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Abstract 
The problem of cache coherence in shared-memory multipro- 
cessors has been addressed using two basic approaches: direc- 
tory schemes and snoopy cache schemes. Directory schemes 
have been given less attention in the past several years, while 
snoopy cache methods have become extremely popular. Di- 
rectory schemes for cache coherence are potentially attrac- 
tive in large multiprocessor systems that are beyond the scal- 
ing limits of the snoopy cache schemes. Slight modifications 
to directory schemes can make them competitive in perfor- 
mance with snoopy cache schemes for small multiprocessors. 
Trace driven simulation, using data collected from several real 
multiprocessor applications, is used to compare the perfor- 
mance of standard directory schemes, modifications to these 
schemes, and snoopy cache protocols. 

1 Introduction 
In the past several years, shared-memory multiprocessors 
have gained wide-spread attention due to the simplicity of 
the shared-memory parallel programming model. However, 
allowing the processors to share memory complicates the de- 
sign of the memory hierarchy. The most prominent example 
of this is the cache coherency or cache consistency problem, 
which is introduced if the system includes caches for each pre 
cessor. A system of caches is said to be coherent if all copies of 
a main memory location in multiple caches remain consistent 
when the contents of that memory location are modified [l]. 
A cache coherency protocol is the mechanism by which the co- 
herency of the caches is maintained. Maintaining coherency 
entails taking special action when one processor writes to a 
block of data that exists in other caches. The data in the 
other caches, which is now stale, must be either invalidated 
or updated with the new value, depending on the protocol. 
Similarly, if a read miss occurs on a shared data item and 
memory has not been updated with the most recent value 
(as would happen in a copy-back cache), that most recent 
value must be found and supplied to the cache that missed. 
These two actions are the essence of all cache coherency pro- 
tocols. The protocols differ primarily in how they determine 
whether the block is shared, how they find out where block 
copies reside, and how they invalidate or update copies. 

Most of the consistency schemes that have been or are be- 
ing implemented in multiprocessors are called snoopy cache 
protocols [2,3,4,5,6,7] because each cache in the system 
must watch all coherency transactions to determine when 
consistency-related actions should take place for shared data. 
Snoopy cache schemes store the state of each block of cached 
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data in the cache directories - the information about the state 
of the cached data is distributed. 

Another class of coherency protocols is directory-based 
[8,9,10,11]. Directory-based protocols keep a separate direc- 
tory associated with main memory that stores the state of 
each block of main memory. Each entry in this centralized 
directory may contain several fields depending on the proto- 
col, for example, a dirty bit, a bit indicating whether or not 
the block is cached, pointers to the caches that contain the 
block, etc. 

How do snoopy cache protocols work? A typical scheme 
enforces consistency by allowing multiple readers but only 
one writer. The state associated with a block’s cached copy 
denotes whether the block is, for example, (i) invalid, (ii), 
valid (possibly shared), or (iii) dirty (exclusive copy). When 
a cache miss occurs, the address is broadcast on the shared 
bus. If another cache has the block in state dirty, the state is 
changed to valid and the block is supplied to the requesting 
cache. In addition, for write misses all copies of the block 
are invalidated. Similarly, on a write hit to a clean block, the 
address is broadcast and each cache must invalidate its copy. 
In general, all cache transactions that may require a data 
transfer or state change in other caches must be broadcast 
over the bus. 

Snoopy cache schemes are popular because small-scale mul- 
tiprocessors can live within the bandwidth constraints im- 
posed by a single, shared bus to memory. This shared bus 
makes the implementation of the broadcast actions straight- 
forward. However, snoopy cache schemes will not scale be- 
yond the range of the number of processors that can be ac- 
commodated on a bus (probably no more than 20). Attempts 
to scale them by replacing the bus with a higher bandwidth 
communication network will not be successful since the con- 
sistency protocol relies on low-latency broadcasts to maintain 
coherency. For this reason, shared-memory multiprocessors 
with large numbers of processors, such as the RP3 [12], do 
not provide cache coherency support in hardware. 

These snoopy cache schemes also interfere with the 
processor-cache connection. Because the caches of all pro- 
cessors are examined on each coherency transaction, inter- 
ference between the processor and its cache is unavoidable. 
This interference can be reduced by duplicating the tags and 
snooping on the duplicate tags. However, the processor must 
write both sets of tags and thus arbitration is required on the 
duplicate tags. This impacts the cache write time which may 
slow down the overall cycle time, especially in a high perfor- 
mance machine. Attempts to reduce the bus traffic generated 
by cache coherency requests in a snoopy cache scheme results 
in fairly complex protocols. These may impact either the 
cache access time or the coherency transaction time. 

In this paper we propose that directory-based schemes are 
better suited to building large-scale, cache-coherent multi- 
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processors, where a single bus is unsuitable for a communi- 
cation mechanism. This paper is a first step in evaluating 
directory schemes using traces from real multiprocess appli- 
cations. Although we do not have sufficient data to demon- 
strate quantitatively that the directory schemes are effective 
in a large-scale multiprocessor, we do discuss how these di- 
rectory schemes can be scaled and we demonstrate that their 
performance in a small-scale multiprocessor is acceptable. 

We use trace-driven simulation, with traces obtained from 
real multiprocessor applications, to evaluate a basic directory- 
based coherency protocol that uses bus broadcasts and ver- 
ify that its performance approaches that of snoopy cache 
schemes. We then obviate broadcasts by including a valid bit 
per cache in each directory entry, allowing sequential invali- 
dation of multiple cached copies. Performance is not signifi- 
cantly degraded by this modification, and in most cases (over 
85% of writes to previously-clean blocks) no more than one 
sequential invalidation request is necessary. Unfortunately, 
the need for a valid bit per cache restricts the ability to add 
on to an existing multiprocessor without modifying parts of 
the existing system. This motivates a scheme that can per- 
form up to some small number of sequential invalidates to 
handle the most frequent case, and that resorts to some form 
of “limited broadcast” otherwise. 

The paper first reviews previous directory schemes and dis- 
cusses how they overcome the limitations created by snoopy 
cache schemes. It also proposes a general classification of 
these techniques, and identifies a few that seem most inter- 
esting for performance and implementation reasons. Section 3 
outlines the schemes that we evaluate. We describe our eval- 
uation method and the characteristics of our multiprocessor 
address traces in Section 4. Section 5 evaluates basic di- 
rectory and snoopy cache schemes and discusses their per- 
formance. Section 6 then extends the discussion to include 
more scalable directory protocols, and Section 7 concludes 
the paper. 

2 Directory Schemes for Cache 
Consistency 

The major problems that snoopy cache schemes possess are 
limited scalability and interference with the processor-cache 
write path. How do directory schemes address these prob- 
lems? The major advantage directory schemes have over 
snooping protocols is that the location of the caches that 
have a copy of a shared data item are known. This means 
that a broadcast is not required to find all the shared copies. 
Instead, individual messages can be sent to the caches with 
copies when an invalidate occurs. Since these messages are 
directed (i.e., not broadcast), they can be easily sent over any 
arbitrary interconnection network, as opposed to just a bus. 
The absence of broadcasts eliminates the major limitation on 
scaling cache coherent multiprocessors to a large number of 
processors. 

Because we no longer need to examine every cache for a 
copy of the data, the duplicate tags can be eliminated. In- 
stead, we store pointers in main memory to the caches where 
the data is known to reside and invalidate their copies. The 
protocols are also simpler than the distributed snoopy algo- 
rithms because of the centralization of the information about 
each datum. 

Several directory-based consistency schemes have been pro- 

posed in the literature. Tang’s method [8] allows clean blocks 
to exist in many caches, but disallows dirty blocks from re- 
siding in more than one cache (most snoopy cache coherency 
schemes use the same policy). In this scheme, each cache 
maintains a dirty bit for each of its blocks, and the central 
directory kept at memory contains a copy of all the tags and 
dirty bits in each cache. On a read miss, the central directory 
is checked to see if the block is dirty in another cache. If so, 
consistency is maintained by copying the dirty block back to 
memory before supplying the data; if the directory indicates 
the data is not dirty in another cache, then it supplies the 
data from memory. The directory is then updated to indi- 
cate that the requesting cache now has a clean copy of the 
data. The central directory is also checked on a write miss. 
In this case, if the block is dirty in another cache then the 
block is first flushed from that cache back to memory before 
supplying the data; if the block is clean in other caches then it 
is invalidated in those caches (i.e., removed from the caches). 
The data is then supplied to the requesting cache and the 
directory modified to show that the cache has a dirty copy of 
the block. On a write hit, the cache’s dirty bit is checked. If 
the block is already dirty, there is no need to check the central 
directory, so the write can proceed immediately. If the block 
is clean, then the cache notifies the central directory, which 
must invalidate the block in all of the other caches where it 
resides. 

Censier and Feautrier [9] proposed a similar consistency 
mechanism that performs the same actions as the Tang 
scheme but organizes the central directory differently. Tang 
duplicates each of the individual cache directories as his main 
directory. To find out which caches contain a block, Tang’s 
scheme must search each of these duplicate directories. In 
the Censier and Feautrier central directory, a dirty bit and 
a number of valid (or “present”) bits equal to the number 
of caches are associated with each block in main memory. 
This organization provides the same information as the du- 
plicate cache directory method but allows this information to 
be accessed directly using the address supplied to the central 
directory by the requesting cache. Each valid bit is set if the 
corresponding cache contains a valid copy of the block. Since 
a dirty block can only exist in at most one cache, no more 
than one of a block’s valid bits may be set if the dirty bit is 
set. 

Yen and Fu suggest a small refinement [ll] to the Censier 
and Feautrier consistency technique. The central directory 
is unchanged, but in addition to the valid and dirty bits, 
a flag called the single Lit is associated with each block in 
the caches. A cache block’s single bit is set if and only if 
that cache is the only one in the system that contains the 
block. This saves having to complete a directory access before 
writing to a clean block that is not cached elsewhere. The 
major drawback of this scheme is that extra bus bandwidth 
is consumed to keep the single bits updated in all the caches. 
Thus, the scheme saves central directory accesses, but does 
not reduce the number of bus accesses versus the Censier and 
Feautrier protocol. 

Archibald and Baer present a directory-based consistency 
mechanism [lo] with a different organization for the central 
directory that reduces the amount of storage space in the 
directory, and also makes it easier to add more caches to the 
system. The directory saves only two bits with each block in 
main memory. These bits encode one of four possible states: 
block not cached, block clean in exactly one cache, block clean 
in an unknown number of cachea, and block dirty in exactly 
one cache. The directory therefore contains no information 
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to indicate which caches contain a block; the scheme relies on 
broadcasts to perform invalidates and write-back requests. 
The block clean in exactly one cache state obviates the need 
for a broadcast when writing to a clean block that is not 
contained in any other caches. 

Two clear differences are present among these directory 
schemes: the number of processor indices contained in the 
directories and the presence of a broadcast bit. We can thus 
classify the schemes as Diri X, where i is the number of indices 
kept in the directory and X is either B or NB for Broadcast 
or No Broadcast. In a no-broadcast scheme the number of 
processors that have copies of a datum must always be less 
than or equal to i, the number of indices kept in the directory. 
If the scheme allows broadcast then the numbers of proces- 
sors can be larger and when it is (indicated by a bit in the 
directory) a broadcast is used to invalidate the cached data. 
The one case that does not make sense is Dire NB, since there 
is no way to obtain exclusive access. 

In this terminology, the Tang scheme is classified as 
Dir,, NB, the Censier and Feautrier scheme is Dir, NB also, 
and the Baer and Archibald scheme is DircB. Our evalu- 
ation concentrates on a couple of key points in the design 
space: DirrNB and DirsB. We will also present results for 
Dir, NB. 

There are two potential difficulties that prevent scalability 
of the directory schemes. First, if the scheme always or fie- 
quently requires broadcast, then it will do no better than the 
snoopy schemes. Variations in the directory schemes (e.g., 
increasing the value of i in a DiriB scheme) decrease the 
frequency of broadcast. We must also examine the dynamic 
numbers of caches that contain a shared datum to evaluate 
the actual frequency of occurrence. Second, the access to the 
directory is a potential bottleneck. However, we will show 
that the directory is not much more of a bottleneck than 
main memory, and the bandwidth to both can be increased by 
having a distributed memory hierarchy rather than central- 
ized. That is, memory is distributed together with individual 
processors. In addition to certain advantages in providing 
scalable bandwidth to the memories from the local processor, 
the organization distributes the directory, associating it with 
the individual memory modules. 

3 Schemes Evaluated 

We will evaluate two directory schemes (called Dir1 NB and 
DirsB), and two snoopy cache schemes (Write-Through- 
With-Invalidate and Dragon) for comparison purposes. These 
particular snoopy cache techniques were selected because they 
represent two extremes of performance and complexity. The 
two directory schemes are also extremes in the number of 
simultaneous cached copies allowed. The following is a de- 
scription of these four protocols. 

The most restrictive of the four schemes is Dir1 NB in 
that a given block is allowed to reside in no more than one 
cache at a time; therefore, there can be no data inconsistency 
across caches. The directory entry for each block consists of 
a pointer to the cache that contains the block. On a cache 
miss, the directory is accessed to find out which cache con- 
tains the block, that cache is notified to invalidate the block 
and write it back to memory if dirty, and the data is then 
supplied to the requesting cache. Dirr NB is included in the 
evaluation because it is perhaps the simplest directory-based 
consistency scheme and is easily scaled to support a large 

number of processors. 
The DiroB is the Archibald and Baer scheme [lo] out- 

lined in the previous section. Like many consistency proto- 
cols, a clean block may reside in many caches, while a dirty 
block may exist in exactly one cache. Invalidations are accom- 
plished with broadcasts; a similar scheme that uses sequen- 
tial invalidates in place of broadcasts (Dir,,NB) will later be 
shown to have nearly the same performance. For the ini- 
tial evaluation, broadcasts are used in both the directory and 
snooping schemes because it results in a simpler cost model 
and allows a fair comparison of the two. 

Write-Through-With-Invalidate (WTI) is a simple snoopy 
cache protocol that relies on a write-through (as opposed to 
copy-back) cache policy and is used in several commercial 
multiprocessors. All writes to cache blocks are transmitted 
to main memory. Other caches snooping on the bus check to 
see if they have the block that is being written; if so, they 
invalidate that block in their own cache. When a different 
processor accesses the block, a cache miss will occur and the 
current data wilI be read from memory. Like DiroB, mul- 
tiple cached copies of clean blocks can exist simultaneously. 
Because of the high level of bus traffic caused by the write- 
through strategy, WTI is generally considered to be one of the 
lowest-performance snooping cache consistency protocols. 

While the three previous schemes are all invalidation pro- 
tocols, Dragon is an update protocol, i.e., it maintains con- 
sistency by updating stale cached data with the new value 
rather than by invalidating the stale data [13]. The cache 
keeps state with each block to indicate whether or not each 
block is shared; all writes to shared blocks must be broadcast 
on the bus so that the other copies can be updated. Dragon 
uses a special “shared” line to determine whether a block is 
currently being shared or not. Each cache snoops on the bus 
and pulls the shared line whenever it sees an address for which 
it has a cached copy of the data. Dragon is often considered 
to have the best performance among snoopy cache schemes. 

4 Evaluation Methodology 

Simulation using multiprocessor address traces is our method 
of evaluation. Most previous studies that evaluated direc- 
tory schemes used analytical models [14,9] and those that 
used simulation had to make rough assumptions about the 
characteristics of shared memory references [lo]. Because the 
performance of cache coherence schemes is very sensitive to 
the shared-memory reference patterns, both of these previ- 
ous methods have the drawback that the results are highly 
dependent on the assumptions made. Trace-driven simula- 
tion has the drawback that the same trace is used to evaluate 
all consistency protocols, while in reality the reference pat- 
tern would be different for each of the schemes due to their 
timing differences. But the traces represent at least one pos- 
sible run of a real program, and can accurately distinguish 
the performance of various schemes for that run. 

This paper deals with the inherent cost of sharing in multi- 
processors and the memory traffic required to maintain cache 
consistency. We therefore exclude the misses caused by the 
first reference to a block in the trace because these occur in a 
uniprocessor infinite cache as well. The additional overhead 
due to multiprocessing now consists of (i) the extra misses 
that occur due to fetching the block into multiple caches and 
(ii) the cache consistency-related operations. Our results rep 
resent exactly this overhead. 
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We wish to isolate and measure only the traffic incurred 
in maintaining a coherent shared memory system in a multi- 
processor. To this end our simulations use infinite caches to 
eliminate the traffic caused by interference in finite caches. 
The performance of an infinite cache is also a good approxi- 
mation to that of a very large cache, where the miss rate is 
essentially the cost of first-time fetches. Moreover, the per- 
formance of a system with smaller caches can be estimated 
to first order by adding the costs due to the finite cache size. 
Typical cache miss rates are reported in [15,16]. 

4.1 Performance Measures 

To determine the absolute performance of a multiprocessor 
system using total processor utilizations, a simulation must 
be carried out for every hardware model desired. A problem 
with this approach is that the sharing characteristics may 
change because the simulation model is different from the 
hardware used for gathering data. 

We would like a metric for performance that is not tied to 
any particular processor or interconnection network architec- 
ture. We use the communication cost per memory reference 
as our basic metric. This cost is simply the average number of 
cycles that the bus (or network) is busy during a data transfer 
from a cache to another cache, cache to directory, and from 
cache to or from main memory. We refer to this metric sim- 
ply as bus cycles per memory reference. This metric abstracts 
away details of how the directories are implemented, either 
as centralized or distributed. It also requires no assumptions 
about the relative speeds of local and non-local memories, 
local and non-local buses, or processor and the bus. 

Since the snoopy cache schemes require a bus-based archi- 
tecture, we often talk of a bus in our directory models. How- 
ever, the directory schemes we discuss are general enough to 
work in any network architecture. While the bus cycles metric 
allows us to compare the relative merits of various cache con- 
sistency schemes, it cannot indicate accurately the absolute 
performance of a multiprocessor. However, in lightly loaded 
systems, multiprocessor performance could still be approxi- 
mated to first order from the number of bus cycles used per 
memory reference. 

The bus cycles per reference for a given cache consistency 
scheme are computed as follows. First we measure event fre- 
quencies for various schemes by simulating multiple infinite 
caches, where events are different types of memory references. 
The simulator reads a reference from a trace and takes a set 
of actions depending on the type of the reference, the state 
of the referenced block, and the given cache consistency pro- 
tocol. 

The event frequencies are now weighted by their respective 
costs in bus cycles to give the aggregate number of bus cycles 
used per reference. For example, a cache miss event might 
require 5 bus cycles of communication cost (1 cycle to send 
the address, and 4 cycles to get 4 words of data back). If 
the rate of cache misses is, say, l%, then the bus cycles used 
up by cache misses per reference is 0.05. In like manner, the 
costs due to other events are added to get the aggregate cost 
per reference. Since the choice of the hardware model (i.e., 
cost per event) is independent of the event frequencies, we 
need just one simulation run per protocol to compute the 
event frequencies, and we can then vary costs for different 
hardware models. 

Details of traces used in simulations are given in Sec- 

tion 4.4. The block size used throughout this paper is 4 words 
(16 bytes). In all the schemes we assume that instructions do 
not cause any cache consistency related traffic. In addition, 
we do not include the bus traffic caused by instruction misses 
in our performance estimations. 

4.2 Event Frequencies 

The event types of interest in a particular scheme are those 
that may result in a bus transaction. All the schemes re- 
quire the frequency of read and write misses (read-miss or rm 
and write-miss or wm. Depending on the scheme some other 
events rates are also needed: 

The Dragon events include the fraction of references to 
blocks that are clean or dirty in another cache on a read 
or write miss (rm-ilk-cln, rm-blk-drty, rum-blk-cln, and 
rum-blk-drty). The clean and dirty numbers indicate 
when a block is supplied by another cache as opposed to 
from main memory. In addition, we need the frequency 
of write updates to blocks present in multiple caches on 
a write hit (t&-d&rib). 
The write-through scheme requires the frequency of 
writes (write) because all writes are transmitted to 
main memory. 
In the DiriNB scheme, we need the fractions of read 
and write references that miss in the cache, but are 
present in a dirty or clean state in another cache 
(rm-blk-cln, rm-blk-drty, wm-blk-cln, and turn-blk-drty). 
These events indicate when invalidation requests must 
be sent to another cache and when dirty blocks have to 
be written back to main memory. 
In the Dire B scheme, in addition to the four events for 
the Dir1 NB scheme, we need the proportion of write 
hits to a clean block (wh-blk-cln). This event represents 
queries to the directory to check whether the block re- 
sides in any other cache and has to be invalidated. We 
also measure the distribution of the number of caches 
the block resides in during a possible invalidation situ- 
ation to determine the impact of various invalidations 
methods. The various invalidation methods include full 
broadcast, limited broadcast, and sequential invalida- 
tion messages to each cache. 

4.3 Bus Models 

The bus cycle costs for the various events depend on the 
sophistication of the bus and main memory. The examples 
given in this paper use the bus timing depicted in Table 1. 
From this basic bus model, and some assumptions about the 
sophistication of the bus, we can estimate the cost in bus cy- 
cles for each of the events that cause bus traffic. Because the 
costs can differ depending on the type of bus or interconnec- 
tion network used, we will use two bus types of widely diverse 
complexity to give an idea of how the schemes will perform 
over a range of bus and memory organizations. On the so- 
phisticated end of the spectrum, we use a pipelined bus model 
that has separate data and address paths. At the other end 
we use a non-pipelined bus that has to multiplex the address 
and data on the same bus lines. The data transfer width of 
both buses is assumed to be one word (32 bits). 

For the pipelined bus with separate lines for address and 
data, memory or non-local cache accesses cost 5 cycles (1 
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Table 1: Timing for fundamental bus operations. 
Bus Operatron Bus Cycles 
Send address 1 

Table 2: Summary of bus cycle costs. 

Jl 

wt or wup 1 2 
dir access 1 3 II 

cycle to send the address and 4 cycles to get the data). The 
bus is not held during the access. Write-backs cost 4 cycles: 
the first cycle sends the address and the first data word; the 
remaining 3 words are sent in the next three cycles. When 
the data is transferred to memory during a write-back, the 
requesting cache also receives it. The bus cycles used for data 
transfer are then counted under the write-back category. A 
write-through to memory or a write update to another cache 
is 1 cycle. A directory check uses 1 cycle to send the address, 
and invalidates are also 1 cycle. 

In the non-pipelined bus model, the bus has to be held 
during the memory or non-local cache access. Here a memory 
access costs 7 cycles, 1 cycle to send the address, 2 cycles to 
wait for the memory access, and 4 cycles to get the data. 
An access from another cache is 6 cycles, and takes a cycle 
less than the memory access because the cache access wait 
is only one cycle. Write-backs still cost 4 cycles; the waiting 
for memory is counted under the memory access category, 
and the bus need not be held while the write into memory is 
taking place. As in the pipelined bus, the data is also received 
by the requesting cache on a write-back. A write-through or 
a write update to another cache is 2 cycles, 3 cycle to send 
the address and 1 cycle to send the data word. A directory 
check is 3 cycles, 1 cycle to send the address and 2 cycles to 
access the directory. When possible the directory access is 
overlapped with memory access. Invalidations cost 1 cycle. 
These costs for the pipelined and non-pipelined bus models 
are summarized in Table 2. 

In the non-pipelined bus, once the address and the data 
have been sent to memory or to another cache on a write 
(or write-back) operation we assume that the bus need not 
be held while data is being written into memory. This is 
a simplifying assumption and is usually true if memory is 
interleaved. We also assume that broadcast invalidates, like 
a single invalidate, take 1 cycle. We do not attempt to model 
the impact of broadcast invalidate on the bus cycle time. 

4.4 Multiprocessor Trace Data 

The traces used for simulation are obtained using a multipro- 
cessor extension of the ATUM address tracing scheme [17]. 
The multiprocessor used for tracing was a VAX 8350 with 

Table 3: Summary of trace characteristics. All numbers 
are in thousands. 

n Trace I Refs I Instr I DRd I DWrt I User I Svs 1 
’ POPS 3142 1624 1257 261 2817 3i5 

THOR 3222 1456 1398 368 2727 495 
PER0 3508 1834 1266 409 3242 266 

four processors. An address trace contains interleaved ad- 
dress streams of the four processors. CPU numbers and pro- 
cess identifiers of the active processes are also included in 
the trace so that any address in the trace can be identified 
as coming from a given CPU and given process. A current 
limitation of ATUM traces is that only four-CPU traces can 
be obtained. We are currently developing a multiprocessor 
simulator that builds on top of the VAX T-bit mechanism 
and can provide accurate simulated traces of a much larger 
number of processors. 

The traces show some amount of sharing between proces- 
sors that is induced solely by process migration. The char- 
acteristics of migration-induced sharing is significantly differ- 
ent from sharing present in the application processes [18]. We 
would like to exclude this form of sharing from our study since 
a large multiprocessor would probably try to minimize pro- 
cess migration. Therefore, for this study, we consider sharing 
between processes (as opposed to sharing between proces- 
sors), which means that a block is considered shared only if 
it is accessed by more than one process. Because the time 
sequence of the references in the trace is strictly maintained, 
the temporal ordering of various synchronization activities in 
the trace, such as getting or releasing a synchronization lock, 
is still retained. As a check on this model, we collected all our 
statistics based on both process sharing and processor sharing 
and found that the numbers were not significantly different. 
The similarity is due to the few instances of process migration 
in our traces. 

We currently use three traces for this study. The traces are 
of parallel applications running under the MACH operating 
system [19]. Table 3 d escribes the characteristics of the traces 
used for this study. POPS [20] is a parallel implementation of 
OPS5, which is a rule-based programming language. THOR 
is a parallel implementation of a logic simulator done by Larry 
Soule at Stanford University. PER0 is a psrallel VLSI router 
written by Jonathan Rose at Stanford. All traces include 
operating system activity, which comprises roughly 10% of 
the traces. 

The traces show a larger-than-usual read-tewrite reference 
ratio due to spins on locks in POPS and THOR. The spins 
correspond to the first test in a test-and-test-&-set synchro- 
nization primitive. These appear as reads of a data word. 
Roughly one-third of all the reads correspond to reads due to 
spinning on a lock. We will look at how the number of spins 
on a lock affect the performance of cache consistency schemes 
in Section 5.2. The ratio of reads to writes in PER0 is also 
high, but this reference behavior is a result of the algorithm 
used in the program. 
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