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PREFACE

In 1988 I began to teach full-custom VLSI design. In 1990 I started teaching ASIC
design instead, because my students found it easier to get jobs in this field. I wrote a
proposal to The National Science Foundation (NSF) to use electronic distribution of
teaching material. Dick Lyon helped me with preparing the first few CD-ROMs at
Apple, but Chuck Seitz, Lynn Conway, and others explained to me that I was facing
a problem that Carver Mead and Lynn had experienced in trying to get the concept
of multichip wafers adopted. It was not until the publication of the Mead—-Conway
text that people accepted this new idea. It was suggested that I must generate interest
using a conventional format before people would use my material in a new one
(CD-ROM or the Internet). In 1992 I stopped writing papers and began writing this
book—a result of my experiments in computer-based education. I have nearly fin-
ished this book twice. The first time was a copy of my notes. The second time was
just before the second edition of Weste and Eshragian was published—a hard act to
follow. In order to finish in 1997 I had to stop updating and including new ideas and
material and now this book consists of three parts: Chapters 1-8 are an introduction
to ASICs, 9—14 cover ASIC logical design, and 15-17 cover the physical design of
ASICs.

The book is intended for a wide audience. It may be used in an undergraduate or
graduate course. It is also intended for those in industry who are involved with
ASICs. Another function of this book is an “ASIC Encyclopedia,” and therefore 1
have kept the background material needed to a minimum. The book makes extensive
use of industrial tools and examples. The examples in Chapters 2 and 3 use tools and
libraries from MicroSim (PSpice), Meta Software (HSPICE), Compass Design
Automation (standard-cell and gate-array libraries), and Tanner Research (L-Edit).
The programmable ASIC design examples in Chapter 4-8 use tools from Compass,
Synopsys, Actel, Altera, and Xilinx. The examples in Chapter 9 (covering low-level
design entry) used tools from Exemplar, MINC, AMD, UC Berkeley, Compass,
Capilano, Mentor Graphics Corporation, and Cadence Design Systems. The VHDL
examples in Chapter 10 (VHDL) were checked using QuickVHDL from Mentor,
V-System Plus from Model Technology, and Scout from Compass. The Verilog
examples in Chapter 11 were checked using Verilog-XL from Cadence, V-System
Plus, and VeriWell from Wellspring Solutions. The logic synthesis examples in
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Chapter 12 were checked with the ASIC Synthesizer product family from Compass
and tools from Mentor, Synopsys, and UC Berkeley. The simulation examples in
Chapter 13 were checked with QuickVHDL, V-System/Plus, PSpice, Verilog-XL,
DesignWorks from Capilano Computing, CompassSim, QSim, MixSim, and
HSPICE. The test examples in Chapter 14 were checked using test software from
Compass, Cadence, Mentor, Synopsys and Capilano’s DesignWorks. The physical
design examples in Chapters 15—-17 were generated and tested using Preview, Gate
Ensemble, and Cell Ensemble (Cadence) as well as ChipPlanner, ChipCompiler,
and PathFinder (Compass). All these tools are installed at the University of Hawaii.

I wrote the text using FrameMaker. This allows me to project the text and fig-
ures using an LCD screen and an overhead projector. I used a succession of Apple
Macintosh computers: a PowerBook 145, a 520, and lastly a 3400 with 144 MB of
RAM, which made it possible for me to create updates to the index in just under
one minute. Equations are “live” in FrameMaker. Thus,

book thickness = #pages x 0.0015 in./page = (1000) (1.5x 1073) = 1.5 in.

can be updated in a lecture and the new result displayed. The circuit layouts are
color EPS files with enhanced B&W PICT previews created using L-Edit from
Tanner Research. All of the Verilog and VHDL code examples, compiler and simula-
tion input/output, and the layout CIF that were used in the final version are included
as conditional (hidden) text in the FrameMaker document, which is approximately
200MB and just over 6,000 pages (my original source material spans fourteen
560MB optical disks). Software can operate on the hidden text, allowing, for exam-
ple, a choice of simulators to run the HDL code live in class. I converted draft ver-
sions of the VHDL and Verilog LRMs and related standards to FrameMaker and
built hypertext links to my text, but copyright problems will have to be solved
before this type of material may be published. I drew all the figures using
FreeHand. They are “layered” allowing complex drawings to be built-up slowly or
animated by turning layers on or off. This is difficult to utilize in book form, but can
be done live in the classroom.

A course based on FPGAs can use Chapter 1 and Chapters 4-8. A course using
commercial semicustom ASIC design tools may use Chapters 1-2 or Chapters 1-3
and then skip to Chapter 9 if you use schematic entry, Chapter 10 (if you use
VHDL), or Chapter 11 (if you use Verilog) together with Chapter 12. All classes can
use Chapters 13 and 14. FPGA-based classes may skim Chapters 15-17, but
classes in semicustom design should cover these chapters. The chapter dependen-
cies—Y (X) means Chapter Y depends on X—are approximately: 1, 2(1), 3(2),
4(2), 5(4), 6(5), 7(6), 8(7), 9(2), 10(2), 11(2), 12(10 or 11), 13(2), 14(13), 15(2),
16(15), 17(16).

I used the following references to help me with the orthography of complex
terms, style, and punctuation while writing: Merriam-Webster’s Collegiate Dictio-
nary, 10th edition, 1996, Springfield, MA: Merriam-Webster, ISBN 0-87779-709-9,
PE1628.M36; The Chicago Manual of Style, 14th edition, Chicago: University of



Chicago Press, 1993, ISBN 0-226-10389-7, Z253.U69; and Merriam-Webster’s
Standard American Style Manual, 1985, Springfield, MA: Merriam-Webster, ISBN
0-87779-133-3, PN147.W36. A particularly helpful book on technical writing is
BUGS in Writing by Lyn Dupré, 1995, Reading, MA: Addison-Wesley, ISBN 0-201-
60019-6, PE1408.D85 (Lyn’s book grew from her unpublished work, Style SomeX,
which I used).

The bibliography at the end of each chapter provides alternative sources if you
cannot find what you are looking for. I have included the International Standard
Book Number! (ISBN) and Library of Congress (LOC) Call Number for books, and
the International Standard Serial Number? (ISSN) for journals (see the LOC infor-
mation system, LOCIS, at http://www.loc.gov). I did not include references to
material that I could not find myself (except where I have noted in the case of new
or as yet unpublished books). The electronic references given in this text have (a
last) access date of 4/19/97 and omit enclosing <> if the reference does not include
spaces.

I receive a tremendous level of support and cooperation from industry in my
work. I thank the following for help with this project: Cynthia Benn and Lyn Dupré
for editing; Helen Goldstein, Peter Gordon, Susan London-Payne, Tracy Russ, and
Juliet Silveri, all at Addison-Wesley; Matt Bowditch and Kim Arney at Argosy;
Richard Lyon, Don North, William Rivard, Glen Stone, the managers of the Newton
group, and many others at Apple Computer who provided financial support; Apple
for providing support in the form of software and computers; Bill Becker, Fern
Forcier, Donna Isidro, Mike Kliment, Paul McLellan, Tom Schaefer, Al Stein, Rich
Talburt, Bill Walker, and others at Compass Design Automation and VLSI
Technology for providing the opportunity for me to work on this book over many
years and allowing me to test material inside these companies and on lecture tours
they sponsored; Chuck Seitz at Caltech; Joseph Cavallaro, Bernie Chern, Jerry
Dillion, Mike Foster, and Paul Hulina at the NSF; the NSF for financial support with
a Presidential Young Investigator Award; Jim Rowson and Doug Fairbairn;
Constantine Anagnostopolous, Pin Tschang and members of the ASIC design
groups at Kodak for financial support; the disk-drive design group at Digital Equip-
ment Corp. (Massachusetts), Hewlett-Packard, and Sun Microsystems for financial
support; Ms. MOSIS and all of the staff at MOSIS who each have helped me at one
point or another by providing silicon, technical support, and documentation; Bob
Brodersen, Roger Howe, Randy Katz, and Ed Lee of UC Berkeley for help while 1
was visiting UCB; James Plummer of Stanford, for providing me with access to the
Terman Engineering Library as a visiting scholar, as well as Abbas El Gamal and
Paul Losleben, also at Stanford, for help on several occasions; Don Bouldin at
University of Tennessee; Krzysztof Kozminski at MCNC for providing Uncle lay-

IA code that uniquely identifies a book, the tenth and last digit is a check digit.

2 This number uniquely identifies a serial (a magazine, a journal, and so on). It is a seven-
digit number with an eighth check digit (which may be the roman numeral X, the value ten).
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out software; Gershom Kedem at Duke University for the public domain tools his
group has written; Sue Drouin, José De Castro, and others at Mentor Graphics
Corporation in Oregon for providing documentation and tools; Vahan Kasardjhan,
Gail Grego, Michele Warthen, Steve Gardner, and others at the University Program
at Cadence Design Systems in San Jose who helped with tools, documentation, and
support; Karen Dorrington and the Cadence group in Massachusetts; Andy Haines,
Tom Koppin, Sherri Mieth, Velma Miller, Robert Nalesnik, Mike Sarpa, Telle Whit-
ney, and others at Actel for software, hardware, parts, and documentation; Peter
Alfke, Leslie Baxter, Brad Fawcett, Chris Kingsley, Karlton Lau, Rick Mitchell,
Scott Nance, and Richard Ravel at Xilinx for support, parts, software, and documen-
tation; Greg Hedmann at NorComp for data on FPGAs; Anna Acevedo, Suzanne
Bailey, Antje MacNaughton, Richard Terrell, and Altera for providing software,
hardware programmers, parts, and documentation; the documentation group and
executive management at LSI Logic for tools, libraries, and documentation; Toshiba,
NEC, AT&T/NCR, Lucent, and Hitachi (for documentation); NEC for their visiting
scholar program at UH; Fred Furtek, Oscar Naval, and Claire Pinkham at
Concurrent Logic, Randy Fish at Crosspoint, and Gary Banta at Plus Logic—all for
documentation; Paul Titchener and others at Comdisco (now part of Cadence Design
Systems) for providing design tools; John Tanner and his staff at Tanner Research
for providing their tools and documentation; Mahendra Jain and Nanci Magoun,
who let me debug early prototypes at the IDEA conference organized by ASIC
Technology and News; Exemplar for providing documentation on its tools; MINC
for providing a copy of its FPGA software and documentation; Claudia Traver and
Synopsys for tools and documentation; Mentor Graphics Corporation for providing
its complete range of software; Alain Hanover and others at ViewLogic for provid-
ing tools; Mary Shepherd and Jerry Walker at IEEE for help with permissions; Meta
Software for providing HSPICE; Chris Dewhurst and colleagues at Capilano
Computing for its design tools; Greg Seltzer (Model Technology) and Charley
Rowley for providing V-System Plus with online documentation prototypes;
Farallon and Telebit for the software and hardware I used for early experiments
with telelectures. Many research students at the University of Hawaii helped me
throughout this project including: Chin Huang, Clem Portmann, Christeen Gray,
Karlton Lau, Jon Otaguro, Moe Lwin, Troy Stockstad, Ron Jorgenson, Derwin
Mattos, William Rivard, Wendy Ching, Anil Aggarwal, Sudhakar Jilla, Linda Xu,
Angshuman Saha, Harish Pareek, Claude van Ham, Wen Huang, Kumar Vadhri,
Yan Zhong, Yatin Acharya, and Barana Ranaweera. Each of the classes that used
early versions of this text at the University of Hawaii at Manoa have also contrib-
uted by finding errors. The remaining errors are mine.

Links to figures, software, code, problem solutions, and other resources for this
book may be found at:
http://www.awl.com/cp/authors/smithm/asics/asics. html.

Michael John Sebastian Smith
Palo Alto and Honolulu, 1997
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An ASIC (pronounced “a-sick™; bold typeface defines a new term) is an application-
specific integrated circuit—at least that is what the acronym stands for. Before we
answer the question of what that means we first look at the evolution of the silicon

chip or integrated circuit (IC).

Figure 1.1(a) shows an IC package (this is a pin-grid array, or PGA, shown
upside down; the pins will go through holes in a printed-circuit board). People often
call the package a chip, but, as you can see in Figure 1.1(b), the silicon chip itself
(more properly called a die) is mounted in the cavity under the sealed lid. A PGA
package is usually made from a ceramic material, but plastic packages are also

common.

FIGURE 1.1 An integrated
circuit (IC). (a) A pin-grid array
(PGA) package. (b) The silicon
die or chip is under the package
lid.
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The physical size of a silicon die varies from a few millimeters on a side to over
Tinch on a side, but instead we often measure the size of an IC by the number of
logic gates or the number of transistors that the IC contains. As a unit of measure a
gate equivalent corresponds to a two-input NAND gate (a circuit that performs the
logic function, F = A - B). Often we just use the.term gates instead of gate equiva-
lents when we are measuring chip size—not to be confused with the gate terminal of
a transistor. For example, a 100 k-gate IC contains the equivalent of 100,000 two-
input NAND gates.

The semiconductor industry has evolved from the first ICs of the early 1970s
and matured rapidly since then. Early small-scale integration (SSI) ICs contained a
few (1 to 10) logic gates—NAND gates, NOR gates, and so on—amounting to a few
tens of transistors. The era of medium-scale integration (MSI) increased the range
of integrated logic available to counters and similar, larger scale, logic functions.
The era of large-scale integration (LSI) packed even larger logic functions, such as
the first microprocessors, into a single chip. The era of very large-scale integration
(VLSI) now offers 64-bit microprocessors, complete with cache memory and
floating-point arithmetic units—well over a million transistors—on a single piece of
silicon. As CMOS process technology improves, transistors continue to get smaller
and ICs hold more and more transistors. Some people (especially in Japan) use the
term ultralarge scale integration (ULSI), but most people stop at the term VLSI;
otherwise we have to start inventing new words.

The earliest ICs used bipolar technology and the majonty of logic ICs used
either transistor—transistor logic (TTL) or emitter-coupled logic (ECL). Although
invented before the bipolar transistor, the metal-oxide-silicon (MOS) transistor
was initially difficult to manufacture because of problems with the oxide interface.
As these problems were gradually solved, metal-gate n-channel MOS (nMOS or
NMOS) technology developed in the 1970s. At that time MOS technology required .
fewer masking steps, was denser, and consumed less power than equivalent bipolar
ICs. This meant that, for a given performance, an MOS IC was cheaper than a bipo-
lar IC and led to investment and growth of the MOS IC market.

By the early 1980s the aluminum gates of the transistors were replaced by poly-
silicon gates, but the name MOS remained. The introduction of polysilicon as a gate
material was a major improvement in CMOS technology, making it easier to make
two types of transistors, n-channel MOS and p-channel MOS transistors, on the
same IC—a complementary MOS (CMOS, never cMOS) technology. The princi-
pal advantage of CMOS over NMOS is lower power consumption. Another advan-
tage of a polysilicon gate was a simplification of the fabrication process, allowing
devices to be scaled down in size.

There are four CMOS transistors in a two-input NAND gate (and a two-input
NOR gate too), so to convert between gates and transistors, you multiply the number
of gates by 4 to obtain the number of transistors. We can also measure an IC process
by the smallest resolvable feature size (roughly half the length of the smallest tran-
sistor) imprinted on the IC. Transistor dimensions are measured in microns (a
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micron, 1 pm, is a millionth of a meter). Thus we talk about a 0.2 um IC or say an
IC is built in (or with) a 0.2 wm process, meaning that the smallest transistors are
approximtely 0.2 um in length. We give a special label, A or lambda, to this smallest
resolvable feature size. Since lambda is roughly equal to half of the smallest transis-
tor length, A= 0.1 pum in a 0.2 um process. Many of the drawings in this book use a
scale marked with lambda for the same reason we place a scale on a map.

A modern submicron CMOS process is now just as complicated as a submicron
bipolar or BiCMOS (a combination of bipolar and CMOS) process. However,
CMOS ICs have established a dominant position, are manufactured in much greater
volume than any other technology, and therefore, because of the economy of scale,
the cost of CMOS ICs is less than a bipolar or BICMOS IC for the same function.
Bipolar and BiCMOS ICs are still used for special needs. For example, bipolar tech-
nology is generally capable of handling higher voltages than CMOS. This makes
bipolar and BiCMOS ICs useful in power electronics, cars, telephone circuits, and
SO on.

Some digital logic ICs and their analog counterparts (analog/digital converters,
for example) are standard parts, or standard ICs. You can select standard ICs from
catalogs and data books and buy them from distributors. Systems manufacturers and
designers can use the same standard part in a variety of different microelectronic
systems (systems that use microelectronics or ICs).

With the advent of VLSI in the 1980s engineers began to realize the advantages
of designing an IC that was customized or tailored to a particular system or applica-
tion rather than using standard ICs alone. Microelectronic system design then
becomes a matter of defining the functions that you can implement using standard
ICs and then implementing the remaining logic functions (sometimes called glue
logic) with one or more custom ICs. As VLSI became possible you could build a
system from a smaller number of components by combining many standard ICs into
a few custom ICs. Building a microelectronic system with fewer ICs allows you to
reduce cost and improve reliability.

Of course, there are many situations in which it is not appropriate to use a
custom IC for each and every part of an microelectronic system. If you need a large
amount of memory, for example, it is still best to use standard memory ICs, either
dynamic random-access memory (DRAM or dRAM), or static RAM (SRAM or
sRAM), in conjunction with custom ICs.

One of the first conferences to be devoted to this rapidly emerging segment of
the IC industry was the IEEE Custom Integrated Circuits Conference (CICC), and
the proceedings of this annual conference form a useful reference to the develop-
ment of custom ICs. As different types of custom ICs began to evolve for different
types of applications, these new ICs gave rise to a new term: application-specific IC,
or ASIC. Now we have the IEEE International ASIC Conference, which tracks
advances in ASICs separately from other types of custom ICs. Although the exact
definition of an ASIC is difficult, we shall look at some examples to help clarify
what people in the IC industry understand by the term.
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Examples of ICs that are not ASICs include standard parts such as: memory
chips sold as a commodity ittm—ROMs, DRAM, and SRAM; microprocessors;
TTL or TTL-equivalent ICs at SSI, MSI, and LSI levels.

Examples of ICs that are ASICs include: a chip for a toy bear that talks; a chip
for a satellite; a chip designed to handle the'interface between memory and a micro-
processor for a workstation CPU; and a chip containing a microprocessor as a cell
together with other logic.

As a general rule, if you can find it in a data book, then it is probably not an
ASIC, but there are some exceptions. For example, two ICs that might or might not
be considered ASICs are a controller chip for a PC and a chip for a modem. Both of
these examples are specific to an application (shades of an ASIC) but are sold to
many different system vendors (shades of a standard part). ASICs such as these are
sometimes called application-specific standard products (ASSPs).

Trying to decide which members of the huge IC family are application-specific
is tricky—after all, every IC has an application. For example, people do not usually
consider an application-specific microprocessor to be an ASIC. I shall describe how
to design an ASIC that may include large cells such as microprocessors, but I shall
not describe the design of the microprocessors themselves. Defining an ASIC by
looking at the application can be confusing, so we shall look at a different way to
categorize the IC family. The easiest way to recognize people is by their faces and
physical characteristics: tall, short, thin. The easiest characteristics of ASICs to
understand are physical ones too, and we shall look at these next. It is important to
understand these differences because they affect such factors as the price of an ASIC
and the way you design an ASIC.

1.1 Typesof ASICs

ICs are made on a thin (a few hundred microns thick), circular silicon wafer, with
each wafer holding hundreds of die (sometimes people use dies or dice for the plural
of die). The transistors and wiring are made from many layers (usually between 10
and 15 distinct layers) built on top of one another. Each successive mask layer has a
pattern that is defined using a mask similar to a glass photographic slide. The first
half-dozen or so layers define the transistors. The last half-dozen or so layers define
the metal wires between the transistors (the interconnect).

A full-custom IC includes some (possibly all) logic cells that are customized
and all mask layers that are customized. A microprocessor is an example of a full-
custom IC—designers spend many hours squeezing the most out of every last square
micron of microprocessor chip space by hand. Customizing all of the IC features in
this way allows designers to include analog circuits, optimized memory cells, or
mechanical structures on an IC, for example. Full-custom ICs are the most expen-
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sive to manufacture and to design. The manufacturing lead time (the time it takes
just to make an IC—mnot including design time) is typically eight weeks for a full-
custom IC. These specialized full-custom ICs are often intended for a specific appli-
cation, so we might call some of them full-custom ASICs.

We shall discuss full-custom ASICs briefly next, but the members of the IC
family that we are more interested in are semicustom ASICs, for which all of the
logic cells are predesigned and some (possibly all) of the mask layers are custom-
ized. Using predesigned cells from a cell library makes our lives as designers much,
much easier. There are two types of semicustom ASICs that we shall cover:
standard-cell-based ASICs and gate-array—based ASICs. Following this we shall
describe the programmable ASICs, for which all of the logic cells are predesigned
and none of the mask layers are customized. There are two types of programmable
ASICs: the programmable logic device and, the newest member of the ASIC family,
the field-programmable gate array.

1.1.1 Full-Custom ASICs

In a full-custom ASIC an engineer designs some or all of the logic cells, circuits, or
layout specifically for one ASIC. This means the designer abandons the approach of
using pretested and precharacterized cells for all or part of that design. It makes
sense to take this approach only if there are no suitable existing cell libraries avail-
able that can be used for the entire design. This might be because existing cell librar-
ies are not fast enough, or the logic cells are not small enough or consume too much
power. You may need to use full-custom design if the ASIC technology is new or so
specialized that there are no existing cell libraries or because the ASIC is so special-
ized that some circuits must be custom designed. Fewer and fewer full-custom ICs
are being designed because of the problems with these special parts of the ASIC.
There is one growing member of this family, though, the mixed analog/digital ASIC,
which we shall discuss next.

Bipolar technology has historically been used for precision analog functions.
There are some fundamental reasons for this. In all integrated circuits the matching
of component characteristics between chips is very poor, while the matching of
characteristics between components on the same chip is excellent. Suppose we have
transistors T1, T2, and T3 on an analog/digital ASIC. The three transistors are all the
same size and are constructed in an identical fashion. Transistors T1 and T2 are
located adjacent to each other and have the same orientation. Transistor T3 is the
same size as T1 and T2 but is located on the other side of the chip from T1 and T2
and has a different orientation. ICs are made in batches called wafer lots. A wafer
lot is a group of silicon wafers that are all processed together. Usually there are
between 5 and 30 wafers in a lot. Each wafer can contain tens or hundreds of chips
depending on the size of the IC and the wafer.
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If we were to make measurements of the characteristics of transistors T1, T2,
and T3 we would find the following: '

» Transistors T1 will have virtually identical characteristics to T2 on the same
IC. We say that the transistors match well or the tracking between devices is
excellent.

« Transistor T3 will match transistors T1 and T2 on the same IC very well, but
~ not as closely as T1 matches T2 on the same IC.

« Transistor T1, T2, and T3 will match fairly well with transistors T1, T2, and
T3 on a different IC on the same wafer. The matching will depend on how far
apart the two ICs are on the wafer.

o Transistors on ICs from different wafers in the same wafer lot will not match
very well.

¢ Transistors on ICs from different wafer lots will match very poorly.

For many analog designs the close matching of transistors is crucial to circuit
operation. For these circuit designs pairs of transistors are used, located adjacent to
each other. Device physics dictates that a pair of bipolar transistors will always
match more precisely than CMOS transistors of a comparable size. Bipolar technol-
ogy has historically been more widely used for full-custom analog design because of
its improved precision. Despite its poorer analog properties, the use of CMOS tech-
nology for analog functions is increasing. There are two reasons for this. The first
reason is that CMOS is now by far the most widely available IC technology. Many
more CMOS ASICs and CMOS standard products are now being manufactured than
bipolar ICs. The second reason is that increased levels of integration require mixing
analog and digital functions on the same IC: this has forced designers to find ways
to use CMOS technology to implement analog functions. Circuit designers, using
clever new techniques, have been very successful in finding new ways to design
analog CMOS circuits that can approach the accuracy of bipolar analog designs.

1.1.2 Standard-Cell-Based ASICs

A cell-based ASIC (cell-based IC, or CBIC—a common term in Japan, pronounced
“sea-bick”) uses predesigned logic cells (AND gates, OR gates, multiplexers, and
flip-flops, for example) known as standard cells. We could apply the term CBIC to
any IC that uses cells, but it is generally accepted that a cell-based ASIC or CBIC
means a standard-cell-based ASIC.

The standard-cell areas (also called flexible blocks) in a CBIC are built of rows
of standard cells—Ilike a wall built of bricks. The standard-cell areas may be used in
combination with larger predesigned cells, perhaps microcontrollers or even micro-
processors, known as megacells. Megacells are also called megafunctions, full-
custom blocks, system-level macros (SLMs), fixed blocks, cores, or Functional
Standard Blocks (FSBs).
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The ASIC designer defines only the placement of the standard cells and the
interconnect in a CBIC. However, the standard cells can be placed anywhere on the
silicon; this means that all the mask layers of a CBIC are customized and are unique
to a particular customer. The advantage of CBICs is that designers save time,
money, and reduce risk by using a predesigned, pretested, and precharacterized
standard-cell library. In addition each standard cell can be optimized individually.
During the design of the cell library each and every transistor in every standard cell
can be chosen to maximize speed or minimize area, for example. The disadvantages
are the time or expense of designing or buying the standard-cell library and the time
needed to fabricate all layers of the ASIC for each new design.

Figure 1.2 shows a CBIC (looking down on the die shown in Figure 1.1b, for
example). The important features of this type of ASIC are as follows:

» All mask layers are customized—transistors and interconnect.
o Custom blocks can be embedded.
« Manufacturing lead time is about eight weeks.
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Each standard cell in the library is constructed using full-custom design meth-
ods, but you can use these predesigned and precharacterized circuits without having
to do any full-custom design yourself. This design style gives you the same perfor-
mance and flexibility advantages of a full-custom ASIC but reduces design time and
reduces risk.

Standard cells are designed to fit together like bricks in a wall. Figure 1.3 shows
an example of a simple standard cell (it is simple in the sense it is not maximized for
density—but ideal for showing you its internal construction). Power and ground
buses (VDD and GND or VSS) run horizontally on metal lines inside the cells.

Standard-cell design allows the automation of the process of assembling an
ASIC. Groups of standard cells fit horizontally together to form rows. The rows
stack vertically to form flexible rectangular blocks (which you can reshape during
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FIGURE 1.3 Looking down on the layout of a standard cell. This cell would be approxi-
mately 25 microns wide on an ASIC with A (lambda) = 0.25 microns (a micron is 1078 m). Stan-
dard cells are stacked like bricks in a wall; the abutment box (AB) defines the “edges” of the
brick. The difference between the bounding box (BB) and the AB is the area of overlap
between the bricks. Power supplies (labeled VDD and GND) run horizontally inside a stan-
dard cell on a metal layer that lies above the transistor layers. Each different shaded and
labeled pattern represents a different layer. This standard cell has center connectors (the
three squares, labeled A1, B1, and Z) that allow the cell to connect to others. The layout was
drawn using ROSE, a symbolic layout editor developed by Rockwell and Compass, and then
imported into Tanner Research’s L-Edit.

design). You may then connect a flexible block built from several rows of standard
cells to other standard-cell blocks or other full-custom logic blocks. For example,
you might want to include a custom interface to a standard, predesigned microcon-
troller together with some memory. The microcontroller block may be a fixed-size
megacell, you might generate the memory using a memory compiler, and the custom
logic and memory controller will be built from flexible standard-cell blocks, shaped
to fit in the empty spaces on the chip.
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Both cell-based and gate-array ASICs use predefined cells, but there is a
difference—we can change the transistor sizes in a standard cell to optimize speed
and performance, but the device sizes in a gate array are fixed. This results in a
trade-off in performance and area in a gate array at the silicon level. The trade-off
between area and performance is made at the library level for a standard-cell ASIC.

Modern CMOS ASICs use two, three, or more levels (or layers) of metal for
interconnect. This allows wires to cross over different layers in the same way that
we use copper traces on different layers on a printed-circuit board. In a two-level
metal CMOS technology, connections to the standard-cell inputs and outputs are
usually made using the second level of metal (metal2, the upper level of metal) at
the tops and bottoms of the cells. In a three-level metal technology, connections may
be internal to the logic cell (as they are in Figure 1.3). This allows for more sophisti-
cated routing programs to take advantage of the extra metal layer to route intercon-
nect over the top of the logic cells. We shall cover the details of routing ASICs in
Chapter 17.

A connection that needs to cross over a row of standard cells uses a
feedthrough. The term feedthrough can refer either to the piece of metal that is used
to pass a signal through a cell or to a space in a cell waiting to be used as a
feedthrough—very confusing. Figure 1.4 shows two feedthroughs: one in cell A.14
and one in cell A.23.

In both two-level and three-level metal technology, the power buses (VDD and
GND) inside the standard cells normally use the lowest (closest to the transistors)
layer of metal (metall). The width of each row of standard cells is adjusted so that
they may be aligned using spacer cells. The power buses, or rails, are then con-
nected to additional vertical power rails using row-end cells at the aligned ends of
each standard-cell block. If the rows of standard cells are long, then vertical power
rails can also be run in metal2 through the cell rows using special power cells that
just connect to VDD and GND. Usually the designer manually controls the number
and width of the vertical power rails connected to the standard-cell blocks during
physical design. A diagram of the power distribution scheme for a CBIC is shown in
Figure 1.4.

All the mask layers of a CBIC are customized. This allows megacells (SRAM, a
SCSI controller, or an MPEG decoder, for example) to be placed on the same IC
with standard cells. Megacells are usually supplied by an ASIC or library company
complete with behavioral models and some way to test them (a test strategy). ASIC
library companies also supply compilers to generate flexible DRAM, SRAM, and
ROM blocks. Since all mask layers on a standard-cell design are customized, mem-
ory design is more efficient and denser than for gate arrays.

For logic that operates on multiple signals across a data bus—a datapath
(DP)—the use of standard cells may not be the most efficient ASIC design style.
Some ASIC library companies provide a datapath compiler that automatically gen-
erates datapath logic. A datapath library typically contains cells such as adders,
subtracters, multipliers, and simple arithmetic and logical units (ALUs). The con-
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FIGURE 1.4 Routing the CBIC (cell-based IC) shown in Figure 1.2. The use of regularly
shaped standard cells, such as the one in Figure 1.3, from a library allows ASICs like this to
be designed automatically. This ASIC uses two separate layers of metal interconnect (metald
and metal2) running at right angles to each other (like traces on a printed-circuit board).
Interconnections between logic cells uses spaces (called channels) between the rows of
cells. ASICs may have three (or more) layers of metal allowing the cell rows to touch with the
interconnect running over the top of the cells.

nectors of datapath library cells are pitch-matched to each other so that they fit
together. Connecting datapath cells to form a datapath usually, but not always,
results in faster and denser layout than using standard cells or a gate array.

Standard-cell and gate-array libraries may contain hundreds of different logic
cells, including combinational functions (NAND, NOR, AND, OR gates) with multi-
ple inputs, as well as latches and flip-flops with different combinations of reset, pre-
set and clocking options. The ASIC library company provides designers with a data
book in paper or electronic form with all of the functional descriptions and timing
information for each library element.
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1.1.3  Gate-Array—Based ASICs

In a gate array (sometimes abbreviated to GA) or gate-array—based ASIC the tran-
sistors are predefined on the silicon wafer. The predefined pattern of transistors on a
gate array is the base array, and the smallest element that is replicated to make the
base array (like an M. C. Escher drawing, or tiles on a floor) is the base cell (some-
times called a primitive cell). Only the top few layers of metal, which define the
interconnect between transistors, are defined by the designer using custom masks.
To distinguish this type of gate array from other types of gate array, it is often called
a masked gate array (MGA). The designer chooses from a gate-array library of
predesigned and precharacterized logic cells. The logic cells in a gate-array library
are often called macros. The reason for this is that the base-cell layout is the same
for each logic cell, and only the interconnect (inside cells and between cells) is cus-
tomized, so that there is a similarity between gate-array macros and a software
macro. Inside IBM, gate-array macros are known as books (so that books are part of
a library), but unfortunately this descriptive term is not very widely used outside
IBM.

We can complete the diffusion steps that form the transistors and then stockpile
wafers (sometimes we call a gate array a prediffused array for this reason). Since
only the metal interconnections are unique to an MGA, we can use the stockpiled
wafers for different customers as needed. Using wafers prefabricated up to the met-
allization steps reduces the time needed to make an MGA, the turnaround time, to
a few days or at most a couple of weeks. The costs for all the initial fabrication steps
for an MGA are shared for each customer and this reduces the cost of an MGA com-
pared to a full-custom or standard-cell ASIC design.

There are the following different types of MGA or gate-array—based ASICs:

» Channeled gate arrays.
e Channelless gate arrays.

e Structured gate arrays.

The hyphenation of these terms when they are used as adjectives explains their
construction. For example, in the terms “channeled gate-array architecture,” the gate
array is channeled, as will be explained. There are two common ways of arranging
(or arraying) the transistors on a MGA: in a channeled gate array we leave space
between the rows of transistors for wiring; the routing on a channelless gate array
uses rows of unused transistors. The channeled gate array was the first to be devel-
oped, but the channelless gate-array architecture is now more widely used. A struc-
tured (or embedded) gate array can be either channeled or channelless but it includes
(or embeds) a custom block.
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FIGURE 1.5 A channeled gate-array die. The
spaces between rows of the base cells are set aside for

interconnect.

INTRODUCTION TO ASICS

1.1.4  Channeled Gate Array

Figure 1.5 shows a channeled gate array. The important features of this type of
MGA are:

» Only the interconnect is customized.
= The interconnect uses predefined spaces between rows of base cells.

» Manufacturing lead time is between two days and two weeks.
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A channeled gate array is similar to a CBIC—both use rows of cells separated
by channels used for interconnect. One difference is that the space for interconnect
between rows of cells are fixed in height in a channeled gate array, whereas the
space between rows of cells may be adjusted in a CBIC.

1.1.5 Channelless Gate Array

Figure 1.6 shows a channelless gate array (also known as a channel-free gate
array, sea-of-gates array, or SOG array). The important features of this type of
MGA are as follows:

¢ Only some (the top few) mask layers are customized—the interconnect.
»  Manufacturing lead time is between two days and two weeks.

The key difference between a channelless gate array and channeled gate array is
that there are no predefined areas set aside for routing between cells on a channelless
gate array. Instead we route over the top of the gate-array devices. We can do this
because we customize the contact layer that defines the connections between metall,
the first layer of metal, and the transistors. When we use an area of transistors for
routing in a channelless array, we do not make any contacts to the devices lying
underneath; we simply leave the transistors unused.
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The logic density—the amount of logic that can be implemented in a given sili-
con area—is higher for channelless gate arrays than for channeled gate arrays. This
is usually attributed to the difference in structure between the two types of array. In
fact, the difference occurs because the contact mask is customized in a channelless
gate array, but is not usually customized in a channeled gate array. This leads to
denser cells in the channelless architectures. Customizing the contact layer in a
channelless gate array allows us to increase the density of gate-array cells because
we can route over the top of unused contact sites.

1.1.6  Structured Gate Array

An embedded gate array or structured gate array (also known as masterslice or
masterimage) combines some of the features of CBICs and MGAs. One of the dis-
advantages of the MGA is the fixed gate-array base cell. This makes the implemen-
tation of memory, for example, difficult and inefficient. In an embedded gate array
we set aside some of the IC area and dedicate it to a specific function. This embed-
ded area either can contain a different base cell that is more suitable for building
memory cells, or it can contain a complete circuit block, such as a microcontroller.

Figure 1.7 shows an embedded gate array. The important features of this type of
MGA are the following:

» Only the interconnect is customized.
o Custom blocks (the same for each design) can be embedded.
e Manufacturing lead time is between two days and two weeks.

An embedded gate array gives the improved area efficiency and increased per-
formance of a CBIC but with the lower cost and faster turnaround of an MGA. One
disadvantage of an embedded gate array is that the embedded function is fixed. For
example, if an embedded gate array contains an area set aside for a 32 k-bit memory,
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but we only need a 16 k-bit memory, then we may have to waste half of the embed-
ded memory function. However, this may still be more efficient and cheaper than
implementing a 32 k-bit memory using macros on a SOG array.

ASIC vendors may offer several embedded gate array structures containing dif-
ferent memory types and sizes as well as a variety of embedded functions. ASIC
companies wishing to offer a wide range of embedded functions must ensure that
enough customers use each different embedded gate array to give the cost advan-
tages over a custom gate array or CBIC (the Sun Microsystems SPARCstation 1
described in Section 1.3 made use of LSI Logic embedded gate arrays—and the 10K
and 100K series of embedded gate arrays were two of LSI Logic’s most successful
products).

1.1.7 Programmable Logic Devices

Programmable logic devices (PLDs) are standard ICs that are available in standard
configurations from a catalog of parts and are sold in very high volume to many dif-
ferent customers. However, PLDs may be configured or programmed to create a part
customized to a specific application, and so they also belong to the family of ASICs.
PLDs use different technologies to allow programming of the device. Figure 1.8
shows a PLD and the following important features that all PLDs have in common:

e No customized mask layers or logic cells
o Fast design turnaround
e A single large block of programmable interconnect

e A matrix of logic macrocells that usually consist of programmable array logic
followed by a flip-flop or latch

The simplest type of programmable IC is a read-only memory (ROM). The
most common types of ROM use a metal fuse that can be blown permanently (a
programmable ROM or PROM). An electrically programmable ROM, or
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EPROM, uses programmable MOS transistors whose characteristics are altered by
applying a high voltage. You can erase an EPROM either by using another high volt-
age (an electrically erasable PROM, or EEPROM) or by exposing the device to
ultraviolet light (UV-erasable PROM, or UVPROM).

There is another type of ROM that can be placed on any ASIC—a
mask-programmable ROM (mask-programmed ROM or masked ROM). A masked
ROM is a regular array of transistors permanently programmed using custom mask
patterns. An embedded masked ROM is thus a large, specialized, logic cell.

The same programmable technologies used to make ROMs can be applied to
more flexible logic structures. By using the programmable devices in a large array of
AND gates and an array of OR gates, we create a family of flexible and programma-
ble logic devices called logic arrays. The company Monolithic Memories (bought
by AMD) was the first to produce Programmable Array Logic (PAL®, a registered
trademark of AMD) devices that you can use, for example, as transition decoders for
state machines. A PAL can also include registers (flip-flops) to store the current state
information so that you can use a PAL to make a complete state machine.

Just as we have a mask-programmable ROM, we could place a logic array as a
cell on a custom ASIC. This type of logic array is called a programmable logic
array (PLA). There is a difference between a PAL and a PLA: a PLA has a pro-
grammable AND logic array, or AND plane, followed by a programmable OR logic
array, or OR plane; a PAL has a programmable AND plane and, in contrast to a
PLA, a fixed OR plane.

Depending on how the PLD is programmed, we can have an erasable PLD
(EPLD), or mask-programmed PLD (sometimes called a masked PLD but usually
just PLD). The first PALs, PLAs, and PLDs were based on bipolar technology and
used programmable fuses or links. CMOS PLDs usually employ floating-gate tran-
sistors (see Section 4.3, “EPROM and EEPROM Technology™).
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1.1.8  Field-Programmable Gate Arrays

A step above the PLD in complexity is the field-programmable gate array
(FPGA). There is very little difference between an FPGA and a PLD—an FPGA is
usually just larger and more complex than a PLD. In fact, some companies that man-
ufacture programmable ASICs call their products FPGAs and some call them
complex PLDs. FPGAs are the newest member of the ASIC family and are rapidly
growing in importance, replacing TTL in microelectronic systems. Even though an
FPGA is a type of gate array, we do not consider the term gate-array—based ASICs
to include FPGAs. This may change as FPGAs and MGAs start to look more alike.
Figure 1.9 illustrates the essential characteristics of an FPGA:

« None of the mask layers are customized.
» A method for programming the basic logic cells and the interconnect.

» The core is a regular array of programmable basic logic cells that can imple-
ment combinational as well as sequential logic (flip-flops).

» A matrix of programmable interconnect surrounds the basic logic cells.
¢ Programmable I/O cells surround the core.
» Design turnaround is a few hours.

We shall examine these features in detail in Chapters 4-8.
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FIGURE 1.9 A field-programmable gate array E‘, %
(FPGA) die. All FPGAs contain a regular structure S CEEENCIE O
of programmable basic logic cells surrounded by ol MMM %
programmable interconnect. The exact type, size, o o
and number of the programmable basic logic cells E'] N | g
i . O O
varies tremendously. % T T T E,
o O
gr T | 1 %
programmable/ 0 O
interconnect COOoooooonoonoooooonop

1.2  Design Flow

Figure 1.10 shows the sequence of steps to design an ASIC; we call this a design
flow. The steps are listed below (numbered to correspond to the labels in
Figure 1.10) with a brief description of the function of each step.

1. Design entry. Enter the design into an ASIC design system, either using a
hardware description language (HDL) or schematic entry.
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FIGURE 1.10 ASIC design flow.

. Logic synthesis. Use an HDL (VHDL or Verilog) and a logic synthesis tool to

produce a netlist—a description of the logic cells and their connections.

. System partitioning. Divide a large system into ASIC-sized pieces.

. Prelayout simulation. Check to see if the design functions correctly.
. Floorplanning. Arrange the blocks of the netlist on the chip.

. Placement. Decide the locations of cells in a block.

. Routing. Make the connections between cells and blocks.

. Extraction. Determine the resistance and capacitance of the interconnect..
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9. Postlayout simulation. Check to see the design still works with the added loads
of the interconnect. :

Steps 1-4 are part of logical design, and steps 59 are part of physical design.
There is some overlap. For example, system partitioning might be considered as
either logical or physical design. To put it another way, when we are performing sys-
tem partitioning we have to consider both logical and physical factors. Chapters
9-14 of this book is largely about logical design and Chapters 15-17 largely about
physical design.

1.3  Case Study

Sun Microsystems released the SPARCstation 1 in April 1989. It is now an old
design but a very important example because it was one of the first workstations to
make extensive use of ASICs to achieve the following:

 Better performance at lower cost
« Compact size, reduced power, and quiet operation
» Reduced number of parts, easier assembly, and improved reliability

The SPARCstation 1 contains about 50 ICs on the system motherboard—
excluding the DRAM used for the system memory (standard parts). The
SPARCstation 1 designers partitioned the system into the nine ASICs shown in
Table 1.1 and wrote specifications for each ASIC—this took about three months.!
LSI Logic and Fujitsu designed the SPARC integer unit (IU) and floating-point
unit (FPU) to these specifications. The clock ASIC is a fairly straightforward design
and, of the six remaining ASICs, the video controller/data buffer, the RAM control-
ler, and the direct memory access (DMA) controller are defined by the 32-bit
system bus (SBus) and the other ASICs that they connect to. The rest of the system
is partitioned into three more ASICs: the cache controller, memory-management
unit (MMU), and the data buffer. These three ASICs, with the IU and FPU, have the
most critical timing paths and determine the system partitioning. The design of
ASICs 3-8 in Table 1.1 took five Sun engineers six months after the specifications
were complete. During the design process, the Sun engineers simulated the entire
SPARCstation 1—including execution of the Sun operating system (SunOS).

ISome information in Section 1.3 and Section 15.3 is from the SPARCstation 10
Architecture Guide—May 1992, p. 2 and pp. 27-28 and from two publicity brochures (known as
“sparkle sheets”). The first is “Concept to System: How Sun Microsystems Created
SPARCstation 1 Using LSI Logic's ASIC System Technology,” A. Bechtolsheim, T. Westberg, M.
Insley, and J. Ludemann of Sun Microsystems; J-H. Huang and D. Boyle of L.SI Logic. This is an
LSI Logic publication. The second paper is *SPARCstation 1: Beyond the 3M Horizon,” A.
Bechtolsheim and E. Frank, a Sun Microsystems publication. I did not include these as references
since they are impossible to obtain now, but I would like to give credit to Andy Bechtolsheim and
the Sun Microsystems and LSI Logic engineers.
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TABLE 1.1 The ASICs in the Sun Microsystems

SPARCstation 1.

SPARCstation 1 ASIC

Gates (k-gates)

Cache controller

Data buffer

RAM controller
Clock generator

© 00 N O O B~ W N =

SPARC integer unit (IU)
SPARC floating-point unit (FPU) 50

Memory-management unit (MMU)

Direct memory access (DMA) controller
Video controller/data buffer

20

- - O W O ©

Table 1.2 shows the software tools used to design the SPARCstation 1, many of
which are now obsolete. The important point to notice, though, is that there is a lot
more to microelectronic system design than designing the ASICs—Iless than one-
third of the tools listed in Table 1.2 were ASIC design tools.

TABLE 1.2 The CAD tools used in the design of the Sun Microsystems

SPARCstation 1.

Design level Function Tool
ASIC design ASIC physical design LS! Logic
ASIC logic synthesis Internal tools and UC Berkeley tools
ASIC simulation LSI Logic
Board design ~ Schematic capture Valid Légio

PCB layout
Timing verification

‘Mechanical deéign Case and enclosure '

Thermal analysis

Valid Logic Allegro
Quad Design Motive and internal tools

Autocad
Pacific Numerix

Structural analysis Cosmos
‘Management  Scheduling Suntrac
Documentation Interleaf and FrameMaker

"Names are trademarks of their respective companies.
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The SPARCstation 1 cost about $9000 in 1989 or, since it has an execution rate
of approximately 12 million instructions per second (MIPS), $750/MIPS. Using
ASIC technology reduces the motherboard to about the size of a piece of paper—38.5
inches by 11 inches—with a power consumption of about 12W. The

-SPARCstation 1 “pizza box” is 16 inches across and 3 inches high—smaller than a

typical IBM-compatible personal computer in 1989. This speed, power, and size per-
formance is (there are still SPARCstation 1s in use) made possible by using ASICs.
We shall return to the SPARCstation 1, to look more closely at the partitioning step,
in Section 15.3, “System Partitioning.”

1.4  Economics of ASICs

In this section we shall discuss the economics of using ASICs in a product and com-
pare the most popular types of ASICs: an FPGA, an MGA, and a CBIC. To make an
economic comparison between these alternatives, we consider the ASIC itself as a
product and examine the components of product cost: fixed costs and variable costs.
Making cost comparisons is dangerous—costs change rapidly and the semiconduc-
tor industry is notorious for keeping its costs, prices, and pricing strategy closely
guarded secrets. The figures in the following sections are approximate and used to
illustrate the different components of cost.

1.4.1 Comparison Between ASIC Technologies

The most obvious economic factor in making a choice between the different ASIC
types is the part cost. Part costs vary enormously—you can pay anywhere from a
few dollars to several hundreds of dollars for an ASIC. In general, however, FPGAs
are more expensive per gate than MGAs, which are, in turn, more expensive than
CBICs. For example, a 0.5 um, 20k-gate array might cost 0.01-0.02 cents/gate (for
more than 10,000 parts) or $2-$4 per part, but an equivalent FPGA might be $20.
The price per gate for an FPGA to implement the same function is typically 2-5
times the cost of an MGA or CBIC.

Given that an FPGA is more expensive than an MGA, which is more expensive
than a CBIC, when and why does it make sense to choose a more expensive part? Is
the increased flexibility of an FPGA worth the extra cost per part? Given that an
MGA or CBIC is specially tailored for each customer, there are extra hidden costs
associated with this step that we should consider. To make a true comparison
between the different ASIC technologies, we shall quantify some of these costs.

1.4.2  Product Cost
The total cost of any product can be separated into fixed costs and variable costs:

total product cost = fixed product cost + variable product cost X products sold. (1.1)
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Fixed costs are independent of sales volume—the number of products sold.
However, the fixed costs amortized per product sold (fixed costs divided by products
sold) decrease as sales volume increases. Variable costs include the cost of the parts
used in the product, assembly costs, and other manufacturing costs.

Let us look more closely at the parts in a product. If we want to buy ASICs to
assemble our product, the total part cost is

total part cost = fixed part cost + variable cost per part X volume of parts.  (1.2)

Our fixed cost when we use an FPGA is low—we just have to buy the software
and any programming equipment. The fixed part costs for an MGA or CBIC are
higher and include the costs of the masks, simulation, and test program develop-
ment. We shall discuss these extra costs in more detail in Sections 1.4.3 and 1.4.4.
Figure 1.11 shows a break-even graph that compares the total part cost for an
FPGA, MGA, and a CBIC with the following assumptions:

« FPGA fixed cost is $21,800, part cost is $39.
+ MGA fixed cost is $86,000, part cost is $10.
« CBIC fixed cost is $146,000, part cost is $8.

At low volumes, the MGA and the CBIC are more expensive because of their
higher fixed costs. The total part costs of two alternative types of ASIC are equal at
the break-even volume. In Figure 1.11 the break-even volume for the FPGA and
the MGA is about 2000 parts. The break-even volume between the FPGA and the
CBIC is about 4000 parts. The break-even volume between the MGA and the CBIC
is higher—at about 20,000 parts.

We shall describe how to calculate the fixed part costs next. Following that we
shall discuss how we came up with cost per part of $39, $10, and $8 for the FPGA,
MGA, and CBIC.

1.4.3 ASIC Fixed Costs

Figure 1.12 shows a spreadsheet, “Fixed Costs,” that calculates the fixed part costs
associated with ASIC design.

The training cost includes the cost of the time to learn any new electronic
design automation (EDA) system. For example, a new FPGA design system might
require a few days to learn; a new gate-array or cell-based design system might
require taking a course. Figure 1.12 assumes that the cost of an engineer (including
overhead, benefits, infrastructure, and so on) is between $100,000 and $200,000 per
year or $2000 to $4000 per week (in the United States in 1990s dollars).

Next we consider the hardware and software cost for ASIC design.
Figure 1.12 shows some typical figures, but you can spend anywhere from $1000 to
$1 million (and more) on ASIC design software and the necessary infrastructure.

We try to measure productivity of an ASIC designer in gates (or transistors) per
day. This is like trying to predict how long it takes to dig a hole, and the number of
gates per day an engineer averages varies wildly. ASIC design productivity must
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FIGURE 1.11 Abreak-even analysis for an FPGA, a masked gate array (MGA) and a cus-
tom cell-based ASIC (CBIC). The break-even volume between two technologies is the point
at which the total cost of parts are equal. These numbers are very approximate.

increase as ASIC sizes increase and will depend on experience, design tools, and the
ASIC complexity. If we are using similar design methods, design productivity ought
to be independent of the type of ASIC, but FPGA design software is usually avail-
able as a complete bundle on a PC. This means that it is often easier to learn and use
than semicustom ASIC design tools.

Every ASIC has to pass a production test to make sure that it works. With
modern test tools the generation of any test circuits on each ASIC that are needed
for production testing can be automatic, but it still involves a cost for design for
test. An FPGA is tested by the manufacturer before it is sold to you and before you
program it. You are still paying for testing an FPGA, but it is a hidden cost folded
into the part cost of the FPGA. You do have to pay for any programming costs for
an FPGA, but we can include these in the hardware and software cost.

The nonrecurring-engineering (NRE) charge includes the cost of work done
by the ASIC vendor and the cost of the masks. The production test uses sets of test
inputs called test vectors, often many thousands of them. Most ASIC vendors
require simulation to generate test vectors and test programs for production testing,
and will charge for a test-program development cost. The number of masks
required by an ASIC during fabrication can range from three or four (for a gate
array) to 15 or more (for a CBIC). Total mask costs can range from $5000 to
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FPGA MGA CBIC
Training: $800 $2,000 $2,000
Days 2 _ 5 5
Cost/day $400 $400 $400
Hardware $10,000 $10,000 $10,000
Software $1,000 $20,000 $40,000
Design: $8,000 $20,000 $20,000
Size (gates) 10,000 10,000 10,000
Gates/day 500 » 200 200
Days 20 50 50
Cost/day $400 $400 $400
Design for test: $2,000 $2,000
Days 5 5
Cost/day $400 $400
NRE: $30,000 $70,000
Masks $10,000 $50,000
Simulation $10,000 $10,000
Test program $10,000 $10,000
Second source: $2,000 $2,000 $2,000
Days 5 5 5
Cost/day $400 $400 $400
Total fixed costs $21,800 $86,000 $146,000

FIGURE 1.12 A spreadsheet, “Fixed Costs,” for a field-programmable gate array (FPGA),
a masked gate array (MGA), and a cell-based ASIC (CBIC). These costs can vary wildly.

$50,000 or more. The total NRE charge can range from $10,000 to $300,000 or
more and will vary with volume and the size of the ASIC. If you commit to high
volumes (above 100,000 parts), the vendor may waive the NRE charge. The NRE
charge may also include the costs of software tools, design verification, and proto-
type samples.

If your design does not work the first time, you have to complete a further
design pass (turn or spin) that requires additional NRE charges. Normally you sign
a contract (sign off a design) with an ASIC vendor that guarantees first-pass suc-
cess—this means that if you designed your ASIC according to rules specified by the
vendor, then the vendor guarantees that the silicon will perform according to the sim-
ulation or you get your money back. This is why the difference between semicustom
and full-custom design styles is so important—the ASIC vendor will not (and can-
not) guarantee your design will work if you use any full-custom design techniques.
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Nowadays it is almost routine to have an ASIC work on the first pass. However,
if your design does fail, it is little consolation to have a second pass for free if your
company goes bankrupt in the meantime. Figure 1.13 shows a profit model that rep-
resents the profit flow during the product lifetime. Using this model, we can esti-
mate the lost profit due to any delay.

sales per A
quarter, s
peak sales
$20M A product lost sales
introduction
$10M end of
product life
Qf Q2 Q@3 Q4 @ Qt | Q2 | e
ty ts t3 time

s delay to market, d

FIGURE 1.13 A profit model. If a product is introduced on time, the total sales are
$60 million (the area of the higher triangle). With a three-month (one fiscal quarter) delay the
sales decline to $25 million. The difference is shown as the shaded area between the two tri-
angles and amounts to a lost revenue of $35 million.

Suppose we have the following situation:
 The product lifetime is 18 months (6 fiscal quarters).

e The product sales increase (linearly) at $10 million per quarter independently
of when the product is introduced (we suppose this is because we can
increase production and sales only at a fixed rate).

» The product reaches its peak sales at a point in time that is independent of
when we introduce a product (because of external market factors that we can-
not control).

« The product declines in sales (linearly) to the end of its life—a point in time
that is also independent of when we introduce the product (again due to exter-
nal market forces).

The simple profit and revenue model of Figure 1.13 shows us that we would
lose $35 million in sales in this situation due to a 3-month delay. Despite the obvi-
ous problems with such a simple model (how can we introduce the same product
twice to compare the performance?), it is widely used in marketing. In the electron-
ics industry product lifetimes continue to shrink. In the PC industry it is not unusual
to have a product lifetime of 18 months or less. This means that it is critical to
achieve a rapid design time (or high product velocity) with no delays.
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The last fixed cost shown in Figure 1.12 corresponds to an “insurance policy.”
When a company buys an ASIC part, it needs to be assured that it will always have a
back-up source, or second source, in case something happens to its first or primary
source. Established FPGA companies have a second source that produces equivalent
parts. With a custom ASIC you may have to do some redesign to transfer your ASIC
to the second source. However, for all ASIC types, switching production to a second
source will involve some cost. Figure 1.12 assumes a second-source cost of $2000
for all types of ASIC (the amount may be substantially more than this).

1.4.4 ASIC Variable Costs

Figure 1.14 shows a spreadsheet, “Variable Costs,” that calculates some example
part costs. This spreadsheet uses the terms and parameters defined below the figure.

FPGA MGA CBIC Units
Wafer size 6 6 6 inches
Wafer cost 1,400 1,300 1,500 $
Design 10,000 10,000 10,000 gates
Density 10,000 20,000 25,000 gates/sqg.cm
Utilization 60 85 100 %
Die size 1.67 0.59 0.40 sg.cm
Die/wafer 88 248 365
Defect density 1.10 0.90 1.00 defects/sq.cm
Yield 65 72 80 %
Die cost 25 7 5%
Profit margin 60 45 50 %
Price/gate 0.39 0.10 0.08 cents
Part cost $39 $10 $8

FIGURE 1.14 A spreadsheet, “Variable Costs,” to calculate the part cost (that is the vari-
able cost for a product using ASICs) for different ASIC technologies.

o The wafer size increases every few years. From 1985 to 1990, 4-inch to
6-inch diameter wafers were common; equipment using 6-inch to 8-inch
wafers was introduced between 1990 and 1995; the next step is the 300 cm or
12-inch wafer. The 12-inch wafer will probably take us to 2005.

» The wafer cost depends on the equipment costs, process costs, and overhead
in the fabrication line. A typical wafer cost is between $1000 and $5000,
with $2000 being average; the cost declines slightly during the life of a pro-
cess and increases only slightly from one process generation to the next.
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Moore’s Law (after Gordon Moore of Intel) models the observation that the
number of transistors on a chip roughly doubles every 18 months. Not all
designs follow this law, but a “large” ASIC design seems to grow by a factor
of 10 every 5 years (close to Moore’s Law). In 1990 a large ASIC design size
was 10 k-gate, in 1995 a large design was about 100 k-gate, in 2000 it will be
1 M-gate, in 2005 it will be 10 M-gate.

The gate density is the number of gate equivalents per unit area (remember:
a gate equivalent, or gate, corresponds to a two-input NAND gate).

The gate utilization is the percentage of gates that are on a die that we can
use (on a gate array we waste some gate space for interconnect).

The die size is determined by the design size (in gates), the gate density, and
the utilization of the die.

The number of die per wafer depends on the die size and the wafer size (we
have to pack rectangular or square die, together with some test chips, on to a
circular wafer so some space is wasted).

The defect density is a measure of the quality of the fabrication process. The
smaller the defect density the less likely there is to be a flaw on any one die.
A single defect on a die is almost always fatal for that die. Defect density
usually increases with the number of steps in a process. A defect density of
less than 1 cm™ is typical and required for a submicron CMOS process.

The yield of a process is the key to a profitable ASIC company. The yield is
the fraction of die on a wafer that are good (expressed as a percentage). Yield
depends on the complexity and maturity of a process. A process may start out
with a yield of close to zero for complex chips, which then climbs to above
50 percent within the first few months of production. Within a year the yield
has to be brought to around 80 percent for the average complexity ASIC for
the process to be profitable. Yields of 90 percent or more are not uncommon.

The die cost is determined by wafer cost, number of die per wafer, and the
yield. Of these parameters, the most variable and the most critical to control
is the yield.

The profit margin (what you sell a product for, less what it costs you to
make 1t, divided by the cost) is determined by the ASIC company’s fixed and
variable costs. ASIC vendors that make and sell custom ASICs have huge
fixed and variable costs associated with building and running fabrication
facilities (a fabrication plant is a fab). FPGA companies are typically
fabless—they do not own a fab—they must pass on the costs of the chip
manufacture (plus the profit margin of the chip manufacturer) and the devel-
opment cost of the FPGA structure in the FPGA part cost. The profitability of
any company in the ASIC business varies greatly.
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¢ The price per gate (usually measured in cents per gate) is determined by die
costs and design size. It varies with design size and declines over time.

« The part cost is determined by all of the preceding factors. As such it will vary
widely with time, process, yield, economic climate, ASIC size and complexity,
and many other factors.

As an estimate you can assume that the price per gate for any process technol-
ogy falls at about 20% per year during its life (the average life of a CMOS process
is 2-4 years, and can vary widely). Beyond the life of a process, prices can increase
as demand falls and the fabrication equipment becomes harder to maintain.
Figure 1.15 shows the price per gate for the different ASICs and process technolo-
gies using the following assumptions:

« For any new process technology the price per gate decreases by 40 % in the
first year, 30% in the second year, and then remains constant.

« A new process technology is introduced approximately every 2 years, with
feature size decreasing by a factor of two every 5 years as follows: 2 um in
1985, 1.5 um in 1987, 1 um in 1989, 0.8~0.6 um in 1991-1993, 0.5-0.35 um
in 1996-1997, 0.25-0.18 ptm in 1998-2000.

» CBICs and MGAs are introduced at approximately the same time and price.

« The price of a new process technology is initially 10 % above the process that
it replaces.

e FPGAs are introduced one year after CBICs that use the same process tech-
nology.

» The initial FPGA price (per gate) is 10 percent higher than the initial price for
CBICs or MGAs using the same process technology. :

From Figure 1.15 you can see that the successive introduction of new process technolo-
gies every 2 years drives the price per gate down at a rate close to 30 percent per year.
The cost figures that we have used in this section are very approximate and can vary
widely (this means they may be off by a factor of 2 but probably are correct within a
factor of 10). ASIC companies do use spreadsheet models like these to calculate their
Costs.

Having decided if, and then which, ASIC technology is appropriate, you need to
choose the appropriate cell library. Next we shall discuss the issues surrounding ASIC
cell libraries: the different types, their sources, and their contents.

1.5 ASIC Cell Libraries

The cell library is the key part of ASIC design. For a programmable ASIC the FPGA
company supplies you with a library of logic cells in the form of a design Kkit, you
normally do not have a choice, and the cost is usually a few thousand dollars. For
MGAs and CBICs you have three choices: the ASIC vendor (the company that will
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FIGURE 1.15 Example price per gate figures.

build your ASIC) will supply a cell library, or you can buy a cell library from a
third-party library vendor, or you can build your own cell library.

The first choice, using an ASIC-vendor library, requires you to use a set of
design tools approved by the ASIC vendor to enter and simulate your design. You
have to buy the tools, and the cost of the cell library is folded into the NRE. Some
ASIC vendors (especially for MGAs) supply tools that they have developed in-
house. For some reason the more common model in Japan is to use tools supplied by
the ASIC vendor, but in the United States, Europe, and elsewhere designers want to
choose their own tools. Perhaps this has to do with the relationship between cus-
tomer and supplier being a lot closer in Japan than it is elsewhere.

An ASIC vendor library is normally a phantom library—the cells are empty
boxes, or phantoms, but contain enough information for layout (for example, you
would only see the bounding box or abutment box in a phantom version of the cell
in Figure 1.3). After you complete layout you hand off a netlist to the ASIC vendor,
who fills in the empty boxes (phantom instantiation) before manufacturing your
chip.

The second and third choices require you to make a buy-or-build decision. If
you complete an ASIC design using a cell library that you bought, you also own the
masks (the tooling) that are used to manufacture your ASIC. This is called
customer-owned tooling (COT, pronounced “see-oh-tee”). A library vendor nor-
mally develops a cell library using information about a process supplied by an ASIC
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foundry. An ASIC foundry (in contrast to an ASIC vendor) only provides manufac-
turing, with no design help. If the cell library meets the foundry specifications, we
call this a qualified cell library. These cell libraries are normally expensive (possi-
bly several hundred thousand dollars), but if a library is qualified at several found-
ries this allows you to shop around for the most attractive terms. This means that
buying an expensive library can be cheaper in the long run than the other solutions
for high-volume production.

The third choice is to develop a cell library in-house. Many large computer and
electronics companies make this choice. Most of the cell libraries designed today are
still developed in-house despite the fact that the process of library development is
complex and very expensive.

However created, each cell in an ASIC cell library must contain the following:

» A physical layout

* A behavioral model

» A Verilog/VHDL model
» A detailed timing model
» A test strategy

e A circuit schematic

s Acell icon

e A wire-load model

¢ A routing model

For MGA and CBIC cell libraries we need to complete cell design and cell
layout and shall discuss this in Chapter 2. The ASIC designer may not actually see
the layout if it is hidden inside a phantom, but the layout will be needed eventually.
In a programmable ASIC the cell layout is part of the programmable ASIC design
(see Chapter 4).

The ASIC designer needs a high-level, behavioral model for each cell because
simulation at the detailed timing level takes too long for a complete ASIC design.
For a NAND gate a behavioral model is simple. A multiport RAM model can be
very complex. We shall discuss behavioral models when we describe Verilog and
VHDL in Chapter 10 and Chapter 11. The designer may require Verilog and VHDL
models in addition to the models for a particular logic simulator.

ASIC designers also need a detailed timing model for each cell to determine the
performance of the critical pieces of an ASIC. It is too difficult, too time-consuming,
and too expensive to build every cell in silicon and measure the cell delays. Instead
library engineers simulate the delay of each cell, a process known as characteriza-
tion. Characterizing a standard-cell or gate-array library involves circuit extraction
from the full-custom cell layout for each cell. The extracted schematic includes all the
parasitic resistance and capacitance elements. Then library engineers perform a simu-
lation of each cell including the parasitic elements to determine the switching delays.
The simulation models for the transistors are derived from measurements on special
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chips included on a wafer called process control monitors (PCMs) or drop-ins.
Library engineers then use the results of the circuit simulation to generate detailed
timing models for logic simulation. We shall cover timing models in Chapter 13.

All ASICs need to be production tested (programmable ASICs may be tested by
the manufacturer before they are customized, but they still need to be tested). Sim-
ple cells in small or medium-size blocks can be tested using automated techniques,
but large blocks such as RAM or multipliers need a planned strategy. We shall dis-
cuss test in Chapter 14.

The cell schematic (a netlist description) describes each cell so that the cell
designer can perform simulation for complex cells. You may not need the detailed
cell schematic for all cells, but you need enough information to compare what you
think is on the silicon (the schematic) with what is actually on the silicon (the lay-
out)—this is a layout versus schematic (LVS) check.

If the ASIC designer uses schematic entry, each cell needs a cell icon together
with connector and naming information that can be used by design tools from differ-
ent vendors. We shall cover ASIC design using schematic entry in Chapter 9. One of
the advantages of using logic synthesis (Chapter 12) rather than schematic design
entry is eliminating the problems with icons, connectors, and cell names. Logic syn-
thesis also makes moving an ASIC between different cell libraries, or retargeting,
much easier.

In order to estimate the parasitic capacitance of wires before we actually com-
plete any routing, we need a statistical estimate of the capacitance for a net in a
given size circuit block. This usually takes the form of a look-up table known as a
wire-load model. We also need a routing model for each cell. Large cells are too
complex for the physical design or layout tools to handle directly and we need a
simpler representation—a phantom—of the physical layout that still contains all the
necessary information. The phantom may include information that tells the auto-
mated routing tool where it can and cannot place wires over the cell, as well as the
location and types of the connections to the cell.

1.6  Summary

In this chapter we have looked at the difference between full-custom ASICs, semi-
custom ASICs, and programmable ASICs. Table 1.3 summarizes their different fea-
tures. ASICs use a library of predesigned and precharacterized logic cells. In fact,
we could define an ASIC as a design style that uses a cell library rather than in terms
of what an ASIC is or what an ASIC does.

You can think of ICs like pizza. A full-custom pizza is built from scratch. You
can customize all the layers of a CBIC pizza, but from a predefined selection, and it
takes a while to cook. An MGA pizza uses precooked crusts with fixed sizes and you
choose only from a few different standard types on a menu. This makes MGA pizza
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TABLE 1.3 Types of ASIC.

Custom Custom
ASIC type Family member mask layers logic cells
Full-custom Analog/digital All Some
Semicustom Cell-based (CBIC) All None
Masked gate array (MGA) Some None
Programmable Field-programmable gate array (FPGA) None None
Programmable logic device (PLD) None None

a little faster to cook and a little cheaper. An FPGA is rather like a frozen pizza—
you buy it at the supermarket in a limited selection of sizes and types, but you can
put it in the microwave at home and it will be ready in a few minutes.

In each chapter we shall indicate the key concepts. In this chapter they are

The difference between full-custom and semicustom ASICs

The difference between standard-cell, gate-array, and programmable ASICs
The ASIC design flow

Design economics including part cost, NRE, and breakeven volume

The contents and use of an ASIC cell library

Next, in Chapter 2, we shall take a closer look at the semicustom ASICs that were
introduced in this chapter.

1.7

Problems

1.1 (Break-even volumes, 60 min.) You need a spreadsheet program (such as
Microsoft Excel) for this problem.

a. Build a spreadsheet, “Break-even Analysis,” to generate Figure 1.11.

b. Derive equations for the break-even volumes (there are three: FPGA/MGA,

FPGA/CBIC, and MGA/CBIC) and calculate their values.

c. Increase the FPGA part cost by $10 and use your spreadsheet to produce the

new break-even graph. Hint: (For users of Excel-like spreadsheets) use the

XY scatter plot option. Use the first column for the x-axis data.

d. Find the new break-even volumes (change the volume until the cost becomes

the same for two technologies).

e. Program your spreadsheet to automatically find the break-even volumes. Now

graph the break-even volume (for a choice between FPGA and CBIC) for
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values of FPGA part costs ranging from $10-$50 and CBIC costs ranging
from $2-$10 (do not change the fixed costs from Figure 1.12).

f. Calculate the sensitivity of the break-even volumes to changes in the part
costs and fixed costs. There are three break-even volumes and each of these
is sensitive to two part costs and two fixed costs. Express your answers in
two ways: in equation form and as numbers (for the values in Section 1.4.2
and Figure 1.11).

g. The costs in Figure 1.11 are not unrealistic. What can you say from your
answers if you are a defense contractor, primarily selling products in vol-
umes of less than 1000 parts? What if you are a PC board vendor selling
between 10,000 and 100,000 parts?

1.2 (Design productivity, 10 min.) Given the figures for the SPARCstation 1
ASICs described in Section 1.3 what was the productivity measured in transis-
tors/day? and measured in gates/day? Compare your answers with the figures for
productivity in Section 1.4.3 and explain any differences. How accurate do you
think productivity estimates are?

1.3 (ASIC package size, 30 min.) Assuming, for this problem, a gate density of
1.0 gate/mil? (see Section 15.4, “Estimating ASIC Size,” for a detailed explanation
of this figure), the maximum number of gates you can put in a package is deter-
mined by the maximum die size for each of the packages shown in Table 1.4. The
maximum die size is determined by the package cavity size; these are package-
limited ASICs. Calculate the maximum number of /O pads that can be placed on a
die for each package if the pad spacing is: (i) 5mil, and (ii) 10 mil. Compare your
answers with the maximum numbers of pins (or leads) on each package and com-
ment. Now calculate the minimum number of gates that you can put in each package
determined by the minimum die size.

1.4 (ASIC vendor costs, 30min.) There is a well-known saying in the ASIC
business: “We lose money on every part—but we make it up in volume.” This has a
serious side. Suppose Sumo Silicon currently has two customers: Mr. Big, who cur-
rently buys 10,000 parts per week, and Ms. Smart, who currently buys 4800 parts
per week. A new customer, Ms. Teeny (who is growing fast), wants to buy 1200
parts per week. Sumo’s costs are

wafer cost = $500 + ($250,000/W),

where W is the number of wafer starts per week. Assume each wafer carries 200
chips (parts), all parts are identical, and the yield is

yield =70+ 0.2 x(W-80)% (1.3)

Currently Sumo has a profit margin of 35 percent. Sumo is currently running at
100 wafer starts per week for Mr. Big and Ms. Smart. Sumo thinks they can get
50 cents more out of Mr. Big for his chips, but Ms. Smart won’t pay any more. We
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TABLE 1.4 Die size limits for ASIC packages.

Number of -
pins or Maximum die size?  Minimum die size3
Package' leads (mil?) (mil?)

PLCC 44 320 x 320 94 x 94

PLCC 68 420 x 420 154 x 154
PLCC 84 395 x 395 171 x 171
PQFP 100 338 x 338 124 x 124
PQFP 144 350 x 350 266 x 266
PQFP 160 429 x 429 248 x 248
PQFP 208 501 x 501 427 x 427
CPGA 68 480 x 480 200 x 200
CPGA 84 370 x 370 200 x 200
CPGA 120 480 x 480 175% 175
CPGA 144 470 x 470 250 x 250
CPGA 223 590 x 590 290 x 290
CPGA 299 590 x 590 470 % 470
PPGA 64 230 x 230 120 x 120
PPGA 84 380 x 380 150 x 150
PPGA 100 395 x 395 150 x 150
PPGA 120 395 x 395 190 %190
PPGA 144 660 x 655 230 x 230
PPGA 180 540 x 540 330 % 330
PPGA 208 500 x 500 395 x 395

'PLCC =plastic leaded chip carrier, PQFP =plastic quad flat pack,
CPGA =ceramic pin-grid array, PPGA = plastic pin-grid array.

2Maximum die size is not standard and varies between manufacturers.

SMinimum die size is an estimate based on bond length restrictions.

can calculate how much Sumo can afford to lose per chip if they want Ms. Teeny’s
business really badly.

a. What is Sumo’s current yield?

b. How many good parts is Sumo currently producing per week? (Hint: Is this
enough to supply Mr. Big and Ms. Smart?)
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¢. Calculate how many extra wafer starts per week we need to supply Ms. Teeny
(the yield will change——what is the new yield?). Think when you give this
answer.

d. What is Sumo’s increase in costs to supply Ms. Teeny?

e. Multiply your answer to part d by 1.35 (to account for Sumo’s profit). This is
the increase in revenue we need to cover our increased costs to supply
Ms. Teeny.

f. Now suppose we charge Mr. Big 50 cents more per part. How much extra rev-
enue does that generate?

g. How much does Ms. Teeny’s extra business reduce the wafer cost?

h. How much can Sumo Silicon afford to lose on each of Ms. Teeny’s parts,
cover its costs, and still make a 35 percent profit?

1.5 (Silicon, 20 min.) How much does a 6-inch silicon wafer weigh? a 12-inch

wafer? How much does a carrier (called a boat) that holds twenty 12-inch wafers
weigh? What implications does this have for manufacturing?

a. How many die that are 1-inch on a side does a 12-inch wafer hold? If each
die is worth $100, how much is a 20-wafer boat worth? If a factory is pro-
cessing 10 of these boats in different furnaces when the power is interrupted
and those wafers have to be scrapped, how much money is lost?

b. The size of silicon factories (fabs or foundries) is measured in wafer starts
per week. If a factory is capable of 5000 12-inch wafer starts per week, with
an average die of 500 mil on a side that sells for $20 and 90 percent yield,
what is the value in dollars/year of the factory production? What fraction of
the current gross national (or domestic) product (GNP/GDP) of your country
is that? If the yield suddenly drops from 90 percent to 40 percent (a yield
bust) how much revenue is the company losing per day? If the company has
a cash reserve of $100 million and this revenue loss drops “straight to the
bottom line,” how long does it take for the company to go out of business?

¢. TSMC produced 2 million 6-inch wafers in 1996, how many 500 mil die is
that? TSMC’s $500 million Camas fab in Washington is scheduled to produce
30,000 8-inch wafers per month by the year 2000 using a 0.35 pm process. If
a 1 Mb SRAM yields 1500 good die per 8-inch wafer and there are 1700
gross die per wafer, what is the yield? What is the die size? If the SRAM cell
size is 7 },Lmz, what fraction of the die is used by the cells? What is TSMC'’s
cost per bit for SRAM if the wafer cost is $2000? If a 16Mb DRAM on the
same fab line uses a 16 mm? die, what is the cost per bit for DRAM assum-
ing the same yield?

1.6 (Simulation time, 30 min.) “...The system-level simulation used approxi-

mately 4000 lines of SPARC assembly language...each simulation clock was simu-
lated in three real time seconds” (Sun Technology article).

a. With a 20 MHz clock how much slower is simulated time than real time?
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b. How long would it take to simulate all 4000 lines of test code? (Assume one
line of assembly code per cycle—a good approximation compared to the oth-
ers we are making.)

The article continues: “the entire system was simulated, running actual code,
including several milliseconds of SunOS execution. Four days after power-up,
SPARCstation 1 booted SunOS and announced: 'hello world'.”

¢. How long would it take to simulate 5 ms of code?

d. Find out how long it takes to boot a UNIX workstation in real time. How
many clock cycles is this?

e. The machine is not executing boot code all this time; you have to wait for
disk drives to spin-up, file systems checks to complete, and so on. Make
some estimates as to how much code is required to boot an operating system
(OS) and how many clock cycles this would take to execute.

The number of clock cycles you need to simulate to boot a system is somewhere
between your answers to parts d and e.

f. From your answers make an estimate of how long it takes to simulate booting
the OS. Does this seem reasonable?

g. Could the engineers have simulated a complete boot sequence?

h. Do you think the engineers expected the system to boot on first silicon, given
the complexity of the system and how long they would have to wait to simu-
late a complete boot sequence? Explain.

1.7 (Price per gate, 5 min.) Given the assumptions of Section 1.4.4 on the price
per gate of different ASIC technologies, what has to change for the price per gate for
an FPGA to be less than that for an MGA or CBIC—if all three use the same pro-
cess?

1.8 (Pentiums, 20 min.) Read the online tour of the Pentium Pro at
http://www.intel.com (adapted from a paper presented at the 1995 Interna-
tional Solid-State Circuits Conference). This is not an ASIC design; notice the sec-
tion on full-custom circuit design. Notice also the comments on the use of
'assert' statements in the HDL code that described the circuits. Find out the
approximate cost of the Intel Pentium (3.3 million transistors) and Pentium Pro
(5.5 million transistors) microprocessors.

a. Assuming there a four transistors per gate equivalent, what is the price per
gate?

b. Find out the cost of a 1 Mb, 4 Mb, 8 Mb, or 16 Mb DRAM. Assuming one
transistor per memory bit, what is the price per gate of DRAM?

¢. Considering that both have roughly the same die size, are just as complex to
design and to manufacture, why is there such a huge difference in price per
gate between microprocessors and DRAM?
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1.9 (Inverse embedded arrays, 10 min.) A relatively new cousin of the embed-
ded gate array, the inverse-embedded gate array, is a cell-based ASIC that contains
an embedded gate-array megacell. List the features as well as the advantages and
disadvantages of this type of ASIC in the same way as for the other members of the
ASIC family in Section 1.1.

1.10 (0.5-gate design, 60 min.) It is a good idea to complete a 0.5-gate ASIC
design (an inverter connected between an input pad and an output pad) in the first
week (day) of class. Capture the commands in a report that shows all the steps taken
to create your chip starting from an empty directory—halfgate.

1.11 (Filenames, 30 min.) Start a list of filename extensions used in ASIC
design. Table 1.5 shows an example. Expand this list as you use more tools.

TABLE 1.5 CAD tool filename extensions.

Extension Description From To
.ini Viewlogic startup file, library Viewlogic/Viewdraw Internal tools use
search paths, etc. other Viewlogic tools
.wir Schematic file
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2.1

2.2

2.3

2.4

2.5

2.6

A CMOS transistor (or device) has four terminals: gate, source, drain, and a
fourth terminal that we shall ignore until the next section. A CMOS transistor is a
switch. The switch must be conducting or on to allow current to flow between the
source and drain terminals (using open and closed for switches is confusing—for the
same reason we say a tap is on and not that it is closed ). The transistor source and
drain terminals are equivalent as far as digital signals are concerned—we do not

CMOS Transistors

The CMOS Process
CMOS Design Rules
Combinational Logic Cells
Sequential Logic Cells

Datapath Logic Cells

2.7

2.8

2.9

2.10

2.1

212

worry about labeling an electrical switch with two terminals.

» V4p is the potential difference, or voltage, between nodes A and B in a

I/O Cells

Cell Compilers
Summary
Problems
Bibliography

References

circuit; V4 p is positive if node A is more positive than node B.

» Italics denote variables; constants are set in roman (upright) type. Uppercase

letters denote DC, large-signal, or steady-state voltages.

o For TTL the positive power supply is called VCC (V¢ or V). The 'C
denotes that the supply is connected indirectly to the collectors of the npn
bipolar transistors (a bipolar transistor has a collector, base, and emitter—

corresponding roughly to the drain, gate, and source of an MOS transistor).

« Following the example of TTL we used VDD (Vpp or Vpp) to denote the
positive supply in an NMOS chip where the devices are all n-channel transis-
tors and the drains of these devices are connected indirectly to the positive

supply. The supply nomenclature for NMOS chips has stuck for CMOS.
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CMOS LOGIC

e VDD is the name of the power supply node or net; Vpp, represents the value
(uppercase since Vpp is a DC quantity). Since Vpp, is a variable, it is italic
(words and multiletter abbreviations use roman—thus it is Vpp, but Vygain).

* Logic designers often call the CMOS negative supply VSS or Vggeven if it is

actually ground or GND. I shall use VSS for the node and Vg for the value.

° CMOS uses positive logic—VDD is logic '1' and VSS is logic '0'.

We turn a transistor on or off using the gate terminal. There are two kinds of
CMOS transistors: n-channel transistors and p-channel transistors. An n-channel
transistor requires a logic '1' (from now on I'll just say a '1') on the gate to make the
switch conducting (to turn the transistor on). A p-channel transistor requires a logic
'0' (again from now on, I'll just say a '0") on the gate to make the switch conducting
(to turn the transistor on ). The p-channel transistor symbol has a bubble on its gate
to remind us that the gate has to be a '1' to turn the transistor off. All this is shown in
Figure 2.1(a) and (b).

p-channel transistor VDD

o o 0'—d
gate —q [ _ N !
drain
111 IO"
| GND or GND or
. L VSS VSS
el =\ off
| vDD
GND or
- VSS

(b) (c)

FIGURE 2.1 CMOS transistors as switches. (a) An n-channel transistor. (b) A p-channel
transistor. (c) A CMOS inverter and its symbol (an equilateral triangle and a circle).

If we connect an n-channel transistor in series with a p-channel transistor, as
shown in Figure 2.1(c), we form an inverter. With four transistors we can form a
two-input NAND gate (Figure 2.2a). We can also make a two-input NOR gate
(Figure 2.2b). Logic designers normally use the terms NAND gate and logic gate (or
just gate), but I shall try to use the terms NAND cell and logic cell rather than
NAND gate or logic gate in this chapter to avoid any possible confusion with the
gate terminal of a transistor.
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(@)

p-channel
n-channel

p-channel
n-channel

FIGURE 2.2 CMOS logic. (a) Atwo-input NAND logic cell. (b) A two-input NOR logic cell. The
n-channel and p-channel transistor switches implement the '1's and '0's of a Karnaugh map.

2.1 CMOS Transistors

Figure 2.3 illustrates how electrons and holes abandon their dopant atoms leaving a
depletion region around a transistor’s source and drain. The region between source
and drain is normally nonconducting. To make an n-channel transistor conducting,
we must apply a positive voltage V¢ (the gate voltage with respect to the source)
that is greater than the n-channel transistor threshold voltage, V,, (a typical value is
0.5V and, as far as we are presently concerned, is a constant). This establishes a thin
(=50 A) conducting channel of electrons under the gate. MOS transistors can carry a
very small current (the subthreshold current—a few microamperes or less) with
Vs < Vi, but we shall ignore this. A transistor can be conducting (V> V,,) with-
out any current flowing. To make current flow in an n-channel transistor we must
also apply a positive voltage, Vg, to the drain with respect to the source. Figure 2.3
shows these connections and the connection to the fourth terminal of an MOS tran-
sistor—the bulk (well, tub, or substrate) terminal. For an n-channel transistor we
must connect the bulk to the most negative potential, GND or VSS, to reverse bias
the bulk-to-drain and bulk-to-source pn-diodes. The arrow in the four-terminal
n-channel transistor symbol in Figure 2.3 reflects the polarity of these pn-diodes.
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drain

gate bulk
+ +

source

FIGURE 2.3 An n-channel MOS transistor. The gate-oxide thickness, Ty, is approxi-
mately 100 angstroms (0.01 um). A typical transistor length, L =2\. The bulk may be either
the substrate or a well. The diodes represent pn-junctions that must be reverse-biased.

The current flowing in the transistor is
current (amperes) = charge (coulombs) per unit time (second). 2.1)

We can express the current in terms of the total charge in the channel, Q
(imagine taking a picture and counting the number of electrons in the channel at that
instant). If tf(for time of flight—sometimes called the transit time) is the time that
it takes an electron to cross between source and drain, the drain-to-source current,

]DSn’ is

_9
Ipg, = L (2.2)
f
We need to find Q and s The velocity of the electrons v (a vector) is given by
the equation that forms the basis of Ohm’s law:

vV = _M11E7 (2.3)

where [1,, is the electron mobility (11, is the hole mobility) and E is the electric field
(with units Vm"l).

Typical carrier mobility values are ,=500-1000 em?V-ls™l and
u, = 100-400 em?v-lgl, Equation 2.3 is a vector equation, but we shall ignore the
vertical electric field and concentrate on the horizontal electric field, E ,, that moves
the electrons between source and drain. The horizontal component of the electric
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field is E ,=-Vpg/L, directed from the drain to the source, where L is the channel
length (see Figure 2.3). The electrons travel a distance L with horizontal velocity
vy =—-N,LE,, so that

= . 2.4)
u'nVDS

L L2
tf —
vx .

Next we find the channel charge, Q. The channel and the gate form the plates of
a capacitor, separated by an insulator—the gate oxide. We know that the charge on a
linear capacitor, C, is Q = CV. Our lower plate, the channel, is not a linear conductor.
Charge only appears on the lower plate when the voltage between the gate and the
channel, Vs, exceeds the n-channel threshold voltage. For our nonlinear capacitor
we need to modify the equation for a linear capacitor to the following:

Q=C(Vge—V,) - 2.5)

The lower plate of our capacitor is resistive and conducting current, so that the
potential in the channel, Ve, varies. In fact, Vo=V at the source and
Voo =Vgs—Vps at the drain. What we really should do is find an expression for the
channel charge as a function of channel voltage and sum (integrate) the charge all
the way across the channel, from x=0 (at the source) to x =L (at the drain). Instead
we shall assume that the channel voltage, V¢ (x), is a linear function of distance
from the source and take the average value of the charge, which is thus

1
Q= C[(VGS Vi) — QVDS] : 2.5

The gate capacitance, C, is given by the formula for a parallel-plate capacitor
with length L, width W, and plate separation equal to the gate-oxide thickness, T,.
Thus the gate capacitance is

WLeOX
C = T = WLCOX, 2.7)

00X

where €., is the gate-oxide dielectric permittivity. For silicon dioxide, Si0,,
€ox = 3.45 X 100U Fm™!, so that, for a typical gate-oxide thickness of 100 A
(1A =1 angstrom = 0.1 nm), the gate capacitance per unit area, C,, =3 fFum™2,

Now we can express the channel charge in terms of the transistor parameters,

0 = WLCOX[(VGS—VM) ~%VDS]. 2.8)
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Finally, the drain—source current is

_o_W 1
IDSn - l‘— - -]juncox [ (VGS - th) - QVDSJ VDS
f 2.9)
W
i— n [ (VGS th) DS] V

The constant k;l is the process transconductance parameter (or intrinsic
transconductance):

=pC (2.10)

nox”
We also define j3,, the transistor gain factor (or just gain factor) as

W
B, = knf' (2.11)
The factor W/L (transistor width divided by length) is the transistor shape factor.
Equation 2.9 describes the linear region (or triode region) of operation. This
equation is valid until Vpg=V59—-V,, and then predicts that /pg decreases with
increasing Vpg, which does not make physical sense. At Vpg=Vgg— Vi, =Vpg(san
(the saturation voltage) there is no longer enough voltage between the gate and the
drain end of the channel to support any channel charge. Clearly a small amount of
charge remains or the current would go to zero, but with very little free charge the
channel resistance in a small region close to the drain increases rapidly and any fur-
ther increase in Vg is dropped over this region. Thus for Vpg>Vige—Vy, (the
saturation region, or pentode region, of operation) the drain current /¢ remains
approximately constant at the saturation current, /pg,,sar), Where

Bn
V.-V )2 vy 1% \V2
( GS™ tn) ’ ps” Y aGs : (2.12)

]D Sn (sat) — tn

Figure 2.4 shows the n-channel transistor /p¢—Vpg characteristics for a generic
0.5 um CMOS process that we shall call G5. We can fit Eq. 2.12 to the long-channel
transistor characteristics (W =60 um, L =6 um) in Figure 2.4(a). If Ipg,(sayy = 2.5 mA
(with Vpg=3.0V, V5g=3.0V, V,,=0.65V, T,, =100 A), the intrinsic transconduc-
tance is

2(L/W) I 5%107° 5
. Dsn(sa) 2 (6/60) (25“70 ) 905x 10°AV 2, (2.13)
(Vas— V)2 (3.0-0.65)2

or approximately 90 LLAV’2 This value of k , calculated in the saturation region
will be different (typically lower by a f‘lCtOI' of 2 or more) from the value of k
measured in the linear region. We assumed the mobility, i, and the threshold volt—
age, V,, are constants—neither of which is true, as we shall see in Section 2.1.2.
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For the p-channel transistor in the G5 process, Ipg,eay =—850UA
(Vps=-3.0V,V5g=-3.0V, V;,=-0.85V, W=60 um, L =6 um). Then

_ 2(L/W) (Hpgy say) _ 2(6/60) (850x107°)
p (VGS—-th)2 (-3.0- (-0.85))2

= 3.68x10°AV . (2.14)

The next section explains the signs in Eq. 2.14.

211 P-Channel Transistors

The source and drain of CMOS transistors look identical; we have to know which way
the current is flowing to distinguish them. The source of an n-channel transistor is
lower in potential than the drain and vice versa for a p-channel transistor. In an
n-channel transistor the threshold voltage, V,,, is normally positive, and the terminal
voltages Vg and Vg are also usually positive. In a p-channel transistor Vy, is nor-
mally negative and we have a choice: We can write everything in terms of the magni-
tudes of the voltages and currents or we can use negative signs in a consistent fashion.
Here are the equations for a p-channel transistor using negative signs:

" 1
Ipsp = “kpf[(VGs“V[p) —QVDSJ Vs Vps>Vas=Vip
-B

— P
DSp(sat) ~— " (VGS -V

(2.15)

I )2 Vps<Vgs—V

tp tp

In these two equations Vy, is negative, and the terminal voltages Vpg and Vg
are also normally negative (and -3 V<=2V, for example). The current /pg), is then
negative, corresponding to conventional current flowing from source to drain of a
p-channel transistor (and hence the negative sign for Ipgy,say in Eq. 2.14).

2.1.2 Velocity Saturation

For a deep submicron transistor, Eq. 2.12 may overestimate the drain—source current
by a factor of 2 or more. There are three reasons for this error. First, the threshold
voltage is not constant. Second, the actual length of the channel (the electrical or
effective length, often written as L.g) is less than the drawn (mask) length. The third
reason is that Eq. 2.3 is not valid for high electric fields. The electrons cannot move
any faster than about v .y, = 10° ms™ when the electric field is above 10°Vm™
(reached when 1V is dropped across 1um); the electrons become velocity
saturated. In this case f; = Leg/Vipax,, the drain-source saturation current is inde-
pendent of the transistor length, and Eq. 2.12 becomes

I Wy Co (Vag—=V, )i V>V

DSn(sat) = maxnCox an) (velocity saturated). (2.16)

DS (s

We can see this behavior for the short-channel transistor characteristics in
Figure 2.4(a) and (c).
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IDs/mA 9

o 3.0

2.5

2.0
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FIGURE 2.4 MOS n-channel
transistor characteristics for a
generic 0.5 um process (G5). (a) A
short-channel transistor, with
W=6um and L =0.6 um (drawn)
and a long-channel transistor
(W=60pum, L=6um) (b) The 6/0.6
characteristics represented as a
surface. (c) A long-channel
transistor obeys a square-law
characteristic between Ipgand Vg
in the saturation region (Vpg=3V).
A short-channel transistor shows a
more linear characteristic due to
velocity saturation. Normally, all of
the transistors used on an ASIC
have short channels.

nch. WL=60/6 Vgg/V

1 0.5, 0.0

(b)

(c)
Ipsay/mA - @)
3 —
VDS = 30 V
2 7 n-ch. W/L=6/0.6
lDS(sat) = Vas—Vin
1 -
7" prch. W/L =60/6
o 7 pssay = (Vas—Vin)?
T T 1

1 2 3
Vgs/V

Transistor current is often specified per micron of gate width because of the
form of Eq.2.16. As an example, suppose Ipg,apn/ W =300 uApm™! for the
n-channel transistors in our G5 process (with Vpg=3.0V, V5g=3.0V, V,,,=0.65V,
Legr=0.5um and T, =100 A). Then E, ~ (3-0.65) V/0.5um~5 Vum™!,
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—6 6
- ]DSn(sat)/W _ (30010 ) (1x10")
maxn Cox (VGS -V,) (3.45X10—3) (3 -0.65)

= 37,000 ms "\, (2.17)

and #r ~ 0.5 1m/37,000 ms™" = 13 ps.

The value for v,,,,, is lower than the 10° ms™! we expected because the carrier
velocity is also lowered by mobility degradation due the vertical electric field—
which we have ignored. This vertical field forces the carriers to keep “bumping” in
to the interface between the silicon and the gate oxide, slowing them down.

2.1.3  SPICE Models

The simulation program SPICE (which stands for Simulation Program with
Integrated Circuit Emphasis) is often used to characterize logic cells. Table 2.1
shows a typical set of model parameters for our G5 process. The SPICE parameter
XP (given in uAV‘z) corresponds to k;l (and k' ). SPICE parameters VT0 and TOX
correspond to Vi, (and V), and T,,. SPICE parameter U0 (given in em?vIsTh
corresponds to the ideal bulk mobility values, p, (and f1,). Many of the other
parameters model velocity saturation and mobility degradation (and thus the effec-
tive value of k;l and k;) ).

47

TABLE 2.1 SPICE parameters for a generic 0.5 um process, G5 (0.6 um drawn gate length). The

n-channel transistor characteristics are shown in Figure 2.4.

.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1 VTO=0.65 DELTA=0.7
+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6 NSUB=1.4E+17 NFS=6E+11
+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10 CGSO=3.0E-10 CGBO=4.0E-10

+ CJ=5.6E-04 MJ=0.56 CJIJSW=5E-11 MJSW=0.52 PB=1

-MODEL CMOSP PMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=-1 VTO=-0.92 DELTA=0.29
+ LD=3.5E-08 KP=4.9E-05 UO=135 THETA=0.18 RSH=2 GAMMA=(0.47 NSUB=8.5E+16 NFS=6.5E+11
+ VMAX=2.5E+05 ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-10 CGS0=2.4E-10 CGBO=3.8E-10

+ CJ=9.3E-04 MJ=0.47 CJISW=2.9E-10 MJISW=0.505 PB=1

2.1.4 Logic Levels

Figure 2.5 shows how to use transistors as logic switches. The bulk connection for
the n-channel transistor in Figure 2.5(a-b) is a p-well. The bulk connection for the
p-channel transistor is an n-well. The remaining connections show what happens
when we try and pass a logic signal between the drain and source terminals.

In Figure 2.5(a) we apply a logic '1' (or Vpp—1I shall use these interchangeably)
to the gate and a logic '0" (Vg¢) to the source (we know it is the source since elec-
trons must flow from this point, since Vg is the lowest voltage on the chip). The
application of these voltages makes the n-channel transistor conduct current, and
electrons flow from source to drain.
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FIGURE 2.5 CMOS logic levels. (a) A strong '0". (b) A weak '1'. (c) A weak '0'. (d) A strong
"1'. (Vy, is positive and Vi, is negative.) The depth of the channels is greatly exaggerated.
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Suppose the drain is initially at logic '1'; then the n-channel transistor will begin
to discharge any capacitance that is connected to its drain (due to another logic cell,
for example). This will continue until the drain terminal reaches a logic '0', and at that
time Vgp and Vg are both equal to Vpp, a full logic '1'. The transistor is strongly
conducting now (with a large channel charge, Q, but there is no current flowing since
Vps = 0V). The transistor will strongly object to attempts to change its drain termi-
nal from a logic '0'. We say that the logic level at the drain is a strong '0".

In Figure 2.5(b) we apply a logic '1' to the drain (it must now be the drain since
electrons have to flow toward a logic '1"). The situation is now quite different—the
transistor is still on but Vg is decreasing as the source voltage approaches its final
value. In fact, the source terminal never gets to a logic 'l'—the source will stop
increasing in voltage when Vg reaches V. At this point the transistor is very
nearly off and the source voltage creeps slowly up to Vpp—Vy,. Because the transis-
tor is very nearly off, it would be easy for a logic cell connected to the source to
change the potential there, since there is so little channel charge. The logic level at
the source is a weak 'l". Figure 2.5(c—d) show the state of affairs for a p-channel
transistor is the exact reverse or complement of the n-channel transistor situation.

In summary, we have the following logic levels:

* An n-channel transistor provides a strong '0’, but a weak '1".
= A p-channel transistor provides a strong 'l’, but a weak '0'.

Sometimes we refer to the weak versions of '0" and '1" as degraded logic levels.
In CMOS technology we can use both types of transistor together to produce strong
‘0" logic levels as well as strong '1" logic levels.

2.2 The CMOS Process

Figure 2.6 outlines the steps to create an integrated circuit. The starting material is
silicon, Si, refined from quartzite (with less than | impurity in 1010 silicon atoms).
We draw a single-crystal silicon boule (or ingot) from a crucible containing a melt
at approximately 1500°C (the melting point of silicon at 1 atm. pressure is 1414 °C).
This method is known as Czochralski growth. Acceptor (p-type) or donor (n-type)
dopants may be introduced into the melt to alter the type of silicon grown.

The boule is sawn to form thin circular wafers (6, 8, or 12 inches in diameter,
and typically 600 pm thick), and a flat is ground (the primary flat), perpendicular to
the <110> crystal axis—as a “this edge down” indication. The boule is drawn so that
the wafer surface is either in the (111) or (100) crystal planes. A smaller secondary
flat indicates the wafer crystalline orientation and doping type. A typical submicron
CMOS processes uses p-type (100) wafers with a resistivity of approximately
10 Qcm—this type of wafer has two flats, 90° apart. Wafers are made by chemical
companies and sold to the IC manufacturers. A blank 8-inch wafer costs about $100.
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To begin IC fabrication we place a batch of wafers (a wafer lot) on a boat and
grow a layer (typically a few thousand angstroms) of silicon dioxide, SiO,, using a
furnace. Silicon is used in the semiconductor industry not so much for the properties
of silicon, but because of the physical, chemical, and electrical properties of its
native oxide, SiO,. An IC fabrication process contains a series of masking steps
(that in turn contain other steps) to create the layers that define the transistors and
metal interconnect.

furnace spin

grow oxide

etch

®

FIGURE 2.6 IC fabrication. Grow crystalline silicon (1); make a wafer (2-3); grow a silicon
dioxide (oxide) layer in a furnace (4); apply liquid photoresist (resist) (5); mask exposure (6);
a cross-section through a wafer showing the developed resist (7); etch the oxide layer (8); ion
implantation (9—10); strip the resist (11); strip the oxide (12). Steps similar to 4-12 are
repeated for each layer (typically 12—20 times for a CMOS process).

Each masking step starts by spinning a thin layer (approximately 1 um) of liquid
photoresist (resist) onto each wafer. The wafers are baked at about 100 °C to remove
the solvent and harden the resist before being exposed to ultraviolet (UV) light
(typically less than 200 nm wavelength) through a mask. The UV light alters the
structure of the resist, allowing it to be removed by developing. The exposed oxide
may then be etched (removed). Dry plasma etching etches in the vertical direction
much faster than it does horizontally (an anisotropic etch). Wet etch techniques are
usually isotropic. The resist functions as a mask during the etch step and transfers
the desired pattern to the oxide layer.

Dopant ions are then introduced into the exposed silicon areas. Figure 2.6
illustrates the use of ion implantation. An ion implanter is a cross between a TV
and a mass spectrometer and fires dopant ions into the silicon wafer. Ions can only
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penetrate materials to a depth (the range, normally a few microns) that depends on
the closely controlled implant energy (measured in keV—usually between 10 and
100keV; an electron volt, 1 eV, is 1.6 x 107197 ). By using layers of resist, oxide, and
polysilicon we can prevent dopant ions from reaching the silicon surface and thus
block the silicon from receiving an implant. We control the doping level by count-
ing the number of ions we implant (by integrating the ion-beam current). The
implant dose is measured in atoms/cm? (typical doses are from 10'3 to 10! cm™).
As an alternative to ion implantation we may instead strip the resist and introduce
dopants by diffusion from a gaseous source in a furnace.

Once we have completed the transistor diffusion layers we can deposit layers of
other materials. Layers of polycrystalline silicon (polysilicon or poly), SiO,, and sil-
icon nitride (SizN4), for example, may be deposited using chemical vapor
deposition (CVD). Metal layers can be deposited using sputtering. All these layers
are patterned using masks and similar photolithography steps to those shown in
Figure 2.6.

TABLE 2.2 CMOS process layers.

Derivation from

Mask/layer name drawn layers Alternative names for mask/layer MOSIS mask label
n-well =nwell! bulk, substrate, tub, n-tub, moat CWN
p-well = pwell1 bulk, substrate, tub, p-tub, moat cwp
active = pdiff + ndiff thin oxide, thinox, island, gate oxide CAA
polysilicon =poly poly, gate CPG
n-diffusion implant? = grow (ndiff) ndiff, n-select, nplus, n+ CSN
p-diffusion implant® = grow (pdiff) pdiff, p-select, pplus, p+ csp
contact = contact contact cut, poly contact, diffusion contact ~ CCP and CCA3
metalt =mi first-level metal CMF
metal2 =m2 second-level metal CMS

via2 =via2 metal2/metal3 via, m2/m3 via CVSs
metal3 =m3 third-level metal CMT
glass =glass passivation, overglass, pad COoG

it only one well layer is drawn, the other mask may be derived from the drawn layer. For example,
p-well(mask) = not(nwell (drawn)). A single-well process requires only one well mask.

°The implant masks may be derived or drawn:

3Largely for historical reasons the contacts to poly and contacts to active have different layer names. In the past
this allowed a different sizing or process bias to be applied to each contact type when the mask was made.
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Table 2.2 shows the mask layers (and their relation to the drawn layers) for a
submicron, silicon-gate, three-level metal, self-aligned, CMOS process. A process
in which the effective gate length is less than 1um is referred to as a submicron
process. Gate lengths below 0.35 m are considered in the deep-submicron regime.

Figure 2.7 shows the layers that we draw to define the masks for the logic cell
of Figure 1.3. Potential confusion arises because we like to keep layout simple but
maintain a “what you see is what you get” (WYSIWYG) approach. This means that
the drawn layers do not correspond directly to the masks in all cases.

We can construct wells in a CMOS process in several ways. In an n-well
process, the substrate is p-type (the wafer itself) and we use an n-well mask to build
the n-well. We do not need a p-well mask because there are no p-wells in an n-well
process—the n-channel transistors all sit in the substrate (the wafer)—but we often
draw the p-well layer as though it existed. In a p-well process we use a p-well mask
to make the p-wells and the n-wells are the substrate. In a twin-tub (or twin-well)
process, we create individual wells for both types of transistors, and neither well is
the substrate (which may be either n-type or p-type). There are even triple-well pro-
cesses used to achieve even more control over the transistor performance. Whatever
process that we use we must connect all the n-wells to the most positive potential on
the chip, normally VDD, and all the p-wells to VSS; otherwise we may forward bias
the bulk to source/drain prn-junctions. The bulk connections for CMOS transistors
are not usually drawn in digital circuit schematics, but these substrate contacts
(well contacts or tub ties) are very important. After we make the well(s), we grow a
layer (approximately 1500 A) of SisNy over the wafer. The active mask (CAA)
leaves this nitride layer only in the active areas that will later become transistors or
substrate contacts. Thus

CAA (mask) = ndiff (drawn) v pdiff (drawn), (2.18)

the v symbol represents OR (union) of the two drawn layers, ndiff and pdiff. Every-
thing outside the active areas is known as the field region, or just field.

Next we implant the substrate to prevent unwanted transistors from forming in
the field region—this is the field implant or channel-stop implant. The nitride over
the active areas acts as an implant mask and we may use another field-implant mask
at this step also. Following this we grow a thick (approximately 5000 A) layer of
Si0O,, the field oxide (FOX). The FOX will not grow over the nitride areas. When
we strip the nitride we are left with FOX in the areas we do not want to dope the sil-
icon. Following this we deposit, dope, mask, and etch the poly gate material,
CPG (mask) = poly (drawn). Next we create the doped regions that form the sources,
drains, and substrate contacts using ion implantation. The poly gate functions like
masking tape in these steps. One implant (using phosphorous or arsenic ions) forms
the n-type source/drain for the n-channel transistors and n-type substrate contacts
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(d) pdiff

(i) m2

(k) phantom

(h) via

FIGURE 2.7 The standard cell shown in Figure 1.3. (a)—(i) The drawn layers that define
the masks. The active mask is the union of the ndiff and pdiff drawn layers. The n-diffusion
implant and p-diffusion implant masks are bloated versions of the ndiff and pdiff drawn layers.
(i) The complete cell layout. (k) The phantom cell layout. Often an ASIC vendor hides the
details of the internal cell construction. The phantom cell is used for layout by the customer
and then “instantiated” by the ASIC vendor after layout is complete. This layout uses gray-
scale stipple patterns to distinguish between layers.
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(CSN). A second implant (using boron ions) forms the p-type source—drain for the
p-channel transistors and p-type substrate contacts (CSP). These implants are
masked as follows

CSN (mask) = grow (ndiff (drawn)), (2.19)
CSP (mask) = grow (pdiff (drawn)), (2.20)

where “grow” means that we expand or bloat the drawn ndiff and drawn pdiff layers
slightly (usually by a few A).

During implantation the dopant ions are blocked by the resist pattern defined
by the CSN and CSP masks. The CSN mask thus prevents the n-type regions being
implanted with p-type dopants (and vice versa for the CSP mask). As we shall see,
the CSN and CSP masks are not intended to define the edges of the n-type and
p-type regions. Instead these two masks function more like newspaper that prevents
paint from spraying everywhere. The dopant ions are also blocked from reaching the
silicon surface by the poly gates and this aligns the edge of the source and drain
regions to the edges of the gates (we call this a self-aligned process). In addition,
the implants are blocked by the FOX and this defines the outside edges of the
source, drain, and substrate contact regions.

The only areas of the silicon surface that are doped n-type are

n-diffusion (silicon) = (CAA (mask) A CSN (mask)) A (—=CPG (mask)); (2.21)

where the A symbol represents AND (the intersection of two layers); and the — sym-
bol represents NOT.
Similarly, the only regions that are doped p-type are

p-diffusion (silicon) = (CAA (mask) A CSP (mask)) A (=CPG (mask)). (2.22)

If the CSN and CSP masks do not overlap, it is possible to save a mask by using
one implant mask (CSN or CSP) for the other type (CSP or CSN). We can do this by
using a positive resist (the pattern of resist remaining after developing is the same
as the dark areas on the mask) for one implant step and a negative resist (vice
versa) for the other step. However, because of the poor resolution of negative resist
and because of difficulties in generating the implant masks automatically from the
drawn diffusions (especially when opposite diffusion types are drawn close to each
other or touching), it is now common to draw both implant masks as well as the two
diffusion layers.

It is important to remember that, even though poly is above diffusion, the
polysilicon is deposited first and acts like masking tape. It is rather like airbrushing a
stripe—you use masking tape and spray everywhere without worrying about making
straight lines. The edges of the pattern will align to the edge of the tape. Here the
analogy ends because the poly is left in place. Thus,

n-diffusion (silicon) = (ndiff (drawn)) A (—poly (drawn)) and (2.23)
p-diffusion (silicon) = (pdiff (drawn)) A (—poly (drawn)). (2.24)
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In the ASIC industry the names nplus, n+, and n-diffusion (as well as the p-type
equivalents) are used in various ways. These names may refer to either the drawn
diffusion layer (that we call ndiff), the mask (CSN), or the doped region on the sili-
con (the intersection of the active and implant mask that we call n-diffusion)—very
confusing.

The source and drain are often formed from two separate implants. The first is a
light implant close to the edge of the gate, the second a heavier implant that forms
the rest of the source or drain region. The separate diffusions reduce the electric field
near the drain end of the channel. Tailoring the device characteristics in this fashion
is known as drain engineering and a process including these steps is referred to as
an LDD process, for lightly doped drain; the first light implant is known as an
LDD diffusion or LDD implant.

nwell pwell ndiff pdiff
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FIGURE 2.8 Drawn layers and an
example set of black-and-white stipple
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the patterns as they appear in layout.
Underneath are the magnified 8-by-8
pixel patterns. If we are trying to simplify H A é
layout we may use solid black or white

for contact and vias. If we have contacts
and vias placed on top of one another we

ot ond

]

poly contact

I

or solid)

may use stipple patterns or other means
to help distinguish between them. Each
stipple pattern is transparent, so that
black shows through from underneath

when layers are superimposed. There
are no standards for these patterns.

Figure 2.8 shows a stipple-pattern matrix for a CMOS process. When we draw
layout you can see through the layers—all the stipple patterns are OR’ed together.
Figure 2.9 shows the transistor layers as they appear in layout (drawn using the pat-
terns from Figure 2.8) and as they appear on the silicon. Figure 2.10 shows the same
thing for the interconnect layers.

2.2.1 Sheet Resistance

Tables 2.3 and 2.4 show the sheet resistance for each conducting layer (in decreasing
order of resistance) for two different generations of CMOS process.
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FIGURE 2.9 The transistor layers. (a) A p-channel transistor as drawn in layout. (b) The
corresponding silicon cross section (the heavy lines in part a show the cuts). This is how a
p-channel transistor would look just after completing the source and drain implant steps.

FIGURE 2.10 The interconnect layers.

(a) Metal layers as drawn in layout. (b) The

corresponding structure (as it might appear @ y

in a scanning-electron micrograph). The l X
insulating layers between the metal layers

are not shown. Contact is made to the under-

lying silicon through a platinum barrier layer.  m2 4+ via2 + m3
Each via consists of a tungsten plug. Each

metal layer consists of a titanium—tungsten 7 7

and aluminum-copper sandwich. Most deep g (3000 A)

subrmicron CMOS processes use metal struc- m2 Foou] W blu

tures similar to this. The scale, rounding, and . jiact £03 M3 40%097\

irregularity of the features are realistic. +mi O ( )
+viai 2\ contact Pt barrier
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The diffusion layers, n-diffusion and p-diffusion, both have a high resistivity—
typically from 1-100Q/square. We measure resistance in /square (ohms per
square) because for a fixed thickness of material it does not matter what the size of a
square is—the resistance is the same. Thus the resistance of a rectangular shape of a
sheet of material may be calculated from the number of squares it contains times the
sheet resistance in Q/square. We can use diffusion for very short connections inside
a logic cell, but not for interconnect between logic cells. Poly has the next highest
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TABLE 2.3 Sheet resistance (1um CMOS). TABLE 2.4 Sheet resistance (0.35um CMOS).
Sheet Sheet
Layer resistance Units Layer resistance Units

n-well 1.15+£0.25 kQ/square n-well 1+0.4 kQ/square
poly 3.5+2.0 Q/square poly 10+4.0 Q/square
n-diffusion 75+ 20 Q/square n-diffusion 3.5+£2.0 Q/square
p-diffusion 140+ 40 Q/square p-diffusion 2515 Q/square
mi/2 70+ 6 mQ/square m1/2/3 606 meX/square
m3 30+ 3 mQ/square metal4 30+3 mQ/square

resistance to diffusion. Most submicron CMOS processes use a silicide material (a
metallic compound of silicon) that has much lower resistivity (at several {/square)
than the poly or diffusion layers alone. Examples are tantalum silicide, TaSi; tung-
sten silicide, WSi; or titanium silicide, TiSi. The stoichiometry of these deposited
silicides varies. For example, for tungsten silicide W:Si= 1:2.6.

There are two types of silicide process. In a silicide process only the gate is sili-
cided. This reduces the poly sheet resistance, but not that of the source—drain. In a
self-aligned silicide (salicide) process, both the gate and the source—drain regions
are silicided. In some processes silicide can be used to connect adjacent poly and
diffusion (we call this feature LI, white metal, local interconnect, metal0, or m0). LI
is useful to reduce the area of ASIC RAM cells, for example.

Interconnect uses metal layers with resistivities of tens of m{2/square, several
orders of magnitude less than the other layers. There are usually several layers of
metal in a CMOS ASIC process, each separated by an insulating layer. The metal
layer above the poly gate layer is the first-level metal (m1 or metall), the next is the
second-level metal (m2 or metal2), and so on. We can make connections from m1 to
diffusion using diffusion contacts or to the poly using polysilicon contacts.

After we etch the contact holes a thin barrier metal (typically platinum) is
deposited over the silicon and poly. Next we form contact plugs (via plugs for con-
nections between metal layers) to reduce contact resistance and the likelihood of
breaks in the contacts. Tungsten is commonly used for these plugs. Following this
we form the metal layers as sandwiches. The middle of the sandwich is a layer (usu-
ally from 3000 A to 10,000 A) of aluminum and copper. The top and bottom layers
are normally titanium—tungsten (TiW, pronounced “tie-tungsten”). Submicron pro-
cesses use chemical-mechanical polishing (CMP) to smooth the wafers flat before
each metal deposition step to help with step coverage.

An insulating glass, often sputtered quartz (SiO,), though other materials are
also used, is deposited between metal layers to help create a smooth surface for the
deposition of the metal. Design rules may refer to this insulator as an intermetal
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oxide (IMO) whether they are in fact oxides or not, or interlevel dielectric (ILD).
The IMO may be a spin-on polymer; boron-doped phosphosilicate glass (BPSG);
SizNy; or sandwiches of these materials (oxynitrides, for example).

We make the connections between m1 and m2 using metal vias, cuts, or just
vias. We cannot connect m2 directly to diffusion or poly; instead we must make
these connections through m1 using a via. Most processes allow contacts and vias to
be placed directly above each other without restriction, arrangements known as
stacked vias and stacked contacts. We call a process with m1 and m2 a two-level
metal (2LM) technology. A 3LM process includes a third-level metal layer (m3 or
metal3), and some processes include more metal layers. In this case a connection
between m1 and m2 will use an m1/m?2 via, or vial; a connection between m2 and
m3 will use an m2/m3 via, or via2, and so on.

The minimum spacing of interconnects, the metal pitch, may increase with suc-
cessive metal layers. The minimum metal pitch is the minimum spacing between the
centers of adjacent interconnects and is equal to the minimum metal width plus the
minimum metal spacing.

Aluminum interconnect tends to break when carrying a high current density.
Collisions between high-energy electrons and atoms move the metal atoms over a
long period of time in a process known as electromigration. Copper is added to the
aluminum to help reduce the problem. The other solution is to reduce the current
density by using wider than minimum-width metal lines.

Tables 2.5 and 2.6 show maximum specified contact resistance and via
resistance for two generations of CMOS processes. Notice that a m1 contact in
either process is equal in resistance to several hundred squares of metal.

TABLE 2.5 Contact resistance (1 um TABLE 2.6 Contact resistance (0.35 um
CMOS). CMOS).

Resistance Resistance

Contact/via type (maximum) Contact/via type (maximum)
m2/m3 via (via2) 50 m2/m3 via (via2) 6Q
m1/m2 via (vial) 2Q m1/m2 via (vial) 6Q
m1/p-diffusion contact 20Q2 m1/p-diffusion contact 200
m1/n-diffusion contact 200 m1/n-diffusion contact 200
m1/poly contact 200 m1/poly contact 20Q2

2.3  CMOS Design Rules

Figure 2.11 defines the design rules for a CMOS process using pictures. Arrows
between objects denote a minimum spacing, and arrows showing the size of an
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FIGURE 2.11 The MOSIS scalable CMOS design rules (rev. 7). Dimensions are in A. Rule
numbers are in parentheses (missing rule sets 11-13 are extensions to this basic process).
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object denote a minimum width. Rule 3.1, for example, is the minimum width of
poly (2 ). Each of the rule numbers may have different values for different manu-
facturers—there are no standards for design rules. Tables 2.7-2.9 show the MOSIS
scalable CMOS rules. Table 2.7 shows the layer rules for the process front end,
which is the front end of the line (as in production line) or FEOL. Table 2.8 shows
the rules for the process back end (BEOL), the metal interconnect, and Table 2.9
shows the rules for the pad layer and glass layer.

The rules in Table 2.7 and Table 2.8 are given as multiples of A. If we use
lambda-based rules we can move between successive process generations just by
changing the value of A. For example, we can scale 0.5 um layouts (A=0.25 um) by
a factor of 0.175/0.25 for a 0.35 um process (A=0.175 pm)—at least in theory. You
may get an inkling of the practical problems from the fact that the values for pad
dimensions and spacing in Table 2.9 are given in microns and not in A. This is
because bonding to the pads is an operation that does not scale well. Often compa-
nies have two sets of design rules: one in A (with fractional A rules) and the other in
microns. Ideally we would like to express all of the design rules in integer multiples
of A. This was true for revisions 4—6, but not revision 7 of the MOSIS rules. In revi-
sion 7 rules 5.2a/6.2a are noninteger. The original Mead-Conway NMOS rules
include a noninteger 1.5 A rule for the implant layer.

2.4  Combinational Logic Cells

The AND-OR-INVERT (AOI) and the OR-AND-INVERT (OAI) logic cells are par-
ticularly efficient in CMOS. Figure 2.12 shows an AOI221 and an OAI321 logic cell
(the logic symbols in Figure 2.12 are not standards, but are widely used). All indices
(the indices are the numbers after AOI or OAl) in the logic cell name greater than 1
correspond to the inputs to the first “level” or stage—the AND gate(s) in an AOI
cell, for example. An index of 'l' corresponds to a direct input to the second-stage
cell. We write indices in descending order; so it is AOI221 and not AOI122 (but both
are equivalent cells), and AOI32 not AOI23. If we have more than one direct input
to the second stage we repeat the '1'; thus an AOI211 cell performs the function
Z=(A.B+C+D)". A three-input NAND cell is an OAI111, but calling it that would
be very confusing. These rules are not standard, but form a convention that we shall
adopt and one that is widely used in the ASIC industry.

There are many ways to represent the logical operator, AND. I shall use the
middle dot and write A - B (rather than AB, A.B, or A A B); occasionally I may use
AND(A, B). Similarly I shall write A+ B as well as OR(A, B). I shall use an apos-
trophe like this, A', to denote the complement of A rather than A since sometimes it
is difficult or inappropriate to use an overbar (vinculum) or diacritical mark
(macron). It is possible to misinterpret AB' as AB rather than AB (but the former
alternative would be A - B' in my convention). I shall be careful in these situations.
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TABLE 2.7 MOSIS scalable CMOS rules version 7—the process front end.

Layer Rule Explanation : Value/A
well (CWN, CWP) 1.1 minimum width 10
1.2 minimum space (different potential, a hot well) 9
1.3 minimum space (same potential) Oor6
1.4 minimum space (different well type) 0
active (CAA) 2.1/2.2  minimum width/space 3
2.3 source/drain active to well edge space 5
2.4 substrate/well contact active to well edge space 3
2.5 minimum space between active (different implant type) Oor4
poly (CPG) 3.1/3.2  minimum width/space 2
3.3 minimum gate extension of active 2
3.4 minimum active extension of poly 3
3.5 minimum field poly to active space 1
select (CSN, CSP) 4.1 minimum select spacing to channel of transistor’ 3
4.2 minimum select overlap of active 2
4.3 minimum select overlap of contact 1
4.4 minimum select width and spacing @ 2
poly contact (CCP) 51.a exact contact size 2x2
5.2.a minimum poly overlap 1.5
5.3.a minimum contact spacing 2
active contact (CCA) 6.1.a exact contact size 2x2
6.2.a minimum active overlap 1.5
6.3.a minimum contact spacing
6.4.a minimum space to gate of transistor

7o ensure source and drain width.
°Different select types may touch but not overlap.
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TABLE 2.8 MOSIS scalable CMOS rules version 7—the process back end.

Layer Rule Explanation Value/\
metali (CMF) 7.1 minimum width 3
7.2.a minimum space 3
7.2b minimum space (for minimum-width wires only) 2
7.3 minimum overlap of poly contact 1
7.4 minimum overlap of active contact 1
viatl (CVA) 8.1 exact size 2x2
8.2 minimum via spacing 3
8.3 minimum overlap by metali 1
8.4 minimum spacing to contact 2
8.5 minimum spacing to poly or active edge 2
metal2 (CMS) 9.1 minimum width 3
9.2.a minimum space 4
9.2.b minimum space (for minimum-width wires only) 3
9.3 minimum overlap of via1l 1
via2 (CVS) 14.1 exact size 2x%x2
14.2 minimum space 3
14.3 . minimum overlap by metal2 1
14.4 minimum spacing to viat 2
metal3 (CMT) 15.1 minimum width 6
15.2 minimum space 4
15.3 minimum overlap of via2 2
TABLE 2.2 MOSIS scaiable CMOS rules version 7—the pads and overglass (passivation).
Layer Rule Explanation Value
glass (COG) 10.1 minimum bonding-pad width 100 1Lm = 100 um
10.2 minimum probe-pad width 75umx75um
10.3 pad overlap of glass opening 6um
10.4 minimum pad spacing to unrelated metal2 (or metal3) 30 um
10.5 minimum pad spacing to unrelated metal1, poly, or active 15um
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We can express the function of the AOI221 cell in Figure 2.12(a) as
Z=(A-B+C-D+E). (2.25)

We can also write this equation unambiguously as Z=0AI221(A, B, C, D, E), just
as we might write X =NAND(, J, K) to describe the logic function X =(1-J- K)".

This notation is useful because, for example, if we write OAI321(P, Q, R, S, T,
U) we immediately know that U (the sixth input) is the (only) direct input connected
to the second stage. Sometimes we need to refer to particular inputs without listing
them all. We can adopt another convention that letters of the input names change
with the index position. Now we can refer to input B2 of an AOI321 cell, for exam-
ple, and know which input we are talking about without writing

Z=A0I321(A1, A2, A3, B1, B2, C). (2.26)

Table 2.10 shows the AOI family of logic cells with three indices (with
branches in the family for AOI, OAIL AO, and OA cells). There are 5 types and 14
separate members of each branch of this family. There are thus 4 x 14 =56 cells of
the type Xabc where X = {OAI, AOI, OA, AO} and each of the indexes a, b, and ¢
can-range from 1 to 3. We form the AND-OR (AO) and OR-AND (OA) cells by add-
ing an inverter to the output of an AOI or OAI cell.

2.4.1 Pushing Bubbles

The AOI and OAI logic cells can be built using a single stage in CMOS using
series—parallel networks of transistors called stacks. Figure 2.13 illustrates the procedure
to build the n-channel and p-channel stacks, using the AOI221 cell as an example.
Here are the steps to construct any single-stage combinational CMOS logic cell:
1. Draw a schematic icon with an inversion (bubble) on the last cell (the
bubble-out schematic). Use de Morgan’s theorems—“A NAND is an OR
with inverted inputs and a NOR is an AND with inverted inputs”—to push the
output bubble back to the inputs (this the dual icon or bubble-in schematic).
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TABLE 2.10 The AOI family of cells with three index numbers or less.

Number of unique

Cell type' Cellis cells
Xa1 X21, X31 2
Xaii X211, X311 2
Xab X22, X33, X32 3
Xab1 X221, X331, X321 3
Xabc X222, X333, X332, X322 4
Total 14

TXabc: X={A0I, AOQ, OAl, OA}; a, b, c = {2, 3}; {} means “choose one.”

OR = parallel
A AND = series : VDD
B 7 A*Ol
C !
: o
push bubbles to the inputs E~C% '
A OR = parallel z
AND = series
B
: @ Z E‘_{ [ ﬁ —6—1
D
E 51l ol
—

s 181 4

vDD

6/(1+1+1) =
2/1

|

—{ [2n—{ [ 2
—{[2n—{[ 21

()

FIGURE 2.13 Constructing a CMOS logic cell—an AOI221. (a) First build the dual icon by
using de Morgan’s theorem to “push” inversion bubbles to the inputs. (b) Next build the
n-channel and p-channel stacks from series and parallel combinations of transistors.
(c) Adjust transistor sizes so that the n-channel and p-channel stacks have equal strengths.

2. Form the n-channel stack working from the inputs on the bubble-out
schematic: OR translates to a parallel connection, AND translates to a series
connection. If you have a bubble at an input, you need an inverter.

3. Form the p-channel stack using the bubble-in schematic (ignore the inversions
at the inputs—the bubbles on the gate terminals of the p-channel transistors
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take care of these). If you do not have a bubble at the input gate terminals, you
need an inverter (these will be the same input gate terminals that had bubbles
in the bubble-out schematic).

The two stacks are network duals (they can be derived from each other by
swapping series connections for parallel, and parallel for series connections). The
n-channel stack implements the strong '0's of the function and the p-channel stack
provides the strong '1's. The final step is to adjust the drive strength of the logic cell
by sizing the transistors.

2.4.2 Drive Strength

Normally we ratio the sizes of the n-channel and p-channel transistors in an inverter
so that both types of transistors have the same resistance, or drive strength. That is,
we make = ﬁp . At low dopant concentrations and low electric fields W, is about
twice |,. To compensate we make the shape factor, W/L, of the p-channel transistor
in an inverter about twice that of the n-channel transistor (we say the logic has a
ratio of 2). Since the transistor lengths are normally equal to the minimum poly
width for both types of transistors, the ratio of the transistor widths is also equal to
2. With the high dopant concentrations and high electric fields in submicron transis-
tors the difference in mobilities is less—typically between 1 and 1.5.

Logic cells in a library have a range of drive strengths. We normally call the
minimum-size inverter a 1X inverter. The drive strength of a logic cell is often used
as a suffix; thus a 1X inverter has a cell name such as INVX1 or INVDI. An inverter
with transistors that are twice the size will be an INVX2. Drive strengths are nor-
mally scaled in a geometric ratio, so we have 1X, 2X, 4X, and (sometimes) 8X or
even higher, drive-strength cells. We can size a logic cell using these basic rules:

= Any string of transistors connected between a power supply and the output in
a cell with 1X drive should have the same resistance as the n-channel transis-
tor in a 1X inverter.

A transistor with shape factor W/L; has a resistance proportional to L{/W;
(so the larger W is, the smaller the resistance).

o Two transistors in parallel with shape factors W/L and W,/L, are equiva-
lent to a single transistor (W/L + W,/L,)/1. For example, a 2/1 in parallel
with a 3/1 is a 5/1.

¢ Two transistors, with shape factors W /L, and W,/L,, in series are equivalent
to a single 1/(L;/W; +L,/W,) transistor.

For example, a transistor with shape factor 3/1 (we shall call this “a 3/17) in
series with another 3/1 is equivalent to a 1/((1/3)+ (1/3)) or a 3/2. We can use the
following method to calculate equivalent transistor sizes:

» To add transistors in parallel, make all the lengths 1 and add the widths.
» To add transistors in series, make all the widths 1 and add the lengths.
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We have to be careful to keep W and L reasonable. For example, a 3/1 in series
with a 2/1 is equivalent to a 1/((1/3)+(1/2)) or 1/0.83. Since we cannot make a
device 2 A wide and 1.66 A long, a 1/0.83 is more naturally written as 3/2.5. We like
to keep both W and L as integer multiples of 0.5 (equivalent to making W and L
integer multiples of A), but W and L must be greater than 1.

In Figure 2.13(c) the transistors in the AOI221 cell are sized so that any string
through the p-channel stack has a drive strength equivalent to a 2/1 p-channel tran-
sistor (we choose the worst case, if more than one transistor in parallel is conducting
then the drive strength will be higher). The n-channel stack is sized so that it has a
drive strength of a 1/1 n-channel transistor. The ratio in this library is thus 2.

If we were to use four drive strengths for each of the AOI family of cells shown
in Table 2.10, we would have a total of 224 combinational library cells—just for the
AOI family. The synthesis tools can handle this number of cells, but we may not be
able to design this many cells in a reasonable amount of time. Section 3.3, “Logical
Effort,” will help us choose the most logically efficient cells.

2.4.3 Transmission Gates

Figure 2.14(a) and (b) shows a CMOS transmission gate (TG, TX gate, pass gate,
coupler). We connect a p-channel transistor (to transmit a strong '1") in parallel with
an n-channel transistor (to transmit a strong '0").

SI
strong '1] S0 g charge sharing
A—c"—7 0
A D z s i%l 0 W
A—er 7 A A Vsma=VEpq 7z Veig—Vr
strong ‘0’ 1 > 1

S ICSMALL T | Cria

(a) (b) (©

FIGURE 2.14 CMOS transmission gate (TG). (a) An n-channel and p-channel transistor in
parallel form a TG. (b) A common symbol for a TG. (c) The charge-sharing problem.

We can express the function of a TG as
Z=TG(A, S), (2.27)

but this is ambiguous—if we write TG(X, Y), how do we know if X is connected to
the gates or sources/drains of the TG? We shall always define TG(X, Y) when we
use it. It is tempting to write TG(A, S)=A - S, but what is the value of Z when S ='0'
in Figure 2.14(a), since Z is then left floating? A TG is a switch, not an AND logic
cell.
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There is a potential problem if we use a TG as a switch connecting a node Z that
has a large capacitance, Cgyg, to an input node A that has only a small capacitance
CsmarL (see Figure 2.14c¢). If the initial voltage at A is Vgyap . and the initial volt-
age at Z is Vg5, when we close the TG (by setting S ="1") the final voltage on both
nodes A and Z is '

Cpi6VB16 * CsmarLVsmaLL . (2.28)

V. =
F Cpigt+C

SMALL

Imagine we want to drive a '1' onto node Z from node A. Suppose Cgyg=0.2 pF
(about 10 standard loads in a 0.5 pm process) and Cqparr, =0.02 pF, Vg1g=0V and
VomarL=35V; then

yo (02x102Jo+( 002 107%)s5
F — _
(0.2>< 10 ‘2)+(o.ozx 10 12)

This is not what we want at all, the “big” capacitor has forced node A to a volt-
age close to a '0". This type of problem is known as charge sharing. We should
make sure that either (1) node A is strong enough to overcome the big capacitor, or
(2) insulate node A from node Z by including a buffer (an inverter, for example)
between node A and node Z. We must not use charge to drive another logic cell—
only a logic cell can drive a logic cell.

If we omit one of the transistors in a TG (usually the p-channel transistor) we
have a pass transistor. There is a branch of full-custom VLSI design that uses pass-
transistor logic. Much of this is based on relay-based logic, since a single transistor
switch looks like a relay contact. There are many problems associated with pass-
transistor logic related to charge sharing, reduced noise margins, and the difficulty
of predicting delays. Though pass transistors may appear in an ASIC cell inside a
library, they are not used by ASIC designers.

We can use two TGs to form a multiplexer (or multiplexor—people use both
orthographies) as shown in Figure 2.15(a). We often shorten multiplexer to MUX.
The MUX function for two data inputs, A and B, with a select signal S, is

Z=TG(A, S)+TG(B, S). (2.30)

= 045V. (2.29)

We can write this as Z=A-S"+B - S, since node Z is always connected to one
or other of the inputs (and we assume both are driven). This is a two-input MUX
(2-to-1 MUX or 2:1 MUX). Unfortunately, we can also write the MUX function as
Z=A-S+B-S', so it is difficult to write the MUX function unambiguously as
Z=MUX(X, Y, Z). For example, is the select input X, Y, or Z? We shall define the
function MUX(X, Y, Z) each time we use it. We must also be careful to label a MUX
if we use the symbol shown in Figure 2.15(b). Symbols for a MUX are shown in
Figure 2.15(b-d). In the IEEE notation 'G' specifies an AND dependency. Thus, in
Figure 2.15(c), G="1" selects the input labeled '1'. Figure 2.15(d) uses the common
control block symbol (the notched rectangle). Here, G1="1" selects the input '1’,
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FIGURE 2.15 The CMOS multiplexer (MUX). (a) A noninverting 2:1 MUX using transmis-
sion gates without buffering. (b) A symbol for a MUX (note how the inputs are labeled). (¢) An
IEEE standard symbol for a MUX. (d) A nonstandard, but very common, IEEE symbol for a
MUX. (e) An inverting MUX with output buffer. (f) A noninverting buffered MUX.

and G1="0" selects the input '1'. Strictly this form of IEEE symbol should be used
only for elements with more than one section controlled by common signals, but the
symbol of Figure 2.15(d) is used often for a 2:1 MUX.

The MUX shown in Figure 2.15(a) works, but there is a potential charge-
sharing problem if we cascade MUXes (connect them in series). Instead most ASIC
libraries use MUX cells built with a more conservative approach. We could buffer
the output using an inverter (Figure 2.15¢), but then the MUX becomes inverting. To
build a safe, noninverting MUX we can buffer the inputs and output
(Figure 2.15f)—requiring 12 transistors, or 3 gate equivalents (only the gate equiva-
lent counts are shown from now on).

Figure 2.16 shows how to use an OAI22 logic cell (and an inverter) to imple-
ment an inverting MUX. The implementation in equation form (2.5 gates) is

ZN=A"-S'+B"-S=[(A"-S)-B"-)T=[(A+S)- B+S)Y
=0AI22[A. S, B, NOT(S)]. (2.31)
(both A" and NOT(A) represent an inverter, depending on which representation is
most convenient—they are equivalent). I often use an equation to describe a cell

implementation.
The following factors will determine which MUX implementation is best:

1. Do we want to minimize the delay between the select input and the output or
between the data inputs and the output?

2. Do we want an inverting or noninverting MUX?
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FIGURE 2.16 Aninverting 2:1 MUX based on an OAI22 cell.

3. Do we object to having any logic cell inputs tied directly to the source/drain
diffusions of a transmission gate? (Some companies forbid such transmis-
sion-gate inputs—since some simulation tools cannot handle them.)

4. Do we object to any logic cell outputs being tied to the source/drain of a trans-
mission gate? (Some companies will not allow this because of the dangers of
charge sharing.)

5. What drive strength do we require (and is size or speed more important)?

A minimum-size TG is a little slower than a minimum-size inverter, so there is
not much difference between the implementations shown in Figure 2.15 and
Figure 2.16, but the difference can become important for 4:1 and larger MUXes.

2.4.4  Exclusive-OR Cell
The two-input exclusive-OR (XOR, EXOR, not-equivalence, ring-OR) function is
Al @ A2=XOR(A1,A2)=A1-A2'+ Al"- A2. (2.32)

We are now using multiletter symbols, but there should be no doubt that Al'
means anything other than NOT(A1). We can implement a two-input XOR using a
MUX and an inverter as follows (2 gates):

XOR(A1, A2)=MUX[NOT(A1), Al, A2], (2.33)
where
MUX(A,B,S)=A-S+B-S". (2.34)

This implementation only buffers one input and does not buffer the MUX output.
We can use inverter buffers (3.5 gates total) or an inverting MUX so that the XOR
cell does not have any external connections to source/drain diffusions as follows (3
gates total):

XOR(A1, A2) = NOTIMUX(NOT[NOT(A1)], NOT(A1), A2)]. (2.35)
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We can also implement a two-input XOR using an AOI21 (and a NOR cell), since
XOR(AL,A2)=A1-A2+A1"-A2=[(A1-A2)+ (A1 +A2)' T
=AOI21[Al, A2, NOR(AL, A2)], (2.36)

(2.5 gates). Similarly we can implement an exclusive-NOR (XNOR, equivalence) logic
cell using an inverting MUX (and two inverters, total 3.5 gates) or an OAI21 logic cell
(and a NAND cell, total 2.5 gates) as follows (using the MUX function of Eq. 2.34):

XNOR(A1, A2)=A1-A2+NOT(A1) - NOT(A2)
=NOT[NOT[MUX(A1, NOT (A1), A2]]
=0AI21[Al, A2, NAND(A1, A2)] (2.37)

2.5  Sequential Logic Cells

There are two main approaches to clocking in VLSI design: multiphase clocks or a
single clock and synchronous design. The second approach has the following key
advantages: (1) it allows automated design, (2) it is safe, and (3) it permits vendor
signoff (a guarantee that the ASIC will work as simulated). These advantages of syn-
chronous design (especially the last one) usually outweigh every other consideration
in the choice of a clocking scheme. The vast majority of ASICs use a rigid synchro-
nous design style.

2.5.1 Laich

Figure 2.17(a) shows a sequential logic cell—a latch. The internal clock signals,
CLKN (N for negative) and CLKP (P for positive), are generated from the system
clock, CLK, by two inverters (I4 and I5) that are part of every latch cell—it is usu-
ally too dangerous to have these signals supplied externally, even though it would
save space.

To emphasize the difference between a latch and flip-flop, sometimes people
refer to the clock input of a latch as an enable. This makes sense when we look at
Figure 2.17(b), which shows the operation of a latch. When the clock input is high,
the latch is transparent—changes at the D input appear at the output Q (quite dif-
ferent from a flip-flop as we shall see). When the enable (clock) goes low
(Figure 2.17c), inverters 12 and I3 are connected together, forming a storage loop
that holds the last value on D until the enable goes high again. The storage loop will
hold its state as long as power is on; we call this a static latch. A sequential logic
cell is different from a combinational cell because it has this feature of storage or
memory.

Notice that the output Q is unbuffered and connected directly to the output of 12
(and the input of I3), which is a storage node. In an ASIC library we are conserva-
tive and add an inverter to buffer the output, isolate the sensitive storage node, and
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FIGURE 2.17 CMOS latch. (a) A positive-enable latch using transmission gates without
output buffering, the enable (clock) signal is buffered inside the latch. (b) A positive-enable
latch is transparent while the enable is high. (c) The latch stores the last value at D when the
enable goes low.

thus invert the sense of Q. If we want both Q and QN we have to add two inverters
to the circuit of Figure 2.17(a). This means that a latch requires seven inverters and
two TGs (4.5 gates).

The latch of Figure 2.17(a) is a positive-enable D latch, active-high D latch, or
transparent-high D latch (sometimes people also call this a D-type latch). A
negative-enable (active-low) D latch can be built by inverting all the clock polarities
in Figure 2.17(a) (swap CLKN for CLKP and vice-versa).

2.5.2  Flip-Flop

Figure 2.18(a) shows a flip-flop constructed from two D latches: a master latch (the
first one) and a slave latch. This flip-flop contains a total of nine inverters and four
TGs, or 6.5 gates. In this flip-flop design the storage node S is buffered and the
clock-to-Q delay will be one inverter delay less than the clock-to-QN delay.

In Figure 2.18(b) the clock input is high, the master latch is transparent, and
node M (for master) will follow the D input. Meanwhile the slave latch is discon-
nected from the master latch and is storing whatever the previous value of Q was. As
the clock goes low (the negative edge) the slave latch is enabled and will update its
state (and the output Q) to the value of node M at the negative edge of the clock.
The slave latch will then keep this value of M at the output Q, despite any changes
at the D input while the clock is low (Figure 2.18¢). When the clock goes high
again, the slave latch will store the captured value of M (and we are back where we
started our explanation).
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FIGURE 2.18 CMOS flip-flop. (a) This negative-edge—triggered flip-flop consists of two
latches: master and slave. (b) While the clock is high, the master latch is loaded. (c) As the
clock goes low, the slave latch loads the value of the master latch. (d) Waveforms illustrating
the definition of the flip-flop setup time tgyy, hold time ty, and propagation delay from clock to

Q, tpD.
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The combination of the master and slave latches acts to capture or sample the D
input at the negative clock edge, the active clock edge. This type of flip-flop is a
negative-edge~triggered flip-flop and its behavior is quite different from a latch.
The behavior is shown on the IEEE symbol by using a triangular “notch” to denote
an edge-sensitive input. A bubble shows the input is sensitive to the negative edge.
To build a positive-edge—triggered flip-flop we invert the polarity of all the clocks—
as we did for a latch.

The waveforms in Figure 2.18(d) show the operation of the flip-flop as we have
described it, and illustrate the definition of setup time (tgy;), hold time (ty), and
clock-to-Q propagation delay (tpp). We must keep the data stable (a fixed logic '1' or
'0") for a time tgyy prior to the active clock edge, and stable for a time ty after the
active clock edge (during the decision window shown).

In Figure 2.18(d) times are measured from the points at which the waveforms
cross 50 percent of Vpp. We say the trip point is 50 percent or 0.5. Common
choices are 0.5 or 0.65/0.35 (a signal has to reach 0.65Vpp to be a 'l', and reach
0.35Vpp to be a'0"), or 0.1/0.9 (there is no standard way to write a trip point). Some
vendors use different trip points for the input and output waveforms (especially in
1/O cells).

The flip-flop in Figure 2.18(a) is a D flip-flop and is by far the most widely used
type of flip-flop in ASIC design. There are other types of flip-flops—IJ-K, T (toggle),
and S-R flip-flops—that are provided in some ASIC cell libraries mainly for compat-
ibility with TTL design. Some people use the term register to mean an array (more
than one) of flip-flops or latches (on a data bus, for example), but some people use
register to mean a single flip-flop or a latch. This is confusing since flip-flops and
latches are quite different in their behavior. When I am talking about logic cells, I
use the term register to mean more than one flip-flop.

To add an asynchronous set (Q to 'l") or asynchronous reset (Q to '0") to the
flip-flop of Figure 2.18(a), we replace one inverter in both the master and slave
latches with two-input NAND cells. Thus, for an active-low set, we replace 12 and
17 with two-input NAND cells, and, for an active-low reset, we replace I3 and I6.
For both set and reset we replace all four inverters: 12, 13, 16, and I7. Some TTL flip-
flops have dominant reset or dominant set, but this is difficult (and dangerous) to
do in ASIC design. An input that forces Q to 'l is sometimes also called preset. The
IEEE logic symbols use 'P' to denote an input with a presetting action. An input that
forces Q to '0' is often also called clear. The IEEE symbols use 'R’ to denote an input
with a resetting action.

2.5.3 Clocked Inverter

Figure 2.19 shows how we can derive the structure of a clocked inverter from the
series combination of an inverter and a TG. The arrows in Figure 2.19(b) represent
the flow of current when the inverter is charging (/) or discharging (/) a load
capacitance through the TG. We can break the connection between the inverter cells
and use the circuit of Figure 2.19(c) without substantially affecting the operation of

90

73



74

CHAPTER2 CMOSLOGIC
the circuit. The symbol for the clocked inverter shown in Figure 2.19(d) is common,
but by no means a standard. '
VDD
We can break this connection. ———q
CLKN
CLKN Z CLKN
CLKP
A A Y4
A,
CLKP CLKP
(a) (b) (c) (d)

FIGURE 2.19 Clocked inverter. (a) An inverter plus transmission gate (TG). (b) The cur-
rent flow in the inverter and TG allows us to break the connection between the transistors in
the inverter. (c) Breaking the connection forms a clocked inverter. (d) Acommon symbol.

We can use the clocked inverter to replace the inverter—TG pairs in latches and
flip-flops. For example, we can replace one or both of the inverters I1 and I3
(together with the TGs that follow them) in Figure 2.17(a) by clocked inverters.
There is not much to choose between the different implementations in this case,
except that layout may be easier for the clocked inverter versions (since there is one
less connection to make).

More interesting is the flip-flop design: We can only replace inverters 11, I3, and
17 (and the TGs that follow them) in Figure 2.18(a) by clocked inverters. We cannot
replace inverter 16 because it is not directly connected to a TG. We can replace the
TG attached to node M with a clocked inverter, and this will invert the sense of the
output Q, which thus becomes QN. Now the clock-to-Q delay will be slower than
clock-t0-QN, since Q (which was QN) now comes one inverter later than QN.

If we wish to build a flip-flop with a fast clock-to-QN delay it may be better to
build it using clocked inverters and use inverters with TGs for a flip-flop with a fast
clock-to-Q delay. In fact, since we do not always use both Q and QN outputs of a
flip-flop, some libraries include Q only or QN only flip-flops that are slightly smaller
than those with both polarity outputs. It is slightly easier to layout clocked inverters
than an inverter plus a TG, so flip-flops in commercial libraries include a mixture of
clocked-inverter and TG implementations.
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2.6  Datapath Logic Cells

Suppose we wish to build an n-bit adder (that adds two n-bit numbers) and to exploit
the regularity of this function in the layout. We can do so using a datapath structure.

The following two functions, SUM and COUT, implement the sum and carry
out for a full adder (FA) with two data inputs (A, B) and a carry in, CIN:

SUM=A ®B® CIN=SUM(A, B, CIN)=PARITY(A, B, CIN), (2.38)
COUT=A -B+A-CIN+B:-CIN=MAJ(A, B, CIN). (2.39)

The sum uses the parity function ('1' if there are an odd numbers of 'l's in the
inputs). The carry out, COUT, uses the 2-of-3 majority function ('1' if the majority
of the inputs are '1"). We can combine these two functions in a single FA logic cell,
ADD(A[{], B{i], CIN, S[{], COUT), shown in Figure 2.20(a), where

S[i]1=SUM(AIil, B[], CIN), (2.40)
COUT =MAIJ(A[:], B[], CIN). (2.41)

Now we can build a 4-bit ripple-carry adder (RCA) by connecting four of
these ADD cells together as shown in Figure 2.20(b). The ith ADD cell is arranged
with the following: two bus inputs A[i], Bli]; one bus output S[i]; an input, CIN, that
is the carry in from stage (i—1) below and is also passed up to the cell above as an
output; and an output, COUT, that is the carry out to stage (i + 1) above. In the 4-bit
adder shown in Figure 2.20(b) we connect the carry input, CIN[0], to VSS and use
COUTI([3] and COUTI[2] to indicate arithmetic overflow (in Section 2.6.1 we shall
see why we may need both signals). Notice that we build the ADD cell so that
COUT][2] is available at the top of the datapath when we need it.

Figure 2.20(c) shows a layout of the ADD cell. The A inputs, B inputs, and S
outputs all use m1l interconnect running in the horizontal direction—we call these
data signals. Other signals can enter or exit from the top or bottom and run verti-
cally across the datapath in m2—we call these control signals. We can also use ml
for control and m2 for data, but we normally do not mix these approaches in the
same structure. Control signals are typically clocks and other signals common to
elements. For example, in Figure 2.20(c) the carry signals, CIN and COUT, run ver-
tically in m2 between cells. To build a 4-bit adder we stack four ADD cells creating
the array structure shown in Figure 2.20(d). In this case the A and B data bus inputs
enter from the left and bus S, the sum, exits at the right, but we can connect A, B,
and S to either side if we want.

The layout of buswide logic that operates on data signals in this fashion is
called a datapath. The module ADD is a datapath cell or datapath element. Just
as we do for standard cells we make all the datapath cells in a library the same
height so we can abut other datapath cells on either side of the adder to create a
more complex datapath. When people talk about a datapath they always assume that
it is oriented so that increasing the size in bits makes the datapath grow in height,
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upwards in the vertical direction, and adding different datapath elements to increase
the function makes the datapath grow in width, in the horizontal direction—but we
can rotate and position a completed datapath in any direction we want on a chip.

control

)
= 1data
~ ml

()

(@)

FIGURE 2.20 A datapath adder. (a) A full-adder (FA) cell with inputs (A and B), a carry in,
CIN, sum output, S, and carry out, COUT. (b) A 4-bit adder. (c) The layout, using two-level
metal, with data in m1 and control in m2. In this example the wiring is completed outside the
cell; it is also possible to design the datapath cells to contain the wiring. Using three levels of
metal, it is possible to wire over the top of the datapath cells. (d) The datapath layout.

What is the difference between using a datapath, standard cells, or gate arrays?
Cells are placed together in rows on a CBIC or an MGA, but there is no generally no
regularity to the arrangement of the cells within the rows—we let software arrange
the cells and complete the interconnect. Datapath layout automatically takes care of
most of the interconnect between the cells with the following advantages:

e Regular layout produces predictable and equal delay for each bit.
> Interconnect between cells can be built into each cell.
There are some disadvantages of using a datapath:

e The overhead (buffering and routing the control signals, for example) can make
a narrow (small number of bits) datapath larger and slower than a standard-cell
(or even gate-array) implementation.

» Datapath cells have to be predesigned (otherwise we are using full-custom
design) for use in a wide range of datapath sizes. Datapath cell design can be
harder than designing gate-array macros or standard cells.

» Software to assemble a datapath is more complex and not as widely used as
software for assembling standard cells or gate arrays.
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There are some newer standard-cell and gate-array tools that can take advantage
of regularity in a design and position cells carefully. The problem is in finding the
regularity if it is not specified. Using a datapath is one way to specify regularity to
ASIC design tools.

2.6.1 Datapath Elements

Figure 2.21 shows some typical datapath symbols for an adder (people rarely use the
IEEE standards in ASIC datapath libraries). I use heavy lines (they are 1.5 point
wide) with a stroke to denote a data bus (that flows in the horizontal direction in a
datapath), and regular lines (0.5 point) to denote the control signals (that flow verti-
cally in a datapath). At the risk of adding confusion where there is none, this stroke
to indicate a data bus has nothing to do with mixed-logic conventions. For a bus,
A[31:0] denotes a 32-bit bus with A[31] as the leftmost or most-significant bit or
MSB, and A[0] as the least-significant bit or LSB. Sometimes we shall use
A[MSB] or A[LSB] to refer to these bits. Notice that if we have an n-bit bus and
LSB =0, then MSB =n-1. Also, for example, A[4] is the fifth bit on the bus (from
the LSB). We use a 'Z' or 'ADD’ inside the symbol to denote an adder instead of '+',
S0 we can attach '—' or '+/-' to the inputs for a subtracter or adder/subtracter.

control
bus signals T\

/ symbol COUTI[MSB] COUT[MSB-1]
|
: AIMSB:0] S[MSB:0 . :
A[MSB:0] . SIMSB0] o [ ] AIMSB:0] —— + by _:[MSB.O]
. B[MSB:0] n B[MSB:0] -+ n
B[MSB:0] n l
n CIN[O]
data signals
(a) (b) (c)

FIGURE 2.21 Symbols for a datapath adder. (a) A data bus is shown by a heavy line
(1.5 point) and a bus symbol. If the bus is n-bits wide then MSB = n—1. (b) An alternative sym-

bol for an adder. (c) Control signals are shown as lightweight (0.5 point) lines.

Some schematic datapath symbols include only data signals and omit the con-
trol signals—but we must not forget them. In Figure 2.21, for example, we may need
to explicitly tie CIN[O] to VSS and use COUT[MSB] and COUT[MSB — 1] to detect
overflow. Why might we need both of these control signals? Table 2.11 shows the
process of simple arithmetic for the different binary number representations, includ-
ing unsigned, signed magnitude, ones’ complement, and two’s complement.
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TABLE 2.11 Binary arithmetic.
Binary Number Representation
Signed Ones’ Two’s
Operation Unsigned magnitude complement complement
no change if positive then MSB=0 if negative thenflip if negative then
9 else MSB=1 bits {flip bits; add 1}
3= 0011 0011 0011 0011
—3= NA 1011 1100 1101
ZEero= 0000 0000 or 1000 1111 or 0000 0000
max. positive = 1111=15 0111=7 0111=7 011 =7
max. negative = 0000 =0 1111 =-7 1000=-7 1000=-8
addition=
S A+B if SG(A)=SG(B) then S=
_ _ S=A+B A+B+COUT[MSB] _
=addend+augend S=A+B clse{if B<AthenS=A—B S=A+B
. else S=B-A} COUT is carry out
SG(A)=sign of A
addition result: OR=COUT[MSB]  if SG(A)=SG(B) then oV= OV=
OV =overflow, OV =COUT[MSB] XOR(COUT[MSB],  XOR(COUT[MSB],
OR =out of range COUT is carry out else OV =0 (impossible) COUTIMSB-1]) COUT[MSB—-1])
. if SG(A)=SG(B) then
SG(S)=signof 8 SG(S)=SG(A)
; NA else{if B<Athen NA NA
S=A+B SG(S)=SG(A)
else SG(S)=SG(B)}
subtraction =
D=A-B D-A-B SG(B)=NOT(SG(B)); Z=-B (negate); Z=-B (negate);
=minuend B D=A+B D=A+Z D=A+Z
—subtrahend
subtracuon result:
OV =overflow, OR= B.OUT[MSB} as in addition as in addition as in addition
BOUT is borrow out
OR =out of range ‘
negation: NA Z=A; Z=NOT(A) Z=NOT(A) +1
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2.6.2 Adders

We can view addition in terms of generate, G[i], and propagate, P[i], signals.

method 1 method 2

Gli1=Ali]l - B[] Gli1=Ali]- B[] (2.42)
Plil1=Ali]] @ B[i] P[i]=Al] +Bl[i] (2.43)
Clil=G[i}+P[i]-Cli-1] Clil=G[i]+P[]-C[i-1] (2.44)
S[i]=Pli]®C[i-1] S[i]= Ali]l®B[]]® C[i-1] (2.45)

where C[7] is the carry-out signal from stage i, equal to the carry in of stage (i +1).
Thus, C[i] =COUT[{] = CIN[i + 1]. We need to be careful because C[0] might repre-
sent either the carry in or the carry out of the LSB stage. For an adder we set the
carry in to the first stage (stage zero), C[-1] or CIN[0], to '0'. Some people use
delete (D) or kill (K) in various ways for the complements of G[i] and P[i], but
unfortunately others use C for COUT and D for CIN—so I avoid using any of these.
Do not confuse the two different methods (both of which are used) in
Eqgs. 2.42-2.45 when forming the sum, since the propagate signal, P[], is different
for each method.

Figure 2.22(a) shows a conventional RCA. The delay of an n-bit RCA is propor-
tional to n and is limited by the propagation of the carry signal through all of the
stages. We can reduce delay by using pairs of “go-faster” bubbles to change AND
and OR gates to fast two-input NAND gates as shown in Figure 2.22(a). Alterna-
tively, we can write the equations for the carry signal in two different ways:

either Cli]=A[] - Bli]+P[i]-Cl[i—1] (2.46)
or Clil=(Al]+BL]) - (PLT +Cli-1D), 2.47)

where P[i]' = NOT(P[i]). Equations 2.46 and 2.47 allow us to build the carry chain
from two-input NAND gates, one per cell, using different logic in even and odd
stages (Figure 2.22b):

even stages odd stages
Ci[li]'=P[i]-C3[i-1]-C4[i—-1] C3L]=P[i]-Cl[i-1]-C2[i-1] (2.48)
C2lil=Ali]+B[i] C4[i]'=Ali]-Bli] (2.49)
Clil=CI1[i]-C2[i] Clil=C3[i '+ C4[i ] (2.50)

(the carry inputs to stage zero are C3[-1]=C4[-1]="0"). We can use the RCA of
Figure 2.22(b) in a datapath, with standard cells, or on a gate array.
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Cli+1] C2li+1] C1li+1]

i

7 go-faster bubble pjirD |
Ali+ u_ @ Ali+1
B[i+1] :)j:>_ Sti+1l B[i+ 1 Sti+1l
Cli]
Ali]
BJ[/] SU]
Cli-1]

FIGURE 2.22 The ripple-carry adder (RCA). (a) A conventional RCA. The delay may be
reduced slightly by adding pairs of bubbles as shown to use two-input NAND gates. (b) An
alternative RCA circuit topology using different cells for odd and even stages and an extra
connection between cells. The carry chain is a fast string of NAND gates (shown in bold).

Instead of propagating the carries through each stage of an RCA, Figure 2.23
shows a different approach. A carry-save adder (CSA) cell CSA(A1[], A2[i],
A3[i ], CIN, S1[i], S2[i], COUT) has three outputs:

S1[i]=CIN (2.51)
S2[i] = A1[] ® A2[i] @ A3[i ] =PARITY(A1[il, A2[i], A3[i]) (2.52)
COUT = A1[i] - A2[i1+ [(AL[i]+ A2[i]) - A3[i 1] = MAJ(A1[{], A2[i], A3[i]) (2.53)
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The inputs, Al, A2, and A3; and outputs, S1 and S2, are buses. The input, CIN,
is the carry from stage (i—1). The carry in, CIN, is connected directly to the output
bus Sl—indicated by the schematic symbol (Figure 2.23a). We connect CIN[0] to
VSS. The output, COUT, is the carry out to stage (i + 1). )

A 4-bit CSA is shown in Figure 2.23(b). The arithmetic overflow signal for
ones’ complement or two’s complement arithmetic, OV, is XOR(COUT[MSB],
COUT[MSB —1]) as shown in Figure 2.23(c). In a CSA the carries are “saved” at
each stage and shifted left onto the bus S1. There is thus no carry propagation and
the delay of a CSA is constant. At the output of a CSA we still need to add the S1
bus (all the saved carries) and the S2 bus (all the sums) to get an n-bit result using a
final stage that is not shown in Figure 2.23(c). We might regard the n-bit sum as
being encoded in the two buses, S1 and S2, in the form of the parity and majority
functions.

We can use a CSA to add multiple inputs—as an example, an adder with four 4-
bit inputs is shown in Figure 2.23(d). The last stage sums two input buses using a
carry-propagate adder (CPA). We have used an RCA as the CPA in Figure 2.23(d)
and (e), but we can use any type of adder. Notice in Figure 2.23(e) how the two CSA
cells and the RCA cell abut together horizontally to form a bit slice (or slice) and
then the slices are stacked vertically to form the datapath.

We can register the CSA stages by adding vectors of flip-flops as shown in
Figure 2.23(f). This reduces the adder delay to that of the slowest adder stage, usu-
ally the CPA. By using registers between stages of combinational logic we use
pipelining to increase the speed and pay a price of increased area (for the registers)
and introduce latency. It takes a few clock cycles (the latency, equal to n clock
cycles for an n-stage pipeline) to fill the pipeline, but once it is filled, the answers
emerge every clock cycle. Ferris wheels work much the same way. When the fair
opens it takes a while (latency) to fill the wheel, but once it is full the people can get
on and off every few seconds. (We can also pipeline the RCA of Figure 2.20. We
add i registers on the A and B inputs before ADD{[/] and add (n i) registers after the
output S{i], with a single register before each C[i].)

The problem with an RCA is that every stage has to wait to make its carry deci-
sion, C[i], until the previous stage has calculated C[i— 1]. If we examine the propa-
gate signals we can bypass this critical path. Thus, for example, to bypass the carries
for bits 4—7 (stages 5-8) of an adder we can compute BYPASS =P[4].P[5].P[6].P[7]
and then use a MUX as follows:

Cl7]1=(G[7]+P[7] - C[6]) - BYPASS'+ C[3] - BYPASS. (2.54)

Adders based on this principle are called carry-bypass adders (CBA) [Sato et
al., 1992]. Large, custom adders employ Manchester-carry chains to compute the
carries and the bypass operation using TGs or just pass transistors [Weste and
Eshraghian, 1993, pp. 530-531]. These types of carry chains may be part of a prede-
signed ASIC adder cell, but are not used by ASIC designers.
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COUT[MSB]

; COUT[MSB - 1] l’ oV

COUT[MSB - 1]
S1[MSB:0]

S2[MSB:0]

CSA1 CSA2 RCA

LI

LSB

[IRITTREAL

123 45
pipeline registers

(9)

CSAT pipeline registers

FIGURE 2.23 The carry-save adder (CSA). (a) A CSA cell. (b) A 4-bit CSA. (¢) Symbol for
a CSA. (d) Afour-input CSA. (e) The datapath for a four-input, 4-bit adder using CSAs with a
ripple-carry adder (RCA) as the final stage. (f) A pipelined adder. (g) The datapath for the
pipelined version showing the pipeline registers as well as the clock control lines that use m2.

Instead of checking the propagate signals we can check the inputs. For example
we can compute SKIP=(A[i-11®B[i-1]) +(A[/]®B[i]) and then use a 2:1
MUX to select C[i]. Thus,

CSKIP[i]= (G[i]+P[i] - Cli—1]) - SKIP'+ C[i - 2] - SKIP. (2.55)

This is a carry-skip adder [Keutzer, Malik, and Saldanha, 1991; Lehman, 1961].
Carry-bypass and carry-skip adders may include redundant logic (since the carry is
computed in two different ways—we just take the first signal to arrive). We must be
careful that the redundant logic is not optimized away during logic synthesis.
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If we evaluate Eq. 2.44 recursively for i = 1, we get the following:
Cl1]=G[1]+P[1] - C[0}=G[1]+P[1] - (G[0O] + P[1] - C[-1])
=G[1]1+P[1]- G[O]. ) (2.56)

This result means that we can “look ahead” by two stages and calculate the
carry into the third stage (bit 2), which is C[1], using only the first-stage inputs (to
calculate G[0]) and the second-stage inputs. This is a carry-lookahead adder
(CLA) [MacSorley, 1961]. If we continue expanding Eq. 2.44, we find:

C[2]=G[2] + P[2] - G[1] +P[2] - P[1] - G[O],
C[3]=G[3]+P[2] - G[2]+P[2] - P[1] - G[1]+P[3]-P[2]-P[1]-G[0]. (2.57)

As we look ahead further these equations become more complex, take longer to
calculate, and the logic becomes less regular when implemented using cells with a lim-
ited number of inputs. Datapath layout must fit in a bit slice, so the physical and logical
structure of each bit must be similar. In a standard cell or gate array we are not so con-
cerned about a regular physical structure, but a regular logical structure simplifies
design. The Brent-Kung adder reduces the delay and increases the regularity of the
carry-lookahead scheme [Brent and Kung, 1982]. Figure 2.24(a) shows a regular 4-bit
CLA, using the carry-lookahead generator cell (CLG) shown in Figure 2.24(b).

In a carry-select adder we duplicate two small adders (usually 4-bit or 8-bit
adders—often CLAs) for the cases CIN='0" and CIN="1" and then use a MUX to
select the case that we need—wasteful, but fast [Bedrij, 1962]. A carry-select adder
is often used as the fast adder in a datapath library because its layout is regular.

We can use the carry-select, carry-bypass, and carry-skip architectures to split a
12-bit adder, for example, into three blocks. The delay of the adder is then partly
dependent on the delays of the MUX between each block. Suppose the delay due to
1-bit in an adder block (we shall call this a bit delay) is approximately equal to the
MUX delay. In this case it may be faster to make the blocks 3-, 4-, and 5-bits long
instead of being equal in size. Now the delays into the final MUX are equal—
3 bit-delays plus 2 MUX delays for the carry signal from bits 0-6 and 5 bit-delays
for the carry from bits 7-11. Adjusting the block size reduces the delay of large
adders (more than 16 bits).

We can extend the idea behind a carry-select adder as follows. Suppose we have
an n-bit adder that generates two sums: One sum assumes a carry-in condition of '0',
the other sum assumes a carry-in condition of 'I'. We can split this n-bit adder into
an i-bit adder for the i LSBs and an (n - i)-bit adder for the n—i MSBs. Both of the
smaller adders generate two conditional sums as well as true and complement carry
signals. The two (true and complement) carry signals from the LSB adder are used
to select between the two (n—i+ 1)-bit conditional sums from the MSB adder using
2(n—i+ 1) two-input MUXes. This is a conditional-sum adder (also often abbrevi-
ated to CSA) [Sklansky, 1960]. We can recursively apply this technique. For exam-
ple, we can split a 16-bit adder using i=8 and n=_§; then we can split one or both
8~bit adders again—and so on.
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FIGURE 2.24 The Brent—Kung carry-lookahead adder (CLA). (a) Carry generation in a
4-bit CLA. (b) A cell to generate the lookahead terms, C[0]-C[3]. (c) Cells L1, L2, and L3 are
rearranged into a tree that has less delay. Cell L4 is added to calculate C[2] that is lost in the
translation. (d) and (e) Simplified representations of parts a and c. (f} The lookahead logic for
an 8-bit adder. The inputs, 0-7, are the propagate and carry terms formed from the inputs to
the adder. (g) An 8-bit Brent—Kung CLA. The outputs of the lookahead logic are the carry bits
that (together with the inputs) form the sum. One advantage of this adder is that delays from
the inputs to the outputs are more nearly equal than in other adders. This tends to reduce the
number of unwanted and unnecessary switching events and thus reduces power dissipation.
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Figure 2.25 shows the simplest form of an n-bit conditional-sum adder that uses
n single-bit conditional adders, H (each with four outputs: two conditional sums,
true carry, and complement carry), together with a tree of 2:1 MUXes (Qi_j). The
conditional-sum adder is usually the fastest of all the adders we have discussed (it is

the fastest when logic cell delay increases with the number of inputs—this is true for
all ASICs except FPGAs).

Si0_1 ;
Ci+1_0_1

Sio 0
Ci+1.0_0

o
¥ A[]B[]] carnyout(carryin=0) [
y Alil®Bli] sum (carry in=0)
y All+B[]l carryout(carry in=1)
(A[1®B[i]) sum (carry in=1)

10

1

- (k:O or1)

Cij k —L'G_ﬂ
SijOor_ [z Si j_kor
e 1 e 2 2
CLj0 el 4 Cij k
Sij_tor
Cij 1 S[1

Ci_j_k=-carry in to the jth bit assuming the carry in to the jth bitis k (k=0 or 1)
Si_j_k=sum at the ith bit assuming the carry in to the jth bitis k (k=0 or 1)

FIGURE 2.25 The conditional-sum adder. (a) A 1-bit conditional adder that calculates the
sum and carry out assuming the carry in is either '1' or '0". (b) The multiplexer that selects
between sums and carries. (c) A 4-bit conditional-sum adder with carry input, C[O].

2.6.3 A Simple Example

How do we make and use datapath elements? What does a design look like? We may
use predesigned cells from a library or build the elements ourselves from logic cells
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using a schematic or a design language. Table 2.12 shows an 8-bit conditional-sum
adder intended for an FPGA. This Verilog implementation uses the same structure as
Figure 2.25, but the equations are collapsed to use four or five variables. A basic
logic cell in certain Xilinx FPGAs, for example, can implement two equations of the
same four variables or one equation with five variables. The equations shown in
Table 2.12 requires three levels of FPGA logic cells (so, for example, if each FPGA
logic cell has a 5ns delay, the 8-bit conditional-sum adder delay is 15ns).

TABLE 2.12 An 8-bit conditional-sum adder (the notation is described in Figure 2.25).

module m8bitCSum (C0, a, b, s, C8); // Verilog conditional-sum adder for an FPGA //1
input [7:0] CO, a, b; output [7:0] s; output C8; //2
wire A7,A6,A5,A4,A3,A2,Al,A0,B7,B6,B5,B4,B3,B2,B1,B0,58,57,56,585,54,83,52,81,50; /73
wire C0O, €2, C4 2 0, C4 2 1, 85 4 0, 85_4_1, C6, C6_4_0, C6_4_1, C8; /74
assign {A7,BA6,A5,A4,A3,A2,A1,A0} = a; assign {B7,B6,B5,B4,B3,B2,B1,B0} = b; //5
assign s = { 87,86,585,84,53,S2,81,S0 }; //6
assign S0 = A0"B0O"CO ; // start of level 1: & = AND, ~ = XOR, | = OR, ! = NOT //7
assign S1 = A1"B1"(RA0&BO|(A0|B0)&CO) ; //8
assign C2 = Al1&B1]|(A1|B1)&(A0&BO|(A0|B0)&CO) ; //9
assign C4_2 0 = A3sB3|(A3|B3)&(A2&B2) ; assign C4_2 1 = A3&B3|(A3|B3)&(A2(|B2) ; //10
assign S5 4 0 = A5"B5"(RA4&B4) ; assign S5_4_1 = A5"B5"(A4[B4) ; /711
assign C6_4 0 = AS5&B5|(A5|B5)&(A4&B4) ; assign C6_4 1 = AS&B5|(A5|B5)&(R4|B4) ; //12
assign S2 = A2"B2"°C2 ; // start of level 2 //13
assign S3 = A3"B3"(A2&B2|(A2|B2)&C2) ; //14
assign S4 = A4"B4"(C4_2 0|C4 2 1&C2) ; /715
assign S5 = S5 4 0& !(C4_2 0]C4_2 1&C2)|S5 4 1&(C4_2 0|C4_2_1&C2) ; //16
assign C6 = C6_4 0|C6_4_ 1&(C4 2 0|C4_2 1&C2) ; /717
assign S6 = A6"B67°C6 ; // start of level 3 //18
assign S7 = A7"B7"(R6&B6|(A6|B6)&C6) ; /719
assign C8 = A7&B7|(A7|B7s)&(R6&B6| (A6]|B6)&CE) ; //20
endmodule //21

Source: R. Halverson, University of Hawaii.

Figure 2.26 shows the normalized delay and area figures for a set of predesigned
datapath adders. The data in Figure 2.26 is from a series of ASIC datapath cell
libraries (Compass Passport) that may be synthesized together with test vectors and
simulation models. We can combine the different adder techniques, but the adders
then lose regularity and become less suited to a datapath implementation.

There are other adders that are not used in datapaths, but are occasionally useful
in ASIC design. A serial adder is smaller but slower than the parallel adders we
have described [Denyer and Renshaw, 1985]. The carry-completion adder is a
variable delay adder and rarely used in synchronous designs [Sklansky, 1960].
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FIGURE 2.26 Datapath adders. This data is from a series of submicron datapath libraries.
(a) Delay normalized to a two-input NAND logic cell delay (approximately equal to 250 psin a
0.5 um process). For example, a 64-bit ripple-carry adder (RCA) has a delay of approximately
30nsina0.5 um process. The spread in delay is due to variation in delays between different
inputs and outputs. An n-bit RCA has a delay proportional to n. The delay of an n-bit carry-
select adder is approximately proportional to log , n. The carry-save adder delay is constant
(but requires a carry-propagate adder to complete an addition). (b) In a datapath library the
area of all adders are proportional to the bit size.

2.6.4  Multipliers

Figure 2.27 shows a symmetric 6-bit array multiplier (an n-bit multiplier multiplies
two n-bit numbers; we shall use n-bit by m-bit multiplier if the lengths are different).
Adders a0-f0 may be eliminated, which then eliminates adders al—a6, leaving an
asymmetric CSA array of 30 (5x 6) adders (including one half adder). An n-bit
array multiplier has a delay proportional to n plus the delay of the CPA (adders
b6—£6 in Figure 2.27). There are two items we can attack to improve the perfor-
mance of a multiplier: the number of partial products and the addition of the partial
products.

Suppose we wish to multiply 15 (the multiplicand) by 19 (the multiplier) men-
tally. It is easier to calculate 15x 20 and subtract 15. In effect we complete the mul-
tiplication as 15x(20—1) and we could write this as 15X 21, with the overbar
representing a minus sign. Now suppose we wish to multiply an 8-bit binary
number, A, by B=00010111 (decimal 16 +4 +2 + 1 =23). It is easier to multiply A
by the canonical signed-digit vector (CSD vector) D=00101001 (decimal
32 -8+ 1= 23) since this requires only three add or subtract operations (and a sub-
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FIGURE 2.27 Multiplication. A 6-bit array multiplier using a final carry-propagate adder
(full-adder cells a6-16, a ripple-carry adder). Apart from the generation of the summands this
multiplier uses the same structure as the carry-save adder of Figure 2.23(d).
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traction is as easy as an addition). We say B has a weight of 4 and D has a weight of
3. By using D instead of B we have reduced the number of partial products by 1
(=4-13).
We can recode (or encode) any binary number, B, as a CSD vector, D, as fol-
lows (canonical means there is only one CSD vector for any number):
D;=B;+C; -2C; ., (2.58)
where C; .| is the carry from the sum of B, ; + B;+ C; (we start with Cy=0).

As another example, if B=011 (B,=0, By =1, By=1; decimal 3), then, using
Eq. 2.58,

Dy=Bo+Cy—2C;=1+0-2=1,
D;=B;+C,;-2C,=1+1-2=0,
D2=B2+C2—-2C3=O+1—0:1, (259)

so that D= 101 (decimal 4—1=3). CSD vectors are useful to represent fixed coeffi-
cients in digital filters, for example.

We can recode using a radix other than 2. Suppose B is an (n+ 1)-digit two’s
complement number,

B=B,+B;2+By2%+... +B2/+... +B, ;2" 1-B,2" (2.60)
We can rewrite the expression for B using the following sleight-of-hand:
2B-B=B=-By+(By—-B)2+... +(B;_;-B)2/+... +B, ;2" 1-B,2"
= (-2B;+B)2% + (2B + B, + B{)2% + ...
+(=2B;+B;_ 1 +B;_2)2 "1+ (2B, .+ B, +B;)2 T+ .
+(=2B,+B;_; +B;_,)2"L. 2.61)
This is very useful. Consider B = 101001 (decimal 9-32=-23, n=5),
B =101001 =(-2B;+B)2" + (-2B3+ B, +B)2% + (-2Bs+ B, + B;)2*
= (2% 0)+ D20+ (-2 x D+ 0+ 0022+ (-2 x 1)+ 0+ 1)2*. (2.62)
Equation 2.61 tells us how to encode B as a radix-4 signed digit, E= 121 (decimal

—16—-8+1=-23). To multiply by B encoded as E we only have to perform a
multiplication by 2 (a shift) and three add/subtract operations.
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Using Eq. 2.61 we can encode any number by taking groups of three bits at a
time and calculating

Ej=~2Bi+Bi—1+Bi—27 Ej+1=_2Bi+2+Bi+l+Bi7 ceey (263)

where each 3-bit group overlaps by one bit. We pad B with a zero, B,,...B{B0, to
match the first term in Eq. 2.61. If B has an odd number of bits, then we extend the
sign: B,B,...B;By0. For example, B=01011 (eleven), encodes to E=111
(16—4—-1); and B=101 is E= 11. This is called Booth encoding and reduces the
number of partial products by a factor of two and thus considerably reduces the area
as well as increasing the speed of our multiplier [Booth, 1951].

Next we turn our attention to improving the speed of addition in the CSA array.
Figure 2.28(a) shows a section of the 6-bit array multiplier from Figure 2.27. We can
collapse the chain of adders a0—f5 (5 adder delays) to the Wallace tree consisting of
adders 5.1-5.4 (4 adder delays) shown in Figure 2.28(b).

Figure 2.28(c) pictorially represents multiplication as a sort of golf course. Each
link corresponds to an adder. The holes or dots are the outputs of one stage (and the
inputs of the next). At each stage we have the following three choices: (1) sum three
outputs using a full adder (denoted by a box enclosing three dots); (2) sum two out-
puts using a half adder (a box with two dots); (3) pass the outputs directly to the
next stage. The two outputs of an adder are joined by a diagonal line (full adders use
black dots, half adders white dots). The object of the game is to choose (1), (2), or
(3) at each stage to maximize the performance of the multiplier. In tree-based
multipliers there are two ways to do this—working forward and working backward.

In a Wallace-tree multiplier we work forward from the multiplier inputs, com-
pressing the number of signals to be added at each stage [Wallace, 1960]. We can
view an FA as a 3:2 compressor or (3, 2) counter—it counts the number of '1's on
the inputs. Thus, for example, an input of '101" (two '1's) results in an output '10" (2).
A half adder is a (2, 2) counter. To form P in Figure 2.29 we must add 6 summands
(Sos»> S14> 523, S32, S41, and Ssp) and 4 carries from the P, column. We add these in
stages 1-7, compressing from 6:3:2:2:3:1:1. Notice that we wait until stage 5 to add
the last carry from column P4, and this means we expand (rather than compress) the
number of signals (from 2 to 3) between stages 3 and 5. The maximum delay
through the CSA array of Figure 2.29 is 6 adder delays. To this we must add the
delay of the 4-bit (9 inputs) CPA (stage 7). There are 26 adders (6 half adders) plus
the 4 adders in the CPA.

in a Dadda multiplier (Figure 2.30) we work backward from the final product
[Dadda, 1965]. Each stage has a maximum of 2, 3, 4, 6, 9, 13, 19, ... outputs (each
successive stage is 3/2 times larger—rounded down to an integer). Thus, for
example, in Figure 2.28(d) we require 3 stages (with 3 adder delays—plus the delay
of a 10-bit output CPA) for a 6-bit Dadda multiplier. There are 19 adders (4 half
adders) in the CSA plus the 10 adders (2 half adders) in the CPA. A Dadda
multiplier is usually faster and smaller than a Wallace-tree multiplier.
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FIGURE 2.28 Tree-based multiplication. (a) The portion of Figure 2.27 that calculates the
sum bit, P5, using a chain of adders (cells a0—f5). (b) We can collapse this chain to a Wallace
tree (cells 5.1-5.5). (c) The stages of multiplication.

In general, the number of stages and thus delay (in units of an FA delay—
excluding the CPA) for an n-bit tree-based multiplier using (3, 2) counters is

log; s n=logygn/log;y1.5=1log;yn/0.176. (2.64)
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FIGURE 2.29 A 6-bit Wallace-tree multiplier. The carry-save adder (CSA) requires 26
adders (cells 1-286, six are half adders). The final carry-propagate adder (CPA) consists of 4
adder cells (27-30). The delay of the CSA is 6 adders. The delay of the CPA is 4 adders.

Figure 2.31(a) shows how the partial-product array is constructed in a conven-
tional 4-bit multiplier. The Ferrari-Stefanelli multiplier (Figure 2.31b) “nests”
multipliers—the 2-bit submultipliers reduce the number of partial products [Ferrari
and Stefanelli, 1969].

There are several issues in deciding between parallel multiplier architectures:

1. Since it is easier to fold triangles rather than trapezoids into squares, a
Wallace-tree multiplier is more suited to full-custom layout, but is slightly
larger, than a Dadda multiplier—both are less regular than an array multiplier.
For cell-based ASICs, a Dadda multiplier is smaller than a Wallace-tree multi-
plier.

2. The overall multiplier speed does depend on the size and architecture of the
final CPA, but this may be optimized independently of the CSA array. This
means a Dadda multiplier is always at least as fast as the Wallace-tree version.
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FIGURE 2.30 The 6-bit Dadda multiplier. The carry-save adder (CSA) requires 20 adders
(cells 1-20, four are half adders). The carry-propagate adder (CPA, cells 21-30) is a ripple-
carry adder (RCA). The CSA is smaller (20 versus 26 adders), faster (3 adder delays versus
6 adder delays), and more regular than the Wallace-tree CSA of Figure 2.29. The overall
speed of this implementation is approximately the same as the Wallace-tree multiplier of
Figure 2.29; however, the speed may be increased by substituting a faster CPA.

3. The low-order bits of any parallel multiplier settle first and can be added in the
CPA before the remaining bits settle. This allows multiplication and the final
addition to be overlapped in time.

4. Any of the parallel multiplier architectures may be pipelined. We may also use
a variably pipelined approach that tailors the register locations to the size of
the multiplier.

5. Using (4, 2), (5, 3), (7, 3), or (15, 4) counters increases the stage compression
and permits the size of the stages to be tuned. Some ASIC cell libraries contain
a (7, 3) counter—a 2-bit full-adder. A (15, 4) counter is a 3-bit full adder.
There is a trade-off in using these counters between the speed and size of the
logic cells and the delay as well as area of the interconnect.

6. Power dissipation is reduced by the tree-based structures. The simplified
carry-save logic produces fewer signal transitions and the tree structures pro-
duce fewer glitches than a chain.
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FIGURE 2.31 Ferrari-Stefanelli multiplier. (a) A conventional 4-bit array multiplier using
AND gates to calculate the summands with (2, 2) and (3, 2) counters to sum the partial prod-
ucts. (b) A 4-bit Ferrari—Stefanelli multiplier using 2-bit submultipliers to construct the partial
product array. (c) A circuit implementation for an inverting 2-bit submultiplier.

7. None of the multiplier structures we have discussed take into account the pos-
sibility of staggered arrival times for different bits of the multiplicand or the
multiplier. Optimization then requires a logic-synthesis tool. ‘

2.6.5 Other Arithmetic Systems

There are other schemes for addition and multiplication that are useful in special cir-
cumstances. Addition of numbers using redundant binary encoding avoids carry
propagation and is thus potentially very fast. Table 2.13 shows the rules for addition
using an intermediate carry and sum that are added without the need for carry. For

example,

binary decimal redundant CSD

binary vector

1010111 87 10101001 10101001 addend
+ 1100101 101 + 11100111 + 01100101 augend
= 10111100 = 188 01001110 11001100 intermediate sum

11000101 11000000 intermediate carry
= 111000100 = 101001100 sum
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TABLE 2.13 Redundant binary addition.

Intermediate

Ali] B/} Afi-1] Bli-1] sum

Intermediate

carry
1 1 X x 0 1
1 0 A[i—1]=0/1 and B[i—1]=0/1 1 0
0 1 A[i~1]=1 or B[i-1]=1 1 1
1 1 X e 0 0
1 1 X X 0 0
0 0 b'e b4 0 0
0 1 A[i—1]1=0/1 and B[i—-1]=0/1 1 1
1 0 A[i—1]=1 or B[i—1]=1 1 0
1 1 X x 0 1

The redundant binary representation is not unique. We can represent 101 (deci-
mal), for example, by 1100101 (binary and CSD vector) or 11100111 . As another
example, 188 (decimal) can be represented by 10111100 (binary), 111000100,
101001100, or 101000100 (CSD vector). Redundant binary addition of binary,
redundant binary, or CSD vectors does not result in a unique sum, and addition of
two CSD vectors does not result in a CSD vector. Each n-bit redundant binary num-
ber requires a rather wasteful 2n-bit binary number for storage. Thus 101 is repre-
sented as 010010, for example (using sign magnitude). The other disadvantage of
redundant binary arithmetic is the need to convert to and from binary representation.

Table 2.14 shows the (5, 3) residue number system. As an example, 11 (deci-
mal) is represented as [1, 2] residue (5, 3) since 11Rs=11 mod 5=1 and 11R3=11
mod 3=2. The size of this system is thus 3x5=15. We add, subtract, or multiply
residue numbers using the modulus of each bit position—without any carry. Thus:

4 14, 17 12 [2, 0] 3 [3, 0]
+ 7+ 12, 1] - 4 - [4, 1] X 4 X [4, 1]
=11 = [1, 2] = 8 = (3, 2] =12 = [2, 0]

The choice of moduli determines the system size and the computing complexity. The
most useful choices are relative primes (such as 3 and 5). With p prime, numbers of
the form 27 and 2 —1 are particularly useful (2 —1 are Mersenne’s numbers)
[Waser and Flynn, 1982].

2.6.6  Other Datapath Operators

Figure 2.32 shows symbols for some other datapath elements. The combinational
datapath cells, NAND, NOR, and so on, and sequential datapath cells (flip-flops and
latches) have standard-cell equivalents and function identically. I use a bold outline
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TABLE 2.14 The 5, 3 residue number system.

n residue 5 residue 3 n residue 5 residue 3 n residue 5 residue 3
0 0 0 5 0 2 10 0 1
1 1 1 6 1 0 11 1 2
2 2 2 7 2 1 12 2 0
3 3 0 8 3 2 13 3 1
4 4 1 9 4 0 14 4 2

(1 point) for datapath cells instead of the regular (0.5 point) line I use for scalar sym-

bols. We call a set of identical cells a vector of datapath elements in the same way

that a bold symbol, A, represents a vector and A represents a scalar.

CLK |PRE A zZIvsBo]
DIMSB:0] QIMSB:0] | o P+
. AIMSB:0] +:>33[MSB.O] B[MSB:0]
L_C> B[MSB:0] =1
(c)
(a) (b) ,
S A[MSB:0] - S[MSB:0]
A[MSB:0] Z[MSB:0] Z[MSB:0] z z }
B ] /- e o1=0 ‘J =1 —I BIMSB:0]
B[MSB:0]
(d) (e) (M) (9) (h)

FIGURE 2.32 Symbols for datapath elements. (a) An array or vector of flip-flops (a regis-
ter). (b) A two-input NAND cell with databus inputs. (c) A two-input NAND cell with a control
input. (d) A buswide MUX. (e) An incrementer/decrementer. (f) An all-zeros detector. (g) An
all-ones detector. (h) An adder/subtracter.

A subtracter is similar to an adder, except in a full subtracter we have a
borrow-in signal, BIN; a borrow-out signal, BOUT;, and a difference signal, DIFF:

DIFF=A @ NOT(B) @ NOT(BIN) = SUM(A, NOT(B), NOT(BIN)) (2.65)
NOTBOUT)=A-NOT(B)+ A - NOT(BIN) + NOT(B) - NOT(BIN)
=MAJ(NOT(A), B, NOT(BIN)) (2.66)
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These equations are the same as those for the FA (Eqgs. 2.38 and 2.39) except
that the B input is inverted and the sense of the carry chain is inverted. To build a
subtracter that calculates (A —B) we invert the entire B input bus and connect the
BINJ[O] input to VDD (not to VSS as we did for CIN[0] in an adder). As an example,
to subtract B="0011" from A="'1001" we calculate '1001'+'1100'+'1'="0110". As
with an adder, the true overflow is XOR(BOUT[MSB], BOUT[MSB - 1}).

We can build a ripple-borrow subtracter (a type of borrow-propagate sub-
tracter), a borrow-save subtracter, and a borrow-select subtracter in the same way we
built these adder architectures. An adder/subtracter has a control signal that gates
the A input with an exclusive-OR cell (forming a programmable inversion) to switch
between an adder or subtracter. Some adder/subtracters gate both inputs to allow us
to compute (A —B). We must be careful to connect the input to the LSB of the carry
chain (CIN[0] or BIN{0]) when changing between addition (connect to VSS) and
subtraction (connect to VDD).

A barrel shifter rotates or shifts an input bus by a specified amount. For exam-
ple if we have an eight-input barrel shifter with input '1111 0000" and we specify a
shift of '0001 0000" (3, coded by bit position) the right-shifted 8-bit output is
'0001 1110'. A barrel shifter may rotate left or right (or switch between the two
under a separate control). A barrel shifter may also have an output width that is
smaller than the input. To use a simple example, we may have an 8-bit input and a
4-bit output. This situation is equivalent to having a barrel shifter with two 4-bit
inputs and a 4-bit output. Barrel shifters are used extensively in floating-point arith-
metic to align (we call this normalize and denormalize) floating-point numbers
(with sign, exponent, and mantissa).

A leading-one detector is used with a normalizing (left-shift) barrel shifter to
align mantissas in floating-point numbers. The input is an n-bit bus A, the output is
an n-bit bus, S, with a single '1' in the bit position corresponding to the most signifi-
cant 'l" in the input. Thus, for example, if the input is A ="0000 0101' the leading-
one detector output is S ='0000 0100', indicating the leading one in A is in bit posi-
tion 2 (bit 7 is the MSB, bit zero is the LSB). If we feed the output, S, of the
leading-one detector to the shift select input of a normalizing (left-shift) barrel
shifter, the shifter will normalize the input A. In our example, with an input of
A ='0000 0101, and a left-shift of S ="'0000 0100, the barrel shifter will shift A left
by five bits and the output of the shifter is Z="1010 0000". Now that Z is aligned
(with the MSB equal to '1') we can multiply Z with another normalized number.

The output of a priority encoder is the binary-encoded position of the leading
one in an input. For example, with an input A ='0000 0101’ the leading 1 is in bit
position 3 (MSB is bit position 7) so the output of a 4-bit priority encoder would be
7. ="0011" (3). In some cell libraries the encoding is reversed so that the MSB has an
output code of zero, in this case Z='0101" (5). This second, reversed, encoding
scheme is useful in floating-point arithmetic. If A is a mantissa and we normalize A
to '1010 0000" we have to subtract 5 from the exponent, this exponent correction is
equal to the output of the priority encoder.

114

97



98

CHAPTER 2

CMOS LOGIC

An accumulator is an adder/subtracter and a register. Sometimes these are
combined with a multiplier to form a multiplier—accumulator (MAC). An
incrementer adds 1 to the input bus, Z= A + 1, so we can use this function, together
with a register, to negate a two’s complement number for example. The implementa-
tion is Z[i]=XOR(A[{], CIN[i]), and COUT[i]= AND(A[:], CIN[i]). The carry-in
control input, CIN[0], thus acts as an enable: If it is set to '0’ the output is the same
as the input.

The implementation of arithmetic cells is often a little more complicated than
we have explained. CMOS logic is naturally inverting, so that it is faster to imple-
ment an incrementer as

Z[i(even)] = XOR(A[{], CIN[i]) and COUTTJi(even)] = NAND(A[:], CIN[]).

This inverts COUT, so that in the following stage we must invert it again. If we push
an inverting bubble to the input CIN we find that:

Z[i(odd)] = XNOR(A[{], CIN[i]) and COUTIi(even)]=NOR(NOT(A[]), CIN[]).

In many datapath implementations all odd-bit cells operate on inverted carry
signals, and thus the odd-bit and even-bit datapath elements are different. In fact, all
the adder and subtracter datapath elements we have described may use this tech-
nique. Normally this is completely hidden from the designer in the datapath assem-
bly and any output control signals are inverted, if necessary, by inserting buffers.

A decrementer subtracts 1 from the input bus, the logical implementation is
Z[i] = XOR(A[{], CIN[i]) and COUT[i]= AND(NOT(A[i]), CIN[{]). The implemen-
tation may invert the odd carry signals, with CIN[0] again acting as an enable.

An incrementer/decrementer has a second control input that gates the input,
inverting the input to the carry chain. This has the effect of selecting either the incre-
ment or decrement function.

Using the all-zeros detectors and all-ones detectors, remember that, for a 4-bit
number, for example, zero in ones’ complement arithmetic is '1111" or '0000', and
that zero in signed magnitude arithmetic is '1000' or '0000'.

A register file (or scratchpad memory) is a bank of flip-flops arranged across
the bus; sometimes these have the option of multiple ports (multiport register files)
for read and write. Normally these register files are the densest logic and hardest to
fit in a datapath. For large register files it may be more appropriate to use a multiport
memory. We can add control logic to a register file to create a first-in first-out
register (FIFQG), or last-in first-out register (LIFO).

In Section 2.5 we saw that the standard-cell version and gate-array macro ver-
sion of the sequential cells (latches and flip-flops) each contain their own clock buff-
ers. The reason for this is that (without intelligent placement software) we do not
know where a standard cell or a gate-array macro will be placed on a chip. We also
have no idea of the condition of the clock signal coming into a sequential cell. The
ability to place the clock buffers outside the sequential cells in a datapath gives us
more flexibility and saves space. For example, we can place the clock buffers for all
the clocked elements at the top of the datapath (together with the buffers for the con-
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trol signals) and river route (in river routing the interconnect lines all flow in the
same direction on the same layer) the connections to the clock lines. This saves
space and allows us to guarantee the clock skew and timing. It may mean, however,
that there is a fixed overhead associated with a datapath. For example, it might make
no sense to build a 4-bit datapath if the clock and control buffers take up twice the
space of the datapath logic. Some tools allow us to design logic using a portable
netlist. After we complete the design we can decide whether to implement the porta-
ble netlist in a datapath, standard cells, or even a gate array, based on area, speed, or
power considerations.

2.7 10 Cells

Figure 2.33 shows a three-state bidirectional output buffer (Tri—State® is a registered
trademark of National Semiconductor). When the output enable (OE) signal is high,
the circuit functions as a noninverting buffer driving the value of DATAiIn onto the
I/0 pad. When OE is low, the output transistors or drivers, M1 and M2, are discon-
nected. This allows multiple drivers to be connected on a bus. It is up to the designer
to make sure that a bus never has two drivers—a problem known as contention.

In order to prevent the problem opposite to contention—-a bus floating to an
intermediate voltage when there are no bus drivers—we can use a bus keeper or
bus-hold cell (TI calls this Bus-Friendly logic). A bus keeper normally acts like two
weak (low drive-strength) cross-coupled inverters that act as a latch to retain the last
logic state on the bus, but the latch is weak enough that it may be driven easily to
the opposite state. Even though bus keepers act like latches, and will simulate like
latches, they should not be used as latches, since their drive strength is weak.

Transistors M1 and M2 in Figure 2.33 have to drive large off-chip loads. It we
wish to change the voltage on a C=200pF load by 5V in 5ns (a slew rate of
1 Vns™!) we will require a current in the output transistors of

Iy = C(dV/dr) = (200x107 ) (5/5%107) = 02A or 200mA.

Such large currents flowing in the output transistors must also flow in the power
supply bus and can cause problems. There is always some inductance in series with
the power supply, between the point at which the supply enters the ASIC package
and reaches the power bus on the chip. The inductance is due to the bond wire, lead
frame, and package pin. If we have a power-supply inductance of 2 nH and a current
changing from zero to 1 A (32 1/O cells on a bus switching at 30 mA each) in 5 ns,
we will have a voltage spike on the power supply (called power-supply bounce) of
L(dI/dD)y = (2 x 107 (1/(5 x 107)) = 0.4 V.

We do several things to alleviate this problem: We can limit the number of
simultanecusly switching outputs (SSOs), we can limit the number of I/O drivers
that can be attached to any one VDD and GND pad, and we can design the output
buffer to limit the slew rate of the output (we call these slew-rate limited I/O pads).
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Quiet-1/O cells also use two separate power supplies and two sets of I/O drivers: an
AC supply (clean or quiet supply) with small AC drivers for the I/O circuits that
start and stop the output slewing at the beginning and end of a output transition, and
a DC supply (noisy or dirty supply) for the transistors that handle large currents as
they slew the output. "

The three-state buffer allows us to employ the same pad for input and output—
bidirectional I/0. When we want to use the pad as an input, we set OE low and take
the data from DATAin. Of course, it is not necessary to have all these features on
every pad: We can build output-only or input-only pads.

from core -~ VDD
oge _ ND1 i
OE }d B /o
FIGURE 2.33 A three-state bidirectional out- output ad
put buffer. When the output enable, OE, is '1' the enable 12
output section is enabled and drives the I/O pad. M2
When OE is '0' the output buffer is placed in a DATAout [l
high-impedance state.
NR1
DATAIn O<} -
U 11
to core
logic

We can also use many of these output cell features for input cells that have to
drive large on-chip loads (a clock pad cell, for example). Some gate arrays simply
turn an output buffer around to drive a grid of interconnect that supplies a clock sig-
nal internally. With a typical interconnect capacitance of 0.2 chm‘l, a grid of
100 cm (consisting of 10 by 10 lines running all the way across a 1 cm chip) presents
a load of 20 pF to the clock buffer.

Some libraries include 1/O cells that have passive pull-ups or pull-downs (resis-
tors) instead of the transistors, M1 and M2 (the resistors are normally still con-
structed from transistors with long gate lengths). We can also omit one of the driver
transistors, M1 or M2, to form open-drain outputs that require an external pull-up
or pull-down. We can design the output driver to produce TTL output levels rather
than CMOS logic levels. We may also add input hysteresis (using a Schmitt trigger)
to the input buffer, I1 in Figure 2.33, to accept input data signals that contain
glitches (from bouncing switch contacts, for example) or that are slow rising. The
input buffer can also include a level shifter to accept TTL input levels and shift the
input signal to CMOS levels.

The gate oxide in CMOS transistors is extremely thin (100 A or less). This
leaves the gate oxide of the I/O cell input transistors susceptible to breakdown from
static electricity (electrostatic discharge, or ESD). ESD arises when we or
machines handle the package leads (like the shock I sometimes get when I touch a

117



2.7

doorknob after walking across the carpet at work). Sometimes this problem is called
electrical overstress (EOS) since most ESD-related failures are caused not by gate-
oxide breakdown, but by the thermal stress (melting) that occurs when the n-channel
transistor in an output driver overheats (melts) due to the large current that can flow
in the drain diffusion connected to a pad during an ESD event. ﬂ

To protect the 1/O cells from ESD, the input pads are normally tied to device
structures that clamp the input voltage to below the gate breakdown voltage (which
can be as low as 10 V with a 100 A gate oxide). Some I/O cells use transistors with a
special ESD implant that increases breakdown voltage and provides protection. I/O
driver transistors can also use elongated drain structures (ladder structures) and large
drain-to-gate spacing to help limit current, but in a salicide process that lowers the
drain resistance this is difficult. One solution is to mask the I/O cells during the sali-
cide step. Another solution is to use pnpn and npnp diffusion structures called
silicon-controlled rectifiers (SCRs) to clamp voltages and divert current to protect
the 1/O circuits from ESD.

There are several ways to model the capability of an I/O cell to withstand EOS.
The human-body model (HBM) represents ESD by a 100 pF capacitor discharging
through a 1.5 k< resistor (this is an International Electrotechnical Committee, IEC,
specification). Typical voltages generated by the human body are in the range of
2-4kV, and we often see an I/O pad cell rated by the voltage it can withstand using
the HBM. The machine model (MM) represents an ESD event generated by auto-
mated machine handlers. Typical MM parameters use a 200 pF capacitor (typically
charged to 200 V) discharged through a 25 € resistor, corresponding to a peak initial
current of nearly 10A. The charge-device model (CDM, also called device
charge—discharge) represents the problem when an IC package is charged, in a ship-
ping tube for example, and then grounded. If the maximum charge on a package is
3 nC (a typical measured figure) and the package capacitance to ground is 1.5 pF, we
can simulate this event by charging a 1.5 pF capacitor to 2kV and discharging it
through a 1 Q resistor.

If the diffusion structures in the I/O cells are not designed with care, it is possi-
ble to construct an SCR structure unwittingly, and instead of protecting the transis-
tors the SCR can enter a mode where it is latched on and conducting large enough
currents to destroy the chip. This failure mode is called latch-up. Latch-up can
occur if the pn-diodes on a chip become forward-biased and inject minority carriers
(electrons in p-type material, holes in n-type material) into the substrate. The
source—substrate and drain—substrate diodes can become forward-biased due to
power-supply bounce or output undershoot (the cell outputs fall below Vgg) or
overshoot (outputs rise to greater than Vpp) for example. These injected minority
carriers can travel fairly large distances and interact with nearby transistors causing
latch-up. 1/O cells normally surround the I/O transistors with guard rings (a contin-
uous ring of n-diffusion in an n-well connected to VDD, and a ring of p-diffusion in
a p-well connected to VSS) to collect these minority carriers. This is a problem that
can also occur in the logic core and this is one reason that we normally include sub-
strate and well connections to the power supplies in every cell.
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2.8  Cell Compilers

The process of hand crafting circuits and layout for a full-custom IC is a tedious,
time-consuming, and error-prone task. There are two types of automated layout
assembly tools, often known as a silicon compilers. The first type produces a spe-
cific kind of circuit, a RAM compiler or multiplier compiler, for example. The
second type of compiler is more flexible, usually providing a programming language
that assembles or tiles layout from an input command file, but this is full-custom IC
design.

We can build a register file from latches or flip-flops, but, at 4.5-6.5 gates
(18-26 transistors) per bit, this is an expensive way to build memory. Dynamic
RAM (DRAM) can use a cell with only one transistor, storing charge on a capacitor
that has to be periodically refreshed as the charge leaks away. ASIC RAM is invari-
ably static (SRAM), so we do not need to refresh the bits. When we refer to RAM in
an ASIC environment we almost always mean SRAM. Most ASIC RAMs use a six-
transistor cell (four transistors to form two cross-coupled inverters that form the
storage loop, and two more transistors to allow us to read from and write to the cell).
RAM compilers are available that produce single-port RAM (a single shared bus
for read and write) as well as dual-port RAMs, and multiport RAMs. In a multi-
port RAM the compiler may or may not handle the problem of address contention
(attempts to read and write to the same RAM address simultaneously). RAM can be
asynchronous (the read and write cycles are triggered by control and/or address
transitions asynchronous to a clock) or synchronous (using the system clock).

In addition to producing layout we also need a model compiler so that we can
verify the circuit at the behavioral level, and we need a netlist from a netlist
compiler so that we can simulate the circuit and verify that it works correctly at the
structural level. Silicon compilers are thus complex pieces of software. We assume
that a silicon compiler will produce working silicon even if every configuration has
not been tested. This is still ASIC design, but now we are relying on the fact that the
tool works correctly and therefore the compiled blocks are correct by construction.

2.9  Summary

The most important concepts that we covered in this chapter are the following:
e The use of transistors as switches
» The difference between a flip-flop and a latch
o The meaning of setup time and hold time
e Pipelines and latency
e The difference between datapath, standard-cell, and gate-array logic cells

e Strong and weak logic levels
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* Pushing bubbles
» Ratio of logic
» Resistance per square of layers and their relative values in CMOS

* Design rules and A

2.10 Problems

* = Difficult,** = Very difficult, *** = Extremely difficult

2.1 (Switches, 20 min.) (a) Draw a circuit schematic for a two-way light
switch: flipping the switch at the top or bottom of the stairs reverses the state of two
light bulbs, one at the top and one at the bottom of the stairs. Your schematic should
show and label all the cables, switches, and bulbs. (b) Repeat the problem for three
switches and one light in a warehouse.

2.2 (Logic, 10 min.) The queen wished to choose her successor wisely. She
blindfolded and then placed a crown on each of her three children, explaining that
there were three red and two blue crowns, and they must deduce the color of their
own crown. With blindfolds removed the children could see the two other crowns,
but not their own. After a while Anne said: “My crown is red.” How did she know?

2.3 (Minus signs, 20 min.) The channel charge in an n-channel transistor is neg-
ative. (a) Should there not be a minus sign in Eq. 2.5 to account for this? (b) If so,
then where in the derivation of Section 2.1 does the minus sign disappear to arrive at
Eg. 2.9 for the current in an n-channel transistor? (c¢) The equations for the current in
a p-channel transistor (Eq. 2.15) have the opposite sign to those for an n-channel
transistor. Where in the derivation in Section 2.1 does the extra minus sign arise?

Ipg/mA 0.3 um, 20/20 n-ch.
1
0-8 1 Vg5V
0.6 i

FIGURE 2.34 Transistor characteristics for a
0.3um process (Problem 2.4). 0.4

0.2

0
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2.4 (Transistor curves, 20 min.) Figure 2.34 shows the measured Ip¢Vpg char-
acteristics for a 20/20 n-channel transistor in a 0.3 pm (effective gate length) process
from an ASIC foundry. Derive as much information as you can from this figure.

2.5 (Body effect, 20 min). The equations for the drain—source current (2.9, 2.12,
and 2.15) do not contain Vg, the source voltage with respect to the bulk, because
we assumed that it was zero. This is not true for the n-channel transistor whose drain
is connected to the output in a two-input NAND gate, for example. A reverse
substrate bias (or back-gate bias; Vgp>0 for an n-channel transistor) makes the
bulk act like a second gate (the back gate) and modifies an n-channel transistor
threshold voltage as follows: .

Vin = Vion * Y( NOo+ Vg = J@)) , (2.67)

where V), is measured with Vgp=0V; ¢ is called the surface potential; and 7y
(gamma) is the body-effect coefficient (back-gate bias coefficient),

/2qESiNA

Y ="

OX

(2.68)

There are several alternative names and symbols for ¢y (“phi,” a positive quan-
tity for an n-channel transistor, typically between 0.6-0.7V)—you may also see ¢y,
(for bulk potential) or 2¢g (twice the Fermi potential, a negative quantity). In
Eq. 2.68, £g; = £0&,= 1.053 x 1079 Fm™ is the permittivity of silicon (the permittiv-
ity of a vacuum g£3=8.85x 1072 Fm™! and the relative permittivity of silicon is
g,=11.7); Ny is the acceptor doping concentration in the bulk (for p-type substrate
or well—Np, for the donor concentration in an n-type substrate or well); and C,, is
the gate capacitance per unit area given by

€
c _ =2 (2.69)

ox
oX

a. Calculate the theoretical value of y for Ny = 1010 cm™, T, = 100A.

b. Calculate and plot V,,, for Vgp ranging from OV to 5V in increments of 1V
assuming values of y=0.5 V%>, ¢;=0.6V, and V,5,=0.5V obtained from
transistor characteristics.

c. Fit a linear approximation to V,,.

d. Recognizing V¢ <0V, rewrite Eq. 2.67 for a p-channel device.

e. (Harder) What effect does the back-gate bias effect have on CMOS logic circuits?

Answer: (a) 0.17 V9 (b) 0.50-1.3 V.

2.6 (Sizing layout, 10 min.) Stating clearly whatever assumptions you make and
describing the tools and methods you use, estimate the size (in A) of the standard
cell shown in Figure 1.3. Estimate the size of each of the transistors, giving their
channel lengths and widths (stating clearly which is which).
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2.7 (CMOS process) (20 min.) Table 2.15 shows the major steps involved in a
typical deep submicron CMOS process. There are approximately 100 major steps in
the process.

a. If each major step has a yield of 0.9, what is the overall process yield?

b. If the process yield is 90% (not uncommon), what is the average yield at
each major step?

c. If each of the major steps in Table 2.15 consists of an average of five other
microtasks, what is the average yield of each of the 500 microtasks.

d. Suppose, for example, an operator loads and unloads a furnace five times a
day as a microtask, how many days must the operator work without making a
mistake to achieve this microtask yield?

e. Does this seem reasonable? What is wrong with our model?

f. (**60 min.) Draw the process cross-section showing, in particular, the poly,
FOX, gate oxide, IMOs and metal layers. You may have to make some
assumptions about the meanings and functions of the various steps and lay-
ers. Assume all layers are deposited on top of each other according to the
thicknesses shown (do not attempt to correct for the silicon consumed during
oxidation—even if you understand what this means). The abbreviations in
Table 2.15 are as follows: dep.=deposition; LPCVD =]low-pressure chemi-
cal vapor deposition (for growing oxide and poly); LDD =lightly doped
drain (a way to improve transistor characteristics); SOG =silicon overglass
(a deposited quartz to help with step coverage between metal layers).

Answer: (a) Zero. (b) 0.999. (c) 0.9998. (d) 3 years.
2.8 (Stipple patterns, 30min.)

a. Check the stipple patterns in Figure 2.9. Using ruled paper draw 8-by-8 stip-
ple patterns for all the combinations of layers shown.

b. Repeat part a for Figure 2.10.

2.9 (Select, 20min.) Can you draw a design-rule correct (according to the
design rules in Tables 2.7-2.9) layout with a piece of select that has a minimum
width of 2A (rule 4.4)?

2.10 (*Inverter layout, 60 min.) Using 1/4-inch ruled paper (or similar) draw a
minimum-size inverter (W/L =1 for both p-channel and n-channel transistors). Use a
scale of one square to 2A and the design rules in Table 2.7-Table 2.9. Do not use m2
or m3—only m1. Draw the nwell, pwell, ndiff, and pdiff layers, but not the implant
layers or the active layer. Include connections to the input, output, VDD, and VSS in
m1l. There must be at least one well connection to each well (n-well to VDD, and
p-well to VSS). Minimize the size of your cell BB. Draw the BB outline and write
its size in A2 on your drawing. Use green diagonal stripes for ndiff, brown diagonal
stripes for pdiff, red diagonal stripes for poly, blue diagonal stripes for ml, solid
black for contact). Include a key on your drawing, and clearly label the input, out-
put, VDD, and VSS contacts.
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TABLE 2.15 CMOS process steps (Problem 2.7).!

1
2
3
4
5
6
7
8
9
0

1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Step Depth

substrate

oxide 1 dep. 500
nitride 1 dep. 1500
n-well mask

n-well etch

n-well implant
resist strip
blocking oxide dep. 2000
nitride 1 strip

p-well implant

p-well drive

active oxide dep. 250
nitride 2 dep. 1500
active mask
active etch
resist strip
field mask
field implant
resist strip
field oxide dep. 5000
nitride 2 strip

sacrificial oxide dep. 300
Vt adjust implant

gate oxide dep. 80
LPCVD poly dep. 1500
deglaze

WSi dep. 1500
LPCVD oxide dep. 750
poly mask

oxide etch

polycide etch

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Step

Depth -

resist strip

WSi anneal
nLDD mask
nLDD implant
resist strip

pLDD mask
pLDD implant
resist strip
spacer oxide dep. 3000
WSi anneal

SD oxide dep 200
n+ mask

n+ implant

resist strip

ESD mask

ESD implant

resist strip

p+ mask

p+ implant

resist strip

implant anneal

LPCVD oxide dep. 1500

BPSG dep./densify 4000
contact mask

contact etch -2500
resist strip

Pt dep. 200
Pt sinter

Pt strip

TiW dep. 2000
AICU/TIW dep. 4000

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
92
93
94

Step Depth
m1 mask

m1 etch

resist strip

base oxide dep. 6000
SOG coati/2 3000
SOG cure/etch -4000
cap oxide dep. 4000
vial mask

viat etch —2500
resist strip

TiW dep. 2000
AICU/TiW dep. 4000
m2 mask

m2 etch

resist strip

base oxide dep. 6000
SOG coat 1/2 3000 -
SOG cure/etch -4000
cap oxide dep. 4000
via2 mask

via2 etch —2500
resist strip

TiW dep. 2000
AICU/TIW dep. 4000
m3 mask

m3 etch

resist strip

oxide dep. 4000
nitride dep. 10,000
pad mask

pad etch

1Depths of layers are in angstroms (negative values are etch depths). For abbreviations used, see Problem 2.7.
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2.11 (*AOI221 Layout, 120min.) Layout the AOI221 shown in Figure 2.13
with the design rules of Tables 2.7-2.9 and using Figure 1.3 as a guide. Label clearly
the m1 corresponding to the inputs, output, VDD bus, and GND (VSS) bus. Remem-
ber to include substrate contacts. What is the size of your BB in A2? |

2.12 (Resistance, 20 min.)

a. Using the values for sheet resistance shown in Table 2.3, calculate the resis-
tance of a 200A long (in the direction of current flow) by 3\ wide piece of
each of the layers.

b. Estimate the resistance of an 8-inch, 10 Q cm, p-type, <100> wafer, measured
(1) from edge to edge across a diameter and (ii) from face center to the face
center on the other side.

2.13 (*Layout graphics, 120 min.) Write a tutorial for capturing layout. As an
example:

To capture EPSF (encapsulated PostScript format) from Tanner Research’s
1-Edit for documentation, Macintosh version... Create a black-and-white technology
file, use Setup, Layers..., in L-Edit. The method described here does not work well
for grayscale or color. Use File, Print..., Destination check button File to print from
1-Edit to an EPS (encapsulated PostScript) file. After you choose Save, a dialog box
appears. Select Format: EPS Enhanced Mac Preview, ASCII, Level 1 Compatible,
Font Inclusion: None. Save the file. Switch to Frame. Create an Anchored Frame.
Use File, Import, File... to bring up a dialog box. Check buiton Copy into Docu-
ment, select Format: EPSF. Import the EPS file that will appear as a “page image”.
Grab the graphic inside the Anchored Frame and move the “page image” around.
There will be a footer with text on the “page image” that you may want to hide by
using the Anchored Frame edges to crop the image.

Your instructions should be precise, concise, assume nothing, and use the names
of menu items, buttons and so on exactly as they appear to the user. Most of the lay-
out figures in this book were created using L-Edit running on a Macintosh, with
labels added in FrameMaker. Most of the layouts use the Compass layout editor.

2.14 (Transistor resistance, 20 min.) Calculate /g and the resistance (the DC
value Vpg/lpg as well as the AC value dV [, o/9I . as appropriate) of long-channel
transistors with the following parameters, under the specified conditions. In each
case state whether the transistor is in the saturation region, linear region, or off:

(i) n-channel: V,,=0.5V, B, =40 pAV 2 :

Ves=3.3V: a.Vpg=33V b.Vpe=00V ¢ V5e=00V,Vpg=33V

(ii) p-channel: V(,=-0.6V, Bp =20 pAV 2 :

VGSZO.OV: a. VDSZOOV b. VDS=—5.0V C. VGS=~—5.0V, VDS=——5.0V

2.15 (Circuit theory, 15 min.) You accidentally created the “inverter” shown in
Figure 2.35 on a full-custom ASIC currently being fabricated. Will it work? Your
manager wants a yes or no answer. Your group is a little more understanding: You

are to make a presentation to them to explain the problems ahead. Prepare two foils
as well as a one page list of alternatives and recommendations.
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VDD
FIGURE 2.35 A CMOS “inverter” with n-channel and p-channel A E
transistors swapped (Problem 2.15).

2.16 (Mask resolution, 10min.) People use LaserWriters to make printed-
circuit boards all the time.

a. Do you think it is possible to make an IC mask using a 600 dpi (dots per inch)
LaserWriter and a transparency?

b. What would A be?

c. (Harder) See if you can use a microscope to look at the dot and the rectangu-
lar bars (serifs) of a letter 'i' from the output of a LaserWriter on paper (most
are 300 dpi or 600 dpi). Estimate A. What is causing the problem? Why is
there no rush to generate 1200 dpi LaserWriters for paper? Put a page of this
textbook under the microscope: can you see the difference? What are the
similar problems printing patterns on a wafer?

2.17 (Lambda, 10min.) Estimate A
a. for your TV screen,
b. for your computer monitor,

¢. (harder) a photograph.

2.18 (Pass-transistor logic, 10 min.)
a. In Figure 2.36 suppose we set A=B=C=D="1", what is the value of F?
b. What is the logic strength of the signal at F?

¢.If Vpp=5V and V,,=0.6 V, what would the voltage at the source and drain
terminals of M1, M2, and M3 be?

d. Will this circuit still work if Vpp=3V?
e. At what point does it stop working?

A M1 M2 M3
: . L 1]
FIGURE 2.36 A pass transistor chain (Problem

2.18). —Br I ‘[D‘

F
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2.19 (Transistor parameters, 20 min.) Calculate the (a) electron and (b) hole
mobility for the transistor parameters given in Section 2.1 if k;1 =80UAV~? and
k, =40 HAV~2.

Answer: (a) 0.023 m?V~1s7L,

2.20 (Quantum behavior, 10 min.) The average thermal energy of an electron is
approximately kT, where k=1.38x 10723 JK~! is Boltzmann’s constant and T is the
absolute temperature in kelvin.

a. The kinetic energy of an electron is (1/2)mv?, where v is due to random ther-

mal motion, and m=9.11 x 10731 kg is the rest mass. What is v at 300 K?

b. The electron wavelength /=h/p, where h=6.62 x 107>* Js is the Planck con-
stant, and p =mv is the electron momentum. What is / at 25°C?

c. Compare the thermal velocity with the saturation velocity.

d. Compare the electron wavelength with the MOS channel length and with the
gate-oxide thickness in a 0.25 pm process and a 0.1 pm process.

2.21 (Gallium arsenide, 5min.) The electron mobility in GaAs is about
8500 cn?V~1s™!; the hole mobility is about 400 cm?V~!s™!. If we could make com-
plementary n-channel and p-channel GaAs transistors (the same way that we do in a
CMOS process) what would the ratio of a GaAs inverter be to equalize rise and fall
times? About how much faster would you expect GaAs transistors to be than silicon
for the same transistor sizes?

2.22 (Margaret of Anjou, 5 min.)

a. Why is it ones’ complement but two’s complement?

b. Why Queen’s University, Belfast but Queens’ College, Cambridge?

2.23 (Logic cell equations, 5 min.) Show that Eq. 2.31, 2.36, and 2.37 are correct.
2.24 (Carry-lookahead equations, 10 min.)

a. Derive the carry-lookahead equations for i =8. Write them in the same form
as Eq. 2.56.

b. Derive the equations for the Brent—Kung structure for i =8.

2.25 (OAI cells, 20 min.) Draw a circuit schematic, including transistor sizes,
for (a) an OAI321 cell, (b) an AOI321 cell. (¢) Which do you think will be larger?

2.26 (**Making stipple patterns) Construct a set of black-and-white, transpar-
ent, 8-by-8 stipple patterns for a CMOS process in which we draw both well layers,
the active layer, poly, and both diffusion implant layers separately. Consider only the
layers up to m1 (but include m1 and the contact layer). One useful tool is the Apple
Macintosh Control Panel, 'General Controls,'