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11.3.1 Definition of the Periodogram

As an estimate of the power density spectrum let us consider the Fourier

transform of the biased autocorrelation estimate cm(m). That is,
N-1

IN(w)= Z cm(rn)e’j‘”'" (11.24)m=—(]V—1)

Since the Fourier transform of the real finite-length sequence x(n), 0 g n 3
N — l, is

N—1

X(ej“’) : Z x(n)eT"“’”7120

it can be shown that (see Problem 1 of this chapter).

1 ‘co

1N(w)= E ]X(e’ )|2 (11.25)

The spectrum estimate IN(w) is often called the periodogram.
As before, it is of interest to determine the bias and variance of the

periodogram as an estimate of the power spectrum. The expected value of
IN(co) is

E[IN(w)] = NS E[c,,,,(m)]e-W" (11.26)
m=—(N~1)

Since we have shown that for a zero mean process

Ei:Ca:a:(rn):i = ]%V'"—” mm), lml < N
then

E[I1\7(w)l = NS (N—_L1') ¢,,.(m)e""‘°"‘ (11.27)m=—(N—1) N

Thus because of the finite limits of summation and the factor (N — |m[)/N,
E[IN((u)] is not equal to the Fourier transform of :;S,,,.(rn), and therefore the

periodogram is a biased estimate of the power spectrum, P,,,,(w).

Alternatively, consider the Fourier transform of the estimate c;,,(m); i.e.,

N—1 _

PN(a)): 2 c;,,,(1n)e”“”" (11.28)m:((1V—1)

The expected value of PN(w) is

E1P.\a<w>1= Ail E[c;t(m)]e""””‘
m:—(1\’—1)

N—1 _ (11.29)
= 2 Fm:—(.\'~1)
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11.3 The Periodogram as an Estimate of the Power Spectrum 543

Again, because of the finite limits of summation, this is a biased estimate of

Pm(cu), even though cm(m) is an unbiased estimate of <,{>m(m).
We can interpret Eqs. (11.27) and (11.29) as Fourier transforms of

windowed autocorrelation sequences. In the case of Eq. (11.27) the window
is the triangular window

N — [ml
T ’ < NwB(m) : { N ‘mi (11-30)
0, otherwise

In Chapter 5 we called this the Bartlett window. For Eq. (11.29) the window
is rectangular; i.e.,

1, [ml < N
0, otherwise (1131)wR<n> = {

Using the concepts introduced in Chapter 5 we can see that Eqs. (11.27)
and (11.29) can be interpreted in the frequency domain as the convolutions

EuN(w>J : 2% _”Pmm(6)WB(ej(m_9)) d6 (11.32)
and

E[PN(w)] = 31; _flPxw(6)WR(ej(w_9)) «I6 (11.33)
where

M, _1 sin [a)N/2] 2
WB(e _ Ni sin [co/2] ) (“'34)

and

WR(e5w) : 
sin [cu/2]

are the Fourier transforms of the Bartlett and rectangular windows, respec-
tively.

11.3.2 Variance of the Periodogram

To obtain an expression for the Variance of the periodogram, it is con-

venient to first assume that the sequence 2:07), 0 g 11 g N — 1, is a sample
of a real, white, zero-mean process with Gaussian probability density
functions. The periodogram IN(co) can be expressed as

IN((”) = 1%] |X(e"“’)l2
1 N—1 N—1

= — Z Z x(l)x(111)ej“’"‘e"“’l
Nl=U m=0
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544 Power Spectrum Estimation

To evaluate the covariance of IN(a>) at two frequencies cal and C02 we first
consider

1 N—1 N—1 N—1 N—1
Z Z 2 2E[x(k)x(l)x(,n)x(n)]ei[a)1(k—l)+w2(m—n)]2

N k=0 [=0 m=0 n=0
E [11v(w1)11v(w2)] =

(11.36)

To obtain a useful result, we must simplify Eq. (11.36). In general, it is not

possible to obtain a very simple result even when x(n) is white, because
E[x(n)x(n -1- m)] = a,2,(3(m) does not guarantee a simple expression for

E[x(/c)x(l)x(m)x(n)] for all combinations of k, I, m, and 11. However, i11 the

case of a white Gaussian process, it can be shown [7] that

E[x(Ic)x(I)x(m)x(n)] = E[x(l<)x(l)]E[x(m)x(n)]

~— E[x(k)x(m)]E[x(l)x(n)]

T E[X(k)«‘<(")lE[X(l)X(m)]

Therefore,

a, k:landm=n
ork=mandl=n

ork=nandl=m

0, otherwise

E[x(k)x(l)x(m)x(n)] = (11.37)

For other than Gaussian joint density functions, the result will not neces-

sarily be so simple. However, our objective is to give a result that will lend

insight into the problems of spectrum estimation rather than to give a general

formula with wide validity which would be difiicult to interpret. Thus, if

we substitute Eq. (11.37) into Eq. (11.36), we obtain

0,4‘ 2 N—1N~1 _( H ) N~1N—1 _( H )1E[I1\’((’)1)I1\’((’)2)]: “ii” +20 Zoe” '"‘" +2 2 e’ ‘°1“”2J7n= 11: 771:0 'n=0

OI‘

EiI1\’(w1)I1V(w2)l : a:{1 +
(11.38)

(If the signal is non-Gaussian, Eq. (11.38) contains additional terms which are

proportional to 1/N [4, 8].) The covariance of the periodogram is

COV [[.\’((’)1)s [.\'(")2)l = El[.\'((')1)I1\*(“32)l — ElI1\'(")1)lE[IN(C°2)]

‘(l 1.39)
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