

JUNE

1980
VOLUME 70
NUMBER 6

Journal of the Optical Society of America

(1981)
Tem Ending 31 December 1081 Darell E. Burch C. E. Moore Sitery DavidA. DeWolf David H. Rank Geosg H. Hass
Robert R Hamasel
R, Clark lones A. Rrancis Tumer
Games A. R. Samsen
Buchard Tousey
A. Prancis Tumer
Dudley Willams

Hommai Goodman, Assistant to the Fditor

Asswetate Fditors			
Tem Endins 3	December 1983	Term Ending ${ }^{\text {a }}$	Oecember 1985
David E. Aspnes	Thomas Hrschield	Kemmeh L. Andrew	Leo M. Murweh
Willam M. Benesch	Kanl A Stetson	Stanley S. Ballard	Akrambhmara
Wham B. Bridges	Whllam Stretter	Richard C , Brewer	B. E. A. Saleh
Steven F . Clfford	Adriam Walmer	Whliam H. Carter	Muray Bargent IT
B. Roy Frieden	damas C. Weant	Heny M. Croswhite	Sefrey H. Shapiro
Nicholas George		David L. Fried	Gerald Westhemes
		Carl W. Helstom	Gumter W. Wysaeks

Panel of Tomeal Anvisors

Willam B. Bridges, Chaman
Robert M. Boynton, Color and Vision
John C. Daikty, Holosraphy and Information Processing Sumber P. Davis, Spentronopy

Freeman E. Hall, Jr, Atmospheric Optics
Peter Kaiser, Fiber and Integrated Opties
James E Pearson, Lasers and Electo-Splies
Whath H. Pries, Optand Engincering

Bdtorial Statat AD: Lawnence Feinbers, Jonrad Supernsor; Whinm L. Sheth, Serbor Copy Editor

Published monthly by the Americam Institute of Physics for the Optical Society of America, the Joumat of the Optical Society of America coniains papers and Letters that contribute significant new knowledge or understanding of any optical phenomenon, principle, or method. Reports of officers and committees of the Society are also included.

Submit manescripts and all other materials for publi. cation, moluding books for review, to

Dr Joseph W. Goodman, Bditor
Journal of the Optical Soctety of America
570 Unwersity Terace
Los Altos, Califomia 94022

Submission is a representation that the mamuscript has not been published previously or currently submitted for publication elsewhere. The manuscript should be accompanied by a statement transfering copyright from the authors (or their employers-whoever holds the copyright) to the Optical Society of America; a form for copyright transfer is occasionally printed in the back of this journal and is available from the Editor's office or AIP.

Manuscripis must be prepared in accordance with the requirements of the journal which are summarized on page (iii) of the January issue of the Joumal of the Optical Society of America of this year. Authors should consult the Style Mantal of AIP which can be obtained (for $\$ 7.50$ prepaid) by writing to the American Institute of Physics, 385 East.45th Street, New York, New York 10017. Manuscripts submitted in a form which is not appropriate for the Journal will be returned to the auhors.

Publication Charge: Author's institutions are expected to pay a publication charge of $\$ 80.00$ per printed page. Failure to homor the publication charge will usually delay publication.

A趶's Physics Auxilaty Publication Serviec (PAPS) is a low-cost depository for material which is part of and supplementary to a published paper, but is too long to be included in the Journal; inquire of the Editor.

Proof and all correspondence concerning papers in the process of poblication should be addressed as follows: Supervisor, Editorial Department, American Institute of Physics, 380 East 45th Street, New York, N.Y. 10017. Reference must be to title, athor, journal, and scheduled date of publication. A limited number of alterations in proof are unavoidable, but the cost of making extensive alterations after the article has been set in type will be charged to the author.

Copyright 1980, Optical Society of America. Individual readers of this joumal and nonprofit bbraties acting for them are freely permitted to make fair use of the material in it, such as to copy an article for use in teaching or research. The code that appears on the first page of each article in this joumal gives the per-article copying fee for ach copy of the article made beyond the free copying permitted under Sections 107 and 108 of the U.S. Copyright Law. This fee should be paid through the Copyright Clearance Center, Inc, Box 765, Schenectady, New York 12301. The same fees and procedures are applicable to articles published in previous volumes of this journal. Permission is granted to quote excerpts from articles in this journal in scientific works with the customary acknowledgement of the souree, including the author's name and the journal name, volume, pase and year. Reproduction of figures and tables is likewise permitted in other articles and books, provided that the same information is printed wih them and notification is given to the Optical Society of America. Republication or systematic or multiple reproduction of any material in this journal (including abstracts) is permitted only under license from the Optical Sociefy of America; in addition, the Optical Society will require that permission also be obtained from one of the authors. Address inquiries and notices to the Executive Director, Optical Society of America, 1816 , fefferson Place, N.W., Washington D. C. 20036 . In the case of authors who are employees of the United States government or of its contractors or grantees, the Optical Society of America recognizes the right of the United States government to retain a nonexclusive, royalty free license to use the author's copyrighted article for United States government purposes.

Eleventh International Quantum Electronics Conference

Session A
Monday, June 23, 1980
8:30 A.M.
independence Room
Laser Spectroscopy
Chamman: P.F.Lfao

A.1. Doably Exeited Alkaline Earth
 SAFINYA, AND W. SMKDNER, SRI International, Mento Park, CA, AND W. E. cookn, University of Sowhem Cabloma, Los Angeles, Califortia. (30 min)

We describe recent experiments to probe the properties of douby excited axtotonizing atoms using a laser spectroscopic technique. The physicat basis of the excilation process as well as experments to probe the athoion ization process are described.

- This work supporied by AFOSR, NSF, and DOE.
A.2. Rydbery Atom Masers (Invited), S. HAROCHE, \subset FABRE F GOY, M GROSS. AND B. Mol Laboratoine de Physique de Weole Normale Supertetre, Paris, France (30min,

Using optically pumped alkali Rydberg atoms as the active medim, we have recenty developed new types of pused maser sources with unusual characteristies. Due to the giant electric dipote matrix elements of the Rydberg states, these masers have extremely low inversion thresholds several orders of magntude smaller than those of conventional masers-and "microsoopic" energy outputs. Very sensitive detection procedures have to be used in order to observe their emission. An indireat detection method consists in studying the field ionization characteristics of the atoms, which is stromby moditied when maser action occurs. Diract detection of the timy nierowave bursts bas also been achieved by a heterodyne techmiqne with a very sensitue Schottky diode mixer. Using both methods, we have mode a dataised sudy of the emission characteristics (typical number of inverted atoms at threshold $\sim 10^{4}$; pulse energy - 1 to 10 ev, pealk emission power $\sim 10^{-12}$ W ; polse duration ~ 0.5 zes).

Owing to the large number of energy hevels near the ionkation linit, these new masers can be operated at many wavelengths renging from the centimeter to the submilimeter range, In fact, the souree should continwously evolve from the maser to the laser case when the binding energy of the levels in volved in the emission is increased. These new coherent sources are bound to have very interestixg applications in fundamental physies (study of superradiance of very small systems of atoms) and for the technoloyy of millimeter and submillmeter wave detectors as well.
A.3. Singlet-Triplet Mixing by Hyper-
 P. F. LIAO, R. PANOCK, AND L. M. HUMphrey, Bell Telephone Laboratories, Holmdel, NJ 07793 (15 min.)

A complete determination of the hyperine strueture of the $2^{3} 9$ and $3^{3} D$ states of 3 He throuph analysis of Doppler-free intermodulated fuoresconee specta is reported. We find the structure of the $3^{3} D$ state to be significantly modified by singlet-iriplet miximg which is indeced by hyperfine interactions. The hyperfine interaction is dominated by the Fermi contact interaction of the imer ls open shell electron with the rucletu and therefore does not decrease for higher lying states. Herce, undike the case of one clectronltke spectra (eg., alkali atoms) or multhelectronatoms whtherospin (eg. ${ }^{4} \mathrm{He}$) the high Rydberg states of ${ }^{3}$ He will have their lectronic structures completely dominated by the hyperfine interaction. In particular, the hypertine indueat simglet-tiplet mixing for "He will increase rapidly with increasing principal quantum number n. Our results are in good agreement whth theoretical calculations of the hyperine imterattion.

In Tig. I we show a partion of our spectrum which contains transitions associated with the $2 P_{1,2}$ levels to the $3^{3} \mathrm{D}_{1,2,3}$ stater of H . These states were obtamed in a de dischare tube operated with 0.8 Torr of ${ }^{3} \mathrm{He}$. The tube is probed with two countarpropagating tunable laser beams which are chopped at dif ferent frequencies. By montoring luow
conce at the difference frequency we obtan the Dopplerstee spectrum shown in Fip. I. This spectrum is fit to a parametrized hyperfue Hamiltonian and the calrulated resmance positions and line strength frem the fitare shown in the figure. We fand the majority of the inieraction is due to the Fermi contact term of the Ls electron and that this term is nearly the same for the $2 P$ and $3 D$ states as expected. This term produces sizeable singlet-triplet mixing which must be induded to correctly give the structure. The dotted lines show resonanee positions if one neglects this mixiny.
Because the hyperfine interaction is essebthally constant, our results, along with published fne structure measurements allow a precise determination of the structure of all higher ying states in "He. We find, for example, we can reproduce the two-photon spectra recently obtamed by Giacobino et al., and also predict the hyperfine splitings of the $n{ }^{1} D_{2}$ states observed in level crossing experiments. ${ }^{2}$ In Table I we give our calculated values for these splitings and the meswured experimental values. There is exceilont agreement. As one of the simplest atoms, helum is amenable to acourate catculations. In Table I we also include the results of a theory based on hydrogenic electronic wave funethons and good agreement with our calculations is asain found.
In condusion we have made a determination of the hyporme interaction in ${ }^{3}$ He. This determination shows important singletkiplet mixing effects which will tominate the

FtG. 1. Pontion of Dopplerfree spectrum of $2^{3} D-3^{3} O$ transitions in ${ }^{3}$ te. The levels are marked by $\left(2^{3} P\right) F-$ $\left(2^{3} D\right)^{*}$. The upper tace is the tansmission of an interterometer having an $\mathrm{FSR}=122.4 \mathrm{MHz}$. The solid fines show the calculated positions and intensities inciuliog singlet-viplet mixing. The doted lines show the calculated positions if singlet-triplet mixing is igrored.
cm^{-1}. The magnitute of the cross section for collisional deexcitation by spontameots emissions, σ_{S}, was determined by theasuring the total number of signal photons integrated over the emission bandwidth and using, for the mumber of detected photons.
 the number dansities for the initial storage levels, \bar{V} is the mean velocity of collision, T is the effective radiating tine, V_{0} is the effective radiating volume, and ζ is the ratio of dekected to generated photons. In this mannor we obtan a mexured salte for the cross section for dipolequadrupole collisional deextitation of $\sigma_{s}=1.5 \times 10^{-22} \mathrm{~cm}^{2}$, with an overall expermental uncertanty of approximately a factor of 7.

The results of this experiment have appleation to the comatraction of low- wain, high-energy storage mesia and to the specfroscopiestady of the intersetion potentials of colliding atoms.
is. E. Harris and d. C. White, DEES J. Quantum Electron 13, 172 (1977)
"A. C. White, G. A. Zdaniuk, J. F. Young, and S. E. Harris. Phys Res. Let 41, $1709(1978 \% 42$, 4806 $)$ [1979).
 and S. E. Harris, Ope Lett 4. 265 (1979).
J.8. Sodinm Dlasmas Produced by Milliwatt ew Laser Iradiation,* M. E KOCH K K VERMA, AND W, C. STWALLPY, Towa haser Fawity and Departments of Chemistry and Physics, University of fouc, lone ($\mathrm{Ct} \mathrm{y}_{,} / 452242$ (5 mmin)

There are a variety of reports of significant laserproduced formation of akath metal rapors usime palsed lasem (mhirand in Ea^{2}) and using cw hasers (in Cs^{3} and in Na). (See also Ref. 5 for additional background.) While all of this work is quite interesting, wuch of it involved resonance lines ${ }^{\text {Lis }}$ and so is perhaps not teribly surprising. The other work, on the other hand, involves transitions between a radiatively trapped upper level of an alkali-motal resonamce line and a more hehty excited level which can assoctatively ionze to form M_{2}^{*}. In principle, then, this cw plasma may contain a concentration of N_{2}^{+} which is quite nonequilhmmats, Moreover, in contrast to a discharge where M_{3}^{*} may be rapilly destroyed by photodissociation, the Mr may be stable with respect to laser and other litht (e. ${ }^{\text {m }}$ near-resonance lines) found in the laser-produced plasma.
With this in mind, we have irgadiated a schium heat pipe (typicaly at 10 Torr), wing a focused co dye laser at 5688.2 or 5682.6 A (3p $\rightarrow-4 c$), and alsoreproduced the Caresut at 6010 A. Untike Cs, ${ }^{3}$ where a sifong atomie ion-electron radiative recombination continumm is seen, we see no simnificame spectroscopic evidence for atome fons in our Na plasma. We feel this ss because in Co at the upper level of transition stadied by Tam and Happer, the chamel of ion pair formations $\left(\mathrm{Cs}^{* *}+\mathrm{Cs} \rightarrow \mathrm{Cs}^{+}+\mathrm{Cs}^{-}\right)$is avallable in ad dition to associabive fonization $\left(\mathrm{Cs}^{* *}+\mathrm{Cs} \cdots\right.$ $\left.\mathrm{Cs}_{3}^{+}+e^{-}\right)$. However, for $\mathrm{Na}^{* *}$. $\mathrm{Ma}(4 d)$, omly associative ionzation can ocetr enargenically, so we have produced essentially a
molecular jon plasma. Also we note that this plamma can be produced at quite low power (~ 2 mW fooused broadband laser light at 56882 AD) and we arecurrently examining the energy balanee in deiail.

We have obtained spectra of this plasma in the $2000-3000$ A region. The interpretation of this spectrum is still not completely clear. The various atomic lines seen can be understood in terms of Na(fd) Ma and Nat3p)Na(3p) collisions ${ }^{6}$ and the process (disso©ative recombination): $\mathrm{Na}+\mathrm{e}^{-} \rightarrow \mathrm{Na}^{*}$ +Na , where $\mathrm{Ma}{ }^{* *}$ is a highy exeted Natom (e.g., $4 d$ or $5 s$). The structure seen aear the exciting line and to the red is presumably molecular fuorescence and D lire absorption. We see five broad features at $-3050,3780$. 4850 , 4520, and $8000 A$ which remain to be explaned.
We hove examined the $4200-4700 \mathrm{~A}$ region under high recolution and find the structure th that region to be a continumm, not densely spaced lines. A possible explanation is that these continua represent the processes Na a $+0^{-} \rightarrow \mathrm{Na}+h y$, where Na is an excited sate of Nag. The occurrence of such moIectar ion-edectron radiative recombination has never bean previously established, al though the atomic form is well bown. The features we see peaking at 4350 and 4520 A hawe been observed in other ways, e,g., in discharges, ${ }^{7-9}$ in Ar maser UV line irradiation of the Nag $C+\cdots \times$ bands, ${ }^{16}$ in twophoton Nas excitution, ${ }^{11}$ and in cw and pulsed dye-laser exctation at the Na D tines ${ }^{12-14}$ Simitar features occur in K, Rb, and Cs ${ }^{8}$, 16 Several explanations have been proposed involving free-free, freebound, or bound-free pro" cesses. Note that the radiative recombination discussed above can be casi in "bound. free" form when a migh molecular Rydbers state $\mathrm{Ma}_{\mathrm{B}}^{*}$ is formed as a resonance ine ${ }^{-} \mathrm{Na}_{2}^{+}$ scatterink. Since many of the potential energy curves of Nag are fairly well known, eg, from high quality ab inifio calcuations and a variety of recent experiments, we are carrying out explicit calchlations of a nmber of these alternatives. We also have and will contimue to carry ont simultancous ionization detection to attempt to resolve the orgin of the 4865 and 4520 A continua. Finally we note that some mechanisms suguest these bands minht be made into a poverful violes laser with limited tumabilty.

The so00 A feature afmoct certainly cor responds to the

$$
A^{1} \sum_{z=}^{\frac{7}{4}}-X^{1} \sum_{k}^{+}
$$

satellite band ${ }^{17.18}$ and has previously been observed in a Na (or other alkah) alischarge. 8,18 .89 There is a continuum overlaid with many discrete lines. The discretelines, however, extend through all parts of the laser path whife the conthwum is concentrated in the central "white" region near the focus where the 4550 and 4520 A features appear.

The 3650 and 3750 A feanrea heve appareatly not been prevtously weported. They also appear contimuous and possible explanations for them are similar to those mentroxed above for the 4500 and $4520 \AA$ bands.

We are currenty examining these spectra and extending them in a variety of ways, with
emphasis on obtaining mictoscopic under. standing of the plasma formation process.
*Supported by the Natimal Aeromautics and Space Adminetration and the National Science Foundation.
IT. D. Molrath and T. B. Lueatorta, Phys. Rew. Lete 38 , 1390 (1977)
Y. E. Lucatorto and T. J. Mchath, Phys. Rey. Lett. 37,428 (1976).
3A. Thm and W. Happer, Opt Commun. 21, 603 (1977).
${ }^{4}$ C. H. Bearman and I If Leventhal, Phys. Rev.

${ }^{\text {a G }}$, S. Hurt, M. G. Payoe, S. D. Kremer, amd I. P. Toung. Rev. Mad. Phys. $3 \mathrm{l}, 76 \mathrm{G}$ (1979).
M. Allegtini, G. Alzena, A. Kopstymeka, L. Moi. and G. Orribs, Opt Commun. 19, 084966 ,
H. Bartels, 2. Physik 73, 203 (1022),

SK. Schmidt Proxedings of the Sixt haternational Comjerence on fomantion Phewomena in Gases (Paris, 196:), Vol.3, p. 3\%
${ }^{3}$.J. de Groot and J. A. H. M. van Whes, d. Phys. D s, 6 g 1 (1975).

MJ. P. Woerdman, Chem Phys. Lekt. 4 , 2 \% 9 (1976).
 and C. Ortiols Ope. Gummun. 22, s29 10ton.
ma. Kopystynuk and P. Kowaleyk, Opt. Comman. $25.351(198)$.
 28.78 (19753).

ED. M. Rebbeek and J. M. Vaughan. d. Phys. B4, 208 (1971).
19, M. Mtomand H. P. Broda. . Cham. Phys. 6I, 982 (1974).
17W C Stwalley, "Laser Maniphation of Metalle Vapors", Radiation Enegy Comsersion in Space, edited by K. W. Dildman, Vol. 61 of Progress in As-

24. K. Lam, A. Gallagher, and M. M. Hessel. I. Chem. Phys. 66. 3000 (197\%).
ny. P. Sorokin and d. R. Lankard, W. Chem. Phys 55,3819(1971).
J.9. Laser-Induced Perning/Associative Ionization in Crossed Atomie Beans, P. POLAK-DINGELS, J.F DRLPECH, AND 5 . Werner, Deparmend of Chemisiry. University of Marylond, College Park, MD 20742 (15min.)

Later-switched or laser-modited collmons are the object of intenstve theoretical and experimental study because they offer the possibility of controling the relative proba hilities of competing inclastic and reactive exit chameds. The influence of the lager field is to modify the dectronic states of the system during a collisional encounter. Laser. induced collsions pre characterized by atomic-field interactons which are noner senant with respect to depole-allowed transitions of the separated ollision partners. We discuss here now results an Penming/ assoctative iomzation of Na Na collisions in the presence of optical fieht power densities of $=10^{7} \mathrm{~W} / \mathrm{cm}^{2}$.

The experimental set-up is as follows. Two alkah atomie beam sources are mounted on a multiported vachum chamber at right angles in the horizontal plane. Two laser beams enter from opposite ports and overlap at the interacton region with an angle of nearly 180°. The light sources are flashlamp pumped cunabie dye lasers synehronized together and with a box car integrator/amplifter used to recor the ionsignat. A oundrupole mass flter, mounted above the

