
Abstract

The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
h o o p Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

DASH is a scalable shared-memory multiprocessor currently
being developed at Stanford's Computer Systems Laboratory.
The architecture consists of powerful processing nodes, each
with a portion of the shared-memory, connected to a scalable
interconnection network. A key feature of DASH is its dis-
tributed directory-based cache coherence protocol. Unlike tra-
ditional snoopy coherence protocols, the DASH protocol does
not rely on broadcast; instead it uses point-to-point messages
sent between the processors and memories to keep caches con-
sistent. Furthermore, the DASH system does not contain any
single serialization or control point. While these features pro-
vide the basis for scalability, they also force a reevaluation of
many fundamental issues involved in the design of a proto-
col. These include the issues of correctness, performance and
protocol complexity. In this paper, we present the design of
the DASH coherence protocol and discuss how it addresses the
above issues. We also discuss our strategy for verifying the
correctness of the protocol and briefly compare our protocol to
the IEEE Scalable Coherent Interface protocol.

1 Introduction
The limitations of current uniprocessor speeds and the ability to
replicate low cost, high-performance processors and VLSI com-
ponents have provided the impetus for the design of multipro-
cessors which are capable of scaling to a large number of pro-
cessors. Two major paradigms for these multiprocessor archi-
tectures have developed, message-passing and shared-memory.
In a message-passing multiprocessor, each processor has a lo-
cal memory, which is only accessible to that processor. Inter-
processor communication occurs only through explicit message
passing. In a shared-memory multiprocessor, all memory is ac-
cessible to each processor. The shared-memory paradigm has
the advantage that the programmer is not burdened with the
issues of data partitioning, and accessibility of data from all
processors simplifies the task of dynamic load distribution. The
primary advantage of the message passing systems is the ease
with which they scale to support a large number of proces-
sors. For shared-memory machines providing such scalability
has traditionally proved difficult to achieve.

We are currently building a prototype of a scalable shared-
memory multiprocessor. The system provides high processor
performance and scalability though the use of coherent caches
and a directory-based coherence protocol. The high-level or-

e
e
e

Figure 1: General architecture of DASH.

ganization of the prototype, called DASH (Directory Architec-
ture for SHared memory) [17], is shown in Figure 1. The ar-
chitecture consists of a number of processing nodes connected
through a high-bandwidth low-latency interconnection network.
The physical memory in the machine is distributed among the
nodes of the multiprocessor, with all memory accessible to each
node. Each processing node, or cluster, consists of a small
number of high-performance processors with their individual
caches, a portion of the shared-memory, a common cache for
pending remote accesses, and a directory controller interfacing
the cluster to the network. A bus-based snoopy scheme is used
to keep caches coherent within a cluster, while inter-node cache
consistency is maintained using a distributed directory-based
coherence protocol.

The concept of directory-based cache coherence was first pro-
posed by Tang [20] and Censier and Feautxier [6]. Subsequently,
it has been been investigated by others ([1],[2] and [23]). Build-
ing on this earlier work, we have developed a new directory-
based cache-coherence protocol which works with distributed
directories and the hierarchical cluster configuration of DASH.
The protocol also integrates support for efficient synchroniza-
tion operations using the directory. Furthermore, in designing
the machine we have addressed many of the issues left unre-
solved by earlier work.

In DASH, each processing node has a directory memory cor-
responding to its portion of the shared physical memory. For
each memory block, the directory memory stores the identities

CH2887-8/90/0000/0148$01 .OO 0 1990 IEEE 148

1 APPLE 1005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

of all remote nodes caching that block. Using the directory
memory, a node writing a location can send point-to-point in-
validation or update messages to those processors that are ac-
tually caching that block. This is in contrast to the invalidating
broadcast required by the snoopy protocol. The scalability of
DASH depends on this ability to avoid broadcasts. Another im-
portant attribute of the directory-based protocol is that it does
not depend on any specific interconnection network topology.
As a result, we can readily use any of the low-latency scalable
networks, such as meshes or hypercubes, that were originally
developed for message-passing machines [7].

While the design of bus-based snoopy coherence protocols
is reasonably well understood, this is not true of distributed
directory-based protocols. Unlike snoopy protocols, directory-
based schemes do not have a single serialization point for all
memory transactions. While this feature is responsible for their
scalability, it also makes them more complex and forces one to
rethink how the protocol should address the fundamental issues
of correctness, system performance, and complexity.
The next section outlines the important issues in designing

a cache coherence protocol. Section 3 gives an overview of
the DASH hardware architecture. Section 4 describes the de-
sign of the DASH coherence protocol, relating it to the issues
raised in section 2. Section 5 outlines some of the additional
operations supported beyond the base protocol, while Section 6
discusses scaling the directory structure. Section 7 briefly de-
scribes our approach to verifying the correctness of the proto-
col. Section 8 compares the DASH protocol with the proposed
IEEE-SCI (Scalable Coherent Interface) protocol for distributed
directory-based cache coherence. Finally, section 9 presents
conclusions and summarizes the current status of the design
effort.

2 Design Issues for Distributed Coher-
ence Protocols

The issues that arise in the design of any cache coherence pro-
tocol and, in particular, a distributed directory-based protocol,
can be divided into three categories: those that deal with cor-
rectness, those that deal with the performance, and those related
to the distributed control of the protocol.

2.1 Correctness
The foremost issue that any multiprocessor cache coherence
protocol must address is Correctness. This translates into re-
quirements in three areas:

Memory Consistency Model: For a uniprocessor, the model
of a correct memory system is well defined. Load operations
return the last value written to a given memory location. Like-
wise, store operations bind the value returned by subsequent
loads of the location until the next store. For multiprocessors,
however, the issue is more complex because the definitions of
“last value written”, “subsequent loads” and “next store” be-
come less clear as there may be multiple processors reading and
writing a location. To resolve this difficulty a number of mem-
ory consistency models have been proposed in the literature,
most notably, the sequential and weak consistency models [SI.
Weaker consistency models attempt to loosen the constraints on
the coherence protocol while still providing a reasonable pro-
gramming model for the user. Although most existing systems

utilize a relatively strong consistency model, the larger latencies
found in a distributed system favor the less constrained models.

Deadlock: A protocol must also be deadlock free. Given
the arbitrary communication pattems and finite buffering within
the memory system there are numerous opportunities for dead-
lock. For example, a deadlock can occur if a set of transactions
holds network and buffer resources in a circular manner, and
the consumption of one request requires the generation of an-
other request. Similarly, lack of flow control in nodes can cause
requests to back up into the network, blocking the flow of other
messages that may be able to release the congestion.

Error Handling: Another issue related to correctness is sup-
port for data integrity and fault tolerance. Any large system will
exhibit failures, and it is generally unacceptable if these fail-
ures result in corrupted data or incorrect results without a fail-
ure indication. This is especially true for parallel applications
where algorithms are more complex and may contain some non-
determinism which limits repeatability. Unfortunately, support
for data integrity and fault-tolerance within a complex protocol
that attempts to minimize latency and is executed directly by
hardware is difficult. The protocol must attempt to balance the
level of data integrity with the increase in latency and hard-
ware complexity. At a minimum, the protocol should be able to
flag a l l detectable failures, and convey this information to the
processors affected.

2.2 Performance
Given a protocol that is correct, performance becomes the next
important design criterion. The two key metrics of memory
system performance are latency and bandwidth.

Latency: Performance is primarily determined by the la-
tency experienced by memory requests. In DASH, support for
cachable shared data provides the major reduction in latency.
The latency of write misses is reduced by using write buffers
and by the support of the release consistency model. Hiding
the latency for read misses is usually more critical since the
processor is stalled until data is retumed. To reduce the la-
tency for read misses, the protocol must minimize the number
of intercluster messages needed to service a miss and the delay
associated with each such message.

Bandwidth: Providing high memory bandwidth that scales
with the number of processors is key to any large system.
Caches and distributed memory form the basis for a scal-
able, high-bandwidth memory system in DASH. Even with dis-
tributed memory, however, bandwidth is limited by the serial-
ization of requests in the memory system and the amount of
traffic generated by each memory request.

Servicing a memory request in a distributed system often
requires several messages to be transmitted. For example, a
message to access a remote location generates a reply message
containing the data, and possibly other messages invalidating
remote caches. The component with the largest serialization in
this chain limits the maximum throughput of requests. Serial-
ization affects performance by increasing the queuing delays,
and thus the latency, of memory requests. Queueing delays can
become critical for locations that exhibit a large degree of shar-
ing. A protocol should attempt to minimize the service time
at all queuing centers. In particular, in a distributed system no
central resources within a node should be blocked while inter-
node communication is taking place to service a request. In this
way serialization is limited only by the time of local, intra-node
operations.

149

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The amount of traffic generated per request also limits the
effective throughput of the memory system. Traffic seen by
the global interconnect and memory subsystem increases the
queueing for these shared resources. DASH reduces traffic by
providing coherent caches and by distributing memory among
the processors. Caches filter many of the requests for shared
data while grouping memory with processors removes private
references if the corresponding memory is allocated within the
local cluster. At the protocol level, the number of messages
required to service different types of memory requests should
be minimized, unless the extra messages directly contribute to
reduced latency or serialization.

2.3 Distributed Control and Complexity
A coherence protocol designed to address the above issues must
be partitioned among the distributed components of the multi-
processor. These components include the processors and their
caches, the directory and main memory controllers, and the in-
terconnection network. The lack of a single serialization point,
such as a bus, complicates the control since transactions do not
complete atomically. Furthermore, multiple paths within the
memory system and lack of a single arbitration point within the
system allow some operations to complete out of order. The re-
sult is that there is a rich set of interactions that can take place
between different memory and coherence transactions. Parti-
tioning the control of the protocol requires a delicate balance
between the performance of the system and the complexity of
the components. Too much complexity may effect the ability
to implement the protocol or ensure that the protocol is correct.

3 Overview of DASH
Figure 2 shows a high-level picture of the DASH prototype we
are building at Stanford. In order to manage the size of the
prototype design effort, a commercial bus-based multiprocessor
was chosen as the processing node. Each node (or cluster) is
a Silicon Graphics POWER Station 4D/240 [4]. The 4D/240
system consists of four high-performance processors, each con-
nected to a 64 Kbyte first-level instruction cache, and a 64 Kbyte
write-through data cache. The 64 Kbyte data cache interfaces
to a 256 Kbyte second-level write-back cache through a read
buffer and a 4 word deep write-buffer. The main purpose of this
second-level cache is to convert the write-through policy of the
first-level to a write-back policy, and to provide the extra cache
tags for bus snooping. Both the first and second-level caches
are direct-mapped.

In the 4D/240, the second-level caches are responsible for bus
snooping and maintaining consistency among the caches in the
cluster. Consistency is maintained using the Illinois coherence
protocol [19], which is an invalidation-based ownership proto-
col. Before a processor can write to a cache line, it must first
acquire exclusive ownership of that line by requesting that all
other caches invalidate their copy of that line. Once a processor
has exclusive ownership of a cache line, it may write to that
line without consuming further bus cycles.

The memory bus (MPBUS) of the 4D/240 is a pipelined syn-
chronous bus, supporting memory-to-cache and cache-to-cache
transfers of 16 bytes every 4 bus clocks with a latency of 6 bus
clocks. While the MPBUS is pipelined, it is not a split transac-
tion bus. Consequently, it is not possible to efficiently interleave
long duration remote transactions with the short duration local

1

Figure 2: Block diagram of sample 2 x 2 DASH system.

transactions. Since this ability is critical to DASH, we have
extended the MPBUS protocol to support a retry mechanism.
Remote Kequests are signaled to retry while the inter-cluster
messages are being processed. To avoid unnecessary retries the
processor is masked from arbitration until the response from the
remote request has been received. When the response arrives,
the requesting processor is unmasked, retries the request on the
bus, and is supplied the remote data.

A DASH system consists of a number of modified 4D/240
systems that have been supplemented with a directory controller
board. This directory controller board is responsible for main-
taining the cache coherence across the nodes and serving as the
interface to the interconnection network.

The directory board is implemented on a single printed cir-
cuit board and consists of five major subsystems as shown in
Figure 3. The directory controller @C) contains the directory
memory corresponding to the portion of main memory present
within the cluster. It also initiates out-bound network requests
and replies. The pseudo-CPU (PCPU) is responsible for buffer-
ing incoming requests and issuing such requests on the cluster
bus. It mimics a CPU on this bus on behalf of remote processors
except that responses from the bus are sent out by the directory
controller. The reply controller (RC) tracks outstanding requests
made by the local processors and receives and buffers the corre-
sponding replies from remote clusters. It acts as memory when
the local processors are allowed to retry their remote requests.
The network interface and the local portion of the network it-
self reside on the directory card. The interconnection network
consists of a pair of meshes. One mesh is dedicated to the re-
quest messages while the other handles replies. These meshes
utilize wormhole routing [9] to minimize latency. Finally, the
board contains hardware monitoring logic and miscellaneous
control and status registers. The monitoring logic samples a
variety of directory board and bus events from which usage and
performance statistics can be derived.

The directory memory is organized as an array of directory

150

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Rcquesl Network Rcply Nctworll

MPBUS Addrcss /
Cnn1rol .

- Per p-saor invdid- - RAC snoopr on bus

I *

* Forward rm” CPU
q u e s t to local MPBUS

* lssuc cache linc invalid-
ations and lock p t s

F-i& t t

entries. There is one entry for each memory block. The direc-
tory entries used in the prototype are identical to that originally
proposed in [6] . They are composed of a single state bit to-
gether with a bit vector of pointers to clusters. The state bit
indicates whether the clusters have a read (shared) or readwrite
(dirty) copy of the data. The bit vector contains a bit for each
of the sixteen clusters supported in the prototype. Associating
the directory with main memory allows the directory to be built
with the same DRAM technology as main memory. The DC ac-
cesses the directory memory on each MPBUS transaction along
with the access to main memory. The directory information is
combined with the type of bus operation, address, and result
of the snooping within the cluster to determine what network
messages and bus controls the DC will generate.

The RC maintains its state in the remote access cache (RAC).
The functions of the RAC include maintaining the state of cur-
rently outstanding requests, buffering replies from the network
and supplementing the functionality of the processors’ caches.
The RAC is organized as a snoopy cache with augmented state
information. The RAC’s state machines allow accesses from
both the network and the cluster bus. Replies from the network
are buffered in the RAC and cause the waiting processor to be
released for bus arbitration. When the released processor re-
tries the access the RAC supplies the data via a cache-to-cache
transfer.

3.1 Memory Consistency in DASH
As stated in Section 2, the correctness of the coherence protocol
is a function of the memory consistency model adopted by the
architecture. There is a whole spectrum of choices for the level
of consistency to support directly in hardware. At one end is the
sequential consistency model [16] which requires the execution
of the parallel program to appear as some interleaving of the
execution of the parallel processes on a sequential machine. As
one moves towards weaker models of consistency, performance

gains are made at the cost of a more complex programming
model for the user.

The base model of consistency provided by the DASH hard-
ware is called release consistency. Release consistency [lo] is
an extension of the weak consistency model first proposed by
Dubois, Scheurich and Briggs [8]. The distinguishing character-
istics of release consistency is that it allows memory operations
issued by a given processor to be observed and complete out
of order with respect to the other processors. The ordering of
operations is only preserved before “releasing” synchronization
operations or explicit ordering operations. Release consistency
takes advantage of the fact that while in a critical region a pro-
grammer has already assured that no other processor is accessing
the protected variables. Thus, updates to these variables can be
observed by other processors in arbitrary order. Only before
the lock release at the end of the region does the hardware need
to guarantee that all operations have completed. While release
consistency does complicate programming and the coherence
protocol, it can hide much of the overhead of write operations.

Support for release consistency puts several requirements on
the system. First, the hardware must support a primitive which
guarantees the ordering of memory operations at specific points
in a program. Such fence [5, 101 primitives can then be placed
by software before releasing synchronization points in order to
implement release consistency. DASH supports two explicit
fence mechanisms. A jidl-fence operation stalls the proces-
sor until all of its pending operations have been completed,
while a write-fence simply delays subsequent write-operations.
A higher performance implementation of release consistency
includes implicit fence operations within the releasing synchro-
nization operations themselves. DASH supports such synchro-
nization operations yielding release consistency as its base con-
sistency model. The explicit fence operations in DASH then
allow the user or compiler to synthesize stricter consistency
models if needed.

The release consistency model also places constraints on the
base coherence protocol. First, the system must respect the local
dependencies generated by the memory operations of a single
processor. Second, all coherence operations, especially opera-
tions related to writes, must be acknowledged so that the issuing
processor can determine when a fence can proceed. Third, any
cache line owned with pending invalidations against it can not
be shared between processors. This prevents the new processor
from improperly passing a fence. If sharing is allowed then
the receiving processor must be informed when all of the pend-
ing invalidates have been acknowledged. Lastly, any operations
that a processor issues after a fence operation may not become
visible to any other processor until all operations preceding the
fence have completed.

4 The DASH Cache Coherence Protocol
In our discussion of the coherence protocol, we use the follow-
ing naming conventions for the various clusters and memories
involved in any given transaction. A local cluster is a cluster
that contains the processor originating a given request, while
the home cluster is the cluster which contains the main memory
and directory for a given physical memory address. A remote
cluster is any other cluster. Likewise, local memory refers to
the main memory associated with the local cluster while remote
memory is any memory whose home is not the local.

The DASH coherence protocol is an invalidation-based own-

151

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ership protocol. A memory block can be in one of three states as
indicated by the associated directory entry: (i) uncnched-remote,
that is not cached by any remote cluster; (ii) shared-remote, that
is cached in an unmodified state by one or more remote clus-
ters; or (iii) dirty-remote, that is cached in a modified state by
a single remote cluster. The directory does not maintain infor-
mation concerning whether the home cluster itself is caching
a memory block because all transactions that change the state
of a memory block are issued on the bus of the home cluster,
and the snoopy bus protocol keeps the home cluster coherent.
While we could have chosen not to issue all transactions on the
home cluster’s bus this would had an insignificant performance
improvement since most requests to the home also require an
access to main memory to retrieve the actual data.

The protocol maintains the notion of an owning cluster for
each memory block. The owning cluster is nominally the home
cluster. However, in the case that a memory block is present
in the dirty state in a remote cluster, that cluster is the owner.
Only the owning cluster can complete a remote reference for a
given block and update the directory state. While the directory
entry is always maintained in the home cluster, a dirty cluster
initiates all changes to the directory state of a block when it
is the owner (such update messages also indicate that the dirty
cluster is giving up ownership). The order that operations reach
the owning cluster determines their global order.

As with memory blocks, a cache block in a processor’s cache
may also be in one of three states: invalid, shared, and dirty.
The shared state implies that there may be other processors
caching that location. The dirty state implies that this cache
contains an exclusive copy of the memory block, and the block
has been modified.

The following sections outline the three primitive operations
supported by the base DASH coherence protocol: read, read-
exclusive and write-back. We also discuss how the protocol
responds to the issues that were brought up in Section 2 and
some of the altemative design choices that were considered. We
describe only the normal flow for the memory transactions in the
following sections, exception cases are covered in section 4.6.

4.1 Read Requests
Memory read requests are initiated by processor load instruc-
tions. If the location is present in the processor’s fist-level
cache, the cache simply supplies the data. If not present, then a
cache fdl operation must bring the required block into the first-
level cache. A fill operation first attempts to find the cache line
in the processor’s second-level cache, and if unsuccessful, the
processor issues a read request on the bus. This read request ei-
ther completes locally or is signaled to retry while the directory
board interacts with the other clusters to retrieve the required
cache line. The detailed flow for a read request is given in
Figure 7 in the appendix.

The protocol tries to minimize latency by using cache-to-
cache transfers. The local bus can satisfy a remote read if the
given line is held in another processor’s cache or the remote
access cache (RAC). The four processor caches together with
the RAC form a five-way set associative (1.25 Mbyte) cluster
cache. The effective size of this cache is smaller than a true set
associative cache because the entries in the caches need not be
distinct. The check for a local copy is initiated by the normal
snooping when the read is issued on the bus. If the cache line
is present in the shared state then the data is simply transferred
over the bus to the requesting processor and no access to the

remote home cluster is needed. If the cache line is held in a
dirty state by a local processor, however, something must be
done with the ownership of the cache line since the processor
supplying the data goes to a shared state in the Illinois protocol
used on the cluster bus. The two options considered were to: (i)
have the directory do a sharing write-back to the home cluster:
and (ii) have the RAC take ownership of the cache line. We
chose the second option because it permits the processors within
a cluster to read and write a shared location without causing
traffic in the network or home cluster.

If a read request cannot be satisfied by the local cluster, the
processor is forced to retry the bus operation, and a request
message is sent to the home cluster. At the same time the
processor is masked from arbitration so that it does not tie up the
local bus. Whenever a remote request is sent by a cluster, a RAC
entry is allocated to act as a placeholder for the reply to this
request. The RAC entry also permits merging of requests made
by the different processors within the same cluster. If another
request to the same memory block is made, a new request will
not be sent to the home cluster; this reduces both traffic and
latency. On the other hand, an access to a different memory
block, which happens to map to a RAC entry already in use,
must be delayed until the pending operation is complete. Given
that the number of active RAC entries is small the benefit of
merging should outweigh the potential for contention.

When the read request reaches the home cluster, it is issued
on that cluster’s bus. This causes the directory to look up the
status of that memory block. If the block is in an uncached-
remote or shared-remote state the directory controller sends the
data over the reply network to the requesting cluster. It also
records the fact that the requesting cluster now has a copy of
the memory block. If the block is in the dirty-remote state,
however, the read request is forwarded to the owning, dirty
cluster. The owning cluster sends out two messages in response
to the read. A message containing the data is sent directly to the
requesting cluster, and a sharing writeback request is sent to the
home cluster. The sharing writeback request writes the cache
block back to memory and also updates the directory. The flow
of messages for this case is shown in Figure 4.

As shown in Figure 4, any request not satisfied in the home
cluster is forwarded to the remote cluster that has a dirty copy
of the data. This reduces latency by permitting the dirty clus-
ter to respond directly to the requesting cluster. In addition,
this forwarding strategy allows the directory controller to si-
multaneously process many requests (i.e. to be multithreaded)
without the added complexity of maintaining the state of out-
standing requests. Serialization is reduced to the time of a sin-
gle intra-cluster bus transaction. The only resource held while
inter-cluster messages are being sent is a single entry in the
originating cluster’s RAC.

The downside of the forwarding strategy is that it can result
in additional latency when simultaneous accesses are made to
the same block. For example, if two read requests from differ-
ent clusters are received close together for a line that is dirty
remote, both will be forwarded to the dirty cluster. However,
only the first one will be satisfied since this request will force
the dirty cluster to lose ownership by doing a sharing writeback
and changing its local state to read only. The second request
will not find the dirty data and will be returned with a nega-
tive acknowledge (NAK) to its originating cluster. This NAK
will force the cluster to retry its access. An altemative to the
forwarding approach used by our protocol would have been to
buffer the read request at the home cluster, have the home send

152

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

