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I n a shared-memory multiprocessor, 
the memory system provides access 
to the data to be processed and mecha- 

nisms for interprocess communication. 
The bandwidth of the memory system 
limits the speed of computation in current 
high-performance multiprocessors due to 
the uneven growth of processor and mem- 
ory speeds. Caches are fast local memories 
that moderate a multiprocessor’s memory- 
bandwidth demands by holding copies of 
recently used data, and provide a low- 
latency access path to the processor. Be- 
cattse of locality in the memory access 
patterns of multiprocessors, the cache sat- 
isfies a large fraction of the processor 
accesses, thereby reducing both the aver- 
age memory latency and the communica- 
tion bandwidth requirements imposed on 
the system’s interconnection network. 

Caches in a multiprocessing environ- 
ment introduce the cache-coherenceprob- 
lem. When multiple processors maintain 
locally cached copies of a unique shared 
memory location, any local modification 
of the location can result in a globally 
inconsistent view of memory. Cache-co- 
herence schemes prevent this problem by 
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maintaining a uniform state for each 
cached block of data. 

Several of today’s commercially avail- 
able multiprocessors use bus-based mem- 
ory systems. A bus is a convenient device 
for ensuring cache coherence because it 

allows all processors in the system to ob- 
serve ongoing memory transactions. If a 
bus transaction threatens the consistent 
state of a locally cached object, the cache 
controller can take such appropriate action 
as invalidating the local copy. Protocols 
that use this mechanism to ensure coher- 
ence are called snoopy protocols because 
each cache snoops on the transactions of 
other caches.’ 

Unfortunately, buses simply don’t have 
the bandwidth to support a large number of 
processors. Bus cycle times are restricted 
by signal transmission times in multidrop 
environments and must be long enough to 
allow the bus to “ring out,” typically a few 
signal propagation delays over the length 
of the bus. As processor speeds increase, 
the relative disparity between bus and 
processor clocks will simply become more 
evident. 

Consequently, scalable multiprocessor 
systems interconnect processors using 
short point-to-point wires in direct or 
multistage networks. Communication 
along impedance-matched transmission 
line channels can occur at high speeds, 
providing communication bandwidth that 
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scales with the numbed of processors. 
Unlike buses, the bandwidth of these net- 
works increases as more processors are 
added to the system. Unfortunately, such 
networks don’t have a convenient snoop- 
ing mechanism and don’t provide an effi- 
cient broadcast capability. 

In the absence of a systemwide broad- 
cast mechanism, the cache-coherence 
problem can be solved with interconnec- 
tion networks using some variant of direc- 
tory schemes.* This article reviews and 
analyzes this class of cache-coherence 
protocols. We use a hybrid of trace-driven 
simulation and analytical methods to 
evaluate the performance of these schemes 
for several parallel applications. 

The research presented in this article is 
part of our effort to build a high-perfor- 
mance large-scale multiprocessor. To that 
end, we are studying entire multiprocessor 
systems, including parallel algorithms, 
compilers, runtime systems, processors, 
caches, shared memory, and interconnec- 
tion networks. We find that the best solu- 
tions to the cache-coherence problem re- 
sult from a synergy between a multiproces- 
sor’s software and hardware components. 

Classification of 
directory schemes 

A cache-coherence protocol consists of 
the set of possible states in the local caches, 
the states in the shared memory, and the 
state transitions caused by the messages 
transported through the interconnection 
network to keep memory coherent. To 
simplify the protocol and the analysis, our 
data block size is the same for coherence 
and cache fetch. 

A cache-coherence protocol that does 
not use broadcasts must store the locations 
of all cached copies of each block of shared 
data. This list of cached locations, whether 
centralized or distributed, is called adirec- 
tory. A directory entry for each block of 
data contains a number ofpoinrers to spec- 
ify the locations of copies of the block. 
Each directory entry also contains a dirty 
bit to specify whetheror not auniquecache 
has permission to write the associated 
block of data. 

The different flavors of directory proto- 
cols fall under three primary categories: 
full-map directories, limited directories, 
and chaineddirecrories. Full-map directo- 
ries2 store enough state associated with 
each block in global memory so that every 
cache in the system can simultaneously 
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store a copy of any block of data. That is, 
each directory entry contains N pointers, 
where N is the number of processors in the 
system. Such directories can be optimized 
to use a single bit pointer. Limited directo- 
ries’ differ from full-map directories in 
that they have a fixed number of pointers 
per entry, regardless of the number of 
processors in the system. Chained directo- 
ries4 emulate the full-map schemes by 
distributing the directory among the 
caches. 

To analyze these directory schemes, we 
chose at least one protocol from each cate- 
gory. In each case, we tried to pick the 
protocol that was the least complex to 
implement in terms of the required hard- 
ware overhead. Our method for simplify- 
ing a protocol was to minimize the number 
of cache states, memory states, and types 
of protocol messages. All of our protocols 
guarantee sequenrial consistency, which 
Lampor defined to ensure the correct exe- 
cution of multiprocess programs. 

Full-map directories. The full-map 
protocol uses directory entries with one bit 
per processor and a dirty bit. Each bit 
represents the status of the block in the 
corresponding processor’s cache (present 
or absent). If the dirty bit is set, then one 
and only one processor’s bit is set, and that 
processor has permission to write into the 
block. A cache maintains two bits of state 
per block. One bit indicates whether a 
block is valid: the other bit indicates 
whether a valid block may be written. The 
cache-coherence protocol must keep the 
state bits in the memory directory and those 
in the caches consistent. 

Figure la illustrates three different 
states of a full-map directory. In the first 
state, location X is missing in all of the 
caches in the system. The second state 
results from three caches (Cl, C2, and C3) 
requesting copies of location X. Three 
pointers (processor bits) are set in the entry 
to indicate the caches that have copies of 
the block of data. In the first two states, the 
dirty bit -on the left side of the directory 
entry-is set to clean (C), indicating that 
no processor has permission to write to the 
block of data. The third state results from 
cache C3 requesting write permission for 
the block. In this final state, the dirty bit is 
set to dirty (D), and there is a single pointer 
to the block of data in cache C3. 

It is worth examining the transition from 
the second state to the third state in more 
detail. Once processor P3 issues the write 
to cache C3, the following events tran- 
spire: 

(1) Cache C3 detects that the block 
containing location X is valid but that the 
processor does not have permission to 
write to the block, indicated by the block’s 
write-permission bit in the cache. 

(2) Cache C3 issues a write request to 
the memory module containing location X 
and stalls processor P3. 

(3) The memory module issues Tnvali- 
date requests to caches Cl and C2. 

(4) Cache Cl and cache C2 receive the 
invalidate requests, set the appropriate bit 
to indicate that the block containing loca- 
tion X is invalid, and send acknowledg- 
ments back to the memory module. 

(5) The memory module receives the 
acknowledgments, sets the dirty bit, clears 
thepointers tocachesC1 andC2, andsends 
write permission to cache C3. 

(6) Cache C3 receives the write permis- 
sion message, updates the state in the 
cache, and reactivates processor P3. 

Note that the memory module waits to 
receive the acknowledgments before al- 
lowing processor P3 to complete its write 
transaction. By waiting for acknowledg- 
ments, the protocol guarantees that the 
memory system ensures sequential consis- 
tency. 

The full-map protocol provides a useful 
upper bound for the performance of cen- 
tralized directory-based cache coherence. 
However, it is not scalable with respect to 
memory overhead. Assume that the 
amount of distributed shared memory in- 
creases linearly with the number of 
processors N. Because the size of the direc- 
tory entry associated with each block of 
memory is proportional to the number of 
processors, the memory consumed by the 
directory is proportional to the size of 
memory (O(N)) multiplied by the size of 
the directory entry (Q(N)). Thus, the total 
memory overhead scales as the square of 
the number of processors (O(S)). 

Limited directories. Limited directory 
protocols are designed to solve the direc- 
tory size problem. Restricting the number 
of simultaneously cached copies of any 
particular block of dais limits the growth 
ofthedirectory toaconstantfactor.Forour 
analysis, we selected the limited directory 
protocol proposed.in Agarwal et al.) 

A directory protocol can be classified as 
Dir,X using the notation from Agarwal et 
aL3 The symbol i stands for the number of 
pointers, and X is NB for a scheme with no 
broadcast and B for one with broadcast. A 
full-map scheme without broadcast is rep- 
resented as DirpB. A limited directory 
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protocol that uses i<N pointers is denoted 
Dir$NB. The limited directory protocol is 
similar to the full-map directory, except in 
the case when more than i caches request 
read copies of a particular block of data. 

Figure lb shows the situation when three 
caches request read copies in a memory 
system with a Dir,NB protocol. In this 
case, we can view the two-pointer direc- 
tory as a two-way set-associative cache of 
pointers to shared copies. When cache C3 
requests a copy of location X, the memory 
module must invalidate the copy in either 
cache Cl or cache C2. This process of 
pointer replacement is sometimes called 
eviction. Since the directory acts as a set- 
associative cache, it must have a pointer 
replacement policy. Our protocol uses an 
easily implemented pseudorandom evic- 
tion policy that requires no extra memory 
overhead. In Figure 1 b, the pointer to cache 
C3 replaces the pointer to cache C2. 

Why might limited directories succeed? 
If the multiprocessor exhibits processor 
locality in the sense that in any given inter- 
val of time only a small subset of all the 
processors access a given memory word, 
then a limited directory is sufficient to 
capture this small “worker-set” of proces- 
sors. 

Directory pointers in a DirENB protocol 
encode binary processor identifiers, so 
each pointer requires LogiN bits of mem- 
ory, where N is the number of processors in 
the system. Given the same assumptions as 
for the full-map protocol, the memory 
overhead of limited directory schemes 
grows as O(MogN). These protocols are 
considered scalable with respect to mem- 
ory overhead because the resources re- 
quired to implement them grow approxi- 
mately linearly with the number of proces- 
sors in the system. 

Dir,B protocols allow more than i copies 
of each block of data to exist, hut they 
resort to a broadcast mechanism when 
more than i cached copies of a block need 
to be invalidated. However, interconnec- 
tion networks with point-to-point wires do 
not provide an efficient systemwide broad- 
cast capability. In such networks, it is also 
difficult to determine the completion of a 
broadcast to ensure sequential consis- 
tency. While it is possible to limit some 
Dir,B broadcasts to a subset of the system 
(see Agarwal et al.l), we restrict our evalu- 
ation of limited directories to the Dir,NB 
protocols. 

Chained directories. Chained directo- 
ries, the third option for cache-coherence 
schemes that do not utilize a broadcast 
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Figure 1. Three types of directory protocols: (a) three states of a full-map direc- 
tory; (b) eviction in a limited directory; an? (c) chained directory. 

mechanism, realize the scalability of lim- 
ited directories without restricting the 
number of shared copies of data blocks.4 
This type of cache-coherence scheme is 
called a chained scheme because it keeps 
track of shared copies of data by maintain- 
ing achainof directory pointers. We inves- 
tigated two chained directory schemes. 

The simpler of the two schemes imple- 
ments a singly linked chain, which is best 
described by example (see Figure Ic). 
Suppose there are no shared copies of loca- 
tion X. If processor Pl reads location X, 
the memory sends a copy to cache Cl, 
along with a chain termination (CT) 
pointer. The memory also keeps a pointer 

to cache Cl. Subsequently, when proces- 
sor P2 reads location X, the memory sends 
a copy to cache C2, along with the pointer 
to cache Cl. The memory then keeps a 
pointer to cache C2. By repeating this step, 
all of the caches can cache a copy of loca- 
tionX. IfprocessorP3 writes tolocationx, 
it is necessary to send a data invalidation 
message down the chain. To ensure se- 
quential consistency, the memory module 
denies processor P3 write permission until 
the processor with the chain termination 
pointer acknowledges the invalidation of 
the chain. Perhaps this scheme should be 
called a gossip protocol (as opposed to a 
snoopy protocol) because information is 
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Figure 2. Diagram of methodology. 

passed from individual to individual, 
rather than being spread by covert observa- 
tion. 

The possibility of cache-block replace- 
ment complicates chained directory proto- 
cols. Suppose that cache C, through cache 
C, all have copies of location X and that 
location X and location Y map to the same 
(direct-mapped) cache line. If processor P, 
reads location Y, it must first evict location 
X from its cache. In this situation, two 
possibilities exist: 

(1) Send a message down the chain to 
cache C,., with a pointer to cache C,+, and 
splice Cz out of the chain, or 

(2) Invalidate location X in cache Ct+, 
through cache C”. 

For our evaluation, we chose the second 
scheme because it can be implemented by 
a less complex protocol than the first. In 
eithercase,sequentiaIconsistency ismain- 
tained by locking the memory location 
while invalidations are in progress. 

Another solution to the replacement 
problem is to use a doubly linked chain. 
This scheme maintains forward and back- 
ward chain pointers for each cached copy 
so that the protocol does not have to trav- 
erse the chain when there is a cache re- 
placement. The doubly linked directory 
optimizes the replacement condition at the 
cost of a larger average message block size 
(due to the transmission of extra directory 
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pointers), twice the pointer memory in the 
caches, and a more complex coherence 
protocol. 

Although the chained protocols are more 
complex than the limited directory proto- 
cols, they are still scalable in terms of the 
amount of memory used for the directo- 
ries. The pointer sizes grow as the loga- 
rithm of the number of processors, and the 
number of pointers per cache or memory 
block is independent of the number of 
processors. 

Caching only private data. Up to this 
point, we have assumed that caches are 
allowed to store local copies of shared 
variables, thus leading to the cache-consis- 
tency problem. An alternative shared 
memory method avoids the cache-coher- 
ence problem by disallowing caching of 
shared data. In OUT analysis, we designate 
this scheme by saying it only caches private 
data. This scheme caches private data, 
shared data that is read-only, and instmc- 
tions, .while references to modifiable 
shared data bypass the cache. In practice, 
shared variables must be statically identi- 
fied to use this scheme. 

Methodology 
What is a good performance metric for 

comparing the various cache-coherence 
schemes? To evaluate the performance of 

the memory system, which includes the 
cache, the memory, and the interconnec- 
tion network, we determine the contribu- 
tion of the memory system to the time 
needed to run a program on the system. Our 
analysis computes the processor utiliza- 
tion, or the fraction of time that each pro- 
cessor does useful work. One minus the 
utilization yields the fraction of processor 
cycles wasted due to memory system de- 
lays. The actual system speedup equals the 
number of processors multiplied by the 
processor utilization. This metric has been 
used in other studies of multiprocessor 
cache and network performance.6 

In a multiprocessor, processor utiliza- 
tion (and therefore system speedup) is 
affected by the frequency of memory refer- 
ences and the latency of the memory sys- 
tem. The latency (T) of a message through 
the interconnection network depends on 
several factors, including the network 
topology and speed, the number of proces- 
sors in the system, the frequency and size 
of the messages, and the memory access 
latency. The cache-coherence protocol 
determines the request rate, message size, 
and memory latency. To compute proces- 
sor utilization, we need to use detailed 
models of cache-coherence protocols and 
interconnection networks. 

Figure 2 shows an overview of our an- 
alysis process. Multiprocessor address 
traces generated using three tracing meth- 
ods at Stanford University, IBM, and MIT 
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are run on a cache and directory simulator 
that counts the occurrences of different 
types of protocol transactions. A cost is 
assigned to each of these transaction types 
to compute the average processor request 
rate, the average network message block 
size, and the average memory latency per 
transaction. From these parameters, a 
model of a packet-switched, pipelined, 
multistage interconnection network calcu- 
lates the average processor utilization. 

Getting multiprocessor address trace 
data. The address traces represent a wide 
range of parallel algorithms written in 
three different programming languages. 
The programs traced at Stanford were 
written in C; at IBM, in Fortran; and at 
MIT, in M&T, a variant of Multilisp. The 
implementation of the trace collector dif- 
fers for each of the programming environ- 
ments. Each tracing system can theoreti- 
cally obtain address traces for an arbitrary 
number of processors, enabling a study of 
the behavior of cache-coherent machines 
much larger than any built to date. Table 1 
summarizes general characteristics of the 
traces. We will compare the relative per- 
formance of the various coherence 
schemes individually for each application. 

The SA-TSP, MP3D, P-Thor, and Lo- 
cusRoute traces were gathered via the 
Trap-Bit method using 16 processors. SA- 
TSP uses simulated annealing to solve the 
traveling salesman problem. MP3D is a 3D 
particle simulator for rarified flow. P-Thor 
is a parallel logic simulator. LocusRoute is 
a global router for VLSI standard cells. 
Weber and Gupta* provide a detailed de- 
scription of the applications. 

Trap-bit (T-bit) tracing for multiproces- 
sors is an extension of single-processor 
trap-bit tracing. In the single processor 
implementation, the processor traps after 
each instruction if the trap bit is set, allow- 
ing interpretation of the trapped instruc- 
tion and emission of the corresponding 
memory addresses. Multiprocessor T-bit 
tracing extends this method by scheduling 
a new process on every trapped instruc- 
tion. Once a process undergoes a trap, the 
trace mechanism performs several tasks. It 
records the corresponding memory ad- 
dresses, saves the processor state of the 
trapped process, and schedules another 
process from its list of processes, typically 
in a round-robin fashion. 

The Weather, Simple, and fast Fourier 
transform traces were derived using the 
postmortem scheduling method at IBM. 
The Weather application partitions the 
atmosphere around the globe into a three- 
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Table 1. Summary of trace statistics, with length values in millions of references 
to memory. 

Source Language Processors Application Length 

VAX T-bit C 16 P-Thor 7.09 
MP3D 7.38 
LocusRoute 7.05 
SA-TSP 7.11 

Postmortem Fortran 64 FFT 7.44 
scheduler Weather 31.76 

Simple 27.03 
T-M&T Mul-T 64 Speech 11.77 

dimensional grid and uses finite-differ- 
ence methods to solve a set of partial dif- 
ferential equations describing the state of 
the system. Simple models the behavior of 
fluids and employs finite difference meth- 
ods to solve equations describing hydrody- 
namic behavior. FFT is a radix-2 fast 
Fourier transform. 

Postmortem scheduling is a technique 
that generates a parallel trace from a uni- 
processor execution trace of a parallel 
application. The uniprocessor trace is a 
task trace with embedded synchronization 
information that can be scheduled, after 
execution (posrmortem), into a parallel 
trace that obeys the synchronization con- 
straints. This type of trace generation uses 
only one processor to produce the trace and 
to perform the postmortem scheduling. So, 
the number of processes is limited only by 
the application’s synchronization con- 
straints and by the number of parallel tasks 
in the single processor trace. 

The Speech trace was generated by a 
compiler-aided tracing scheme. The appli- 
cation comprises the lexical decoding 
stage of a phonetically based spoken lan- 
guage understanding system developed by 
the MIT Spoken Language Systems 
Group. The Speech application uses a dic- 
tionary of about 300 words represented by 
a 3,500-node directed graph. The input to 
the lexical decoder is another directed 
graph representing possible sequences of 
phonemes in the given utterance. The 
application uses a modified Viterbi search 
algorithm to find the best match between 
paths through the two graphs. 

In a compiler-based tracing scheme, 
code inserted into the instruction stream of 
a program at compile time records the 
addresses of memory references as a side 
effect of normal execution. Our compiler- 
aided multiprocessor trace implementa- 
tion is T-M&T, a modification of the Mul- 

T programming environment that can be 
used to generate memory address traces for 
programs running on an arbitrary number 
of processors. Instructions are not cur- 
rently traced in T-M&T. We assume that 
all instructions hit in the cache and, for 
processor utilization computation, an in- 
struction reference is associated with each 
data reference. We make these assump- 
tions only for the Speech application, 
because the other traces include instruc- 
tions. 

The trace gathering techniques also dif- 
fer in their treatment of private data loca- 
tions, which must be identified for the 
scheme that only caches private data. The 
private references are identified statically 
(at compile time) in the Fortran traces and 
are identified dynamically by post- 
processing the other traces. Since static 
methods must be more conservative than 
dynamic methods when partitioning pri- 
vate and shared data, the performance that 
we predict for the private data caching 
scheme on the C and M&T applications is 
slightly optimistic. In practice, the non- 
trivial problem of static data partitioning 
makes it difficult to implement schemes 
that cache only private data. 

Simulating a cache-coherence strat- 
egy. For each memory reference in a trace, 
our cache and directory simulator deter- 
mines the effects on the state of the corre- 
sponding block in the cache and the shared 
memory. This state consists of the cache 
tags and directory pointers used to main- 
tain cache coherence. In the simulation, 
the network provides no feedback to the 
cache or memory modules. Assume all 
side effects from each memory transaction 
(entry in the trace) are stored simultane- 
ously. While this simulation strategy does 
not accurately model the state of the 
memory system on a cycle-by-cycle basis, 
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