
Technical Standard

Protocols for X/Open PC lnterworkingz

SMB, Version 2

THE Open GROUP

Page 1 of 267 Verizon Exhibit 1004

jiII—fII

Contents

Chapte r

Chapte r

Chapte r

1 Introduction.. ..

1.1 Why Republish
1.2 This Document

1.3 Overview of Document Layout

2 SMB File -sharing Se rvice Model
2.1 SMB Protocol Principles

2.2 Security Overview

2.2.1 Share—level Security Mode

2.2.2 User—level Security Mode

3 SMB Protocol Conve ntions... ..

3.1 Summary of SMBs
3.2 SMB Environment Definitions

3.3 Share—level and User—level Security Modes.. ..

3.3.1 Share—level Security Mode

3.3.2 User—level Security Mode with Extended Protocols

3.3.3 User—level Security with Core Protocol
3.4 Connection Protocols

3.5 Naming
3.5.1 Resource Names

3.5.2 NetBIOS Names

3.5.3 Uniform Naming Convention
3.5.4 Canonical Pathnames... ..

3.5.5 Long Names
3.6 Wildcards

3.7 File Paradigm

3.7.1 Regular Files

3.7.2 Open Modes
3.7.3 Write Behaviour

3.8 Locking Conventions

3.8.1 Byte Locking

3.8.2 Opportunistic Locking... ..

3.9 Chaining of Extended SMB Requests

3.10 Exception and Error Handling

3.10.1 Disorderly LMX Session Dissolution.. ..

3.10.2 Errors and Error Handling
3.1 1 Timeouts

3.12 Downward-compatibility Support

Protocols for X/Open PC Interworking: SMB, Version 2

Page 5 of 267

l\D>—->->-‘

iii

Chapte r

Chapte r

iv

Page 6 of 267

4

4.1

4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.4

4.4.1

4.4.2

4.4.3

4.5

4.6

4.7

4.8

4.9

4.10

5
5.1

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

5.3.9

5.3.10

5.4

5.5

5.6

5.6.1

5.6.2

5.6.3

5.6.4

5.6.5

Contents

LMX Conside rations 27

LMX Username Mapping... .. 27

LMX Filename Mapping 28

LMX File Mapping... .. 30
SMB File Attributes 30

CAE File Access Permissions 30

File System Issues 30

CAE Special Files 31

Deleting or Renaming a File 31

Long Filenames 31
Extended Attributes 3 1

LMX File Locking... .. 33

Interlocking Behaviour 33

Locking Timeouts 34

Read-only Locks 34

LMX Server Caching 35

LMX Print Spooling 35
SMB Error Codes 35

Security Policy 36

Negotiated Dialect 36
Network Issues... .. 36

Data Objects and Constants 37
SMB Format... .. 37

SMB Command Codes 40

Data Objects 43
Time Fields 43

Date Fields 43

File Attributes Fields 43

Buffers 44

File-sharing Control 44

Resource Types 45
Access Modes 46

Open Function 46
Resource Names, Pathnames, Filenames and Network Pathnames.....46
File Identifiers 47

SMB Dialects 48

Timeouts 48

SMB Error Codes 49

SMB Error Class Mappings... .. 49
Error Codes for the SUCCESS Class 49

Error Codes for the ERRDOS Class 49

Error Codes for the ERRSRV Class 51

Error Codes for the ERRHRD Class 52

X/Open CAE Specification (1992)

Contents

Chapte r 6 Core SMB Conne ction Manage In e nt Re que sts 55
6.1 SMBnegprot Specification 55

6.2 SMBtcon Specification 57

6.3 SMBtdis Specification 59

6.4 SMBexit Specification 61

Chapter 7 Core SMB File Operation Re quests... .. 63
7.1 SMBcreate Specification 63

7.2 SMBmknew Specification 67

7.3 SMBopen Specification 70

7.4 SMBread Specification 73

7.5 SMBwrite Specification... .. 76

7.6 SMB1seek Specification 79

7.7 SMB1ock Specification... .. 81

7.8 SMBun1ock Specification 83

7.9 SMBflush Specification 85

7.10 SMBc1ose Specification 87

7.11 SMBmv Specification 89

7. 12 SMBun1ink Specification 92

Chapter 8 Core SMB Directory and Attribute Operations 95
8. 1 SMBmkdir Specification 95

8.2 SMBrmdir Specification 97

8.3 SMBsearch Specification 99

8.4 SMBgetatr Specification 103

8.5 SMBsetatr Specification 105

8.6 SMBdskattr Specification 107

8.7 SMBchkpath Specification 109

Chapter 9 Core SMB Spool Operation Re quests 111
9.1 SMBsp1open Specification.. .. 111

9.2 SMBsp1wr Specification 1 13

9.3 SMBsp1c1ose Specification.. .. 115

9.4 SMBsp1retq Specification 1 17

Chapte r 10 Core Plus SMB File Ope rations 121
10.1 SMBnegprot Specification 121

10.2 SMBreadbraw Specification... .. 123

10.3 SMBwritebraw Specification 125

10.4 SMB1ockread Specification 128

10.5 SMBwriteun1ock Specification 130

10.6 SMBwritec1ose Specification 132

Chapte r 11 Exte nde d 1.0 SMB Conne ction Manage In e nt Re que sts 135
11.1 SMBnegprot Specification 135

11.2 SMBsecpkgX Specification 139

11.3 SMBsesssetupX Specification 144

11.4 SMBtconX Specification 147

Protocols for X/Open PC Interworking: SMB, Version 2 V

Page 7 of 267

Contents

Chapter 12 Extended 1.0 SMB File Operations... .. 151
12.1 SMBopenX Specification 151

12.2 SMB1ockingX Specification 156

12.3 SMBreadX Specification 160

12.4 SMBwritebraw Specification 163

12.5 SMBwriteclose Specification 166

12.6 SMBwriteX Specification 168

12.7 SMBreadbmpx Specification 171

12.8 SMBwritebmpx Specification 174

Chapter 13 Exte nde d 1.0 SMB Directory and Attribute Ope rations.... 179
13.1 SMBffirst Specification 179

13.2 SMBfclose Specification 181

13.3 SMBfunique Specification 182

13.4 SMBgetattrE Specification.. .. 183

13.5 SMBsetattrE Specification 185

Chapte r 14 Exte nde d 1.0 SMB Misce llane ous Re que sts 187
14.1 SMBcopy Specification 187

14.2 SMBecho Specification 191

14.3 SMBioctl Specification 193

14.4 SMBmove Specification 194

Chapter 15 Extended 2.0 Protocol Additions and Modifications 197
15.1 SMBsesssetupX Specification 197

15.2 SMBcopy Specification 201

15.3 SMBfindnclose Specification 202

15.4 SMBfindclose Specification 203

15.5 SMBuloggofiX Specification 204

Chapte r 16 Exte nde d 2.0 Protocol SMBtrans2 207
16.1 SMBtrans2 207

16.1.1 Request Formats.. .. 207

16.1.2 Response Format... .. 209
16.1.3 Transaction Flow... .. 210

16.1.4 Service ... 211

16.1.5 Extended Attribute 212

16.1.5.1 Errors Encountered When Creating EAs 212

16.1.5.2 Encapsulation of EAs in the SMB Protocol....................................... .. 212
16.1.5.3 FEA Structure 212

16.1.5.4 GEA Structure 214

16.1.6 Information Levels 214

16.1.7 Defined SMBtrans2 Protocols 214

16.2 TRANSACT2_OPEN 216

16.3 TRANSACT2_FINDFIRST 221

16.4 TRANSACT2_FINDNEXT 225

16.5 TRANSACT2_QFSINFO 229
16.6 TRANSACT2_SETFSINFO 231

Vi X/Open CAE Specification (1992)

Page 8 of 267

Contents

16.7 TRANSACT2_QPATHINFO 233
16.8 TRANSACT2_SETPATHINFO 236

16.9 TRANSACT2_QFILEINFO 238
16.10 TRANSACT2_SETFILEINFO 241

16.11 TRANSACT2_FINDNOTIFYFIRST... .. 243

16.12 TRANSACT2_FINDNOTIFYNEXT 246

16.13 TRANSACT2_lVIKDIR 249

Appendix A SMB Transmission Analysis 251
A.1 Introduction 251

A.2 DOS Functions 252

A.3 OS/2 Functions 259

Appendix B LAN Manager Remote Administration Protocol 263
B.1 Overview 263

B.2 Remote API Protocol 264

B.3 LMX Access Control Lists Mapping 265

B.4 Transaction API Request Format 267
B.4.1 Parameter Section 267

B.4.2 Data Section 267

B.5 Transaction API Response Format 268
B.5.1 Parameter Section 268

B.5.2 Data Section 268

B.6 Descriptor Strings 269

B.6.1 Descriptor String Types 269

B.6.2 Pointer Types and Returned Data 271

B.7 Examples 272
B.7.1 NetShareDel... .. 272

B.7.2 NetShareAdd... .. 272

B.7.3 NetShareEnum 273

B.8 API Numbers 275

Appendix C The X/Open Security Package 277
C.1 E() Functions 277

C.2 U() Functions 278

Appendix D SMB Encryption Techniques 279
D.1 SMB Authentication 279

D.1.1 SMBnegprot Response 279

D.1.2 SMBtcon, SMBtconX, SMBsesssetupX Requests 279

Appendix E TOP/Ne tBIOS.. .. 281

Appendix F RFC 1001 349

Protocols for X/Open PC Interworking: SMB, Version 2 Vii

Page 9 of 267

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the

world’s largest information systems suppliers, user organisations and software companies. Its

mission is to bring to users greater value from computing, through the practical implementation

of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a

comprehensive, integrated, high-value and usable open system environment, called the

Common Applications Environment (CAE). This environment covers the standards, above the

hardware level, that are needed to support open systems. It provides for portability and

interoperability of applications, and so protects investment in existing software while enabling

additions and enhancements. It also allows users to move between systems with a minimum of

retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of

application programming interfaces (APIs) which significantly enhance portability of

application programs at the source code level, along with definitions of and references to

protocols and protocol profiles which significantly enhance the interoperability of applications

and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —

the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Ope n Te chnical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on

specification development, but which also includes Guides, Snapshots, Technical Studies,

Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

- CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that

form the basis for X/Open-branded products. These specifications are intended to be used

widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the

benefits of a single, widely supported standard. In addition, they can demonstrate

compliance with the majority of X/Open CAE specifications once these specifications are

referenced in an X/Open component or profile definition and included in the X/Open

branding programme.

CAE specifications are published as soon as they are developed, not published to coincide

with the launch of a particular X/Open brand. By making its specifications available in this

way, X/Open makes it possible for conformant products to be developed as soon as is

practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Protocols for X/Open PC Interworking: SMB, Version 2 ix

Page 11 of 267

X

Preiace

- Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently

are not yet supported by multiple sources of stable conformant implementations, are

released in a controlled manner for the purpose of validation through implementation of

products. A Preliminary specification is not a draft specification. In fact, it is as stable as

X/Open can make it, and on publication has gone through the same rigorous X/Open

development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial—use standards issued by formal standards

organisations, and product development teams are encouraged to develop products on the

basis of them. However, because of the nature of the technology that a Preliminary

specification is addressing, it may be untried in multiple independent implementations, and

may therefore change before being published as a CAE specification. There is always the

intent to progress to a corresponding CAE specification, but the ability to do so depends on

consensus among X/Open members. In all cases, any resulting CAE specification is made as

upwards-compatible as possible. However, complete upwards-compatibility from the

Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

- Guides

These provide information that X/Open believes is useful in the evaluation, procurement,

development or management of open systems, particularly those that are X/Open-

compliant. X/Open Guides are advisory, not normative, and should not be referenced for

purposes of specifying or claiming X/Open conformance.

- Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of

interest in areas relevant to X/Open’s Technical Programme. They are intended to

communicate the findings to the outside world and, where appropriate, stimulate discussion

and actions by other bodies and the industry in general.

- Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction

and thinking, in advance of possible development of a Specification, Guide or Technical

Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A

Snapshot represents the interim results of an X/Open technical activity. Although at the time

of its publication, there may be an intention to progress the activity towards publication of a

Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no

commitment regarding future development and further publication. Similarly, a Snapshot

does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject

technology develops and to align with emerging associated international standards. X/Open

makes a distinction between revised specifications which are fully backward compatible and
those which are not:

- a new Version indicates that this publication includes all the same (unchanged) definitive

information from the previous publication of that title, but also includes extensions or

additional information. As such, it replaces the previous publication.

X/Open CAE Specification (1992)

Page 12 of 267

Prelace

Protocols for X/Open PC Interworking: SMB, Version 2

- a new Issue does include changes to the definitive information contained in the previous

publication of that title (and may also include extensions or additional information). As such,

X/Open maintains both the previous and new issue as current publications.

Corrige nda

Most X/Open publications deal with technology at the leading edge of open systems

development. Feedback from implementation experience gained from using these publications

occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to

reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this

publication. This may be done in any one of the following ways:

- anonymous ftp to ftp.xopen.org

- ftpmail (see below)

- reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the

following four lines in the body of the message:

open

cd pub/Corrigenda

get index

quit

This will return the index of publications for which Corrigenda exist. Use the same email

address to request a copy of the full corrigendum information following the email instructions.

This Docum e nt

Of all the types of computers, personal computers are the most abundant. Originally intended

to be a personal productivity tool, an ever-increasing number of them are being connected to

computer networks, thus becoming parts of distributed information systems.

Personal computers normally run under single-user operating systems with interfaces differing

from those specified in the X/Open Portability Guide. However, X/Open realises how

important it is to facilitate interworking between personal computers and X/Open-compliant

systems in a standardised way.

Two areas have to be addressed to achieve this goal; interoperability, and programming

interfaces to server functions facilitating applications portability. Interoperability means that

personal computers and X/Open-compliant systems can interchange information using the

same network protocols. Standardisation of programming interfaces to server functions, in

addition to standardisation of protocols, makes it possible to write distributed client/server

applications whose server component will be portable to all X/Open-compliant systems.

For interoperability via asynchronous serial links, X/Open has already defined in the X/Open

Portability Guide, Issue 3 a file transfer protocol and a set of features provided on X/Open-

compliant systems for terminal emulators. Now it is time to address interworking in local area
networks (LANs).

In the X/Open (PC)NFS and SMB Developers’ Specifications interoperability of personal

computers and X/Open-compliant systems is addressed. The applications portability

components, containing definitions of programmatic interfaces to server functions, are

documented in the X/Open CAE Specification, [PC Mechanisms for SMB and the X/Open CAE

Specification, Use of XTI to Access NetBIOS.

xi

Page 13 of 267

xii

Prefice

When connecting personal computers and X/Open-compliant systems via standard transport

protocols, there appear to be two possibly overlapping but distinct market segments. In the first

one, personal computers are added to existing networks of X/Open-compliant systems which

already have a distributed file system, the most vvidely-adopted one being the Network File

System originally designed by Sun lVIicrosystems. In the second one, X/Open-compliant servers

are added to LANs consisting primarily of personal computers. For personal computers running

under DOS or OS/2 operating systems, which is the vast majority, the generally accepted non-

proprietary protocol is the Server Message Block from Microsoft Corporation.

Therefore, for connecting personal computers to X/Open-compliant systems, both the (PC)NFS

(see the X/Open Developers’ Specification, Protocols for X/Open PC Interworking: (PC)NFS)

and the SMB protocols have been adopted by X/Open.

The following diagram illustrates the relationship of the service protocols (defined in the

X/Open (PC)NFS and SMB Developers’ Specifications) to their underlying transport protocols.

It also reflects the organisation of the two documents. The (PC)NFS specification describes the

protocols for NFS, RPC and XDR. The SMB specification describes the protocols for SMB, the

mapping of NetBIOS over an OSI transport (TOP/NetBIOS) and the mapping of NetBIOS over

an Internet Protocol Suite transport (RFC1001/RFC1002).

NFS

SMB

RPC/XDR

TOP/NetBIOS RFC 1001/ 1002

TCP UDP

Connection‘ Defined Defined

Connectionless oriented Outside the Outside the

TFa1'1SP0Ft Transport Specification Specification
Services Services

(ISP TA51)
Defined

outside the Defined [P

Specification outside the

Specification Defined
outside the

Specification

Since SMB and NFS protocols do not easily map onto the seven layer OSI Reference Model, the

diagram does not use it.

X/Open CAE Specification (1992)

Page 14 of 267

 -” -

 RBIBFBHCBCI Documents

The following documents are referenced in this specification:

IPC

X/Open CAE Specification, IPC Mechanisms for Sl\/[B
(Document No.: C195, ISBN: 1—872630—28—6).

NetBIOS

X/Open CAE Specification, Use of XTI to Access NetBIOS, contained in X/Open CAE

Specification, X/Open Transport Interface (XTI)

(Document No.: C196, ISBN: 1—872630—29—4).

OS/2

Microsoft OS/2 Programmer’s Reference, Volume 4.

(PC)NFS

X/Open Developers’ Specification, Protocols for X/Open PC Interworking: (PC)NFS
(Document No.: D030, ISBN: 1—872630—00—6).

SMB

X/Open Developers’ Specification, Protocols for X/Open PC Interworking: SIVIB
(Document No.: D110, ISBN: 1—872630—01—4).

XNFS

X/Open CAE Specification, Protocols for X/Open Interworking: XNFS, Issue 4
(Document No.: C218, ISBN: 1—872630—66—9).

XPG3

X/Open Portability Guide, Issue 3, January 1989.

Protocols for X/Open PC Interworking: SMB, Version 2 XV

Page 17 of 267

Reférenced Documents

XVi X/Open CAE Specification (1992)

Page 18 of 267

Chapter 1

Introduction

1.1 Why Re publish

A previous version of this specification has been published. The previous version described the

SMB protocol up to a dialect level called extended. Since that time, a new dialect has been added

and several errors and omissions were found in the specification. This version of the

specification corrects the errors and omissions and contains the definition for the extended 2.0

SMB dialect. The extended protocol of the previous version of this document is now called

extended 1.0 which is to be distinguished from the new extended 2.0 dialect.

1.2 This Document

The relevant parts of this CAE Specification include the specification of the SMB protocol itself,

definition of the conventions used in mapping SMB redirector semantics onto X/Open

semantics, specifications of the binding of the NetBIOS interface to popular protocol stacks, and

selection of protocol profiles to permit interoperability.

Information regarding NetBIOS is provided because the great majority of SMB redirector

implementations of the SMB protocols rely on NetBIOS as well.

The interface to the NetBIOS implementation on the CAE system is outside the scope of this

specification. Within this document only the NetBIOS service definition to the Internet Protocol

Suite (RFC 1001/ 1002) (see Appendices F and G) and an OSI transport (TOP/NetBIOS) (see

Appendix E on page 281) are considered.

In this second publication, the SMB definitions necessary for Inter-process Communication (IPC)

from SMB redirectors to processes executing on the same CAE system as the LMX server have

been removed. These definitions are found in the X/Open CAE Specification, IPC Mechanisms
for SMB.

This specification does include the SMB protocol and the SMB service definition to be

implemented by an LMX server. The SMB service definition of the SMB redirector as well as

user interfaces necessary to access network resources are outside the scope of this specification.

Protocols for X/Open PC Interworking: SMB, Version 2 1

Page 19 of 267

Overview ofDocument Layout

1.3

2

Introduction

Ove rview of Docum e nt Layout

Chapter 2 provides an overview of the service and security model for the SMB protocol.

Chapter 3 discusses the conventions related to the rules the SMB protocol maintains. This

chapter describes the environments maintained within the SMB protocol model as well as rules

governing file locking and user security.

Chapter 4 describes conventions that can be followed for mapping the SMB protocol model

described in Chapter 3 into the CAE environment. This chapter provides guidelines for such

things as how filenames in the CAE environment are viewed by the SMB protocol environment.

Chapter 5 defines the basic structure, data items and constant definitions for the SMB protocol.

The core dialect is defined in Chapter 6 through Chapter 9.

Additions to the core dialect that make up the core plus dialect are found in Chapter 10.

Chapter 11 through Chapter 14 define the extended 1.0 SMB dialect.

The additions for the extended 2.0 SMB dialect are covered in Chapter 15 and Chapter 16.

A description of the mapping of DOS and OS/2 system calls to SMB protocol requests,

descriptions of support of NetBIOS names on TCP/IP and OSI protocols, and additional SMB

protocols that may be used for LMX server administration are contained in the appendices to

this specification.

X/Open CAE Specification (1992)

Page 20 of 267

A Chapter 2

SMB F1'Ie—sharing Service Model

This CAE Specification describes the X/Open LAN Manager (LMX) architecture, the Server

Message Block (Sl\/IB) protocol, and their applicability to interoperability between X/Open-

compliant LAN Manager implementations running in an X/Open Common Applications

Environment (CAE) and Sl\/[B redirectors running DOS or OS/2.

LIVIX provides a file and print—sharing service which preserves, as far as possible, the same

semantics as provided by a DOS or OS/2 system to an application. This service is provided by

mapping the Sl\/[B redirector semantics onto those supported by the CAE system in which the
LMX server runs.

This model is in contrast to a file—sharing service, in which the LMX server provides a complete

emulation of the Sl\/[B redirector’s file storage architecture, but does not permit access to that

emulation from applications running on the same CAE system. The intent behind the LMX

approach is to permit applications existing on SIVIB redirectors and CAE systems to cooperate in

the processing of information. Within this architecture the SIVIB redirector can assume that only

the file contents are stored in the same format as in the SlVlB redirector’s operating system. That

is, directory information does not need to be stored on the CAE system in a file or have the same

layout as in the Sl\/[B redirector’s operating system.

In LMX resources are shared by making the name of the resource available for access from the

network. For example, the LMX server named XOPEN will make a resource DOCUIVIENTS that
contains this document available. This allows users on Sl\/[B redirectors to connect to this

resource and access this data. In this example the resource DOCUMENTS could point to a

directory tree that contains the files belonging to this document. The user will see this directory

and its files as if they are on the local SMB redirector’s system.

Protocols for X/Open PC Interworking: SMB, Version 2 3

Page 21 of 267

SIVIB Protocol Principles

2.1

4

SMB File-sharing Service Model

SMB Protocol Principles

File and print sharing are implemented using the SMB protocol. This protocol is used between

two types of system: SMB redirectors and LMX servers. When a user on an SMB redirector

wants to make use of SMB file and print services available in the network the user needs an SMB

redirector implementation of the SMB protocol. Upon request the SMB redirector will connect to

an LMX server. Throughout this document the term LMX server does not imply any particular

design.

The SMB protocol requires a reliable connection—oriented virtual circuit provided by a NetBIOS

implementation.

Each LMX server in the network will offer resources. When a user on an SMB redirector wishes

to use a resource, or resources, from an LMX server, the user of the SMB redirector will cause the

SMB redirector to set up a single LMX session with the desired LMX server using NetBIOS. The

action of setting up the LMX session includes using NetBIOS to locate the system in the network

then negotiating the level of SMB support desired by the SMB redirector. If multiple resources

are desired by the SMB redirector, the SMB redirector will use the single LMX session to perform

all SMB exchanges. So, if the user requests use of both a file system share and a printer share on

the same LMX server, then only one LMX session exists between the SMB redirector and this

LMX server system.

Once the LMX session has been established the SMB redirector will take initiative to request

services offered by the LMX server by sending SMB requests across the LMX session. Each SMB

request is executed by the LMX server and the result is sent back to the SMB redirector in an

SMB response. SMB redirector implementations may support multiple simultaneous
connections to different LMX servers.

The SMB protocols can be divided into:

- core protocol

- core plus protocol

- extended 1.0 protocol

- extended 2.0 protocol

each one being a superset of the previous one. The extended protocols offer a richer set of

functionality and are required for some of the [PC mechanisms described in the X/Open CAE

Specification, [PC Mechanisms for SMB.

In the extended protocols, mechanisms exist to have users authorised by the LMX server (see

Section 2.2). If an SMB protocol supporting user authorisation is negotiated the LMX server will

authorise the one user working on the SMB redirector upon request of the SMB redirector. This

is commonly referred to as a logon procedure.

Once the level of protocol is negotiated, and if necessary the user has been authorised, the SMB

redirector will request access to a specific resource. The resource requested may be a directory

tree, spooled device, I/O device, etc. If the requested resource has been made available by the

LMX server for access by that user, file and spool operations can be executed (for example, open

file, show print queue) from now on.

X/Open CAE Specification (1992)

Page 22 of 267

SIVIB File-sharing Service Model

2.2

2.2.1

2.2.2

Security Overview

Se curity Overview

The networks using the SMB protocol will contain not only multi—user systems with user—based

security models, but also single-user systems that have no concept of user IDs or permissions.

Once these systems are connected to the network, however, they are in a multi—user

environment and need a method of access control. First, unsecure systems need to be able to

provide some sort of bona fides to other systems in the network which do have permissions.

Second, unsecure nodes need to control access to their resources by others.

The SMB protocol defines a mechanism that enables the network software to provide the

security where it is missing from the operating system, and supports user—based security where

it is provided by the operating system. The mechanism also allows systems with no concept of

user ID to demonstrate access authorisation to systems which do have a permission mechanism.

The LMX server will define the security mode that is being used; it cannot be negotiated by the

SMB redirector. Within the SMB protocols two forms of security exist:

- share—level security mode

Can be applied to restrict the access to a shared resource, placing access control at the level of
the resource.

- user—level security mode

Can assign user context to anyone establishing an LMX session. This way different access

rights can be granted to people connecting to the same resource. This form of security can

only be used when an extended SMB protocol has been negotiated.

Share —le vel Se curity Mode

A share—level security mode LMX server makes a resource available to all users on the network.

Any user who knows the name of the LMX server, the name of the resource, and the password,

has the same access to everything (for example, read-only) within a resource. The password is

optional.

For example, the LMX server named XOPEN offers the resource DOCUMENTS. This is a file

system subtree where each individual file or directory will have the same permissions for all

users, for example, read-only or read/write. Access to this resource is controlled by a password.

The LMX server could make a second resource available with a different password and different

access rights pointing to the same directory with the files belonging to this document.

Use r—le vel Se curity Mode

A user—level security mode LMX server also makes a resource available, but in addition requires

the user to provide a username and optional password in order to gain access.

Thus the LMX server is now able to allow differing access rights depending on the validated

user. The access rights may not only be specified per resource but may be set individually for

each file or directory accessible via a resource name. One user may have full access, another

read-only and perhaps another no access to different files and directories within the shared
resource.

For example, on the LMX server named XOPEN with the resource DOCUMENTS a user called
BOB could be the author of the document and a user called JAN a reviewer for the document.

Now BOB can have read/write access to the document while JAN is only able to read the files

belonging to the document.

Protocols for X/Open PC Interworking: SMB, Version 2 5

Page 23 of 267

SMB F1'Ie—shar1'ng Service Model

6 X/Open CAE Specification (1992)

Page 24 of 267

3.1

Chapter 3

SIVIB Protocol Conventions

Much of the SMB protocol definition is design and implementation—independent. In addition to

the SMB protocol and specific meaning of fields, the LMX server has to obey certain rules. This

chapter includes a summary of SMBs and defines generic conventions for LMX servers, such as:

1. SMB Environments

user-level and share—level security modes

connection protocols

naming

wildcards and the interpretation of wildcard pathnames

file attributes.“.°’.“":‘°‘.°°.N
locking, including opportunistic locking, and an implicit variety of locking for enhancing

the performance of applications which do not make explicit lock requests

9° chaining, and the mechanism for making multiple requests in a single SMB

9. exception and error handling

10. timeouts

11. downward-compatibility support

Sum In ary of SMBs

The following table lists the SMBs (requests and responses) which are required for various levels

of the SMB protocol. The table gives the name of each request/response and a brief description,

the section of this specification in which the SMB is described, and indicates whether the request

is part of the core (C), core plus (C+), extended 1.0 (E) or extended 2.0 (E2) SMB protocol. The

SMBs used to implement file and print sharing are defined here. Additional SMBs can be found

in the X/Open CAE Specification, [PC Mechanisms for SMB and the appendices to this

specification.

In the following tables, the SMB names ending with capital X indicate that the SMB request

permits chaining (see Section 3.9 on page 22).

Protocols for X/Open PC Interworking: SMB, Version 2 7

Page 25 of 267

Summary ofSlVIBs SMB Protocol Conventions

Name Dl35IC‘Fi|J[iDI'I Section Protocol

S1VlBchkpath Verify path is directory 8.7 C
SMBc1ose Close file 7.10 C

SMBcopy Copy file 14.1 E

SMBcreate Cr-::a1r.=x’ Upuen file 7.1 C
S1VlBdsl(attr Get the LMX server file 8.6 C

system information
S1VlBecho Test an LMX session 14.2 E

S1VlBex1't Indicate process exit 6.4 C
S1VlBfclose Close active search 13.2 E

S1VlBfirst Active search 13.1 E

S1V1Bfindclose Close an active search 15.4* E2

S1VIBfindnclose Notification of close for 15.3* E2

an active search

S1V1BfIush Flush data for file(s) 7.9 C

S1VlB1‘i1n1'q.1e One—time active search 13.3 E

SMBgetatr Get file attributes 8.4 C

SMBgetattrE Get extended file 13.4 E
attributes

S1VlBlocl(Lock byte—range of file 7.7 C

S1VlBlock1'ngX Lock multiple ranges 12.2 E
and X

S1VlBlockread Lock and read byte—range 10.3 C+

S1V1Blseel(Set current file pointer 7.6 C

S1V1Bml(d1'r Create new directory 8.1 C
S1VlBml(neW Create new file 7.2 C

S1VlBmoVe Move files by copying 14.4 E

S1VlBmV Change name of file(s) 7.11 C

ShrIErIeg;)mI Negnliaile Protocol 6.1 *

SA/lBopen Open File 7.3 C

S1VIBopenX Extended open and X 12.1 E
SIVlBread Read from file 7.4 C

SMBreadbmpx Read block multiplexed 12.5 E

S1V1Bsecpl(gX Negotiate security 11.2 E

packages and X
S1VlBtrans2('IRANSACTZ_FINDFIRS'1') Active search 16.3 E2

S1VlBtrans2('IRANSACT2_FINDNEX'1') Active search 16.4 E2

S1VlBtrans2('IRANSACT2_1\/IKDIR) Create new directory 16.13 E2
SMBtrans2('IRANSACT2_OPEN) Op-en File 16.2 E2

S1VlBtrans2('IRANSACT2_SE'IFSINFO) Set file system 16.6 E2
information

SIVlBtrans2('IRANSACT2_QPA'IHINFO) Query file information 16.7 E2
SMBtrans2('IRANSACT2_SE'IPA’IHINFO) Set file information 16.8 E2

SIVlBtrans2('IRANSACT2_QFILEINFO) Query file information 16.9 E2
SMBtrans2('IRANSACT2_SE'IFILE1NFO) Set file information 16.10 E2

S1VlBtrans2('IRANSACT2_FINDNO'IIFYFIRS'1') Monitor file or directory l6.ll E2

changes

S1VlBtrans2('IRANSACT2_FINDNO'IIFYNEX'1') Continue lf'I'!CI1'IiT.G1'iI'lg 16.12 E2

(*) The S1VlBnegprot response changes if either extended dialect of SMB is being negotiated.

8 X/Open CAE Specification (1992)

Page 26 of 267

SMB Protocol Conventions Summary ofSlVIBs

Name Description Section Protocol
SMBreadbraw Read block raw 10.1 C+

SMBreadX Read and X 12.3 E

S1VlBrmd1'r Delete empty directory 8.2 C

SMBsearch Directory wildcard 8.3 C

lookup

SMBsesssetupX Session setup and X 11.3 E

SMBulogufl'X User Iugr.:»FF and X 155* E2
SMBsetatr Set file attributes 8.5 C

S1VlBsetattrE Set extended file 13.5 E

attributes

S1VlBsp1c1ose Close and queue spool 9.3 C
file

SMBsp1open Create spool file 9.1 C

Sfvifigrlrflq Get spool queue info 9.4 C

S1VlBsp1wr Write to spool file 9.2 C
S1VlBtcon Tree connect 6.2 C

S1VlBtconX Tree connect and X 11.4 E

S1VlBtdis Tree disconnect 6.3 C

S1VlBun11'nk Delete file 7.12 C

S1VlBun1ock Unlock byte-range of file 7.8 C
SMBwrite Write to file 7.5 C

S1VlBwr1'tebmpX Write block multiplexed 12.6 E
SMBwritebraw Write block raw 10.2 C+

SMBwritec1ose Write and close file 10.5 E

SMBwr1'teun1ock Write and unlock byte- 10.4 C+
range

SMBwr1'teX Write and X 12.4 E

Protocols for X/Open PC Interworking: SMB, Version 2 9

Page 27 of 267

SIVIB Environment Definitions

3.2

10

SIVIB Protocol Conventions

SMB Environm e nt De finitions

The following environments are defined for the purpose of specifying the SMB protocol. An

LMX server does not need to construct such an environment, as long as the required semantics

are preserved.

The hierarchy of environments is summarised below:

LMX Session Environment

User Environment (UID)

Resource Environment (TID)

Process Environment (PID)

Multiplex Request Environment (MID)

File Environment (FID)

LMX Session Environment

This consists of one LMX session established between an SMB redirector and an LMX

server. The LMX session represents the logical connection between the SMB redirector and

the LMX server. This connection is initiated by the SMB redirector and is only considered

an LMX session after the S1VlBnegprot protocol exchange has successfully completed. Only

one protocol dialect can be negotiated on a single LMX session.

An LMX session is implemented using a NetBIOS session.

For each LMX session the maximum buffer size for subsequent SMB requests and

responses is set by the LMX server and sent to the SMB redirector. It is the SMB

redirector’s responsibility not to send larger SMB requests than expected by the LMX
server.

An LMX server may drop the LMX session after the last resource environment has been

terminated. When an LMX session becomes inactive for some period of time and the LMX

server is not maintaining any file environment information for the SMB redirector, the

LMX server may choose to terminate the LMX session. This allows other SMB redirectors

to connect and use the LMX session resource. It is the responsibility of the SMB redirector
to reestablish the LMX session after it has been terminated due to this timeout.

If the LMX session environment is terminated, all PIDs, TIDs and FIDs within it will be
invalidated.

User Environment, also called the Logon Environment

This is represented by a user ID (UID). A UID uniquely identifies a user within a given

LMX session environment. Within dialects of this document, there is exactly one UID per

LMX session. An LMX server executing in user—level security mode uses this to identify

the scope and type of access allowed for this user. In share—level security mode this
environment is not used.

If the user environment is terminated in the extended 2.0 dialect via S1VlBu1ogofl‘X, all FIDs

and TIDs currently held by the UID are invalidated. In the extended 1.0 dialect no
termination SMB exists other than the termination of the LMX session.

Resource Environment

This is represented by a TID. A TID uniquely identifies a resource being shared within the

LMX session between the SMB redirector and the LMX server. The TID is requested by the

SMB redirector and assigned by the LMX server. The resource being shared may be a

directory tree, spooled device, I/O device, etc. More than one TID may exist within a

single LMX session environment.

X/Open CAE Specification (1992)

Page 28 of 267

SIVIB Protocol Conventions SIVIB Environment Definitions

In an LMX server executing in share—level security mode, the TID also identifies the scope

and type of accesses allowed across the connection.

Within the core SMB protocol it is possible for the LMX server to set a new maximum

buffer size for subsequent SMB requests within this resource environment. The new

maximum buffer size is not only valid for the new resource environment, but for all
resources environments established within the LMX session. It is the SMB redirector’s and

the LMX server’s responsibility not to send larger SMBs than negotiated.

If a resource environment is terminated (via an S1VIBtdis request) all PIDs and FIDs within
it will be invalidated. The LMX server will close all files, free all locks, release all active file

searches and terminate all processes created on behalf of that TID.

4. Process Environment

This is represented by a process ID (PID). A PID uniquely identifies an SMB redirector

process or thread within a given LMX session environment. Most SMB requests include a

PD) to indicate which process initiated the request. SMB redirectors inform LMX servers

of the creation of a new process by simply introducing a new PID. The LMX server does

not maintain any process relationships.

Within the core SMB protocol the S1VlBexit request terminates the process environment.

Otherwise, there is no mechanism for the LMX server to determine a process exit on the

SMB redirector. It is the SMB redirector’s responsibility to close a resource when the last

SMB redirector process referencing the resource closes it.

Files opened by one process may be manipulated by another process in the same resource

environment (that is, possessing the same TID).

If in the SMB core protocol a process environment is terminated, the LMX server will

invalidate all FIDs created by that PID.

5. File Environment

This is represented by a file ID (FID). An FID identifies an open file and is unique within a

given LMX session environment. Another LMX session environment may be given an FID

of the same value, but the FID will refer to a different open instance of the same or different

file. The scope of the FID is the user environment. This means a file may be opened and its

FID passed to another process (using a different PID in the same LMX session) for use

without being opened by this process. The second process must use the same UID and

TID as the process which opened the file.

If a file environment is terminated (via an SMB request) or invalidated, all locks placed on
that FID will be released.

6. Multiplexed Request

This is represented by a multiplexed ID (MID). This is not an environment, but a part of

the SMB request that needs to be discussed at this time. An MID uniquely identifies an

SMB request within the LMX session. By using the MID, an SMB redirector is able to send

multiple requests to the LMX server and determine which SMB response is associated with

each SMB request. There is no termination of the Multiplex Request Environment. It is

maintained for the SMB redirector’s use only. The core and core plus protocol do not use
an MID.

Protocols for X/Open PC Interworking: SMB, Version 2 11

Page 29 of 267

Share-level and User-level Security Modes

3.3

3.3.1

3.3.2

12

SIVIB Protocol Conventions

Share —1e vel and Use r—1e vel Se curity Mode s

Share —le vel Se curity Mode

The following section applies to the access of LMX servers that use share—level security. By

default all SMB requests are refused as unauthorised. When an administrator of the LMX server

chooses to allow access to resources, he or she would establish each share with the following
attributes:

- The resource type (see Section 5.3.6 on page 45) that will be used in S1VlBtcon and S1VlBtconX
requests.

- The mapping of the resource type to the resource on the CAE system (for example, file

system subtrees will be identified on the CAE system with the root of the offered subtree

being the directory shared).

- An indication of which access to this resource is permitted (for example, read-only).

- Optionally, a password (to be supplied in the S1VlBtcon or S1VlBtconX request) is required

before access to the resource is permitted.

Note that when a file system subtree is shared, all files underneath that directory are then

affected. If a particular file is within the range of multiple offers, connecting to any of the offers

gains access to the file; the access rights gained (for example, read Versus read/write) will depend

upon the attributes of the offer that the SMB redirector connected to. The LMX server will not

check for nested directories with more restrictive permissions.

For example, if the LMX server is offering a read/write share JAZZ, corresponding to path

/usr/jazz, and a read-only share JAZZCAT, corresponding to path /usr/jazz/catalog, an SMB

redirector which connected to the JAZZ share would be permitted read/write access to the file

catalog/myre cs, even though that file is also contained within the scope of a read-only share.

Use r—le vel Security Mode with Exte nde d Protocols

LMX servers with user—based file security (in user—level security mode) will require the SMB

redirector to present a username and password (if any) along with the requested UID value prior

to accessing resources.

A username and password are sent by the SMB redirector and validated by the LMX server via

the S1VlBses.ssetupX protocol. If the username and password are valid the LMX server responds

with a UID that is used to identify the user on all subsequent SMB requests and prove to the
LMX server that this user has been authenticated. The SMB redirector must associate the UID

with the user and include the UID for all network resource accesses made by that user.

The S1VlBtcon and S1VlBtconX protocols are still used to define the directory subtree or other

resource available to the user, but the LMX server uses the UID to allow differing types of access

to the same resources under a given TID. Note that a single SMB redirector may issue multiple

S1VlBtcon or S1VIBtconX in order to gain access to multiple shared resources.

An LMX server in user—level security mode will still require administrative action to make a

share available. The attributes of the share are the same as for share—level security mode, except

that a single password is no longer used for the share.

If the LMX server responds to an S1VlBnegprot request and selects the extended protocol, it will

indicate in the SMB response the security mode in effect. This allows the SMB redirector to

know whether the User Logon information is needed in the S1VlBsesssetupXrequest.

X/Open CAE Specification (1992)

Page 30 of 267

SIVIB Protocol Conventions

3.3.3

Share-level and User-level Security Modes

Each LMX server may maintain a list of valid users. It may then verify every access by these
users.

From the LMX server’s point of view, the UID is therefore not associated with a particular shared

resource, but with the authenticated user. The UID may be used to access any shared resource

controlled by the LMX server which has been connected to via the TREE CONNECT1 protocol.

Use r—le vel Se curity with Core Protocol

There is no support within the core protocol to allow user—level security for SMB redirectors that

are only capable of working with the core protocol. An LMX server in user—level security mode

may decline connections with an SMB redirector requesting only the core protocol.

In an effort to be flexible, the LMX server may select to support the core-only SMB redirector by

mapping the SMB redirector into the user—level security environment. This mapping could be

performed by the following steps:

1. If the SMB redirector’s system name is defined as a username (and the password supplied

with S1VlBtcon matches), the user logon will be performed using that value.

2. If the above fails, the LMX server may reject the request or assign a default username

(probably allowing limited access).

3. The UID will then be ignored and all access will be validated assuming the username
selected above.

The above allows LMX servers in user—level security mode” to accommodate SMB redirectors

supporting only the SMB core protocol.

1. The term TREE CONNECT is used to represent either the SMBtcon or SMBlconXrequest usage.

Protocols for X/Open PC Interworking: SMB, Version 2 13

Page 3 1 of 267

Connection Protocols

3.4

14

SIVIB Protocol Conventions

Conne ction Protocols

No network traffic is generated when an LMX server makes resources available for sharing. The

required information is simply stored until requests from SMB redirectors arrive.

The SMB protocol makes use of a NetBIOS transport facility. NetBIOS defines a set of network

transport facilities. The interface is outside the scope of this document. The NetBIOS functions

can be implemented over a variety of transport protocols, however within this document only

the mapping of NetBIOS over TCP and UDP (see Appendices F and G) and NetBIOS over ISO

transport services (see Appendix E on page 281) are considered.

To establish an LMX session the SMB redirector will establish a NetBIOS session with the LMX

server. Therefore the LMX server listens on the LMX NetBIOS name (see Section 3.5 on page 15).

After the LMX session has been established the SMB redirector will negotiate the SMB protocol

level sending an SMBnegprot. The SMBnegprot must be the first SMB request sent on the

NetBIOS session. In the S1VlBnegprot response the LMX server will specify the maximum buffer

size that the SMB redirector is allowed to request or send. Due to the nature of the NetBIOS

transport service the maximum buffer size will be in the range of 1K to 64K bytes. Each SMB

request or response will be sent as a single NetBIOS message.

When the user of the SMB redirector issues a command to connect to a particular share, the SMB

redirector generates an SlVlBtcon or S1VlBtconX request containing the name of the shared

resource and the associated password. The password could be empty. If the LMX server is in

user—level security mode the username and password will be supplied via the S1V1BsesssetupX

request. If no S1V1BsesssetupX request is received, the LMX server may use the SMB redirector’s

system name as described in Section 3.3.3 on page 13 to perform user authorisation.

When running in share—level security mode, on receiving the SlVlBtcon or S1VlBtconX request, the

LMX server verifies the resource name/password combination and returns either an error code

or an identifier (the TID).

The resource name is included in the TREE CONNECT request and the identifier ('TID)

identifying the connection is returned. The meaning of this identifier (TID) is LMX server-

specific; the SMB redirector must not associate any specific meaning to it.

The SMB redirector must associate the identifier with the device name being redirected

(specified by the user in the command which initiated the TREE CONNECT) and include the
TID for all future network resource accesses.

X/Open CAE Specification (1992)

Page 32 of 267

SIVIB Protocol Conventions

3.5

3.5.1

3.5.2

Naming

Naming

Within the SMB protocols three types of name formats can be distinguished:

- NetBIOS names

- names according to the Uniform Naming Convention (UNC)

- long filenames

An LMX server supports the following hierarchy of names for file and print sharing:

file and pflt|'1I'IEli'If'Il2
resource name

LMX servername

The first layer, the LIVIX servername, is used by the SMB redirector to identify the specific LMX

server desired. This LMX servername is typically used by the user on the SMB redirector when

he wants to connect to a particular resource maintained by that LMX server. The mapping of the

LMX servername to the NetBIOS name may be obtained by converting the LMX servername to

upper case, padding up to the fifteenth byte with 0x20 and adding 0x20 in the sixteenth byte.

This approach restricts the length of the LMX servername to 15 characters.

Re source Nam e s

Each LMX server supports a collection of resource names. A resource name represents a resource

provided by the LMX server. This name is at a minimum in 8.3 format (refer to Section 3.5.3 on

page 16), however, actual restrictions on this name are implementation-specific. Examples of
resources are:

- file system subtrees

- printers

- [PC facilities (outside the scope of this specification, see the X/Open CAE Specification, [PC

Mechanisms for SMB)

- administrative data, which can be accessed and modified via remote administration (see

Appendix B on page 263)

- directly accessible devices (outside the scope of this specification)

A resource name is also commonly referred to as a share name. The resource name for [PC
facilities 1PC$ and the resource name for administrative data ADMlN$ are reserved and cannot
be used for other services.

NetBIOS Names

NetBIOS names are used to establish a NetBIOS session between the LMX server and the SMB

redirector, the LMX session. Other NetBIOS names are used for messaging services, as

described in the X/Open CAE Specification, [PC Mechanisms for SMB. A NetBIOS name has a

length of 16 bytes. NetBIOS names have no structure; that is, there is no concept of network

number, host number, socket number, and so on. Each participant in a communication uses a

NetBIOS name. NetBIOS names are dynamically claimed and relinquished. There are two types

of NetBIOS name: unique, which can be claimed by only one system at a time, and group, which

can be claimed by several systems at a time.

Since NetBIOS names are used to connect systems with the SMB protocol, some structure on the

NetBIOS name is imposed. For the LMX servername, the first fifteen bytes normally comprise

Protocols for X/Open PC Interworking: SMB, Version 2 15

Page 33 of 267

Naming

3.5.3

3.5.4

3.5.5

16

SMB Protocol Conventions

the LMX servername in all upper—case characters. Any remaining bytes are padded with trailing

blanks (ASCII 0x20) to bring the total length of the NetBIOS name to 15 bytes. LMX

servernames are usually simple, unstructured names, such as XOPEN—PCIG, TOOLSVR,
JASONZ.

The sixteenth byte is used to distinguish various uses of the SMB protocol, as follows:

0x00 Used by the SMB redirector to name its end of a file-sharing connection; also used for

the sending end of messaging circuits and the sending and receiving ends of class 2

mailslot datagrams (see the X/Open CAE Specification, IPC Mechanisms for SMB). A

NetBIOS name ending in 0x00 is also said to be in redirector format.

0x20 Used by LMX servers as the NetBIOS name to which they listen for incoming

connections (LMX network name). A NetBIOS name ending in 0x20 is also said to be in
server format.

It is important to note that a single system may use all forms at various times, depending upon

the type of interaction and the system with which it is interacting.

So, as an example, the SMB redirector will use a NetBIOS name ending in 0x00 as the caller name

and a NetBIOS name ending in 0x20 for the LMX servername.

Uniform Naming Convention

UNC names are constructed from names having an 8.3 format that are separated by a backslash

(\). An 8.3 format name consists of two components: a one to eight-byte basename must be

present and an optional one to three-byte extension may be added. If the second component is

specified, the two components are separated by a period (.), hence the term 8.3 format. Within

an 8.3 format name the following bytes are illegal:

- "./\[]: | <>+=;,*?0x20(space)

- bytes less than 0x20

Note that the characters * and ? are used in some SMB requests as wildcard characters.

Canonical Pathnam e s

For all of the dialects defined in this document, except for the extended 2.0 SMB protocol, file

and directory names need to follow the Uniform Naming Convention (UNC). The backslash (\)

separator is the directory separator. Two special directory names, . and .., must be recognised.

They have the usual CAE meanings; . points to its own directory, .. points to its parent

directory. In the root directory of the file system subtree, . and .. are not present.

Note that it is the LMX server’s responsibility to ensure that virtual root as defined by the TID.

Long Name s

The extended 2.0 protocol allows for the creation of long file and directory names with a total

length up to 255 characters. These names are case—insensitive and may be case-preserving

(implementation-dependent). That is, the names File and file will represent the same name.

Long names have a free format, compared to UNC names. It is possible to create a long name

for a file which contains multiple instances of the component separator .. Directories are still

delimited by the \ character.

X/Open CAE Specification (1992)

Page 34 of 267

SMB Protocol Conventions

3.6

3.7

Wildcards

Wildcards

Some SMB requests support wildcard filenames as the last 8.3 or long filename format of a

pathname. These are filenames which refer to a number of files based on a pattern-match

defined by the wildcard string. Only filenames which are acceptable under the filename

convention (see Section 4.2 on page 28) can be matched by wildcards.

Each part of an 8.3 format name - the basename and the extension (if applicable) - is treated

separately. For long filenames the . in the name is significant even though there is no longer a

restriction on the size of each of the components on either side of the ..

- The * character matches an entire part, as will an empty specification of that part. If received,

it is interpreted to mean filling the remainder of the component in the name with ? and

performing the search with this wildcard character. Any characters that occur after the * are

ignored.

- The ? character matches exactly one character. Multiple ? characters at the end of a part
match that number of characters or fewer.

For example, the strings ABC.TXT and A.TXT would match the wildcard *.TXT, but ABC.T
would not; AB.C and ABC.C would match A??.C, but ABCD.C would not; *.* would match all
filenames.

Some SMBs, such as S1VlBmV and S1VlBcopy, use wildcards to transform filenames. In this case,

two wildcard patterns would be supplied; the non-special characters in filenames matching the

first wildcard would be replaced with the non-special characters in the same relative positions

from the second wildcard, and the wild fields would be left unchanged.

For example, the wildcards *.F and *.FOR would transform ABC.F to ABC.FOR, but ABC.F1
would not match the first wildcard and would not be transformed; A?B??.C and X?Y??.TXT

would transform A1B2.C to X1Y2.TXT, but A1B234.C would not match the first wildcard.

File Paradigm

All resource type information is stored using a file paradigm. For the resource type the

following file types are defined:

- regular files on file system subtrees

- spool files for printers

Other types defined that are outside the scope of this specification are:

- named pipes for [PC facilities

- mailslots for [PC facilities

- devices on directly accessible devices

Note that directories are never treated as files, but require special SMB requests to be read.

Protocols for X/Open PC Interworking: SMB, Version 2 17

Page 35 of 267

File Paradigm SIVIB Protocol Conventions

3.7.1 Regular Files

In SMB requests the following attributes are known:

read-only file If this attribute is set, write access is denied. Otherwise read and write
access is allowed.

hidden file The file is excluded from normal directory searches.

system file The file is excluded from normal directory searches.

volume ID 11-byte volume label to identify a file system subtree. It is implemented

as a special file and must reside on the root directory of the file system

subtree. Some SMB redirectors expect this to be a file.

directory The file is a directory.

archive file If this attribute is set it indicates that the file has been changed since the

last backup. Typically it is set whenever the file has been written to and

will be cleared by backup programmes.

The volume ID attribute cannot be specified together with other attributes. The other attributes

can be set concurrently. Files without any attribute set are referred to as regular files.

3.7.2 Open Modes

There are two groups of file exclusion which can be selected via the SMB protocol when a file is

opened. A file opened in any deny mode may be opened again only for accesses allowed by the

deny mode. The two groups and their subtypes are:

Group 1

DENY NONE Anyone else may read and/or write.

DENY ALL Deny other users any access to this file.

DENY READ Other users may access for writing.

DENY WRITE Other users may access for reading.

The deny modes provide exclusion at the file level. A file opened in any deny mode may be

opened again only for the access allowed by the deny mode. This exclusion applies to all

subsequent opens of the file even if it is from the same process requesting the original deny

mode open. The DENY READ and DENY ALL modes deny opening a file for execution

(reference Section 5.3.5 on page 44).

Subsequent opens of a file may specify more restrictive deny modes as long as the new

exclusions do not conflict with the existing deny modes granted.

18 X/Open CAE Specification (1992)

Page 36 of 267

SIVIB Protocol Conventions File Paradigm

The following table outlines access to the file:

Existing New open requesting

Derry Mode access DENY ALL DENY WRITE DENY READ DENY NONE
DENY ALL R/W fail fail fail fail

READ fail fail fail fail

WRITE fail fail fail fail

DENY WRITE R/W fail fail fail READ

READ fail READ fail READ

WRITE fail fail READ READ

DENY READ R/W fail fail fail WRITE

READ fail WRITE fail WRITE

WRITE fail fail WRITE WRITE

DENY NONE R/W fail fail fail ALL

READ fail ALL fail ALL

WRITE fail fail ALL ALL

Group 2

Compatibility Within an LMX session, once a file has been opened in compatibility mode, all

subsequent opens of that file by any process must be in compatibility mode

until the last open instance has been closed. If a process opened a file for any

access, another process using the same LMX session may open the same file

for any access.

Across LMX sessions, compatibility mode opens are mapped as follows:

Compatibility Read Only < > DENY WRITE

Compatibility Write Access < > DENY ALL

The rules for group 1 open modes apply.

3.7.3 Write Behaviour

The SMB protocols make assumptions on the state of written data; that is, whatever data is

written is assumed to be what will be read at a later instant. The actual placing of the data onto

the storage medium is a function of the LMX server. Yet, the SMB protocols do allow the SMB

redirector to make suggestions about the placing of the data.

There are two types of write behaviour:

Write through The data is to be placed on the storage medium prior to the response to the

write request.

Write behind It is acceptable to cache the data internally to the server and respond to the

write request immediately.

These write behaviour modes are only availabe in the extended dialects of the SMB protocols.

The core and core plus dialects assume a write through behaviour.

Protocols for X/Open PC Interworking: SMB, Version 2 19

Page 37 of 267

Locking Conventions

3.8

3.8.1

3.8.2

20

SJVIB Protocol Conventions

Locking Conve ntions

Byte Locking

The SMB protocol supports a form of record locking for read access or write access. This lock

covers a range of bytes and cannot overlap any other locked range. Access to a locked range of

bytes from a process which did not obtain the lock is prevented. Processes need not take a lock

to determine if any other process had that range locked as well.

Opportunistic Locking

Opportunistic locking is a performance enhancement available in the extended protocols which

enables an SMB redirector to reduce the number of SMB requests to a minimum when it is the

only SMB redirector accessing a file opened in non—exclusive mode. This form of locking allows

the SMB redirector to cache locking requests as long as no other process is attempting to access

the file. The support of opportunistic locking is the one instance within the SMB protocols

where the LMX server will make requests of the SMB redirector.

An SMB redirector requests an opportunistic lock (or oplock) in two ways:

1. by setting bit 5 (and optionally bit 6 for additional notifications such as file deletion) in the

smb_flg field of the SMB header (see Section 5.1 on page 37) of the SMBopen, SMBcreate or

S1V1BmkneW core SMB requests. The oplock is granted by bit 5 being set in the smb_flg field

of the SMB response. If bit 5 is not set in the response then the oplock was not granted.

2. by setting bit 1 (and optionally bit 2) of the smb_flags field in the S1VlBopenX extended SMB

request. The oplock is granted by bit 15 of smb_act1'on being set in the response.

An opportunistic lock may only be granted if no other SMB redirector has the file open. An LMX

server need not implement opportunistic locking; such an implementation would simply deny

all oplock requests.

The LMX server must break the oplock and notify the SMB redirector in the following cases:

- another process attempts to open the file

- if bit 6 and bit 2 were set in the oplock request and an operation that changes the file (for

example, S1VlBun11'nl(, S1VlBmv, S1VlBmove) was received by the LMX server

When an LMX server decides to break an oplock, it must perform the following steps:

1. Hold off the request which caused it to break the oplock.

2. Send to the SMB redirector which has the oplock an S1VlB1ock1'ngX request with MID = -1.

3. Permit the SMB redirector to flush any data that was cached by sending the appropriate

SMB WRITE requests. The SMB redirector must flush any cached byte-range locks as well.

These lock requests can be embedded in the S1VlB1ock1'ngX request which must be issued in

response to the broken oplock notification.

4. Finally, the SMB redirector sends an S1VIB1ock1'ngX request responding to the request issued

in step 1. If the S1VIB1ock1'ngX request contained any lock requests, a response by the LMX

server must be generated. If the request did not contain lock requests, no response by the

LMX server is generated. Note that the S1VlB1ock1'ngX request should contain no unlock

requests, as the SMB redirector was not explicitly locking to the LMX server while it had an

opportunistic lock.

The SMB redirector with the oplock may choose to close the file during step 3 processing. If it

does so, the LMX server may grant an opportunistic lock to the new requesting SMB redirector if
all other conditions are met.

X/Open CAE Specification (1992)

Page 38 of 267

Chaining ofExtended SIVIB Reqiests

3.9

SJVIB Protocol Conventions

Chaining of Extended SMB Re quests

Certain extended SMB protocol requests (those whose names end with X) can have an additional

SMB request chained to them; however, each SMB request which permits chaining allows only a

subset of the possible SMB requests to be chained. The chaining of SMB requests allows for a

reduction in the number of request/response actions that need to be taken in some instances.

For example, if an application on the SMB redirector requests a lock of a byte range followed by

a read of the data in this byte range, the SMB redirector may choose to cache the sending of the

locking request until the actual read occurs then send an S1VlB1ock1'ngX, S1V1BreadX chained
request.

The following rules must be obeyed by chained SMB requests:

1.

22

The chained SMB request does not repeat the SMB header information. Rather, it starts

with its own smb_wct field. The smb_com2 field in each S1VIB...X request specifies the SMB

command code for the chained SMB request.

All chained SMB requests and their data must fit within the negotiated maximum buffer

size. This size limitation also applies to the amount of data in the SMB request.

There is one SMB request sent containing the chained SMB requests and there is one SMB

response to the chained SMB requests. The LMX server must not elect to send separate

SMB responses to each of the chained SMB requests.

All chained SMB responses must fit within the negotiated maximum buffer size. This

limits the maximum value on an embedded READ, for example. It is the SMB redirector’s

responsibility not to request more bytes than will fit within the multiple SMB response.

If the last request of a chained series is a chained SMB request (that is, S1VlB...X), the

smb_com2 field must be 0x00ff (also referred to as the NIL command).

The LMX server will implicitly use the result of the prior SMB requests in chained SMB

requests. For example, the TID obtained via S1VlBtconX would be used in a chained

SMBopenX, and the FID obtained in the SMBopenX would be used in a chained SMBread. If

chained requests reference an FID, the sn1b_fid field in each SMB request must contain the

same FID value. In other words, each SMB request can only reference the same FID (and

TDD) as the other SMB request in the combined request. The chained SMB requests can be

thought of as performing a single (multi-part) operation on the same resource.

The first SMB request to encounter an error will stop all further processing of chained SMB

requests. The LMX server shall not undo SMB requests that succeeded.

Suppose S1VlBopenX and S1VlBread were requested; if the LMX server were able to open the

file successfully but the read encountered an error, the file would remain open. This is

exactly the same as if the SMB requests had been sent separately.

If an error occurs while processing chained SMB requests, the SMB response element of the

chained SMB responses in the buffer will be the one which encountered the error. Other

unprocessed chained SMB requests will have been ignored when the LMX server

encountered the error and will not be represented in the chained SMB response. More

specifically, the last valid smb_com2 (if not the NIL command) will represent the SMB

command code on which the error occurred. If no valid smb_com2 is present, then the error

occurred on the first SMB request and smb_com contains the SMB command code which
failed. In all cases, the error class and code are returned in the smb_rc1s and smb_err fields

of the SMB header at the start of the SMB response.

Each chained SMB request and SMB response contains the offset (from the start of the SMB

header) to the next chained SMB request/response in its own smb_o1‘l‘2 field. This permits

X/Open CAE Specification (1992)

Page 40 of 267

Exception and Error Handling

3.10

3.10.1

3.10.2

24

SIVIB Protocol Conventions

Exception and Error Handling

Exception handling within the SMB environment is built upon the various environments (see

Section 3.2 on page 10). When any environment is terminated in either an orderly or disorderly
fashion, all contained environments are terminated.

Disorderly LMX Session Dissolution

The rules for disorderly LMX session termination are as follows:

- An LMX server may terminate the LMX session to an SMB redirector at any time if the SMB

redirector is generating invalid SMB requests. However, wherever possible the LMX server

should first return an error code to the SMB redirector indicating the cause of the LMX
session abort.

- If an LMX server gets a hard error on an LMX session (such as a send failure) all LMX

sessions from that SMB redirector may be aborted.

An SMB redirector is expected to reestablish an LMX session in the case where it was dropped

by the LMX server due to inactivity.

On write—behind activity, a subsequent WRITE or CLOSE of the file will return the fact that a

previous WRITE failed. Normally, write—behind failures are limited to hard disk errors and file

system out-of-space conditions.

Errors and Error Handling

In the case of success for file and print sharing, the LMX server must return error class SUCCESS

and error code SUCCESS. For situations where no error is defined by the SMB protocol, the error
class ERRSRV and error code ERRerror are to be returned.

The contents of SMB response parameters other than the SMB header fields are not guaranteed

in the case of an error return. In particular, the LMX server may choose to return only the SMB

header portion from the SMB request in the SMB response; that is, the SMB header fields

smb_Wct and smb_bcc (see Section 5.1 on page 37) may both be zero (0).

X/Open CAE Specification (1992)

Page 42 of 267

SIVIB Protocol Conventions Timeouts

3.11 Timeouts

The extended protocols provide for timeouts on the LMX server. SMB requests which may
timeout include:

- opens to directly accessible devices

- byte-range locking

- read or write on directly accessible devices, mailslots and named pipes (refer to the X/Open

CAE Specification, [PC Mechanisms for SMB)

If an LMX server cannot support timeouts, then the error <ERRSRV, ERRtimeout> is returned,

just as if a timeout had occurred, if the resource is not available immediately upon request. A

timeout can indicate a delay time, an indefinite delay, or that a system default should be used.

Default timeouts apply to direct access devices, mailslots and named pipes only.

3.12 Downward—compatibi1ity Support

The core and extended SMB protocol requests and responses are variable length. Thus

additional fields may be added in the smb_vvvV[] and the smb_buf[] areas in future dialects (see

Section 5.1 on page 37). LMX servers must be implemented such that additional fields in either

of these areas will not cause the SMB request to fail. If additional fields are encountered, which

are not recognised by the LMX server’s level of implementation, they should be ignored. This

allows for future upgrade of the SMB protocol and eliminates the need for reserved fields.

Protocols for X/Open PC Interworking: SMB, Version 2 25

Page 43 of 267

Chapter 4

LMX Considerations

This chapter highlights possible behaviours of LMX servers and deals with aspects that are

caused by hosting LMX servers in the CAE.

The conventions an LMX server must adhere to are:

1. user mapping from SMB redirectors to CAE environment

2. filename mapping, which defines the mapping from the namespace provided by the SMB

canonical pathname format to the namespace of CAE

3. access and attribute mapping, which defines the mapping from CAE access rights to SMB
file attributes and Vice versa

4. locking, which defines the mapping from the SMB—supported locking operations to those

locking operations supported by CAE

Other items where LMX servers may choose differing approaches are:

1. SMB protocol dialect (or dialects) and password encryption

consequences of the CAE file system

LMX server caching

method of support for printer spooling.°":“.°°.N
usage of the underlying network, including the choice of the network protocol,

interoperability with other file—sharing principles and extensions beyond a single
subnetwork

4.1 LMX Use mam e Mapping

CAE file system security is based on a user or process having a CAE UID and one or more CAE

GIDs (refer to the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and

Headers). Personal computers remotely accessing a CAE file system via an LMX server must not

compromise the CAE file system security.

An LMX server must provide a mechanism to map a user to a CAE UID and CAE GIDs. This

mapping may be different for share~level and user—level security mode (refer to Section 3.3 on

page 12). For example, an LMX server running in user—level security mode may map each user

to its own unique CAE UID and CAE GIDs, while an LMX server running in share—level security

mode may map all users to a common CAE UID and CAE GIDs. This mapping of a username

and password into the CAE environment may use the CAE user account system to hold the

usernames and passwords. Or, there may be a separate user account system for users of SMB

redirectors that maps these users into the CAE environment. Regardless of the approach taken,

an LMX server must guarantee that a user does not have any more access permissions than a

CAE process with the same CAE UID and CAE GIDs.

When running in user—level security mode, the UID used in the SMB requests may be relative to

the LMX session. The LMX server therefore needs to map each pair (LMX session, UID) to the
individual CAE UID and CAE GIDS.

Protocols for X/Open PC Interworking: SMB, Version 2 27

Page 45 of 267

LMX Filename Mapping

4.2

28

LMX Considerations

LMX File nam e Mapping

This convention governs the mapping between SMB pathnames (see Section 3.5.4 on page 16)

and names maintained in the file system on the CAE system. The S1VlBsesssetupX request uses a

bit (bit 4 in the smb_flg', see Section 5.1 on page 37) in the SMB header which indicates whether or

not the pathnames in subsequent SMB requests have been translated to SMB canonical

pathnames. LMX servers must support this bit being set.

In addition to this flag, in the extended protocols another bit (bit 3 in the smb_flg) in the SMB

header indicates whether the SMB redirector desires case—insensitive pathnames. If this bit is set,

operations should be case—insensitive. LMX servers must support this bit being set.

If an LMX server does not support the functionality of either bit 3 or bit 4 when not set, the

server may choose to ignore these bits and attempt to use the pathname provided in the SMB

request in the manner it would for the condition where the bits are set. This means that when an

SMB redirector performs a request with one (or both) of these bits cleared and the server does

not support that form of pathname, the SMB redirector will receive an error condition produced

by the normal functioning of the LMX server (that is, file not found).

With regard to both these flags, the LMX server must generate pathnames in SMB responses

which match the requested form. If the SMB redirector did not request canonical pathnames, the

LMX server must not map pathnames in responses, but simply use the local representation.

Pathnames following the Uniform Naming Convention (see Section 3.5.4 on page 16) from the

SMB redirector side are to be mapped by the LMX server into the CAE file system. Characters

with values larger or equal to 0x80 may not be supported or converted from upper to lower—case

(and vice versa) by LMX servers. All other characters are mapped according to the following
rules:

1. Filenames with . and extension are used as is.

2. Convert all characters of value less than 0x80 to lower case (unless case—sensitive mode

was requested).

3. The directory separator \ is converted to /.

4. Accept the special names . and .. as is.

5. Leave any other special characters as they are. If any forbidden characters (see below)

remain in a name, reject the request.

Names of files on the CAE system are mapped by the LMX server to canonical pathnames

according to the following rules. An LMX server implementation may map a wider range of

CAE filenames into a canonical pathname bypassing some of the restrictions below. However,

all mappings need to obey rules one to three.

1. Names which are all lower case are split into filename and extension at the first period (.).

If case—insensitive mode was requested, all characters of value less than 0x80 are converted

to upper case.

2. The special files . and . . are not translated and are used as is.

3. The directory separator / is converted to \.

4. If case—insensitive mode was requested, names containing an upper—case letter are invisible

and inaccessible from the SMB redirector. If case—sensitive mode was requested files of
mixed case are visible to the SMB redirector.

5. Basenames longer than 8 characters are invisible and inaccessible from the SMB redirector

depending on the dialect chosen. The extended 2.0 dialect allows for longer file and

X/Open CAE Specification (1992)

Page 46 of 267

L1VD{ Considerations LA/IX Filename Mapping

directory names.

6. Names containing a leading . (that is, a null basename part) are invisible and inaccessible
from the SMB redirector.

7. Names containing a trailing . (that is, a null extension with an extension separator present)
are invisible and inaccessible from the SMB redirector.

8. Names containing more than one . are invisible and inaccessible from the SMB redirector.

9. Names containing more than three characters following a . are invisible and inaccessible
from the SMB redirector.

10. Names containing characters not permitted in canonical pathnames are invisible and

inaccessible from the SMB redirector. Those illegal characters are:

(as anything but a separator for the extension)

" " (the space character, ASCII 0x20)

any value less than ASCII 0x20
0x2B 0x5B 0x5D "] 0x2A 0x3F "?", 0x3A ":", 0x5C "\",

0x3B 0x2F "/ 0x3D "=", 0x3C 0x3E 0x22 0x7C " |
0x2C

Examples:

CAE filename SMB redirector (case-insensitive mode)

a A

acn ACN

main.c MAIN.C

123456789 <not accessible: too long>
12345678 12345678

/users/acn/main.c \USERS\ACN\MAIN.C

file. <not accessible: trailing dot>

MSnet <not accessible: upper—case letter>

ACN <not accessible: upper—case letter>

file.baad <not accessible: extension too long>
s.c.x <not accessible: too many dots>

Protocols for X/Open PC Interworking: SMB, Version 2 29

Page 47 of 267

LMX File Mapping

4.3

4.3.1

4.3.2

4.3.3

30

LMX Considerations

LMX File Mapping

SMB File Attributes

SMB file attributes (see Section 3.7 on page 17) are not the same as CAE file attributes. The

mapping of the read-only and directory attributes is the minimum set of required functionality.

Any other attributes not supported by the LMX server may be ignored. If the read-only attribute

is specified, the SMB redirector has no write permission. For files created, the LMX server will

turn off the CAE write permission. If the directory attribute is specified, the requested name will

map to a CAE directory. LMX servers may support more SMB file attributes but are not allowed

to use different semantics for the read-only and directory attribute.

Changing the read-only attribute via S1VlBsetatr or S1VlBsetattrE will affect the write mode of the

file from the LMX server’s perspective; hence, in user—level security mode the UID specified must

map to that of a CAE process with appropriate privilege.

CAE File Access Permissions

CAE provides a umask (refer to the X/Open Portability Guide, Issue 3, Volume 2, XSI System

Interface and Headers) to define the default file access permissions to be used when a new file is

created. An LMX server must provide a mechanism to define the umask to be used for CAE files

created on behalf of the users. The mechanism is implementation-dependent. For example, an

implementation may provide a common umask for all users or may define a umask per user.

In CAE environments, it is necessary to have both the read and search attributes on a directory

to be allowed to view and transverse the directory (refer to the X/Open Portability Guide, Issue

3, Volume 2, XSI System Interface and Headers). An LMX server must provide support that
allows for SMB redirectors to create directories that can be viewed and transversed.

When the LMX server opens a file on behalf a user (that is,the SMB redirector’s user mapped to a

CAE UID and CAE GIDs) the CAE access permissions for that file must be obeyed.

File System Issues

CAE provides a method whereby the maximum allowed size of an individual file can be

controlled. This control is provided via ulimit (refer to the X/Open Portability Guide, Issue 3,

Volume 2, XSI System Interface and Headers). An LMX server may provide support where this

feature can be used to govern the maximum file size allowed for all users of the LMX server or
even individual users.

If this support is provided, it is not possible to retrieve the value for ulimit from SMB redirectors.
Therefore, SMB redirectors cannot tell the difference between a file size restriction or a file

system being out-of-space. The manner by which an LMX server handles the CAE ulimit feature

is implementation—dependent.

The LMX server will report either the free space of a single file system or the total free space of

all file systems that the shared file system subtree, accessible from the SMB redirector, may span.

Thus it is possible to get into a state where a directory path on the LMX server has run out of free

space, but another directory path has not. In this state, SMB redirectors will report to the user

that there is free space available on the server and yet the user will not be able to write data to

files on the file system subtree or v1'ce Versa.

It is possible in a CAE environment that the LMX server has no control over the creation time

given to a particular file. Therefore, support for the setting of the creation time provided by an

SMB redirector is implementation-dependent.

X/Open CAE Specification (1992)

Page 48 of 267

LA/D{ Considerations

4.3.4

4.3.5

4.3.6

4.3.7

Ll\/D{ File Mapping

When returning available space on the LMX server to the SMB redirector (see Section 8.6 on page

107), it may be necessary for the SMB server to report an allocation unit that is larger than the

512-byte units of the CAE system in order to avoid overflowing the number of allocation units

available in the SMB response. This can result in a rounding error for the free space information.

Some CAE systems provide no way for a program to block until the local file cache has actually

flushed to the disk, but simply indicate that a flush has been scheduled and will complete soon.

An LMX server should nonetheless take steps to maximise the probability that the data is truly
on disk before the SMB redirector is notified.

CAE Special Files

LMX servers may allow access to CAE special files, such as CAE—defined FIFOs or character and

block special files (refer to the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface

and Headers). Support for special file access is not a requirement for LMX servers.

Deleting or Re naming a File

The specification for deleting or renaming a file via an SMB request (for an example, see Section

7.12 on page 92 or Section 7.11 on page 89) specify that for a file to be deleted no other process

may have the file open. In a CAE environment, it may not be possible for the LMX server to

determine whether another CAE application has the file to be deleted open. Therefore, it is

implementation—dependent whether the LMX server will not allow an SMB redirector to delete

or rename a file while another CAE application has the file open for use. Additionally, it is

possible for a CAE application to delete or rename a file while an SMB redirector has the file

open for use. The actions taken by the LMX server under these circumstances are

implementation-dependent.

Long File nam e s

When using the extended 2.0 protocol dialect, an LMX server may support the use of long
filenames. These are filenames which do not conform to the 8.3 format (refer to Section 3.5.5 on

page 16). It is possible that the CAE system on which the LMX server is executing does not

support filenames to the maximum length allowed in the long filename definition. In this case,

the LMX server may support names longer than the 8.3 format yet restrict the maximum length

of the name to the length supported by the CAE system. As an example, suppose the CAE

system supports names up to fourteen characters in length. An LMX server on this system is

allowed to provide long name support to the SMB redirectors and restrict the maximum length

of such names to fourteen characters. It is not required that an LMX server supporting long

filenames guarantees support of the maximum name length in the long filename definition.

Exte nde d Attribute s

The extended 2.0 protocol allows for the storage and retrieval of extended attributes on a file

stored on the LMX server. Extended attributes are namezvalue pairs where the length of the

combination of the name=value pair will not exceed 65535 bytes. Both the name and the value

portion of the pair are free format and application-specific. The application will store and

retrieve the information based on the name. Support for extended attributes is optional.

Some SMB redirectors will store a collection of default extended attributes (EAs) when the

support for extended attributes is provided by the LMX server. Known examples of names and
values for EAs stored are:

.COlVIlVlENTS= An ASCIIZ string giving some general discussion on the contents of the file.

Protocols for X/Open PC Interworking: SMB, Version 2 31

Page 49 of 267

LMX File l\/lapping LMX Considerations

HISTORY: An ASCIIZ string indicating creation and change history for the file.

.KEYPHRASES= A collection of key words or phrases that pertain to the file.

SUBJECT: A subject line for the file.

.TYPE= The type of the file; that is, it is a document file, plain text or a spreadsheet.

For moving or copying files in an environment where LMX servers may or may not be

supporting EAs, Sl\/[B redirectors will copy all of the data contents of a file between servers and

warn the user about loss of EA information. The specifics of the SMB error codes that must be

supported by the LMX server to generate this warning are discussed in Chapter 16 on page 207.

32 X/Open CAE Specification (1992)

Page 50 of 267

LA/D{ Considerations

4.4

4.4.1

LA/D{ File Locking

LMX File Locking

The locking model and functionality provided by the SMB protocols (and thus expected by SMB

redirector processes) and the model being used by applications running in a CAE environment

are quite different. This mismatch makes it impossible to require an LMX server to properly

mediate interlocking between an SMB redirector process and CAE application accessing the
same file.

Some forms of interlocking mediation are possible. If an LMX server chooses to support file

locking, it should support at least the features described in this section.

The SMB protocol does deny modes on open (see Section 3.7.2 on page 18) and byte—range locks.

The core SMB protocol supports only one type of byte-range lock via the S1VlB1ock request that

excludes that byte-range from any other lock, read or write access by other SMB redirectors. The

extended protocols support additionally read-only locks via S1VlB1ock1'ngX.

The CAE does not define any forms of deny mode as in the SMB protocols. The CAE, however,

specifies two forms of locks (see the X/Open Portability Guide, Issue 3, Volume 2, XSI System
Interface and Headers):

F_RDLCK Lock byte range allowing multiple readers (shared lock); a process may write to

the range (with or without an F_RDLCK) if no other process has an F_RDLCK on

that range. The file must have been opened with read access.

F_WRLCK Lock byte range allowing R/W (read and write) for locking process only (exclusive

lock). The file must have been opened with write access.

These locks are advisory, rather than mandatory. With advisory locking, cooperating processes

must acquire locks to determine whether any other process has locked that range as well.

Inte rlocking Be haviour

De ny Mode s

An LMX server must mediate deny modes between multiple SMB redirector processes. But it

cannot completely enforce those access denials against other LMX server—resident applications,

since those other processes may not be making lock requests against the file, and the CAE does

not provide a mandatory locking function. LMX servers may provide some forms of deny-mode

between an SMB redirector and a CAE application.

When interlocking for deny modes is supported, the LMX server may place the following locks

when an SMB redirector requests a byte-range lock:

Action

No action.
SMB requested mode

Opens for DENY ALL with all access modes, DENY
WRITE with READ access mode, and COlV[PATIBILI'TY
with all access modes.

Opens for DENY NONE or DENY READ with READ
access mode.

Opens for DENY NONE, DENY READ or DENY WRITE
with WRITE and R/W access modes. In the case of

DENY WRITE with R/W access, the record to be locked

will be promoted to F_WRLCK. A record to be unlocked
will be demoted to F_RDLCK.

F_RDLCK only.

F_WRLCK only.

Protocols for X/Open PC Interworking: SMB, Version 2 33

Page 51 of 267

LA/D{ File Locking

4.4.2

4.4.3

34

LA/D{ Considerations

Although LMX servers acquire an advisory lock prior to each READ or WRITE when

interlocking is in effect, application developers should use byte-range locks whenever

cooperating with CAE applications. This specification requires an LMX server to return an error

if an access to a locked range takes place, which will cause many applications to fail.

Byte —range Locking

LMX servers must provide byte-range locking to SMB redirectors. There are some restrictions

on the ability of an LMX server to completely emulate the required functionality of the SMB

byte-range lock as it interacts with the access mode in which the file was opened. A file opened

read-only access cannot have an F_WRLCK placed on it, as a CAE advisory write lock requires

write permission. Because of this, an LMX server cannot simulate the SMB redirector R/W

record locking semantics for read-only access.

Since the semantics of the SMB byte-range lock are mandatory rather than advisory, an LMX

server must cause accesses by an SMB redirector to locked byte ranges to fail. Ideally, LMX

servers would also cause access to those ranges from LMX server—resident processes to fail. This

can only be accomplished if the LMX server—resident process is cooperative, that is, places

advisory locks on byte ranges of interest, and if the LMX server places advisory locks on behalf

of SMB redirector SMB requests.

The semantics of SMB locking require that an SMB redirector attempting to access (without

locking) a range of bytes already locked by an LMX server-resident process must receive an error

for that request. This means that an LMX server must place advisory locks for all SMB redirector

SMB requests. These implicit locks exist solely for the time required for the requested operation

and do not persist beyond that time. If an SMB redirector has already explicitly requested a lock,

the LMX server need only maintain that lock and permit the SMB redirector to explicitly release
it.

SMB byte-range locks can be larger than CAE file locks. The LMX server must support byte-

range locks beyond standard CAE offsets.

Locking Timeouts

The extended dialect’s requests for locking define timeout values that indicate how long the

SMB redirector would like to wait before a lock attempt is failed. Support for these timeout

values is not a requirement for an LMX server and may be ignored. If an LMX server cannot

support timeouts, then the error <ERRSRV, ERRtimeout> is returned, just as if a timeout had

occurred, if the resource is not available immediately upon request.

Re ad—only Locks

In the extended protocols, an LMX server may choose not to support read-only locks. It will

then treat any request for such a lock as though a read/write lock has been requested.

X/Open CAE Specification (1992)

Page 52 of 267

LA/D{ Considerations

4.5

4.6

4.7

LA/D{ Server Caching

LMX Server Caching

An LMX server may perform its own internal caching in an effort to increase performance for

SMB redirectors. A simple example of this would be if the LMX server responds to write

requests prior to making the CAE call necessary to write the data in the CAE system. This action

by the LMX server is referred to as write-behind in the remainder of this document. By

responding prior to writing the data, it means the SMB redirector may receive the response prior

to the data being reflected in the CAE file system. If an LMX server does caching, it is required
that it maintain this internal cache in such a manner that other SMB redirectors will see the same

data if they make a read request prior to the CAE write by the server. It is not required that after

an SMB redirector performs a write request, and receives the write response, that the data is

reflected immediately to other CAE applications on the LMX server system. If an LMX server

performs write-behind, it is required that the server honour S1V1BfIush requests and not respond

to these requests prior to flushing all appropriate, internally-cached data to the CAE file system.

LMX Print Spooling

The SMB protocols allow for status information on print jobs submitted to the LMX server. The

LMX server, however, may choose to deal with print requests by a number of methods. One

example would be for the LMX server to queue print requests internally to the server and then

issue the requests to the CAE print spooling environment one job at a time, waiting for each job

to complete before the next is spooled. This approach allows the LMX server to maintain state

information concerning print requests that can be returned to the SMB redirector when

necessary. Another approach is to couple the LMX server print queueing support with the CAE

print spooling support. Depending on the degree the two are merged, it may not be possible for

the LMX server to maintain the exact status of the print request, but a reasonable status must be

estimated when necessary.

The print spooling protocols defined in Chapter 9 allow for the transmission of printer setup

data, and give an indication of the type of data contained in the file (that is, text or graphics).

An LMX server implementation may choose to use or discard the printer setup data. The text or

graphics mode indicator may be used by the LMX server to perform printer initialisation, or

ignored.

SMB Error Codes

Chapter 5 defines a number of constants and descriptions of possible meanings for SMB error

codes. In subsequent chapters, as each SMB is described, a table mapping possible error

conditions to error codes is provided. If an LMX server implementation experiences an error

condition that is not described in the table for the specific SMB, the LMX server may return any
of the error codes defined in this document that best describe the error condition.

The ERRHRD class may cause an SMB redirector to notify the user of the error via an exception

handling routine. Where the ERRHRD and ERRDOS class of errors overlap, the LMX server

implementation has the option to use either class.

Protocols for X/Open PC Interworking: SMB, Version 2 35

Page 53 of 267

Security Policy

4.8

4.9

4.10

36

LA/D{ Considerations

Se curity Policy

An LMX server must provide a security policy. It may provide either share—level security, user-

level security, or a combination approach (refer to Section 2.2 on page 5 and Section 3.3 on page
12).

Another aspect of security is the support for encryption of user passwords. An LMX server may

choose to support the encryption technique described in Appendix D or Section 11.2 on page

139. It is also acceptable for an LMX server not to support password encryption at all.

Ne gotiate d Diale ct

An LMX server may choose to support only one, a combination of, or all of the SMB dialects

described in this document. Since the process of negotiating an SMB dialect is open-ended it is

also possible that an LMX server supports dialects not described in this specification.

Ne twork Issue s

This specification assumes the LMX server implementation uses the transport support described

in Appendix E on page 281 (TOP/NetBIOS), Appendix F on page 349 (RFC 1001) and Appendix

G on page 419. It is for this reason that these RFCs are republished in this document.

For the binding of NetBIOS to the TCP/IP protocol suite (refer to Appendices F and G) only

those aspects for B—node functionality are required.

An implementation may choose to support the full M—node functionality, as that is a superset of
B—node.

For the binding of NetBIOS to OSI transport (refer to Appendix E on page 281) the NetBIOS user

agent is optional.

This specification defines a default method by which LMX servernames are mapped to NetBIOS

names (refer to Section 3.5.2 on page 15). It is possible that an LMX server implementation and

compatible SMB redirector implementation may use additional methods of mapping LMX
servernames to NetBIOS names.

SMB protocols are only specified to run on a single LAN subnetwork, but interoperation in

connected subnetworks is not precluded.

X/Open has defined other types of PC connectivity support; refer to the X/Open Developers’

Specification, Protocols for X/Open PC Interworking: (PC)NFS. (PC)NFS and SMB protocol

implementations, or other connectivity implementations, on the same server are not required to

interwork with respect to additional features beyond those provided by XSI (for example,

extended DOS file open modes). Additionally, if the CAE system is supporting access to other

CAE systems via XNFS (reference X/Open CAE Specification, Protocols for X/Open

Interworking: XNFS), it may be possible to configure an LMX server to allow SMB redirectors

access to the resources of the other CAE systems via the XNFS connection, but this is not a

requirement.

X/Open CAE Specification (1992)

Page 54 of 267

Chapter 5

Data Objects and Constants

This chapter describes the SMB format, common data structures, flag fields and other objects

commonly used in SMB requests and responses. It also defines various symbolic constants and

indicates their (required) values. Throughout the specification the following definitions will be
used:

8-bit field An octet; sometimes referred to as a byte.

16-bit Two 8-bit fields with the least significant 8-bit field first (little—endian).

32-bit Two 16-bit elements with the least significant 16-bit element first (little—endian).

5.1 SMB Form at

All SMB requests and responses (except where noted) have a common header, as follows:

Offset T}-1:3 Field Name flestriptiurn

00 8-bit field smb_1'dt[4] contains 0xff,0x53,0x4d,0x42

04 8-bit field smb_com command code

05 8-bit field smb_rc1s error class

06 8-bit field smb_reh reserved for future

07 16-bit field smb_err error code

09 8-bit field smb_flg flags
10 16-bit field smb_res[7] reserved for future

24 16-bit field smb_t1'd authenticated resource identifier

26 16-bit field smb_pid caller’s process ID
28 16-bit field smb_uid unauthenticated user ID

30 16-bit field smb_m1'd multiplex ID
32 8-bit field smb_wct count of 16-bit fields that follow

33 16-bit field smb_vvvV[] variable number of 16-bit fields

- 16-bit field smb_bcc count of 8-bit fields that follow

- _ 8-bit field _ smb_but[] _ variable number of 8-bit fields

The structure defined from smb_idfthrough smbwwct is the fixed portion of the SMB structure

sometimes referred to as the SMB header. Following the header there is a variable number of

16-bit fields (defined by smb_wct), and following that is smb_bcc which defines an additional
variable number of 8-bit fields. The SMB header fields are defined as follows:

smb_1'df SMB identification string, always 0xff,0x53,0x4d,0x42.

smbmcom SMB command code (see Section 5.2 on page 40).

smb_rc1s Error class (see Section 5.6 on page 49), set in the SMB response only.

smb_err Error code (see Section 5.6 on page 49), set in the SMB response only.

smb_flg A bit-encoded field. The flag bits are defined as follows:

Bit 0 When set (returned) by the LMX server in the S1VlBnegpr0t response,

this bit indicates that the LMX server supports the S1VIB10ckread and

S1VlBwr1'teun10ck requests.

Protocols for X/Open PC Interworking: SMB, Version 2 37

Page 55 of 267

SIVIB Format

smb_t1'd

smb_p1'd

smb_u1'd

38

Page 56 of 267

Data Objects and Constants

Bit 1 Used only in requests when an extended SMB protocol is negotiated.

When set, the SMB redirector guarantees a receive buffer is already

posted; this has implications for the type of underlying transport

service which may be used in sending a response.

Bit 2 Reserved; MBZ (Must Be Zero).

Bit 3 When on, all pathnames in the protocol must be treated as case-

insensitive. If one of the extended protocols is negotiated and the bit

is set off, the pathnames are case—sensitive. The LMX server can

assume the value is always set to on.

Bit 4 Used only in the S1VlBsesssetupX request. When on, the SMB

redirector indicates that all pathnames will be specified as canonical

pathnames, already obeying the file naming conventions (see Section

3.5 on page 15). When off, pathnames are in the LMX server

representation. The LMX server can assume the value is always set
to on.

Bit 5 Used only in the SMBopen, SMBcreate and SMBmknew

requests/responses. When set in a request, the SMB redirector asks

that the file be opportunistically locked, a feature of the extended

SMB protocols. If the LMX server places the opportunistic lock, this

bit is set in the SMB response. This bit is referred to as the oplock bit.

Bit 6 Used only in the SMBopen, SMBcreate and SMBmknew requests when

an extended protocol is negotiated; meaningful only if bit 5 is also

set. When set, the SMB redirector is asking to be notified of any

operation which can modify the file (for example, delete, setting of
attributes, rename, etc.). This allows the redirector to cache the

complete file. If not set, the SMB redirector need only be notified if

another open request is received for the file. This bit is referred to as

the opbatch bit.

Bit 7 Always set in responses. The smb_c0m (command code) field usually

contains the same value in a request from the SMB redirector to the

LMX server as in the matching SMB response from the LMX server to

the SMB redirector. This bit unambiguously distinguishes the SMB

request from the SMB response. On a multiplexed LMX session on a

system where both LMX server and SMB redirector are active, this bit

can be used by the system's SMB delivery system to help identify

whether this protocol should be routed to a waiting SMB redirector
or to the LMX server.

Used by the LMX server to identify a resource (for example, a file system

subtree). The value Oxffff is reserved. The LMX server is responsible for

enforcing use of a valid TID where appropriate (see Section 3.2 on page 10).

Generated by the SMB redirector to uniquely identify a process within the

SMB redirector’s system. An SMB response will always contain the same

value in smb_p1'd (and smb_m1'd) as in the corresponding SMB request.

User identifier. It is used by the extended protocol when the LMX server is

executing in user—level security mode to validate access on requests which

reference named resources (such as file open). Refer to Section 3.2 on page 10,

Section 3.3 on page 12 and Section 4.3.1 on page 30 for additional information.

Thus differing users accessing the same TID may be granted differing access to

X/Open CAE Specification (1992)

SIVIB Command Codes

5.2

40

SMB Command Codes

Data Objects and Constants

This table shows the mapping between the symbolic name for an SMB request or response and

the value to be placed in the smb_com field of the SMB header. The Protocol column indicates the

protocol class to which the request belongs:

C Core protocol; all dialects.

C+ Core plus protocol as generated by the 1.03 dialect.

E Extended protocol; only those dialects defined as extended 1.0.

E2 Extended protocol; only those dialects defined as extended 2.0.

Not generated by dialects of LAN Manager; included for reference purposes only.

Name smb_com Protocol

SMBmkd1'r 0x00 C

SMBrmd1'r 0x01 C

SMBopen 0x02 C
SMBcreate 0x03 C

SMBc1ose 0x04 C

SMBflush 0x05 C

SMBun11'nk 0x06 C

SMBmV 0x07 C

SMBgetatr 0x08 C
SMBsetatr 0x09 C

SMBread 0x0a C

SMBwr1'te 0x0b C

SMB10ck 0x0c C

SMBun1ock 0x0d C

SMBctemp 0x0e Reserved
SMBmknew 0x0f C

SMBchkpth 0x10 C
SA/1BeX1't 0x11 C

SMB1seek 0x12 C

SMB1ockread 0x13 C+

SMBwr1'teun1ock 0x14 C+

SMBreadbraw 0x1a C+

SMBreadbmpx 0x1b E
SMBreadbs 0x1c E

SMBwr1'tebraw 0x1d C+

SMBwr1'tebmpx 0x1e E
SMBwr1'tebs 0x1f E

SMBwr1'tec 0x20 E

reserved 0x21 —

SMBsetattrE 0x22 E

SMBgetattrE 0x23 E

SMB10ck1'ngX 0x24 E
SMBtrans 0x25 E See Note.

SMBtranss 0x26 E

Page 58 of 267

X/Open CAE Specification (1992)

Data Objects and Constants Data Objects

5.3 Data Objects

This section defines various fields, objects and structures used in more than one SMB request or
response.

5.3.1 Time Fields

There are two time field formats; one 16 bits in length, and one 32 bits in length. Many SMBs

contain a 16-bit quantity whose value indicates a particular time. Unless otherwise specified, the

time is encoded in the following format:

_15_14_13_12_11_10_9_8_7_6_5_4_3_2_1_0

hhhhhmmmmmmxxxxx

hhhhh Bits 11-15 contain the current hour; range is 0-23.

mmmmmm Bits 5-10 contain the current minute; range is 0-59.

XXXXX Bits 0-4 contain the current seconds in units of two seconds; range is 0-29.

Other SMBs contain a 32-bit value which represents a time, in seconds, relative to midnight on

January 1, 1970 (the Epoch). This 32-bit value is a signed, but always positive, 32-bit integer, and

is split into two 16-bit values in the SMB. The low-order 16-bit values are always first, followed

immediately by the high-order 16-bit values. This pair is usually referred to as time low and

time high.

5.3.2 Date Fields

Many SMBs contain a 16-bit value indicating a particular date. Unless otherwise specified, the

date is encoded in the following format:

_15_14_13_12_11_10_9_8_7_6_5_4_3_2_1_0

yyyyyyymmmmddddd

yyyyyyy Bits 9-15 contain the current year, less 1980; range is 0-119, indicating 1980-2099.

Note that the base year is not 1970.

mmmm Bits 5-8 contain the current month; range 1-12, where 1 is January.

ddddd Bits 0-4 contain the current day of the month; range 1-31.

5.3.3 File Attributes Fields

Many SMBs contain one or more 16-bit values, each of which encodes file attributes. Unless

otherwise specified, the attributes are encoded in the following format:

Bit 0 The file is read-only.

Bit 1 The file is hidden.

Bit 2 The file is a system file.

Bit 3 The file is a volume identifier.

Protocols for X/Open PC Interworking: SMB, Version 2 43

Page 61 of 267

Data Objects

5.3.4

5.3.5

44

Data Objects and Constants

Bit 4

Bit 5

All other bits are reserved and Must Be Zero. If none of the attribute bytes are set, the file

attributes refer to a regular file. Note that use of this field is governed by the File Attributes

conventions (see Section 4.3.1 on page 30).

The file is a directory.

The file is flagged as changed since last archive.

Buffe rs

Many of the core SMBs contain typed buffers in the smb_buffield. A buffer consists of a single 8-

bit field, indicating the type of buffer, followed by a string of 8-bit fields, which are the contents

of the buffer. The buffer type defines the termination method for the buffer contents. The buffer

types are:

01 Data Block. The buffer contains a 16-bit value containing the length of the data block,

followed by that number of 8-bit fields of data. This buffer is not null—terminated.

02 Dialect. The buffer is a null—terminated string of bytes making up a dialect name (see

Section 5.4 on page 48).

04 ASCIIZ. The buffer is a null—terminated string of ASCII characters.

05 Variable Block. The buffer contains a 16-bit value containing the length of the data block,

followed by that number of 8-bit fields of data. This buffer is not null—terminated.

File —sharing Control

SMBs which open files make use of a 16-bit value to control the extent of file sharing to be

permitted. This 16~bit value has the following format:

_15_14_13_12_11_10_9_8_7_6_5_4_3_2_1_0

0w000000rxxx

Bits 8-13 and bit 15 are reserved and should be ignored by the LMX server.

w Write-through mode. Neither read—ahead nor write—behind caching for this file is

permitted. An LMX server should not respond to any SMB request involving this file

until all data related to the SMB request is on stable store (that is, on disk). This mode

is generated in extended protocols only.

r Reserved. Ignored by the LMX server.

xxx Exclusion mode. Values are:

0 DOS compatibility mode (exclusive to an LMX session, but that LMX session

may have multiple opens).

1 DENY ALL (exclusive to this operation).

2 DENY WRITE. Other users may access the file in READ mode. Open for

executing is not allowed.

3 DENY READ. Other users may access the file in WRITE mode.

4 DENY NONE. Allow other users to access the file in any mode for which they

have permission.

X/Open CAE Specification (1992)

Page 62 of 267

Data Objects and Constants Data Objects

5,6]1legal. SMB redirectors should not specify these values.

7 FCB open mode (see below).

yyyy Type of access requested. Values are:

0 Open the file for reading.

1 Open the file for writing.

2 Open the file for reading and writing.

3 Open the file for executing (extended protocols only).

4-14]1legal. SMB redirectors should not specify these values.

15]1legal, except for FCB open (see below).

For the exclusion modes see Section 3.7.2 on page 18.

Special semantics, called an FCB open, are associated with a file-sharing control value of 0x00ff.

This type of open will cause a DOS compatibility open with the read/write modes set to the

maximum permissible. Generally, this will cause any access violations to be detected when the

first read and/or write is attempted, rather than during open processing.

The open for execute bit maps to read-only, and writes to these files from SMB redirectors are
not allowed while that attribute is set.

5.3.6 Re source Types

In S1VlBtc0n and S1VlBtc0nX an ASCIIZ buffer (type 04) is used to specify the resource type. The

following are acceptable:

A: File system share.

LPT1: Spoolable device.

COMM Character mode device.

IPC$ Mailslots or named pipes.

S1VlB0penX contains a 16-bit field denoting a resource type. The permissible values for this field
are:

0 File or directory, as determined by the attribute field smb_attr related to the same file.

1 Stream mode named pipe - see the X/Open CAE Specification, IPC Mechanisms for SMB.

2 Message mode named pipe - see the X/Open CAE Specification, IPC Mechanisms for SMB.

3 Printer device.

4 Character mode device. When an extended protocol has been negotiated, it allows a device

to be opened (via S1VlB0penX) for driver—level I/O. This provides direct access to real—time
and interactive devices such as modems, scanners, etc.

Protocols for X/Open PC Interworking: SMB, Version 2 45

Page 63 of 267

Data Objects Data Objects and Constants

Nam e d Pipe s, Mailslots and Me ssaging

Named pipes, mailslots and messaging are [PC mechanisms defined in the X/Open CAE

Specification, [PC Mechanisms for SMB which are outside the scope of this specification. To

support named pipes and mailslots extended SMB protocol elements are required that will use

specific resource types as defined above. Two such types of devices are defined:

COMM Communication devices like modems or terminals.

LPT1 Printer devices which will be accessed directly.

5.3.7 Access Modes

Some SMBs which open files return an indication of the type of access granted to the requestor.

This 16-bit field takes the following values:

0 Read-only access granted.

Write—only access granted.

Read/write access granted.IVB-3'-‘
3 Reserved; do not use.

5.3.8 Open Function

The open function field controls the way a file should be treated when it is opened for use by

certain extended SMB requests. This 16-bit field is bit—encoded:

Bits 0-1 This field determines the action to be taken if the file exists. The values and meanings
for this field are:

0 The request should fail and an error returned indicating the prior existence of the
file.

1 The file should be appended to.

2 The file should be truncated to zero (0) length.

3 Reserved; this value should not be used.

Bit 4 If the file does not exist and this bit is clear, the request should fail; if this bit is set, the
file should be created.

All other bits are reserved and should be ignored by the LMX server.

5.3.9 Resource Names, Pathnames, File names and Network Pathnames

A pathname is a 1 to 255 byte long UNC name that routes to a directory.

A filename is an 8.3 format or long filename format name that routes to a file. In the case of the

extended 2.0 dialect a filename may be up to 255 bytes in length. A pathname may be included

to specify a directory where the file resides.

A network pathname is a filename proceeded by the LMX servername and has the following
format:

\\<LMX servernaIne>\<pathname>\<filename>

where:

<LMX servername> is a one to fifteen byte LMX servername.

46 X/Open CAE Specification (1992)

Page 64 of 267

SIVIB Dialects

5.4

5.5

48

Data Objects and Constants

SMB Diale cts

To distinguish between various levels of SMB protocols the SMB redirector will send in the

SlVlBnegpr0t request (see Section 6.1 on page 55) a set of dialect strings from which the LMX

server will select one to be used for the LMX session. The currently known dialect strings are:

Dialect String Referred to as
PC NETWORK PROGRAM 1 . 0

MICROSOFT NETWORKS 1 . O3

MICROSOFT NETWORKS 3 . O

LANMAN 1 . 0

LMl . 2XOO2

MICROSOFT NETWORKS 3.0 and LANMAN 1.0 specify the same SMB protocol dialect.

MICROSOFT NETWORKS 3.0 is used by DOS SMB redirectors and LANMAN 1.0 is used by

OS/2 SMB redirectors. The MICROSOFT NETWORKS 1.03 string specifies a slightly extended

version of the core protocol. The LM1.2X002 protocol specifies the second extension to the

protocols. This dialect is used to provide longer names to files and other file characteristics to
the SMB environment.

core protocol

core plus dialect

extended 1.0 protocol

extended 1.0 protocol

extended 2.0 protocol

Tim e outs

Some of the SMB protocols allow for the operation to time out prior to its success or failure. This

timeout feature allows SMB redirectors to attempt to open devices which may not open

immediately. For example, an application that requires the services of a modem may be running

on the SMB redirector system. An LMX server may provide a modem pool and allow SMB

redirector access to this modem pool. When the SMB redirector attempts to open a modem

device, the open request may be queued until a modem is free. By specifying a timeout on the

open request, the SMB redirector is able to return a busy error to the user of the modem

application when all of the modems are busy rather than wait indefinitely.

Timeout values within the SMB protocol are typically 32-bit values representing the number of

milliseconds the SMB redirector would like before the request is returned with an error

(exceptions are noted in the text when a timeout is defined). Some timeout values are reserved

for the following function:

0 Return immediately if the request cannot be satisfied at this time.

-1 Wait indefinitely.

-2 Wait for an LMX server—defined default. This default time is implementation-dependent.

Suggested defaults depend on the type of activity requested. For example, writes may have

an infinite timeout, but opens may have a timeout in the range of 10 to 20 seconds.

X/Open CAE Specification (1992)

Page 66 of 267

Data Objects and Constants SMB Error Codes

5.6 SMB Error Codes

This section specifies the error class and error code values for the SMB headers. In SMB

responses the error class will be set in the SMB header field smb_rc1s. The error code will be set
in the SMB header field smb_err. If a value is not listed it is considered reserved for future use.

Some of the error codes will only occur when SMBs are used to implement the X/Open CAE

Specification, IPC Mechanisms for SMB, which is outside the scope of this specification.

In the case of success, the LMX server must return error class SUCCESS and error code

SUCCESS. An undefined error (for example, caused by a corrupted SMB, internal LMX server
error) should be in error class ERRSRV and error code ERRerror.

5.6.1 SMB Error Class Mappings

Unless otherwise stated, the following error classes may be returned.

Name Value Description

SUCCESS 0x00 The request was successful.

ERRDOS 0x01 Error is considered to be operating system related.

ERRSRV 0x02 Error is generated by the LMX server.
ERRHRD 0x03 Error is a hardware error.

ERRXOS 0x04 Reserved.

ERRRMX1 Oxel Reserved.

ERRRMX2 0xe2 Reserved.

ERRRMX3 0xe3 Reserved.

ERRCMD Oxff Command was not in the SMB format.

The ERRXOS, ERRRMX1, ERRRMX2 and ERRRMX3 error classes are not used in the SMB

protocols defined in this specification.

5.6.2 Error Codes for the SUCCESS Class

The following error codes may be generated with the SUCCESS error class.

Name Value Description

SUCCESS 0x00 The request was successful.

BUFFERED 0x54 Message was buffered (used in Messaging).

LOGGED 0x55 Message was logged (used in Messaging).

DISPLAYED 0x56 Message was displayed (used in Messaging).

Note: Messaging is described in the X/Open CAE Specification, IPC Mechanisms for SMB

and is outside the scope of this specification.

5.6.3 Error Codes for the ERRDOS Class

In general, the ERRDOS class is used to return OS-specific errors to SMB redirectors. Since the

SMB redirector needs to understand these error codes for all LMX servers, it is impossible to

define CAE-specific errors. Instead, the list of possible error codes, with some explanatory text,

appears below. An LMX server may elect to return one of these more specific error codes any

time a system-specific error occurs.

The Name column gives the symbolic name for the error. The Value column indicates the

numeric value for the constant, and a description follows in the Description column. A hint to

the CAE error code (see Chapter 2.3, Error Numbers, of the X/Open Portability Guide, Issue 3,

Volume 2, XSI System Interface and Headers) that may be mapped to the SMB error code is

given in the description text.

Protocols for X/Open PC Interworking: SMB, Version 2 49

Page 67 of 267

SIVIB Error Codes

Name

ERRbadfunc

ERRbadfile

ERRbadpath

ERRnofids

ERRnoaccess

ERRbadfid

ERRnomem

ERRbadmem

ERRbadenv

ERRbadaccess

ERRbaddata

ERRres

ERRbaddrive

ERRremcd

ERRdiffdevice

ERRnofiles

ERRbadshare

ERRlock

ERRfilexists

Page 68 of 267

Value

10

12

13

14

15

16

17

18

32

33

80

Data Objects and Constants

DI2‘:S:CFipl'iDI'I

I Invalid function. The LMX server’s OS did not

recognise or could not perform a system call

generated by the LMX server; for example, set

the directory file attribute on a data file, invalid
seek mode. [EINVAL]

File not found. The last component of a file’s

pathname could not be found. [ENOENT]

Directory invalid. A directory component in a

pathname could not be found. [ENOENT]

Too many open files. The LMX server has no
FIDs available. [EMFILE]

Access denied, the requestor’s context does not

permit the requested function. This includes

the following conditions: invalid rename

command, write to FID open for read-only,

read on FID open for write-only, attempt to

delete a non-empty directory. [EPERIVI]

Invalid FID. The FID specified was not

recognised by the LMX server. [EBADF]

Insufficient LMX server memory to perform

the requested function. [ENOMEM]

Invalid memory block address. [EFAULT]
Invalid environment.

Invalid open mode.

Invalid data (generated only by IOCTL calls
within the LMX server). [EZBIG]
Reserved.

Invalid drive specified. [ENXIO]

A Delete Directory request attempted to

remove the LMX server’s current directory.

Not the same device (for example, a rename

across different file systems was attempted).
[EXDEV]

A File Search command can find no more files

matching the specified criteria.

The sharing mode specified for an Open

conflicts with existing FID on the file.
[ETXTBSY]

A Lock request conflicted with an existing lock

or specified an invalid mode, or an Unlock

request attempted to remove a lock held by

another process. [EDEADLOCK]

The file named in a Create Directory, Make

New File or Link request already exists. The

error may also be generated in the Create and
Rename transaction. [EEXIST]

X/Open CAE Specification (1992)

Data Objects and Constants SMB Error Codes

Name Value Description

ERRbadpipe 230 Named pipe invalid.

ERRpipebusy 231 All instances of the requested pipe are busy.

ERRpipeclosing 232 Named pipe close in progress.

ERRnotconnected 233 No process on the other end of the named pipe.
ERRmoredata 234 There is more data to be returned.

ERROR_EAS_DIDNT_FIT 275 There are no extended attributes, or the
number of attributes available did not fit into

the SIVIB response.

ERROR_EAS_NOT_SUPPORTED 282 The LMX server does not support storage of
extended attributes.

5.6.4 Error Codes for the ERRSRV Class

The following error codes may be generated with the ERRSRV error class:

_ Name
ERRerror

ERRbadpw

ERRbadtype
ERRaccess

ERRinvnid

ERRinvnetname

ERRinvdevice

ERRqfull

ERRqtoobig

ERRinvpfid
ERRsmbcmd

ERRsrverror

ERRfilespecs

ERRbadlink

ERRbadpermits

Protocols for X/Open PC Interworking: SMB, Version 2

Page 69 of 267

Value

1 .

C5

49

50

52

64

65

67

68

69

Description

Non-specific error code. It is returned under the following

conditions: resource other than file system space exhausted

(for example,TIDs), first command on the LMX session was

not SMBnegprot, multiple SMBnegprots attempted, or internal
LMX server error.

Bad password - name/password pair in an S1V1Btc0n,

SMBtconX or SMBsesssetupXare invalid.
Reserved.

The requestor does not have the necessary access rights

within the specified context for the requested function. The

context is defined by the TID or the UID. [EACCES]

The TID specified in a command was invalid.
Invalid LMX servername in SMBtcon or SMBtconX

Invalid device - printer request made to non-printer

connection or non-printer request made to printer
connection.

Print queue full (that is, too many queue items) - returned by

open print file.

Print queue full (that is, no space or queued item too big).

Invalid print file specified in smb_fid.

The LMX server did not recognise the command code
received.

The LMX server encountered an internal error.

The FID and pathname parameters contained an invalid
combination of values.

Reserved.

The access permissions specified for a file or directory are
not a valid combination. The LMX server cannot set the

requested attribute.

51

SIVIB Error Codes Data Objects and Constants

Name Value Dcscriptiuli

ERRbadpid 70 Reserved.

ERRsetattrmode 71 The attribute mode in the Set File Attribute request is
invalid.

ERRpaused 81 Message server is paused. (Reserved for messaging.)

ERRmsgoff 82 Not receiving messages. (Reserved for messaging.)

ERRnoroom 83 No room to buffer message. (Reserved for messaging.)

ERRrmuns 87 Too many remote usernames. (Reserved for messaging.)

ERRtimeout 88 Operation timed out.

ERRnoresource 89 No resources currently available for SMB request.

ERRtoomanyuids 90 Too many UIDs active on this LMX session.

ERRbaduid 91 The UID given (smb_u1'd) is not known as a valid ID on this
LMX session.

ERRuseMPX 250 Temporarily unable to support Raw mode operation, use
MPX mode.

ERRuseSTD 251 Temporarily unable to support Raw mode operation, use
standard read/write.

ERRcontMPX 252 Continue in MPX mode.

ERRBadPW 254 Reserved.

ERRno5u ppnrt Oxffff Function not supported.

5.6.5 Error Codes for the ERRHRD Class

The following error codes may be generated for hard errors on the LMX server with the

ERRHRD error class. CAE error mapping hints to each of these errors are noted at the end of the

error description.

The ERRHRD error class may cause an SMB redirector to notify the user of the error condition

via an exception handling routine. Where ERRHRD and ERRDOS error classes overlap, the

LMX server implementation has the option to choose an appropriate class for the error.

Name Value Dezawiptinn

ERRnowrite 19 Attempt to write on write-protected diskette. [EROFS]
ERRbadunit 20 Unknown unit. [ENODEV]

ERRnotready 21 Drive not ready. [EUCLEAN]
ERRbadcmd 22 Unknown command.

ERRdata 23 Data error (CRC). [EIO]

ERRbadreq 24 Bad request structure length. [ERANGE]
ERRseek 25 Seek error.

ERRbadmedia 26 Unknown media type.
ERRbadsector 27 Sector not found.

ERRnopaper 28 Printer out of paper.
ERRwrite 29 Write fault.

ERRread 30 Read fault.

ERRgeneral 31 General hardware failure.

ERRbadshare 32 An open conflicts with an existing open. [ETXTBSY]

ERR1ock 33 A Lock request conflicted with an existing lock or specified

an invalid mode, or an Unlock request attempted to remove

a lock held by another process. [EDEADLOCK]

52 X/Open CAE Specification (1992)

Page 70 of 267

Data Objects and Constants

54 X/Open CAE Specification (1992)

Page 72 of 267

Chapter 6

Core SMB Connection Management Requests

This section defines the elements of the core SMB protocol related to connection management.

They are:

SMBnegprot negotiate protocol

S1VlBtcon tree connect

S1VlBtd1's tree disconnect

S1VlBex1't process exit

6.1 SMBne gprot Spe cification

SMBne gprot De taile d De scription

This core protocol request is sent as the first request to establish the LMX session, negotiating the

protocol dialect that the SMB redirector and LMX server will use when communicating with
each other. The SMB redirector sends a list of dialects that he can communicate with. The LMX

server responds with a selection of one of those dialects (numbered 0 to n) or -1 indicating that

none of the dialects were acceptable. Exactly one negotiate message must be sent on each

NetBIOS session; subsequent negotiate requests must be rejected with an error response and no
action will be taken.

The SMB protocol does not impose any particular structure on the dialect strings. Implementors

of particular protocols may choose to include, for example, version numbers in the string. An

LMX server may choose to support one or more of the dialects identified in Section 5.4 on page

48. The fields described here are only valid when the core protocol has been negotiated. The

other SMB dialects impose some differences on the S1VlBnegprot format; refer to the sections

discussing the different dialects for information on these differences.

SMBne gprot De viations

None.

SMBne gprot Field De scriptions

Field descriptions for the core protocol (S1VlBnegprot) are as follows:

_ From SMB redirector _ To SMB redirector

_ Field Name Field Value _ Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot
smb_wct 0 smb_wct 1

smb_bcc min = 2 smb_vvvv[0] smb_index

smb_but[] dialect0 smb_bcc 0

dialectn

Protocols for X/Open PC Interworking: SMB, Version 2 55

Page 73 of 267

SMBnegprot Specification

56

Core SMB Connection 1VIanagementRequests

SMBne gprot Error Code De scriptions

If any error occurs, the server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBne gprot Pre conditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the server.

SMBne gprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the dialect

negotiated.

SMBne gprot Side Effe cts

The LMX server will keep record of which dialect the SMB redirector negotiated and will use

only that dialect in conversations with the SMB redirector.

Conventions

None.

X/Open CAE Specification (1992)

Page 74 of 267

Core SIVIB Connection A/Ianagement Requests SA/IBtcon Specification

6.2 SMBtcon Spe cification

SMBtcon De taile d De scription

This core protocol request is sent to establish direct access to a resource on an LMX server. The

exact behaviour of this request and the semantics of the password argument depend upon the

security mode of the LMX server.

- share—level security mode

The password establishes the user's rights to access this resource. It must match the

password (if any) defined by the server administrator when the resource was made available

for sharing (offered).

- user—level security mode

Based on the negotiated dialect, an LMX server in user—level security must behave in one of

two different ways:

— If one of the extended SMB protocol dialects was selected the SMB redirector has already

issued an S1VlBsesssetupX request. This request contained a username and password and

resulted in the LMX server assigning a valid UID (refer to Section 3.3.2 on page 12). In

this case, the password field will be meaningless and must be ignored.

— If the core or core plus dialect was selected, the SMB redirector will issue an S1VlBtc0n

request as if the LMX server were in share—level security mode. The LMX server may

select to support a mapping to user—level security (refer to Section 3.3.3 on page 13). The

password supplied with the S1VlBtc0n request can be used for this validation.

SMBtcon Deviations

None.

SMBtcon Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBtcon smb_com SMBtcon

smbfiwct 0 smbfiwct 2

smb_bcc min=4 smb_vwv[0] smb_maxxmt

smb_bu1‘I] smb_pat11 smb_vWv[1] TID

smbfipassword smbfibcc 0
smb_dev1'ce

smb_patb An ASCIIZ buffer (type 04; refer to Section 5.3.4 on page 44) containing a

resource name preceded by the LMX servername. The format is like a

network pathname (refer to Section 5.3.9 on page 46). For example, a resource

called src residing on a server called lmserverl would be referenced by
\\lmserver1\src.

smb_passW0rd An ASCIIZ (type 04) buffer containing the password for the resource. Total

length of the buffer must be less than or equal to 15 bytes. For the extended

protocols the encrypted password string can be up to 24 bytes.

smb_dev1'ce An ASCIIZ (type 04) buffer containing the resource type. Refer to Section 5.3.6

on page 45.

Protocols for X/Open PC Interworking: SMB, Version 2 57

Page 75 of 267

SA/IBtcon Specification

smb_maxXmt

TID

Core SIVIB Connection A/Ianagement Reqiests

A 16-bit integer defining the largest message that the SMB redirector can send
to the LMX server and vice versa.

(Tree ID) A 16-bit integer used by the LMX server in subsequent SMB

redirector requests to refer to a resource relative to smb_path. Most access to

the server requires a valid TID, whether the resource is password protected or

not. The smb_tid field in the SMB header of this request is ignored. The value
Oxffff is reserved.

SMBtcon Error Code Descriptions

: CAE Code :Dos Class
SUCCESS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

SMBtcon Pre conditions

:Dos Code
SUCCESS

ERRnomem

ERRbadpath

ERRinvdevice

ERRaccess

ERRerror

ERRerror

ERRerror

ERRbadpw

: Dl:2'.‘:L{,'.I'iI}llL}l1
Everything worked, no problems.

A memory related resource has depleted.

The CAE path related to the resource is not
valid.

Resource type mismatch for connect.

User not authorised to access specified resource.
Ran out of TIDs.

First command on the NetBIOS session wasn’t

SMBnegprot.
LMX server internal error.

Bad password, name/password pair in an
S1VlBtc0n is invalid.

ERRinvnetname Invalid resource name supplied in the S1V1Btc0n.

1. The SMB redirector attempting to set up this S1VlBtc0n must have established an LMX
session with the LMX server.

2. The path, password and device name must all be valid instances of those types.

SMBtcon Postconditions

1. If there are no errors the TID is valid to be used in future SMB requests until it is nullified

with an S1VlBtd1's request. Otherwise, the TID should not be used in future transactions.

2. If there are no errors the smb_maxXmt size will represent the negotiated maximum buffer
size for the LMX session.

SMBtcon Side Effects

None.

Conve ntions

- Resource Names (see Section 5.3.9 on page 46) applies to the smb_path field.

58

Page 76 of 267

X/Open CAE Specification (1992)

Core SJVIB Connection A/Ianagement Reqiests SA/IBtdis Specification

6.3 SMBtdis Spe cification

SMBtdis De tailed Description

This core protocol request is sent to invalidate the resource (file or print) sharing connection

identified by the TID.

SMBtdis Deviations

None.

SMBtdis Field Descriptions

From SMB redirector I To SMB redirector

I Field Name Field Value I Field Name Field Value

I smb_com SMBtdis I smb_com SMBtdis
smb_wct 0 smb_wct 0

_ smb_bcc 0 _ smb_bcc 0

There are no parameters of interest besides the TID (passed in the smb_tid field of the SMB

header). If an invalid TID is sent, the server will ignore the request and return an error.

SMBtdis Error Code Descriptions

CAE Code DOS Class DOS Code Description

— SUCCESS SUCCESS Everything worked, no problems.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- ERRSRV ERRinvnid TID specified in command was invalid.
- ERRSRV ERRerror LMX server internal error.

SMBtdis Pre conditions

1. The SMB redirector attempting to invalidate this TID must have established an LMX
session with the LMX server.

2. The SMB redirector attempting to invalidate this TID should have established this TID as a
valid one with the LMX server.

SMBtdis Postconditions

1. If there are no errors then the TID will be invalidated and the SMB redirector should not

use the TID again.

2. If an error other than TID Invalid occurs, the TID will be invalidated and the SMB

redirector should not use the TID again.

Protocols for X/Open PC Interworking: SMB, Version 2 59

Page 77 of 267

Core SIVIB Connection 1VIanagementRequests SA/IBeXit Specification

6.4 SMBe xit Spe cification

SMBe xit De taile d De scription

This core protocol request informs the LMX server that an SMB redirector process has
terminated.

The LMX server will release any locks and close any resources owned by the exiting process.

Note that there is no process creation SMB request. PIDs are assigned by the SMB redirector.

SMBexit Deviations

An LMX server should accept this request from any LMX session regardless of dialect.

SMBe xit Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value I Field Name Field Value

smb_com SMBexit I smb_com SMBexit
smb_wct 0 smb_wct 0

smb_bcc 0 _ smb_bcc 0

The smb_p1'd field from the SMB header indicates the process to be terminated.

SMBexit Error Code Descriptions

CAE Code :DOS Class :DOS Code _L'lI:5I::ri|:I-tiI:I-I1
- SUCCESS SUCCESS Everything worked, no problems.
- ERRSRV ERRinvnid Bad TID.

- ERRSRV ERRerror Some other error occurred.

SMBexit Pre conditions

The SMB redirector must have registered a UID and established a TID with the LMX server.

SMBexit Postconditions

None.

SMBexit Side Effects

None.

Conve ntions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 61

Page 79 of 267

Chapter 7

Core SMB File Operation Requests

This section defines the elements of the core SMB protocol related to normal file access. They
are:

S1VlBcreate open a file; create it if it doesn’t exist

S1V1Bmknew create and open a new file; fail if it exists

SMBopen open an existing file

SMBread read from a file

S1V1BWr1'te write to a file

S1V1Blseek set the current position in a file

S1VlBl0ck lock a range of bytes in a file

SA/lBunl0ck unlock a range of bytes in a file

S1V1BfIush force any buffers of a file to disk

SMBclose close a file

S1VlBmV rename a file

S1VlBunl1'nk delete a file

7.1 SMBcre ate Spe cification

SMBcre ate De taile cl De scription

This core protocol request is used to create and open a new regular file, or open an existing

regular file and truncate its length to zero. The file-sharing mode for the open operation cannot

be specified. The FID returned can be used in subsequent commands.

SMBcre ate Deviations

1. The archive, system and hidden file attribute bits may be ignored, in accordance with the

File Attribute mapping convention (see Section 4.3.1 on page 30).

2. The create time specified is used to set the LMX server’s last modify time for the file.

SMBcre ate Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBcreate smb_com SMBcreate

smbflwct 3 smbfiwct 1

smb_vWv[0] smb_attr smb_vWv[0] smb_fid

smb_vWv[1-2] smb_time smb_bcc 0

smbfibcc min=2

smb_but[] smb_patbname

Protocols for X/Open PC Interworking: SMB, Version 2 63

Page 81 of 267

SMBcrea te Specification Core SIVIB File Operation Reqiests

smb_attr This is a file attribute field (see Section 5.3.3 on page 43). It defines the

attributes to be given to the newly—created file. The bits 3 and 4 (Volume label

and directory) are not allowed to be set. If the file already exists, this field is

ignored.

smb_time A 32-bit integer which sets the LMX serVer’s idea of the last modify time for

the file. A Value of zero indicates a null time field (see Section 5.3.1 on page
43).

smb_pathname An ASCIIZ (type 04) buffer containing the name of the file to be created.

smb_fid This signed integer is the FID returned by the LMX server for the opened file.

The SMB redirector will use that FID in other requests to refer to this

particular file.

64 X/Open CAE Specification (1992)

Page 82 of 267

Core SMB File Operation Requests

SMBcre ate Error Code Descriptions

CAE Code

EACCES

EACCES

EACCES

EAGAIN

EFAULT

EINTR

EISDIR

EMFILE

ENFILE

ENOENT

ENOSPC

ENOTDIR

ENXIO

EROFS

ETXTBSY

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRDOS

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

SUCCESS

:DOS Class :DOS Code
ERRDOS ERRnoaccess

ERRnoaccess

ERRnoaccess

ERRbadshare

ERRerr0r

ERRerr0r

ERRnoaccess

ERRnofids

ERRnofids

ERRbadfile

ERRerror

ERRbadpath
ERRerror

ERRerror

ERRaccess

ERRinvnid

ERRinvdevice

ERRaccess

ERRaccess

ERRbaduid

SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 83 of 267

SMBcreate Specification

I Description

File does not exist and the directory in which the I
file is to be created does not permit writing.

Search permission is denied on a component of

the path-prefix.

File exists and write permission is denied.

File exists, mandatory file/record locking is set,

and there are outstanding record locks on the
file.

Path points outside the allocated address space

of the process.

A signal was caught during the operation.

Named file is an existing directory.

Maximum number of file descriptors are

currently open in this process.

System file table is full.

Component of path-prefix does not exist or

pathname is null.

File must be created, and the system is out of

resources necessary to create files.

Component of path-prefix is not a directory.

Named file is a character-special or block-special

file and the device associated with this special
file does not exist; or OENDELAY is set, file is a

FIFO, O_WRONLY is set and no process has the

file open for reading.

Named file resides on read-only file system.

File is a pure procedure file that is being
executed.

TID specified in command is invalid.

File creation request made to a share that is not a

file system subtree.

Named file exists as a directory, special file or

named pipe.

Write and Create permissions required, or the

file attributes specified a volume label.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

Everything worked, no prtzrblcms.

65

SMBcrea te Specification Core SIVIB File Operation Reqiests

SMBcre ate Pre conditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a file system subtree
and valid UID.

2. The SMB redirector must have write permission on the file's parent directory in order to

create a new file, or write permission on the file itself in order to truncate it. The

permission is granted via the security mode used (refer to Section 3.3 on page 12).

SMBcre ate Postconditions

1. The LMX server obeys the rules for mapping the new file into the CAE file system. If the

read-only attribute is set, the CAE write permission bits for the mode of the file are turned
olf.

2. The LMX server’s last modify time for the file will be set according to smb_time. If smb_time

was zero, the last modify time for the file will be left unchanged.

3. The SMB redirector will be granted read/write access to the file if it was created (even if

the read-only bit was set). If the file existed, access rights will be granted according to the

existing access mode.

4. The newly-created or truncated file is opened in the DOS read/write compatibility mode.

SMBcre ate Side Effects

File is created or truncated.

Conventions

- Attribute (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

- Opportunistic Locking (see Section 3.8.2 on page 20).

66 X/Open CAE Specification (1992)

Page 84 of 267

Core SMB File Operation Requests SMBmknew Specification

7.2 SMBm knew Specification

SMBm knew De taile d De scription

This core protocol request is equivalent to the S1VlBcreate request except that it will fail if the

named file already exists.

SMBm knew Deviations

1. The archive, system and hidden file attribute bits are ignored.

2. The create time specified is used to set the LMX server’s last modify time for the file.

SMBm knew Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBmknew smb_com SMBmknew

smb_wct 3 smb_wct 1

smb_vWv[0] smb_attr smb_vwv[0] smb_fid

smb_vWv[1—2] smb_t1'me smb_bcc O

smb_bcc min=2

smb_but[] smb_path

smb_attr A file attribute field (refer to Section 5.3.3 on page 43) containing attributes to

be given to the new file. The bits 3 and 4 (volume label and directory) are not
allowed to be set.

smb_time A 32-bit integer to be used as the file creation time.

smb_path An ASCIIZ (type 04) buffer containing the name of the file to be created.

smb_fid A 16-bit integer containing the FID the SMB redirector will use to refer to the

opened file.

Protocols for X/Open PC Interworking: SMB, Version 2 67

Page 85 of 267

SMBmImew Specification

SMBm knew Error Code De scriptions

Core SIVIB File Operation Reqiests

CAE Code DOS Class DOS Code Description

EACCES ERRDOS ERRnoaccess Search permission is denied on a component of

the path-prefix, or the parent directory does not

permit writing.

EACCES ERRDOS ERRnoaccess Requested permission is denied for the named
file.

EEXIST ERRDOS ERRnoaccess O_CREAT and O_EXCL are set and the file exists.

EFAULT ERRSRV ERRerror Path points outside the allocated address space

of the process.

EINTR ERRSRV ERRerror A signal was caught during the operation.

EMFILE ERRDOS ERRnofids Maximum number of file descriptors are

currently open in this process.

ENFILE ERRDOS ERRnofids System file table is full.

ENOENT ERRDOS ERRbadfile Component of path-prefix does not exist.

ENOSPC ERRSRV ERRerror The system is out of resources necessary to create
files.

ENOTDIR ERRDOS ERRbadpath Component of path-prefix is not a directory.

EROFS ERRSRV ERRerror Named file resides on read-only file system.

- ERRSRV ERRaccess Write and create permissions for the directory

required.

- ERRSRV ERRinvnid TID specified in command is invalid.

- ERRSRV ERRinvdevice File creation request made to a share that is not a

file system subtree.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Ewryrthing worked, no pmlzrlc ms.

SMBm kne w Pre conditions

1. The SMB redirector has sent a valid SMB request, with a valid UID and valid TID for a file

system subtree.

2. The SMB redirector must have appropriate permissions in order to create the new file.

3. The named file must not exist before the request is sent.

SMBm kne w Postconditions

1. A new file with the given pathname will be created and opened, or an error will be
returned.

2. The LMX server obeys the rules for mapping the new file into the CAE file system. If the

read-only file attribute is set, the CAE write permission bit of the mode for the new file
must be turned off.

3. The LMX server’s last modify time for the file will be set to smb_t1'me. If smb_t1'me is zero,

the LMX server will assign the current time.

4. The SMB redirector is granted read/write access to the file regardless of smb_attr.

5. The newly-created file is opened in DOS read/write compatibility mode.

58 X/Open CAE Specification (1992)

Page 86 of 267

SMBopen Specification Core SMB File Operation Requests

7.3 SMBope n Spe cification

SMBope n De taile cl De scription

This core protocol request is used to open an existing regular file and obtain an FID which is

used to refer to the file in subsequent requests. It cannot be used to open directories or LMX

named pipes (refer to the X/Open CAE Specification, [PC Mechanisms for SMB).

SMBope n Deviations

The archive, system and hidden file attribute bits in the output attribute field are treated

according to Section 4.3.1 on page 30.

SMBope n Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBopen smb_com SMBopen
smb_wct 2 smb_wct 7

smb_vWv[0] smb_mode smb_vWv[0] smb_fid

smb_vWv[1] smb_iattr smb_vWv[1] smb_oattr

smb_bcc min=2 smb_vwv[2-3] smb_time

smb_bui[] smb_patb smb_vWv[4-5] smb_s1'ze
smb_vWv[6] smb_access

smb_bcc 0

smb_mode A file-sharing control field which indicates the access modes and deny modes

being requested (see Section 5.3.5 on page 44).

smb_iattr Attributes to be assigned to the file. Ignored.

smb_patb An ASCIIZ (type 04) buffer containing the name of the file to be opened.

smb_fid A 16-bit signed integer containing the FID returned for the opened file.

smb_0attr Attributes currently assigned to the file (see Section 5.3.3 on page 43).

smb_time A 32-bit integer time of the last modification to the opened file (see Section

5.3.1 on page 43).

smb_size A 32-bit signed integer which contains the current size of the opened file, in

bytes.

smb_access An access mode field (see Section 5.3.7 on page 46) indicating the access

permission set actually granted to the opening process.

70 X/Open CAE Specification (1992)

Page 88 of 267

Core SMB File Operation Requests

SMBope n Error Code De scriptions

CAE Code

EACCES

EACCES

EAGAIN

EFAULT

EINTR

EISDIR

EMFILE

ENFILE

ENOENT

ENOTDIR

ENXIO

EROFS

ETXTBSY

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRDOS

ERRDOS

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRDOS

SUCCESS

:DOS Class :DOS Code
ERRDOS ERRnoaccess

ERRnoaccess

ERRbadshare

ERRerror

ERRerror

ERRnoaccess

ERRnofids

ERRnofids

ERRbadfile

ERRbadpath
ERRerror

ERRerror

ERRnoaccess

ERRaccess

ERRinvnid

ERRinvdevice

ERRbaduid

ERRnoaccess

SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 89 of 267

SMBopen Specification

I Description

Search permission is denied on a component of

the path-prefix.

Requested access permission is denied for the
named file.

File exists, mandatory file/record locking is set,

and there are outstanding record locks on the
file.

Path points outside the allocated address space

of the process.

A signal was caught during the open operation.

Named file is a directory and oflag is write or
read/write.

Maximum number of file descriptors are

currently open in this process.

System file table is full.

File does not exist, or component of pathname
does not exist.

Component of path-prefix is not a directory.

Generic LMX server open failure.

Named file resides on read—only file system and

requested access permission is write or
read/write.

File is a pure procedure file that is being

executed and requested access permission

specifies write or read/write.

Permission conflict between requested

permission and permissions for the shared

resource; for example, open for write of a file in

a read-only file system subtree.

TID specified in command is invalid.

File creation request made to a share that is not a

file system subtree.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

Open mode failure. See rules for Compatibility

and DENY mode opens.

_ Everythitig worked, no ptnblc-ms.

71

SMBopen Specification Core SIVIB File Operation Reqiests

SMBope n Pre conditions

1. The SMB redirector has sent a valid SMB request, with a valid UID and a valid TID.

2. The file being opened must exist.

3. The pathname specified is not an LMX named pipe.

SMBope n Postconditions

1. The file will be opened in the requested mode with the returned FID, or an error will be
returned.

2. The file will be opened only if the user has the appropriate permissions and there is no

conflict between already-granted access or deny modes and the requested access or deny
modes.

SMBope n Side Effects

The file exclusion mode requested will be in effect for subsequent open commands.

Conve ntions

- Access (see Section 4.3.2 on page 30).

- Attribute (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

- Opportunistic Locking (see Section 3.8.2 on page 20).

72 X/Open CAE Specification (1992)

Page 90 of 267

Core SIVIB File Operation Requests SlVIBread Specification

7.4 SMBre ad Spe cification

SMBre ad De taile d Description

This core protocol request will read bytes from a regular file and, if an extended protocol is

negotiated, from a named pipe, mailslot or directly accessible device. End—of—file is indicated by

returning fewer bytes than requested; a read starting at or beyond end—of—file returns zero bytes.

SMBre ad Deviations

None.

SMBre ad Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBread smb_com SMBread

smb_wct 5 smb_wct 5

smb_vwv[0] smb_fid smb_vwv[0] smb_c0unt

smb_vwv[1] smb_bytecount smb_vwv[1-4] rsvd (MBZ)

smb_vwv[2-3] stnb_ol'I§et smb_bcc length of data + 3
smb_vwv[4] smb_c0untlefi smb_but[] smb_data

smb_bcc 0

smb_fid A 16-bit signed integer indicating the file from which smb_data should be read.

smb_bytec0unt A 16-bit unsigned integer indicating the amount of data to be read. The SMB

redirector will ensure that the amount requested will fit in the negotiated
maximum buffer size.

smb_0fl’Set A 32-bit unsigned integer defining the file pointer position.

smb_c0unt1eft A 16~bit unsigned integer. This field is advisory, and some SMB redirectors

will set it to zero, in which case it should be ignored. If the value is not zero,

then it is an estimate of the total number of bytes that will be read, including

those read by this request. This additional information may be used by the

LMX server to optimise buffer allocation and/or read—ahead.

smb_c0unt A 16-bit unsigned integer giving the actual number of bytes returned to the

SMB redirector. This must be equal to smb_bytec0unt, unless:

1. End—of—file was reached before reading smbgbytecount bytes. The number

of bytes actually read, along with that data, is returned.

2. smb_0fl’Set pointed at or beyond end—of—file. A zero (0) value is returned.

rsvd These four 16~bit fields are reserved and must be zero.

smb_data A Data Block (type 01) buffer containing the actual data read from the file (see

Section 5.3.4 on page 44).

Protocols for X/Open PC Interworking: SMB, Version 2 73

Page 91 of 267

SMBread Specification

SMBre ad Error Code Descriptions

' CAE Code _DOS Class
' EIO ERRHRD

ENXIO ERRHRD

EBADF ERRSRV

EAGAIN ERRDOS

EDEADLK ERRSRV

ENOLCK ERRDOS

- ERRDOS

- ERRDOS

- ERRDOS

- ERRSRV

- ERRSRV

- ERRSRV

- ERRSRV

- SUCCESS

SMBre ad Pre conditions

:DOS Code
ERRdata

ERRwrite

ERRerror

ERRlock

ERRerror

ERRnoaccess

ERRnoaccess

ERRbadaccess

ERRbadfid

ERRerror

ERRinvdevice

ERRinvnid

ERRbaduid

SUCCESS

Core SIVIB File Operation Recyests

I Description

A problem has occurred in the physical 1/0.

The device associated with the file descriptor is a

block-special or character-special file and the

value of the file pointer is out of range.

An FID was validated by the LMX server but

unacceptable to the system.

O_NDELAY set and (a) read from empty CAE

FIFO attempted, or (b) file open on the LMX
server and a record lock on the file exists.

The read would block and deadlock would

result.

File is open on the LMX server in enforced—lock
mode, a record lock exists on the file, and the file

was opened with O_NDELAY set.

Attempt to read from a portion of the file that
the LMX server knows has been locked or been

opened in deny-read.

Read permission required.

Attempt to read from an FID that the LMX

server does not have open.

Corrupt SMB request has been encountered.

Attempt to read from an open spool file.

Invalid TID in request.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Everything worked, no prulzrlc ms.

1. The SMB redirector has sent a valid SMB request.

2. The SMB redirector’s read request will fit in an SMB buffer of the negotiated size.

3. The SMB redirector must have a valid TID for a file system resource with the appropriate

permissions for the read operation.

4. The SMB redirector must have a valid FID and at least read access.

SMBre ad Postconditions

1. If the read was successful, the LMX server has returned to the SMB redirector either the

data for all of the requested read or all the data that was available up to the EOF.

2. If the read failed, the LMX server has returned to the SMB redirector an SMB response

indicating the reason for the failure of this read or a previous block operation.

74

Page 92 of 267

X/Open CAE Specification (1992)

Core SIVIB File Operation Reqiests SMBread Specification

SMBre ad Side Effe cts

None.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SIVIB, Version 2 75

Page 93 of 267

SMBwr1'te Specification Core SMB File Operation Requests

7.5 SMBwrite Specification

SMBwrite De taile d De scription

This core protocol request writes bytes from a regular file and, if an extended protocol is

negotiated, to a named pipe, mailslot or directly accessible device. It can also be used to truncate

a file to a given point or extend a file beyond its current size.

SMBwrite Deviations

None.

SMBwrite Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwrite smb_com SMBwrite

smb_wct 5 smb_wct 1

smb_vWv[0] smb_fid smb_vWv[0] smb_count

smb_vWv[1] smb_bytecount smb_bcc 0
smb_vWv[2-3] smb_o1'Iset

smb_vwv[4] smb_count1eft

smb_bcc length of data + 3
smb_but[] smb_data

smb_fid The FID to be written to.

smbwbytecount An unsigned integer indicating the number of bytes to be written. If this value
is zero, the file should be truncated or extended to the size indicated in

smb_0fl’Set. If extended, the bytes between the old and new EOF will be zero.

smb_0fl’Set A 32-bit unsigned integer defining the file position at which the data should be
written.

smb_c0unt1efl A 16-bit unsigned integer. This field is advisory, and some SMB redirectors

will set it to zero, in which case it should be ignored. If the value is not zero,

then it is an estimate of the total number of bytes that will be written,

including those written by this request. This additional information may be

used by the LMX server to optimise buffer allocation or perform write—behind.

smb_data A Data Block (type 01) buffer containing the actual bytes to be written (see

Section 5.3.4 on page 44).

smb_c0unt A 16-bit unsigned integer containing the actual number of bytes written. If

this is less than smb_bytec0unt but no explicit error is returned, then

insufficient file system space prevented more than smb_c0unt of bytes from

being written.

76 X/Open CAE Specification (1992)

Page 94 of 267

SMBwrite Error Codes

CAE Code

E10

ENXIO

EBADF

EAGAIN

EFBIG

ENOSPC

EPIPE

EDEADLK

ERANGE

ENOLCK

:DOS Class
ERRHRD

ERRHRD

ERRDOS

ERRDOS

SUCCESS

SUCCESS

ERRHRD

ERRSRV

ERRSRV

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRSRV

SUCCESS

SMBwrite Preconditions

1. The SMB redirector has sent a valid SMB request.

2. The SMB redirector’s write request will fit in an SMB buffer.

Core SMB File Operation Requests

:DOS Code
ERRdata

ERRwrite

ERRbadfid

ERRnoaccess

SUCCESS

SUCCESS

ERRbadunit

ERRerror

ERRerror

ERRnoaccess

ERRbadaccess

ERRbadfid

ERRerror

ERRinvdevice

ERRinvnid

ERRbaduid

SUCCESS

SMBWrite Specification

I Description

A problem occurred during physical 1/0.

An error occurred on the FID being written to.

A valid smb_fid mapped to an LMX server FID

not accepted by the operating system.

Resources for I/O temporarily exhausted

The file has grown too large (size exceeds u11'm1't)
and no more data can be written to the file. An

smb_count of 0 will be returned to the SMB

redirector in the count field of the SMB response.
This indicates to the SMB redirectors that the file

system is full.

No space on the file system; smb_count will be 0,

indicating the file system is full.

Write to a named pipe with no reader.

The write would block due to locking, but
O_NDELAY was set.

Attempted write size is outside of the minimum

and maximum ranges that can be written to the

supplied FUD.

A record lock has been taken on the file, or the

SMB redirector has attempted to write to a

portion of the file that the LMX server knows

has been locked, opened in deny-write open

mode, or opened in read-only mode.

Write permission required.

Invalid FID specified.

Corrupt SMB request was received.

Attempt to write to an open spool file.

Invalid TID specified.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

Everything worked, no prcrblclns.

3. The SMB redirector must have a valid TID to a regular file system resource with

appropriate permissions for the write operation.

4. The SMB redirector must have a valid FID with at least write access.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 95 of 267

77

Core SMB File Operation Requests SlVIBIseek Specification

7.6 SMB1se e k Spe cification

SMB1se e k De taile d De scription

The S1V1B1seek core protocol request sets the current file pointer for a regular file. The response

returns the new file pointer expressed as the offset from the start of the file, and may be beyond

the current end—of—file. An attempt to seek to a position before the beginning-of-file sets the file

pointer to beginning-of-file.

Note that the current file pointer at the start of this command reflects the offset plus data length

specified in the previous read, write or seek request, and the pointer set by this command will be

replaced by the offset specified in the next read, write or seek command.

SMB1se e k De viations

None.

SMB1se e k Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMB1seek smb_com SMB1seek

smb_wct 4 smb_wct 2

smb_vWv[0] smb_fid smb_vWv[0-1] smb_o1'I§et

smb_vWv[1] smb_mode smb_bcc 0

smb_vwv[2-3] stnb_ofl’set

smb_bcc O

smb_fid The FID whose pointer is to be manipulated.

smb_m0de A 16-bit field indicating where (beginning=0, current position=l, end=2) the

seek is to take place.

smb_0fl’Set A 32-bit signed integer. In the request, indicates how far to move from the

position indicated by smb_m0de. Positive values move forward in the file

towards EOF; negative values move backward through the file towards BOF.

In the response, indicates the resulting position after the move, relative to
BOF.

Protocols for X/Open PC Interworking: SMB, Version 2 79

Page 97 of 267

SMBIseek Specification

SMB1se e k Error Code De scriptions

_ CAE Code _DOS Class _DOS Code
EBADF ERRDOS ERRbadfid

EINVAL ERRDOS ERRnoaccess

ESPIPE ERRDOS ERRnoaccess

- ERRDOS ERRbadfid

- ERRDOS ERRnoaccess

- ERRSRV ERRinvnid

- ERRSRV ERRinvdevice

- ERRSRV ERRerror

- ERRSRV ERRbaduid

- SUCCESS SUCCESS

SMB1se e k Pre conditions

Core SIVIB File Operation Recyests

I Description

FID is valid but not accepted by the system.

Invalid smb_m0de.

Cannot seek on this file (named pipe).

The SMB redirector has supplied an invalid FID.

The SMB redirector’s context does not permit
this access.

TID specified in command is invalid.

Attempt to seek on a non-regular file.

The LMX server has received a corrupt SMB

request.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Everything worked, no pmlzrlc ms.

1. The SMB redirector has sent a valid SMB request with a valid TID for a file system
I‘€SOLlI‘C€.

2. The SMB redirector must have acquired a valid FID from the LMX server.

3. The SMB redirector has specified a valid smb_m0de value.

SMB1se e k Postconditions

1. If the S1VlB1seel(was successful, the LMX server has returned to the SMB redirector the new

file pointer position.

2. If the S1V1B1seel(was unsuccessful, the LMX server has returned an error indicating the

failure of this operation or of a previous block operation.

SMB1se e k Side Effe cts

The current file position maintained by the LMX server is changed to the offset returned to the
SMB redirector.

Conve ntions

None.

80

Page 98 of 267

X/Open CAE Specification (1992)

Core SJVIB File Operation Reqiests

7.7 SMBlock Specification

SMBlock De taile cl De scription

This command is sent by an SMB redirector process to lock a given byte range of a regular file. A

lock prevents attempts to lock, read or write the byte range by any other SMB redirector.

Multiple non-overlapping lock ranges are allowed on the same file. Overlapping locks are not

allowed. Byte ranges beyond the current end—of—file may be locked; however, such locks will not

cause allocation of file space. A lock may only be unlocked by the process (PID) that performed
the lock.

SMBlock Deviations

Refer to Section 4.4 on page 33.

SMBlock Field De scriptions

SA/[Block Specifica tion

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBlock smb_com SMBlock

smb_wct 5 smb_wct O

smb_vWv[0] smb_fid smb_bcc O

smb_vWv[1-2] smb_count

smb_vwv[3-4] smb_0fl§et

smb_bcc O

smb_fid The FID to be locked.

smb_c0unt A 32~bit unsigned integer containing the number of bytes in the lock range.

smb_0fl'§et A 32-bit unsigned integer containing the offset to the start of the lock range.

SMBlock Error Code Descriptions

CAE Code :Dos Class :Dos Code
EBADF ERRSRV ERRerror

EACCES ERRDOS ERRnoaccess

EACCES ERRDOS ERRlock

ENOLCK ERRDOS ERRlock

EDEADLK ERRSRV ERRerror

- ERRDOS ERRbadfid

- ERRDOS ERRlock

- ERRSRV ERRerror

- ERRSRV ERRinvnid

- ERRSRV ERRinvdevice

- ERRSRV ERRbaduid

- SUCCESS SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 99 of 267

- D351; r1'pt1':_:-n

I A valid FUD was rejected by the underlying
system.

File access rights do not match requested locks.

A lock has already been taken out on this record.

Insufficient resources to place the requested
lock.

The lock request would block and cause a

deadlock with another process.

An invalid FID was specified.

Byte range is already locked by another serving
process.

An invalid SMB request was sent.

TID specified in command is invalid.

Attempt to lock on a non-regular file.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

E1;-'I3Fj.-'tl'IlI'Ig worked, no prohlenis.

81

SA/[Block Specification Core SMB File Operation Requests

SMBlock Pre conditions

1. The SMB redirector has sent a valid SMB request with valid access to the file system
subtree.

2. The SMB redirector must have a valid FID.

SMBlock Postconditions

The given byte range of the file will be locked preventing access by other SMB redirectors not

using the same FID.

SMBlock Side Effects

Only requests using the PID as sent in the S1VlB1ock request may access the locked record(s).

Conve ntions

- Locking (see Section 4.4 on page 33).

82 X/Open CAE Specification (1992)

Page 100 of 267

Core SIVIB File Operation Requests SlVIBun1ock Specification

7.8 SMBunlock Spe cification

SMBunlock De tailed Description

This core protocol request is used to unlock a byte range. The byte range specified must be

exactly the same as that specified in a previous successful lock request from the same SMB

redirector process (that is, the PID must be the same). An unlock request for a range that was
not locked is treated as an error.

SMBunlock Deviations

None.

SMBunlock Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

m1b_com SMBunlock smb_com SMBunlock

smb_wct 5 smb_wct 0

smb_vwv[0] smb_fid smb_bcc 0

smb_vwv[1-2] smb_count

smb_vwv[3-4] smb_ol‘I§et

smb_bcc O

This request is identical in format to SlVIB10ck (see Section 7.7 on page 81).

SMBunlock Error Code Descriptions

Additional applicable error codes can be found in the specification of SlVIB10ck (see Section 7.7 on

page 81).

CAE Code _DOS Class _DOS Code UE5Cri|:I-tiG!'I _
- ERRDOS ERRlock The record cannot be unlocked with this PID or

a lock on this range does not exist for this PID.

- _ SUCCESS _ SUCCESS _ F.v:-:r}rthing_ worked, no [.1-I'£_J-lJII:‘.III.':'.

SMBunlock Pre conditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a file system
resource.

2. The SMB redirector must have a valid FID.

3. The byte range and PID specified must exactly match a byte range and PID specified in a

previous successful lock operation on this FID.

SMBunlock Postconditions

The specified byte range of the file will be unlocked, or an error will be returned.

Protocols for X/Open PC Interworking: SMB, Version 2 83

Page 101 of 267

Core SIVIB File Operation Requests

7.9 SMBflush Spe cification

SMBflush De taile d De scription

This core request flushes data and allocation information for a specified file or for all files open
under this LMX session.

SMBflush De viations

Some CAE systems provide no way for a programme to block until the local file cache has

actually flushed to the disk, but simply indicate that a flush has been scheduled and will

complete soon. An LMX server should nonetheless take steps to maximise the probability that

SlVIBflush Specification

the data is truly on disk before the SMB redirector is notified.

An LMX server may always flush all files supported on the LMX session even if a single-file

flush was requested.

SMBflush Field De scriptions

From SMB redirector

Field Name Field Value

smb_com SMBflush

smb_wct 1

smb_vwV[0] smb_fid

smb_bcc 0

smb_fid The FID to be flushed. If this field is set to Oxffff (that is, -1), all files open in

To SMB redirector

I Field Name Field Value

I smb_com SMBflush
smb_wct 0

smb_bcc 0

the LMX session environment will be flushed.

SMBflush Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRinvnid Bad TID.

- ERRDOS ERRbadfid The specified FID is not open.

- ERRSRV ERRerror Other CAE errors mapped here.

- ERRSRV ERRbaduid The UID given (smbfluid) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

SMBflush Pre conditions

1. The SMB redirector must have issued a valid SMB request with a valid UID and valid TID
for a shared resource.

2. The specified FID must be open, or it must be Oxffff.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 103 of 267

85

Core SJVIB File Operation Reqlests

7.10 SMBclose Specification

SMBclose De tailed Description

SlVfl3cIose Specification

This core protocol request is sent by an SMB redirector process to invalidate the given FID for

that process. All locks held by the SMB redirector process on that FID will be released as part of

the close. The FID cannot be used by the SMB redirector for further file access requests.

SMBclose Deviations

None.

SMBclose Field De scriptions

_ From SMB redirector

_ Field Name Field Value
smb_com SMBclose

smb_wct 3

smb_vvvV[0] smb_fid

smb_vwv[1—2] smb_t1'me

_ smb_bcc 0

smb_fid The FID to be closed.

smb_tl'me

To SMB redirector

' Field Name Field Value

I smb_com SMBclose
smb_wct 0

smb_bcc 0

An LMX server may optionally update the last modification time for the file to

smb_time. A zero (0) or Oxffffffff smb_time results in the LMX server using the
default value.

SMBclose Error Code Descriptions

CAE Code DOS Class DOS Code Description

EBADF ERRDOS ERRbadfid The FID is valid but no longer accepted by the

operating system.

- ERRDOS ERRbadfid The SMB redirector has supplied an invalid FID.

- ERRSRV ERRinvnid TID specified in command is invalid.

- ERRSRV ERRinvdevice Attempt to close an open spool file.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

SMBclose Preconditions

1. The SMB redirector has sent a valid SMB request, with a valid UID and TID.

2. The SMB redirector has sent a valid FID for an open file.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 105 of 267

87

SMBclose Specification Core SIVIB File Operation Reqiests

SMBclose Postconditions

1. If the file being closed was written to, all the modified buffers for the file will be flushed to

the file system.

2. Any remaining locks on the FID (including opportunistic locks) will be removed.

3. The last modify time for the file will be set to the time specified by the SMB redirector.

4. The FID will be invalidated for further file access requests.

SMBclose Side Effects

None.

Conve ntions

None.

88 X/Open CAE Specification (1992)

Page 106 of 267

Core SMB File Operation Recyests SMBmv Specification

7.11 SMBmv Specification

SMBmv De tailed De scription

This core protocol request changes the name of one or more files or directories. Multiple files

may be renamed in response to a single request, as S1VlBmV supports filenames with wildcards in

the last 8.3 component of the pathname; wildcards elsewhere in pathnames are not permitted.

Every file that matches the attribute field and the first pathname is renamed according to the

second pathname, provided that file does not already exist (see Section 3.6 on page 17 for more
details of the name transformation).

Wildcards are not allowed in the destination path for directories. A move of a directory cannot

have a destination located in the directory itself or any subdirectory within the source directory.

In these conditions the error <ERRDOS, ERRbadpath> is to be returned.

If a * is received it indicates to the LMX server to fill the remainder of the component with ?.

Any characters provided after the * will be ignored and the usual ? wildcard mapping applies.

A file to be renamed can be open. If it is opened by the requesting process, the open must be in

compatibility mode. Otherwise, the rename fails with <ERRDOS, ERRnoaccess>. If the file is

opened by another process, that process has an oplock on the file, and the process has asked for

extended notification, the rename request will block until after the oplock has been broken. If

the process with the oplock closed the file, the rename takes place; if not, it fails.

There must not already be a different file existing with the new name. If there is, the rename will

fail. If wildcards are used in a rename operation, and only some of the renames fail for any

reason, the request will fail silently; that is, no error will be returned.

Because an LMX server may serve multiple requests on the same resource simultaneously, there

may be interactions between the execution of this request and ongoing searches of the same

resource (SMBsearch, SMB1first, SMBti1niq.1e, SMBIc1ose). Although there is no prohibition on

renaming directories actively being searched, an LMX server may cause the search to appear to

have reached the end of the directory since no more entries will be found.

SMBm v De viations

Some LMX servers will ignore the attribute field; others treat it according to the Attribute
convention.

An LMX server may choose to return the error <ERRDOS, ERRdiffdevice> if the move requested

spans two different CAE file systems.

SMBmv Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value _ Field Name Field Value
smb_com SMBmv smb_com SMBmv

smb_wct 1 smb_wct 0

smb_vvvv[0] smb_attr smb_bcc 0

smb_bcc min = 4

smb_bui[] smb_o1dpath

mrl;r_ne-xpam

smb_attr A file attribute field. An LMX server should match file attributes against this

field when selecting files which match smb_01dpath to rename. Items that

match this field are added with regular files to the list of items moved.

Protocols for X/Open PC Interworking: SMB, Version 2 89

Page 107 of 267

SMBmv Specifica tion

smb_o1dpath

smb_newpat11

Core SIVIB File Operation Reqiests

An ASCIIZ (type 04) buffer containing the name of the file or files to be

renamed. Only the filename component (not directory components) may
contain wildcards.

An ASCIIZ (type 04) buffer containing the new name(s) to be given to the

file (s) which match smb_01dpath.

SMBmv Error Code Descriptions

_ CAE Code _DOS Class
ENOTDIR ERRDOS

ENOENT ERRDOS

EACCES ERRSRV

EEXIST ERRDOS

EXDEV ERRDOS

EROFS ERRHRD

EMLINK ERRDOS

ENOSPC ERRDOS

EBUSY ERRDOS

ETXTBSY ERRDOS

- ERRSRV

ERRSRV

- ERRSRV

- SUCCESS

SMBm V Pre conditions

DOS Code

I ERRbadpath

ERRbadfile

ERRaccess

ERRnoaccess

ERRdiffdevice

ERRnowrite

ERRnoaccess

ERRnoaccess

ERRnoaccess

ERRnoaccess

ERRaccess

ERRerror

ERRbaduid

_ SUCCESS

Description

A component in the old pathname is not a

directory.
The old file does not exist.

A component in a pathname denies the required

permission.

The new file already exists.

Attempt to rename to a different device.

Attempt to write on a read-only file system.

Too many links to old file.

The directory is full.

The old path is the mounted point for a file

system.

The old path is the last link to an executing
programme.

An attempt was made to change a volume label.
Internal error.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

Eve:-ylI1ir1g worked, no [JITJIJ-|{:‘.|£ll.‘.w'.

1. SMB, UID and TDD are valid; TID is for a file system resource.

:“.°°.N
smb_0ldpath must refer to one or more files.

Transformation with smb_newpath must not match any existing files.

Process has appropriate permissions for all directories in both path arguments; write

permissions on last directory in each path argument.

SMBm V Postconditions

smb_01dpath no longer points to any existing files. (This condition may not persist in the

presence of other file—sharing activity, or if some of the new names conflicted with already-

existing files.)

90

Page 108 of 267

X/Open CAE Specification (1992)

SMBunI1'nk Specification

7.12

92

Core SMB File Operation Requests

SMBun1ink Spe cification

SMBunlink De taile cl De scription

This core protocol request is sent to delete a regular file or files. Read-only files may not be

deleted unless the read-only attribute is set in the S1VIBun11'nk request. Wildcards in the filename

part of the pathname are supported.

The effect of the S1VlBunl1'nk will be LMX server implementation-dependent. Normally only the

referenced filename can be deleted. If another SMB redirector has the file open, the contents of
the file will remain available until that SMB redirector closes the handle to the file. If

opportunistic locking is supported and another SMB redirector has been granted an oplock on

the file, the process has asked for notification of the S1VlBunl1'nk request. The S1VlBun11'nk request

being processed will block until the oplock has been broken (reference Section 3.8.2 on page 20).

If a wildcard pathname matches more than one file, and not all of the files could be unlinked, the

request fails silently.

The smb_attr field may be applied as an additional filter on files matching the wildcard string in

smb_path. LMX servers may optionally provide this filtering function.

SMBunlink Deviations

Only the specified directory entry is immediately deleted. The file contents are deleted only

when all the file’s directory entries have been deleted and all the FIDs associated with it have

been destroyed.

Some LMX servers may ignore the smb_attr field. Others will treat it in accordance with the

attribute convention (refer to Section 3.7 on page 17).

LMX servers require the user to have write permission in the target file’s parent directory.

SMBunlink Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBun11'nk smb_com SMBun11'nk

smb_wct 1 smb_wct 0

smb_vwv[0] smb_attr smb_bcc 0

smb_bcc min = 2

smb_bu1{] 5mb_parl1

smb_attr A file attribute field. Some LMX servers treat it as indicating the attributes

that the target file must have.

smb_path An ASCIIZ (type 04) buffer indicating the file to be unlinked.

X/Open CAE Specification (1992)

Page 110 of 267

Core SMB File Operation Requests SMBunIink Specification

SMBunlink Error Code De scriptions

CAE Code DOS Class DOS Code Description

ENOTDIR ERRDOS ERRbadpath A component in the path-prefix is not a

directory.

ENOENT ERRDOS ERRbadfile The specified file does not exist.

EACCES ERRSRV ERRaccess A component in the path denies the required

permission.

EPERM ERRDOS ERRnoaccess The specified file is a directory.

EROFS ERRHRD ERRnowrite Attempt to modify a read-only file system.

EBUSY ERRDOS ERRnoaccess The specified file is a directory.

ETXTBUSY ERRDOS ERRnoaccess The specified file is the last link to a shared text
file.

- ERRSRV ERRaccess Attempt to delete a volume label, or delete

permission required.

- ERRSRV ERRinvdevice Attempt to unlink a non-regular file.
ERRSRV ERRerror Internal error.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS _Everj,,1hi:Ig worked, no problems.

SMBunlink Pre conditions

1. The SMB request, UID and TDD are valid; the TID refers to a file system resource with write

permissions.

2. smb_path refers to one or more existing files.

3. The directory containing the files to be unlinked must allow writes by the requesting
process.

4. The files to be unlinked are not opened (except by the request process in compatibility
mode).

SMBunlink Postconditions

The file’s directory entries are removed.

SMBunlink Side Effects

None.

Conventions

- Access (see Section 4.3.2 on page 30).

- Attribute (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

- Opportunistic Locking (see Section 3.8.2 on page 20).

- Wildcards (see Section 3.6 on page 17).

Protocols for X/Open PC Interworking: SMB, Version 2 93

Page 1 11 of 267

Core SIVIB File Operation Reqwsts

94 X/Open CAE Specification (1992)

Page 112 of 267

Chapter 8

Core SMB Directory and Attribute Operations

This section defines the elements of the core SMB protocol which manipulate directories and

attributes. They are:

S1V1Bml(dir create an empty directory

S1VlBrmdir delete an empty directory

S1VlBsearch perform a wildcard lookup in a directory

SMBgetatr get file attributes

S1VlBsetatr set file attributes

S1VlBdsl(attr get information about the LMX server’s file system

S1VlBchl(path ensure a path is valid and points to a directory

8.1 SMBm kdir Spe cification

SMBm kdir De taile cl Description

This core protocol request creates a new directory which must not already exist. Write

permission is required in the specified directory's parent directory.

SMBm kdir Deviations

The LMX server obeys the rules for mapping the new directory into the CAE file system (refer to

Section 4.3.1 on page 30).

SMBm kdir Field De scriptions

From SMB redirector _ To SMB redirector

Field Name Field Value _ Field Name Field Value
smb_com SMBmkdir smb_com SMBml(dir

smb_wct 0 smb_wct 0

smb_bcc min=2 smb_bcc 0

smb_but[] smh_pai:i: _ _

smb_path An ASCIIZ (type 04) buffer containing the name of the directory to be created.

Protocols for X/Open PC Interworking: SMB, Version 2 95

Page 113 of 267

SA/IBmkdir Specification

SMBm kdir Error Code De scriptions

: CAE Code :DOS Class
ENOTDIR ERRDOS

ENOENT ERRDOS

EACCES ERRDOS

EROFS ERRHRD

EEXIST ERRDOS

ENOSPC ERRDOS

EIO ERRHRD

EMLINK ERRDOS

- ERRSRV

- ERRSRV

— SUCCESS

SMBm kdir Preconditions

:DOS Code
ERRbadpath

ERRbadpath
ERRnoaccess

ERRnowrite

ERRfilexists

ERRnoaccess

ERRdata

ERRnoaccess

ERRerror

ERRbaduid

_ SUCCESS

Core SIVIB Directory and Attribute Operations

I Description

A component of the path-prefix was not a

directory.

A component of the path-prefix did not exist.

A component of the path-prefix denied search

permission.

Attempt to write a read-only file system.

The specified path already exists.

The parents directory is full.

Physical I/0 error on disk.

Too many links to the parent directory.
Internal error.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

_ E‘\-'E'.'I‘}"II1iI1g worked, no pmble ma

1. Valid SMB request, UID and TDD; TID is for a file system subtree.

2. The parent directory of the new directory must have the necessary access rights to create a

directory.

SMBm kdir Postconditions

The directory is created in the file system.

SMBm kdir Side Effe cts

None.

Conve ntions

- Filename (see Section 3.5 on page 15).

96

Page 114 of 267

X/Open CAE Specification (1992)

Core SIVIB Directory and Attribute Operations SA/IBrmdir Specification

8.2 SMBrm dir Spe cification

SMBrm dir De taile d Description

This core protocol request deletes an empty directory. The requesting UID must have write

permission in the target directory’s parent directory.

Because an LMX server may serve multiple requests on the same resource simultaneously, there

may be interactions between the execution of this request and ongoing searches of the same

resource (S1V1Bsearch, S1VlB1‘first, SIVlBIi1nique, S1VIBIc10se). Although there is no prohibition on

deleting directories actively being searched, an LMX server may cause the search to appear to

have reached the end of the directory since no more entries will be found.

SMBrm dir Deviations

None.

SMBrm dir Field De scriptions

From SMB redirector To SMB redirector
Field Name Field Value _ Field Name Field Value
smb_com SMBrmdir smb_com SMBrmdir

smb_wct 0 smb_wct 0

smb_bcc min=2 smb_bcc 0

smb_but[] smb path

smb_path An ASCIIZ (type 04) buffer containing the name of the directory to delete.

SMBrm dir Error Code Descriptions

CAE Code _DOS Class _DOS Code _Der~'.::riptinn _
ENOTDIR ERRDOS ERRbadpath A component in the path-prefix is not a

directory.

ENOENT ERRDOS ERRbadfile The specified directory does not exist.

EACCES ERRDOS ERRnoaccess A component in the path denies the required

permission.

EROFS ERRHRD ERRnowrite Attempt to modify a read-only file system.

EBUSY ERRDOS ERRnoaccess The directory is in use and cannot be removed at
this time.

EEXIST ERRDOS ERRnoaccess Attempt to remove a non-empty directory.
- ERRSRV ERRerror Internal error.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- _ SUCCESS _ SUCCESS _ Fiver}-rfllirug worked, no prutilertns.

Protocols for X/Open PC Interworking: SMB, Version 2 97

Page 115 of 267

SA/fl3rmdir Specification Core SIVIB Directory and Attribute Operations

SMBrm dir Pre conditions

1. Valid SMB request, UID and TDD; TID refers to a file system subtree.

2. The UID has write access to the parent directory of the target.

SMBrm dir Postconditions

The directory is deleted.

SMBrm dir Side Effe cts

An in-progress search from another process may receive an inconsistent View of the resource.

Conventions

- Access (see Section 4.3.2 on page 30).

- Filename (see Section 3.5 on page 15).

98 X/Open CAE Specification (1992)

Page 116 of 267

Core SJVIB Directory and Attribute Operations

8.3

SlVIBsearch Specification

SMBse arch Specification

SMBse arch De taile d De scription

This core protocol request searches a directory for one or more regular files matching a wildcard

template. Two forms of the SMBsearch request exist: SearchFirst and SearchNeXt.

Every search begins when an SMB redirector sends a SearchFirst request to the LMX server

asking for n files that match a specified wildcard template. The LMX server sends a response

containing the directory information for up to n files found which match the template. The

response contains a search handle defined below.

The SMB redirector may then resume the search at any search handle of a previous S1V1Bsearch

response. The LMX server responds to SearchNeXt with the directory information for up to n

additional matching files, picking up from the point indicated by the search handle.

The SMB redirector does not indicate when a search is complete; that is, there is no SearchD0ne

request.

SMBse arch De viations

Since the SMB redirector never closes a search, the LMX server must use some heuristics in

determining when to release resources associated with a search. These heuristics should never

result in a search being declared terminated by the LMX server while it is still possible for the

SMB redirector to continue it. Some possible heuristics are:

1. An S1VlBeXit request from the same process is received.

2. The TID containing the search is broken.

3. The LMX session containing the search times out.

4. An error of any sort is returned in response to an S1V1Bsearch request.

For the root directory of the directory subtree located by the TID the directory entries . and ..

are not returned to the SMB redirector. If a volume label is returned it should be a printable

string. Some SMB redirector applications will print this string, but no other semantics are
associated with it.

The system, archive and hidden bits of the file attribute fields are treated in accordance with the

Attribute convention (see Section 4.3.1 on page 30).

An LMX server must guarantee never to return information on a given file twice in the same

S1V1Bsearch sequence, provided find_bufisearch_id contents are not reused by the SMB redirector.

Some CAE systems can rearrange the information within a directory without the LMX server’s

knowledge; for example, entries may be moved around to pack a directory, etc. Because of this,

LMX servers may not be able to guarantee that all files are reported once; that is, some files

matching smbfpathname and smb_attr may not be reported to the SMB redirector.

Protocols for X/Open PC Interworking: SMB, Version 2 99

Page 117 of 267

SA/IBsearch Specification

SMBse arch Field

Request Format:

Core SIVIB Directory and Attribute Operations

De scriptions

From SlV[B redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsearcI1 smb_com SMBsearch

smb_wct 2 smb_wct 1

smb_vWv[0] smb_count smb_vWv[0] smb_c0unt

smb_vWv[1] smb_attr smb_bcc min=3

smb_bcc min=5 smb_data

smb_pathname
smb_search_id[]

smb_count

smb_attr

smb_pathname

smb_search_id

smb_data

A signed integer. In the request, the maximum number of entries to find and

return in the response (n); in the response, the number of entries actually

returned. If no matching entries were found between the point where this

particular SearchFirst or SearchNeXt began, a zero (0) should be returned. The
number of entries returned will be the minimum of:

— the number of entries requested

— the number of (complete) entries that will fit in the negotiated SMB buffer

— the number of entries that match the requested name pattern and
attributes

An attribute field. If supported, the LMX server will only return directory

entries whose attributes match this field as well as the wildcard pathname.

Unless this field specifies the volume label, normal files whose names match

the wildcard are always returned. If this field specifies the volume label, only
the volume label information is returned.

An ASCIIZ (type 04) buffer containing the wildcard path to search. Only the

last component of the pathname may contain a wildcard.

A Variable Block (type 05), 21 or 0 bytes in length. If this is a zero-byte Data

Block, it is a SearchFirst request; otherwise it is a SearchNeXt request containing
the find_bu1:search_id (see below) returned in the last dir_inIi) structure in a

previous SearchFirst or SearchNeXt response.

A Variable Block (type 05) containing an array of dir_inIi) structures, tightly

packed. The total size of the array is 43*smbfic0unt.

The dir_inIi) structure contains information about each file which matched the wildcard

smb_pathname (and, optionally, the smb_attr attributes). The structure contains:

Position Field Name Description

00 find_bu1:search_id A 21-byte string whose structure is defined below.

21 find_bu1:attr The attribute field for the file.

23 find_bu1:t1'me A 16-bit time field, indicating the time of last modification.

25 find_bu1:date A 16~bit date field, indicating the date of last modification.

27 find_bu1:size A 32-bit integer giving the size of the file.

31 find_bu1:pname A blank-padded string, 13 characters in length, giving the

name of the file in printable form. For example, AB.Tx

would be encoded as AB.Tx vvvvvvvv. (v is a blank space.)

100

Page 118 of 267

X/Open CAE Specification (1992)

Core SMB Directory and Attribute Operations SMBsearch Specification

The find_buflsearch_id referred to as the search handle above appears in two places: in the

SearchNext request, and at the beginning of each dir_infi) structure. It contains state information
the LMX server needs to continue a search. Its structure is as follows:

Position Field Name Description

00 sr_res1 Reserved for SMB redirector use. This field must be

maintained by the LMX server. In other words, the value

specified by the SMB redirector system must be returned in

the appropriate search handle of the response.

01 sr_servdata 16—byte field reserved for LMX server use. Usually maintains

state to continue searches; see paragraph below.

17 sr_res2[4] 4-byte field reserved for SMB redirector use. This field must

be maintained by the LMX server in the same manner as the
sr_res1 field.

DOS SMB redirectors using the dialects PC NETWORK PROGRAM 1.0, MICROSOFT
NETWORKS 1.03 and MICROSOFT NETWORKS 3.0 used the sr_servdata field in order to

enhance the performance of the search sequence. If those SMB redirectors exist on the network,

then the sr_servdata field is defined and the LMX server must maintain the following structure of
information:

Position Description

0-10 A compressed 11-byte string maintaining the search pattern for the directory

search. This will include any meta—characters for the search. The . in DOS

filenames (preceding the 3—byte filename extension) is ssumed, in that it is not

maintained in the string but rather inserted prior to the last 3 characters of the

field. The first 8 characters are blank padded unless meta—characters are used. In

the case of meta-characters, a * is expanded out into the appropriate number of

question marks.

11 An unsigned byte. No assumptions are made on this value except that it should
be non—zero.

12-13 An unsigned 16-bit integer which maintains the directory index value for this

search entry. This value starts counting from zero and continues in a linear

sequence. Some SMB redirectors are known to modify this value to allow them

to resume a directory search at an arbitrary location.

14-15 An unsigned 16~bit integer that may be used by the LMX server. It should not be
zero.

Protocols for X/Open PC Interworking: SMB, Version 2 101

Page 119 of 267

SA/IBsearch Specification

SMBse arch Error Code Descriptions

_ Error DOS _ Error DOS

CAE Code _ Class _ Code
I EACCES ERRDOS ERRnoaccess

EIO ERRHRD ERRdata

EMFILE ERRSRV ERRnoresource

ENFILE ERRSRV ERRnoresource

ENOENT SUCCESS SUCCESS

ENOTDIR ERRDOS ERRbadpath
EOF ERRDOS ERRnofiles

- ERRSRV ERRerror

- ERRDOS ERRbadfid

- ERRSRV ERRbaduid

- SUCCESS SUCCESS

SMBse arch Pre conditions

Core SIVIB Directory and Attribute Operations

TJe5t1t'i[Jlit:rI

No permission for the specified pathname.

Physical I/0 error on disk.

Exhausted process file handle supply.

Exhausted system file handle supply.

Ignored (a file disappeared or didn’t exist).

Component in pathname was not a directory.
Search can find no more files.

LMX server internal error.

search_1'd was not active.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Everything worked, no prolzrlc ms.

1. Valid SMB, UID and TDD; the TID refers to a file system subtree.

2. The UID has appropriate permission on all directories in smb_pathname.

3. The LMX server has not declared the search terminated.

SMBse arch Postconditions

1. After a SearchF1'rst request, the various directories under search are opened as necessary,
and sufficient state is maintained to continue the search.

2. After a SearchNext, the retained state information is updated to permit continuing the

search without returning d1'r_1'nIi) on the same file twice.

SMBse arch Side Effe cts

Various directories are open for reading as long as the search is active. This may delay other

requests from other SMB redirectors (for example, S1VlBrmdir).

Conventions

- Access (see Section 4.3.2 on page 30).

- Attribute (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

- Wildcard (see Section 3.6 on page 17).

102

Page 120 of 267

X/Open CAE Specification (1992)

Core SIVIB Directory and Attribute Operations

8.4 SMBge tatr Spe cification

SMBge tatr De taile d De scription

SiVIBgetatr Specification

This core protocol request is used to obtain information about a regular file or directory.

SMBge tatr Deviations

1. The archive, system and hidden file attribute bits are treated according to the attribute

mapping convention.

2. The smb_time value returned will be the file’s last modified time (as set by a previous close

operation).

SMBge tatr Field De scriptions

smb_path

smb_attr

smb_time

smb_size

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBgetatr smb_com SMBgetatr
smb_wct 0 smb_wct 10

smb_bcc min=2 smb_vwv[0] smb_attr

smb_bu1‘[] smb_path smb_vWv[1-2] smb_t1'me
smb_vwv[3-4] smb_size

smb_vWv[5-9] reserved (MBZ)
smb_bcc 0

An ASCIIZ (type 04) buffer containing the name of the regular file or directory

for which information is requested.

A 16-bit attribute field describing the file.

A 32-bit time giving the last modify time for the file.

A 32-bit integer containing the current size of the file in bytes.

SMBge tatr Error Code Descriptions

CAE Code _DOS Class
EACCES

EINTR

ENOENT

ENOTDIR

ERRDOS

ERRSRV

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRSRV

SUCCESS

_DOS Code
ERRnoaccess

ERRerror

ERRbadfile

ERRbadpath
ERRnoaccess

ERRinvtid

ERRinvdevice

ERRbaduid

SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 121 of 267

Description

Component of path-prefix denies search.
permission.

A signal was caught during some system call.

File does not exist, or component of pathname
does not exist.

Component of path-prefix is not a directory.

Read permission required.

TID specified in command is invalid.

Invalid resource type: TID was not for a file

system subtree.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Everything worked, no problems.

103

Core SIVIB Directory and Attribute Operations SA/IBsetatr Specification

8.5 SMBse tatr Spe cification

SMBse tatr De taile d De scription

This core protocol request is used to set information about an existing regular file or directory.

SMBse tatr Deviations

1. The archive, system and hidden file attribute bits are treated according to the file attributes

conventions. Reference Section 4.3.1 on page 30 for additional information on file attribute

handling.

2. The smb_time specified will become the last modify time for the file.

SMBse tatr Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsetatr smb_com SMBsetatr

smb_wct 8 smb_wct 0

smb_vWv[0] smb_attr smb_bcc 0

smb_vwv[1-2] smb_time

smb_vWv[3-7] reserved (MBZ)
smb_bcc min=2

smb_but[] smb_path
smb_nu1

smb_attr A file attribute field, to be given to the file (see Section 3.5 on page 15 for
details of the Attribute convention).

smb_time A 32-bit time giving the last modify time for the file. A value of 0 indicates the

last modify time should be unchanged.

smb_patb An ASCIIZ (type 04) buffer containing the name of the regular file or directory
for which information is to be set.

smb_nu1 An ASCIIZ (type 04) buffer containing the null string.

Protocols for X/Open PC Interworking: SMB, Version 2 105

Page 123 of 267

SA/IBsetatr Specification

SMBse tatr Error Code Descriptions

' CAE Code ‘DOS Class

' EACCES IERRDOS

EACCES ERRSRV

EINTR ERRSRV

ENOENT ERRDOS

ENOTDIR ERRDOS

EPERM ERRSRV

EROFS ERRSRV

- ERRSRV

- ERRSRV

- ERRSRV

— SUCCESS

SMBse tatr Pre conditions

1. The SMB redirector has sent a valid SMB request with a valid UID and a valid TID for a file

system subtree.

:DOS Code
ERRnoaccess

ERRaccess

ERRerror

ERRbadfile

ERRbadpath
ERRaccess

ERRaccess

ERRinvnid

ERRinvdevice

ERRbaduid

_ SUCCESS

Core SIVIB Directory and Attribute Operations

I Description

Search permission is denied on a component of

the path-prefix.

The UID does not have appropriate privilege

and is not the owner of the file and the read-only

attribute flag was changed.

A signal was caught during the system call.

File does not exist, or component of pathname
does not exist.

Component of path-prefix is not a directory.

The UID does not have appropriate privilege
and is not the owner of the file and time is non-
zero.

The file system containing the file is read-only.

TID specified in command is invalid.

The TID does not refer to a file system subtree.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

F1.“EI'}*l|1il1E worked, no [J'fl'.'l|J-I{:‘.ElI.‘:'..

2. smb_path refers to an existing file or directory.

3. The specified UID or TDD represents appropriate privilege to perform the action.

SMBse tatr Postconditions

The file attribute and time will be set accordingly, or an error will be returned.

SMBse tatr Side Effe cts

1. If the read-only attribute was changed, the access mode for the file will have been changed

accordingly. For example, when the read-only attribute is removed the LMX server will set

those write permission bits for a file not explicitly masked out by the current umask value.

2. The last modify time for the file will be changed if the specified time was non—zero.

Conve ntions

- Access (see Section 4.3.2 on page 30).

- Attribute (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

106

Page 124 of 267

X/Open CAE Specification (1992)

Core SIVIB Directory and Attribute Operations

8.6 SMBdskattr Spe cification

SMBdskattr De taile cl De scription

SA/IBdskattr Specifica tion

This core protocol request returns some information on the resources associated file system
subtree.

SMBdskattr Deviations

An LMX server may return zero (0) in the smb_vWv[4] (media identifier code) field.

SMBdskattr Field De scriptions

From SMB redirector

' Field Name Field Value

smb_com SMBdskattr

smb_wct

smb_bcc

SMBdskattr Error Code Descriptions

CAE Code :Dos Class :DOS Code
ENOENT ERRHRD

ENOTDIR ERRHRD

EIO ERRHRD

- ERRSRV

- ERRSRV

- ERRSRV

- ERRSRV

- ERRSRV

- SUCCESS

ERRnotready

ERRnotready

ERRdata

ERRaccess

ERRinvnid

ERRinvdevice

ERRerror

ERRbaduid

SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 125 of 267

To SMB redirector

: Field Name Field Value
smb_com SMBdskattr

smb_wct 5

smb_vWV[0] number of allocation
units/server

smb_vwv[1] number of
blocks/allocation unit

smb_vwv[2] block size (in bytes)

smb_vWv[3] number of free
allocation units

smb_vWv[4] reserved (media

identifier code)

smb_bcc 0

- i|'.‘.|t_-1-'.L:ri|_llliLiIl

The file system has been removed from the

system.

The file system has been removed from the

system.

Physical I/O error on disk.

Read permission is required.

Invalid TID specified.

Invalid resource type (that is, no file system

subtree) specified.
Other CAE and internal errors.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Everything worked, no prclblclns.

107

Core SIVIB Directory and Attribute Operations SiVIBchkpath Specification

8.7 SMBchkpath Spe cification

SMBchkpath De taile d De scription

This core protocol request verifies that a path exists and is a directory. For example, SMB

redirectors which maintain a concept of a working directory might use S1VlBchkpath to verify the

validity of a change working directory command. Note that an LMX server does not have a

concept of working directory. The SMB redirector must always supply a full pathname (relative
to the TID).

SMBchkpath Deviations

None.

SMBchkpath Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBchkpath smb_com SMBchkpath
smb_wct 0 smb_wct 0

smb_bcc min=2 smb_bcc 0

smb_but[] 5-mb_pati1

smb_path
checked.

SMBchkpath Error Code Descriptions

An ASCIIZ (type 04) buffer containing the name of the directory to be

CAE Code DOS Class DOS Code Description

ENOTDIR ERRDOS ERRbadpath A component of the path was not a directory.

ENOENT ERRDOS ERRbadfile The specified directory does not exist.

EACCES ERRDOS ERRnoaccess A component of the path lacked search permission.

EACCES ERRSRV ERRaccess No read permission in specified directory.

ENXIO ERRDOS ERRbadpath The specified path wasn't a directory.

ENFILE ERRDOS ERRnofids System file table full.

EMFILE ERRDOS ERRnofids LMX session has too many open files.

EIO ERRHRD ERRdata Physical I/O error on disk.

- ERRSRV ERRinvnid Invalid TID specified.
- ERRSRV ERRerror Internal error.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid ID
on this LMX session.

- SUCCESS SUCCESS _ Fix-'t+I-yl hing worked, no [.2-ruiilernts.

SMBchkpath Pre conditions

SMB request, UID and TDD are valid and represent the appropriate access rights to perform the
action.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 127 of 267

109

Chapter 9

Core SMB Spool Operation Requests

This section defines the elements of core SMB protocol which support spooling and printing

operations. They are:

SMBsplopen create a new spool file

S1VlBsplWr write to a spool file

S1VlBsp1close close a spool file and queue it for spooling

S1VlBsp1retq return information on the spool queue

9.1 SMBsplope n Spe cification

SMBsplope n De taile cl De scription

This core protocol request will create a spool file. The file will be deleted once it has been

printed. The LMX server will grant write permission to the creator of the file. No other LMX

session will be given any access permissions to the file.

All users will have read permission on the print spool queue, but only the print LMX server has

write permission to it.

SMBsplope n Deviations

Some LMX servers do not distinguish between text and graphics modes.

SMBsplope n Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsplopen smb_com SMBsplopen
smbflwct 2 smbfiwct 1

smb_vWv[0] smb_psdIen smb_vWv[0] smb_fid
smb_vWv[1] smb_mode smb_bcc 0

smbfibcc min = 2

smb_buf smb_1'dent

smb_psd1en A 16-bit integer giving the length of printer setup data to be sent. This means

that the first smb_psd1en bytes of data sent to this spool file will be treated by

the LMX server as setup data.

smb_mode A 16-bit field providing additional control over the printing of this file. The

field can have the following values:

0 Text mode. Some LMX servers expand ASCII TABs to spaces in this
mode.

1 Graphics mode. The LMX server treats the data as raw octets and will not

interpret or change it.

Protocols for X/Open PC Interworking: SMB, Version 2 111

Page 129 of 267

SMBsplopen Specification

112

Core SMB Spool Operation Recyests

smb_ident An ASCIIZ (type 04) buffer containing a suggested name for the spool file.

The LMX server may ignore, truncate, or otherwise use this information in any
way.

smb_fid The FID of the spool file. Data written to this FID will be spooled.

SMBsplope n Error Code De scriptions

' CAE Code "Dos Class "Dos Code :Uts.Sr.ri[JliL:r|
I - ‘ERRSRV ‘ERRerror The request SMB was invalid or malformed.

- ERRSRV ERRerror The LMX server cannot find the spool queue for
this file.

- ERRSRV ERRqfull Insufficient resources to create the print job.

- ERRSRV ERRqtoobig The queue is full; no entry is available to create

the job.
- ERRSRV ERRerror The LMX server has exhausted some resource

and cannot create the print job.

EACCES ERRDOS ERRnoaccess Search permission is denied on a component of

the path-prefix.

EINTR ERRSRV ERRerror A signal was caught during a system call.

EMFILE ERRDOS ERRnofids Maximum number of file descriptors are

currently open in this process.

ENFILE ERRDOS ERRnofids System file table is full.

EROFS ERRSRV ERRerror The spool file or spool queue resides on a read-

only file system.

- ERRSRV ERRinvdevice The TID does not refer to a printer resource.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everyt|1i|1g worked, no pmblenr-;.

SMBsplope n Pre conditions

The SMB request, UID and TDD are valid and represent the appropriate access rights for the
action.

SMBsplope n Postconditions

1. If successful, smb_fid contains the FID to be used in subsequent S1VlBsp1Wr requests for this

spool file.

2. Although some resources were reserved to create the spool file, there is no guarantee that

sufficient resources exist for a given amount of data to be spooled within this spool file.

SMBsplopen Side Effects

A spool file has been created on the LMX server.

Conve ntions

- Print Spooling (see Section 4.6 on page 35).

X/Open CAE Specification (1992)

Page 130 of 267

Core SMB Spool Operation Reqiests SMBsplwr Specification

9.2 SMBsplwr Spe cification

SMBsplwr De taile cl De scription

This core protocol request appends the data block to the spool file specified by the FID. The first

block sent to a spool file must contain the printer setup data; the length of this data was specified

in the S1VlBsp1open request. Additional data may appear with the first block sent.

SMBsplwr De viations

It is possible that LMX servers are such that if an S1VlBsp1wr request contained a message of

length greater than the maximum transmit size for the TID specified, the LMX server would

abort the LMX session to the SMB redirector (see Section 6.1 on page 55 and Section 6.2 on page

57). Rather than aborting, the LMX server could accept an amount of data which is the lesser of
the amount the SMB redirector indicated would be sent and the size of the data in the buffer.

SMBsplwr Field De scriptions

_ From SMB redirector _ To SMB redirector

I Field Name Field Value _ Field Name Field Value
smb_com SMBsplwr smb_com SMBsplwr
smb_wct 1 smb_wct 0

smb_vvvv[0] smb_fid smb_bcc 0

smb_bcc min=4

smb_buf smb_data _

smb_fid The FID for a spool file. Obtained in an SMBsplopen response.

smb_data A Data Block (type 01) buffer, containing data to be written to the spool file.

The first bytes of the first smb_data field sent to a newly-opened spool file are

considered to be printer setup data; the length of this setup data is specified in

the smb_psd1en field of the SMBsp1open request.

SMBsplwr Error Code Descriptions

_ CAE Code :Dos Class :DOS Code :Dr.+.*.~'I.'I'1'pli:Jr1
EBADF ERRDOS ERRbadfid FID is valid, but no longer accepted by the

underlying operating system.
ERRDOS ERRbadfid Invalid FID.

EAGAIN ERRDOS ERRnoaccess A temporary resource limitation prevented this

data from being written.

EIO ERRHRD ERRwrite A physical I/O error has occurred.

- ERRSRV ERRqtoobig A part of the spooler subsystem failed due to

lack of file system space.
- ERRSRV ERRinvnid The TID in the command is invalid.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

— _ SUCCESS _ SUCCESS _ F.w:'.T'yth1'ng worked, no }_:rul_n1r¢n15.

Protocols for X/Open PC Interworking: SMB, Version 2 113

Page 131 of 267

SMBsplwr Specification Core SIVIB Spool Operation Recyests

SMBsplwr Pre conditions

1. The SMB request, UID and TDD are valid and represent the appropriate access rights for the
action.

2. The spool file specified by smb_fid must have been opened with S1VIBsp10pen.

SMBsplwr Postconditions

If no error is returned, the data sent in the request will be written to the spool file.

SMBsplwr Side Effects

None.

Conve ntions

- Print Spooling (see Section 4.6 on page 35).

114 X/Open CAE Specification (1992)

Page 132 of 267

Core SIVIB Spool Operation Recyests SlVIBspIcIose Specification

9.3 SMBsplclose Specification

SMBsplclose De taile cl De scription

This core protocol request invalidates the specified FID and queues the file for spooling. The FID

must reference a spool file.

SMBsplclose Deviations

None.

SMBsplclose Field De scriptions

From SMB redirector I To SMB redirector

I Field Name Field Value I Field Name Field Value

I smb_com SMBsplclose I smb_com SMBsplclose
smb_wct 1 smb_wct 0

smb_vvvV[0] smb_fid smb_bcc 0

_ smb_bcc 0 _

smb_fid The FID of the spool file to be closed and queued for spooling.

SMBsplclose Error Code Descriptions

CAE Code DOS Class DOS Code Description
EBADF ERRSRV ERRerror The LMX server could not use a valid FID.

- ERRDOS ERRbadfid The FID in the request is not valid.

- ERRSRV ERRinvdevice The FID does not refer to an open spool file.
- ERRSRV ERRinvnid The TID in the command is invalid.

- ERRSRV ERRbaduid The UID given (smbfiuid) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

SMBsplclose Preconditions

1. The SMB request, UID and TDD are valid and represent the appropriate access rights for the
action.

2. smb_fid must refer to a spool file opened with SMBsp1open.

SMBsplclose Postconditions

1. If no errors have occurred, the spool file will be closed and the job scheduled.

2. If an error has occurred, it is possible that the data was not printed and may have been lost.

Protocols for X/Open PC Interworking: SMB, Version 2 115

Page 133 of 267

SMBspIcIose Specification Core SMB Spool Operation Reqiests

SMBsplclose Side Effects

1. The data is spooled. Refer to Section 4.6 on page 35.

2. During or after the printing of the file, the resources consumed by it will be released.

Conve ntions

- Print Spooling (see Section 4.6 on page 35).

116 X/Open CAE Specification (1992)

Page 134 of 267

Core SIVIB Spool Operation Reqiests SlVIBspIretq Specification

9.4 SMBsplre tq Spe cification

SMBsplre tq De taile d De scription

This core protocol request obtains a list of the elements currently in the print spool queue on the

LMX server. Zero or less than the requested number of elements will be returned only when the

beginning or end of the queue is encountered.

SMBsplre tq De viations

Some LMX servers cannot search the queue backwards, and will respond to requests for

backward searches with a forward search instead. The in intercept bit in the smb_status field of
smb_data will never be used.

SMBslpre tq Field De scriptions

From SIVIB redirector To SIVIB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsp1retq smb_com SMBsp1retq
smb_wct 2 smb_wct 2

smb_vWv[0] smb_maxcount smb_vWv[0] smb_count

smb_vWv[1] smb_st_1'ndex smb_vwv[1] smb_res_1‘ndex

smb_bcc O smb_bcc min = 3

smb_buf smb_data

smb_maxc0unt A 16-bit integer specifying the maximum number of entries to return. If

positive, search forward in the queue; if negative, search backwards. If

smb_maxc0unt entries require more data than can fit in a message, those entries

which fit are returned and no error is generated.

smb_st_1'ndex A 16-bit integer indicating the first entry in the queue to return. A value of 0

indicates the start of the queue; other values should only come from the

smb_res_1'ndex field of previous SMBsp1retqresponses.

smb_c0unt A 16-bit integer indicating how many entries were actually returned.

smb_res_1'ndex A 16-bit integer giving the index of the entry following the last entry returned;

it may be used as the start index in a subsequent request to resume the queue

listing.

smb_data A Data Block (type 01) buffer containing an array of smb_c0unt queue element

structures. Each queue element is 28 bytes in length and contains the

following fields:

O0 16-bit field smbfidate

O2 16-bit field smb_t1'me

O4 8-bit field smb_status

05 16-bit field smbflfile

07 32-bit field smb_size

11 8-bit field smb_res

12 8-bit field smb_name[16]

smb_date A 16-bit field containing the date for when the file was

created. Refer to Section 5.3.2 on page 43.

Protocols for X/Open PC Interworking: SMB, Version 2 117

Page 135 of 267

SMBspIretq Specification Core SJVIB Spool Operation Reqiests

smb_t1'me A 16-bit field telling time for when the file was created.

Refer to Section 5.3.1 on page 43.

smb_status An 8-bit field indicating the file’s status in the print spool

queue as follows:

0x01 held or stopped

0x02 printing

0x03 awaiting print

0x04 in intercept (never used)

0x05 file had error

0x06 printer error

0x07-Oxff reserved; do not use

smb_fi1e A 16-bit integer containing the spool job ID, as generated on

the LMX server during the processing of the S1VlBsp10pen

request for this spool file.

smb_s1'ze A 32-bit integer containing the size of the file in bytes.

smb_res An 8-bit reserved field; MBZ (Must Be Zero).

smb_name A 16-byte string identifying the spool file. This may be the

originating SMB redirector’s name or the spool filename.

The spool filename is created by the LMX server when an

S1VlBsp10pen request is received. This string is left-justified
and NULL-filled in the field.

SMBsplre tq Error Code Descriptions

CAE Code DOS Class DOS Code Description

- ERRHRD ERRnotready Any of several errors could be mapped to this
error code.

- ERRHRD ERRerror A resource limitation was exceeded.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

SMBsplre tq Pre conditions

1. The maximum SMB size permits at least 28* smb_maX_c0unt bytes of data in addition to the
SMB header and request subheader.

SMBsplre tq Postconditions

None.

118 X/Open CAE Specification (1992)

Page 136 of 267

Core SIVIB Spool Operation Reqiests S1VIBsp1retq Specification

SMBsplre tq Side Effe cts

None.

Conve ntions

This is a request where the UID and the TED need not be Valid for service.

- Print Spooling (see Section 4.6 on page 35).

Protocols for X/Open PC Interworking: SMB, Version 2 119

Page 137 of 267

Chapter 10

Care Plus SIVIB File Operations

This section defines the elements of the core plus SMB protocol which provide for file

operations. They are:

SMBnegprot
server

SMBreadbmpx read block multiplexed

S1VlBWr1'tebmpx write block multiplexed

SMBreadbraw

S1VIBWr1'tebraW write block raw to a file

SMB1ockread

read block raw from a file

lock a byte range and read it

S1VlBWr1'teun10ck write to a byte range and unlock it

SMBwritec10se

10.1 SMBne gprot Spe cification

SMBne gprot De taile d De scription

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and

LMX server will use when communicating with each other. The SMB redirector sends a list of

dialects that it can use for communication. The LMX server responds with a selection of one of

those dialects (numbered 0 to n) or -1 indicating that none of the dialects were acceptable.

Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate

requests must be rejected with an error response and no action will be taken. The rules for the

write to a file and close it

use of S1VlBnegpr0t outlined in Section 6.1 on page 55 hold here as well.

SMBne gprot De viations

None.

SMBne gprot Field De scriptions

Field descriptions for other dialects of the SMB protocol (S1VlBnegpr0t) are:

From SIVIB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smbmcom SMBnegprot smbflcom SMBnegprot
smb_wct O smb_wct 13

smb_bcc min=2 smb_vwv[0] smb_1'ndex

smbfibut[] dialect0 smbfivwv[1-4] smb_rsvd0

smb_vWv[5] smb_b1kmode

smb_vwv[6-12] smb_rsvd1

smbrbcc 0

Protocols for X/Open PC Interworking: SMB, Version 2

Page 139 of 267

negotiate modifications when the core plus dialect is selected by the LMX

121

SMBnegprot Specification Care Plus SMB File Operations

The fields are defined as:

dialectn A Dialect (type 02) buffer containing the name of a dialect (refer to Section 5.4

on page 48).

smb_indeX The dialect selected by the LMX server; corresponds to the indexth dialect

string in the request, where the first string is numbered 0.

smb_rsvd0 Reserved; MBZ (Must Be Zero).

smb_b1kmode Whether or not SMBreadbraw and SMBwr1'tebraw are supported.

Bit 0 If set, SMBreadbraw is supported.

Bit 1 If set, S1VlBbwr1'tebraW is supported.

Bit 2-15 Reserved; Must Be Zero.

Some SMB redirectors when negotiating the core plus dialect ignore these bits

and assume both SMBs are acceptable.

smb_rsvd1 Reserved; MBZ (Must Be Zero).

smb_bcc This area is ignored in the core plus dialect.

122

Note that bit 0 of the smb_flg field in the SMB header of the response will be interpreted by the

SMB redirector to indicate support for SMBlockread and SMBwr1'teun1ock.

SMBne gprot Error Code De scriptions

If any error occurs, the LMX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBne gprot Pre conditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the LMX server.

SMBne gprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the SMB

dialect negotiated.

SMBne gprot Side Effe cts

The LMX server will keep a record of which dialect the SMB redirector negotiated and will use

only that dialect in conversations with the SMB redirector.

Conventions

None.

X/Open CAE Specification (1992)

Page 140 of 267

Care Plus SJVIB File Operations SlVIBreadbraw Specification

10.2 SMBre adbraw Spe cification

SMBre adbraw De taile cl De scription

The read block raw request is used to maximise the performance of reading a large block of data

from a file on the LMX server. Any supported file type can be read via S1VlBre-adbraw. Up to

65,535 bytes can be read in one request/response regardless of the maximum negotiated buffer
size.

When the SMB redirector sends this request, it guarantees no other request will be issued on the

same LMX session until the response is received from the LMX server. Given this guarantee, the

LMX server responds by sending just the requested data in a single transport message. No

header of any sort is generated. Because the entire response is sent as a single message, the SMB

redirector can determine how much data was actually sent.

If the request is to read more data than is present in the file, the read response will be of the

length actually read from the file. If the read begins at or after EOF, or some other error is

encountered, a zero-length message is sent in response. An SMB redirector will send a read

request other than S1VlBreadbraW to find out what happened, at which time an EOF indication or

error is returned in the response to that request.

If an error should occur at the SMB redirector end, all data must be received and thrown away.
The LMX server will not be informed.

SMBre adbraw De viations

Support for the timeout field for file types other than named pipes is optional. If timeouts are

not supported, all requests are treated as non-blocking.

SMBre adbraw Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBreadbraw raw data

smb_wct 8

smb_vwv[0] smbmfid

smb_vwv[1—2] smb_ofl’Siet

smb_vwv[3] smb_maxcnt

smb_vwv[4] smb*m1'ncnt

smb_vwv[5—6] smb_timeout

smb_vwv[7] smb_rsvd

smbfibcc O

smb_fid The FID for the read.

smb_0fl’Set A 32-bit unsigned integer giving the offset into the file, in bytes, at which the

read is to begin.

smb_maxcnt An unsigned 16~bit field indicating the number of bytes to be read.

smb_mincnt If a timeout is specified, this is the minimum number of bytes that must be

read for the request to return before timing out.

smb_t1'me0ut A 32-bit integer giving the number of milliseconds to wait for at least

smb_mincnt bytes of data to be read. A value of zero (0) indicates the read
should not block. A timeout of -1 means the LMX server should wait

indefinitely. A timeout of -2 indicates the default timeout for the named pipe

Protocols for X/Open PC Interworking: SMB, Version 2 123

Page 141 of 267

SA/IBreadbraw Specification Core Plus SIVIB File Operations

should be used.

smb_rsvd A 16-bit reserved field, which should be ignored.

The response contains no headers or other overhead, and is a single message containing the

bytes that were read. A zero-length message indicates either smb_0fl’Set pointed beyond the
current EOF or some other error occurred.

SMBre adbraw Error Code De scriptions

No errors may be returned in the response to this request. Instead, any errors are saved until the

next request for this file, at which time they will be returned.

SMBre adbraw Pre conditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a readable resource.

2. The FID is valid and the process has read access.

SMBre adbraw Postconditions

The LMX server has returned to the SMB redirector either all of the requested raw data, all of the

data up to the EOF, or a response with no data.

SMBre adbraw Side Effe cts

Since the LMX server is not allowed to return errors with this SMB request, a return of 0 bytes

can indicate either EOF, file system read error, outstanding break or block, or that the LMX

server is temporarily out of some required resource. In the case of a 0 byte return, the SMB

redirector should follow up with an S1VlBread or S1VlBreadmpX request at which time the LMX

server can return an error if necessary.

Conventions

- Locking (see Section 4.4 on page 33).

124 X/Open CAE Specification (1992)

Page 142 of 267

Care Plus SJVIB File Operations SlVIBwr1'tebraw Specification

10.3 SMBwrite braw Spe cification

SMBwrite braw De taile cl De scription

The write block raw message exchange provides a high—performance mechanism for transferring

large amounts of data to be written to a file on the LMX server. Any supported file type,

including spool files, may be written with this exchange.

The S1VIBwr1'tebraw exchange behaves much like an S1VlBwr1'tebmpx exchange, except that instead

of additional data being sent in secondary requests, all the additional data is sent in a single raw

message; that is, the first segment of data is sent in the primary request, and the remainder in a

single message with no SMB header or S1VlBWr1'tebrawsubheader.

If all the data to be written fits in the primary request, a zero-length secondary request is still

sent; even if the secondary request is zero-length, a secondary response must be generated when

write-through mode was specified.

If the LMX server is busy or otherwise unable to support the raw write of the remaining data, the

data sent with the primary request is still written (to stable store if write-through mode was set).

If any other error occurs, the data is discarded. In either case, an appropriate error is returned in

a secondary response. A primary response is only sent if the primary request was satisfied with

no errors and the LMX server is prepared for a raw message.

SMBwrite braw Deviations

The smb_t1'meout and smb_rema1'n1'ng fields will not be supported with I/O devices.

SMBwrite braw Field De scriptions

SMB redirectors using the core plus dialect of the SMB protocol use a slightly different form of

the S1V1BWr1'tebraw primary request, and expect a slightly modified primary response. Both forms
are shown below.

Primary S1V1Bwr1'tebraw (core plus only):

From SMB redirector To SMB redirector

_ Field Name Field Value _ Field Name Field Value
smb_com SMBwr1'tebraw smb_com SMBwr1'tebraw

smb_wct 10 smb_wct 0

smb_vwv[0] smb_fid smb_bcc 0

smb_vwv[1] smb_tc0unt

smb_vwv[2] smb_rsvd

smb_vwv[3-4] smb_0fl’Set

smb_vwv[5-6] smb_t1'meout

smb_vwv[7] smb_wm0de

smb_vvvv[8—9] smb_rsvd

smb_bcc min=0

smb_but[] smb_da ta

smb_fid The FID of the file to be written to.

smb_tc0unt An unsigned 16-bit field giving the total number of bytes that will be written

to the file. This value must be correct in at least one of the requests in the

exchange; in other requests, it may be an over—estimate.

smb_rsVd These fields are reserved and should be ignored by the LMX server.

Protocols for X/Open PC Interworking: SMB, Version 2 125

Page 143 of 267

SlVIBwr1'tebraw Specification

smb_01‘I§et

smb_t1'meout

smb_wmode

smb_data

Care Plus SIVIB File Operations

A 32-bit integer giving the position in the file at which the bytes in the request
should be written.

A 32-bit integer giving the number of milliseconds the LMX server may block

while trying to complete the write. This value is ignored for regular files. For

I/O devices and named pipes (refer to the X/Open CAE Specification, IPC

Mechanisms for SMB), the LMX server will wait this much time to complete

the write. If smb_t1'meout is -1, the LMX server will wait indefinitely; if it is -2,
the server will wait the default amount of time for the file. An LMX server

may choose to treat all timeouts as 0; that is, do not block.

A 16-bit flag field controlling the write mode. If bit 0 is set, write-through

mode is requested; the LMX server will write all data atomically and

acknowledge the write with the secondary response. If clear, write—behind is

permitted; the LMX server need not write atomically and need not report

completion. If bit 1 is set, the LMX server should fill in the smb_rema1'n1'ng field

in the primary response.

The actual data to be written. This is a string of bytes in no particular format.

Note that, in the core plus protocol dialect, there is no padding between the end of the
smb_vvvV[] block and the data to be written.

Secondary SMBwr1'tebravLr.

: From SMB redirector _ To SMB redirector
_ Field Name Field Value _ Field Name Field Value
raw data smb_com SMBwr1'tec

smb_wct 1

smb_vvvv[0] smb_count

smb_bcc 0

smb_count The total number of bytes written. If this is different from the smallest

126

Page 144 of 267

smb_tc0unt sent by the SMB redirector, some error occurred (for example, out

of free space on the file system).

X/Open CAE Specification (1992)

Care Plus SIVIB File Operations

SMBwrite braw Error Code Descriptions

_ CAE Code :DOS Class :DOS Code
- ERRDOS ERRbadfid

- ERRDOS ERRnoaccess

- ERRDOS ERRbadaccess

- ERRSRV ERRerror

- ERRSRV ERRinvnid

- ERRSRV ERRnoresource

- ERRSRV ERRtimeout

- ERRSRV ERRuseMPX

- ERRSRV ERRuseSTD

- ERRSRV ERRbaduid

- SUCCESS SUCCESS

SMBwrite braw Pre conditions

SA/IBwritebraw Specifica tion

: Description
Invalid FID.

File opened in deny write mode, or write range

overlaps a lock.

Invalid open mode for the attempted operation.

Corrupt SMB.
Invalid TID.

The LMX server is temporarily out of a needed
resource.

Requested operation timed out.
Can't do raw mode at this

SMBwritebmpx.

Can't do raw mode at this time; use S1VlBwrite or
SMBwriteX.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Evcr}*tl1i:1g worked, no problems.

time; use

1. The primary SMB was valid and specified a valid TID for a writable resource.

2. The FID was valid, and the process had write access to the file.

3. Before sending the secondary message, the LMX server must have sent a primary response.

The LMX server has been able to write the accompanying data to disk, allocated the

needed memory for a buffer, and sent the response to the SMB redirector.

SMBwrite braw Postconditions

1. If write-through mode is set, a primary response or secondary response indicates the data

in the primary response has been written to stable store (unless some error other than
ERRuseSTD or ERRuseMPX was returned).

2. After a primary response is received, the LMX server is ready for a raw secondary
message.

SMBwrite braw Side Effe cts

None.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2

Page 145 of 267

127

Sl\/IBlockread Specifica tion

10.4

128

Care Plus SMB File Operations

SMBlockre ad Spe cification

SMBlockre ad De taile d De scription

This lock and read protocol request has the effect of explicitly locking the bytes in the specified

range and then reading them. The lock is maintained until explicitly released by the SMB

redirector or the SMB redirector closes the file. Only the bytes actually read by this request are

locked, not the bytes specified in the advisory smb_c0unt1el‘t field.

Support for this SMB is optional; an LMX server should set the appropriate bit in the smb_flg

field of the S1VlBnegpr0t response (see Section 6.1 on page 55 for other dialects of the SMB

protocol and Section 5.1 on page 37).

SMBlockre ad De viations

None.

SMBlockre ad Field Descriptions

The request and response format are identical to that of S1VlBread (see Section 7.4 on page 73).

SMBlockre ad Error Code Descriptions

For a more complete description of the potential error codes resulting from this SMB message

see Section 7.4 on page 73 and Section 7.7 on page 81.

CAE Code DOS Class DOS Code flew:-i[.1lic;rn
- ERRDOS ERRnoaccess No read access to TID.

EBADF ERRDOS ERRbadfid Invalid FID.

- ERRDOS ERRlock The intended read range overlaps a lock held by

another process.
EPERM ERRDOS ERRbadaccess No read access for the file.

- ERRSRV ERRerror Corrupt SMB.

- ERRSRV ERRinvdevice TID is not for a file system subtree.
- ERRSRV ERRinvnid Invalid TID.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Eve-ryt|1i|1g worked, no plnblenm

SMBlockre ad Pre conditions

1. The SMB redirector has sent a valid SMB with a valid TID for a readable file system
resource.

2. The FID is valid, and the process has read access to the file.

3. The range of bytes to be read is not already locked by some other process.

X/Open CAE Specification (1992)

Page 146 of 267

Core Plus SIVIB File Operations SlVIB1ockread Specification

SMBlockre ad Postconditions

1. The requested number of bytes (smb_bytecount) has been locked, read and returned, in that
order.

2. The current file position is left after the bytes read.

SMBlockre ad Side Effe cts

1. Other SMB redirector processes will be unable to access the locked record until the SMB

redirector holding the lock has released it or unless they are using the same FID.

2. The LMX server may have pre-read the remaining bytes (smb_count1etl - smb_bytec0unt) to
increase the performance of subsequent reads from the same process.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 129

Page 147 of 267

SlVIBwriteunIock Specification

10.5

130

Care Plus SMB File Operations

SMBwrite unlock Spe cification

SMBwrite unlock De taile d De scription

This write and unlock protocol request has the effect of writing to a range of bytes and then

unlocking them. This request is usually complementary to an earlier usage of S1VlBl0ckread on

the same range of bytes. Only the range of bytes actually written to is unlocked, not the range

specified in the advisory smb_c0unt1eft field. If an error occurs during the write, the byte range
should not be unlocked.

Aside from the lack of special handling of zero-length writes, this request behaves in an identical

fashion to a core protocol S1V1Bwrite request followed by a core protocol S1VlBun1ock request.

Support for this SMB is optional; an LMX server should set the appropriate bit in the smb_flg

field of the S1VlBnegpr0t response (see Section 6.1 on page 55 for other dialects of SMB protocol

and Section 5.1 on page 37).

SMBwrite unlock De viations

See Section 7.5 on page 76 and Section 7.8 on page 83.

SMBwrite unlock Field De scriptions

The S1VlBwriteun1ock request and response format are identical to those of S1VlBwrite (see Section

7.5 on page 76).

SMBwrite unlock Error Code De scriptions

For a list of other error codes generated during the handling of this SMB see Section 7.5 on page

76 and Section 7.8 on page 83.

: CAE Code :DOS Class :DOS Code :TJi:1$r.ri[Jliurn
- ERRDOS ERRlock The requested range was locked by a different

process.

- SUCCESS SUCCESS Everyt|1i:1g worked, no pmlmlenr-;.

SMBwrite unlock Pre conditions

1. The SMB redirector has sent a valid SMB request with a TID for a writable file system
subtree.

2. The FID must be valid and the process must have write access.

3. The write operation must succeed before the unlock operation is attempted.

SMBwrite unlock Postconditions

1. Either the write succeeded or an error was returned.

2. If the write succeeded, the byte range was unlocked.

X/Open CAE Specification (1992)

Page 148 of 267

Care Plus SIVIB File Operations S1VIBwr1'teunIock Specification

SMBwrite unlock Side Effe cts

Same as for SMBWr1'te and SMBun10ck.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 131

Page 149 of 267

SA/IBwritecIose Specification Care Plus SMB File Operations

10.6 SMBwritec1ose Specification

SMBwrite close De taile d De scription

The write and close protocol request is used to first write the specified bytes and then close the

file. Any supported file type, including spool files, may be specified in this request. This request

behaves identically to an S1VlBWrite request followed by an S1VlBc10se request. Any buffered data

must be flushed to stable store or to the device before the response is sent.

SMBwrite close De viations

See Section 7.5 on page 76 and Section 12.6 on page 168 for details.

SMBwrite close Field De scriptions

_ From SMB redirector _ To SMB redirector

_ Field Name Field Value _ Field Name Field Value
smb_com SMBwritec1ose smb_com SMBwritec1ose

smb_wct (6 or 12) smb_wct 1

smb_vvvv[0] smb_fid smb_vvvv[0] smb_count

smb_vvvv[1] smb_count smb_bcc 0

smb_vvvv[2-3] smb_0fl’Set

smb_vvvv[4-5] smb_time

smb_vvvv[6-1 1] smb_rsvd

smb_bcc (1 + smb_count)

smb_but[] smb_pad

_ smb_data

smb_fid The FID to be closed.

smb_count In the request, the number of bytes of data to be written. In the response, the

number of bytes that were actually written.

smb_0fl’Set A 32-bit offset into the file, in bytes, at which the data is to be written.

smb_time A 32-bit time value to be used as the last modify time for the file. A value of

zero indicates the last modified time should be unchanged.

smb_rsvd This six 16-bit field is only present if smb_wct is 12. These fields should be

ignored.

smb_pad A single 8-bit field which is used to pad out the beginning of the smb_data area

to a 32-bit address boundary.

smb_data A string of bytes, in no particular format, whose length is given by smb_count.
This is the data to be written.

SMBwrite close Error Code De scriptions

Exactly the errors returned by S1VlBWr1'teX and S1V1Bc10se can be returned for this request. If an

error occurs during the write operation, the file will still be closed. Only one error can be

returned in the response; if errors occur during both the write and close operations, the close

error is reported.

132 X/Open CAE Specification (1992)

Page 150 of 267

Core Plus SIVIB File Operations SlVIBwr1'tec1ose Specification

SMBwrite close Pre conditions

1. The SMB redirector has sent a valid SMB with a TID for a writable resource.

2. The FID is valid and the process has write access to the file.

SMBwrite close Postconditions

1. The data in the call is written to the file. If an error occurred, it will be reported unless a
close error occurs as well.

2. The file is closed and any errors are reported.

SMBwrite close Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random order.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 133

Page 151 of 267

Chapter 11

Extended 1.0 SIVIB Connection Management Requests

This section defines those elements of the extended 1.0 Sl\/[B protocol dialects which support

connection and LMX session management. They are:

S1VlBnegpr0t negotiate modifications when an extended dialect is selected by the LMX
server

S1V1BsecpkgX negotiate security packages and related information

S1VlBsesssetupX set up a session, log on a user

S1VlBtc0nX extended Tree Connect

11.1 SMBne gprot Spe cification

SMBne gprot De taile cl De scription

This Sl\/[B protocol request is sent to establish the protocol dialect that the Sl\/[B redirector and

LMX server will use when communicating with each other. The Sl\/[B redirector sends a list of

dialects that it can use for communication. The LMX server responds with a selection of one of

those dialects (numbered 0 to n) or -1 indicating that none of the dialects were acceptable.

Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate

requests must be rejected with an error response and no action will be taken. The rules to the

use of S1VlBnegpr0t outlined in Section 6.1 on page 55 hold here as well.

SMBne gprot De viations

None.

Protocols for X/Open PC Interworking: SMB, Version 2 135

Page 153 of 267

136

Page 154 of 267

SMBnegprot Specification Extended 1.0 SJVIB Connection A/Ianagement Reqiests

SMBne gprot Field De scriptions

Field descriptions for other dialects of the SMB protocol (S1VlBnegpr0t) are:

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot
smb_wct 0 smb_wct 13

smb_bcc min = 2 smb_vvvv[0] smb_1'ndex

smb_but[] dialect0 smb_vvvv[1] smb_secmode

smb_vvvv[2] smb_maxxmt

. smb_vvvv[3] smb_maxmux

dialectn smb_vvvv[4] smb_maxvcs

smb_vvvv[5] smb_blkmode

smb_vvvv[6-7] smb_sesskey
smb_vvvv[8] smb_srv_t1'me

smb_vvvv[9] smb_srv_date

smb_vvvv[10] smb_srv_tzone

smb_vvvv[1 1- 1 2] smb_rsvd

smb_bcc

_ smb_bu1[] 5a1rb_crjy-prlmyll

The fields are defined as:

dialectn A Dialect (type 02) buffer containing the name of a dialect (refer to Section 5.4

on page 48).

smb_1'ndex The dialect selected by the LMX server; corresponds to the indexth dialect

smb_sccm0de

smb_maxxmt

string in the request, where the first string is numbered 0.

This flag field describes the LMX server’s security mode.

Bit 0 If set, the LMX server is in user—level security mode; if clear, share-
level.

Bit 1 If set, the LMX server supports password encryption in SMB form

(see Section 11.3 on page 144 and Appendix D on page 279).

Bit 2 If set, the LMX server supports the S1V1BsecpkgX extended security

package negotiation (see Section 11.2 on page 139).

Bit 3-15 Reserved; MBZ (Must Be Zero).

The LMX server’s maximum SMB buffer size in bytes. Minimum value is 1K

byte. This provides sufficient room for most requests and responses. All SMB

requests including chained requests must fit in this buffer size.

This is the maximum SMB message size which the SMB redirector can send to

the LMX server. This size may be larger than the smb_bu1§1'ze value in the

S1VlBsesssetupXrequest, sent to the LMX server from the SMB redirector, which

is the maximum SMB message size the LMX server may send to the SMB
redirector.

For example, if the LMX server's buffer size (smb_maxxmt in the SMBnegprot

response) were 4K byte and the SMB redirectors’s buffer size were only 2K

byte (smb_bu1§1'ze in the S1VlBsesssetupXrequest), the SMB redirector could send

up to 4K byte of data in an S1VIBwr1'te (or S1VlBWr1'teX) request but may request

no more than 2K byte of data in SIVlBread (or SIVlBreadX) requests. The largest

X/Open CAE Specification (1992)

Extended 1.0 SIVIB Connection A/Ianagement Requests

smb_maxmuX

smb_maxVcs

smb_b1kmode

smb_sesskey

smb_srv_time

smb_srv_date

smb_srv_tzone

smb_rsvd

smb_bcc

smb_cryptkey

SlVIBnegprot Specification

response from the LMX server would also be 2K byte.

The maximum number of simultaneous multiplexed reads supported per
LMX session; must be at least 1.

The maximum number of NetBIOS sessions supported per LMX session.
Must be 1.

Whether or not SMBreadbraw and SMBwritebraw are supported.

Bit 0 If set, SMBreadbraw is supported.

Bit 1 If set, S1V1Bbwritebrawis supported.

Bit 2-15 Reserved; Must Be Zero.

Some SMB redirectors when negotiating LANMAN 1.0 dialect ignore these

bits and assume both SMBs are acceptable.

A 32-bit value of the LMX session key; uniquely identifies an LMX session.

16-bit current time according to the LMX server (see Section 5.3.1 on page 43).

16-bit current date according to the LMX server (see Section 5.3.2 on page 43).

A 16-bit value for the number of minutes the current time zone is away from
GMT.

A 32-bit reserved field. Must be zero.

In the case of S1VlBnegprot, the field gives the length of the token in

smb_cryptkey.

This is an unformatted array of bytes which contains an opaque token to be

used for password encryption (see Section 11.2 on page 139, Section 11.3 on

page 144 and Appendix D on page 279).

Note that bit 0 of the smb_flg field in the SMB header of the response will be interpreted by the

SMB redirector to indicate support for SMB1ockread and SMBwriteun1ock.

SMBne gprot Error Code Descriptions

If any error occurs, the LMX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBne gprot Pre conditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the LMX server.

SMBne gprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the SMB

dialect negotiated.

Protocols for X/Open PC Interworking: SMB, Version 2 137

Page 155 of 267

—s

Extended 1.0 SIVIB Connection 1VIanagementRequests SlVIBsecpkgX Specification

11.2 SMBse cpkgX Spe cification

SMBse cpkgX De taile cl De scription

The S1VlBsecpkgX extended protocol request is used to negotiate the security package to be used

for a given LMX session. Part of the negotiation determines the authentication and password

encryption algorithms required to establish the identity of the user sitting at the SMB redirector

system. The S1VlBsecpkgX request and response are only used when the LMX server is in user-

level security mode and both the SMB redirector and the LMX server understand Extended User

Authentication (see Section 2.2 on page 5).

The SMB redirector will send an S1VlBsecpkgX request to the LMX server immediately after

receipt of an SMBnegprot response which set bits 1 and 2 in the smb_secmode field, only if the SMB

redirector supports Extended User Authentication.

An LMX server may reject an S1V1BsesssetupX request which was not preceded by an acceptable

S1VlBsecpkgX exchange, or it may instead support SMB—style authentication and encryption

mechanisms (see Section 11.3 on page 144). An LMX server may provide a mechanism to control

this choice, on either a per—server or per-share basis.

In addition to supporting negotiation of a security package and its components, the S1VlBsecpkgX

exchange also supports a mechanism for authentication of the serving system to the SMB

redirector similar to the SMB redirector to the LMX server mechanism supported by the

combination of SMBnegprot and SMBsesssetupXrequests.

After the successful exchange of S1VlBsecpkgX request and response the SMB redirector will use

as its UID for the LMX session the value of the smb_uid field in the response header. This is the

only case in which the LMX server selects the value of smb_uid to be used for the LMX session.

In all other cases (that is, no S1VlBsecpkgX exchange) the value of smb_uid is selected by the SMB
redirector.

SMBse cpkgX De viations

Use of the S1VlBsecpkgX exchange is only defined for the client—server dialogue package-type. An

LMX server may implement other package-types without conflict.

Within the client—server package-type negotiation, only the X/Open security package is defined.

An LMX server may choose to support additional packages of that type.

SMBse cpkgX Field De scriptions

_ From SMB redirector _ To SMB redirector

_ Field Name Field Value _ Field Name Field Value

smb_com SMBsecpkgX smb_com SMBsecpkgX
smb_wct 4 smb_wct 4

smb_vvvv[0] smb_com2 smb_vvvv[0] smb_com2

smb_vvvv[1] smb_ofl‘2 smb_vvvv[1] smb_ofl‘2

smb_vvvv[2] smb_pkgtype smb_vvvv[2] smb_index

smb_vvvv[3] smb_numpkgs smb_vvvv[3] smb_pkgarg1en
smb_bcc min=4 smb_bcc

smb_bui[] smb_pkglist 1 smb_but[] smb_pkgargs

sine pkglisr n

Protocols for X/Open PC Interworking: SMB, Version 2 139

Page 157 of 267

SMBsecpkgX Specification Extended 1.0 SJVIB Connection A/Ianagement Reqiests

smb_pkgtype A 16-bit field containing the package-type being negotiated by this

S1V1BsecpkgX request and response. The only value defined is 0, the package-

type for the dialogue between an SMB redirector and the LMX server.

smb_numpkgs A 16-bit integer containing the number of packages of type smb_pkgtype being

offered by the SMB redirector. This must be greater than zero.

smb_pkg1ist Each smb_pkg1ist is a structure describing a particular package. The structures

are concatenated together, with no padding, to form the smb_bufsection of the
request.

The smb_pkg1ist structure looks like:

Field Name Field Type Contents

I smb_pkgnam1en I 16-bit field I Length, in bytes, of package name in
this structure.

smb_pkgarglen 16-bit field Length of package-specific info (in

bytes).

smb_pkgname byte array The name of the package described

by this structure. This is not

padded.

smb_pkgargs byte array Package-specific information. The

format of this counted array is

defined by the package name
associated with it.

smb_indeX A 16-bit integer containing the number of the package selected by the LMX

server. The first smb_pkg1ist in the request corresponds to an smb_indeX value

of 0; the second corresponds to 1; etc. If the LMX server can support none of

the offered packages, a -1 is returned.

smb_pkgarg1en A 16-bit integer giving the length, in bytes, of the package-specific information

being returned from the LMX server to the SMB redirector. This may be zero

for some packages.

smb_pkgargs This is an unstructured array of bytes containing package-specific information

in a format determined by the package selected by smb_indeX. The format may

be different from that of the smb_pkgargs in the request for the same package.

X/Open has defined one package of type 0; this package has smb_pkgname X/OPEN. The

smb_pkgargs for this package are defined below.

140 X/Open CAE Specification (1992)

Page 158 of 267

Extended 1.0 SIVIB Connection 1VIanagementRequests S1VIBsecpkgX Specification

_ Request _ Rcsplzrnse

_ Ty[J:: Name _ T}-'[Ji:.' Name

16-bit field xp_f1ags 16-bit field xp_ese1

string xp_name 16-bit field xp_use1

16-bit field xp_edia1ects type 01 xp_ouinf

string xp_e0 type 01 xp_nuinf

... ... type 01 xp_Cr

string xp_en

16-bit field xp_udia1ects

string xp_u0

string xp-_un
type 01 xp Cs

xp_flags A set of flags modifying use of this exchange.

Bit 0 If set, the LMX server must respond to the challenge, Cs, contained in

this request. If clear, the SMB redirector does not require the LMX
server to authenticate itself.

Bits 1-15 Undefined; MBZ (Must Be Zero).

xp_name A null—terminated string containing the username. This name, possibly

xp_edia1ects

xp_en

xpfiudialects

xp_un

xpfiCs

xp_ese1

xp_use1

truncated, should be used by the LMX server to identify which user is to be
authenticated.

The number of bi—directional encryption function (referred to as E()) names

which follow in the pkgargs structure. This must be greater than zero.

Each null~terminated string names a particular E() function. The meaning of

these names must be agreed upon by implementors of SMB redirectors and
LMX servers.

The number of password encryption function (U()) names which follow. This

must be greater than zero.

Each null—terminated string names a particular U() function. As with E()

functions, the meaning of these names must be mutually agreed upon by SMB

redirector and LMX server systems.

This data (type 01) buffer contains a challenge string. The response string,

xp_Cr, will be generated using the E() selected by the LMX server, and the

password stored on the LMX server for the user indicated by xp_username.

The SMB redirector can use the password, as typed by the user, xp_0u1'nf and

the challenge response to ensure that the LMX server in fact knew the user’s

password as well. The particular algorithm for accomplishing this depends

upon the E() and U() functions negotiated. This field is meaningless and

should be ignored if bit 0 of xp_flags is not set.

The index of the xp_en which the LMX server has selected. This index is zero

based, in the same fashion as smb_1'ndex (above). If none of the offered xp_en

functions are supported by the LMX server, a -1 will be returned in this field
and an error will be returned.

The index of the xp_un which the LMX server has selected. This index is

zero—based. If none of the offered xp_un functions are supported by the LMX
server, a -1 will be returned in this field and an error will be returned.

Protocols for X/Open PC Interworking: SMB, Version 2 141

Page 159 of 267

SMBsecpkgX Specification

142

Extended 1.0 SJVIB Connection A/Ianagement Recyests

xp_0uinf A data (type 01) buffer, whose contents are used in combination with the

user’s password and the chosen U() to reproduce the password as stored on

the LMX server. This string may be unused for some U() and would be of

zero length if such a U() were selected.

xp_nuinf A data buffer whose contents are to be used if the password for this user is

changed via some administrative protocol. Some LMX servers may not

support such an administrative protocol, and some U() functions require no

such data or permit reuse of such data; in any of these cases, the length of this
buffer will be zero.

A data buffer containing the response to xp_Cs, see above. This field will be

ignored and should be of zero length if bit 0 of xp_flags was not set.

xp_Cr

SMBse cpkgX Error Code Descriptions

DOS Code Description

ERRbadpermits For either the E() or U() functions, there was no

match between the functions supported on the
SMB redirector and LMX server.

CAE Code DOS Class

- ERRSRV

- ERRSRV ERRerror The SMB redirector has already negotiated this

package-type.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

If the user named in the xp_name field does not exist on the LMX server, the LMX server should

nonetheless generate a properly formatted response with data that appears to be valid. The SMB

redirector attempt to set up an LMX session should be rejected after the S1VlBsesssetupX request is
received.

SMBse cpkgX Pre conditions

The LMX server must have set bits 1 and 2 of the smb_secmode field in its SMBnegprot response on
this same NetBIOS session.

SMBse cpkgX Postconditions

If the optional SMB redirector challenge was used, the SMB redirector can rely upon the LMX

server actually knowing the user’s password.

SMBse cpkgX Side Effe cts

All authentication exchanges after this SMB exchange will use the selected E() as an encryption

and decryption mechanism. All passwords passed over the connection after this SMB exchange

will be encoded using the selected U() and xpflouinf/xpwnuinfinformation.

X/Open CAE Specification (1992)

Page 160 of 267

SMBses.ssetupX Specification

11.3

144

Extended 1.0 SJVIB Connection A/Ianagement Requests

SMBse ssse tupX Spe cification

SMBse ssse tupX De taile d De scription

This extended protocol request is used to further set up the LMX session normally just

established via the S1VlBnegpr0t request/response. The S1VlBsesssetupX request serves two

purposes: identification of the user for this LMX session, and negotiation of SMB redirector—side

communication parameters.

- User Identification

The actual semantics for this request are governed by the security mode of the LMX server.

See Section 2.2 on page 5 for a discussion of these modes.

In user—level security mode, the SMB redirector will establish a mapping between a particular

username on the LMX server and a UID which the SMB redirector will use to represent that

user. A password may be sent by the SMB redirector to authenticate that the person using

the SMB redirector is indeed the username to be mapped to. Further, the password may be

encrypted to ensure security.

The LMX server validates the username and password supplied and, if valid, it establishes a

mapping between the LMX session’s UID and the actual UID corresponding to the specified

username and password. That actual UID will be used for access checks required by requests
issued on behalf of the UID on this LMX session.

The value of the UID is relative to an LMX session; it is possible for the same UID value to

represent two different users on two different LMX sessions on the LMX server. The LMX

server must map the pair of <LMX session ID, UID> to the different accounts.

In share—level security mode, the username and password are unused. The LMX server

should use a unique, reserved account and corresponding actual UID to perform access

checks for all requests.

SMB Redirector Communications Parameters

The LMX server, in its response to the S1VIBnegpr0t request, has set some parameters for the

communication it was expecting from the SMB redirector. In the S1VlBsesssetupX request, the

SMB redirector must indicate the parameters for the communication it is expecting from the

LMX server. These values may be different; for example, the LMX server may be able to

receive a maximum message size of 16K bytes, while the SMB redirector can only receive 1K

bytes.

Some LMX servers may need to renegotiate buffer sizes after the S1VlBsesssetupX exchange.

This renegotiation is available through the S1VIBtc0n request, but not through S1VIBtc0nX.

SMBse ssse tupX De viations

None.

X/Open CAE Specification (1992)

Page 162 of 267

Extended 1.0 SMB Connection A/Ianagement Reqiests SMBsesssetupX Specification

SMBse ssse tupX Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_c0m SMBsesssetupX smb_com SMBsesssetupX
smb_wct 10 smb_wct 3

smb_vvvV[0] smb_com2 smb_vvvv[0] smb_com2

smb_vvvv[1] smb_ofl‘2 smb_vvvv[1] smb_ofl‘2

smb_vvvv[2] smb_bu1'S1'ze smb_vwv[2] smb_act1'on

smb_vvvv[3] smb_mpxmax smb_bcc 0
smb_vvvv[4] smb_vc_num

smb_vvvv[5—6] smb_ses.skey

smb_vvvV[7] smb_apassIen
smb_vvvv[8—9] smb_rsvd

smb_bcc min val=0

smb_but[] smb_apasswd
smb_aname

smb_c0m2 and smb_0fl‘2 descriptions can be found in Section 3.9 on page 22.

smb_bu1'S1'ze The size of the largest message the SMB redirector is willing to receive. It

must be true that smb_bu1'§1'ze S smb_maXxmt (see Section 6.1 on page 55).

smb_mpxmaX The maximum number of requests which the SMB redirector will have

outstanding on a single LMX session. It must be true that smb_mpXmaX S

smb_maXmuX (see Section 6.1 on page 55).

smb_vc_num Permits multiple LMX sessions to be associated with a single NetBIOS session.

If zero (0), this LMX session is the first or only NetBIOS session. If

smb_vc_num is zero (0) and there are other previously established LMX
sessions still connected from this SMB redirector, it is recommended that the

LMX server abort the previous LMX session to free up the resources held.

smb_sesskey A 32-bit integer which identifies to which LMX session that this NetBIOS

session is associated. Ignored when smb_vc_num is zero (0). This value would

be obtained from the smb_sesskey field in the response to the S1VlBnegpr0t

associated with the LMX session this NetBIOS session is to be made a part of.

smb_apasslen Length of the smb_apasswd field.

smb_rsVd A 32-bit reserved field; the LMX server should ignore this field.

smb_apasswd

smb_aname

smb_act1'on

A character string containing the password, possibly encrypted. Ignored by

an LMX server in share—level security mode.

An ASCIIZ (not type 04) buffer containing the username to be associated with

smb_u1'd and validated with smb_apasswd. Ignored by an LMX server in share-

level security mode. The length of this field is derived from the difference

between smb_bcc and smb_apasslen.

A bit—encoded field indicating the results of a successful LMX session setup. If

bit 0 is clear, everything went normally. If bit 0 is set, the LMX session was

setup but a default or guest account was used instead of the account

requested. (An LMX server in share—level security mode would set this bit).

Protocols for X/Open PC Interworking: SMB, Version 2 145

Page 163 of 267

SMBsesssetupX Specification Extended 1.0 SJVIB Connection A/Ianagement Reqiests

SMBse ssse tupX Error Code De scriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRerror Internal LMX server error.

- ERRSRV ERRbadpw Usemame and password pair was invalid.

- ERRSRV ERRtoomanyuids LMX server does not support this many UIDs in
one LMX session.

- ERRSRV ERRerror No S1VlBnegpr0t request has been issued on this
NetBIOS session.

- ERRSRV ERRnosupport This request cannot be chained to the request

which precedes it in this message.

- SUCCESS SUCCESS Everything worked, no problems.

SMBse ssse tupX Pre conditions

1. The SMB redirector attempting the S1VlBsesssetupX must have established an LMX session

with the LMX server and negotiated an extended protocol dialect.

2. The username and password must both be valid instances of those types.

3. smb_c0m2 must be a legal chained command.

4. There are many other preconditions based upon the SMBs that may be chained. These are

enumerated in the specifications for those SMBs.

SMBse ssse tupX Postconditions

1. If there are no errors the value in smb_uid is used as a valid UID in future SMBs.

2. There are many other postconditions based upon the SMBs that may be chained. These are

enumerated in the specifications for these SMBs.

SMBse ssse tupX Side Effects

Conversion of paths to a canonical pathname is controlled by bit 4 of the smb_flg in the header of

this request (see Section 5.1 on page 37).

Conve ntions

- Opportunistic Locking (see Section 3.8.2 on page 20).

- Chaining (see Section 3.9 on page 22).

The SMBs which may be chained after S1VlBsesssetupXare:

SMBchkpath SMB1‘i1niq.1e SMBopen SMBsearch SMBtconX

SMBcopy SMBgetatr SMBopenX SMBsetatr SMBun1ink

SMBcreate SMBmkdir SMBrename SMBsp1open SMBtrans

SMBdskattr SMBmknew SMBrmdir SMBsp1retq NIL
SMB1first SMBmv

146 X/Open CAE Specification (1992)

Page 164 of 267

Extended 1.0 SIVIB Connection A/Ianagement Reqiests SMBtconX Specification

11.4 SMBtconX Spe cification

SMBtconX De taile cl De scription

This extended protocol request will establish direct access to a resource (file system subtree,

spooled device, etc.) on an LMX server. The functionality provided by this request matches very

closely that of the core protocol S1VlBtcon request. The differences are:

1. S1VlBtconX permits another request to be chained to it (for example, S1VlBopenX).

2. A flag can be set in the S1VlBtconX request which will invalidate the TID in the request, then

acquire a new TID for the requested resource and return it.

3. The maximum receive buffer sizes cannot be renegotiated.

4. The resource type need not be explicitly identified.

SMBtconX De viations

None.

SMBtconX Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBtconX smb_com SMBtconX

smb_wct 4 smb_wct 2

smb_vvvv[0] smb_com2 smb_vvvv[0] smb_com2

smb_vvvv[1] smb_ofl‘2 smb_vvvv[1] smb_ofl‘2

smb_vwv[2] smb_flags smb_bcc min val=3

smb_vvvv[3] smb_spasslen smb_bui[] smb_service
smb_bcc min val=3

smb_bui[] smb_spasswd

smb_path
smb_dev

smb_com2 and smb_ofl‘2 descriptions can be found in Section 3.9 on page 22.

smb_f1ags A 16-bit field containing additional control flags. The only flag currently

defined is bit 0; if set, the TID in the request is to be closed (as if an S1VlBtdis

request were received for it) before the new resource is obtained.

smb_spasslen A 16-bit field giving the length of the smb_spasswd field. If this value is zero,

smb_bcc must contain the end-of-string terminator (that is, a zero character) for

the password value.

smb_spasswd A string of bytes containing the password for the resource. May be encrypted.

Refer to Appendix D on page 279.

smb_path An ASCIIZ buffer (not type 04) containing the resource name preceded by the

LMX servername (refer to Section 5.3.9 on page 46). For example, a resource

called src residing on a server called lm se rve r1 would be referenced by

\\lm se rver1\src. If not specified by the SMB redirector, a zero byte must be
present.

Protocols for X/Open PC Interworking: SMB, Version 2 147

Page 165 of 267

SMBtconX Specification Extended 1.0 SJVIB Connection A/Ianagement Reqiests

smb_dev An ASCIIZ buffer giving the resource type the SMB redirector will use to refer

to the newly-attached resource. If this value is not of a well—known form to
the LMX server it is treated as a wildcard; in this case, the LMX server will

return the actual resource type (see Section 5.3.6 on page 45). in the

smb_serVice field of the response. If not specified by the SMB redirector, a zero

byte must be present.

smb_serV1'ce An ASCIIZ buffer identifying the actual resource type corresponding to the

requested resource.

SMBtconX Error Code De scriptions

CAE Code DOS Class DOS Code Description
— ERRSRV ERRerror Ran out of TIDs.

- ERRSRV ERRerror First command on the NetBIOS session was not

an SMBnegprot.
- ERRSRV ERRerror LMX server internal error.

- ERRSRV ERRbadpw Bad password; name/password pair in the
SA/1Btc0nX is invalid.

- ERRSRV ERRinvnetname Invalid resource name supplied in the
SMBtconX.

- SUCCESS SUCCESS Everything worked, no problems.

SMBtconX Pre conditions

1. The SMB redirector attempting to setup this SA/IBtc0nX must have established an LMX
session with the LMX server.

2. The smbgpath, smb_spasswd and smb_dev must all be valid instances of those types.

3. The process attempting to setup this SA/IBtc0nX must have negotiated an extended

protocol dialect (for example, LANMAN 1.0 or LM1.2X002).

SMBtconX Postconditions

1. If there are no errors the TID and service string are valid and may be used in future SMB
requests.

2. If bit 0 in smb_flags was set, the resource defined by the TID in the request has been
disconnected from this LMX session.

SMBtconX Side Effects

None.

Conve ntions

- Filename (see Section 3.5 on page 15).

- Chaining (see Section 3.9 on page 22).

148 X/Open CAE Specification (1992)

Page 166 of 267

Extended 1.0 SMB Connection 1VIanagementReq1ests

Requests which may be chained to SMBtc0nX are:

SMBchkpath SMBIi1n1'que

SMBcopy SMBgetatr
SMBcreate SMBmkd1'r

SMBdskattr SMBmknew

SMB1‘Iirst

Protocols for X/Open PC Interworking: SMB, Version 2

Page 167 of 267

SMBmV

SMBopen

SMBopenX
SMBrename

SA/1Brmd1'r

SMBsearch

SMBsetatr

SMBsp1open

S1VIBtconX Specification

SMBsp1retq
SMBtrans

SMBun11'nk

NIL

149

Extended 1.0 SMB Connection Management Req1ests

150 X/Open CAE Specification (1992)

Page 168 of 267

Chapter 12

Extended 1.0 SMB File Operations

This section defines the elements of the extended 1.0 SMB protocol which provide for normal

operations on files. They are:

SIVlB0penX open of a file with chaining

SlVIBl0ckingX locking on a file with chaining

S1VlBreadX read from a file with chaining

S1VIBWritebraw write block raw to a file

SMBwr1'tec1ose write to a file and close it

S1VlBwr1'teX write to a file with chaining

12.1 SMBope nX Spe cification

SMBope nX De taile d De scription

This extended protocol request opens a file, providing enhanced functionality over that of

SMBopen.

SMBope nX De viations

1. The archive, system and hidden file attribute bits are treated according to the file attributes

convention. Refer to Section 4.3.1 on page 30.

2. LMX servers which cannot maintain a creation time for their files will ignore the create
time field.

SMBope nX Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBopenX smb_com SMBopenX
smb_wct 15 smb_wct 15

smb_vvvv[0] smb_com2 smb_vwv[0] smb_com2

smb_vvvv[1] smb_ofl‘2 smb_vvvv[1] smb_ofl‘2

smb_vvvv[2] smb_flags smb_vvvv[2] smb_fid
smb_vwv[3] smb_m0de smb_vwv[3] smb_attributes

smb_vvvv[4] smb_sattr smb_vwv[4—5] smb_time

smb_vvvv[5] smb_attr smb_vwv[6-7] smb_size

smb_vwv[6-7] smb_time smb_vwv[8] smb_access

smb_vvvv[8] smb_ofi1n smb_vvvv[9] smb_type

smb_vwv[9-10] smb_size smb_vvvv[10] smb_state

smb_vvvv[1 1-12] smb_time0ut smb_vwv[1 1] smb_act1'on

smb_vvvv[13-14] smb_resv smb_vvvv[12- 13] smb_1i1eid

smb_bcc min=1 smb_vwv[14] smb_resv

smb_bui[] smb_parl:name smb_bcc 0

Page 169 of 267

Protocols for X/Open PC Interworking: SMB, Version 2 151

SMBopenX Specification

152

Extended 1.0 SMB File Operations

smb_c0m2 and smb_0fl‘2 descriptions can be found in Section 3.9 on page 22.

smb_flags

smb_mode

smb_sattr

smb_attr

smb_t1'me

smb_ofi1n

smb_s1'ze

smb_t1'meout

smb_pathname

smb_fid

smb_attr1'butes

smb_access

smb_type

smb_state

Page 170 of 267

Controls various special actions. If bit 0 is set, the additional information

(smb_vWv[3-10]) fields will be valid in the response. Bits 1 and 2 control

opportunistic locking (see Section 3.8.2 on page 20). The other bits are
reserved.

The open mode for the file (see Section 5.3.5 on page 44).

The set of attributes that the file must have in order to be found while

searching to see if it exists. Regardless of the contents of this field, normal files

always match (see Section 5.3.3 on page 43).

The set of attributes that the new file is to have if the file needs to be created

(see Section 5.3.3 on page 43).

In the request, this is the 32-bit integer time to be assigned to the file as a time

of creation (if the file must be created). In the response, this is the 32-bit

integer time of last modification. Refer to Section 5.3.1 on page 43.

This open function field controls actions to be taken on the file during the

open (see Section 5.3.8 on page 46).

In the request, this 32-bit integer is the number of bytes to be reserved on file

creation or truncation. In the response, the 32-bit integer contains the number

of bytes in the file after any open actions have been taken (see smb_0fi1n

above). This field is advisory.

This 32-bit integer is the number of milliseconds to wait on a blocked open

before returning without obtaining a resource. A value of zero (0) means no

delay (that is, do not queue the request). A value of -1 indicates to wait

forever. See Section 3.11 on page 25.

An ASCIIZ buffer containing the name of the file to be opened.

An FID representing this open instance of the file.

A file attribute field describing the actual attributes of the file after the open.

See Section 5.3.3 on page 43.

The actual access rights granted to this process (see Section 5.3.7 on page 46).

A resource type field (see Section 5.3.6 on page 45

Describes the status of a named pipe as follows. Refer to the X/Open CAE

Specification, IPC Mechanisms for SMB.

Bit 15 Blocking. Zero (0) indicates that reads/writes block if no data is

available; 1 indicates that reads/writes return immediately if no
data is available.

Bit 14 Endpoint. Zero (0) indicates SMB redirector end of a named

pipe; 1 indicates the LMX server end of a named pipe.

Bits 10-11 Type of named pipe. 00 indicates the named pipe is a stream

mode pipe; 01 indicates the named pipe is a message mode pipe.

Bits 8-9 Read Mode. 00 indicates to read the named pipe as a stream

mode named pipe; 01 indicates to read the named pipe as a

message mode named pipe.

X/Open CAE Specification (1992)

Extended 1.0 SIVIB File Operations SlVIBopenX Specification

smb_acti0n Describes the results of the open operation. This 16-bit field contains two
fields:

Bit 15 Lock Status. Set true only if an opportunistic lock was requested

by the SMB redirector and was granted by the LMX server. This

bit should be false (0) if no lock was requested, the lock could

not be granted, or the LMX server does not support

opportunistic locking.

Bits 0-1 Open Action. The LMX server should set this to match the

requested action from the smb_0Ii1n field:

1 The file existed and was opened.

2 The file did not exist and was therefore created.

3 The file existed and was truncated.

smb_fileid This 16-bit field is reserved; MBZ (Must Be Zero).

smb_resv Reserved; MBZ.

Protocols for X/Open PC Interworking: SMB, Version 2 153

Page 171 of 267

SMBopenX Specification

SMBope nX Error Code De scriptions

_ CAE Code
EACCES

EACCES

EAGAIN

EEXIST

EFAULT

EINTR

EISDIR

EMFILE

ENFILE

ENOENT

ENOSPC

ENOTDIR

ENXIO

EROFS

ETXTBSY

154

Page 172 of 267

:DOS Class
ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRDOS

ERRSRV

ERRDOS

ERRDOS

ERRSRV

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

SUCCESS

:DOS Code
ERRnoaccess

ERRnoaccess

ERRshare

ERRerror

ERRerror

ERRerror

ERRnoaccess

ERRerror

ERRnofids

ERRbadfile

ERRerror

ERRbadpath
ERRerror

ERRerror

ERRerror

ERRinvnid

ERRinvdevice

ERRbaduid

SUCCESS

Extended 1.0 SMB File Operations

I Description

Component search I
permission.

of path-prefix denies

Access permission is denied for the named file.

File exists, mandatory file/record locking is set,

and there are outstanding record locks on the
file.

The create could not occur due to the existence

of a file that did not have matching attributes
(smb_sattr).

Path points outside the allocated address space

of the process.

A signal was caught during some system call.

Named file is a directory and access is write or
read/vvrite.

Maximum number of file descriptors are

currently open in this process.

System file table is full.

File does not exist, or component of pathname
does not exist.

File must be created, and the system is out of

resources necessary to create files.

Component of path-prefix is not a directory.

The requested file is a CAE special file and the

system cannot support access to the file at this
time.

File resides on read-only file system and

requested access permission is write or
read/vvrite.

File is pure procedure file that is being executed

and requested access specifies write or
read/write.

Invalid TID.

Invalid resource type; TID does not refer to a

printer share.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

_ Eve-rj,,1hing worked, no problems.

X/Open CAE Specification (1992)

m

SMBlockingX Specification

12.2

156

Extended 1.0 SMB File Operations

SMB1ockingX Spe cification

SMBlockingX De taile cl De scription

This extended protocol request is used to lock and/or unlock one or more byte ranges of a

particular regular file.

If the number of unlock ranges is non—zero, the byte ranges indicated by byte offset and length
will be unlocked.

If the number of lock ranges is non—zero, the byte ranges indicated by byte offset and length will

be locked, if possible. Locking byte ranges beyond the EOF is permitted. Access is permitted to

any SMB redirector using the file descriptor provided with the lock request, but only requests

using the PID that did the locking may do the unlocking. Attempts to lock bytes that have been

previously locked will fail.

If the LMX server is unable to acquire all of the locks that the SMB redirector requested (after

waiting for the length of the timeout, if specified), all the locks acquired with this request will be

removed and the entire request fails.

Closing a file with locks still in force causes the locks to be released in an undefined order.

SMBlockingX Deviations

LMX servers may choose not to support lock timeouts, and may treat all requests as though a

timeout of 0 had been requested.

LMX servers may choose not to support read-only locks, and will treat any request for such a

lock as though a read/write lock had been requested.

Locking requests generated within the SMB protocol have a 32-bit unsigned offset for the

beginning of the lock. The mapping of this offset within the CAE system on behalf of the SMB

redirector is implementation-dependent.

SMBlockingX Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBlockingX smb_com SMBlockingX
smb_wct 8 smb_wct 2

smb_vwv[0] smb_com2 smb_vwv[0] smb_com2

smb_vwv[1] smb_ofl‘2 smb_vwv[1] smb_ofl‘2

smb_vwv[2] smb_fid smb_bcc 0

smb_vwv[3] smb_1ocktype
smb_vwv[4—5] smb_timeout

smb_vwv[6] smb_un1ocknum

smb_vwv[7] smb_1ocknum

smb_bcc 10* (number of
lock/unlock

structs)

smb_but[] smb_un1krng
smb fkrng

X/Open CAE Specification (1992)

Page 174 of 267

Extended 1.0 SIVIB File Operations SA/IBIockingX Specification

smb_c0m2 and smb_0fl‘2 descriptions can be found in Section 3.9 on page 22.

smb_fid

smb_1ocktype

smb_timeout

smb_un1ocknum

smb_1ocknum

The FID to use to perform locks or unlocks.

A bit—field which specifies the type of locks (mode) to be placed on the file.

The mode is ignored for performing unlocks. The bits are defined as follows:

Bit 0 If set, indicates read-only lock requested. If a read-only lock is

granted, other read-only lock requests on the same range of

bytes will be permitted, but read/write locks (bit 0 not set) will

be denied until all the read-only locks are released. Support for

this request is optional.

Bit 1 If set, this indicates that an opportunistic lock is being broken,

and in the response thereto, this bit will be set by the LMX server

in an S1VlB10ckingX request sent to the SMB redirector under the

conditions outlined in Section 3.8.2 on page 20.

Bits 2-15 Reserved; ignored by the LMX server on receipt of request, and

set to zero by the LMX server when sending a request.

A 32-bit integer indicating the amount of time, in milliseconds, to wait in an

attempt to acquire all requested locks. A value of zero signals the LMX server

not to wait at all but to return an error immediately if any lock could be

obtained. A value of -1 indicates the LMX server should wait indefinitely to

obtain the locks. (Note that requests with -1 timeouts could easily lead to

deadlock.) Support for this field is optional; an LMX server may ignore all

values and behave as if a timeout of 0 (that is, no wait) was always requested

(reference X/Open CAE Specification, [PC Mechanisms for SMB).

A signed 16-bit field indicating the number of smbfiunlkrng structures attached

to this request.

A signed 16~bit field indicating the number of smb_1krng structures attached to

this request.

The smb_un1krng and smb_1krng structures are identical. Each describes a range of bytes to be

unlocked or locked, respectively. The structure is:

Position Field Name Description

00 smb_1pid The PID of the process owning the lock.

02 smb_1k0fl" A 32-bit unsigned integer containing the offset, in bytes, to

the start of the range to be unlocked or locked.

06 smb_1kIen A 32-bit unsigned integer containing the length, in bytes, of

the range to be unlocked or locked.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 175 of 267

157

SMBlockingX Specification Extended 1.0 SMB File Operations

SMBlockingX Error Code De scriptions

See Section 7.7 on page 81 and Section 7.8 on page 83 for other error codes.

CAE Code _DOS Class ‘DOS Code Description
_ ERRDOS 'ERRbadfile ' File was not found.

- ERRDOS ERRbadfid An invalid FID was specified.

- ERRDOS ERRlock A lock request conflicted with an existing lock,

the mode specified was invalid, or an unlock

request was attempted by other than the owning
PID.

- ERRSRV ERRerror Invalid SMB request was sent.

- ERRSRV ERRinvdevice Requested a lock on a non—file system subtree.

- ERRSRV ERRinvnid Invalid TID was specified.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS _ Fiw:r}«'tlIirIg worked, no [J'I'tJ'l}|lt_‘lTIh'.

SMBlockingX Pre conditions

1. The SMB redirector has sent a valid SMB request.

2. The SMB redirector must have a valid TID to a file system subtree.

3. The SMB redirector has specified a valid FID and has appropriate privileges.

If the request is generated by the LMX server, the FID corresponds to a file which the SMB

redirector had opened with an opportunistic lock.

SMBlockingX Postconditions

1. Locking a range of bytes will fail if any subranges or overlapping ranges are locked. In

other words, if any of the specified bytes are already locked, the lock will fail.

2. Either all of the requested ranges will be locked or none will. That is, if a lock on any of the

specified ranges fails, any of the ranges previously locked by this request will be unlocked.

Locked ranges not locked by this request remain locked.

3. If the lock request timed out, the response will return an ERRlock as if a lock could not be

obtained and a zero timeout was specified.

If the request was generated by the LMX server, any data being cached on the SMB redirector

has been flushed and/or invalidated, and the LMX server can permit the operation which caused

the opportunistic lock break to complete.

SMBlockingX Side Effe cts

Any process using the FID specified in the request has access to the locked bytes, but other

processes will be denied the locking of the same bytes.

158 X/Open CAE Specification (1992)

Page 176 of 267

Extended 1.0 SMB File Operations S1VIBIockingX Specification

Conventions

- Access (see Section 4.3.2 on page 30).

o Attributes (see Section 4.3.1 on page 30).

- Locking (see Section 4.4 on page 33).

o Filenames (see Section 4.2 on page 28).

- Opportunistic Locking (see Section 3.8.2 on page 20).

- Chaining (see Section 3.9 on page 22).

The SMB10ck1'ngX request may only have an SMBread or SMBreadX chained request.

Protocols for X/Open PC Interworking: SMB, Version 2 159

Page 177 of 267

SlVIBreadX Specification

12.3

Extended 1.0 SJVIB File Operations

SMBre adX Spe cification

SMBre adX De taile cl Description

The S1VlBreadX extended protocol request is used to read data from any of the supported file

types mentioned in Section 3.7 on page 17. The request allows reads to be timed out and offers a

generalised alternative to the S1VlBread request.

SMBre adX Deviations

Not all LMX servers support all types listed in Section 5.3.6 on page 45. Some LMX servers may

ignore the smb_t1'meout and smb_rema1'n1'ng fields for some types.

SMBre adX Field De scriptions

_ From SMB redirector

I Field Name
smb_com

smb_wct

smb_vWV[0]

smb_vwv[1]

smb_vwv[2]

smb_vwv[3-4]

smb_vWV[5]

smb_vWV[6]

smb_vWv[7—8]

smb_vWV[9]

smb_bcc

_ To SMB redirector

_ Field Name Field Value
smb_com SMBreadX

smb_wct 12

smb_vwv[0] smb_com2

smb_vwv[1] smb_ofl‘2

smb_vWv[2] smb_rema1'n1'ng
smb_vwv[3—4] smb_rsvd

smb_vwv[5] smb_ds1'ze

smb_vwv[6] smb_do1T

smb_vwv[7—10] smb_rsvd

smb_bcc (data length + pad)

smb_but[] smb_pad
smb_data

Field Value

SMBreadX

10

smb_com2

smb_ofl‘2

smb_fid

smb_ofl’Set

smb_maxcnt

smb_m1'ncnt

smb_t1'me0ut

smb_countlett
0

smb_c0m2 and smb_0fl‘2 descriptions can be found in Section 3.9 on page 22.

smb_fid

smb_0fl’Set

smb_maxcnt

smb_m1'ncnt

smb_t1'me0ut

160

Page 178 of 267

The FID from which the data should be read.

A 32-bit integer containing the offset into the file (in bytes) at which the read
should start.

An unsigned 16-bit field indicating the maximum number of bytes to read.

Note that a single S1V1BreadX request cannot return more than the minimum of

smb_maxcnt and the maximum negotiated buffer size for the LMX session.

(See Section 11.3 on page 144 and Section 6.1 on page 55).

An unsigned 16-bit value indicating the minimum number of bytes to return.

A 32-bit integer containing the number of milliseconds the LMX server should

wait before returning. If smb_m1'ncnt bytes are read before this time has

expired, the LMX server should generate a response immediately. For regular

files this field is ignored.

When reading from a named pipe (refer to the X/Open Developers’

Specification, Protocols for X/Open PC Interworking: SMB), there are several

special values which the SMB redirector can specify in this field:

0 If no data is available in the named pipe, respond immediately with
smb_ds1'ze set to zero (0).

X/Open CAE Specification (1992)

Extended 1.0 SIVIB File Operations

smb_count1ett

smb_rema1'n1'ng

SMBreadX Specifica tion

-1 Block forever until at least smb_mincnt bytes of data are available, and
return that data.

-2 Use the default timeout associated with the named pipe being read

(reference X/Open CAE Specification, [PC Mechanisms for SMB).

>0 Wait until smb_m1'ncnt data bytes are available or the timeout occurs. If

there is a timeout, respond with a timeout error and whatever data was
available.

This unsigned 16-bit field contains a hint to the LMX server indicating

approximately how many more bytes will be read from this FID before the

next non—read operation is requested for it. This is generated to help the LMX

server increase performance by reading ahead in the file in anticipation of

another S1VlBreadX request. An LMX server may ignore this field.

This signed 16-bit integer is always -1 for regular files. For named pipes and

CAE special files, this 16-bit integer indicates the number of bytes that could

be read from this file without blocking. This value need only be an

approximation, and it may become inaccurate after the response is sent back

to the SMB redirector. An LMX server may choose not to support this

functionality and always return -1.

smb_dsize This unsigned 16-bit field contains the number of bytes of data actually read

and returned in this response.

smb_d01T This unsigned 16-bit field indicates the offset from the SMB header to the start

of the returned data, in bytes. This permits variable—sized padding.

smb_rsVd These two 16-bit and four 16-bit fields are padding that force the S1VlBreadX

response to be the same size as the S1V1BWriteX request. They must be zero.

smb_pad This field is between zero and three 8-bit fields in length, as governed by the

smb_d01T field. It may be used by an LMX server to pad the size of the

SA/lBreadX response out to a 16-bit or 32-bit boundary which provides the best

performance.

smb_data The actual data read from the file.

Protocols for X/Open PC Interworking: SMB, Version 2 161

Page 179 of 267

SA/IBreadX Specification Extended 1.0 SIVIB File Operations

SMBre adX Error Code De scriptions

For more information pertaining to potential error codes generated by this SMB request see

Section 7.4 on page 73 and Section 7.10 on page 87.

CAE Code "DOS Class :DOS Code _FJI.*:-'.cri[Jlir.1:r'.
- ‘ERRDOS ERRnoaccess Access denied. The requester’s context does not I

permit the requested action or a read request is

in conflict with an existing lock.

- ERRDOS ERRbadfid Invalid FID. The SMB redirector has attempted

to use an FID not recognised by the LMX server.

- ERRDOS ERRlock Attempt to read bytes which were locked for
write.

- ERRDOS ERRbadaccess Invalid open mode for the attempted operation

(for example, reading a write-only file).
- ERRSRV ERRerror Error is returned to SMB redirectors for non-

specific errors such as corrupt SMB requests.

- ERRSRV ERRinvnid Error is returned to SMB redirectors attempting
some action with an invalid TID.

- ERRSRV ERRtimeout The requested named pipe operation timed out.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

SMBre adX Pre conditions

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action.

2. The FID must be valid, and the SMB redirector must have appropriate permissions for the

read operation.

SMBre adX Postconditions

1. The read data is returned.

2. The LMX server’s current file pointer (see Section 7.6 on page 79) is advanced by the

amount of data actually read.

SMBre adX Side Effe cts

None for normal files.

For named pipes or CAE special files, the data that was read is removed; a repeated read at the
same offset will return new data.

Conventions

- Chaining (see Section 3.9 on page 22).

Only S1V1Bc1ose request may be chained to the S1VlBreadX request.

162 X/Open CAE Specification (1992)

Page 180 of 267

Extended 1.0 SIVIB File Operations SlVIBwritebraw Specifica tion

12.4 SMBwrite braw Spe cification

SMBwrite braw De taile cl Description

The write block raw message exchange provides a high—performance mechanism for transferring

large amounts of data to be written to a file on the LMX server. Any supported file type,

including spool files, may be written with this exchange.

The S1VlBwr1'tebraw exchange behaves much like an S1VlBwr1'tebmpx exchange, except that instead

of additional data being sent in secondary requests, all the additional data is sent in a single raw

message; that is, the first segment of data is sent in the primary request, and the remainder in a

single message with no SMB header or S1VlBwr1'tebraw subheader.

If all the data to be written fits in the primary request, a zero-length secondary request is still

sent; even if the secondary request is zero-length, a secondary response must be generated when

write-through mode was specified.

If the LMX server is busy or otherwise unable to support the raw write of the remaining data, the

data sent with the primary request is still written (to stable store if write-through mode was set).

If any other error occurs, the data is discarded. In either case, an appropriate error is returned in

a secondary response. A primary response is only sent if the primary request was satisfied with

no errors and the LMX server is prepared for a raw message.

SMBwrite braw Deviations

The smb_t1'meout and smb_rema1'n1'ng fields will not be supported with I/O devices.

SMBwrite braw Field De scriptions

Primary S1VlBwr1'tebraw (extended other than core plus):

I From SMB redirector To SMB redirector
_ Field Name Field Value _ Field Name Field Value

smb_com SMBwr1'tebraw smb_com SMBwr1'tebraw

smb_wct 12 smb_wct 1

smb_vWv[0] smb_fid smb_vWV[0] smb_rema1'n1'ng
smb_vvvv[1] smb_tc0unt smb_bcc 0

smb_vwv[2] smb_rsvd

smb_vwv[3-4] smb_0fl’Set

smb_vvvv[5-6] smb_t1'meout

smb_vwv[7] smb_wm0de

smb_vvvv[8—9] smb_rsvd

smb_vwv[10] smb_ds1'ze

smb_vwv[1 1] smb_do1T

smb_bcc min=0

smb_but[] smb_pad

smb_data _

smb_fid The FID of the file to be written to.

smb_tc0unt An unsigned 16-bit field giving the total number of bytes that will be written

to the file. This value must be correct in at least one of the requests in the

exchange; in other requests, it may be an over—estimate.

smb_rsvd These fields are reserved and should be ignored by the LMX server.

Protocols for X/Open PC Interworking: SMB, Version 2 163

Page 181 of 267

S1VIBwr1'tebraw Specification

smb_ofl’Set

smb_t1'meout

smb_wmode

smb_ds1'ze

smb_do1T

smb_pad

smb_data

smb_rema1'n1'ng

Extended 1.0 SA/IB File Operations

A 32-bit integer giving the position in the file at which the bytes in the request
should be written.

A 32-bit integer giving the number of milliseconds the LMX server may block

while trying to complete the write. This value is ignored for regular files. For

I/O devices and named pipes (refer to X/Open CAE Specification, [PC

Mechanisms for SMB), the LMX server will wait this much time to complete

the write. If smb_t1'me0ut is -1, the LMX server will wait indefinitely; if it is -2,
the server will wait the default amount of time for the file. An LMX server

may choose to treat all timeouts as 0; that is, do not block.

A 16-bit flag field controlling the write mode. If bit 0 is set, write-through

mode is requested; the LMX server will write all data atomically and

acknowledge the write with the secondary response. If clear, write—behind is

permitted; the LMX server need not write atomically and need not report

completion. If bit 1 is set, the LMX server should fill in the smb_rema1'n1'ng field

in the primary response.

The number of data bytes in this request.

The offset in bytes from the beginning of the SMB header to smb_data.

Between zero and three unused bytes; the SMB redirector may use these to

pad out the smb_data area to a properly-aligned boundary.

The actual data to be written. This is a string of bytes in no particular format.

A 16-bit integer which is always -1 for regular files or if bit 1 of smb_wm0de is

not set. Otherwise, this is the number of bytes available to be read from the

I/O device or named pipe specified by the FID. If the LMX server does not

support this functionality, -1 should always be returned.

Secondary SMBwr1'tebravLr.

From SMB redirector _ To SMB redirector

Field Name Field Value _ Field Name Field Value
raw data smb_com SMBwr1'tec

smb_wct 1

smb_vWV[0] smb_c0unt

smb_bcc 0

smb_c0unt The total number of bytes written. If this is different from the smallest

164

Page 182 of 267

smb_tc0unt sent by the SMB redirector, some error occurred (for example, out

of free space on the file system).

X/Open CAE Specification (1992)

Extended 1.0 SIVIB File Operations

SMBwrite braw Error Code Descriptions

_ CAE Code :DOS Class :DOS Code
- ERRDOS ERRbadfid

- ERRDOS ERRnoaccess

- ERRDOS ERRbadaccess

- ERRSRV ERRerror

- ERRSRV ERRinvnid

- ERRSRV ERRnoresource

- ERRSRV ERRtimeout

- ERRSRV ERRuseMPX

- ERRSRV ERRuseSTD

- ERRSRV ERRbaduid

- _ SUCCESS _ SUCCESS

SMBwrite braw Pre conditions

SA/IBwritebraw Specifica tion

: Description
Invalid FID.

File opened in deny write mode, or write range

overlaps a lock.

Invalid open mode for the attempted operation.

Corrupt SMB.
Invalid TID.

The LMX server is temporarily out of a needed
resource.

Requested operation timed out.
Can't do raw mode at this

SMBwr1'tebmpx.

Can't do raw mode at this time; use S1VlBwr1'te or
SMBwr1'teX.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

time; use

_ F',~.-15.1"}-'1lIiIIg Worked, no prul_Ilt-H11:-'..

1. The primary SMB was valid and specified a valid TID for a writable resource.

2. The FID was valid, and the process had write access to the file.

3. Before sending the secondary message, the LMX server must have sent a primary response.

The LMX server has been able to write the accompanying data to disk, allocated the

needed memory for a buffer, and sent the response to the SMB redirector.

SMBwrite braw Postconditions

1. If write-through mode is set, a primary response or secondary response indicates the data

in the primary response has been written to stable store (unless some error other than
ERRuseSTD or ERRuseMPX was returned).

2. After a primary response is received, the LMX server is ready for a raw secondary
message.

SMBwrite braw Side Effe cts

None.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2

Page 183 of 267

165

Sl\/IBwr1'tecIose Specification

12.5

166

Extended 1.0 SA/IB File Operations

SMBwrite close Spe cification

SMBwrite close De taile cl De scription

The write and close protocol request is used to first write the specified bytes and then close the

file. Any supported file type, including spool files, may be specified in this request. This request

behaves identically to an S1VlBWr1'te or S1V1BWr1'teX request followed by an S1V1Bc10se request. Any

buffered data must be flushed to stable store or to the device before the response is sent.

Since the call is related to either the S1VlBWr1'te or S1V1BWr1'teX request, the length of the request

may change; an SMB redirector may construct the request like S1VlBWr1'te, with six 16-bit fields in
the variable word vector, or like S1VlBWr1'teX, with twelve 16-bit fields in the smb_vWv. The LMX

server must be prepared to accept either form.

SMBwrite close Deviations

See Section 7.5 on page 76 and Section 12.6 on page 168 for details.

SMBwrite close Field De scriptions

From SMB redirector _ To SMB redirector

Field Name Field Value _ Field Name Field Value
smb_com SMBwr1'teclose smb_com SMBwr1'teclose

smb_wct (6 or 12) smb_wct 1

smb_vwv[0] smb_fid smb_vwv[0] smb_count

smb_vwv[1] smb_count smb_bcc 0

smb_vwv[2-3] smb_ofl’Set

smb_vwv[4—5] smb_t1'me

smb_vwv[6-1 1] smb_rsvd

smb_bcc (1 + smb_count)

smb_but[] smb_pad
smb_data

smb_fid The FID to be closed.

smb_count In the request, the number of bytes of data to be written. In the response, the

number of bytes that were actually written.

smb_0fl’Set A 32-bit offset into the file, in bytes, at which the data is to be written.

smb_t1'me A 32-bit time value to be used as the last modify time for the file. A value of

zero indicates the last modified time should be unchanged.

smb_rsVd This six 16-bit field is only present if smb_wct is 12. These fields should be

ignored.

smb_pad A single 8-bit field which is used to pad out the beginning of the smb_data area

to a 32-bit address boundary.

smb_data A string of bytes, in no particular format, whose length is given by smb_count.
This is the data to be written.

X/Open CAE Specification (1992)

Page 184 of 267

Extended 1.0 SIVIB File Operations SlVIBwritec1ose Specification

SMBwrite close Error Code Descriptions

Exactly the errors returned by SIVlBWr1'teX and S1V1Bc1ose can be returned for this request. If an

error occurs during the write operation, the file will still be closed. Only one error can be

returned in the response; if errors occur during both the write and close operations, the close

error is reported.

SMBwrite close Pre conditions

1. The SMB redirector has sent a valid SMB with a TID for a writable resource.

2. The FID is valid and the process has write access to the file.

SMBwrite close Postconditions

1. The data in the call is written to the file. If an error occurred, it will be reported unless a
close error occurs as well.

2. The file is closed and any errors are reported.

SMBwrite close Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random order.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 167

Page 185 of 267

SA/IBwriteX Specification

12.6

168

Extended 1.0 SA/IB File Operations

SMBwrite X Spe cification

SMBwriteX De taile cl Description

This extended protocol request is used to write to any supported file type (see Section 3.7 on

page 17). The S1VlBwr1'teX command allows writes to be timed out and offers a generalised

alternative to the S1VlBwr1'te and S1VlBsp1Wr requests.

Note that a zero-length write does not truncate the file as was true of the S1VlBWr1'te request;

rather a zero-length write merely transfers zero bytes of information to the file. The S1VlBWr1'te

request may be used to truncate the file.

SMBwrite X Deviations

Some LMX servers may limit support of extended features for CAE special files. For example,

smb_t1'me0ut and/or smb_rema1'n1'ng may not be supported and locking versus non-blocking may

be a configured parameter, etc.

Some CAE systems provide no way for a programme to block until the local file cache has

actually flushed to the disk, but simply indicate that a flush has been scheduled and will

complete soon. An LMX server should nonetheless take steps to maximise the probability that

the data is truly on disk before the SMB redirector is notified.

SMBwrite X Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBwr1'teX smb_com SMBwr1'teX

smb_wct 12 smb_wct 6

smb_vwv[0] smb_com2 smb_vwv[0] smb_com2

smb_vwv[1] smb_oll‘2 smb_vwv[1] smb_ofl‘2

smb_vwv[2] smb_fid smb_vwv[2] smb_c0unt

smb_vwv[3-4] smb_0fl’Set smb_vwv[3] smb_remain1'ng
smb_vwv[5-6] smb_t1'meout smb_vwv[4—5] smb_rsvd

smb_vwv[7] smb_wmode smb_bcc 0

smb_vwv[8] smb_count1ett

smb_vwv[9] smb_rsvd

smb_vwv[10] smb_dsize

smb_vwv[1 1] smb_dolT

smb_bcc min=0

smb_but[] smb_pad
smb_data

smb_fid The FID handle of the file to which the data should be written.

smb_0fl’§et A 32-bit unsigned integer giving the position in the file at which the data is to
be written.

smb_t1'me0ut A 32-bit signed field giving the time (in milliseconds) within which a write

must complete. A value of zero (0) indicates the write should never block.

This field is ignored for regular files.

For other than regular file types (refer to X/Open CAE Specification, [PC

Mechanisms for SMB), this value has two special values. If the timeout is -1,

the LMX server should block indefinitely waiting for the write. If the timeout

is -2, the LMX server should use the default timeout for the file type.

X/Open CAE Specification (1992)

Page 186 of 267

Extended 1.0 SIVIB File Operations

smb_wmode

smb_countlefi

smb_rsvd

smb_dsize

smb_doiT

smb_pad

smb_data

smb_count

smb_remaining

smb_rsvd

SMBwriteX Specification

A 16-bit field containing flags, defined as follows:

Bit 0 If set, an LMX server must not respond to the SMB redirector

before the data is actually written to the disk (that is, write-

through) .

If set, the LMX server should set smb_remaining correctly for

writes to named pipes or I/O devices.

Bit 1

Bit2 For named pipes only. If set, RawwriteNamedPipe should be

used. (See the X/Open CAE Specification, [PC Mechanisms for

SMB).

Bit 3 For named pipes only. If set, this data is the start of a message.

All other bits are reserved and should be ignored.

This unsigned 16-bit field is an advisory field telling the LMX server

approximately how many bytes will be written to this file before the next

non—write operation. It should include the number of bytes to be written by

this request. An LMX server may ignore this field or use it to perform

optimisations.

A 16-bit reserved field; MBZ.

An unsigned 16-bit field giving the amount of data to be written, in bytes.

A 16-bit field giving the offset from the start of the SMB header to the

beginning of the data to be written. Specifying this field allows an SMB

redirector to efficiently align the data buffer.

The 8~bit fields between the end of the S1V1BwriteX header and the beginning of

the data as pointed to by smb_d0fl‘.‘ These fields should be ignored.

The actual data to be written. This is not in a buffer form; it is simply a string

of bytes.

A 16-bit field giving the actual number of bytes written. The value would be

different from smb_dsize if, for example, the file system became full or a file

size limit imposed by ulimit was reached (refer to Section 4.3.3 on page 30).

This 16-bit integer should be -1 for regular files. For named pipes and I/O
devices, if bit 1 of smb_wm0de is set, the server should return the amount of

data available to be read on this named pipe after the read. This value may be

approximate, and a server may simply force this field to be -1.

A 32 bit reserved field. It should be zero (0).

Protocols for X/Open PC Interworking: SMB, Version 2 169

Page 187 of 267

SA/IBwriteX Specification Extended 1.0 SIVIB File Operations

SMBwriteX Error Code De scriptions

CAE Code “DOS Class “DOS Code ‘Description

- ‘ERRDOS 'ERRnoaccess ITID non—writable or other prohibition of access.

- ERRDOS ERRbadfid Invalid FID. The SMB redirector has attempted

to use an FID not recognised by the LMX server.

- ERRDOS ERRlock The write overlapped an existing byte-range

lock placed by another process.

- ERRDOS ERRbadaccess Invalid open mode for the attempted operation

(for example, writing a read-only file).
- ERRSRV ERRerror Error is returned to the SMB redirector for non-

specific errors such as corrupt SMB requests.
- ERRSRV ERRinvnid Invalid TID.

- ERRSRV ERRtimeout The requested operation timed out.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS _Everj,,'IlIing worked, no problems.

SMBwrite X Pre conditions

SMB request, UID and TDD are valid and represent the appropriate access rights to perform the
action.

SMBwrite X Postconditions

If no error occurred, the data was buffered to be written to disk. The current file pointer for this
file is advanced.

SMBwriteX Side Effects

A write-through write will cause the written data to be flushed to stable store, and may cause all
buffered data for the file to be flushed.

Conventions

Chaining (see Section 3.9 on page 22).

The following are the only valid requests which may be chained to an S1V1Bwr1'teX request:

SMBread, SMBreadX, SMBlockingX, SMBclose, SMBlockread and NIL.

170 X/Open CAE Specification (1992)

Page 188 of 267

Extended 1.0 SIVIB File Operations

12.7

SlVIBreadbmpx Specification

SMBre adbm px Spe cification

SMBre adbm px De taile cl De scription

The read block multiplexed request is used to maximise the performance of reading a large block

of data from the LMX server to the SMB redirector on a multiplexed LMX session. The

S1VlBreadbmpx request can be applied to any supported file type.

Each S1VlBreadbmpx request will cause one or more associated responses to be sent from the LMX

server. Each response contains as much of the remaining data to be read as will fit, and

responses are generated until all the requested data has been transmitted. The LMX server can

rely on the SMB redirector to maintain synchronisation; if the SMB redirector encounters a

problem while it is receiving responses to an S1VlBreadbmpx request, it is responsible for

discarding all those responses and will not notify the LMX server in any way. After solving the

problem, the SMB redirector may reissue the request; the LMX server need not retain state

concerning a completed S1VlBreadbmpx request. No acknowledgement of receipt from the SMB

redirector is needed; the underlying transport is expected to ensure all responses arrive at the
SMB redirector in the correct order.

Note that the request and all responses make up a single complete SMB exchange; thus, the TID,

PID and UID are expected to remain constant. Also, the S1VlBreadbmpx exchange is supported on

multiplexed NetBIOS sessions. What this means is that the SMB redirector may issue other SMB

requests while the (multiple) S1VlBreadbmpx responses are being sent from the LMX server to the

SMB redirector. Because of this, the response must contain the MID and PID of the original

SMBreadbmpx request.

During an S1VlBreadbmpx exchange, the SMB redirector should not issue SMB requests which

conflict with this; for example, the SMB redirector should not issue an S1V1Bc10se request on the

same file for which it is still receiving S1VlBreadbmpx responses.

SMBre adbm px Deviations

LMX servers may not support timeouts on all possible file types.

SMBre adbm px Field De scriptions

_ To SMB redirector

_ Field Name Field Value

smb_com SMBreadbmpx
smb_wct 8

smb_vwv[0-1] smb_ofl’Set

smb_vwv[2] smb_tcount

smb_vwv[3] smb_remaining
smb_vwv[4—5] smb_rsvd

smb_vwv[6] smb_dsize

smb_vwv[7] smb_do1T

smb_bcc min=0

smb_but[] smb_pad
smb_data

From SMB redirector

' Field Name Field Value

smb_com SMBreadbmpx
smb_wct 8

smb_vwv[0] smb_fid

smb_vwv[1-2] smb_ofl’set

smb_vwv[3] smb_maxcnt

smb_vWv[4] smb_m1'ncnt

smb_vwv[5-6] smb_tl'meout

smb_vwv[7] smb_rsVd

smb_bcc 0

smb_fid The FID of the file to be read from.

smb_0fl’Set A 32-bit integer giving the position in the file at which to read (in the request)

or the position in the file at which the data returned in this response began.

Protocols for X/Open PC Interworking: SMB, Version 2 171

Page 189 of 267

SMBreadbmpx Specification

smb_maxcnt

smb_m1'ncnt

smb_t1'meout

smb_rsvd

smb_tcount

smb_rema1'n1'ng

smb_ds1'ze

smb_do1T

smb_pad

smb_data

172

Page 190 of 267

Extended 1.0 SMB File Operations

Maximum number of bytes to return; the desired read size.

The minimum number of bytes to read. For regular files, this value is usually

zero. When the timeout is used, this is the minimum number of bytes which

will satisfy the read; if fewer bytes are available, the request will block until

enough are available or the timeout is reached.

A 32-bit integer giving the number of milliseconds to wait for smb_m1'ncnt

bytes of data to become readable. A timeout of zero (0) indicates the call

should never block. This value is ignored for regular files and may be ignored

for I/O devices. For named pipes, there are two special values: -1 means the

request should block forever until at least smb_m1'ncnt bytes become available;

-2 means the default timeout associated with the named pipe should be used.

These fields are reserved and should be ignored in requests and set to zero in
responses.

An integer giving the total number of bytes expected to be returned in all

responses to this request. This value will usually start at smb_maxcnt and may

be reduced by file truncations while the read is in progress, etc. This value

must be accurate in at least the last response generated (that is, contain the

actual number of bytes sent in all responses) but may be an overestimate in

earlier responses.

If this value in the last response is less than smb_maxcnt, EOF was encountered

during the read. If this value is exactly zero (0), the original offset into the file

began after EOF; in this case, only one response may be generated.

This integer should be -1 for regular files. For devices or named pipes this

indicates the number of bytes remaining to be read from the file after the bytes

returned in the response were de-queued. LMX servers need not support this

function and should return -1 if they do not support it.

The number of data bytes returned in the individual response.

The offset in bytes from the beginning of the SMB to the beginning of the data

being returned. This offset permits the LMX server to use an efficient

alignment of the data within the SMB response.

Zero (0) to three (3) bytes of padding. This is the space after the end of the

SIVlBreadbmpx subheader which is unused because the data was aligned. The

smb_d01fpoints to the first byte after this bytestring.

The actual data bytes read.

X/Open CAE Specification (1992)

Extended 1.0 SIVIB File Operations SA/IBreadbmpX Specification

SMBre adbm px Error Code De scriptions

See Section 12.3 on page 160 for other error codes.

CAE Code DOS Class _ DOS Code _ Description
- ERRDOS ERRnoaccess File was opened in Deny Read mode.

EBADFID ERRDOS ERRbadfid The FID was valid but unacceptable to the

underlying OS.

- ERRDOS ERRlock Read overlapped a byte-range lock granted to

another process.

- ERRDOS ERRbadaccess Some conflict in open mode occurred.
- ERRSRV ERRerror Invalid SMB.

- ERRSRV ERRinvnid Invalid TID.

- ERRSRV ERRnoresource A temporary resource limitation in the LMX

server caused this request to fail.
- ERRSRV ERRtimeout A timeout occurred.

- ERRSRV ERRuseSTD Temporarily out of sufficient buffers.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS |ivc1j.rti1i|1g worked, no prohlenis.

SMBre adbm px Pre conditions

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action.

2. The FID is valid.

SMBre adbm px Postconditions

1. For I/O devices or named pipes the returned data was consumed from the device.

2. After completion the current file position pointer will be right after the read data or at EOF.

SMBre adbm px Side Effe cts

Because of the nature of the request, the operation may not be atomic on the LMX server;

requests on the same file from other processes may change the results of this request.

Conve ntions

- Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 173

Page 191 of 267

SMBwritebmpx Specification

12.8

174

Extended 1.0 SMB File Operations

SMBwrite bm px Spe cification

SMBwrite bm px De taile cl De scription

This extended protocol request provides a high performance mechanism for writing large

amounts of data while other activity is being generated by the SMB redirector. The

S1VlBwr1'tebmpx operation can be performed on any supported file type.

Unlike most SMBs, there are two forms of both request and response: primary and secondary.

The collection of all requests and responses related to a given primary S1VlBWr1'tebmpx request is

called an S1V1Bwr1'tebmpx exchange.

An S1VlBwr1'tebmpx exchange begins when the SMB redirector sends a primary request. This

request sets many of the parameters for the exchange and contains the first part of the data to be

written. If an error occurred while handling this request, the LMX server sends a secondary

response indicating the error and ends the exchange; otherwise, the LMX server sends a primary

response indicating it is ready for more data. Then, if the amount of data to be written is greater

than what could fit in the primary request, the SMB redirector sends secondary requests until all

data has been sent. If the exchange was in write-through mode, the LMX server sends a

secondary response; otherwise, the LMX server relies on the transport to ensure delivery of all

requests and does not generate an additional reply.

If an error occurs after the primary response is sent, any secondary requests must be discarded.

If write-through mode was requested, error information is returned to the SMB redirector in the

secondary response. If not, the error is cached and returned in the response to the next request

issued by the SMB redirector for that file.

Other requests may be issued on the same LMX session while the exchange is in progress. The

TID, PID, UID and MID are expected to be identical in all requests and responses in a given

S1V1Bwr1'tebmpx exchange.

Ifwrite-through mode is specified, the LMX server will collect all the data and write it to the disk

atomically; otherwise, in write—behind mode, the LMX server need not make this guarantee.

SMBwrite bm px Deviations

Timeouts for I/O devices are implementation-dependent.

Some CAE systems provide no way for a programme to block until the local file cache has

actually flushed to the disk, but simply indicate that a flush has been scheduled and will

complete soon. An LMX server should nonetheless take steps to maximise the probability that

the data is truly on disk before the SMB redirector is notified.

X/Open CAE Specification (1992)

Page 192 of 267

Extended 1.0 SIVIB File Operations SlVIBwr1'tebmpX Specification

SMBwrite bm px Field De scriptions

Page 193 of 267

Prim ary Re que st/Re sponse

I From SMB redirector _ To SMB redirector
_ Field Name Field Value _ Field Name Field Value

smb_com SMBwr1'tebmpx smb_com SMBwr1'tebmpx
smb_wct 12 smb_wct 1

smb_vvvv[0] smb_fid smb_vvvv[0] smb_rema1'n1'ng
smb_vvvv[1] smb_tc0unt smb_bcc 0

smb_vvvv[2] smb_rsvd

smb_vvvv[3-4] smb_0fl’Set

smb_vvvv[5-6] smb_t1'meout

smb_vvvv[7] smb_wm0de

smb_vvvv[8—9] smb_rsvd

smb_vvvv[10] smb_ds1'ze

smb_vvvv[1 1] smb_do1T

smb_bcc min=0

smb_but[] smb_pad

smb_data _

smb_fid The FID of the file to be written to.

smb_tc0unt An unsigned 16-bit field giving the total number of bytes that will be written

to the file. This value must be correct in at least one of the requests in the

exchange; in other requests, it may be an over—estimate.

smb_rsVd These fields are reserved and should be ignored by the LMX server.

smb_0fl’§et A 32-bit integer giving the position in the file at which the bytes in the request
should be written.

smb_t1'me0ut A 32-bit integer giving the number of milliseconds the LMX server may block

while trying to complete the write. This value is ignored for regular files. For

I/O devices and named pipes (refer to the X/Open CAE Specification, [PC

Mechanisms for SMB), the LMX server will wait this much time to complete

the write. If smb_t1'me0ut is -1, the LMX server will wait indefinitely; if it is -2,
the server will wait the default amount of time for the file. An LMX server

may choose to treat all timeouts as 0; that is, do not block.

smb_wm0de A 16-bit flag field controlling the write mode. If bit 0 is set, write-through

mode is requested; the LMX server will write all data atomically and

acknowledge the write with the secondary response. If clear, write—behind is

permitted; the LMX server need not write atomically and need not report

completion. If bit 1 is set, the LMX server should fill in the smb_rema1'n1'ng field

in the primary response.

smb_ds1'ze The number of data bytes in this request.

smb_d0iT The offset in bytes from the beginning of the SMB header to smb_data.

smb_pad Between zero and three unused bytes; the SMB redirector may use these to

pad out the smb_data area to a properly-aligned boundary.

smb_data The actual data to be written. This is a string of bytes in no particular format.

Protocols for X/Open PC Interworking: SMB, Version 2 175

SMBwr1'tebmpX Specification

smb_rema1'n1'ng

Extended 1.0 SMB File Operations

A 16-bit integer which is always -1 for regular files or if bit 1 of smb_wm0de is

not set. Otherwise, this is the number of bytes available to be read from the

I/O device or named pipe specified by the FID. If the LMX server does not

support this functionality, -1 should always be returned.

Se condary Re que st/Re sponse

From SMB redirector

Field Name Field Value

smb_com SMBwr1'tebs

smb_wct 8

smb_vwv[0] smb_fid

smb_vwv[1] smb_tc0unt

smb_vvvv[2-3] smb_0fl’Set

smb_vvvv[4—5] smb_rsvd

smb_vwv[6] smb_ds1'ze

smb_vvvv[7] smb_do1T

smb_bcc min=0

smb_but[] smb_pad
smb_data

smb_count

To SMB redirector

Field Name Field Value

smb_com SMBwritec

smb_wct 1

smb_vwv[0] smb_c0unt

smb_bcc 0

The total number of bytes written. If this is different from the smallest

smb_tc0unt sent by the SMB redirector, some error occurred (for example, out

of free space on the file system).

All other fields are identical to the primary request.

SMBwrite bm px Error Code De scriptions

For other error codes see Section 12.6 on page 168. If a secondary response is not being

generated by the LMX server, any error should be cached and returned in the response to the

next request from the same process involving this FID.

CAE Code DOS Class DOS Code Description

- ERRSRV ERRnoresource Unable to allocate enough buffer space.
- ERRSRV ERRtimeout Timeout occurred.

- ERRSRV ERRuseSTD Some resource limitation prevents the LMX

server from supporting Sl\/IBwritebmpX at this

time; more limited write requests (Sl\/IBwr1'te,

Sl\/IBwriteX) should be used instead.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- SUCCESS SUCCESS Everything worked, no problems.

SMBwrite bm px Pre conditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a writable resource.

2. The FID is valid and the process has write access.

176

Page 194 of 267

X/Open CAE Specification (1992)

Extended 1.0 SIVIB File Operations SlVIBwritebmpx Specification

SMBwrite bm px Postconditions

1. After the LMX server responds to the primary request to write—behind, the data in the

primary write—behind request has been written.

2. After the secondary response, either an error was returned or all the data was written

atomically.

3. After the last secondary request in a write-behind mode exchange is received, all the data

is available to be read but might not yet be written to stable store.

4. If vvrite-through mode was not specified, the LMX server has cached any errors to be sent

as a response to the next request from this process related to this file.

SMBwrite bm px Side Effe cts

Because write—behind mode does not guarantee atomic write of all data, it is possible that this

exchange is interfered with. It is possible, for example, that data from other processes could be

interspersed with the data written by an exchange.

Conve ntions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 177

Page 195 of 267

Chapter 13

Extended 1.0 SMB Directory and Attribute Operations

This section defines the elements of the extended SMB protocol that support directory and

attribute access. They are:

S1VlBfl5rst start/continue an extended wildcard directory lookup

S1VlBfE:10se end an extended wildcard directory lookup

S1VlBfi1niq.1e perform a one—time extended wildcard directory lookup

S1VlBgetattrE get extended file attributes

SIVlBsetattrE set extended file attributes

13.1 SMBflirst Specification

SMBffirst De taile d De scription

The S1VlBfl‘1'rst extended protocol request behaves exactly like the S1VlBsearch core request, except

the LMX server can expect the SMB redirector to terminate the search by issuing an S1VlBfE:1ose

request. Because of this expectation, the LMX server should not use heuristics to terminate the

search, and should instead preserve all search state and resources until the S1VlBfE:1ose request is
received or the LMX session is closed.

As in the case of S1VlBsearcl1, there are two forms of the S1VlBfl‘1'rst request: FindFirst, indicated by a

null smb_search_id, and FindNext, which has a valid smb_search_id specified.

If a FindFirst request (an S1VlBflirst request whose smb_search_id is null) fails (no entries are

found), the LMX server should respond with a failure and terminate the search. No S1VlBfc10se

request should be expected.

Otherwise, S1VlBfl‘1'rst behaves in all respects like S1VlBsearch.

SMBffirst Deviations

See Section 8.3 on page 99.

SMBffirst Field De scriptions

See Section 8.3 on page 99.

SMBffirst Error Code Descriptions

See Section 8.3 on page 99.

SMBffirst Pre conditions

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action on a searchable disk resource.

2. The process has read/search permissions on all directories encountered.

3. For a FindNext request, the matching FindFirst/FindNext request must not have failed.

Protocols for X/Open PC Interworking: SMB, Version 2 179

Page 197 of 267

SA/IBffirst Specification Extended 1.0 SMB Directory and Attribute Operations

SMBflirst Postconditions

1. If the F1'ndF1'rst fails, the search is terminated.

2. As long as S1VlBfl‘1'rst requests continue to succeed, search state and resources are

maintained; directories may remain open, etc.

3. After each F1'ndNext, state information is updated in such a way as to ensure the search can

continue without returning d1'r_1'nIi) on the same file twice.

SMBffirst Side Effects

Various directories may remain open for reading during the lifetime of an active search. This

may interfere with requests from other processes on involved directories.

Conve ntions

- Access (see Section 4.3.2 on page 30).

- Attributes (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

- Wildcard (see Section 3.6 on page 17).

180 X/Open CAE Specification (1992)

Page 198 of 267

Extended 1.0 SIVIB Directory and Attribute Operations

13.2

S1Vfl31z':Iose Specification

SMBfclose Specification

SMBfclose De taile d De scription

The S1VlBi'c1ose extended protocol request terminates an active search begun by S1VlB1‘first.

SMBfclose Deviations

None.

SMBfclose Field Descriptions

The S1VlBi‘c1ose request and response are identical to the S1VlBsearch request and response (see

Section 8.3 on page 99). The fields are interpreted differently:

smb_com This should be S1VlBi‘c1ose in both request and response.

smb_count This 16-bit integer should be ignored in the request and must be zero in the
response.

smb_attr This attribute field should be ignored.

smb_pathname This ASCIIZ (type 04) buffer should be empty; that is, the buffer contains a

single ASCII NULL character.

This variable block (type 05) buffer should be one of the find_buf;search_1'd

structures returned in any response to the search being terminated. This
buffer identifies the search which is to be terminated.

smb_search_1'd

smb_data This variable block (type 05) should be zero length; that is, the length for the

buffer should be zero (0), and no data bytes should be appended.

SMBfclose Error Code Descriptions

Same as for S1VlBsearch (see Section 8.3 on page 99).

SMBfclose Preconditions

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action.

2. The search identified by smb_search_id must be active.

SMBfclose Postconditions

Any allocated resources for the identified search are released, and the search is no longer active.

SMBfclose Side Effects

None.

Conve ntions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 181

Page 199 of 267

SMBii1niq1e Specification

13.3

182

Extended 1.0 SMB Directory and Attribute Operations

SMBfunique Specification

SMBfunique De taile d De scription

The S1VlBfi1niq.1e extended 1.0 protocol request behaves exactly like the S1VlBsearch core request,

except the LMX server can terminate the search immediately after sending the response. The

S1VlBfi1niq.1e request, while it does support a wildcard smb_pathname, is designed to return

information on only a few (possibly one) files. Ifmore files match than can fit into the response,

the LMX server can disregard them.

SMBfunique Deviations

See Section 8.3 on page 99.

SMBfunique Field De scriptions

See Section 8.3 on page 99. The LMX server should expect that smb_search_id will always be a

zero-length variable block (type 05) buffer.

SMBfunique Error Code Descriptions

See Section 8.3 on page 99.

SMBfunique Preconditions

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action.

2. The process has read/search permissions on all directories encountered.

SMBfunique Postconditions

No state or resources are maintained on the LMX server after the response is sent; the search is
considered inactive.

SMBfunique Side Effects

Because S1VlBfi1niq.1e is a one pass search, interaction with other requests due to directories

remaining open for long periods of time should be greatly reduced; however, they may not be
eliminated.

Conventions

- Access (see Section 4.3.2 on page 30).

- Attributes (see Section 4.3.1 on page 30).

- Filename (see Section 3.5 on page 15).

- Wildcard (see Section 3.6 on page 17).

X/Open CAE Specification (1992)

Page 200 of 267

Extended 1.0 SIVIB Directory and Attribute Operations SA/IBgeta ttrE Specification

13.4 SMBge tattrE Spe cification

SMBge tattrE De taile cl De scription

This extended 1.0 protocol request returns extended attribute information for a given open

regular file.

SMBge tattrE De viations

1. LMX servers which cannot maintain a creation date and time for their files will return the

last modify date and time instead.

2. The attribute field is treated according to the Attribute convention.

SMBge tattrE Field De scriptions

From SMB redirector _ To SMB redirector

Field Name Field Value _ Field Name Field Value

smb_com SMBgetattrE smb_com SMBgetattrE
smb_wct 1 smb_wct 1 1

smb_vvvv[0] smb_fid smb_vvvv[0] smb_cdate

smb_bcc 0 smb_vvvv[1] smb_ctime

smb_vwv[2] smb_adate

smb_vwV[3] smb_atime

smb_vvvv[4] smb_mdate

smb_vwv[5] smb_mtime

smb_vwv[6~7] smb_datasize

smb_vvvv[8—9] smb_a1locsize

smb_vwv[10] smb_attr

smb_bcc 0

smb_fid The FID for which extended attribute information should be returned.

smb_cdate A date field giving the creation date for the file. See Section 5.3.2 on page 43.

smb_ctime A time field giving the creation time for the file. See Section 5.3.1 on page 43.

smb_adate A date field giving the last access date for the file.

smb_atime A time field giving the last access time for the file.

smb_mdate A date field giving the last modify date for the file.

smb_mtime A time field giving the last modify time for the file.

smb_datasize A 32-bit integer giving the current size of the file (offset to EOF) in bytes.

smb_a110csize A 32-bit integer giving the amount of space allocated to the file. LMX servers

on systems which do not support pre-allocation of space will set this field to
the same value as smb_datasize.

smbflattr An attribute field giving the attributes of the file (see Section 3.7 on page 17).

Protocols for X/Open PC Interworking: SMB, Version 2 183

Page 201 of 267

SMBgetattrE Specification Extended 1.0 SMB Directory and Attribute Operations

SMBge tattrE Error Code De scriptions

CAE Code DOS Class DOS Code Description

EBADF ERRDOS ERRbadfid Invalid or no longer an acceptable FID.

EINTR ERRSRV ERRerror A signal was caught during a system call.

- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRinvdevice TID not for a disk resource.

- SUCCESS SUCCESS Everything worked, no problems.

SMBge tattrE Pre conditions

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action.

2. The FID must be valid.

SMBge tattrE Postconditions

None.

SMBge tattrE Side Effe cts

None.

Conve ntions

- Attribute (see Section 4.3.1 on page 30).

184 X/Open CAE Specification (1992)

Page 202 of 267

Extended 1.0 SIVIB Directory and Attribute Operations SA/IBsetattrE Specification

13.5 SMBse tattrE Spe cification

SMBse tattrE De taile cl De scription

This extended 1.0 protocol request is used to set extended attribute information for an open

regular file.

SMBse tattrE Deviations

LMX servers which cannot maintain a creation time for their files will ignore the create date and
time fields.

SMBse tattrE Field De scriptions

From SMB redirector To SMB redirector
Field Name Field Value _ Field Name Field Value
smb_com SMBsetattrE smb_com SMBsetattrE

smb_wct 7 smb_wct 0

smb_vwv[0] smb_fid smb_bcc 0

smb_vwv[1] smb_cdate

smb_vwv[2] smb_ctime

smb_vwv[3] smb_adate

smb_vwv[4] smb_atime

smb_vwv[5] smb_mdate

smb_vwv[6] smb_mtime

smb_bcc min=0

smb_rsvd

smb_fid The FID whose extended attributes are to be changed.

smb_cdate A date field containing the creation date for the file. See Section 5.3.2 on page
43.

smb_ctime A time field containing the creation time for the file. See Section 5.3.1 on page
43.

smb_adate A date field containing the last access date for the file.

smb_atime A time field containing the last access time for the file.

smb_mdate A date field containing the last modify date for the file.

smb_mtime A time field containing the last modify time for the file.

smb_rsVd A reserved character string; LMX servers should ignore this field.

Protocols for X/Open PC Interworking: SMB, Version 2 185

Page 203 of 267

SA/IBsetattrE Specification Extended 1.0 SMB Directory and Attribute Operations

SMBse tattrE Error Code Descriptions

CAE Code :DOS Class
EACCES ERRSRV

EBADF ERRDOS

EINTR ERRSRV

EPERM ERRSRV

EROFS ERRSRV

- ERRSRV

- ERRSRV

- SUCCESS

SMBse tattrE Pre conditions

‘DOS Code nliescription

‘ERRaccess ‘The UID does not have appropriate privilege I
and is not the owner of the file.

ERRbadfid Invalid or no longer an acceptable FID.

ERRerror A signal was caught during the operation.

ERRaccess The UID does not have appropriate privilege
and is not the owner of the file.

ERRaccess File system is read-only.

ERRinvnid TID specified in command is invalid.

ERRinvdevice TID does not specify a disk resource.

SUCCESS _ Evfirytliirlg worked, no pruhlt-.m:-'..

1. SMB request, UID and TDD are valid and represent the appropriate access rights to perform
the action.

2. The FID is valid.

SMBse tattrE Postconditions

A file time and date will remain unchanged if the corresponding date and time in the request
was zero .

SMBse tattrE Side Effe cts

None.

Conve ntions

- Access (see Section 4.3.2 on page 30).

186

Page 204 of 267

X/Open CAE Specification (1992)

Chapter 14

Extended 1.0 SMB A/Iiscellaneous Requests

This section defines the remaining elements of the extended 1.0 SMB protocol. They are:

S1V1Bc0py copy one or more files

S1VlBech0 test an LMX session

S1VlB1'0ct1 I/O device control

S1VlBm0Ve move one or more files by renaming

14.1 SMBcopy Specification

SMBcopy De tailed Description

This extended 1.0 protocol request copies one or more files from a given path to a new path on a

single LMX server. The source path may include wildcards. The destination may be a directory

or a single file, but it may not include wildcards. If the destination is a directory, the source

file(s) are copied into that directory; if the destination is a regular file, the source file(s) are

appended to it (possibly after the destination is truncated).

SMBcopy Deviations

None.

SMBcopy Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBcopy smb_com SMBcopy
smbfiwct 3 smb_wct 1

smb_vWv[0] smb_t1'd2 smb_vWv[0] smb_cct

smb_vwv[1] smb_ofi1n smb_bcc min=0

$IllLVWV[2] smbvflags smbVbut[] smb_errfile
smb_bcc min=2

smb_bu1‘[] smb_path

smbunew_path

smb_tid2 The TID corresponding to smbfinewgpath. The TID for smb_path is sent in
smb_tid in the SMB header. If smb_tid2 is -1, the TID in smb_tid should be used

for smb_new_path as well; this permits SMBcopy to be chained to SMBtconX.

smb_0fi1n This is an open function field (see Section 5.3.8 on page 46). If smb_neW_path is

a simple file smb_0fi1n applies at the start of the operation; in the case of

wildcards all subsequent files will then be appended. It is applied to each

copied file when smb_new_path is a directory.

smb_flags This 16-bit field contains a set of flags controlling the copy operations:

Bit 0 If set, the destination must be a file.

Protocols for X/Open PC Interworking: SMB, Version 2 187

Page 205 of 267

SMBcopy Specification

smb_path

smb_new_pat11

smb_cct

smb_errfi1e

188

Page 206 of 267

Extended 1.0 SMB lvliscellaneous Requests

Bit 1 If set, the destination must be a directory.

Bit 2 Copy destination mode: 0=binary (indicating the contents of the file

are not to be interpreted), 1=ASCII (indicating DOS format text file).

This bit is ignored.

Bit 3 Copy source mode: 0=binary (indicating the contents of the file are

not to be interpreted), 1=ASCII (indicating DOS format text file).

This bit is ignored.

Bit 4 If set, all writes must be verified by comparing the copied destination

to the original source(s).

Bit 5 If set, indicates a tree copy is requested. A tree copy means the

contents of the directory and any subdirectories are to be copied.

This bit only has meaning if the extended 2.0 SMB dialect was

negotiated.

All other bits are reserved and should be ignored.

An ASCIIZ buffer containing the name of the file(s) to be copied; wildcard

characters are permitted. The path is interpreted relative to smb_t1'd in the
SMB header.

An ASCIIZ buffer containing the name of the destination to which the source

file(s) are to be copied. Wildcards may not be used. The path is interpreted

relative to smb_t1'd2 in the S1VlBc0py subheader.

A 16-bit integer containing the actual number of files copied.

This is an ASCIIZ buffer which may contain the name of the source file on

which an error was encountered during a copy operation. When a copy error

is encountered, the expanded source filename is returned in smb_erIfi1e and the

error code is returned in smb_err (in the SMB header).

X/Open CAE Specification (1992)

Extended 1.0 SIVIB lvliscellaneous Recyests

SMBcopy Error Code Descriptions

CAE Code :DOS Class :DOS Code
EACCES ERRDOS ERRnoaccess

EAGAIN ERRDOS ERRshare

EEXIST ERRSRV ERRfilexists

EINTR ERRSRV ERRerror

EISDIR ERRDOS ERRnoaccess

EMFILE ERRSRV ERRerror

ENFILE ERRDOS ERRnofids

ENOENT ERRDOS ERRbadfile

ENOSPC ERRSRV ERRerror

ENOTDIR ERRDOS ERRbadpath

ENXIO ERRSRV ERRerror

EROFS ERRSRV ERRerror

ETXTBSY ERRSRV ERRerror

- ERRSRV ERRinvnid

- ERRSRV ERRinvdevice

- ERRDOS ERRnofiles

- ERRDOS ERRbadshare

- ERRSRV ERRbaduid

- SUCCESS SUCCESS

SMBcopy Pre conditions

SA/IBcopy Specification

I Description

Component search I
permission.

of path—prefix denies

There are outstanding record locks on the file.
Destination file exists.

A signal was caught during the open operation.

Can’t copy onto a directory.

Maximum number of file descriptors are

currently open in this process.

System file table is full.

File does not exist, or component of pathname
does not exist.

The system is out of resources necessary to
create files.

Component of either path-prefix is not a

directory.

One of the TIDs is not for a file system subtree.

Destination file system subtree is read-only.

Can’t copy onto programme being executed.
Invalid TID.

One of the TIDs is not for a file system subtree.

No more files matching the specified criteria.

Share conflict when creating a destination file.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

Everything worked, no prcrblclns.

l. The Sl\/[B redirector has sent a valid Sl\/[B with a valid smb_t1'd and smb_t1'd2 for file system
subtrees; the smb_t1'd2 resource must allow writes.

2. The Sl\/[B redirector has appropriate read/search permission on source and destination

paths, and write permission on the destination file or into the destination directory.

SMBcopy Postconditions

Not all files may have been copied; smb_erIfi1e will indicate which copy failed.

SMBcopy Side Effects

Some files may be overwritten if smb_0fi1n flags requested it.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 207 of 267

189

Extended 1.0 SIVIB A/Iiscellaneous Reqiests

14.2

SlVIBecho Specification

SMBe cho Spe cification

SMBe cho De taile cl Description

This extended protocol request is used to test an LMX session by exchanging messages between

the SMB redirector and LMX server. Since it is used to verify communications, the request may

be issued at any time during the life of an LMX session, except before an S1VlBnegprot request has

been issued, and not while a raw exchange is in progress (for example, S1VlBwr1'tebraw).

The LMX server will respond with the exact number of messages specified in the request.

SMBe cho Deviations

None.

SMBe cho Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBecbo smb_com SMBecho

smb_wct 1 smb_wct 1

smb_vwv[0] smb_reverb smb_vwv[0] smb_seq1ence
smb_bcc min=0 smb_bcc min=0

smb_bu1‘[] smb_data smb_bu1‘[] smb_data

smb_reverb A 16-bit integer indicating the number of responses the LMX server should

generate for this request. If zero, no response at all will be generated.

smb_data This string of bytes is test data which is specified by the SMB redirector in its

smb_seq1ence

request and returned by the LMX server in every response. The string of bytes

is not formatted; the LMX server must be careful to exactly reproduce it and

set smb_bcc correctly in the responses.

A 16-bit integer containing the sequence number of this particular response.

The first response would have smb_seq1ence = 1, and the last response would

set smb_seq1ence to smb_reverb.

SMBe cho Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRnoaccess LMX session has not been established.

- ERRSRV ERRbaduid The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

- ERRSRV ERRnosupport Requested function is not supported.

- SUCCESS SUCCESS Everything worked, no problems.

No CAE errors are possible.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 209 of 267

191

Extended 1.0 SIVIB lvliscellaneous Requests SA/IB1'octI Specification

14.3 SMBioctl Specification

SMBioctl De taile d De scription

This extended protocol request permits detailed control of I/O devices by the SMB redirector.

The actual forms of control available are device—specific and implementation-dependent.

SMBioctl Deviations

Because the mapping between ioctl request numbers and actual functionality varies from

implementation to implementation, it is impossible to provide this functionality in a portable

manner. Nonetheless, SMB redirectors using the LMX server may generate S1VlB1'0ct1 requests.

An LMX server which does not support the SIVlB1'oct1 request should return error code

ERRnosupport in error class ERRSRV if it receives such a request.

Protocols for X/Open PC Interworking: SMB, Version 2 193

Page 211 of 267

SA/IBmove Specification

14.4

194

Extended 1.0 SA/IB lvliscellaneous Requests

SMBm ove Spe cification

SMBm ove De taile cl De scription

This extended protocol request is used to move files between directories on the LMX server.

Directories as well as regular files may be moved into a new directory. The S1VlBm0Ve protocol

removes the deviations of S1VlBmV and allows for relocating files to different file system subtrees.

A move of a directory cannot have a destination located in the directory itself or any

subdirectory within the source directory. In these conditions the error <ERRDOS, ERRbadpath>
is to be returned.

The source path may include wildcards in the last component of the path, but the destination

path must specify a single file or directory (that is, no wildcards). If the destination is a

directory, the source file(s) are moved into that directory; if the destination is a regular file, all

source files but the last one are lost, and the last one is renamed to the destination path. The

sequence in which files match a wildcard specification is undefined, so the specific file which

will be given the destination name cannot be specified.

SMBm ove De viations

None.

SMBm ove Field De scriptions

From SMB redirector To SIVIB redirector

Field Name Field Value Field Name Field Value

smb_com SMBmove smb_com SMBmove

smb_wct 3 smb_wct 1

smbmvwv[0] smbBt1'd2 smbmvwv[0] smb_count

smb_vwv[1] smb_ofi1n smb_bcc min=0

smb_vwv[2] smb_flags smb_but[] smb_er1fi1e
smbmbcc min=2

smb_but[] smb_path

smb_new_pat11

smb_t1'd2 The TID corresponding to smb_new_path. The TID for smb_path is sent in
smb_t1'd in the SMB header. If smb_t1'd2 is -1, the TID in smb_t1'd should be used

for smb_new_path as well; this permits SMBmove to be chained to SMBtconX.

smb_0Ii1n This is an open function field (see Section 5.3.8 on page 46). If smb_neW_path is

a simple file smb_0Ii1n applies at the start of the operation; in the case of

wildcards all subsequent files will then be appended. It is applied to each

moved file when smb_neW_path is a directory.

smb_flags This 16-bit field contains a set of flags controlling the copy operations:

Bit 0

Bit 1

Bit 4

If set, the destination must be a file.

If set, the destination must be a directory.

If set, all writes must be verified by comparing the copied destination

to the original source(s).

All other bits are reserved and should be ignored.

X/Open CAE Specification (1992)

Page 212 of 267

smb_path

smb_new_path

smb_count

smb_errfi1e

Extended 1.0 SIVIB lvliscellaneous Reqiests SA/IBmove Specification

An ASCIIZ buffer containing the name of the file(s) to be moved; wildcard

characters are permitted. The path is interpreted relative to smb_t1'd in the
SMB header.

An ASCIIZ buffer containing the name of the destination to which the source

file(s) are to be copied. Wildcards may not be used. The path is interpreted
relative to smb_t1'd2 in the S1VIBm0Ve subheader.

A 16-bit integer containing the actual number of files moved.

This is an ASCIIZ buffer which may contain the name of the source file on

which an error was encountered, the expanded source filename is returned in

smb_erIfi1e and the error code is returned in smb_err (in the SMB header).

SMBm ove Error Code Descriptions

CAE Code

EACCES

EACCES

EEXIST

EINTR

EMLINK

ENOENT

ENOSPC

ENOTDIR

EROFS

EXDEV

DOS Class

' ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRDOS

ERRSRV

ERRDOS

ERRSRV

ERRDOS

ERRDOS

ERRDOS

ERRSRV

ERRSRV

ERRSRV

ERRSRV

ERRSRV

SUCCESS

_DOS Code
ERRnoaccess

ERRnoaccess

ERRfilexists

ERRerror

ERRerror

ERRbadfile

ERRerror

ERRbadpath

ERRnoaccess

ERRnoaccess

ERRnofiles

ERRbadshare

ERRerror

ERRinvnid

ERRnosupport
ERRaccess

ERRbaduid

SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 213 of 267

Description

Search permission is denied on a component of I
either path-prefix.

No write access to destination directory.

Directory or file already exists.

A signal was caught during a system call.
Maximum number of links to a file would be

exceeded.

A component of either path-prefix does not

exist, smb_path does not exist, or smb_new_path is

a null string.
link beDirectory cannot

extended.

A component of either path-prefix is not a

directory.

Read-only file system.

smb_path and smb_new_path are on different

logical devices.

No files match smb_path.

Share conflict when creating or appending to a
destination file.

Corrupt SMB request.
Invalid TID.

Requested function is not supported.

containing the

The resource represented by the TID does not
allow writes.

The UID given (smb_u1'd) is not known as a valid
ID on this LMX session.

No errors.

195

SA/IBmove Specification

196

Extended 1.0 SJVIB lvliscellaneous Requests

SMBm ove Pre conditions

1. The SMB redirector has sent a valid SMB request; both TIDs are for file system subtrees; the

SMB redirector has delete permission under the source TID and create permission under
the destination TID.

The source file(s) or directory must exist.

Files must not be open by other SMB redirectors. If they are, the error <ERRDOS,
ERRbadshare> is returned.

The SMB redirector has write permission in the destination directory and delete (write)

permission in the source directory.

SMBm ove Postconditions

1. If the move succeeded, none of the matching source files can be found under the old
names, and the files are now accessible under the new names.

If a move fails, the reason for the failure is returned in smb_errfi1e, along with an error

return. No remaining moves are attempted, and smb_c0unt reflects the actual number of
files moved.

SMBm ove Side Effects

Moves of multiple files to a single regular file result in the loss of all but the last file.

Conve ntions

- Access (see Section 4.3.2 on page 30).

- Filenames (see Section 3.5 on page 15).

- Wildcards (see Section 3.6 on page 17).

X/Open CAE Specification (1992)

Page 214 of 267

Chapter 15

Extended 2.0 Protocol Additions and Modifications

This chapter documents the changes and additions to the extended 1.0 dialect that take effect

when the extended 2.0 dialect is negotiated. These SMBs and the SIVlBtrans2 (refer to Chapter 16

on page 207) constitute the additions to the extended 1.0 dialect for the extended 2.0 dialect.

There is no affect on the S1VlBnegprot protocol for the extended 2.0 protocol. Refer to the

extended 1.0 protocol description for details.

15.1 SMBse ssse tupX Spe cification

SMBse ssse tupX De taile d De scription

This extended 2.0 protocol request is used to further set up the LMX session normally just

established via the S1VlBnegprot request/response. The S1VlBses.ssetupX request serves one

additional purpose over the activities performed in the extended 1.0 dialect. That purpose is to

allow the SMB redirector system to challenge the LMX server with an encryption key. The LMX

server must use the encryption key to return a response. Based on the response value, the SMB

redirector can determine whether the LMX server is really the LMX server desired or an

imposter.

- User Identification

The actual semantics for this request are governed by the security mode of the LMX server.

See Section 3.3 on page 12 for a discussion of these modes.

In user—level security mode, the SMB redirector will establish a mapping between a particular

username on the LMX server and a UID which the SMB redirector will use to represent that

user. A password may be sent by the SMB redirector to authenticate that the person using

the SMB redirector is indeed the username to be mapped to. Further, the password may be

encrypted to ensure security.

The LMX server validates the name and password supplied and, if valid, it generates a UID

corresponding to the specified username. That actual UID will be sent in all subsequent

requests by the SMB redirector and used by the LMX server for access checks required by
requests.

The value of the UID is relative to an LMX session; it is possible for the same UID value to

represent two different users on two different LMX sessions on the LMX server. The LMX

server must map the pair of <LMX session ID, UID> to the different accounts. In share—level

security mode, the username and password are not used. The LMX server should use a

unique, reserved account and corresponding UID to perform access checks for all requests.

- SMB redirector Communications Parameters

The LMX server, in its response to the S1VIBnegprot request, has set some parameters for the

communication it was expecting from the SMB redirector. In the S1VlBses.ssetupX request, the

SMB redirector indicates the parameters for the communication it is expecting from the LMX

server. These values may be different; for example, the LMX server may be able to receive a

maximum message size of 16K bytes, while the SMB redirector can only receive 1K bytes.

Some LMX servers may need to renegotiate buffer sizes after the S1VlBses.ssetupX exchange.

This renegotiation is available through the S1VIBtcon request, but not through S1VIBtconX.

Protocols for X/Open PC Interworking: SMB, Version 2 197

Page 215 of 267

SMBsesssetupX Specification Extended 2.0 Protocol Additions and Modifications

SMBse ssse tupX De viations

None.

SMBse ssse tupX Field De scriptions

198

Page 216 of 267

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBsesssetupX smb_com SMBsesssetupX
smb_wct 10 smb_wct 3

smb_vvvV[0] smb_com2 smb_vvvv[0] smb_com2

smb_vwv[1] smb_ofl‘2 smb_vvvv[1] smb_ofl‘2

smb_vwv[2] smb_bu1§1'ze smb_vwv[2] smb_act1'on

smb_vvvv[3] smb_mpxmax smb_bcc Minimum = 0

smb_vwv[4] smb_vc_num smb_but[] smb_encresp[]

smb_vvvv[5-6] smb_ses.skey

smb_vvvV[7] smb_apasslen

smb_vvvV[8] smb_encrypt1en

smb_vvvV[9] smb_encryptofl”
smb_bcc min val=0

smb_but[] smb_apasswd
smb_aname

smb_com2 Description can be found in Section 3.9 on page 22.

smb_ol‘1‘2 Description can be found in Section 3.9 on page 22.

smb_bu1'§1'ze The size of the largest message the SMB redirector is willing to receive. It

smb_mpxmaX

smb_vc_num

smb_ses.skey

smb_apasslen

smb,encrypt1en

smb_encrypto1‘f

smb_encresp[]

smb_apasswd

must be true that smb_bu1's1'ze S smb_maXxmt (see Section 6.1 on page 55).

The maximum number of requests which the SMB redirector will have

outstanding on a single LMX session. It must be true that smbfimpxmax S

smb_maXmuX (see Section 6.1 on page 55).

Permits multiple NetBIOS sessions to be associated with a single LMX session.

If zero (0), this NetBIOS session is the first or only NetBIOS session associated

with the NetBIOS session being set up. If smb_vc_num is zero (0) and there are

other previously established NetBIOS session still connected from this SMB

redirector, it is recommended that the LMX server abort the previous NetBIOS

session and free up the resources held.

A 32-bit integer which identifies to which LMX session this NetBIOS session is

associated. Ignored when smb_vc_num is zero (0). This value would be

obtained from the smb_sesskey field in the response to the SMBncgprot

associated with the LMX session this NetBIOS session is to be made a part of.

Length of the smb_apasswd field.

The size of the encryption key used to challenge the LMX server.

The byte offset from the start of the SMB header to the encryption key.

The LMX server response to the encryption key challenge from the SMB
redirector.

A character string containing the password, possibly encrypted. Ignored by

an LMX server in share—level security mode.

X/Open CAE Specification (1992)

Extended 2.0 Protocol Additions and Modifications SMBsesssetupX Specification

smb_aname An ASCIIZ (not type 04) buffer containing the username to be associated with

smb_uid and validated with smb_apassWd. Ignored by an LMX server in share-

level security mode. The length of this field is derived from the difference

between smb_bcc and smb_apasslen.

smb_action A bit—encoded field indicating the results of a successful LMX session setup. If

bit 0 is clear, everything went normally. If bit 0 is set, the LMX session was

setup but a default or guest account was used instead of an individual account

represented by the username provided. (An LMX server in share—level

security mode would set this bit.)

SMBse ssse tupX Error Code De scriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRerror Intemal LMX server error.

- ERRSRV ERRbadpw Usemame/password pair was invalid.

- ERRSRV ERRtoomanyuids The LMX server does not support this many
UIDs in one LMX session.

- ERRSRV ERRerror No Sl\/IBnegprot request has been issued on
this NetBIOS session.

- ERRSRV ERRnosupport This request cannot be chained to the

request which precedes it in this message.

- SUCCESS SUCCESS Everything worked, no problems.

SMBse ssse tupX Pre conditions

1. The process attempting to secure an LMX session must have established an LMX session

with the LMX server and negotiated an extended dialect.

2. The username and password must both be valid instances of those types.

3. smb_com2 must be a legal chained command.

4. There are many other preconditions based upon the SMBs that may be chained. These are

enumerated in the specifications for those SMBs.

SMBse ssse tupX Postconditions

1. If there are no errors the UID is valid to be used in future SMBs.

2. There are many other postconditions based upon the SMBs that may be chained. These are

enumerated in the specifications for these SMBs.

SMBse ssse tupX Side Effe cts

Conversion of paths to a canonical pathname is controlled by bit 4 of the smb_flg flag in the

header of this request (see Section 5.1 on page 37).

Conve ntions

- Opportunistic Locking (see Section 3.8.2 on page 20).

- Chaining (see Section 3.9 on page 22).

Protocols for X/Open PC Interworking: SMB, Version 2 199

Page 217 of 267

SMBfindnclose Specifica tion

15.3

202

Extended 2.0 Protocol Additions and Modifications

SMBfindnclose Specification

SMBfindnclose De taile d De scription

The S1VlBfindnc1ose protocol closes the association between a directory handle returned following

a resource monitor established using an S1VlBtrans2(FINDNO'IIFYFIRS'1') request to the LMX

server and the resulting system directory monitor. This request allows the LMX server to free

any resources held in support of the open handle.

SMBfindnclose Field De scriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBfindnclose smb_com SMBfindnclose

smb_wct 1 smb_wct 0

smb_vwv[0] smb_hand1e smb_bcc 0

smb_bcc 0 smb_bcc 0

smb_hand1e The directory handle associated with a previous
SMBtrans2('IRANSAC'I2_FINDNOT1FYFIRS’1').

SMBfindnclose Error Code Descriptions

CAE Code DOS Class DOS Code Description

— ERRDOS ERRbadfid The SMB redirector has supplied an invalid

directory handle.

- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRerror Other CAE error.

- SUCCESS SUCCESS Operation succeeded.

SMBfindnclose Preconditions

None.

SMBfindnclose Postconditions

If the directory handle was valid, it is made invalid and resources used to support the directory

search operations have been freed.

SMBfindnclose Side Effects

None.

Conve ntions

None.

X/Open CAE Specification (1992)

Page 220 of 267

Extended 2.0 Protocol Additions and Modifications SlVIB1indcIose Specification

15.4 SMBfindclose Specification

SMBfindclose De taile cl De scription

The S1V1Bfindc1ose protocol closes the association between a search handle returned following a

successful S1VlBtrans2('IRANSACT2_FINDFIRS'1') request to the LMX server and the resulting

system file search. This request allows the LMX server to free any resources held in support of

the open handle.

SMBfindclose Field De scriptions

From SMB redirector To SMB redirector

I Field Name Field Value I Field Name Field Value

I smb_com SMBfindclose I smb_com SMBfindclose
smb_wct 1 smb_wct 0

smb_vwv[0] smb_hand1e smb_bcc 0

smb_bcc 0 smb_bcc 0

smb_hand1e The directory handle associated with a previous
SIVIBtrans2('IRANSACT2_F1NDNOTIFYFIRST) .

SMBfindclose Error Code Descriptions

CAE Code DOS Class DOS Code Description

— ERRDOS ERRbadfid The SMB redirector has supplied an invalid

directory handle.

- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRerror Other CAE error.

- SUCCESS SUCCESS Operation succeeded.

SMBfindclose Preconditions

None.

SMBfindclose Postconditions

If the directory handle was valid, it is made invalid and resources used to support the directory

search operations have been freed.

SMBfindclose Side Effects

None.

Conve ntions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 203

Page 221 of 267

SMBuIoggoitX Specification Extended 2.0 Protocol Additions and Modifications

15.5 SMBuloggoffX Spe cification

SMBuloggoffX De taile cl De scription

This protocol is used to logoff the user (identified by the UID value in smb_uid) previously

logged on via the S1VlBsesssetupXprotocol.

The LMX server will remove this UID from its list of valid UIDs for this LMX session. Any

subsequent protocol containing this UID (in smb_uid) received on this LMX session will be
returned with an access error.

Another S1VlBsesssetupXmust be sent in order to reenstate the user on the LMX session.

LMX session termination also causes the UIDs registered on the LMX session to be invalidated.

When the LMX session is reestablished, S1VlBsesssetupX request must again be used to validate
each user.

The only valid protocol that can be chained in an S1VlBu1oggofl‘X is S1VIBsessetupX.

SMBuloggoffX Field De scriptions

From SIVIB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBu1oggofl‘X smb_com SMBu1oggofl‘X
smb_wct 2 smb_wct 2

smb_vWv[0] smb_com2 smb_vwv[0] smb_com2

smb_vwv[1] smb_ofl‘2 smb_vwv[1] smb_ofl‘2

smb_bcc O smb_bcc O

smb_com2 The secondary command value.

smb_ofl‘2 Offset from start of the SIVIB header to the secondary command.

SMBuloggoffX Error Code De scriptions

CAE Code DOS Class DOS Code Description

— ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRerror Other CAE error.

— ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

— SUCCESS SUCCESS Operation succeeded.

SMBuloggoffX Pre conditions

None.

SMBuloggoffX Postconditions

If the user was previously logged on, his logon identity as specified in the S1VlBsesssetupX is
removed, but the LMX session remains.

204 X/Open CAE Specification (1992)

Page 222 of 267

Extended 2.0 Protocol Additions and Modifications

206 X/Open CAE Specification (1992)

Page 224 of 267

Chapter 16

Extended 2.0 Protocol SMBtrans2

The SlVlBtrans2 protocol is used to extend the original file-sharing protocols with extended

attribute and long filename support. An FID obtained from the new requests may be used in

previously defined SMB requests and vice versa.

The format of enhanced and new commands is defined commencing at the smb_wct field. All

messages will include the standard SMB header defined in Section 5.1 on page 37. When an

error is encountered, an LMX server may choose to return only the header portion of the

response (i.e., smb_wct and smb_bcc both contain zero).

16.1 SMBtrans2

16.1.1 Re quest Formats

Transaction SMB Regilerst Formats

Primer;-,-' Request Secondary Request
Field Name Field Value Field Name Field Value

smb_com SMBtrans2 smb_com SMBtrans2

smb_wct 14+smb_suwcnt smb_wct 8

smb_vvvv[0] smb_tpscnt smb_vvvv[0] smb_tpscnt
smb_vwv[1] smb_tdscnt smb_vvvv[1] smb_tdscnt

smb_vwv[2] smb_mprcnt smb_vvvv[2] smb_pscnt

smb_vvvv[3] smb_mdrcnt smb_vvvv[3] smb_psoiT

smb_vvvv[4] smb_msrcnt smb_vvvv[4] smb_psdisp

smb_vwV[5] smb_flags smb_vwv[5] smb_dscnt
smb_vvvv[6-7] smb_timeout smb_vvvv[6] smb_dsoiT

smb_vvvV[8] smb_rsvd1 smb_vvvv[7] smb_dsdisp

smb_vvvV[9] smb_pscnt smb_vvvv[8] smb_fid

smb_vvvv[10] smb_psoiT smb_bcc

smb_vwv[11] smb_dscnt smbfiparam
smb_vwv[12] smb_dsoiT smb_data

smb_vvvv[13] smb_suwcnt

smb_vvvv[14-] smb_setup[]
smb_bcc

smb_but[] smb_name

smb_param
smb_data

smb_tpscnt A 16-bit unsigned integer containing the total number of parameter bytes

being sent. This value may be revised downward in any or all secondary

requests. The smallest value of smb_tpscnt sent during this transaction must

equal the sum of all the smb_pscnt fields in all requests sent during the
transaction.

smb_tdscnt A 16-bit unsigned integer containing the total number of data bytes being sent.

This value may be revised downward in any or all secondary requests. The

smallest value of smb_tdscnt sent during this transaction must equal the sum

of all the smb_dscnt fields in all requests sent during the transaction.

Protocols for X/Open PC Interworking: SMB, Version 2 207

Page 225 of 267

208

Page 226 of 267

SMBtrans2

smb_mprcnt

smb_mdrcnt

smb_msrcnt

smb_f1ags

smb_t1'meout

smb_rsvd1

smb_pscnt

smb_pso1T

smb_psd1'sp

smb_dscnt

smb_dso1T

smb_dsd1'sp

smb_fid

Extended 2.0 Protocol S1VIBtrans2

A 16-bit integer containing the maximum number of parameter bytes the SMB

redirector expects to be returned. The LMX server may not exceed this limit in

its response.

A 16-bit unsigned integer containing the maximum number of data bytes the

SMB redirector expects to be returned. The LMX server may not exceed this

limit in its response.

A 16-bit integer containing the maximum number of setup fields the SMB

redirector expects to be returned. The LMX server may not exceed this limit in

its response. The value of smb_msrcnt must be less than or equal to 255 and is

stored in the low—order byte of the field; the high-order byte is reserved and
must be zero.

A 16-bit field containing flags altering the behaviour of the request. The flags
are:

Bit 0 If set, the TID on which this transaction was requested is closed

after the transaction is completed.

Bit 1 If set, the transaction is one way; that is, no final response should

be generated by the LMX server. An interim response, if

required by the flow of the transaction, should be produced

regardless of the setting of this bit.

Bits 2-15 Reserved; MBZ.

A 32-bit integer specifying the number of milliseconds to wait for completion

of the requested operation before causing a timeout. A value of zero (0)

means no delay (that is, do not queue the request). A value of -1 indicates to

wait forever. See Section 3.11 on page 25.

A 16-bit reserved field which must be zero.

A 16-bit unsigned integer indicating the number of parameter bytes being sent

in this particular request; i.e., the size of smb_param.

A 16~bit integer giving the offset, in bytes, from the start of the SMB header to

the beginning of the smb_param field. This permits smb_param to be preceded

in the request by pad bytes to result in better alignment of the buffer.

A 16-bit integer giving the absolute displacement amongst all parameter bytes

for this transaction for the parameter bytes contained in this request. This is

used by the LMX server to correctly assemble all the parameter bytes received

even if the requests were received out of sequence.

A 16-bit unsigned integer indicating the number of data bytes being sent in

this particular request; i.e., the size of smb_data.

A 16-bit integer giving the offset, in bytes, from the start of the SMB header to

the beginning of the smb_data field. This permits smb_data to be preceded in

the request by pad bytes to result in better alignment of the buffer.

A 16-bit integer giving the displacement amongst all data bytes for this

transaction of the data bytes contained in this request. This is used by the

LMX server to correctly assemble all the data bytes received even if the

requests were received out of sequence.

A 16-bit integer containing the FID for file—based requests. Otherwise the
value is Oxffff.

X/Open CAE Specification (1992)

Extended 2.0 Protocol SA/IBtrans2

smb_suwcnt

smb_setup[]

smb_bcc

smb_name

smb_param

smb_data

SlVIBtrans2

A 16-bit integer containing the number of setup 16-bit fields sent in the

primary request. This value must be less than or equal to 255 and is stored in

the low—order byte of the 16-bit field; the high-order value is reserved and
must be zero.

An array of 16-bit fields of setup data.

Contains the total size in bytes of the data to follow, including any pad bytes

added for alignment. The length of this array is given by smb_swcnt and may
be zero.

A null—terminated ASCIIZ string containing the transaction name. No pad

bytes are permitted before this field; it must immediately follow the smb_bcc
field.

An array of bytes, beginning at smb_psofl"bytes into the request and containing

smb_pscnt bytes. Padding may precede this field, as smb_psdisp points to its

beginning; for the same reason, smb_param is not required to precede smb_data

in each message.

An array of bytes, beginning at smb_dsofl"bytes into the request and containing

smb_dscnt bytes. Padding may precede this field, as smb_dsdisp points to its

beginning; for the same reason, this field is not always required to follow

smb_param.

16.1.2 Re sponse Form at

Transaction SMB Response Formats

Interim Resp-onsc Final Response
Field Name Field Value Field Name Field Value

smb_com SMBtrans2 smb_com SMBtrans2

smb_wct 0 smb_wct 10+smb_suwcnt

smb_bcc 0 smb_vvvv[0] smbfitprcnt
smb_vvvv[1] smb_tdrcnt

smb_vvvv[2] smb_rsvd

smb_vvvv[3] smb_prcnt

smb_vvvv[4] smb_profl"

smb_vvvv[5] smb_prdisp
smb_vvvv[6] smb_drcnt

smb_vvvv[7] smb_drofl"

smb_vvvv[8] smb_drdisp
smb_vvvv[9] smb_suwcnt

smb_vwv[10-] smb_setup
smb_bcc

smb_param
smb_data

The meaning of the parameters is identical to the definitions above with the parameter names

changed; for example, smb_tprcnt is the total number of parameter bytes being returned, and is

used in the same way as smbfitpscnt in the request messages.

As was the case in the request messages, the ordering of smb_param and smb_data is not required,

since smb_prdisp and smb_drdisp are sufficient to locate each correctly.

Protocols for X/Open PC Interworking: SMB, Version 2 209

Page 227 of 267

SMBtrans2 Extended 2.0 Protocol SA/IBtrans2

16.1.3 Transaction Flow

A small set of rules governs the flow of the various protocol elements making up a transaction,

including which request or response type to send at any particular time.

1. The SMB redirector sends the first (primary) request which identifies the total bytes

(parameters and data) which are to be sent, and contains the setup 16-bit fields, and as

many of the parameter and data bytes as will fit in the maximum negotiated buffer size.

This request also identifies the maximum number of bytes (setup, parameters and data) the

LMX server may return when the transaction is completed. The parameter bytes are

immediately followed by the data bytes (the length fields identify the break point). If all

the bytes fit in the single buffer, skip to step 4.

2. The LMX server responds with a single interim response meaning O.K., send the

remainder of the bytes, or (if error response) terminate the transaction.

3. The SMB redirector then sends a secondary request full of bytes to the LMX server. This

step is repeated until all bytes have been delivered to the LMX server.

4. The LMX server sets up and performs the transaction with the information provided.

5. Upon completion of the transaction, if bit 1 of smb_flag was not set in the primary request,

the LMX server sends back up to the number of parameter and data bytes requested (or as

many as will fit in the negotiated buffer size). This step is repeated until all bytes requested

have been returned. Fewer than the requested number of bytes (from smb_mdrcnt and

smb_mprcnt) may be returned.

The flow of a transaction when the request parameters and data do not all fit in a single buffer is:

SMB redirector 9 S1VlBtrans2 request (data) >9 LMX server

SMB redirector 9< OK send remaining data 9 LMX server

SMB redirector 9 S1VlBtrans2 secondary request 1 (data) >9 LMX server

SMB redirector 9 S1VlBtransZ secondary request 2 (data) >9 LMX server

SMB redirector 9 S1V1Btrans2 secondary request 11 (data) >9 LMX server

(LMX server sets up and performs the

SMBtransZ)

SMB redirector 9< S1V1Btrans2 response 1 (data) 9 LMX server

SMB redirector 9< S1V1Btrans2 response 2 (data) 9 LMX server

SMB redirector 9< S1V1Btrans2 response 11 (data) 9 LMX server

The flow for the Transaction protocol when the request parameters and data do all fit in a single
buffer is:

SMB redirector 9 S1VlBtrans2 request (data) >9 LMX server

(LMX server sets up and performs the

SMBtransZ)

SMB redirector 9< S1V1Btrans2 response 1 (data) 9 LMX server

(only one if all data fit in buffer)

SMB redirector 9< S1V1Btrans2 response 2 (data) 9 LMX server

SMB redirector 9< S1V1Btrans2 response 11 (data) 9 LMX server

Note that the primary request through to the final response make up the complete protocol:

thus, the TED, PID, UID and MID are expected to remain constant and can be used by both the

LMX server and SMB redirector to route the individual messages of the protocol to the correct

process. Also, it is the responsibility of the LMX server to assemble the multiple requests into

the final complete request to execute. Similarly, the SMB redirector will assemble the response
sequence.

210 X/Open CAE Specification (1992)

Page 228 of 267

Extended 2.0 Protocol SA/IBtrans2

16.1.4

Protocols for X/Open PC Interworking: SMB, Version 2

SA/IBtrans2

The simplest form of an S1VlBtrans2 is to send a single primary request and (optionally) receive a

single, final response.

Service

The S1VIBtrans2 protocol allows transfer of parameter and data blocks greater than the maximum

negotiated buffer size between the SMB redirector and the LMX server.

The S1VlBtrans2 command scope includes (but is not limited to) IOCTL device requests and file

system requests which require the transfer of an extended attribute list.

The S1VlBtrans2 protocol is used to transfer a request for any of a set of supported functions on

the LMX server which may require the transfer of large data blocks. The function requested is

identified by the first 16-bit field in the S1VlBtrans2 smb_setup[] field. Other function—specific

information may follow the function identifier in the smb_setup[] or in the smb_param fields. The

functions supported are not defined by the protocol, but by SMB redirector and LMX server

implementations. The protocol simply provides a means of delivering them and retrieving the
results.

The number of bytes needed in order to perform the S1VlBtrans2 request may be more than will fit

in the negotiated buffer size.

At the time of the request, the SMB redirector knows the number of parameter and data bytes

expected to be sent and passes this information to the LMX server in the primary request fields

smb_tpscnt and smb_tdscnt. This may be reduced by lowering the total number of bytes expected

(smb_tpscnt and/or smb_tdscnt) in the secondary request.

Thus when the amount of parameter bytes received (the total of each smb_pscnt) equals the total

amount of parameter bytes expected (smallest smb_tpscnt), then the LMX server has received all

the parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_dscnt) equals the total

amount of data bytes expected (smallest smb_tdscnt), then the LMX server has received all the

data bytes.

The parameter bytes should normally be sent first, followed by the data bytes. However, the

LMX server knows where each begins and ends in each buffer by the offset fields (smb_psofl“and

smb_dsofl7 and the length fields (smb_pscnt and smb_dscnt). The displacement of the bytes is also

known (smb_psd1'sp and smb_dsd1'sp). Thus the LMX server is able to reassemble the parameter

and data bytes regardless of the order sent by the SMB redirector.

If all parameter bytes and data bytes fit into a single buffer, then no secondary request is sent.

The SMB redirector knows the maximum amount of data and parameter bytes the LMX server

may return from smb_mprcnt and smb_mdrcnt of the request. The LMX server informs the SMB

redirector of the actual amounts being returned in each buffer of the response in the fields

smbjprcnt and smb_tdrcn t.

The LMX server may reduce the expected bytes by lowering the total number of bytes expected

(smb_tprcnt and/or smb_tdrcn t) in any response.

When the amount of parameter bytes received (total of each smb_prcnt) equals the total amount

of parameter bytes expected (smallest smb_tprcnt), then the SMB redirector has received all the

parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_drcnt) equals the total

amount of data bytes expected (smallest smb_tdrcnt), then the SMB redirector has received all the

data bytes.

211

Page 229 of 267

SMBtrans2

16.1.5

16.1.5.1

16.1.5.2

16.1.5.3

212

Extended 2.0 Protocol SA/IBtrans2

The parameter bytes should normally be returned first, followed by the data bytes. However, the

SMB redirector knows where each begins and ends in each buffer by the offset fields (smb_profl“

and smb_drofl7 and the length fields (smb_prcnt and smb_drcnt). The displacement of the bytes

relative to the start of each response is also known (smb_prdisp and smb_drdisp). Thus the SMB

redirector is able to reassemble the parameter and data bytes regardless of the order the
information is returned.

Exte nde d Attribute

An overview of EAs was given in Section 4.3.7 on page 31. The extended 2.0 SMB dialect allows

for the creation, viewing and manipulation of EAs. Support for EAs is optional and it is possible

for an LMX server to negotiate the extended 2.0 protocol dialect and not support EAs. In this

case, a null EA list is provided on all S1VlBtrans2 requests that return EAs and the error
<ERRDOS, ERROR_EAS_NOT_SUPPORTED> is returned.

A null EA list is a zero’ed FEA structure (defined below), or in other words, four zero bytes.

Errors Encountered When Creating EAs

An LMX server is not required to support EAs when the extended 2.0 dialect is selected. If the

LMX server does not support EAs, the error <ERRDOS, ERROR_EAS_NOT_SUPPORTED> will

be returned when the SMB redirector attempts to set EAs on a file and a null EA list will be

returned when EAs are requested by the SMB redirector. In the case where EAs are supported,

when the LMX server is attempting to store EAs sent during the creation of the file and it is not

possible to store the EAs due to memory restrictions or file system space, the error code

<ERRSRV, ERRerror> or the error code <ERRSRV, ERRnoresources> may be returned. In this
case, the creation of the file will fail and no FID will be returned to the SMB redirector.

Encapsulation ofEAs in the SMB Protocol

There are two forms of structures that may be returned when passing EAs in the SMB protocol.
The first is the full extended attribute structure, or FEA structure, and the second is a shorter

form for getting the extended attribute names available, or the GEA structure. The GEA

structure is used only in SMB requests. FEA structures are used in both SMB requests and
responses.

Extended attributes are carried in the SMB requests and responses in these FEA and GEA

structures. To contain multiple EAs a “list” structure is used. Both the FEA and GEA structures

are encapsulated in this list structure. The list structure is a 32-bit integer size value followed by

the FEA or GEA structure. This size value includes its own field length and is the total length of
all contained structures in the list.

FEA Structure

The FEA structure contains the values for extended attributes (EAs) on a file. An extended

attribute is a "name","value" pair where the name is an ASCIIZ string and the value is an

unformatted binary area. It is up to the user application to impose format on the value

information. This structure is used to carry EAs inside the SMB protocol. When the text below

references an EA list inside the protocol, this is the structure containing the user~defined EA.

X/Open CAE Specification (1992)

Page 230 of 267

Extended 2.0 Protocol SlVIBtrans2 SlVIBtrans2

The "name","value" pair is represented by the following structure:

_Name Description _
fEA A single byte that specifies EA flags. The only flag

defined at this time is FEA_NEEDEA which is equal to

0x80. When set to 1, the FEA_NEEDEA flag indicates
that EAs are needed on the file.

cbNameLen A single byte that specifies the length of the EA name

not including the null-terminating character.

cbValueLen A 16-bit unsigned integer specifying the length of the EA
value.

cbName[] Zero—terminated string of cbNameLen+l bytes. This

data immediately follows the cbValueLen field.

cbValue[] Variable number of EA value bytes. This data

immediately follows the cbName[] field.

The encapsulated FEA list as it is stored in the SMB protocol is illustrated below.

FEA Length
(32-bit integer)

Flag
8-bit

Name Length
8-bit

Value Length
16-bit

Null—terminated name

Value data

Flag
8-bit

Name Length
8-bit

Value Length
16-bit

Null—terminated name

Value data

As can be seen above, a null FEA list has a length value of 8 followed by a zero flags field, a zero

name length and a zero value length.

Protocols for X/Open PC Interworking: SMB, Version 2 213

Page 231 of 267

S1VIBtrans2 Extended 2.0 Protocol SA/IBtrans2

16.1.5.4 GEA Structure

The GEA structure contains the names for EAs on a file. An EA name is an ASCIIZ string.

The EA name is represented by the following structure:

Name Description

cbNameLen A single byte that specifies the length of the EA name

not including the null-terminating character.

cbName[] The byte location of the name. This name immediately
follows the cbNameLen field.

The encapsulated GEA list is shown below as it is stored in the SMB protocol.

GEA Length (32-bit integer)

Name Length
8-bit

Null—terminated name

Name Length
8-bit

Null—terminated name

16.1.6 Inform ation Levels

Many of the extended 2.0 protocols have an information level passed as an argument. This

information level is described here. The information level controls the amount and type of
information on a file that is returned to the SMB redirector. The information level has the

following valid values and meanings:

1 DOS-compatible. This returns information in a manner consistant with DOS or the other

dialect levels. Specifically, no extended attribute information is returned to the SMB
redirector.

2 This value indicates that the size of the complete extended attribute list (that is, name and

value pair) is to be returned to the SMB redirector in an EA encapsulating structure, but the

FEA list is not included. This is performed by including a null FEA list (that is, all sizes

zero) in the smb_data field of the response.

3 This indicates that the complete collection of FEA structures contained in an EA

encapsulating structure is to be returned to the SMB redirector. The FEA structures

returned are stored in the smb_data field of the SMB response.

16.1.7 De fine d SMBtrans2 Protocols

This section specifies the defines used by the S1VlBtrans2 protocol.

The following function codes are transferred in smb_setup[0] and are used by the LMX server to

identify the specific function required.

214 X/Open CAE Specification (1992)

Page 232 of 267

Extended 2.0 Protocol SlVIBtrans2 SlVIBtrans2

Manifest Value Meaning

'IRANSACT2_OPEN 0x00 Open or create a file.

'IRANSACTZ_FINDFIRST 0x01 Find the first file in a directory.

'IRANSACT2_FINDNEXT 0x02 Continue search of a directory.

'IRANSACT2_QFSINFO 0x03 Query information about a file system.

'IRANSACTZ_SE'IFSINFO 0x04 Set information on a file system.

'IRANSACT2_QPATl-IINFO 0x05 Query information about a special file or

directory.

'IRANSACT2_SE’IPA'IHINFO 0x06 Set information on a special file or

directory.

'IRANSACT2_QFILEINFO 0x07 Query information about a file.

'IRANSACT2_SE'IFILEINFO 0x08 Set information on a file.

'IRANSACT2_FINDNO'I1FYF1RST 0x0b Commence monitoring changes on a file

or directory.

'IRANSACT2_FINDNO'I1FYNEXT 0x0c Continue monitoring changes on a file

or directory.

'IRANSACT2_l\/IKDIR 0x0d Create a directory.

Protocols for X/Open PC Interworking: SMB, Version 2 215

Page 233 of 267

TRANSACT2_OPEN Extended 2.0 Protocol SA/IBtrans2

16.2 TRANSACT2_OPEN

The function code 'IRANSAC'I2_OPEN in smb_setup[0] in the primary S1VlBtrans2 requests

identifies a request to open or create a file with extended attributes.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total size of extended attribute list.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Maximum milliseconds to wait for resource to open.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = tpscnt. Parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSAC'I2_OPEN.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the the 'IRANSAC'I2_OPEN function is the open-

specific information in the following format:

216 X/Open CAE Specification (1992)

Page 234 of 267

Extended 2.0 Protocol SlVIBtrans2

smb_data[]

Location Name

smb_param[0-1] open_f1ags2

smb_param[2-3] open_mode

smb_param[4-5] open_sattr

smb_param[6-7] open_attr

smb_param[8-1 1] open_t1'me

smb_param[1 2- 1 3] open_o1‘i1n

smb_param[1 4- 1 7] openfisize

smbHparam[18-21] open_rsvd[5]

TRANSA CT2_OPEN

Meaning

Bit0 If set, return additional
information.

Bitl If set, set single user total file

lock (if only access).

Bit2 If set, the LMX server should

notify the SMB redirector on

any action which can modify
the file (SMBunl1'nk, SMBsetatr,

S1V1Bmv, etc.). If not set, the

LMX server need only notify
the SMB redirector on another

open request.

Bit 3 If set, return total length of EAs
for the file.

File open mode. Reference Section 5.3.5

on page 44.
The set of attributes that the file must

have in order to be found while

searching to see if it exists. Regardless
of the contents of this field, normal files

always match.

File attributes (for create). Reference

Section 5.3.3 on page 43.
Create time. Reference Section 5.3.1 on

page 43.

Open function.

Bytes to reserve on create or truncate.

This field is advisory only.
Reserved. Must be zero.

smb_param[22—23] open_pathname[] File pathname.

FEALIST structure for the file opened.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smbfipscnt

smb_pso1T

smb_psd1'sp

smb_dscnt

smb_dso1T

Value = 9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value = 0. All parameters were in the primary request.

Value = 0. No parameters in secondary request.

Value = 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 235 of 267

217

TRANSACT2_OPEN

218

smb_dsdisp

smb_1‘id

smb_bcc

smb_data[]

Re sponse Form at

smb_wct

smb_tprcnt

smb_tdrcnt

smb_prcnt

smb_profl”

smb_prd1'sp

smb_drcnt

smb_drofl"

smb_drdisp

smb_suwcn t

smb_bcc

smb_param[]

Page 236 of 267

Extended 2.0 Protocol SMBtrans2

Byte displacement for these data bytes.

Value = Oxffff. No FID in this request.

Total bytes following including pad bytes.

Data bytes.

Value = 10.

Total parameter length retuned.

Value = 0. No data bytes.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value = 0. Byte displacement for these parameter bytes

Value = 0. No data bytes.

Value = 0. No data bytes

Value = 0. No data bytes

Value = 0. No setup return fields.

Total bytes following including pad bytes.

The parameter block for the the 'IRANSAC'I2_OPEN function response is the

open-specific return information in the following format:

X/Open CAE Specification (1992)

Extended 2.0 Protocol SA/IBtrans2

Name

open_fid

+open_attribute

Location

smb_param[0-1]

smb_param[2-3]

smb_param[4—7] +open_t1'me

smb_param[8-1 1] +open_size

smb_param[12-13] +open_access

smb_param[14-15] +open_type

smb_param[16-17] +open_state

smb_param[18-19] open_action

Protocols for X/Open PC Interworking: SMB, Version 2

Page 237 of 267

TRANSA CT2_OPEN

Meaning
FID.

Attributes of file or device. Reference

Section 5.3.3 on page 43.
Last modification time. Reference

Section 5.3.1 on page 43.

32-bit integer specifying the current file
size.

Access permissions actually allowed.

Reference Section 5.3.7 on page 46.
Reference Section 5.3.6 on

State of [PC device (for example, named

pipe). Reference X/Open CAE

Specification, [PC Mechanisms for SMB.

Bit l5 Blocking. Zero (0)
indicates that reads/writes

block if no data is

available; 1 indicates that
reads/writes return

immediately if no data is
available.

Bit 14 Endpoint. Zero (0)
indicates SMB redirector

end of a named pipe; 1
indicates the LMX server

end of a named pipe.

Bits 1011 Type of named pipe. 00

indicates the named pipe

is a stream mode pipe; 01

indicates the named pipe

is a message mode pipe.

Read Mode. 00 indicates

to read the named pipe as
a stream mode named

pipe; 01 indicates to read

the named pipe as a

message mode named

pipe.
Action taken.

Bit 15

Bits 8-9

Lock Status. Set true only

if an opportunistic lock

was requested by the SMB

redirector and was granted

by the LMX server. This
bit should be false (0) if no

lock was requested, the

219

TRANSACT2_OPEN Extended 2.0 Protocol SMBtrans2

Location Name Meaning

lock could not be granted,
or the LMX server does

not support opportunistic

locking.

Bits 0-1 Open Action. The LMX
server should set this to

match the requested action
from the smb_ofi1n field:

1 The file existed and

was opened.

2 The file did not exist

and was therefore

created.

3 The file existed and

was truncated.

smb_param[20-23] open_fi1e1'd A unique number for this instance of the
file. Similar to a file node number. This

value is informational only. If the LMX

server does not support the value it may
be set to zero.

smb_param[24-25] open_o1‘li2rror 16-bit integer offset into FEALIST data
of first error which occurred while

setting the extended attributes.

smb_param[l2-13] ++open_EAlength 16-bit integer specifying the total EA

length for the opened file.

Where:

+ items returned only if bit 0 of open_1‘1ags2is set in primary request

++ items returned only if bit 3 of open_1‘1ags2is set in primary request

220 X/Open CAE Specification (1992)

Page 238 of 267

Extended 2.0 Protocol SA/IBtrans2 TRANSACT2_FINDF1RST

16.3 TRANSACT2_FINDFIRST

The function code 'IRANSACT2_FINDF1RST in smb_setup[0] in the primary S1VlBtrans2 request

identifies a request to find the first file that matches the specified file specification.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for find first.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSACT2_FINDFIRS'IT

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSACT2_FINDF1RST function is the find

first-specific information in the following format:

Protocols for X/Open PC Interworking: SMB, Version 2 221

Page 239 of 267

TRANSACT2_F1NDFIRST

Location Name

smb_param[0-1] findfirst_Attr1'bute

smb_param[2-3] findfirst_SearchCount

smb_param[3-4] findfirst_flags

smb_param[5—6] findfirst_Fi1eInl‘i)Leve1

smb_param[7—10] findfirst_rsvd

smb_param[1 1] findfirst_F1'leName[]

smb_param[] smb_data[]

Se condary Re que st Form at

There may be zero or more of these.

smb_wct

smb_tpscnt

smb_tdscnt

smb_pscnt

smb_psofl”

smb_psd1'sp

smb_dscnt

smb_dsofl”

smb_dsdisp

smb_fid

smb_bcc

smb_fid

smb_data[]

222

Page 240 of 267

Value = 9.

Extended 2.0 Protocol SMBtrans2

Meaning
Search attribute.

Number of entries to find.

Find flags:

Bit 0 If set, close search after this

request.

Bit 1 If set, close search if end of
search reached.

If set, the SMB redirector

requires resume key for

each entry found.

Bit 2

Search level.

Reserved. Must be zero.

Beginning of name of the file to find.

Additional FileInfoLevel-dependent
match information. For a search

requiring extended attribute

matching the data buffer contains
the FEALIST data for the search.

This location follows after the

findfirst_F1'leName field.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value = 0. All parameters in primary request.

Value = 0. No parameters in secondary request.

Value = 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value = Oxffff. No FID in this request.

Total bytes following including pad bytes.

Value = Oxffff. No FID in this request.

Data bytes (size = value of smb_dscnt).

X/Open CAE Specification (1992)

Extended 2.0 Protocol SA/IBtrans2 TRANSA CT2_F1NDF1RST

First Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 10.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Number of parameter bytes returned in this buffer.

smb_profl“ Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for parameter bytes.

smb_drcnt Number of data bytes returned in this buffer.

smb_drofl“ Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suWcnt Value = 0 No setup return fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSAC'I2_FINDFIRSTfunction response is the

find first-specific return information in the following format:

Location Name l'~.-ieatrnirng

smb_param[0] findfirst_dir_handle Directory search handle.

smb_param[0] findfirst_searchcount Number of matching entries found.

smb_param[0] findfirst_eos End of search indicator.

smb_param[0] findfirst_ofl’i2rror Error offset if EA error.

smb_param[0] findfirst_lastname If zero, the LMX server does not require
findneXt_F1'1eName[] in order to continue
search. If not zero, offset from start of
returned data to filename of last found

entry returned.

smb_data[] Return data bytes (size = value of smb_dscnt). The data block contains the

level-dependent information about the matches found in the search. If bit 2 in

the findfirst_flags is set, each returned file descriptor block will be proceeded

by a four-byte resume key.

Subse que nt Re sponse Form at

smbwwct Value = 10.

smbwtprcnt Value = 8.

smb_tdrcnt Total length of return data buffer.

smb_prcnt Value = 0.

smb_profl" Value = 0.

smb_prdisp Value = 0.

smb_drcnt Number of data bytes returned in this buffer.

smb_drofl“ Offset from the start of an SMB header to the data bytes.

Protocols for X/Open PC Interworking: SMB, Version 2 223

Page 241 of 267

Extended 2.0 Protocol SA/IBtrans2 TRANSACT2_F1NDNEXT

16.4 TRANSACT2_FINDNEXT

The function code 'IRANSACT2_FINDNEXT in smb_setup[0] in the primary S1VlBtrans2 request

identifies a request to continue a file search started by a 'IRANSACT2_FINDFIRSTsearch.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1‘meout Value = 0. Not used for find next.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = ’IRANSACT2_FINDNEX'I.‘

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSACT2_FINDNEXT function is the find

next-specific information in the following format:

Protocols for X/Open PC Interworking: SMB, Version 2 225

Page 243 of 267

TRANSACT2_F1NDNEXT Extended 2.0 Protocol SMBtrans2

Location Name Meaning

smb_param[1-2] findnext_D1'rHand1e Directory search handle.

smb_param[3-4] findnext_SearchCount Number of entries to find.

smb_param[5-6] findnext_F1'1eImf)Leve1 Search level.

smb_param[7—10] findnext_ResumeKey Server reserved resume key.

smb_param[11-12] findnext_f1ags Find flags:

Bit 0 If set, close search after this

request.

Bit 1 If set, close search if end of
search reached.

Bit2 If set, the SMB redirector

requires resume key for

each entry found. If clear,
rewind after search.

smb_param[13] findnext_F1'1eName[] Beginning of name of file to resume
search.

smb_param[] smb_data[] Additional FileInfoLevel-dependent
match information. For a search

requiring extended attribute

matching the data buffer contains
the FEALIST data for the seach.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters in primary request.

smb_psofl” Value = 0. No parameters in secondary request.

smb_psd1'sp Value = 0. No parameters in secondary request.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid Search handle returned from 'IRANSAC'I2_FINDFIRST

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt).

226 X/Open CAE Specification (1992)

Page 244 of 267

Extended 2.0 Protocol SMBtrans2 TRANSACT2_F1NDNEXT

First Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 6.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Number of parameter bytes returned in this buffer.

smb_pro1‘f Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for parameter bytes.

smb_drcnt Number of data bytes returned in this buffer.

smb_drol‘f Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suWcnt Value = 0. No setup return fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSACT2_FINDNEXTfunction response is the

find next-specific return information in the following format:

Location Name Mt-aming

smb_param[0] findnext_searchcount Number of matching entries found.

smb_param[1] findnext_eos End of search indicator.

smb_param[2] findneXt_0fl’érr0r Error offset if EA error.

smb_param[3] findfirst_lastname If zero, LMX server does not require
findnext_F1'leName[] in order to continue
search. If not zero, offset from start of
returned data to filename of last found

entry returned.

smb_param[4] smb_data[] Return data bytes (size = smb_dscnt).
The data block contains the level-

dependent information about the
matches found in the search. If bit 2 in

the findfirst_flags is set, each returned file

descriptor block will be proceeded by a

four-byte resume key.

Subse que nt Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 6.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 0.

smb_proi‘f Value = 0.

smb_prdisp Value = 0.

Protocols for X/Open PC Interworking: SMB, Version 2 227

Page 245 of 267

Extended 2.0 Protocol SMBtrans2 TRANSACT2_QFSINFO

16.5 TRANSACT2_QFSINFO

The function code 'IRANSAC'I2_QFSINFO in smb_setup[0] in the primary S1VlBtrans2 requests

identifies a request to query information about a file system.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Value = 0. Not used for SMBtrans2('IRANSA CT2_QFSINFO).

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = 2. Parameters are in primary request.

smb_pso1T Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Value = 0. No data sent with S1VlBtrans2('IRANSACT2_QFSINFO).

smb_dsofl" Value = 0. No data sent with qfsinfo.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSAC'I2_QFS1NFO.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSAC'I2_QFSINFO function is the qfsinfo-

specific information in the following format:

Location Name M:;.=ar1ir1g

smb_param[0-1] q(§1'nf)_FSInfbLeve1 Level of information required. Refer to
DosQFileInfo in the Microsoft OS/2

Programmer’s Reference, Volume 4.

Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 0.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 0. No return parameter bytes for 'IRANSAC'I2_QFSINFO.

smb_profl" Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for parameter bytes.

smb_drcnt Number of data bytes returned in this buffer.

Protocols for X/Open PC Interworking: SMB, Version 2 229

Page 247 of 267

Extended 2.0 Protocol SA/IBtrans2 TRANSA CT2_SETFSINFO

16.6 TRANSACT2_SETFSINFO

The function code 'IRANSAC'I2_SE'IFSINFO in smb_setup[0] in the primary S1VlBtrans2 requests

identifies a request to set information for a file system subtree.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Value = 0. Not used for setfsinfo.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = 4. All parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = ’IRANSAC'I2_SE’IFSINFO.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSAC'I2_SE'IFSINFO function is the

setfsinfo-specific information in the following format:

Location Name Meariirig

smb_param[0-1] set1'S1'nIz‘)_FSInIi)Leve1 Level of information provided. Refer to
DosQFileInfo in the Microsoft OS/2

Programmer’s Reference, Volume 4.

smb_data[] Level-dependent file system information.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters in primary request.

smb_psofl" Value = 0. No parameters in secondary request.

smb_psd1'sp Value = 0. No parameters in secondary request.

Protocols for X/Open PC Interworking: SMB, Version 2 231

Page 249 of 267

TRANSACT2_SETFS1NFO

232

smb_dscnt

smb_dsofl“

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Re sponse Form at

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_pro1‘1“

smb_prdisp

smb_drcnt

smb_drofl“

smb_drdisp

smb_suwcn t

smb_bcc

Page 250 of 267

Extended 2.0 Protocol SMBtrans2

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value = Oxffff. No FID in request.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

Value = 10.

Value = 0.

Value = 0. No data bytes.

Reserved. Must be zero.

Value = 0. No return parameters for setfsinfo.

Offset from the start of an SMB header to the parameter bytes.

Value = 0. Byte displacement for parameter bytes.

Value = 0. No data bytes.

Value = 0. No data bytes.

Value = 0. No data bytes.

Value = 0. No setup return fields.

Value = 0.

X/Open CAE Specification (1992)

Extended 2.0 Protocol SA/IBtrans2 TRANSA CT2_QPATHINFO

16.7 TRANSACT2_QPATHINFO

The function code ’IRANSAC’I2_QPATl-IINFO in smb_setup[0] in the primary SMBtrans2 requests

identifies a request to query information about specific file or subdirectory.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Value = 0. Not used for qpathinfo.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSAC'I2_QPATl-IINFO.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the ’IRANSAC’I2_QPATl-IINFO function is the

qpathinfo-specific information in the following format:

Location Name h"k-mrlirng

smb_param[0-1] ¢pathinf)_FSInfoLeve1 Level of information required. Refer
to DosQFileInfo in the Microsoft

OS/2 Programmer’s Reference,
Volume 4.

smb_param[2-5] q2ath1'nf)_1'svd Reserved. Must be zero.

smb_param[6] q2ath1'nf)_PathName[] File/directory name.

smb_data[] Additional FileInfoLevel-dependent information.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters in primary request.

Protocols for X/Open PC Interworking: SMB, Version 2 233

Page 251 of 267

TRANSACT2_QPATH1NFO Extended 2.0 Protocol SMBtrans2

smb_psofl” Value = 0. No parameters in secondary request.

smb_psdisp Value = 0. No parameters in secondary request.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid Value = Oxffff. No FID in request.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt).

First Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 2.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 2. Parameter bytes returned for 'IRANSAC'I2_QFSINFO.

smb_profl" Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for parameter bytes.

smb_drcnt Number of data bytes returned in this buffer.

smb_drofl" Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suWcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSAC'I2_QPA'Il’-IINFO response is the

qpathinfo-specific return information in the following format:

Location Name Meaning

smb_param[0-1] q2athinfo_ofli2rror Error offset if EA error.

smb_data[] Return data bytes (size = smb_dscnt). The data block contains the requested

level-dependent information about the path.

Subse que nt Re sponse Form at

smb_wct Value = 10.

smbmtprcnt Value = 2.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smbiprcnt Value = 0.

smb_profl” Value = 0.

smb_prdisp Value = 0.

234 X/Open CAE Specification (1992)

Page 252 of 267

TRANSACT2_SETPATH1NFO Extended 2.0 Protocol SMBtrans2

16.8 TRANSACT2_SETPATHINFO

The function code 'IRANSACTZ_SE’IPATl-IINFO in smb_setup[0] in the primary S1VlBtrans2

requests identifies a request to set information for a file or directory.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Value = 0. Not used for setpathinfo.

smb_rsvd1 Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = ’IRANSACT2_SE’IPA'Il-IINFO.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the ’IRANSACT2_SE’IPA'Il-IINFO function is the

setpathinfo-specific information in the following format:

Location Name Mermuirng

smb_param[0~1] setpath1'nfo_PathInf)Leve1 Information level supplied.

smb_param[2-5] setpath1'nfo_rsvd Reserved. Must be zero.

smb_param[6] setpath1'nfo_pathname[] Pathname to set information on.

smb_data[] Additional FileInfoLevel-dependent information.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters in primary request.

smb_psofl” Value = 0. No parameters in secondary request.

smb_psdisp Value = 0. No parameters in secondary request.

236 X/Open CAE Specification (1992)

Page 254 of 267

Extended 2.0 Protocol SA/IBtrans2 TRANSACT2_SETPATl-[INFO

smb_dscnt Number of data bytes being sent in this buffer.

smb_dso1T Offset from the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid Value = Oxffff. No FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt).

Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 2.

smb_tdrcnt Value = 0. No data bytes.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 2. Parameter bytes being returned.

smb_pro1T Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for parameter bytes.

smb_drcnt Value = 0. No data bytes.

smb_drolT Value = 0. No data bytes.

smb_drdisp Value = 0. No data bytes.

smb_suWcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the ’IRANSACT2_SE’IPA'Il-IINFO function response is

the setpathinfo-specific return information in the following format:

Location Name Mcaliing

smb_param[0-1] setpathinf)_ofl‘i3rror Offset into FEALIST data of first error

which occurred while setting the
extended attributes.

Protocols for X/Open PC Interworking: SMB, Version 2 237

Page 255 of 267

TRANSACT2_QF1LE1NFO Extended 2.0 Protocol SMBtrans2

16.9 TRANSACT2_QFILEINFO

The function code 'IRANSACT2_QFILEINFO in smb_setup[0] in the primary S1VIBtrans2 requests

identifies a request to query information about a specific file.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for qfileinfo.

smb_rsvd1 Reserved. Must be zero.

smb_pscnt Value = 4 All parameters are in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSACT2_QFILEINFO.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSACT2_QFILEINFO function is the

qfileinfo-specific information in the following format:

Location Name M::ar1ir1g_

smb_param[0-1] qi1einf)_Fi1eHand1e FID.

smb_param[2-3] qi1einf)_Fi1eInfoLeve1 Level of information required. Refer
to DosQFileInfo in the Microsoft

OS/2 Programmer’s Reference,
Volume 4.

smb_data[] Additional FileInfoLevel-dependent information.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0.

smb_psofl” Value = 0.

238 X/Open CAE Specification (1992)

Page 256 of 267

Extended 2.0 Protocol SA/IBtrans2 TRANSA CT2_QFILEINFO

smb_psdisp Value = 0.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsolT Offset from the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid The FID.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt).

First Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 2.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 2. No parameter bytes returned for qfileinfo.

smb_pro1T Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for these parameter bytes.

smb_drcnt Number of data bytes returned in this buffer.

smb_dro1T Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suWcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSAC'I2_QFILEINFO response is the

qfileinfo-specific return information in the following format:

Location Name Meaning

smbfiparam[0-1] qile1'nfo_ofl‘i2rror Error offset if EA error.

smb_data[] Return data bytes (size = smb_dscnt). The data block contains the requested

level-dependent information about the file.

Subse que nt Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 2.

smb_tdrcnt Total length of return data buffer.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 0.

smb_pro1T Value = 0.

smb_prdisp Value = 0.

smb_drcnt Number of data bytes returned in this buffer.

Protocols for X/Open PC Interworking: SMB, Version 2 239

Page 257 of 267

TRANSACT2_QF1LE1NFO Extended 2.0 Protocol SMBtrans2

smb_drofl° Offset from the start of an Sl\/[B header to the data bytes.

smb_drd1'sp Byte displacement for these data bytes.

smb_suWcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Return data bytes (size = smb_dscnt). The data block contains the requested

leVel—dependent information about the file.

240 X/Open CAE Specification (1992)

Page 258 of 267

Extended 2.0 Protocol SA/IBtrans2

16.10 TRANSACT2_SETFILEINFO

The function code 'IRANSAC'I2_SE'IFILEINFO in smb_setup[0] in the primary S1VlBtrans2

requests identifies a request to set information for a specific file.

TRANSACT2_SETFILEINFO

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Value = 0. Not used for setfileinfo.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = 6. Parameters must be in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACT2_SE’IFILEINFO.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the ’IRANSAC’I2_SE'IFILEINFO function is the

setfileinfo-specific information in the following format:

Location Name Nktnrlirng

smb_param[0-1] setfi1e1'nfi)_F1'1eHand1e FID.

smb_param[2-3] setfi1einfi)_F1'1eInIz‘)Leve1 Level of information required. Refer
to DosQFileInfo in the Microsoft

OS/2 Programmer’s Reference,
Volume 4.

smb_param[4—5] setfile1'nfi;_IOF1ag Flag field:

0x00l0 Write through.

0x0020 No cache.

smb_data[] Additional FileInfoLevel-dependent information. For level = 2, smb_data[]
contains the FEALIST structure to set for this file.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 259 of 267

241

TRANSACT2_SETF1LE1NFO Extended 2.0 Protocol SMBtrans2

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0.

smb_psofl” Value = 0. No parameters in secondary request.

smb_psdisp Value = 0.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_dsdisp Byte displacement for these data bytes.

smb_fid The FID.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt).

Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 2,

smb_tdrcnt Value = 0. No data bytes.

smb_rsVd Reserved. Must be zero.

smb_prcnt Value = 2. Parameter bytes being returned.

smb_profl" Offset from the start of an SMB header to the parameter bytes.

smb_prdisp Value = 0. Byte displacement for these parameter bytes.

smb_drcnt Value = 0. No data bytes.

smb_drofl” Value = 0. No data bytes.

smb_drd1'sp Value = 0. No data bytes.

smb_suWcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the 'IRANSAC'I2_SE'IFILEINFO function response is

the setfileinfo-specific return information in the following format:

Location Name Meaniaig

smb_param[0-1] setfile1'nIz')_ofl’érror Offset into FEALIST data of first error

which occurred while setting the
extended attributes.

242 X/Open CAE Specification (1992)

Page 260 of 267

Extended 2.0 Protocol S1VIBtrans2 TRANSACT2_FINDNOTIFYF1RST

16.1 1 TRANSACT2_FINDNOTIFYFIRST

The function code 'IRANSAC'I2_FINDNO'IIFYFIRSTin smb_setup[0] in the primary S1VlBtrans2

request identifies a request to commence monitoring changes to a specific file or directory.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'me0ut Specifies duration to wait for changes.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = tpscnt. All parameters must be in primary request.

smb_ps0fl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_ds0fl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = ’IRANSAC'I2_FINDNO'IIFYFIRS’I

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRANSAC'I2_FINDNO'IIFYFIRSTfunction is the

find first-specific information in the following format:

Location Name hieairuitng

smb_param[0~1] findnfirst_Attribute Search attribute.

smb_param[2-3] findnfirst_ChangeCount Number of changes to wait for.

smbmparam[4—5] findnfirst_Leve1 Information level required.

smb_param[6—9] findfirst_rsvd Reserved. Must be zero.

smb_param[10] findnfirst_PathSpec[] Path to monitor.

smb_data[] Additional level-dependent match data.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters in primary request.

smb_ps0fl" Value = 0. No parameters in secondary request.

Protocols for X/Open PC Interworking: SMB, Version 2 243

Page 261 of 267

244

Page 262 of 267

TRANSACT2_F1NDNOT1FYFIRST

smb_psdisp

smb_dscnt

smb_dsofl“

smb_dsdisp

smb_fid

smb_bcc

smb_data[]

Extended 2.0 Protocol SMBtrans2

Value = 0. No parameters in secondary request.

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value = Oxffff. No FID in this request.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

First Re sponse Form at

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_profl“

smb_prdisp

smb_drcnt

smb_drofl“

smb_drdisp

smb_suwon t

smb_bcc

smb_param[]

smb_data[]

Value = 10.

Value = 6.

Total length of return data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value = 0. Byte displacement for these parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value = 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the ’IRANSACT2_FINDNO'I1FYFIRST function

response is the find first-specific return information in the following format:

Location Name Meaning

smb_param[0-1] findnfirst_hand1e Monitor handle.

smb_param[2-3] findnfirst_changecount Number of changes which occurred
within timeout.

smb_param[4-5] findnfirst_o1‘Iérror Error offset if EA error.

Data bytes (size = smb_dscnt). The data block contains the level-dependent

information about the changes which occurred .

Subse que nt Re sponse Form at

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcnt

smb_profl“

Value = 10.

Value = 6.

Total length of return data buffer.

Reserved. Must be zero.

Value = 0.

Value = 0.

X/Open CAE Specification (1992)

T.RANSACT2_F1NDNOTIFYNEXT Extended 2.0 Protocol SMBtrans2

16.12 TRANSACT2_FINDNOTIFYNEXT

The function code 'IRANSAC'I2_FINDNO'IIFYNEXTin smb_setup[0] in the primary S1VlBtrans2

request identifies a request to continue monitoring changes to a file or directory specified by a

TRANSACT_FINDNO'IIFYFIRSTrequest.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Duration of monitor period.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = 0. All parameters in primary request.

smb_psofl" Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSAC’I2_FINDNO'IIFYNEX'I'

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRANSAC’I2_FINDNO'IIFYNEXTfunction is the

find next-specific information in the following format:

Location Name Ivle-a|11ng

smb_param[0-1] findnneXt_DirHand1e Directory monitor handle.

smbfiparam[2-3] findnnext_CI1angeCount Number of changes to wait for.

smb_data[] Data bytes (size = smb_dscnt). Additional level-dependent monitor
information.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smbapscnt Value = 0. All parameters in primary request.

smb_psofl” Value = 0. No parameters in secondary request.

smb_psdisp Value = 0. No parameters in secondary request.

246 X/Open CAE Specification (1992)

Page 264 of 267

Extended 2.0 Protocol SlVIBtrans2

smb_dscnt

smb_dso1T

smb_dsd1'sp

smb_fid

smb_bcc

smb_data[]

TRANSACT2_F1NDNOT1FYNEXT

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Search handle.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

First Re sponse Form at

smb_wct

smb_tprcnt

smb_tdrcnt

smb_rsvd

smb_prcn t

smb_pro1T

smb_prd1'sp

smb_drcn t

smb_dro1T

smb_drd1'sp

smb_suwcnt

smb_bcc

smb_param[]

smb_data[]

Value = 10.

Value = 4.

Total length of return data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value = 0. Byte displacement for these parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value = 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the 'IRANSACT2_FINDNO'IIFYNEXT function

response is the find notify next-specific return information in the following
format:

Location Name Meaning

smb_param[0-1] findnnext_changecount Number of changes during the

monitor period.

smb_param[2-3] findnnext_ofl‘i2rror Error offset if EA error.

Data bytes (size = smb_dscnt). The data block contains the level-dependent

information about the changes which occurred.

Subse que nt Re sponse Form at

Page 265 of 267

smb_wct Value = 10.

smb_tprcnt Value = 4.

smb_tdrcnt Total length of return data buffer.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 0.

smb_pro1T Value = 0.

smb_prd1'sp Value = 0.

Protocols for X/Open PC Interworking: SMB, Version 2 247

Extended 2.0 Protocol SMBtrans2 TRANSACT2_MKDIR

16.13 TRANSACT2_MKDIR

The function code 'IRANSACT2_1\/IKDIR in smb_setup[0] in the primary S1VlBtrans2 requests

identifies a request to create a directory with extended attributes.

Prim ary Re que st Form at

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprcnt Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_t1'meout Value = 0.

smb_rsVd1 Reserved. Must be zero.

smb_pscnt Value = 0. All parameters in primary request.

smb_psofl” Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsofl" Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = 'IRANSACT2_1\/IKDIR.

smb_bcc Total bytes following including pad bytes.

smb_pa1‘am[] The parameter block for the 'IRANSACT2_1\/IKDIR function is the mkdir—

specific information in the following format:

Location Name Meuriirig

smb_param[0-3] mkd1'r_rsvd Reserved. Must be zero.

smb_param[4] mkd1'r_d1'rname[] Beginning of directory name.

smb_data[] Data bytes (size = smb_dscnt). FEALIST structure for the directory to be
created.

Se condary Re que st Form at

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters in primary request.

smb_psofl" Value = 0. No parameters in secondary request.

smb_psd1'sp Value = 0. No parameters in secondary request.

Protocols for X/Open PC Interworking: SMB, Version 2 249

Page 267 of 267

