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Suppression of Acoustic  Noise in Speech Using 
Spectral Subtraction 

Abstract-A stand-alone noise suppression  algorithm is presented for 
reducing the spectral effects of acoustically added noise in speech. Ef- 
fective performance of digital  speech  processors  operating  in  practical 
environments  may  require  suppression of noise from the digital  wave- 
form.  Spectral  subtraction offers a computationally efficient, processor- 
independent approach to effective digital  speech  analysis.  The method, 
requiring about the same computation as high-speed convolution, sup- 
presses stationary noise from speech by subtracting  the  spectral noise 
bias calculated during nonspeech activity. Secondary  procedures are 
then  applied to attenuate the residual noise  left after subtraction. Since 
the algorithm resynthesizes a speech waveform, it can  be  used  as a pre- 
processor to narrow-band voice communications systems, speech recog- 
nition systems, or speaker authentication systems. 

I.  INTRODUCTION 

B ACKGROUND  noise acoustically added to speech can 
degrade  the  performance  of digital voice processors used 

for  applications  such as speech  compression,  recognition,  and 
authentication [ 11 , [2] . Digital voice systems will be  used in 
a variety of  environments,  and  their  performance  must be 
maintained at  a level near that measured using noise-free input 
speech.  To  ensure  continued reliability, the effects of back- 
ground  noise can be  reduced by using noise-cancelling  micro- 
phones,  internal  modification  of  the voice processor  algorithms 
to  explicitly compensate  for signal contamination,  or  pre- 
processor noise reduction. 

Noise-cancelling microphones,  although essential for ex- 
tremely high  noise environments such  as the helicopter  cockpit, 
offer little  or no noise reduction above 1 kHz [3] (see Fig. 5 ) .  
Techniques available for voice processor  modification to ac- 
count  for  noise  contamination are being developed [4] , [ 5 ] .  
But due  to the time,  effort, and  money  spent  on  the design 
and  implementation of these voice processors [6] -[8] , there 
is a reluctance to  internally modify  these  systems. 

Preprocessor noise reduction E121 , [21] offers the advantage 
that noise stripping is done on  the waveform itself with  the 
output being  either digital or  analog  speech.  Thus, existing 
voice processors  tuned to clean speech  can continue to be 
used unmodified.  Also, since the output is speech,  the noise 
stripping becomes  independent  of  any specific subsequent 
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speech  processor  implementation (it could  be  connected to  a 
CCD channel  vocoder  or  a digital LPC vocoder). 

The objectives of this effort were to develop  a  noise  sup- 
pression technique,  implement  a  computationally efficient 
algorithm,  and  test  its  performance in  actual  noise  environ- 
ments. The approach used  was to estimate  the  magnitude 
frequency  spectrum  of  the  underlying  clean  speech  by  sub- 
tracting the noise  magnitude  spectrum  from the noisy  speech 
spectrum.  This  estimator  requires  an  estimate of the  current 
noise  spectrum.  Rather  than  obtain this noise estimate  from 
a  second  microphone  source [9] , [lo] , it is approximated 
using the average  noise magnitude  measured  during  nonspeech 
activity. Using this approach, the spectral approximation error 
is then defined,  and  secondary  methods  for  reducing it are 
described. 

The  noise  suppressor is implemented using about  the same 
amount of computation as required in a  high-speech  convolu- 
tion. It is tested on speech  recorded in a  helicopter  environ- 
ment.  Its  performance is measured using the Diagnostic  Rhyme 
Test (DRT) [ 111 and is demonstrated using isometric  plots of 
short-time  spectra. 

The paper is  divided into sections which develop  the spectral 
estimator,  describe  the  algorithm  implementation,  and  demon- 
strate  the  algorithm  performance. 

11. SUBTRACTIVE NOISE SUPPRESSION  ANALYSIS 
A. Introduction 

This section describes the  noise-suppressed spectral estimator. 
The estimator is obtained  by  subtracting an estimate of the 
noise spectrum  from  the  noisy  speech  spectrum.  Spectral  in- 
formation  required to describe  the  noise  spectrum is obtained 
from  the signal measured  during  nonspeech activity. After 
developing  the spectral estimator,  the spectral error is com- 
puted and four  methods  for  reducing  it are presented. 

The following  assumptions were  used in developing  the 
analysis. The background  noise is acoustically or digitally 
added to  the speech. The background noise environment 
remains locally stationary to  the degree that  its spectral mag- 
nitude  expected value just prior to speech activity equals  its 
expected value during  speech activity. If the  environment 
changes to a  new  stationary  state,  there exists enough  time 
(about 300 ms) to estimate  a  new  background noise spectral 
magnitude  expected value before  speech activity commences. 
For  the slowly  varying nonstationary noise environment,  the 
algorithm  requires  a  speech activity detector to signal the 
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Abstract-A stand-alone noise suppression algorithm is presented for 
reducing the spectral effects of acoustically added noise in speech. Ef­
fective performance of digital speech processors operating in practical 
environments may require suppression of noise from the digital wave­
form. Spectral subtraction offers a computationally efficient, processor­
independent approach to effective digital speech analysis. The method, 
requiring about the same computation as high-speed convolution, sup­
presses stationary noise from speech by subtracting the spectral noise 
bias calculated during nonspeech activity. Secondary procedures are 
then applied to attenuate the residual noise left after subtraction. Since 
the algorithm resynthesizes a speech waveform, it can be used as a pre­
processor to narrow-band voice communications systems, speech recog­
nition systems, or speaker authentication systems. 

1. INTRODUCTION 

BACKGROUND noise acoustically added to speech can 
degrade the performance of digital voice processors used 

for applications such as speech compression, recognition, and 
authentication [lJ, [2]. Digital voice systems will be used in 
a variety of environments, and their performance must be 
maintained at a level near that measured using noise-free input 
speech. To ensure continued reliability, the effects of back­
ground noise can be reduced by using noise-cancelling micro­
phones, internal modification ofthe voice processor algorithms 
to explicitly compensate for signal contamination, or pre­
processor noise reduction. 

Noise-cancelling microphones, although essential for ex­
tremely high noise environments such as the helicopter cockpit, 
offer little or no noise reduction above 1 kHz [3] (see Fig. 5). 
Techniques available for voice processor modification to ac­
count for noise contamination are being developed [4], [5]. 
But due to the time, effort, and money spent on the design 
and implementation of these voice processors [6] -[8] , there 
is a reluctance to internally modify these systems. 

Preprocessor noise reduction [12], [21] offers the advantage 
that noise stripping is done on the waveform itself with the 
output being either digital or analog speech. Thus, existing 
voice processors tuned to clean speech can continue to be 
used unmodified. Also, since the output is speech, the noise 
stripping becomes independent of any specific subsequent 
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speech processor implementation (it could be connected to a 
CCD channel vocoder or a digital LPC vocoder). 

The objectives of this effort were to develop a noise sup­
pression technique, implement a computationally efficient 
algorithm, and test its performance in actual noise environ­
ments. The approach used was to estimate the magnitude 
frequency spectrum of the underlying clean speech by sub­
tracting the noise magnitude spectrum from the noisy speech 
spectrum. This estimator requires an estimate of the current 
noise spectrum. Rather than obtain this noise estimate from 
a second microphone source [9], [10], it is approximated 
using the average noise magnitude measured during nonspeech 
activity. Using this approach, the spectral approximation error 
is then defined, and secondary methods for reducing it are 
described. 

The noise suppressor is implemented using about the same 
amount of computation as required in a high-speech convolu­
tion. It is tested on speech recorded in a helicopter environ­
ment. Its performance is measured using the Diagnostic Rhyme 
Test (DRT) [11] and is demonstrated using isometric plots of 
short-time spectra. 

The paper is divided into sections which develop the spectral 
estimator, describe the algorithm implementation, and demon­
strate the algorithm performance. 

II. SUBTRACTIVE NOISE SUPPRESSION ANALYSIS 

A. Introduction 

This section describes the noise-suppressed spectral estimator. 
The estimator is obtained by subtracting an estimate of the 
noise spectrum from the noisy speech spectrum. Spectral in­
formation required to describe the noise spectrum is obtained 
from the signal measured during nonspeech activity. After 
developing the spectral estimator, the spectral error is com­
puted and four methods for reducing it are presented. 

The following assumptions were used in developing the 
analysis. The background noise is acoustically or digitally 
added to the speech. The background noise environment 
remains locally stationary to the degree that its spectral mag­
nitude expected value just prior to speech activity equals its 
expected value during speech activity. If the environment 
changes to a new stationary state, there exists enough time 
(about 300 ms) to estimate a new background noise spectral 
magnitude expected value before speech activity commences. 
For the slowly varying non stationary noise environment, the 
algorithm requires a speech activity detector to signal the 
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program that speech  has ceased and  a new noise bias can  be 
estimated. Finally, it is assumed that significant noise reduc- 
tion is  possible by removing the  effect  of noise from  the mag- 
nitude  spectrum  only. 

Speech, suitably low-pass filtered and digitized, is analyzed 
by windowing data from  half-overlapped input  data buffers. 
The  magnitude  spectra  of  the  windowed data are calculated 
and the spectral noise bias calculated  during  nonspeech activity 
is subtracted  off.  Resulting negative amplitudes are then 
zeroed out. Secondary residual noise suppression is  then 
applied. A time waveform is recalculated  from  the  modified 
magnitude. This waveform  is then overlap  added to  the previ- 
ous  data to  generate  the output speech. 

B. Additive Noise Model 
Assume that  a windowed noise  signal n(k )  has  been  added to 

a  windowed  speech signal s(k), with their sum  denoted  by X@). 

Then 

x(k )  = s(k) + n(k). 

Taking the Fourier  transform gives 

X(e'") = S(ei")  + N(eiw) 

where 

x(k) ++ X(ei") 

k=O 

2n 1, X(eiw)ejwk dw. 
1 =  

x(#%)= - 

C. Spectral Subtraction Estimator 
The spectral subtraction filter H(eiw) is Calculated by re- 

placing the noise spectrum N(e iw)  with  spectra  which can be 
readily measured. The magnitude (N(eiw)( of N(eiw) is re- 
placed by  its average  value p ( e J w )  taken  during  nonspeech 
activity,  and  the phase e,(ei") of N(eiw) is  replaced by the 
phase ex(eiw) of X(eiw). T2ese  substitutions result in the 
spectral subtraction  estimator S(e iw) :  

D. Spectral Error 
The spectral error e(e'") resulting from this estimator is 

given by 

=$(e 'W)  - s(eiW> = N ( e i w )  - p(e'"> ejex. 

A number  of simple modifications are  available to reduce 
the  auditory  effects  of  this spectral error. These include: 
1) magnitude averaging; 2) half-wave rectification; 3) residual 
noise reduction;  and 4) additional signal attenuation  during 
nonspeech activity. 

E. Magnitude  Averaging 

Since the spectral error equals the difference  between  the 
noise  spectrum N and its mean p, local averaging of spectral 
magnitudes  can  be used to reduce  the  error.  Replacing 
IX(eiw)I with IX(ejW)I where 

Ix(ej")l E IXi(e'")I 
1 M-1 

i=O 

Xi(&" = i th time-windowed  transform  of x ( k )  

gives 

The rationale behind averaging is that  the spectral error  be- 
comes approximately 

e(e'"> = - s (e iw> zs - p 

where 

Thus,  the sample mean  of IN(eiw)l will converge to p(e'") as 
a  longer average  is taken. 

The  obvious  problem  with this modification is that  the speech 
is nonstationary,  and  therefore  only  limited  time averaging is 
allowed.  DRT results show that averaging  over  more than 
three  half-overlapped  windows  with  a  total  time  duration of 
38.4 ms will decrease intelligibility. Spectral  examples and 
DRT scores  with and without averaging  are  given in the 
"Results" section. Based upon these results, it appears that 
averaging coupled  with  half rectification offers some  improve- 
ment. The  major  disadvantage of averaging  is the risk of some 
temporal smearing of  short transitory sounds. 

F, Half- Wave Rectification 
For  each  frequency w where the  noisy signal spectrum mag- 

nitude IX(eIW)I is less than  the average  noise spectrum mag- 
nitude p(ei"), the  output is  set to  zero. This modification 
can  be  simply implemented  by half-wave rectifying H(eiw). 
The estimator  then  becomes 

$(e jw>  = HR(ejW)X(ejW) 

where 

The input-output relationship between X(eiW) and $(eiw) at 
each  frequency c3 is shown in Fig. 1 .  

Thus,  the  effect of  half-wave rectification is to bias down  the 
magnitude  spectrum  at  each  frequency w by  the noise  bias 
determined at  that  frequency. The bias value can,  of  course, 
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program that speech has ceased and a new noise bias can be 
estimated. Finally, it is assumed that significant noise reduc­
tion is possible by removing the effect of noise from the mag­
nitude spectrum only. 

Speech, suitably low-pass filtered and digitized, is analyzed 
by windowing data from half-overlapped input data buffers. 
The magnitude spectra of the windowed data are calculated 
and the spectral noise bias calculated during nonspeech activity 
is subtracted off. Resulting negative amplitudes are then 
zeroed out. Secondary residual noise suppression is then 
applied. A time waveform is recalculated from the modified 
magnitude. This waveform is then overlap added to the previ­
ous data to generate the output speech. 

B. Additive Noise Model 

. Assume that a windowed noise signal n(k) has been added to 
a windowed speech signal s(k), with their sum denoted by x (k). 
Then 

x(k)::: s(k) + n(k). 

Taking the Fourier transform gives 

X(e iw) ::: S(e iw ) + N(e iw ) 

where 

x(k) ~ X(e iW ) 

X(e iW )::: ~l x(k)eiWk 
k=O 

1 i1T . . k x(k)::: - X(e1W)e 1W dw. 
2rr -1T 

C. Spectral Subtraction Estimator 

The spectral subtraction filter H(e iw ) is calculated by re­
placing the noise spectrum N(e iw ) with spectra which can be 
readily measured. The magnitude IN(eiw)1 of N(e iw) is re­
placed by its average value JJ.(e iw ) taken during nonspeech 
activity, and the phase ON(e iw ) of N(e iw ) is replaced by the 
phase Ox(e iw ) of X(e iw ). These substitutions result in the 

A • 

spectral subtraction estimator S (e/ W
): 

S(e iw )::: [IX(eiw)l- JJ.(eiw)]ei8x(eiw) 

or 

with 

JJ.(e iw ) H(e iw ) ::: 1 - ~o.......,.~ 
IX(e iw )/ 

JJ.(e iw )::: E {IN(eiw)I}. 

D. Spectral Error 

The spectral error e(e iw ) resulting from this estimator is 
given by 

( jW) SAC iW) S( iW) N( iw) (iw) iOx ee :::: e - e :::: e -JJ.e e . 

A number of simple modifications are available to reduce 
the auditory effects of this spectral error. These include: 
1) magnitude averaging; 2) half-wave rectification; 3) residual 
noise reduction; and 4) additional signal attenuation during 
nonspeech activity. 

E. Magnitude Averaging 

Since the spectral error equals the difference between the 
noise spectrum N and its mean JJ., local averaging of spectral 
magnitudes can be used to reduce the error. Replacing 
IX(eiW)1 with IX(eiW)1 where 

IX(eiw)l::: ..!.. ~l IXj(eiw)1 
M i=o 

Xj(e iW )::: ith time-windowed transform ofx(k) 

gives 

SA (e iw ) :::: [/X(eiW)I- JJ.(eiw)] ei8x(eiW). 

The rationale behind averaging is that the spectral error be­
comes approximately 

e(e iw ) ::: SA (e iw ) - S(e iW ):::: INI - JJ. 

where 

--,.-. - 1 M-l . 
IN(e1W)1 ::: - L /Nj(e/W)/. 

M i=O 

Thus, the sample mean of /N(eiw)1 will converge to JJ.(e iw ) as 
a longer average is taken. 

The obvious problem with this modification is that the speech 
is nonstationary, and therefore only limited time averaging is 
allowed. DRT results show that averaging over more than 
three half-overlapped windows with a total time duration of 
38.4 ms will decrease intelligibility. Spectral examples and 
DRT scores with and without averaging are given in the 
"Results" section. Based upon these results, it appears that 
averaging coupled with half rectification offers some improve­
ment. The major disadvantage of averaging is the risk of some 
temporal smearing of short transitory sounds. 

F. Half- Wave Rectification 

For each frequency w where the noisy signal spectrum mag­
nitude /X(eiW)1 is less than the average noise spectrum mag­
nitude JJ.(e iw ), the output is set to zero. This modification 
can be simply implemented by half-wave rectifying H(e iw ). 
The estimator then becomes 

where 

• A. 

The input-output relationship between X(e/W) and S(e 1W ) at 
each frequency w is shown in Fig. 1. 

Thus, the effect of half-wave rectification is to bias down the 
magnitude spectrum at each frequency w by the noise bias 
determined at that frequency. The bias value can, of course, 
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Fig. 1. Input-output relation between X(@) and $(eiw). 

change from  frequency to frequency as  well  as from analysis 
time  window to time  window.  The  advantage  of half rectifica- 
tion is that  the noise floor is reduced  by p(e iw) .  Also, any 
low variance coherent  noise  tones are essentially eliminated. 
The disadvantage  of  half rectification can exhibit itself in  the 
situation where the  sum of the noise plus  speech at  a frequency 
w is  less than p(e'"). Then  the  speech  information  at  that 
frequency is incorrectly  removed,  implying  a possible decrease 
in intelligibility. As discussed in  the section on "Results," for 
the  helicopter  speech data base this processing did not reduce 
intelligibility as measured using the  DRT. 

C. Residual Noise Reduction 

After half-wave rectification, speech  plus noise lying above 
p remain.  In  the  absence  of  speech activity the  difference 
N R -  - N  - p i e n ,  which shall be  called the noise residual, will 
for uncorrelated noise exhibit itself in the  spectrum as ran- 
domly  spaced  narrow  bands  of  magnitude spikes (see  Fig. 7). 
This noise residual will  have a  magnitude  between  zero  and  a 
maximum value measured  during  nonspeech activity. Trans- 
formed  back to the  time  domain,  the noise residual will sound 
like the sum  of tone generators  with  random  fundamental 
frequencies  which are turned  on and off  at  a rate of about  20 
ms. During  speech activity the noise residual will also be per- 
ceived at those  frequencies  which are not masked by  the 
speech. 

The audible  effects  of  the  noise residual can  be  reduced by 
taking  advantage  of its frame-to-frame  randomness. Specifi- 
cally, at  a given frequency bin, since the noise residual will 
randomly  fluctuate  in  amplitude  at  each analysis frame,  it 
can  be suppressed by replacing its  current value with  its 
minimum value chosen  from  the  adjacent analysis frames. 
T&$g the minimum value is used only  when  the  magnitude 
of S ( e i w )  is  less than  the  maximum noise residual calculated 
during  nonspeech activity. The  motivation  behind tEs replace- 
ment  scheme is threefold:  first, if the  amplitude  of &'(eiW) lies 
below the maximum noise residual, and it varies radically from 
analysis frame to frame,  then  there is a  high  probability that 
the  spectrum at  that frequency is due to  noee;  therefore, sup- 
press it  by taking the minimum;  second, if S(e iw)  lies below 
the  maximum but has  a  nearly  constant value, there is a  high 

probability that the  spectrum  at  that frequency is due tolow 
energy  speech;  therefore,*taking the minimum will retain the 
information;  and  third, if S(e iw)  is greater than the  maximum, 
there is speech  present at  that  frequency;  therefore, removing 
the bias is sufficient. The amount of noise  reduction using this 
replacement  scheme was judged  equivalent to  that obtained  by 
averaging  over three  frames.  However,  with this approach  high 
energy  frequency  bins are not averaged together.  The disad- 
vantage to the  scheme is that more  storage is required to  save 
the  maximum noise residuals and  the  magnitude values for 
three  adjacent  frames. 

The residual noise reduction  scheme is implemented as 

where 

and 

max INR(ejw)I = maximum value of noise residual 
measured  during  nonspeech activity. 

H. Additional Signal Attenuation During Nonspeech Activity 
The  energy content of $(ei") relative to p(eiW) provides an 

accurate  indicator  of  the  presence  of  speech activity within  a 
given  analysis frame. If speech activity is absent,  then S(e iw)  
will consist of  the noise residual which  remains  after half-wave 
rectification and  minimum value selection. Empirically,it was 
determined that  the average (before versus after)  power  ratio 
was down at least 12 dB.  This  implied  a  measure for  detecting 
the absence  of  speech given by 

If T was  less than - 12 dB,  the  frame was  classified  as having 
no speech activity. During the absence  of  speech activity there 
are at least three  options prior to resynthesis: do nothing,  at- 
tenuate  the  output  by  a  fixed  factor, or set the  output  to zero. 
Having some signal present  during  nonspeech activity was 
judged to give the higher  quality result. A possible reason for 
this is that noise present  during  speech activity is partially 
masked by  the speech. Its perceived magnitude  should be 
balanced by the presence of the same amount  of noise during 
nonspeech activity. Setting  the  buffer to zero  had  the effect 
of  amplifying  the  noise  during  speech activity. Likewise,  doing 
nothing  had  the effect of  amplifying the noise during  nonspeech 
activity. A reasonable,  though by  no means  optimum  amount 
of  attenuation was found to  be -30 dB.  Thus,  the output 
spectral estimate  including output  attenuation  during  non- 
speech activity is given by 

$ ( e j w ) =  { $(eiw) 

T > - 1 2 d B  
cX(eiw) T Q - 12 dB 

where 20 log,, c = -30 dB. 
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Fig. 1. Input-output relation between X(e IW) and S (e IW). 

change from frequency to frequency as well as from analysis 
time window to time window. The advantage of half recti fica­
tion is that the noise floor is reduced by J.I.(e iw ). Also, any 
low variance coherent noise tones are essentially eliminated. 
The disadvantage of half rectification can exhibit itself in the 
situation where the sum of the noise plus speech at a frequency 
w is less than J.I.(e iw ). Then the speech information at that 
frequency is incorrectly removed, implying a possible decrease 
in intelligibility. As discussed in the section on "Results," for 
the helicopter speech data base this processing did not reduce 
intelligibility as measured using the DRT. 

C. Residual Noise Reduction 

After half-wave rectification, speech plus noise lying above 
J.I. remain. In the absence of speech activity the difference 
NR =N - J.l.e iOn , which shall be called the noise residual, will 
for uncorrelated noise exhibit itself in the spectrum as ran­
domly spaced narrow bands of magnitude spikes (see Fig. 7). 
This noise residual will have a magnitude between zero and a 
maximum value measured during nonspeech activity. Trans­
formed back to the time domain, the noise residual will sound 
like the sum of tone generators with random fundamental 
frequencies which are turned on and off at a rate of about 20 
ms. During speech activity the noise residual will also be per­
ceived at those frequencies which are not masked by the 
speech. 

The audible effects of the noise residual can be reduced by 
taking advantage of its frame-to-frame randomness. Specifi­
cally, at a given frequency bin, since the noise residual will 
randomly fluctuate in amplitude at each analysis frame, it 
can be suppressed by replacing its current value with its 
minimum value chosen from the adjacent analysis frames. 
Takjng . the minimum value is used only when the magnitude 
of S (e 1W ) is less than the maximum noise residual calculated 
during nonspeech activity. The motivation behind this replace-

A . 

ment scheme is threefold: first, if the amplitude of S (e IW ) lies 
below the maximum noise residual, and it varies radically from 
analysis frame to frame, then there is a high probability that 
the spectrum at that frequency is due to noise; therefore, sup-

/'. . 
press it by taking the minimum; second, if S(e IW ) lies below 
the maximum but has a nearly constant value, there is a high 
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probability that the spectrum at that frequency is due to low 
energy speech; therefore, taking the minimum will retain the " . 
information; and third, if S(elW) is greater than the maximum, 
there is speech present at that frequency; therefore, removing 
the bias is sufficient. The amount of noise reduction using this 
replacement scheme was judged equivalent to that obtained by 
averaging over three frames. However, with this approach high 
energy frequency bins are not averaged together. The disad· 
vantage to the scheme is that more storage is required to save 
the maximum noise residuals and the magnitude values for 
three adjacent frames. 

The residual noise reduction scheme is implemented as 
/'11.. A. A • '. 

IS;(eIW)1 = IS;(eIW)I, for IS;(eIW)I;;;' max INR (eIW)1 
A • A . 

ISi(eIW)1 = min {ISi(eJW)1 j = i-I, i, i + I}, 

for IStCeiW)1 < max iNR(eiw ) I 

where 
A. • • 

Si(e IW ) =HR(eIW)Xi(e IW ) 

and 

max INR(eiw)1 = maximum value of noise residual 
measured during nonspeech activity. 

H Additional Signal Attenuation During Nonspeech Activity 
A . • 

The energy content of S(e IW ) relative to p.(eIW ) provides an 
accurate indicator of the presence of speech activity within a 
given analysis frame. If speech activity is absent, then S (e iw ) 
will consist of the noise residual which remains after half-wave 
rectification and minimum value selection. Empirically, it was 
determined that the average (before versus after) power ratio 
was down at least 12 dB. This implied a measure for detecting 
the absence of speech given by 

T= 2010g10 [_1 J11 I s(e~:) I dWJ. 
217 -11 J.I.(e l ) 

If T was less than -12 dB, the frame was classified as having 
no speech activity. During the absence of speech activity there 
are at least three options prior to resynthesis: do nothing, at· 
tenuate the output by a fixed factor, or set the output to zero. 
Having some signal present during nonspeech activity was 
judged to give the higher quality result. A possible reason for 
this is that noise present during speech activity is partially 
masked by the speech. Its perceived magnitude should be 
balanced by the presence of the same amount of noise during 
nonspeech activity. Setting the buffer to zero had the effect 
of amplifying the noise during speech activity. Likewise, doing 
nothing had the effect of amplifying the noise during nonspeech 
activity. A reasonable, though by no means optimum amount 
of attenuation was found to be -30 dB. Thus, the output 
spectral estimate including output attenuation during non­
speech activity is given by 

S(e iw ) = {s(e~W) T;;;'-12 dB 
cX(e IW ) T';;;;-12 dB 

where 20 Iog1o c = -30 dB. 
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Fig. 2. Data segmentation and advance. 

111. ALGORITHM IMPLEMENTATION 
A. Introduction 

Based on  the  development  of  the last section, a complete 
analysis-synthesis algorithm can be constructed. This section 
presents  the specifications required to implement a spectral 
subtraction noise suppression system. 

B. Input-Output Data Buffering and Windowing 

Speech from  the A-D converter is  segmented  and  windowed 
such that  in  the absence of  spectral  modifications, if the  syn- 
thesis speech segments are added  together,  the resulting overall 
system reduces to an  identity.  The  data are segmented and 
windowed  using the result [ 121 that if a sequence is separated 
into half-overlapped data  buffers, and  each  buffer is multiplied 
by a Hanning window, then the  sum  of these windowed se- 
quences adds back up  to the original sequences. The window 
length is chosen to be  approximately twice as large  as the 
maximum expected  pitch  period  for  adequate  frequency reso- 
lution  [13] . For the sampling rate of 8.00 kHz a window 
length  of 256 points  shifted in steps of 128  points was used. 
Fig. 2 shows the  data  segmentation  and advance. 

C Frequency Analysis 

The  DFT  of  each  data  window is taken  and  the magnitude 
is computed. 

Since real data are being transformed,  two  data windows  can 
be transformed using one FFT [14] . The FFT size  is set equal 
to  the  window size of  256.  Augmentation  with  zeros was not 
incorporated. As correctly  noted by Allen [15] , spectral 
modification followed by inverse transforming can distort  the 
time waveform due  to temporal aliasing  caused by circular 
convolution  with  the time response  of the  modification. 
Augmenting the  input time waveform with  zeros  before spec- 
tral modification will  minimize this aliasing. Experiments 
with  and  without  augmentation using the  helicopter speech 
resulted in negligible differences,  and  therefore  augmentation 
was not  incorporated. Finally, since  real data are analyzed, 
transform  symmetries were taken advantage of to reduce 
storage requirements essentially in half [I41 . 

D. Magnitude  Averaging 
As was described in  the previous section,  the variance of  the 

noise spectral  estimate is reduced by averaging  over as many 
spectral  magnitude  sets as possible. However, the  nonstation- 
arity  of the speech  limits  the total time interval available for 
local averaging. The  number of  averages  is limited by  the 
number  of analysis windows  which can be  fit  into  the stationary 
speech time interval. The choice of window length and  averag- 
ing interval must  compromise  between conflicting require- 
ments.  For  acceptable  spectral  resolution a window  length 
greater than twice the  expected largest pitch period is required 
with a 256-point window being used. For minimum noise 
variance a large number of  windows  are required for averaging. 
Finally, for acceptable time  resolution a narrow analysis inter- 
val is required. A reasonable compromise between variance 
reduction  and time resolution appears to be three averages. 
This results in an effective analysis time interval of 38 ms. 

E. Bias Estimation 
The  spectral  subtraction  method requires an  estimate at 

each  frequency  bin of the  expected value  of noise magnitude 
spectrum p~ : 

PN =E{INI). 
This estimate  is  obtained by averaging the signal  magnitude 
spectrum 1x1 during  nonspeech  activity. Estimating pN in 
this  manner places certain  constraints when implementing  the 
method. If the noise remains stationary  during  the  subsequent 
speech activity, then an initial startup or calibration period of 
noise-only signal  is required. During this period (on the order 
of a third of a second) an estimate of pN can  be computed. If 
the noise environment is nonstationary,  then a new estimate 
of p N  must  be calculated prior to bias removal each  time  the 
noise spectrum changes. Since the  estimate is computed using 
the  noise-only signal during  nonspeech  activity, a voice switch 
is required. When the voice switch is off, an  average  noise 
spectrum can be recomputed. If the noise  magnitude  spec- 
trum is  changing faster than an estimate of  it can  be com- 
puted,  then time averaging to estimate pN cannot be used. 
Likewise,  if the  expected value  of the noise spectrum changes 
after an estimate of it  has  been  computed,  then noise reduc- 
tion  through bias  removal  will be less effective or  even harm- 
ful, i.e.,  removing speech where little noise  is present. 

F. Bias Removal and Half- Wave Rectification 
The spectral  subtraction spectral estimate S is obtained by 

subtracting  the  expected noise  magnitude spectrum p from the 
magnitude  signal spectrum 1x1. Thus 

A 

IS^(k) I=IX(k) I -p(k)  k = 0 , 1 ; . . , L - I  

OK 

where L = DFT buffer  length. 
After  subtracting,  the differenced values  having  negative 

magnitudes are set to zero (half-wave rectification). These 
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Fig. 2. Data segmentation and advance. 

III. ALGORITHM IMPLEMENTATION 

A. Introduction 

Based on the development of the last section, a complete 
analysis-synthesis algorithm can be constructed. This section 
presents the specifications required to implement a spectral 
subtraction noise suppression system. 

B. Input-Output Data Buffering and Windowing 

Speech from the A-D converter is segmented and windowed 
such that in the absence of spectral modifications, if the syn­
thesis speech segments are added together, the resulting overall 
system reduces to an identity. The data are segmented and 
windowed using the result [12] that if a sequence is separated 
into half-overlapped data buffers, and each buffer is multiplied 
by a Hanning window, then the sum of these windowed se­
quences adds back up to the original sequences. The window 
length is chosen to be approximately twice as large as the 
maximum expected pitch period for adequate frequency reso­
lution [13]. For the sampling rate of 8.00 kHz a window 
length of 256 points shifted in steps of 128 points was used. 
Fig. 2 shows the data segmentation and advance. 

C .Frequency ~nalysis 

The DFT of each data window is taken and the magnitude 
is computed. 

Since real data are being transformed, two data windows can 
be transformed using one FFT [14]. The FFT size is set equal 
to the window size of 256. Augmentation with zeros was not 
incorporated. As correctly noted by Allen [15], spectral 
modification followed by inverse transforming can distort the 
time waveform due to temporal aliasing caused by circular 
convolution with the time response of the modification. 
Augmenting the input time waveform with zeros before spec­
tral modification will minimize this aliasing. Experiments 
with and without augmentation using the helicopter speech 
resulted in negligible differences, and therefore augmentation 
was not incorporated. Finally, since real data are analyzed, 
transform symmetries were taken advantage of to reduce 
storage requirements essentially in half [141 . 

D. Magnitude Averaging 

As was described in the previous section, the variance of the 
noise spectral estimate is reduced by averaging over as many 
spectral magnitude sets as possible. However, the nonstation­
arity of the speech limits the total time interval available for 
local averaging. The number of averages is limited by the 
number of analysis windows which can be fit into the stationary 
speech time interval. The choice of window length and averag­
ing interval must compromise between conflicting require­
ments. For acceptable spectral resolution a window length 
greater than twice the expected largest pitch period is required 
with a 256-point window being used. For minimum noise 
variance a large number of windows are required for averaging. 
Finally, for acceptable time resolution a narrow analysis inter­
val is required. A reasonable compromise between variance 
reduction and time resolution appears to be three averages. 
This results in an effective analysis time interval of 38 ms. 

E. Bias Estimation 

The spectral subtraction method requires an estimate at 
each frequency bin of the expected value of noise magnitude 
spectrum iJ.N: 

iJ.N E{INj}. 

This estimate is obtained by averaging the signal magnitude 
spectrum IXI during nonspeech activity. Estimating iJ.N in 
this manner places certain constraints when implementing the 
method. If the noise remains stationary during the subsequent 
speech activity, then an initial startup or calibration period of 
noise-only signal is required. During this period (on the order 
of a third of a second) an estimate of iJ.N can be computed. If 
the noise environment is non stationary , then a new estimate 
of iJ.N must be calculated prior to bias removal each time the 
noise spectrum changes. Since the estimate is computed using 
the noise-only signal during nonspeech activity, a voice switch 
is required. When the voice switch is off, an average noise 
spectrum can be recomputed. If the noise magnitude spec­
trum is changing faster than an estimate of it can be com­
puted, then time averaging to estimate iJ./V cannot be used. 
Likewise, if the expected value of the noise spectrum changes 
after an estimate of it has been eomputed, then noise reduc­
tion through bias removal will be less effective or even harm­
ful, i.e., removing speech where little noise is present. 

F. Bias Removal and Half Wave Rectification 

The spectral subtraction spectral estimate S is obtained by 
subtracting the expected noise magnitude spectrum iJ. from the 
magnitude signal spectrum IXI. Thus 

A 

IS(k)I=IX(k)I-J.1(k) k=O,l,"',L-l 

or 

A 

S(k) = H(k) . X(k),H(k) 

where L == DFT buffer length. 

iJ.(k) 

IX(k) I 
k=O,l,"',L 1 

After subtracting, the differenced values having negative 
magnitudes are set to zero (half-wave rectification). These 
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negative differences represent frequencies where the sum of 
speech plus local noise  is  less than the  expected noise. 

G. Residual Noise  Reduction 
As discussed in the previous section, the noise that remains 

after the mean is removed can be suppressed or even removed 
by selecting the minimum magnitude value from the three 
adjacent analysis frames in  each  frequency bin where the 
current  amplitude is  less than the maximum noise residual 
measured during  nonspeech activity. This replacement pro- 
cedure follows bias removal and half-wave rectification. Since 
the minimum is chosen from values on each side of the current 
time  frame,  the  modification  induces  a one frame delay. The 
improvement in performance was judged superior to three 
frame averaging in  that an equivalent amount of noise sup- 
pression resulted without  the adverse effect of high-energy 
spectral smoothing. The following section presents examples 
of spectra  with and without residual noise reduction. 

H. Additional Noise Suppression During Nonspeech Activity 
The final improvement in noise reduction is  signal suppres- 

sion during nonspeech  activity. As  was discussed, a balance 
must be maintained between the magnitude and characteristics 
of the noise that is perceived during speech activity and the 
noise that is perceived during speech absence. 

An effective speech activity detector was defined using spec- 
tra generated by the spectral  subtraction algorithm. This 
detector required the  determination of a threshold signaling 
absence of speech activity. This threshold (T  = - 12 dB) was 
empirically determined to ensure that only signals definitely 
consisting of background noise would be attenuated. 
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Fig. 3. System block diagram. 

I. Synthesis 
After bias removal, rectification, residual noise removal, and 

nonspeech signal suppression a time waveform is reconstructed 
from the modified magnitude corresponding to the  center win- 
dow. Again, since only real data are generated, two time win- 
dows are computed simultaneously using one inverse FFT. 
The data windows are then overlap added to form the output 
speech sequence. The overall system block diagram is  given in 
Fig. 3. 

VI. RESULTS 
A.  Introduction 

Examples of the performance of spectral subtraction will be 
presented in two forms: isometric plots of time versus fre- 
quency magnitude spectra,  with and without noise cancella- 
tion; and intelligibility and  quality measurement obtained 
from the Diagnostic Rhyme Test (DRT) [ 11 J . The DRT is a 
well-established method  for evaluating speech processing 
devices. Testing and scoring of the DRT data base  was pro- 
vided by Dynastat  Inc. [12]. A limited single speaker DRT 
test was used. The DRT data base consisted of 192 words 
using speaker RH recorded in  a  helicopter  environment.  A 
crew of 8 listeners was used. 

The results are presented as follows: 1) short-time ampli- 
tude spectra of helicopter speech; 2) DRT intelligibility and 
quality scores on LPC vocoded speech using as input  the  data 

given in 2); and 3) short-time  spectra showing additional im- 
provements in  noise rejection through residual noise suppres- 
sion and nonspeech signal attenuation. 

B. Short-Time Spectra of Helicopter Speech 

Isometric  plots of time versus frequency magnitude spectra 
were constructed  from  the data  by computing and displaying 
magnitude spectra from 64 overlapped Hanning windows. 
Each line represents a 128-point frequency analysis. Time 
increases from  bottom  to  top and frequency  from  left to right. 

A 920 ms section of speech recorded with a noise-cancelling 
microphone in  a  helicopter  environment is presented. The 
phrase “Save your” was filtered at 3.2 kHz and sampled at 
6.67 kHz. Since the noise was acoustically added,  no under- 
lying clean speech signal is available. Fig. 4 shows the digitized 
time signal. Fig. 5 shows the average  noise magnitude spec- 
trum computed by averaging  over the first 300 ms of non- 
speech activity. The short-time  spectrum of the noisy signal 
x is shown in Fig. 6 .  Note the high amplitude,  narrow-band 
ridges corresponding to the  fundamental (1550 Hz) and first 
harmonic (3100 Hz) of the  helicopter  engine, as  well  as the 
ramped noise floor above 1800 Hz. Fig. 7 shows the result 
from bias removal and rectification. Figs. 8 and  9 show the 
noisy spectrum and the spectral  subtraction  estimate using 
three frame averaging. 

These figures indicate that considerable noise rejection has 
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negative differences represent frequencies where the sum of 
speech plus local noise is less than the expected noise. 

G. Residual Noise Reduction 

As discussed in the previous section, the noise that remains 
after the mean is removed can be suppressed or even removed 
by selecting the minimum magnitude value from the three 
adjacent analysis frames in each frequency bin where the 
current amplitude is less than the maximum noise residual 
measured during nonspeech activity. This replacement pro­
cedure follows bias removal and half-wave rectification. Since 
the minimum is chosen from values on each side of the current 
time frame, the modification induces a one frame delay. The 
improvement in performance was judged superior to three 
frame averaging in that an equivalent amount of noise sup­
pression resulted without the adverse effect of high-energy 
spectral smoothing. The follOwing section presents examples 
of spectra with and without residual noise reduction. 

H. Additional Noise Suppression During Nonspeech Activity 

The final improvement in noise reduction is signal suppres­
sion during nonspeech activity. As was discussed, a balance 
must be maintained between the magnitude and characteristics 
of the noise that is perceived during speech activity and the 
noise that is perceived during speech absence. 

An effective speech activity detector was defined using spec­
tra generated by the spectral subtraction algorithm. This 
detector required the determination of a threshold signaling 
absence of speech activity. This threshold (T == -12 dB) was 
empirically determined to ensure that only signals definitely 
consisting of background noise would be attenuated. 

L Synthesis 

After bias removal, rectification, residual noise removal, and 
nonspeech signal suppression a time waveform is reconstructed 
from the modified magnitude corresponding to the center win­
dow. Again, since only real data are generated, two time win­
dows are computed simultaneously using one inverse FFT. 
The data windows are then overlap added to form the output 
speech sequence. The overall system block diagram is given in 
Fig. 3. 

VI. RESULTS 

A. Introduction 

Examples of the performance of spectral subtraction will be 
presented in two forms: isometric plots of time versus fre­
quency magnitude spectra, with and without noise cancella­
tion; and intelligibility and quality measurement obtained 
from the Diagnostic Rhyme Test (DRT) [l1J. The DRT is a 
well-established method for evaluating speech processing 
devices. Testing and scoring of the DRT data base was pro­
vided by Dynastat Inc. [12]. A limited single speaker DRT 
test was used. The DRT data base consisted of 192 words 
using speaker RH recorded in a helicopter environment. A 
creW of 8 listeners was used. 

The results are presented as follows: 1) short-time ampli­
tude spectra of helicopter speech; 2) DRT intelligibility and 
quality scores on LPC vocoded speech using as input the data 
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Fig. 3. System block diagram. 
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given in 2); and 3) short-time spectra showing additional im­
provements in noise rejection through residual noise suppres­
sion and non speech signal attenuation. 

B. Short-Time Spectra of Helicopter Speech 

Isometric plots of time versus frequency magnitude spectra 
were constructed from the data by computing and displaying 
magnitude spectra from 64 overlapped Hanning windows. 
Each line represents a 128-point frequency analysis. Time 
increases from bottom to top and frequency from left to right. 

A 920 ms section of speech recorded with a noise-cancelling 
microphone in a helicopter environment is presented. The 
phrase "Save your" was filtered at 3.2 kHz and sampled at 
6.67 kHz. Since the noise was acoustically added, no under­
lying clean speech signal is available. Fig. 4 shows the digitized 
time signal. Fig. 5 shows the average noise magnitude spec­
trum computed by averaging over the first 300 ms of non­
speech activity. The short-time spectrum of the noisy signal 
x is shown in Fig. 6. Note the high amplitude, narrow-band 
ridges corresponding to the fundamental (1550 Hz) and first 
harmonic (3100 Hz) of the helicopter engine, as well as the 
ramped noise floor above 1800 Hz. Fig. 7 shows the result 
from bias removal and rectification. Figs. 8 and 9 show the 
noisy spectrum and the spectral subtraction estimate using 
three frame averaging. 

These figures indicate that considerable noise rejection has 
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