
Directory-Based
Cache Coherence in

Large-Scale
Multiprocessors

David Chaiken, Craig Fields, Kiyoshi Kurihara,
and Anant Agarwal

Massachusetts Institute of Technology

I n a shared-memory multiprocessor,
the memory system provides access
to the data to be processed and mecha-

nisms for interprocess communication.
The bandwidth of the memory system
limits the speed of computation in current
high-performance multiprocessors due to
the uneven growth of processor and mem-
ory speeds. Caches are fast local memories
that moderate a multiprocessor’s memory-
bandwidth demands by holding copies of
recently used data, and provide a low-
latency access path to the processor. Be-
cattse of locality in the memory access
patterns of multiprocessors, the cache sat-
isfies a large fraction of the processor
accesses, thereby reducing both the aver-
age memory latency and the communica-
tion bandwidth requirements imposed on
the system’s interconnection network.

Caches in a multiprocessing environ-
ment introduce the cache-coherenceprob-
lem. When multiple processors maintain
locally cached copies of a unique shared
memory location, any local modification
of the location can result in a globally
inconsistent view of memory. Cache-co-
herence schemes prevent this problem by

June 1990

This article addresses
the usefulness of

shared-data caches in
large-scale

multiprocessors, the
relative merits of

different coherence
schemes, and system-

level methods for
improving directory

efficiency.

maintaining a uniform state for each
cached block of data.

Several of today’s commercially avail-
able multiprocessors use bus-based mem-
ory systems. A bus is a convenient device
for ensuring cache coherence because it

allows all processors in the system to ob-
serve ongoing memory transactions. If a
bus transaction threatens the consistent
state of a locally cached object, the cache
controller can take such appropriate action
as invalidating the local copy. Protocols
that use this mechanism to ensure coher-
ence are called snoopy protocols because
each cache snoops on the transactions of
other caches.’

Unfortunately, buses simply don’t have
the bandwidth to support a large number of
processors. Bus cycle times are restricted
by signal transmission times in multidrop
environments and must be long enough to
allow the bus to “ring out,” typically a few
signal propagation delays over the length
of the bus. As processor speeds increase,
the relative disparity between bus and
processor clocks will simply become more
evident.

Consequently, scalable multiprocessor
systems interconnect processors using
short point-to-point wires in direct or
multistage networks. Communication
along impedance-matched transmission
line channels can occur at high speeds,
providing communication bandwidth that

49

1 APPLE 1004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

scales with the numbed of processors.
Unlike buses, the bandwidth of these net-
works increases as more processors are
added to the system. Unfortunately, such
networks don’t have a convenient snoop-
ing mechanism and don’t provide an effi-
cient broadcast capability.

In the absence of a systemwide broad-
cast mechanism, the cache-coherence
problem can be solved with interconnec-
tion networks using some variant of direc-
tory schemes.* This article reviews and
analyzes this class of cache-coherence
protocols. We use a hybrid of trace-driven
simulation and analytical methods to
evaluate the performance of these schemes
for several parallel applications.

The research presented in this article is
part of our effort to build a high-perfor-
mance large-scale multiprocessor. To that
end, we are studying entire multiprocessor
systems, including parallel algorithms,
compilers, runtime systems, processors,
caches, shared memory, and interconnec-
tion networks. We find that the best solu-
tions to the cache-coherence problem re-
sult from a synergy between a multiproces-
sor’s software and hardware components.

Classification of
directory schemes

A cache-coherence protocol consists of
the set of possible states in the local caches,
the states in the shared memory, and the
state transitions caused by the messages
transported through the interconnection
network to keep memory coherent. To
simplify the protocol and the analysis, our
data block size is the same for coherence
and cache fetch.

A cache-coherence protocol that does
not use broadcasts must store the locations
of all cached copies of each block of shared
data. This list of cached locations, whether
centralized or distributed, is called adirec-
tory. A directory entry for each block of
data contains a number ofpoinrers to spec-
ify the locations of copies of the block.
Each directory entry also contains a dirty
bit to specify whetheror not auniquecache
has permission to write the associated
block of data.

The different flavors of directory proto-
cols fall under three primary categories:
full-map directories, limited directories,
and chaineddirecrories. Full-map directo-
ries2 store enough state associated with
each block in global memory so that every
cache in the system can simultaneously

50

store a copy of any block of data. That is,
each directory entry contains N pointers,
where N is the number of processors in the
system. Such directories can be optimized
to use a single bit pointer. Limited directo-
ries’ differ from full-map directories in
that they have a fixed number of pointers
per entry, regardless of the number of
processors in the system. Chained directo-
ries4 emulate the full-map schemes by
distributing the directory among the
caches.

To analyze these directory schemes, we
chose at least one protocol from each cate-
gory. In each case, we tried to pick the
protocol that was the least complex to
implement in terms of the required hard-
ware overhead. Our method for simplify-
ing a protocol was to minimize the number
of cache states, memory states, and types
of protocol messages. All of our protocols
guarantee sequenrial consistency, which
Lampor defined to ensure the correct exe-
cution of multiprocess programs.

Full-map directories. The full-map
protocol uses directory entries with one bit
per processor and a dirty bit. Each bit
represents the status of the block in the
corresponding processor’s cache (present
or absent). If the dirty bit is set, then one
and only one processor’s bit is set, and that
processor has permission to write into the
block. A cache maintains two bits of state
per block. One bit indicates whether a
block is valid: the other bit indicates
whether a valid block may be written. The
cache-coherence protocol must keep the
state bits in the memory directory and those
in the caches consistent.

Figure la illustrates three different
states of a full-map directory. In the first
state, location X is missing in all of the
caches in the system. The second state
results from three caches (Cl, C2, and C3)
requesting copies of location X. Three
pointers (processor bits) are set in the entry
to indicate the caches that have copies of
the block of data. In the first two states, the
dirty bit -on the left side of the directory
entry-is set to clean (C), indicating that
no processor has permission to write to the
block of data. The third state results from
cache C3 requesting write permission for
the block. In this final state, the dirty bit is
set to dirty (D), and there is a single pointer
to the block of data in cache C3.

It is worth examining the transition from
the second state to the third state in more
detail. Once processor P3 issues the write
to cache C3, the following events tran-
spire:

(1) Cache C3 detects that the block
containing location X is valid but that the
processor does not have permission to
write to the block, indicated by the block’s
write-permission bit in the cache.

(2) Cache C3 issues a write request to
the memory module containing location X
and stalls processor P3.

(3) The memory module issues Tnvali-
date requests to caches Cl and C2.

(4) Cache Cl and cache C2 receive the
invalidate requests, set the appropriate bit
to indicate that the block containing loca-
tion X is invalid, and send acknowledg-
ments back to the memory module.

(5) The memory module receives the
acknowledgments, sets the dirty bit, clears
thepointers tocachesC1 andC2, andsends
write permission to cache C3.

(6) Cache C3 receives the write permis-
sion message, updates the state in the
cache, and reactivates processor P3.

Note that the memory module waits to
receive the acknowledgments before al-
lowing processor P3 to complete its write
transaction. By waiting for acknowledg-
ments, the protocol guarantees that the
memory system ensures sequential consis-
tency.

The full-map protocol provides a useful
upper bound for the performance of cen-
tralized directory-based cache coherence.
However, it is not scalable with respect to
memory overhead. Assume that the
amount of distributed shared memory in-
creases linearly with the number of
processors N. Because the size of the direc-
tory entry associated with each block of
memory is proportional to the number of
processors, the memory consumed by the
directory is proportional to the size of
memory (O(N)) multiplied by the size of
the directory entry (Q(N)). Thus, the total
memory overhead scales as the square of
the number of processors (O(S)).

Limited directories. Limited directory
protocols are designed to solve the direc-
tory size problem. Restricting the number
of simultaneously cached copies of any
particular block of dais limits the growth
ofthedirectory toaconstantfactor.Forour
analysis, we selected the limited directory
protocol proposed.in Agarwal et al.)

A directory protocol can be classified as
Dir,X using the notation from Agarwal et
aL3 The symbol i stands for the number of
pointers, and X is NB for a scheme with no
broadcast and B for one with broadcast. A
full-map scheme without broadcast is rep-
resented as DirpB. A limited directory

COMPUTER

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

protocol that uses i<N pointers is denoted
Dir$NB. The limited directory protocol is
similar to the full-map directory, except in
the case when more than i caches request
read copies of a particular block of data.

Figure lb shows the situation when three
caches request read copies in a memory
system with a Dir,NB protocol. In this
case, we can view the two-pointer direc-
tory as a two-way set-associative cache of
pointers to shared copies. When cache C3
requests a copy of location X, the memory
module must invalidate the copy in either
cache Cl or cache C2. This process of
pointer replacement is sometimes called
eviction. Since the directory acts as a set-
associative cache, it must have a pointer
replacement policy. Our protocol uses an
easily implemented pseudorandom evic-
tion policy that requires no extra memory
overhead. In Figure 1 b, the pointer to cache
C3 replaces the pointer to cache C2.

Why might limited directories succeed?
If the multiprocessor exhibits processor
locality in the sense that in any given inter-
val of time only a small subset of all the
processors access a given memory word,
then a limited directory is sufficient to
capture this small “worker-set” of proces-
sors.

Directory pointers in a DirENB protocol
encode binary processor identifiers, so
each pointer requires LogiN bits of mem-
ory, where N is the number of processors in
the system. Given the same assumptions as
for the full-map protocol, the memory
overhead of limited directory schemes
grows as O(MogN). These protocols are
considered scalable with respect to mem-
ory overhead because the resources re-
quired to implement them grow approxi-
mately linearly with the number of proces-
sors in the system.

Dir,B protocols allow more than i copies
of each block of data to exist, hut they
resort to a broadcast mechanism when
more than i cached copies of a block need
to be invalidated. However, interconnec-
tion networks with point-to-point wires do
not provide an efficient systemwide broad-
cast capability. In such networks, it is also
difficult to determine the completion of a
broadcast to ensure sequential consis-
tency. While it is possible to limit some
Dir,B broadcasts to a subset of the system
(see Agarwal et al.l), we restrict our evalu-
ation of limited directories to the Dir,NB
protocols.

Chained directories. Chained directo-
ries, the third option for cache-coherence
schemes that do not utilize a broadcast

June 1990

Figure 1. Three types of directory protocols: (a) three states of a full-map direc-
tory; (b) eviction in a limited directory; an? (c) chained directory.

mechanism, realize the scalability of lim-
ited directories without restricting the
number of shared copies of data blocks.4
This type of cache-coherence scheme is
called a chained scheme because it keeps
track of shared copies of data by maintain-
ing achainof directory pointers. We inves-
tigated two chained directory schemes.

The simpler of the two schemes imple-
ments a singly linked chain, which is best
described by example (see Figure Ic).
Suppose there are no shared copies of loca-
tion X. If processor Pl reads location X,
the memory sends a copy to cache Cl,
along with a chain termination (CT)
pointer. The memory also keeps a pointer

to cache Cl. Subsequently, when proces-
sor P2 reads location X, the memory sends
a copy to cache C2, along with the pointer
to cache Cl. The memory then keeps a
pointer to cache C2. By repeating this step,
all of the caches can cache a copy of loca-
tionX. IfprocessorP3 writes tolocationx,
it is necessary to send a data invalidation
message down the chain. To ensure se-
quential consistency, the memory module
denies processor P3 write permission until
the processor with the chain termination
pointer acknowledges the invalidation of
the chain. Perhaps this scheme should be
called a gossip protocol (as opposed to a
snoopy protocol) because information is

51

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Postmortem
scheduler

I I T-MUL-T y

Packet-switched
network model

Figure 2. Diagram of methodology.

passed from individual to individual,
rather than being spread by covert observa-
tion.

The possibility of cache-block replace-
ment complicates chained directory proto-
cols. Suppose that cache C, through cache
C, all have copies of location X and that
location X and location Y map to the same
(direct-mapped) cache line. If processor P,
reads location Y, it must first evict location
X from its cache. In this situation, two
possibilities exist:

(1) Send a message down the chain to
cache C,., with a pointer to cache C,+, and
splice Cz out of the chain, or

(2) Invalidate location X in cache Ct+,
through cache C”.

For our evaluation, we chose the second
scheme because it can be implemented by
a less complex protocol than the first. In
eithercase,sequentiaIconsistency ismain-
tained by locking the memory location
while invalidations are in progress.

Another solution to the replacement
problem is to use a doubly linked chain.
This scheme maintains forward and back-
ward chain pointers for each cached copy
so that the protocol does not have to trav-
erse the chain when there is a cache re-
placement. The doubly linked directory
optimizes the replacement condition at the
cost of a larger average message block size
(due to the transmission of extra directory

52

pointers), twice the pointer memory in the
caches, and a more complex coherence
protocol.

Although the chained protocols are more
complex than the limited directory proto-
cols, they are still scalable in terms of the
amount of memory used for the directo-
ries. The pointer sizes grow as the loga-
rithm of the number of processors, and the
number of pointers per cache or memory
block is independent of the number of
processors.

Caching only private data. Up to this
point, we have assumed that caches are
allowed to store local copies of shared
variables, thus leading to the cache-consis-
tency problem. An alternative shared
memory method avoids the cache-coher-
ence problem by disallowing caching of
shared data. In OUT analysis, we designate
this scheme by saying it only caches private
data. This scheme caches private data,
shared data that is read-only, and instmc-
tions, .while references to modifiable
shared data bypass the cache. In practice,
shared variables must be statically identi-
fied to use this scheme.

Methodology
What is a good performance metric for

comparing the various cache-coherence
schemes? To evaluate the performance of

the memory system, which includes the
cache, the memory, and the interconnec-
tion network, we determine the contribu-
tion of the memory system to the time
needed to run a program on the system. Our
analysis computes the processor utiliza-
tion, or the fraction of time that each pro-
cessor does useful work. One minus the
utilization yields the fraction of processor
cycles wasted due to memory system de-
lays. The actual system speedup equals the
number of processors multiplied by the
processor utilization. This metric has been
used in other studies of multiprocessor
cache and network performance.6

In a multiprocessor, processor utiliza-
tion (and therefore system speedup) is
affected by the frequency of memory refer-
ences and the latency of the memory sys-
tem. The latency (T) of a message through
the interconnection network depends on
several factors, including the network
topology and speed, the number of proces-
sors in the system, the frequency and size
of the messages, and the memory access
latency. The cache-coherence protocol
determines the request rate, message size,
and memory latency. To compute proces-
sor utilization, we need to use detailed
models of cache-coherence protocols and
interconnection networks.

Figure 2 shows an overview of our an-
alysis process. Multiprocessor address
traces generated using three tracing meth-
ods at Stanford University, IBM, and MIT

COMPUTER

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

are run on a cache and directory simulator
that counts the occurrences of different
types of protocol transactions. A cost is
assigned to each of these transaction types
to compute the average processor request
rate, the average network message block
size, and the average memory latency per
transaction. From these parameters, a
model of a packet-switched, pipelined,
multistage interconnection network calcu-
lates the average processor utilization.

Getting multiprocessor address trace
data. The address traces represent a wide
range of parallel algorithms written in
three different programming languages.
The programs traced at Stanford were
written in C; at IBM, in Fortran; and at
MIT, in M&T, a variant of Multilisp. The
implementation of the trace collector dif-
fers for each of the programming environ-
ments. Each tracing system can theoreti-
cally obtain address traces for an arbitrary
number of processors, enabling a study of
the behavior of cache-coherent machines
much larger than any built to date. Table 1
summarizes general characteristics of the
traces. We will compare the relative per-
formance of the various coherence
schemes individually for each application.

The SA-TSP, MP3D, P-Thor, and Lo-
cusRoute traces were gathered via the
Trap-Bit method using 16 processors. SA-
TSP uses simulated annealing to solve the
traveling salesman problem. MP3D is a 3D
particle simulator for rarified flow. P-Thor
is a parallel logic simulator. LocusRoute is
a global router for VLSI standard cells.
Weber and Gupta* provide a detailed de-
scription of the applications.

Trap-bit (T-bit) tracing for multiproces-
sors is an extension of single-processor
trap-bit tracing. In the single processor
implementation, the processor traps after
each instruction if the trap bit is set, allow-
ing interpretation of the trapped instruc-
tion and emission of the corresponding
memory addresses. Multiprocessor T-bit
tracing extends this method by scheduling
a new process on every trapped instruc-
tion. Once a process undergoes a trap, the
trace mechanism performs several tasks. It
records the corresponding memory ad-
dresses, saves the processor state of the
trapped process, and schedules another
process from its list of processes, typically
in a round-robin fashion.

The Weather, Simple, and fast Fourier
transform traces were derived using the
postmortem scheduling method at IBM.
The Weather application partitions the
atmosphere around the globe into a three-

June 1990

Table 1. Summary of trace statistics, with length values in millions of references
to memory.

Source Language Processors Application Length

VAX T-bit C 16 P-Thor 7.09
MP3D 7.38
LocusRoute 7.05
SA-TSP 7.11

Postmortem Fortran 64 FFT 7.44
scheduler Weather 31.76

Simple 27.03
T-M&T Mul-T 64 Speech 11.77

dimensional grid and uses finite-differ-
ence methods to solve a set of partial dif-
ferential equations describing the state of
the system. Simple models the behavior of
fluids and employs finite difference meth-
ods to solve equations describing hydrody-
namic behavior. FFT is a radix-2 fast
Fourier transform.

Postmortem scheduling is a technique
that generates a parallel trace from a uni-
processor execution trace of a parallel
application. The uniprocessor trace is a
task trace with embedded synchronization
information that can be scheduled, after
execution (posrmortem), into a parallel
trace that obeys the synchronization con-
straints. This type of trace generation uses
only one processor to produce the trace and
to perform the postmortem scheduling. So,
the number of processes is limited only by
the application’s synchronization con-
straints and by the number of parallel tasks
in the single processor trace.

The Speech trace was generated by a
compiler-aided tracing scheme. The appli-
cation comprises the lexical decoding
stage of a phonetically based spoken lan-
guage understanding system developed by
the MIT Spoken Language Systems
Group. The Speech application uses a dic-
tionary of about 300 words represented by
a 3,500-node directed graph. The input to
the lexical decoder is another directed
graph representing possible sequences of
phonemes in the given utterance. The
application uses a modified Viterbi search
algorithm to find the best match between
paths through the two graphs.

In a compiler-based tracing scheme,
code inserted into the instruction stream of
a program at compile time records the
addresses of memory references as a side
effect of normal execution. Our compiler-
aided multiprocessor trace implementa-
tion is T-M&T, a modification of the Mul-

T programming environment that can be
used to generate memory address traces for
programs running on an arbitrary number
of processors. Instructions are not cur-
rently traced in T-M&T. We assume that
all instructions hit in the cache and, for
processor utilization computation, an in-
struction reference is associated with each
data reference. We make these assump-
tions only for the Speech application,
because the other traces include instruc-
tions.

The trace gathering techniques also dif-
fer in their treatment of private data loca-
tions, which must be identified for the
scheme that only caches private data. The
private references are identified statically
(at compile time) in the Fortran traces and
are identified dynamically by post-
processing the other traces. Since static
methods must be more conservative than
dynamic methods when partitioning pri-
vate and shared data, the performance that
we predict for the private data caching
scheme on the C and M&T applications is
slightly optimistic. In practice, the non-
trivial problem of static data partitioning
makes it difficult to implement schemes
that cache only private data.

Simulating a cache-coherence strat-
egy. For each memory reference in a trace,
our cache and directory simulator deter-
mines the effects on the state of the corre-
sponding block in the cache and the shared
memory. This state consists of the cache
tags and directory pointers used to main-
tain cache coherence. In the simulation,
the network provides no feedback to the
cache or memory modules. Assume all
side effects from each memory transaction
(entry in the trace) are stored simultane-
ously. While this simulation strategy does
not accurately model the state of the
memory system on a cycle-by-cycle basis,

53

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

