
An Evaluation of Directory Schemes for Cache Coherence

Anant Agarwal,* Richard Simoni, John Hennessy, and Mark Horowitz
Computer Systems Laboratory
Stanford University, CA 94305

Abstract
The problem of cache coherence in shared-memory multipro-
cessors has been addressed using two basic approaches: direc-
tory schemes and snoopy cache schemes. Directory schemes
have been given less attention in the past several years, while
snoopy cache methods have become extremely popular. Di-
rectory schemes for cache coherence are potentially attrac-
tive in large multiprocessor systems that are beyond the scal-
ing limits of the snoopy cache schemes. Slight modifications
to directory schemes can make them competitive in perfor-
mance with snoopy cache schemes for small multiprocessors.
Trace driven simulation, using data collected from several real
multiprocessor applications, is used to compare the perfor-
mance of standard directory schemes, modifications to these
schemes, and snoopy cache protocols.

1 Introduction
In the past several years, shared-memory multiprocessors
have gained wide-spread attention due to the simplicity of
the shared-memory parallel programming model. However,
allowing the processors to share memory complicates the de-
sign of the memory hierarchy. The most prominent example
of this is the cache coherency or cache consistency problem,
which is introduced if the system includes caches for each pre
cessor. A system of caches is said to be coherent if all copies of
a main memory location in multiple caches remain consistent
when the contents of that memory location are modified [l].
A cache coherency protocol is the mechanism by which the co-
herency of the caches is maintained. Maintaining coherency
entails taking special action when one processor writes to a
block of data that exists in other caches. The data in the
other caches, which is now stale, must be either invalidated
or updated with the new value, depending on the protocol.
Similarly, if a read miss occurs on a shared data item and
memory has not been updated with the most recent value
(as would happen in a copy-back cache), that most recent
value must be found and supplied to the cache that missed.
These two actions are the essence of all cache coherency pro-
tocols. The protocols differ primarily in how they determine
whether the block is shared, how they find out where block
copies reside, and how they invalidate or update copies.

Most of the consistency schemes that have been or are be-
ing implemented in multiprocessors are called snoopy cache
protocols [2,3,4,5,6,7] because each cache in the system
must watch all coherency transactions to determine when
consistency-related actions should take place for shared data.
Snoopy cache schemes store the state of each block of cached

*Anant Agarwalis currently with the Laboratory for Computer
Science (NE43-418), MAT, Cambridge, MA 02139.

data in the cache directories - the information about the state
of the cached data is distributed.

Another class of coherency protocols is directory-based
[8,9,10,11]. Directory-based protocols keep a separate direc-
tory associated with main memory that stores the state of
each block of main memory. Each entry in this centralized
directory may contain several fields depending on the proto-
col, for example, a dirty bit, a bit indicating whether or not
the block is cached, pointers to the caches that contain the
block, etc.

How do snoopy cache protocols work? A typical scheme
enforces consistency by allowing multiple readers but only
one writer. The state associated with a block’s cached copy
denotes whether the block is, for example, (i) invalid, (ii),
valid (possibly shared), or (iii) dirty (exclusive copy). When
a cache miss occurs, the address is broadcast on the shared
bus. If another cache has the block in state dirty, the state is
changed to valid and the block is supplied to the requesting
cache. In addition, for write misses all copies of the block
are invalidated. Similarly, on a write hit to a clean block, the
address is broadcast and each cache must invalidate its copy.
In general, all cache transactions that may require a data
transfer or state change in other caches must be broadcast
over the bus.

Snoopy cache schemes are popular because small-scale mul-
tiprocessors can live within the bandwidth constraints im-
posed by a single, shared bus to memory. This shared bus
makes the implementation of the broadcast actions straight-
forward. However, snoopy cache schemes will not scale be-
yond the range of the number of processors that can be ac-
commodated on a bus (probably no more than 20). Attempts
to scale them by replacing the bus with a higher bandwidth
communication network will not be successful since the con-
sistency protocol relies on low-latency broadcasts to maintain
coherency. For this reason, shared-memory multiprocessors
with large numbers of processors, such as the RP3 [12], do
not provide cache coherency support in hardware.

These snoopy cache schemes also interfere with the
processor-cache connection. Because the caches of all pro-
cessors are examined on each coherency transaction, inter-
ference between the processor and its cache is unavoidable.
This interference can be reduced by duplicating the tags and
snooping on the duplicate tags. However, the processor must
write both sets of tags and thus arbitration is required on the
duplicate tags. This impacts the cache write time which may
slow down the overall cycle time, especially in a high perfor-
mance machine. Attempts to reduce the bus traffic generated
by cache coherency requests in a snoopy cache scheme results
in fairly complex protocols. These may impact either the
cache access time or the coherency transaction time.

In this paper we propose that directory-based schemes are
better suited to building large-scale, cache-coherent multi-

CH2545-2/88/0000/0280$01.00 0 1988 IEEE 280
1 APPLE 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

processors, where a single bus is unsuitable for a communi-
cation mechanism. This paper is a first step in evaluating
directory schemes using traces from real multiprocess appli-
cations. Although we do not have sufficient data to demon-
strate quantitatively that the directory schemes are effective
in a large-scale multiprocessor, we do discuss how these di-
rectory schemes can be scaled and we demonstrate that their
performance in a small-scale multiprocessor is acceptable.

We use trace-driven simulation, with traces obtained from
real multiprocessor applications, to evaluate a basic directory-
based coherency protocol that uses bus broadcasts and ver-
ify that its performance approaches that of snoopy cache
schemes. We then obviate broadcasts by including a valid bit
per cache in each directory entry, allowing sequential invali-
dation of multiple cached copies. Performance is not signifi-
cantly degraded by this modification, and in most cases (over
85% of writes to previously-clean blocks) no more than one
sequential invalidation request is necessary. Unfortunately,
the need for a valid bit per cache restricts the ability to add
on to an existing multiprocessor without modifying parts of
the existing system. This motivates a scheme that can per-
form up to some small number of sequential invalidates to
handle the most frequent case, and that resorts to some form
of “limited broadcast” otherwise.

The paper first reviews previous directory schemes and dis-
cusses how they overcome the limitations created by snoopy
cache schemes. It also proposes a general classification of
these techniques, and identifies a few that seem most inter-
esting for performance and implementation reasons. Section 3
outlines the schemes that we evaluate. We describe our eval-
uation method and the characteristics of our multiprocessor
address traces in Section 4. Section 5 evaluates basic di-
rectory and snoopy cache schemes and discusses their per-
formance. Section 6 then extends the discussion to include
more scalable directory protocols, and Section 7 concludes
the paper.

2 Directory Schemes for Cache
Consistency

The major problems that snoopy cache schemes possess are
limited scalability and interference with the processor-cache
write path. How do directory schemes address these prob-
lems? The major advantage directory schemes have over
snooping protocols is that the location of the caches that
have a copy of a shared data item are known. This means
that a broadcast is not required to find all the shared copies.
Instead, individual messages can be sent to the caches with
copies when an invalidate occurs. Since these messages are
directed (i.e., not broadcast), they can be easily sent over any
arbitrary interconnection network, as opposed to just a bus.
The absence of broadcasts eliminates the major limitation on
scaling cache coherent multiprocessors to a large number of
processors.

Because we no longer need to examine every cache for a
copy of the data, the duplicate tags can be eliminated. In-
stead, we store pointers in main memory to the caches where
the data is known to reside and invalidate their copies. The
protocols are also simpler than the distributed snoopy algo-
rithms because of the centralization of the information about
each datum.

Several directory-based consistency schemes have been pro-

posed in the literature. Tang’s method [8] allows clean blocks
to exist in many caches, but disallows dirty blocks from re-
siding in more than one cache (most snoopy cache coherency
schemes use the same policy). In this scheme, each cache
maintains a dirty bit for each of its blocks, and the central
directory kept at memory contains a copy of all the tags and
dirty bits in each cache. On a read miss, the central directory
is checked to see if the block is dirty in another cache. If so,
consistency is maintained by copying the dirty block back to
memory before supplying the data; if the directory indicates
the data is not dirty in another cache, then it supplies the
data from memory. The directory is then updated to indi-
cate that the requesting cache now has a clean copy of the
data. The central directory is also checked on a write miss.
In this case, if the block is dirty in another cache then the
block is first flushed from that cache back to memory before
supplying the data; if the block is clean in other caches then it
is invalidated in those caches (i.e., removed from the caches).
The data is then supplied to the requesting cache and the
directory modified to show that the cache has a dirty copy of
the block. On a write hit, the cache’s dirty bit is checked. If
the block is already dirty, there is no need to check the central
directory, so the write can proceed immediately. If the block
is clean, then the cache notifies the central directory, which
must invalidate the block in all of the other caches where it
resides.

Censier and Feautrier [9] proposed a similar consistency
mechanism that performs the same actions as the Tang
scheme but organizes the central directory differently. Tang
duplicates each of the individual cache directories as his main
directory. To find out which caches contain a block, Tang’s
scheme must search each of these duplicate directories. In
the Censier and Feautrier central directory, a dirty bit and
a number of valid (or “present”) bits equal to the number
of caches are associated with each block in main memory.
This organization provides the same information as the du-
plicate cache directory method but allows this information to
be accessed directly using the address supplied to the central
directory by the requesting cache. Each valid bit is set if the
corresponding cache contains a valid copy of the block. Since
a dirty block can only exist in at most one cache, no more
than one of a block’s valid bits may be set if the dirty bit is
set.

Yen and Fu suggest a small refinement [ll] to the Censier
and Feautrier consistency technique. The central directory
is unchanged, but in addition to the valid and dirty bits,
a flag called the single Lit is associated with each block in
the caches. A cache block’s single bit is set if and only if
that cache is the only one in the system that contains the
block. This saves having to complete a directory access before
writing to a clean block that is not cached elsewhere. The
major drawback of this scheme is that extra bus bandwidth
is consumed to keep the single bits updated in all the caches.
Thus, the scheme saves central directory accesses, but does
not reduce the number of bus accesses versus the Censier and
Feautrier protocol.

Archibald and Baer present a directory-based consistency
mechanism [lo] with a different organization for the central
directory that reduces the amount of storage space in the
directory, and also makes it easier to add more caches to the
system. The directory saves only two bits with each block in
main memory. These bits encode one of four possible states:
block not cached, block clean in exactly one cache, block clean
in an unknown number of cachea, and block dirty in exactly
one cache. The directory therefore contains no information

281

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

to indicate which caches contain a block; the scheme relies on
broadcasts to perform invalidates and write-back requests.
The block clean in exactly one cache state obviates the need
for a broadcast when writing to a clean block that is not
contained in any other caches.

Two clear differences are present among these directory
schemes: the number of processor indices contained in the
directories and the presence of a broadcast bit. We can thus
classify the schemes as Diri X, where i is the number of indices
kept in the directory and X is either B or NB for Broadcast
or No Broadcast. In a no-broadcast scheme the number of
processors that have copies of a datum must always be less
than or equal to i, the number of indices kept in the directory.
If the scheme allows broadcast then the numbers of proces-
sors can be larger and when it is (indicated by a bit in the
directory) a broadcast is used to invalidate the cached data.
The one case that does not make sense is Dire NB, since there
is no way to obtain exclusive access.

In this terminology, the Tang scheme is classified as
Dir,, NB, the Censier and Feautrier scheme is Dir, NB also,
and the Baer and Archibald scheme is DircB. Our evalu-
ation concentrates on a couple of key points in the design
space: DirrNB and DirsB. We will also present results for
Dir, NB.

There are two potential difficulties that prevent scalability
of the directory schemes. First, if the scheme always or fie-
quently requires broadcast, then it will do no better than the
snoopy schemes. Variations in the directory schemes (e.g.,
increasing the value of i in a DiriB scheme) decrease the
frequency of broadcast. We must also examine the dynamic
numbers of caches that contain a shared datum to evaluate
the actual frequency of occurrence. Second, the access to the
directory is a potential bottleneck. However, we will show
that the directory is not much more of a bottleneck than
main memory, and the bandwidth to both can be increased by
having a distributed memory hierarchy rather than central-
ized. That is, memory is distributed together with individual
processors. In addition to certain advantages in providing
scalable bandwidth to the memories from the local processor,
the organization distributes the directory, associating it with
the individual memory modules.

3 Schemes Evaluated

We will evaluate two directory schemes (called Dir1 NB and
DirsB), and two snoopy cache schemes (Write-Through-
With-Invalidate and Dragon) for comparison purposes. These
particular snoopy cache techniques were selected because they
represent two extremes of performance and complexity. The
two directory schemes are also extremes in the number of
simultaneous cached copies allowed. The following is a de-
scription of these four protocols.

The most restrictive of the four schemes is Dir1 NB in
that a given block is allowed to reside in no more than one
cache at a time; therefore, there can be no data inconsistency
across caches. The directory entry for each block consists of
a pointer to the cache that contains the block. On a cache
miss, the directory is accessed to find out which cache con-
tains the block, that cache is notified to invalidate the block
and write it back to memory if dirty, and the data is then
supplied to the requesting cache. Dirr NB is included in the
evaluation because it is perhaps the simplest directory-based
consistency scheme and is easily scaled to support a large

number of processors.
The DiroB is the Archibald and Baer scheme [lo] out-

lined in the previous section. Like many consistency proto-
cols, a clean block may reside in many caches, while a dirty
block may exist in exactly one cache. Invalidations are accom-
plished with broadcasts; a similar scheme that uses sequen-
tial invalidates in place of broadcasts (Dir,,NB) will later be
shown to have nearly the same performance. For the ini-
tial evaluation, broadcasts are used in both the directory and
snooping schemes because it results in a simpler cost model
and allows a fair comparison of the two.

Write-Through-With-Invalidate (WTI) is a simple snoopy
cache protocol that relies on a write-through (as opposed to
copy-back) cache policy and is used in several commercial
multiprocessors. All writes to cache blocks are transmitted
to main memory. Other caches snooping on the bus check to
see if they have the block that is being written; if so, they
invalidate that block in their own cache. When a different
processor accesses the block, a cache miss will occur and the
current data wilI be read from memory. Like DiroB, mul-
tiple cached copies of clean blocks can exist simultaneously.
Because of the high level of bus traffic caused by the write-
through strategy, WTI is generally considered to be one of the
lowest-performance snooping cache consistency protocols.

While the three previous schemes are all invalidation pro-
tocols, Dragon is an update protocol, i.e., it maintains con-
sistency by updating stale cached data with the new value
rather than by invalidating the stale data [13]. The cache
keeps state with each block to indicate whether or not each
block is shared; all writes to shared blocks must be broadcast
on the bus so that the other copies can be updated. Dragon
uses a special “shared” line to determine whether a block is
currently being shared or not. Each cache snoops on the bus
and pulls the shared line whenever it sees an address for which
it has a cached copy of the data. Dragon is often considered
to have the best performance among snoopy cache schemes.

4 Evaluation Methodology

Simulation using multiprocessor address traces is our method
of evaluation. Most previous studies that evaluated direc-
tory schemes used analytical models [14,9] and those that
used simulation had to make rough assumptions about the
characteristics of shared memory references [lo]. Because the
performance of cache coherence schemes is very sensitive to
the shared-memory reference patterns, both of these previ-
ous methods have the drawback that the results are highly
dependent on the assumptions made. Trace-driven simula-
tion has the drawback that the same trace is used to evaluate
all consistency protocols, while in reality the reference pat-
tern would be different for each of the schemes due to their
timing differences. But the traces represent at least one pos-
sible run of a real program, and can accurately distinguish
the performance of various schemes for that run.

This paper deals with the inherent cost of sharing in multi-
processors and the memory traffic required to maintain cache
consistency. We therefore exclude the misses caused by the
first reference to a block in the trace because these occur in a
uniprocessor infinite cache as well. The additional overhead
due to multiprocessing now consists of (i) the extra misses
that occur due to fetching the block into multiple caches and
(ii) the cache consistency-related operations. Our results rep
resent exactly this overhead.

282

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

We wish to isolate and measure only the traffic incurred
in maintaining a coherent shared memory system in a multi-
processor. To this end our simulations use infinite caches to
eliminate the traffic caused by interference in finite caches.
The performance of an infinite cache is also a good approxi-
mation to that of a very large cache, where the miss rate is
essentially the cost of first-time fetches. Moreover, the per-
formance of a system with smaller caches can be estimated
to first order by adding the costs due to the finite cache size.
Typical cache miss rates are reported in [15,16].

4.1 Performance Measures

To determine the absolute performance of a multiprocessor
system using total processor utilizations, a simulation must
be carried out for every hardware model desired. A problem
with this approach is that the sharing characteristics may
change because the simulation model is different from the
hardware used for gathering data.

We would like a metric for performance that is not tied to
any particular processor or interconnection network architec-
ture. We use the communication cost per memory reference
as our basic metric. This cost is simply the average number of
cycles that the bus (or network) is busy during a data transfer
from a cache to another cache, cache to directory, and from
cache to or from main memory. We refer to this metric sim-
ply as bus cycles per memory reference. This metric abstracts
away details of how the directories are implemented, either
as centralized or distributed. It also requires no assumptions
about the relative speeds of local and non-local memories,
local and non-local buses, or processor and the bus.

Since the snoopy cache schemes require a bus-based archi-
tecture, we often talk of a bus in our directory models. How-
ever, the directory schemes we discuss are general enough to
work in any network architecture. While the bus cycles metric
allows us to compare the relative merits of various cache con-
sistency schemes, it cannot indicate accurately the absolute
performance of a multiprocessor. However, in lightly loaded
systems, multiprocessor performance could still be approxi-
mated to first order from the number of bus cycles used per
memory reference.

The bus cycles per reference for a given cache consistency
scheme are computed as follows. First we measure event fre-
quencies for various schemes by simulating multiple infinite
caches, where events are different types of memory references.
The simulator reads a reference from a trace and takes a set
of actions depending on the type of the reference, the state
of the referenced block, and the given cache consistency pro-
tocol.

The event frequencies are now weighted by their respective
costs in bus cycles to give the aggregate number of bus cycles
used per reference. For example, a cache miss event might
require 5 bus cycles of communication cost (1 cycle to send
the address, and 4 cycles to get 4 words of data back). If
the rate of cache misses is, say, l%, then the bus cycles used
up by cache misses per reference is 0.05. In like manner, the
costs due to other events are added to get the aggregate cost
per reference. Since the choice of the hardware model (i.e.,
cost per event) is independent of the event frequencies, we
need just one simulation run per protocol to compute the
event frequencies, and we can then vary costs for different
hardware models.

Details of traces used in simulations are given in Sec-

tion 4.4. The block size used throughout this paper is 4 words
(16 bytes). In all the schemes we assume that instructions do
not cause any cache consistency related traffic. In addition,
we do not include the bus traffic caused by instruction misses
in our performance estimations.

4.2 Event Frequencies

The event types of interest in a particular scheme are those
that may result in a bus transaction. All the schemes re-
quire the frequency of read and write misses (read-miss or rm
and write-miss or wm. Depending on the scheme some other
events rates are also needed:

The Dragon events include the fraction of references to
blocks that are clean or dirty in another cache on a read
or write miss (rm-ilk-cln, rm-blk-drty, rum-blk-cln, and
rum-blk-drty). The clean and dirty numbers indicate
when a block is supplied by another cache as opposed to
from main memory. In addition, we need the frequency
of write updates to blocks present in multiple caches on
a write hit (t&-d&rib).
The write-through scheme requires the frequency of
writes (write) because all writes are transmitted to
main memory.
In the DiriNB scheme, we need the fractions of read
and write references that miss in the cache, but are
present in a dirty or clean state in another cache
(rm-blk-cln, rm-blk-drty, wm-blk-cln, and turn-blk-drty).
These events indicate when invalidation requests must
be sent to another cache and when dirty blocks have to
be written back to main memory.
In the Dire B scheme, in addition to the four events for
the Dir1 NB scheme, we need the proportion of write
hits to a clean block (wh-blk-cln). This event represents
queries to the directory to check whether the block re-
sides in any other cache and has to be invalidated. We
also measure the distribution of the number of caches
the block resides in during a possible invalidation situ-
ation to determine the impact of various invalidations
methods. The various invalidation methods include full
broadcast, limited broadcast, and sequential invalida-
tion messages to each cache.

4.3 Bus Models

The bus cycle costs for the various events depend on the
sophistication of the bus and main memory. The examples
given in this paper use the bus timing depicted in Table 1.
From this basic bus model, and some assumptions about the
sophistication of the bus, we can estimate the cost in bus cy-
cles for each of the events that cause bus traffic. Because the
costs can differ depending on the type of bus or interconnec-
tion network used, we will use two bus types of widely diverse
complexity to give an idea of how the schemes will perform
over a range of bus and memory organizations. On the so-
phisticated end of the spectrum, we use a pipelined bus model
that has separate data and address paths. At the other end
we use a non-pipelined bus that has to multiplex the address
and data on the same bus lines. The data transfer width of
both buses is assumed to be one word (32 bits).

For the pipelined bus with separate lines for address and
data, memory or non-local cache accesses cost 5 cycles (1

283

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 1: Timing for fundamental bus operations.
Bus Operatron Bus Cycles
Send address 1

Table 2: Summary of bus cycle costs.

Jl

wt or wup 1 2
dir access 1 3 II

cycle to send the address and 4 cycles to get the data). The
bus is not held during the access. Write-backs cost 4 cycles:
the first cycle sends the address and the first data word; the
remaining 3 words are sent in the next three cycles. When
the data is transferred to memory during a write-back, the
requesting cache also receives it. The bus cycles used for data
transfer are then counted under the write-back category. A
write-through to memory or a write update to another cache
is 1 cycle. A directory check uses 1 cycle to send the address,
and invalidates are also 1 cycle.

In the non-pipelined bus model, the bus has to be held
during the memory or non-local cache access. Here a memory
access costs 7 cycles, 1 cycle to send the address, 2 cycles to
wait for the memory access, and 4 cycles to get the data.
An access from another cache is 6 cycles, and takes a cycle
less than the memory access because the cache access wait
is only one cycle. Write-backs still cost 4 cycles; the waiting
for memory is counted under the memory access category,
and the bus need not be held while the write into memory is
taking place. As in the pipelined bus, the data is also received
by the requesting cache on a write-back. A write-through or
a write update to another cache is 2 cycles, 3 cycle to send
the address and 1 cycle to send the data word. A directory
check is 3 cycles, 1 cycle to send the address and 2 cycles to
access the directory. When possible the directory access is
overlapped with memory access. Invalidations cost 1 cycle.
These costs for the pipelined and non-pipelined bus models
are summarized in Table 2.

In the non-pipelined bus, once the address and the data
have been sent to memory or to another cache on a write
(or write-back) operation we assume that the bus need not
be held while data is being written into memory. This is
a simplifying assumption and is usually true if memory is
interleaved. We also assume that broadcast invalidates, like
a single invalidate, take 1 cycle. We do not attempt to model
the impact of broadcast invalidate on the bus cycle time.

4.4 Multiprocessor Trace Data

The traces used for simulation are obtained using a multipro-
cessor extension of the ATUM address tracing scheme [17].
The multiprocessor used for tracing was a VAX 8350 with

Table 3: Summary of trace characteristics. All numbers
are in thousands.

n Trace I Refs I Instr I DRd I DWrt I User I Svs 1
’ POPS 3142 1624 1257 261 2817 3i5

THOR 3222 1456 1398 368 2727 495
PER0 3508 1834 1266 409 3242 266

four processors. An address trace contains interleaved ad-
dress streams of the four processors. CPU numbers and pro-
cess identifiers of the active processes are also included in
the trace so that any address in the trace can be identified
as coming from a given CPU and given process. A current
limitation of ATUM traces is that only four-CPU traces can
be obtained. We are currently developing a multiprocessor
simulator that builds on top of the VAX T-bit mechanism
and can provide accurate simulated traces of a much larger
number of processors.

The traces show some amount of sharing between proces-
sors that is induced solely by process migration. The char-
acteristics of migration-induced sharing is significantly differ-
ent from sharing present in the application processes [18]. We
would like to exclude this form of sharing from our study since
a large multiprocessor would probably try to minimize pro-
cess migration. Therefore, for this study, we consider sharing
between processes (as opposed to sharing between proces-
sors), which means that a block is considered shared only if
it is accessed by more than one process. Because the time
sequence of the references in the trace is strictly maintained,
the temporal ordering of various synchronization activities in
the trace, such as getting or releasing a synchronization lock,
is still retained. As a check on this model, we collected all our
statistics based on both process sharing and processor sharing
and found that the numbers were not significantly different.
The similarity is due to the few instances of process migration
in our traces.

We currently use three traces for this study. The traces are
of parallel applications running under the MACH operating
system [19]. Table 3 d escribes the characteristics of the traces
used for this study. POPS [20] is a parallel implementation of
OPS5, which is a rule-based programming language. THOR
is a parallel implementation of a logic simulator done by Larry
Soule at Stanford University. PER0 is a psrallel VLSI router
written by Jonathan Rose at Stanford. All traces include
operating system activity, which comprises roughly 10% of
the traces.

The traces show a larger-than-usual read-tewrite reference
ratio due to spins on locks in POPS and THOR. The spins
correspond to the first test in a test-and-test-&-set synchro-
nization primitive. These appear as reads of a data word.
Roughly one-third of all the reads correspond to reads due to
spinning on a lock. We will look at how the number of spins
on a lock affect the performance of cache consistency schemes
in Section 5.2. The ratio of reads to writes in PER0 is also
high, but this reference behavior is a result of the algorithm
used in the program.

284

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

