's orientation corresponds

to a coordinate system that has a horizontal left-right axis
and another axis coinciding with the axis of projection.
Each face of the cube of texture is obtained by pointing
the camera down the appropriate axis and rendering with
a 90° view angle. The rendered views are the projections

on the front, top, left, and right faces of the cube.
Figure 2 shows the projection of a 3D scene onto four

faces of a cube. This cube of texture is shown unfolded in

Figure 3, wherein the darkened areas correspond to
regions of the scene that lie outside the Omnimax field of

view. Figure 4 shows the region of the Omnimax frame
that each face of the cube contributes to.

Creating the Omnimax projection from the cube of

texture can be done in scan-line order. Each pixel in the
Omnimax projection corresponds to a ray through the
projection lens, the direction of which can be found with

some straightforward trigonometry using the lens distor-
tion formula given above. This ray is then intersected
with the cube of texture to determine which texture pixel
corresponds to the pixel in the Omnimax projection.
Actually, this point-sampling approach will cause aliasing.

A filtering technique that eliminates visible aliasing is
described later in this article.

Figure 5 is an Omnimax projection obtained from the
cube of texture in Figure 2. It has twice the horizontal

resolution of the cube faces of Figure 2, and this corre-
sponds to a 2:3 ratio of ”source pixels" (the bright area of
Figure 3) to "destination pixels" in the Omnimax projec-
tion. The exact ratio of source pixels to destination pixels

isn't important as long as there is rough parity (having far
more source pixels than destination pixels wastes source
texture resolution; having far fewer source pixels than
destination pixels magnifies the source texture unneces-
sarily). Empirical tests have shown that a resolution of
approximately 2000 X 1500 is sufficient for raster Omni—
max frames.6

A potential problem with our method is discontinuities

in the Omnimax projection at the boundaries between

the cube faces shown in Figure 4. For example, if a
polygon in the Omnimax projection straddles a seam, it
will be clipped and rendered in two separate cube faces.

Whether or not the projected polygon will exhibit visible

artifacts at the seam depends on the algorithms used for
clipping, shading, and so on. In some cases it may be
necessary to use more sophisticated algorithms, but in
practice seams have never been a problem for us.

The framework for projection need not be a cube. An
Omnimax projection can be obtained from any combi-

nation of perspective views with viewpoint at the camera
that collectively covers the Omnimax field of view. For

example, it is possible to use just two perspective views,
one covering the left half of the Omnimax field of view,

the other covering the right half. This scheme, however,
requires very large view angles that result in poor image
resolution near the image center. All things considered,
the cube appears to be the best framework for projection.

Image filtering

To control aliasing, the cube-face images must be
filtered, not point-sampled,7 as Figure 6 shows. We treat
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Figure 4. The correspondence between cube faces and

regions of the Omnimax projection.

 
Figure 5. An Omnimax projection made from the cube of

texture of Figures 2 and 3. Scene modeling by Jules
Bloomenthal (tree), Paul P. Xander (terrain), Ned Greene

(sky), and Dick Lundin (overall scene composition and
rendering).

 
Figure 6. Portions of Omnimax images generated from
checkerboard cube faces. Aliasing is evident with point
sampling (left) but not with filtering (right).
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Figure 7. An example of a mapping with a nonuniform
resampling grid. Circular pixels in screen space (left)
become elliptical when mapped to texture space (right).
Since the ellipses vary in size, eccentricity, and orientation,
the filter is space variant. Dots mark pixel centers.

 
pixels in the Omnimax frame as square or circular areas
instead of points, so their corresponding rays through the
projection lens form cones that intersect the cube faces
in quadrilateral or elliptical areas“,8 These areas are then
filtered to obtain pixel values.

Omnimax distortion is nonlinear, so the resampling

grids on the cube faces are nonuniform, as Figure 7
illustrates. Consequently a space-variant filter is required
instead of the simpler space-invariant filter techniques. In

response to the need for generality and speed, we devel-
oped a new filtering technique.
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Image filtering for Omnimax distortion is very similar
to the technique of texture mapping onto curved surfaces
in 3D: both require space-variant filters? The filter we

present can be used for either application.
Applying the terminology of texture mapping, the cube-

face image is called the texture, with coordinates u and v.
The output picture is called the screen, with coordinates x

and y. Some methods for texture filtering are listed in
Table 1, classified according to kernel shape. The most

important features of a filter are the generality of its
shape, which determines, quality, and the number of
samples that must be accessed and the cost of each
access, which determine speed.

High-quality filters such as those by Catmull,‘° Blinn
et al.,11 Feibush et al.,12 and Gangnet et a1.13 operate on

arbitrary quadrilaterals or ellipses. Their computational
cost is proportional to texture area, so the cost can be

very high when large texture areas map to small screen
areas.

Fast filters such as those by Dungan et al.,8 Williams,”
Crow,15 and Perlinlé have a constant cost per screen pixel,
but are limited to orthogonally oriented squares, rec-

tangles, or ellipses, so they cannot filter elongated diagonal
areas accurately. This limited shape control causes either

aliasing or blurring of the texture. These “constant-cost"
filters also require extra time and memory to preintegrate

or prefilter the texture. Also, when the texture changes
from frame to frame, as it does in our method of

Omnimax frame creation, the cost per screen pixel (in-

cluding setup time) is not constant, but includes a term
proportional to texture area.

In general, the constant—cost filters are most desirable
for static textures with mappings that compress large
areas to small. Since the texture areas corresponding to

each screen pixel are small in our application (typically

nine to 16 pixels), an efficient, high-quality filter may be
nearly as fast as a constant—cost filter in this case.

Elliptical weighted average filter

We developed the elliptical weighted average (EWA)
filter to attain more efficient, high-quality filtering. The
filter area is an arbitrarily oriented ellipse, as in the filters

by Feibush et a1.12 and Gangnet et al.‘3 These two methods
require every texture sample point to be mapped to or
from screen space for weighting by the circular kernel
residing in screen space. To avoid this cost, EWA distorts
the circular screen space kernel into an ellipse in texture
space, so texture weighting can be done more directly.
This is similar to the method used by Blinn et al., who

distorted a screen square into a texture parallelogram.ll

The radial cross section of the kernel is controlled by a

weight lookup table, so it can be any function. Like other
high-quality filters, EWA's cost is proportional to the
texture space area. However, because it avoids mapping
each texture pixel between screen space and texture
space, it is faster than filters of similar quality.

Under the perspective transformation, a circular screen
space pixel will normally map to an elliptical texture .
space area, assuming local planarity of the surface (this
approximation breaks down near vanishing points, where
the circles can map to parabolas or hyperbolas). Point-in-

VALEO EX. 1028_005 IEEE CG&A



ellipse testing can be done with one function evaluation
(this is faster than point-in-quadrilateral testing, which
requires substitution into four line equations). The func-
tion for this test is a quadratic in the texture coordinates
u and v:

Q(u,v) = Au2 + Buv+ C122

where u = 0, v = 0 is the center of the ellipse. This

function is an elliptical paraboloid. Points inside the
ellipse satisfy Q (u,v) < F for some threshold F. In texture
space the contours of Q are concentric ellipses (Figure 8),
but when mapped to screen space, they are nearly circu-

lar. Since Q is parabolic it is proportional to r2, where r is
the distance from the center of a pixel in screen space.

This radius r is just the parameter needed when indexing
a kernel, so Q can serve two purposes: inclusion testing
and kernel indexing.

The kernel f( r) is stored in a weight lookup table,
WTAB. Rather than index WTAB by r, which would
necessitate the calculation of r =\/U at each pixel, we
define

WTAB[Q] = f( V—Q')

so that the array can be indexed directly by Q.

Warping a lookup table for computational efficiency is
a useful trick that has been applied by others}:17 A good

kernel to use is the Gaussian f(r) = e—“’2, shown in Figure
9, for which WTAB[Q] = e—“Q. The Gaussian is preferred
to the theoretically optimal sinc kernel because it decays

much more quickly. By properly scaling A, B, C, and F, the
length of the WTAB array can be controlled to minimize
quantization artifacts (several thousand entries have

proven sufficient). The parameters F and a can be tuned
to adjust the filter cutoff radius and the degree of pixel
overlap.

To evaluate Q efficiently, we employ the method of
finite differences. Since Q is quadratic, two additions
suffice to update Q from one pixel to the next.3 The

following pseudocode implements the EWA filter for
monochrome pictures (it is easily modified for color).
Integer variables are lowercase; floating-point variables
are uppercase.

/* Let texture[v,u] be a 2-dimensional array holding texture */
< Compute texture space ellipse center (UO,V0)

from screen coordinates (x,y) >

%, _a_v] and (Uy,Vy) = [—, —< Compute (Ux,Vx) = ax 
/* Now find ellipse corresponding to a circular pixel: */
A - Vx‘Vx+Vy*Vy
B = —2.*(Ux*Vx+Uy*Vy)
C = Ux*Ux+Uy*Uy
F = Ux*Vy-—Uy*Vx
F = F*F

< scale A, B, C, and F equally so that F = WTAB length >

/* Ellipse is AU2+BUV+CV2=F, where U=u—U0, V=v—V0 */

EWA(UO,V0,A,B,C,F)
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begin
< Find bounding box around ellipse: ulSuSuZ, v1SvSv2 >
NUM = 0.
DEN = 0.

DDQ = 2.*A
U = ul—UO
/‘I scan the box */

for v=v1 to v2 do begin
V = v—VO

DQ = A*(2."‘U+1.)+B*V /* =Q(U+1,V)—Q(U,V) */
Q = (C*V+B*U)*V+A*U*U
for u=ul to u2 do begin

/* ignore pixel if Q out of range */
if Q<F then begin

WEIGHT = WTAB[floor(Q)]
/* read and weight texture pixel */
NUM = NUM+WEIGHT"‘texture[v,u]

/"’ DEN is denominator (for normalization) */
DEN = DEN+WEIGHT

end

Q = Q+DQ
DQ = DQ+DDQ

end
end

return(NUM/DEN)
end

This implementation can be optimized further by re-
moving redundant calculations from the 1/ loop and, with
proper checking, by using integer variables throughout.

The EWA filter computes the weighted average of
elliptical areas incrementally, requiring one floating-point
multiply, four floating-point adds, one integerization, and
one table lookup per texture pixel. Blinn et al.'s method,

which is the most similar to EWA, appears to have

 
Figure 8. Contours of elliptical paraboloid O and box
around 0 = F. Dots are centers of texture space pixels.
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Figure 9. Gaussian kernel e'“’2.
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Figure 10. Omnimax frame from Inside a Quark, an
animation cycle by Ned Greene from The Magic Egg. The

vines trace the edges of a diamond lattice and the anima-

tion depicts uniform motion down a corridor in this
lattice. Software by the authors, Jules Bloomenthal, and
Lance Williams.

comparable speed but inferior quality, based on the very
brief description in their paper.H The texture filters by
Feibush et al.12 and Gangnet et al.‘3 have the same quality
as EWA but require each sample point to be mapped
between screen space and texture space, an operation

requiring at least one division and two multiplications,
even when done incrementally.” Based on this analysis

the EWA filter appears to be about twice as fast as the
other methods of similar quality.
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Figure 11. Omnimax frame from Revenge of the Ant,
animation of a mechanical ant by Dick Lundin from The

Magic Egg. In this 12-second sequence the ant climbs out
of the “anthill” and charges the camera. Terrain modeling
by Lance Williams and Paul P. Xander.

Areas for future work

The mapping program to create an Omnimax projec-
tion from a cube projection can easily be modified to

produce other nonlinear projections such as cylindrical
projections (the Mercator projection, for example), or a
picture of the environment as it would appear reflected in
a chrome ball. The projection formulas for these appli-
cations are derived easily. The cube faces required

depend on the projection—for example, all six are re-
quired to produce a chrome ball reflection.

Because the computational cost of EWA filtering is

proportional to texture space area, using it to map large
texture areas to small screen areas is very slow compared
to constant—cost filters. An untested method of dealing

with this problem is to use EWA (or some other high-
quality filter) on a prefiltered image pyramid?)14 EWA
filtering would be performed on small elliptical areas at
the appropriate level in the image pyramid. Actually,

performing such filtering at two adjacent levels in the
image pyramid and interpolating the results, as in Wil-
liams,” would be preferable. In theory this hybrid ap-

proach offers the best of both worlds: high-quality filter-
ing at a constant, relatively low cost per pixel.

An unexplored approach to digital Omnimax distortion
is decomposition of the 2D mapping and filtering into two
passes of 1D mapping and filtering19 using least-squares
approximations.20

Conclusions

This method is completely general in the sense that an

Omnimax projection can be produced of any scene that
can be rendered in perspective. Only a modest program-

ming effort is required—existing rendering programs
need not be modified, and the only new software is the

mapping program. All rendering can be done with existing
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efficient programs that exploit the linearity of the per-
spective transformation.

These techniques were used at NYIT to create two

sequences of animation for The Magic Egg, a compilation
of Omnimax animation sponsored by SIGGRAPH 84 and
produced by Garrick Films?"23 Figures 10 and 11 are
frames from these sequences. Cube faces were rendered
at a resolution of 1024 X 960; from these 1966 X 1436 X

24-bit Omnimax frames were made. The high resolution

requirements of the Omnimax format result in large data
volumes (up to 8.5M bytes per frame) and slow frame

generation. On a Digital Equipment Corp. VAX 11/780,
the four cube-face images needed for each Omnimax
frame took from one to six hours to create, followed by
mapping and filtering, which took one hour.

To date, about 20 minutes of computer-generated

Omnimax animation has been produced in raster format,
much of it rendered with ray tracing on supercomputers.

Our method provides an alternative to this brute-force
approach. I
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