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Chapter 1

, Introduction

Interconnection networks are currently being used for many different applications, ranging from

internal buses in very large-scale integration (VLSI) circuits to wide area computer networks. Among

others, these applications include backplane buses and system area networks, telephone switches,
internal networks for asynchronous transfer mode (ATM) switches, processor/memory interconnects
for vector supercomputers, interconnection networks for multicomputers and distributed shared-

memory multiprocessors, clusters of workstations, local area networks, metropolitan area networks,
wide area computer networks, and networks for industrial applications. Additionally, the number of

applications requiring interconnection networks is continuously growing. For example, an integral
control system for a car requires a network connecting several microprocessors and devices.

The characteristics and cost of these networks considerably depend on the application. There are

no general solutions. For some applications, interconnection networks have been studied in depth for
decades. This is the case for telephone networks, computer networks, and backplane buses. These
networks are covered in many books. However, there are some other applications that have not been

fully covered in the existing literature. This is the case for the interconnection networks used in
multicomputers and distributed shared—memory multiprocessors.

The lack of standards and the need for very high performance and reliability pushed the develop-
ment of interconnection networks for multicomputers. This technology was transferred to distributed

shared-memory multiprocessors, improving the scalability of those machines. However, distributed
shared-memory multiprocessors require an even higher network performance than multicomputers,
pushing the development of interconnection networks even more. More recently, this network tech-
nology began to be transferred to local area networks (LANs). Also, it has been proposed as a
replacement for backplane buses, creating the concept of system area network. Hence, the advances
in interconnection networks for multicomputers are the basis for the development of interconnection
networks for other architectures and environments. Therefore, there is a need for structuring the

concepts and solutions for this kind of interconnection networks. Obviously, when this technology
is transferred to another environment, new issues arise that have to be addressed.

Moreover, several of these networks are evolving very quickly, and the solutions proposed for
different kinds of networks are overlapping. Thus, there is a need for formally stating the basic

concepts, the alternative design choices, and the design trade—offs for most of those networks. In this
book, we take that challenge and present in a structured way the basic underlying concepts of most
interconnection networks, as well as the most interesting solutions currently implemented or proposed
in the literature. As indicated above, the network technology developed for multicomputers has
been transferred to other environments. Therefore, in this book we will mainly describe techniques
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developed for multicomputer networks. Most of these techniques can also be applied to distributed
shared-memory multiprocessors, and to local and system area networks. However, we will also
describe techniques specifically developed for these environments.

1.1 Parallel Computing and Networks

The demand for even more computing power has never stopped. Although the performance of
processors has doubled in approximately every three-year span from 1980 to 1996, the complexity

. of the software as well as the scale and solution quality of applications have continuously driven
the development of even faster processors. A number of important problems have been identified
in the areas of defense, aerospace, automotive applications, and science, whose solution requires
tremendous amount of computational power. In order to solve these grand challenge problems, the
goal has been to obtain computer systems capable of computing at the teraflops (1012 floating-point
operations per second) level. Even the smallest of these problems requires gigaflops (109 floating-
point operations per second) of performance for hours at a time. The largest problems require
teraflops performance for more than a thousand hours at a time.

Parallel computers with multiple processors are opening the door to teraflops computing per-
formance to meet the increasing demand of computational power. The demand includes more
computing power, higher network and input /output (I/O) bandwidths, and more memory and stor-
age capacity. Even for applications requiring a lower computing power, parallel computers can be
a cost-effective solution. Processors are becoming very complex. As a consequence, processor de-
sign cost is growing so fast that only a few companies all over the world can aiford to design a
new processor. Moreover, design cost should be amortized by selling a very high number of units.
Currently, personal computers and workstations dominate the computing market. Therefore, de-
signing custom processors that boost the performance one order of magnitude is not cost-effective.
Similarly, designing and manufacturing high-speed memories and disks is not cost-effective. The
alternative choice consists of designing parallel computers from commodity components (processors,
memories, disks, interconnects, ctc.). In these parallel computers, several processors cooperate to
solve a large problem. Memory bandwidth can be scaled with processor computing power by phys-
ically distributing memory components among processors. Also, redundant arrays of inexpensive
disks (RAID) allow the implementation of high-capacity reliable parallel file systems meeting the
performance requirements of parallel computers.

However, a parallel computer requires some kind of communication subsystems to interconnect
processors, memories, disks and other peripherals. The specific requirements of these communication
subsystems depend on the architecture of the parallel computer. The simplest solution consists of
connecting processors to memories and disks as if there were a single processor, using system buses
and 1/O buses. Then, processors can be interconnected using the interfaces to local area networks.
Unfortunately, commodity communication subsystems have been designed to meet a different set
of requirements, i.e., those arising in computer networks. Although networks of workstations have
been proposed as an inexpensive approach to build parallel computers, the communication subsystem
becomes the bottleneck in most applications.

Therefore, designing high-performance interconnection networks becomes a critical issue to ex-
ploit the performance of parallel computers. Moreover, as the interconnection network is the only
subsystem that cannot be efficiently implemented by using commodity components, its design be-
comes very critical. This issue motivated the writing of this book. Up to now, most manufacturers
designed custom interconnection networks (nCUBE-2, nCUBE-3, Intel Paragon, Cray T3D, Cray
T3E, Thinking Machines Corp. CM-5, NEG Cenju-3, IBM SP2). More recently, several high-
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Figure 1.1. Schematic representation of parallel computers: (a) A multicomputer. (b) A UMA
shared-memory multiprocessor. (M = memory; P 2 processor.)

performance switches have been developed (Autonet, Myrinet, ServerNet) and are being marketed.
These switches are targeted to workstations and personal computers, oifering the customer the pos-

sibility of building an inexpensive parallel computer by connecting cost-effective computers through
high-performance switches. The main issues arising in the design of networks for both approaches
are covered in this book.

1.2 Parallel Computer Architectures

In this section, we briefly introduce the most popular parallel computer architectures. This descrip-
tion will focus on the role of the interconnection network. A more detailed description is beyond the

scope of this book.
The idea of using commodity components for the design of parallel computers led to the de-

velopment of distributed-m.emory multiprocessors, or multicomputers in early 1980s. These parallel
computers consist of a set of processors, each one connected to its own local memory. Processors
communicate between them by passing messages through an interconnection network. Figure 1.1a
shows a simple scheme for this architecture. The first commercial multicomputers utilized commodity
components, including Ethernet controllers to implement communication between processors. Un-
fortunately, commodity communication subsystems were too slow, and the interconnection network
became the bottleneck of those parallel computers. Several research eiforts led to the development of
interconnection networks that are several orders of magnitude faster than Ethernet networks. Most

of the performance gain is due to architectural rather than technological improvements.
Programming multicomputers is not an easy task. The programmer has to take care of dis-

tributing code and data among the processors in an efficient way, invoking message—passing calls
whenever some data are needed by other processors. On the other hand, shared-memory multi-
processors provide a single memory space to all the processors, simplifying the task of exchanging
data among processors. Access to shared memory has been traditionally implemented by using an
interconnection network between processors and memory (Figure 1.1b). This architecture is referred
to as uniform memory access (UMA) architecture. It is not scalable because memory access time
includes the latency of the interconnection network, and this latency increases with system size.

More recently, shared-memory multiprocessors followed some trends previously established for
multicomputers. In particular, memory has been physically distributed among processors, therefore
reducing the memory access time for local accesses and increasing scalability. These parallel comput-
ers are referred to as distributed sha,red—memory multiprocessors (DSM). Accesses to remote memory
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are performed through an interconnection network, very much like in multicomputers. The main
difference between DSMS and multicomputers is that messages are initiated by memory accesses

rather than by calling a system function. In order to reduce memory latency, each processor has
several levels of cache memory, thus matching the speed of processors and memories. This architec-

ture provides nonuniform memory access (NUMA) time. Indeed, most of the nonuniformity is due
to the different access time between caches and main memories, rather than the different access time

between local and remote memories. The main problem arising in DSMS is cache coherence. Several
hardware and software cache coherence protocols have been proposed. These protocols produce
additional traffic through the interconnection network.

The use of custom interconnects makes multicomputers and DSMS quite expensive. So, networks

of workstations (NOW) have been proposed as an inexpensive approach to build parallel computers.
NOWs take advantage of recent developments in LANS. In particular, the use of ATM switches
has been proposed to implement NOWS. However, ATM switches are still expensive, which has

motivated the development of high-performance switches, specifically designed to provide a cost-
effective interconnect for workstations and personal computers.

Although there are many similarities between interconnection networks for multicomputers and
DSMS, it is important to keep in mind that performance requirements may be very different. Mes-

sages are usually very short when DSMS are used. Additionally, network latency is important
because memory access time depends on that latency. However, messages are typically longer and
less frequent when using multicomputers. Usually the programmer is able to adjust the granularity

of message communication in a multicomputer. On the other hand, interconnection networks for
multicomputers and NOWs are mainly used for message passing. However, the geographical dis-
tribution of workstations usually imposes constraints on the way processors are connected. Also,

individual processors may be connected to or disconnected from the network at any time, thus
imposing additional design constraints.

1.3 Network Design Considerations

Interconnection networks play a major role in the performance of modern parallel computers. There
are many factors that may affect the choice of an appropriate interconnection network for the
underlying parallel computing platform. These factors include:

1. Performance requirements. Processes executing in different processors synchronize and com-
municate through the interconnection network. These operations are usually performed by
explicit message passing or by accessing shared variables. l\/Iessage latency is the time elapsed
between the time a message is generated at its source node and the time the message is deliv-
ered at its destination node. Message latency directly affects processor idle time and memory
access time to remote memory locations. Also, the network may saturate — it may be unable

to deliver the flow of messages injected by the nodes, limiting the effective computing power of
a parallel computer. The maximum amount of information delivered by the network per time
unit defines the throughput of that network.

. Scalability. A scalable architecture implies that as more processors are added, their memory

bandwidth, 1/O bandwidth, and network bandwidth should increase proportionally. Otherwise
the components whose bandwidth does not scale may become a bottleneck for the rest of the
system, decreasing the overall efficiency accordingly.

. Incremental expandability. Customers are unlikely to purchase a parallel computer with a full
set of processors and memories. As the budget permits, more processors and memories may be
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added until a system’s maximum configuration is reached. In some interconnection networks,
the number of processors must be a power of 2, which makes them difficult to expand. In

other cases, expandability is provided at the cost of wasting resources. For example, a network

designed for a maximum size of 1,024 nodes may contain many unused communication links
when the network is implemented with a smaller size. Interconnection networks should provide

incremental expandability, allowing the addition of a small number of nodes while minimizing
resource wasting.

. Partitionability. Parallel computers are usually shared by several users at a time. In this case,
it is desirable that the network traffic produced by each user does not affect the performance

of other applications. This can be ensured if the network can be partitioned into smaller
functional subsystems. Partitionability may also be required for security reasons.

. Simplicity. Simple designs often lead to higher clock frequencies and may achieve higher
performance. Additionally, customers appreciate networks that are easy to understand because
it is easier to exploit their performance.

. Distance span. This factor may lead to very different implementations. In multicomputers and
DSMS, the network is assembled inside a few cabinets. The maximum distance between nodes
is small. As a consequence, signals are usually transmitted using copper wires. These wires
can be arranged regularly, reducing the computer size and wire length. In NOWS, links have
very different lengths and some links may be very long, producing problems such as coupling,
electromagnetic noise, and heavy link cables. The use of optical links solves these problems,
equalizing the bandwidth of short and long links up to a much greater distance than when
copper wire is used. Also, geographical constraints may impose the use of irregular connection
patterns between nodes, making distributed control more diflicult to implement.

. Physical constraints. An interconnection network connects processors, memories, and/or I/O
devices. It is desirable for a network to accommodate a large number of components while

maintaining a low communication latency. As the number of components increases, the number
of wires needed to interconnect them also increases. Packaging these components together

usually requires meeting certain physical constraints, such as operating temperature control,
wiring length limitation, and space limitation. Two major implementation problems in large
networks are the arrangement of wires in a limited area, and the number of pins per chip (or
board) dedicated to communication channels. In other words, the complexity of the connection
is limited by the maximum wire density possible, and by the maximum pin count. The speed
at which a machine can run is limited by the wire lengths, and the majority of the power

consumed by the system is used to drive the wires. This is an important and challenging issue
to be considered. Diflerent engineering technologies for packaging, wiring, and maintenance
should be considered.

. Reliability and repaimbility. An interconnection network should be able to deliver information
reliably. Interconnection networks can be designed for continuous operation in the presence of
a limited number of faults. These networks are able to send messages through alternative paths

when some faults are detected. In addition to reliability, interconnection networks should have

a modular design, allowing hot upgrades and repairs. Nodes can also fail or be removed from
the network. In particular, a node can be powered off in a network of workstations. Thus,
NOWs usually require some reconfiguration algorithm for the automatic reconfiguration of the
network when a node is powered on or off.
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9. Expected workloads. Users of a general-purpose machine may have very different requirements.
If the kind of applications that will be executed in the parallel computer are known in advance,
it may be possible to extract some information on usual communication patterns, message
sizes, network load, etc. That information can be used for the optimization of some design
parameters. VVhen it is not possible to get information on expected workloads, network design
should be robust, i.e., design parameters should be selected in such a way that performance is
good over a Wide range of traffic conditions.

. Cost constraints. Finally, it is obvious that the “best” network may be too expensive. Design
decisions very often are trade-offs between cost and other design factors. Fortunately, cost

is not always directly proportional to performance. Using commodity components whenever
possible may considerably reduce the overall cost.

1.4 Classification of Interconnection Networks

Among other criteria, interconnection networks have been traditionally classified according to the

operating mode (synchronous or asynchronous), and network control (centralized, decentralized,
or distributed). Nowadays, multicomputers, multiprocessors, and NOWS dominate the parallel
computing market. All of these architectures implement asynchronous networks with distributed
control. Therefore, we will focus on other criteria that are currently more significant.

A classification scheme is shown in Figure 1.2 which categorizes the known interconnection net-

works into four major classes based primarily on network topology: shared-medium networks, direct
networks, indirect networks, and hybrid networks. For each class, the figure shows a hierarchy of
subclasses, also indicating some real implementations for most of them. This classification scheme
is based on the classification proposed in [252], and it mainly focuses on networks that have been
implemented. It is by no means complete as other new and innovative interconnection networks may

emerge as technology further advances, such as mobile communication and optical interconnections.
In shared-medium networks, the transmission medium is shared by all communicating devices.

An alternative to this approach consists of having point-to-point links directly connecting each com-

municating device to a (usually small) subset of other communicating devices in the network. In
this case, any communication between nonneighboring devices requires transmitting the informa-
tion through several intermediate devices. These networks are known as direct networks. Instead
of directly connecting the communicating devices between them, indirect networks connect those
devices by means of one or more switches. If several switches exist, they are connected between

them using point-to-point links. In this case, any communication between communicating devices
requires transmitting the information through one or more switches. Finally, hybrid approaches are
possible. These network classes and the corresponding subclasses will be described in the following
sections.

1.5 Shared-Medium Networks

The least complex interconnect structure is one in which the transmission medium is shared by

all communicating devices. In such shared—medium networks, only one device is allowed to use the
network at a time. Every device attached to the network has requester, driver, and receiver circuits

to handle the passing of address and data. The network itself is usually passive, since the network

itself does not generate messages.
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Interconnection Networks

—— Shared-Medium Networks

Local Area Networks

T Contention Bus (Ethernet)

Tokcn Bus (Arcnct)

T Token Ring (FDDI Ring, IBM Token Ring)

Backplane Bus (Sun Gigaplane, DEC A1phaServer8X0O, SGI PowerPatli—2)

-—- Direct Networks (Router-Based Networks)

Strictly Orthogonal Topologies
Mesh

T 2-D Mesh (Intel Paragon)

T 3-D Mesh (MIT J-Machine)

T Torus (k—ary n-cube)

I-D Unidirectional Torus or Ring (KSR first—level ring)

T 2-D Bidirectional Torus (Intel/CMU iWarp)

L T 3-D Bidirectional Torus (Cray T3D, Cray T3E)T Hypercube (Intel iPSC, nCUBE)

Other Topologies: Trees, Cube-Connected Cycles, de Bruijn Network, Star Graphs, etc.

—— Indirect Networks (Switch—Based Networks)

T” Regular Topologies

T Crossbar (Cray X/Y-MP, DEC GIGAswitch, Myrinet)

T Multistage Interconnection Networks

T Blocking Networks

R‘ E Unidirectional MIN (NEC Ccnju-3, IBM RP3)
Bidirectional MIN (IBM SP, TMC CM—5, Meiko CS—2)

Nonblocking Networks: Clos Network

——— Irregular Topologies (DEC Autonet, Myrinet, ServerNet)

——- Hybrid Networks

T Multiple-Backplane Buses (Sun XDBus)

T Hierarchical Networks (Bridged LANS, KSR)

T Cluster—Based Networks (Stanford DASH, HP/Convex Exemplar)

T Other Hypergraph Topologies: I-Iyperbuscs, Hypermeshes, etc.

Figure 1.2. Classification of interconnection networks. (1-D = one-dimensional; 2-D : two-
dimensional; 3-D = three-dimensional; CMU : Carnegie Mellon University; DASH = Directory
Architecture for Shared-Memory; DEC = Digital Equipment Corp.; FDDI = Fiber Distributed
Data Interface; HP = Hewlett-Packard; KSR : Kendall Square Research; MIN = Multistage Inter-
connection Network; MIT : Massachusetts Institute of Technology; SGI = Silicon Graphics Inc.;

TMC = Thinking Machines Corp.)
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An important issue here is the arbitration strategy that determines the mastership of the shared-
medium network to resolve network access conflicts. A unique characteristic of a shared medium
is its ability to support atomic broadcast in which all devices on the medium can monitor network
activities and receive the information transmitted on the shared medium. This property is important
to efficiently support many applications requiring one-to-all or one-to—many communication services,
such as barrier synchronization and snoopy cache coherence protocols. Due to limited network
bandwidth, a single shared medium can only support limited number of devices before the medium
becomes a bottleneck.

Shared-medium networks constitute a well established technology. Additionally, their limited
bandwidth restricts their use in multiprocessors. So, these networks will not be covered in this
book, but we will present a short introduction in the following sections. There are two major classes
of shared-medium networks: local area networks, mainly used to construct computer networks that
span physical distances no longer than a few kilometers, and backplane buses, mainly used for
internal communication in uniprocessors and multiprocessors.

1.5.1 Shared-Medium Local Area Networks

High—speed LANS can be used as a networking backbone to interconnect computers to provide an
integrated parallel and distributed computing environment. Physically, a shared-medium LAN uses
copper wires or fiber optics in a bit-serial fashion as the transmission medium. The network topology
is either a bus or a ring. Depending on the arbitration mechanism used, diiferent LANs have been
commercially available. For performance and implementation reasons, it is impractical to have a
centralized control or to have some fixed access assignment to determine the bus master who can
access the bus. Three major classes of LANs based on distributed control are described below.

Contention Bus

The most popular bus arbitration mechanism is to have all devices to compete for the exclusive
access right of the bus. Due to the broadcast nature of the bus, all devices can monitor the state
of the bus, such as idle, busy, and collision. Here the term “collision” means that two or more
devices are using the bus at the same time and their data collided. When the collision is detected,
the competing devices will quit transmission and try later. The most well-known contention-based
LAN is Ethernet which adopts carrier-sense multiple access with collision detection (CSMA/CD)
protocol. The bandwidth of Ethernet is 10 Mbps and the distance span is 250 meters (coaxial cable).
As processors are getting faster, the number of devices that can be connected to Ethernet is limited
to avoid the network bottleneck. In order to break the 10 Mbps bandwidth barrier, Fast Ethernet
can provide 100 Mbps bandwidth.

Token Bus

One drawback of the contention bus is its nondeterministic nature as there is no guarantee of how
much waiting time is required to gain the bus access right. Thus, the contention bus is not suitable
to support real-time applications. To remove the nondeterministic behavior, an alternate approach
involves passing a token among the network devices. The owner of the token has the right to access
the bus. Upon completion of the transmission, the token is passed to the next device based on
some scheduling discipline. By restricting the maximum token holding time, the upper bound that
a device has to wait for the token can be guaranteed. Arcnet supports token bus with a bandwidth
of 2.5 Mbps.
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Figure 1.3. A single-bus network. (M = memory; P = processor.)

Token Ring

The idea of token ring is a natural extension of token bus as the passing of the token forms a ring
structure. IBM token ring supports bandwidths of both 4 and 16 Mbps based on coaxial cable.

Fiber Distributed Data Interface (FDDI) provides a bandwidth of 100 Mbps using fiber optics.

1.5.2 Shared-Medium Backplane Bus

A backplane bus is the simplest interconnection structure for bus-based parallel computers. It is

commonly used to interconnect processor(s) and memory modules to provide UMA architecture.
Figure 1.3 shows a single-bus network. A typical backplane bus usually has 50 — 300 wires and is

physically realized by printed lines on a circuit board or by discrete (backplane) wiring. Additional
costs are incurred by interface electronics, such as line drivers, receivers, and connectors.

There are three kinds of information in the backplane bus: data, address, and control signals.

Control signals include bus request signal and request grant signal, among many others. In addition
of the width of data lines, the maximum bus bandwidth that can be provided is dependent on the

technology. The number of processors that can be put on a bus depends on many factors, such as
processor speed, bus bandwidth, cache architecture, and program behavior.

Methods of Information 'I‘ransfer

Both data and address information must be carried in the bus. In order to increase the bus bandwidth

and provide a large address space, both data width and address bits have to be increased. Such an
increase implies another increase in the bus complexity and cost. Some designs try to share address
and data lines. For multiplexed transfer, address and data are sent alternatively. Hence, they can
share the same physical lines and require less power and fewer chips. For nonmultipleazed transfer,
address and data lines are separated. Thus, data transfer can be done faster.

In synchronous bus design, all devices are synchronized with a common clock. It requires less

complicated logic and has been used in most existing buses. However, a synchronous bus is not
easily upgradable. New faster processors are difficult to fit into a slow bus.

In asynchronous buses, all devices connected to the bus may have different speeds and their own
clocks. They use a handshaking protocol to synchronize with each other. This provides independence
for different technologies and allows slower and faster devices with different clock rates to operate

together. This also implies buffering is needed, since slower devices cannot handle messages as fast
as faster devices.

Bus Arbitration

In a single-bus network, several processors may attempt to use the bus simultaneously. To deal with
this, a policy must be implemented that allocates the bus to the processors making such requests.
For performance reasons, bus allocation must be carried out by hardware arbiters. Thus, in order to

perform a memory access request, the processor has to exclusively own the bus and become the bus
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master. To become the bus master, each processor implements a bus requester, which is a collection
of logic to request control of the data transfer bus. On gaining control, the requester notifies the
requesting master.

Two alternative strategies are used to release the bus:

o Release-when-done: release the bus when data transfer is done

0 Release-on-request: hold the bus until another processor requests it

Several different bus arbitration algorithms have been proposed, which can be classified into
centralized or distributed. A centralized method has a central bus arbiter. When a processor wants
to become the bus master, it sends out a bus request to the bus arbiter which then sends out a
request grant signal to the requesting processor. A bus arbiter can be an encoder-decoder pair in
hardware design. In distributed method, such as daisy chain method, there is no central bus arbiter.
The bus request signals form a daisy chain. The mastership is released to the next device when data
transfer is done.

Split Transaction Protocol

Most bus transactions involve request and response. This is the case for memory read operations.
After a request is issued, it is desirable to have a fast response. If a fast response time is expected, the
bus rnastership is not released after sending the request, and data can be received soon. However,
due to memory latency, the bus bandwidth is wasted while waiting for a response. In order to
minimize the waste of bus bandwidth, the split transaction protocol has been used in many bus
networks.

In this protocol, the bus mastership is released immediately after the request, and the memory
has to gain mastership before it can send the data. Split transaction protocol has a better bus
utilization but its control unit is much more complicated. Bufiering is needed in order to save
messages before the device can gain the bus mastership.

To support shared-variable communication, some atomic read/modify/write operations to mem-
ories are needed. With the split transaction protocol, the atomic read/modify/write can no longer be
indivisible. One approach to solve this problem is to disallow bus release for those atomic operations.

Bus Examples

Several examples of buses and the main characteristics are listed below.

o Gigaplane used in Sun Ultra Enterprise X000 Server (ca. 1996): 2.6 Gbyte/ s peak, 256 bits
data, 42 bits address, split-transaction protocol, 83.8 MHz clock.

0 DEC AlphaServer8X00, i.e., 8200 and 8400 (ca. 1995): 2.1 Gbyte/s, 256 bits data, 40 bits
address, split-transaction protocol, 100 MHz clock (1 foot length).

0 SGI PowerPath-2 (ca. 1993): 1.2 Gbyte/s, 256 bits data, 40 bits address, 6 bits control,
split-transaction protocol, 47.5 MHz clock (1 foot length).

0 HP9000 Multiprocessor Processor Memory Bus (ca. 1993): one Gbyte/s, 128 bits data, 64 bits
address, 13 inches, pipelined—bus, 60 MHZ clock.
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1 .6 Direct Networks

Scalability is an important issue in designing multiprocessor systems. Bus-based systems are not
scalable as the bus becomes the bottleneck when more processors are added. The direct network

or point-to-point network is a popular network architecture that scales well to a large number of

processors. A direct network consists of a set of nodes, each one being directly connected to a (usually
small) subset of other nodes in the network. Figures 1.5 through 1.7 show several direct networks.
The corresponding interconnection patterns between nodes will be studied below. Each node is a

programmable computer with its own processor, local memory, and other supporting devices. These
nodes may have different functional capabilities. For example, the set of nodes may contain vector

processors, graphics processors, and 1/0 processors. Figure 1.4 shows the architecture of a generic
node. A common component of these nodes is a router, which handles message communication among
nodes. For this reason, direct networks are also known as router-based networks. Each router has

direct connections to the router of its neighbors. Usually, two neighboring nodes are connected

by a pair of unidirectional channels in opposite directions. A bidirectional channel may also be
used to connect two neighboring nodes. Although the function of a router can be performed by

the local processor, dedicated routers have been used in high-performance multicomputers, allowing

overlapped computation and communication within each node. As the number of nodes in the system
increases, the total communication bandwidth, memory bandwidth, and processing capability of the

system also increase. Thus, direct networks have been a popular interconnection architecture for
constructing large—scale parallel computers.

Each router supports some number of input and output channels. Internal channels or parts

connect the local processor/memory to the router. Although it is common to provide only one pair
of internal channels, some systems use more internal channels in order to avoid a communication

bottleneck between the local processor/memory and the router [39]. Erternal channels are used for
communication between routers. By connecting input channels of one node to the output channels

of other nodes, the direct network is defined. Unless otherwise specified, the term “channel” will
refer to an external channel. Two directly connected nodes are called neighboring or adjacent nodes.

Usually, each node has a fixed number of input and output channels, and every input channel is
paired with a corresponding output channel. Through the connections among these channels, there
are many ways to interconnect these nodes. Obviously, every node in the network should be able to
reach every other node.

Other
Functional Processor

Unit

Output
Channel s

Figure 1.4. A generic node architecture.
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1.6.1 Characterization of Direct Networks

Direct networks have been traditionally modeled by a graph G'(N,C'), where the vertices of the
graph N represent the set of processing nodes, and the edges of the graph 0 represent the set of
communication channels. This is a very simple model that does not consider implementation issues.
However, it allows the study of many interesting network properties. Depending on the properties
under study, a bidirectional channel may be modeled either as an edge or as two arcs in opposite
directions (two unidirectional channels). The latter is the case for deadlock avoidance in Chapter 3.
Let us assume that a bidirectional channel is modeled as an edge. Some basic network properties
can be defined from the graph representation:

0 Node degree: Number of channels connecting that node to its neighbors.

0 Diameter: The maximum distance between two nodes in the network.

0 Regularity: A network is regular when all the nodes have the same degree.

0 Symmetry: A network is symmetric when it looks alike from every node.

A direct network is mainly characterized by three factors: topology, routing, and switching. The
topology defines how the nodes are interconnected by channels, and is usually modeled by a graph
as indicated above. For direct networks, the ideal topology would connect every node to every
other node. No message would even have to pass through an intermediate node before reaching its
destination. This fully connected topology requires a router with N links (including the internal
one) at each node for a network with N nodes. Therefore, the cost is prohibitive for networks of
moderate to large size. Additionally, the number of physical connections of a node is limited by
hardware constraints such as the number of available pins and the available wiring area. These
engineering and scaling difficulties preclude the use of such fully connected networks even for small
network sizes. As a consequence, many topologies have been proposed, trying to balance performance
and some cost parameters. In these topologies, messages may have to traverse some intermediate
nodes before reaching the destination node.

From the programmer’s perspective, the unit of information exchange is the message. The size
of messages may vary depending on the application. For eflicient and fair use of network resources,
a message is often divided into packets prior to transmission. A packet is the smallest unit of
communication that contains the destination address and sequencing information, which are carried
in the packet header. For topologies in which packets may have to traverse some intermediate nodes,
the routing algorithm determines the path selected by a packet to reach its destination. At each
intermediate node, the routing algorithm indicates the next channel to be used. That channel may be
selected among a set of possible choices. If all the candidate channels are busy, the packet is blocked
and cannot advance. Obviously, efficient routing is critical to the performance of interconnection
networks.

When a message or packet header reaches an intermediate node, a switching mechanism deter-
mines how and when the router switch is set, i.e., the input channel is connected to the output
channel selected by the routing algorithm. In other words, the switching mechanism determines
how network resources are allocated for message transmission. For example, in circuit switching,
all the channels required by a message are reserved before starting message transmission. In packet
switching, however, a packet is transmitted through a channel as soon as that channel is reserved
but the next channel is not reserved (assuming that it is available) until the packet releases the
channel it is currently using. Obviously, some buffer space 1S required to store the packet until the
next channel is reserved. That buffer should be allocated before starting packet transmission. So,
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bafier allocation is closely related to the switching mechanism. Flow control is also closely related
to the switching and buffer allocation mechanisms. The flow control mechanism establishes a dialog
between sender and receiver nodes, allowing and stopping the advance of information. If a packet
is blocked, it requires some buffer space to be stored. When there is no more available bufler space,
the flow control mechanism stops information transmission. When the packet advances and buffer

space is available, transmission is started again. If there is no flow control and no more buifer space
is available, the packet may be dropped, or derouted through another channel.

The above factors affect the network performance. They are not independent of each other but

are closely related. For example, if a switching mechanism reserves resources in an aggressive way

(as soon as a packet header is received), packet latency can be reduced. However, each packet may
be holding several channels at the same time. So, such a switching mechanism may cause severe

network congestion and, consequently, make the design of efiicient routing and flow control policies
diflicult. The network topology also affects performance, as well as how the network traflic can
be distributed over available channels. In most cases, the choice of a suitable network topology is
restricted by wiring and packaging constraints.

1.6.2 Popular Network Topologies

Many network topologies have been proposed in terms of their graph theoretic properties. However,
very few of them have ever been implemented. Most of the implemented networks have an orthogonal
topology. A network topology is orthogonal if and only if nodes can be arranged in an orthogonal
n-dimensional space, and every link can be arranged in such a way that it produces a displacement

in a single dimension. Orthogonal topologies can be further classified as strictly orthogonal and
weakly orthogonal. In a strictly orthogonal topology, every node has at least one link crossing each
dimension. In a weakly orthogonal topology, some nodes may not have any link in some dimensions.

Hence, it is not possible to cross every dimension from every node. Crossing a given dimension from
a given node may require moving in another dimension first.

Strictly Orthogonal Topologies

The most interesting property of strictly orthogonal topologies is that routing is very simple. Thus,

the routing algorithm can be efficiently implemented in hardware. Effectively, in a strictly orthogonal
topology nodes can be numbered by using their coordinates in the n—dimensional space. As each
link traverses a single dimension and every node has at least one link crossing each dimension, the
distance between two nodes can be computed as the sum of dimension offsets. Also, the displacement

along a given link only modifies the offset in the corresponding dimension. Taking into account that
it is possible to cross any dimension from any node in the network, routing can be easily implemented
by selecting a link that decrements the absolute value of the ofl’set in some dimension. The set of
dimension oflsets can be stored in the packet header, and updated (by adding or subtracting one

unit) every time the packet is successfully routed at some intermediate node. If the topology is not
strictly orthogonal, however, routing may become much more complex.

The most popular direct networks are the n-dimensional mesh, the I»:-ary n-cube or torus, and
the hypercube. All of them are strictly orthogonal. Formally, an n-dimensional mesh has kg >< kl ><
- - - >< kn..2 >< k,,_1 nodes, 141,- nodes along each dimension 2', where kg 2 2 and 0 3 2' 3 n — 1. Each node

Xis identified by n coordinates, (:c,,,1,:r,,,2, . ..,a:1,m0), where 0 3 z, 3 k,- — 1 for 0 3 2' 3 n — 1.
Two nodes X and Yare neighbors if and only if y,- = :I:,- for all 1', 0 3 2' 3 n — 1, except one, j, where

yj = a:,- i 1. Thus, nodes have from n to Zn neighbors, depending on their location in the mesh.
Therefore, this topology is not regular.
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(a) 2-ary 4-cube (hypercube) (b) 3-ary 2—cube (C) 3-ary 3-D mesh

Figure 1.5. Strictly orthogonal direct network topologies.

In a bidirectional k-ary n-cube [71], all nodes have the same number of neighbors. The definition
of a k—a.ry n-cube differs from that of an n—dimensional mesh in that all of the k:,- are equal to k and
two nodes X and Yare neighbors if and only if y, = .73.: for all i, 0 3 i 3 n —— 1, except one, j, where
yj = (:13 3- i 1) mod k. The change to modular arithmetic in the definition adds wraparound channels
to the kt-ary n-cube, giving it regularity and symmetry. Every node has n neighbors if k = 2 and Zn
neighbors if k > 2. When n : 1, the k-ary n-cube collapses to a bidirectional ring with 1: nodes.

Another topology with regularity and symmetry is the hypercube, which is a special case of both
n-dimensional meshes and k-ary n-cubes. A hypercube is an n—dimensional mesh in which k, = 2
for 0 3 2' _<_ n — 1, or a 2-ary n—cube, also referred to as a binary n—cube.

Figure 1.5a depicts a binary 4-cube or 16-node hypercube. Figure 1.5b illustrates a 3—ary 2-cube
or two-dimensional (2—D) torus. Figure 1.5c shows a 3-ary three-dimensional (3-D) mesh, resulting
by removing the wraparound channels from a 3-ary 3-cube.

Two conflicting requirements of a direct network are that it must accommodate a large number
of nodes while maintaining a low network latency. This issue will be addressed in Chapter 7.

Other Direct Network Topologies

In addition to the topologies defined above, many other topologies have been proposed in the liter-
ature. Most of them were proposed with the goal of minimizing the network diameter for a given
number of nodes and node degree. As will be seen in Chapter 2, for pipelined switching techniques
network latency is almost insensitive to network diameter, especially when messages are long. So
it is unlikely that those topologies are implemented. In the following paragraphs, we present an
informal description of some relevant direct network topologies.

A popular topology is the tree. This topology has a root node connected to a certain number
of descendant nodes. Each of these nodes is in turn connected to a disjoint set (possibly empty)
of descendants. A node with no descendants is a leaf node. A characteristic property of trees is
that every node but the root has a single parent node. Therefore, trees contain no cycles. A tree
in which every node but the leaves has a fixed number Is: of descendants is a k—ary tree. When the
distance from every leaf node to the root is the same, i.e., all the branches of the tree have the same
length, the tree is balanced. Figures 1.6a and 1.61) show an unbalanced and a balanced binary tree,
respectively.

The most important drawback of trees as general-purpose interconnection networks is that the
root node and the nodes close to it become a bottleneck. Additionally, there are no alternative
paths between any pair of nodes. The bottleneck can be removed by allocating a higher channel
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Atxfix
(a) Binary Tree 03) Balanced Binary Tree

Figure 1.6. Some tree topologies.

bandwidth to channels located close to the root node. The shorter the distance to the root node, the

higher the channel bandwidth. However, using channels with different bandwidth is not practical,
specially when message transmission is pipelined. A practical way to implement trees with higher
channel bandwidth in the vicinity of the root node (fat trees) will be described in Section 1.7.5.

One of the most interesting properties of trees is that, for any connected graph, it is possible
to define a tree that spans the complete graph. As a consequence, for any connected network,

it is possible to build an acyclic network connecting all the nodes by removing some links. This
property can be used to define a routing algorithm for any irregular topology. However, that routing
algorithm may be inefficient due to the concentration of traffic across the root node. A possible way
to circumvent that limitation will be presented in Section 4.9.

Some topologies have been proposed with the purpose of reducing node degree while keeping
the diameter small. Most of these topologies can be viewed as a hierarchy of topologies. This is

the case for the cube-connected cycles [283]. This topology can be considered as an n-dimensional

hypercube of virtual nodes, where each virtual node is a ring with n nodes, for a total of 712“ nodes.
Each node in the ring is connected to a single dimension of the hypercube. Therefore, node degree
is fixed and equal to three: two links connecting to neighbors in the ring, and one link connecting
to a node in another ring through one of the dimensions of the hypercube. However, the diameter is
of the same order of magnitude as that of a hypercube of similar size. Figure 1.7a shows a 24-node
cube-connected cycles network. It is worth to note that cube-connected cycles are weakly orthogonal
because the ring is a one-dimensional network, and displacement inside the ring does not change the
position in the other dimensions. Similarly, a displacement along a hypercube dimension does not
affect the position in the ring. However, it is not possible to cross every dimension from each node.

Many topologies have been proposed with the purpose of minimizing the network diameter for
a given number of nodes and node degree. Two well—known topologies proposed with this purpose
are the de Bruijn network and the star graphs. In the de Bruijn network [300] there are cl” nodes,
and each node is represented by a set of n digits in base d. A node (a:,,,1,:c,,,2, . . . , $1, .770), where
0 3 2:, 3 (1-1 for 0 g 2' 3 71-1 is connected to nodes (m,,_2, . . . , :01, 230,13) and (p, wnrl, ac,,_2, . . . , $1),
for all p such that 0 3 p 3 cl — 1. In other words, two nodes are connected if the representation
of one node is a right or left shift of the representation of the other. Figure 1.7b shows an eight-
node de Bruijn network. When networks are very large, this network topology achieves a very low
diameter for a given number of nodes and node degree. However, routing is complex. Additionally,
the average distance between nodes is high, close to the network diameter. Finally, some nodes have
links connecting to themselves. All of these issues make the practical application of these networks
very difficult.

A star graph [6] can be informally described as follows. The vertices of the graph are labeled
by permutations of n different symbols, usually denoted as 1 to n. A permutation is connected to
every other permutation that can be obtained from it by interchanging the first symbol with any
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(a) Cube-Connected Cycles (b) De Bruijn Network (c) Star Graph

Figure 1.7. Other direct network topologies.

of the other symbols. A star graph has n! nodes and node degree is equal to n — 1. Figure 1.7c
shows a star graph obtained by permutations of four symbols. Although a star graph has a lower
diameter than a hypercube of similar size, routing is more complex. Star graphs were proposed as
a particular case of Cayley graphs Other topologies like hypercubes and cube-connected cycles
are also particular cases of Cayley graphs.

1.6.3 Examples

Several examples of parallel computers with direct networks and the main characteristics are listed
below.

0 Cray T3E: Bidirectional 3-D torus, 14-bit data in each direction, 375 MHZ link speed, 600
Mbytes/s per link.

Cray T3D: Bidirectional 3-D torus, up to 1,024 nodes (8 X 16 X 8), 24-bit links (16-bit data,
8-bit control), 150 MHZ, 300 Mbytes/ s per link.

Intel Cavallino: Bidirectional 3-D topology, 16-bit—wide channels operating at 200 MHZ, 400
Mbytes/s in each direction.

SGI SPIDER: Router with 20-bit bidirectional channels operating on both edges, 200 MHZ
clock, aggregate raw data rate of 1 Gbyte/s. Support for regular and irregular topologies.

MIT M-Machine: 3-D mesh, 800 Mbytes/s for each network channel.

MIT Reliable Router: 2-D mesh, 23-bit links (16-bit data), 200 MHZ, 400 Mbytes/s per link
per direction, bidirectional signaling, reliable transmission.

Chaos Router: 2-D torus topology, bidirectional 8-bit links, 180 MHZ, 360 Mbytes/s in each
direction.

Intel iPSC-2 Hypercube: Binary hypercube topology, bit-serial channels at 2.8 Mbytes/s.



20

1. 7. INDIRECT NETWORKS

1.7 Indirect Networks

Indirect or switch—based networks are another major class of interconnection networks. Instead of

providing a direct connection among some nodes, the communication between any two nodes has
to be carried through some switches. Each node has a network adapter that connects to a network
switch. Each switch can have a set of ports. Each port consists of one input and one output link. A

(possibly empty) set of ports in each switch are either connected to processors or left open, whereas
the remaining ports are connected to ports of other switches to provide Connectivity between the

processors. The interconnection of those switches defines various network topologies.
Switch-based networks considerably evolved over time. A wide range of topologies have been

proposed, ranging from regular topologies used in array processors and shared-memory UMA multi-

processors to the irregular topologies currently used in NOWs. Both network classes will be covered
in this book. Regular topologies have regular connection patterns between switches while irregular

topologies do not follow any predefined pattern. Figures 1.19 and 1.21 show several switch—based
networks with regular topology. The corresponding connection patterns will be studied below. Fig-
ure 1.8 shows a typical switch—based network with irregular topology. Both network classes can be
further classified according to the number of switches a message has to traverse before reaching its

destination. Although this classification is not important in the case of irregular topologies, it makes

a big difference in the case of regular networks because some specific properties can be derived for
each network class.

1.7.1 Characterization of Indirect Networks

Indirect networks can also be modeled by a graph G(N, C), where N is the set of switches, and
C is the set of unidirectional or bidirectional links between the switches. For the analysis of most

properties, it is not necessary to explicitly include processing nodes in the graph. Although a
similar model can be used for direct and indirect networks, a few differences exist between them.

Each switch in an indirect network may be connected to zero, one, or more processors. Obviously,

only the switches connected to some processor can be the source or the destination of a message.
Additionally, transmitting a message from a node to another node requires crossing the link between

' irectional Link

\ 8

W
Processing Elements

7 » /Switches\‘ 2
.J..?.—Jl.J.

Figure 1.8. A switch—based network with irregular topology.
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M Outputs

Figure 1.9. An N X M crossbar.

the source node and the switch connected to it, and the link between the last switch in the path
and the destination node. Therefore, the distance between two nodes is the distance between the
switches directly connected to those nodes plus two units. Similarly, the diameter is the maximum
distance between two switches connected to some node plus two units. It may be argued that it is
not necessary to add two units because direct networks also have internal links between routers and
processing nodes. However, those links are external in the case of indirect networks. This gives a
consistent view of the diameter as the maximum number of external links between two processing
nodes. In particular, the distance between two nodes connected through a single switch is two
instead of zero.

Similar to direct networks, an indirect network is mainly characterized by three factors: topology,
routing, and switching. The topology defines how the switches are interconnected by channels, and
can be modeled by a graph as indicated above. For indirect networks with N nodes, the ideal
topology would connect those nodes through a single N >< N switch. Such a switch is known as a
crossbar. Although using a single N X N crossbar is much cheaper than using a fully connected
direct network topology (requiring N routers, each one having an internal N X N crossbar), the cost
is still prohibitive for large networks. Similar to direct networks, the number of physical connections
of a switch is limited by hardware constraints such as the number of available pins and the available
wiring area. These engineering and scaling difiiculties preclude the use of crossbar networks for
large network sizes. As a consequence, many alternative topologies have been proposed. In these
topologies, messages may have to traverse several switches before reaching the destination node. In
regular networks, these switches are usually identical and have been traditionally organized as a
set of stages. Each stage (but the input /output stages) is only connected to the previous and next
stages using regular connection patterns. Input/output stages are connected to the nodes as well as
to another stage in the network. These networks are referred to as multistage networks, and have
different properties depending on the number of stages, and how those stages are arranged.

The remaining issues discussed in Section 1.6.1 (routing, switching, flow control, buffer allocation,
and their impact on performance) are also applicable to indirect networks.

1.7.2 Crossbar Networks

Crossbar networks allow any processor in the system to connect to any other processor or memory
unit so that many processors can communicate simultaneously without contention. A new connection
can be established at any time as long as the requested input and output ports are free. Crossbar
networks are used in the design of high—performance small-scale multiprocessors, in the design of
routers for direct networks, and as basic components in the design of large-scale indirect networks.
A crossbar can be defined as a switching network with N inputs and M outputs, which allows up to
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(a) (b) (c) (d)

Figure 1.10. States of a switch point in a crossbar network.

min{N, M} one-to-one interconnections without contention. Figure 1.9 shows an N X M crossbar
network. Usually, M = N except for crossbars connecting processors and memory modules.

The cost of such a network is O(NM), which is prohibitively high with large N and M. Cross-
bar networks have been traditionally used in small-scale shared-memory multiprocessors, where all

processors are allowed to access memories simultaneously as long as each processor reads from, or
writes to, a diiferent memory. VVhen two or more processors contend for the same memory module,
arbitration lets one processor proceed while the others wait. The arbiter in a crossbar is distributed

among all the switch points connected to the same output. However, the arbitration scheme can be
less complex than the one for a bus because conflicts in crossbar are the exception rather than the
rule, and therefore easier to resolve.

For a crossbar network with distributed control, each switch point may have four states as shown

in Figure 1.10. In Figure 1.10a, the input from the row containing the switch point has been granted
access to the corresponding output while inputs from upper rows requesting the same output are

blocked. In Figure 1.10b, an input from an upper row has been granted access to the output. The
input from the row containing the switch point does not request that output, and can be propagated
to other switches. In Figure 1.10c, an input from an upper row has also been granted access to

the output. However, the input from the row containing the switch point also requests that output
and is blocked. The configuration in Figure 1.10d is only required if the crossbar has to support

multicasting (one-to-many communication).
The advent of VLSI permitted the integration of hardware for thousands of switches into a single

chip. However, the number of pins on a VLSI chip cannot exceed a few hundreds, which restricts
the size of the largest crossbar that can be integrated into a single VLSI chip. Large Crossbars can
be realized by partitioning them into smaller crossbars, each one implemented using a single chip.
Thus, a full crossbar of size N X N can be implemented with (N/'n,)(N/n) n X n crossbars.

1.7.3 Multistage Interconnection Networks

Multistage interconnection networks (MINS) connect input devices to output devices through a num-
ber of switch stages, where each switch is a crossbar network. The number of stages and the con-
nection patterns between stages determine the routing capability of the networks. T

MINS were initially proposed for telephone networks and later for array processors. In these cases,
a central controller establishes the path from input to output. In cases where the number of inputs

equals the number of outputs, each input synchronously transmits a message to one output, and
each output receives a message from exactly one input. Such unicast communication patterns can be
represented as a permutation of the input addresses. For this application, MINS have been popular
as alignment networks for storing and accessing arrays in parallel from memory banks. Array storage
is typically skewed to permit conflict-free access, and the network is used to unscramble the arrays
during access. These networks can also be configured with the number of inputs greater than the

number of outputs (concentrators) and vice versa (expanders). On the other hand, in asynchronous
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G1

Figure 1.11. A generalized MIN with N inputs, M outputs, and g stages.

multiprocessors, centralized control and permutation routing are infeasible. In this case, a routing
algorithm is required to establish the path across the stages of a MIN.

Depending on the interconnection scheme employed between two adjacent stages and the number
of stages, various MINs have been proposed. MINs are good for constructing parallel computers with
hundreds of processors and have been used in some commercial machines.

1.7.4 A Generalized MIN Model

There are many ways_to interconnect adjacent stages. Figure 1.11 shows a generalized multistage
interconnection network with N inputs and M outputs. It has g stages, Go to Gg_1. As shown in
Figure 1.12, each stage, say G,-, has wi switches of size am X b,-,,-, where 1 3 j 3 w,. Thus, stage G,-
has 19,- inputs and q,- outputs, where

The connection between two adjacent stages, G,_1 and G,-, denoted 0,, defines the connection
pattern. for p, = q,:_1 links, where po = N and qg_1 = M. A MIN thus can be represented as

C0(N)G0(“’0)C1(P1)G1('W1)--~Gg~1(wg—1)Cg(M)

A connection pattern C’, defines how those pi links should be connected between the q,-_1 = p,
outputs from stage G,_1 and the pi inputs to stage G,-. Different connection patterns give difierent
characteristics and topological properties of MINs. The links are labeled from 0 to p,~ — 1 at 0,.

From a practical point of view, it is interesting that all the switches are identical, thus amortizing
the design cost. Banyan networks are a class of MINs with the property that there is a unique path
between any pair of source and destination [133]. An N-node (N = k") Delta network is a subclass
of banyan networks, which is constructed from identical k X k switches in n stages, where each stage
contains -1)?’ switches. Many of the known MINs, such as Omega, flip, cube, butterfly, and baseline,
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Figure 1.12. A closer View of stage G,-.

belong to the class of Delta networks [272] and have been shown to be topologically and functionally
equivalent [351]. A good survey of those MINS can be found in [317]. Some of those MINS are
defined below.

When switches have the same number of input and output ports, MINS also have the same

number of input and output ports. Since there is a one—to-one correspondence between inputs and
outputs, these connections are also called permutations. Five basic permutations are defined below.
Although these permutations were originally defined for networks with 2 X 2 switches, for most
definitions we assume that the network is built by using k X it switches, and that there are N = k"
inputs and outputs, where n is an integer. However, some of these permutations are only defined
for the case where N is a power of 2. With N = k” ports, let X = a:n,1:rn_2 . . . mo be an arbitrary
portnumber,0§X§N—1,where0§_mi§_k—1,0§ign—1.

Perfect Shuffle Connection

The perfect k-shuffle connection 0'“ is defined by

ak(X) = (kX + mod N
A more cogent way to describe the perfect k—shufl'le connection 0'“ is

k
0' (:z3,,_1:r,,_2 .. .;c1:co) = $71-2 . . . :I21J:0fl7n_1

The perfect k-shuffle connection performs a cyclic shifting of the digits in X to the left for one
position. For k = 2, this action corresponds to perfectly shufiling a deck of N cards, as demonstrated
in Figure 1.13a for the case of N = 8. The perfect shufile cuts the deck into two halves from the
center and intermixes them evenly. The inverse perfect shufile does the opposite as defined below:

16-1
0' ($n_1Il7n_2 . . . {l31$o) = $():En_1 . . . $2131
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(a) Perfect Shuffle (b) Inverse Perfect Shuffle (0) Bit Reversal

Figure 1.13. The perfect shuflle, inverse perfect shuflile, and bit reversal connections for N = 8.

Digit Reversal Connection

The digit reversal permutation pk is defined by

pk (.’l3n_1$n_2 . . . (E11130) = $0151 . . . .’.I3n_2.13n._1

This permutation is usually referred to as bit reversal, clearly indicating that it was proposed for
Is: = 2. However, its definition is also valid for k > 2. Figure 1.13c demonstrates a bit reversal
connection for the case of k = 2 and N = 8.

Butterfly Connection

The ith k-ary butterfly permutation 0,4“, for 0 3 '1 g n ~ 1, is defined by

fig“-iB71_1....’.U,‘_|_1:E.;1:,'_1... (171130) = (13n-1....'E,'+1$0£l,'.;_1...(E1:I}»,‘

The ith butterfly connection interchanges the zeroth and '1th digits of the index. Figure 1.14 shows
the butterfly connection for k = 2, and 2' = 0, 1, and 2 with N = 8. Note that 0,’; defines a straight
one-to-one connection and is also called identity connection, I.

01000) 01000) orooo) 01000)
11001) 1(001)—~‘;—————-§——1(001>
2(0l0) 2(010) 2(010) 2(O10)

3011) 3011) 3011)
4000) 4000) 4000)

5001) 5(101) 5(101) 5001)
6010) 6010) 6010) 5_ 6(110)

7(1ll) 7(l11)

(a) Second Butterfly (b) First Butterfly (C) Zeroth Butterfly

Figure 1.14. The butterfly connection for N = 8.
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0(000) 0(000) 0(000) 0(000)
1(001) 1(001) 1(001) M001)
2010) 2(010) 2(010) 21010)
3011) 3(011) 3(011) 3011)
4000) 4000) 4000) 4000)
5001) 5001) 5001) 5001)
6010) 6(110) 6(110) 6(ll0)
7011) 7011) 7011) 7011)

(a) Second Cube (b) First Cube (c) Zeroth Cube

Figure 1.15. The cube connection for N = 8.

Cube Connection

The 2th cube connection E,-, for 0 3 '1' 3 n — 1, is defined only for k = 2 by

E/'i(.’I3n_1 . . . i13,'+1{E1'$i_1 . . . 1110) = {13n_1 . . . .'l3,'+1§,;:Z3,‘_1 . . . (120

The ith cube connection complements the ith bit of the index. Figure 1.15 shows the cube connection

for 2' : 0, 1, and 2 with N = 8. E0 is also called the exchange connection.

Baseline Connection

The 1th k-ary baseline permutation 53“, for O 3 1’ 3 n 1, is defined by
1

5k . . . ._ . . 11- ((371-1 . . . £E.,+1(L'1:I7«,_1 . . . £171.10) — $n_1 . . . a:,+1a:0w,$,..1 . . . £121

The ith baseline connection performs a cyclic shifting of the i+ 1 least significant digits in the index

to the right for one position. Figure 1.16 shows the baseline connection for k : 2, and 2' : 0, 1, and
2 with N = 8. Note that 63° also defines the identity connection I.

O(000) 0(O00) 0(00O)

1(001) 1(001) 11001)
2010) 2(010) § 2(010)
3(011)—-i 3(011)——+'—__f.. 3011)
4000) 4000) 4000) 4000)
5001) 5(101) 5001) 5001)
6(1I0) 6(110) 0010) 6010)
7011) 7011) 7011)

(a) Second Baseline (b) First Baseline (c) Zeroth Baseline

Figure 1.16. The baseline connection for N = 8.
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1.7.5 Classification of Multistage Interconnection Networks
Depending on the availability of paths to establish new connections, MINS have been traditionally
divided into three classes:

1. Blocking. A connection between a free input/output pair is not always possible because of
conflicts with the existing connections. Typically, there is a unique path between every in-
put /output pair, thus minimizing the number of switches and stages. However, it is also
possible to provide multiple paths to reduce confiicts and increase fault tolerance. These
blocking networks are also known as multipath.

. Nonblocking. Any input port can be connected to any free output port without afiecting the
existing connections. Nonblocking networks have the same functionality as a crossbar. They
require multiple paths between every input and output, which in turn leads to extra stages.

. Rearmngeable. Any input port can be connected to any free output port. However, the existing
connections may require rearrangement of paths. These networks also require multiple paths
between every input and output‘ but the number of paths and the cost is smaller than in the
case of nonblocking networks.

Nonblocking networks are expensive. Although they are cheaper than a crossbar of the same
size, their cost is prohibitive for large sizes. The best known example of nonblocking multistage
network is the Clos network, initially proposed for telephone networks. Rearrangeable networks
require less stages or simpler switches than a nonblocking network. The best known example of
rearrangeable network is the Benes network. Figure 1.17 shows an 8 X 8 Benes network. For 2"
inputs, this network requires Zn — 1 stages, and provides 2"“ alternative paths. Rearrangeable net-
works require a central controller to rearrange connections, and were proposed for array processors.
However, connections cannot be easily rearranged on multiprocessors because processors access the
network asynchronously. So, rearrangeable networks behave like blocking networks when accesses
are asynchronous. Thus, this class has not been included in Figure 1.2. We will mainly focus on
blocking networks.

Depending on the kind of channels and switches, MINs can be split into two Classes [253]:
1. Unidirectional MINs. Channels and switches are unidirectional.

2. Bidirectional MINs. Channels and switches are bidirectional. This implies that information
can be transmitted simultaneously in opposite directions between neighboring switches.

Co Go C1 G1 C2 G2 C3 G4C5
000 ‘>000
001 ~—>

010 *“9

011 —>

100J101

110

111

Figure 1.17. An 8 X 8 Benes network.
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EEEEE
(a) Straight (b) Exchange (c) Lower ((1) Upper

Broadcast Broadcast

Figure 1.18. Four possible states of a 2 X 2 switch.

Additionally, each channel may be either multiplexed or replaced by two or more channels. In
t the latter Case, the network is referred to as dilated MIN. Obviously, the number of ports of each

switch must increase accordingly.

Unidirectional Multistage Interconnection Networks

The basic building blocks of unidirectional MINS are unidirectional switches. An a X b switch is a
crossbar network with a inputs and b outputs. If each input port is allowed to connect to exactly

one output port, at most rnin{a, b} connections can be supported simultaneously. If each input port
is allowed to connect to many output ports, a more complicated design is needed to support the so-
called one-to-many or multicast communication. In the broadcast mode or one—to-all communication,

each input port is allowed to connect to all output ports. Figure 1.18 shows four possible states of a
2 x 2 switch. The last two states are used to support one-to-many and one—to-all communications.

In MINs with N = M, it is common to use switches with the same number of input and output

ports, i.e., a = b. If N > M, switches with a > b will be used. Such switches are also called
concentration switches. In the case of N < M, distribution switches with a < b will be used.

It can be shown that with N input and output ports, a unidirectional MIN with k X k switches

requires at least [logk Nl stages to allow a connection path between any input port and any output
port. By having additional stages, more connection paths may be used to deliver a message between
an input port and an output port at the expense of extra hardware cost. Every path through the
MIN crosses all the stages. Therefore, all the paths have the same length.

Four topologically equivalent unidirectional MINs are considered below. These MINS are a class
of Delta networks.

Baseline MINS. In a baseline MIN, connection pattern C,‘ is described by the (n — i)th baseline

permutation 6,'j_, for 1 3 i 3 n. Connection pattern C0 is selected to be oh.
Butterfly MINS. In a butterfly MIN, connection pattern 0, is described by the ith butterfly

permutation of for 0 3 i 3 n — 1. Connection pattern 0,, is selected to be /35‘.
Cube MINs. In a cube MIN (or multistage cube network [317]), connection pattern 0,; is described

by the (n — i)th butterfly permutation fi,’j_,- for 1 3 2' 3 n. Connection pattern 00 is selected to bea .

Omega network. In an Omega network, connection pattern 0', is described by the perfect k-
shufiie permutation 0'“ for 0 3 i 3 n — 1. Connection pattern 0,, is selected to be /33. Thus, all
the connection patterns but the last one are identical. The last connection pattern produces no
permutation.

The topological equivalence of these MINs can be viewed as follows: Consider that each input link
to the first stage is numbered using a string of n digits s,,_1s,,,2 . . . 51.90, where 0 3 .9, 3 k —— 1, for
0 3 i 3 n — 1. The least significant digit 50 gives the address of the input port at the corresponding
switch and the address of the switch is given by s,,_1s,,_2 . . . 51. At each stage, a given switch is

able to connect any input port with any output port. This can be viewed as changing the value of
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Figure 1.19. Four 16 X 16 unidirectional multistage interconnection networks.
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V.

Forward Backward Turnaround

Figure 1.20. Connections in a bidirectional switch.

the least significant digit of the address. In order to be able to connect any input to any output of
the network, it should be possible to change the value of all the digits. As each switch is only able

to change the value of the least significant digit of the address, connection patterns between stages
are defined in such a way that the position of digits is permuted, and after 11 stages all the digits

have occupied the least significant position. Therefore, the above defined MINS differ in the order
in which address digits occupy the least significant position.

Figure 1.19 shows the topology of four 16 X 16 unidirectional multistage interconnection networks:
(a) baseline network, (b) butterfly network, (c) cube network, and (d) omega network.

Bidirectional Multistage Interconnection Networks

Figure 1.20 illustrates a bidirectional switch in which each port is associated with a pair of unidi-
rectional channels in opposite directions. This implies that information can be transmitted simulta-

neously in opposite directions between neighboring switches. For ease of explanation, it is assumed
that processor nodes are on the left-hand side of the network, as shown in Figure 1.21. A bidirectional
switch supports three types of connections: forward, backward, and turnaround (see Figure 1.20). As
turnaround connections between ports at the same side of a switch are possible, paths have different

lengths. An eight—node butterfly bidirectional l\/[IN (BMJN) is illustrated in Figure 1.21.
Paths are established in BMINS by crossing stages in forward direction, then establishing a

turnaround connection, and finally crossing stages in backward direction. This is usually referred
to as turnaround routing. Figure 1.22 shows two alternative paths from node 3 to node D in an

eight—node butterfly BMIN. When crossing stages in forward direction, several paths are possible.
Each switch can select any of its output ports. However, once the turnaround connection is crossed,

Figure 1.21. An eight—node butterfly bidirectional l\/HN.
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Figure 1.22. Alternative paths in an eight-node butterfly bidirectional MIN.

a single path is available up to the destination node. In the worst case, establishing a path in an
n—stage BMIN requires crossing 2n — 1 stages. This behavior closely resembles that of the Benes
network. Indeed, the baseline BMIN can be considered as a folded Benes network.

As shown in Figure 1.23, a butterfly BMIN with turnaround routing can be viewed as a fat tree
[201]. In a fat tree, processors are located at leaves, and internal vertices are switches. Transmission
bandwidth between switches is increased by adding more links in parallel as switches become closer
to the root switch. When a message is routed from one processor to another, it is sent up (in
forward direction) the tree to the least common ancestor of the two processors, and then sent down
(in backward direction) to the destination. Such a tree routing well explains the turnaround routing
mentioned above.

1 .7 .6 Examples

Several examples of parallel computers with indirect networks and commercial switches to build
indirect networks are listed below.

0 Myricom Myrinet: Supports regular and irregular topologies, 8 X 8 crossbar switch, 9-bit
channels, full-duplex, 640 Mbits/s per link.

0 Thinking Machines CM-5: Fat tree topology, 4-bit bidirectional channels at 40 MHZ, aggregate
bandwidth in each direction of 20 Mbytes/s.

c Inmos C104: Supports regular and irregular topologies, 32 X 32 crossbar switch, serial links,
100 Mbits/ s per link.

0 IBM SP2: Crossbar switches supporting Omega network topologies with bidirectional, 16-bit
channels at 150MHz, 300 Mbytes/s in each direction.

0 SGI SPIDER: Router with 20-bit bidirectional channels operating on both edges, 200 MHZ
clock, aggregate raw data rate of 1 Gbyte/s. Offers support for configurations as nonblocking
multistage network topologies as well as irregular topologies.

o Tandem ServerNet: Irregular topologies, 8-bit bidirectional channels at 50 MHz, 50 Mbytes/ s
per link.
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Figure 1.23. Fat tree and butterfly BMIN.
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1 .8 Hybrid Networks

In this section, we briefly describe some network topologies that do not fit into the classes described
above. In general, hybrid networks combine mechanisms from shared-medium networks and direct
or indirect networks. Therefore, they increase bandwidth with respect to shared-medium networks,
and reduce the distance between nodes with respect to direct and indirect networks. There exist
well-established applications of hybrid networks. This is the case for bridged LANs. However, for
systems requiring very high performance, direct and indirect networks achieve better scalability than
hybrid networks because point-to-point links are simpler and faster than shared-medium buses. Most
high-performance parallel computers use direct or indirect networks. Recently hybrid networks have
been gaining acceptance again. The use of optical technology enables the implementation of high-
performance buses. Currently, some prototype machines are being implemented based on electrical
as well as optical interconnects.

Many hybrid networks have been proposed for different purposes. The classification proposed
for these networks is mainly dictated by the application fields. In general, hybrid networks can be
modeled by a hypergraph [23], where the vertices of the hypergraph represent the set of processing
nodes, and the edges represent the set of communication channels and/or buses. Note that an edge
in a hypergraph can interconnect an arbitrary number of nodes. When an edge connects exactly two
nodes then it represents a point-to~point channel. Otherwise it represents a bus. In some network
designs, each bus has a single driving node. No other device is allowed to drive that bus. In this
case, there is no need for arbitration. However, it is still possible to have several receivers at a given
time, thus retaining the broadcast capability of buses. Obviously, every node in the network must
drive at least one bus, therefore requiring a number of buses not lower than the number of nodes.
In this case, the network topology can be modeled by a directed hypergraph.

1.8.1 Multiple Backplane Buses

Due to limited shared-medium network bandwidth, a shared-medium network can only support a
small number of devices, has limited distance, and is not scalable to support a large system. Some
approaches have been used or studied to remove such bottlenecks. One approach to increase network
bandwidth is to have multiple buses as shown in Figure 1.24. However, concern about wiring and
interface costs is a major reason why multiple buses have seen little use so far in multiprocessor
design [246]. Due to the limitations of electrical packaging technology, it is unlikely to have a
multiple—bus network with more than four buses. However, many more buses are likely feasible with
other packaging technologies such as wavelength division multiplexing on fiber optics [279].

Figure 1.24. A multiple—bus network. Figure 1.25. Two-level hierarchical buses.
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1.8.2 Hierarchical Networks

Another approach to increase the network bandwidth is to have a hierarchical structure as shown
in Figure 1.25. Different buses are interconnected by routers or bridges to transfer information
from one side of the network to the other side of the network. These routers or bridges can filter
the network traffic by examining the destination address of each passing message. The hierarchical
network can expand the network area and handle more devices, but it is no longer a simple shared-
medium network. This approach is used in bridged LANs. Usually, a higher bandwidth is available
at the global bus. Otherwise, it may become a bottleneck. This can be achieved by using a faster
technology. This is the case for the backbone LAN in some bridged LANs. Hierarchical networks
have also been proposed as the interconnection scheme for shared-memory multiprocessors. Again,
the global bus may become a bottleneck. For example, the Encore Gigamax addressed this problem
by having an optical fiber bus to increase the bandwidth of the global bus.

1.8.3 Cluster-Based Networks

Cluster-based networks also have a hierarchical structure. Indeed, they can be considered as a
subclass of hierarchical networks. Cluster-based networks combine the advantages of two or more
kinds of networks at different levels in the hierarchy. For example, it is possible to combine the
advantages of buses and point-to—point links by using buses at the lower level in the hierarchy to
form clusters, and a direct network topology connecting clusters at the higher level. This is the
case for the Stanford Directory Architecture for Shared-Memory (DASH) [203]. Figure 1.26 shows
the basic architecture of this parallel computer. At the lower level, each cluster consists of four
processors connected by a bus. At the higher level, a 2-D mesh connects the clusters. The broadcast
capability of the bus is used at the cluster level to implement a snoopy protocol for cache coherence.
The direct network at the higher level overcomes the bandwidth constraints of the bus, considerably
increasing the scalability of the machine.

Other combinations are possible. Instead of combining buses and direct networks, the HP /Convex

O O I I

IIII

O O

Cluter Bus Cluster Bus Cluster Bus

Cluste-rBus

IIII IIII III I II

Figure 1.26. Cluster-based 2-D mesh.
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Figure 1.27. A two-dimensional hypermesh.

Exemplar multiprocessor combines indirect and direct networks. This multiprocessor has 5 X 5
nonblocking crossbars at the lower level in the hierarchy, connecting four functional blocks and one
1/0 interface to form clusters or hypernodes. Each functional block consists of two processors, two
memory banks and interfaces. These hypernodes are connected by a second level coherent toroidal
interconnect made out of multiple rings using Scalable Coherent Interface (SCI). Each ring connects
one functional block from all the hypernodes. At the lower level of the hierarchy, the crossbars allow
all the processors within a hypernode to access the interleaved memory modules in that hypernode.
At the higher level, the rings implement a cache coherence protocol.

1.8.4 Othergflypergraph Topologies

Many other hybrid topologies have been proposed [25, 336, 348]. Among them, a particularly
interesting class is the hypermesh [335]. A hypermesh is a regular topology consisting of a set of
nodes arranged into several dimensions. Instead of having direct connections to the neighbors in
each dimension, each node is connected to all the nodes in each dimension through a bus. There
are several ways to implement a hypermesh. The most straightforward way consists of connecting
all the nodes in each dimension through a shared bus. Figure 1.27 shows a 2-D hypermesh. In
this network, multiple buses are arranged in two dimensions. Each node is connected to one bus in
each dimension. This topology was proposed by Wittie [S48], and was referred to as spa.nm'ng—bus
hypercube. This topology has a very low diameter, and average distance between nodes scales very
well with network size. However, the overall network bandwidth does not scale well. Additionally,
the frequent changes of bus mastership incur significant overheads.

An alternative implementation that removes the above mentioned constraints consists of replacing
the single shared bus connecting the nodes along a given dimension by a set of as many buses as nodes
in that dimension. This is the approach proposed in the Distributed Crossbar Switch Hypermesh
(DCSH) [222, 223]. Figure 1.28 shows one dimension of the network. Each bus is driven by a single
node. Therefore, there are no changes in mastership. Also, bandwidth scales with the number of
nodes. Two major concerns, however, are the high number of buses required in the system and the
very high number of input ports required at each node. Although the authors propose an electrical
implementation, this topology is also suitable for optical interconnects.
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Single-Source Buses

Figure 1.28. A one-dimensional Distributed Crossbar Switch Hypermesh.

1.9 A Unified View of Direct and Indirect Net-

works

Up to this point, most researchers and manufacturers considered direct and indirect networks as
two completely different approaches for the interconnection of a set of nodes. However, the last
few years have seen developments in router architecture, algorithms, and switch design evolve to a
point that is blurring the distinction between these two classes of networks. For performance driven
environments, as networks converge on the use of pipelined message transmission and source based
routing algorithms, the major differences between the switch architectures for direct and indirect
networks is becoming more a question of topology. Direct networks have typically used routers with
routing algorithms implemented in the network. Switch—based designs have had routing performed
at the source. Modern routers are being designed to support simple, fast, reprogrammable routing
decisions within the network with substantial control of routing at the message source. This expands

the base of applications for the (sizeable) investment in router/switch designs. This flexibility is also
evidenced by the fact that the traditional high-performance multiprocessor router/switch designs
are moving up to implementations involving workstation and personal computer (PC) clusters.

In particular, during the last few years several manufacturers have introduced switches to in-
terconnect a set of processors. These switch-based networks allow the user to define the topology.
Let us consider the particular case in which each switch has a single processor directly attached to
it, and the remaining ports are used to connect with other switches. This network does not differ
substantially from a direct network because each switch can be considered as a router associated
with the corresponding node. Indeed, the functionality of current routers and switches is practi-
cally identical. Moreover, some manufacturers proposed the use of the same switch to implement
either direct or indirect networks. This is the case of the Inmos C104 switch [228] and the SGI

SPIDER [118]. For interconnection networks using the former switch, Inmos proposed the use of
bidirectional multistage interconnection networks as well as direct topologies like meshes. In the
latter case, each switch is connected to a single node through a set of independent ports. Also,
two adjacent switches may use several ports in parallel to communicate between them. The SGI
SPIDER router implementation was designed to support configurations as nonblocking multistage
networks, as irregular topologies, and as routers for conventional multiprocessor topologies. Such
flexibility is typically achieved using topology-independent routing algorithms and flexible switching
techniques.

Therefore, we can view networks using point-to-point links as a set of interconnected switches,
each one being connected to zero, one, or more nodes. Direct networks correspond to the case where
every switch is connected to a single node. Crossbar networks correspond to the case where there is
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a single switch connected to all the nodes. Multistage interconnection networks correspond to the
Case where switches are arranged into several stages and the switches in intermediate stages are not
connected to any processor. However, other choices are possible under this unified view of direct and
indirect interconnection networks. Effectively, nothing prevents the designer from interconnecting

switches using a typical direct network topology, and connecting several processors to each switch.
This is the case for the Cray T3D, which implements a 3-D torus topology, connecting two processors
to each router.

The unified view allows the development of generic routing algorithms. In these algorithms, the
destination address specifies the destination switch as well as the port number in that switch that
is connected to the destination processor. Note that routing algorithms for direct networks are a

particular case of these generic algorithms. In this case, there is a single processor connected to
each switch. So, the output port in the last switch is not required, assuming that processors are
connected to the same port in every switch. This unified View also allows the application of many
results developed for direct networks to indirect networks, and vice versa. For example, the theory
of deadlock avoidance presented in Chapter 3 was initially developed for direct networks but can also
be applied to indirect networks with minor changes, as will be shown in that chapter. Obviously, not
all the results can be directly applied to both network classes. Additionally, applying some results
to other network classes may require a considerable effort. In the remaining chapters of the book,
most techniques will be described for the class of networks for which they were initially proposed.
However, it is important to keep in mind that most of those techniques can also be applied to other
network topologies by taking into account the unified view proposed in this section.
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Message Switching Layer

Interprocessor communication can be viewed as a hierarchy of services starting from the physical

layer that synchronizes the transfer of bit streams to higher—level protocols layers that perform
functions such as packetization, data encryption, data compression, etc. Such a layering of commu-
nication services is common in the local and wide area network communities. While there currently

may not be a consensus on a standard set of layers for multiprocessor systems, we find it useful
to distinguish between three layers in the operation of the interconnection network: the routing

layer, the switching layer, and the physical layer. The physical layer refers to link-level protocols
for transferring messages and otherwise managing the physical channels between adjacent routers.
The switching layer utilizes these physical layer protocols to implement mechanisms for forward-

ing messages through the network. Finally, the routing layer makes routing decisions to determine
candidate output channels at intermediate router nodes and thereby establish the path through the
network. The design of routing protocols and their properties, e.g., deadlock and livelock freedom,
are largely determined by the services provided by the switching layer.

This chapter focuses on the techniques that are implemented within the network routers to
realize the switching layer. These techniques differ in several respects. The switching techniques
determine when and how internal switches are set to connect router inputs to outputs and the time

at which message components may be transferred along these paths. These techniques are coupled
with flow control mechanisms for the synchronized transfer of units of information between routers

and through routers in forwarding messages through the network. Flow control is tightly coupled
with buffer management algorithms that determine how message buffers are requested and released,
and as a result determine how messages are handled when blocked in the network. Implementations

of the switching layer differ in decisions made in each of these areas, and in their relative timing,
i.e., when one operation can be initiated relative to the occurrence of the other. The specific choices
interact with the architecture of the routers and traffic patterns imposed by parallel programs in

determining the latency and throughput characteristics of the interconnection network.

As we might expect, the switching techniques employed in multiprocessor networks initially
followed those techniques employed in local and wide area communication networks, e.g., circuit

switching and packet switching. However, as the application of multiprocessor systems spread into
increasingly compute-intensive domains, the traditional layered communication designs borrowed
from LANs became a limiting performance bottleneck. New switching techniques and implementa-
tions evolved that were better suited to the low latency demands of parallel programs. This chapter

reviews these switching techniques and their accompanying flow control and buffer management
algorithms.



39

36 CHAPTER 2. MESSAGE SWITCHING LAYER

2.1 Network and Router Model

In comparing and contrasting alternative implementations of the switching layer we are interested in
evaluating their impact on the router implementations. The implementations in turn determine the
cycle time of router operation and therefore the resulting message latency and network bandwidth.
The architecture of a generic router is shown in Figure 2.1 and is comprised of the following major
components. ‘

o Bufiers. These are first-in first-out (FIFO) buffers for storing messages in transit. In the
above model, a buffer is associated with each input physical channel and each output physical
channel. In alternative designs, buffers may be associated only with inputs (input buffering)
or outputs (output buffering). The bufl”er size is an integral number of flow control units.

Switch. This component is responsible for connecting router input buflers to router output
buffers. High-speed routers will utilize crossbar networks with full connectivity, while lower-
speed implementations may utilize networks that do not provide full connectivity between
input buffers and output buffers.

Routing and arbitration unit. This component implements the routing algorithms, selects the
output link for an incoming message, and accordingly sets the switch. If multiple messages
simultaneously request the same output link this component must provide for arbitration
between them. If the requested link is busy, the incoming message remains in the input buffer.
It will be routed again after the link is freed and if it successfully arbitrates for the link.

Inj ection Ejection
Channel Channel

InputChannels OutputChannels
Routing and
Arbitration

Figure 2.1. Generic router model. (LC = Link controller.)



40

2.2. BASIC CONCEPTS 37

0 Link controllers (LC). The flow of messages across the physical channel between adjacent
routers is implemented by the link controller. The link controllers on either side of a channel
coordinate to transfer units of flow control.

a Processor interface. This component simply implements a physical channel interface to the

processor rather than to an adjacent router. It consists of one or more injection channels from
the processor and one or more ejection channels to the processor. Ejection channels are also
referred to as delivery channels or consumption channels.

From the point of view of router performance we are interested in two parameters [57]. When a
message first arrives at a router, it must be examined to determine the output channel over which the
message is to be forwarded. This is referred to as the routing delay, and typically includes the time
to set the switch. Once a path has been established through a router by the switch, we are interested
in the rate at which messages can be forwarded through the switch. This rate is determined by the

propagation delay through the switch (intrarouter delay), and the signaling rate for synchronizing
the transfer of data between the input and output buffers. This delay has been characterized to as
the the internal flow control latency [57]. Similarly, the delay across the physical links (interrouter
delay) is referred to as the external flow control latency. The routing delay and flow control delays
collectively determine achievable message latency through the switch, and along with contention by
messages for links, determines the network throughput.

The following section addresses some basic concepts in the implementation of the switching layer,
assuming the generic router model shown in Figure 2.1. The remainder of the chapter focuses on
alternative implementations of the switching layer.

2.2 Basic Concepts

Switching layers can be distinguished by the implementation and relative timing of flow control
operations and switching techniques. In addition, these operations may be overlapped with the time
to make routing decisions.

Flow control is a synchronization protocol for transmitting and receiving a unit of information.
The unit of flow control refers to that portion of the message whose transfer must be synchronized.
This unit is defined as the smallest unit of information whose transfer is requested by the sender and
acknowledged by the receiver. The request /acknowledgment signaling is used to ensure successful
transfer and the availability of buffer space at the receiver. Note that there is no restriction on when
requests or acknowledgments are actually sent or received. Implementation efiiciency governs the
actual exchange of these control signals, e.g., the use of block acknowledgments. For example, it is
easy to think of messages in terms of fixed-length packets. A packet is forwarded across a physical
channel or from the input buffers of a router to the output buffers. Note that these transfers are
atomic in the sense that sufficient buffering must be provided so that a packet is either transferred
in its entirety, or transmission is delayed until sufficient buffer space becomes available. In this
example, the flow of information is managed and controlled at the level of an entire packet.

Flow control occurs at two levels. In the preceding example, message flow control occurs at the

level of a packet. However, the transfer of a packet across a physical channel between two routers
make take several steps or cycles, e.g., the transfer of a 128-byte packet across a 16-bit data channel.
The resulting multicycle transfers use physical channel flow control to forward a message flow control
unit across the physical link connecting routers.

Switching techniques differ in the relationship between the sizes of the physical and message flow
Control units. In general, each message may be partitioned into fixed-length packets. Packets in
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Flit Phit

Packet N Packet 2 Packet 1

Figure 2.2. Alternative flow control units in a message.

turn may be broken into message flow control units or flits [78]. Due to channel width constraints,
multiple physical channel cycles may be used to transfer a single flit. A phit is the unit of information
that car. 02 transferred across a physical channel in a single step or cycle. Flits represent logical
units of gnformation as opposed to phits which correspond to physical quantities, i.e., the number
of bits that can be transferred in parallel in a single cycle. An example of a message comprised of
N packets, 6 flits/packet and 2 phits/flit is shown in Figure 2.2.

The relationships between the sizes of phits, flits, and packets differs across machines. Many
machines have the phit size equivalent to the flit size. In the IBM SP2 switch [327], a flit is 1
byte and is equivalent to a phit. Alternatively, the Cray T3D [311] utilizes flit-level message flow
control where each flit is comprised of eight 16-bit phits. The specific choices reflect trade-offs in
performance, reliability, and implementation complexity.

Example 2.1

There are many candidate synchronization protocols for coordinating phit transfers across
a channel, and Figure 2.3 illustrates an example of a simple four-phase asynchronous hand-
shaking protocol. Only one direction of transfer is shown. Router R1 asserts the RQ signal
when information is to be transferred. Router R2 responds by reading the data and asserting
the ACK signal. This leads to deasserting RQ by R1 which in turn causes R2 to deassert
ACK. This represents one cycle of operation wherein 1 phit is transferred across the channel.

Rl

Physical Channel3____:______|

ACK

Figure 2.3. An example of asynchronous physical channel flow control.



42

2.2. BASIC CONCEPTS

Clock

Data <—><“><7<W /T>C>

Figure 2.4. An example of synchronous physical channel flow control.

Another transfer may now be initiated. The ACK signal can serve to both acknowledge recep-

tion (rising edge) as well as the availability of buffer space (falling edge) for the transmission
of the next unit of information. Thus, the flow of phits across the channel is synchronized to

prevent buffer overflow in the receiving end of the channel. Note that higher-level message
flow control mechanisms can ensure the availability of sufiicient buffer space for each flit.

Example 2.2

Physical channel flow control can also be synchronous as shown in Figure 2.4. The clock

signal is transmitted across the channel and both the rising and falling edges of the clock
line validate the data on the data lines for the receiver. Such physical channel flow control

mechanism can be found within the routers of the Intel iPSC/2 and iPSC 860 machines [257].

Figure 2.4 does not show the acknowledgment signals to indicate the availability of buffer
space on the receiving node. Acknowledgment signals may be provided for the transfer of each
data item, or the channel may utilize block acknowledgments, i.e., each acknowledgment signal
indicates the availability of buffer space for some fixed number of data items. Such an approach
both reduces the acknowledgment traffic as well as the signaling rate of acknowledgments.

It also enables other optimizations for high-speed channel operation that are discussed in
Chapter 7.

While interrouter transfers are necessarily constructed in terms of phits, the switching technique

deals with fiits (which could be defined to be the complete message packet!). The switching tech-
niques set the internal switch to connect input buffers to output buffers, and forward fiits along this
path. These techniques are distinguished by the time at which they occur relative to the message
flow control operation and the routing operation. For example, switching may take place after a
flit has been received in its entirety. Alternatively, the transfer of a flit through the switch may

begin as soon as the routing operation has been completed, but before the remainder of the flit has
been received from the preceding router. In this case switching is overlapped with message—level
flow control. In at least one proposed switching technique, switching begins after the first phit is

received and even before the routing operation is complete! In general, high-performance switch-

ing techniques seek to overlap switching and message flow control as far as possible. VVhile such
an approach provides low-latency communication, it does complicate link-level diagnosis and error
recovery.

This chapter describes the prevalent switching techniques that have been developed to date for
use in current-generation multiprocessors. Switching layers can share the same physical channel flow
control mechanism, but dilfer in the choice of message flow control. Unless otherwise stated, flow
control will refer to message flow control.
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2.3 Basic Switching Techniques

For the purposes of comparison, for each switching technique we will consider the computation of
the base latency of an L-bit message in the absence of any traflic. The phit size and flit size are
assumed to be equivalent and equal to the physical data channel, width of W bits. The routing
header is assumed to be 1 flit, thus the message size is L + W bits. A router can make a routing
decision in t, seconds. The physical channel between two routers operates at B Hz, i.e., the physical
channel bandwidth is BW bits per second. The propagation delay across this channel is denoted by
t,,, = %. Once a path has been set up through the router, the intrarouter delay or switching delay
is denoted by t5. The router internal data paths are assumed to be matched to the channel width
of W bits. Thus, in t5 seconds a W-bit flit can be transferred from the input of the router to the
output. The source and destination processors are assumed to be D links apart. The relationship
between these components as they are used to compute the no—load message latency is shown in
Figure 2.5.

2.3.1 Circuit Switching

In circuit switching, a physical path from the source to the destination is reserved prior to the
transmission of the data. This is realized by injecting the routing header flit into the network.
This routing probe contains the destination address and some additional control information. This
routing probe progresses towards the destination reserving physical links as it is transmitted through
intermediate routers. When the probe reaches the destination, a complete path has been set up and
an acknowledgment is transmitted back to the source. The message contents may now be transmitted
at the full bandwidth of the hardware path. The circuit may be released by the destination or by the
last few bits of the message. In the Intel iPSC/2 routers [257], the acknowledgments are multiplexed
in the reverse direction on the same physical line as the message. Alternatively, implementations
may provide separate signal lines to transmit acknowledgment signals. A time-space diagram of the
transmission of a message over three links is shown in Figure 2.6. The header probe is forwarded
across three links followed by the return of the acknowledgment. The shaded boxes represent the
times during which a link is busy. The space between these boxes represents the time to process the
routing header, and the intrarouter propagation delays. The clear box represents the duration the
links are busy transmitting data through the circuit. Note that the routing and intrarouter delays
at the source router are not included and would precede the box corresponding to the first busy link.

Source Destination
Processor Processor

Link D

ts

Figure 2.5. View of the network path for computing the no-load latency. (R = Router.)



44

2.3. BASIC SWITCHING TECHNIQUES

Fe
Acknowledgment

5"dcnD"‘<‘<.Loqo=:m
Time Busy

Figure 2.6. Time-space diagram of a circuit-switched message.

An example of a routing probe used in the JPL Mark III binary hypercube is shown in Figure 2.7.
The network of the Mark III was quite flexible, supporting several distinct switching mechanisms in

configurations up to 2,048 nodes. Bits 0 and 16 of the header define the switching technique being
employed. The values shown in Figure 2.7 are for circuit switching. Bits 17—19 are unused while
the destination address is provided in bits 1-11. The remaining 4-bit fields are used to address 1

of 11 output links at each individual router. There are 11 such fields supporting a 11-dimensional

hypercube and requiring a two-Word, 64-bit header. The path is computed at the source node. An
alternative could have been to compute the value of the output port at each node rather than storing

the addresses of all intermediate ports in the header. This would significantly reduce the size of the
routing header probe. However, this scheme would require routing time and buffering logic within
the router. In contrast, the format shown in Figure 2.7 enables a fast lookup using the header and
simple processing within the router.

h
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31 28 23 20 16 15 12 11

31 28

CHN OOOOIIIO

Figure 2.7. An example of the format of a circuit probe. (CHN = Channel number; DEST =

Destination address; XXX = Not defined.)
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Circuit switching is generally advantageous when messages are infrequent and long, i.e., the
message transmission time is long compared to the path setup time. The disadvantage is that the
physical path is reserved for the duration of the message and may block other messages. For example,
consider the case where the probe is blocked waiting for a physical link to become free. All of the
links reserved by the probe up to that point remain reserved, cannot be used by other circuits, and
may be blocking other circuits preventing them from being set up. Thus, if the size of the message is
not that much greater than the size of the probe, it would be advantageous to transmit the message
along with the header and buifer the message within the routers while waiting for a free link. This
alternative technique is referred to as packet switching, and will be studied in Section 2.3.2.

The base latency of a circuit—switched message is determined by the time to set up a path, and
the subsequent time the path is busy transmitting data. The router operation differs a bit from that
shown in Figure 2.1. While the routing probe is buffered at each router, data bits are not. There
are no intervening data buffers in the circuit which operates effectively as a single wire from source
to destination. This physical circuit may use asynchronous or synchronous flow control as shown
in Figures 2.3 or 2.4. In this case the time for the transfer of each flit from source to destination
is determined by the clock speed of the synchronous circuit or signaling speed of the asynchronous
handshake lines. The signaling period or clock period must be greater than the propagation delay
through this circuit. This places a practical limit on the speed of circuit switching as a function of
system size. More recent techniques have begun to investigate the use of this delay as a form of
storage. At very high signal speeds, multiple bits may be present on a wire concurrently, proceeding
as waves of data. Such techniques have been referred to as wave pipelining [112]. Using such
techniques the technological limits of router and network designs have been reexamined [102, 310]
and it has been found that substantial improvements in wire bandwidth is possible. The challenges
to widespread use remain the design of circuits that can employ wave pipelining with stable and
predictable delays, while in large designs the signal skew remains particularly challenging.

Without wave pipelining, from Figure 2.6 we can write an expression for the base latency of a
message as follows:

tcircuit : tsetupl tdata

tsetup : Dltr ‘l‘ 2(ts ‘l’ tw)l
tdata. = %

Actual latencies clearly depend on a myriad of implementation details. Figure 2.6 represents
some simplifying assumptions about the time necessary for various events such as processing an
acknowledgment, or initiating the transmission of the first data flit. The factor of 2 in the setup cost
represents the time for the forward progress of the header and the return of the acknowledgment.
The use of B Hz as the channel speed represents the transmission across hardwired path from source
to destination.

2.3.2 Packet Switching

In circuit switching, the complete message is transmitted after the circuit has been set up. Alter-
natively, the message can be partitioned and transmitted as fixed-length packets, e.g., 128 bytes.
The first few bytes of a packet contain routing and control information and are referred to as the
packet header. Each packet is individually routed from source to destination. A packet is completely
buffered at each intermediate node before it is forwarded to the next node. This is the reason why
this switching technique is also referred to as store-and-forward (SAF) switching. The header infor-
mation is extracted by the intermediate router and used to determine the output link over which
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Figure 2.8. Time-space diagram of a packet-switched message.

the header is to be forwarded. A time-space diagram of the progress of a packet across three links

is shown in Figure 2.8. From the figure we can see that the latency experienced by a packet is

proportional to the distance between the source and destination nodes. Note that the figure has
omitted the packet latency through the router.

Packet switching is advantageous when messages are short and frequent. Unlike circuit switching,
where a segment of a reserved path may be idle for a significant period of time, a communication
link is fully utilized when there are data to be transmitted. Many packets belonging to a message
can be in the network simultaneously even if the first packet has not yet arrived at the destination.

However, splitting a message into packets produces some overhead. In addition to the time required
at source and destination nodes, every packet must be routed at each intermediate node. An example
of the format of a data packet header is shown in Figure 2.9. This is the header format used in the

JPL Hyperswitch. Since the hyperswitch can operate in one of many modes, bit field 12e16 and bit
0 collectively identify the switching technique being used: in this case it is packet switching using
a fixed—path routing algorithm. Bits 1~1l identify the destination address, limiting the format to
systems of 2,048 processors or less. The LEN field identifies the packet size in units of 192 bytes.
For the current implementation packet size is limited to 384 bytes. If packets are routed adaptively

through the network, packets from the same message may arrive at the destination out of order. In
this case the packet headers must also contain sequencing information so that the messages can be
reconstructed at the destination.

In multidimensional, point-to-point networks it is evident that the storage requirements at the
individual router nodes can become extensive if packets can become large and multiple packets
must be bufiered at a node. In the JPL implementation, packets are not stored in the router,

31 l6 15 12 ll

LEN XXX 0001 DEST

Figure 2.9. An example packet header format. (DEST = Destination address; LEN = Packet length
in units of 192 bytes; XXX = Not defined.)
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but are rather stored in the memory of the local node and a special-purpose message coprocessor
is used to process the message, i.e., compute the address of an output channel and forward the
message. Other multicomputers using packet switching also buffer packets in the memory of the
local node (Cosmic Cube [313], Intel iPSC/1 [164l). This implementation is no doubt a carryover
from implementations in local and wide area networks where packets are buffered in memory and
special-purpose coprocessors and network interfaces have been dedicated to processing messages. In
modern multiprocessors, the overhead and impact on message latency render such message processing
impractical. To be viable, messages must be buffered and processed within the routers. Storage
requirements can be reduced by using central queues in the router that are shared by all input
channels rather than providing buffering at each input channel, output channel, or both. In this
case, internal and external flow control delays will typically take many cycles.

The base latency of a packet-switched message can be computed as follows:

tpacket = D {t.. + (ts + t,,,) [L Eiwl} (2.2)
This expression follows the router model in Figure 2.1, and as a result includes factors to represent

the time for the transfer of packet of length L + W bits across the channel (tw) as well as from the
input bufler of the router to the output buffer (ts). However, in practice, the router could be only
input-buffered, output—buf:fered, or use central queues. The above expression would be modified
accordingly. The important point to note is that the latency is directly proportional to the distance
between the source and destination nodes.

2.3.3 Virtual Cut-Through (VCT) Switching
Packet switching is based on the assumption that a packet must be received in its entirety before
any routing decision can be made and the packet forwarded to the destination. This is not generally
true. Consider a 128-byte packet and the router model shown in Figure 2.1. In the absence of
128-byte-wide physical channels, the transfer of the packet across the physical channel will take
multiple cycles. However, the first few bytes will contain routing information that is typically
available after the first few cycles. Rather than waiting for the entire packet to be received, the
packet header can be examined as soon as it is received. The router can start forwarding the header
and following data bytes as soon as routing decisions have been made and the output buffer is free.
In fact, the message does not even have to be buffered at the output and can cut through. to the
input of the next router before the complete packet has been received at the current router. This
switching technique is referred to as virtual cut-through (VCT) switching. In the absence of blocking,
the latency experienced by the header at each node is the routing latency and propagation delay
through the router and along the physical channels. The message is effectively pipelined through
successive switches. If the header is blocked on a busy output channel, the complete message is
buffered at the node. Thus, at high network loads, VCT switching behaves like packet switching.

Figure 2.10 illustrates a time-space diagram of a message transferred using VCT switching where
the message is blocked after the first link waiting for an output channel to become free. In this case
We see that the complete packet has to be transferred to the first router where it remains blocked
waiting for a free output port. However, from the figure we can see that the message is successful
in cutting through the second router and across the third link.

The base latency of a message that successfully cuts through each intermediate router can be
computed as follows:
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Figure 2.10. Time-space diagram of a virtual cut-through switched message. (tbzockmg : Waiting
time for a free output link.)

L

tvct = D(t, + t, + tw) + max(ts, tw) (2.3)
Cut-through routing is assumed to occur at the Hit level with the routing information contained

in 1 flit. This model assumes that there is no time penalty for cutting through a router if the output
buffer and output channel are free. Depending on the speed of operation of the routers this may not
be realistic. Note that only the header experiences routing delay, as well as the switching delay and
wire delay at each router. This is because the transmission is pipelined and the switch is buffered at
the input and output. Once the header flit reaches the destination, the cycle time of this message
pipeline is determined by‘ the maximum of the switch delay and wire delay between routers. If the
switch had been buffered only at the input, then in one cycle of operation, a flit traverses the switch
and channel between the routers. In this case the coeflflcient of the second term and the pipeline

cycle time would be (t, + tw). Note that the unit of message flow control is a packet. Therefore
even though the message may cut through the router, suflicient buffer space must be allocated for
a complete packet in case the header is blocked.

2.3.4 Wormhole Switching

The need to bufler complete packets within a router can make it difficult to construct small, compact,
and fast routers. In wormhole switching, message packets are also pipelined through the network.
However the buffer requirements within the routers are substantially reduced over the requirements
for VCT switching. A message packet is broken up into flits. The flit is the unit of message flow
control, and input and output buffers at a router are typically large enough to store a few flits. For
example, the message buflers in the Cray T3D are 1 flit deep and each flit is comprised of eight
16-bit phits. The message is pipelined through the network at the flit level and is typically too large
to be completely buffered within a router. Thus, at any instant in time a blocked message occupies
buffers in several routers. The time-space diagram of a Wormhole-switched message is shown in

Figure 2.11. The clear rectangles illustrate the propagation of flits across the physical channel. The
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Figure 2.11. Time-space diagram of a Wormhole-switched message.

shaded rectangles illustrate the propagation of header flits across the physical channels. Routing
delays and intrarouter propagation of the header flits are also captured in this figure. The primary
difference between Wormhole switching and VCT switching is that the unit of message flow control
is a single flit and, as a consequence, the use of small bufiers. An entire message cannot be buffered
at a router.

In the absence of blocking the message packet is pipelined through the network. However, the
blocking characteristics are very difierent from that of VCT. If the required output channel is busy,
the message is blocked “in place.” For example, Figure 2.12 illustrates a snapshot of a message
being transmitted through routers R1, R2, and R3. Input and output buffers are 2 flits deep and
the routing header is 2 flits. At router R3, message A requires an output channel that is being
used by message B. Therefore message A blocks in place. The small buffer sizes at each node
(< message size) causes the message to occupy buflers in multiple routers, similarly blocking other
messages. In effect dependencies between buffers span multiple routers. This property complicates
the issue of deadlock freedom. However, it is no longer necessary to use the local processor memory
to buffer messages, significantly reducing average message latency. The small buffer requirements
and message pipelining enable the construction of routers that are small, compact, and fast.

Examples of the format of Wormhole-switched packets in the Cray T3D are shown in Figure 2.13.
In this machine, a phit is 16 bits wide — the width of a T3D physical channel —— and a flit is
comprised of 8 phits. A word is 64 bits and thus 4 phits. A message is comprised of header phits
and possibly data phits. The header phits contain the routing tag, destination node address, and
control information. The routing tag identifies a fixed path through the network. The control
information is interpreted by the receiving node to determine any local operations that may have
to be performed, e.g., read and return a local datum. Depending on the type of packet, additional
header information may include the source node address, and memory address at the receiving node.
For example, in the figure, a read-request packet is comprised of only header phits while the read
response packet contains four 64-bit words. Each word has an additional phit that contains 14 check
bits for error correction and detection.

From the example in Figure 2.13 we note that routing information is associated only with the
header phits (flits) and not with the data fiits. As a result, each incoming data flit of a message
packet is simply forwarded along the same output channel as the preceding data flit. As a result, the
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Figure 2.12. An example of a blocked wormhole~switched message.

transmission of distinct messages cannot be interleaved or multiplexed over a physical channel. The

message must cross the channel in its entirety before the channel can be used by another message.
This is why messages A and B in Figure 2.12 cannot be multiplexed over the physical channel
without some additional architectural support.

The base latency of a Wormhole-switched message can be computed as follows:

L

twormhole = D(t, + t3 +751”) + Inax(t,,tw) (2.4)W

This expression assumes flit bulfers at the router inputs and outputs. Note that in the absence
of contention, VCT and Wormhole switching have the same latency. Once the header flit arrives at
the destination, the message pipeline cycle time is determined by the maximum of the switch delay
and Wire delay. For an input-only, or output-only buffered switch this cycle time would be given by
the sum of the switch and wire delays.

Read Request Packet Read Response Packet
15 0 15 0

Header Phit Header Phit
Header Phit ‘ Header Phit
Header Phit Header Phit

EZZSZE 13111:   i:§.‘f°;r—‘?9  W-7
Header Phit

it Phits 8-12

2 Phits 13-17

Phits 18-22

Figure 2.13. Format of Wormhole-switched packets in the Cray T3D.
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2.3.5 Mad Postman Switching

VCT switching improved the performance of packet switching by enabling pipelined message flow
while retaining the ability to buffer complete message packets. VVormhole switching provided further
reductions in latency by permitting small buffer VCT so that routing could be completely handled
within single-chip routers, therefore providing low latency necessary for tightly coupled parallel
processing. This trend toward increased message pipelining is continued with the development of
the mad postman switching mechanism in an attempt to realize the minimal possible routing latency
per node.

The technique is best understood in the context of bit-serial physical channels. Consider a 2-D
mesh network with message packets that have a 2-flit header. Routing is dimension-order: messages
are first routed completely along dimension 0 and then along dimension 1. The leading header flit
contains the destination address of a node in dimension 0. When the message reaches this node,
the message is forwarded along dimension 1. The second header flit contains the destination in
dimension 1. In VCT and Wormhole switching flits cannot be forwarded until the header flits have
been received in their entirety at the router. If we had 8-bit flits, transmission of the header flits
across a bit-serial physical channel will take 16 cycles. Assuming a 1-cycle delay to select the output
channel at each intermediate router, the minimum latency for the header to reach a destination
router three links away is 51 cycles. The mad postman attempts to reduce the per-node latency
further by pipelining at the bit level. When a header flit starts arriving at a router, it is assumed
that the message will be continuing along the same dimension. Therefore header bits are forwarded
to the output link in the same dimension as soon as they are received (assuming that the output
channel is free). Each bit of the header is also buffered locally. Once the last bit of the first flit of
the header has been received, the router can examine this flit and determine if the message should
indeed proceed further along this dimension. If it is to proceed along the second dimension, the
remainder of the message starting with the second flit of the header is transmitted to the output
along the second dimension. If the message has arrived at its destination, it is delivered to the local
processor. In essence, the message is first delivered to an output channel and the address is checked
later, hence the name of this switching technique. This strategy can work very well in 2-D networks

Header
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Delay ié
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Time Busy

Figure 2.14. Time-space diagram for message transmission using mad postman switching.
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Figure 2.15. An example message format for the mad postman switching technique.

since a message will make at most one turn from one dimension to another and we can encode each
dimension offset in 1 header flit. The common case of messages continuing along the same dimension
is made very fast. A time—space diagram of a message transmitted over three links using the mad

postman switching technique is illustrated in Figure 2.14.
Some constraints must be placed on the organization of the header. An example is shown in

Figure 2.15, wherein each dimension offset is encoded in a header flit, and these flits are ordered
according to the order of traversal. For example, when the message packet has completely traversed
the first dimension the router can start transmitting in the second dimension with the start of the
first bit of the second header flit. The first flit has effectively been stripped off the message, but
continues to traverse the first dimension. Such a flit is referred to as a dead address flit. In a

multidimensional network, each time a message changes to a new dimension, a dead flit is generated

and the message becomes smaller. At any point if a dead flit is buffered, i.e., blocked by another
message packet, it can be detected in the local router and removed.

Let us consider an example of routing in a 4 X 4, 2-D mesh. In this example the routing header is

comprised of 2 flits. Each flit is 3 bits long: a special start bit and 2 bits to identify the destination
node in each dimension. The message is pipelined through the network at the bit level. Each input

and output bufler is 2 bits deep. Consider the case where a message is being transmitted from node
20 to node 32. Figure 2.16 illustrates the progress and location of the header flits. The message

Node 32

Dimension 1

Dimension 0

Second Address Flit

Mes 
E

Data Flit Dead Address Flit

Figure 2.16. Example of routing with mad postman switching and generation of dead address flits.
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is transmitted along dimension 0 to node 22 where it is transmitted along dimension 1 to node 32.

At node 22, the first flit is pipelined through to the output as it is received. After receiving the
third bit, it is determined the message must continue along dimension 1. The first bit of the second
header flit is forwarded to the output in dimension 1 as shown in the figure. Note that header flits

are stripped off as the message changes dimensions and the message becomes smaller. The dead
address flit proceeds along dimension 0 until it can be detected and removed.

For a given number of processors the size of the dead address flit is determined by the number of
processors in a dimension. Therefore it follows that for a given number of processors, low-dimension
networks will introduce a smaller number of larger dead address flits while higher-dimension networks

will introduce a larger number of smaller dead address flits. Initially it would appear that the dead
address flits would adversely affect performance until they are removed from the network since they

consume physical channel bandwidth. Since message packets will generally be larger than a dead
address flit, the probability of a packet being blocked by a dead address flit is very small. It is more
likely that a dead address flit will be blocked by a message packet. In this case the local router has
an opportunity to detect the dead address flit and remove it from the network. At high loads, we
are concerned with dead address flits consuming precious network bandwidth. It is interesting to

note that increased blocking in the network will provide more opportunities for routers to remove
dead address flits. The greater the congestion, the less likely that a packet will encounter a dead
address flit!

By optimistically forwarding the message bit stream to an output channel the routing latency
at a node is minimized and full bit-level pipelining can be achieved. Considering again a 2-D mesh

with bit-serial physical channels and packets that have two 8-bit header flits, traversing three links,
the minimum latency for the header to reach the destination is 18 rather than 51 cycles. In general,
the mad postman strategy is useful when it takes multiple cycles for a header to cross a physical
channel. In this case latency can be reduced by optimistically forwarding portions of the header
onward before the correct output link is actually determined. However, the pin-out constraints of
modern routers permit wider flits to be transmitted across a channel in a single cycle. If the header
can be transmitted in one cycle, there is little if any advantage to be gained.

The base latency of a message routed using the mad postman switching technique can be com-
puted as follows:

tmadpostman th ‘l’ tdata

th (ts ‘l‘ ‘l" ma-x(tsa tu1)W

tdm, max(ts, tw )L

The above expression makes several assumptions. The first is the use of bit-serial channels which
is the most favorable for the mad postman strategy. The routing time t, is assumed to be equivalent
to the switch delay and occurs concurrently with bit transmission, and therefore does not appear in
the expression. The term th corresponds to the time taken to completely deliver the header.

Let us consider the general case where we do not have bit-serial channels, but rather 0 bit
channels, where 1 < C < W. Multiple cycles would be required to transfer the header flit across the
physical channel. In this case the mad postman switching strategy would realize a base latency of

W L

tmadpostman = D(ts “l” tw) ‘l‘ ma'x(tss tw) ‘l’ Ina*X(t5a tux)
For comparison purposes, in this case the expression for wormhole switching would have been
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twormhole = D {t. + (t. + t...) } + rnax(t,,t,,,) (2.7)
Assuming that the internal and external channel widths are C’ bits, a header flit (of width

W bits) requires cycles to cross the channel and the router. This cost is incurred at each
intermediate router. When 0 = W, the above expression reduces to the previous expression for
wormhole switching with single—flit headers. As larger physical channel widths become feasible in

practice, the advantage of the mad postman switching over Wormhole switching will diminish.

' 2.4 Virtual Channels

The preceding switching techniques were described assuming that messages or parts of messages
were buffered at the input and output of each physical channel. Buffers are commonly operated as
FIFO queues. Therefore once a message occupies a buffer for a channel, no other message can access
the physical channel, even if the message is blocked. Alternatively, a physical channel may support
several logical or virtual channels multiplexed across the physical channel. Each unidirectional virtual
channel is realized by an independently managed pair of message buffers as illustrated in Figure 2.17.

This figure shows two unidirectional virtual channels in each direction across the physical channel.
Consider Wormhole switching with a message in each virtual channel. Each message can share the

physical channel on a flit-by~fiit basis. The physical channel protocol must be able to distinguish
between the virtual channels using the physical channel. Logically, each virtual channel operates

as if each were using a distinct physical channel operating at half the speed. Virtual channels were
originally introduced to solve the problem of deadlock in wormhole—switched networks. Deadlock is
a network state where no messages can advance because each message requires a channel occupied

by another message. This issue is discussed in detail in Chapter 3.
Virtual channels can also be used to improve message latency and network throughput. By

allowing messages to share a physical channel, messages can make progress rather than remain
blocked. For example, Figure 2.18 shows two messages crossing the physical channel between routers
R1 and R2. With no virtual channels message A will prevent message B from advancing until the

transmission of message A has been completed. However, in the figure, there are two single-flit
virtual channels multiplexed over each physical channel. By multiplexing the two messages on a flit-
by-flit basis, both messages continue to make progress. The rate at which each message is forwarded

Virtual Channel

Virtual Channel Buffer Physical Channel

Figure 2.17. Virtual channels.
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Figure 2.18. An example of the reduction in header blocking delay by using two virtual channels for
each physical channel.

is nominally one half the rate achievable when the channel is not shared. In effect, the use of virtual
channels decouples the physical channels from message buffers allowing multiple messages to share
a physical channel in the same manner that multiple programs may share a central processing unit
(CPU). The overall time a message spends blocked at a router waiting for a free channel is reduced
leading to an overall reduction in individual message latency. There are two specific cases where such
sharing of the physical link bandwidth is particularly beneficial. Consider the case where message
A is temporarily blocked downstream from the current node. With an appropriate physical channel
flow control protocol, message B can be make use of the full bandwidth of physical channel between
the routers. Without virtual channels, both messages would be blocked. Alternatively, consider
the case where message A is a very long message relative to message B. Message B can still make
progress at half the link speed, and then message A can resume transmission at the full link speed.
Studies have shown that message traflic in parallel programs is often bimodal comprised of short
(cache lines, control messages) and long messages (data structures) [176].

The approach described in the preceding paragraph does not place any restrictions on the use
of the virtual channels. Therefore, when used in this manner these buffers are referred to as virtual
lanes. Virtual channels were originally introduced as a mechanism for deadlock avoidance in networks
with physical cycles, and as such routing restrictions are placed on their use. For example, packets
may be prohibited from being transferred between certain classes of virtual channels to prevent
cyclic waiting dependencies for buffer space. Thus, in general we have virtual channels that may
in turn be comprised of multiple lanes. While the choice of virtual channels at a router may be
restricted, it does not matter which lane within a virtual channel is used by a message, although all
of the flits within a message will use the same lane within a channel.

We have seen from Section 2.2 that acknowledgment traffic is necessary to regulate the flow of
data and to ensure the availability of buffer space on the receiver. Acknowledgments are necessary
for each virtual channel or lane, increasing the volume of such trafiic across the physical channel.
Furthermore, for a fixed amount of buffer space within a router, the size of each virtual channel or
lane buffer is now smaller. Therefore the effect of optimizations such as the use of acknowledgments
for a block of flits or phits is limited. If physical channel bandwidth is allocated in a demand-driven
fashion, the operation of the physical channel now includes the transmission of the virtual channel
address to correctly identify the receiving virtual channel, or to indicate which virtual channel has
available message bulfers.

We can envision continuing to add virtual channels to further reduce the blocking experienced
by each message. The result is increased network throughput measured in flits/s, due to increased
physical channel utilization. However, each additional virtual channel improves performance by a
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smaller amount, and the increased channel multiplexing reduces the data rate of individual messages,
increasing the message latency. This increase in latency due to data multiplexing will eventually

overshadow the reduction in latency due to blocking leading to overall increasing average message la-

tency. An analysis of this phenomena can be found in Chapter 9 which provides detailed performance
data to quantify various aspects of network performance.

Increasing the number of virtual channels has a direct impact on router performance through their
effect on the achievable hardware cycle time of the router. The link controllers now become more

complex since they must support arbitration between multiple virtual channels/lanes for the physical
channel, and this arbitration function can be on the critical path for internode delay. The number
of inputs and outputs that must be switched at each node is increased, substantially increasing

‘ the switch complexity. For a fixed amount of buffer space in a node, how is this buffer space to
be allocated among channels, and lanes within a channel? Further, the flow of messages through
the router must be coordinated with the allocation of physical channel bandwidth. The increasing

complexity of these functions can lead to net increases in internal and external flow control latencies.
This increase affects all messages through the routers. Such trade-offs and related issues affecting

the design of routers are discussed in detail in Chapter 7 and evaluated in Chapter 9.

2.5 Hybrid Switching Techniques

The availability and flexibility of virtual channels have led to the development of several hybrid
switching techniques. These techniques have been motivated by a desire to combine the advantages
of several basic approaches, or have been motivated by the need to optimize performance metrics
other than traditional latency and throughput, e.g., fault tolerance and reliability. Some common

hybrid switching techniques are presented in this section.

2.5.1 Buffered Wormhole Switching

A switching technique that combines aspects of Wormhole switching and packet switching is bufiered
wormhole switching (BWS), proposed and utilized in IBM’s Power Parallel SP systems. The switch-
ing technique and message formats have been motivated by the interconnection network utilized
in the SP systems. This network is a multistage, generalized Omega network using 4 X 4 crossbar
switches with bidirectional links. The system building block is a 16-processor system configured

around the two-stage switch witheight crossbar switches as shown in Figure 2.19a. This module is
referred to as a frame. Each 4 X 4 switch uses bidirectional links, and therefore can be viewed as an

8 X 8 implementation of the router organization shown in Figure 2.1 with the functionality described
below.

The basic switching mechanism is Wormhole switching. Message packets can be of variable length
and up to 255 flits in length. Each flit is 1 byte and is equal to the physical channel width. The
first flit of a message contains the length of the message while the following flits contain routing
information. Routing is source-based Where each routing flit contains the address of the output ports
in intermediate switches. There is 1 routing flit for each frame, i.e., for each group of 16 processors.

The format of the routing flit is shown in Figure 2.19b. Note that these 4 X 4 crossbar switches
have bidirectional links, and therefore eight input ports and eight output ports. Bits 4-6 are used
to select the output port of the first switch in the frame. Bits 0-2 are used to select the output port
of the second switch in the frame. Bit 7 is used to determine which field is to be used. It is initially

cleared and set by the first switch in the frame. Larger systems are built up as groups of frames.
Every frame requires 1 routing flit.
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Figure 2.19. (a) Organization of the switch used in the IBM Power Series parallel machines. (b)
Routing flit format.

As the message is routed through the switches, the corresponding routing flit is discarded, short-
ening the message. This is similar to the mad postman switching strategy. As long as the path is
conflict-free, the message progresses as in Wormhole switching with interswitch flow control operat-
ing at the flit level. When output channels are available, data flow through the switch is through
byte—vvide paths through the internal crossbar and to the output port. When messages block, flow
control within the switch is organized into 8-flit units referred to as chunks. When messages block,
chunks are constructed at the input port of a switch, transmitted through 64-bit—wide paths to the
a local memory. Subsequently, buffered chunks are transferred to an output port where they are
converted to a flit stream for transmission across the physical channel.

When there is a conflict at the output of a routing node, flits are buffered within the switch
as chunks. These chunks are buffered in a dynamically allocated central storage. The storage is
organized as a linked list for each output, where each element of the list is a message to be transmitted
on that output port. Since only the first chunk of a message contains routing information, each
message is in turn organized as a list of chunks. Thus, ordering of flits within a message packet
is preserved. This type of organization is depicted in Figure 2.20 where two messages are shown
queued at an output port. The first message is comprised of 24 flits and the second message is 16
flits long. Messages waiting on each of the other output ports are similarly organized. When an
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Figure 2.20. Logical organization of the message flit bufiers.

output port becomes free, messages are transmitted to the output channel as 64-bit chunks in a
single cycle: since the internal datapath and flow control to/from central memory is based on 8-flit
chunks. The central storage is dual-ported and can support 128 chunks. A minimum of one chunk is
made available for each output port. The remaining chunks are dynamically allocated as necessary.

In a single cycle, one input port or one output port can be serviced from the central storage. Thus
we see that short messages can be completely buffered.

BWS differs from Wormhole switching in that flits are not buffered in place. Rather flits are

aggregated and buffered in a local memory within the switch. If the message is small and space is
available in the central queue, the input port is released for use by another message even though this

message packet remains blocked. In this respect, BWS appears similar to packet switching. BWS
differs from packet switching and VCT switching in that flow control is largely at the flit level and
when messages are blocked, flow control (within the switch) is at the level of 8—flit chunks. If the
central queue were made large enough to ensure that complete messages could always be buffered,
the behavior of BWS would approach that of VCT switching.

The base latency of a message routed using BWS is identical to that of Wormhole-switched
messages.

i2.5.2 Pipelined Circuit Switching
In many environments rather than minimizing message latency or maximizing network throughput,

‘ the overriding issue is the ability to tolerate the failure of network components such as routers and
links. In Wormhole switching, header flits containing routing information establish a path through
the network from source to destination. Data flits are pipelined through the path immediately

following the header flits. If the header cannot progress due to a faulty component, the message is
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Figure 2.21. Time-space diagram of a message transmitted using PCS.

blocked in place indefinitely, holding buffer resources and blocking other messages. This situation
can eventually result in a deadlocked configuration of messages. While techniques such as adaptive
routing can alleviate the problem, it cannot by itself solve the problem. This has motivated the
development of different switching techniques.

Pipelined circuit switching (PCS) combines aspects of circuit switching and Wormhole switching.
PCS sets up a path before starting data transmission as in circuit switching. Basically, PCS differs
from circuit switching in that paths are formed by virtual channels instead of physical channels. In
pipelined circuit switching, data flits do not immediately follow the header flits into the network as
in Wormhole switching. Consequently, increased flexibility is available in routing the header flit. For
example, rather than blocking on a faulty output channel at an intermediate router, the header may
backtrack to the preceding router and release the previously reserved channel. A new output channel
may now be attempted at the preceding router in finding an alternative path to the destination.
When the header finally reaches the destination node, an acknowledgment flit is transmitted back
to the source node. Now data flits can be pipelined over the path just as in wormhole switching.
The resilience to component failures is obtained at the expense of larger path setup times. This
approach is flexible in that headers can perform a backtracking search of the network, reserving
and releasing virtual channels in an attempt to establish a fault-free path to the destination. This
technique combines message pipelining from Wormhole switching with a more conservative path
setup algorithm based on circuit switching techniques. A time-space diagram of a PCS message
transmission over three links in the absence of any trafiic or failures is shown in Figure 2.21.

Since headers do not block holding channel or buffer resources, routing restrictions are not neces-

sary to avoid deadlock. This increases the probability of finding a path while still avoiding deadlocked
configurations of messages. Moreover, reservation of virtual channels by the header does not by itself
lead to use of physical channel bandwidth. Therefore, unlike circuit switching, path setup does not
lead to excessive blocking of other messages. As a result, multipath networks in conjunction with
the flexibility of PCS are good candidates for providing low-latency fault-tolerant performance. For
purely performance-driven applications where fault tolerance is not a primary concern, the added
overhead of PCS makes Wormhole switching the mechanism of choice.
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(b)

Figure 2.22. Virtual channel model for PCS.

In PCS, we distinguish between flits that carry control information, e.g., header flits and ac-
knowledgment flits, and those that carry data. This distinction is supported in the virtual channel
model that separates control flit traffic and data flit traffic. A unidirectional virtual channel vi is

composed of a data channel, a corresponding channel, and a complementary channel (vi-d,v1-‘,vf) and
is referred to as a virtual channel trio. The router header will traverse vf while subsequent data

flits Will traverse of. The complementary channel 1);‘ is reserved for use by acknowledgment flits
and backtracking header flits. The complementary channel of a trio traverses the physical channel

in the direction opposite to that of its associated data channel. The channel model is illustrated

in Figure 2.22. There are two virtual channels 12,-(12,) and vj (vs) from R1 (R2) to R2 (R1). Only
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Figure 2.23. Example format of a PCS header.

one message can be in progress over a given data channel. Therefore, compared to existing channel
models, this model requires exactly two extra flit buffers for each data channel —~ one each for the

corresponding channel and the complementary channel, respectively. Since control flit traffic is a
small percentage of the overall flit traflic, in practice all control channels across a physical link are

multiplexed through a single virtual control channel as shown in Figure 2.22a. Thus, compared to
the more common use of virtual channels, this model requires one extra virtual channel in each

direction between a pair of adjacent routers. For example, channel c] in Figure 2.22b corresponds

to flit buffers U,-°,'l);,v;‘,u;‘. The implementation of PCS in the Ariadne router [7] utilized two data
channels and one virtual control channel over each physical link.

This separation of control traffic and data traffic is useful in developing fault tolerant routing
and distributed fault recovery mechanisms. Such mechanisms are discussed in greater detail in

Chapter 6. The Ariadne router [7] is a single-chip PCS router ‘with two virtual channel trios per

physical channel. The prototype router had byte-wide physical channels and 8-bit flits. The format
of the header flit is shown in Figure 2.23. In this design a single bit distinguished a control flit from

a data flit (this only left 7-bit data flitsl). A single bit distinguishes between backtracking flits and
flits making forward progress. The misroute field keeps track of the number of misrouting steps the
header has taken. The maximum number of misroutes that the header can take in this design is 3.

Finally, two fields provide X and Y offsets for routing in a 2-D mesh.
The base latency of a pipelined circuit switched message can be computed as follows:

tpcs : tsetup + tdata

tsetup : D(tr ‘l’ ts "l" tw) + D(ts + tux) (Z8)

tdata = Dita ‘l’ tux) ‘l‘Ina-X(t.s7tu1] _

The first term in tump is the time taken for the header flit to reach the destination. The second
term is the time taken for the acknowledgment flit to reach the source node. We then have tdmga

as the time for pipelining the data flits into the destination network interface. The first term is the
time for the first data flit to reach the destination. The second term is the time required to receive

the remaining flits. The message pipeline cycle time is determined by the maximum of the switch
delay and wire delay.

2.5.3 Scouting Switching

Scouting switching is a hybrid message flow control mechanism that can be dynamically configured
to provide specific trade-offs between fault tolerance and performance. In PCS the first data flit is
injected into the network only after the complete path has been set up. In an attempt to reduce
PCS path setup time overhead, in scouting switching the first data flit is constrained to remain at
least K links behind the routing header. When K = 0, the flow control is equivalent to Wormhole

switching, while large values can ensure path setup prior to data transmission (if a path exists).
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Figure 2.24. Time—space diagram of a message transmitted using scouting switching.

Intermediate values of K permit the data flits to follow the header at distance, while still allowing
the header to backtrack if the need arises. Therefore when the header reaches the destination,
the first data flit arrives shortly thereafter rather than immediately (as in Wormhole switching).

Figure 2.24 illustrates a time-space diagram for messages being pipelined over three links using
scouting switching (K 2 2). The parameter, K, is referred to as the scouting distance or probe lead.
Every time a channel is successfully reserved by the routing header, a positive acknowledgment is
returned in the opposite direction. As a particular case, positive acknowledgments are continuously
transmitted when the routing header has reached the destination node. Associated with each virtual
channel is a programmable counter. The counter associated with the virtual channel reserved by
a header is incremented when a positive acknowledgment is received, and is decremented when a

negative acknowledgment is received. When the value of the counter is equal to K, data flits are
allowed to advance. As acknowledgments flow in the direction opposite to the routing header, the

gap between the header and the first data flit can grow up to a maximum of 2K —- 1 links while the
header is advancing. If the routing header backtracks, a negative acknowledgment is transmitted.
For performance reasons, when K = 0 no acknowledgments are sent across the channels. In this case,
data flits immediately follow the header flit and flow control is equivalent to Wormhole switching.

For example, in Figure 2.25 a message is being transmitted between nodes A and G and K = 2.
The initial path attempted by the header is row first. Data flits remain at least two links behind the
header. On encountering faulty output link at node B, the header can backtrack over the previous
link. Encountering another faulty link the header can still backtrack one more link to node C.
During this time the first data flit remains blocked at node 0. From node 0 it is possible to make
progress towards the destination via node D. When the header reaches node F, it is 2K — 1 = 3
links from the first data flit at node C, and data flits can begin to flow again.

By statically fixing the value of K, we fix the trade-off between network performance (overhead
of positive and negative acknowledgment) and fault tolerance (the number of faults that must be
tolerated). By dynamically modifying K, we can gain further improvement via run-time trade-offs
between fault tolerance and performance. Such configurable flow control protocols are discussed in
the context of fault tolerant and reliable routing in Chapter 6.

The base latency of scouting switching can be computed as follows:
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Figure 2.25. An example of fault-tolerant routing enabled by scouting switching.

tscauting — tsetup + (ta + 75w)(2K — 1) + tduta

tsemp : D(t, -l— ts +151”) (2.9)

tdm : max(t3,tu,) (lfi — 1)
The first term is the time taken for the header flit to reach the destination. The first data flit

can be at a maximum of (2K — 1) links behind the header. The second term is the time taken for
the first data flit to reach the destination. The last term is the time for pipelining the remaining
data fiits into the destination network interface.

2.6 Optimizing Switching Techniques
The switching techniques described in this chapter are subject to application—specific optimizations

to further improve performance and/or reliability. Such optimizations do not fundamentally alter
the nature of these techniques but can lead to considerable improvements in performance in specific
application domains. For example, consider the overheads experienced in transmitting and receiving
a message. The programming interface may be a message-passing library comprised of various send
and receive procedures. The concern at this level has been to provide consistent semantics for
sending and receiving messages. The source program builds a message in local buffers and transfers
control to the operating system via system calls. Data are copied into operating system space where
protected device drivers construct message headers, packetize the data, and interact with special-
purpose network interfaces to inject data into the network. This overhead is experienced with every
message. When message sizes are small, the overhead on a per-message basis can be substantial.
There have been several successful efiorts to reduce this overhead. Often, hardware support is

provided for packetization and network interfaces are becoming tightly coupled with memory and

in some cases even the processor registers through memory-mapped techniques and existence on the

processor memory bus rather than on the slower 1/O buses. Copying to and from system buffers
is also being eliminated through the use of message handlers that operate within the user address

spaces. Modern machines are now beginning to focus on the design of the interface between the
network and memory. These techniques are beneficial regardless of the switching techniques.

Similarly, optimizations within the low-level physical channel flow control protocols benefit most

switching techniques. High—speed signaling mechanisms for physical channel flow control affect the
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interrouter latency. As higher-dimensional networks and wider channels are employed the number

of inputs and outputs at a router can become very large. Current packaging technology provides
chip carriers with 300-400 pins. These pins can begin to become a scarce resource. One innovative
technique to addressing this problem is the use of bidirectional signaling [75, 193]. This technique
allows simultaneous signaling between two routers across a single signal line. Thus, full-duplex,

bidirectional Communication of a single bit between two routers can be realized with one pin (signal)
rather than two signals. A logic 1 (0) is transmitted as positive (negative) current. The transmitted

signal is the superposition of these two signals. Each transmitter generates a reference signal which is
subtracted from the superimposed signal to generate the received signal. The result is a considerable

savings over the number of input /output pins required, and consequent reduction in the packaging
cost. Such optimizations at the physical level are also clearly independent of and benefit all switching
techniques.

Application environments that exhibit locality in interprocessor communication are particularly

good candidates for application-specific optimizations. For example, systolic computation makes use
of fine-grained, pipe-lined, parallel transmission of multiple data streams through a fixed communica-
tion topology such as multidimensional mesh or hexagonal interconnection topologies. In such cases,
it is beneficial to set up interprocessor communication paths once to be shared by many successive

data elements (i.e., messages). The Intel iWa.rp chip was designed to support such systolic commu-
nication through message pathways: long—lived communication paths [39]. Rather than set up and
remove network paths each time data are to be communicated, paths through the network persist

for long periods of time. Special messages called pathway begin markers are used to reserve virtual
channels (referred to as logical channels in iWarp) and set up interprocessor communication paths.
Messages are periodically injected into the network to use these existing paths utilizing wormhole
switching. On completion of the computation, the paths are explicitly removed by other control
messages. Unlike conventional wormhole switching, the last flit of the message does not cause the
routers to tear down the path. The overhead of preparing a node for message transmission is in-

curred once, and amortized over all messages that use the path. Such optimizations are possible

due to the regular, predictable nature of systolic communication. The basic switching technique is
wormhole, but it is applied in a manner to optimize the characteristics of the applications.

Not only fine-grained parallel algorithms exhibit communication locality that can be exploited by
switching techniques. Studies of VLSI CAD programs and programs from linear algebra have shown
that coarse-grained message-passing applications can also exhibit sufficient communication locality
to benefit from long-lived communication paths and justify the design of an enhanced wormhole

router [159]. As in the iWa.rp chip, paths are set up and shared by multiple messages until they
are explicitly removed. The basic wormhole switching technique is modified to prevent the path
from being removed when the first message has been successfully received at the destination. In this
case interprocessor paths can even be shared between applications in a multiprogrammed parallel

architecture. Message flow control must avoid deadlock as well as ensuring that reserved paths do
not preclude new messages from being injected into the network.

The need for reliable message transmission has also led to proposals for enhancing switching

techniques. For example, one way to ensure message delivery is to buffer the message at the source
until it can be asserted that the message has been received at the destination. Receipt at the
destination can be determined through the use of message acknowledgments. In this case, paths

are removed by explicit control signals/messages generated by the source/destination rather than
by a part of the message. Alternatively, consider the use of wormhole switching when the number

of flits in the message exceeds the number of links, D, between the source and destination nodes. If
each router only buffers a single flit, receipt of the header at the destination can be asserted at the
source when flit D -1- 1 is injected into the network. If messages are short, they can be padded with
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empty flits so that the number of Hits in the message exceeds the distance between the source and

destination (padding must also account for bufier space within each router). By keeping track of
the number of flits that have been injected into the network, the source router can determine if the
header has been received at the destination. Moreover, the source node can determine if the whole

message has been received at the destination by injecting D + 1 padding flits after the last data flit
of the message. Such reliable switching techniques modify the basic wormhole switching mechanisms
to include additional flits or control signals, e.g., acknowledgments or padding fiits. This particular

technique was proposed as compressionless routing by its developers [179].
The need to support distinct traffic types also leads to new optimizations of switching tech-

niques [293]. Real-time communication trafic places distinct demands on the performance and
behavior of network routers. Such trafiic requires guaranteed bounds on latency and throughput.
The manner in which messages are buffered and scheduled across physical channels must be able to

provide such guarantees on a per-router basis. Such guarantees would be used by higher—level, real-
time scheduling algorithms. Packet switching is attractive from this point of view since predictable
demands are made on buffer requirements and channel bandwidth at each intermediate router. In

contrast, the demands that will be placed on router resources by a message using VCT will vary

depending on the load and communication pattern (ie, is the output link free). Buffering of pack-
ets permits the application of priority-based scheduling algorithms and thus provide some control
over packet latencies. Wormhole-switched messages use demand-driven scheduling disciplines for

accessing physical channel bandwidth and may be blocked across multiple nodes. Demand-driven
scheduling and very low buffer requirements work to provide low average latency but high vari-
ability and thus poor predictability. Priority-based scheduling of virtual channels is infeasible since
a channel may have messages of multiple priorities, and messages may be blocked over multiple
links. These properties make it difficult to utilize wormhole switching to support real-time trafiic.

Rexford and Shin [293] observed that packet switching and wormhole switching made demands on
distinct router resources while sharing physical channel bandwidth. Thus, the authors proposed a
scheme where virtual channels were partitioned to realize two distinct virtual networks: one packet-

switched, and the other wormhole-switched. The two networks share the physical link bandwidth
in a controlled manner, thus enabling the network to provide latency and throughput guarantees
for real-time trafiic, while standard traffic realized low average latency. The switching technique

experienced by a message is determined at the source node, based on the traflic type.
We can envision other optimizations that deal with issues such as allocation/deallocation of

buffer space within routers, allocation/deallocation of virtual channels, scheduling of virtual channels

(equivalently messages) over the physical channel, etc. Some of these optimizations are examined in
greater detail in the Exercises section at the end of this chapter.

2.7 A Comparison of Switching Techniques

The evolution of switching techniques was naturally influenced by the need for better performance.

VCT switching introduced pipelined message transmission, and wormhole switching further con-
tributed reduced buffer requirements in conjunction with fine-grained pipelining. The mad postman

switching technique carried pipelining to the bit level to maximize performance. In packet switching
and VCT messages are completely buffered at a node. As a result, the messages consume network
bandwidth proportional to the network load. On the other hand, wormhole-switched messages may

block occupying buffers and channels across multiple routers, precluding access to the network band-
width by other messages. Thus, while average message latency can be low, the network saturates
at a fraction of the maximum available bandwidth and the variance of message latency can be high.
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The use of virtual channels decouples the physical channel from blocked messages, thus reducing the

blocking delays experienced by messages and enabling a larger fraction of the available bandwidth
to be utilized. However, the increasing multiplexing of multiple messages increases the delay expe-

rienced by data flits. Furthermore, multiple virtual channels can increase the flow control latency

through the router and across the physical channel, producing upward pressure on average message
latency.

The effects of wormhole switching on individual messages can be highly unpredictable. Since

bulfer requirements are low, contention in the network can substantially increase the latency of a

message in parts of the network. Packet switching tends to have more predictable latency charac-
teristics, particularly at low loads since messages are buffered at each node. VCT will operate like

- wormhole switching at low loads and approximate packet switching at high loads Where link con-
tention will force packets to be buffered at each node. Thus, at low loads we expect to see wormhole

switching techniques providing superior latency/throughput relative to packet-switched networks,
while at high loads we expect to see packet-switched schemes perform better. As expected, the per-
formance of VCT approaches that of Wormhole switching at low loads and that of packet switching

at high loads. More detailed performance comparisons can be found in Chapter 9.
These switching techniques can be characterized as optimistic in the sense that buffer resources

and links are allocated as soon as they become available, regardless of the state of progress of the
remainder of the message. In contrast, pipelined circuit switching and scouting switching may be
characterized as conservative. Data flits are transmitted only after it is clear that flits can make

forward progress. These flow control protocols are motivated by fault tolerance concerns. BWS
seeks to improve the fraction of available bandwidth that can be exploited by wormhole switching
by buffering groups of fiits.

In packet switching, error detection and retransmission can be performed on a link-by-link ba-
sis. Packets may be adaptively routed around faulty regions of the network. When messages are

pipelined over several links, error recovery and control becomes complicated. Error detection and re-
transmission (if feasible) must be performed by higher-level protocols operating between the source
and destination, rather than at the level of the physical link. If network routers or links have failed,

message progress can be indefinitely halted, with messages occupying bufier and channel resources.
This can lead to deadlocked configurations of messages and eventually failure of the network.

2.8 Engineering Issues

Switching techniques have a very strong impact on the performance and behavior of the intercon-
nection network. Performance is more heavily influenced by the switching technique than by the

topology or the routing algorithm. Furthermore, true tolerance to faulty network components can
only be obtained by using a suitable switching technique. The use of topologies with multiple
alternative paths between every source destination pair, and the availability of adaptive routing pro-
tocols simply reduces the probability of a message encountering a faulty component. The switching
technique determines how messages may recover from faulty components.

Switching techniques also have a considerable influence on the architecture of the router, and as
a result, the network performance. For example, consider the magnitude of the improvement in per-
formance that Wormhole switching provides over packet switching. First-generation multicomputers

such as the Intel iPSC/1 utilized packet switching. The iPSC/1 network had routing times on the
order of several milliseconds. In addition, message latency was proportional to the distance traveled

by the message. In contrast, modern multicomputers such as the Intel Paragon and the Cray T3D
have routing and switch delays on the order of several nanoseconds. Message latency has decreased
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from a few tens of milliseconds to a few hundreds of nanoseconds. In one decade, latency improved

by five orders of magnitude! Obviously, this improvement benefits from advances in VLSI technol-

ogy. However, VLSI technology only improved performance by one order of magnitude. Network
devices were clocked at 10 MHZ in the Intel iPSC/1 while the Cray T3D is clocked at 150 MHz.

Pipelined message transfer alone cannot be responsible for this magnitude of performance im-
provement. What then is the source? An important difference between first-generation multicom-

puters and current multicomputers is that the routing algorithm is computed in hardware. However,
packet switching would still be much slower than wormhole switching even if the routing algorithm
were computed in hardware in both cases. Wormhole switching performs flow control at the flit
level. This apparently unimportant change considerably reduces the need for buffering space. Small
hardware buffers are enough to handle flit propagation across intermediate routers. As a conse-

quence, wormhole routers are small, compact, and fast. Moreover, wormhole routers are able to
handle messages of any length. However, packet-switched routers must provide buffering space for
full packets, either limiting packet size or necessitating the use of local processor memory for stor-
ing packets. Access to local node memory is very expensive in terms of time. Storing packets in
node memory not only consumes memory bandwidth, but also the network bandwidth of a node is
reduced to a fraction of the memory bandwidth. However, wormhole routers do not store packets in

memory. Memory is only accessed for injecting and delivering packets. As a consequence, channel
bandwidth can be much higher than in packet-switched routers. Depending on the design of the
network interface, channel bandwidth may even exceed memory bandwidth. This is the case for the
iWa.rp chip, in which the processor directly accesses the network through special registers.

Even if the router is able to bufler full packets, the larger packet buffers are slower than flit

buffers, increasing the flow control latency through the router and slowing down clock frequency.
Furthermore, the use of hardware packet buffers implies a fixed packet size. Variable-sized messages
must be partitioned into fixed-size packets. This increases message latency and percentage of network
bandwidth devoted to overhead, e.g., processing and transmitting packet headers. The unit of flow
control in VCT switching is also a packet. Thus, many of these design considerations are applicable
to VCT switching. However, wormhole switching does not require messages to be split into packets.
This is one of the reasons why VCT routers have not replaced wormhole routers.

We might expect that the mad postman switching technique may considerably increase perfor-
mance over wormhole switching. However, mad postman switching can only improve performance if
the default output channel selected at an intermediate router has a high probability of being the cor-
rect output channel. The highest probabilities occur in low—dimensional networks, e.g., 2-D meshes
because messages turn only once. However, for a fixed pin-out on the router chips, low-dimensional
networks allow the use of wider data channels. Consequently, a header can be transmitted across a

physical channel in a single clock cycle, rendering finer-grained pipelining unnecessary and nullifying
any advantage of using the mad postman switching.

In summary, we observe that wormhole switching owes its popularity in part to the fact that it
performs flow control at the flit level, requiring only small flit buffers. Messages are not stored in
memory when they block, but rather span multiple routers. However, the small buffers produce a
short delay, and wormhole routers can be clocked at a very high frequency. The result is very high
channel bandwidth, potentially higher than the bandwidth to local memory. Given the current state
of the technology, we believe that the most promising approach to increase performance considerably
with respect to current interconnection networks consists of defining new switching techniques that
take advantage of communication locality, and optimize performance for groups of messages rather
than individual messages. Similarly, we believe that the most effective way to offer an architectural
support for collective communication, and for fault-tolerant communication, is by designing specific
switching techniques. These issues will be explored in Chapters 5 and 6.
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2.9 Commented references

Circuit switching has its origin in telephone networks. Packet switching has its origin in data
networks for intercomputer communication. The first parallel machines were generally packet- or

2 circuit-switched. The Intel iPSC/1 was packet-switched with message latencies on the order of
milliseconds. The Direct Connect Module (DCM) introduced in the later-generation Intel iPSC/2

and iPSC/860 machines [257] employed circuit-switched communication with short messages being
transmitted in a manner akin to wormhole switching. The GP 1000 from BBN employed a circuit-

switched multistage network. The original Denelcor HEP [190], the MIT Tagged Token Dataflow

Machine [12], and the Manchester Dynamic Dataflow Machine [144, 145], were all early machines
. that utilized a packet-switched interprocessor communication network.

Wormhole switching was introduced in the Torus Routing Chip [77, 78] and the performance for
wormhole-switched multidimensional tori was examined in [71]. The latest in the line of machines
from Intel, the Paragon [165], utilizes wormhole-switched communication. Other machines that

utilize wormhole switching include the Cray T3D [258], the IBM Power Parallel SP series [326, 327],
and the Meiko Computing Surface [22]. At the time of this writing, interconnection networks in
current generation machines appear to be adopting wormhole switching as the mechanism of choice.
While the introduction of VCT switching [172] predates wormhole switching, it is not yet in use in
commercially available parallel architectures. The best known implementation of VCT is the Chaos

router [188]. The use of virtual channel flow control was introduced in [73]. The Cray T3D [258]
and the Cray T3E [312] utilize multiple virtual channels per physical channel.

Mad postman switching was introduced in [167] and has found its way into the implementation of
low-cost asynchronous routers. However, with the increasing pin-out and channel width in modern
routers, wormhole switching still appears to hold an advantage over the mad postman switching
technique. More recently, pipelined circuit switching was proposed as a robust switching mecha-

nism [127] and was subsequently realized in the Ariadne router Scouting switching [100] and the
use of dynamically configurable switching techniques [80] was designed to improve the performance
of pipelined circuit switching on message traflic that did not encounter any faulty channels.

A thorough study of router architectures and the development of a cost /performance model for
router architectures canebe found in [11, 57]. These models provide definitions of critical measures
of router performance and enable assessment of the impact of virtual channels, channel signaling

speed, message formats, etc. on the flow control latency and router delays.

EXERCISES

2.1 Modify the router model shown in Figure 2.1 to use input buffering only and no virtual
Channels. Rewrite the expressions for the base latency of wormhole switching and packet

switching for this router model.

Solution Figure 2.26 illustrates an input-buflered version of Figure 2.1. In this case, in a

single cycle a flit is routed through the switch across a physical channel, and into the input
buffer of the next router. When a message arbitrates for the output of the router switch, it

simultaneously acquires the output physical channel. In general, the duration of a cycle in an

input-buffered switch will be longer than that of a switch that has both buffered inputs and
buffered outputs. Similar observations can be made about output-buffered switches.
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Figure 2.26. Architecture of an input-bufi'ered router with no virtual channels. (LC : Link con-
troller.)

The no-load latency for Wormhole switching and packet switching can be rewritten as follows:

two’!-mhole + ts 'i‘ try) ‘I’ (ta + 1:112), (2.10)
tpacket D{t1‘ + (ta +

Assume that the physical channel flow control protocol assigns bandwidth to virtual channels
on a strict time-sliced basis rather than a demand-driven basis. Derive a expression for the

base latency of a Wormhole-switched message in the worst case as a function of the number of
virtual channels. Assume that the routers are input-bufi'ered.

Solution Assume that we have V virtual channels. Regardless of network traffic, each

message will receive only -6; of the physical channel bandwidth over every link. Therefore the
ideal link speed seen by a message is Vtw seconds. After routing a header, it takes a random
number of cycles until the time slice is assigned to the selected virtual channel. In the worst
case, it will take V cycles. Therefore the no-load latency becomes

L

twomhoze = D[tr + V(t5 + t.u,)] + V(t5 + 15,”) (2.11)
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PROBLEMS

2.1 In Wormhole switching, the last flit or tail flit causes the intermediate routers to release re-
sources such as buffers or links. The time—space diagram used to describe wormhole switching

adopts this view. Consider a modification to Wormhole switching where the message path
is not removed by the tail flit. Rather an acknowledgment is received from the destination,

following which a tail flit is transmitted. Draw a time—space diagram of the transmission of
a message over three links and write an expression for the number of cycles a link remains
reserved for the transmission of this message. What percentage of this time is the link busy

assuming no contention for any physical channel along the path? Assume that the routers are
input—buflered only.

One of the advantages of virtual channels is the reduction of header blocking delay. However,
this assumes that the physical channel bandwidth is allocated on a fair basis. Suppose we
were to schedule virtual channels over the physical channel on a priority basis. Consider a

design with two virtual channels. Show how priority scheduling of a low-priority message and
a high—priority message over the same physical channel can result in deadlock.

Physical channel flow control synchronizes the transmission of phits across a channel. Assuming
a synchronous channel, show how phits can be streamed across a channel, i.e., a sequence of K

phits are transmitted before any acknowledgment is received from the receiver, so that we need
only synchronize the transmission and receipt of K phits at a time. What are the requirements
for buffer space on the receiver?

Consider a Wormhole-switched network where virtual circuits persist until they are explicitly

torn down by control signals or special messages. Draw a time—space diagram of the trans-
mission of three messages over a path three links in length before it is removed by a special
control flit injected into the path at the source node.

The IBM Power Parallel SP-2 represents a balanced design where the rate at which chunks
can be transferred to switch memory is eight times the rate at which flits cross a physical
channel. A similar observation can be made about the interface between switch memory and

the output channels. The maximum message size is 8 chunks. Write an expression for the
size of switch memory in flits in terms of the internal data path width (equal to one chunk),

number of flits/chunk, and the number of input/output ports. Assume that one flit can be
transmitted across the physical channel in one cycle. Validate this expression by instantiating
with parameters from the SP-2.

The main advantage of packet switching over message switching is that several packets can
be simultaneously in transit along the path from source to destination. Assuming that all the
packets follow the same path, there is no need to add a sequence number to each packet. Draw
a time—space diagram of the transmission of a message consisting of four packets over a path

three links in length. Assuming that the routers are input-buffered only, compute the optimal
number of packets that minimizes the base latency for the transmission of a message of L bits
along D channels.

In the previous exercise, as all the packets follow the same path, assume that packet headers are

stripped from all the packets but the first one. Assuming that the routers are input-buffered
only, compute the optimal number of packets and the optimal packet size that minimizes the


