
TRANSACT2_MKD1R Extended 2.0 Protocol SMBtrans2

smb_dscnt Number of data bytes being sent in this buffer.

smb_dso1T Offset from the start of an SlVlB header to the data bytes.

smb_dsd1'sp Byte displacement for these data bytes.

smb_fid Value = Oxffff. No FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt).

Re sponse Form at

smb_wct Value = 10.

smb_tprcnt Value = 2.

smb_tdrcnt Value = 0. No data bytes.

smb_rsvd Reserved. Must be zero.

smb_prcnt Value = 2. Parameter bytes being returned.

smb_prolT Offset from the start of an SlVlB header to the parameter bytes.

smb_prd1'sp Value = 0. Byte displacement for these parameter bytes.

smb_bcc Total bytes following including pad bytes.

smb_param[] The parameter block for the TRANSACT2_MKD1R function response is the

mkdir—specific return information in the following form at:

Location Nam e l'Ult.-aning

smb_param[0—1] mkdir_ofl%rror Offset into FEALIST data of first error

which occurred while setting the
extended attributes.

250 X/Open CAE Specification (1992)

Page 268 of 534 Verizon Exhibit 1004

 Appendix A

SIVIB Transmission Analysis

A.1 Introduction

This appendix describes the mapping between DOS and OS/2 system calls on an Sl\/[B

redirector, and the associated SMB requests sent from the SIVIB redirector to an LMX server. The

DOS SMB redirector is assumed to be using the core SMB protocols, and the OS/2 SIVIB

redirector is assumed to be using the LAN Manager extended SIVIB protocols. While an OS/2

Sl\/[B redirector will use core Sl\/[B requests to communicate with a core Ll\/IX server, and a DOS

LAN Manager client will use extended SIVIB requests to communicate with an OS/2 server, these
situations will not be considered here.

The mappings given here do not com pletely describe the behaviour of all SMB redirectors; they

do not take into account various optimisations which Sl\/[B redirectors may do which will result

in behaviour which differs from that described here. In particular, the extended SMB protocol

contains a number of facilities which allow a redirector to improve performance. These include:

SIVIB chaining, opportunistic locking, caching and various specialised Sl\/[B requests, such as

Read Block Multiplex, Write Block Multiplex, Read Block Raw and Write Block Raw. Redirectors

which make use of these facilities may not behave exactly as described here.

It should also be noted that the OS/2 SIVIB redirector and file system make extensive use of

internal buffers and heuristics that make it difficult to determine an exact mapping between

OS/2 API calls and SIVIB emissions. The listed API calls give an indication of which Sl\/lBs are

sent when invoked, and where possible, an explanation is given regarding any special
circumstances.

DOS and OS/2 system calls which are not listed here will not normally result in SIVIB requests

being transmitted.

Protocols for X/Open PC Interworking: SIVIB, Version 2 251

Page 269 of 534

DOS Functions

A.2

252

Page 270 of 534

DOS Functions

Function Number

0x00

0x05

0x0d

0x0f

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

Oxlb

Oxlc

0x21

0x22

0x23

0x27

0x28

0x36

0x39

0x3a

0x3b

0x3C

0x3d

0x3e

0x3f

0x40

0x41

0x42

0x43

0x4b

0x4C

0x4e

0x4f

0x56

0x57

0x5a

0x5b

0x5C

0x5f

0x68

DOS Function

Term inate Program m e
Print Character

Reset Disk

Open File (FCB I/O)
Close File (FCB I/O)

Search For First Entry

Search For Next Entry
Delete File (FCB I/O)

Sequential Read (FCB I/O)

Sequential Write (FCB I/O)
Create File (FCB I/O)

Renam e File (FCB I/O)
Get Default Drive Data

Get Drive Data

Random Read (FCB I/O)

Random Write (FCB I/O)

Get File Size (FCB I/O)

SMB Transmission Analysis

Random Block Read (FCB I/O)

Random Block Write (FCB I/O)

Get Disk Free Space

Create Directory

Rem ove Directory

Change Current Directory
Create File Handle

Open File Handle
Close File Handle

Read Via File Handle

Write Via File Handle

Delete Directory Entry
Move File Pointer

Set/Get File Attributes

Load and Execute Program me/Load Overlay
End Process

Find First File

Find Next File

Change Directory Entry
Set/Get Date/Time of File

Create Temporary File Handle
Create New File

Unlock/Lock File

Get Assign List Entry
Flush Buffer

X/Open CAE Specification (1992)

SMB Transmission Analysis DOS Functions

Change Curre nt Dire ctory

Function number 0x3b.

SIVIB sent SIVlBchkpth.

Reason Change directory.

Change Directory Entry

Function number 0x56.

SIVIB sent SIVlBmV.

Reason Rename file.

Close File (FCB I/O)

Function number 0x10.

SIVIB sent S1VlBc1ose.

Reason Close file (FCB I/O).

Close File Handle

Function number 0x3e.

SIVIB sent S1VlBc1ose, SMBsp1close (printer device).

Reason Close file.

Create Directory

Function number 0x39.

SIVIB sent SIVlBmkd1'r.

Reason Make directory.

Create File (FCB I/O)

Function number 0x16.

SIVIB sent S1VlBcreate.

Reason Create file.

Create File Handle

Function number 0x3c.

SIVIB sent S1VlBcreate.

Reason Create file.

Protocols for X/Open PC Interworking: SIVIB, Version 2 253

Page 271 of 534

DOS Functions SMB Transmission Analysis

Create New File

Function number 0x5b.

SIVIB sent SA/Bmknew.

Reason Create file.

Delete Dire ctory Entry

Function number 0x41.

SIVIB sent SIVlBun1inI(.

Reason Delete file.

Delete File (FCB I/O)

Function number 0x13.

SIVIB sent SIVlBun1inI(.

Reason Delete file (FCB I/O).

End Proce ss

Function number 0x4c.

SIVIB sent SIVlBeXit.

Reason Exit program in e.

Find First File

Function number 0x4e.

SIVIB sent S1VlBsearch.

Reason Find first matching filenam e.

Find Next File

Function number 0x4f.

SIVIB sent S1VlBsearch.

Reason Find next matching filenam e.

Flush Buffe r

Function number 0x68.

SIVIB sent S1VlBflush.

Reason Comm it file.

254 X/Open CAE Specification (1992)

Page 272 of 534

SMB Transmission Analysis DOS Functions

Get Assign List Entry

Function number 0x5f.

SIVIB sent S1VlBtcon, S1VlBtd1's.

Reason Redirect device, cancel redirection.

Get De fault Drive Data

Function number Oxlb.

SIVIB sent S1VlBdskattr.

Reason Get data on the default drive.

Get Disk Free Space

Function number 0x36.

SIVIB sent S1VlBdskattr.

Reason Get free space on disk.

Get Drive data

Function number Oxlc.

SIVIB sent S1VlBdskattr.

Reason Get data on a drive.

Get File Size (FCB I/O)

Function number 0x23.

SIVIB sent S1VlBsearch.

Reason File size in records.

Load and Execute Programme /Load Overlay

Function number 0x4b.

SIVIB sent SIVlBopen, S1VlBread, SIVlBc1ose.

Reason Load/execute program III e.

Move File Pointer

Function number 0x42.

SIVIB sent S1VlB1seek.

Reason Set position in file.

Protocols for X/Open PC Interworking: SIVIB, Version 2 255

Page 273 of 534

DOS Functions SMB Transmiss1'on Analysis

Open File (FCB I/O)

Function number 0x0f.

SIVIB sent SIVlBopen (read/write/share set to Oxfl).

Reason Open file (FCB I/O).

Ope n File Handle

Function number 0x3d.

SIVIB sent SIVlBopen, SIVlBso1open (printer device).

Reason Open file.

Print Characte r

Function number 0x05.

SIVIB sent S1VlBsp1open, SIVlBsp1wr, SIVlBsp1c1ose.

Reason Printer output.

Random Block Re ad (FCB I/O)

Function number 0x27.

SIVIB sent S1VlBread.

Reason Random block read (FCB I/O).

Random Block Write (FCB I/O)

Function number 0x28.

SIVIB sent SMBwrite.

Reason Random block write (FCB I/O).

Random Re ad (FCB LO)

Function number 0x21.

SIVIB sent SIVlBread.

Reason Random read (FCB I/O).

Random Write (FCB I/O)

Function number 0x22.

SIVIB sent SIVlBwrite.

Reason Random write.

256 X/Open CAE Specification (1992)

Page 274 of 534

SMB Transmission Analysis DOS Functions

Re ad Via File Handle

Function number 0x3f.

SIVIB sent S1VlBread.

Reason Read file.

Re In ove Dire ctory

Function number 0x3a.

SIVIB sent SIVlBrmdir.

Reason Rem ove directory.

Rename File (FCB I/O)

Function number 0x17.

SIVIB sent S1VlBmV.

Reason Renam e file.

Re se t Disk

Function number 0x0d.

SIVIB sent S1VlBflush.

Reason Disk reset (flush file bufl°ers).

Search For First Entry

Function number 0x11.

SIVIB sent SIVlBsearch.

Reason Search first matching entry.

3 e arch For Ne xt Entry

Function number 0x12.

SIVIB sent SIVlBsearch.

Reason Search next matching entry.

Se que ntial Re ad (FCB I/O)

Function number 0x14.

SIVIB sent S1VlBread.

Reason Sequential read (FCB I/O).

Protocols for X/Open PC Interworking: SIVIB, Version 2 257

Page 275 of 534

DOS Functions SMB Transmission Analysis

Sequential Write (FCB I/O)

Function number 0x15.

SIVIB sent SIVlBwrite.

Reason Sequential write (FCB I/O).

Set/Get Date /Time of File

Function number 0x57.

SIVIB sent SIVlBsearch, SA/lBsetatr.

Reason Get/set file date and time.

S e t/Get File Attribute s

Function number 0x43.

SIVIB sent SIVlBsetatr.

Reason Change file attributes.

Te rm inate Program m e

Function number 0x00.

SIVIB sent S1VlBeXit.

Reason Program III e term inate.

Unlock/Lock File

Function number 0x5c.

SIVIB sent SMB1ock, SIVlBun1ock.

Reason Lock/Unlock file.

Write Via File Handle

Function number 0x40.

SIVIB sent SIVlBwr1'te, SA/lBsp1Wr (printer device).

Reason Write file.

258 X/Open CAE Specification (1992)

Page 276 of 534

SIVIB Transmission Analysis O82 Functions

A.3 OS/Z Functions

The SMB requests generated from OS/2 redirectors will vary based on the protocol dialect

negotiated. This variation is highlighted in the sequences below by listing the SMB request that

will be sent if the extended 1.0 dialect was negotiated first followed by the SMB request for the
extended 2.0 dialect.

DosBufRe se t

SIVIB sent S1VlBf1ush.

Reason Flush file buffer.

DosChDir

SIVIB sent SIVlBchkpth.

Reason Change the current working directory.

DosClose

SIVIB sent SIVlBc1ose, SIVlBwr1'tec1ose, SIVlBWrite.

Reason Close F]D.

If the file I/O is buffered, a DosClose will cause the data in the buffers to

be flushed. This type of situation may cause an SIVlBwritec1ose or
SIVlBwrite to be sent.

DosDe le te

SIVIB sent S1VlBun11'nk.

Reason Delete a file.

DosDe VIOCtl

SIVIB sent SIVlB1'oct1, SIVlBioct1s.

Reason Pass a device—specific I/O control request to a driver.

DosExecPgm

SIVIB sent SIVlBopen, SIVlBread, SIVlBc1ose. SIVlBtrans2('IRANSACT2_OPEN) may be
used for the open function instead of SIVlBopen for the extended 2.0
dialect.

Reason Start a programme as a child process.

DosExecPgm makes use of OS/2’s standard file I/O functions.

DosFile Locks

SIVIB sent SIVlB1ock SIVlB1ock1'ngX, SIVlBlockread, SIVlBun1ock, SIVlBWr1'teun1ock.

Reason Set or reset a byte lock range in an open file.

An SIVlBwriteunlock is sent after unlocking bytes which were just written
out. SIVlB1ockread is used to lock and then read ahead.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 259

Page 277 of 534

260

O82 Functions

DosFindClose

SIVIB sent

Reason

DosFindFirst

SIVIB sent

Reason

DosFindFirst2

SIVIB sent

Reason

DosFindNext

SIVIB sent

Reason

DosFindNotifyClose

SIVIB sent

Reason

DosMkDir

SIVIB sent

Reason

DosMove

SIVIB sent

Reason

DosOpe n

SIVIB sent

Reason

Page 278 of 534

SIVIB Transmission Analysis

SIVlB1cl0se and possibly SIVlBfindnc10se.

Close an active directory search handle. If change notification was
involved, the SIVlBfindnc10se will be sent to cancel further notifications.

SIVlBfl‘lrst or SIVlBtrans2('IRANSA CT2_F1NDF1RS'1) .

Find the first file in a directory matching the search pattern.

SIVlBtrans2('IRANSACT2_F1NDF1RS'1). An SIVlBfindc10se may follow.

Find the first file in a directory matching the search pattern. If no
additional searchs are desired the SA/lBfindc10se will be used to allow the

server to free resources associated with the find.

SIVlBfl‘lrst or SIVlBtrans2('IRANSACT2_F1NDNEX'D .

Get the next file from the search pattern.

If this function is used on a sufficiently large directory it will eventually

send an S1VlBfind request.

SIVlBfindnc10se.

To indicate to the LMX server that directory search requests are complete.

SIVlBn1kd1'r SIVlBtrans2('IRANSACT2_IV1KD1R) .

Create a new directory.

SIVlBn1 V.

Rename or move a file.

SIVlB0penX, SIVlB0pen, SIVlBcreate, SIVlBreadX or
SIVlBtrans2('IRANSACT2_OPEN) .

Open a device/file for I/O.

D0sOpen may send an SIVlBreadX read ahead. D0sOpen will send an
SIVlB0penX instead of an SA/lB0pen when in protected mode. SIVlB0pen has

no capabilities for creating a file when opening, so D0sOpen may send an
SIVlBcreate.

X/Open CAE Specification (1992)

SMB Transmission Analysis O82 Functions

DosQCurDir

SIVIB sent SlVlBchI(pth.

Reason Determine the current directory of a logical drive.

DosQFS Info

SIVIB sent SIVlBdskattr or SIVlBtrans2('IRANSACT2_QFS1NFO).

Reason Retrieve file system information data.

DosQFile Info

SIVIB sent SIVlBgeta ttrE or SIVlBtrans2('IRANSACT2_QF1LE1NFO).

Reason Retrieve a file information record.

DosQFile Mode

SIVIB sent SIVlBgeta tr.

Reason Get a file’s attribute byte.

DosRe ad

SIVIB sent SIVlBread, SIVlBreadX, S1VlBreadbraW, S1VlBreadbmpX.

Reason Read characters from an F]D.

SIVlBreadbrawis used to send a block of data which is larger than the data

size which was negotiated.

DosRe adAsync

SIVIB sent SIVlBread, SIVlBreadX, S1VlBreadbraW, S1VlBreadbmpX.

Reason Read characters from an F]D asynchronously.

Same behaviour as DosRead.

DosRm Dir

SIVIB sent SIVlBrmd1'r.

Reason Delete a subdirectory.

DosSe tFile Info

SIVIB sent SIVlBsetattrE.

Reason Change a file’s directory information.

Protocols for X/Open PC Interworkingz SNIB, Version 2 261

Page 279 of 534

OS£ Functions SMB Transmission Analysis

DosS e tFile Mode

SIVIB sent SIVlBseta tr.

Reason Change a fi1e’s attribute.

DosWrite

SIVIB sent SIVlBwrite, SIVlBwriteX, SIVlBwritebraw, SIVlBwritebmpX.

Reason Write characters to an F]D.

SIVlBWr1'tebrawis used to send a block of data which is larger than the data

size which was negotiated.

DosWrite Async

SIVIB sent SIVlBwrite, SIVlBWriteX, SIVlBwritebraw, SIVlBwritebmpX.

Reason Write characters to an F]D asynchronously.

Same behaviour as DosWn'te.

262 X/Open CAE Specification (1992)

Page 280 of 534

Remote API Protocol LAN I\/Ianager Remote Administration Protocol

B.2 Remote API Protocol

1. All remote API operations are done using the share name IPC$. The Sl\/[B redirector will

automatically connect to that share if necessary in order to do a remote API call.

2. All remote API operations are done using the Transaction SMB SMBtrans.

3. The smb_name field of the Transaction SMB is always \PIPE\LANMAN. The server uses

this to identify a remote API request. The SIVIB resembles a normal named pipe operation,

which is also done using a Transaction SMB. However, the smb_setup[0] field, which

would norm ally contain the desired named pipe operation, is ignored; the

\PIPE\LANMAN name field is suificient to identify a remote API operation.

The arguments for the remote API call are encapsulated in the Transaction request SMB; return

values are encapsulated in the Transaction response SMB. In both the request and the response,

all binary values are stored in little—endian order, least significant byte first. There are no pad

bytes other than those explicitly specified in descriptor strings; therefore, items may be located

at an arbitrary byte boundary — there are no alignment restrictions.

The request and response Transaction SlVlBs contain a parameter section and a data section. The

arguments for a remote API call are split into two parts, and placed in these sections of the

request Transaction. The Transaction response message contains the results of the call, split

between the parameter and data sections of the Transaction response. A number of fields in the

Transaction Sl\/[B identify the size and location of these sections within the Sl\/IB, and also allow a

single Transaction request or response to be split into several messages (refer to X/Open CAE

Specification, IPC Mechanisms for Sl\/IB).

264 X/Open CAE Specification (1992)

Page 282 of 534

LAN A/Ianager Remote Administration Protocol LMX Access Control Lists Mapping

B.3 LMX Access Control Lists Mapping

Access control lists (ACLs) are used by LMX servers running in user—level security mode.

Though the implementation of ACLs is outside the scope of the specification the following list is

a set of possible access permissions, which is used by LAN Manager implementations.

User—level security allows access permissions to be set for each shared resource (for example, file

system subtree, individual file, spooler, device, etc.). Each shared resource has a list of users and

groups, with the permissions allowed for each user or group on that resource.

_ ACL Permissions

R read Permission to read data from a resource and, by
default, execute the resource.

W write Permission to write data to the resource.

X execute Permission to execute the resource.

C create Permission to create an instance of the resource

(for example, a file); data can be written to the

resource when creating it.
D delete Permission to delete the resource.

A change attributes Permission to modify the resources attributes

(for example, the date and time a file was last
modified).

P change permissions Permission to modify the permissions (read,

write, create, execute and delete) assigned to a

resource for a user, group or application.

N deny access No permissions.

Y allow spuul rf.'E]l1E?’SI‘>'

Since the X/Open CAE does not provide an access control list (ACL) mechanism, the usual CAE

access control mechanisms should be used instead. Following the principle of least surprise, a

mapping is defined for access mechanisms which cannot easily be provided under CAE systems.

The CAE access control mechanisms are used to permit interoperability for applications which
reside on both PCs and on CAE hosts.

A mapping from (SMB) U]D and username/password supplied by the client to CAE User ID

(uid) and Group]D(s) (gid) is established by the SIVlBsesssetupX and will be maintained by the
LMX server. The mapped—to CAE User ID and one or more Group]Ds are used for all accesses

on the CAE system in the usual manner.

The differences between the functionality provided by ACLs and the access control mechanisms
for LMX servers described above include:

1. ACL permissions apply to shared resources. This includes file system directories as well as

individual files. CAE permissions apply to individual files and directories but are not
extended to subtrees.

2. For each resource, ACL permissions can be listed for any number of individual users, for

any number of groups, and for anyone else. A CAE file or directory specifies permissions

for the owner, one group and everyone else.

Protocols for X/Open PC Interworking: SIVIB, Version 2 265

Page 283 of 534

LMX Access Control Lists A/lapping LAN A/Ianager Remote Administration Protocol

The following table shows the mapping between the ACL permissions and CAE permissions:

SMB Permissions Equivalent CAE Permission
R read r read

W write w write

X execute r read (Note 1)

C create w write on parent dir

D delete w write on parent dir

A change attributes not supportable

P change permissions (Note 2)

N deny access — no permissions (Note 3)
Y allow spool requests not supportable

Note s:

1. Execute permission for LMX servers requires only read permission, as the client

need only be able to read the file before it can execute it.

2. Not an assignable access right. The owner of a file and users with appropriate

privileges always have P access and cannot relinquish it; no other user can

acquire P access.

3. Not a specific right, but the absence of rights. Note that the privileged user

always has all rights and can relinquish none of them.

ACLs could be partially implemented for LMX servers by placing the required checks into the

LMX server itself. The list would be used to further restrict (but not grant) access to files and

directories beyond the restrictions imposed by the usual CAE access control mechanisms. A

client may have access to a resource only if it does not conflict with CAE permissions and if it is

specified in the ACL. There may be cases where the ACL indicates that a user should have

access, but the CAE security would have to be circumvented to honour it. The access will be

denied in accordance with the CAE in these cases. This permits access security to be maintained

on both the server and client system equivalently; if a user local on the CAE system is denied

access, access should be denied for the user on a client system as well.

X/Open—compliant system implementations which support native ACLs as an enhancement

may use that mechanism instead of the normal CAE access control mechanisms if desired, as

long as the ACLs do not grant permission where the expected CAE access mechanisms would
have denied it.

266 X/Open CAE Specification (1992)

Page 284 of 534

LAN A/Ianager Remote Administration Protocol Transaction APIRequest Format

B.4 Transaction API Re quest Form at

B.4.1 Paramete r Section

The parameter section (smb_param) of the Transaction request contains the following:

o API number: 16-bit integer

- parameter descriptor string: null—terminated ASCII string

o data descriptor string: null—terminated ASCII string

o parms: subroutine arguments, as described by the parameter descriptor string

- auxiliary data descriptor string: optional null—terminated ASCII string

The API number identifies which API routine the SMB redirector wishes the LMX server to call

on its behalf. A list of API numbers is given in Section B.8 on page 275.

The parameter descriptor string describes the types of the arguments in the data section

(smb_data), as given in the original call to the routine on the SMB redirector.

The data descriptor string describes the form at of a data structure, or data buffer, which is sent

to the API routine. The API routine on the SMB redirector is normally given a pointer to this

buffer. Note that this descriptor string is also used by the server to determine the form at of the
data buffer to be sent back from the API call.

The parms field contains the actual subroutine arguments, as described by the parameter

descriptor string.

The auxiliary data descriptor string describes the format of a second, auxiliary data structure

which is either sent to or received from the API routine, in addition to that defined by the data

descriptor string. The data described by this descriptor string is located in the data section

(smb_data) of SIVlBtrans, immediately following the data described by the primary data
descriptor.

B.4.2 Data Section

The data section (smb_data) of the SIVlBtrans request contains the following:

o the primary data buffer, as described by the data descriptor string in the parameter section

- the auxiliary data buffer (optional), as described by the auxiliary data descriptor in the
param eter section

Protocols for X/Open PC Interworking: SMB, Version 2 267

Page 285 of 534

Transaction APIResponse Format LAN A/Ianager Remote Administration Protocol

B.5 Transaction API Response Form at

B.5.1 Parameter Section

The parameter section (smb_param) of the S1VlBtrans response contains the following:

- Status: a 16-bit integer. This is the return status as if the requested LAN Manager API routine

would be executed on the responder’s system. Zero norm ally indicates success.

- Converter word: 16-bit integer, used by the requestor’s system to adjust the pointer in the
data section. The use of this field is described below.

o Parms: return parameters, as described by the parameter descriptor string in the request

message. Only those parameters which are identified in the parameter descriptor string as

being receive pointers (that is, which will be modified by the server) are actually returned
here.

B.5.2 Data Section

The data section (smb_data) of the S1VlBtrans request contains:

- the primary returned data bufl°er, as described by the data descriptor in the request message

- the auxiliary data bufi°er (optional), as described by the auxiliary data descriptor in the
request message

268 X/Open CAE Specification (1992)

Page 286 of 534

LAN Manager Remote Administration Protocol Descriptor Strings

B.6 Descriptor Strings

A descriptor string is a null—terminated ASCII string. Descriptor string elements consist of a

letter describing the type of the argument, possibly followed by a number (in ASCII

representation), specifying the size of the argument. Each item in the descriptor string describes
one data element.

B.6.1 De scrlptor String Type s

The following describes the characters which may be encountered in a descriptor string, and the

form at of the corresponding data described by the descriptor string.

B Byte

If followed by one or more digits (that is, B13) this refers to an array of bytes. One or more
bytes will be located in the corresponding data area. Note that this type will not be found in

the parameter descriptor string (that is, it will not be used to describe subroutine

arguments), since single bytes cannot be pushed onto the stack by the SMB redirector.

W 16-bit integer

If followed by one or more numbers (that is, W4) this refers to an array of 16-bit integers.

One or more 16-bit integers will be located in the corresponding parameter or data area.

D 32-bit integer

If followed by one or more numbers (that is, D3) this refers to an array of 32-bit integers.

One or more 32-bit integers will be located in the corresponding parameter or data area.

2 Null—terminated ASCII string

The corresponding parameter or data area contains a null—terminated ASCII string. This

type has a different meaning when applied to returned data. (See below.)

b Byte pointer

The original argument list or data structure contained a pointer to one (that is, b) or more

(that is, b8) bytes at this position. The bytes themselves are located in the corresponding

parameter or data area. This type has a different meaning when applied to returned data.
(See below.)

w Word pointer

The original argument list or data structure contained a pointer to one (that is, w) or more

(that is, w2) 16-bit integers at this position. The integers themselves are located in the

corresponding parameter or data area. This type has a different meaning when applied to
returned data. (See below.)

(:1 Dword pointer

The original argument list or data structure contained a pointer to one (that is, cl) or more

(that is, d3) 32-bit integers at this position. The integers themselves are located in the

corresponding parameter or data area. This type has a different meaning when applied to
returned data. (See below.)

g Receive byte pointer

The original argument list contained a pointer to one (that is, g) or more (that is, g8) bytes at

this position, which are to receive return values from the API call. The Transaction request

contains nothing at this position in the corresponding parameter or data area; the response

message contains data.

Protocols for X/Open PC Interworking: SMB, Version 2 269

Page 287 of 534

Descriptor Strings LAN A/Ianager Remote Administration Protocol

h Receive word pointer

Contains data in the parameter section. The original argument list contained a pointer to

one (that is, h) or more (that is, h2) 16-bit integers at this position, which are to receive

return values from the API call. The Transaction request contains nothing at this position in

the corresponding parameter or data area; the response message contains data in the
param eter section.

i Receive dword pointer

The original argument list contained a pointer to one (that is, i) or more (that is, i3) 32-bit

integers at this position, which are to receive return values from the API call. The

Transaction request contains nothing at this position in the corresponding parameter or data

area; the response message contains data in the parameter section.

0 Null pointer

The original argument list or data structure contained a null pointer at this position. There

is nothing stored at this position in the corresponding parms or data area.

s Send data buffer pointer

The original argument list contained a pointer at this position to a data structure containing

more data arguments to the API call. This item appears only in a parameter descriptor

string. The form at of the secondary data structure is described in the data descriptor string

(contained in the parameter section of the Transaction request message). The data itself is

contained in the data section of the Transaction request message.

T Length of send buffer

The original argument list contained a 16-bit integer argument at this position which

specified the length of the send buffer. This item appears only in a parameter descriptor

string. No value is placed in the corresponding parameter area.

r Receive data buffer pointer

The original argument list contained a pointer at this position to a data structure which was

to be filled in by the API call. This item appears only in a parameter descriptor string. The

form at of the secondary data structure is described in the data descriptor string (contained

in the parameter section of the Transaction request message). The data itself is contained in

the data section of the Transaction response message.

L Length of receive buffer

The original argument list contained a 16-bit integer argument at this position which

specified the length of the receive buffer. This item appears only in a parameter descriptor

string. The corresponding parameter area contains a 16-bit integer specifying the length of
the receive buffer.

P Param eter num ber

The corresponding parameter or data area contains a 16-bit short integer.

e Entries read

The original argument list contained a pointer to a 16-bit integer at this position, which is to

receive the number of entries returned by the API call in the receive buifer. The Transaction

request contains nothing at this position in the corresponding parameter or data area; the

response message contains the numbers of entries returned in the receive data buifer.

270 X/Open CAE Specification (1992)

Page 288 of 534

LAN Manager Remote Administration Protocol Descriptor Strings

N Number of auxiliary structures

This field is only found in data descriptor strings. The presence of the field indicates that

there will be auxiliary data sent (if found in a send data descriptor string), or received (if

found in a receive data descriptor string). The corresponding data block contains a 16-bit

integer specifying the number of auxiliary data structures to be sent (for a send data buffer),
or which have been received (for a receive data buffer).

K Unstructured data block

This will norm ally be the only item in a descriptor string.

F Fill

The corresponding data area contains one (that is, F) or more (that is, F3) fill bytes at this
position.

B.6.2 Pointe r Type s and Re turne d Data

Lower—case letters are considered pointer types. These pointer types 2, b, w and d have a

different meaning if they are used to describe returned information. In this case the pointers

occur in a data descriptor string or auxiliary data descriptor string and describe data to be

returned in the data section (smb_data) of the S1VlBtrans response message. In this case the item

referred to by the pointer is not the array or string itself, but a 32-bit integer. The high—order 16-

bits are to be ignored and the low—order 16—bits contain an offset. The offset subtracted by the

converter word points to the array or string within the returned data buffer itself.

The data descriptor describes one instance of the returned data structure. The response buffer

may contain several of these data structures, each of which is a fixed size. Together, these make

up the fixed—length portion of the returned data area. The returned data buffer may also contain

data pointed to by the various pointer types described above. This data may contain strings, and

is likely to be of variable length. The fixed—length data is always placed at the beginning of the

returned data buffer; the placement of the variable—length data is up to the server.

The responder must place variable—length data at the end of the data buffer and set the pointers

accordingly. Since the total length of the data buffer is only known at the end of processing,

there may be a gap between the fixed—length data and the variable—length data. To avoid

sending this gap accross the network the responder may position the variable—length data to a

position immediately following the fixed—length data. The pointers in the data descriptor string

do not need to get updated if the “converter word” in the response parameter section is set to

the value that the requestor must subtract from all pointer values referencing data in the

variable—length section.

Protocols for X/Open PC Interworking: SMB, Version 2 271

Page 289 of 534

Examples LAN A/Ianager Remote Administration Protocol

B.7 Example s

The following examples may help clarify details of the protocol. Some details have been

simplified for ease of explanation. Note that the format of some data structures may diifer in

various versions of LAN Manager.

B.7.1 Ne tS hare Del

This is one of the simplest examples of a remote API call. Suppose an SMB redirector

programme does the following call:

NetShareDel(SERVER, C, 0);

This call deletes the outstanding share C on the server machine SERVER.

The parameter section of the Transaction request message contains:

4: API number for the NetShareDel function.

zW: Parameter descriptor string. Note that the servername argument is not specified in the

descriptor. There are two arguments: a string specifying the name of the share to be

deleted, and a reserved 16-bit integer MBZ (Must Be Zero).

Data descriptor string. There is no data bulfer in the arguments, so this descriptor

string is empty.

parms: The actual subroutine arguments, as described by the parameter descriptor string:

C: A null—terminated string.

0: A 16-bit word.

There is no auxiliary data descriptor string.

The data section of the Transaction request message is empty.

The parameter section of the Transaction response message contains:

return status: (16-bit word.)

converter word: 0 in this case.

return parm s: There are no return parameters in this case, so this section will be empty.

The data section of the Transaction response message is empty.

B.7.2 Ne tS hare Add

This example uses a send buffer:

struct share_info_2 buf;

NetShareAdd(SERVER, 2, &buf, sizeof(buf);

The parameter section of the Transaction request message contains:

3: API number for the NetShareAdd function.

WsT: Parameter descriptor string.

B13BWzWWWzB9B: Data descriptor string. This corresponds to the elements of the
share_ini‘b_2 structure.

parms: The actual subroutine arguments, as described by the parameter

descriptor string:

272 X/Open CAE Specification (1992)

Page 290 of 534

LAN A/Ianager Remote Administration Protocol Examples

2: The second argument.

Note that there is no data here corresponding to the sT portion

of the parameter descriptor string.

There is no auxiliary data descriptor string.

The data section of the Transaction request message contains the contents of the share_1'ntb_2
structure:

- thirteen bytes (from the sh1'2_netname field)

- one byte (from sh1'2_pad1)

- one 16-bit word (from sh1'2_type)

o null—terminated ASCII string, copied from the one pointed to by sh1'2_remark

o one 16-bit word (from sh1'2_perm1'ss1'ons)

- two 16-bit words (sh1'2_maX_uses and sh1'2_current_uses)

- null—terminated ASCII string, copied from the one pointed to by sh1'2_path

- nine bytes (from sh1'2_passwd)

o one byte (from sh1'2_pad2)

The parameter section of the Transaction response message contains:

- return status (16-bit word)

- converter word: 0 in this case

o return parms: there are no return parameters in this case, so this section will be empty

The data section of the Transaction response message is empty.

B.7.3 Ne tS hare Enum

This example has both return parameters and return data:

struct sharefiinfo_l buf[l0];

NetShareEnum (SERVER, 1, &buf, sizeof(buf), &nentries, &total);

The parameter section of the Transaction request message contains:

0: API num ber for the NetShareEnum function.

WrLeh: Parameter descriptor string.

B13BWz: Data descriptor string (for returned data, in this case).

parms: The actual subroutine arguments, as described by the parameter descriptor string:

1: Second argument

sizeof(but)': This is a send parameter because the server needs to know how

much space it has available in which to return results

Note that the other arguments are result parameters, and are thus not

passed to the server.

There is no auxiliary data descriptor string.

The data section of the Transaction request message is empty.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 273

Page 291 of 534

Examples LAN l\/Ianager Remote Administration Protocol

The parameter section of the Transaction response message contains:

return status (16-bit word)

converter word: (possibly set by server)

entries returned (16-bit word)

total number of available entries (16-bit word)

The data section of the response Transaction message contains a number of share_info_1

structures. The number of such structures is given by the entries returned return parameter.
Each structure contains:

274

thirteen bytes (the sh1'1_netname field)

one byte (sh1'1_pad1)

one 16-bit word (sh1'1_type)

the sh1'1_remark field. This is a four—byte value. The two low—order bytes contain the offset

within the data section of the null-terminated ASCII string. The value may need adjusting:
the converter word value must be subtracted from this offset in order to obtain the true offset

of the string.

a possible gap following the fixed—length data. This is up to the server.

the null-terminated string pointed to by the sh1'1_remark field

X/Open CAE Specification (1992)

Page 292 of 534

LAN A/Ianager Remote Administration Protocol APINumbers

B.8 API Numbers

The following are the API numbers used to specify the various remote LAN Manager routines.

They are included here so that an im plem entor can build an LMX server which can handle this

class of SMB redirector requests. However, their inclusion in this specification does not imply

any X/Open endorsement of these mechanisms as the basis for future X/Open network

management functionality. (A routine name beginning with R identifies a routine which gets

special handling by the LMX server, rather than simply calling the local version of the routine.)

0 RNetShareEnum 44 RNetAccessSetInfo

1 RNetShareGetInfo 45 RNetAccessAdd

2 I\IetShareSetInfo 46 RNetAccessDel

3 I\IetShareAdd 47 NetGroupEnum

4 I\IetShareDel 48 NetGroupAdd

5 I\IetShareCheck 49 NetGroupDel

6 I\IetSessionEnum 50 NetGroupAddUser

7 I\IetSessionGetInfo 51 NetGroupDelUser

8 I\IetSessionDel 52 NetGroupGetUsers
9 I\IetConnectionEnum 53 NetUserEnum

10 I\IetFileEnum 54 RNetUserAdd

1 1 I\IetFileGetInfo 55 NetUserDel

12 I\IetFileClose 56 NetUserGetInfo

13 RNetServerGetInfo 57 RNetUserSetInfo

14 I\IetServerSetInfo 58 RNetUserPasswordSet

15 I\IetServerDiskEnum 59 NetUserGetGroups

16 I\IetServerAdminCom mand 60 NetWkstaLogon

17 I\IetAuditOpen 61 NetWkstaLogoff
18 I\IetAuditClear 62 NetWkstaSetU]D

19 I\IetErrorLogOpen 63 NetWkstaGetInfo

20 I\IetErrorLogClear 64 NetWkstaSetInfo
21 I\IetCharDevEnum 65 NetUseEnum

22 I\IetCharDevGetInfo 66 NetUseAdd

23 I\IetCharDevControl 67 NetUseDel

24 I\IetCharDevQEnum 68 NetUseGetInfo

25 I\IetCharDevQGetInfo 69 DosPrintQEnum

26 I\IetCharDevQSetInfo 70 DosPrintQGetInfo

27 I\IetCharDevQPurge 71 DosPrintQSetInfo

28 RNetCharDevQPurgeSelf 72 DosPrintQAdd

29 I\IetMessageNam eEnum 73 DosPrintQDel

30 I\IetMessageNam eGetInfo 74 DosPrintQPause

31 I\IetMessageNam eAdd 75 DosPrintQContinue

32 I\IetMessageNam eDel 76 DosPrint]obEnum

33 I\IetMessageNam eFwd 77 DosPrint]obGetInfo

34 I\IetMessageNam eUnFwd 78 RDosPrint]obSetInfo

35 I\IetMessageBufferSend 79 DosPrint]obAdd

36 I\IetMessageFileSend 80 DosPrint]obSchedule

37 I\IetMessageLogFileSet 81 RDosPrint]obDel

38 I\IetMessageLogFileGet 82 RDosPrint]obPause
39 I\IetServiceEnum 83 RDosPrint]obContinue
40 RNetServiceInstall 84 DosPrintDestEnum

41 RNetServiceControl 85 DosPrintDestGetInfo

42 RNetAccessEnum 86 DosPrintDestControl

43 RNetAccessGetInfo 87 NetProfileSave

Protocols for X/Open PC Interworking: SMB, Version 2

Page 293 of 534

275

Appendix C

The X/Open Security Package

The X/Open security package, as defined in this appendix, permits the LMX server to select

encryption functions from lists sent by the SMB redirector. This appendix defines some

suggested E() and U() dialect names and the functions associated with those names.

The definitions in this section are not a part of the X/Open specification of the SMB protocols at

the present time, and might not become a part of the X/Open specification in the future.
Nonetheless, it is recommended that the dialect names defined here are used as defined; if other

encryption functions are supported, names defined in this appendix should not be used for
them.

C.1 E() Functions

The E() function is used to respond to the server and (optional) SMB redirector challenges. It

cryptographically combines the challenge string and the password string (in server form, see

Section C.2 to produce the response string. The function should be chosen so that it is difficult or

expensive to derive the password string from the challenge string and response string, even if

the cryptographic function is not secret.

The following table gives the E() dialect name and a definition for the function to be used if that
dialect is selected.

NULL Value is the password string (in server form), unchanged. Used when the network

is known to be secure against eavesdropping (for example, link encryption).

DES2 The password string is used as a key to encrypt the challenge string using the DES
block mode algorithm. The DES function is applied as described in Appendix D on

page 279.

UNIX The server—form password string is used as input to the well—known UNIX

password encryption algorithm3. Instead of using a data block of all zeros, the
challenge string is used; the salt is two NULL characters.

2. U.S. Department of Commerce Data Encryption Standard.

3. Morris, Robert and Thompson, Ken; Password Security: A Case History. Bell Laboratories Technical Memorandum, April 3,
1978. Reprinted in UNIX Programmers’ Manual, Seventh Edition, Volume 2, page 595. New York: Holt, Rinehart and Winston
(1983).

Protocols for X/Open PC Interworking: SMB, Version 2 277

Page 295 of 534

U() Functions The X/Open Security Package

C.2 U() Functions

The U() function is used to transform a cleartext password into the form in which it is stored on

the server (that is, server—form). Many X/Open—compliant systems store passwords in an

encrypted form, and many of these functions are one—way; that is, the transformation from

cleartext to cryptotext is not reversible. Negotiation of the U() function permits the SIVIB

redirector to reproduce the cryptotext password given the clear password as typed by the user.

Some U() functions require additional data aside from the password and usernam e. If the server

selects such a U() function, it will return the necessary additional data in the SMBsecpkgX

response. Some LMX server implementations support a mechanism for changing a user’s

password via some additional protocol; those LMX server implementations should also return

any additional data required for that process.

The following table defines U() dialect names and the functions to be perform ed if that dialect is

selected. The contents of the Xp_ou1'r1fand Xp_nu1'nffields of the SMBsecpkgX response are also
described.

NULL The server—form of the password is identical to the cleartext form.

UND(The well—known UNIX password encryption algorithm is used. The Xp_ou1'r1ffield

contains the two—character salt required by the algorithm. If the LMX server

supports password changes via protocol, the Xp_riu1'nf field should be the new salt

to be used if the SIVIB redirector changes passwords.

278 X/Open CAE Specification (1992)

Page 296 of 534

Appendix D

SIVIB Encryption Techniques

D.1 S MB Authe ntication

The SMB authentication scheme is based upon the server knowing a particular encrypted form

of the user’s password, the client system constructing that same encrypted form based upon user

input, and the client passing that encrypted form in a secure fashion to the server so that it can

verify the client’s knowledge.

The scheme uses the DES4 encryption function in block mode; that is, there is a function E(K, D)

which accepts a 7—byte key (K) and 8—byte data block (D) and produces an 8—byte encrypted data

block as its value. If the data to be encrypted is longer than 8 bytes, the encryption function is

applied to each block of 8 bytes in sequence and the results appended together. If the key is

longer than 7 bytes, the data is first completely encrypted using the first 7 bytes of the key, then

the second 7 bytes, etc., appending the results each time. In other words:

E(K0K1,D0D1)=E(Ko,D0) E(K0,D1)E(K1,D0)E(K1,D1)

D. 1 .1 S MBne gprot Re sponse

The SA/IBnegpr0t response field smb_cIyptkey is the result of computing:

C8=E (P7, S8)

where:

- P7 is a 7—byte string which is non—repeating. This is usually a combination of the time (in

seconds since January 1, 1970) and a counter which is incremented after each use.

- S8 is an 8—byte string whose value is ? ? ? ? ? ? ? ? (eight question marks).

D. 1 .2 S MBtcon, S MBtconX, S MBse ssse tupX Re que sts

The client system may send an encrypted password in any one of these requests. The server

must validate that encrypted password by performing the same computations the client did to

create it, and ensuring the strings match. The server must compute:

P1 6=E (P14, S8)

and:

P24=E (P21, C8)

where:

- P14 is a 14—byte string containing the user’s password in cleartext, padded with spaces.

- S8 is the 8—byte well—known string (see above).

4. U.S. Department of Commerce Data Encryption Standard.

Protocols for X/Open PC Interworking: SIVJB, Version 2 279

Page 297 of 534

SMB Authentication SMB Encryption Techniques

o P21 is a 21—byte string obtained by appending 5 null (0) bytes to the string P16, just

computed.

o C8 is the Value of smb_cIyptkey sent in the SMBnegprot response for this connection.

The final string, P24, should be com pared to the encrypted string in the request:

o the smb_passWd field in SMBtcon

o the smb_spasswd field in SMBtconX

o the smb_apasswd field in SMBses$etupX

If they do not match, it is possible the client system was incapable of encryption; if so, the string

should be the user's password in cleartext. The server should try to Validate the string, treating

it as the user’s unencrypted password. If this Validation fails as well, the password (and the

request) should be rejected.

280 X/Open CAE Specification (1992)

Page 298 of 534

TOPNetBIOS

MAP/TOP Users Group Technical Report
Specification of NetBIOS Interface and Name Service

Support by Lower Layer OSI Protocols
Version 1.0, September 27, 1989

1 INTRODUCTION

In addition to the universal interoperability TOP products offer, many users
have purchased products that conform to proprietary and de facto networking
standards. For IBM personal computers and compatibles, a de facto networking
standard is the Network Basic Input Output System, or NetBIOS. A majority of
popular network applications for these computers require a NetBIOS-compatible
interface.

Many vendors recognize this fact and understand the need to preserve
investments in these applications while allowing the support of new TOP based
applications. Several of these vendors have introduced or plan to introduce
TOP products with a NetBIOS-compatible interface.

In order to prevent these vendors from developing separate and incompatible
implementations, the TOP NetBIOS Migration Technical Committee has defined a
unifornl way to support the NetBIOS interface in. TOP systems. All products
that conform to this specification interoperate with each other, and networks
composed of such products support both TOP applications and current PC
software packages. The PC applications operate without modification. on the
local network and, in many cases, as described in section 3.4, across the TOP
internetwork. In order to support TOP applications, an implementation. must
confornl to the TOP V3.0 Specification. in. addition. to this NetBIOS support
specification.

The specification. defined. by the TOP NetBIOS Migration. Technical Committee
consists of this specification. It is logically divided into two parts. The
first part defines a mapping of the NetBIOS Interface to ISO Transport
Services and Data Link Services. The second part defines a naming protocol
for the NetBIOS environment over TOP—recognized subnetworks that support
NetBIOS name support services.

Sections 3 through. 6 and. Appendix I comprise the first part. Section 2,
“Reference Documents,” specifies the documents that the Technical Committee
considers to define the NetBIOS interface and. the ISO transport services.
Readers should become familiar with these documents, as the remaining

sections assume a knowledge of both the NetBIOS interface and ISO transport
services and ISO transport profiles.

Section. 3 describes the general principles behind the mapping of NetBIOS
commands to transport services. Section 4, “Special Considerations,”
discusses several significant issues in the NetBIOS/transport mapping.
Sections 5 and 6 detail the mapping. “NetBIOS Commands” describes the
mapping of each NetBIOS command to ISO transport services. It identifies the
level of support required for each. NetBIOS command, and. it indicates the
specific transport service requests associated with each command. Section 6,
“Transport Service Indications and. Confirmations,” describes the response
of the NetBIOS interface to each. transport service indication and
confirmation. Finally, Appendix I, “State Tables,” presents state tables
that precisely define the mapping between NetBIOS “sessions” and class four
t ransport connect OHS .

Sections 7 through. 9 and. Appendices II through. V define the NetBIOS Name
Service Protocol. Appendix VI is provided for future errata or clarifications
discovered during product implementation and interoperability testing.

282 X/Open CAE Specification (1992)

Page 300 of 534

TOPA\letBIOS

2 REFERENCES AND DEFINITIONS

The first step in defining a mapping between the NetBIOS interface and ISO
transport services is to agree on a definition of the NetBIOS interface and
OSI services. This section. lists the reference documents that the SIG has

agreed to use as the definition for NetBIOS and transport.

2.1 The NetBIOS Interface

For the purposes of the mapping specified by this specification, the NetBIOS
interface is defined by the first section, “NetBIOS,” in the first edition
(April 1987) of the IBM publication. NetBIOS Application Development Guide
(IBM product number 68X2270). When that section directs readers to adapter
specific sections for exact details of certain commands (ADAPTER STATUS, for
example), those details can be found in this specification. Note that the IBM
specification defines the exchange of NCBs (Network Control Blocks - contents
and error responses) between a NetBIOS Client and NetBIOS service provider.
The contents of the NCBs and error responses are the same for NetBIOS
Interfaces for DOS and OS/2 environments; however, the NCB transfer mechanism
for these two environments is different and is not covered in this

specification.

2.2 OSI Services

— ISO 8072-1986: Open Systems -- Transport Service Definition

— ISO 8072—ADD1: Transport Service Definition -- Addendum 1:
Connectionless—Mode Transmission

—-ISO 8073-1986: Connection Oriented Transport Protocol Specification

— ISO/DIS 8602: Protocol for Providing the Connectionless—Mode Transport
Service

— ISO 8473/N4542: Protocol for Providing the Connectionless-mode Network
Service

— ISO 8648: Internal Organization of Network Layer

—-ISO 8348, AD1, AD2: Network Service Definition, Connectionless Data

Transmission, Network Layer Addressing

—-ISO 8802/2: Logical Link Control

—-ISO 8802/3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD)

—-ISO 8802/4: Token Passing Bus Access Method

— ISO 8802/5: Token Ring Access Method

2.3 Definitions

2.3.1 Reference Model Definitions

This specification makes use of the following concepts defined in the
ISO/OSI’s Basic Reference Model [ISO 7498]:

DUA ISO Directory User Agent

DSA ISO Directory Service Agent

DIB Directory Information Base

ES End System

IS Intermediate System

Protocols for X/Open PC Interworkingz SNIB, Version 2 283

Page 301 of 534

TOPA\IetBIOS

LSAP Link Layer Service Access Point

NSAP Network Service Access Point

PDU Protocol Data Unit

psel presentation selector

SNPA Subnetwork Point of Attachment

SNPDU' Subnetwork Protocol Data Unit

ssel session selector

TPDU' Transport Protocol Data Unit

TSDU' Transport Service Data Unit

tsel transport selector

2.3.2 Other Definitions

The following terms/concepts used in this specification, which are not
defined in ISO 7498, are as follows:

NCB Network Control Block

NDUA NetBIOS Directory User Agent

NDSE NetBIOS Directory Service Entity

NSP NetBIOS Name Service Protocol

NSPDU' NetBIOS Name Service Protocol Data Unit

2.3.3 Service Conventions Definitions

This Protocol Specification. makes use of the following terms from the OSI
Service Conventions Technical Report (ISO TR 8509):

1. Service provider

2. Service user

2.3.4 Additional Definitions

For the purposes of this specification, the following definitions apply:

1. Group Name: a. name which. can. be shared. among multiple owners; a name
which is not unique. This definition derives from the NetBIOS group name
concept, rather than from the ISO/CCITT group entry.

2. Local Matter: a decision made by a system concerning its behavior in the
Directory System that is not prescribed or constrained by this
specification.

3. Protocol Address: the complete protocol address of an object or entity,
consisting of its transport address.

4. Byte and Octet: used interchangeably in the specification.

3 GENERAL PRINCIPLES

Before embarking on a detailed description of the mapping between the NetBIOS
interface and ISO transport services, it is important to understand several
general principles upon which this specification is based. The NetBIOS
interface is best supported at the ISO transport layer; NetBIOS “sessions”
best map to class 4 transport connections, and NetBIOS Datagrams best map to
connectionless transport data requests except in the case of broadcast
datagrams (broadcast name services) where a Data Link level mapping is
required. The NetBIOS general commands, with one exception, do not require

284 X/Open CAE Specification (1992)

Page 302 of 534

TOPA\letBIOS

any exchange of peer—to—peer protocol data units. The following subsections
discuss each of these principles in more detail.

3.1 NetBIOS Supported on a Transport Service

The best level in the OSI reference model at which to map the NetBIOS
interface is the level whose services most closely parallel the services
offered by the NetBIOS interface. That is the OSI transport level. The
NetBIOS interface requires reliable, sequenced data delivery, a service only
available at the transport level and above. The NetBIOS interface, however,
does not provide upper level services such as token management,
synchronization and activity management. The only OSI level above the network
level and below the session level is, of course, the OSI transport level, and
it is to this level that the NetBIOS interface best maps.

Readers should be cautioned that the NetBIOS interface definition (see above)
often refers to the NetBIOS interface as a “session” level interface. These

references exist because the protocols that support the original NetBIOS
interface (on the original PC Network Adapter) were developed before the OSI
reference model was widely understood. The highest level protocols on. the
adapter were called “session” protocols despite the fact that they do not
provide OSI session services. Throughout this specification, terms which
refer to the NetBIOS view of a “session” will be placed in quotation marks.
Terms which refer to the OSI view of a session will remain unquoted.

In. addition. to its data transfer services, NetBIOS provides name service
support. The specific naming services NetBIOS provides differ fundamentally
from the current ISO directory services. No reasonable mapping between
NetBIOS name support and ISO directory services exists, so NetBIOS name
support does not affect the choice of protocol level at which. to Inap the
NetBIOS interface. A protocol that provides NetBIOS naming services is
specified in the Sections 7 through 9.

Choosing to map NetBIOS to the transport level does provoke another concern:
the NetBIOS assumption of confirmed data delivery. NetBIOS data transfer
between “sessions” is a confirmed service, while ISO transport services
provide only unconfirmed. data delivery (see “Confirmed. Data. Delivery” in
the following section).

One important consequence of mapping the NetBIOS interface to transport
services is that NetBIOS “addresses” equate to transport selectors. A
NetBIOS “address” is a NetBIOS name; NetBIOS names correspond to transport
selectors. The transport address is the combination of a network service
access point (NSAP) address and. a transport service access point selector
(T-Selector). The NSAP address for a name is an NSAP address on the network

node at which the name exists; the T—Selector for a name is equal to the full
NetBIOS name itself. Since the NetBIOS interface requires that names be
exactly sixteen characters long, T-Selectors used by NetBIOS names are also
sixteen bytes long. The correspondence between a NetBIOS name and a transport
address (an NSAP address and T—Selector pair) is detailed in part two of this

specification.5

3.2 NetBIOS “Sessions” as Transport Class Four Connections

Since the NetBIOS interface best maps to the transport level, NetBIOS
“sessions" correspond to transport connections. Furthermore, since NetBIOS
“sessions” require reliable data. delivery with. automatic error detection

5. Sections 7-9 and Appendices II—V.

Protocols for X/Open PC Interworkingz SNIB, Version 2 285

Page 303 of 534

TOPA\IetBIOS

and recovery, when operating over a connectionless network service, they
require class four (TP4) transport connections. Since this specification
assumes a connectionless network service, the NetBIOS “session” support
commands map to TP4 services. LISTEN and CALL commands establish a TP4
connection; SEND, CHAIN SEND, RECEIVE and RECEIVE ANY commands transfer data
on that connection, and HANG UP commands terminate the connection. The

“NetBIOS Commands” and “Transport Service Indications and Confirmations’ ’
sections of this specification describe the operations required to support
each of these commands. Appendix I, “State Tables,” details the mapping
between “sessions’ ’ and TP4 connections.

3.3 NetBIOS Datagrams as Connectionless Transport Unitdata Requests

Data transfer with NetBIOS datagrams, unlike NetBIOS “sessions”, is a
connectionless mode of transmission. Naturally, therefore, NetBIOS datagrams
correspond to data transfers using the connectionless mode transport service.
NetBIOS datagrams may be sent as broadcast datagrams or as multicast
datagrams to group names. In order to support broadcast datagrams and
datagrams to group names, the NetBIOS interface requires some form of
multicast or broadcast addressing. Currently, the ISO transport and network
layers do not support multicast or broadcast network addresses.

TOP support for multicast and broadcast addressing is only available through
the ISO 8802 link level protocols, so broadcast datagrams and datagrams to
group names must use link level addressing. Section 4.3 of this paper,
“Broadcast Datagrams and Datagrams to Group Names,’ ’ details the addressing
techniques used.

Because NetBIOS datagrams may contain as many as 512 bytes, the NetBIOS
interface requires the lower level services to support a datagram size able
to include both the 512 bytes of data and header information for NetBIOS,
Transport, Network and Data link Layers. This requires a minimum frame size
of 650 octets.

Detailed documentation of the support required for SEND DATAGRAM, SEND
BROADCAST DATAGRAM, RECEIVE DATAGRAM and RECEIVE BROADCAST DATAGRAM can be

found in the “NetBIOS Commands” and “Transport Service Indications and
Confirmations’ ’ sections below.

3.4 Guidelines and Constraints

1. There are three levels of NetBIOS interface services which imply
different constraints on the networked NetBIOS based application
interconnectivity, see Figure 2.

—Level A - NetBIOS Connection Services: These services rely on the
Connection Oriented Transport and Connectionless Network Protocols,
thus following full communication beyond the local network.

—Level B - NetBIOS Connection and Point-to-Point Datagram Services:

These services are a superset of Level A services. As they rely on the
Connectionless Network Protocol, communication is possible beyond the
local subnetwork. However as the Connectionless Transport is used, the
loss of NetBIOS Datagram, if it occurs, would not be recovered from by
the Transport Layer.

— Level C - Extended NetBIOS Services: These services are a superset of
Level B services which adds the support of the NetBIOS broadcast and
multicast datagram services. As these added services do not use the
Connectionless Network Protocol, no direct communication (i.e., no OSI

Routing) is possible beyond the local subnetwork. As a consequence
any NetBIOS based application requiring Level C Services will have to
be distributed only within a single Subnetwork.

286 X/Open CAE Specification (1992)

Page 304 of 534

TOPA\letBIOS

2. The use of NetBIOS Name Services and the manner in which they are
distributed imply the following constraints.

a. Name Services scope support based on multicast mechanism is limited
to a local subnetwork (the same as NetBIOS native networking).

b. The expected way to extend the local scope of NetBIOS naming is to
integrate the NetBIOS Name Servers into an. OSI Directory Services
Environment.

3.5 NetBIOS General Commands

Normally, the NetBIOS general commands do not require any peer—to-peer
protocol support. For example, no mapping to an ISO protocol is required for
RESET, CANCEL, UNLINK and SESSION STATUS commands. The type of support
required for each of these commands is detailed below in “NetBIOS
Commands.”

However, one general command, ADAPTER STATUS, sometimes requires
communication with. a remote system. When the ADAPTER STATUS specifies a
remote name, the local system must communicate with. the remote system in
order to obtain the status. This communication uses the naming protocol
defined in NetBIOS Name Service Protocol Specification, so complete
documentation of this procedure can be found Appendix V.

The ADAPTER STATUS command also returns a buffer with fields that only apply
to specific adapters. The values that adapters conforming to this
specification should use for these fields are stipulated in “ADAPTER
STATUS” in Appendix V.

4 SPECIAL CONSIDERATIONS

A straightforward mapping from the NetBIOS interface to ISO transport
services does not resolve all the major NetBIOS/transport issues. It does not
specify how transport services provide zero octet sends, confirmed data
delivery, how they prevent data loss during hang ups, how they deliver
broadcast datagrams and. datagrams to group names, how they affect NetBIOS
timeouts, how they resolve connections between group names, or how they
support permanent node names. This section discusses each of these topics.

This NetBIOS “Session” (mapping) Protocol resides above the transport layer
and makes use of the services provided by the transport protocol. This
protocol specifies use of two—octet NetBIOS headers for data transfer

requests (TSDUs). The headers are fixed. and. always present.‘ The specific
values for the header are given in Table 1. The headers are used to solve the
issues of zero octet length. messages and data loss during hang ups, as
described in the following subsections. The most significant octet is
transmitted first.

Value Description
0100H normal data (connection—oriented or connectionless)

0200H close request (connection—oriented only)
0300H close response (connection—oriented only)

TABLE 1. NetBIOS Header Values

6. Note that NetBIOS “Session' ' header is applied to the first TPDU only, and not all the TPDUs when a
TSDU is segmented into multiple TPDUS.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 287

Page 305 of 534

TOPA\IetBIOS

Note: A TSDU with an invalid header will be ignored.

Once the transport circuit is established, all the connection oriented data
TSDUs generated by the NetBIOS interface/protocol layer will contain a two
octet fixed header, carrying NetBIOS opcode as defined above. Additionally
all non name service NetBIOS datagram TSDUs contain the two octet fixed
header with value 0100H. Note, however, that this does not apply to TSDUs
generated by the Name Service Protocol described in sections 7 through 9.

Also, note that the header applies to TSDUs, not TPDUs or TIDUs.

4.1 Zero Length Data and Normal Data Transfer

The NetBIOS data transfer requests are mapped into data TSDUs with NetBIOS
header of 0100H for normal data as well as zero length data. Implementations
must evaluate the length of TSDUs to determine whether or not it has zero
length “user data” .

4.2 Confirmed Data Delivery

The issue with mapping the NetBIOS interface to transport services is
guaranteeing data delivery on “sessions”. When a NetBIOS SEND or CHAIN
SEND command completes, the local user is assured that the remote user has
actually received the data. The ISO transport services, however, provide no
indication to the sender of actual data delivery; they do not have a T—DATA
confirmation primitive. Software implementing a NetBIOS interface does not
necessarily know when to indicate that a SEND command has completed.

This behavior can create a problem because, in some application programs, the
sender may take actions based on an assumption that the receiver has
possession of the data. Taking these actions before the receiver actually
does have the data may cause the application program to fail. Fortunately,
most NetBIOS application programs do not require true confirmed data
delivery; they only need assurance that data is not lost when the “session”
is closed. This specification, therefore, provides a means of preventing data
loss during hang up (see below). Implementations are, of course, free to add
a confirmed data delivery service during normal data transfer. The details of
such a service are a local matter.

4.3 Data Loss During Hang Up

Because the NetBIOS interface cannot depend on ISO transport services to
guarantee data delivery at all times, the interface must prevent data loss
during hang up. The NetBIOS definition states that a HANG UP command does not
complete until all outstanding SEND and CHAIN SEND commands on the
“session’ ’ have completed (either successfully or unsuccessfully). Because
NetBIOS confirms data delivery by completing the SEND command, NetBIOS users
are guaranteed that either all data will be delivered prior to the hang up,
or that an unsuccessful SEND or CHAIN SEND completion will alert them to data
that could not be delivered.

The transport T—DISCONNECT request, on the other hand, is not graceful. It
does not wait for all data sent to be delivered to the user. Without

confirmed data delivery, the transport user has no way of knowing whether or
not data has been delivered to the receiver before the disconnect completes.

To prevent data loss, the NetBIOS interface must delay the transport
disconnect until all data has been delivered to the user. To find out when

all data has been successfully delivered, the interface that wishes to hang
up sends a simple close request packet to the remote interface. This close
request is sent “in stream’ ’ as a normal data TPDU with NetBIOS opcode of
0200H. When the remote interface has received all of these data messages
followed by a “close request” message and successfully delivered data

288 X/Open CAE Specification (1992)

Page 306 of 534

TOPA\letBIOS

messages to the remote user, it sends a “close response” back to the local
interface, with NetBIOS opcode of 0300H. When the local interface receives
the close response, it knows that all data has been delivered. At that point
it issues a T— DISCONNECT request and completes the HANG UP command.

The close request and close response are each sent as a single data TSDU with
two octet of transport data for the NetBIOS header. The appropriate headers
are given in Table 1.

The case of close request collision is handled in a fashion similar to OSI
Session Protocol. Under these circumstances, close indication. is given to

each end point. The action taken by each end point depends on its role at the
time the connection was established. The end point which originally issued
the connect request should immediately send a close response. The end point
which originally accepted the connect request should not send its close
response until a close response has been received from the other end point.

In addition to sending the close request, the NetBIOS interface initiating a
hang up starts a timer. If that timer expires before the interface receives a
close response, the “session” is terminated. abnormally and. the interface
immediately issues a T—DISCONNECT request. The interface also aborts the
“session” if it receives a ‘T—DISCONNECT indication. without having sent a
close response.

The close operation is detailed in the state tables of Appendix I.

4.4 Broadcast Datagrams and Datagrams to Group Names

An. important issue in. mapping the NetBIOS interface directly to transport
services is NetBIOS datagrams to group names and NetBIOS broadcast datagrams.
In. order to support broadcast datagrams and. datagrams to group names, the
NetBIOS interface requires some fornl of nmlticast or broadcast addressing.
Currently, however, the ISO transport and network layers do not support
multicast or broadcast network addresses. These datagrams, therefore, cannot
be transferred by the current ISO transport or network level protocols. Note
that here “broadcast” refers to NetBIOS BROADCAST DATAGRAM commands, not
true media level broadcasts.

ISO support for multicast and broadcast addressing is available through the
ISO 8802 link level protocols, so broadcast datagrams and datagrams to group
names may be transferred by the link level. When the NetBIOS interface wishes
to send either type of multicast datagram, it directs the datagram to
TOP/NetBIOS Specific Media Access Control (MAC) Multicast Address [see
Appendix IV]7. The interface uses the node's normal MAC address as the
source MAC address. Address recommendations for Token Ring networks are

provided in Appendix IV “Well Known Addresses”.

In order to differentiate these NetBIOS datagrams from non— NetBIOS “pure”
OSI traffic, the interface also uses a special Logical Link Control (LLC)
service access point for NetBIOS multicast datagrams. By using a separate
LSAP, nodes avoid the possibility of conflict between invented NetBIOS
protocol for multicast/broadcast datagrams and an ISO multicast/broadcast
service which might be provided through the regular ISO LSAP in the future.
The specific LLC service access point defaults to the recommended value of

ECH“; however, conforming implementations must give users the ability to

7. The Specific Multicast Address for IEEE 802.3 is 09.00.6A.00.01.00. This MAC address is part of the
block of Ethernet addresses assigned to AT&T; AT&T has agreed to contribute it to the NetBIOS Special
Interest Group. This address must be configurable.

8. This value of LSAP is from public domain, and this value must be configurable.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 289

Page 307 of 534

TOPA\IetBIOS

configure it to any other value. The selected service access point serves as
both the source and destination LLC address. Note that all the nodes on the

subnetwork have to be configured with the same LSAP value for this purpose;
inconsistent LSAP values will prevent intercommunication.

This addressing allows NetBIOS to send and receive multicast datagrams, but
the interface requires additional addressing information. NetBIOS must know
the source and destination names for each datagram sent to a group name, and
it must know the source name for each broadcast datagram. For point-to—point
communications, this information is normally available through the T-
Selector.

In order to provide complete addressing information, NetBIOS multicast
datagrams continue to use the connectionless transport and. connectionless
network protocols. Thus each datagram still has local and remote T-Selectors
associated with. it, and, as is the case with. normal datagrams, these T-
Selectors indicate the local source and destination names. At the network

level, multicast datagrams use the same source NSAP as normal datagrams; the
destination NSAP, however, is a special NSAP which indicates the destination
is a multicast NSAP. The recommended NSAP address is

49.nn.nn.09.00.6A.00.01.00.01, where [nn.nn=00.00] represents the subnetwork
number. Note that these datagrams use a special LLC service access point and
this NSAP address is not reported in the ES-IS protocol. Thus, strict TOP-
conformant (i.e., non—NetBIOS) implementations of the ISO Connectionless
Network Protocol which do not support this special nmlticast NSAP need not
send or receive these datagrams. See Appendix VI for all the “well known
addresses.”

Strictly speaking, NetBIOS multicast datagrams have their own protocol stack
invented by the NetBIOS SIG for operation over the ISO datalink layer. This
stack, which. includes the connectionless transport layer and full network
layer (not the inactive subset) protocols, separates from the standard stack
at the LLC level, and the two stacks are kept separate by distinct LLC
service access points. Implementations, of course, are free to combine these
two logical stacks into a single physical stack. Such a combination allows
efficient use of common code. A protocol model of this NetBIOS implementation

under OSI environment is given. in. Figure 19. Figure 2 provides a. NetBIOS
architecture based on the protocol model presented in Figure 1.

As an important consequence of using link level addressing, NetBIOS
sacrifices the ability to send multicast datagrams across the TOP internet.
NetBIOS broadcast datagrams and datagrams to group names are restricted to
the local subnetwork.

Another issue with NetBIOS broadcast datagrams (but not datagrams to group
names) is the selection of a remote T— Selector to which they should be sent.

Since there is no destination name for these datagrams, the remote T-Selector
cannot be determined from the name as it is for normal datagrams. Broadcast
datagrams, therefore, use a destination T-Selector equal to the ASCII value
for an asterisk (2AH) followed by fifteen bytes equal to the ASCII value for
a space (20H).

Table 2 summarizes the addresses NetBIOS requires for multicast and point-
to—point datagrams. The actual recommended value for the TOP/NetBIOS
Multicast and Functional address are defined in Appendix IV.

9. The dotted line in Figure 1 indicates the boundary between OSI Standard Protocol and NetBIOS specific
support protocol.

290 X/Open CAE Specification (1992)

Page 308 of 534

Tl)I5TVetB1()S

MAP/TOP/OSI
Upper Layer
Services an
Protocols

NetBIOS Services
IBM NetBIOS Application Development Guide,

(Doc No. 68X2270 S68X-2270-00)
NetBIOS Mapping Rules
NetBIOS SIG Defined Mapping between NetBIOS Serivces and

Underlying Services

April 1987
d

lass 4Transport C Transport - Unitdata
Connection—oriented Service Connectionless Datagram Service NetBIOS
ISO 8072 Transport Service ISO 8072—AD1 Transport Service Multicast/

Definition Connection1ess—mode Transmission Broadcast
ISO 8073 Transport Protocol ISO 8602 Protocol for Datagram

Specification Connectionless Service

Network Connectionless
ISO 8646 Internal Organization of Network Layer NetBIOS SIG
ISO 8348 Network Service Definition defined
ISO 8348—ADl Network Service Definition Connectionless protocol for

Data Transmission support of
ISO 8348—AD2 Network Service Definition Network Layer Addressing multicast,
ISO 8473 Protocol for Connection1ess—mode Network Service broadcast
ISO 8473 TC 97/SC 6 N 3453 Provision of Underlying Services and NetBIOS
assumed byISO 9542 TC

8473
97/SC 6 N 4053 End System to Indermediate System

Group Names

Routing Exchange Protocol for use with 8473

Data Link
ISO 8802/2
ISO 8802/3
ISO 8802/4
ISO 8802/5

Connection Services

Transport Class 4
OSI

LSAP

Protocols for X/Open PC Interworkingz SIVIB, Version 2

Page 309 of 534

Logical Link Control
CSMA/CD Access Method
Token Passing Bus Access Method
Token Ring Access Method

Figure 1. NetBIOS Protocol Model

Multicast/Broadcast
Datagram Services

Point—Point

Datagram Services

TOP/NetBIOS
NetBIOS Session and Name Service Protocols

3 . Connectionless; Connectionless _

1 Transport Protocol Multlcast
8073 ; OSI 8602 Transport Protocol

3 Non Std Ext OSI 8602

Full IP 3 F.ull IP- Multicast NSAP
OSI 8473 ' .

2 Restricted Err Report

FE 3 EC

IEEE 802.2 LLC type 1 Service

IEEE 802.3, 802.4 and 802.5

Figure 2. OSI/NetBIOS Architecture

291

TOPA\IetBIOS

Type Point—to—Point Multicast

Source MAC address source adapter’s source adapter’s
Dest. MAC address dest. adapter’s TOP/NetBIOS Multicast
(CSMA/CD) Address

Dest. MAC address dest. adapter’s TOP/NetBIOS Functional
(Token Ring) Address
Source LLC SAP FEH ECH

Destination LLC SAP FEH ECH

Source NSAP source adapter’s source adapter’s
Destination NSAP dest. adapter’s multicast NSAP
Source T-Selector source name calling name

Dest. T-Selector destination name called name or “*<15 sp>"

TABLE 2. Default NetBIOS Addresses

4.4.1 Network Header - Multicast NPDUs

The network header for the PDUs for multicast traffic will be as per OSI 8473
Specification with the error bit turned off.

4.5 Send and Receive Timeouts

The NetBIOS interface defines send and receive timeouts for its “sessions”.

These timeouts limit the amount of time the interface should wait for a SEND,

CHAIN‘ SEND or RECEIVE command. to complete. Application programs that use
these timeouts usually base their values on. local subnetwork “sessions”.
Since the original NetBIOS does not support internetworking, application
programs are unlikely to account for internetwork transit delay when. they
specify a send or receive timeout value. Implementations that map the NetBIOS
interface to ISO transport services should adjust the send and receive
timeout values appropriately for “sessions” in case they cross subnetwork
boundaries. The definition. of “appropriately” in. this case is left as a
local matter.

4.6 “Sessions” with Group Names

Another consideration in the mapping of NetBIOS to transport is the
establishment of “sessions” with group names. This specification requires
support of “sessions” between group names. NetBIOS LISTEN and CALL commands
with group names for the local name are accepted by the interface. The LISTEN
command responds to any T-CONNECT indication specifying the correct T-
Selector, and the CALL command results in. a T-CONNECT request with the
appropriate local T-Selector. Additionally, the interface accepts LISTEN and
CALL commands with group names for the remote name. The LISTEN command
matches any T-CONNECT indication with the appropriate remote T-Selector, and
the CALL command results in. a T-CONNECT request with. a remote T-Selector
equal to the remote group name. In all cases, communication occurs through
standard ISO protocols attached to the normal ISO LSAP.

The only significant concern in connecting group names is the NSAP address
used in a T-CONNECT request when an application program calls a remote group
name. That NSAP address should be the specific address (i.e., not generic or
group address) of one system on which the group name exists. When the group
name exists on more than one system, the choice of which remote NSAP address
to use is, for the purposes of this specification, arbitrary. In cases where
an NDSE receives multiple responses, it is a local matter how one is chosen
for use. In the case where an NDUA is responding to an NDSE, the NDUA may
choose one address to put into the response PDU. The approach to be used to
make the choice is a local matter.

292 X/Open CAE Specification (1992)

Page 310 of 534

TOPA\letBIOS

4.7 Permanent Node Names

A permanent node name, which consists of ten octets of zeros followed by six
octets of Mac address, should be treated the same as any other NetBIOS name.
Calls to permanent node names, for example, should attempt to discover the
address of the remote name just as they would for normal names. The six non—
zero bytes in a permanent node name cannot be assumed to correspond to the
Ethernet or MAC—layer address of the adapter (but may actually be). Those
same six bytes, however, should be returned as the unit identification number
by the ADAPTER STATUS command (see below).

An adapter must, of course, successfully register its permanent node name
with the NetBIOS naming services each time it is initialized.

5 NetBIOS COMMANDS

The previous three sections specify a definition for the NetBIOS interface
and ISO transport services, outline the general principles for mapping the
two to each other, and discuss significant complications arising from the
mapping. This section begins a detailed description of that mapping. It
identifies the level of support required for each NetBIOS command, and it
indicates the specific transport service requests and responses associated
with each command. NetBIOS commands not listed in this section (TRACE and

FIND NAME, for example) are not part of the NetBIOS interface as defined in
section 2.1. This specification does not specify support for these additional
commands.

Most NetBIOS commands require some initial validation before the interface
accepts them. This initial validation may include verifying that the correct
adapter was specified, that a name has a valid format, that a local name
exists, that a name number is valid, that a “session” exists, etc.. The
NetBIOS interface definition described in section two, of the referred IBM

document, includes an adequate description of this validation. Consequently,
this specification omits any description of the validation procedures.
Conforming implementations, however, must perform validation for each command
as it is described in the NetBIOS interface definition.

Conforming implementations must be able to process NO WAIT commands issued
from a post routine call by NetBIOS when a previous NO WAIT command has
completed.

5 . 1 RESET

Implementations conforming to this standard accept and process RESET
commands. A RESET command resets the adapter status, deletes all names except
the permanent node name, and terminates all “sessions”. It does not reset
traffic and error statistics.

The only protocol interactions resulting from a RESET command are requests to
delete NetBIOS names and T— DISCONNECT requests to close NetBIOS connections.
Implementations need not delete names belonging to non— NetBIOS programs or
protocols, nor must they close non— NetBIOS connections. This specification
does not attempt to specify the operation of non—NetBIOS names and
connections.

The RESET command may also specify the number of commands and the number of
“sessions’ ’ to be supported by the adapter. Conforming implementations must
accept and process these parameters. If the RESET command specifies a value
of zero for either parameter, the minimum number of sessions and the number
of commands are configured to implementation specific values.

Protocols for X/Open PC Interworkingz SNIB, Version 2 293

Page 311 of 534

TOPA\IetBIOS

5.2 CANCEL

Conforming implementations accept and process CANCEL commands. Processing is
identical to that specified. in. the NetBIOS definition. Cancelling a CALL,
SEND, CHAIN‘ SEND or HANG UP commands results in. an. immediate T—DISCONNECT

request on the affected connection. Cancelling any other valid command does
not require any protocol interaction.

5.3 ADAPTER STATUS

ADAPTER STATUS commands for both local and remote adapters are accepted and
processed. Local status requests need not require protocol interaction
(details are left up to individual implementations); remote status requests,
however, use the services of the NetBIOS naming protocol. The format of
adapter status request/response is given in Appendix III.

When responding to an ADAPTER STATUS command, the NetBIOS interface fills in
a. buffer with. appropriate status information. Several fields within. that
buffer apply only to specific adapters or specific network topologies. Since
it is not the intent of this specification. to restrict implementations to
these few specific technologies, this specification must leave the exact
support of the ADAPTER STATUS command. as a local matter. Implementations
should strive to use values for the status fields as close as possible to the
values indicated below.

—-Unit identification number: The six non-zero bytes of the adapter’s
permanent node name. These bytes do not necessarily form the Ethernet or
MAC layer address of the adapter.

— External option. status: One byte whose value is a local implementation
choice.

— Results of last self test: One byte indicating the results of the last
self-test. A binary value of 128 (80H) indicates that the test was
successfully passed.

— Software version: Two bytes containing binary values for the major and
minor version number of this specification to which the adapter conforms.
The version number for this specification is 1.0.

——Duration of reporting period: Two bytes whose value is a local
implementation choice. It is suggested that if the interface reports the
MAC statistics indicated by the next eight items, this field contains the
binary value of the time, in minutes, since the adapter began recording
the statistics. This value rolls over after reaching a value of <2**16-1>
minutes. If the interface does not report MAC statistics, it is suggested
that this field contains zero.

—-Number of CRC errors received: Two bytes whose value is a local
implementation choice. It is suggested. that they either contain. zero or
the binary value of the number of MAC—layer packets (frames) with CRC
errors received by the adapter. This value is not necessarily restricted
to NetBIOS frames, and. it does not roll over after reaching <2**16-1>
errors.

—-Number of alignment errors received: Two bytes whose value is a local
implementation choice. It is suggested. that they either contain. zero or
the binary value of the number of MAC— layer packets (frames) with
alignment errors received. by the adapter. This value is not necessarily
restricted. to NetBIOS frames, and. it does not roll over after reaching
<2**l6-1> errors.

—-Number of collisions encountered: Two bytes whose value is a local
implementation choice. It is suggested. that they either contain. zero or

294 X/Open CAE Specification (1992)

Page 312 of 534

TOPA\letBIOS

the binary value of the number of MAC—layer collisions detected by the
adapter. This value is not necessarily restricted to NetBIOS frames, and
it rolls over after reaching <2**16-1> collisions.

—Number of unsuccessful transmissions: Two bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC— layer packets (frames) whose
transmission was aborted by the adapter. This value is not necessarily
restricted to NetBIOS frames, and it rolls over after reaching <2**16-1>.

—Number of successfully transmitted packets (frames): Four bytes whose
value is a local implementation choice. It is suggested that they either
contain zero or the binary value of the number of MAC-layer packets
(frames) successfully transmitted by the adapter. This value is not
necessarily restricted to NetBIOS frames, and it rolls over after reaching
<2**32-1> packets.

— Number of successfully received packets: Four bytes whose value is a local
implementation choice. It is suggested that they either contain zero or
the binary value of the number of MAC—layer packets (frames) successfully
received by the adapter. This value is not necessarily restricted to
NetBIOS frames, and it rolls over after reaching <2**32-1> packets.

— Number of retransmissions: Two bytes whose value is a local implementation
choice. It is suggested that they either contain zero or the binary value
of the number of MAC-layer packets (frames) retransmitted by the adapter.
This value is not necessarily restricted to NetBIOS frames, and it rolls
over after reaching <2**16-1> retransmissions.

—Number of times the receiver exhausted its resources: Two bytes whose
value is a local implementation choice. It is suggested that they either
contain zero or the binary value of the number of times the receiver did
not have sufficient buffers to receive an incoming MAC—layer packet. This
value is not necessarily restricted to NetBIOS frames, and it does not
roll over after reaching <2**16-1>.

—Reserved for internal use: Eight bytes whose value is a local
implementation choice.

—Free NCBs: Two bytes containing the binary value of the number of
additional NetBIOS commands the adapter can currently accept.

— Configured maximum NCBs: Two bytes containing the binary value of the
maximum number of commands that the adapter can support, as configured by
the last RESET command or initialization.

—Maximum number of NCBs: Two bytes containing the binary value of the
maximum number that the adapter can accept in the next RESET command for
the “maximum number of commands supported’ ’ parameter.

—Reserved for internal use: Four bytes whose value is a local
implementation choice.

— Pending sessions: Two bytes containing the binary value of the number of
currently active or pending “sessions’ ’ .

— Configured maximum sessions: Two bytes containing the binary value of the
maximum number of “sessions’ ’ that the adapter can support, as configured
by the last RESET command or initialization.

—Maximum number of sessions: Two bytes containing the binary value of the
maximum number that the adapter can accept in the next RESET command for
the “maximum number of sessions supported’ ’ parameter.

—Maximum “session” data packet size: Two bytes containing the binary
value, in octets, of the maximum TPDU size supported by the adapter, minus

Protocols for X/Open PC Interworkingz SNIB, Version 2 295

Page 313 of 534

TOPA\IetBIOS

the maximum TP header size.

— Quantity of names in. local name table: Two bytes containing the binary
value of the current number of NetBIOS names claimed by the adapter. This
value does not include the adapter’s permanent node name, nor does it
include any names used. by’ programs or protocols other than. the NetBIOS
interface. This number also indicates the maximum number of name entry
pairs (the next two fields) which can follow.

——Name: the sixteen byte NetBIOS name.

——Name status: Two bytes, the first of which contains the binary value for
the NetBIOS name number, and the second of which contains the name's

status. The most significant bit of this second byte indicates whether the
name is a unique name (if the bit is clear) or a group name (if the bit is
set). The three least significant bits of the status denote the condition
of the name. The remaining bits of the name status are undefined, and
their values are a local implementation choice. The following list
summarizes the values for this field.

Oxxxxxxx name is a unique name

lxxxxxxx name is a group name

xxxxx000 name is trying to register

xxxxx100 name is registered

xxxxxl0l name is de-registered

xxxxxll0 name has been detected as a duplicate

xxxxxlll name has been detected as a duplicate and is pending de-
registration

5 . 4 UNLINK

This specification does not provide support for the UNLINK command (nor, in
fact, for remote program load). A conforming implementation’s response to an
UNLINK command is left as a local choice.

5.5 ADD NAME

Conforming implementations accept and process ADD NAME commands. The NetBIOS
interface translates the ADD NAME command into an appropriate request for the
NetBIOS naming services. When the interface receives a confirmation from the
naming services, it translates the confirmation’s result to an. appropriate
NetBIOS return. code and completes the ADD NAME command. Details of name
registration can be found in NetBIOS Name Service Protocol (Section 9).

5.6 ADD GROUP NAME

Conforming implementations accept and. process ADD GROUP NAME commands. The
NetBIOS interface translates the ADD GROUP NAME command into an appropriate
request for the NetBIOS naming services. When the interface receives a
confirmation from the naming services, it translates the confirmation’s
result to an appropriate NetBIOS return code and completes the ADD GROUP NAME
command. Details of name registration can be found in NetBIOS Name Service
Protocol (Section 9).

5 . 7 DELETE NAME

Conforming implementations accept and process DELETE NAME commands according
to the NetBIOS interface definition. If the name has active “sessions”,
the interface marks the name for eventual deletion. and. returns the DELETE

NAME command with. a return code of “command completed, name has active

296 X/Open CAE Specification (1992)

Page 314 of 534

TOPA\letBIOS

“sessions" and is now de-registered” (OFH). When all the active
“sessions’ ’ have closed or aborted, the interface actually deletes the name.
If the name has pending commands other than active “session” commands,
those commands are returned immediately with a “name was deleted” (17H)
completion.

When the NetBIOS interface deletes the name (either immediately or after all
active “sessions” have closed), it sends an appropriate request to the
NetBIOS naming services. Details of name deletion can be found in NetBIOS
Name Service Protocol (Section 9).

5.8 CALL

Conforming implementations accept and process CALL commands. When it
receives a CALL command, the implementation first finds the transport address
corresponding to the remote NetBIOS name. To find this address, it sends a
resolve name request to the naming services. If the naming services cannot
discover the name's address, the interface completes the CALL command with a
return code of “no answer (cannot find name called)’ ’ (14H) .

If the name resolution is successful, the interface continues processing by
attempting to establish a transport connection with the remote system. It
formulates an appropriate T~CONNECT request to pass to the transport
services. The called transport address for the indication consists of the
NSAP address of the node on which the remote name resides, along with a T-
Selector equal to the remote name. If the remote name is a group name, the
NSAP address is that of one node on which the remote name resides; it is not

the NetBIOS multicast NSAP address. If the remote group name exists on more
than one node, the choice of which NSAP address to use is arbitrary (see
“Sessions with Group Names’ ’ in section 5.6 above).

When the interface receives a T-CONNECT confirmation, it completes the CALL
command successfully. If the interface receives a T—DISCONNECT indication
instead, it examines the reason code of the indication. If the remote TS—user

initiated the disconnect, the interface completes the call with a “session
open rejected” (12H) return code. If the transport provider initiated the
disconnect, or name resolution fails, the interface completes the call with a
“no answer (cannot find name called)’ ’ (14H) return code.

5.9 LISTEN

Conforming implementations accept and process LISTEN commands. When the
implementation receives a LISTEN for a valid local name, it holds onto the
command until it receives an appropriate T-CONNECT indication (see following
section). At that point, the interface completes the LISTEN command. The
interface may also complete the LISTEN command if it is cancelled or if the
local name is deleted; in these cases the LISTEN completes unsuccessfully.

5.10 HANG UP

Conforming implementations accept and process HANG UP commands. When an
implementation receives a HANG UP command, it immediately terminates any
pending RECEIVE commands and one RECEIVE ANY command for the “session’ ’ with
a “session closed” (OAH) return code. Any subsequent RECEIVE, SEND, CHAIN
SEND, or even HANG UP commands for the “session” are also immediately
terminated with this same return code. The local interface also starts a

timer as soon as it receives a HANG UP. If the HANG UP has not completed when
this timer expires, the interface aborts the “session’ ’ .

It sends a close request to the remote interface and waits for a close
response. When the interface receives the close response, it successfully
completes the HANG UP command and issues a T—DISCONNECT request.

Protocols for X/Open PC Interworkingz SNIB, Version 2 297

Page 315 of 534

TOPA\IetBIOS

If the interface receives a close request after it has sent one, then a
“close collision” has encountered. Under such situation, if the local

interface is the initiator of the “session”, it will send a close response
and then wait for a close response, and the normal HANG UP process continues
as described above.

However, if the local interface is the acceptor of the “session", in. a
“close collision” situation, it will not issue a close response until it
has received one. Following that it will wait for a T—DISCONNECT indication
in order to complete the HANG UP process successfully.

If the interface receives a close request or a T—DISCONNECT indication before
the close response, it aborts the “session” by completing all pending
commands with “session ended abnormally” (18H) return codes, and, if
necessary, issuing a T—DISCONNECT request.

5.11 SEND

Conforming implementations accept and process SEND commands. With each SEND
command during normal data transfer, the interface sends a T—DATA request to
transport. The user data for that request is the data contained in the SEND
command’s buffer preceded. by the two octet NetBIOS header. (Note that the
NetBIOS header is attached to datagram as well as connection oriented Virtual
Circuit traffic.) If the interface has some knowledge of when the data is
actually delivered to the user, it may withhold completion of the SEND until
it knows of actual data delivery. If the interface has no such knowledge, it
may complete the SEND at any time. The exact mechanism for determining when
to complete the SEND command is a local matter.

If the NetBIOS interface has received a close request from the remote
interface prior to receiving the SEND command from the local user, it accepts

the SEND command but does not issue the T—DATA request. Since the data cannot
be delivered to the remote user anyway, there is no need for the transport
request. Of course, the interface also withholds completion of the SEND
command until the close process completes. A SEND command retained in this
manner is returned with an error code indicating that the session terminated.

5.12 CHAIN SEND

Conforming implementations accept and process CHAIN SEND commands. With each
CHAIN SEND command, the interface sends a T—DATA request to transport. The
user data for that request is the combination of both of the command’s
buffers, preceded by the two octet NetBIOS headers. If the interface has some
knowledge of when the data is actually delivered to the user, it may withhold
completion of the CHAIN SEND until it knows of actual data delivery. If the
interface has no such knowledge, it may complete the CHAIN SEND at any time.
The exact mechanism for determining when to complete the CHAIN SEND command
is a local matter.

If the NetBIOS interface has received a close request from the remote
interface prior to receiving the CHAIN SEND command from the local user, it
accepts the CHAIN SEND command but does not issue the T—DATA request. Since
the data cannot be delivered to the remote user anyway, there is no need for
the transport request. Of course, the interface also withholds completion of
the CHAIN SEND command until the close process completes. A CHAIN SEND
command. retained. in. this manner is returned. with. an. error code indicating
that the session terminated.

5.13 RECEIVE

Conforming implementations accept and process RECEIVE commands. When a user
issues a RECEIVE command, the interface first looks for any user data

298 X/Open CAE Specification (1992)

Page 316 of 534

TOPA\letBIOS

received for the “session’ ’ that has not yet been given to the user. If such
user data exists, the interface copies the data into the RECEIVE command’s
buffer and completes the command. If the user data copied was the last of a
T—DATA indication, the command completes successfully. If data still remains
from the indication, the RECEIVE completes with a “message incomplete”
(06H) return code .

If there is no data to satisfy the RECEIVE command, the interface simply
keeps the command until data arrives or a time-out occurs. The RECEIVE may
also complete if it is cancelled, if the “session” is closed. A RECEIVE
command is not completed as a result of the local name being deleted.

5. 14 RECEIVE ANY

Conforming implementations accept and process RECEIVE ANY commands. When a
user issues a RECEIVE ANY command, the interface first looks for any user
data received for an appropriate “session’ ’ that has not yet been given to
the user (see “T—DATA indication” below). If such user data exists, the

interface copies the data into the RECEIVE ANY command’s buffer and completes
the command. If the user data copied was the last data in a message, the
command completes successfully. If data still remains to be delivered the
RECEIVE ANY completes with a “message incomplete’ ’ (O6H) return code.

If there is no data to satisfy the RECEIVE ANY command, the interface simply
keeps the command until data arrives or a time-out occurs. The RECEIVE ANY
may also complete if it is cancelled or if the local name is deleted.

5 . 15 SESSION STATUS

Conforming implementations must accept and process SESSION STATUS commands
according to the NetBIOS definition. The field referred to as “state of the
session’ ’ is not identical to the state of the NetBIOS/TP4 mapping described
in Appendix I. The correspondence between the value returned by SESSION
STATUS and the mapping state is:

Value returned in State of NetBIOS/TP4

SESSION STATUS command mapping from Appendix I
IDLE (OOH) STA 00

LISTEN pending (01H) STA 01
CALL pending (02H) STA 02
Session established (03H) STA 03, STA 05

HANG UP pending (04H) STA 04, STA O8
HANG UP complete (OSH) STA 06
Session Ended Abnormally (06H) STA 07

TABLE 3. Session Status Command Mapping

5 . 16 SEND DATAGRAM

Conforming implementations accept and process SEND DATAGRAM commands. When
the implementation receives a SEND DATAGRAM, it first finds the transport
address corresponding to the remote NetBIOS name. To find this address, it
sends a resolve name request to the naming service module. If the naming
services cannot resolve the name's address, the interface simply completes
the SEND DATAGRAM command with an unsuccessful response code.

If naming services successfully resolves the remote name, and that name is a
unique name, the NetBIOS interface sends a T—UNITDATA request with an
appropriate destination transport address. That address consists of the NSAP
address of the node on which the name resides, along with a T— Selector equal
to the remote name. The interface then completes the SEND DATAGRAM command.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 299

Page 317 of 534

TOPA\IetBIOS

If the remote name is a group name, the interface also sends a T-UNITDATA
request. In this case, however, the connectionless transport protocol will
use the special multicast NSAP, and it will direct the datagram to the
NetBIOS multicast MAC address and LLC service access point (see “Broadcast
Datagrams and Datagrams to Group Names’ ’ in section 4.4). The datagram is not
directed to a specific NSAP address of a node owning the group name. As with
unique names, the destination T-Selector is equal to the remote name. After
sending the T-UNITDATA request, the interface completes the SEND DATAGRAM
command successfully.

5.17 SEND BROADCAST DATAGRAM

Conforming implementations must also accept and process SEND BROADCAST
DATAGRAM commands. Since a SEND BROADCAST command does not specify a
destination name, there is no need for name resolution. The interface simply
sends a T-UNITDATA request to transport services with the special broadcast
T-Selector for the destination T-Selector. The connectionless transport
protocol will use the multicast NSAP, and it will direct the datagram to the
NetBIOS multicast MAC address and LLC service access point (see “Broadcast
Datagrams and Datagrams to Group Names” in section four above). After
sending the T-UNITDATA request, the interface completes the SEND BROADCAST
DATAGRAM command successfully.

5.18 RECEIVE DATAGRAM

Conforming implementations must accept and process RECEIVE DATAGRAM commands.
When the interface receives a RECEIVE DATAGRAM command, it holds the command

until an incoming datagram satisfies the command, the command is cancelled,
or the local name is deleted. “T-UNITDATA indication” in the following
section describes the actions the interface takes to successfully complete a
RECEIVE DATAGRAM command.

5.19 RECEIVE BROADCAST DATAGRAM

Conforming implementations must accept and process RECEIVE BROADCAST DATAGRAM
commands. When the interface receives a RECEIVE BROADCAST DATAGRAM command,

it holds the command until an incoming datagram satisfies the command, or the
command is cancelled. The command is also completed if the name is deleted.
“T-UNITDATA indication’ ’ in the following section describes the actions the
interface takes to successfully complete a RECEIVE BROADCAST DATAGRAM
command.

6 TRANSPORT SERVICE INDICATIONS AND CONFIRMATIONS

In addition to generating appropriate transport service requests and
responses, the NetBIOS interface must also respond appropriately to incoming
transport service indications and confirmations. This section describes the
responses to all of these service primitives.

In many implementations, the ISO transport services support upper layers
other than the NetBIOS interface. Some transport service implementations, for
example, may support both the NetBIOS interface and the ISO session protocol.
This specification does not address the complications multiple upper layers
introduce, and the primitives discussed below are assumed to be intended
solely for the NetBIOS interface. For example, there is no attempt to
describe how transport services know to pass a T-CONNECT indication to
NetBIOS instead of to the ISO session services.

6.1 T-CONNECT Indication

When the NetBIOS interface receives a T-CONNECT indication, it looks for a

pending LISTEN command to match the indication. A matching LISTEN command

300 X/Open CAE Specification (1992)

Page 318 of 534

TOPA\letBIOS

must have a local name equal to the called T— Selector, and it must either
have a remote name equal to the calling T—Selector or an unspecified
(wildcard) remote name. If both. a specific LISTEN‘ and. a wildcard LISTEN
match, the specific LISTEN takes precedence.

If the interface matches a pending LISTEN command, it completes the command
successfully and sends transport a T— CONNECT response. If no matching LISTEN
exists, the interface sends transport a T—DISCONNECT request.

6.2 T-CONNECT Confirmation

When. the NetBIOS interface receives a ‘T-CONNECT confirmation, it completes
the appropriate CALL command successfully.

6.3 T—DISCONNECT Indication

The actions the NetBIOS interface takes when it receives a T—DISCONNECT

indication depend on the state of the affected “session”. If that
“session” has a CALL pending, the CALL command is completed with a
“session open rejected” (12H) or a “no answer (cannot find name called)”
(14H) return code. Which return code is returned depends on the reason given
in the T—DISCONNECT indication. If the reason indicates that the remote TS

user invoked the disconnect, the interface returns the call with a

“reject"ed return code; otherwise, it uses the “no answer” return code.

If the “session" is established when the T—DISCONNECT indication arrives,

the interface completes any pending commands with the “session ended
abnormally” (18H) return code. The interface also takes this action if the
“session” is in the process of hanging up.

The only time an interface expects to receive a T—DISCONNECT indication is
after sending a close response. In. this case, the interface completes all
pending commands with a “session closed” (OAH) return code. Additionally,
if any RECEIVE ANY commands apply to the “session”, one of those commands
is also completed with “session closed”. If no commands are pending on the
“session”, the interface waits for the user to issue another command. When

the user issues a command, that command is completed with a “session
closed” return code.

6.4 T—DATA Indication

A T—DATA indication tells the NetBIOS interface that data, a close request or
a close response has arrived for a “session”.

When the interface receives such an indication during normal data flow, it
looks for a pending RECEIVE command with which to pass the data on to the
user. If no RECEIVE command for the “session” is available, the interface

looks for a pending RECEIVE ANY for the “session’s” local name. If none are
found, the interface then looks for a pending RECEIVE ANY for an unspecified
(wildcard) name.

If the interface finds any command to satisfy the T—DATA indication, it
copies the data into the command’s buffer and completes the command. If all
of the user data from the indication fits in. the buffer, the command is

completed. successfully. If only part of the user data fits in. the buffer
specified by the command, the interface returns the command with a “message
incomplete” (06H) return code. The interface then looks for another pending
RECEIVE or RECEIVE ANY‘ command. in. which. to place the remaining data. The
interface continues in this fashion until all of the data has been given to
the user or until it can no longer find suitable commands.

If the interface cannot find a pending RECEIVE or RECEIVE ANY command, it
keeps whatever user data is left until the user issues an appropriate

Protocols for X/Open PC Interworkingz SNIB, Version 2 301

Page 319 of 534

TOPA\IetBIOS

command .

If the NetBIOS interface receives a T—DATA indication, with a normal data
NetBIOS header, after it has received a HANG UP command from the local user

but before that HANG UP has completed, the T—DATA indication is simply
ignored and the data discarded.

6.5 T-UNITDATA Indication

T-UNITDATA indications contain incoming NetBIOS datagrams. When the NetBIOS
interface receives a T—UNITDATA indication, it examines the destination T-

Selector to determine if the datagram is a broadcast datagram or if it is
addressed to a specific name (see “Broadcast Datagrams and Datagrams to
Group Names’ ’ in section four above).

If the received datagram is a broadcast datagram, the interface looks for
pending RECEIVE BROADCAST DATAGRAM commands. If none exist, the interface
discards the T- UNITDATA indication. If an appropriate NetBIOS command does
exist, the interface copies the data from the T—UNITDATA indication to the
command’s buffer. If all the data fits in the buffer, the interface returns

the RECEIVE BROADCAST DATAGRAM command with a successful completion. If the
data exceeds the size of the buffer, the interface returns the command with a

“message incomplete’ ’ (06H) return code, and the remaining data is lost.

If the received datagram is directed to a specific name, whether that name is
a group name or a unique name, the NetBIOS interface ensures that the
destination name is registered on its adapter. If the name does not exist on
the local adapter, the interface discards the T—UNITDATA indication.

If the specific name exists on the local adapter, the interface searches for
a pending RECEIVE DATAGRAM command for that name. If none exists, the
interface then looks for a pending RECEIVE DATAGRAM command with an
unspecified (wildcard) local name. If the interface is still unsuccessful, it
discards the T-UNITDATA indication.

If an appropriate pending NetBIOS command does exist, the interface copies
the data from the T-UNITDATA indication to the command’s buffer. If all the

data fits in the buffer, the interface returns the RECEIVE DATAGRAM command

with a successful completion. If the data exceeds the size of the buffer, the
interface returns the command with a “message incomplete’ ’ (06H) return code
and the remaining data is lost.

6.6 T-EXPEDITED Data

This option is negotiated in the transport call request PDU as described in
the MAP/TOP v3.0 specification. NetBIOS itself does not use Expedited Data,
therefore T-EXPEDITED DATA Requests are never generated. If a T-EXPEDITED
DATA indication is received, it is ignored.

7 NetBIOS NAME SERVICE PROTOCOL - OVERVIEW

This part, the remaining sections of this specification and Appendices II
through V, defines a naming protocol for TOP networks that will support
NetBIOS name support services.

7 . 1 Architecture

The NetBIOS Name Service is a distributed name service which provides
facilities for naming objects in the internet environment, and for relating
those names to useful attributes, such as protocol addresses.

The name service protocol provides a mapping of NetBIOS Names to their
protocol (transport) addresses. The protocol is based on query/response
primitives and a distributed information base. Every node on the network

302 X/Open CAE Specification (1992)

Page 320 of 534

TOPA\letBIOS

maintains information regarding the services or names posted on that node.
When a new name is to be added on any node, that node queries other nodes on
the network to ensure that the name can be added. A similar process is
followed to obtain the address of an object.

In a simple topology consisting of a few NetBIOS nodes on a broadcast based
network, the name service protocol makes use of multicast addresses to
register and resolve names. The name service element on NetBIOS nodes is
called the NetBIOS Directory Service Element (NDSE). In a more complex
topology having a large number of nodes, an internetworking environment or
the presence of an OSI directory service, the use of a NetBIOS Directory User
Agent (NDUA) is useful (but not required). If there exists an NDUA on the
network, the NDSEs communicate with the NDUA using point-to—point datagram
communications. NDUAs become the focal point of name service activity. NDUAs
are expected to have the capability to interface with an OSI Directory User
Agent (DUA) or interface with other NDUAs.

In the case when NDSEs cannot communicate with an NDUA, they revert back to
multicast based communication among NDSEs. This limits the address
resolution to the local subnetwork, since multicasts are not transported
across subnet boundaries.

Figures 3 and 4 provide an example of a simple network topology.

The scenarios presented in this subsection depict the network activities
involved for various name service related actions for internetwork

communications and call-back type applications.

DSA
DUA

Application NDUA 1 NDUA 2 Application
YX

\
A B C D

NDSE) NDSE NDSE
\” 7

Subnetwork Internet Subnetwork
1 Connection 2

Figure 3. Name Service Example

NDSE Local NetBIOS Directory Service Entity, present on every node.

NDUA NetBIOS Directory User Agent, zero or more present on a subnetwork. At
least one is needed for internet name service. It may also provide the
interface to the ISO Directory Services (DUA-DSA), if present. It may
also communicate with another NDUA using the name service protocol.

Protocols for X/Open PC Interworkingz SNIB, Version 2 303

Page 321 of 534

TOPA\IetBIOS

DIE 1 DIE 2

NETWORK 1 NETWORK 2
names names

Names common to

both the scopes

Figure 4. Name Scopes

The above topology, Figure 3, contains two subnetworks (1 and 2) with the
associated NDUAs (NDUAl and NDUA2 respectively). The following points
identify the administrative actions of NDUAs to provide internetwork name
resolutions.

—-It is not possible for application programs using the NetBIOS interface to
identify whether they wish to advertise in an internet environment.
Therefore, NDUAs based. on. administrative filtering will update names in
their directory information base (DIB) using DSA/DUA when the application
programs register or unregister. The administrative filter mechanism is a
local matter. It is expected that the names registered in the DIBs will
be of “server” types providing services across internet boundaries.

—-Application programs based on the call-back feature will also require
administrative support. For example if the application X wishes to
communicate with Y, and if it is necessary for both these applications to
call each other, then the following steps can be taken by the respective
NDUAS .

— X will be posted. on. network 1 by application. X, similarly Y will be
posted on network 2 by application Y. Both these names will be entered
in the DIB by their respective NDUAs.

—~Y will be posted by NDUA1 in the DIB with a pointer to the entry made by
NDUA2. Similarly, X will be posted by NDUA2 in the DIB with a pointer to
the entry made by NDUA1. This will serve the purpose of determining the
uniqueness of “globally” known names within the scopes in which they
are referenced.

—-If X & Y are unique names, then no other application can claim either of
these two names in the two networks and associated DIBs, see Figure 4.

—-Note that the information provided by the name service, particularly when
using NDUAs will be “loosely consistent” in the sense that it may not be
absolutely current.

7.2 High Level Feature Descriptions

The following set of features are provided by the NetBIOS Name Services. Some
of these features are specifically developed for the NetBIOS environment, and
for internetworking and performance reasons. A brief and high level
description of each of the features follow.

—-NetBIOS: The name service supports a flat, NetBIOS compatible name space.
Names need be unique only within the context of the local subnet.

304 X/Open CAE Specification (1992)

Page 322 of 534

TOPA\letBIOS

— Standards: The name service requires minimum functionality from underlying
layers, a simple standard datagram transfer service is all that is needed.
Also, name service is architected with migration to the ISO directory
service in mind. A deliberate effort is made to ensure that we provide ISO
compatible name services in a way that allow a smooth transition to a
“real’ ’ ISO directory service when it is fully specified.

— Internetworking: The name services provide support for internetwork
communication. Access to the name service is transparent to the
application programs. Internet name resolution is supported. All intranet
name resolution is supported by the distributed database, multicast, or
point-to—point mechanisms. The name service is integrated with ISO
transport service to allow the exchange of information relative to transit
delay associated with a particular resource (e.g. 1200 baud link). Transit
delay information is important to allow support of NetBIOS applications
with dependencies on Receive-Time-Out or Send—Time—Out (RTO/STO) .

—Graceful Degradation: Loss of a single node affects only local calls to
that node. Loss of a NetBIOS Directory Service Entity (NDSE) on a node
affects only local calls to that node. Loss of an NDUA affects only
internet name resolution. Name resolution continues after the loss of an

NDUA by using the multicast operation mode of the name service.

—Remote Adapter Status: The name service is integrated with support for
Remote Adapter Status. A user can issue a status request on a NetBIOS name
and will receive the status information associated with the node on which

that end point exists, even if the node is on another subnetwork. Note
that additional information regarding complete use of this service is
provided in Appendix III.

—Compatibility: The NetBIOS names are used for T— Selectors (transport
service access point identifiers.) This provides a simple, efficient and
effective mapping between NetBIOS names and T—Selectors which becomes a
part of the transport address (t—selector+nsap address with null ssap and
null psap). NetBIOS is implemented on ISO Transport Class 4 (8073) and ISO
Connectionless Transport (8602). Thus, NetBIOS based products and other
TOP applications can coexist on the same network and on the same node.

— Set of Functions: A set of functions are defined. The name service makes

use of three types of messages, request/advise, response and pending.
Names, or objects, are associated with a set of attributes which include,
among other things, full transport address (with null psel and null ssel)
of the object.

The set of functions supported are:

a. Register Name

b. Register Group Name

c. Adapter Status

d. Unregister Name

e. Resolve Name

f. Advise Name Conflict (Generation and Response)

g. Advise NDUA Present

7.3 Scope and Purpose

This specification presents the NetBIOS Name Service Protocol (NSP) . The NSP
is the basic transfer mechanism for exchanging name service requests between
systems. The NSP mechanism and protocol is specified here to support the
needs of the NetBIOS Name Service. It is currently used only by the NetBIOS

Protocols for X/Open PC Interworkingz SNIB, Version 2 305

Page 323 of 534

TOPA\IetBIOS

directories, but it is constructed to allow for expansion to other directory
applications.

It consists of high—level operations that support name registration,
resolution and attribute association.

7.4 Underlying Services

The NetBIOS Name Service Protocol is based on datagram services provided by
CLTP (see Figure 2) with a maximum TPDU size of 1024 octets.

7.5 NetBIOS Name Service (NS)

Operations supported by the NS include name registration and resolution, the
storage, and. the deletion. of attribute information associated. with. names.
These operations were conceived with the ISO/CCITT Directory Services model
in mind, and should ease migration to that environment.

The following background information is useful when reviewing the protocol:

—-the name of an object (usually an application entity) can be thought of as
a search key for retrieving information about the object;

—-information takes the form of attributes which describe the

characteristics of an object (such as its protocol address);

—-the distributed. directory’ database Inaintains this information in records
known as attribute tuples, which are encoded in a Type-Length—Value
format.

7.6 Services

The NetBIOS Name Service Protocol primitives are summarized in Table 4:

306 X/Open CAE Specification (1992)

Page 324 of 534

TOPA\letBIOS

Primitives

NB_RegisterName

NB_RegisterGroupName

NB_UnregisterName

NB_ResolveName

NB_AdapterStatus

NB_NameConflictAdvise

NB_NDUAHereAdvise

.Request/

.Indication

.Response/

.Confirm

.Request/

.Indication

.Response/

.Confirm

.Request/

.Indication

.Response/

.Confirm

.Request/

.Indication

.Response/

.Confirm

.Request/

.Indication

.Response/

.Confirm

.Request/

.Indication

.Request/

.Indication

Parameters

' NB_Name,
NB_InitialAttributesList

NB_ResponseCode

NB_Name,

NB_InitialAttributesList

NB_ResponseCode

NB_Name

NB_ResponseCode

NB_Name,

NB_RequestAttributesList

NB_ResponseCode,
NB_Name,

NB_ReturnedAttributesList

NB_Name

NB_ReturnedAttributesList

NB_Name,

NB_AdviseAttributeList

NB_InitialAttributeList

TABLE 4. Service Primitives for Name Service Protocol

8 NetBIOS NAME SERVICE PROTOCOL FUNCTIONS

8.1 General

This section describes the functions performed as part of the name service.
All the functions described here are mandatory.

8.1.1 Response Semantics

The values given in the following sections for setting the
Semantics field in the name service PDUs serve as guidelines only.

Individual implementations may choose to use different values.
example given assumes the use of the recommended values.

8.1.2

In general,
reaction to the presence of
requests,

the operation of these
an NDUA.

they operate as follows:

Protocols for X/Open PC Intetworkingz SNIB, Version 2

Page 325 of 534

functions

Multicast Requests versus Requests to NDUA

However,

Response-

any

will depend on the NDSE’s
When these functions issue remote

307

TOPA\IetBIOS

1. If an NDSE does not know the address of an NDUA, it proceeds to Step 2.
Otherwise, the request is sent as a point—to—point datagram to the NDUA,
as follows:

DestinationAddress is set to the transport address of NDUA.

b. ProcedureTimeout is set to “T” seconds. The value of “T", as well

as the manner in which “T” may be configured, is left as a local
matter.

c. Responsesemantics is set to Unconditional Response.

d. Other portions of the request PDU are set as appropriate for each
function. See below for details.

e. The request is sent as a point—to—point datagram to the NDUA. If no
response is received within “T” seconds, the request is
retransmitted every “T” seconds until such time as a response is
received. or until some maximum number of retransmissions has been

reached (see also section 8.7). The maximum number of times a given
request may be sent to an NDUA is denoted by “X” (X>=1). The value
of “X”, as well as the manner in which “X” may be configured, is
left as a local matter.

f. If no response is received after “X" transmissions, proceed to Step
2. If a response is received, then. the function. will complete by
sending either a success or failure indication to the originator
depending on the response received, and Step 2 is not performed.

2. In the absence of an NDUA (or no response from NDUA after “X” tries),
the request is sent as a multicast datagram to all other NDSEs, as
follows:

a. DestinationAddress is set to the transport address that represents
“ALL NetBIOS DIRECTORY SERVICE ENTITIES”. This address consists of
the t-selector reserved for NDSEs and the multicast NSAP. See

Appendix IV for details.

b. ProcedureTimeout is set to “T” seconds. The value of “T”, as well

as the manner in which “T" may be configured, is left as a local
matter.

c. Responsesemantics is set as recommended. for each. function. Details
are given below for each function.

d. Other portions of the request PDU are set as appropriate for each
function. See below for details.

e. The request is sent as multicast datagram to all NDSEs. If no
response is received within “T” seconds, the request is
retransmitted every “T" seconds until such time as a response is
received. or until some maximum number of retransmissions has been

reached (see also Section 8.7). The maximum number of times a given
request may be sent to NDSEs is denoted by “Y” (Y >= 1). The value
of “Y”, as well as the manner in which “Y” may be configured, is
left as a local matter.

f. If no response is received after “Y” transmissions, then the
function will complete either a success or failure indication to the
originator depending on the Responsesemantics used. (If Response on
Success was used, then failure is assumed. If Response on Failure was
used, then success is assumed, etc.)

If a response is received, then the function will complete by sending
either a success or failure indication to the originator depending on
the response received.

308 X/Open CAE Specification (1992)

Page 326 of 534

TOPA\letBIOS

8.1.3 Actions of NDSE (or NDUA) on Receipt of Remote Request

In general, when an NDSE (or NDUA) receives a request PDU from other NDSEs or
NDUAs it will process the request and return a response PDU as appropriate.
The general actions of NDSE are as given below. More specific actions of NDUA
are given in Appendix V.

1. All the response PDUs must contain. the same source reference that was
provided in the request PDU.

2. If for any reason, the NDSE expects a delay in processing the request
within the ProcedureTimeout value provided in the request PDU, it must
return a point-to—point pending PDU to the originator.

3. The NDSE must return the Response PDU based upon the type of request and
the Responsesemantics.

a. A response PDU‘ is always returned if Unconditional Response was
requested.

b. A response PDU‘ is returned if the operation was a success (or a
partial success) and Response on Success was requested.

c. A response PDU is returned if the operation was a failure and
Response on Failure was requested.

8.2 Register Name Function

This function. is responsible for verifying the unambiguity of a new (non-
group) name, registering the name on the network, and, optionally,
associating attributes with the name.

Name service clients are allowed to choose a name for their application
entities, but a name must be determined to be unambiguous; that is, not
already in use”. The function queries all relevant databases, local or
remote, to determine if the name is already in use. If the name is not found,
the function assumes that the name is unclaimed and registration succeeds. If
the name is found to already exist, the function aborts and returns a failure
indication to the originator.

The following actions are taken by this function:

1. If the name exists in the local (node) version of the specified database,
the entire procedure is aborted. and. a failure indication. is returned;
otherwise, the name is tentatively registered (put into “being
registered state”) in the local database in order to avoid race
conditions with. other systems adding the same name; and. this name is
defended by generating responses to the received Register Name Requests
and Register Group Name Requests as if the name were registered, but will
respond to the Resolve Name Request as if the name were not registered.

2. A request is sent to an NDUA or all NDSEs, as described in Section 8.1.2.
Parameter values particular to the Register Name Request are set as
follows:

— Procedure is set to NB_RegisterName;

— DestinationAddress is set to the transport address of a valid. NDUA,
otherwise to the transport group address that indicates “ALL NetBIOS
DIRECTORY ENTITIES’ ’;

10. Note that this does not apply to group names which are ambiguous by definition. Group names are
registered using the Register Group Name Function.

Protocols for X/Open PC Interworkingz SNIB, Version 2 309

Page 327 of 534

TOPA\IetBIOS

— ProcedureTimeout is set to “T” seconds;

— Responsesemantic is set to Unconditional Response if NDUA“ address is
specified, otherwise it is set to Respond-on—Failure. Note that the
NDSE trying to register a. name will receive a response, success or
failure if there exists an. NDUA. on. the network. Otherwise it will

receive a failure response with response code of Registration Error.

— NB_Name is taken from the original NB_RegisterName.Request;

—-NB_Initial Attribute List contains at least two elements, i.e.,
protocol address and unique attribute.

3. If a failure response is received. fronl any NDUA. or NDSE, the name is
already in use on another node. In this case, the tentative registration
in the local database is cancelled, the procedure aborts, and a failure
indication is returned to the originator.

If a successful response is received from an NDUA (indicating either the
name was unknown or the name was previously registered to the NDUA with
the same protocol address as specified in the current request) or if no
response is received from any NDSE, then the name is considered to be
claimed by the local node. The tentative registration of the name in the
local database is made permanent, and the procedure completes by sending
a success indication to the originator.

4. The return code is returned in the NB_ResponseCode.

See Appendix II for a set of sample PDU' encoding generated. by a typical

NB_RegisterName function.

8.3 Register Group Name Function

This function is responsible to verify the unambiguity of a new group name,
registering the name on. the network, andq optionally, associate attributes
with the name.

Names on the network must normally be unique; that is, referring to only one
owner. In the case of group names, however, the name is allowed to be shared
by several owners so long as all the owners recognize the situation. This
function is used when an application specifically wishes to share a name with
other applications.

This function queries all relevant databases, local or remote, to determine
if the name is already in use as a unique name. If a unique version of the
name is not found, the function assumes that the name is free to be claimed

as a group name, and registration succeeds. If the name is found to already
exist in a unique form, the function aborts and returns a failure indication
to the originator.

This function performs the following actions:

1. If a unique version of the name exists in. the local version of the
appropriate database, the entire procedure is aborted and a failure
indication is returned; otherwise, the name is tentatively registered
(put into “being registered state”) in the local database in order to
avoid race conditions with other systems adding the same name as a unique
name. While the name is tentatively registered, this node will defend the
name by generating responses to the Register Name Requests as if the name
were actually registered, but will respond to Resolve Name Requests as if

11. The operation of NDUA and NetBIOS Object Class definition is given in Appendix V.

310 X/Open CAE Specification (1992)

Page 328 of 534

TOPA\letBIOS

the name were not registered.

2. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Register Group Name Request are
set as follows:

— Procedure is set to NB_RegisterGroupName;

—-ProcedureTimeout is set to “T”;

——ResponseSemantics is set to Unconditional Response if an NDUA address
is specified, else it is set to Respond-on—Failure. Note that the NDSE
trying to register a name will receive a response, success or failure,
if an NDUA exists on the network. Otherwise it will receive a failure

response with response code of Registration Error;

—-NB_Name is taken from the original NB_RegisterGroupName.Request;

—-NB_Initial Attribute List contains at least two elements, i.e.,
protocol address and group attribute.

3. If a failure response is received. from any NDUA. or NDSE, the name is
already in. use on another node as a unique name. In. this case, the
tentative registration in the local database is cancelled, the procedure
aborts, and a failure indication is returned to the originator.

If a successful response is received from an NDUA (indicating either the
name was unknown or the name was previously registered to the NDUA as a
group name) or if no response is received from any NDSE, then the name is
considered to be claimed by the local node. The tentative registration
of the name in the local database is made permanent, and the procedure
completes by sending a success indication to the originator.

4. The return code is returned in the NB_ResponseCode.

See Appendix II for a set of sample PDU' encodings generated. by’ a typical

NB_RegisterGroupName function.

8.4 Unregister Name Function

This function is used to remove a registered name from the network.

This function. attempts to update or remove both. local and. remote database
entries corresponding to this name. In the case of a unique name, all
attributes associated with the name are deleted from the entry, and the name
is released. In the case of a group name, specific sets of attributes
contained in the Unregister Name Request (viz. transport address) are
deleted, and the name is released when the last set of attributes are
deleted.

Note that if the node just “disappears” without unregistering a name, it is
possible that cached entries and NDUA databases may contain invalid entries.
The name service is designed to be “loosely consistent” and allows for the
possibility of invalid entries, so the protocol will still function when a
node “disappears”.

This function performs the following actions:

1. If the name does not exist in the local (node) version of the appropriate
database, the entire procedure is aborted. and. a failure indication is
returned.

2. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Unregister Name Request are set
as follows:

Protocols for X/Open PC Interworkingz SNIB, Version 2 311

Page 329 of 534

TOPA\IetBIOS

— procedure is set to NB_UnregisterName;

— if the name is being unregistered in other domains (scopes) or
Directory Service Agents (DSAs) then for every DSA an Object
Identifier is included in the request;

—-Responsesemantics is set to Unconditional Response if NDUA is
specified, or else it is set to No Response. In addition, when NDUA
receives such. a request it re-multicasts this request on. the local
subnetwork;

—-NB_Name is taken from the original NB_UnregisterName Request;

—-NB_InitialAttributeList contains at least one element, viz., the
protocol (transport) address associated with the name.

3. The return code is in the NB_ResponseCode.

8.5 Resolve Name Function

This function is used to resolve a name to a set of attributes (most commonly
a Transport Address). If such an entry exists in a local or remote database,
the requested attributes are returned to the originator along with a success
indication. If the entry is found but not all requested attributes are known,
then those attributes which are known and requested are returned along with a
partial-success indication. If no such. entry can. be found, the procedure
returns a failure indication to the originator.

The following actions are taken by this function:

1. A request is sent to an NDUA and/or all NDSEs, as described in Section
8.1.2. Parameter values particular to the Resolve Name Request are set as
follows:

— Procedure is set to NB_ResolveName;

— ProcedureTimeout is set to “T” seconds;

—-ResponseSemantics is set to unconditional response if an NDUA address
is specified, otherwise it is set to Respond-on-Success;

—-Arguments for the remote NB_Resolvename procedure, if NDUA is
specified, are as specified below.

—-NB_Name is taken from the original NB_ResolveName.Request;

—-NB_RequestAttributesList is taken. from the same parameter on the
original NB_ResolveName.Request.

2. If a failure response is received from any NDUA or if the request(s) to
NDSEs timed out without response, then the name is unknown. In this case,
the procedure aborts and a failure indication is returned to the
originator.

— It is possible that the resolve name response may contain fewer
attributes than requested. In such a case, the response code will be
of partial success. Such responses are also treated as a “successful
response”.

If a successful response is received from an NDUA or an NDSE, then the
requested, or received. attributes, when. fewer attributes are received,
are returned to the originator with an indication of success.

3. The return code, name and requested attributes are returned as the

NB_ResponseCode, NB_Name and NB_ReturnedAttributesList parameters,
respectively, with the above parameters being passed as

NB_ReturnedAttributesList.

312 X/Open CAE Specification (1992)

Page 330 of 534

TOPA\letBIOS

A successful resolve name response must have the requested transport address
attributes. It is possible that, if the resolve name response is received
from NDUA it may contain more than one transport address when the name is a
group name. Similarly, resolve name responses may come from several NDSEs
when. the name is a group name. Also, note that it is possible all the
attributes may not fit in a PDU. In that case the attribute list is
truncated based on local choice.

See Appendix II for a set of sample PDU' encodings generated by typical

NB_ResolveName functions.

8.6 Name Conflict Advise Function

This function consists of two parts. The first part of the function requires
detection. of conflict, and. the second. part requires the processing of the
“NameConflictAdvise” indication.

This function is used to detect names in “conflict”. It is possible, though
by remote chance, that a given subnetwork will contain two or more identical

unique names, or one or more identical group names along with at least one
identical unique name posted in the name service databases, such that every
node posting such name thinks that it has posted a unique name.

The function is defined in two parts. The first part is associated with the
detection. of conflict. It requires that the node resolving a. name detects
more than one response to a resolve name request (either by waiting for or by
accepting more than one response.) If more than one response is received, for
a unique name, it indicates that the name is in conflict. The node detecting
the conflict sends a point-to—point advise (NameConflictAdvise PDU) back to
all but one (generally the first) responder indicating that that name posted
is in conflict.

The second part of the function is associated with. the processing of a
“NameConflictAdvise” indication. When. a node receives the conflict

indication, it will set the “Name-In-Conflict” attribute for that name.
When all the current sessions are terminated that are associated with a name

with the “Name-In—Conflict” attribute set, the name should be

removed/unbound/deleted from its database by explicit user delete name
command. During this period, the node will not allow the use of that name for
any other ACTIVITY other than for currently active sessions and adapter
status.

8.7 Pending Function

This Pending function. is invoked. by the receiver of a request PDU' if it
expects a longer delay in processing the request than the procedure timeout
indicated in the request PDU. The response PDU is returned to the source of
the request with the type field set to “pending” and the procedure timeout
field set to a new timeout value.

8.8 NDUA Here Advise Function

This function generates the “NDUA here PDU" to announce the presence of an
NDUA on a subnetwork. This function is used only by NDUAs. An NDUA uses this
function to multicast a message when it first joins the subnetwork. It also
uses the function to send point-to—point messages to NDSEs which. may be
unaware of an NDUA’s presence. See Appendix V for further details.

Protocols for X/Open PC Interworkingz SMB, Version 2 313

Page 331 of 534

TOPA\IetBIOS

8.9 Special Comments

8.9.1 Cache

Cache table cleanup may be a concern in various applications. However, the
mechanism chosen. to cleanup the cache table may or may not be desirable,
depending on a particular application. This protocol does not provide any
indication when a name is unadvertised, because there can be no guarantee
that such an indication will always be given.

It is possible to associate timers with every name in the cache table, so
that names are deleted after a finite amount of time. In addition, it also

possible to send “keep- alive” PDUs periodically for every posted. name.
However, both these techniques become cumbersome for a large network or
network with many posted names. Therefore, maintaining a cache is treated as
a local matter. Caches are set—up for reasons of performance. The protocols
do not specify or recommend a mechanism to maintain caches.

9 STRUCTURE AND ENCODING OF PDUS

9.1 Structure

All the Protocol Data Units shall contain an integral number of octets. The
octets in a PDU are numbered starting from 1 and increasing in the order they
are put into a TSDU. The bits in an octet are numbered from 1 to 8, where bit
1 is the low—order bit. Note that the name service PDUs do not carry the two
octet NetBIOS Header.

When. consecutive octets are used. to represent a binary number, the lower
octet number has the most significant value.

When the encoding of a PDU is represented using a diagram in this section,
the following representation is used:

1. octets are shown with the lowest numbered octet to the left, and higher
number octets to the right;

2. within an octet, bits are shown with bit 8 to the left and bit 1 (least

significant) to the right.

PDUs shall contain, in the following order:

1. the fixed part;

2. the variable part.

9.2 Fixed Part

9.2.1 General

The fixed part contains frequently occurring parameters such as the PDU type
and total length.

If any of the parameters of the fixed part have an invalid value, it
constitutes a protocol error and the offending PDU shall be discarded.

The format of the fixed part is shown in Figure 5.

314 X/Open CAE Specification (1992)

Page 332 of 534

TOPA\IetBIOS

Octet

Length Indicator 1,2

I

Protocol Version Identifier 3

I

Type 4

I

Source Reference 5,6

I

Flags 7

I

Quality of Service 8

I

Response Semantics 9

I

Response Code 10

I

Procedure Timeout 11

I

Procedure 12

I

Figure 5. PDU Header - Fixed Part

9.2.2 Length Indicator

This field is contained in octets 1 and 2 of the PDU. The length is indicated
by an unsigned binary number, with a maximwn value of 65534, and the value
65535 (1111 1111 1111 1111 or -1) is reserved. for future extensions. The

length. indicated shall be the header length. in. octets, but excluding the
length indicator field.

Note that this protocol defines PDUs as consisting entirely of header, since
there is no facility for carrying user data.

9.2.3 Protocol/Version Identifier

This field is contained in octet 3 of the PDU. The value of this field for
the first release shall be 0001 0001.

PDUs containing protocol/version identifiers with different values shall be
considered a protocol error.

9.2.4 Type

This field identifies the PDU type and is contained in octet 4. It is used to
define the structure of the variable part of the PDU. Valid codes are given
in Table 5.

Protocols for X/Open PC Interworkingz SMB, Version 2 315

Page 333 of 534

TOPA\IetBIOS

Type Binary Value

REQUEST pdu 0000 0010
RESPONSE pdu. 0000 0100
PENDING pdu 0000 1000
ADVISE pdu 0001 0000

TABLE 5. Valid PDU Type Codes

All other values are reserved and shall constitute a protocol error.

9.2.5 Source Reference

This field is contained in octets 5 and 6. It identifies a specific
invocation of a request and is used by the initiator to correlate responses
with the appropriate requests. The value for this field is selected by the
initiator and is returned (but not interpreted) by the responder. The same
value is used in the successive retransmissions of the PDU.

9.2.6 FLAGS

This field is contained in octet 7.

Every bit in the octet signifies a flag. Only two flags are defined.

1. The NDUA Flag - the least significant bit (binary value 0000 0001). Since
NDUAs must also monitor and respond to broadcast messages destined to all
NDSEs, it is important to be able to distinguish which of those messages
were sent by an NDUA and which ones were sent from an NDSE. NDUA sets
this flag in all the PDUs it generates; NDSEs reset this flag in all the
PDUs they generate.

2. The Internet Flag - the second least significant bit (binary value 0000
0010). This flag is set by NDUA in the response PDU if the object being
requested is across the LAN boundary, otherwise the flag is reset. This
flag is always reset in a request PDU”.

3. Other values are reserved.

9.2.7 Quality of Service Field

This field is contained in octet 8.

When the value of this field is set to zero in the request PDU, the
destination entity is requested to provide the “fastest" answer, e.g. an
NDUA only checking its local table. When it is set to “255”, the responder
is expected to provide its best answer, e.g. an NDUA ignoring its local table

and obtaining current information from NDSEs”. The responder, similarly, will
set this field. to zero or “255” based. on. the answer provided. No other
intermediate values for this field are defined.

9.2.8 Response Semantics

This field is contained in octet 9 of the PDU. It is set by the initiator to

define the circumstances under which. the responder should. send. a RESPONSE
PDU. Allowable values are given in Table 6, and the responder must adhere to
the rules given below. This field has meaning only in the request PDUs; in

12. This flag is useful for End Systems in two cases, (1) for the selection of the proper NSAP address for
group names, and (2) for the selection of proper timer values for connections.

13. The definition of best is rather subjective. It implies that the responder is requested to make the most
thorough check, e.g. not just looking at the cached value but to revalidate the cache.

316 X/Open CAE Specification (1992)

Page 334 of 534

TOPA\letBIOS

response PDUs this field is copied from the request PDU.

Response Semantic Binary Value

No Response 0000 0000
Response on Success 0000 0001

Response on Failure 0000 0010
Unconditional Response 0000 0011

TABLE 6. Valid Response Semantics

All other values are reserved and shall constitute a protocol error.

The following rules shall be observed by the responder:

No Response

No response is expected.

Response-on-Success

The responder shall send a RESPONSE PDU only if the requested
operation resulted in success or partial success (i.e., response code
of S-success or S-partialResults, see below).

Response-on-Failure
The responder shall send a RESPONSE PDU only if the requested
operation resulted in failure.

Unconditional—Response
The responder shall always send a RESPONSE PDU to indicate the result
of the requested operation.

9.2.9 Response Code

This field is contained in octet 10 of the PDU. This 1-octet field is used to

indicate the outcome of a requested operation. The high—order bit indicates
success (oxxx xxxx) or failure (lxxx xxxx), with the other bits encoded to

represent reasons. Table 7 shows a summary of the valid response codes.

Response Code
S-success 0000 0000

S—partialResults 0000 0001

E—protocolError 1000 0001
E—nameNotFound 1000 0010
E—noAccess 1000 0011

E—registrationError 1000 0100
E—registrationNameInConflict 1000 0101
E—foundNameInConflict 1000 0110

TABLE 7. Valid Response Codes

S-success

The request has been successfully completed.

S—partialResults
The request has been partially completed, e.g. if the request was made
for 2 attributes only one was found and returned. Note that the
responding entity must not “make up” a value for an attribute that
it does not have.

E—protocolError
The request PDU‘ violates the protocol (during normal operation. this
error must not be generated, it is a diagnostic tool, e.g., it is used
when improper function code is received).

E—nameNotFound

The name in resolve name request is not found.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 317

Page 335 of 534

TOPA\IetBIOS

E-noAccess

The resources cannot be accessed, e.g. security or database not
accessible, or name not found.

E—registrationError

The register name request has been denied due to an already existing
unique name when. registering a unique or group name, or an. already
existing group name when registering a unique name.

E-registrationNameInConflict
The register name request has been. denied due to already existing
name/s in conflict.

E-foundNameInConflict

The resolve name request failed as the name found is in conflict.

9.2.10 Procedure Timeout

This field. is contained. in. octet 11 of the PDU} It is interpreted. as an
unsigned binary number with a maximum value of 255 (1111 1111). It specifies
the number of seconds the originator will wait before timing out the
procedure.

The timeout value of 0 is valid; it indicates infinity (no timeout).

9.2.11 Procedure

This field. is contained. in. octet 12 of the PDU} It identifies the remote

procedure to be performed, and defines the format of the variable portion of
the PDU. Allowable values are given in Table 8.

Procedure Binary Value

NS—RegisterName 0000 0001
NS—RegisterGroupName 0000 0010
NS—UnRegisterName 0000 0011
NS—ResolveName 0000 0100

NS—AdapterStatus 0000 1000

NS—NDUAHereAdvise 0011 0000
NS—NameConflictAdvise 0010 0000

FUTURE DIRECTORY PROCEDURES reserved

TABLE 8. Valid Procedure Codes

All other values are reserved and constitute a protocol error.

9.3 The Variable Part

9.3.1 General

The variable part is used to convey the parameters for the remote procedure,
or values being returned from such a call. If the variable part is present,
it may contain. one or more parameters. Each. remote procedure defines the
number, type and order of parameters to appear in. the variable part. The
following are some of the most common parameters to appear in the variable
part. Their order of appearance differs with the exact procedure call, and
is defined in the PDU diagrams starting at sec. 9.5.

318 X/Open CAE Specification (1992)

Page 336 of 534

TOPA\letBIOS

9.3.2 Name

This parameter is a variable length field used to unambiguously identify a
database entry. It is usually set by the initiator and must be formed

according to the rules for NetBIOS Names“. It is encoded in the format shown
in Figure 6.

Octet

I I
I Name Length Indicator I m
| ..|
I I

m+1
. Name .

I I n-1

Figure 6. Encoding of the Name Parameter

9.3.3 Attribute Descriptor

This is a variable—length parameter which describes an attribute. Attribute
descriptors may be specified by either the initiator (as in the case of a

NB_ResolveName REQUEST pdu), or by the responder (as in the case of a
NB_ResolveName RESPONSE pdu).

Attribute tuples are encoded in a standard type-length-value format as shown
in Figure 7.

Octet

I I
| Attribute Code | m
| ..|
I I
| Attribute Length Indicator | m+1
| ..|
I I

m+2

. Attribute Value .

I I H-1

Figure 7. Encoding of an Attribute Descriptor

The Attribute Code field is a 1-octet binary value allowing a maximum of 254
different attribute types. The value of 255 is reserved for possible future
extensions. The set of attribute codes in the range of 0-127 are reserved for
TOP/NetBIOS use. The set of attribute codes in. the range of 128-254 are
assigned for private use (vendor specific). An implementation that does not
recognize an. attribute code will ignore the attribute. Table 9 lists the
valid attribute codes defined by TOP/NetBIOS.

14. NetBIOS Names are defined to be consistent with the NetBIOS specifications to a length of exactly 16
octets.

Protocols for X/Open PC Interworkingz SNIB, Version 2 319

Page 337 of 534

TOPA\IetBIOS

Attribute Attribute Value

Reserved 0000 0000
Reserved 1111 1111
Reserved 0000 0111

to
0111 1111

Unique Name 0000 0001
Transport Address 0000 0010

Name_In_Conflict 0000 0011
VC Accept 0000 0100
DG Accept 0000 0101
NDdeAdminTransport Address 0000 0110
Private 1xxx xxxx*

* - values not including 1111 1111

TABLE 9. Disposition of Attribute Codes

An. attribute (code) that is not recognized. will be ignored. However, an
unrecognizable attribute doe11not cause the entire request to be ignored.
Recognized” attributes will still be registered (in the case of Registered
Name and Registered Group Name Requests) or returned with a response code S-
partialResults (in the case of Resolve Name Requests).

The Attribute Length. field. is a 1—octet binary value which. indicates the
length, in octets, of the attribute value field. The value field may be up to
254 octets in length. The value of 255 is reserved for possible future
extensions.

The Attribute Value field contains the value of the attribute identified in

the attribute code field. Encoding formats for standard attributes are
specified in sec. 9.4.

9.3.4 Attribute Lists

In many operations, a list of attribute descriptors may be passed as
parameters or return values. When such a list appears, it is preceded by an
Attribute Count parameter. This parameter is a 1—octet binary value
indicating the number of attribute descriptors in the list (see the previous
section. for the format of attribute descriptors). The field. allows for a
maximum of 254 attribute descriptors in the list. Such lists may contain only
one item. The value 255 is reserved for possible future extensions.

The format of an attribute list is given in Figure 8.

15. Valid attributes, including private attributes, are recognized, and a list of valid attributes codes are
given in Table 9.

320 X/Open CAE Specification (1992)

Page 338 of 534

TOPA\letBIOS

Octet

Attribute Count = i m

|
I
| Attribute Code m+1
| ..|

Repeated |
"i" times| Attribute Length Indicator m+2

| ..|
I
I . . m+3
| Attribute Value
| n-1
I I

Figure 8. Encoding of an Attribute List

9.4 Encodings for Selected Attributes

9.4.1 General

When attribute tuples are passed in the protocol, they are encoded using a
standard type-length— value format called an attribute descriptor (see sec.
9.3.3 for details). The following sections specify the contents of the
Attribute Code, Attribute Length and Attribute Value fields for each of the
standard attributes.

The following attributes are defined:

1. UniqueName

2. Transport Address

3. Name In Conflict

4. VC Accept

5. DG Accept

6. NodeAdminTransport Address

9.4.2 Encoding of the Attribute Code

In order to allow for new attributes to be added to the NetBIOS Name Service

Protocol with a minimum of central coordination, the attribute code field is

structured to represent a two-level hierarchy. The two levels are:

— attribute authority identifier (bit 8);

— attribute identifier (bits 1-7).

Attribute Authority Identifier

This field designates the authority responsible for allocating the attribute
identifiers under its control. When the value of this field is set to zero

(0), it indicates the value has been assigned by the TOP/NetBIOS SIG. The
other values associated with this field set to one (1) indicate these are

assigned locally for private use.

Attribute Identifier

This field designates the individual attribute within the domain of an
attribute authority. Each attribute within a domain must have a unique

Protocols for X/Open PC Interworkingz SNIB, Version 2 321

Page 339 of 534

TOPA\IetBIOS

seven-bit code assigned by the reigning authority.

9.4.3 UniqueName

This attribute specifies whether the name corresponding to this entry is a
unique name (as opposed to a group name).

Attribute Code: 0000 0001

Attribute Length: 1 octet

Attribute Value: Boolean (0xff=TRUE, 0x00=FALSE)

9.4.4 Transport Address

This attribute contains the Transport Address of the object. If this
attribute is requested for a recognized name in a resolve name request, at
least one transport address must be returned in the response. The encoding of
the Transport Address attribute value field is as follows:

Attribute Code: 0000 0010

Attribute Length: variable

Attribute Value: See Figure 9

Octet

I
Reserved Set to 0 | m—2

I
I

Reserved Set to 0 | m-1
I
I

tselector Length Indicator | m
. ..|

I
m+1

tSelector .

| n-1
I
I

nAddress Length Indicator | n
. ..|

I
n+1

nAddress

I p-1
I

Figure 9. Value Field of Transport Address Attribute

9.4.5 Name In Conflict

This attribute indicates that the name is in conflict within. its domain.

Normally this attribute will be reset, when the name is added to the
database. However, when it is detected that this name is in conflict this
attribute is set. The name is said. to be in conflict, when. two or more

objects with the same name and at least one of which with unique name

attribute are present in the same domain“.

322 X/Open CAE Specification (1992)

Page 340 of 534

TOPA\letBIOS

16.

17.

Protocols for X/Open PC Interworkingz SNIB, Version 2

Attribute Code: 0000 0011

Attribute Length: 1 octet

Attribute Value: Boolean (0xff=TRUE in. conflict, 0x00=FALSE not in
conflict)

9.4.6 VcAccept

This attribute specifies whether the server for this name is currently
accepting VC connection requests, e.g , “listen” outstanding for that name.
This attribute is only maintained by NDSEs. If these attributes are requested
from NDUA then “partial results” may be returned”.

Attribute Code: 0000 0100

Attribute Length: 1 octet

Attribute Value: Value (0x01-0xff=YES, 0x00=NO)

9.4.7 DgAccept

This attribute specifies whether the server for this name is currently
accepting DG transactions, e.g. receive datagram/broadcast datagram
outstanding for that name. This attribute is only Inaintained. by’ NDSEs. If
these attributes are requested from NDUA then “partial results” are
returned.

Attribute Code: 0000 0101

Attribute Length: 1 octet

Attribute Value: Boolean (0xff=TRUE, 0x00=FALSE)

9.4.8 NodeAdminTransport Address

This attribute contains the Transport Address of the end-point used by Node
Administration. This address is used. for network management communication,
e.g., for remote adapter status. The recommended address will be NDSE
transport address. To obtain the “remote adapter status”, the originating
node will send out a query packet (Resolve Name Request) with this attribute
set, and the responding node will return the address of the administrative
entity (NDSE) on. that node. The adapter status request is sent to this
address. If this attribute is requested for a recognized name in a resolve
name request, then. this attribute must be returned
format of this attribute is the same as that of the

in. the response. The
“transport address”

attribute.

Attribute Code: 0000 0110

Attribute Length: variable

Attribute Value: See Figure 9

9.5 PDUs for NB_RegisterName and NB_RegisterGroupName

Note that this attribute is not carried in any of the currently defined PDUs,
requested in a resolve name request, for administrative reasons.
is a local matter for NDUAs and NDSEs. However,

but this attribute may be
Internal implementation of this feature

it is necessary to maintain this information locally.
The intent of the value for this attribute is to represent the number of VC requests the object is
prepared to accept. A value of zero means the service is not available, and a value of Oxff means
maximum service. It is a local matter to determine the current value of this attribute to be returned in
the response PDU.

323

Page 341 of 534

TOPA\IetBIOS

9.5.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 10.

Octet

I
| 1

Fixed Part | thru

I 12
I

Name Length Indicator I 13
. ..|

I 14
Name

. m-1

I
I

Initial—Attribute Count = i I m
I

I I
I Attribute Code I m+1
I ..|

Repeated I I
"i" times| Attribute Length Indicator I m+2

I ..|
I I
I . . m+3
I . Attribute Value .

I I n-1
Figure 10. REQUEST PDU Format for NB_RegisterName and

NB_RegisterGroupName

324 X/Open CAE Specification (1992)

Page 342 of 534

TOPA\letBIOS

9.5.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 11.

Octet

12

I
I
I

Fixed Part | thru
I
I
I

Figure 11. RESPONSE PDU Format for NB_RegisterName and
NB_RegisterGroupName

9.6 PDUs for NB_UnregisterName

9.6.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 12.

Octet

I
| 1

Fixed Part | thru

I 12
I

Name Length Indicator | 13
. ..|

| 14
Name

. m-1

|

Initial-Attribute Count = i m

I
I
| Attribute Code m+1
| ..|

Repeated |
"i" times] Attribute Length Indicator m+2

| ..|
I
I . m+3
| . Attribute Value
| n-1
I I

Figure 12. REQUEST PDU Format for NB_UnregisterName

9.6.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 13.

Protocols for X/Open PC Interworkingz SMB, Version 2 325

Page 343 of 534

TOPNetBIOS

Octet

I I
I I
I I
| Fixed Part | thru
I I

I : 12
Figure 13. RESPONSE PDU Format for NB_UnregisterName

9.7 PDUs for NB_Reso1veName

9.7.1 REQUEST PDU

The format of the REQUEST PDU is shown in Figure 14.

Octet

I
| 1

Fixed Part | thru
| 12

I
Name Length Indicator | 13

| 14
Name

n-1

I
Request-Attribute Count = j | n

I I
| Attribute Code | m+1

Repeated | ..
"j" times] I

| Attribute Length Indicator = 0 | n+2
I

Figure 14. REQUEST PDU Format for NB_Reso1veName

9.7.2 RESPONSE PDU

The format of the RESPONSE PDU is shown in Figure 15.

326 X/Open CAE Specification (1992)

Page 344 of 534

TOPA\letBIOS

Octet

I
| 1

Fixed Part | thru
| 12
|
I

Name Length Indicator | 13
. ..|

| 14
Name

. m-1

|

Returned—Attribute Count = i m

|
I
| Attribute Code m+1
| ..|

Repeated |
"i" times| Attribute Length Indicator m+2

| ..|
I
| . m+3
| . Attribute Value
| n-1
I I

Figure 15. RESPONSE PDU Format for NB_ResolveName

Note that it is possible that the response PDU will contain fewer attributes
than requested, but never more. Nodes must not make use of the source
protocol control information (PCI) of a response to determine a name's
address; they must parse the data contained in the response.

9.8 PDUs for NB_NameConflictAdvise

The format of the ADVISE PDU is shown in Figure 16.

Octet

thru

I
I

Fixed Part |
| 12
I
I
IName Length Indicator 13

|14

m—1

Figure 16. ADVISE PDU Format for NB_NameConflictAdvise

Note that the Type Code = ADVISE PDU Type.

Protocols for X/Open PC Interworkingz SMB, Version 2 327

Page 345 of 534

TOPA\IetBIOS

9.9 PDU for NB_NDUAHere

The format for NB_NDUAHere, “I am here" PDU is given Figure 17.
Octet

I
| 1

Fixed Part | thru
| 12
I
I

Initial-Attribute Count = i | 13
I

I I
| Attribute Code | m+1
| ..|

Repeated | |
"i" times| Attribute Length Indicator | m+2

| ..|
I I
I . m+3
| . Attribute Value .
I I n-1
I I

Figure 17. NDUA - I am here Advise PDU Format: NB_NDUAHere

Note that the Type Code = ADVISE PDU Type.

9.10 PDUs and Attributes

The intent of the following table is to provide general guidelines for the
set of attributes that are “meaningful” with. different PDU‘ types. Note
that Register means both unique and group registrations and address implies
transport address. Attributes listed in square brackets imply optional. For
example, the resolve name request may request for NodeAdmin Transport
Address, or other attributes. The address attributes must be supplied in the

response PDU when requested in a request PDU.

328 X/Open CAE Specification (1992)

Page 346 of 534

TOPA\letBIOS

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 347 of 534

PDU Procedure ' Request/Response

Response

Response

Register Request

'Unregister - Request

‘Resolve - Request

'NDUA Here - Advise
Conflict Advise

Figure 18.

Attribute List

(name)

Unique/Group
Address

(name)
Address

(name)
Address

[NodeAdmin—Address]

[VC Accept]
[DG Accept]
(name)
Address(es)

Unique/Group
[VC Accept]
[DG Accept]
[NodeAdmin—Address]

: Address
(name)

_ Address

Sample PDUs and Attributes

329

TOPA\IetBIOS

APPENDIX I : STATE TABLES

This appendix is an. integral part of the body of this specification. It
presents, in an unambiguous form, the actions taken by the NetBIOS interface
in. response to user commands and transport primitives. The state tables
detail the mapping between NetBIOS “sessions” and class four transport
connections. They do not describe general, name service, or datagram service
commands, nor do they attempt to show the interaction with. NetBIOS name
services. The state tables also omit any description of the validation
procedures performed on each NetBIOS command; those procedures are adequately
described in the NetBIOS interface definition.

The following subsections introduce the state tables by outlining the
notation, conventions, actions and variables used by the tables. The tables

themselves, which follow the text of this appendix, consist of six figures
that specify the incoming events, states, outgoing events, specific actions,
predicates and state tables. The actions defined by the state tables apply to
a single NetBIOS “session”. Each. NetBIOS “session” operates under an
independent state table.

I.l Notation for State Tables

The state tables represent incoming events, states, and outgoing events with
their abbreviated names. Tables 10, 11, and. 12 specify these abbreviated
names. The state tables represent specific actions with. the notation [n],
where “n” is the number of the specific action in Table 10. Predicates are
represented by the notation pn, where “n” is the number of the predicate in
Table 14. Notes are indicated by (n), where “n” is the note number at the
foot of the figure. Finally, the tables show boolean. operations with. the

characters “&” (logical and), “|” (logical or), and ‘‘l’’ (logical not).

I.2 Conventions for Entries in State Tables

The intersection of each state and incoming event in the state tables (Table
15) either is left blank, contains the notation “//”, or contains an entry.
If the intersection is blank, the incoming event is invalid. An invalid event
can only occur if the NetBIOS interface commits an error. If the intersection
contains “//,” it is logically impossible for the interface to receive the
incoming event. Impossible events either cannot occur, or can only occur if
an entity other than the NetBIOS interface (for example, the transport
provider) commits an. error. (These entries are often. a consequence of the
tabular presentation of the state tables.)

If the intersection of current state and incoming event contains an entry,
the incoming event is valid and the entry specifies the actions the NetBIOS
interface should take. Each valid entry either contains an action list or
one or more conditional action. lists. An. action. list may include outgoing
events and specific actions, and it always specifies the resultant state. A
conditional action list consists of a predicate expression made up of
predicates and boolean operators, and an action list.

I.3 Actions to be Taken by the NetBIOS Interface

The NetBIOS interface takes the actions defined by the state tables (Table
15). Where those tables do not specify an action (if the incoming event is
invalid or impossible), the action taken is a local matter.

For valid entries, if the intersection of the incoming event and state
contains an. action. list, the NetBIOS interface takes the specific actions
specified. in. the table. It then. changes state to the indicated resultant
state. If the intersection contains one or more conditional action lists, for

each predicate expression that is true the NetBIOS interface takes the

330 X/Open CAE Specification (1992)

Page 348 of 534

TOPA\letBIOS

specific actions in. the order given. by the action. list for the predicate
expression. If none of the predicate expressions are true, the incoming event
is considered invalid and the actions taken are a local matter.

I.4 Variables

This specification defines several variables for the NetBIOS interface. The
state tables use these variables to clarify the effect of certain actions and
to clarify the conditions under which certain actions are valid. For purposes
of this specification, these variables are purely logical entities; the way
implementations actually represent them is a local matter.

—-Nsto - timeout value for SEND and CHAIN SEND commands

— Nrto - timeout value for RECEIVE commands

—-Vtca - False: the NetBIOS entity initiated the t- connect request
(transport connection. initiator), True: the NetBIOS entity’ received. the
t-connect indication (transport connection acceptor).

I.5 Incoming Events

Abbreviated Name Name and Description
LISTEN NetBIOS LISTEN command from user
CALL NetBIOS CALL command from user

TCONind T—CONNECT indication primitive
TCONcnf+ T—CONNECT confirmation (positive) primitive
TDATAind T—DATA indication primitive
RECEIVE NetBIOS RECEIVE or RECEIVE ANY command from user
SEND NetBIOS SEND or CHAIN SEND command from user
SENDcnf NetBIOS SEND or CHAIN SEND command confirmed
HANGUP NetBIOS HANG UP command from user

CLSreq Close request from remote interface
CLSrsp Close response from remote interface
TDISCind T—DISCONNECT indication primitive
STO NetBIOS send timeout expiration
RTO NetBIOS receive timeout expiration

TIM _ Hang up timeout expiraLion

TABLE 10. Incoming Events

Notes:

The exact definition of SEND or CHAIN SEND command confirmation (see
“SENDcnf” above) is a local matter. It is whatever event causes the

interface to complete a SEND or CHAIN SEND command. Some implementations may
define this event to be coincident with the SEND event; others may define it
to occur when. the buffer containing user data is returned. to the NetBIOS
interface, while still other implementations may define it to occur when the
transport provider receives a transport level acknowledgement of receipt of
the user data from the remote transport provider. Because the event cannot
be precisely defined in this specification, the following state tables do not
specify an implementation’s actions when it receives a HANG UP command with
SEND commands pending. Implementations are free to handle this case in any
manner consistent with. the NetBIOS definition. and. with. this specification.
Regardless of its exact definition, this event does not apply to the
“completion” of close requests or close responses, despite the fact that
they, like user data, are sent in TSDUs.

Protocols for X/Open PC Interworkingz SMB, Version 2 331

Page 349 of 534

TOPA\IetBIOS

1.6 Outgoing Events

Abbreviated Name Name and Description

TCONreq T—CONNECT request primitive
TCONrsp+ T—CONNECT response (positive) primitive
LSTNcplt Complete NetBIOS LISTEN command “good”
CALLcplt Complete NetBIOS CALL command “good”
TDATAreq T—DATA request primitive
SENDcplt Complete NetBIOS SEND/CHAIN—SEND command “good”
RCVcplt Complete NetBIOS RECEIVE/RECEIVE—ANY command “good”
CLSreq Close request to remote interface
CLSrsp Close response to remote interface
TDISCreq T—DISCONNECT request primitive
HANGcplt Complete NetBIOS HANG UP command “good”

TABLE 11. Outgoing Events

Notes:

The completion of a NetBIOS command is only considered an outgoing event if
the completion is successful, i.e., the command completes with a return code
of “good” (0x00). This distinction, though somewhat arbitrary, does make
the state tables more manageable.

1.7 States

Abbreviated Name Name and Description
STA 00 Idle, “session" does not exist

STA 01 Listening
STA 02 Calling
STA 03 Established

STA 04 Hanging up, waiting for CLOSE RESPONSE
STA 05 Waiting for disconnect
STA 06 Closed, waiting to notify user
STA 07 Aborted, waiting to notify user
STA 08 Close Collison

TABLE 12. States

Notes:

For the correspondence between these states and the “state of the session”
returned in the SESSION STATUS command, please refer to “SESSION STATUS” in
section five.

332 X/Open CAE Specification (1992)

Page 350 of 534

TOPA\letBIOS

I.8 Specific Actions

State Description

[1] set Nsto and Nrto to appropriate values

[2] retain received data, waiting for RECEIVE or RECEIVE ANY
command

[3] discard data
[4] return NetBIOS command with “Command timed out” (0x05)

return code

[5] return appropriate NetBIOS commands with “Message incomplete”
(0x06) return code

[6] return NetBIOS command with “Session closed” (0x0A)
return code

[7] return NetBIOS command with “Session open rejected” (0x12)
return code

[8] return all NetBIOS commands with “Session ended abnormally”
(0x18) return code

[9] terminate all pending RECEIVE commands and one RECEIVE ANY
command with “Session closed” (0x0A) return code

[10] start send timer
[11] start receive timer

[12] start hang up timer
[13] cancel send timer
[14] cancel receive timer
[15] cancel all timers for “session”
[16] return NetBIOS command with “No answer (cannot find name

called)” (0x14) return code
[17] Set Vtca = false

_[18] Set Vtca = true

TABLE 13. Specific Actions

I.9 Predicates

pl any RECEIVE or RECEIVE ANY commands available?
p2 enough RECEIVE or RECEIVE ANY commands available?
p3 more than one RECEIVE or RECEIVE ANY command required for the

received data?

p4 retained data available for RECEIVE or RECEIVE ANY command?
p5 all of retained data from a single received TSDU fits in

RECEIVE or RECEIVE ANY command?

p6 Any commands available to notify user of new “session” state?
p7 Does disconnect reason indicate “remote TS user invoked"?
p8 Vtca = false ?
p9 Any command available, in addition to send or chainsend?

TABLE 14. Predicates

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 351 of 534

333

TOPA\IetBIOS

I . 10 State Tables

STATE STAOO STAO1 STAO2 STAO3 '
————— idle listening calling established

STA01
CALL [1] [17] // // //

I TCONreq ‘STAO2

TCONind TDISCreq [18] // //
STA00 TCONrsp+

LSTNcplt
STAO3

TCONcnf+ // // CALLcp1t //
STA03 _

TDATAind // // // pl&p2 &p3
[5] [14]
RCVcp1t

STA03

p1&p2&lp3
[14]

RCVcp1t
STAO3

p1&lp2
[5] [2] [14]

STAO3

lpl
[2]

STAO3

RECEIVE // // // p4&p5
RCVcp1t

STAO3

p4&lp5
[5]

STAO3

!p4
[11]

STAO3

SEND // // // [10]
TDATAreq

STAO3

SENDcnf // // // [13]
SENDcplt

STAO3

HANGUP // // // [12] [9] [14]
CLSreq
STAO4

TABLE 15. State Tables

334 X/Open CAE Specification (1992)

Page 352 of 534

TOPA\letBIOS

CLSrsp

TDISCind

STO

RTO

TIM

Protocols for X/Open PC Interworkingz SNIB, Version 2

Page 353 of 534

STAO0
idle

//

//

//

//

//

//

TABLE 15.

STAOl

listening

//

//

//

//

//

//

State Tables

STAO2

calling

//

//

p7
[7]

STAOO

!p7
[16]

STAOO

//

//

//

(continued)

STAO3
established

CLSrsp
STAGE

[4] [8] [15]
TDISCreq

STAOO

!p9
TDISCreq

STAO7

[4]
STAO3

//

335

TOPA\letBIOS

STATE STAO4 STAO5 STAO6 STAO7 STAO8

————— wait wait closed, aborted, close

EEQEELEEEE;___§isconnected waiging waigiflg collision
Lrsmn _'_ // // //_ "/7

CALL // // // //

TCONind // // // //

TCONcnf+ // // // //
TDATAind

- RECEIVE

SEND

SENDcnf [13]
SENDcplt

STAO5
HANGUP

CLSreq

CLSrsp

TDISCreq
STAOO

TDISCind

SEAO6 SEA07
ST0 // [4] [8] [15]

TDISCreq
STAOO

RTO // [4]
STAO5

TIM [8] [15] [8] [15]
TDISCreq TDISCreq

_ STAOO STAOO

TABLE 15. State Tables (end)

336 X/Open CAE Specification (1992)

Page 354 of 534

TOPA\letBIOS

APPENDIX II : SAMPLE PDU ENCODINGS

II.1 Register Name Operation

The following tables contain. sample PDU‘ encodings for the NB_RegisterName
REQUEST and RESPONSE PDUs exchanged as a result of a NB_RegisterName
operation, with repeat count N=3 (X=1 and Y=2). In this example, the first
request PDU is sent to NDUA, and the subsequent PDUs are multicasted assuming
no response from NDUA.

Value

Field PDU #1 PDU #2 PDU #3

Length Indicator variable same same
Protocol/Version Indicator 0001 0001 same same
Type 0000 0010 same same
Source Reference variable same same
FLAGs reset same same

QOS variable same same

Response Semantics 0000 0011 0000 0010 same
Response Code - same same
Procedure Timeout variable same same
Procedure 0000 0001 same same
Name LI variable same same
Name variable same same
Initial-Attb Count n n n
List of Attributes variable same same

TABLE 16. NB_RegisterName req. pdus generated by
NB_RegisterName operation

The response PDU‘ generated. by the NDUA. after successful registration. of a
name will have a Response Code of success. If an NDUA is not present on the
network the response PDU will be generated by other Nodes with a Response
Code of registration error if a name conflict exists.

Value

Field PDU #1

Length Indicator 0000 0000
0000 1010

Protocol/Version Indicator 0001 0001
Type 0000 0100
Source Reference variable
FLAGs -

QOS -

Response Semantics 0000 0011
Response Code 0000 0001
Procedure Timeout variable
Procedure 0000 0001

TABLE 17. NB_RegisterName res. pdu generated by NDUA
NB_RegisterName operation

II.2 Register Group Name

The following tables contain sample PDU encodings for the

NB_RegisterGroupName REQUEST and RESPONSE PDUs exchanged. as a result of an
NB_RegisterGroupName operation, with. repeat count N=3 (X21, Y=2). In. this
example, the first request PDU is generated for NDUA and the subsequent PDUs
are generated assuming no response from NDUA.

Protocols for X/Open PC Interworkingz SIVIB, Version 2 337

Page 355 of 534

TOPA\IetBIOS

Value

Field PDU #1 PDU #2 PDU #3

Length Indicator variable same same
Protocol/Version Indicator 0001 0001 same same
Type 0000 0010 same same
Source Reference variable same same
FLAGs reset same same

QOS variable same same

Response Semantics 0000 0011 0000 0010 same
Response Code - same same
Procedure Timeout variable same same
Procedure 0000 0010 same same
Name LI variable same same
Name variable same same
Initial-Attb Count variable same same
List of Attributes variable same same

TABLE 18. NB_RegisterGroupName req. pdus generated by
NB_RegisterGroupName operation

The response PDU generated by the NDUA after successful registration of name
will have response code of success. If an NDUA is not present on the network
the response PDU‘ will be generated. by other Nodes with. Response Code of
registration error if there exist a name conflict.

Value

Field PDU #1

Length Indicator 0000 0000
0000 1010

Protocol/Version Indicator 0001 0001
Type 0000 0100
Source Reference variable
FLAGs -

QOS -

Response Semantics 0000 0001
Response Code 0000 0001
Procedure Timeout variable
Procedure 0000 0010

TABLE 19. NB_RegisterGroupName res. pdu generated by NDUA
NB_RegisterGroupName operation

II.3 Resolve Name

The following tables contain sample PDU‘ encodings for the NB_ResolveName
REQUEST, RESPONSE and PENDING PDUs exchanged as a result of an NB_ResolveName
operation, with. repeat count N=3 (X=1, Y = 2). In. this example the first
request PDU‘ is generated for NDUA and the subsequent PDU‘ are generated
assuming no response from NDUA.

338 X/Open CAE Specification (1992)

Page 356 of 534

TOPA\letBIOS

Value

Field PDU #1 PDU #2 PDU #3

Length Indicator variable same same
Protocol/Version Indicator 0001 0001 same same
Type 0000 0010 same same
Source Reference variable same same
FLAGs reset same same

QOS variable same same

Response Semantics 0000 0011 0000 0001 same
Response Code - - -
Procedure Timeout variable variable same
Procedure 0000 0100 same same
Name LI variable same same
Name variable same same

Request-Attb Count 0000 0010 same same
Attb Code (UniqueName) 0000 0001 same same
Attb LI zero same same

Attb Code (TransportAddress) 0000 0010 same same
Attb LI zero same same

TABLE 20. NB_ResolveName req. pdus generated by
NB_ResolveName operation

Value

Field PDU #1

Length Indicator variable
Protocol/Version Indicator 0001 0001
Type 0000 0100
Source Reference variable
FLAGs -

QOS -

Response Semantics 0000 0001
Procedure Timeout variable
Procedure 0000 0100

Response Code 0000 0001
Name LI variable
Name variable
Returned—Attb Count 0000 0010

Attb Code (UniqueName) 0000 0001
Attb LI 0000 0001
Attb Value 1111 llll

Attb Code (TransportAddress) 0000 0010
Attb LI variable
Attb Value variable

TABLE 21. NB_ResolveName res. pdu generated by
NB_ResolveName operation

The following points should be noted in the REQUEST and RESPONSE PDU
encodings shown above:

— The UniqueName attribute in this example indicates that a system holding a

unique version of the name is responding to the NB_ResolveName, although
it could just have readily been a system with a group version of the name.

Protocols for X/Open PC Interworkingz SMB, Version 2 339

Page 357 of 534

TOPA\IetBIOS

Value

Field PDU #1

Length Indicator 0000 0000
0000 1010

Protocol/Version Indicator 0001 0001
Type 0000 1000
Source Reference variable
FLAGS —

QOS -

Response Semantics 0000 0001
Procedure Timeout variable
Procedure 0000 0100

TABLE 22. NB_Reso1veName pending pdu generated by
NB_Reso1veName operation

340 X/Open CAE Specification (1992)

Page 358 of 534

TOPA\letBIOS

APPENDIX III : REMOTE ADAPTER STATUS

The remote adapter status processing consists of the following steps.

1. Obtain the address of the NDSE (remote machine) where the object (name)
resides by executing resolve name function with NodeAdminTransport
Address attribute set. This step is skipped. if the address is already
cached.

2. Send the adapter status request PDU, point-to—point, to the remote NDSE
(only the fixed header).

3. The NDSE will process the adapter status request indication, and return
the status information in the response PDU.

III.1 AdapterStatus Request PDU Format

The Adapter Status Request PDU will consist of a FIXED HEADER part as defined
in the following table. It is the same fixed format as given in Figure 5.

Field Value

Length Indicator 0000 0000
0000 1010

Protocol Version 0001 0001

Type 0000 0010
Source Reference variable

Flags 0000 0000
QOS variable

Response Semantics 0000 0001
Response Code 0000 0000
Procedure Timeout variable
Procedure 0000 1000

TABLE 23. AdapterStatus Request PDU Format

III.2 Adapterstatus Response PDU Format

The adapter status response PDU will consist of two parts, fixed part and
variable part. The format for the fixed part will be the same as the request
PDU but for the following changes:

Length will be length of the PDU following length indicator field.

Type will be set to response PDU, 0000 0100.

Response will be set to appropriate response code.

The variable part will consist of the following:

Protocols for X/Open PC Interworkingz SMB, Version 2 341

Page 359 of 534

342

TOPA\letBIOS

Response PDU Variable Part

Length Indicator
MAC Address

External Option
Result of Last Self Test
Software Version

Reporting Period
CRC Errors

Alignment Errors
Number of Collisions
Number of Unsuccessful Xmit
Frames Transmitted
Frames Received

Number of Retransmissions
Resource Exhaustions

Local Implementation
Local Implementation
Free NCBs
Conf. Max NCBs
Max NCBs

Local Implementation
Local Implementation
Pending Sessions
Conf. Max Sessions
Max Sessions
Max TPDU Size

Quantity of Local Names
List of Names

-—Name

-—Name Number
-—Name Status

Field
2 Octets
6 Octets
1 Octet
1 Octet

t\)l\)l\)t\)t\)t\)[\)t\)[\)l\)rl>pbt\)NpI>rI>t\)l\)t\)t\)t\)l\)
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets
Octets

variable
16 Octets

1 Octet
Oxxx
lxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx

x000
x100
x101
x110
x111

impl. specific

unique name
group name

trying to register
registered
de-registered
duplicate name
duplicate name
being de-registered

TABLE 24. Adapter Status Variable Part PDU Format

Page 360 of 534

X/Open CAE Specification (1992)

TOPA\letBIOS

APPENDIX IV : WELL KNOWN ADDRESSES

There are several well known. addresses, described. here, for the effective

operation of NetBIOS and the Name Service.

IV.1 Transport Selectors

1. NetBIOS Broadcast Address: T-Selector

The NetBIOS broadcast address t-selector is defined as “*” followed by
15 blank spaces.

T-Selector for Broadcast = “*<l5 spaces>”

2. All NetBIOS Directory Service Entities: T—Selector

The NetBIOS Name Service Element for a Node, NetBIOS DIRECTORY SERVICE

ENTITY (NDSE), will have a “well known” transport service access point
identifier (t- selector), of 16 octet in length. This will be a reserved
value.

T—Selector for NDSE = “*NetBIOS_NDSE<3 spaces>”

Note that the choice of source NSAP address for the nodes that support
multiple NSAPs is a local matter.

3. Recommended NDUA: T-Selector

The recommended T-Selector, of 16 octets in length, for NDUAs on a
network is given below. This will be a configurable parameter. The
complete protocol address of the NDUA entities will be included in the
“I am Here PDUs”.

Recommended T-Selector for NDUA = “*NetBIOS_NDUA<3 spaces>”

IV.2 Network Layer Addresses

1. Group NSAP Address

In order to implement group datagrams at transport level, only for
intranet traffic, a special node number (station number) value is
reserved in the network service access point address (NSAP Address). The
same NSAP address will be used by the NDUA and NDSEs for their group
datagrams.

The group NSAP address will identify all the nodes on the given
subnetwork.

The general structure of the NSAP address, as per the TOP 3.0
specifications for binary syntax, is used here. Additional semantic
constraints are described in the following two points.

1. The recommended value of NSEL will be 01H, but it can be set to any
other value as per the installation option.

2. The station number field of NSAP address is set to group multicast
address.

STATION NUMBER [6 OCTETS] = 09006A000l00H

3. The format of the remaining DSP must be configurable following TOP
3.0 specifications.

The NSAP address will use local AFI (49H) and the recommended format for
full NSAP address will be”:

Protocols for X/Open PC Interworkingz SIVIB, Version 2 343

Page 361 of 534

TOPA\IetBIOS

NSAP LENGTH [1 OCTET] = 10 (decimal)

NSAP = 49.nn.nn.09.00.6A.00.0l.00.0l

nn.nn=00.00, subnetwork number (default).

2. NSAP Address Formats

The general NSAP address formats will be as per the TOP 3.0
Specifications.

IV.3 Link Layer Addresses

1. Multicast/Functional Addresses

Multicast addresses (broadcast based LANs) will be used as the

destination subnetwork point of attachment (SNPA) address for the group
NSAP address defined in the previous item. The multicast address is given
below. Note that the same functionality can also be achieved by using a
broadcast address. Also, the recommended functional addresses used as

multicast addresses in. the token. ring environment are provided. These
are recommended values and must be configurable.

Function Address

TOP/NetBIOS Multicast Address — IEEE 802.3 O9.00.6A.00.0l.00

End System Hellos (IS Address) — IEEE 802.5 C0.00.00.10.00.00
Intermediate System Hellos (ES Address) — IEEE 802.5 C0.00.00.08.00.00
TOP/NetBIOS Functional Address — IEEE 802.5 C0.00.00.20.00.00

TABLE 25. Recommended Multicast and Functional Addresses

2. LSAP Value

The LSAP value used by the NetBIOS Protocol for multicast and broadcast
datagrams is given below. This is a recommended value and must be
configurable.

ECH

18. Note that if the connected subnetwork is token ring, the multicast NSAP address maps to the functional
address of C0.00.00.20.00.00 as the SNPA address.

344 X/Open CAE Specification (1992)

Page 362 of 534

TOPA\letBIOS

APPENDIX V : OBJECTIVES AND ACTIONS OF NDUAS

The NetBIOS Directory User Agent provides two major support functions.

1. It helps in reducing the multicast traffic on the media.

2. It provides an interface to the OSI Directory Services for all the
NetBIOS Entities.

V.1 New Protocol Element

One new protocol element is defined to support the NDUA functionalities, “I
am here PDU".

I am here PDU is an advise PDU with:

—-fixed header with “I am here” Procedure type and timeout=0, and

—-protocol address (presentation address).

There is NO “I am signing OFF” PDU. The NDSEs can detect the absence of
NDUAs based. on. timeouts. The actual implementation. of this detection. is a
local matter.

V.2 Actions

There is a set of actions for NDUAs and NDSEs.

a. NDUAs multicast the “I am here PDU" N times at T intervals when joining
the network.

b. NDSEs save the information received in “I am here PDU" of at least one
NDUA .

c. NDSEs will multicast “register name” and “resolve name" requests if
there is no known NDUA on the network, otherwise a point to point request
is sent to one of the NDUAs.

d. NDUA will process the “resolve name” request by checking the cache, or
making a request to the DUA and/or sending a nmlticast “resolve name”
request if the entry is not available in cache.

When processing a resolve name request for a group name, the NDUA may
choose one among many transport addresses to put into its response.
However, it is a local matter how NDUA makes this choice.

e. NDUAs will process the point-to—point “register name” request by
checking in the local database (cache).

— If the name is not found in the local database, the NDUA will

multicast the “register name” request on the LOCAL network with the
Responsesemantics set to response on failure.

—-If it does not receive any response, that means the name is available
and the registration request is granted and. a success response is
returned to the originator.

—-If the name was found in the local database and the presentation
address supplied. in. the request is the same as that in. the local
database, the registration request is granted and a positive (success)
response is returned to the originator.

—~If the name was found in the local database and the presentation
address supplied in the request is different than in the local
database, a point to point resolve name request is sent to the NDSE
where the name was registered. If the resolve name succeeds, then the
new register name request is denied, but if the resolve name request
fails, then the register name request is granted. If the register name

Protocols for X/Open PC Interworkingz SIVIB, Version 2 345

Page 363 of 534

TOPA\IetBIOS

request is granted then the local database is updated appropriately.
Success or failure response is returned to the originator of the
register name request. These checks are necessary as the NetBIOS
objects can move from one machine to another, or nodes can go down and
come back up without unregistering their services.

The NDUA will maintain in its database all the information (attributes)

that was provided in the registration request PDU. Private attributes
supplied with the register name request will be saved, and will be
returned in the resolve name response PDU, if those attributes are
requested. NDUA will not make any semantic analysis of this data.

f. Also, based on administrative “filtering”, NDUAs will propagate the
“register name’ ’ request to its DUA (if present). When such a request is
propagated it will include the appropriate “object-id’ ’ attribute in the
request to its DUA.

g. NDUAs will process the “unregister name” request by cleaning up the
cache and propagating it to DUAs (point-to—point) .

h. In addition, NDUAs will return point—to—point “I am here PDU" if an
NDSE request is received as a multicast PDU. Note that this implies that
an NDUA must receive datagrams that were sent to NDSE’s t— selector

(*NetBIOS_NDSE) .

i. NDSEs will multicast the “resolve name” request (N— X) times if no
responses are received for the first “X” point—to—point requests.

j. NDUAs will set the NDUA FLAG in all the PDUs generated by them. Thus
other NDUAs, if present on the subnetwork, can distinguish between the
PDUs received from NDUAs and from NDSEs. The NDSEs will always reset the
NDUA flag in all PDUs generated by them, and they do not attach any
semantic meaning to this flag in the received PDUs.

346 X/Open CAE Specification (1992)

Page 364 of 534

TOPA\letBIOS

V.3 Object Class Definition

The following NetBIOS Object Class is defined for use in conjunction with OSI
Directory Services.

NetBIOSEntity OBJECT-CLASS
SUBCLASS OF top

MUST CONTAIN {
NetBIOSName

nameType

presentationAddressSet
adminPresentationAddress

}
::= {NetBIOSEntity-object-identifier—value}

NetBIOSName ATTRIBUTE
WITH ATTRIBUTE SYNTAX

octetStringSyntax (SIZE(16))

::= {netBIOSName-object-identifier-value}

nameType ATTRIBUTE
WITH ATTRIBUTE SYNTAX

INTEGER{
group (0),
unique (1)

}
MATCHES FOR EQUALITY
SINGLE VALUE

::= {nameType-object-identifier-value}

presentationAddressSet :'—
SET OF PresentationAddress

adminPresentationAddress
PresentationAddress

Note that the above definition, object identifier value, must be assigned by
an OSI Registration Authority. Currently the U.S. does not have one, though
it will likely be NIST (previously known as NBS) or ANSI. Once a registration
authority is set up, it will be requested to assign the value.

Protocols for X/Open PC Interworkingz SNIB, Version 2 347

Page 365 of 534

Irlure le-

Irlure le-

RFC 1001

Network Working Group
Request for Comments: 1001 March, 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE

ON A TCP/UDP TRANSPORT:
CONCEPTS AND METHODS

ABSTRACT

This RFC defines a proposed standard protocol to support NetBIOS
services in a TCP/IP environment. Both local network and internet

operation are supported. Various node types are defined to accommodate
local and internet topologies and to allow operation with or without the
use of IP broadcast.

This RFC describes the NetBIOS—over-TCP protocols in a general manner,
emphasizing the underlying ideas and techniques. Detailed
specifications are found in a companion RFC, "Protocol Standard For a
NetBIOS Service on a TCP/UDP Transport: Detailed Specifications".

NetBIOS Working Group [Page 1]

350 X/Open CAE Specification (1992)

Page 368 of 534

RFC 1001

RFC 1001 March 1987

SUMMARY OF CONTENTS

1. STATUS OF THIS MEMO 6
2. ACKNOWLEDGEMENTS 6
3. INTRODUCTION 7
4. DESIGN PRINCIPLES 7
5. OVERVIEW OF NetBIOS 10
6. NetBIOS FACILITIES SUPPORTED BY THIS STANDARD 15

7. REQUIRED SUPPORTING SERVICE INTERFACES AND DEFINITIONS 15
8. RELATED PROTOCOLS AND SERVICES 16
9. NetBIOS SCOPE 16
10. NetBIOS END—NODES 16
11. NetBIOS SUPPORT SERVERS 18
12. TOPOLOGIES 20
13. GENERAL METHODS 23
14. REPRESENTATION OF NETBIOS NAMES 25
15. NetBIOS NAME SERVICE 27
16. NetBIOS SESSION SERVICE 48
17. NETBIOS DATAGRAM SERVICE 55
18. NODE CONFIGURATION PARAMETERS 58
19. MINIMAL CONFORMANCE 59
REFERENCES 60
APPENDIX A - INTEGRATION WITH INTERNET GROUP MULTICASTING 61
APPENDIX B - IMPLEMENTATION CONSIDERATIONS 62

NetBIOS Working Group [Page 2]

Protocols for X/Open PC Interworkingz SNIB, Version 2 351

Page 369 of 534

RFC 1001

RFC 1001 March 1987

TABLE OF CONTENTS

1. STATUS OF THIS MEMO 6

2. ACKNOWLEDGEMENTS 6

3. INTRODUCTION 7

4. DESIGN PRINCIPLES 8
4.1 PRESERVE NetBIOS SERVICES 8
4.2 USE EXISTING STANDARDS 8
4.3 MINIMIZE OPTIONS 8
4.4 TOLERATE ERRORS AND DISRUPTIONS 8

4.5 DO NOT REQUIRE CENTRAL MANAGEMENT 9
4.6 ALLOW INTERNET OPERATION 9
4.7 MINIMIZE BROADCAST ACTIVITY 9
4.8 PERMIT IMPLEMENTATION ON EXISTING SYSTEMS 9

4.9 REQUIRE ONLY THE MINIMUM NECESSARY TO OPERATE 9
4.10 MAXIMIZE EFFICIENCY 10
4.11 MINIMIZE NEW INVENTIONS 10

5. OVERVIEW OF NetBIOS 10
5.1 INTERFACE TO APPLICATION PROGRAMS 10
5.2 NAME SERVICE 11
5.3 SESSION SERVICE 12
5.4 DATAGRAM SERVICE 13
5.5 MISCELLANEOUS FUNCTIONS 14
5.6 NON-STANDARD EXTENSIONS 15

6. NetBIOS FACILITIES SUPPORTED BY THIS STANDARD 15

7. REQUIRED SUPPORTING SERVICE INTERFACES AND DEFINITIONS 15

8. RELATED PROTOCOLS AND SERVICES 16

9. NetBIOS SCOPE 16

10. NetBIOS END—NODES 16

10.1 BROADCAST (B) NODES 16
10.2 POINT-TO—POINT (P) NODES 16
10.3 MIXED MODE (M) NODES 16

11. NetBIOS SUPPORT SERVERS 18

11.1 NetBIOS NAME SERVER (NBNS) NODES 18
11.1.1 RELATIONSHIP OF THE NBNS TO THE DOMAIN NAME SYSTEM 19

11.2 NetBIOS DATAGRAM DISTRIBUTION SERVER (NBDD) NODES 19
11.3 RELATIONSHIP OF NBNS AND NBDD NODES 20
11.4 RELATIONSHIP OF NetBIOS SUPPORT SERVERS AND B NODES 20

12. TOPOLOGIES 20
12.1 LOCAL 20

NetBIOS Working Group [Page 3]

352

Page 370 of 534

X/Open CAE Specification (1992)

RFC 1001

RFC 1001

12.1.1 B NODES ONLY
12.1.2 P NODES ONLY

12.

13.
13.

13.

13.

14.
14
14

15.
15.

15

15.

15.

12.1.3 MIXED B AND P NODES
2 INTERNET

12.2.1 P NODES ONLY
12.2.2 MIXED M AND P NODES

GENERAL METHODS

1 REQUEST/RESPONSE INTERACTION STYLE
13.1.1 RETRANSMISSION OF REQUESTS
13.1.2 REQUESTS WITHOUT RESPONSES: DEMANDS
2 TRANSACTIONS
13.2.1 TRANSACTION ID
3 TCP AND UDP FOUNDATIONS

REPRESENTATION OF NETBIOS NAMES
.1 FIRST LEVEL ENCODING
.2 SECOND LEVEL ENCODING

NetBIOS NAME SERVICE
1 OVERVIEW OF NetBIOS NAME SERVICE

15.1.1 NAME REGISTRATION (CLAIM)
15.1.2 NAME QUERY (DISCOVERY)
15.1.3 NAME RELEASE

15.1.3.1 EXPLICIT RELEASE
15.1.3.2 NAME LIFETIME AND REFRESH
15.1.3.3 NAME CHALLENGE
15.1.3.4 GROUP NAME FADE—OUT

15.1.3.5 NAME CONFLICT
15.1.4 ADAPTER STATUS
15.1.5 END—NODE NBNS INTERACTION

15.1.5.1 UDP, TCP, AND TRUNCATION
15.1.5.2 NBNS WACK
15.1.5.3 NBNS REDIRECTION

15.1.6 SECURED VERSUS NON—SECURED NBNS
15.1.7 CONSISTENCY OF THE NBNS DATA BASE
15.1 8 NAME CACHING

.2 NAME REGISTRATION TRANSACTIONS
15.2.1 NAME REGISTRATION BY B NODES
15.2.2 NAME REGISTRATION BY P NODES

15.2.2.1 NEW NAME, OR NEW GROUP MEMBER
15.2.2.2 EXISTING NAME AND OWNER IS STILL ACTIVE
15.2.2.3 EXISTING NAME AND OWNER IS INACTIVE

15.2.3 NAME REGISTRATION BY M NODES

3 NAME QUERY TRANSACTIONS
15.3.1 QUERY BY B NODES
15.3.2 QUERY BY P NODES
15.3.3 QUERY BY M NODES
15.3.4 ACQUIRE GROUP MEMBERSHIP LIST
4 NAME RELEASE TRANSACTIONS
15.4.1 RELEASE BY B NODES

NetBIOS Working Group

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 371 of 534

March 1 9 87

21
21
21
22
22
23

23
23
24
24
25
25
25

25
26
27

27
27
27
28
28
28
29
29
29
30
31
31
31
32
32
32
32
34
34
34
35
35
36
37
38
39
39
40
43
43
44
44

[Page 4]

353

RFC1001

RFC 1001 March 1987

15.4.2 RELEASE BY P NODES 44
15.4.3 RELEASE BY M NODES 44

15.5 NAME MAINTENANCE TRANSACTIONS 45
15.5.1 NAME REFRESH 45
15.5.2 NAME CHALLENGE 46
15.5.3 CLEAR NAME CONFLICT 47

15.6 ADAPTER STATUS TRANSACTIONS 47

16 . NetBIOS SESSION SERVICE 48
16.1 OVERVIEW OF NetBIOS SESSION SERVICE 49

16.1.1 SESSION ESTABLISHMENT PHASE OVERVIEW 49
16.1.1.1 RETRYING AFTER BEING RETARGETTED 50
16.1.1.2 SESSION ESTABLISHMENT TO A GROUP NAME 51

16.1.2 STEADY STATE PHASE OVERVIEW 51
16.1.3 SESSION TERMINATION PHASE OVERVIEW 51

16.2 SESSION ESTABLISHMENT PHASE 52
16.3 SESSION DATA TRANSFER PHASE 54

16.3.1 DATA ENCAPSULATION 54
16.3.2 SESSION KEEP—ALIVES 54

17. NETBIOS DATAGRAM SERVICE 55
17.1 OVERVIEW OF NetBIOS DATAGRAM SERVICE 55

17.1.1 UNICAST, MULTICAST, AND BROADCAST 55
17.1.2 FRAGMENTATION OF NetBIOS DATAGRAMS 55

17.2 NetBIOS DATAGRAMS BY B NODES 57
17.3 NetBIOS DATAGRAMS BY P AND M NODES 58

18. NODE CONFIGURATION PARAMETERS 58

19. MINIMAL CONFORMANCE 59

REFERENCES 60

APPENDIX A 61

INTEGRATION WITH INTERNET GROUP MULTICASTING 61

A-1. ADDITIONAL PROTOCOL REQUIRED IN B AND M NODES 61
A-2. CONSTRAINTS 61

APPENDIX B 62

IMPLEMENTATION CONSIDERATIONS 62
B-1. IMPLEMENTATION MODELS 62

B-1.1 MODEL INDEPENDENT CONSIDERATIONS 63
B-1.2 SERVICE OPERATION FOR EACH MODEL 63

B-2 CASUAL AND RESTRICTED NetBIOS APPLICATIONS 64
B-3 TCP VERSUS SESSION KEEP—ALIVES 66
B-4 RETARGET ALGORITHMS 67
B-5 NBDD SERVICE 68
B-6. APPLICATION CONSIDERATIONS 68

B-6.1 USE OF NetBIOS DATAGRAMS 68

NetBIOS Working Group [Page 5]

354 X/Open CAE Specification (1992)

Page 372 of 534

RFC 1001

RFC 1001 March 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE

ON A TCP/UDP TRANSPORT:
CONCEPTS AND METHODS

1. STATUS OF THIS MEMO

This RFC specifies a proposed standard for the Internet
community. Since this topic is new to the Internet community,
discussions and suggestions are specifically requested.

Please send written comments to:

Karl Auerbach

Epilogue Technology Corporation
P.O. Box 5432

Redwood City, CA 94063

Please send online comments to:

Avnish Aggarwal
Internet: mtxinu!excelan!avnish@ucbvax.berkeley.edu
Usenet: ucbvaxlmtxinulexcelanlavnish

Distribution of this document is unlimited.

2. ACKNOWLEDGEMENTS

This RFC has been developed under the auspices of the Internet
Activities Board, especially the End—to—End Services Task Force.

The following individuals have contributed to the development of
this RFC:

Avnish Aggarwal Arvind Agrawal Lorenzo Aguilar
Geoffrey Arnold Karl Auerbach K. Ramesh Babu
Keith Ball Amatzia Ben-Artzi Vint Cerf

Richard Cherry David Crocker Steve Deering
Greg Ennis Steve Holmgren Jay Israel
David Kaufman Lee LaBarre James Lau

Dan Lynch Gaylord Miyata David Stevens
Steve Thomas Ishan Wu

The system proposed by this RFC does not reflect any existing
Netbios-over-TCP implementation. However, the design
incorporates considerable knowledge obtained from prior
implementations. Special thanks goes to the following
organizations which have provided this invaluable information:

CMC/Syros Excelan Sytek Ungermann-Bass

NetBIOS Working Group [Page 6]

Protocols for X/Open PC Interworking: SMB, Version 2 355

Page 373 of 534

RFC 1001

RFC 1001 March 1987

3 . INTRODUCT ION

This RFC describes the ideas and general methods used to provide
NetBIOS on a TCP and UDP foundation. A companion RFC, "Protocol
Standard For a NetBIOS Service on a TCP/UDP Transport: Detailed
Specifications"[1] contains detailed descriptions of packet
formats, protocols, and defined constants and variables.

The NetBIOS service has become the dominant mechanism for

personal computer networking. NetBIOS provides a vendor
independent interface for the IBM Personal Computer (PC) and
compatible systems.

NetBIOS defines a software interface not a protocol. There is no
"official" NetBIOS service standard. In practice, however, the
IBM PC—Network version is used as a reference. That version is

described in the IBM document 6322916, "Technical Reference PC
Network"[2].

Protocols supporting NetBIOS services have been constructed on
diverse protocol and hardware foundations. Even when the same
foundation is used, different implementations may not be able to
interoperate unless they use a common protocol. To allow NetBIOS
interoperation in the Internet, this RFC defines a standard
protocol to support NetBIOS services using TCP and UDP.

NetBIOS has generally been confined to personal computers to
date. However, since larger computers are often well suited to
run certain NetBIOS applications, such as file servers, this
specification has been designed to allow an implementation to be
built on virtually any type of system where the TCP/IP protocol
suite is available.

This standard defines a set of protocols to support NetBIOS
services.

These protocols are more than a simple communications service
involving two entities. Rather, this note describes a
distributed system in which many entities play a part even if
they are not involved as an end-point of a particular NetBIOS
connection.

This standard neither constrains nor determines how those

services are presented to application programs.

Nevertheless, it is expected that on computers operating under
the PC—DOS and MS—DOS operating systems that the existing NetBIOS
interface will be preserved by implementors.

NOTE: Various symbolic values are used in this document. For
their definitions, refer to the Detailed Specifications[1].

NetBIOS Working Group [Page 7]

356 X/Open CAE Specification (1992)

Page 374 of 534

RFC 1001

RFC 1001 March 1987

4. DESIGN PRINCIPLES

In order to develop the specification the following design principles
were adopted to guide the effort. Most are typical to any protocol
standardization effort; however, some have been assigned priorities
that may be considered unusual.

4.1. PRESERVE NetBIOS SERVICES

In the absence of an "official" standard for NetBIOS services, the
version found in the IBM PC Network Technical Reference[2] is used.

NetBIOS is the foundation of a large body of existing applications.
It is desirable to operate these applications on TCP networks and to
extend them beyond personal computers into larger hosts. To support
these applications, NetBIOS on TCP must closely conform to the
services offered by existing NetBIOS systems.

IBM PC—Network NetBIOS contains some implementation specific
characteristics. This standard does not attempt to completely
preserve these. It is certain that some existing software requires
these characteristics and will fail to operate correctly on a NetBIOS
service based on this RFC.

4.2. USE EXISTING STANDARDS

Protocol development, especially with standardization, is a demanding
process. The development of new protocols must be minimized.

It is considered essential that an existing standard which provides
the necessary functionality with reasonable performance always be
chosen in preference to developing a new protocol.

When a standard protocol is used, it must be unmodified.

4.3. MINIMIZE OPTIONS

The standard for NetBIOS on TCP should contain few, if any, options.

Where options are included, the options should be designed so that
devices with different option selections should interoperate.

4.4. TOLERATE ERRORS AND DISRUPTIONS

NetBIOS networks typically operate in an uncontrolled environment.
Computers come on—line at arbitrary times. Computers usually go
off-line without any notice to their peers. The software is often
operated by users who are unfamiliar with networks and who may
randomly perturb configuration settings.

Despite this chaos, NetBIOS networks work. NetBIOS on TCP must also

NetBIOS Working Group [Page 8]

Protocols for X/Open PC Interworkingz SNIB, Version 2 357

Page 375 of 534

RFC 1001

RFC 1001 March 1987

be able to operate well in this environment.

Robust operation does not necessarily mean that the network is proof
against all disruptions. A typical NetBIOS network may be disrupted
by certain types of behavior, whether inadvertent or malicious.

4.5. DO NOT REQUIRE CENTRAL MANAGEMENT

NetBIOS on TCP should be able to operate, if desired, without
centralized management beyond that typically required by a TCP based
network.

4.6. ALLOW INTERNET OPERATION

The proposed standard recognizes the need for NetBIOS operation
across a set of networks interconnected by network (IP) level relays
(gateways.)

However, the standard assumes that this form of operation will be
less frequent than on the local MAC bridged-LAN.

4.7. MINIMIZE BROADCAST ACTIVITY

The standard pre-supposes that the only broadcast services are those
supported by UDP. Multicast capabilities are not assumed to be
available in any form.

Despite the availability of broadcast capabilities, the standard
recognizes that some administrations may wish to avoid heavy
broadcast activity. For example, an administration may wish to avoid
isolated non-participating hosts from the burden of receiving and
discarding NetBIOS broadcasts.

4.8. PERMIT IMPLEMENTATION ON EXISTING SYSTEMS

The NetBIOS on TCP protocol should be implementable on common
operating systems, such as Unix(tm) and VAX/VMS(tm), without massive
effort.

The NetBIOS protocols should not require services typically
unavailable on presently existing TCP/UDP/IP implementations.

4.9. REQUIRE ONLY THE MINIMUM NECESSARY TO OPERATE

The protocol definition should specify only the minimal set of
protocols required for interoperation. However, additional protocol
elements may be defined to enhance efficiency. These latter elements
may be generated at the option of the sender, although they must be
accepted by all receivers.

NetBIOS Working Group [Page 9]

358 X/Open CAE Specification (1992)

Page 376 of 534

RFC 1001

RFC 1001 March 1987

4.10. MAXIMIZE EFFICIENCY

To be useful, a protocol must conduct its business quickly.

4.11. MINIMIZE NEW INVENTIONS

When an existing protocol is not quite able to support a necessary
function, but with a small amount of change, it could, that protocol
should be used. This is felt to be easier to achieve than

development of new protocols; further, it is likely to have more
general utility for the Internet.

5. OVERVIEW OF NetBIOS

This section describes the NetBIOS services. It is for background
information only. The reader may chose to skip to the next section.

NetBIOS was designed for use by groups of PCs, sharing a broadcast
medium. Both connection (Session) and connectionless (Datagram)
services are provided, and broadcast and multicast are supported.
Participants are identified by name. Assignment of names is
distributed and highly dynamic.

NetBIOS applications employ NetBIOS mechanisms to locate resources,
establish connections, send and receive data with an application
peer, and terminate connections. For purposes of discussion, these
mechanisms will collectively be called the NetBIOS Service.

This service can be implemented in many different ways. One of the
first implementations was for personal computers running the PC—DOS
and MS—DOS operating systems. It is possible to implement NetBIOS
within other operating systems, or as processes which are,
themselves, simply application programs as far as the host operating
system is concerned.

The NetBIOS specification, published by IBM as "Technical Reference
PC Network"[2] defines the interface and services available to the

NetBIOS user. The protocols outlined by that document pertain only
to the IBM PC Network and are not generally applicable to other
networks.

5.1. INTERFACE TO APPLICATION PROGRAMS

NetBIOS on personal computers includes both a set of services and an
exact program interface to those services. NetBIOS on other computer
systems may present the NetBIOS services to programs using other
interfaces. Except on personal computers, no clear standard for a
NetBIOS software interface has emerged.

NetBIOS Working Group [Page 10]

Protocols for X/Open PC Interworkingz SMB, Version 2 359

Page 377 of 534

RFC 1001

RFC 1001 March 1987

5 . 2 . NAME SERVICE

NetBIOS resources are referenced by name. Lower-level address
information is not available to NetBIOS applications. An
application, representing a resource, registers one or more names
that it wishes to use.

The name space is flat and uses sixteen alphanumeric characters.
Names may not start with an asterisk (*).

Registration is a bid for use of a name. The bid may be for
exclusive (unique) or shared (group) ownership. Each application
contends with the other applications in real time. Implicit
permission is granted to a station when it receives no objections.
That is, a bid is made and the application waits for a period of
time. If no objections are received, the station assumes that it has
permission.

A unique name should be held by only one station at a time. However,
duplicates ("name conflicts") may arise due to errors.

All instances of a group name are equivalent.

An application referencing a name generally does not know (or care)
whether the name is registered as a unique or a group name.

An explicit name deletion function is specified, so that applications
may remove a name. Implicit name deletion occurs when a station
ceases operation. In the case of personal computers, implicit name
deletion is a frequent occurrence.

The Name Service primitives are:

1) Add Name

The requesting application wants exclusive use of the name.

2) Add Group Name

The requesting application is willing to share use of the
name with other applications.

3) Delete Name

The application no longer requires use of the name. It is
important to note that typical use of NetBIOS is among
independently—operated personal computers. A common way to
stop using a PC is to turn it off; in this case, the
graceful give-back mechanism, provided by the Delete Name
function, is not used. Because this occurs frequently, the
network service must support this behavior.

NetBIOS Working Group [Page 11]

360 X/Open CAE Specification (1992)

Page 378 of 534

RFC 1001

RFC 1001 March 1987

5.3. SESSION SERVICE

A session is a reliable message exchange, conducted between a pair of
NetBIOS applications. Sessions are full—duplex, sequenced, and
reliable. Data is organized into messages. Each message may range
in size from 0 to 131,071 bytes. No expedited or urgent data
capabilities are present.

Multiple sessions may exist between any pair of calling and called
names.

The parties to a connection have access to the calling and called
names.

The NetBIOS specification does not define how a connection request to
a shared (group) name resolves into a session. The usual assumption
is that a session may be established with any one owner of the called
group name.

An important service provided to NetBIOS applications is the
detection of sessions failure. The loss of a session is reported to
an application via all of the outstanding service requests for that
session. For example, if the application has only a NetBIOS receive
primitive pending and the session terminates, the pending receive
will abort with a termination indication.

Session Service primitives are:

1) Call

Initiate a session with a process that is listening under
the specified name. The calling entity must indicate both a
calling name (properly registered to the caller) and a
called name.

2) Listen

Accept a session from a caller. The listen primitive may be
constrained to accept an incoming call from a named caller.
Alternatively, a call may be accepted from any caller.

3) Hang Up

Gracefully terminate a session. All pending data is
transferred before the session is terminated.

4) Send

Transmit one message. A time-out can occur. A time-out of
any session send forces the non—graceful termination of the
session.

NetBIOS Working Group [Page 12]

Protocols for X/Open PC Interworkingz SMB, Version 2 361

Page 379 of 534

RFC 1001

RFC 1001 March 1987

A "chain send" primitive is required by the PC NetBIOS
software interface to allow a single message to be gathered
from pieces in various buffers. Chain Send is an interface
detail and does not effect the protocol.

5) Receive

Receive data. A time—out can occur. A time-out on a

session receive only terminates the receive, not the
session, although the data is lost.

The receive primitive may be implemented with variants, such
as "Receive Any", which is required by the PC NetBIOS
software interface. Receive Any is an interface detail and
does not effect the protocol.

6) Session Status

Obtain information about all of the requestor’s sessions,
under the specified name. No network activity is involved.

5 . 4 . DATAGRAM SERVICE

The Datagram service is an unreliable, non—sequenced, connectionless
service. Datagrams are sent under cover of a name properly
registered to the sender.

Datagrams may be sent to a specific name or may be explicitly
broadcast.

Datagrams sent to an exclusive name are received, if at all, by the
holder of that name. Datagrams sent to a group name are multicast to
all holders of that name. The sending application program cannot
distinguish between group and unique names and thus must act as if
all non-broadcast datagrams are multicast.

As with the Session Service, the receiver of the datagram is told the
sending and receiving names.

Datagram Service primitives are:

1) Send Datagram

Send an unreliable datagram to an application that is
associated with the specified name. The name may be unique
or group; the sender is not aware of the difference. If the
name belongs to a group, then each member is to receive the
datagram.

NetBIOS Working Group [Page 13]

362 X/Open CAE Specification (1992)

Page 380 of 534

RFC 1001

RFC 1001 March 1987

2) Send Broadcast Datagram

Send an unreliable datagram to any application with a
Receive Broadcast Datagram posted.

3) Receive Datagram

Receive a datagram sent by a specified originating name to
the specified name. If the originating name is an asterisk,
then the datagram may have been originated under any name.

Note: An arriving datagram will be delivered to all pending
Receiving Datagrams that have source and destination
specifications matching those of the datagram. In other
words, if a program (or group of programs) issue a series of
identical Receive Datagrams, one datagram will cause the
entire series to complete.

4) Receive Broadcast Datagram

Receive a datagram sent as a broadcast.

If there are multiple pending Receive Broadcast Datagram
operations pending, all will be satisfied by the same
received datagram.

5.5. MISCELLANEOUS FUNCTIONS

The following functions are present to control the operation of the
hardware interface to the network. These functions are generally
implementation dependent.

1) Reset

Initialize the local network adapter.

2) Cancel

Abort a pending NetBIOS request. The successful cancel of a
Send (or Chain Send) operation will terminate the associated
session.

3) Adapter Status

Obtain information about the local network adapter or of a
remote adapter.

4) Unlink

For use with Remote Program Load (RPL). Unlink redirects
the PC boot disk device back to the local disk. See the

NetBIOS Working Group [Page 14]

Protocols for X/Open PC Interworkingz SMB, Version 2 363

Page 381 of 534

RFC 1001

RFC 1001 March 1987

NetBIOS specification for further details concerning RPL and
the Unlink operation (see page 2-35 in [2]).

5) Remote Program Load

Remote Program Load (RPL) is not a NetBIOS function. It is
a NetBIOS application defined by IBM in their NetBIOS
specification (see pages 2-80 through 2-82 in [2]).

5.6. NON-STANDARD EXTENSIONS

The IBM Token Ring implementation of NetBIOS has added at least one
new user capability:

1) Find Name

This function determines whether a given name has been
registered on the network.

6. NetBIOS FACILITIES SUPPORTED BY THIS STANDARD

The protocol specified by this standard permits an implementer to
provide all of the NetBIOS services as described in the IBM
"Technical Reference PC Network"[2].

The following NetBIOS facilities are outside the scope of this
specification. These are local implementation matters and do not
impact interoperability:

- RESET
— SESSION STATUS
- UNLINK

— RPL (Remote Program Load)

7. REQUIRED SUPPORTING SERVICE INTERFACES AND DEFINITIONS

The protocols described in this RFC require service interfaces to the
following:

- TCP[3,4]
- UDP[5]

Byte ordering, addressing conventions (including addresses to be
used for broadcasts and multicasts) are defined by the most
recent version of:

- Assigned Numbers[6]

Additional definitions and constraints are in:

NetBIOS Working Group [Page 15]

364 X/Open CAE Specification (1992)

Page 382 of 534

RFC 1001

RFC 1001 March 1987

- IP[7]
- Internet Subnets[8,9,10]

8. RELATED PROTOCOLS AND SERVICES

The design of the protocols described in this RFC allow for the
future incorporation of the following protocols and services.
However, before this may occur, certain extensions may be required to
the protocols defined in this RFC or to those listed below.

- Domain Name Service[ll,l2,l3,14]

- Internet Group Multicast[15,16]

9. NetBIOS SCOPE

A "NetBIOS Scope" is the population of computers across which a
registered NetBIOS name is known. NetBIOS broadcast and multicast
datagram operations must reach the entire extent of the NetBIOS
scope.

An internet may support multiple, non—intersecting NetBIOS Scopes.

Each NetBIOS scope has a "scope identifier". This identifier is a
character string meeting the requirements of the domain name system
for domain names.

NOTE: Each implementation of NetBIOS-over-TCP must provide
mechanisms to manage the scope identifier(s) to be used.

Control of scope identifiers implies a requirement for additional
NetBIOS interface capabilities. These may be provided through
extensions of the user service interface or other means (such as node

configuration parameters.) The nature of these extensions is not
part of this specification.

10. NetBIOS END—NODES

End—nodes support NetBIOS service interfaces and contain
applications.

Three types of end—nodes are part of this standard:

- Broadcast ("B") nodes

- Point-to—point ("P") nodes
- Mixed mode ("M") nodes

An IP address may be associated with only one instance of one of the
above types.

Without having preloaded name-to—address tables, NetBIOS participants

NetBIOS Working Group [Page 16]

Protocols for X/Open PC Interworkingz SMB, Version 2 365

Page 383 of 534

RFC 1001

RFC 1001 March 1987

are faced with the task of dynamically resolving references to one
another. This can be accomplished with broadcast or mediated point-
to-point communications.

B nodes use local network broadcasting to effect a rendezvous with
one or more recipients. P and M nodes use the NetBIOS Name Server
(NBNS) and the NetBIOS Datagram Distribution Server (NBDD) for this
same purpose.

End—nodes may be combined in various topologies. No matter how
combined, the operation of the B, P, and M nodes is not altered.

NOTE: It is recommended that the administration of a NetBIOS

scope avoid using both M and B nodes within the same scope.
A NetBIOS scope should contain only B nodes or only P and M
nodes.

10.1. BROADCAST (B) NODES

Broadcast (or "B") nodes communicate using a mix of UDP datagrams
(both broadcast and directed) and TCP connections. B nodes may
freely interoperate with one another within a broadcast area. A
broadcast area is a single MAC—bridged "B-LAN". (See Appendix A for
a discussion of using Internet Group Multicasting as a means to
extend a broadcast area beyond a single B-LAN.)

10.2. POINT—TO—POINT (P) NODES

Point-to—point (or "P") nodes communicate using only directed UDP
datagrams and TCP sessions. P nodes neither generate nor listen for
broadcast UDP packets. P nodes do, however, offer NetBIOS level
broadcast and multicast services using capabilities provided by the
NBNS and NBDD.

P nodes rely on NetBIOS name and datagram distribution servers.
These servers may be local or remote; P nodes operate the same in
either case.

10.3. MIXED MODE (M) NODES

Mixed mode nodes (or "M") nodes are P nodes which have been given
certain B node characteristics. M nodes use both broadcast and

unicast. Broadcast is used to improve response time using the
assumption that most resources reside on the local broadcast medium
rather than somewhere in an internet.

M nodes rely upon NBNS and NBDD servers. However, M nodes may
continue limited operation should these servers be temporarily
unavailable.

NetBIOS Working Group [Page 17]

366 X/Open CAE Specification (1992)

Page 384 of 534

RFC 1001

RFC 1001 March 1987

ll. NetBIOS SUPPORT SERVERS

Two types of support servers are part of this standard:

— NetBIOS name server ("NBNS") nodes

- Netbios datagram distribution ("NBDD") nodes

NBNS and NBDD nodes are invisible to NetBIOS applications and are
part of the underlying NetBIOS mechanism.

NetBIOS name and datagram distribution servers are the focus of name
and datagram activity for P and M nodes.

Both the name (NBNS) and datagram distribution (NBDD) servers are
permitted to shift part of their operation to the P or M end—node
which is requesting a service.

Since the assignment of responsibility is dynamic, and since P and M
nodes must be prepared to operate should the NetBIOS server delegate
control to the maximum extent, the system naturally accommodates
improvements in NetBIOS server function. For example, as Internet
Group Multicasting becomes more widespread, new NBDD implementations
may elect to assume full responsibility for NetBIOS datagram
distribution.

Interoperability between different implementations is assured by
imposing requirements on end—node implementations that they be able
to accept the full range of legal responses from the NBNS or NBDD.

11.1. NetBIOS NAME SERVER (NBNS) NODES

The NBNS is designed to allow considerable flexibility with its
degree of responsibility for the accuracy and management of NetBIOS
names. On one hand, the NBNS may elect not to accept full
responsibility, leaving the NBNS essentially a "bulletin board" on
which name/address information is freely posted (and removed) by P
and M nodes without validation by the NBNS. Alternatively, the NBNS
may elect to completely manage and validate names. The degree of
responsibility that the NBNS assumes is asserted by the NBNS each
time a name is claimed through a simple mechanism. Should the NBNS
not assert full control, the NBNS returns enough information to the
requesting node so that the node may challenge any putative holder of
the name.

This ability to shift responsibility for NetBIOS name management
between the NBNS and the P and M nodes allows a network administrator

(or vendor) to make a tradeoff between NBNS simplicity, security, and
delay characteristics.

A single NBNS may be implemented as a distributed entity, such as the
Domain Name Service. However, this RFC does not attempt to define

NetBIOS Working Group [Page 18]

Protocols for X/Open PC Interworkingz SNIB, Version 2 367

Page 385 of 534

RFC 1001

RFC 1001 March 1987

the internal communications which would be used.

11.1.1. RELATIONSHIP OF THE NBNS TO THE DOMAIN NAME SYSTEM

The NBNS design attempts to align itself with the Domain Name System
in a number of ways.

First, the NetBIOS names are encoded in a form acceptable to the
domain name system.

Second, a scope identifier is appended to each NetBIOS name. This
identifier meets the restricted character set of the domain system
and has a leading period. This makes the NetBIOS name, in
conjunction with its scope identifier, a valid domain system name.

Third, the negotiated responsibility mechanisms permit the NBNS to be
used as a simple bulletin board on which are posted (name,address)
pairs. This parallels the existing domain sytem query service.

This RFC, however, requires the NBNS to provide services beyond those
provided by the current domain name system. An attempt has been made
to coalesce all the additional services which are required into a set
of transactions which follow domain name system styles of interaction
and packet formats.

Among the areas in which the domain name service must be extended
before it may be used as an NBNS are:

- Dynamic addition of entries
- Dynamic update of entry data
- Support for multiple instance (group) entries
- Support for entry time-to-live values and ability to accept

refresh messages to restart the time-to-live period
- New entry attributes

11.2. NetBIOS DATAGRAM DISTRIBUTION SERVER (NBDD) NODES

The internet does not yet support broadcasting or multicasting. The
NBDD extends NetBIOS datagram distribution service to this
environment.

The NBDD may elect to complete, partially complete, or totally refuse
to service a node's request to distribute a NetBIOS datagram. An
end—node may query an NBDD to determine whether the NBDD will deliver
a datagram to a specific NetBIOS name.

The design of NetBIOS-over—TCP lends itself to the use of Internet
Group Multicast. For details see Appendix A.

NetBIOS Working Group [Page 19]

368 X/Open CAE Specification (1992)

Page 386 of 534

RFC 1001

RFC 1001 March 1987

11.3. RELATIONSHIP OF NBNS AND NBDD NODES

This RFC defines the NBNS and NBDD as distinct, separate entities.

In the absence of NetBIOS name information, a NetBIOS datagram
distribution server must send a copy to each end—node within a
NetBIOS scope.

An implementer may elect to construct NBNS and NBDD nodes which have
a private protocol for the exchange of NetBIOS name information.
Alternatively, an NBNS and NBDD may be implemented within the same
device.

NOTE: Implementations containing private NBNS—NBDD protocols or
combined NBNS—NBDD functions must be clearly identified.

11.4. RELATIONSHIP OF NetBIOS SUPPORT SERVERS AND B NODES

As defined in this RFC, neither NBNS nor NBDD nodes interact with B

nodes. NetBIOS servers do not listen to broadcast traffic on any
broadcast area to which they may be attached. Nor are the NetBIOS
support servers even aware of B node activities or names claimed or
used by B nodes.

It may be possible to extend both the NBNS and NBDD so that they
participate in B node activities and act as a bridge to P and M
nodes. However, such extensions are beyond the scope of this
specification.

12. TOPOLOGIES

B, P, M, NBNS, and NBDD nodes may be combined in various ways to form
useful NetBIOS environments. This section describes some of these
combinations.

There are three classes of operation:

- Class 0: B nodes only.
- Class 1: P nodes only.
- Class 2: P and M nodes together.

In the drawings which follow, any P node may be replaced by an M
node. The effects of such replacement will be mentioned in
conjunction with each example below.

12.1. LOCAL

A NetBIOS scope is operating locally when all entities are within the
same broadcast area.

NetBIOS Working Group [Page 20]

Protocols for X/Open PC Interworkingz SMB, Version 2 369

Page 387 of 534

RFC 1001

RFC 1001 March 1987

12.1.1. B NODES ONLY

Local operation with only B nodes is the most basic mode of
operation. Name registration and discovery procedures use broadcast
mechanisms. The NetBIOS scope is limited by the extent of the
broadcast area. This configuration does not require NetBIOS support
servers.

====+=========+=====BROADCAST AREA=————+ ———————— ——+ ——————— ——+————

I I I I I
I I I I I+--+--+ +--+--+ +--+--+ +--+--+ +--+--+

I B I I B I I B I I B I I B I+-----+ +-----+ +-----+ +-----+ +-----+

12.1.2. P NODES ONLY

This configuration would typically be used when the network
administrator desires to eliminate NetBIOS as a source of broadcast

activity.

----+---------+----------+-B’CAST AREA—+—----=---=+------- ——+—===

I I I I I I
I I I I I I+--+--+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+

| P | | P | | NBNS | | P | | NBDD | | P |+-----+ +-----+ +-----+ +-----+ +-----+ +-----+

This configuration operates the same as if it were in an internet and
is cited here only due to its convenience as a means to reduce the
use of broadcast.

Replacement of one or more of the P nodes with M nodes will not
affect the operation of the other P and M nodes. P and M nodes will
be able to interact with one another. Because M nodes use broadcast,

overall broadcast activity will increase.

12.1.3. MIXED B AND P NODES

B and P nodes do not interact with one another. Replacement of P
nodes with M nodes will allow B's and M's to interact.

NOTE: B nodes and M nodes may be intermixed only on a local
broadcast area. B and M nodes should not be intermixed in
an internet environment.

NetBIOS Working Group [Page 21]

370 X/Open CAE Specification (1992)

Page 388 of 534

RFC 1001

RFC 1001 March 1987

12.2. INTERNET

12.2.1. P NODES ONLY

P nodes may be scattered at various locations in an internetwork.
They require both an NBNS and an NBDD for NetBIOS name and datagram
support, respectively.

The NetBIOS scope is determined by the NetBIOS scope identifier
(domain name) used by the various P (and M) nodes. An internet may
contain numerous NetBIOS scopes.

+-----+

I P I
+--+--+ | +-----+

1 P
1 1

1
+-----+ | | + - - - - --+ | +-----+

P + ———— --+ INTERNET +--+G’WAY |—+————+ P
+-----+ | | + - - - - --+ | +-----+

/-----+-----/ 1
/ 1 1

/ 1 P
+-————+ +--+--+ | +-----+
[NBNS + |NBDD |+-----+ +--+--+

Any P node may be replaced by an M node with no loss of function to
any node. However, broadcast activity will be increased in the
broadcast area to which the M node is attached.

NetBIOS Working Group [Page 22]

Protocols for X/Open PC Interworkingz SNIB, Version 2 371

Page 389 of 534

RFC 1001

RFC 1001 March 1987

12.2.2. MIXED M AND P NODES

M and P nodes may be mixed. When locating NetBIOS names, M nodes
will tend to find names held by other M nodes on the same common
broadcast area in preference to names held by P nodes or M nodes
elsewhere in the network.

+-----+

IPI+--+--+

I
I

/—----+----- +-----+ +-----+
P + ———— ——+ INTERNET + ———— --+NBDD

+-----+ | | +-----+
/-----+-----/

/ I
/ I+-----+ +--+--+

|NBNS + |G’WAY|+-----+ +--+--+

I
I

———-+-------——+----------+=B’CAST AREA—+-------- ——+ ------- ——+—===

I I I I I I
I I I I I I+--+--+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+

IMIIPIIMI IPIIMIIPI+-----+ +-----+ +--+--+ +-----+ +-----+ +-----+

NOTE: B and M nodes should not be intermixed in an internet

environment. Doing so would allow undetected NetBIOS name
conflicts to arise and cause unpredictable behavior.

13. GENERAL METHODS

Overlying the specific protocols, described later, are a few general
methods of interaction between entities.

13.1. REQUEST/RESPONSE INTERACTION STYLE

Most interactions between entities consist of a request flowing in
one direction and a subsequent response flowing in the opposite
direction.

In those situations where interactions occur on unreliable transports
(i.e. UDP) or when a request is broadcast, there may not be a strict
interlocking or one-to-one relationship between requests and
responses.

NetBIOS Working Group [Page 23]

372 X/Open CAE Specification (1992)

Page 390 of 534

RFC 1001

RFC 1001 March 1987

In no case, however, is more than one response generated for a
received request. While a response is pending the responding entity
may send one or more wait acknowledgements.

13 . 1 . 1 . RETRANSMISSION OF REQUESTS

UDP is an unreliable delivery mechanism where packets can be lost,
received out of transmit sequence, duplicated and delivery can be
significantly delayed. Since the NetBIOS protocols make heavy use of
UDP, they have compensated for its unreliability with extra
mechanisms.

Each NetBIOS packet contains all the necessary information to process
it. None of the protocols use multiple UDP packets to convey a
single request or response. If more information is required than
will fit in a single UDP packet, for example, when a P-type node
wants all the owners of a group name from a NetBIOS server, a TCP
connection is used. Consequently, the NetBIOS protocols will not
fail because of out of sequence delivery of UDP packets.

To overcome the loss of a request or response packet, each request
operation will retransmit the request if a response is not received
within a specified time limit.

Protocol operations sensitive to successive response packets, such as
name conflict detection, are protected from duplicated packets

because they ignore successive packets with the same NetBIOS
information. Since no state on the responder’s node is associated
with a request, the responder just sends the appropriate response
whenever a request packet arrives. Consequently, duplicate or
delayed request packets have no impact.

For all requests, if a response packet is delayed too long another
request packet will be transmitted. A second response packet being
sent in response to the second request packet is equivalent to a
duplicate packet. Therefore, the protocols will ignore the second
packet received. If the delivery of a response is delayed until
after the request operation has been completed, successfully or not,
the response packet is ignored.

13 . 1 . 2 . REQUESTS WITHOUT RESPONSES: DEMANDS

Some request types do not have matching responses. These requests
are known as "demands". In general a "demand" is an imperative
request; the receiving node is expected to obey. However, because
demands are unconfirmed, they are used only in situations where, at
most, limited damage would occur if the demand packet should be lost.

Demand packets are not retransmitted.

NetBIOS Working Group [Page 24]

Protocols for X/Open PC Interworkingz SMB, Version 2 373

Page 391 of 534

RFC 1001

RFC 1001 March 1987

13.2. TRANSACTIONS

Interactions between a pair of entities are grouped into
"transactions". These transactions comprise one or more
request/response pairs.

13.2.1. TRANSACTION ID

Since multiple simultaneous transactions may be in progress between a
pair of entities a "transaction id" is used.

The originator of a transaction selects an ID unique to the
originator. The transaction id is reflected back and forth in each
interaction within the transaction. The transaction partners must
match responses and requests by comparison of the transaction ID and
the IP address of the transaction partner. If no matching request
can be found the response must be discarded.

A new transaction ID should be used for each transaction. A simple
16 bit transaction counter ought to be an adequate id generator. It
is probably not necessary to search the space of outstanding
transaction ID to filter duplicates: it is extremely unlikely that
any transaction will have a lifetime that is more than a small
fraction of the typical counter cycle period. Use of the IP
addresses in conjunction with the transaction ID further reduces the
possibility of damage should transaction IDs be prematurely re—used.

13.3. TCP AND UDP FOUNDATIONS

This version of the NetBIOS—over—TCP protocols uses UDP for many
interactions. In the future this RFC may be extended to permit such
interactions to occur over TCP connections (perhaps to increase
efficiency when multiple interactions occur within a short time or
when NetBIOS datagram traffic reveals that an application is using
NetBIOS datagrams to support connection- oriented service.)

14. REPRESENTATION OF NETBIOS NAMES

NetBIOS names as seen across the client interface to NetBIOS are

exactly 16 bytes long. Within the NetBIOS—over—TCP protocols, a
longer representation is used.

There are two levels of encoding. The first level maps a NetBIOS
name into a domain system name. The second level maps the domain
system name into the "compressed" representation required for
interaction with the domain name system.

Except in one packet, the second level representation is the only
NetBIOS name representation used in NetBIOS-over-TCP packet formats.
The exception is the RDATA field of a NODE STATUS RESPONSE packet.

NetBIOS Working Group [Page 25]

374 X/Open CAE Specification (1992)

Page 392 of 534

RFC 1001

RFC 1001 March 1987

14.1. FIRST LEVEL ENCODING

The first level representation consists of two parts:

— NetBIOS name

- NetBIOS scope identifier

The 16 byte NetBIOS name is mapped into a 32 byte wide field using a
reversible, half-ASCII, biased encoding. Each half-octet of the
NetBIOS name is encoded into one byte of the 32 byte field. The
first half octet is encoded into the first byte, the second half-
octet into the second byte, etc.

Each 4-bit, half-octet of the NetBIOS name is treated as an 8-bit,

right-adjusted, zero—filled binary number. This number is added to
value of the ASCII character ’A’ (hexidecimal 41). The resulting 8-
bit number is stored in the appropriate byte. The following diagram
demonstrates this procedure:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

|a b c d|w x y z| ORIGINAL BYTE+-+-+-+-+-+-+-+-+

+ - - - - - - --+ + - - - - - - --+

| | SPLIT THE NIBBLESV V

01234567 01234567
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

|0000abcd| |0000wxyz|+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

I I
+ + ADD ’A’

I I
01234567 01234567

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

|01000001| |01000001|+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

This encoding results in a NetBIOS name being represented as a
sequence of 32 ASCII, upper-case characters from the set

{A,B,C. ..N,O,P}.

The NetBIOS scope identifier is a valid domain name (without a
leading dot).

An ASCII dot (2E hexidecimal) and the scope identifier are appended
to the encoded form of the NetBIOS name, the result forming a valid
domain name.

NetBIOS Working Group [Page 26]

Protocols for X/Open PC Interworkingz SMB, Version 2 375

Page 393 of 534

RFC 1001

RFC 1001 March 1987

For example, the NetBIOS name “The NetBIOS name" in the NetBIOS scope
"SCOPE.ID.COM" would be represented at level one by the ASCII
character string:

FEGHGFCAEOGFHEECEJEPFDCAHEGBGNGF.SCOPE.ID.COM

14.2. SECOND LEVEL ENCODING

The first level encoding must be reduced to second level encoding.
This is performed according to the rules defined in on page 31 of RFC
883[12] in the section on "Domain name representation and
compression". Also see the section titled "Name Formats" in the
Detailed Specifications[l].

15. NetBIOS NAME SERVICE

Before a name may be used, the name must be registered by a node.
Once acquired, the name must be defended against inconsistent
registration by other nodes. Before building a NetBIOS session or
sending a NetBIOS datagram, the one or more holders of the name must
be located.

The NetBIOS name service is the collection of procedures through
which nodes acquire, defend, and locate the holders of NetBIOS names.

The name service procedures are different depending whether the end-
node is of type B, P, or M.

15.1. OVERVIEW OF NetBIOS NAME SERVICE

15.1.1. NAME REGISTRATION (CLAIM)

Each NetBIOS node can own more than one name. Names are acquired
dynamically through the registration (name claim) procedures.

Every node has a permanent unique name. This name, like any other
name, must be explicitly registered by all end—node types.

A name can be unique (exclusive) or group (non-exclusive). A unique
name may be owned by a single node; a group name may be owned by any
number of nodes. A name ceases to exist when it is not owned by at
least one node. There is no intrinsic quality of a name which
determines its characteristics: these are established at the time of

registration.

Each node maintains state information for each name it has

registered. This information includes:

— Whether the name is a group or unique name
- Whether the name is "in conflict"

- Whether the name is in the process of being deleted

NetBIOS Working Group [Page 27]

376 X/Open CAE Specification (1992)

Page 394 of 534

RFC 1001

RFC 1001 March 1987

B nodes perform name registration by broadcasting claim requests,
soliciting a defense from any node already holding the name.

P nodes perform name registration through the agency of the NBNS.

M nodes register names through an initial broadcast, like B nodes,
then, in the absence of an objection, by following the same
procedures as a P node. In other words, the broadcast action may
terminate the attempt, but is not sufficient to confirm the
registration.

15.1.2. NAME QUERY (DISCOVERY)

Name query (also known as "resolution" or "discovery") is the
procedure by which the IP address(es) associated with a NetBIOS name
are discovered. Name query is required during the following
operations:

During session establishment, calling and called names must be
specified. The calling name must exist on the node that posts the
CALL. The called name must exist on a node that has previously
posted a LISTEN. Either name may be a unique or group name.

When a directed datagram is sent, a source and destination name must
be specified. If the destination name is a group name, a datagram is
sent to all the members of that group.

Different end-node types perform name resolution using different
techniques, but using the same packet formats:

- B nodes solicit name information by broadcasting a request.

- P nodes ask the NBNS.

— M nodes broadcast a request. If that does not provide the
desired information, an inquiry is sent to the NBNS.

15.1.3. NAME RELEASE

NetBIOS names may be released explicitly or silently by an end- node.
Silent release typically occurs when an end-node fails or is turned-
off. Most of the mechanisms described below are present to detect
silent name release.

15.1.3.1. EXPLICIT RELEASE

B nodes explicitly release a name by broadcasting a notice.

P nodes send a notification to their NBNS.

M nodes both broadcast a notice and inform their supporting NBNS.

NetBIOS Working Group [Page 28]

Protocols for X/Open PC Interworkingz SMB, Version 2 377

Page 395 of 534

RFC 1001

RFC 1001 March 1987

15.1.3.2. NAME LIFETIME AND REFRESH

Names held by an NBNS are given a lifetime during name registration.
The NBNS will consider a name to have been silently released if the
end—node fails to send a name refresh message to the NBNS before the
lifetime expires. A refresh restarts the lifetime clock.

NOTE: The implementor should be aware of the tradeoff between
accuracy of the database and the internet overhead that the
refresh mechanism introduces. The lifetime period should
be tuned accordingly.

For group names, each end—node must send refresh messages. A node
that fails to do so will be considered to have silently released the
name and dropped from the group.

The lifetime period is established through a simple negotiation
mechanism during name registration: In the name registration
request, the end—node proposes a lifetime value or requests an
infinite lifetime. The NBNS places an actual lifetime value into the
name registration response. The NBNS is always allowed to respond
with an infinite actual period. If the end node proposed an infinite
lifetime, the NBNS may respond with any definite period. If the end
node proposed a definite period, the NBNS may respond with any
definite period greater than or equal to that proposed.

This negotiation of refresh times gives the NBNS means to disable or
enable refresh activity. The end-nodes may set a minimum refresh
cycle period.

NBNS implementations which are completely reliable may disable
refresh.

15.1.3.3. NAME CHALLENGE

To detect whether a node has silently released its claim to a name,
it is necessary on occasion to challenge that node's current
ownership. If the node defends the name then the node is allowed to
continue possession. Otherwise it is assumed that the node has
released the name.

A name challenge may be issued by an NBNS or by a P or M node. A
challenge may be directed towards any end—node type: B, P, or M.

15.1.3.4. GROUP NAME FADE—OUT

NetBIOS groups may contain an arbitrarily large number of members.
The time to challenge all members could be quite large.

To avoid long delays when names are claimed through an NBNS, an

NetBIOS Working Group [Page 29]

378 X/Open CAE Specification (1992)

Page 396 of 534

RFC 1001

RFC 1001 March 1987

optimistic heuristic has been adopted. It is assumed that there will
always be some node which will defend a group name. Consequently, it
is recommended that the NBNS will immediately reject a claim request
for a unique name when there already exists a group with the same
name. The NBNS will never return an IP address (in response to a
NAME REGISTRATION REQUEST) when a group name exists.

An NBNS will consider a group to have faded out of existence when the
last remaining member fails to send a timely refresh message or
explicitly releases the name.

15.1.3.5. NAME CONFLICT

Name conflict exists when a unique name has been claimed by more than
one node on a NetBIOS network. B, M, and NBNS nodes may detect a
name conflict. The detection mechanism used by B and M nodes is

active only during name discovery. The NBNS may detect conflict at
any time it verifies the consistency of its name database.

B and M nodes detect conflict by examining the responses received in
answer to a broadcast name query request. The first response is
taken as authoritative. Any subsequent, inconsistent responses
represent conflicts.

Subsequent responses are inconsistent with the authoritative response
when:

The subsequent response has the same transaction ID as the
NAME QUERY REQUEST.

AND

The subsequent response is not a duplicate of the
authoritative response.

AND EITHER:

The group/unique characteristic of the authoritative
response is "unique".

OR

The group/unique characteristic of the subsequent
response is "unique".

The period in which E and M nodes examine responses is limited by a

conflict timer, CONFLICT_TIMER. The accuracy or duration of this
timer is not crucial: the NetBIOS system will continue to operate
even with persistent name conflicts.

Conflict conditions are signaled by sending a NAME CONFLICT DEMAND to
the node owning the offending name. Nothing is sent to the node
which originated the authoritative response.

Any end—node that receives NAME CONFLICT DEMAND is required to update
its "local name table" to reflect that the name is in conflict. (The
"local name table" on each node contains names that have been

NetBIOS Working Group [Page 30]

Protocols for X/Open PC Interworkingz SMB, Version 2 379

Page 397 of 534

RFC 1001

RFC 1001 March 1987

successfully registered by that node.)

Notice that only those nodes that receive the name conflict message
place a conflict mark next to a name.

Logically, a marked name does not exist on that node. This means
that the node should not defend the name (for name claim purposes),
should not respond to a name discovery requests for that name, nor
should the node send name refresh messages for that name.
Furthermore, it can no longer be used by that node for any session
establishment or sending or receiving datagrams. Existing sessions
are not affected at the time a name is marked as being in conflict.

The only valid user function against a marked name is DELETE NAME.
Any other user NetBIOS function returns immediately with an error
code of "NAME CONFLICT".

15.1.4. ADAPTER STATUS

An end-node or the NBNS may ask any other end-node for a collection
of information about the NetBIOS status of that node. This status

consists of, among other things, a list of the names which the node
believes it owns. The returned status is filtered to contain only
those names which have the same NetBIOS scope identifier as the
requestor’s name.

When requesting node status, the requestor identifies the target node
by NetBIOS name A name query transaction may be necessary to acquire
the IP address for the name. Locally cached name information may be
used in lieu of a query transaction. The requesting node sends a
NODE STATUS REQUEST. In response, the receiving node sends a NODE
STATUS RESPONSE containing its local name table and various
statistics.

The amount of status which may be returned is limited by the size of
a UDP packet. However, this is sufficient for the typical NODE
STATUS RESPONSE packet.

15.1.5. END—NODE NBNS INTERACTION

There are certain characteristics of end-node to NBNS interactions

which are in common and are independent of any particular transaction
type.

15.1.5.1. UDP, TCP, AND TRUNCATION

For all transactions between an end-node and an NBNS, either UDP or

TCP may be used as a transport. If the NBNS receives a UDP based
request, it will respond using UDP. If the amount of information
exceeds what fits into a UDP packet, the response will contain a
"truncation flag". In this situation, the end- node may open a TCP

NetBIOS Working Group [Page 31]

380 X/Open CAE Specification (1992)

Page 398 of 534

RFC 1001

RFC 1001 March 1987

connection to the NBNS, repeat the request, and receive a complete,
untruncated response.

15.1.5.2. NBNS WACK

While a name service request is in progress, the NBNS may issue a
WAIT FOR ACKNOWLEDGEMENT RESPONSE (WACK) to assure the client end-

node that the NBNS is still operational and is working on the
request.

15.1.5.3. NBNS REDIRECTION

The NBNS, because it follows Domain Name system styles of

interaction, is permitted to redirect a client to another NBNS.

15.1.6. SECURED VERSUS NON-SECURED NBNS

An NBNS may be implemented in either of two general ways: The NBNS
may monitor, and participate in, name activity to ensure consistency.
This would be a "secured" style NBNS. Alternatively, an NBNS may be

implemented to be essentially a "bulletin board" on which name
information is posted and responsibility for consistency is delegated
to the end—nodes. This would be a "non-secured" style NBNS.

15.1.7. CONSISTENCY OF THE NBNS DATA BASE

Even in a properly running NetBIOS scope the NBNS and its community
of end-nodes may occasionally lose synchronization with respect to
the true state of name registrations.

This may occur should the NBNS fail and lose all or part of its
database.

More commonly, a P or M node may be turned-off (thus forgetting the
names it has registered) and then be subsequently turned back on.

Finally, errors may occur or an implementation may be incorrect.

Various approaches have been incorporated into the NetBIOS-over— TCP
protocols to minimize the impact of these problems.

1. The NBNS (or any other node) may "challenge" (using a NAME
QUERY REQUEST) an end-node to verify that it actually owns a
name.

Such a challenge may occur at any time. Every end-node must
be prepared to make a timely response.

Failure to respond causes the NBNS to consider that the
end-node has released the name in question.

NetBIOS Working Group [Page 32]

Protocols for X/Open PC Interworkingz SMB, Version 2 381

Page 399 of 534

RFC 1001

RFC 1001 March 1987

(If UDP is being used as the underlying transport, the
challenge, like all other requests, must be retransmitted
some number of times in the absence of a response.)

2. The NBNS (or any other node) may request (using the NODE
STATUS REQUEST) that an end-node deliver its entire name
table.

This may occur at any time. Every end-node must be prepared
to make a timely response.

Failure to respond permits (but does not require) the NBNS
to consider that the end-node has failed and released all

names to which it had claims. (Like the challenge, on a UDP
transport, the request must be retransmitted in the absence
of a response.)

3. The NBNS may revoke a P or M node's use of a name by sending
either a NAME CONFLICT DEMAND or a NAME RELEASE REQUEST to
the node.

The receiving end—node may continue existing sessions which
use that name, but must otherwise cease using that name. If
the NBNS placed the name in conflict, the name may be re-
acquired only by deletion and subsequent reclamation. If
the NBNS requested that the name be released, the node may
attempt to re-acquire the name without first performing a
name release transaction.

4. The NBNS may impose a "time—to—live" on each name it
registers. The registering node is made aware of this time
value during the name registration procedure.

Simple or reliable NBNS’s may impose an infinite time-to-
live.

5. If an end-node holds any names that have finite time-to-
live values, then that node must periodically send a status
report to the NBNS. Each name is reported using the NAME
REFRESH REQUEST packet.

These status reports restart the timers of both the NBNS and
the reporting node. However, the only timers which are
restarted are those associated with the name found in the

status report. Timers on other names are not affected.

The NBNS may consider that a node has released any name
which has not been refreshed within some multiple of name's
time-to—live.

A well-behaved NBNS, would, however, issue a challenge to—,

NetBIOS Working Group [Page 33]

382 X/Open CAE Specification (1992)

Page 400 of 534

RFC 1001

RFC 1001 March 1987

or request a list of names from—, the non-reporting end-
node before deleting its name(s). The absence of a
response, or of the name in a response, will confirm the
NBNS decision to delete a name.

6. The absence of reports may cause the NBNS to infer that the
end—node has failed. Similarly, receipt of information
widely divergent from what the NBNS believes about the node,
may cause the NBNS to consider that the end—node has been
restarted.

The NBNS may analyze the situation through challenges or
requests for a list of names.

7. A very cautious NBNS is free to poll nodes (by sending NAME
QUERY REQUEST or NODE STATUS REQUEST packets) to verify that
their name status is the same as that registered in the
NBNS.

NOTE: Such polling activity, if used at all by an
implementation, should be kept at a very low level or
enabled only during periods when the NBNS has some reason to
suspect that its information base is inaccurate.

8. P and M nodes can detect incorrect name information at
session establishment.

If incorrect information is found, NBNS is informed via a

NAME RELEASE REQUEST originated by the end—node which
detects the error.

15.1.8. NAME CACHING

An end—node may keep a local cache of NetBIOS name-to-IP address
translation entries.

All cache entries should be flushed on a periodic basis.

In addition, a node ought to flush any cache information associated
with an IP address if the node receives any information indicating
that there may be any possibility of trouble with the node at that IP
address. For example, if a NAME CONFLICT DEMAND is sent to a node,
all cached information about that node should be cleared within the

sending node.

15.2. NAME REGISTRATION TRANSACTIONS

15.2.1. NAME REGISTRATION BY B NODES

A name claim transaction initiated by a B node is broadcast
throughout the broadcast area. The NAME REGISTRATION REQUEST will be

NetBIOS Working Group [Page 34]

Protocols for X/Open PC Interworkingz SMB, Version 2 383

Page 401 of 534

RFC 1001

RFC 1001 March 1987

heard by all B and M nodes in the area. Each node examines the claim
to see whether it it is consistent with the names it owns. If an

inconsistency exists, a NEGATIVE NAME REGISTRATION RESPONSE is
unicast to the requestor. The requesting node obtains ownership of
the name (or membership in the group) if, and only if, no NEGATIVE
NAME REGISTRATION RESPONSEs are received within the name claim

timeout, CONFLICT_TIMER. (See "Defined Constants and Variables" in
the Detailed Specification for the value of this timer.)

A B node proclaims its new ownership by broadcasting a NAME OVERWRITE
DEMAND.

B—NODE REGISTRATION PROCESS
<----—NAME NOT ON NETWORK — — — — ——> <---—NAME ALREADY EXISTS---->

REQ. NODE NODE REQ.NODE
HOLDING

NAME

(BROADCAST) REGISTER (BROADCAST) REGISTER
_________________ __> <___________________

REGISTER REGISTER
_________________ __> <___________________

REGISTER NEGATIVE RESPONSE
_________________ -_> -________________-____________>

OVERWRITE

————————————————— ——> (NODE DOES NOT HAVE THE NAME)

(NODE HAS THE NAME)

The NAME REGISTRATION REQUEST, like any request, must be repeated if

no response is received within BCAST_REQ_RETRY_TIMEOUT. Transmission
of the request is attempted BCAST_REQfiRETRY_COUNT times.

15.2.2. NAME REGISTRATION BY P NODES

A name registration may proceed in various ways depending whether
the name being registered is new to the NBNS. If the name is known
to the NBNS, then challenges may be sent to the prior holder(s).

15.2.2.1. NEW NAME, OR NEW GROUP MEMBER

The diagram, below, shows the sequence of events when an end-node
registers a name which is new to the NBNS. (The diagram omits WACKs,
NBNS redirections, and retransmission of requests.)

This same interaction will occur if the name being registered is a
group name and the group already exists. The NBNS will add the

NetBIOS Working Group [Page 35]

384 X/Open CAE Specification (1992)

Page 402 of 534

RFC 1001

RFC 1001 March 1987

registrant to the set of group members.

P—NODE REGISTRATION PROCESS

(server has no previous information about the name)

P—NODE NBNS
REGISTER

_ __>

POSITIVE RESPONSE
< — - — — — — — — — — — — — — — — — — — - — — — — — - — — — — — --

The interaction is rather simple: the end-node sends a NAME
REGISTRATION REQUEST, the NBNS responds with a POSITIVE NAME
REGISTRATION RESPONSE.

15.2.2.2. EXISTING NAME AND OWNER IS STILL ACTIVE

The following diagram shows interactions when an attempt is made to
register a unique name, the NBNS is aware of an existing owner, and
that existing owner is still active.

There are two sides to the diagram. The left side shows how a non-
secured NBNS would handle the matter. Secured NBNS activity is shown
on the right.

P—NODE REGISTRATION PROCESS

(server HAS a previous owner that IS active)

< ———— ——NoN—SEcURED STYLE ————— ——> < ——————— ——SEcURED STYLE ————— ——>

REQ. NoDE NBNS NoDE NBNS REQ.NoDE
HOLDING

NAME

REGISTER REGISTER
_________________ __> <___________________

QUERY
END—NoDE CHALLENGE < —————————— --

< ————————————————— —— QUERY
< - - - - - - - - - - --

QUERY

——————————————————————————— -—> NEGATIVE RESPONSE
_______________ __>

POSITIVE RESPONSE
< — - - - - - - — — — - - — — — — - - — — - — - - — — --

NetBIOS Working Group [Page 36]

Protocols for X/Open PC Interworkingz SMB, Version 2 385

Page 403 of 534

RFC 1001

RFC 1001 March 1987

A non—secured NBNS will answer the NAME REGISTRATION REQUEST with a

END—NODE CHALLENGE REGISTRATION RESPONSE. This response asks the
end—node to issue a challenge transaction against the node indicated
in the response. In this case, the prior node will defend against
the challenge and the registering end—node will simply drop the
registration attempt without further interaction with the NBNS.

A secured NBNS will refrain from answering the NAME REGISTRATION
REQUEST until the NBNS has itself challenged the prior holder(s) of
the name. In this case, the NBNS finds that that the name is still

being defended and consequently returns a NEGATIVE NAME REGISTRATION
RESPONSE to the registrant.

Due to the potential time for the secured NBNS to make the
challenge(s), it is likely that a WACK will be sent by the NBNS to
the registrant.

Although not shown in the diagram, a non—secured NBNS will send a
NEGATIVE NAME REGISTRATION RESPONSE to a request to register a unique
name when there already exists a group of the same name. A secured
NBNS may elect to poll (or challenge) the group members to determine
whether any active members remain. This may impose a heavy load on
the network. It is recommended that group names be allowed to fade-
out through the name refresh mechanism.

15.2.2.3. EXISTING NAME AND OWNER IS INACTIVE

The following diagram shows interactions when an attempt is made to
register a unique name, the NBNS is aware of an existing owner, and
that existing owner is no longer active.

A non—secured NBNS will answer the NAME REGISTRATION REQUEST with a

END—NODE CHALLENGE REGISTRATION RESPONSE. This response asks the
end—node to issue a challenge transaction against the node indicated
in the response. In this case, the prior node will not defend
against the challenge. The registrant will inform the NBNS through a
NAME OVERWRITE REQUEST. The NBNS will replace the prior name
information in its database with the information in the overwrite

request.

A secured NBNS will refrain from answering the NAME REGISTRATION
REQUEST until the NBNS has itself challenged the prior holder(s) of
the name. In this case, the NBNS finds that that the name is not

being defended and consequently returns a POSITIVE NAME REGISTRATION
RESPONSE to the registrant.

NetBIOS Working Group [Page 37]

386 X/Open CAE Specification (1992)

Page 404 of 534

RFC 1001

RFC 1001 March 1987

P—NODE REGISTRATION PROCESS

(server HAS a previous owner that is NOT active)

< ———— ——NON—SEcURED STYLE———--> < ———————— —-SECURED STYLE —————— —->

REQ. NODE NBNS NODE NBNS REQ.NODE
HOLDING

NAME

REGISTER REGISTER
_________________ __> <___________________

QUERY
END—NODE CHALLENGE < ---------- --

< ————————————————— —— QUERY
< - - - - - - - - - - --

NAME QUERY REQUEST POSITIVE RESPONSE
- — — - - — - — — - - — — — — - - — - — — - - — — — —-> ------------------>

QUERY
__________________________ __>

OVERWRITE
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __>

POSITIVE RESPONSE
< - - - - - - - - - - - - - - - - --

Due to the potential time for the secured NBNS to make the
challenge(s), it is likely that a WACK will be sent by the NBNS to
the registrant.

A secured NBNS will immediately send a NEGATIVE NAME REGISTRATION
RESPONSE in answer to any NAME OVERWRITE REQUESTS it may receive.

15.2.3. NAME REGISTRATION BY M NODES

An M node begin a name claim operation as if the node were a B node:
it broadcasts a NAME REGISTRATION REQUEST and listens for NEGATIVE

NAME REGISTRATION RESPONSEs. Any NEGATIVE NAME REGISTRATION RESPONSE

prevents the M node from obtaining the name and terminates the claim
operation.

If, however, the M node does not receive any NEGATIVE NAME
REGISTRATION RESPONSE, the M node must continue the claim procedure
as if the M node were a P node.

Only if both name claims were successful does the M node acquire the
name.

The following diagram illustrates M node name registration:

NetBIOS Working Group [Page 38]

Protocols for X/Open PC Interworkingz SMB, Version 2 387

Page 405 of 534

RFC 1001

RFC 1001 March 1987

M—NODE REGISTRATION PROCESS

<--—NAME NOT IN BROADCAST AREA—-> <-—NAME IS IN BROADCAST AREA—->

REQ. NODE NODE REQ.NODE
HOLDING

NAME

(BROADCAST) REGISTER (BROADCAST) REGISTER
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __> <___________________

REGISTER REGISTER
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __> <___________________

REGISTER NEGATIVE RESPONSE
- — — — — — — — — - — — — — — — — -—> -——————-—-———————-—————-———-—-->

! (NODE DOES NOT HAVE THE NAME)
INITIATE I
A P—NODE 1
REGISTRATION I

V

15.3. NAME QUERY TRANSACTIONS

Name query transactions are initiated by end—nodes to obtain the IP
address(es) and other attributes associated with a NetBIOS name.

15.3.1. QUERY BY B NODES

The following diagram shows how B nodes go about discovering who owns
a name.

The left half of the diagram illustrates what happens if there are no
holders of the name. In that case no responses are received in
answer to the broadcast NAME QUERY REQUEST(s).

The right half shows a POSITIVE NAME QUERY RESPONSE unicast by a name
holder in answer to the broadcast request. A name holder will make
this response to every NAME QUERY REQUEST that it hears. And each
holder acts this way. Thus, the node sending the request may receive
many responses, some duplicates, and from many nodes.

NetBIOS Working Group [Page 39]

388 X/Open CAE Specification (1992)

Page 406 of 534

RFC 1001

RFC 1001 March 1987

B—NODE DISCOVERY PROCESS

< - - - - -—NAME NOT ON NETWORK — - - - --> <--—NAME PRESENT ON NETWORK-->

REQ. NODE NODE REQ.NODE
HOLDING

NAME

(BROADCAST) QUERY (BROADCAST) QUERY
_ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ __> <-_____-_____-_____-__

NAME QUERY REQUEST NAME QUERY REQUEST
_ __> <_____________________

QUERY POSITIVE RESPONSE
— --> ---———————————————-———————————>

Name query is generally, but not necessarily, a prelude to NetBIOS
session establishment or NetBIOS datagram transmission. However,
name query may be used for other purposes.

A B node may elect to build a group membership list for subsequent
use (e.g. for session establishment) by collecting and saving the
responses.

15.3.2. QUERY BY P NODES

An NBNS answers queries from a P node with a list of IP address and
other information for each owner of the name. If there are multiple
owners (i.e. if the name is a group name), the NBNS loads as many
answers into the response as will fit into a UDP packet. A
truncation flag indicates whether any additional owner information
remains. All the information may be obtained by repeating the query
over a TCP connection.

The NBNS is not required to impose any order on its answer list.

The following diagram shows what happens if the NBNS has no
information about the name:

P—NODE DISCOVERY PROCESS

(server has no information about the name)

P—NODE NBNS

NAME QUERY REQUEST
_ __>

NEGATIVE RESPONSE
< --

NetBIOS Working Group [Page 40]

Protocols for X/Open PC Interworkingz SMB, Version 2 389

Page 407 of 534

RFC 1001

RFC 1001 March 1987

The next diagram illustrates interaction between the end-node and the
NBNS when the NBNS does have information about the name. This

diagram shows, in addition, the retransmission of the request by the
end-node in the absence of a timely response. Also shown are WACKs
(or temporary, intermediate responses) sent by the NBNS to the end-
node:

P—NODE QUERY PROCESS
(server HAS information about the name)

P—NODE NBNS

NAME QUERY REQUEST

/ -------------------------------------- -—>

/
I (OPTIONAL) WACK
I <- - - - - - - - - - - - _ _ _ _ - _ _ _
I I

ltimer I

I I (optional timer restart)I I

V QUERY
_ __>

QUERY

/ -------------------------------------- -->
/
I (OPTIONAL) WACK
I <- - - - - - - - - - - - - _ _ _ _ _ _ _
I 1

ltimer I

POSITIVE RESPONSE
< --

The following diagram illustrates NBNS redirection. Upon receipt of
a NAME QUERY REQUEST, the NBNS redirects the client to another NBNS.

The client repeats the request to the new NBNS and obtains a
response. The diagram shows that response as a POSITIVE NAME QUERY
RESPONSE. However any legal NBNS response may occur in actual
operation.

NetBIOS Working Group [Page 41]

390 X/Open CAE Specification (1992)

Page 408 of 534

RFC 1001

RFC 1001 March 1987

NBNS REDIRECTION

NAME QUERY REQUEST
_ __>

REDIRECT NAME QUERY RESPONSE
< --

(START FROM THE
VERY BEGINNING
USING THE ADDRESS
OF THE NEWLY

SUPPLIED NBNS.)

P—NODE NBNS

NAME QUERY REQUEST
_ . _ _ _ _ _ _ _ _ _ __>

POSITIVE NAME QUERY RESPONSE
< --

The next diagram shows how a P or M node tells the NBNS that the NBNS
has provided incorrect information. This procedure may begin after a
DATAGRAM ERROR packet has been received or a session set-up attempt
has discovered that the NetBIOS name does not exist at the

destination, the IP address of which was obtained from the NBNS

during a prior name query transaction. The NBNS, in this case a
secure NBNS, issues queries to verify whether the information is, in
fact, incorrect. The NBNS closes the transaction by sending either a
POSITIVF or NPGATIVF NAMP RFLPASP RFSPONSE, depending on the results
of the verification.

CORRECTING NBNS INFORMATION BASE

P—NODE NBNS

NAME RELEASE REQUEST

(NAME TAKEN OFF THE DATABASE
IF NBNS FINDS IT TO BE

INCORRECT)

POSITIVE/NEGATIVE RESPONSE
< --

NetBIOS Working Group [Page 42]

Protocols for X/Open PC Interworking: SMB, Version 2 391

Page 409 of 534

RFC 1001

RFC 1001 March 1987

15.3.3. QUERY BY M NODES

M node name query follows the B node pattern. In the absence of
adequate results, the M node then continues by performing a P node
type query. This is shown in the following diagram:

M—NODE DISCOVERY PROCESS

<--—NAME NOT ON BROADCAST AREA—-> <-—NAME IS ON BROADCAST AREA—>

REQ. NODE NODE REQ.NODE
HOLDING

NAME

(BROADCAST) QUERY (BROADCAST) QUERY
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __> <______________________

NAME QUERY REQUEST NAME QUERY REQUEST
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __> <______________________

QUERY POSITIVE RESPONSE
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __> _______________________________>

I
INITIATE I
A P—NODE I
DISCOVERY I
PROCESS I

V

15.3.4. ACQUIRE GROUP MEMBERSHIP LIST

The entire membership of a group may be acquired by sending a NAME
QUERY REQUEST to the NBNS. The NBNS will respond with a POSITIVE
NAME QUERY RESPONSE or a NEGATIVE NAME QUERY RESPONSE. A negative
response completes the procedure and indicates that there are no
members in the group.

If the positive response has the truncation bit clear, then the
response contains the entire list of group members. If the
truncation bit is set, then this entire procedure must be repeated,
but using TCP as a foundation rather than UDP.

NetBIOS Working Group [Page 43]

392 X/Open CAE Specification (1992)

Page 410 of 534

RFC 1001

RFC 1001

15.4. NAME RELEASE TRANSACTIONS

15.4.1. RELEASE BY B NODES

A NAME RELEASE DEMAND contains the following information:

— NetBIOS name

— The scope of the NetBIOS name

- Name type: unique or group
- IP address of the releasing node
- Transaction ID

REQUESTING OTHER
B—NODE B—NODES

NAME RELEASE DEMAND
_ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ __>

15.4.2. RELEASE BY P NODES

A NAME RELEASE REQUEST contains the following information:

- NetBIOS name

- The scope of the NetBIOS name

- Name type: unique or group
- IP address of the releasing node
- Transaction ID

A NAME RELEASE RESPONSE contains the following information:

- NetBIOS name

- The scope of the NetBIOS name

- Name type: unique or group
- IP address of the releasing node
- Transaction ID

March 1987

- Result:
- Yes: name was released

- No: name was not released, a reason code is provided

REQUESTING
P—NODE NBNS

NAME RELEASE REQUEST
_ __>

NAME RELEASE RESPONSE
< --

15.4.3. RELEASE BY M NODES

The name release procedure of the M node is a combination of the P
and B node name release procedures.

NetBIOS Working Group

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 411 of 534

The M node first performs the P

[Page 44]

393

RFC 1001

RFC 1001 March 1987

release procedure. If the P procedure fails then the release
procedure does not continue, it fails. If and only if the P
procedure succeeds then the M node broadcasts the NAME RELEASE DEMAND
to the broadcast area, the B procedure.

NOTE: An M node typically performs a B—style operation and then a
P-style operation. In this case, however, the P-style
operation comes first.

The following diagram illustrates the M node name release procedure:

<-----P procedure fails - - - - - --> < - - - — - --P procedure succeeds--->

REQUESTING NBNS REQUESTING NBNS
M—NODE M—NODE

NAME RELEASE REQUEST NAME RELEASE REQUEST
— — - - — - — — - - — - — — — - — - — — - - — — --> —--—-——--—-——--—-——--—-—>

NEGATIVE RELEASE RESPONSE POSITIVE RELEASE RESPONSE
< -- < --

OTHER
M—NODES

NAME RELEASE DEMAND
_ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ __>

15.5. NAME MAINTENANCE TRANSACTIONS

15.5.1. NAME REFRESH

Name refresh transactions are used to handle the following
situations:

a) An NBNS node needs to detect if a P or M node has "silently"
gone down, so that names held by that node can be purged
from the data base.

b) If the NBNS goes down, it needs to be able to reconstruct
the data base when it comes back up.

c) If the network should be partitioned, the NBNS needs to be
able to able to update its data base when the network
reconnects.

Each P or M node is responsible for sending periodic NAME REFRESH
REQUESTs for each name that it has registered. Each refresh packet
contains a single name that has been successfully registered by that

NetBIOS Working Group [Page 45]

394 X/Open CAE Specification (1992)

Page 412 of 534

RFC 1001

RFC 1001 March 1987

node. The interval between such packets is negotiated between the
end node and the NBNS server at the time that the name is initially
claimed. At name claim time, an end node will suggest a refresh
timeout value. The NBNS node can modify this value in the reply
packet. A NBNS node can also choose to tell the end node to not send
any refresh packet by using the "infinite" timeout value in the
response packet. The timeout value returned by the NBNS is the
actual refresh timeout that the end node must use.

When a node sends a NAME REFRESH REQUEST, it must be prepared to
receive a negative response. This would happen, for example, if the
the NBNS discovers that the the name had already been assigned to
some other node. If such a response is received, the end node should
mark the name as being in conflict. Such an entry should be treated
in the same way as if name conflict had been detected against the
name. The following diagram illustrates name refresh:

<-----Successful Refresh—----> <-----Unsuccessful Refresh---->

REFRESHING NBNS REFRESHING NBNS
NODE NODE

NAME REFRESH REQUEST NAME REFRESH REQUEST
- --> ----------------------->

POSITIVE RESPONSE NEGATIVE RESPONSE
< — — - — — - — — - — - - — - - — - - — - - — -- < — — - — — - — — - — — - — - - — - - — - - --

!
!

V
MARK NAME IN

CONFLICT

15.5.2. NAME CHALLENGE

Name challenge is done by sending a NAME QUERY REQUEST to an end node
of any type. If a POSITIVE NAME QUERY RESPONSE is returned, then
that node still owns the name. If a NEGATIVE NAME QUERY RESPONSE is

received or if no response is received, it can be assumed that the
end node no longer owns the name.

Name challenge can be performed either by the NBNS node, or by an end
node. When an end—node sends a name claim packet, the NBNS node may
do the challenge operation. The NBNS node can choose, however, to
require the end node do the challenge. In that case, the NBNS will
send an END—NODE CHALLENGE RESPONSE packet to the end node, which
should then proceed to challenge the putative owner.

Note that the name challenge procedure sends a normal NAME QUERY
REQUEST packet to the end node. It does not require a special
packet. The only new packet introduced is the END—NODE CHALLENGE

NetBIOS Working Group [Page 46]

Protocols for X/Open PC Interworkingz SNIB, Version 2 395

Page 413 of 534

RFC 1001

RFC 1001 March 1987

RESPONSE which is sent by an NBNS node when the NBNS wants the end-
node to perform the challenge operation.

15.5.3. CLEAR NAME CONFLICT

It is possible during a refresh request from a M or P node for a NBNS
to detects a name in conflict. The response to the NAME REFRESH
REQUEST must be a NEGATIVE NAME REGISTRATION RESPONSE. Optionally,
in addition, the NBNS may send a NAME CONFLICT DEMAND or a NAME
RELEASE REQUEST to the refreshing node. The NAME CONFLICT DEMAND
forces the node to place the name in the conflict state. The node
will eventually inform it's user of the conflict. The NAME RELEASE
REQUEST will force the node to flush the name from its local name

table completely. This forces the node to flush the name in
conflict. This does not cause termination of existing sessions using
this name.

The following diagram shows an NBNS detecting and correcting a
conflict:

REFRESHING NODE NBNS

NAME REFRESH REQUEST
_ . _ _ _ _ _ _ _ _ _ _ _ _ __>

NEGATIVE NAME REGISTRATION RESPONSE
< - — — - — — - — - - — - - — - - — - - — - - — — - — — - — — - — — - — — - — — --

NAME CONFLICT DEMAND
< --

OR

NAME RELEASE REQUEST
< --

POSITIVE/NEGATIVE RELEASE REQUEST
_______________________________________ _ _ >

15.6. ADAPTER STATUS TRANSACTIONS

Adapter status is obtained from a node as follows:

1. Perform a name discovery operation to obtain the IP
addresses of a set of end-nodes.

2. Repeat until all end-nodes from the set have been used:

a. Select one end-node from the set.

b. Send a NODE STATUS REQUEST to that end-node using UDP.

NetBIOS Working Group [Page 47]

396 X/Open CAE Specification (1992)

Page 414 of 534

RFC 1001

RFC 1001 March 1987

c. Await a NODE STATUS RESPONSE. (If a timely response is

not forthcoming, repeat step "b" UCAST_REQ_RETRY_COUNT
times. After the last retry, go to step "a".)

d. If the truncation bit is not set in the response, the
response contains the entire node status. Return the
status to the user and terminate this procedure.

e. If the truncation bit is set in the response, then not
all status was returned because it would not fit into

the response packet. The responder will set the
truncation bit if the IP datagram length would exceed
MAX_DATAGRAM_LENGTH. Return the status to the user and
terminate this procedure.

3. Return error to user, I10 status obtained.

The repetition of step 2, above, through all nodes of the set, is
optional.

Following is an example transaction of a successful Adapter Status
operation:

REQUESTING NODE NAME OWNER

NAME QUERY REQUEST
_ __>

POSITIVE NAME QUERY RESPONSE
< - — — — - — - — — — - — - — — — - — — — — - - — — - - - — — — - — - — — - - - --

NODE STATUS REQUEST
_ __>

NODE STATUS RESPONSE
< --

16. NetBIOS SESSION SERVICE

The NetBIOS session service begins after one or more IP addresses
have been found for the target name. These addresses may have been
acquired using the NetBIOS name query transactions or by other means,
such as a local name table or cache.

NetBIOS session service transactions, packets, and protocols are
identical for all end—node types. They involve only directed
(point-to—point) communications.

NetBIOS Working Group [Page 48]

Protocols for X/Open PC Interworkingz SMB, Version 2 397

Page 415 of 534

RFC 1001

RFC 1001 March 1987

16.1. OVERVIEW OF NetBIOS SESSION SERVICE

Session service has three phases:

Session establishment - it is during this phase that the IP
address and TCP port of the called name is determined, and a
TCP connection is established with the remote party.

Steady state - it is during this phase that NetBIOS data
messages are exchanged over the session. Keep-alive packets
may also be exchanged if the participating nodes are so
configured.

Session close - a session is closed whenever either a party (in
the session) closes the session or it is determined that one

of the parties has gone down.

16.1.1. SESSION ESTABLISHMENT PHASE OVERVIEW

An end—node begins establishment of a session to another node by
somehow acquiring (perhaps using the name query transactions or a
local cache) the IP address of the node or nodes purported to own the
destination name.

Every end—node awaits incoming NetBIOS session requests by listening

for TCP calls to a well-known service port, SSN_SRVC_TCP_PORT. Each
incoming TCP connection represents the start of a separate NetBIOS
session initiation attempt. The NetBIOS session server, not the
ultimate application, accepts the incoming TCP connection(s).

Once the TCP connection is open, the calling node sends session
service request packet. This packet contains the following
information:

— Calling IP address (see note)
- Calling NetBIOS name
- Called IP address (see note)
— Called NetBIOS name

NOTE: The IP addresses are obtained from the TCP service
interface.

When the session service request packet arrives at the NetBIOS
server, one of the the following situations will exist:

- There exists a NetBIOS LISTEN compatible with the incoming
call and there are adequate resources to permit session
establishment to proceed.

- There exists a NetBIOS LISTEN compatible with the incoming
call, but there are inadequate resources to permit

NetBIOS Working Group [Page 49]

398 X/Open CAE Specification (1992)

Page 416 of 534

RFC 1001

RFC 1001 March 1987

establishment of a session.

- The called name does, in fact, exist on the called node, but

there is no pending NetBIOS LISTEN compatible with the
incoming call.

- The called name does not exist on the called node.

In all but the first case, a rejection response is sent back over the
TCP connection to the caller. The TCP connection is then closed and

the session phase terminates. Any retry is the responsibility of the
caller. For retries in the case of a group name, the caller may use
the next member of the group rather than immediately retrying the
instant address. In the case of a unique name, the caller may
attempt an immediate retry using the same target IP address unless
the called name did not exist on the called node. In that one case,
the NetBIOS name should be re-resolved.

If a compatible LISTEN exists, and there are adequate resources, then
the session server may transform the existing TCP connection into the
NetBIOS data session. Alternatively, the session server may
redirect, or "retarget" the caller to another TCP port (and IP
address).

If the caller is redirected, the caller begins the session
establishment anew, but using the new IP address and TCP port given
in the retarget response. Again a TCP connection is created, and
again the calling and called node exchange credentials. The called
party may accept the call, reject the call, or make a further
redirection.

This mechanism is based on the presumption that, on hosts where it is
not possible to transfer open TCP connections between processes, the
host will have a central session server. Applications willing to
receive NetBIOS calls will obtain an ephemeral TCP port number, post
a TCP unspecified passive open on that port, and then pass that port
number and NetBIOS name information to the NetBIOS session server

using a NetBIOS LISTEN operation. When the call is placed, the
session server will "retarget" the caller to the application's TCP
socket. The caller will then place a new call, directly to the
application. The application has the responsibility to mimic the
session server at least to the extent of receiving the calling
credentials and then accepting or rejecting the call.

16 . 1 . 1 . 1 . RETRYING AFTER BEING RETARGETTED

A calling node may find that it can not establish a session with a
node to which it was directed by the retargetting procedure. Since
retargetting may be nested, there is an issue whether the caller
should begin a retry at the initial starting point or back-up to an
intermediate retargetting point. The caller may use any method. A

NetBIOS Working Group [Page 50]

Protocols for X/Open PC Interworkingz SMB, Version 2 399

Page 417 of 534

RFC 1001

RFC 1001 March 1987

discussion of two such methods is in Appendix B, "Retarget
Algorithms".

16.1.1.2. SESSION ESTABLISHMENT TO A GROUP NAME

Session establishment with a group name requires special
consideration. When a NetBIOS CALL attempt is made to a group name,
name discovery will result in a list (possibly incomplete) of the
members of that group. The calling node selects one member from the
list and attempts to build a session. If that fails, the calling
node may select another member and make another attempt.

When the session service attempts to make a connection with one of
the members of the group, there is no guarantee that that member has
a LISTEN pending against that group name, that the called node even
owns, or even that the called node is operating.

16.1.2. STEADY STATE PHASE OVERVIEW

NetBIOS data messages are exchanged in the steady state. NetBIOS
messages are sent by prepending the user data with a message header
and sending the header and the user data over the TCP connection.
The receiver removes the header and passes the data to the NetBIOS
user.

In order to detect failure of one of the nodes or of the intervening
network, "session keep alive" packets may be periodically sent in the
steady state.

Any failure of the underlying TCP connection, whether a reset, a
timeout, or other failure, implies failure of the NetBIOS session.

16.1.3. SESSION TERMINATION PHASE OVERVIEW

A NetBIOS session is terminated normally when the user requests the
session to be closed or when the session service detects the remote

partner of the session has gracefully terminated the TCP connection.
A NetBIOS session is abnormally terminated when the session service
detects a loss of the connection. Connection loss can be detected

with the keep-alive function of the session service or TCP, or on the
failure of a SESSION MESSAGE send operation.

When a user requests to close a session, the service first attempts a
graceful in-band close of the TCP connection. If the connection does

not close within the SSN_CLOSE_TIMEOUT the TCP connection is aborted.
No matter how the TCP connection is terminated, the NetBIOS session

service always closes the NetBIOS session.

When the session service receives an indication from TCP that a

connection close request has been received, the TCP connection and
the NetBIOS session are immediately closed and the user is informed

NetBIOS Working Group [Page 51]

400 X/Open CAE Specification (1992)

Page 418 of 534

RFC 1001

RFC 1001 March 1987

of the loss of the session. All data received up to the close
indication should be delivered, if possible, to the session’s user.

16.2. SESSION ESTABLISHMENT PHASE

All the following diagrams assume a name query operation was
successfully completed by the caller node for the listener's name.

This first diagram shows the sequence of network events used to
successfully establish a session without retargetting by the
listener. The TCP connection is first established with the well-

known NetBIOS session service TCP port, SSN_SRVC_TCP_PORT. The
caller then sends a SESSION REQUEST packet over the TCP connection

requesting a session with the listener. The SESSION REQUEST contains
the caller's name and the listener's name. The listener responds
with a POSITIVE SESSION RESPONSE informing the caller this TCP
connection is accepted as the connection for the data transfer phase
of the session.

CALLER LISTENER

TCP CONNECT
————————————————— ——=————=———————————>

TCP ACCEPT
<===================================

SESSION REQUEST
_ _ _ _ _ _ _ _ . _ _ _ _ _ . __>

POSITIVE RESPONSE
< - - — — - — — — — — — — — — — — — — — — — - — — - — — — — — — — — --

The second diagram shows the sequence of network events used to
successfully establish a session when the listener does retargetting.
The session establishment procedure is the same as with the first

diagram up to the listener's response to the SESSION REQUEST. The
listener, divided into two sections, the listen processor and the
actual listener, sends a SESSION RETARGET RESPONSE to the caller.

This response states the call is acceptable, but the data transfer
TCP connection must be at the new IP address and TCP port. The
caller then re-iterates the session establishment process anew with
the new IP address and TCP port after the initial TCP connection is
closed. The new listener then accepts this connection for the data
transfer phase with a POSITIVE SESSION RESPONSE.

CALLER LISTEN PROCESSOR LISTENER

TCP CONNECT
=============================>

TCP ACCEPT
<=============================

SESSION REQUEST
_ __>

NetBIOS Working Group [Page 52]

Protocols for X/Open PC Interworkingz SMB, Version 2 401

Page 419 of 534

RFC 1001

RFC 1001 March 1987

SESSION RETARGET RESPONSE
< - — — - — — — — - — — — — — - — — — — — - — — — - — — —-

TCP CLOSE
<======:===:==================

TCP CLOSE
=============================>

TCP CONNECT
~ —— =—— = — — — ~ — — — — — — — — — — —— =—>

TCP ACCEPT
< ———————————————————— ——= ——————————————————————————— —-

SESSION REQUEST
_ __>

POSITIVE RESPONSE
< - - - - — — — — — — — — — — — — — — — — - — - — — — — —-

The third diagram is the sequence of network events for a rejected
session request with the listener. This type of rejection could
occur with either a non—retargetting listener or a retargetting
listener. After the TCP connection is established at

SSN_SRVC_TCP_PORT, the caller sends the SESSION REQUEST over the TCP
connection. The listener does not have either a listen pending for
the listener's name or the pending NetBIOS listen is specific to
another caller's name. Consequently, the listener sends a NEGATIVE
SESSION RESPONSE and closes the TCP connection.

CALLER LISTENER

TCP CONNECT
____________________________________>

TCP ACCEPT
< ———————————————— ——=———= —————————— —-

SESSION REQUEST
_ __>

NEGATIVE RESPONSE
< - - - - — — — — — — — — — — — — — — — — - — — — — — — — — — — — — —-

TCP CLOSE
< ————————————————————————————————— —-

TCP CLOSE

The fourth diagram is the sequence of network events when session
establishment fails with a retargetting listener. After being
redirected, and after the initial TCP connection is closed the caller
tries to establish a TCP connection with the new IP address and TCP

port. The connection fails because either the port is unavailable or
the target node is not active. The port unavailable race condition
occurs if another caller has already acquired the TCP connection with
the listener. For additional implementation suggestions, see
Appendix B, "Retarget Algorithms".

NetBIOS Working Group [Page 53]

402 X/Open CAE Specification (1992)

Page 420 of 534

RFC 1001

RFC 1001 March 1987

CALLER LISTEN PROCESSOR LISTENER

TCP CONNECT
=============================>

TCP ACCEPT
<=============================

SESSION REQUEST
_ __>

REDIRECT RESPONSE
< - - - - — — — — — — — - — — — — — — — - — — — — — — — --

TCP CLOSE
<=============================

TCP CLOSE

TCP CONNECT
==>

CONNECTION REFUSED OR TIMED OUT
<===

16.3. SESSION DATA TRANSFER PHASE

16.3.1. DATA ENCAPSULATION

NetBIOS messages are exchanged in the steady state. Messages are
sent by prepending user data with message header and sending the
header and the user data over the TCP connection. The receiver
removes the header and delivers the NetBIOS data to the user.

16.3.2. SESSION KEEP—ALIVES

In order to detect node failure or network partitioning, "session
keep alive" packets are periodically sent in the steady state. A
session keep alive packet is discarded by a peer node.

A session keep alive timer is maintained for each session. This
timer is reset whenever any data is sent to, or received from, the
session peer. When the timer expires, a NetBIOS session keep-alive
packet is sent on the TCP connection. Sending the keep-alive packet
forces data to flow on the TCP connection, thus indirectly causing
TCP to detect whether the connection is still active.

Since many TCP implementations provide a parallel TCP "keep— alive"
mechanism, the NetBIOS session keep-alive is made a configurable
option. It is recommended that the NetBIOS keep- alive mechanism be
used only in the absence of TCP keep-alive.

Note that unlike TCP keep alives, NetBIOS session keep alives do not
require a response from the NetBIOS peer —- the fact that it was

NetBIOS Working Group [Page 54]

Protocols for X/Open PC Interworkingz SMB, Version 2 403

Page 421 of 534

RFC 1001

RFC 1001 March 1987

possible to send the NetBIOS session keep alive is sufficient
indication that the peer, and the connection to it, are still active.

The only requirement for interoperability is that when a session keep
alive packet is received, it should be discarded.

17. NETBIOS DATAGRAM SERVICE

17.1. OVERVIEW OF NetBIOS DATAGRAM SERVICE

Every NetBIOS datagram has a named destination and source. To
transmit a NetBIOS datagram, the datagram service must perform a name
query operation to learn the IP address and the attributes of the
destination NetBIOS name. (This information may be cached to avoid
the overhead of name query on subsequent NetBIOS datagrams.)

NetBIOS datagrams are carried within UDP packets. If a NetBIOS
datagram is larger than a single UDP packet, it may be fragmented
into several UDP packets.

End—nodes may receive NetBIOS datagrams addressed to names not held
by the receiving node. Such datagrams should be discarded. If the
name is unique then a DATAGRAM ERROR packet is sent to the source of
that NetBIOS datagram.

17.1.1. UNICAST, MULTICAST, AND BROADCAST

NetBIOS datagrams may be unicast, multicast, or broadcast. A NetBIOS
datagram addressed to a unique NetBIOS name is unicast. A NetBIOS
datatgram addressed to a group NetBIOS name, whether there are zero,
one, or more actual members, is multicast. A NetBIOS datagram sent
using the NetBIOS "Send Broadcast Datagram" primitive is broadcast.

17.1.2. FRAGMENTATION OF NetBIOS DATAGRAMS

When the header and data of a NetBIOS datagram exceeds the maximum
amount of data allowed in a UDP packet, the NetBIOS datagram must be
fragmented before transmission and reassembled upon receipt.

A NetBIOS Datagram is composed of the following protocol elements:

- IP header of 20 bytes (minimum)
- UDP header of 8 bytes
- NetBIOS Datagram Header of 14 bytes
- The NetBIOS Datagram data.

The NetBIOS Datagram data section is composed of 3 parts:

- Source NetBIOS name (255 bytes maximum)
- Destination NetBIOS name (255 bytes maximum)
- The NetBIOS user's data (maximum of 512 bytes)

NetBIOS Working Group [Page 55]

404 X/Open CAE Specification (1992)

Page 422 of 534

RFC 1001

RFC 1001 March 1987

The two name fields are in second level encoded format (see section
14.)

A maximum size NetBIOS datagram is 1064 bytes. The minimal maximum
IP datagram size is 576 bytes. Consequently, a NetBIOS Datagram may
not fit into a single IP datagram. This makes it necessary to permit
the fragmentation of NetBIOS Datagrams.

On networks meeting or exceeding the minimum IP datagram length
requirement of 576 octets, at most two NetBIOS datagram fragments
will be generated. The protocols and packet formats accommodate
fragmentation into three or more parts.

When a NetBIOS datagram is fragmented, the IP, UDP and NetBIOS
Datagram headers are present in each fragment. The NetBIOS Datagram
data section is split among resulting UDP datagrams. The data
sections of NetBIOS datagram fragments do not overlap. The only
fields of the NetBIOS Datagram header that would vary are the FLAGS
and OFFSET fields.

The FIRST bit in the FLAGS field indicate whether the fragment is the
first in a sequence of fragments. The MORE bit in the FLAGS field
indicates whether other fragments follow.

The OFFSET field is the byte offset from the beginning of the NetBIOS
datagram data section to the first byte of the data section in a
fragment. It is 0 for the first fragment. For each subsequent
fragment, OFFSET is the sum of the bytes in the NetBIOS data sections
of all preceding fragments.

If the NetBIOS datagram was not fragmented:

- FIRST = TRUE
- MORE = FALSE
- OFFSET = 0

If the NetBIOS datagram was fragmented:

- First fragment:
- FIRST = TRUE
- MORE = TRUE
- OFFSET = 0

- Intermediate fragments:
- FIRST = FALSE
- MORE = TRUE

- OFFSET = sum(NetBIOS data in prior fragments)

- Last fragment:
- FIRST = FALSE
- MORE = FALSE

NetBIOS Working Group [Page 56]

Protocols for X/Open PC Interworkingz SMB, Version 2 405

Page 423 of 534

RFC 1001

RFC 1001 March 1987

- OFFSET = sum(NetBIOS data in prior fragments)

The relative position of intermediate fragments may be ascertained
from OFFSET.

An NBDD must remember the destination name of the first fragment in
order to relay the subsequent fragments of a single NetBIOS datagram.
The name information can be associated with the subsequent fragments

through the transaction ID, DGM_ID, and the SOURCE_IP, fields of the
packet. This information can be purged by the NBDD after the last

fragment has been processed or FRAGMENT_TO time has expired since the
first fragment was received.

17.2. NetBIOS DATAGRAMS BY B NODES

For NetBIOS datagrams with a named destination (i.e. non— broadcast),
a B node performs a name discovery for the destination name before
sending the datagram. (Name discovery may be bypassed if information
from a previous discovery is held in a cache.) If the name type
returned by name discovery is UNIQUE, the datagram is unicast to the
sole owner of the name. If the name type is GROUP, the datagram is
broadcast to the entire broadcast area using the destination IP
address BROADCAST_ADDRESS.

A receiving node always filters datagrams based on the destination
name. If the destination name is not owned by the node or if no
RECEIVE DATAGRAM user operations are pending for the name, then the
datagram is discarded. For datagrams with a UNIQUE name destination,
if the name is not owned by the node then the receiving node sends a
DATAGRAM ERROR packet. The error packet originates from the

DGM_SRVC_UDP_PORT and is addressed to the SOURCE_IP and SOURCE_PORT
from the bad datagram. The receiving node quietly discards datagrams
with a GROUP name destination if the name is not owned by the node.

Since broadcast NetBIOS datagrams do not have a named destination,
the B node sends the DATAGRAM SERVICE packet(s) to the entire

broadcast area using the destination IP address BROADCAST_ADDRESS.
In order for the receiving nodes to distinguish this datagram as a
broadcast NetBIOS datagram, the NetBIOS name used as the destination
name is ’*’ (hexadecimal 2A) followed by 15 bytes of hexidecimal 00.
The NetBIOS scope identifier is appended to the name before it is
converted into second-level encoding. For example, if the scope
identifier is "NETBIOS.SCOPE" then the first-level encoded name would
be:

CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.NETBIOS.SCOPE

According to [2], a user may not provide a NetBIOS name beginning
with ll 1- ll _

For each node in the broadcast area that receives the NetBIOS

NetBIOS Working Group [Page 57]

406 X/Open CAE Specification (1992)

Page 424 of 534

RFC 1001

RFC 1001 March 1987

broadcast datagram, if any RECEIVE BROADCAST DATAGRAM user operations
are pending then the data from the NetBIOS datagram is replicated and
delivered to each. If no such operations are pending then the node
silently discards the datagram.

17.3. NetBIOS DATAGRAMS BY P AND M NODES

P and M nodes do not use IP broadcast to distribute NetBIOS

datagrams.

Like B nodes, P and M nodes must perform a name discovery or use
cached information to learn whether a destination name is a group or
a unique name.

Datagrams to unique names are unicast directly to the destination by
P and M nodes, exactly as they are by B nodes.

Datagrams to group names and NetBIOS broadcast datagrams are unicast
to the NBDD. The NBDD then relays the datagrams to each of the nodes
specified by the destination name.

An NBDD may not be capable of sending a NetBIOS datagram to a
particular NetBIOS name, including the broadcast NetBIOS name ("*")
defined above. A query mechanism is available to the end- node to
determine if a NBDD will be able to relay a datagram to a given name.
Before a datagram, or its fragments, are sent to the NBDD the P or M
node may send a DATAGRAM QUERY REQUEST packet to the NBDD with the

DESTINATION_NAME from the DATAGRAM SERVICE packet(s). The NBDD will
respond with a DATAGRAM POSITIVE QUERY RESPONSE if it will relay
datagrams to the specified destination name. After a positive
response the end—node unicasts the datagram to the NBDD. If the NBDD
will not be able to relay a datagram to the destination name
specified in the query, a DATAGRAM NEGATIVE QUERY RESPONSE packet is
returned. If the NBDD can not distribute a datagram, the end—node
then has the option of getting the name's owner list from the NBNS
and sending the datagram directly to each of the owners.

An NBDD must be able to respond to DATAGRAM QUERY REQUEST packets.
The response may always be positive. However, the usage or
implementation of the query mechanism by a P or M node is optional.
An implementation may always unicast the NetBIOS datagram to the NBDD
without asking if it will be relayed. Except for the datagram query
facility described above, an NBDD provides no feedback to indicate
whether it forwarded a datagram.

18. NODE CONFIGURATION PARAMETERS

- B NODES:

- Node’s permanent unique name
- Whether IGMP is in use
- Broadcast IP address to use

NetBIOS Working Group [Page 58]

Protocols for X/Open PC Interworkingz SNIB, Version 2 407

Page 425 of 534

RFC 1001

RFC 1001

March 1987

Whether NetBIOS session keep-alives are needed
Usable UDP data field length

NODES:

Node's permanent unique name
IP address of NBNS
IP address of NBDD

(to control fragmentation)

Whether NetBIOS session keep-alives are needed
Usable UDP data field length

- M NODES:

Node's permanent unique name
Whether IGMP is in use
Broadcast IP address to use
IP address of NBNS
IP address of NBDD

(to control fragmentation)

Whether NetBIOS session keep-alives are needed
Usable UDP data field length

19. MINIMAL CONFORMANCE

To ensure multi-vendor interoperability,

(to control fragmentation)

a minimally conforming
implementation based on this specification must observe the following
rules:

a) A node designed to work only in a broadcast area must
conform to the B node specification.

b) A node designed to work only in an internet must conform to
the P node specification.

NetBIOS Working Group

408

Page 426 of 534

[Page 59]

X/Open CAE Specification (1992)

RFC 1001

RFC 1001

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

NetBIOS Working Group

March 1987

"Protocol Standard For a NetBIOS Service on a TCP/UDP

Transport: Detailed Specifications", RFC 1002, March 1987.

IBM Corp., "IBM PC Network Technical Reference Manual", No.
6322916, First Edition, September 1984.

J. Postel (Ed.), "Transmission Control Protocol", RFC 793,

September 1981.

MIL-STD—1778

J. Postel, "User Datagram Protocol", RFC 768, 28 August
1980.

J. Reynolds, J. Postel, "Assigned Numbers", RFC 990,
November 1986.

J. Postel, "Internet Protocol", RFC 791, September 1981.

J. Mogul, "Internet Subnets", RFC 950, October 1984

J. Mogul, "Broadcasting Internet Datagrams in the Presence
of Subnets", RFC 922, October 1984.

J. Mogul, "Broadcasting Internet Datagrams",
October 1984.

RFC 919,

P. Mockapetris, "Domain Names - Concepts and Facilities",
RFC 882, November 1983.

P. Mockapetris, "Domain Names - Implementation and
Specification", RFC 883, November 1983.

P. Mockapetris, "Domain System Changes and Observations",
RFC 973, January 1986.

C. Partridge,
January 1986.

"Mail Routing and the Domain System", RFC 974,

S. Deering, D. Cheriton, "Host Groups: A Multicast Extension
to the Internet Protocol", RFC 966, December 1985.

S. Deering, "Host Extensions for IP Multicasting", RFC 988,
July 1986.

[Page 60]

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 427 of 534

409

RFC 1001

RFC 1001 March 1987

APPENDIX A

This appendix contains supporting technical discussions. It is not
an integral part of the NetBIOS-over—TCP specification.

INTEGRATION WITH INTERNET GROUP MULTICASTING

The Netbios-over—TCP system described in this RFC may be easily
integrated with the Internet Group Multicast system now being
developed for the internet.

In the main body of the RFC, the notion of a broadcast area was
considered to be a single MAC—bridged "B-LAN". However, the
protocols defined will operate over an extended broadcast area
resulting from the creation of a permanent Internet Multicast Group.

Each separate broadcast area would be based on a separate permanent
Internet Multicast Group. This multicast group address would be used

by B and M nodes as their BROADCAST_ADDRESS.

In order to base the broadcast area on a multicast group certain
additional procedures are required and certain constraints must be
met.

A-1. ADDITIONAL PROTOCOL REQUIRED IN B AND M NODES

All B or M nodes operating on an IGMP based broadcast area must have
IGMP support in their IP layer software. These nodes must perform an
IGMP join operation to enter the IGMP group before engaging in
NetBIOS activity.

A-2. CONSTRAINTS

Broadcast Areas may overlap. For this reason, end-nodes must be
careful to examine the NetBIOS scope identifiers in all received
broadcast packets.

The NetBIOS broadcast protocols were designed for a network that
exhibits a low average transit time and low rate of packet loss. An
IGMP based broadcast area must exhibit these characteristics. In

practice this will tend to constrain IGMP broadcast areas to a campus
of networks interconnected by high—speed routers and inter-router
links. It is unlikely that transcontinental broadcast areas would
exhibit the required characteristics.

NetBIOS Working Group [Page 61]

410 X/Open CAE Specification (1992)

Page 428 of 534

RFC 1001

RFC 1001 March 1987

APPENDIX B

This appendix contains supporting technical discussions. It is not
an integral part of the NetBIOS-over—TCP specification.

IMPLEMENTATION CONS IDERATIONS

B— 1 . IMPLEMENTATION MODELS

On any participating system, there must be some sort of NetBIOS
Service to coordinate access by NetBIOS applications on that system.

To analyze the impact of the NetBIOS-over—TCP architecture, we use
the following three models of how a NetBIOS service might be
implemented:

1. Combined Service and Application Model

The NetBIOS service and application are both contained
within a single process. No interprocess communication is
assumed within the system; all communication is over the
network. If multiple applications require concurrent access
to the NetBIOS service, they must be folded into this
monolithic process.

2. Common Kernel Element Model

The NetBIOS Service is part of the operating system (perhaps
as a device driver or a front-end processor). The NetBIOS
applications are normal operating system application
processes. The common element NetBIOS service contains all
the information, such as the name and listen tables,

required to co-ordinate the activities of the applications.

3. Non-Kernel Common Element Model

The NetBIOS Service is implemented as an operating system
application process. The NetBIOS applications are other
operating system application processes. The service and the
applications exchange data via operating system interprocess
communication. In a multi-processor (e.g. network)
operating system, each module may reside on a different cpu.
The NetBIOS service process contains all the shared
information required to coordinate the activities of the
NetBIOS applications. The applications may still require a
subroutine library to facilitate access to the NetBIOS
service.

NetBIOS Working Group [Page 62]

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 429 of 534

411

RFC 1001

RFC 1001 March 1987

For any of the implementation models, the TCP/IP service can be
located in the operating system or split among the NetBIOS
applications and the NetBIOS service processes.

B-1.1 MODEL INDEPENDENT CONSIDERATIONS

The NetBIOS name service associates a NetBIOS name with a host. The

NetBIOS session service further binds the name to a specific TCP port
for the duration of the session.

The name service does not need to be informed of every Listen
initiation and completion. Since the names are not bound to any TCP
port in the name service, the session service may use a different tcp
port for each session established with the same local name.

The TCP port used for the data transfer phase of a NetBIOS session
can be globally well-known, locally well-known, or ephemeral. The
choice is a local implementation issue. The RETARGET mechanism
allows the binding of the NetBIOS session to a TCP connection to any
TCP port, even to another IP node.

An implementation may use the session service's globally well- known
TCP port for the data transfer phase of the session by not using the
RETARGET mechanism and, rather, accepting the session on the initial
TCP connection. This is permissible because the caller always uses
an ephemeral TCP port.

The complexity of the called end RETARGET mechanism is only required
if a particular implementation needs it. For many real system
environments, such as an in—kernel NetBIOS service implementation, it
will not be necessary to retarget incoming calls. Rather, all
NetBIOS sessions may be multiplexed through the single, well-known,
NetBIOS session service port. These implementations will not be
burdened by the complexity of the RETARGET mechanism, nor will their
callers be required to jump through the retargetting hoops.

Nevertheless, all callers must be ready to process all possible
SESSION RETARGET RESPONSES.

B-1.2 SERVICE OPERATION FOR EACH MODEL

It is possible to construct a NetBIOS service based on this
specification for each of the above defined implementation models.

For the common kernel element model, all the NetBIOS services, name,

datagram, and session, are simple. All the information is contained
within a single entity and can therefore be accessed or modified
easily. A single port or multiple ports for the NetBIOS sessions can
be used without adding any significant complexity to the session
establishment procedure. The only penalty is the amount of overhead
incurred to get the NetBIOS messages and operation requests/responses

NetBIOS Working Group [Page 63]

412 X/Open CAE Specification (1992)

Page 430 of 534

RFC 1001

RFC 1001 March 1987

through the user and operating system boundary.

The combined service and application model is very similar to the
common kernel element model in terms of its requirements on the
NetBIOS service. The major difficulty is the internal coordination
of the multiple NetBIOS service and application processes existing in
a system of this type.

The NetBIOS name, datagram and session protocols assume that the
entities at the end—points have full control of the various well-
known TCP and UDP ports. If an implementation has multiple NetBIOS
service entities, as would be the case with, for example, multiple
applications each linked into a NetBIOS library, then that
implementation must impose some internal coordination.
Alternatively, use of the NetBIOS ports could be periodically
assigned to one application or another.

For the typical non—kernel common element mode implementation, three
permanent system-wide NetBIOS service processes would exist:

— The name server

— the datagram server
— and session server

Each server would listen for requests from the network on a UDP or
TCP well-known port. Each application would have a small piece of
the NetBIOS service built-in, possibly a library. Each application's
NetBIOS support library would need to send a message to the
particular server to request an operation, such as add name or send a
datagram or set-up a listen.

The non—kernel common element model does not require a TCP connection
be passed between the two processes, session server and application.
The RETARGET operation for an active NetBIOS Listen could be used by
the session server to redirect the session to another TCP connection

on a port allocated and owned by the application's NetBIOS support
library. The application with either a built-in or a kernel—based
TCP/IP service could then accept the RETARGETed connection request
and process it independently of the session server.

On Unix(tm) or POSIX(tm), the NetBIOS session server could create

sub—processes for incoming connections. The open sessions would be
passed through "fork" and "exec" to the child as an open file
descriptor. This approach is very limited, however. A pre- existing
process could not receive an incoming call. And all call-ed
processes would have to be sub—processes of the session server.

B-2. CASUAL AND RESTRICTED NetBIOS APPLICATIONS

Because NetBIOS was designed to operate in the open system
environment of the typical personal computer, it does not have the

NetBIOS Working Group [Page 64]

Protocols for X/Open PC Interworkingz SMB, Version 2 413

Page 431 of 534

RFC 1001

RFC 1001 March 1987

concept of privileged or unprivileged applications. In many multi-
user or multi-tasking operating systems applications are assigned
privilege capabilities. These capabilities limit the applications
ability to acquire and use system resources. For these systems it is
important to allow casual applications, those with limited system
privileges, and privileged applications, those with ‘super-user’
capabilities but access to them and their required resources is
restricted, to access NetBIOS services. It is also important to
allow a systems administrator to restrict certain NetBIOS resources
to a particular NetBIOS application. For example, a file server
based on the NetBIOS services should be able to have names and TCP

ports for sessions only it can use.

A NetBIOS application needs at least two local resources to
communicate with another NetBIOS application, a NetBIOS name for
itself and, typically, a session. A NetBIOS service cannot require
that NetBIOS applications directly use privileged system resources.
For example, many systems require privilege to use TCP and UDP ports
with numbers less than 1024. This RFC requires reserved ports for
the name and session servers of a NetBIOS service implementation. It
does not require the application to have direct access these reserved
ports.

For the name service, the manager of the local name table must have
access to the NetBIOS name service's reserved UDP port. It needs to
listen for name service UDP packets to defend and define its local
names to the network. However, this manager need not be a part of a
user application in a system environment which has privilege
restrictions on reserved ports.

The internal name server can require certain privileges to add,
delete, or use a certain name, if an implementer wants the
restriction. This restriction is independent of the operation of the
NetBIOS service protocols and would not necessarily prevent the
interoperation of that implementation with another implementation.

The session server is required to own a reserved TCP port for session
establishment. However, the ultimate TCP connection used to transmit

and receive data does not have to be through that reserved port. The
RETARGET procedure the NetBIOS session to be shifted to another TCP
connection, possibly through a different port at the called end.
This port can be an unprivileged resource, with a value greater than
1023. This facilitates casual applications.

Alternately, the RETARGET mechanism allows the TCP port used for data
transmission and reception to be a reserved port. Consequently, an
application wishing to have access to its ports maintained by the
system administrator can use these restricted TCP ports. This
facilitates privileged applications.

A particular implementation may wish to require further special

NetBIOS Working Group [Page 65]

414 X/Open CAE Specification (1992)

Page 432 of 534

RFC 1001

RFC 1001 March 1987

privileges for session establishment, these could be associated with
internal information. It does not have to be based solely on TCP
port allocation. For example, a given NetBIOS name may only be used
for sessions by applications with a certain system privilege level.

The decision to use reserved or unreserved ports or add any
additional name registration and usage authorization is a purely
local implementation decision. It is not required by the NetBIOS
protocols specified in the RFC.

B-3. TCP VERSUS SESSION KEEP—ALIVES

The KEEP—ALIVE is a protocol element used to validate the existence
of a connection. A packet is sent to the remote connection partner
to solicit a response which shows the connection is still
functioning. TCP KEEP—ALIVES are used at the TCP level on TCP
connections while session KEEP—ALIVES are used on NetBIOS sessions.

These protocol operations are always transparent to the connection
user. The user will only find out about a KEEP—ALIVE operation if it
fails, therefore, if the connection is lost.

The NetBIOS specification[2] requires the NetBIOS service to inform
the session user if a session is lost when it is in a passive or
active state. Therefore,if the session user is only waiting for a
receive operation and the session is dropped the NetBIOS service must
inform the session user. It cannot wait for a session send operation
before it informs the user of the loss of the connection.

This requirement stems from the management of scarce or volatile
resources by a NetBIOS application. If a particular user terminates
a session with a server application by destroying the client
application or the NetBIOS service without a NetBIOS Hang Up, the
server application will want to clean-up or free allocated resources.
This server application if it only receives and then sends a response
requires the notification of the session abort in the passive state.

The standard definition of a TCP service cannot detect loss of a

connection when it is in a passive state, waiting for a packet to
arrive. Some TCP implementations have added a KEEP—ALIVE operation
which is interoperable with implementations without this feature.
These implementations send a packet with an invalid sequence number
to the connection partner. The partner, by specification, must
respond with a packet showing the correct sequence number of the
connection. If no response is received from the remote partner
within a certain time interval then the TCP service assumes the
connection is lost.

Since many TCP implementations do not have this KEEP—ALIVE function
an optional NetBIOS KEEP—ALIVE operation has been added to the
NetBIOS session protocols. The NetBIOS KEEP—ALIVE uses the
properties of TCP to solicit a response from the remote connection

NetBIOS Working Group [Page 66]

Protocols for X/Open PC Interworkingz SMB, Version 2 415

Page 433 of 534

RFC 1001

RFC 1001 March 1987

partner. A NetBIOS session message called KEEP—ALIVE is sent to the
remote partner. Since this results in TCP sending an IP packet to
the remote partner, the TCP connection is active. TCP will discover
if the TCP connection is lost if the remote TCP partner does not
acknowledge the IP packet. Therefore, the NetBIOS session service
does not send a response to a session KEEP ALIVE message. It just
throws it away. The NetBIOS session service that transmits the KEEP
ALIVE is informed only of the failure of the TCP connection. It does
not wait for a specific response message.

A particular NetBIOS implementation should use KEEP—ALIVES if it is
concerned with maintaining compatibility with the NetBIOS interface
specification[2]. Compatibility is especially important if the
implementation wishes to support existing NetBIOS applications, which
typically require the session loss detection on their servers, or
future applications which were developed for implementations with
session loss detection.

B-4. RETARGET ALGORITHMS

This section contains 2 suggestions for RETARGET algorithms. They
are called the "straight" and "stack" methods. The algorithm in the
body of the RFC uses the straight method. Implementation of either
algorithm must take into account the Session establishment maximum
retry count. The retry count is the maximum number of TCP connect
operations allowed before a failure is reported.

The straight method forces the session establishment procedure to
begin a retry after a retargetting failure with the initial node
returned from the name discovery procedure. A retargetting failure
is when a TCP connection attempt fails because of a time- out or a
NEGATIVE SESSION RESPONSE is received with an error code specifying
NOT LISTENING ON CALLED NAME. If any other failure occurs the
session establishment procedure should retry from the call to the
name discovery procedure.

A minimum of 2 retries, either from a retargetting or a name
discovery failure. This will give the session service a chance to
re-establish a NetBIOS Listen or, more importantly, allow the NetBIOS
scope, local name service or the NBNS, to re—learn the correct IP
address of a NetBIOS name.

The stack method operates similarly to the straight method. However,
instead of retrying at the initial node returned by the name
discovery procedure, it restarts with the IP address of the last node
which sent a SESSION RETARGET RESPONSE prior to the retargetting
failure. To limit the stack method, any one host can only be tried a
maximum of 2 times.

NetBIOS Working Group [Page 67]

416 X/Open CAE Specification (1992)

Page 434 of 534

RFC 1001

RFC 1001 March 1987

B-5. NBDD SERVICE

If the NBDD does not forward datagrams then don't provide Group and
Broadcast NetBIOS datagram services to the NetBIOS user. Therefore,
ignore the implementation of the query request and, when get a
negative response, acquiring the membership list of IP addresses and
sending the datagram as a unicast to each member.

B-6. APPLICATION CONSIDERATIONS

B-6.1 USE OF NetBIOS DATAGRAMS

Certain existing NetBIOS applications use NetBIOS datagrams as a
foundation for their own connection—oriented protocols. This can
cause excessive NetBIOS name query activity and place a substantial
burden on the network, server nodes, and other end— nodes. It is

recommended that this practice be avoided in new applications.

NetBIOS Working Group [Page 68]

Protocols for X/Open PC Interworking: SMB, Version 2

Page 435 of 534

417

RFC 1001

418 X/Open CAE Specification (1992)

Page 436 of 534

Appendix G

RFC 1002

This appendix reproduces, in full and unedited, RFC 1002, Protocol Standard for a NetBIOS

Service on a TCP/UDP Transport: Detailed Specifications.

Protocols for X/Open PC Interworking: SNIB, Version 2 419

Page 437 of 534

RFC 1002

Network Working Group
Request for Comments: 1002 March, 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE

ON A TCP/UDP TRANSPORT:
DETAILED SPECIFICATIONS

ABSTRACT

This RFC defines a proposed standard protocol to support NetBIOS
services in a TCP/IP environment. Both local network and internet

operation are supported. Various node types are defined to accommodate
local and internet topologies and to allow operation with or without the
use of IP broadcast.

This RFC gives the detailed specifications of the NetBIOS-over-TCP
packets, protocols, and defined constants and variables. A more general
overview is found in a companion RFC, "Protocol Standard For a NetBIOS
Service on a TCP/UDP Transport: Concepts and Methods".

NetBIOS Working Group [Page 1]

420 X/Open CAE Specification (1992)

Page 438 of 534

RFC 1002

RFC 1002

TABLE OF CONTENTS

1. STATUS OF THIS MEMO

2. ACKNOWLEDGEMENTS

3. INTRODUCTION

4. PACKET DESCRIPTIONS
NAME FORMAT
NAME SERVICE PACKETS

4.1
4.2

4.

n-by-by-[>1-[>1-l>n-by-by-by-ho-by-[>1-l>n-[>1-by-by-l>n-by-by-by-by-ho-by-by-by-ho-ho-ho-bob n-bu-bu-bobU)U)U)U)U)U)U)

2.1 GENERAL FORMAT OF NAME SERVICE PACKETS
4.2.1.1 HEADER

4.2.1.2 QUESTION SECTION
4.2.1.3 RESOURCE RECORD

.2.2 NAME REGISTRATION REQUEST

.2.3 NAME OVERWRITE REQUEST & DEMAND

.2.4 NAME REFRESH REQUEST

.2.5 POSITIVE NAME REGISTRATION RESPONSE

.2.6 NEGATIVE NAME REGISTRATION RESPONSE

.2.7 END—NODE CHALLENGE REGISTRATION RESPONSE

.2.8 NAME CONFLICT DEMAND

.2.9 NAME RELEASE REQUEST & DEMAND

.2.10 POSITIVE NAME RELEASE RESPONSE

.2.11 NEGATIVE NAME RELEASE RESPONSE

.2.12 NAME QUERY REQUEST

.2.13 POSITIVE NAME QUERY RESPONSE

.2.14 NEGATIVE NAME QUERY RESPONSE

.2.15 REDIRECT NAME QUERY RESPONSE

.2.16 WAIT FOR ACKNOWLEDGEMENT (WACK) RESPONSE

.2.17 NODE STATUS REQUEST

.2.18 NODE STATUS RESPONSE
SESSION SERVICE PACKETS

.1 GENERAL FORMAT OF SESSION PACKETS

.2 SESSION REQUEST PACKET

.3 POSITIVE SESSION RESPONSE PACKET

.4 NEGATIVE SESSION RESPONSE PACKET

.5 SESSION RETARGET RESPONSE PACKET

.6 SESSION MESSAGE PACKET

.7 SESSION KEEP ALIVE PACKET
DATAGRAM SERVICE PACKETS

.4.1 NetBIOS DATAGRAM HEADER

.2 DIRECT_UNIQUE, DIRECT_GROUP, & BROADCAST DATAGRAM

.3 DATAGRAM ERROR PACKET

.4 DATAGRAM QUERY REQUEST

.5 DATAGRAM POSITIVE AND NEGATIVE QUERY RESPONSE

5. PROTOCOL DESCRIPTIONS
NAME SERVICE PROTOCOLS

5.1.1
5.1

B—NODE ACTIVITY

NetBIOS Working Group

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 439 of 534

March 1 9 87

U1

35
35
35

[Page 2]

421

RFC 1002

PROCESSING

PROCESSING
PROCESSING

PROCESSING
PROCESSING

5.1.1.1 B—NODE ADD NAME

5.1.1.2 B—NODE ADD_GROUP NAME
5.1.1.3 B—NODE FIND_NAME
5.1.1.4 B NODE NAME RELEASE
5.1.1.5 B—NODE INCOMING PACKET

5.1.2 P—NODE ACTIVITY

5.1.2.1 P—NODE ADD_NAME
5.1.2.2 P—NODE ADD GROUP NAME
5.1.2.3 P—NODE FIND NAME

5.1.2.4 P—NODE DELETE_NAME
5.1.2.5 P—NODE INCOMING PACKET
5.1.2.6 P—NODE TIMER INITIATED

5.1.3 M—NODE ACTIVITY
5.1.3.1 M—NODE ADD NAME
5.1.3.2 M—NODE ADD GROUP NAME
5.1.3.3 M—NODE FIND NAME
5.1.3.4 M—NODE DELETE NAME
5.1.3.5 M—NODE INCOMING PACKET
5.1.3.6 M—NODE TIMER INITIATED

5.1.4 NBNS ACTIVITY
5.1.4.1 NBNS INCOMING PACKET PROCESSING
5.1.4.2 NBNS TIMER INITIATED PROCESSING

.1

U'|U'|t\)U'|U'|U'|[\.)U'|U'|N [\.)t\.)UO[\.)t\.)t\.)l\.)t\.)t\.)
.3.1

U'|U'|U'|U'|
.3.2
.3.3
.3.4

6. DEFINED

REFERENCES

SESSION SERVICE PROTOCOLS
SESSION ESTABLISHMENT PROTOCOLS

.1.1

.1.2

.2.1

.2.2

.2.3

.3.1

.3.2
NetBIOS DATAGRAM SERVICE PROTOCOLS

B NODE TRANSMISSION OF NetBIOS DATAGRAMS
P AND M NODE TRANSMISSION OF NetBIOS DATAGRAMS
RECEPTION OF NetBIOS DATAGRAMS BY ALL NODES

USER REQUEST PROCESSING
RECEIVED PACKET PROCESSING

SESSION DATA TRANSFER PROTOCOLS

USER REQUEST PROCESSING
RECEIVED PACKET PROCESSING
PROCESSING INITIATED BY TIMER

SESSION TERMINATION PROTOCOLS

USER REQUEST PROCESSING
RECEPTION INDICATION PROCESSING

PROTOCOLS FOR THE NBDD

CONSTANTS AND VARIABLES

NetBIOS Working Group

422

Page 440 of 534

RFC 1002

March 1 9 87

35
37
37
38
39
42
42
45
45
46
47
49
50
50
54
55
56
58
60
60
61
66
67
67
67
71
72
72
72

73
73
73
73
74
74
76
78
80

83

85

[Page 3]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

PROTOCOL STANDARD FOR A NetBIOS SERVICE

ON A TCP/UDP TRANSPORT:
DETAILED SPECIFICATIONS

1. STATUS OF THIS MEMO

This RFC specifies a proposed standard for the DARPA Internet
community. Since this topic is new to the Internet community,
discussions and suggestions are specifically requested.

Please send written comments to:

Karl Auerbach

Epilogue Technology Corporation
P.O. Box 5432

Redwood City, CA 94063

Please send online comments to:

Avnish Aggarwal
Internet: mtxinu!excelan!avnish@ucbvax.berkeley.edu
Usenet: ucbvaxlmtxinulexcelanlavnish

Distribution of this memorandum is unlimited.

2. ACKNOWLEDGEMENTS

This RFC has been developed under the auspices of the Internet
Activities Board.

The following individuals have contributed to the development of
this RFC:

Avnish Aggarwal Arvind Agrawal Lorenzo Aguilar
Geoffrey Arnold Karl Auerbach K. Ramesh Babu
Keith Ball Amatzia Ben-Artzi Vint Cerf

Richard Cherry David Crocker Steve Deering
Greg Ennis Steve Holmgren Jay Israel
David Kaufman Lee LaBarre James Lau

Dan Lynch Gaylord Miyata David Stevens
Steve Thomas Ishan Wu

The system proposed by this RFC does not reflect any existing
Netbios-over-TCP implementation. However, the design
incorporates considerable knowledge obtained from prior
implementations. Special thanks goes to the following
organizations which have provided this invaluable information:

CMC/Syros Excelan Sytek Ungermann-Bass

NetBIOS Working Group [Page 4]

Protocols for X/Open PC Interworkingz SMB, Version 2 423

Page 441 of 534

RFC 1002

RFC 1002 March 1987

3. INTRODUCTION

This RFC contains the detailed packet formats and protocol
specifications for NetBIOS-over—TCP. This RFC is a companion to
RFC 1001, "Protocol Standard For a NetBIOS Service on a TCP/UDP

Transport: Concepts and Methods" [1].

4. PACKET DESCRIPTIONS

Bit and byte ordering are defined by the most recent version of
"Assigned Numbers" [2].

4.1. NAME FORMAT

The NetBIOS name representation in all NetBIOS packets (for NAME,
SESSION, and DATAGRAM services) is defined in the Domain Name

Service RFC 883[3] as "compressed" name messages. This format is
called "second—level encoding" in the section entitled
"Representation of NetBIOS Names" in the Concepts and Methods
document.

For ease of description, the first two paragraphs from page 31,
the section titled "Domain name representation and compression",
of RFC 883 are replicated here:

Domain names messages are expressed in terms of a sequence
of labels. Each label is represented as a one octet length
field followed by that number of octets. Since every domain
name ends with the null label of the root, a compressed
domain name is terminated by a length byte of zero. The
high order two bits of the length field must be zero, and
the remaining six bits of the length field limit the label
to 63 octets or less.

To simplify implementations, the total length of label
octets and label length octets that make up a domain name is
restricted to 255 octets or less.

The following is the uncompressed representation of the NetBIOS name
"FRED ", which is the 4 ASCII characters, F, R, E, D, followed by 12

space characters (0x20). This name has the SCOPE_ID: "NETBIOS.COM"

EGFCEFEECACACACACACACACACACACACA.NETBIOS.COM

This uncompressed representation of names is called "first-level
encoding" in the section entitled "Representation of NetBIOS Names"
in the Concepts and Methods document.

The following is a pictographic representation of the compressed
representation of the previous uncompressed Domain Name
representation.

NetBIOS Working Group [Page 5]

424 X/Open CAE Specification (1992)

Page 442 of 534

RFC 1002

RFC 1002 March 1987

1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

0x20 E (0x45) | G (ox47) F (OX46)+-+

C (ox43) E (0x45) | F (0x46) E (0x45)+-+

E (0x45) C (ox43) | A (ox41) C (ox43)+-+

A (ox41) C (ox43) | A (ox41) C (ox43)+-+

A (ox41) C (ox43) | A (ox41) C (ox43)+-+

A (ox41) C (ox43) | A (ox41) C (ox43)+-+

A (0x41) C (ox43) | A (ox41) C (ox43)+-+

A (ox41) C (ox43) | A (ox41) C (ox43)+-+

A (ox41) 0x07 | N (0x4E) E (0x45)+-+

T (0x54) B (ox42) | I (0x49) 0 (0x4F)+-+

s (0x53) 0x03 | C (ox43) o (0x4F)+-+

M (0x4D) 0x00 |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1 1 1 1
5 6 7 8

+-+-+- +WH
2
0

+ +HN +NN +WN +hN
2
5

+ +mN
2 2 2 3 3
7 8 9 0 1

- —+-+—+-+—+

Each section of a domain name is called a label [7 (page 31)]. A
label can be a maximum of 63 bytes. The first byte of a label in
compressed representation is the number of bytes in the label. For
the above example, the first 0x20 is the number of bytes in the
left—most label, EGFCEFEECACACACACACACACACACACACA, of the domain

name. The bytes following the label length count are the characters
of the label. The following labels are in sequence after the first
label, which is the encoded NetBIOS name, until a zero (0x00) length
count. The zero length count represents the root label, which is
always null.

A label length count is actually a 6-bit field in the label length
field. The most significant 2 bits of the field, bits 7 and 6, are
flags allowing an escape from the above compressed representation.
If bits 7 and 6 are both set (11), the following 14 bits are an
offset pointer into the full message to the actual label string from
another domain name that belongs in this name. This label pointer
allows for a further compression of a domain name in a packet.

NetBIOS implementations can only use label string pointers in Name
Service packets. They cannot be used in Session or Datagram Service
packets.

NetBIOS Working Group [Page 6]

Protocols for X/Open PC Interworkingz SMB, Version 2 425

Page 443 of 534

RFC 1002

RFC 1002 March 1987

The other two possible values for bits 7 and 6 (01 and 10) of a label
length field are reserved for future use by RFC 883[2 (page 32)].

Note that the first octet of a compressed name must contain one of
the following bit patterns. (An "x" indicates a bit whose value may
be either 0 or 1.):

00100000 — Netbios name, length must be 32 (decimal)
llxxxxxx - Label string pointer
loxxxxxx - Reserved
Olxxxxxx - Reserved

4.2. NAME SERVICE PACKETS

4.2.1. GENERAL FORMAT OF NAME SERVICE PACKETS

The NetBIOS Name Service packets follow the packet structure defined
in the Domain Name Service (DNS) RFC 883 [7 (pg 26-31)]. The
structures are compatible with the existing DNS packet formats,
however, additional types and codes have been added to work with
NetBIOS.

If Name Service packets are sent over a TCP connection they are
preceded by a 16 bit unsigned integer representing the length of the
Name Service packet.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+—+-+-+-+-+-+-+—+-+—+—+—+-+—+-+

+ - - - - - - - - - - - -- +

HEADER
+ - - - - - - - - - - - -- +

+-+

/ QUESTION ENTRIES /

+-+

/ ANSWER RESOURCE RECORDS /

+-+

/ AUTHORITY RESOURCE RECORDS /

+-+

/ ADDITIONAL RESOURCE RECORDS /

+-+

NetBIOS Working Group [Page 7]

426 X/Open CAE Specification (1992)

Page 444 of 534

RFC 1002

RFC 1002

4.2.1.1.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

| NAME_TRN_ID

HEADER

March 1987

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| OPCODE | NM_FLAGS | RCODE |+-+-+-+-+-+-+-+-+'+-+'+-+-+-+-+-+-+-+'+-+-+-+-+-+-+-+-+-+-+-+-+'+

QDCOUNT |
ANCOUNT

+-+

NSCOUNT |
ARCOUNT

+-+

Field

NAME_TRN_ID

OPCODE

NM_FLAGS

RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

Description

Transaction ID for Name Service Transaction.

Requestor places a unique value for each active

transaction. Responder puts NAME_TRN_ID value
from request packet in response packet.

Packet type code, see table below.

Flags for operation, see table below.

Result codes of request. Table of RCODE values
for each response packet below.

Unsigned 16 bit integer specifying the number of
entries in the question section of a Name

Service packet. Always zero (0) for responses.
Must be non—zero for all NetBIOS Name requests.

Unsigned 16 bit integer specifying the number of
resource records in the answer section of a Name

Service packet.

Unsigned 16 bit integer specifying the number of
resource records in the authority section of a

Name Service packet.

Unsigned 16 bit integer specifying the number of
resource records in the additional records

section of a Name Service packet.

The OPCODE field is defined as:

0 1 2 4
+---+---+---+---+---+

| R | OPCODE+---+---+---+---+---+

NetBIOS Working Group [Page 8]

Protocols for X/Open PC Intetworkingz SNIB, Version 2

Page 445 of 534

427

RFC 1002

Symbol Bit(s)

OPCODE 1-4

R 0

RFC 1002

March 1987

Description

Operation specifier:
0 = query

5 = registration
6 = release
7 = WACK
8 = refresh

RESPONSE flag
if bit == 0 then request packet
if bit == 1 then response packet.

The NM_FLAGS field is defined as:

0 1 2 3 4 5 6
+-——+---+---+———+---+---+———+

|AA|Tc |RD |RA|0| 0|B|+-——+---+---+---+---+---+---+

Symbol Bit(s)

B 6

RD 2

TC 1

NetBIOS Working Group

428

Page 446 of 534

Description

Broadcast Flag.
= 1: packet was broadcast or multicast
= 0: unicast

Recursion Available Flag.

Only valid in responses from a NetBIOS Name
Server -- must be zero in all other

responses .

If one

query,
(1) then the NBNS supports recursive
registration, and release.

If zero (0) then the end—node must iterate

for query and challenge for registration.

Recursion Desired Flag.

May only be set on a request to a NetBIOS
Name Server.

The NBNS will copy its state into the
response packet.

(1) the NBNS will iterate on the

registration, or release.

If one

query,

Truncation Flag.

[Page 9]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

Set if this message was truncated because the
datagram carrying it would be greater than
576 bytes in length. Use TCP to get the
information from the NetBIOS Name Server.

AA 0 Authoritative Answer flag.

Must be zero (0) if R flag of OPCODE is zero
(0).

If R flag is one (1) then if AA is one (1)
then the node responding is an authority for
the domain name.

End nodes responding to queries always set
this bit in responses.

4.2.1.2. QUESTION SECTION

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

/ QUESTION_NAME /
/ /

+-+

| QUESTION_TYPE QUESTION_CLASS |+-+

Field Description

QUESTION_NAME The compressed name representation of the
NetBIOS name for the request.

QUESTION_TYPE The type of request. The values for this field
are specified for each request.

QUESTION_CLASS The class of the request. The values for this
field are specified for each request.

QUESTION_TYPE is defined as:

Symbol Value Description:

NB 0x0020 NetBIOS general Name Service Resource Record
NBSTAT 0x0021 NetBIOS NODE STATUS Resource Record (See NODE

STATUS REQUEST)

QUESTION_CLASS is defined as:

NetBIOS Working Group [Page 10]

Protocols for X/Open PC Interworkingz SMB, Version 2 429

Page 447 of 534

RFC 1002

RFC 1002 March 1987

Symbol Value Description:

IN 0x0001 Internet class

4.2.1.3. RESOURCE RECORD

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

/ RR_NAME /
/ /

+-+

| RR_TYPE RR_CLASS+-+

| TTL+-+

| RDLENGTH+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ /
/ RDATA /

+-+

Field Description

RR_NAME The compressed name representation of the
NetBIOS name corresponding to this resource
record.

RR_TYPE Resource record type code

RR_CLASS Resource record class code

TTL The Time To Live of a the resource record's
name.

RDLENGTH Unsigned 16 bit integer that specifies the
number of bytes in the RDATA field.

RDATA RR_CLASS and RR_TYPE dependent field. Contains
the resource information for the NetBIOS name.

RESOURCE RECORD RR_TYPE field definitions:

Symbol Value Description:

A 0x0001 IP address Resource Record (See REDIRECT NAME

QUERY RESPONSE)
NS 0x0002 Name Server Resource Record (See REDIRECT

NetBIOS Working Group [Page 11]

430 X/Open CAE Specification (1992)

Page 448 of 534

RFC 1002

RFC 1002

NULL OXOOOA

NB 0x0020

NBSTAT 0x0021

March 1987

NAME QUERY RESPONSE)
NULL Resource Record (See WAIT FOR
ACKNOWLEDGEMENT RESPONSE)

NetBIOS general Name Service Resource Record

(See NB_FLAGS and NB_ADDRESS, below)
NetBIOS NODE STATUS Resource Record (See NODE
STATUS RESPONSE)

RESOURCE RECORD RR_CLASS field definitions:

ValueSymbol

IN 0x0001

Description:

Internet class

NB_FLAGS field Of the RESOURCE RECORD RDATA field for RR_TYPE of
"NE ll :

0 1 2 3
1 1 1 1 1 1

5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| G | ONT | RESERVED |+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Symbol Bit(s) Description:

RESERVED 3-15 Reserved for future use. Must be zero (0).

ONT 1,2 Owner Node Type:
00 = B node
01 = P node
10 = M node
11 = Reserved for future use

For registration requests this is the
claimant's type.
For responses this is the actual owner's
type.

G 0 Group Name Flag.

If one (1) then the RR_NAME is a GROUP
NetBIOS name.

If zero (0) then the RR_NAME is a UNIQUE
NetBIOS name.

The NB_ADDRESS field of the RESOURCE RECORD RDATA field for
RR_TYPE of "NE" is the IP address of the name's owner.

NetBIOS Working Group [Page 12]

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 449 of 534

431

RFC 1002

RFC 1002 March 1987

4.2.2. NAME REGISTRATION REQUEST

1111111111222222222233
01234567890123456789012345678901

+-+

NAME_TRN_ID |o| 0x5 |o|o|1|o|o 0|B| 0x0+-+

0x0001 | 0x0000+-+

0x0000 | 0x000l+-+

/ QUESTION_NAME
/ \5\
+-+

NB (0x0020) IN (0x000l)
+-+

RR_NAME
\5\

/
/

+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0006 | NB_FLAGS+-+

NB_ADDRESS+-+

Since the RR_NAME is the same name as the QUESTION_NAME, the
RR_NAME representation must use pointers to the QUESTION_NAME
name's labels to guarantee the length of the datagram is less
than the maximum 576 bytes. See section above on name formats
and also page 31 and 32 of RFC 883, Domain Names - Implementation
and Specification, for a complete description of compressed name
label pointers.

NetBIOS Working Group [Page 13]

432 X/Open CAE Specification (1992)

Page 450 of 534

RFC 1002

RFC 1002 March 1987

4.2.3. NAME OVERWRITE REQUEST & DEMAND

1 1 1 1 1 1 1 1 1
0123456789012345678

+- +-+-+-+-+-+-+-+-

NAME_TRN_ID |o| 0x5 |o|o|o|o|o 0|B| 0x0+-+

0x0001 | 0x0000+-+

0x0000 | 0x0001+-+

1 2 2 2 2 2 2 2 2 3 3
9 1 2 3 4 5 6 8 9 0 1
+- +-+—+—+

/ QUESTION_NAME
/ \\
+-+

NB (0x0020) IN (OXOOO1)
+-+

RR_NAME
\\

/
/

+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0006 | NB_FLAGS+-+

NB_ADDRESS+-+

NetBIOS Working Group [Page 14]

Protocols for X/Open PC Interworkingz SMB, Version 2 433

Page 451 of 534

RFC 1002

RFC 1002 March 1987

4.2.4. NAME REFRESH REQUEST

11111111112
012345678901234567890

+-

NAME_TRN_ID |o| 0x9 |o|o|o|o|o 0|B| 0x0+-+

0x0001 | 0x0000+-+

0x0000 | 0x0001+-+

QUESTION_NAME
\5\

/

/

+-+

NB (0x0020) IN (0x0001)
+-+

RR_NAME
\5\

/
/

+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0 0 06 | NB_FLAGS+-+

NB_ADDRESS+-+

NetBIOS Working Group [Page 15]

434 X/Open CAE Specification (1992)

Page 452 of 534

RFC 1002

RFC 1002 March 1987

4.2.5. POSITIVE NAME REGISTRATION RESPONSE

1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8

+- +-+-+-+-+-+-+-+-

NAME_TRN_ID |1| 0x5 |1|o|1|1|0 0|o| 0x0+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

1 2 2 2 2 2 2 2 2 3 3
9 1 2 3 4 5 6 8 9 0 1
+- +-+—+—+

RR_NAME/
/ \\
+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0006 | NB_FLAGS+-+

NB_ADDRESS
+-+

4.2.6. NEGATIVE NAME REGISTRATION RESPONSE

1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-+-+-+-+-+-+-+-+-+-

NAME_TRN_ID |1| 0x5 |1|o|1|1|0 0|o| RCODE+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+- +

/ RR_NAME
/ \\
+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0O06 | NB_FLAGS+-+

NB_ADDRESS+-+

NetBIOS Working Group [Page 16]

Protocols for X/Open PC Interworkingz SNIB, Version 2 435

Page 453 of 534

RFC 1002

RFC 1002 March 1987

RCODE field values:

Symbol Value Description:

FMT_ERR 0x1 Format Error. Request was invalidly
formatted.

SRV_ERR 0x2 Server failure. Problem with NBNS, cannot
process name.

IMP_ERR 0x4 Unsupported request error. Allowable only
for challenging NBNS when gets an Update type
registration request.

RFS_ERR 0x5 Refused error. For policy reasons server
will not register this name from this host.

ACT_ERR 0x6 Active error. Name is owned by another node.
CFT_ERR 0x7 Name in conflict error. A UNIQUE name is

owned by more than one node.

4.2.7. END—NODE CHALLENGE REGISTRATION RESPONSE

11

012345678901
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - +-+-+-+-+-+-+-+-

NAME_TRN_ID |1| 0x5 |1|o|1|o|o o|o| 0x0+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

1 1 1 2

2 3 4 7

1 1 1 1 1 2

5 6 7 8 9 0
+-+ +-+-+-+-

RR_NAME/
/ \\
+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0 0 06 | NB_FLAGS+-+

NB_ADDRESS+-+

NetBIOS Working Group [Page 17]

436 X/Open CAE Specification (1992)

Page 454 of 534

RFC 1002

RFC 1002 March 1987

4.2.8. NAME CONFLICT DEMAND

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o 1

+-+

NAME_TRN_ID |1| 0x5 |1|o|1|1|o o|o| 0x7+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

RR_NAME/
/ \C\
+-+

NB (0x0020) | IN (0x0001)+-+

0x00000000
+-+

0x0006 |0|ONT|0| 0x000+-+

0x00000000
+-+

This packet is identical to a NEGATIVE NAME REGISTRATION RESPONSE

with RCODE = CFT_ERR.

NetBIOS Working Group [Page 18]

Protocols for X/Open PC Interworkingz SMB, Version 2 437

Page 455 of 534

RFC 1002

RFC 1002 March 1987

4.2.9. NAME RELEASE REQUEST & DEMAND

1 1 1 1 1 1 1 1 1 1 2
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o

+-

NAME_TRN_ID |o| 0x6 |o|o|o|o|o 0|B| 0x0+-+

0x0001 | 0x0000+-+

0x0000 | 0x0001+-+

/ QUESTION_NAME
/ \\
+-+

NB (0x0020) IN (0x000l)
+-+

RR_NAME
\\

/
/

+-+

NB (0x0020) | IN (0x000l)+-+

0x00000000
+-+

0x0006 | NB_FLAGS+-+

NB_ADDRESS+-+

Since the RR_NAME is the same name as the QUESTION_NAME, the
RR_NAME representation must use label string pointers to the
QUESTION_NAME labels to guarantee the length of the datagram is
less than the maximum 576 bytes. This is the same condition as
with the NAME REGISTRATION REQUEST.

NetBIOS Working Group [Page 19]

438 X/Open CAE Specification (1992)

Page 456 of 534

RFC 1002

RFC 1002 March 1987

4.2.10. POSITIVE NAME RELEASE RESPONSE

111111111
0123456789012345678

+- +-+-+-+-+-+-+-+-

NAME_TRN_ID |1| 0x6 |1|o|o|o|o o|o| 0x0+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

1 2 2 2 2 2 2 2 2 3 3
9 1 2 3 4 5 6 8 9 0 1
+- +-+—+—+

RR_NAME/
/ \\
+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0006 | NB_FLAGS+-+

NB_ADDRESS
+-+

4.2.11. NEGATIVE NAME RELEASE RESPONSE

1 1 1 1 1 1 1
01234567890123456

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-+-+-+-+-+-+-+-+-+-

NAME_TRN_ID |1| oxs |1|o|o|o|o o|o| RCODE+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+- +

/ RR_NAME
/ \\
+-+

NB (0x0020) IN (0x0001)
+-+

TTL
+-+

0x0006 | NB_FLAGS+-+

NB_ADDRESS+-+

NetBIOS Working Group [Page 20]

Protocols for X/Open PC Interworkingz SNIB, Version 2 439

Page 457 of 534

RFC 1002

RFC 1002 March 1987

RCODE field values:

Symbol Value Description:

FMT_ERR 0x1 Format Error. Request was invalidly
formatted.

SRV_ERR 0x2 Server failure. Problem with NBNS, cannot
PIOCGSS name .

RFS_ERR 0x5 Refused error. For policy reasons server
will not release this name from this host.

ACT_ERR 0x6 Active error. Name is owned by another node.
Only that node may release it. A NetBIOS
Name Server can optionally allow a node to
release a name it does not own. This would
facilitate detection of inactive names for

nodes that went down silently.

4.2.12. NAME QUERY REQUEST

1111111111222222222233
01234567890l2345678901234567890l

+-+

NAME_TRN_ID |o| 0x0 |o|o|1|o|o o|B| 0x0+-+

0x0001 | 0x0000+-+

0x0000 | 0x0000+-+

/ QUESTION_NAME
/ \5\
+-+

NB (0x0020) IN (0x000l)
+-+

NetBIOS Working Group [Page 21]

440 X/Open CAE Specification (1992)

Page 458 of 534

RFC 1002

RFC 1002 March 1987

4.2.13. POSITIVE NAME QUERY RESPONSE

1 1 1 1 1 1 1 1 1
0123456789012345678

+- +-+-+-+-+-+-+-+-

NAME_TRN_ID |1| 0x0 |l|T|l|'?|0 o|o| 0x0+-+

0x0000 | 0x000l+-+

0x0000 | 0x0000+-+

1 2 2 2 2 2 2 2 2 3 3
9 1 2 3 4 5 6 8 9 0 1
+- +-+—+—+

RR_NAME/
/ \C\
+-+

NB (0x0020) IN (0x000l)
+-+

TTL
+-+

RDLENGTH
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ADDR_ENTRY ARRAY/
/ \3\
+-+

The ADDR_ENTRY ARRAY a sequence Of zero or more ADDR_ENTRY
records. Each ADDR_ENTRY record represents an owner of a name.
For group names there may be multiple entries. However, the list
may be incomplete due to packet size limitations. Bit 22, "T",
will be set to indicate truncated data.

Each ADDR_ENTRY has the following format:

+-+

| NB_FLAGS | NB_ADDRESS+-+

| NB_ADDRESS (continued) |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 22]

Protocols for X/Open PC Interworkingz SMB, Version 2 441

Page 459 of 534

RFC 1002

4.2.14.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
+-+-+-+-+'+-+-+-+-+-+-+-+-+-+-+-+-+-+-

NAME_TRN_ID
+-+-+-+-+'+-+'+-+-+-+-+

OXOOOO

0x0000

/
/

NULL

OXOOOO

+-+

+-+

+-+

(oxoooA) I+-+

RFC 1002

March 1987

NEGATIVE NAME QUERY RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
8 9 o 1 2 3 4 5 6 7 8 9 o 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+

|1| 0x0 |1|o|1|?|o o|o| RCODE

| 0x0000

| 0x0000

RR_NAME
\\\\

IN (0x0001)

0x00000000
+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RCODE field values:

Symbol Value

FMT_ERR Oxl

SRV_ERR 0x2

NAM_ERR 0x3

IMP_ERR OX4

RFS_ERR 0x5

NetBIOS Working Group

442

Page 460 of 534

Description

Format Error.
formatted.
Server failure.

process name.
Name Error.

exist.

Unsupported request error. Allowable only
for challenging NBNS when gets an Update type
registration request.
Refused error. For policy reasons server
will not register this name from this host.

Request was invalidly

Problem with NBNS, cannot

The name requested does not

[Page 23]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

4.2.15. REDIRECT NAME QUERY RESPONSE

1 1 1 1 1 1 1 1 1 2
0123456789012345678 5

+- +-+-+-+-+-+-+-+-

NAME_TR_N_ID |1| 0x0 |o|o|1|o|o o|o| 0x0+-+

0x0000 | 0x0000+-+

0x0001 | 0x0001+-+

1 2 2 2 2 2 2 2 3 3
9 1 2 3 4 6 8 9 0 1
+- +-+-+-+

RR_NAME/
/ \C\
+-+

NS (0x0002) IN (0x0001)
+-+

TTL
+-+

RDLENGTH
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

/ NSD_NAME
/ \3\
+-+

RR_NAME/
/ \5\
+-+

A (0x0001) IN (0x0001)
+-+

TTL
+-+

0x0004 | NSD_IP_ADDR+-+

NSD_IP_ADDR, continued |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An end node responding to a NAME QUERY REQUEST always responds
with the AA and RA bits set for both the NEGATIVE and POSITIVE

NAME QUERY RESPONSE packets. An end node never sends a REDIRECT
NAME QUERY RESPONSE packet.

NetBIOS Working Group [Page 24]

Protocols for X/Open PC Interworkingz SMB, Version 2 443

Page 461 of 534

RFC 1002

RFC 1002 March 1987

When the requestor receives the REDIRECT NAME QUERY RESPONSE it
must reiterate the NAME QUERY REQUEST to the NBNS specified by

the NSD_IP_ADDR field of the A type RESOURCE RECORD in the
ADDITIONAL section of the response packet. This is an optional
packet for the NBNS.

The NSD_NAME and the RR_NAME in the ADDITIONAL section Of the
response packet are the same name. Space can be optimized if

label string pointers are used in the RR_NAME which point to the
labels in the NSD_NAME.

The RR_NAME in the AUTHORITY section is the name of the domain
the NBNS called by NSD_NAME has authority over.

4.2.16. WAIT FOR ACKNOWLEDGEMENT (WACK) RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o 1

+-+

NAME_TRN_ID |1| 0x7 |1|o|o|o|o o|o| 0x0+-+

0x0000 | 0x000l+-+

0x0000 | 0x0000+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+'+-+'+-+—+-+-+-+-+-+'+-+'+'+-+'+

RR_NAME/
/ \3\
+-+

NULL (0x0020) IN (0x000l)
+-+

TTL
+-+

0x0002 | OPCODE | NM_FLAGS | 0x0+-+

NetBIOS Working Group [Page 25]

444 X/Open CAE Specification (1992)

Page 462 of 534

RFC 1002

RFC 1002 March 1987

The NAME_TRN_ID of the WACK RESPONSE packet is the same
NAME_TRN_ID of the request that the NBNS is telling the requestor
to wait longer to complete. The RR_NAME is the name from the
request, if any. If no name is available from the request then
it is a null name, single byte of zero.

The TTL field of the ResourceRecord is the new time to wait, in

seconds, for the request to complete. The RDATA field contains
the OPCODE and NM_FLAGS of the request.

A TTL value of 0 means that the NBNS can not estimate the time it

may take to complete a response.

4.2.17. NODE STATUS REQUEST

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+—+-+—+-+-+-+-+-+—+—+—+—+-+—+-+—+-+ +—+-+—+-+-+-+-+-+-+-+-+-+—+—+

| NAME_TRN_ID |o| 0x0 |o|o|o|o|o 0|B| 0x0 |+—+-+—+-+-+-+-+-+—+-+-+—+-+-+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 0x0001 | 0x0000 |+—+-+—+-+-+-+-+-+—+-+-+—+-+-+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 0x0000 | 0x0000 |+—+-+—+-+-+-+-+-+—+-+-+—+-+-+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
QUESTION_NAME //

+—+-+—+-+-+-+-+-+—+-+-+—+-+-+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NBSTAT (0x0021) | IN (0x0001) |+—+-+—+-+-+-+-+-+—+-+-+—+-+-+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 26]

Protocols for X/Open PC Interworkingz SMB, Version 2 445

Page 463 of 534

RFC 1002

RFC 1002 March 1987

4.2.18. NODE STATUS RESPONSE

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 o 1

+-+

NAME_TRN_ID |1| 0x0 |1|o|o|o|o o|o| 0x0+-+

0x0000 | 0x0001+-+

0x0000 | 0x0000+-+

/ RR_NAME /

+-+

NBSTAT (0x0021) | IN (0x0001)+-+

0x00000000
+-+

RDLENGTH | NUM_NAMES |+-+ +

+ +

/ NMEJMMEAMMX /+ +

+-+

+

/
+

+

/ STATISTICS
+

I+_ +-+

The NODE_NAME ARRAY is an array of zero or more BKWLNAMES entries
of NODE_NAME records. Each NODE_NAME entry represents an active
name in the same NetBIOS scope as the requesting name in the

local name table of the responder. RR_NAME is the requesting
name.

NetBIOS Working Group [Page 27]

446 X/Open CAE Specification (1992)

Page 464 of 534

RFC 1002

RFC 1002 March 1987

NODE_NAME Entry:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I I+--- ---+

I I
+--- NETBIOS FORMAT NAME ---+

I I+--- ---+

+-+

| NAME_FLAGS+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The NAME_FLAGS field:

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| G | ONT |DRG|CNF|ACT|PRM| RESERVED |+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

The NAME_FLAGS field is defined as:

Symbol Bit(s) Description:

RESERVED 7-15 Reserved for future use. Must be zero (0).

PRM 6 Permanent Name Flag. If one (1) then entry
is for the permanent node name. Flag is zero
(0) for all other names.

ACT 5 Active Name Flag. All entries have this flag
set to one (1).

CNF 4 Conflict Flag. If one (1) then name on this
node is in conflict.

DRG 3 Deregister Flag. If one (1) then this name
is in the process of being deleted.

ONT 1,2 Owner Node Type:
00 = B node
01 = P node
10 = M node
11 = Reserved for future use

G 0 Group Name Flag.
If one (1) then the name is a GROUP NetBIOS
name.

If zero (0) then it is a UNIQUE NetBIOS name.

NetBIOS Working Group [Page 28]

Protocols for X/Open PC Interworkingz SMB, Version 2 447

Page 465 of 534

RFC 1002

RFC 1002 March 1987

STATISTICS Field of the NODE STATUS RESPONSE:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+—+—+—+-+—+-+—+-+-+-+-+-+-+-+—+—+—+-+—+-+-+—+—+—+-+—+-+

UNIT_ID (Unique unit ID)+-+-+-+-+-+—+—+—+-+—+-+—+-+-+-+-+-+-+-+—+—+—+-+—+-+-+—+—+—+-+—+-+

UNIT_ID,continued | JUMPERS | TEST_RESULT+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

VERSION_NUMBER | PERIOD_OF_STATISTICS+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NUMBER_OF_CRCs | NUMBER_ALIGNMENT_ERRORS+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NUMBER_OF_COLLISIONS | NUMBER_SEND_ABORTS+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NUMBER_GOOD_SENDS
+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NUMBER_GOOD_RECEIVES+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NUMBER_RETRANSMITS | NUMBER_NO_RESOURCE_CONDITIONS+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NUMBER_FREE_COMMAND_BLOCKS | TOTAL_NUMBER_COMMAND_BLOCKS+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

MAX_TOTAL_NUMBER_COMMAND_BLOCKS| NUMBER_PENDING_SESSIONS+-+-+-+'+-+'+'+-+'+-+-+-+-+-+-+-+'+-+'+-+—+-+-+-+-+-+'+-+'+'+-+'+

MAX_NUMBER_PENDING_SESSIONS | MAX_TOTAL_SESSIONS_POSSIBLE+'+'+'+-+-+-+-+-+-+-+'+'+'+'+'+'+-+-+-+'+'+'+'+'+'+'+-+-+-+-+-+-+

SESSION_DATA_PACKET_SIZE+'+'+'+-+*+-+'+-+'+-+-+-+-+'+'+'+

4.3. SESSION SERVICE PACKETS

4.3.1. GENERAL FORMAT OF SESSION PACKETS

All session service messages are sent over a TCP connection.

All session packets are of the following general structure:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+—+-+

| TYPE | FLAGS | LENGTH |+-+-+-+-+—+—+—+-+—+-+

/ TRAILER (Packet Type Dependent) /

+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+—+-+

The TYPE, FLAGS, and LENGTH fields are present in every session
packet.

NetBIOS Working Group [Page 29]

448 X/Open CAE Specification (1992)

Page 466 of 534

RFC 1002

RFC 1002 March 1987

The LENGTH field is the number of bytes following the LENGTH
field. In other words, LENGTH is the combined size of the

TRAILER field(s). For example, the POSITIVE SESSION RESPONSE
packet always has a LENGTH field value of zero (0000) while the
RETARGET SESSION RESPONSE always has a LENGTH field value of six
(0006).

One of the bits of the FLAGS field acts as an additional, high-
order bit for the LENGTH field. Thus the cumulative size of the

trailer field(s) may range from 0 to 128K bytes.

Session Packet Types (in hexidecimal):

00 - SESSION MESSAGE

81 - SESSION REQUEST
82 - POSITIVE SESSION RESPONSE
83 - NEGATIVE SESSION RESPONSE
84 - RETARGET SESSION RESPONSE
85 - SESSION KEEP ALIVE

Bit definitions of the FLAGS field:

0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+

|0|0|0|0|0|0|0|E|+---+---+---+---+---+---+---+---+

Symbol Bit(s) Description

E 7 Length extension, used as an additional,
high—order bit on the LENGTH field.

RESERVED 0-6 Reserved, must be zero (0)

4.3.2. SESSION REQUEST PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+—+—+—+-+-+-+-+-+—+—+—+-+-+-+—+—+—+-+-+-+-+—+-+-+-+-+-+-+-+-+-+

| TYPE I FLAGS | LENGTH |+-+—+—+—+-+-+-+-+—+—+-+-+—+-+-+—+—+—+-+-+-+-+—+-+-+-+-+-+-+-+-+-+

1 CALLED NAME /
L-+-+-+-+-+-+-+-+-+—+-+-+—+-+-+—+—+—+-+-+-+-+—+-+-+-+-+-+-+-+-+-+|

1 CALLING NAME 1
L +-+—+—+—+-+-+-+-+—+-+-+—+-+-+—+—+—+-+-+-+-+—+-+-+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 30]

Protocols for X/Open PC Interworkingz SMB, Version 2 449

Page 467 of 534

RFC 1002

RFC 1002 March 1987

4.3.3. POSITIVE SESSION RESPONSE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+—+—+—+-+—+-+—+-+-+-+-+-+-+-+—+—+—+-+—+-+-+—+—+—+-+—+-+

| TYPE | FLAGS | LENGTH |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+

4.3.4. NEGATIVE SESSION RESPONSE PACKET

1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-

| TYPE | FLAGS | LENGTH |+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

| ERROR_CODE |+-+-+-+-+-+-+-+-+

1 1 1 1 1 2
5 6 7 8 9 0
+-+-+-+-+-+- +HN +NN +WN +hN +mN +mN

2 2 2 3 3
7 8 9 0 1

-+-+-+-+-+

NEGATIVE SESSION RESPONSE packet error code values (in
hexidecimal):

80 - Not listening on called name
81 - Not listening for calling name
82 - Called name not present
83 - Called name present, but insufficient resources
8F - Unspecified error

4.3.5. SESSION RETARGET RESPONSE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+—+—+—+-+—+-+—+-+-+-+-+-+-+-+—+—+—+-+—+-+-+—+—+—+-+—+-+

| TYPE | FLAGS | LENGTH |+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+

| RETARGET_IP_ADDRESS |+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+-+

| PORT |+-+-+-+-+—+—+—+-+—+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 31]

450 X/Open CAE Specification (1992)

Page 468 of 534

RFC 1002

RFC 1002 March 1987

4.3.6. SESSION MESSAGE PACKET

1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

TYPE | FLAGS I LENGTH |+-+

1 1
7 8

+

I+_

I I
/ /

/ USER_DATA /
/ /

I I+_ +-+

4.3.7. SESSION KEEP ALIVE PACKET

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+—+—+—+—+-+—+—+—+

| TYPE | FLAGS | LENGTH |+-+

4.4. DATAGRAM SERVICE PACKETS

4.4.1. NetBIOS DATAGRAM HEADER

1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

| MSG_TYPE | FLAGS I DGM_ID |+-+

| SoURcE_IP |+-+

| SoURcE_PoRT I DGM_LENGTH+-+

| PACKET_OFFSET+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1 1 1 1
5 6 7 8

+-+-+- +WH
2
0

+ +HN +MN +WN +hN
2
5

+ +mN
2 2 2 3 3
7 8 9 0 1

- -+-+-+—+—+

MSG_TYPE values (in hexidecimal):

10 - DIRECT_UNIQUE DATAGRAM
11 - DIRECT_GROUP DATAGRAM
12 - BROADCAST DATAGRAM
13 — DATAGRAM ERROR

14 - DATAGRAM QUERY REQUEST
15 - DATAGRAM POSITIVE QUERY RESPONSE
16 - DATAGRAM NEGATIVE QUERY RESPONSE

NetBIOS Working Group [Page 32]

Protocols for X/Open PC Interworkingz SMB, Version 2 451

Page 469 of 534

RFC 1002

RFC 1002 March 1987

Bit definitions of the FLAGS field:

0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+

| 0 | o | o | o | SNT | F | M |+---+---+---+---+---+---+---+---+

Symbol Bit(s) Description

M 7 MORE flag, If set then more NetBIOS datagram
fragments follow.

F 6 FIRST packet flag, If set then this is first
(and possibly only) fragment of NetBIOS
datagram

SNT 4,5 Source End—Node type:
00 = B node
01 = P node
10 = M node
11 = NBDD

RESERVED 0-3 Reserved, must be zero (0)

4.4.2. DIRECT_UNIQUE, DIRECT_GROUP, & BROADCAST DATAGRAM

1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

MSG_TYPE | FLAGS | DGM_ID+-+

SOURCE_IP+-+

SOURCE_PORT | DGM_LENGTH+-+

PACKET_OFFSET+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1 1 1 1 1 2

5 6 7 8 9 0
+-+-+-+-+-+- +HN +NN +WN +hN +mN +mN

2 2 2 3 3
7 8 9 0 1

—+-+—+-+-+

/ SOURCE_NAME /
/ /

+-+

/ DEsTINATIoN_NAME /
/ /

+-+

/ USER_DATA /
/ /

+-+

NetBIOS Working Group [Page 33]

452 X/Open CAE Specification (1992)

Page 470 of 534

RFC 1002

RFC 1002 March 1987

4.4.3. DATAGRAM ERROR PACKET

1 1 1 1 1 1 1 1 1 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

+-+—+-+- +HN +NN +WN +hN
2
5

+ +mN
2 2 2 3 3
7 8 9 0 1

+-+—+-+-+-+-+-+—+—+—+—+-+—+-+—+-+— -+-+-+—+—++_

| MSG_TYPE | FLAGS | DGM_ID+-+—+-+-+-+-+-+-+-+—+-+-+-+-+-+-+—+-+-+-+-+-+—+—+—+—+-+-+-+-+-+-+

| SOURCE_IP |+-+—+-+-+-+-+-+-+-+—+-+-+—+-+-+—+-+-+-+-+-+—+—+-+-+—+-+-+-+-+-+-+

| SOURCE_PORT | ERROR_CODE+-+—+-+-+-+-+-+-+-+—+-+-+—+-+-+—+-+-+-+-+-+—+—+-+

ERROR_CODE values (in hexidecimal):

82 - DESTINATION NAME NOT PRESENT
83 - INVALID SOURCE NAME FORMAT
84 - INVALID DESTINATION NAME FORMAT

4.4.4. DATAGRAM QUERY REQUEST

11111
012345678901234

+-+—+-+-+-+-+-+-+-+—+-+-+-+-+-+—+-

| MSG_TYPE | FLAGS | DGM_ID+-+—+-+-+-+-+-+-+-+—+-+-+-+-+-+—+-+-+-+-+-+—+—+-+-+-+-+-+-+-+-+-+

| SOURCE_IP |+-+—+-+-+-+-+-+—+—+—+-+-+-+-+-+—+-+-+-+-+-+—+—+-+-+-+-+-+-+-+-+-+

| SOU'RCE_PORT |

1
5

1 1 1
6 7 8
+-+—+- +WH

2
0

+ +HN +NN +WN +hN
2
5

+ +mN
2 2 2 3 3
7 8 9 0 1

-+-+-+—+—+

+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+‘+ +

/ DESTINATION_NAME /
/ /'

+‘+

4.4.5. DATAGRAM POSITIVE AND NEGATIVE QUERY RESPONSE

1 1 1 1 1 1 1 1 1 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

+-+—+-+-+-+-+-+—+—+-+-+—+-+-+-+-+-+—+—+—+- +HN +NN +WN +hN
2
5

+ +mN
2 2 2 3 3
7 8 9 0 1

+- -+-+-+—+—+

| MSG_TYPE | FLAGS | DGM_ID |+-+—+-+-+-+-+-+-+-+—+-+-+—+-+-+—+-+-+-+-+-+—+—+-+-+-+-+-+-+-+-+-+

| SOU'RCE_IP |+-+—+-+-+-+-+-+-+-+—+-+-+—+-+-+—+-+-+-+-+-+—+—+-+-+-+-+-+-+-+-+-+

| SOU'RCE_PORT |+-+—+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I
/

1
+_

DESTINATION_NAME ——\\\\——-+——
+-+—+-+-+-+-+-+-+—+-+-+—+-+-+—+-+-+-+-+-+—+—+-+-+-+-+-+-+-+-+-+

NetBIOS Working Group [Page 34]

Protocols for X/Open PC Interworkingz SNIB, Version 2 453

Page 471 of 534

RFC 1002

RFC 1002 March 1987

5. PROTOCOL DESCRIPTIONS

5.1. NAME SERVICE PROTOCOLS

A REQUEST packet is always sent to the well known UDP port —

NAME_SERVICE_UDP_PORT. The destination address is normally
either the IP broadcast address or the address of the NBNS — the

address of the NBNS server it set up at initialization time. In
rare cases, a request packet will be sent to an end node, e.g. a
NAME QUERY REQUEST sent to "challenge" a node.

A RESPONSE packet is always sent to the source UDP port and
source IP address of the request packet.

A DEMAND packet must always be sent to the well known UDP port -

NAME_SERVICE_UDP_PORT. There is no restriction on the target IP
address.

Terms used in this section:

tid — Transaction ID. This is a value composed from
the requestor’s IP address and a unique 16 bit
value generated by the originator of the
transaction.

5.1.1. B—NODE ACTIVITY

5.1.1.1. B—NODE ADD NAME

PROCEDURE add_name(newname)

/1-

* Host initiated processing for a B node
*/

BEGIN

REPEAT

/* build name service packet */

ONT = B_NODE; /* broadcast node */
G = UNIQUE; /* unique name */
TTL = 0;

broadcast NAME REGISTRATION REQUEST packet;

/1-

* remote node(s) will send response packet
* if applicable
*/

NetBIOS Working Group [Page 35]

454 X/Open CAE Specification (1992)

Page 472 of 534

RFC 1002

RFC 1002 March 1987

pause (BCAST_REQ_RETRY_TIMEOUT) ,-

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/1
* build packet
*/

ONT = B_NODE; /* broadcast node */
G = UNIQUE; /* unique name */
TTL = 0;

/1

* Let other nodes known you have the namei-
/

broadcast NAME UPDATE REQUEST packet;
/* name can be added to local name table */
return success;

END /* no response */
ELSE

BEGIN /* got response */

/1
* Match return transaction id

* against tid sent in request
*/

IF NOT response tid = request tid THEN
BEGIN

ignore response packet;
END

ELSE

CASE packet type OF

NEGATIVE NAME REGISTRATION RESPONSE:

return failure; /* name cannot be added */

POSITIVE NAME REGISTRATION RESPONSE:
END—NODE CHALLENGE NAME REGISTRATION RESPONSE:

/*

* B nodes should normally not get this
* response.

*/

ignore packet;

NetBIOS Working Group [Page 36]

Protocols for X/Open PC Interworkingz SNIB, Version 2 455

Page 473 of 534

RFC 1002

RFC 1002 March 1987

END /* case */;

END /* got response */
END /* procedure */

5.1.1.2. B-NODE ADD_GROUP NAME

PROCEDURE add_group_name(newname)

/*

* Host initiated processing for a B node1'
/

BEGIN

/*

* same as for a unique name with the
* exception that the group bit (G) must
* be set in the request packets.1'
/

G = GROUP;

/1

* broadcast request
*/

END

5.1.1.3. B—NODE FIND_NAME

PROCEDURE find_name(name)

/*

* Host initiated processing for a B node
*/

BEGIN

REPEAT

/*

* build packet
*/

ONT = B;
TTL = 0;
G = DONT CARE;

broadcast NAME QUERY REQUEST packet;

NetBIOS Working Group [Page 37]

456 X/Open CAE Specification (1992)

Page 474 of 534

RFC 1002

RFC 1002 March 1987

/1

* a node might send response packet
-/

pause (BCAST_REQ_RETRY_TIMEOUT) ;
UNTIL response packet received OR

max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE

IF NOT response tid = request tid THEN
ignore packet;

ELSE

CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

/1
* Start a timer to detect conflict.

Be prepared to detect conflict if

any more response packets are received.ll-ll-ll-ll-If
/

save response as authoritative response;

start_timer(CONFLICT_TIMER);
return success;

NEGATIVE NAME QUERY RESPONSE:
REDIRECT NAME QUERY RESPONSE:

/1

* B Node should normally not get either
* response.
-/

ignore response packet;

END /* case */

END /* procedure */

5.1.1.4. B NODE NAME RELEASE

PROCEDURE delete_name (name)
BEGIN

REPEAT

/1

* build packet
-/

NetBIOS Working Group [Page 38]

Protocols for X/Open PC Interworkingz SlV[B, Version 2 457

Page 475 of 534

RFC 1002

RFC 1002 March 1987

/1

* send request
*/

broadcast NAME RELEASE REQUEST packet;

/*

* no response packet expected
*/

pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL retransmit count has been exceeded

END /* procedure */

5.1.1.5. B—NODE INCOMING PACKET PROCESSING

Following processing is done when broadcast or unicast packets

are received at the NAME_SERVICE_UDP_PORT.

PROCEDURE process_incoming_packet(packet)

/*

* Processing initiated by incoming packets for a B node
*/

BEGIN

/*

* Note: response packets are always sent
* to:

* source IP address of request packet
* source UDP port of request packet
* /

CASE packet type OF

NAME REGISTRATION REQUEST (UNIQUE):
IF name exists in local name table THEN

send NEGATIVE NAME REGISTRATION RESPONSE ;
NAME REGISTRATION REQUEST (GROUP):

IF name exists in local name table THEN
BEGIN

IF local entry is a unique name THEN
send NEGATIVE NAME REGISTRATION RESPONSE ;

END

NAME QUERY REQUEST:
IF name exists in local name table THEN
BEGIN

build response packet;

NetBIOS Working Group [Page 39]

458 X/Open CAE Specification (1992)

Page 476 of 534

RFC 1002

RFC 1002 March 1987

send POSITIVE NAME QUERY RESPONSE;
POSITIVE NAME QUERY RESPONSE:

NetBIOS Working Group

IF name conflict timer is not active THEN
BEGIN

/1

* timer has expired already... ignore this
* packet
-/

return;
END

ELSE /* timer is active */

IF a response for this name has previously been
received THEN

BEGIN /* existing entry */

/1

* we sent out a request packet, and
* have already received (at least)
* one response1'

* Check if conflict exists.

* If so, send out a conflict packet.1'

* Note: detecting conflict does NOT
* affect any existing sessions.1'

-/

/1
* Check for name conflict.

* See "Name Conflict" in Concepts and Methods
-/

check saved authoritative response against
information in this response packet;

IF conflict detected THEN
BEGIN

unicast NAME CONFLICT DEMAND packet;
IF entry exists in cache THEN
BEGIN

remove entry from cache;
END

END

END /* existing entry */
ELSE
BEGIN

/1

* Note: If this was the first response
* to a name query, it would have been
* handled in the

* find_name() procedure.

Protocols for X/Open PC Intetworkingz SNIB, Version 2

Page 477 of 534

[Page 40]

459

RFC 1002

NAME

NAME

NAME

NODE

END

RFC 1002

March 1987

*/

ignore packet;
END

CONFLICT DEMAND:

IF name exists in local name table THEN
BEGIN

mark name as conflict detected;

/1-
* a name in the state "conflict detected"

* does not "logically" exist on that node.
* No further session will be accepted on
* that name.

* No datagrams can be sent against that name.
* Such an entry will not be used for
* purposes of processing incoming request
* packets.
* The only valid user NetBIOS operation
* against such a name is DELETE NAME.
*/

END

RELEASE REQUEST:

IF caching is being done THEN
BEGIN

remove entry from cache;
END

UPDATE REQUEST:

IF caching is being done THEN
BEGIN

IF entry exists in cache already,
update cache;

ELSE IF name is "interesting" THEN
BEGIN

add entry to cache;
END

END

STATUS REQUEST:
IF name exists in local name table THEN
BEGIN

/1-

* send only those names that are
* in the same scope as the scope
* field in the request packet
*/

send NODE STATUS RESPONSE;
END

[Page 41]NetBIOS Working Group

460

Page 478 of 534

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

5.1.2. P—NODE ACTIVITY

All packets sent or received by P nodes are unicast UDP packets.
A P node sends name service requests to the NBNS node that is
specified in the P—node configuration.

5.1.2.1. P—NODE ADD_NAME

PROCEDURE add_name(newname)

/ 1-

* Host initiated processing for a P node*
/

BEGIN

REPEAT

/ 1-

* build packet
* /

ONT = P;
G = UNIQUE;

/ 1-
* send request
* /

unicast NAME REGISTRATION REQUEST packet;

/ 1-

* NBNS will send response packet*
/

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

paus e (UCAST_REQ_RETRY_TIMEOUT) ,-
UNTIL response packet is received OR

retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/ 1-
* NBNS is down. Cannot claim name.
*
/

return failure; /* name cannot be claimed */

END /* no response */
ELSE

NetBIOS Working Group [Page 42]

Protocols for X/Open PC Interworkingz SMB, Version 2 461

Page 479 of 534

RFC 1002

RFC 1002

March 1987

BEGIN /* response */

NetBIOS Working Group

462

Page 480 of 534

IF NOT response tid = request tid THEN
BEGIN

/* Packet may belong to another transaction */
ignore response packet;

END

ELSE

CASE packet type OF

POSITIVE NAME REGISTRATION RESPONSE:

/1
* name can be added

-/

adjust refresh timeout value, TTL, for this name;
return success; /* name can be added */

NEGATIVE NAME REGISTRATION RESPONSE:

return failure; /* name cannot be added */

END—NODE CHALLENGE REGISTRATION REQUEST:

BEGIN /* end node challenge */

/

The response packet has in it the
address of the presumed owner of the
name. Challenge that owner.
If owner either does not

respond or indicates that he no longer
owns the name, claim the name.
Otherwise, the name cannot be claimed.Il-Il-Il-Il-Il-Il-Il-Il-Il-Il-

/

REPEAT

/1
* build packet
-/

unicast NAME QUERY REQUEST packet to the
address contained in the END NODE

CHALLENGE RESPONSE packet;

/1
* remote node may send response packet
-/

pause (UCAST_REQ_RETRY_TIMEOUT) ,-

[Page 43]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet is received OR
NEGATIVE NAME QUERY RESPONSE packet
received THEN

BEGIN /* update */

/1
* name can be claimed
1'
/

REPEAT

/1
* build packet
-/

unicast NAME UPDATE REQUEST to NBNS;

/1

* NBNS node will send response packet
-/

IF receive a WACK RESPONSE THEN

March 1987

pause(time from TTL field of response);
ELSE

pause (UCAST_REQfiRETRY_TIMEOUT) ;
UNTIL response packet is received or

retransmit count has been exceeded

IF no response packet received THEN
BEGIN /* no response */

/1
* name could not be claimed

-/

return failure;

END /* no response */
ELSE

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/1
* add name

-/
return SUCCESS;

NEGATIVE NAME REGISTRATION RESPONSE:

I!*

* you lose
-/

NetBIOS Working Group

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 481 of 534

[Page 44]

463

RFC 1002

RFC 1002 March 1987

return failure;
END /* case */

END /* update */
ELSE

/*

* received a positive response to the "challenge"
* Remote node still has name

*/

return failure;

END /* end node challenge */
END /* response */

END /* procedure */

5.1.2.2. P—NODE ADD GROUP NAME

PROCEDURE add_group_name(newname)

/*

* Host initiated processing for a P node
*/

BEGIN

/*

* same as for a unique name, except that the
* request packet must indicate that a
* group name claim is being made.
*/

G = GROUP;

/1

* send packet
*/

END

5.1.2.3. P—NODE FIND NAME

PROCEDURE find_name(name)

/*

* Host initiated processing for a P node*/

BEGIN

NetBIOS Working Group [Page 45]

464 X/Open CAE Specification (1992)

Page 482 of 534

RFC 1002

RFC 1002 March 1987

REPEAT

/1-

* build packet
1-/'

ONT = P;
G = DONT CARE;

unicast NAME QUERY REQUEST packet;

/1-

* a NBNS node might send response packet
*/

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause (UCAST_REQ_RETRY_TIMEOUT) ,-
UNTIL response packet received OR

max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE

IF NOT response tid = request tid THEN
ignore packet;

ELSE

CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

return success;

REDIRECT NAME QUERY RESPONSE:

* NBNS node wants this end node
* to use some other NBNS node

* to resolve the query.
*/

repeat query with NBNS address
in the response packet;

NEGATIVE NAME QUERY RESPONSE:

return failure;

END /* case */

END /* procedure */

5.1.2.4. P—NODE DELETE_NAME

PROCEDURE delete_name (name)

NetBIOS Working Group [Page 46]

Protocols for X/Open PC Interworkingz SMB, Version 2 465

Page 483 of 534

RFC 1002

RFC 1002 March 1987

/1

* Host initiated processing for a P node
*/

BEGIN

REPEAT

/*

* build packet
*/

/1
* send request
*/

unicast NAME RELEASE REQUEST packet;
IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL retransmit count has been exceeded

or response been received

IF response has been received THEN
CASE packet type OF
POSITIVE NAME RELEASE RESPONSE:

return success;
NEGATIVE NAME RELEASE RESPONSE:

/*
* NBNS does want node to delete this
* name 11!

*/

return failure;

END /* case */

END /* procedure */

5.1.2.5. P—NODE INCOMING PACKET PROCESSING

Processing initiated by reception of packets at a P node

PROCEDURE process_incoming_packet(packet)

/*

* Processing initiated by incoming packets at a P node
* /

BEGIN

NetBIOS Working Group [Page 47]

466 X/Open CAE Specification (1992)

Page 484 of 534

RFC 1002

RFC 1002 March 1987

/1

* always ignore UDP broadcast packets
-/

IF packet was sent as a broadcast THEN
BEGIN

ignore packet;
return;

END

CASE packet type of

NAME CONFLICT DEMAND:

IF name exists in local name table THEN

mark name as in conflict;
return;

NAME QUERY REQUEST:
IF name exists in local name table THEN

BEGIN /* name exists */

/1

* build packet
-/

/1

* send response to the IP address and port
* number from which the request was received.
-/

send POSITIVE NAME QUERY RESPONSE ;
return;

END /* exists */
ELSE

BEGIN /* does not exist */

/1
* send response to the requestor
-/

send NEGATIVE NAME QUERY RESPONSE ;
return;

END /* does not exist */
NODE STATUS REQUEST:

/1
* Name of "*" may be used for force node to

* divulge status for administrative purposes
-/

IF name in local name table OR name = "*" THEN
BEGIN

/1

NetBIOS Working Group [Page 48]

Protocols for X/Open PC Interworkingz SMB, Version 2 467

Page 485 of 534

RFC 1002

RFC 1002 March 1987

Build response packet and
send to requestor node
Send only those names that are
in the same scope as the scope

in the request packet.
/

Il-Il-Il-Il-Il-Il-
send NODE STATUS RESPONSE;

END

NAME RELEASE REQUEST:

/1-
* This will be received if the NBNS wants to flush the

* name from the local name table, or from the local
* cache.

*/

IF name exists in the local name table THEN
BEGIN

delete name from local name table;
inform user that name has been deleted;

END

ELSE

IF name has been cached locally THEN
BEGIN

remove entry from cache:
END

END /* case */

END /* procedure */

5.1.2.6. P—NODE TIMER INITIATED PROCESSING

Processing initiated by timer expiration.

PROCEDURE timer_expired()
/ 1-

* Processing initiated by the expiration of a timer on a P node
* /

BEGIN

/ 1-
* Send a NAME REFRESH REQUEST for each name which the

* TTL which has expired.1'
/

REPEAT

build NAME REFRESH REQUEST packet;
REPEAT

send packet to NBNS;

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);

NetBIOS Working Group [Page 49]

468 X/Open CAE Specification (1992)

Page 486 of 534

RFC 1002

RFC 1002 March 1987

ELSE

pause (UCAST_REQ_RETRY_TIMEOUT) ,-
UNTIL response packet is received or

retransmit count has been exceeded

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/* successfully refreshed */
reset TTL timer for this name;

NEGATIVE NAME REGISTRATION RESPONSE:

/1-
* refused, can't keep name
* assume in conflict

*/
mark name as in conflict;

END /* case */

UNTIL request sent for all names for which TTL
has expired

END /* procedure */

5.1.3. M—NODE ACTIVITY

M nodes behavior is similar to that of P nodes with the addition
of some B node-like broadcast actions. M node name service

proceeds in two steps:

1.Use broadcast UDP based name service. Depending on the
operation, goto step 2.

2.Use directed UDP name service.

The following code for M nodes is exactly the same as for a P
node, with the exception that broadcast operations are done
before P type operation is attempted.

5.1.3.1. M—NODE ADD NAME

PROCEDURE add_name(newname)

/ 1-

* Host initiated processing for a M node
* /

BEGIN

/ 1-
* check if name exists on the
* broadcast area

* /

NetBIOS Working Group [Page 50]

Protocols for X/Open PC Interworkingz SMB, Version 2 469

Page 487 of 534

RFC 1002

RFC 1002 March 1987

REPEAT

/* build packet */

broadcast NAME REGISTRATION REQUEST packet;

pause(BCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF valid response received THEN
BEGIN

/* cannot claim name */

return failure;
END

/1

* No objections received within the
* broadcast area.

* Send request to name server.
*/

REPEAT

/*

* build packet
*/

ONT = M;

unicast NAME REGISTRATION REQUEST packet;

/*

* remote NBNS will send response packet
*/

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet was received THEN
BEGIN /* no response */

/1
* NBNS is down. Cannot claim name.

* /

NetBIOS Working Group [Page 51]

470 X/Open CAE Specification (1992)

Page 488 of 534

RFC 1002

RFC 1002 March 1987

return failure; /* name cannot be claimed */

END /* no response */
ELSE

BEGIN /* response */
IF NOT response tid = request tid THEN
BEGIN

ignore response packet;
END

ELSE

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/*
* name can be added
*/

adjust refresh timeout value, TTL;
return success; /* name can be added */

NEGATIVE NAME REGISTRATION RESPONSE:

return failure; /* name cannot be added */

END—NODE CHALLENGE REGISTRATION REQUEST:

BEGIN /* end node challenge */

/

The response packet has in it the
address of the presumed owner of the
name. Challenge that owner.
If owner either does not

respond or indicates that he no longer
owns the name, claim the name.
Otherwise, the name cannot be claimed.Il-Il-ll-ll-Il-Il-Il-Il-Il-ll-

/

REPEAT

/*

* build packet
*/

/1

* send packet to address contained in the
* response packet
*/

unicast NAME QUERY REQUEST packet;

/*
* remote node may send response packet

NetBIOS Working Group [Page 52]

Protocols for X/Open PC Interworkingz SMB, Version 2 471

Page 489 of 534

RFC 1002

RFC 1002 March 1987

*/

pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet is received THEN
BEGIN /* no response */

/1-
* name can be claimed

*/
REPEAT

/1-
* build packet
*/

unicast NAME UPDATE REQUEST to NBNS;

/1-
* NBNS node will send response packet
*/

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);

UNTIL response packet is received or
retransmit count has been exceeded

IF no response packet received THEN
BEGIN /* no response */

/iv
* name could not be claimed

*/

return failure;

END /* no response */
ELSE

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/*
* add name

*/

return success;
NEGATIVE NAME REGISTRATION RESPONSE:

NetBIOS Working Group [Page 53]

472 X/Open CAE Specification (1992)

Page 490 of 534

RFC 1002

RFC 1002 March 1987

/1
* you lose
*/

return failure;

END /* case */

END /* no response */
ELSE

IF NOT response tid = request tid THEN
BEGIN

ignore response packet;
END

/1
* received a response to the "challenge"
* packet
*/

CASE packet type OF
POSITIVE NAME QUERY:

/*
* remote node still has name.I
*/

return failure;
NEGATIVE NAME QUERY:

/*
* remote node no longer has name
*/

return success;

END /* case */
END /* end node challenge */
END /* case */

END /* response */
END /* procedure */

5.1.3.2. M—NODE ADD GROUP NAME

PROCEDURE add_group_name(newname)

/*

* Host initiated processing for a P node
* /

BEGIN

I/ *

* same as for a unique name, except that the
* request packet must indicate that a

NetBIOS Working Group [Page 54]

Protocols for X/Open PC Interworkingz SlV[B, Version 2 473

Page 491 of 534

RFC 1002

RFC 1002 March 1987

* group name claim is being made.
*/

G GROUP;

/1
* send packet
*/

END

5.1.3.3. M—NODE FIND NAME

PROCEDURE find_name(name)

/*

* Host initiated processing for a M node

* check if any node on the broadcast
* area has the name

*/

REPEAT

/* build packet */

broadcast NAME QUERY REQUEST packet;

pause(BCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet received OR

max transmit threshold exceeded

IF valid response received THEN
BEGIN

save response as authoritative response;

start_timer(CONFLICT_TIMER);
return success;

END

/1

* no valid response on the b’cast segment.
* Try the name server.
*/

REPEAT

NetBIOS Working Group [Page 55]

474 X/Open CAE Specification (1992)

Page 492 of 534

RFC 1002

RFC 1002 March 1987

/1-

* build packet
*/

ONT = M;
G = DONT CARE;

unicast NAME QUERY REQUEST packet to NBNS;

ll *

* a NBNS node might send response packet
*/

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL response packet received OR

max transmit threshold exceeded

IF no response packet received THEN
return failure;

ELSE

IF NOT response tid = request tid THEN
ignore packet;

ELSE

CASE packet type OF
POSITIVE NAME QUERY RESPONSE:

return success;

REDIRECT NAME QUERY RESPONSE:

* NBNS node wants this end node
* to use some other NBNS node

* to resolve the query.
*/

repeat query with NBNS address

in the response packet;
NEGATIVE NAME QUERY RESPONSE:

return failure;

END /* case */

END /* procedure */

5.1.3.4. M—NODE DELETE NAME

PROCEDURE delete_name (name)

/1-

NetBIOS Working Group [Page 56]

Protocols for X/Open PC Interworkingz SIVIB, Version 2 475

Page 493 of 534

RFC 1002

RFC 1002 March 1987

* Host initiated processing for a P node

* First, delete name on NBNS

*/

REPEAT

/*
* build packet
*/

/1
* send request
*/

unicast NAME RELEASE REQUEST packet to NBNS;

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause(UCAST_REQ_RETRY_TIMEOUT);
UNTIL retransmit count has been exceeded

or response been received

IF response has been received THEN
CASE packet type OF
POSITIVE NAME RELEASE RESPONSE:

/*
* Deletion of name on b’cast segment is deferred
* until after NBNS has deleted the name

*/

REPEAT

/* build packet */

broadcast NAME RELEASE REQUEST;

pause(BCAST_REQ_RETRY_TIMEOUT);
UNTIL rexmt threshold exceeded

return success;
NFGATIVF NAMF RFLFASF RFSPONSF:

/*
* NBNS does want node to delete this
* name

*/

NetBIOS Working Group [Page 57]

476 X/Open CAE Specification (1992)

Page 494 of 534

RFC 1002

RFC 1002 March 1987

return failure;
END /* case */

END /* procedure */

5.1.3.5. M—NODE INCOMING PACKET PROCESSING

Processing initiated by reception of packets at a M node

PROCEDURE process_incoming_packet(packet)

/*

* Processing initiated by incoming packets at a M node
* /

BEGIN

CASE packet type of

NAME CONFLICT DEMAND:
IF name exists in local name table THEN

mark name as in conflict;
return;

NAME QUERY REQUEST:
IF name exists in local name table THEN

BEGIN /* name exists */

/1

* build packet
* /

/1

* send response to the IP address and port
* number from which the request was received.
* /

send POSITIVE NAME QUERY RESPONSE ;
return;

END /* exists */
ELSE

BEGIN /* does not exist */

/1

* send response to the requestor
* /

IF request NOT broadcast THEN
/*

* Don't send negative responses to
* queries sent by B nodes
* /

NetBIOS Working Group [Page 58]

Protocols for X/Open PC Interworkingz SMB, Version 2 477

Page 495 of 534

RFC 1002

RFC 1002 March 1987

send NEGATIVE NAMF QUERY RESPONSF ;
return;

END /* does not exist */
NODE STATUS REQUEST:

BEGIN

/1-
* Name of "*" may be used for force node to

* divulge status for administrative purposes

IF name in local name table OR name = "*" THEN

* Build response packet and
send to requestor node
Send only those names that are
in the same scope as the scope
in the request packet.

/
ll-ll-ll-ll-If

send NODE STATUS RESPONSE;
END

NAME RELEASE REQUEST:

/1-
* This will be received if the NBNS wants to flush the

* name from the local name table, or from the local
* cache.

*/

IF name exists in the local name table THEN
BEGIN

delete name from local name table;
inform user that name has been deleted;

END

ELSE

IF name has been cached locally THEN
BEGIN

remove entry from cache:
END

NAME REGISTRATION REQUEST (UNIQUE):
IF name exists in local name table THEN

send NEGATIVE NAME REGISTRATION RESPONSE ;
NAME REGISTRATION REQUEST (GROUP):

IF name exists in local name table THEN
BEGIN

IF local entry is a unique name THEN
send NEGATIVE NAME REGISTRATION RESPONSE ;

END

END /* case */

END /* procedure */

NetBIOS Working Group [Page 59]

478 X/Open CAE Specification (1992)

Page 496 of 534

RFC 1002

RFC 1002 March 1987

5.1.3.6. M—NODE TIMER INITIATED PROCESSING

Processing initiated by timer expiration:

PROCEDURE timer_expired()
/*

* Processing initiated by the expiration of a timer on a M node

* Send a NAME REFRESH REQUEST for each name which the

* TTL which has expired.
*/

REPEAT

build NAME REFRESH REQUEST packet;
REPEAT

send packet to NBNS;

IF receive a WACK RESPONSE THEN

pause(time from TTL field of response);
ELSE

pause (UCAST_REQ_RETRY_TIMEOUT) ,-
UNTIL response packet is received or

retransmit count has been exceeded

CASE packet type OF
POSITIVE NAME REGISTRATION RESPONSE:

/* successfully refreshed */
reset TTL timer for this name;

NEGATIVE NAME REGISTRATION RESPONSE:

/*
* refused, can't keep name
* assume in conflict

*/
mark name as in conflict;

END /* case */

UNTIL request sent for all names for which TTL
has expired

END /* procedure */

5.1.4. NBNS ACTIVITY

A NBNS node will receive directed packets from P and M nodes.
Reply packets are always sent as directed packets to the source
IP address and UDP port number. Received broadcast packets must
be ignored.

NetBIOS Working Group [Page 60]

Protocols for X/Open PC Interworkingz SMB, Version 2 479

Page 497 of 534

RFC 1002

RFC 1002 March 1987

5.1.4.1. NBNS INCOMING PACKET PROCESSING

PROCEDURE process_incoming_packet(packet)

/1

* Incoming packet processing on a NS node
-/

BEGIN

IF packet was sent as a broadcast THEN
BEGIN

discard packet;
return;

END

CASE packet type of

NAME REGISTRATION REQUEST (UNIQUE):

IF unique name exists in data base THEN
BEGIN /* unique name exists */

/1Il-
NBNS node may be a "passive"
server in that it expects the
end node to do the challenge
server. Such a NBNS node is
called a "non-secure" server.
A "secure" server will do the

challenging before it sends
back a response packet.

/

Il-Il-Il-Il-Il-Il-Il-Il-
IF non—secure THEN
BEGIN

/1

* build response packet
-/

/1

* let end node do the challengei-
/

send END—NODE CHALLENGE NAME REGISTRATION

RESPONSE;
return;

END

ELSE

/1
* secure server — do the name

* challenge operation
-/

NetBIOS Working Group [Page 61]

480 X/Open CAE Specification (1992)

Page 498 of 534

RFC 1002

RFC 1002 March 1987

REPEAT

send NAME QUERY REQUEST;

pause (UCAST_REQ_RETRY_TIMEOUT) ,-
UNTIL response has been received or

retransmit count has been exceeded

IF no response was received THEN
BEGIN

/* node down */

update data base - remove entry;
update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END

ELSE

BEGIN /* challenged node replied */
/1-

* challenged node replied with
* a response packet
*/

CASE packet type

POSITIVE NAME QUERY RESPONSE:

* name still owned by the
* challenged node

* build packet and send response

* Note: The NBNS will need to

* keep track (based on transaction id) of
* the IP address and port number

* of the original requestor.

send NEGATIVE NAME REGISTRATION RESPONSE;
return;

NEGATIVE NAME QUERY RESPONSE:

update data base - remove entry;
update data base - add new entry;

/1-
* build response packet and send

NetBIOS Working Group [Page 62]

Protocols for X/Open PC Interworkingz SNIB, Version 2 481

Page 499 of 534

RFC 1002

RFC 1002 March 1987

* response
*/

send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* case */

END /* challenged node replied */
END /* unique name exists in data base */
ELSE

IF group name exists in data base THEN
BEGIN /* group names exists */

/1
* Members of a group name are NOT
* challenged.
* Make the assumption that
* at least some of the group members
* are still alive.
* Refresh mechanism will
* allow the NBNS to detect when all

* members of a group no longer use that
* name
i-
/

send NEGATIVE NAME REGISTRATION RESPONSE;

END /* group name exists */
ELSE

BEGIN /* name does not exist */

* Name does not exist in data base

* This code applies to both non—secure
* and secure server.

*/

update data base — add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END

NAME QUERY REQUEST :
IF name exists in data base THEN
BEGIN

/*

* build response packet and send to
* requestor
*/

send POSITIVE NAME QUERY RESPONSE;
return;

NetBIOS Working Group [Page 63]

482 X/Open CAE Specification (1992)

Page 500 of 534

RFC 1002

RFC 1002

ELSE
BEGIN

/1-

* build response packet and send to
* requestor
*/

send NEGATIVE NAME QUERY RESPONSE;
return;

END

NAME REGISTRAT ION REQUEST (GROUP):
IF name exists in data base THEN
BEGIN

IF local entry is a unique name THEN
BEGI

END

ELSE

N /* local is unique */

IF non—secure THEN
BEGIN

send END—NODE CHALLENGE NAME

REGISTRATION RESPONSE;
return;

END

REPEAT

send NAME QUERY REQUEST;

pause (UCAST_REQ__RETRY_TIMEOUT) ,-
UNTIL response received or

retransmit count exceeded

IF no response received or
NEGATIVE NAME QUERY RESPONSE
received THEN

BEGIN

update data base - remove entry;
update data base — add new entry;

March 1987

send POSITIVE NAME REGISTRATION RESPONSE;
return;

END

ELSE
BEGIN

/1-

* name still being held
* by challenged node
*/

send NEGATIVE NAME REGISTRATION RESPONSE;
END

/* local is unique */

BEGIN /* local is group */

NetBIOS Working Group

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 501 of 534

[Page 64]

483

RFC 1002

NAME

NAME

NAME

/1

* existing entry is a group name
*/

update data base - remove entry;
update data base - add new entry;

RFC 1002

March 1987

send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* local is group */
END /* names exists */
ELSE

BEGIN /* does not exist */

/* name does not exist in data base */

update data base — add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;
return;

END /* does not exist */

RELEASE REQUEST:

/*

* secure server may choose to disallow
* a node from deleting a name
*/

update data base - remove entry;
send POSITIVE NAME RELEASE RESPONSE;
return;

UPDATE REQUEST:

/*
* End—node completed a successful challenge,
* no update databaseI
*/

IF secure server THEN

send NEGATIVE NAME REGISTRATION RESPONSE;
ELSE

BEGIN /* new entry */
IF entry already exists THEN

update data base - remove entry;
update data base - add new entry;
send POSITIVE NAME REGISTRATION RESPONSE;

start_timer(TTL);
END

REFRESH REQUEST:

check for consistency;

NetBIOS Working Group

484

Page 502 of 534

[Page 65]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

IF node not allowed to have name THEN
BEGIN

/1-
* tell end node that it can't have name

*/
send NEGATIVE NAME REGISTRATION RESPONSE;

END

ELSE
BEGIN

/1-

* send confirmation response to the
* end node.

*/
send POSITIVE NAME REGISTRATION;

start_timer(TTL);
END

return;

END /* case */

END /* procedure */

5.1.4.2. NBNS TIMER INITIATED PROCESSING

A NS node uses timers to flush out entries from the data base.

Each entry in the data base is removed when its timer expires.
This time value is a multiple of the refresh TTL established when
the name was registered.

PROCEDURE timer_expired()

/ 1-

* processing initiated by expiration of TTL for a given name
* /

BEGIN

/ 1-

* NBNS can (optionally) ensure
* that the node is actually down
* by sending a NODE STATUS REQUEST.
* If such a request is sent, and
* no response is received, it can
* be assumed that the node is down.
1'
/

remove entry from data base;
END

NetBIOS Working Group [Page 66]

Protocols for X/Open PC Interworkingz SMB, Version 2 485

Page 503 of 534

RFC 1002

RFC 1002 March 1987

5.2. SESSION SERVICE PROTOCOLS

The following are variables and should be configurable by the
NetBIOS user. The default values of these variables is found in
"Defined Constants and Variables" in the Detailed

Specification.):

- SSN_RETRY_COUNT — The maximum number TCP connection attempts
allowable per a single NetBIOS call request.

- SSN_CLOSE_TIMEOUT is the time period to wait when closing the
NetBIOS session before killing the TCP connection if session
sends are outstanding.

The following are Defined Constants for the NetBIOS Session
Service. (See "Defined Constants and Variables" in the Detailed

Specification for the value of these constants):

- SSN_SRVC_TCP_PORT - is the globally well-known TCP port
allocated for the NetBIOS Session Service. The service accepts
TCP connections on this port to establish NetBIOS Sessions.
The TCP connection established to this port by the caller is
initially used for the exchange of NetBIOS control information.
The actual NetBIOS data connection may also pass through this
port or, through the retargetting facility, through another
port.

5.2.1. SESSION ESTABLISHMENT PROTOCOLS

5.2.1.1. USER REQUEST PROCESSING

PROCEDURE listen(listening name, caller name)
/1-

* User initiated processing for B, P and M nodes*

* This procedure assumes that an incoming session will be
* retargetted here by a session server.
* /

BEGIN

Do TCP listen; /* Returns TCP port used */
Register listen with Session Service, give names and

TCP port;

Wait for TCP connection to open; /* Incoming call */

Read SESSION REQUEST packet from connection

Process session request (see section on
processing initiated by the reception of session
service packets);

NetBIOS Working Group [Page 67]

486 X/Open CAE Specification (1992)

Page 504 of 534

RFC 1002

RFC 1002 March 1987

Inform Session Service that NetBIOS listen is complete;

IF session established THEN

return success and session information to user;
ELSE

return failure;

END /* procedure */

PROCEDURE call(calling name,
/1-

* user initiated processing for B,
*/

called name)

P and M nodes

This algorithm assumes that the called name is a unique name.
If the called name is a group name, the call() procedure
needs to cycle through the members of the group

until either (retry_count == SSN_RETRY_COUNT) or
* the list has been exhausted.

ll-ll-ll-ll-if
*/

BEGIN

retry_count = 0;
retarget = FALSE; /* TRUE: caller is being retargetted */

name_query = TRUE; /* TRUE: caller must begin again with */
/* name query. */

REPEAT

IF name_query THEN
BEGIN

do name discovery, returns IP address;
TCP port = SSN_SRVC_TCP_PORT;

IF name discovery fails THEN
return failure;

ELSE

name_query = FALSE;
END

/1-

* now have IP address and TCP port of
* remote party.
*/

establish TCP connection with remote party,
ephemeral port as source TCP port;

IF connection refused THEN
BEGIN

IF retarget THEN
BEGIN

/* retry */
retarget = FALSE;

use an

NetBIOS Working Group [Page 68]

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 505 of 534

487

RFC 1002

RFC 1002 March 1987

use original IP address and TCP port;
goto LOOP;

END

/* retry for just missed TCP listen */

pause(SESSION_RETRY_TIMER);
establish TCP connection, again use ephemeral

port as source TCP port;

IF connection refused OR
connection timed out THEN

return failure;
END

ELSE

IF connection timed out THEN
BEGIN

IF retarget THEN
BEGIN

/* retry */
retarget = FALSE;

use original IP address and TCP port;
goto LOOP;

END

ELSE
BEGIN

/1-

* incorrect name discovery was done,
* try again
*/

inform name discovery process of
possible error;

name_query = TRUE;
goto LOOP;

END
END

/1-
* TCP connection has been established

*/

wait for session response packet;
CASE packet type OF

POSITIVE SESSION RESPONSE:

return success and session established

information;

NEGATIVE SESSION RESPONSE:
BEGIN

NetBIOS Working Group [Page 69]

488 X/Open CAE Specification (1992)

Page 506 of 534

RFC 1002

RFC 1002 March 1987

CASE error OF
NOT LISTENING ON CALLED NAME:
NOT LISTENING FOR CALLING NAME:
BEGIN

kill TCP connection;
return failure;

END

CALLED NAME NOT PRESENT:
BEGIN

/1-
* called name does not exist on
* remote node

*/

inform name discovery procedure
of possible error;

IF this is a P or M node THEN
BEGIN

/1-
* Inform NetBIOS Name Server
* it has returned incorrect
* information.

*/
send NAME RELEASE REQUEST for called

name and IP address to

NetBIOS Name Server;
END

/* retry from beginning */
retarget = FALSE;

name_query = TRUE;
goto LOOP;

END /* called name not present */
END /* case */

END /* negative response */

RETARGET SESSION RESPONSE:
BEGIN

close TCP connection;

extract IP address and TCP port from
response;

retarget = TRUE;

END /* retarget response */
END /* case */

LOOP: retry_count = retry_count + 1;

UNTIL (retry_count > SSN_RETRY_COUNT);
return failure;

END /* procedure */

NetBIOS Working Group [Page 70]

Protocols for X/Open PC Interworkingz SMB, Version 2 489

Page 507 of 534

RFC 1002

RFC 1002 March 1987

5.2.1.2. RECEIVED PACKET PROCESSING

These are packets received on a TCP connection before a session
has been established. The listen routines attached to a NetBIOS

user process need not implement the RETARGET response section.
The user process version, separate from a shared Session Service,
need only accept (POSITIVE SESSION RESPONSE) or reject (NEGATIVE
SESSION RESPONSE) a session request.

PROCEDURE session_packet(packet)
/*

* processing initiated by receipt of a session service
* packet for a session in the session establishment phase.
* Assumes the TCP connection has been accepted.
*/

BEGIN

CASE packet type

SESSION REQUEST:
BEGIN

IF called name does not exist on node THEN
BEGIN

send NEGATIVE SESSION RESPONSE with CALLED

NAME NOT PRESENT error code;
close TCP connection;

END

Search for a listen with CALLING NAME for CALLED

NAME;

IF matching listen is found THEN
BEGIN

IF port of listener process is port TCP
connection is on THEN

BEGIN

send POSITIVE SESSION RESPONSE;

Hand off connection to client process
and/or inform user session is
established;

END

ELSE
BEGIN

send RETARGET SESSION RESPONSE with
listener's IP address and

TCP port;
close TCP connection;

END
END

ELSE
BEGIN

/* no matching listen pending */

NetBIOS Working Group [Page 71]

490 X/Open CAE Specification (1992)

Page 508 of 534

RFC 1002

RFC 1002 March 1987

send NEGATIVE SESSION RESPONSE with either
NOT LISTENING ON CALLED NAME or NOT
LISTENING FOR CALLING NAME error

code;

close TCP connection;
END

END /* session request */
END /* case */

END /* procedure */

5.2.2. SESSION DATA TRANSFER PROTOCOLS

5.2.2.1. USER REQUEST PROCESSING

PROCEDURE send_message(user_message)
BEGIN

build SESSION MESSAGE header;
send SESSION MESSAGE header;

send user_message;
reset and restart keep-alive timer;
IF send fails THEN
BEGIN

/*
* TCP connection has failed */
*/

close NetBIOS session;
inform user that session is lost;
return failure;

END

ELSE

return SUCCGSS;
END

5.2.2.2. RECEIVED PACKET PROCESSING

These are packets received after a session has been established.

PROCEDURE session_packet(packet)
/*

* processing initiated by receipt of a session service
* packet for a session in the data transfer phase.
*/

BEGIN

CASE packet type OF

SESSION MESSAGE:
BEGIN

process message header;
read in user data;

reset and restart keep-alive timer;
deliver data to user;

NetBIOS Working Group [Page 72]

Protocols for X/Open PC Interworkingz SMB, Version 2 491

Page 509 of 534

RFC 1002

RFC 1002 March 1987

END /* session message */

SESSION KEEP ALIVE:

discard packet;

END /* case */

END /* procedure */

5.2.2.3. PROCESSING INITIATED BY TIMER

PROCEDURE session_ka_timer()
/1-

* processing initiated when session keep alive timer expires
*/

BEGIN

send SESSION KEEP ALIVE, if configured;
IF send fails THEN
BEGIN

/* remote node, or path to it, is down */

abort TCP connection;
close NetBIOS session;
inform user that session is lost;
return;

END

END /* procedure */

5.2.3. SESSION TERMINATION PROTOCOLS

5.2.3.1. USER REQUEST PROCESSING

PROCEDURE closegsession()

/* initiated by a user request to close a session */

BEGIN

close gracefully the TCP connection;

WAIT for the connection to close or SSN_CLOSE_TIMEOUT
to expire;

IF time out expired THEN
abort TCP connection;

END /* procedure */

5.2.3.2. RECEPTION INDICATION PROCESSING

PROCEDURE close_indication()
/1-

* initiated by a TCP indication of a close request from
* the remote connection partner.

NetBIOS Working Group [Page 73]

492 X/Open CAE Specification (1992)

Page 510 of 534

RFC 1002

RFC 1002 March 1987

*/
BEGIN

close gracefully TCP connection;

close NetBIOS session;

inform user session closed by remote partner;
END /* procedure */

5.3. NetBIOS DATAGRAM SERVICE PROTOCOLS

The following are GLOBAL variables and should be NetBIOS user
configurable:

- SCOPE_ID: the non—leaf section of the domain name preceded by a
’.’ which represents the domain of the NetBIOS scope for the
NetBIOS name. The following protocol description only supports
single scope operation.

- MAX_DATAGRAM_LENGTH: the maximum length of an IP datagram. The
minimal maximum length defined in for IP is 576 bytes. This
value is used when determining whether to fragment a NetBIOS
datagram. Implementations are expected to be capable of
receiving unfragmented NetBIOS datagrams up to their maximum
SlZe .

— BROADCAST_ADDRESS: the IP address B—nodes use to send datagrams
with group name destinations and broadcast datagrams. The
default is the IP broadcast address for a single IP network.

The following are Defined Constants for the NetBIOS Datagram
Service:

- DGM_SRVC_UDP_PORT: the globally well-known UDP port allocated
where the NetBIOS Datagram Service receives UDP packets. See
section 6, "Defined Constants", for its value.

5.3.1. B NODE TRANSMISSION OF NetBIOS DATAGRAMS

PROCEDURE send_datagram(data, source, destination, broadcast)

/1-

* user initiated processing on B node
*/

BEGIN

group = FALSE;

do name discovery on destination name, returns name type and
IP address;

NetBIOS Working Group [Page 74]

Protocols for X/Open PC Interworking: SMB, Version 2 493

Page 511 of 534

RFC 1002

RFC 1002 March 1987

IF name type is group name THEN
BEGIN

group = TRUE;
END

/1
* build datagram service UDP packet;
*/

convert source and destination NetBIOS names into

half—ASCII, biased encoded name;

SOURCE_NAME = cat(source, SCOPE_ID);
SOURCE_IP = this nodes IP address;
SOURCE_PORT = DGM_SRVC_UDP_PORT;

IF NetBIOS broadcast THEN
BEGIN

DESTINATION_NAME cat("*", SCOPE_ID)
END

ELSE
BEGIN

DESTINATION_NAME cat(destination, SCOPE_ID)
END

MSG_TYPE = select_one_from_set
{BROADCAST, DIRECT_UNIQUE, DIRECT_GROUP}

DGM_ID = next transaction id for Datagrams;
DGM_LENGTH = length of data + length of second level encoded

source and destination names;

IF (length of the NetBIOS Datagram, including UDP and

IP headers, > MAX_DATAGRAM_LENGTH) THEN
BEGIN

/*

* fragment NetBIOS datagram into 2 UDP packets
*/

Put names into 1st UDP packet and any data that fits
after names;

Set MORE and FIRST bits in 1st UDP packet’s FLAGS;
OFFSET in 1st UDP = 0;

Replicate NetBIOS Datagram header from 1st UDP packet
into 2nd UDP packet;

Put rest of data in 2nd UDP packet;
Clear MORE and FIRST bits in 2nd UDP packet’s FLAGS;

OFFSET in 2nd UDP = DGM_LENGTH - number of name and
data bytes in 1st UDP;

END

BEGIN

/*

* Only need one UDP packet
* /

NetBIOS Working Group [Page 75]

494 X/Open CAE Specification (1992)

Page 512 of 534

RFC 1002

RFC 1002 March 1987

USER_DATA = data;
Clear MORE bit and set FIRST bit in FLAGS;
OFFSET = 0;

END

IF (group == TRUE) OR (NetBIOS broadcast) THEN
BEGIN

send UDP packet(s) to BROADCAST_ADDRESS;
END

ELSE
BEGIN

send UDP packet(s) to IP address returned by name
discovery;

END

END /* procedure */

5.3.2. P AND M NODE TRANSMISSION OF NetBIOS DATAGRAMS

source, destination,PROCEDURE send_datagram(data, broadcast)

* User initiated processing on P and M node.

* This processing is the same as for B nodes except for
* sending broadcast and multicast NetBIOS datagrams.
*/

BEGIN

group = FALSE;

do name discovery on destination name,
and IP address;

IF name type is group name THEN
BEGIN

group = TRUE;

returns name type

END

/1-

* build datagram service UDP packet;
*/

convert source and destination NetBIOS

ha1f—ASCII, biased encoded name;

SOURCE_NAME = cat(source, SCOPE_ID);
SOURCE_IP = this nodes IP address;
SOURCE_PORT = DGM_SRVC_UDP_PORT;

names into

IF NetBIOS broadcast THEN
BEGIN

DESTINATION_NAME = cat("*", SCOPE_ID)
END

ELSE

NetBIOS Working Group [Page 76]

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 513 of 534

495

RFC 1002

RFC 1002 March 1987

BEGIN

DESTINATION_NAME = cat(destination, SCOPE_ID)
END

MSG_TYPE = select_one_from_set
{BROADCAST, DIRECT_UNIQUE, DIRECT_GROUP}

DGM_ID = next transaction id for Datagrams;
DGM_LENGTH = length of data + length of second level encoded

source and destination names;

IF (length of the NetBIOS Datagram, including UDP and

IP headers, > MAX_DATAGRAM_LENGTH) THEN
BEGIN

/1-

* fragment NetBIOS datagram into 2 UDP packets
*/

Put names into 1st UDP packet and any data that fits
after names;

Set MORE and FIRST bits in 1st UDP packet’s FLAGS;

OFFSET in 1st UDP = 0;

Replicate NetBIOS Datagram header from 1st UDP packet
into 2nd UDP packet;

Put rest of data in 2nd UDP packet;
Clear MORE and FIRST bits in 2nd UDP packet’s FLAGS;

OFFSET in 2nd UDP = DGM_LENGTH - number of name and
data bytes in 1st UDP;

END

BEGIN

/ 1-

* Only need one UDP packet
* /

USER_DATA = data;
Clear MORE bit and set FIRST bit in FLAGS;
OFFSET = 0;

END

IF (group == TRUE) OR (NetBIOS broadcast) THEN
BEGIN

/ 1-

* Sending of following query is optional.
* Node may send datagram to NBDD immediately
* but NBDD may discard the datagram.
* /

send DATAGRAM QUERY REQUEST to NBDD;

IF response is POSITIVE QUERY RESPONSE THEN
send UDP packet(s) to NBDD Server IP address;

ELSE
BEGIN

get list of destination nodes from NBNS;

NetBIOS Working Group [Page 77]

496 X/Open CAE Specification (1992)

Page 514 of 534

RFC 1002

RFC 1002 March 1987

FOR EACH node in list
BEGIN

send UDP packet(s) to this node's
IP address;

END
END

END

ELSE
BEGIN

send UDP packet(s) to IP address returned by name
discovery;

END /* procedure */

5.3.3. RECEPTION OF NetBIOS DATAGRAMS BY ALL NODES

The following algorithm discards out of order NetBIOS Datagram
fragments. An implementation which reassembles out of order
NetBIOS Datagram fragments conforms to this specification. The

fragment discard timer is initialized to the value FRAGMENT_TO.
This value should be user configurable. The default value is
given in Section 6, "Defined Constants and Variables".

PROCEDURE datagram_packet(packet)

/1-

* processing initiated by datagram packet reception
* on B, P and M nodes

* if this node is a P node, ignore
* broadcast packets.
*/

IF this is a P node AND incoming packet is
a broadcast packet THEN

BEGIN

discard packet;
END

CASE packet type OF

DATAGRAM SERVICE:
BEGIN

IF FIRST bit in FLAGS is set THEN
BEGIN

IF MORE bit in FLAGS is set THEN
BEGIN

Save 1st UDP packet of the Datagram;
Set this Datagram’s fragment discard

timer to FRAGMENT_TO;

NetBIOS Working Group [Page 78]

Protocols for X/Open PC Interworking: SMB, Version 2 497

Page 515 of 534

RFC 1002

return;
END

ELSE

Datagram is composed of a single
UDP packet;

END

ELSE
BEGIN

/* Have the second fragment of a Datagram */

Search for 1st fragment by source IP address

and DGM_ID;
IF found 1st fragment THEN

Process both UDP packets;
ELSE
BEGIN

discard 2nd fragment UDP packet;
return;

END
END

IF DESTINATION_NAME is ’*’ THEN
BEGIN

/* NetBIOS broadcast */

deliver USER_DATA from UDP packet(s) to all
outstanding receive broadcast
datagram requests;

return;
END

ELSE

BEGIN /* non-broadcast */

/* Datagram for Unique or Group Name */

IF DESTINATION_NAME
local name table

BEGIN

/* destination

is not present in the
THEN

not present */
build DATAGRAM ERROR packet, clear

FIRST and MORE bit, put in
this nodes IP and PORT, set

ERROR_CODE;
send DATAGRAM ERROR packet to

source IP address and port
Of UDP;

discard UDP packet(s);
return;

END

ELSE

BEGIN /* good */
/*

NetBIOS Working Group

498

Page 516 of 534

RFC 1002

March 1987

[Page 79]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002

* Replicate received NetBIOS datagram
* each recipient
*/

FOR EACH pending NetBIOS user's receive
datagram operation

BEGIN

IF source name of operation
matches destination name

of packet THEN
BEGIN

deliver USER_DATA from UDP
packet(s);

END

END /* for each */
return;

END /* good */
END /* non-broadcast */

END /* datagram service */

DATAGRAM ERROR:
BEGIN

/1-
* name service returned incorrect information

*/

inform local name service that incorrect

information was provided;

IF this is a P or M node THEN
BEGIN

/1-

* tell NetBIOS Name Server that it may
* have given incorrect information
*/

send NAME RELEASE REQUEST with name
and incorrect IP address to NetBIOS

Name Server;
END

END /* datagram error */

END /* case */
END

5.3.4. PROTOCOLS FOR THE NBDD

March 1987

for

The key to NetBIOS Datagram forwarding service is the packet
delivered to the destination end node must have the same NetBIOS

header as if the source end node sent the packet directly to the
destination end node.

NetBIOS Datagrams.
Consequently, the NBDD does not reas

It forwards the UDP packet as is.

NetBIOS Working Group

Protocols for X/Open PC Interworkingz SMB, Version 2

Page 517 of 534

semble

[Page 80]

499

RFC 1002

PROCEDURE

/*

datagram_packet(packet)

* processing initiated by a incoming datagram service
* packet on a NBDD node.
*/

BEGIN

CASE packet type OF

DATAGRAM SERVICE:
BEGIN

IF packet was sent as a directed
NetBIOS datagram THEN

BEGIN

/*Il-

Il-Il-Il-Il-Il-Il-Il-Il-Il-
END

ELSE
BEGIN

/*Il-

ll-ll-ll-ll-ll-ll-IF)!-If
END

provide group forwarding service

Forward datagram to each member of the
group. Can forward via:

1) get list of group members and send
the DATAGRAM SERVICE packet unicast
to each

2) use Group Multicast, if available
3) combination of 1) and 2)

provide broadcast forwarding service

Forward datagram to every node in the
NetBIOS scope. Can forward via:

1) get list of group members and send
the DATAGRAM SERVICE packet unicast
to each

2) use Group Multicast, if available
3) combination of 1) and 2)

END /* datagram service */

DATAGRAM ERROR:

NetBIOS Working Group

500

Page 518 of 534

RFC 1002

March 1987

[Page 81]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

BEGIN

/*

* Should never receive these because Datagrams
* forwarded have source end node IP address and

* port in NetBIOS header.
*/

send DELETE NAME REQUEST with incorrect name and
IP address to NetBIOS Name Server;

END /* datagram error */

DATAGRAM QUERY REQUEST:
BEGIN

IF can send packet to DESTINATION_NAME THEN
BEGIN

/*

* NBDD is able to relay Datagrams for
* this name

*/

send POSITIVE DATAGRAM QUERY RESPONSE to

REQUEST source IP address and UDP port

with request’s DGM_ID;
END

ELSE
BEGIN

/*

* NBDD is NOT able to relay Datagrams for
* this name

*/

send NEGATIVE DATAGRAM QUERY RESPONSE to

REQUEST source IP address and UDP port

with request’s DGM_ID;
END

END /* datagram query request */

END /* case */

END /* procedure */

NetBIOS Working Group [Page 82]

Protocols for X/Open PC Interworkingz SMB, Version 2 501

Page 519 of 534

RFC 1002

RFC 1002

March 1987

6. DEFINED CONSTANTS AND VARIABLES

GENERAL:

SCOPE_ID

BROADCAST_ADDRESS

BCAST_REQflRETRY_TIMEOUT

BCAST_REQ_RETRY_COUNT

UCAST_REQ_RETRY_TIMEOUT

UCAST_REQ_RETRY_COUNT

MAX_DATAGRAM_LENGTH

NAME SERVICE:

REFRESH_TIMER

CONFLICT_TIMER

NAME_SERVICE_TCP_PORT

NetBIOS Working Group

502

Page 520 of 534

The name of the NetBIOS scope.

This is expressed as a character
string meeting the requirements of
the domain name system and without

a leading or trailing "dot".

An implementation may elect to make
this a single global value for the
node or allow it to be specified
with each separate NetBIOS name
(thus permitting cross-scope
references.)

An IP address composed of the
nodes’s network and subnetwork

numbers with all remaining bits set
to one.

I.e. "Specific subnet" broadcast
addressing according to section 2.3
of RFC 950.

250 milliseconds.

An adaptive timer may be used.

3

5 seconds

An adaptive timer may be used.

3

576 bytes (default)

Negotiated with NBNS for each name.

1 second

Implementations may chose a longer
value.

137 (decimal)

[Page 83]

X/Open CAE Specification (1992)

RFC 1002

RFC 1002 March 1987

NAME_SERVI CE_UDP_PORT 13 7 (decimal)

INF INITE_TTL 0

SESSION SERVICE:

SSN_SRVC_TCP_PORT 139 (decimal)

SSN_RETRY_COUNT 4 (default)
Re—configurable by user.

SSN_CLOSE_TIMEOUT 30 seconds (default)
Re—configurable by user.

SSN_KEEP_ALIVE_TIMEOUT 60 seconds, recommended, may be set to
a higher value.
(Session keep—alives are used only
if configured.)

DATAGRAM SERVICE:

DGM_SRVC_UDP_PORT 138 (decimal)

FRAGMENT_TO 2 seconds (default)

NetBIOS Working Group [Page 84]

Protocols for X/Open PC Interworkingz SMB, Version 2 503

Page 521 of 534

RFC 1002

RFC 1002 March 1987

REFERENCES

[1] "Protocol Standard For a NetBIOS Service on a TCP/UDP

Transport: Concepts and Methods", RFC 1001, March 1987.

[2] J. Reynolds, J. Postel, "Assigned Numbers", RFC 990, November
1986.

[3] P. Mockapetris, "Domain Names - Implementation and
Specification", RFC 883, November 1983.

NetBIOS Working Group [Page 85]

504 X/Open CAE Specification (1992)

Page 522 of 534

Glossary

ACL

(Access Control List) A list used to control access to a file or resource. The list contains the user

IDs and/or group IDs that are allowed access to the file or resource.

API

(Application Programming Interface) A published interface for software developers.

big—e ndian

The name of a particular byte order (coined by Danny Cohen). When looking at addresses in

increasing order, the most significant byte comes first. The Internet protocols use big—endian

byte order.

broadcast

The function of delivering a given packet to all hosts that are attached to the broadcasting

delivery system. Broadcasting is implemented both at the hardware and the software levels.

byte
8 bits.

CAE

Common Applications Environment.

chaining

Transmission of more than one SMB request in a request.

clie nt—server

The distributed system model where a requesting program (the client) interacts with a program

that can satisfy the request (the server). The client initiates the interaction and may wait for the

server to respond.

conne ction—orie nte d se rvice

A service provided between two endpoints along which data is passed in a sequenced and

reliable way.

conne ctionle ss service

In a connectionless service each packet is a separate entity containing a source and destination

address; therefore, packets may be dropped or delivered out of sequence. The delivery service

offered by the Internet Protocol (IP) is a connectionless service.
core

The dialect name for the basic SIVIB dialect described in this specification.

core plus

The dialect name for the SIVIB dialect that provides additional features to the core dialect.

data e ncapsulation

The way a lower—level protocol accepts a message from a higher—level protocol and places it in

the data portion of the low—level frame.

daemon

A process that is not associated with any user. This sort of process performs system —wide

functions; for example, administration, control of networks and execution—dependent activities.

Protocols for X/Open PC Interworking: SMB, Version 2 505

Page 523 of 534

Glossary

datagram

A packet sent independently of the others in the network. It contains the source and destination
addresses as well as the data.

diale ct

Used to refer to the level of protocol negotiated between the SMB redirector and the LMX server.

DES

U.S. Department of Commerce Data Encryption Standard.

EA

(Extended Attribute) An SMB protocol element supported by the extended 2.0 protocol dialect.
Extended attributes can be associated with a file.

effective group ID

An attribute of a process that is used in determining various permissions, including file access

permissions. This value is subject to change during the process’ lifetime.

effective user ID

An attribute of a process that is used in determining various permissions, including file access

permissions. This value is subject to change during the process’ lifetime.

exec

The XSI system call that is used to start a process running.

exte nde d 1.0

The dialect name for the first extended SMB protocol dialect.

exte nde d 2.0

The dialect name for the second extended SMB protocol dialect.

Exte nde d Attribute

See EA.

FCB

(File Control Block) The area of memory holding the file information and status. It is a term
associated with DOS.

FID

(File ID) A unique number associated with a file to enable it to be identified.

fifo

(First In First Out) One of the file types supported on an XSI system. A fifo, the alternative name

for a pipe, differs from a regular file because its data is transient; that is, once data is read from

the pipe it cannot be read again.

fork

The XSI system call which is used to create a new process. The process created is a duplicate of

the calling process.

Inte rne t Protocol

(IP) The protocol from the Internet Protocol Suite that provides the basis for Internet
communications.

interoperability

The ability of software and hardware on multiple machines and from multiple vendors to

com m unicate effectively.

ioctl

A system call which allows a process to specify control information to control a device. This

506 X/Open CAE Specification (1992)

Page 524 of 534

Glossary

function exists in both XSI and DOS.

IPC

(Inter—process Communication) Methods by which two or more processes can communicate; for

example, formatted data streams or shared memory.

LAN

(Local Area Network) A physical network that operates at a high speed over short distances; for
example, Ethernet.

little —e ndian

The name of a particular byte order (coined by Danny Cohen). When looking at addresses in

increasing order, the least significant byte com es first.

LMX

X/Open LAN Manager Architecture. The implementation of the LAN Manager on CAE

systems.

LMX S e we r

The system providing the LMX service.

LMX S e ssion

The path between two communicating systems that provides a reliable, sequenced data delivery
service.

MBZ

(Must Be Zero) Reserved fields are often defined MBZ.

MID

(Multiplex Identifier) A number which uniquely identifies a protocol request and response
within a process.

multicast

A method by which copies of a single packet are passed to a selected subset of all destinations.

Broadcast is a special case of multicast whereby the subset of destinations receiving a copy of
the packet is the entire set of destinations.

nam e d pipe

An inter—process communication mechanism defined by the extended SMB specification. Also a
fifo.

Ne tBIOS

(Network Basic Input Output System) The de ficto standard programmatic interface to networks

for DOS systems.

NFS

(Network File System) A protocol which allows a set of computers access to each others’ file

systems. NFS was developed by Sun Microsystems and is used primarily on UND(systems.

octet

8 bits.

opportunistic lock

The server will notify the client, allowing it to flush its dirty buffers and unlock the file, when

another client attempts to open the file.

OSI

(Open Systems Interconnect) ISO standards for the interconnection of cooperative (open)
com puter systems.

Protocols for X/Open PC Interworking: SMB, Version 2 507

Page 525 of 534

Glossary

packe t

A block of data sent across a packet switching network.

PID

(Process]D) The number assigned to a process so that it can be uniquely identified.

re sponde r

An entity with which an initiator wishes to establish a transport connection.

RFC

(Request for Comments) The name of a series of notes that contain surveys, measurements,

ideas, techniques and observations, as well as proposed and accepted Internet protocol
standards.

root (of file system)

The top directory in the directory hierarchical structure.

RPC

Remote Procedure Call.

se ssion

See LMX Session.

SMB

(Server Message Block) A protocol which allows a set of computers to access shared resources as

if they were local. The core protocol was developed by Microsoft Corporation and Intel, and the

extended protocols were developed by Microsoft Corporation.

SMB re dire ctor

The client system accessing the LMX server.

S MB re que st

The server message block sent from the SMB redirector to the LMX server.

S MB re sponse

The server message block sent from the LMX server to the SMB redirector.

TBD

(To be Defined) Further detail will be provided at a later time.

TCP

(Transmission Control Protocol) The Internet standard transport level connection—oriented

protocol. It provides a full duplex, reliable stream service which allows a process on one

machine to send a stream of data to a process on another. Part of the Internet Protocol Suite.

TID

(Tree Connect Identifier) A numeric value passed by the LMX server to the SMB redirector to

represent a location within a file system subtree.

UDP

(User Datagram Protocol) The Internet connectionless protocol. Part of the Internet Protocol
Suite.

UID

(User Identifier) A token representing an authenticated <username, password> tuple. U]Ds are

registered by the redirectors.

um ask

The XSI process’ file mode creation mask used during file and directory creation. Bit positions

that are set in the um ask are cleared in the mode of the newly created file or directory. The

508 X/Open CAE Specification (1992)

Page 526 of 534

Glossary

510 X/Open CAE Specification (1992)

Page 528 of 534

Index

16-bit37

16-bit field... ..37

32-bit37

32-bit field... ..37

8-bit field37

access control33, 44, 46, 81, 83, 158
access control lists265

access modes46, 70, 152

ACL265, 505

ACL permissions266
API505

LAN Manager263
transaction263

archive file attribute43

ASCIIZ44

attributes66—68, 152, 179, 181

extended183, 185

authentication5, 55, 121, 135, 139, 265, 277, 279

B—node functionality36

big—endian505
broadcast505

bufier types44
buffers44, 73, 76, 136

byte37, 505
CAE505

canonical pathnam es16, 28

chaining155, 159, 162, 170,505

chaining SMB requests22, 143

challenge string141
character mode device45

client—server505

COMM45

Compatibility19

compatibility support25

connection management55
Connection Protocols14

connection—oriented service505

connectionless service505

core505

core plus505
daemon505

data block44, 73, 76, 113, 117
data buffer141

data encapsulation505

data objects43

datagram506

Protocols for X/Open PC Interworking: SlV[B, Version 2

Page 529 of 534

date43

deny modes 18, 33, 70
DENY ALL 18

DENY NONE18, 44

DENY READ18, 44

DENY WRIIE18, 44

DES277, 279, 506
dialect506

dialects44, 101, 121, 135

directory
check 109

delete97

file system attributes.. ..107

get attributes.. ..103
m ove89

rem ove97

renaming89
search99

searchfirst 100

searchnext100

set attributes105

directory access 179

directory create95

directory file attribute43

directory functions95, 179, 181-182, 187, 194

discarding... .. 171
DOS251

Close File Handle253

Create Directory253
Create File (FCB I/O)253
Create File Handle253

Create New File254

Delete Directory Entry254
Delete File (FCB I/O)254
End Process254

Find First File254

Find Next File254

Flush Buffer.. ..254

Get Assign List Entry....................................... ..255
Get Default Drive Data255

Get Disk Free Space255
Get Drive data255

Get File Size (FCB I/O)255

Load and Execute Programme255

Load Overlay255
Move File Pointer255

5 1 1

Open File (FCB I/O)256

Open File Handle256
Print Character256

Random Block Read (FCB I/O)256

Random Block Write (FCB I/O)256

Random Read (FCB I/O)256

Random Write (FCB I/O)256
Read Via File Handle257

Remove Directory257
Rename File (FCB I/O)257
Reset Disk257

Search For First Entry257

Search For Next Entry257

Sequential Read (FCB I/O)257

Sequential Write (FCB I/O)258
Set/Get Date/Time of File258

Set/Get File Attributes258

Terminate Program m e..................................... ..258
Unlock/Lock File258

Write Via File Handle258

DOS compatibility45
E() functions277
EA506

echo.. .. 191

efl°ective group ID... ..506
efl°ective user ID506

encryption55, 121, 135, 137, 139, 277, 279

support for36
environm ents

file1 1

hierarchy... .. 10
LMX session10

process1 1
resource 10

SMB10

user10

epoch43
error classes.. ..24

error codes

SMBchkpath109
SMBclose87

SMBcreate65

SMBdskattr 107

SMBex1't61

SMBfclose181

SMBffirst 179

SMBflush85

SMBgetatr... ..103

SMBgetattrE... .. 184
SMBlock.. ..8 1

SMBlockingX 158

5 1 2

Page 530 of 534

Index

SMBlockread 128

SMBlseek80

SMBm kdir96

SMBm knew.. ..68

SMBmv90

SMBnegprot56, 122, 137

SMBopen71

SMBopenX 154
SMBread74

SMBreadbm px 173
SMBreadbraw.. .. 124

SMBreadX 162

SMBrm dir97

SMBsearch.. .. 102

SMBsecpkgX 142

SMBsesssetupX... .. 146, 199
SMBsetatr 106

SMBsetattrE 186

SMBsplclose1 15

SMBsplopen1 12

SMBsplretq... ..1 18

SMBsplwr... .. 1 13
SMBtcon58

SMBtconX... ..148

SMBtdis59

SMBunlink93

SMBunlock83

SMBWrite77

SMBwritebm px176
SMBwritebraw127, 165

SMBwriteclose 132, 167
SMBwriteunlock 130

SMBwriteX 170

error handling.. ..24

exception handling24
exclusion44

exec506

extended 1.0506

extended 2.0506

Extended Attribute212, 506
extended attributes3 1

extended protocol5

accessing resources147
device control193

echo 191

file copy187
file move194

get attributes.. ..183
ioctl 193

locking 156

open 15 1

X/Open CAE Specification (1992)

Index

read160

read block multiplexed171
search179, 181-182

security139
set attributes185

set up144, 197
write168

write block multiplexed174
write block raw163

extended SMB protocol22
FCB506

FCB open45
FEAZ12

FID...................................... ..11,47,112, 115,157,160

.................................... ..163,166,168,171,175,506
fifo506

file

access128, 130

attributes64, 66-68, 70, 89, 92, 95

..................................... ..100, 103, 105-106, 183, 185

cache31, 174

close87, 132, 166

copy187
creation63, 67
delete92

flush85

handles87

lock81, 128, 130, 156

long seek (lseek)79
make new67

move194

open63, 70, 151
read73, 123, 128, 160, 168, 171

search179, 181
seek79

sharing70

truncating168

types188

unlinking92
unlock83

wildcards95, 194

write..................... ..76, 125, 130, 132, 163, 166, 174

file attributes.. ..43, 266
file environment11

file move89

file permissions266

file renaming89

file sharing control44
filename28

canonical pathnames16

illegal characters29

Protocols for X/Open PC Interworking: SIVIB, Version 2

Page 531 of 534

long names16, 31
wildcards17

findfirst179

findnext179

fork... ..506

F_RDLCK33

F_WRLCK33
GEA214

hidden file attribute43

inactive timeout24

Information Levels214

Internet Protocol506

interoperability506
ioctl193, 506
[PC507

LAN507

LAN Manager.. ..251
LANMAN 1.0193

little-endian507

LMX507

LMX server... ..4, 55
LMX Server507

LMX server caching35
LMX session 10

LMX Session507

LMX session environment10

LMX session key137

LMX session set up135, 144, 197

locking33, 124, 127-131, 156, 165, 173

byte-range34
conventions.. ..20

opportunistic20, 38
timeouts34

locks153, 157-158, 219

long names16
LPT... ..45

M-node functionality36
mailslots45

maxim um buffer size10

MBZ507

MICROSOFT NETWORKS 1.03101

MICROSOFT NETWORKS 3.0101

MID... ..11,39, 174,507
multicast507

multiple NetBIOS sessions137

m ultiplex ID... ..39

m ultiplexed LMX sessions171

m ultiplexed reads137

named pipe507

named pipes45-46, 152

negotiated maximum buffer58, 73, 136, 144

513

NetBIOS507

NetShareAdd

transaction API272

NetShareDel

transaction API272

NetShareEnum

transaction API273

NFS507

null string 105
octet507

open function46, 152, 187, 194

open m odes18

oplock20

opportunistic lock507

opportunistic locking20, 153, 219
OS/225 1

DosBufReset259

DosChDir259

DosClose259

DosDelete259

DosDevIOCt1259

DosExecPgm259
DosFileLocks259

DosFindClose260

DosFindFirst260

DosFindFirst2260

DosFindNext260

DosFindNotifyClose260
DosMkDir260

DosMove260

DosOpen260

DosQCurDir261

DosQFi1eInfo261

DosQFileMode261

DosQFSInfo261
DosRead261

DosReadAsync261
DosRm Dir261

DosSetFileInfo261

DosSetFileMode262

DosWrite... ..262

DosWriteAsync262
OSI507

packet508

passwords5, 57, 147, 265, 277, 279
PC NETWORK PROGRAM 1.010l

P]D11,38,157, 171,174,179,182,508

print

append to spool file113

close spool filel 15

create spool filel 1 1

5 1 4

Page 532 of 534

Index

list spool filel 17

print m ode
GRAPHICS11 1

TEXT1ll

printingl 1 1

process environment.. ..l 1

process ID... ..11, 38

process termination61

read—only file attribute43

regular file18, 44
remote API264
resource

types45
resource environm ent 10

resource type57

responder508

response string141
RFC508

root (of file system)508
RPC508

search ID... .. 100

security 139

support for36

security modes57, 136,277,279
share—level5, 12, 197

user—level5, 12, 139, 144, 197, 265

security package139
X/OPEN140

server

user authentication5

session508

share—level security57
SMB.. ..508

buffers44

chaining143, 146, 200
command code37

core protocol55, 63, 95, 111

data objects43
date fields43

dialects44, 48

encryption279
error class37, 49
error codes49

extended — norm al operations151

extended 1.0 protocol187

extended protocol135, 151, 179
file access.. ..63, 151
file attributes43

protocol... ..40

protocol dialects55

request/response values40

X/Open CAE Specification (1992)

Index

SMB formats37

spooling and printing111
test191

time fields43

SMB chaining22
SMB dialects48

SMB header37

SMB protocol37
SMB redirector4, 508

SMB request508

SMB response508

SMBchkpath7, 109

SMBchkpth253, 259, 261
SMBclose7, 87, 253, 255, 259

SMBcopy7, 187
S1V[Bcreate7, 20, 63, 253, 260

SMBdskattr7, 107, 255, 261

SMBecho7, 191

SMBexit7, 61, 99, 254, 258

SMBfclose7, 97, 181, 260

SMBffirst7, 97, 179, 181,260
SMBfindnclose... ..260

S1V[Bflush7, 78, 85, 254, 257, 259

SMBfunique7, 97, 182

SMBgetatr7, 103, 261

SMBgetattrE7, 183, 261
SMBioctl193, 259
SMBioctls259

SMBlock.. ..7, 81, 83, 258-259

SMBlockingX... ..7, 156, 259
SMBlockread7, 128, 259

SMBlseek7, 79, 255

SMBmkdir.. ..7, 95, 253, 260

SMBmknew7, 20, 67, 254
SMBmove194

SMBmV7, 31, 89, 253, 257, 260

SMBnegprot...7,12,55,121,135,139,144, 197,279

SMBopen7, 20, 70, 255-256, 259-260

SMBopenX7, 20, 151,260
SMBread7, 73, 124, 255-257, 259, 261

SMBreadbmpx7, 171, 261
SMBreadbraw7, 123, 261

SMBreadm px 124
SMBreadX7, 160, 260-261

SMBrmdir7, 97, 257, 261
SMBs7

SMBsearch7, 97, 99, 179, 182, 254-255, 257-258

SMBsecpkgX7, 139

SMBsessetup12

SMBsesssetupX7, 14, 144, 197, 279
SMBsetatr... ..7, 105, 258, 262

Protocols for X/Open PC Interworking: SIVIB, Version 2

Page 533 of 534

SMBsetattrE7, 185, 261

SMBsplclose7, 115, 253, 256

SMBsplopen7, 111, 256

SMBsplretq... ..7, 117

SMBsplwr7, 113, 256, 258
SMBtcon7, 12, 14,57, 197,255,279

SMBtconX7, 12, 147, 279

SMBtdis7, 59, 255

SMBtrans2(TRANSACT2_FINDFIRS'I')7, 260

SMBtrans2(TRANSACT2_FINDNEX'I')7, 260

SMBtrans2(TRANSACT2_1\/JKDIR)7, 260

SMBtrans2(TRANSACT2_OPEN)7, 260

SMBtrans2('I'RANSACT2_QFILEINFO)261

SMBtrans2('I'RANSACT2_QFSlNFO)261

SMBulogoffX.. ..204
SMBunlink............................... ..7, 20, 31, 92, 254, 259

SMBunlock7, 83, 258-259

SMBwrite7, 76, 85, 256, 258-259, 262

SMBwritebmpx7, 174, 262
SMBwritebraw.................................. ..7, 125, 163, 262
SMBwriteC262

SMBwriteclose7, 132, 166, 259

SMBwriteunlock7, 130, 259

SMBwriteX... ..7, 168, 262
SNBtcon144

spool

append to spool file113

close spool file115

create spool file1 1 1

list spool file... ..117

spoolable device.. ..45

spooling111

synchronisation171

system calls
DOS251

OS/2251

system file attribute43
TBD.. ..508

TCP508

TID.................................... ..10, 12, 14, 38, 58, 147, 171

............................ ..174, 179, 182, 187, 194, 196,508

time64, 67, 70, 87, 103, 105
time fields43

timeouts25

transaction API263

API numbers.. ..275

descriptor strings269

examples272

pointers271

request form at267
returned data271

515

transaction SIVIB messages ,.263
tree connect14, 57
tree disconnect59

U() functions278
UDP508

UID10, 12, 38, 139, 144,171

.................................... ..174, 179, 182, 197, 265, 508

umask66, 68, 95, 106, 508

user ID... ..10, 38

user—1eVe1 security265
username141, 265

variable block44, 100, 181
volume identifier43

wildcards.. ..17, 194

working directory... ..509
Write behind 19

write mode126, 164, 175

Write through19
write—behind35, 44, 126, 133, 164, 167, 174-175

write—through44, 126, 164, 169, 174-175

X/OPEN sm b_pkgname140

516

Page 534 of 534

Index

X/Open CAE Specification (1992)

