LASER FUNDAMENTALS SECOND EDITION

WILLIAM T. SILFVAST

School of Optics / CREOL University of Central Florida

DOCKET

ASML 1006

A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

First published 1996 Reprinted 1999, 2000, 2003

First edition © Cambridge University Press Second edition © William T. Silfvast 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typeface Times 10.5/13.5 and Avenir System AMS-TEX [FH]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data Silfvast, William Thomas, 1937– Laser fundamentals / William T. Silfvast. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-521-83345-0 1. Lasers. I. Title.

TA1675.852 2004 621.36'6 - dc21

DOCKET

2003055352

ISBN 0 521 83345 0 hardback

A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Contents

Preface to the Second Edition	page xix
Preface to the First Edition	xxi
Acknowledgments	xxiii
1 INTRODUCTION	1
OVERVIEW	1
Introduction	1
Definition of the Laser	1
Simplicity of a Laser	2
Unique Properties of a Laser	2
The Laser Spectrum and Wavelengths	3
A Brief History of the Laser	4
Overview of the Book	5
SECTION 1. FUNDAMENTAL WAVE PROPERTIES OF LIGHT	
2 WAVE NATURE OF LIGHT – THE INTERACTION OF LIGHT	
WITH MATERIALS	9
OVERVIEW	9
2.1 Maxwell's Equations	9
2.2 Maxwell's Wave Equations	12
Maxwell's Wave Equations for a Vacuum	12
Solution of the General Wave Equation - Equivalence of Light and	
Electromagnetic Radiation	13
Wave Velocity - Phase and Group Velocities	17
Generalized Solution of the Wave Equation	20
Transverse Electromagnetic Waves and Polarized Light	21
Flow of Electromagnetic Energy	21
Radiation from a Point Source (Electric Dipole Radiation)	22
2.3 Interaction of Electromagnetic Radiation (Light) with Matter	23
Speed of Light in a Medium	23
Maxwell's Equations in a Medium	24
Application of Maxwell's Equations to Dielectric Materials -	
Laser Gain Media	25
Complex Index of Refraction - Optical Constants	28
Absorption and Dispersion	29

vii

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>. CONTENTS

Estimating Particle Densities of Materials for Use	in the
Dispersion Equations	34
2.4 Coherence	36
Temporal Coherence	37
Spatial Coherence	38
REFERENCES	39
PROBLEMS	39

SECTION 2. FUNDAMENTAL QUANTUM PROPERTIES OF LIGHT

3	PARTICLE NATURE OF LIGHT – DISCRETE ENERGY LEVELS	45
	OVERVIEW	45
	3.1 Bohr Theory of the Hydrogen Atom	45
	Historical Development of the Concept of Discrete Energy Levels	45
	Energy Levels of the Hydrogen Atom	46
	Frequency and Wavelength of Emission Lines	49
	Ionization Energies and Energy Levels of Ions	51
	Photons	54
	3.2 Quantum Theory of Atomic Energy Levels	54
	Wave Nature of Particles	54
	Heisenberg Uncertainty Principle	56
	Wave Theory	56
	Wave Functions	57
	Quantum States	57
	The Schrödinger Wave Equation	59
	Energy and Wave Function for the Ground State of the	
	Hydrogen Atom	61
	Excited States of Hydrogen	63
	Allowed Quantum Numbers for Hydrogen Atom Wave Functions	66
	3.3 Angular Momentum of Atoms	67
	Orbital Angular Momentum	67
	Spin Angular Momentum	68
	Total Angular Momentum	69
	3.4 Energy Levels Associated with One-Electron Atoms	70
	Fine Structure of Spectral Lines	70
	Pauli Exclusion Principle	72
	3.5 Periodic Table of the Elements	72
	Quantum Conditions Associated with Multiple Electrons Attached	
	to Nuclei	72
	Shorthand Notation for Electronic Configurations of Atoms Having	
	More Than One Electron	76
	3.6 Energy Levels of Multi-Electron Atoms	77
	Energy-Level Designation for Multi-Electron States	77
	Russell-Saunders or LS Coupling - Notation for Energy Levels	78
	Energy Levels Associated with Two Electrons in Unfilled Shells	79
	Rules for Obtaining S, L, and J for LS Coupling	82
	Degeneracy and Statistical Weights	84
	j–j Coupling	85
	Isoelectronic Scaling	85

		٠		
۱.	,	i	i	Ē
	r			L

CONTENTS

	REFERENCES	86
	PROBLEMS	86
4	RADIATIVE TRANSITIONS AND EMISSION LINEWIDTH	89
	OVERVIEW	89
	4.1 Decay of Excited States	90
	Radiative Decay of Excited States of Isolated Atoms -	
	Spontaneous Emission	90
	Spontaneous Emission Decay Rate – Radiative Transition	04
	Lifetime of a Radiating Electron The Electron as a Classical	24
	Radiating Harmonic Oscillator	95
	Nonradiative Decay of the Excited States - Collisional Decay	08
	4.2 Emission Broadening and Linewidth Due to Radiative Decay	101
	Classical Emission Linewidth of a Radiating Electron	101
	Natural Emission Linewidth as Deduced by Quantum Mechanics	101
	(Minimum Linewidth)	103
	4.3 Additional Emission-Broadening Processes	105
	Broadening Due to Nonradiative (Collisional) Decay	106
	Broadening Due to Dephasing Collisions	107
	Amorphous Crystal Broadening	109
	Doppler Broadening in Gases	109
	Voigt Lineshape Profile	114
	Broadening in Gases Due to Isotope Shifts	115
	Comparison of Various Types of Emission Broadening	118
	4.4 Quantum Mechanical Description of Radiating Atoms	121
	Electric Dipole Radiation	122
	Electric Dipole Matrix Element	123
	Electric Dipole Transition Probability	124
	Oscillator Strength	124
	Selection Rules for Electric Dipole Transitions Involving Atoms	
	with a Single Electron in an Unfilled Subshell	125
	Selection Rules for Radiative Transitions Involving Atoms with	1000
	More Than One Electron in an Unfilled Subshell	129
	Parity Selection Rule	130
	Inefficient Radiative Transitions – Electric Quadrupole and Other	121
	Higher-Order Transitions	131
	REFERENCES	151
	PROBLEMS	131
5	ENERGY LEVELS AND RADIATIVE PROPERTIES OF MOLECULES,	
	LIQUIDS, AND SOLIDS	135
	OVERVIEW	135
	5.1 Molecular Energy Levels and Spectra	135
	Energy Levels of Molecules	135
	Classification of Simple Molecules	138
	Rotational Energy Levels of Linear Molecules	139
	Rotational Energy Levels of Symmetric-Top Molecules	141
	Selection Rules for Rotational Transitions	141

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

