
 E C E N 6 2 5 3 A d v a n c e d D i g i t a l C o m p u t e r D e s i g n

Multiprocessors

We can think of multiprocessors as a way to increase the parallelism of the uniprocessor
systems we have been studying. Scalar processors have a single pipeline. Superscalar
processors have multiple parallel execution pipelines, but share common instruction fetch
and decode pipelines. Multiprocessors have complete multiple parallel pipelines where
each pipeline has its own fetch and decode stages.

Anyone that has used the internet has experienced a system with multiple processors. The
internet consists of massive numbers of independent processors that are loosely coupled
through their network connection. To each processor, the network connection looks like
another relatively slow I/O device. In particular, each processor has its own memory
which is not shared with other processors.

Multiprocessors are much more tightly coupled. Memory (and I/O devices) are shared via
a local interconnection network. Each processor has access to its own memory and all the
memory of all the other processors. This requires a much higher speed interconnection
that is capable of keeping up with memory data transfer rates. The two basic organiza-
tions of shared memory multiprocessors are shown in fig. 9-4, p. 424.

Memory becomes a common resource which must be shared between execution threads
running simultaneously (really simultaneously, not time shared) on different processors in
the multiprocessor system. The use of memory by different threads running on the same
or different processors must be properly synchronized using the techniques of the previous
section. In this manner, the design goals (middle of p. 423) for multiprocessors can be
achieved.

Cache Coherence. The unit latency requirement is usually satisfied by providing each
processor with its own local cache as seen in fig. 9-4, p. 424. As long as cache miss rates
are low, the unit latency goal will be (almost) met.

Separate local caches makes it difficult for each processor to have a coherent view of
memory which includes the effects of its own memory writes and the memory writes of
other processors. Coherence protocols are necessary as shown in fig. 9-5, p. 425.

An update protocol requires the transfer of write data (and write address) to all the proces-
sor caches that have a copy of the data. Since the data is transferred through the intercon-
nection network, the data might as well be stored in main memory as well. This is very
similar to a write-through strategy for uniprocessor cache. Write-through (and therefore
update protocols) is known to have high memory bandwidth requirements since each write
(by every processor) must be transmitted on the interconnection network. For this reason,
update protocols are not used in modern designs.

An invalidate protocol only requires the transfer of the write address to all processor
caches that have a copy of the data. Furthermore, once the copies of the data in other
Multiprocessors April 28, 2003 page 1 of 4

APPLE 1013f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 E C E N 6 2 5 3 A d v a n c e d D i g i t a l C o m p u t e r D e s i g n

caches have been invalidated (removed from the cache), the original processor has an
exclusive copy of the data. It can continue to read or write to this location without notify-
ing the other processors. This is very similar to a write-back strategy for uniprocessor
cache. Write-back (and therefore invalidate protocols) is known to have lower memory
bandwidth requirements since most data transfers take place to local cache without using
the interconnection network at all. Once in the exclusive state, the interconnect network is
used only when

1. the local cache must write back (evict) the data to make room for new data locations in
cache,

2. other processors want to read or write to the exclusive location.

The invalidate protocol is usually implemented with the four states shown in fig. 9-6, p.
428. Note:

1. Each cache block has its own state which is maintained by the local cache controller in
response to both local processor memory operations and bus operations from remote
processors.

2. Bus read, bus write and bus upgrade correspond to remote read, remote write and
remote upgrade (invalidate) respectively.

3. Bus upgrade is usually called bus invalidate since this is the message to invalidate
caches in the shared state.

4. A cache miss (tag mismatch) on read or write is treated the same as a local read or write
to an invalid state.

5. The Modified state is also exclusive. Only one cache can be in the exclusive or modi-
fied state for a particular memory block.

6. Local evict does not have an effect on other caches.

Snooping. The simplest way to implement cache coherence invalidate protocols is to have
all processors share a common address bus. The common address bus can be a single
physical bus or it might be a collection of physical busses in a more complicated intercon-
nection topology. Each processors monitors (snoops) addresses on the bus from other pro-
cessors. When an address on the address bus matches a location in the local cache, the
appropriate action is taken according to the coherence protocol.

State transitions in fig. 9-6 do not occur until the local cache controller gains access to the
shared address bus. This prevents such problems as two cache controllers in the shared
state from invalidating each other. This means that the real cache controller has intermedi-
ate states to wait for bus access.

The cache must respond to the local processor as any normal write-back cache would. In
addition, snooping requires a cache operation (tag match) every time any processor uses
the shared address bus. This normally requires multiport cache to avoid slowing down the
local processor.
Multiprocessors April 28, 2003 page 2 of 4

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 E C E N 6 2 5 3 A d v a n c e d D i g i t a l C o m p u t e r D e s i g n

Snooping has been used successfully in commercial systems with up to 64 processors. For
larger multiprocessor systems, the bandwidth requirements on the shared address bus will
make snooping impractical. Each processor puts addresses on the shared address bus at a
rate shown in eq. 9-1, p. 429. The total bus traffic, eq. 9-2, is proportional to the number
of processors. Since only one processor can put an address on the shared bus at any given
time, it takes longer and longer for messages on the bus to get through as most processors
spend time waiting to get control of the bus. The waiting time appears as increased mem-
ory latency which increases the effective cache miss penalty.

Limitations of Snooping. The bandwidth of a single shared address bus can limit the per-
formance of a multiprocessor system with large numbers of processors. Suppose we add
more interprocessor communication busses. The best we can do is a dedicated bus
between each pair of processors.

proc 1

proc 2

proc 3

proc 6

proc 5

proc 4

This is called a “fully connected” network. If there are N processors, then the total num-
ber of busses is

(N-1) + (N - 2) + ... + 2 + 1 + 0 = N(N - 1)/2

The best we can do is ~ N 2/2 times the communication bandwidth of a single bus.

If cache coherence is implemented with snooping, the bus read, bus write and bus upgrade
(invalidate) messages must be broadcast to all processors. Each of the N processors will
send N - 1 messages (one to each of the other processors) resulting in a total average mes-
sage count ~ N 2. Clearly, adding more busses does not help if a cache coherence protocol
is used which requires broadcasting messages to all processors. We need a coherence
scheme that takes advantage of invalidate protocols not needing to broadcast messages.

Directory Based Cache Coherence. Suppose we add extra bits (the directory) to main
memory to keep track of which processor caches have copies of each memory block. We
can also keep track of the status of each main memory block with a directory controller
similar to the cache controller for each processor. The organization of main memory with
directory is as follows.
Multiprocessors April 28, 2003 page 3 of 4

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 E C E N 6 2 5 3 A d v a n c e d D i g i t a l C o m p u t e r D e s i g n

address

processor
list status main memory data block

The processor list must be compact to keep from increasing the memory size too much.
Usually, a single bit per processor is used in the list to indicate whether or not a processor
has a copy. Even so, the number of bits in the list can get excessive when there are hun-
dreds of processors.

The status bits of the directory represent one of the following four states.

• Uncached (U) - none of the processor caches has a copy. The main memory data block
is valid.

• Shared (S) - each processor in the list has a copy in the shared state. The main memory
data block is valid.

• Exclusive (E) - one and only one processor has a copy in the exclusive (unmodified)
state. The main memory block is valid.

• Modified (M) - one and only one processor has a copy in the modified state. The main
memory block is invalid.

Observe that:

1. The cache controller responds in the same way as in fig. 9-6, p. 428. The difference is
that the bus read, bus write and bus upgrade (invalidate) messages are sent to and come
from the directory controller, not other cache controllers.

2. A bus read request to the directory for a block in the M state requires the directory to
send a message to the single processor cache that has a valid copy of the data. This
extra “dirty miss” latency can be a problem for some data base applications.

3. Other bus read requests can be handled by the directory (rather than loading down the
processor cache controller) since the main memory data block is valid.

4. A bus write or bus upgrade (invalidate) request requires messages to be sent only to
processors in the list (no broadcasting).

Since all bus read, write and invalidate operations must be handled by the directory, con-
tention for the directory can easily become a problem. For this reason, most directory
schemes spread the main memory locations between the processor nodes (the NUMA
architecture fig. 9-4, p. 424) with a separate directory controller for each processor.
Multiprocessors April 28, 2003 page 4 of 4

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

