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DASH is a scalable shared-memory multiprocessor currently 
being developed at Stanford's Computer Systems Laboratory. 
The architecture consists of powerful processing nodes, each 
with a portion of the shared-memory, connected to a scalable 
interconnection network. A key feature of DASH is its dis- 
tributed directory-based cache coherence protocol. Unlike tra- 
ditional snoopy coherence protocols, the DASH protocol does 
not rely on broadcast; instead it uses point-to-point messages 
sent between the processors and memories to keep caches con- 
sistent. Furthermore, the DASH system does not contain any 
single serialization or control point. While these features pro- 
vide the basis for scalability, they also force a reevaluation of 
many fundamental issues involved in the design of a proto- 
col. These include the issues of correctness, performance and 
protocol complexity. In this paper, we present the design of 
the DASH coherence protocol and discuss how it addresses the 
above issues. We also discuss our strategy for verifying the 
correctness of the protocol and briefly compare our protocol to 
the IEEE Scalable Coherent Interface protocol. 

1 Introduction 
The limitations of current uniprocessor speeds and the ability to 
replicate low cost, high-performance processors and VLSI com- 
ponents have provided the impetus for the design of multipro- 
cessors which are capable of scaling to a large number of pro- 
cessors. Two major paradigms for these multiprocessor archi- 
tectures have developed, message-passing and shared-memory. 
In a message-passing multiprocessor, each processor has a lo- 
cal memory, which is only accessible to that processor. Inter- 
processor communication occurs only through explicit message 
passing. In a shared-memory multiprocessor, all memory is ac- 
cessible to each processor. The shared-memory paradigm has 
the advantage that the programmer is not burdened with the 
issues of data partitioning, and accessibility of data from all 
processors simplifies the task of dynamic load distribution. The 
primary advantage of the message passing systems is the ease 
with which they scale to support a large number of proces- 
sors. For shared-memory machines providing such scalability 
has traditionally proved difficult to achieve. 

We are currently building a prototype of a scalable shared- 
memory multiprocessor. The system provides high processor 
performance and scalability though the use of coherent caches 
and a directory-based coherence protocol. The high-level or- 

e 
e 
e 

Figure 1: General architecture of DASH. 

ganization of the prototype, called DASH (Directory Architec- 
ture for SHared memory) [17], is shown in Figure 1. The ar- 
chitecture consists of a number of processing nodes connected 
through a high-bandwidth low-latency interconnection network. 
The physical memory in the machine is distributed among the 
nodes of the multiprocessor, with all memory accessible to each 
node. Each processing node, or cluster, consists of a small 
number of high-performance processors with their individual 
caches, a portion of the shared-memory, a common cache for 
pending remote accesses, and a directory controller interfacing 
the cluster to the network. A bus-based snoopy scheme is used 
to keep caches coherent within a cluster, while inter-node cache 
consistency is maintained using a distributed directory-based 
coherence protocol. 

The concept of directory-based cache coherence was first pro- 
posed by Tang [20] and Censier and Feautxier [6]. Subsequently, 
it has been been investigated by others ([1],[2] and [23]). Build- 
ing on this earlier work, we have developed a new directory- 
based cache-coherence protocol which works with distributed 
directories and the hierarchical cluster configuration of DASH. 
The protocol also integrates support for efficient synchroniza- 
tion operations using the directory. Furthermore, in designing 
the machine we have addressed many of the issues left unre- 
solved by earlier work. 

In DASH, each processing node has a directory memory cor- 
responding to its portion of the shared physical memory. For 
each memory block, the directory memory stores the identities 
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of all remote nodes caching that block. Using the directory 
memory, a node writing a location can send point-to-point in- 
validation or update messages to those processors that are ac- 
tually caching that block. This is in contrast to the invalidating 
broadcast required by the snoopy protocol. The scalability of 
DASH depends on this ability to avoid broadcasts. Another im- 
portant attribute of the directory-based protocol is that it does 
not depend on any specific interconnection network topology. 
As a result, we can readily use any of the low-latency scalable 
networks, such as meshes or hypercubes, that were originally 
developed for message-passing machines [7]. 

While the design of bus-based snoopy coherence protocols 
is reasonably well understood, this is not true of distributed 
directory-based protocols. Unlike snoopy protocols, directory- 
based schemes do not have a single serialization point for all 
memory transactions. While this feature is responsible for their 
scalability, it also makes them more complex and forces one to 
rethink how the protocol should address the fundamental issues 
of correctness, system performance, and complexity. 
The next section outlines the important issues in designing 

a cache coherence protocol. Section 3 gives an overview of 
the DASH hardware architecture. Section 4 describes the de- 
sign of the DASH coherence protocol, relating it to the issues 
raised in section 2. Section 5 outlines some of the additional 
operations supported beyond the base protocol, while Section 6 
discusses scaling the directory structure. Section 7 briefly de- 
scribes our approach to verifying the correctness of the proto- 
col. Section 8 compares the DASH protocol with the proposed 
IEEE-SCI (Scalable Coherent Interface) protocol for distributed 
directory-based cache coherence. Finally, section 9 presents 
conclusions and summarizes the current status of the design 
effort. 

2 Design Issues for Distributed Coher- 
ence Protocols 

The issues that arise in the design of any cache coherence pro- 
tocol and, in particular, a distributed directory-based protocol, 
can be divided into three categories: those that deal with cor- 
rectness, those that deal with the performance, and those related 
to the distributed control of the protocol. 

2.1 Correctness 
The foremost issue that any multiprocessor cache coherence 
protocol must address is Correctness. This translates into re- 
quirements in three areas: 

Memory Consistency Model: For a uniprocessor, the model 
of a correct memory system is well defined. Load operations 
return the last value written to a given memory location. Like- 
wise, store operations bind the value returned by subsequent 
loads of the location until the next store. For multiprocessors, 
however, the issue is more complex because the definitions of 
“last value written”, “subsequent loads” and “next store” be- 
come less clear as there may be multiple processors reading and 
writing a location. To resolve this difficulty a number of mem- 
ory consistency models have been proposed in the literature, 
most notably, the sequential and weak consistency models [SI. 
Weaker consistency models attempt to loosen the constraints on 
the coherence protocol while still providing a reasonable pro- 
gramming model for the user. Although most existing systems 

utilize a relatively strong consistency model, the larger latencies 
found in a distributed system favor the less constrained models. 

Deadlock: A protocol must also be deadlock free. Given 
the arbitrary communication pattems and finite buffering within 
the memory system there are numerous opportunities for dead- 
lock. For example, a deadlock can occur if a set of transactions 
holds network and buffer resources in a circular manner, and 
the consumption of one request requires the generation of an- 
other request. Similarly, lack of flow control in nodes can cause 
requests to back up into the network, blocking the flow of other 
messages that may be able to release the congestion. 

Error Handling: Another issue related to correctness is sup- 
port for data integrity and fault tolerance. Any large system will 
exhibit failures, and it is generally unacceptable if these fail- 
ures result in corrupted data or incorrect results without a fail- 
ure indication. This is especially true for parallel applications 
where algorithms are more complex and may contain some non- 
determinism which limits repeatability. Unfortunately, support 
for data integrity and fault-tolerance within a complex protocol 
that attempts to minimize latency and is executed directly by 
hardware is difficult. The protocol must attempt to balance the 
level of data integrity with the increase in latency and hard- 
ware complexity. At a minimum, the protocol should be able to 
flag a l l  detectable failures, and convey this information to the 
processors affected. 

2.2 Performance 
Given a protocol that is correct, performance becomes the next 
important design criterion. The two key metrics of memory 
system performance are latency and bandwidth. 

Latency: Performance is primarily determined by the la- 
tency experienced by memory requests. In DASH, support for 
cachable shared data provides the major reduction in latency. 
The latency of write misses is reduced by using write buffers 
and by the support of the release consistency model. Hiding 
the latency for read misses is usually more critical since the 
processor is stalled until data is retumed. To reduce the la- 
tency for read misses, the protocol must minimize the number 
of intercluster messages needed to service a miss and the delay 
associated with each such message. 

Bandwidth: Providing high memory bandwidth that scales 
with the number of processors is key to any large system. 
Caches and distributed memory form the basis for a scal- 
able, high-bandwidth memory system in DASH. Even with dis- 
tributed memory, however, bandwidth is limited by the serial- 
ization of requests in the memory system and the amount of 
traffic generated by each memory request. 

Servicing a memory request in a distributed system often 
requires several messages to be transmitted. For example, a 
message to access a remote location generates a reply message 
containing the data, and possibly other messages invalidating 
remote caches. The component with the largest serialization in 
this chain limits the maximum throughput of requests. Serial- 
ization affects performance by increasing the queuing delays, 
and thus the latency, of memory requests. Queueing delays can 
become critical for locations that exhibit a large degree of shar- 
ing. A protocol should attempt to minimize the service time 
at all queuing centers. In particular, in a distributed system no 
central resources within a node should be blocked while inter- 
node communication is taking place to service a request. In this 
way serialization is limited only by the time of local, intra-node 
operations. 
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The amount of traffic generated per request also limits the 
effective throughput of the memory system. Traffic seen by 
the global interconnect and memory subsystem increases the 
queueing for these shared resources. DASH reduces traffic by 
providing coherent caches and by distributing memory among 
the processors. Caches filter many of the requests for shared 
data while grouping memory with processors removes private 
references if the corresponding memory is allocated within the 
local cluster. At the protocol level, the number of messages 
required to service different types of memory requests should 
be minimized, unless the extra messages directly contribute to 
reduced latency or serialization. 

2.3 Distributed Control and Complexity 
A coherence protocol designed to address the above issues must 
be partitioned among the distributed components of the multi- 
processor. These components include the processors and their 
caches, the directory and main memory controllers, and the in- 
terconnection network. The lack of a single serialization point, 
such as a bus, complicates the control since transactions do not 
complete atomically. Furthermore, multiple paths within the 
memory system and lack of a single arbitration point within the 
system allow some operations to complete out of order. The re- 
sult is that there is a rich set of interactions that can take place 
between different memory and coherence transactions. Parti- 
tioning the control of the protocol requires a delicate balance 
between the performance of the system and the complexity of 
the components. Too much complexity may effect the ability 
to implement the protocol or ensure that the protocol is correct. 

3 Overview of DASH 
Figure 2 shows a high-level picture of the DASH prototype we 
are building at Stanford. In order to manage the size of the 
prototype design effort, a commercial bus-based multiprocessor 
was chosen as the processing node. Each node (or cluster) is 
a Silicon Graphics POWER Station 4D/240 [4]. The 4D/240 
system consists of four high-performance processors, each con- 
nected to a 64 Kbyte first-level instruction cache, and a 64 Kbyte 
write-through data cache. The 64 Kbyte data cache interfaces 
to a 256 Kbyte second-level write-back cache through a read 
buffer and a 4 word deep write-buffer. The main purpose of this 
second-level cache is to convert the write-through policy of the 
first-level to a write-back policy, and to provide the extra cache 
tags for bus snooping. Both the first and second-level caches 
are direct-mapped. 

In the 4D/240, the second-level caches are responsible for bus 
snooping and maintaining consistency among the caches in the 
cluster. Consistency is maintained using the Illinois coherence 
protocol [19], which is an invalidation-based ownership proto- 
col. Before a processor can write to a cache line, it must first 
acquire exclusive ownership of that line by requesting that all 
other caches invalidate their copy of that line. Once a processor 
has exclusive ownership of a cache line, it may write to that 
line without consuming further bus cycles. 

The memory bus (MPBUS) of the 4D/240 is a pipelined syn- 
chronous bus, supporting memory-to-cache and cache-to-cache 
transfers of 16 bytes every 4 bus clocks with a latency of 6 bus 
clocks. While the MPBUS is pipelined, it is not a split transac- 
tion bus. Consequently, it is not possible to efficiently interleave 
long duration remote transactions with the short duration local 
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Figure 2: Block diagram of sample 2 x 2 DASH system. 

transactions. Since this ability is critical to DASH, we have 
extended the MPBUS protocol to support a retry mechanism. 
Remote Kequests are signaled to retry while the inter-cluster 
messages are being processed. To avoid unnecessary retries the 
processor is masked from arbitration until the response from the 
remote request has been received. When the response arrives, 
the requesting processor is unmasked, retries the request on the 
bus, and is supplied the remote data. 

A DASH system consists of a number of modified 4D/240 
systems that have been supplemented with a directory controller 
board. This directory controller board is responsible for main- 
taining the cache coherence across the nodes and serving as the 
interface to the interconnection network. 

The directory board is implemented on a single printed cir- 
cuit board and consists of five major subsystems as shown in 
Figure 3. The directory controller @C) contains the directory 
memory corresponding to the portion of main memory present 
within the cluster. It also initiates out-bound network requests 
and replies. The pseudo-CPU (PCPU) is responsible for buffer- 
ing incoming requests and issuing such requests on the cluster 
bus. It mimics a CPU on this bus on behalf of remote processors 
except that responses from the bus are sent out by the directory 
controller. The reply controller (RC) tracks outstanding requests 
made by the local processors and receives and buffers the corre- 
sponding replies from remote clusters. It acts as memory when 
the local processors are allowed to retry their remote requests. 
The network interface and the local portion of the network it- 
self reside on the directory card. The interconnection network 
consists of a pair of meshes. One mesh is dedicated to the re- 
quest messages while the other handles replies. These meshes 
utilize wormhole routing [9] to minimize latency. Finally, the 
board contains hardware monitoring logic and miscellaneous 
control and status registers. The monitoring logic samples a 
variety of directory board and bus events from which usage and 
performance statistics can be derived. 

The directory memory is organized as an array of directory 
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entries. There is one entry for each memory block. The direc- 
tory entries used in the prototype are identical to that originally 
proposed in [6] .  They are composed of a single state bit to- 
gether with a bit vector of pointers to clusters. The state bit 
indicates whether the clusters have a read (shared) or readwrite 
(dirty) copy of the data. The bit vector contains a bit for each 
of the sixteen clusters supported in the prototype. Associating 
the directory with main memory allows the directory to be built 
with the same DRAM technology as main memory. The DC ac- 
cesses the directory memory on each MPBUS transaction along 
with the access to main memory. The directory information is 
combined with the type of bus operation, address, and result 
of the snooping within the cluster to determine what network 
messages and bus controls the DC will generate. 

The RC maintains its state in the remote access cache (RAC). 
The functions of the RAC include maintaining the state of cur- 
rently outstanding requests, buffering replies from the network 
and supplementing the functionality of the processors’ caches. 
The RAC is organized as a snoopy cache with augmented state 
information. The RAC’s state machines allow accesses from 
both the network and the cluster bus. Replies from the network 
are buffered in the RAC and cause the waiting processor to be 
released for bus arbitration. When the released processor re- 
tries the access the RAC supplies the data via a cache-to-cache 
transfer. 

3.1 Memory Consistency in DASH 
As stated in Section 2, the correctness of the coherence protocol 
is a function of the memory consistency model adopted by the 
architecture. There is a whole spectrum of choices for the level 
of consistency to support directly in hardware. At one end is the 
sequential consistency model [16] which requires the execution 
of the parallel program to appear as some interleaving of the 
execution of the parallel processes on a sequential machine. As 
one moves towards weaker models of consistency, performance 

gains are made at the cost of a more complex programming 
model for the user. 

The base model of consistency provided by the DASH hard- 
ware is called release consistency. Release consistency [lo] is 
an extension of the weak consistency model first proposed by 
Dubois, Scheurich and Briggs [8]. The distinguishing character- 
istics of release consistency is that it allows memory operations 
issued by a given processor to be observed and complete out 
of order with respect to the other processors. The ordering of 
operations is only preserved before “releasing” synchronization 
operations or explicit ordering operations. Release consistency 
takes advantage of the fact that while in a critical region a pro- 
grammer has already assured that no other processor is accessing 
the protected variables. Thus, updates to these variables can be 
observed by other processors in arbitrary order. Only before 
the lock release at the end of the region does the hardware need 
to guarantee that all operations have completed. While release 
consistency does complicate programming and the coherence 
protocol, it can hide much of the overhead of write operations. 

Support for release consistency puts several requirements on 
the system. First, the hardware must support a primitive which 
guarantees the ordering of memory operations at specific points 
in a program. Such fence [5, 101 primitives can then be placed 
by software before releasing synchronization points in order to 
implement release consistency. DASH supports two explicit 
fence mechanisms. A jidl-fence operation stalls the proces- 
sor until all of its pending operations have been completed, 
while a write-fence simply delays subsequent write-operations. 
A higher performance implementation of release consistency 
includes implicit fence operations within the releasing synchro- 
nization operations themselves. DASH supports such synchro- 
nization operations yielding release consistency as its base con- 
sistency model. The explicit fence operations in DASH then 
allow the user or compiler to synthesize stricter consistency 
models if needed. 

The release consistency model also places constraints on the 
base coherence protocol. First, the system must respect the local 
dependencies generated by the memory operations of a single 
processor. Second, all coherence operations, especially opera- 
tions related to writes, must be acknowledged so that the issuing 
processor can determine when a fence can proceed. Third, any 
cache line owned with pending invalidations against it can not 
be shared between processors. This prevents the new processor 
from improperly passing a fence. If sharing is allowed then 
the receiving processor must be informed when all of the pend- 
ing invalidates have been acknowledged. Lastly, any operations 
that a processor issues after a fence operation may not become 
visible to any other processor until all operations preceding the 
fence have completed. 

4 The DASH Cache Coherence Protocol 
In our discussion of the coherence protocol, we use the follow- 
ing naming conventions for the various clusters and memories 
involved in any given transaction. A local cluster is a cluster 
that contains the processor originating a given request, while 
the home cluster is the cluster which contains the main memory 
and directory for a given physical memory address. A remote 
cluster is any other cluster. Likewise, local memory refers to 
the main memory associated with the local cluster while remote 
memory is any memory whose home is not the local. 

The DASH coherence protocol is an invalidation-based own- 
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ership protocol. A memory block can be in one of three states as 
indicated by the associated directory entry: (i) uncnched-remote, 
that is not cached by any remote cluster; (ii) shared-remote, that 
is cached in an unmodified state by one or more remote clus- 
ters; or (iii) dirty-remote, that is cached in a modified state by 
a single remote cluster. The directory does not maintain infor- 
mation concerning whether the home cluster itself is caching 
a memory block because all transactions that change the state 
of a memory block are issued on the bus of the home cluster, 
and the snoopy bus protocol keeps the home cluster coherent. 
While we could have chosen not to issue all transactions on the 
home cluster’s bus this would had an insignificant performance 
improvement since most requests to the home also require an 
access to main memory to retrieve the actual data. 

The protocol maintains the notion of an owning cluster for 
each memory block. The owning cluster is nominally the home 
cluster. However, in the case that a memory block is present 
in the dirty state in a remote cluster, that cluster is the owner. 
Only the owning cluster can complete a remote reference for a 
given block and update the directory state. While the directory 
entry is always maintained in the home cluster, a dirty cluster 
initiates all changes to the directory state of a block when it 
is the owner (such update messages also indicate that the dirty 
cluster is giving up ownership). The order that operations reach 
the owning cluster determines their global order. 

As with memory blocks, a cache block in a processor’s cache 
may also be in one of three states: invalid, shared, and dirty. 
The shared state implies that there may be other processors 
caching that location. The dirty state implies that this cache 
contains an exclusive copy of the memory block, and the block 
has been modified. 

The following sections outline the three primitive operations 
supported by the base DASH coherence protocol: read, read- 
exclusive and write-back. We also discuss how the protocol 
responds to the issues that were brought up in Section 2 and 
some of the altemative design choices that were considered. We 
describe only the normal flow for the memory transactions in the 
following sections, exception cases are covered in section 4.6. 

4.1 Read Requests 
Memory read requests are initiated by processor load instruc- 
tions. If the location is present in the processor’s fist-level 
cache, the cache simply supplies the data. If not present, then a 
cache fdl operation must bring the required block into the first- 
level cache. A fill operation first attempts to find the cache line 
in the processor’s second-level cache, and if unsuccessful, the 
processor issues a read request on the bus. This read request ei- 
ther completes locally or is signaled to retry while the directory 
board interacts with the other clusters to retrieve the required 
cache line. The detailed flow for a read request is given in 
Figure 7 in the appendix. 

The protocol tries to minimize latency by using cache-to- 
cache transfers. The local bus can satisfy a remote read if the 
given line is held in another processor’s cache or the remote 
access cache (RAC). The four processor caches together with 
the RAC form a five-way set associative (1.25 Mbyte) cluster 
cache. The effective size of this cache is smaller than a true set 
associative cache because the entries in the caches need not be 
distinct. The check for a local copy is initiated by the normal 
snooping when the read is issued on the bus. If the cache line 
is present in the shared state then the data is simply transferred 
over the bus to the requesting processor and no access to the 

remote home cluster is needed. If the cache line is held in a 
dirty state by a local processor, however, something must be 
done with the ownership of the cache line since the processor 
supplying the data goes to a shared state in the Illinois protocol 
used on the cluster bus. The two options considered were to: (i) 
have the directory do a sharing write-back to the home cluster: 
and (ii) have the RAC take ownership of the cache line. We 
chose the second option because it permits the processors within 
a cluster to read and write a shared location without causing 
traffic in the network or home cluster. 

If a read request cannot be satisfied by the local cluster, the 
processor is forced to retry the bus operation, and a request 
message is sent to the home cluster. At the same time the 
processor is masked from arbitration so that it does not tie up the 
local bus. Whenever a remote request is sent by a cluster, a RAC 
entry is allocated to act as a placeholder for the reply to this 
request. The RAC entry also permits merging of requests made 
by the different processors within the same cluster. If another 
request to the same memory block is made, a new request will 
not be sent to the home cluster; this reduces both traffic and 
latency. On the other hand, an access to a different memory 
block, which happens to map to a RAC entry already in use, 
must be delayed until the pending operation is complete. Given 
that the number of active RAC entries is small the benefit of 
merging should outweigh the potential for contention. 

When the read request reaches the home cluster, it is issued 
on that cluster’s bus. This causes the directory to look up the 
status of that memory block. If the block is in an uncached- 
remote or shared-remote state the directory controller sends the 
data over the reply network to the requesting cluster. It also 
records the fact that the requesting cluster now has a copy of 
the memory block. If the block is in the dirty-remote state, 
however, the read request is forwarded to the owning, dirty 
cluster. The owning cluster sends out two messages in response 
to the read. A message containing the data is sent directly to the 
requesting cluster, and a sharing writeback request is sent to the 
home cluster. The sharing writeback request writes the cache 
block back to memory and also updates the directory. The flow 
of messages for this case is shown in Figure 4. 

As shown in Figure 4, any request not satisfied in the home 
cluster is forwarded to the remote cluster that has a dirty copy 
of the data. This reduces latency by permitting the dirty clus- 
ter to respond directly to the requesting cluster. In addition, 
this forwarding strategy allows the directory controller to si- 
multaneously process many requests (i.e. to be multithreaded) 
without the added complexity of maintaining the state of out- 
standing requests. Serialization is reduced to the time of a sin- 
gle intra-cluster bus transaction. The only resource held while 
inter-cluster messages are being sent is a single entry in the 
originating cluster’s RAC. 

The downside of the forwarding strategy is that it can result 
in additional latency when simultaneous accesses are made to 
the same block. For example, if two read requests from differ- 
ent clusters are received close together for a line that is dirty 
remote, both will be forwarded to the dirty cluster. However, 
only the first one will be satisfied since this request will force 
the dirty cluster to lose ownership by doing a sharing writeback 
and changing its local state to read only. The second request 
will not find the dirty data and will be returned with a nega- 
tive acknowledge (NAK) to its originating cluster. This NAK 
will force the cluster to retry its access. An altemative to the 
forwarding approach used by our protocol would have been to 
buffer the read request at the home cluster, have the home send 
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