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·PREFACE 

In 1988 I began to teach full-custom VLSI design. In 1990 I started teaching ASIC 
design instead, because my students found it easier to get jobs in this field. I wrote a 
proposal to The National Science Foundation (NSF) to use electronic distribution of 
teaching material. Dick Lyon helped me with preparing the first few CD-ROMs at 
Apple, but Chuck Seitz, Lynn Conway, and others explained to me that I was facing 
a problem that Carver Mead and Lynn had experienced in trying to get the concept 
of multichip wafers adopted. It was not until the publication of the Mead-Conway 
text that people accepted this new idea. It was suggested that I must generate interest 
using a conventional format before people would use my material in a new one 
(CD-ROM or the Internet). In 1992 I stopped writing papers and began writing this 
book-a result of my experiments in computer-based education. I have nearly fin­
ished this book twice. The first time was a copy of my notes. The second time was 
just before the second edition of Weste and Eshragian was published-a hard act to 
follow. In order to finish in 1997 I had to stop updating and including new ideas and 
material and now this book consists of three parts: Chapters 1-8 are an introduction 
to ASICs, 9-14 cover ASIC logical design, and 15-17 cover the physical design of 
ASICs. 

The book is intended for a wide audience. It may be used in an undergraduate or 
graduate course. It is also intended for those in industry who are involved with 
ASICs. Another function of this book is an "ASIC Encyclopedia," and therefore I 
have kept the background material needed to a minimum. The book makes extensive 
use of industrial tools and examples. The examples in Chapters 2 and 3 use tools and 
libraries from MicroSim (PSpice), Meta Software (HSPICE), Compass Design 
Automation (standard-cell and gate-array libraries), and Tanner Research (L-Edit). 
The programmable ASIC design examples in Chapter 4-8 use tools from Compass, 
Synopsys, Actel, Altera, and Xilinx. The examples in Chapter 9 (covering low-level 
design entry) used tools from Exemplar, MINC, AMD, DC Berkeley, Compass, 
Capilano, Mentor Graphics Corporation, and Cadence Design Systems. The VHDL 
examples in Chapter 10 (VHDL) were checked using QuickVHDL from Mentor, 
V-System Plus from Model Technology, and Scout from Cpmpass. The Verilog 
examples in Chapter 11 were checked using Verilog-XL from Cadence, V-System 
Plus, and VeriWell from Wellspring Solutions. The logic synthesis examples in 

iii 

6



iv PREFACE 

Chapter 12 were checked with the ASIC Synthesizer product family from Compass 
and tools from Mentor, Synopsys, and UC Berkeley. The simulation examples in 
Chapter 13 were checked with QuickVHDL, V-System/Plus, PSpice, Verilog-XL, 
Design Works from Capilano Computing, CompassSim, QSim, MixSim, and 
HSPICE. The test examples in Chapter 14 were checked using test software from 
Compass, Cadence, Mentor, Synopsys and Capilano's DesignWorks. The physical 
design examples in Chapters 15-17 were generated and tested using Preview, Gate 
Ensemble, and Cell Ensemble (Cadence) as well as ChipPlanner, ChipCompiler, 
and PathFinder (Compass). All these tools are installed at the University of Hawaii. 

I wrote the text using FrameMaker. This allows me to project the text and fig­
ures using an LCD screen and an overhead projector. I used a succession of Apple 
Macintosh computers: a PowerBook 145, a 520, and lastly a 3400 with 144MB of 
RAM, which made it possible for me to create updates to the index in just under 
one minute. Equations are "live" in FrameMaker. Thus, 

book thickness = #pages x 0.0015 in./page::::: (1000) (1.5 x 10-3) = 1.5 in. 

can be updated in a lecture and the new result displayed. The circuit layouts are 
color EPS files with enhanced B&W PICT previews created using L-Edit from 
Tanner Research. All of the Verilog and VHDL code examples, compiler and simula­
tion input/output, and the layout CIF that were used in the final version are included 
as conditional (hidden) text in the FrameMaker document, which is approximately 
200MB and just over 6,000 pages (my original source material spans fourteen 
560MB optical disks). Software can operate on the hidden text, allowing, for exam­
ple, a choice of simulators to run the HDL code live in class. I converted draft ver­
sions of the VHDL and Verilog LRMs and related standards to FrameMaker and 
built hypertext links to my text, but copyright problems will have to be solved 
before this type of material may be published. I drew all the figures using 
FreeHand. They are "layered" allowing complex drawings to be built-up slowly or 
animated by turning layers on or off. This is difficult to utilize in book form, but can 
be done live in the classroom. 

A course based on FPGAs can use Chapter 1 and Chapters 4-8. A course using 
commercial semicustom ASIC design tools may use Chapters 1-2 or Chapters 1-3 
and then skip to Chapter 9 if you use schematic entry, Chapter 10 (if you use 
VHDL), or Chapter 11 (if you use Verilog) together with Chapter 12. All classes can 
use Chapters 13 and 14. FPGA-based classes may skim Chapters 15-17, but 
classes in semicustom design should cover these chapters. The chapter dependen­
cies-Y (X) means Chapter Y depends on X-are approximately: 1, 2(1), 3(2), 
4(2), 5(4), 6(5), 7(6), 8(7), 9(2), 10(2), 11(2), 12(10 or 11), 13(2), 14(13), 15(2), 
16(15), 17(16). 

I used the following references to help me with the orthography of complex 
terms, style, and punctuation while writing: Merriam-Webster's Collegiate Dictio­
nary, 10th edition, 1996, Springfield, MA: Merriam-Webster, ISBN 0-87779-709-9, 
PE1628.M36; The Chicago Manual of Style, 14th edition, Chicago: University of 
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Chicago Press, 1993, ISBN 0-226-10389-7, Z253.U69; and Merriam-Webster's 
Standard American Style Manual, 1985, Springfield, MA: Merriam-Webster, ISBN 
0-87779-133-3, PN147.W36. A particularly helpful book on technical writing is 
BUGS in Writing by Lyn Dupre, 1995, Reading, MA: Addison-Wesley, ISBN 0-201-
60019-6, PE1408.D85 (Lyn's book grew from her unpublished work, Style SomeX, 
which I used). 

The bibliography at the end of each chapter provides alternative sources if you 
cannot find what you are looking for. I have included the International Standard 
Book Number1 (ISBN) and Library of Congress (LOC) Call Number for books, and 
the International Standard Serial Number2 (ISSN) for journals (see the LOC infor­
mation system, LOCIS, at http: / /www.loc.gov). I did not include references to 
material that I could not find myself (except where I have noted in the case of new 
or as yet unpublished books). The electronic references given in this text have (a 
last) access date of 4/19/97 and omit enclosing <> if the reference does not include 
spaces. 

I receive a tremendous level of support and cooperation from industry in my 
work. I thank the following for help with this project: Cynthia Benn and Lyn Dupre 
for editing; Helen Goldstein, Peter Gordon, Susan London-Payne, Tracy Russ, and 
Juliet Silveri, all at Addison-Wesley; Matt Bowditch and Kim Arney at Argosy; 
Richard Lyon, Don North, William Rivard, Glen Stone, the managers of the Newton 
group, and many others at Apple Computer who provided financial support; Apple 
for providing support in the form of software and computers; Bill Becker, Fern 
Forcier, Donna Isidro, Mike Kliment, Paul McLellan, Tom Schaefer, Al Stein, Rich 
Talburt, Bill Walker, and others at Compass Design Automation and VLSI 
Technology for providing the opportunity for me to work on this book over many 
years and allowing me to test material inside these companies and on lecture tours 
they sponsored; Chuck Seitz at Caltech; Joseph Cavallaro, Bernie Chern, Jerry 
Dillion, Mike Foster, and Paul Hulina at the NSF; the NSF for financial support with 
a Presidential Young Investigator Award; Jim Rowson and Doug Fairbairn; 
Constantine Anagnostopolous, Pin Tschang and members of the ASIC design 
groups at Kodak for financial support; the disk-drive design group at Digital Equip­
ment Corp. (Massachusetts), Hewlett-Packard, and Sun Microsystems for financial 
support; Ms. MOSIS and all of the staff at MOSIS who each have helped me at one 
point or another by providing silicon, technical support, and documentation; Bob 
Brodersen, Roger Howe, Randy Katz, and Ed Lee of UC Berkeley for help while I 
was visiting UCB; James Plummer of Stanford, for providing me with access to the 
Terman Engineering Library as a visiting scholar, as well as Abbas EI Gamal and 
Paul Losleben, also at Stanford, for help on several occasions; Don Bouldin at 
University of Tennessee; Krzysztof Kozminski at MCNC for providing Uncle lay-

I A code that uniquely identifies a book, the tenth and last digit is a check digit. 

2 This number uniquely identifies a serial (a magazine, a journal, and so on). It is a seven­
digit number with an eighth check digit (which may be the roman numeral X, the value ten). 

PREFACE v 
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out software; Gershom Kedem at Duke University for the public domain tools his 
group has written; Sue Drouin, Jose De Castro, and others at Mentor Graphics 
Corporation in Oregon for providing documentation and tools; Vahan Kasardjhan, 
Gail Grego, Michele Warthen, Steve Gardner, and others at the University Program 
at Cadence Design Systems in San Jose who helped with tools, documentation, and 
support; Karen Dorrington and the Cadence group in Massachusetts; Andy Haines, 
Tom Koppin, Sherri Mieth, Velma Miller, Robert Nalesnik, Mike Sarpa, Telle Whit­
ney, and others at Actel for software, hardware, parts, and documentation; Peter 
Alfke, Leslie Baxter, Brad Fawcett, Chris Kingsley, Karlton Lau, Rick Mitchell, 
Scott Nance, and Richard Ravel at Xilinx for support, parts, software, and documen­
tation; Greg Hedmann at NorCompfor data on FPGAs; Anna Acevedo, Suzanne 
Bailey, Antje MacNaughton, Richard Terrell, and Altera for providing software, 
hardware programmers, parts, and documentation; the documentation group and 
executive management at LSI Logic for tools, libraries, and documentation; Toshiba, 
NEC, AT&T/NCR, Lucent, and Hitachi (for documentation); NEC for their visiting 
scholar program at UH; Fred Furtek, Oscar Naval, and Claire Pinkham at 
Concurrent Logic, Randy Fish at Crosspoint, and Gary Banta at Plus Logic-all for 
documentation; Paul Titchener and others at Comdisco (now part of Cadence Design 
Systems) for providing design tools; John Tanner and his staff at Tanner Research 
for providing their tools and documentation; Mahendra Jain and Nanci Magoun, 
who let me debug early prototypes at the IDEA conference organized by ASIC 
Technology and News; Exemplar for providing documentation on its tools; MINC 
for providing a copy of its FPGA software and documentation; Claudia Traver and 
Synopsys for tools and documentation; Mentor Graphics Corporation for providing 
its complete range of software; Alain Hanover and others at ViewLogic for provid­
ing tools; Mary Shepherd and Jerry Walker at IEEE for help with permissions; Meta 
Software for providing HSPICE; Chris Dewhurst and colleagues at Capilano 
Computing for its design tools; Greg Seltzer (Model Technology) and Charley 
Rowley for providing V-System Plus with online documentation prototypes; 
Farallon and Telebit for the software and hardware I used for early experiments 
with telelectures. Many research students at the University of Hawaii helped me 
throughout this project including: Chin Huang, Clem Portmann, Christeen Gray, 
Karlton Lau, Jon Otaguro, Moe Lwin, Troy Stockstad, Ron Jorgenson, Derwin 
Mattos, William Rivard, Wendy Ching, Anil Aggarwal, Sudhakar Jilla, Linda Xu, 
Angshuman Saha, Harish Pareek, Claude van Ham, Wen Huang, Kumar Vadhri, 
Yan Zhong, Yatin Acharya, and Barana Ranaweera. Each of the classes that used 
early versions of this text at the University of Hawaii at Manoa have also contrib­
uted by finding errors. The remaining errors are mine. 

Links to figures, software, code, problem solutions, and other resources for this 
book may be found at: 
http://www.awl.com/cp/authors/smithm/asics/asics.html. 

Michael John Sebastian Smith 
Palo Alto and Honolulu, 1997 
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1.1 Types of ASICs 

1.2 Design Flow 
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An ASIC (pronounced "a-sick"; bold typeface defines a new term) is an application­
specific integrated circuit-at least that is what the acronym stands for. Before we 
answer the question of what that means we first look at the evolution of the silicon 
chip or integrated circuit (IC). 

Figure 1.1 (a) shows an Ie package (this is a pin-grid array, or PGA, shown 
upside down; the pins will go through holes in a printed-circuit board). People often 
call the package a chip, but, as you can see in Figure 1.1 (b), the silicon chip itself 
(more properly called a die) is mounted in the cavity under the sealed lid. A PGA 
package is usually made from a ceramic material, but plastic packages are also 
common. 

FIGURE 1.1 An integrated 
circuit (Ie). (a) A pin-grid array 
(PGA) package. (b) The silicon 
die or chip is under the package 
lid. 

(a) 

LJ 

silicon 
die 

0.1 inch 
(b) 

1 
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2 CHAPTER 1 INTRODUCTION TO ASICS 

The physical size of a silicon die varies from a few millimeters on a side to over 
1 inch on a side, but instead we often measure the size of an IC by the number of 
logic gates or the number of transistors that the IC contains. As a unit of measure a 
gate equivalent corresponds to a two-input NAND gate (a circuit that performs the 
logic function, F = A . B). Often we just use the.term gates instead of gate equiva­
lents when we are measuring chip size-not to be confused with the gate terminal of 
a transistor. For example, a 100 k-gate IC contains the equivalent of 100,000 two­
input NAND gates. 

The semiconductor industry has evolved from the first ICs of the early 1970s 
and matured rapidly since then. Early small-scale integration (SSI) ICs contained a 
few (1 to 10) logic gates-NAND gq.tes, NOR gates, and so on-amounting to a few 
tens of transistors. The era of medium-scale integration (MSI) increased the range 
of integrated logic available to counters and similar, larger scale, logic functions. 
The era of large-scale integration (LSI) packed even larger logic functions, such as 
the first microprocessors, into a single chip. The era of very large-scale integration 
(VLSI) now offers 64-bit microprocessors, complete with cache memory and 
floating-point arithmetic units-well over a million transistors-on a single piece of 
silicon. As CMOS process technology improves, transistors continue to get smaller 
and ICs hold more and more transistors. Some people (especially in Japan) use the 
term ultralarge scale integration (ULSI), but most people stop at the term VLSI; 
otherwise we have to start inventing new words. 

The earliest ICs used bipolar technology and the majority of logic ICs used 
either transistor-transistor logic (TTL) or emitter-coupled logic (ECL). Although 
invented before the bipolar transistor, the metal-oxide-silicon (MOS) transistor 
was initially difficult to manufacture because of problems with the oxide interface. 
As these problems were gradually solved, metal-gate n-channel MOS (nMOS or 
NMOS) technology developed in the 1970s. At that time MOS technology required. 
fewer masking steps, was denser, and consumed less power than equivalent bipolar 
ICs. This meant that, for a given performance, an MOS IC was cheaper than a bipo­
lar IC and led to investment and growth of the MOS IC market. 

By the early 1980s the aluminum gates of the transistors were replaced by poly­
silicon gates, but the name MOS remained. The introduction of polysilicon as a gate 
material was a major improvement in CMOS technology, making it easier to make 
two types of transistors, n-channel MOS and p-channel MOS transistors, on the 
same IC-a complementary MOS (CMOS, never cMOS) technology. The princi­
pal advantage of CMOS over NMOS is lower power consumption. Another advan­
tage of a polysilicon gate was a simplification of the fabrication process, allowing 
devices to be scaled down in size. 

There are four CMOS transistors in a two-input NAND gate (and a two-input 
NOR gate too), so to convert between gates and transistors, you multiply the number 
of gates by 4 to obtain the number of transistors. We can also measure an IC process 
by the smallest resolvable feature size (roughly half the length of the smallest tran­
sistor) imprinted on the Ie. Transistor dimensions are measured in microns (a 
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INTRODUCTION TO ASICS 3 

micron, Illm, is a millionth of a meter). Thus we talk about a 0.21lm rc or sayan 
rc is built in (or with) a 0.21lm process, meaning that the smallest transistors are 
approximtely 0.21lm in length. We give a special label, A or lambda, to this smallest 
resolvable feature size. Since lambda is roughly equal to half of the smallest transis­
tor length, A::::; O.lllm in a O.2llm process. Many of the drawings in this book use a 
scale marked with lambda for the same reason we place a scale on a map. 

A modern submicron CMOS process is now just as complicated as a submicron 
bipolar or BiCMOS (a combination of bipolar and CMOS) process. However, 
CMOS res have established a dominant position, are manufactured in much greater 
volume than any other technology, and therefore, because of the economy of scale, 
the cost of CMOS rcs is less than a bipolar or BiCMOS rc for the same function. 
Bipolar and BiCMOS rcs are still used for special needs. For example, bipolar tech­
nology is generally capable of handling higher voltages than CMOS. This makes 
bipolar and BiCMOS rcs useful in power electronics, cars, telephone circuits, and 
soon. 

Some digital logic rcs and their analog counterparts (analog/digital converters, 
for example) are standard parts, or standard rcs. You can select standard rcs from 
catalogs and data books and buy them from distributors. Systems manufacturers and 
designers can use the same standard part in a variety of different microelectronic 
systems (systems that use microelectronics or rCs). 

With the advent of VLsr in the 1980s engineers began to realize the advantages 
of designing an rc that was customized or tailored to a particular system or applica­
tion rather than using standard ICs alone. Microelectronic system design then 
becomes a matter of defining the functions that you can implement using standard 
rcs and then implementing the remaining logic functions (sometimes called glue 
logic) with one or more custom Ies. As VLSr became possible you could build a 
system from a smaller number of components by combining many standard rcs into 
a few custom rcs. Building a microelectronic system with fewer rcs allows you to 
reduce cost and improve reliability. 

Of course, there are many situations in which it is not appropriate to use a 
custom IC for each and every part of an microelectronic system. If you need a large 
amount of memory, for example, it is still best to use standard memory rcs, either 
dynamic random-access memory (DRAM or dRAM), or static RAM (SRAM or 
sRAM), in conjunction with custom rcs. 

One of the first conferences to be devoted to this rapidly emerging segment of 
the rc industry was the IEEE Custom Integrated Circuits Conference (CrCC), and 
the proceedings of this annual conference form a useful reference to the develop­
ment of custom ICs. As different types of custom ICs began to evolve for different 
types of applications, these new ICs gave rise to a new term: application-specific IC, 
or ASIC. Now we have the IEEE International ASIC Conference, which tracks 
advances in ASrCs separately from other types of custom rcs. Although the exact 
definition of an ASIC is difficult, we shall look at some examples to help clarify 
what people in the IC industry understand by the term. 
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Examples of ICs that are not ASICs include standard parts such as: memory 
chips sold as a commodity item-ROMs, DRAM, and SRAM; microprocessors; 
TTL or TTL-equivalent ICs at SSI, MSI, and LSI levels. 

Examples of ICs that are ASICs include: a chip for a toy bear that talks; a chip 
for a satellite; a chip designed to handle the- interface between memory and a micro­
processor for a workstation CPU; and a chip containing a microprocessor as a cell 
together with other logic. 

As a general rule, if you can find it in a data book, then it is probably not an 
ASIC, but there are some exceptions. For example, two ICs that might or might not 
be considered ASICs are a controller chip for a PC and a chip for a modem. Both of 
these examples are specific to in application (shades of an ASIC) but are sold to 
many different system vendors (shades of a standard part). ASICs such as these are 
sometimes called application-specific standard products (ASSPs). 

Trying to decide which members of the huge IC family are application-specific 
is tricky-after all, every IC has an application. For example, people do not usually 
consider an application-specific microprocessor to be an ASIC. I shall describe how 
to design an ASIC that may include large cells such as microprocessors, but I shall 
not describe the design of the microprocessors themselves. Defining an ASIC by 
looking at the application can be confusing, so we shall look at a different way to 
categorize the IC family. The easiest way to recognize people is by their faces and 
physical characteristics: tall, short, thin. The easiest characteristics of ASICs to 
understand are physical ones too, and we shall look at these next. It is important to 
understand these differences because they affect such factors as the price of an ASIC 
and the way you design an ASIC. 

1 .1 Types of ASICs 

ICs are made on a thin (a few hundred microns thick), circular silicon wafer, with 
each wafer holding hundreds of die (sometimes people use dies or dice for the plural 
of die). The transistors and wiring are made from many layers (usually between 10 
and 15 distinct layers) built on top of one another. Each successive mask layer has a 
pattern that is defined using a mask similar to a glass photographic slide. The first 
half-dozen or so layers define the transistors. The last half-dozen or so layers define 
the metal wires between the transistors (the interconnect). 

A full-custom Ie includes some (possibly all) logic cells that are customized 
and all mask layers that are customized. A microprocessor is an example of a full­
custom IC-designers spend many hours squeezing the most out of every last square 
micron of microprocessor chip space by hand. Customizing all of the IC features in 
this way allows designers to include analog circuits, optimized memory cells, or 
mechanical structures on an IC, for example. Full-custom ICs are the most expen-
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sive to manufacture and to design. The manufacturing lead time (the time it takes 
just to make an IC-not including design time) is typically eight weeks for a full­
custom IC. These specialized full-custom ICs are often intended for a specific appli­
cation, so we might call some of them full-custom ASICs. 

We shall discuss full-custom ASICs briefly next, but the members of the IC 
family that we are more interested in are semicustom ASICs, for which all of the 
logic cells are predesigned and some (possibly all) of the mask layers are custom­
ized. Using predesigned cells from a cell library makes our lives as designers much, 
much easier. There are two types of semicustom ASICs that we shall cover: 
standard-ceIl-based ASICs and gate-array-based ASICs. Following this we shall 
describe the programmable ASICs, for which all of the logic cells are predesigned 
and none of the mask layers are customized. There are two types of programmable 
ASICs: the programmable logic device and, the newest member of the ASIC family, 
the field-programmable gate array. 

1.1.1 Full-Custom ASICs 
In a full-custom ASIC an engineer designs some or all of the logic cells, circuits, or 
layout specifically for one ASIC. This means the designer abandons the approach of 
using pretested and precharacterized cells for all or part of that design. It makes 
sense to take this approach only if there are no suitable existing cell libraries avail­
able that can be used for the entire design. This might be because existing celllibrar­
ies are not fast enough, or the logic cells are not small enough or consume too much 
power. You may need to use full-custom design if the ASIC technology is new or so 
specialized that there are no existing cell libraries or because the ASIC is so special­
ized that some circuits must be custom designed. Fewer and fewer full-custom ICs 
are being designed because of the problems with these special parts of the ASIC. 
There is one growing member of this family, though, the mixed analog/digital ASIC, 
which we shall discuss next. 

.I3ipolar technology has historically been used for precision analog functions. 
There are some fundamental reasons for this. In all integrated circuits the matching 
of component characteristics between chips is very poor, while the matching of 
characteristics between components on the same chip is excellent. Suppose we have 
transistors Tl, T2, and T3 on an analog/digital ASIC. The three transistors are all the 
same size and are constructed in an identical fashion. Transistors Tl and T2 are 
located adjacent to each other and have the same orientation. Transistor T3 is the 
same size as Tl and T2 but is located on the other side of the chip from Tl and T2 
and has a different orientation. ICs are made in batches called wafer lots. A wafer 
lot is a group of silicon wafers that are all processed together. Usually there are 
between 5 and 30 wafers in a lot. Each wafer can contain tens or hundreds of chips 
depending on the size of the IC and the wafer. 
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6 CHAPTER 1 INTRODUCTION TO ASICS 

If we were to make measurements of the characteristics of transistors Tl, T2, 
and T3 we would find the following: 

• Transistors Tl will have virtually identical characteristics to T2 on the same 
Ie. We say that the transistors match well or the tracking between devices is 
excellent. 

o Transistor T3 will match transistors Tl and T2 on the same IC very well, but 
not as closely as Tl matches T2 on the same Ie. 

• Transistor Tl, T2, and T3 will match fairly well with transistors Tl, T2, and 
T3 on a different IC on the same wafer. The matching will depend on how far 
apart the two ICs are on the wafer. 

• Transistors on ICs from different wafers in the same wafer lot will not match 
very well. 

• Transistors on ICs from different wafer lots will match very poorly. 

For many analog designs the close matching of transistors is crucial to circuit 
operation. For these circuit designs pairs of transistors are used, located adjacent to 
each other. Device physics dictates that a pair of bipolar transistors will always 
match more precisely than CMOS transistors of a comparable size. Bipolar technol­
ogy has historically been more widely used for full-custom analog design because of 
its improved precision. Despite its poorer analog properties, the use of CMOS tech­
nology for analog functions is increasing. There are two reasons for this. The first 
reason is that CMOS is now by far the most widely available IC technology. Many 
more CMOS ASICs and CMOS standard products are now being manufactured than 
bipolar ICs. The second reason is that increased levels of integration require mixing 
analog and digital functions on the same IC: this has forced designers to find ways 
to use CMOS technology to implement analog functions. Circuit designers, using 
clever new techniques, have been very successful in finding new ways to design 
analog CMOS circuits that can approach the accuracy of bipolar analog designs. 

1.1.2 Standard-Cell-Based ASICs 
A cell-based ASIC (cell-based IC, or CBIC-a common term in Japan, pronounced 
"sea-bick") uses predesigned logic cells (AND gates, OR gates, multiplexers, and 
flip-flops, for example) known as standard cells. We could apply the term CBIC to 
any IC that uses cells, but it is generally accepted that a cell-based ASIC or CBIC 
means a standard-ceIl-based ASIC. 

The standard-cell areas (also called flexible blocks) in a CBIC are built of rows 
of standard cells-like a wall built of bricks. The standard-cell areas may be used in 
combination with larger predesigned cells, perhaps microcontrollers or even micro­
processors, known as megacells. Megacells are also called megafunctions, full­
custom blocks, system-level macros (SLMs), fixed blocks, cores, or Functional 
Standard Blocks (FSBs). 

23



1.1 TYPES OF ASICS 7 

The ASIC designer defines only the placement of the standard cells and the 
interconnect in a CBIC. However, the standard cells can be placed anywhere on the 
silicon; this means that all the mask layers of a CBIC are customized and are unique 
to a particular customer. The advantage of CBICs is that designers save time, 
money, and reduce risk by using a predesigned, pretested, and precharacterized 
standard-cell library. In addition each standard cell can be optimized individually. 
During the design of the cell library each and every transistor in every standard cell 
can be chosen to maximize speed or minimize area, for example. The disadvantages 
are the time or expense of designing or buying the standard-cell library and the time 
needed to fabricate all layers of the ASIC for each new design. 

Figure 1.2 shows a CBIC (looking down on the die shown in Figure 1.1 b, for 
example). The important features of this type of ASIC are as follows: 

• All mask layers are customized-transistors and interconnect. 

• Custom blocks can be embedded. 

• Manufacturing lead time is about eight weeks. 

Cl 0 00000000000000000 D 
o 0 

standard-cell 
area 

o 0 

FIGURE 1.2 A cell-based ASIC (CBIC) die with a 
single standard-cell area (a flexible block) together 
with four fixed blocks. The flexible block contains 
rows of standard cells. This is what you might see 
through a low-powered microscope looking down 
on the die of Figure 1.1 (b). The small squares 
around the edge of the die are bonding pads that 
are connected to the pins of the ASIC package. 
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Each standard cell in the library is constructed using full-custom design meth­
ods, but you can use these predesigned and precharacterized circuits without having 
to do any full-custom design yourself. This design style gives you the same perfor­
mance and flexibility advantages of a full-custom ASIC but reduces design time and 
reduces risk. 

Standard cells are designed to fit together like bricks in a wall. Figure 1.3 shows 
an example of a simple standard cell (it is simple in the sense it is not maximized for 
density-but ideal for showing you its internal construction). Power and ground 
buses (VDD and GND or VSS) run horizontally on metal lines inside the cells. 

Standard-cell design allows the automation of the process of assembling an 
ASIC. Groups of standard cells fit horizontally together to form rows. The rows 
stack vertically to form flexible rectangular blocks (which you can reshape during 
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FIGURE 1.3 Looking down on the layout of a standard cell. This cell would be approxi­
mately 25 microns wide on an ASIC with A, (lambda) = 0.25 microns (a micron is 10-6 m). Stan­
dard cells are stacked like bricks in a wall; the abutment box (A B) defines the "edges" of the 
brick. The difference between the bounding box (BB) and the AB is the area of overlap 
between the bricks. Power supplies (labeled VDD and GND) run horizontally inside a stan­
dard cell on a metal layer that lies above the transistor layers. Each different shaded and 
labeled pattern represents a different layer. This standard cell has center connectors (the 
three squares, labeled A 1, B 1, and Z) that allow the cell to connect to others. The layout was 
drawn using ROSE, a symbolic layout editor developed by Rockwell and Compass, and then 
imported into Tanner Research's L-Edit. 

design). You may then connect a flexible block built from several rows of standard 
cells to other standard-cell blocks or other full-custom logic blocks. For example, 
you might want to include a custom interface to a standard, predesigned microcon­
troller together with some memory. The microcontroller block may be a fixed-size 
megacell, you might generate the memory using a memory compiler, and the custom 
logic and memory controller will be built from flexible standard-cell blocks, shaped 
to fit in the empty spaces on the chip. 
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Both cell-based and gate-array ASICs use predefined cells, but there is a 
difference-we can change the transistor sizes in a standard cell to optimize speed 
and performance, but the device sizes in a gate array are fixed. This results in a 
trade-off in performance and area in a gate array at the silicon level. The trade-off 
between area and performance is made at the library level for a standard-cell ASIC. 

Modern CMOS ASICs use two, three, or more levels (or layers) of metal for 
interconnect. This allows wires to cross over different layers in the same way that 
we use copper traces on different layers on a printed-circuit board. In a two-level 
metal CMOS technology, connections to the standard-cell inputs and outputs are 
usually made using the second level of metal (metaI2, the upper level of metal) at 
the tops and bottoms of the cells. In a three-level metal technology, connections may 
be internal to the logic cell (as they are in Figure 1.3). This allows for more sophisti­
cated routing programs to take advantage of the extra metal layer to route intercon­
nect over the top of the logic cells. We shall cover the details of routing ASICs in 
Chapter 17. 

A connection that needs to cross over a row of standard cells uses a 
feedthrough. The term feed through can refer either to the piece of metal that is used 
to pass a signal through a cell or to a space in a cell waiting to be used as a 
feedthrough-very confusing. Figure 1.4 shows two feedthroughs: one in cell A.14 
and one in cell A.23. 

In both two-level and three-level metal technology, the power buses (VDD and 
GND) inside the standard cells normally use the lowest (closest to the transistors) 
layer of metal (metall). The width of each row of standard cells is adjusted so that 
they may be aligned using spacer cells. The power buses, or rails, are then con­
nected to additional vertical power rails using row-end cells at the aligned ends of 
each standard-cell block. If the rows of standard cells are long, then vertical power 
rails can also be run in meta12 through the cell rows using special power cells that 
just connect to VDD and GND. Usually the designer manually controls the number 
and width of the vertical power rails connected to the standard-cell blocks during 
physical design. A diagram of the power distribution scheme for a CBIC is shown in 
Figure 1.4. 

All the mask layers of a CBIC are customized. This allows megacells (SRAM, a 
SCSI controller, or an MPEG decoder, for example) to be placed on the same IC 
with standard cells. Megacells are usually supplied by an ASIC or library company 
complete with behavioral models and some way to test them (a test strategy). ASIC 
library companies also supply compilers to generate flexible DRAM, SRAM, and 
ROM blocks. Since all mask layers on a standard-cell design are customized, mem­
ory design is more efficient and denser than for gate arrays. 

For logic that operates on multiple signals across a data bus-a data path 
(DP)-the use of standard cells may not be the most efficient ASIC design style. 
Some ASIC library companies provide a datapath compiler that automatically gen­
erates data path logic. A data path library typically contains cells such as adders, 
subtracters, multipliers, and simple arithmetic and logical units (ALUs). The con-
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FIGURE 1.4 Routing the CBIC (cell-based IC) shown in Figure 1.2. The use of regularly 
shaped standard cells, such as the one in Figure 1.3, from a library allows ASICs like this to 
be designed automatically. This ASIC uses two separate layers of metal interconnect (metal1 
and metal2) running at right angles to each other (like traces on a printed-circuit board). 
Interconnections between logic cells uses spaces (called channels) between the rows of 
cells. ASICs may have three (or more) layers of metal allowing the cell rows to touch with the 
interconnect running over the top of the cells. 

nectors of datapath library cells are pitch-matched to each other so that they fit 
together. Connecting datapath cells to form a datapath usually, but not always, 
results in faster and denser layout than using standard cells or a gate array. 

Standard-cell and gate-array libraries may contain hundreds of different logic 
cells, including combinational functions (NAND, NOR, AND, OR gates) with multi­
ple inputs, as well as latches and flip-flops with different combinations of reset, pre­
set and clocking options. The ASIC library company provides designers with a data 
book in paper or electronic form with all of the functional descriptions and timing 
information for each library element. 
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1.1.3 Gate-Array-Based ASICs 
In a gate array (sometimes abbreviated to GA) or gate-array-based ASIC the tran­
sistors are predefined on the silicon wafer. The predefined pattern of transistors on a 
gate array is the base array, and the smallest element that is replicated to make the 
base array (like an M. C. Escher drawing, or tiles on a floor) is the base cell (some­
times called a primitive cell). Only the top few layers of metal, which define the 
interconnect between transistors, are defined by the designer using custom masks. 
To distinguish this type of gate array from other types of gate array, it is often called 
a masked gate array (MGA). The designer chooses from a gate-array library of 
predesigned and precharacterized logic cells. The logic cells in a gate-array library 
are often called macros. The reason for this is that the base-cell layout is the same 
for each logic cell, and only the interconnect (inside cells and between cells) is cus­
tomized, so that there is a similarity between gate-array macros and a software 
macro. Inside IBM, gate-array macros are known as books (so that books are part of 
a library), but unfortunately this descriptive term is not very widely used outside 
IBM. 

We can complete the diffusion steps that form the transistors and then stockpile 
wafers (sometimes we call a gate array a prediffused array for this reason). Since 
only the metal interconnections are unique to an MGA, we can use the stockpiled 
wafers for different customers as needed. Using wafers prefabricated up to the met­
allization steps reduces the time needed to make an MGA, the turnaround time, to 
a few days or at most a couple of weeks. The costs for all the initial fabrication steps 
for an MGA are shared for each customer and this reduces the cost of an MGA com­
pared to a full-custom or standard-cell ASIC design. 

There are the following different types of MGA or gate-array-based ASICs: 

• Channeled gate arrays. 

• Channelless gate arrays. 

• Structured gate arrays. 

The hyphenation of these terms when they are used as adjectives explains their 
construction. For example, in the term "channeled gate-array architecture," the gate 
array is channeled, as will be explained. There are two common ways of arranging 
(or arraying) the transistors on a MGA: in a channeled gate array we leave space 
between the rows of transistors for wiring; the routing on a channelless gate array 
uses rows of unused transistors. The channeled gate array was the first to be devel­
oped, but the channelless gate-array architecture is now more widely used. A struc­
tured (or embedded) gate array can be either channeled or channelless but it includes 
(or embeds) a custom block. 
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1.1.4 Channeled Gate Array 
Figure 1.5 shows a channeled gate array. The important features of this type of 
MGAare: 

• Only the interconnect is customized. 

• The interconnect uses predefined spaces between rows of base cells. 

• Manufacturing lead time is between two days and two weeks. 
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FIGURE 1.5 A channeled gate-array die. The 
spaces between rows of the base cells are set aside for 
interconnect. 
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A channeled gate array is similar to a CBIC-both use rows of cells separated 
by channels used for interconnect. One difference is that the space for interconnect 
between rows of cells are fixed in height in a channeled gate array, whereas the 
space between rows of cells may be adjusted in a CBIC. 

1.1.5 Channelless Gate Array 

Figure 1.6 shows a channelless gate array (also known as a channel-free gate 
array, sea-of-gates array, or SOG array). The important features of this type of 
MGA are as follows: 

• Only some (the top few) mask layers are customized-the interconnect. 

• Manufacturing lead time is between two days and two weeks. 

The key difference between a channelless gate array and channeled gate array is 
that there are no predefined areas set aside for routing between cells on a channelless 
gate array. Instead we route over the top of the gate-array devices. We can do this 
because we customize the contact layer that defines the connections between metall, 
the first layer of metal, and the transistors. When we use an area of transistors for 
routing in a channelless array, we do not make any contacts to the devices lying 
underneath; we simply leave the transistors unused. 
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FIGURE 1.6 A channelless gate-array or sea-of­
gates (SOG) array die. The core area of the die is com­
pletely filled with an array of base cells (the base array). 

1.1 TYPES OF ASICS 13 

CJ 0 00000000000000000 D 
o 0 
B base cell B 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o array of 0 
B base cells B 
o (not all 0 
o shown) 0 o 0 
o 0 
QooooooooooooOOOOOOOD 

The logic density-the amount of logic that can be implemented in a given sili­
con area-is higher for channelless gate arrays than for channeled gate arrays. This 
is usually attributed to the difference in structure between the two types of array. In 
fact, the difference occurs because the contact mask is customized in a channelless 
gate array, but is not usually customized in a channeled gate array. This leads to 
denser cells in the channelless architectures. Customizing the contact layer in a 
channelless gate array allows us to increase the density of gate-array cells because 
we can route over the top of unused contact sites. 

1.1.6 Structured Gate Array 
An embedded gate array or structured gate array (also known as masters lice or 
masterimage) combines some of the features of CBICs and MGAs. One of the dis­
advantages of the MGA is the fixed gate-array base cell. This makes the implemen­
tation of memory, for example, difficult and inefficient. In an embedded gate array 
we set aside some of the IC area and dedicate it to a specific function. This embed­
ded area either can contain a different base cell that is more suitable for building 
memory cells, or it can contain a complete circuit block, such as a microcontroller. 

Figure 1.7 shows an embedded gate array. The important features of this type of 
MGA are the following: 

• Only the interconnect is customized. 

e Custom blocks (the same for each design) can be embedded. 

o Manufacturing lead time is between two days and two weeks. 

An embedded gate array gives the improved area efficiency and increased per­
formance of a CBIC but with the lower cost and faster turnaround of an MGA. One 
disadvantage of an embedded gate array is that the embedded function is fixed. For 
example, if an embedded gate array contains an area set aside for a 32 k-bit memory, 
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but we only need a 16 k-bit memory, then we may have to waste half of the embed­
ded memory function. However, this may still be more efficient and cheaper than 
implementing a 32 k-bit memory using macros on a SOG array. 

ASIC vendors may offer several embedded gate array structures containing dif­
ferent memory types and sizes as well as a variety of embedded functions. ASIC 
companies wishing to offer a wide range of embedded functions must ensure that 
enough customers use each different embedded gate array to give the cost advan­
tages over a custom gate array or CBIC (the Sun Microsystems SPARCstation 1 
described in Section 1.3 made use of LSI Logic embedded gate arrays-and the 10K 
and lOOK series of embedded gate arrays were two of LSI Logic's most successful 
products). 

1.1.7 Programmable logic Devices 
Programmable logic devices (PLDs) are standard ICs that are available in standard 
configurations from a catalog of parts and are sold in very high volume to many dif­
ferent customers. However, PLDs may be configured or programmed to create a part 
customized to a specific application, and so they also belong to the family of ASICs. 
PLDs use different technologies to allow programming of the device. Figure 1.8 
shows a PLD and the following important features that all PLDs have in common: 

" No customized mask layers or logic cells 

" Fast design turnaround 

G A single large block of programmable interconnect 

e A matrix of logic macrocells that usually consist of programmable array logic 
followed by a flip-flop or latch 

The simplest type of programmable IC is a read-only memory (ROM). The 
most common types of ROM use a metal fuse that can be blown permanently (a 
programmable ROM or PROM). An electrically programmable ROM, or 
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FIGURE 1.8 A programmable logic device (PLD) die. 
The macrocells typically consist of programmable array 
logic followed by a flip-flop or latch. The macrocells are 
connected using a large programmable interconnect 
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EPROM, uses programmable MOS transistors whose characteristics are altered by 
applying a high voltage. You can erase an EPROM either by using another high volt­
age (an electrically erasable PROM, or EEPROM) or by exposing the device to 
ultraviolet light (UV-erasable PROM, or UVPROM). 

There is another type of ROM that can be placed on any ASIC-a 
mask-programmable ROM (mask-programmed ROM or masked ROM). A masked 
ROM is a regular alTay of transistors permanently programmed using custom mask 
patterns. An embedded masked ROM is thus a large, specialized, logic cell. 

The same programmable technologies used to make ROMs can be applied to 
more flexible logic structures. By using the programmable devices in a large array of 
AND gates and an alTay of OR gates, we create a family of flexible and programma­
ble logic devices called logic arrays. The company Monolithic Memories (bought 
by AMD) was the first to produce Programmable Array Logic (PAL ®, a registered 
trademark of AMD) devices that you can use, for example, as transition decoders for 
state machines. A PAL can also include registers (flip-flops) to store the current state 
information so that you can use a PAL to make a complete state machine. 

Just as we have a mask-programmable ROM, we could place a logic array as a 
cell on a custom ASIC. This type of logic array is called a programmable logic 
array (PLA). There is a difference between a PAL and a PLA: a PLA has a pro­
grammable AND logic array, or AND plane, followed by a programmable OR logic 
array, or OR plane; a PAL has a programmable AND plane and, in contrast to a 
PLA, a fixed OR plane. 

Depending on how the PLD is programmed, we can have an erasable PLD 
(EPLD), or mask-programmed PLD (sometimes called a masked PLD but usually 
just PLD). The first PALs, PLAs, and PLDs were based on bipolar technology and 
used programmable fuses or links. CMOS PLDs usually employ floating-gate tran­
sistors (see Section 4.3, "EPROM and EEPROM Technology"). 
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16 CHAPTER 1 INTRODUCTION TO ASICS 

1.1.8 Field-Programmable Gate Arrays 
A step above the PLD in complexity is the field-programmable gate array 
(FPGA). There is very little difference between an FPGA and a PLD-an FPGA is 
usually just larger and more complex than a PLD. In fact, some companies that man­
ufacture programmable ASICs call their products FPGAs and some call them 
complex PLDs. FPGAs are the newest member of the ASIC family and are rapidly 
growing in importance, replacing TTL in microelectronic systems. Even though an 
FPGA is a type of gate array, we do not consider the term gate-array-based ASICs 
to include FPGAs. This may change as FPGAs and MGAs start to look more alike. 

Figure 1.9 illustrates the essential characteristics of an FPGA: 

• None of the mask layers are customized. 

• A method for programming the basic logic cells and the interconnect. 

• The core is a regular array of programmable basic logic cells that can imple-
ment combinational as well as sequential logic (flip-flops). 

• A matrix of programmable interconnect surrounds the basic logic cells. 

• Programmable I/O cells surround the core. 

• Design turnaround is a few hours. 

We shall examine these features in detail in Chapters 4-8. 

FIGURE 1.9 A field-programmable gate array 
(FPGA) die. All FPGAs contain a regular structure 
of programmable basic logic cells surrounded by 
programmable interconnect. The exact type, size, 
and number of the programmable basic logic cells 
varies tremendously. 
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Figure 1.10 shows the sequence of steps to design an ASIC; we call this a design 
flow. The steps are listed below (numbered to correspond to the labels in 
Figure 1.10) with a brief description of the function of each step. 

1. Design entry. Enter the design into an ASIC design system, either using a 
hardware description language (HDL) or schematic entry. 
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FIGURE 1.10 ASIC design flow. 
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2. Logic synthesis. Use an HDL (VHDL or Veri log) and a logic synthesis tool to 
produce a netlist-a description of the logic cells and their connections. 

3. System partitioning. Divide a large system into ASIC-sized pieces. 

4. Prelayout simulation. Check to see if the design functions correctly. 

5. Floorplanning. Arrange the blocks of the netlist on the chip. 

6. Placement. Decide the locations of cells in a block. 

7. Routing. Make the connections between cells and blocks. 

8. Extraction. Determine the resistance and capacitance of the interconnect. 
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9. P ostlayout simulation. Check to see the design still works with the added loads 
of the interconnect. 

Steps 1-4 are part of logical design, and steps 5-9 are part of physical design. 
There is some overlap. For example, system partitioning might be considered as 
either logical or physical design. To put it another way, when we are performing sys­
tem partitioning we have to consider both logical and physical factors. Chapters 
9-14 of this book is largely about logical design and Chapters 15-17 largely about 
physical design. 

1.3 Case Study 

Sun Microsystems released the SPARCstation 1 in April 1989. It is now an old 
design but a very important example because it was one of the first workstations to 
make extensive use of ASICs to achieve the following: 

• Better performance at lower cost 

• Compact size, reduced power, and quiet operation 

• Reduced number of parts, easier assembly, and improved reliability 

The SPARCstation 1 contains about 50 ICs on the system motherboard­
excluding the DRAM used for the system memory (standard parts). The 
SPARCstation 1 designers partitioned the system into the nine ASICs shown in 
Table 1.1 and wrote specifications for each ASIC-this took about three months.! 
LSI Logic and Fujitsu designed the SPARC integer unit (IU) and floating-point 
unit (FPU) to these specifications. The clock ASIC is a fairly straightforward design 
and, of the six remaining ASICs, the video controller/data buffer, the RAM control­
ler, and the direct memory access (DMA) controller are defined by the 32-bit 
system bus (SBus) and the other ASICs that they connect to. The rest of the system 
is partitioned into three more ASICs: the cache controller, memory-management 
unit (MMU), and the data buffer. These three ASICs, with the IU and FPU, have the 
most critical timing paths and determine the system partitioning. The design of 
ASICs 3-8 in Table 1.1 took five Sun engineers six months after the specifications 
were complete. During the design process, the Sun engineers simulated the entire 
SPARCstation I-including execution of the Sun operating system (SunOS). 

ISome infonnation in Section 1.3 and Section 15.3 is from the SPARCstation 10 
Architecture Guide-May 1992, p. 2 and pp. 27-28 and from two publicity brochures (known as 
"sparkle sheets"). The first is "Concept to System: How Sun Microsystems Created 
SPARCstation 1 Using LSI Logic's ASIC System Technology," A. Bechtolsheim, T. Westberg, M. 
Insley, and J. Ludemann of Sun Microsystems; J-H. Huang and D. Boyle of LSI Logic. This is an 
LSI Logic publication. The second paper is I'SPARCstation 1: Beyond the 3M Horizon," A. 
Bechtolsheim and E. Frank, a Sun Microsystems publication. I did not include these as references 
since they are impossible to obtain now, but I would like to give credit to Andy Bechtolsheim and 
the Sun Microsystems and LSI Logic engineers. 
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TABLE 1.1 The ASICs in the Sun Microsystems 
SPARCstation 1. 

1.3 CASE STUDY 19 

SPARCstation 1 ASIC Gates (k-gates) 

1 SPARC integer unit (IU) 20 

2 SPARC floating-point unit (FPU) 50 

3 Cache controller 9 

4 Memory-management unit (MMU) 5 

5 Data buffer 3 

6 Direct memory access (DMA) controller 9 

7 Video controller/data buffer 4 

8 RAM controller 1 

9 Clock generator 1 

Table 1.2 shows the software tools used to design the SPARCstation 1, many of 
which are now obsolete. The important point to notice, though, is that there is a lot 
more to microelectronic system design than designing the ASICs-less than one­
third of the tools listed in Table 1.2 were ASIC design tools. 

TABLE 1.2 The CAD tools used in the design of the Sun Microsystems 
SPARCstation 1. 

Design level 

ASIC design 

Function 

ASIC physical design 

ASIC logic synthesis 

ASIC simulation 

Board design Schematic capture 

PCB layout 

Timing verification 

Mechanical design Case and enclosure 

Thermal analysis 

Structural analysis 

Management Scheduling 

Documentation 

LSI Logic 

Internal tools and UC Berkeley tools 

LSI Logic 

Valid Logic 

Valid Logic Allegro 

Quad Design Motive and internal tools 

Autocad 

Pacific Numerix 

Cosmos 

Suntrac 

Interleaf and FrameMaker 

1 Names are trademarks of their respective companies. 
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The SPARCstation 1 cost about $9000 in 1989 or, since it has an execution rate 
of approximately 12 million instructions per second (MIPS),$750/MIPS. Using 
ASIC technology reduces the motherboard to about the size of a piece of paper-8.5 
inches by 11 inches-with a power consumption of about 12 W. The 

. SPARCstation 1 "pizza box" is 16 inches across and 3 inches high-smaller than a 
typical IBM-compatible personal computer in 1989. This speed, power, and size per­
formance is (there are still SPARCstation Is in use) made possible by using ASICs. 
We shall return to the SPARCstation 1, to look more closely at the partitioning step, 
in Section 15.3, "System Partitioning." 

1.4 Economics of ASICs 

In this section we shall discuss the economics of using ASICs in a product and com­
pare the most popular types of ASICs: an FPGA, an MGA, and a CBIC. To make an 
economic comparison between these alternatives, we consider the ASIC itself as a 
product and examine the components of product cost: fixed costs and variable costs. 
Making cost comparisons is dangerous-costs change rapidly and the semiconduc­
tor industry is notorious for keeping its costs, prices, and pricing strategy closely 
guarded secrets. The figures in the following sections are approximate and used to 
illustrate the different components of cost. 

1.4.1 Comparison Between ASIC Technologies 
The most obvious economic factor in making a choice between the different ASIC 
types is the part cost. Part costs vary enormously-you can pay anywhere from a 
few dollars to several hundreds of dollars for an ASIC. In general, however, FPGAs 
are more expensive per gate than MGAs, which are, in tum, more expensive than 
CBICs. For example, a 0.5 flm, 20k-gate array might cost 0.01-0.02 cents/gate (for 
more than 10,000 parts) or $2-$4 per part, but an equivalent FPGA might be $20. 
The price per gate for an FPGA to implement the same function is typically 2-5 
times the cost of an MGA or CBIC. 

Given that an FPGA is more expensive than an MGA, which is more expensive 
than a CBIC, when and why does it make sense to choose a more expensive part? Is 
the increased flexibility of an FPGA worth the extra cost per part? Given that an 
MGA or CBIC is specially tailored for each customer, there are extra hidden costs 
associated with this step that we should consider. To make a true comparison 
between the different ASIC technologies, we shall quantify some of these costs. 

1.4.2 Product Cost 
The total cost of any product can be separated into fixed costs and variable costs: 

total product cost = fixed product cost + variable product cost x products sold. (1.1) 
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Fixed costs are independent of sales volume-the number of products sold. 
However, the fixed costs amortized per product sold (fixed costs divided by products 
sold) decrease as sales volume increases. Variable costs include the cost of the parts 
used in the product, assembly costs, and other manufacturing costs. 

Let us look more closely at the parts in a product. If we want to buy ASICs to 
assemble our product, the total part cost is 

total part cost = fixed part cost + variable cost per part x volume of parts. 0.2) 

Our fixed cost when we use an FPGA is low-we just have to buy the software 
and any programming equipment. The fixed part costs for an MGA or CBIC are 
higher and include the costs of the masks, simulation, and test program develop­
ment. We shall discuss these extra costs in more detail in Sections 1.4.3 and 1.4.4. 
Figure 1.11 shows a break-even graph that compares the total part cost for an 
FPGA, MGA, and a CBIC with the following assumptions: 

• FPGA fixed cost is $21,800, part cost is $39. 

• MGA fixed cost is $86,000, part cost is $10. 

• CBIC fixed cost is $146,000, part cost is $8. 

At low volumes, the MGA and the CBIC are more expensive because of their 
higher fixed costs. The total part costs of two alternative types of ASIC are equal at 
the break-even volume. In Figure 1.11 the break-even volume for the FPGA and 
the MGA is about 2000 parts. The break-even volume between the FPGA and the 
CBIC is about 4000 parts. The break-even volume between the MGA and the CBIC 
is higher-at about 20,000 parts. 

We shall describe how to calculate the fixed part costs next. Following that we 
shall discuss how we came up with cost per part of $39, $10, and $8 for the FPGA, 
MGA, and CBIC. 

1.4.3 ASIC Fixed Costs 
Figure 1.12 shows a spreadsheet, "Fixed Costs," that calculates the fixed part costs 
associated with ASIC design. 

The training cost includes the cost of the time to learn any new electronic 
design automation (EDA) system. For example, a new FPGA design system might 
require a few days to learn; a new gate-array or cell-based design system might 
require taking a course. Figure 1.12 assumes that the cost of an engineer (including 
overhead, benefits, infrastructure, and so on) is between $100,000 and $200,000 per 
year or $2000 to $4000 per week (in the United States in 1990s dollars). 

Next we consider the hardware and software cost for ASIC design. 
Figure 1.12 shows some typical figures, but you can spend anywhere from $1000 to 
$1 million (and more) on ASIC design software and the necessary infrastructure. 

We try to measure productivity of an ASIC designer in gates (or transistors) per 
day. This is like trying to predict how long it takes to dig a hole, and the number of 
gates per day an engineer averages varies wildly_ ASIC design productivity must 
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FIGURE 1.11 A break-even analysis for an FPGA, a masked gate array (MGA) and a cus­
tom cell-based ASIC (CBIC). The break-even volume between two technologies is the point 
at which the total cost of parts are equal. These numbers are very approximate. 

increase as ASIC sizes increase and will depend on experience, design tools, and the 
ASIC complexity. If we are using similar design methods, design productivity ought 
to be independent of the type of ASIC, but FPGA design software is usually avail­
able as a complete bundle on a Pc. This means that it is often easier to learn and use 
than semicustom ASIC design tools. 

Every ASIC has to pass a production test to make sure that it works. With 
modern test tools the generation of any test circuits on each ASIC that are needed 
for production testing can be automatic, but it still involves a cost for design for 
test. An FPGA is tested by the manufacturer before it is sold to you and before you 
program it. You are still paying for testing an FPGA, but it is a hidden cost folded 
into the part cost of the FPGA. You do have to pay for any programming costs for 
an FPGA, but we can include these in the hardware and software cost. 

The nonrecurring-engineering (NRE) charge includes the cost of work done 
by the ASIC vendor and the cost of the masks. The production test uses sets of test 
inputs called test vectors, often many thousands of them. Most ASIC vendors 
require simulation to generate test vectors and test programs for production testing, 
and will charge for a test-program development cost. The number of masks 
required by an ASIC during fabrication can range from three or four (for a gate 
array) to 15 or more (for a CBIC). Total mask costs can range from $5000 to 
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FPGA MGA CBIC 

Training: $800 $2,000 $2,000 

Days 2 5 5 

Cost/day $400 $400 $400 

Hardware $10,000 $10,000 $10,000 

Software $1,000 $20,000 $40,000 

Design: $8,000 $20,000 $20,000 

Size (gates) 10,000 10,000 10,000 

Gates/day 500 200 200 

Days 20 50 50 

Cost/day $400 $400 $400 

Design for test: $2,000 $2,000 

Days 5 5 

Cost/day $400 $400 

NRE: $30,000 $70,000 

Masks $10,000 $50,000 

Simulation $10,000 $10,000 

Test program $10,000 $10,000 

Second source: $2,000 $2,000 $2,000 

Days 5 5 5 

Cost/day $400 $400 $400 

Total fixed costs $21,800 $86,000 $146,000 

FIGURE 1.12 A spreadsheet, "Fixed Costs," for a field-programmable gate array (FPGA), 
a masked gate array (MGA), and a cell-based ASIC (CBIC). These costs can vary wildly. 

$50,000 or more. The total NRE charge can range from $10,000 to $300,000 or 
more and will vary with volume and the size of the ASIC. If you commit to high 
volumes (above 100,000 parts), the vendor may waive the NRE charge. The NRE 
charge may also include the costs of software tools, design verification, and proto­
type samples. 

If your design does not work the first time, you have to complete a further 
design pass (turn or spin) that requires additional NRE charges. Normally you sign 
a contract (sign off a design) with an ASIC vendor that guarantees first-pass suc­
cess-this means that if you designed your ASIC according to rules specified by the 
vendor, then the vendor guarantees that the silicon will perform according to the sim­
ulation or you get your money back. This is why the difference between semicustom 
and full-custom design styles is so important-the ASIC vendor will not (and can­
not) guarantee your design will work if you use any full-custom design techniques. 
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sales per 
quarter, s 

Nowadays it is almost routine to have an ASIC work on the first pass. However, 
if your design does fail, it is little consolation to have a second pass for free if your 
company goes bankrupt in the meantime. Figure 1.13 shows a profit model that rep­
resents the profit flow during the product lifetime. Using this model, we can esti­
mate the lost profit due to any delay. 

peak sales 

$20M lost sales 

$10M 

t2 
01 04 01 02 

time 
02 03 

... delay to market, d 

FIGURE 1.13 A profit model. If a product is introduced on time, the total sales are 
$60 million (the area of the higher triangle). With a three-month (one fiscal quarter) delay the 
sales decline to $25 million. The difference is shown as the shaded area between the two tri­
angles and amounts to a lost revenue of $35 million. 

Suppose we have the following situation: 

o The product lifetime is 18 months (6 fiscal quarters). 

• The product sales increase (linearly) at $10 million per quarter independently 
of when the product is introduced (we suppose this is because we can 
increase production and sales only at a fixed rate). 

o The product reaches its peak sales at a point in time that is independent of 
when we introduce a product (because of external market factors that we can­
not control). 

" The product declines in sales (linearly) to the end of its life-a point in time 
that is also independent of when we introduce the product (again due to exter­
nal market forces). 

The simple profit and revenue model of Figure 1.13 shows us that we would 
lose $35 million in sales in this situation due to a 3-month delay. Despite the obvi­
ous problems with such a simple model (how can we introduce the same product 
twice to compare the performance?), it is widely used in marketing. In the electron­
ics industry product lifetimes continue to shrink. In the PC industry it is not unusual 
to have a product lifetime of 18 months or less. This means that it is critical to 
achieve a rapid design time (or high product velocity) with no delays. 
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The last fixed cost shown in Figure 1.12 corresponds to an "insurance policy." 
When a company buys an ASIC part, it needs to be assured that it will always have a 
back-up source, or second source, in case something happens to its first or primary 
source. Established FPGA companies have a second source that produces equivalent 
parts. With a custom ASIC you may have to do some redesign to transfer your ASIC 
to the second source. However, for all ASIC types, switching production to a second 
source will involve some cost. Figure 1.12 assumes a second-source cost of $2000 
for all types of ASIC (the amount may be substantially more than this). 

1.4.4 ASIC Variable Costs 
Figure 1.14 shows a spreadsheet, "Variable Costs," that calculates some example 
part costs. This spreadsheet uses the terms and parameters defined below the figure. 

FPGA MGA CBIC Units 

Wafer size 6 6 6 inches 

Wafer cost 1,400 1,300 1,500 $ 

Design 10,000 10,000 10,000 gates 

Density 10,000 20,000 25,000 gates/sq.cm 

Utilization 60 85 100 % 

Die size 1.67 0.59 0.40 sq.cm 

Die/wafer 88 248 365 

Defect density 1.10 0.90 1.00 defects/sq.cm 

Yield 65 72 80 % 

Die cost 25 7 5 $ 

Profit margin 60 45 50 % 

Price/gate 0.39 0.10 0.08 cents 

Part cost $39 $10 $8 

FIGURE 1.14 A spreadsheet, "Variable Costs," to calculate the part cost (that is the vari­
able cost for a product using ASICs) for different ASIC technologies. 

• The wafer size increases every few years. From 1985 to 1990, 4-inch to 
6-inch diameter wafers were common; equipment using 6-inch to 8-inch 
wafers was introduced between 1990 and 1995; the next step is the 300 cm or 
12-inch wafer. The 12-inch wafer will probably take us to 2005. 

e The wafer cost depends on the equipment costs, process costs, and overhead 
in the fabrication line. A typical wafer cost is between $1000 and $5000, 
with $2000 being average; the cost declines slightly during the life of a pro­
cess and increases only slightly from one process generation to the next. 
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• Moore's Law (after Gordon Moore of Intel) models the observation that the 
number of transistors on a chip roughly doubles every 18 months. Not all 
designs follow this law, but a "large" ASIC design seems to grow by a factor 
of 10 every 5 years (close to Moore's Law). In 1990 a large ASIC design size 
was 10 k-gate, in 1995 a large design was about 100 k-gate, in 2000 it will be 
1 M-gate, in 2005 it will be 10 M-gate. 

• The gate density is the number of gate equivalents per unit area (remember: 
a gate equivalent, or gate, corresponds to a two-input NAND gate). 

• The gate utilization is the percentage of gates that are on a die that we can 
use (on a gate array we waste some gate space for interconnect). 

• The die size is determined by the design size (in gates), the gate density, and 
the utilization of the die. 

• The number of die per wafer depends on the die size and the wafer size (we 
have to pack rectangular or square die, together with some test chips, on to a 
circular wafer so some space is wasted). 

• The defect density is a measure of the quality of the fabrication process. The 
smaller the defect density the less likely there is to be a flaw on anyone die. 
A single defect on a die is almost always fatal for that die. Defect density 
usually increases with the number of steps in a process. A defect density of 
less than 1 cm-2 is typical and required for a submicron CMOS process. 

• The yield of a process is the key to a profitable ASIC company. The yield is 
the fraction of die on a wafer that are good (expressed as a percentage). Yield 
depends on the complexity and maturity of a process. A process may start out 
with a yield of close to zero for complex chips, which then climbs to above 
50 percent within the first few months of production. Within a year the yield 
has to be brought to around 80 percent for the average complexity ASIC for 
the process to be profitable. Yields of 90 percent or more are not uncommon. 

• The die cost is determined by wafer cost, number of die per wafer, and the 
yield. Of these parameters, the most variable and the most critical to control 
is the yield. 

G The profit margin (what you sell a product for, less what it costs you to 
make it, divided by the cost) is determined by the ASIC company's fixed and 
variable costs. ASIC vendors that make and sell custom ASICs have huge 
fixed and variable costs associated with building and running fabrication 
facilities (a fabrication plant is a fab). FPGA companies are typically 
fabless-they do not own a fab-they must pass on the costs of the chip 
manufacture (plus the profit margin of the chip manufacturer) and the devel­
opment cost of the FPGA structure in the FPGA part cost. The profitability of 
any company in the ASIC business varies greatly. 
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• The price per gate (usually measured in cents per gate) is determined by die 
costs and design size. It varies with design size and declines over time. 

• The part cost is determined by all of the preceding factors. As such it will vary 
widely with time, process, yield, economic climate, ASIC size and complexity, 
and many other factors. 

As an estimate you can assume that the price per gate for any process technol­
ogy falls at about 20% per year during its life (the average life of a CMOS process 
is 2-4 years, and can vary widely). Beyond the life of a process, prices can increase 
as demand falls and the fabrication equipment becomes harder to maintain. 
Figure 1.15 shows the price per gate for the different ASICs and process technolo­
gies using the following assumptions: 

• For any new process technology the price per gate decreases by 40 % in the 
first year, 30 % in the second year, and then remains constant. 

• A new process technology is introduced approximately every 2 years, with 
feature size decreasing by a factor of two every 5 years as follows: 2/lm in 
1985, 1.5/lm in 1987, l/lm in 1989, 0.8-0.6/lm in 1991-1993, 0.5-0.35/lm 
in 1996-1997, 0.25-0.18/lm in 1998-2000. 

• CBICs and MGAs are introduced at approximately the same time and price. 

• The price of a new process technology is initially 10% above the process that 
it replaces. 

• FPGAs are introduced one year after CBICs that use the same process tech­
nology. 

• The initial FPGA price (per gate) is 10 percent higher than the initial price for 
CBICs or MGAs using the same process technology. 

From Figure 1.15 you can see that the successive introduction of new process technolo­
gies every 2 years drives the price per gate down at a rate close to 30 percent per year. 
The cost figures that we have used in this section are very approximate and can vary 
widely (this means they may be off by a factor of 2 but probably are COlTect within a 
factor of 10). ASIC companies do use spreadsheet models like these to calculate their 
costs. 

Having decided if, and then which, ASIC technology is appropriate, you need to 
choose the appropriate cell library. Next we shall discuss the issues surrounding ASIC 
cell libraries: the different types, their sources, and their contents. 

1.5 ASIC Cell Libraries 

The cell library is the key part of ASIC design. For a programmable ASIC the FPGA 
company supplies you with a library of logic cells in the form of a design kit, you 
normally do not have a choice, and the cost is usually a few thousand dollars. For 
MGAs and CBICs you have three choices: the ASIC vendor (the company that will 
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FIGURE 1.15 Example price per gate figures. 

build your ASIC) will supply a cell library, or you can buy a cell library from a 
third-party library vendor, or you can build your own cell library. 

The first choice, using an ASIC-vendor library, requires you to use a set of 
design tools approved by the ASIC vendor to enter and simulate your design. You 
have to buy the tools, and the cost of the cell library is folded into the NRE. Some 
ASIC vendors (especially for MGAs) supply tools that they have developed in­
house. For some reason the more common model in Japan is to use tools supplied by 
the ASIC vendor, but in the United States, Europe, and elsewhere designers want to 
choose their own tools. Perhaps this has to do with the relationship between cus­
tomer and supplier being a lot closer in Japan than it is elsewhere. 

An ASIC vendor library is normally a phantom library-the cells are empty 
boxes, or phantoms, but contain enough information for layout (for example, you 
would only see the bounding box or abutment box in a phantom version of the cell 
in Figure 1.3). After you complete layout you hand off a netlist to the ASIC vendor, 
who fills in the empty boxes (phantom instantiation) before manufacturing your 
chip. 

The second and third choices require you to make a buy-or-build decision. If 
you complete an ASIC design using a cell library that you bought, you also own the 
masks (the tooling) that are used to manufacture your ASIC. This is called 
customer-owned tooling (COT, pronounced "see-oh-tee"). A library vendor nor­
mally develops a cell library using information about a process supplied by an ASIC 

45



1.5 ASIC CELL LIBRARIES 29 

foundry. An ASIC foundry (in contrast to an ASIC vendor) only provides manufac­
turing, with no design help. If the cell library meets the foundry specifications, we 
call this a qualified cell library. These cell libraries are normally expensive (possi­
bly several hundred thousand dollars), but if a library is qualified at several found­
ries this allows you to shop around for the most attractive terms. This means that 
buying an expensive library can be cheaper in the long run than the other solutions 
for high-volume production. 

The third choice is to develop a cell library in-house. Many large computer and 
electronics companies make this choice. Most of the cell libraries designed today are 
still developed in-house despite the fact that the process of library development is 
complex and very expensive. 

However created, each cell in an ASIC cell library must contain the following: 

• A physical layout 

• A behavioral model 

• A Verilog/VHDL model 

• A detailed timing model 

• A test strategy 

• A circuit schematic 

• A cell icon 

• A wire-load model 

• l"~, routing model 

For MGA and CBIC cell libraries we need to complete cell design and cell 
layout and shall discuss this in Chapter 2. The ASIC designer may not actually see 
the layout if it is hidden inside a phantom, but the layout will be needed eventually. 
In a programmable ASIC the cell layout is part of the programmable ASIC design 
(see Chapter 4). 

The ASIC designer needs a high-level, behavioral model for each cell because 
simulation at the detailed timing level takes too long for a complete ASIC design. 
For a NAND gate a behavioral model is simple. A multi port RAM model can be 
very complex. We shall discuss behavioral models when we describe Verilog and 
VHDL in Chapter 10 and Chapter 11. The designer may require Verilog and VHDL 
models in addition to the models for a particular logic simulator. 

ASIC designers also need a detailed timing model for each cell to determine the 
performance of the critical pieces of an ASIC. It is too difficult, too time-consuming, 
and too expensive to build every cell in silicon and measure the cell delays. Instead 
library engineers simulate the delay of each cell, a process known as characteriza­
tion. Characterizing a standard-cell or gate-array library involves circuit extraction 
from the full-custom cell layout for each cell. The extracted schematic includes all the 
parasitic resistance and capacitance elements. Then library engineers perform a simu­
lation of each cell including the parasitic elements to determine the switching delays. 
The simulation models for the transistors are derived from measurements on special 
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chips included on a wafer called process control monitors (PCMs) or drop-ins. 
Library engineers then use the results of the circuit simulation to generate detailed 
timing models for logic simulation. We shall cover timing models in Chapter 13. 

All ASICs need to be production tested (programmable ASICs may be tested by 
the manufacturer before they are customized, but they still need to be tested). Sim­
ple cells in small or medium-size blocks can be tested using automated techniques, 
but large blocks such as RAM or multipliers need a planned strategy. We shall dis­
cuss test in Chapter 14. 

The cell schematic (a netlist description) describes each cell so that the cell 
designer can perform simulation for complex cells. You may not need the detailed 
cell schematic for all cells, but you need enough information to compare what you 
think is on the silicon (the schematic) with what is actually on the silicon (the lay­
out)-this is a layout versus schematic (LVS) check. 

If the ASIC designer uses schematic entry, each cell needs a cell icon together 
with connector and naming information that can be used by design tools from differ­
ent vendors. We shall cover ASIC design using schematic entry in Chapter 9. One of 
the advantages of using logic synthesis (Chapter 12) rather than schematic design 
entry is eliminating the problems with icons, connectors, and cell names. Logic syn­
thesis also makes moving an ASIC between different cell libraries, or retargeting, 
much easier. 

In order to estimate the parasitic capacitance of wires before we actually com­
plete any routing, we need a statistical estimate of the capacitance for a net in a 
given size circuit block. This usually takes the form of a look-up table known as a 
wire-load model. We also need a routing model for each cell. Large cells are too 
complex for the physical design or layout tools to handle directly and we need a 
simpler representation-a phantom-of the physical layout that still contains all the 
necessary information. The phantom may include information that tells the auto­
mated routing tool where it can and cannot place wires over the cell, as well as the 
location and types of the connections to the cell. 

1.6 Summary 

In this chapter we have looked at the difference between full-custom ASICs, semi­
custom ASICs, and programmable ASICs. Table 1.3 summarizes their different fea­
tures. ASICs use a library of predesigned and precharacterized logic cells. In fact, 
we could define an ASIC as a design style that uses a cell library rather than in terms 
of what an ASIC is or what an ASIC does. 

You can think of ICs like pizza. A full-custom pizza is built from scratch. You 
can customize all the layers of a CBIC pizza, but from a predefined selection, and it 
takes a while to cook. An MGA pizza uses precooked crusts with fixed sizes and you 
choose only from a few different standard types on a menu. This makes MGA pizza 
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TABLE 1.3 Types of ASIC. 

ASIC type 

Full-custom 

Semicustom 

Programmable 

Family member 

Analog/digital 
.... _._,.,._,.,._ ..... __ .. _ .... _ ...... __ .. _ .. __ ..... _. __ . __ ....... _ .. _._ ... _ ... _ ..... _. ___ ._ ··_'." __ ... _. __ .. h._._. __ .... . _ .. _ .. _._. ___ .. _ ..... __ .. ____ ._ ... _. __ ... __ . 

Cell-based (CBIC) 

Masked gate array (MGA) 

Field-programmable gate array (FPGA) 

Programmable logic device (PLD) 

Custom 
mask layers 

All 

All 

Some 

None 

None 

a little faster to cook and a little cheaper. An FPGA is rather like a frozen pizza­
you buy it at the supermarket in a limited selection of sizes and types, but you can 
put it in the microwave at home and it will be ready in a few minutes. 

In each chapter we shall indicate the key concepts. In this chapter they are 

• The difference between full-custom and semicustom ASICs 

• The difference between standard-cell, gate-array, and programmable ASICs 

• The ASIC design flow 

• Design economics including part cost, NRE, and breakeven volume 

• The contents and use of an ASIC cell library 

Next, in Chapter 2, we shall take a closer look at the semicustom ASICs that were 
introduced in this chapter. 

1.7 Problems 

1.1 (Break-even volumes, 60 min.) You need a spreadsheet program (such as 
Microsoft Excel) for this problem. 

3. Build a spreadsheet, "Break-even Analysis," to generate Figure 1.11. 

b. Derive equations for the break-even volumes (there are three: FPGA/MGA, 
FPGA/CBIC, and MGA/CBIC) and calculate their values. 

c. Increase the FPGA part cost by $10 and use your spreadsheet to produce the 
new break-even graph. Hint: (For users of Excel-like spreadsheets) use the 
XY scatter plot option. Use the first column for the x-axis data. 

d. Find the new break-even volumes (change the volume until the cost becomes 
the same for two technologies). 

e. Program your spreadsheet to automatically find the break-even volumes. Now 
graph the break-even volume (for a choice between FPGA and CBIC) for 

Custom 
logic cells 

Some 

None 

None 

None 

None 
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values of FPGA part costs ranging from $10-$50 and CBIC costs ranging 
from $2-$10 (do not change the fixed costs from Figure 1.12). 

f. Calculate the sensitivity of the break-even volumes to changes in the part 
costs and fixed costs. There are three break-even volumes and each of these 
is sensitive to two part costs and two fixed costs. Express your answers in 
two ways: in equation form and as numbers (for the values in Section 1.4.2 
and Figure 1.11). 

g. The costs in Figure 1.11 are not unrealistic. What can you say from your 
answers if you are a defense contractor, primarily selling products in vol­
umes of less than 1000 parts? What if you are a PC board vendor selling 
between 10,000 and 100,000 parts? 

1.2 (Design productivity, 10 min.) Given the figures for the SPARCstation 1 
ASICs described in Section 1.3 what was the productivity measured in transis­
tors/day? and measured in gates/day? Compare your answers with the figures for 
productivity in Section 1.4.3 and explain any differences. How accurate do you 
think productivity estimates are? 

1.3 (ASIC package size, 30 min.) Assuming, for this problem, a gate density of 
1.0 gate/mil2 (see Section 15.4, "Estimating ASIC Size," for a detailed explanation 
of this figure), the maximum number of gates you can put in a package is deter­
mined by the maximum die size for each of the packages shown in Table 1.4. The 
maximum die size is determined by the package cavity size; these are package­
limited ASICs. Calculate the maximum number of 110 pads that can be placed on a 
die for each package if the pad spacing is: (i) 5 mil, and (ii) 10 mil. Compare your 
answers with the maximum numbers of pins (or leads) on each package and com­
ment. Now calculate the minimum number of gates that you can put in each package 
determined by the minimum die size. 

1.4 (ASIC vendor costs, 30 min.) There is a well-known saying in the ASIC 
business: "We lose money on every part-but we make it up in volume." This has a 
serious side. Suppose Sumo Silicon currently has two customers: Mr. Big, who cur­
rently buys 10,000 parts per week, and Ms. Smart, who currently buys 4800 parts 
per week. A new customer, Ms. Teeny (who is growing fast), wants to buy 1200 
parts per week. Sumo's costs are 

wafer cost = $500 + ($250,000/W), 

where W is the number of wafer starts per week. Assume each wafer carries 200 
chips (parts), all parts are identical, and the yield is 

yield = 70 + 0.2 x (W - 80) % (1.3) 

Currently Sumo has a profit margin of 35 percent. Sumo is currently running at 
100 wafer starts per week for Mr. Big and Ms. Smart. Sumo thinks they can get 
50 cents more out of Mr. Big for his chips, but Ms. Smart won't pay any more. We 
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TABLE 1.4 Die size limits for ASIC packages. 

Number of 
pins or Maximum die size2 Minimum die size3 

Package1 leads (mn2) (mil2) 

PLCC 44 320 x320 94x 94 

PLCC 68 420 x 420 154 x 154 

PLCC 84 395 x 395 171 x 171 

PQFP 100 338 x 338 124 x 124 

PQFP 144 350 x 350 266 x 266 

PQFP 160 429 x 429 248 x 248 

PQFP 208 501 x 501 427x 427 

CPGA 68 480 x 480 200x 200 

CPGA 84 370 x 370 200 x 200 

CPGA 120 480 x 480 175x175 

CPGA 144 470 x 470 250 x 250 

CPGA 223 590 x 590 290 x 290 

CPGA 299 590 x 590 470 x 470 

PPGA 64 230 x 230 120 x 120 

PPGA 84 380 x 380 150 x 150 

PPGA 100 395 x 395 150 x 150 

PPGA 120 395 x 395 190 x 190 

PPGA 144 660 x 655 230 x 230 

PPGA 180 540 x 540 330x 330 

PPGA 208 500 x 500 395 x 395 

1 PLCC = plastic leaded chip carrier, PQFP = plastic quad flat pack, 
CPGA = ceramic pin-grid array, PPGA = plastic pin-grid array. 

2Maximum die size is not standard and varies between manufacturers. 
3Minimum die size is an estimate based on bond length restrictions. 

can calculate how much Sumo can afford to lose per chip if they want Ms. Teeny's 
business really badly. 

a. What is Sumo's current yield? 

b. How many good parts is Sumo currently producing per week? (Hint: Is this 
enough to supply Mr. Big and Ms. Smart?) 
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c. Calculate how many extra wafer starts per week we need to supply Ms. Teeny 
(the yield will change-what is the new yield?). Think when you give this 
answer. 

d. What is Sumo's increase in costs to supply Ms. Teeny? 

e. Multiply your answer to part d by 1.35 (to account for Sumo's profit). This is 
the increase in revenue we need to cover our increased costs to supply 
Ms. Teeny. 

f. Now suppose we charge Mr. Big 50 cents more per part. How much extra rev­
enue does that generate? 

g. How much does Ms. Teeny's extra business reduce the wafer cost? 

h. How much can Sumo Silicon afford to lose on each of Ms. Teeny's parts, 
cover its costs, and still make a 35 percent profit? 

1.5 (Silicon, 20 min.) How much does a 6-inch silicon wafer weigh? a 12-inch 
wafer? How much does a carrier (called a boat) that holds twenty 12-inch wafers 
weigh? What implications does this have for manufacturing? 

a. How many die that are I-inch on a side does a 12-inch wafer hold? If each 
die is worth $100, how much is a 20-wafer boat worth? If a factory is pro­
cessing 10 of these boats in different furnaces when the power is interrupted 
and those wafers have to be scrapped, how much money is lost? 

b. The size of silicon factories (fabs or foundries) is measured in wafer starts 
per week. If a factory is capable of 5000 12-inch wafer starts per week, with 
an average die of 500 mil on a side that sells for $20 and 90 percent yield, 
what is the value in dollars/year of the factory production? What fraction of 
the current gross national (or domestic) product (GNP/GDP) of your country 
is that? If the yield suddenly drops from 90 percent to 40 percent (a yield 
bust) how much revenue is the company losing per day? If the company has 
a cash reserve of $100 million and this revenue loss drops "straight to the 
bottom line," how long does it take for the company to go out of business? 

c. TSMC produced 2 million 6-inch wafers in 1996, how many 500 mil die is 
that? TSMC's $500 million Camas fab in Washington is scheduled to produce 
30,000 8-inch wafers per month by the year 2000 using a 0.35 flm process. If 
a 1 Mb SRAM yields 1500 good die per 8-inch wafer and there are 1700 
gross die per wafer, what is the yield? What is the die size? If the SRAM cell 
size is 7 flm2

, what fraction of the die is used by the cells? What is TSMC's 
cost per bit for SRAM if the wafer cost is $20007 If a 16Mb DRAM on the 
same fab line uses a 16 mm2 die, what is the cost per bit for DRAM assum­
ing the same yield? 

1.6 (Simulation time, 30 min.) " ... The system-level simulation used approxi­
mately 4000 lines of SPARC assembly language ... each simulation clock was simu­
lated in three real time seconds" (Sun Technology article). 

a. With a 20 MHz clock how much slower is simulated time than real time? 
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b. How long would it take to simulate all 4000 lines of test code? (Assume one 
line of assembly code per cycle-a good approximation compared to the oth­
ers we are making.) 

The article continues: "the entire system was simulated, running actual code, 
including several milliseconds of SunOS execution. Four days after power-up, 
SPARCstation I booted SunOS and announced: 'hello world I." 

c. How long would it take to simulate 5 ms of code? 

d. Find out how long it takes to boot a UNIX workstation in real time. How 
many clock cycles is this? 

e. The machine is not executing boot code all this time; you have to wait for 
disk drives to spin-up, file systems checks to complete, and so on. Make 
some estimates as to how much code is required to boot an operating system 
(OS) and how many clock cycles this would take to execute. 

The number of clock cycles you need to simulate to boot a system is somewhere 
between your answers to parts d and e. 

f. From your answers make an estimate of how long it takes to simulate booting 
the OS. Does this seem reasonable? 

g. Could the engineers have simulated a complete boot sequence? 

h. Do you think the engineers expected the system to boot on first silicon, given 
the complexity of the system and how long they would have to wait to simu­
late a complete boot sequence? Explain. 

1.7 (Price per gate,S min.) Given the assumptions of Section 1.4.4 on the price 
per gate of different ASIC technologies, what has to change for the price per gate for 
an FPGA to be less than that for an MGA or CBIC-if all three use the same pro­
cess? 

1.8 (Pentiums, 20 min.) Read the online tour of the Pentium Pro at 
http://www.intel.com (adapted from a paper presented at the 1995 Interna­
tional Solid-State Circuits Conference). This is not an ASIC design; notice the sec­
tion on full-custom circuit design. Notice also the comments on the use of 
, assert' statements in the HDL code that described the circuits. Find out the 
approximate cost of the Intel Pentium (3.3 million transistors) and Pentium Pro 
(5.5 million transistors) microprocessors. 

a. Assuming there a four transistors per gate equivalent, what is the price per 
gate? 

b. Find out the cost of a 1 Mb, 4 Mb, 8 Mb, or 16 Mb DRAM. Assuming one 
transistor per memory bit, what is the price per gate of DRAM? 

c. Considering that both have roughly the same die size, are just as complex to 
design and to manufacture, why is there such a huge difference in price per 
gate between microprocessors and DRAM? 
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1.9 (Inverse embedded arrays, 10 min.) A relatively new cousin of the embed­
ded gate array, the inverse-embedded gate array, is a cell-based ASIC that contains 
an embedded gate-array megacell. List the features as well as the advantages and 
disadvantages of this type of ASIC in the same way as for the other members of the 
ASIC family in Section 1.1. 

1.10 (0.5-gate design, 60 min.) It is a good idea to complete a 0.5-gate ASIC 
design (an inverter connected between an input pad and an output pad) in the first 
week (day) of class. Capture the commands in a report that shows all the steps taken 
to create your chip starting from an empty directory-half gate. 

1.11 (Filenames, 30 min.) Start a list of filename extensions used in ASIC 
design. Table 1.5 shows an example. Expand this list as you use more tools. 

TABLE 1.5 CAD tool filename extensions. 

Extension 

.ini 

.wir 

Description 

Viewlogic startup file, library 
search paths, etc. 

Schematic file 

Bibliography 

From 

Viewlogic/viewdraw 

To 

Internal tools use 
other Viewlogic tools 

The Addison-Wesley VLSI Design Series covers all aspects of VLSI design. Mead 
and Conway [1980] is an introduction to VLSI design. Glasser and Dobberpuhl 
[1985] deal primarily with NMOS technology, but their book is still a valuable circuit 
design reference. Bakoglu's book [1990] concentrates on system interconnect issues. 
Both editions of Weste and Eshraghian [1993] describe full-custom VLSI design. 

Other books on CMOS design include books by Kang and Leblebici [1996], 
Wolf [1994], Price [1994], Hurst [1992], and Shoji [1988]. Alvarez [1993] covers 
BiCMOS, but concentrates more on technology than design. Embabi, Bellaouar, and 
Elmasry [1993] also cover BiCMOS design from a similar perspective. Elmasry's 
book [1994] contains a collection of papers on BiCMOS design. Einspruch and 
Hilbert [1991]; Huber and Rosneck [1991]; and Veendrick [1992] are introductions 
to ASIC design for nontechnical readers. Long and Butner [1990] cover gallium 
arsenide (GaAs) IC design. Most books on CMOS and ASIC design are classified in 
the TK7874 section of the Library of Congress catalog (T is for technology). 

Several journals and magazines publish articles on ASICs and ASIC design. 
The IEEE Transactions on Very Large Scale Integration (VLSJ) Systems (ISSN 
1063-82lO, TK7874.I3273, 1993-) is dedicated to VLSI design. The IEEE Custom 
Integrated Circuits COl~lerel1ce (ISSN 0886-5930, TK7874.C865, 1979-) and the 
IEEE International ASIC Conference (TK7874.6.I34a, 1988-1991; TK7874.6.I35, 
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ISSN 1063-0988, 1991-) both cover the design and use of ASICs. EE Times (ISSN 
0192-1541, http://tech'\veb.cmp.com/eet) is a newsletter that includes a wide­
ranging coverage of system design, ASICs, and ASIC design. Integrated System 
Design (ISSN 1080-2797), formerly ASIC & EDA) is a monthly publication that 
includes ASIC design topics. High Peljormance Systems (ISSN 0887-9664), for­
merly VLSI Design (ISSN 0279-2834), deals with system design including the use 
of ASICs. EDN (ISSN 0012-7515, http://www.ednmag.com) has broader cover­
age of the electronics industry, including articles on VLSI and systems design. 
Computer Design (ISSN 0010-4566) is targeted at systems-level design but includes 
coverage of ASICs (for example, a special issue in August 1996 was devoted to 
ASIC design). 

The Electronic Industries Association (EIA) has produced a standard, 
JESD12-1B, "Terms and definitions for gate arrays and cell-based digital integrated 
circuits," to define terms and definitions. 

University Video Communication (http://www.uvc.com) produces several 
videotapes on computer science and engineering topics including ASIC design. 
Maly's book [1987] is a picture book containing drawings and cross-sections of 
devices, and shows how a transistor is fabricated. 

It is difficult to obtain detailed technical information from ASIC companies and 
vendors apart from the glossy brochures (sparkle sheets). It used to be possible to 
obtain data books on cell libraries (now these are large and difficult to produce, and 
are often only available in electronic form) as well as design guidelines and hand­
books. Fortunately there are now many resources available on the World Wide Web, 
which are, of course, constantly changing. EDAC (Electronic Design Automation 
Companies) has a Web page (http://www.edac.org) with links to most of the 
EDA companies. The Electrical Engineering page on the WorldWide Web (E2W3) 
(http://www.e2w3.com) contains links to many ASIC related areas, including dis­
tributors, ASIC companies, and semiconductor companies. SEMATECH (Semicon­
ductor Manufacturing Technology) is a nonprofit consortium of U.S. semiconductor 
companies and has a Web page (http://www . serna tech. org) that includes links to 
major semiconductor manufacturers. The MIT Semiconductor Subway 
(http://www-mtl. mi t. edu) is more oriented toward devices, processes, and mate­
rials but contains links to other VLSI industrial and academic areas. There is a list of 
EDA companies at http://www.yahoo.com under Business_and_Economy in 
Companies/Computers/Software/Graphics/CAD/IC_Design. 

The MOS Implementation Service (MOSIS), located at the Information Sci­
ences Institute (lSI) at the University of Southern California (USC), is a "silicon 
broker" for universities in the United States and also provides commercial access to 
fabrication facilities (http://www.isi. edu). Professor Don Bouldin maintains 
The Microelectronic Systems Newsletter, formerly the MOSIS Users Group (MUG) 
Newsletter, at http://www-ece . engr. utk. edu/ ece. 

NASA (http://nppp.jpl.nasa.gov/dmg/jpl/loc/asic) has an exten­
sive online ASIC guide, developed by the Office of Safety and Mission Assurance, 
that covers ASIC management, vendor evaluation, design, and part acceptance. 
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A CMOS transistor (or device) has four terminals: gate, source, drain, and a 
fourth terminal that we shall ignore until the next section. A CMOS transistor is a 
switch. The switch must be conducting or on to allow current to flow between the 
source and drain terminals (using open and closed for switches is confusing-for the 
same reason we say a tap is on and not that it is closed). The transistor source and 
drain terminals are equivalent as far as digital signals are concerned-we do not 
worry about labeling an electrical switch with two terminals. 

• VAB is the potential difference, or voltage, between nodes A and B in a 
circuit; VAB is positive if node A is more positive than node B. 

e Italics denote variables; constants are set in roman (upright) type. Uppercase 
letters denote DC, large-signal, or steady-state voltages. 

o For TTL the positive power supply is called VCC (Vee or V cd. The 'C' 
denotes that the supply is connected indirectly to the collectors of the l1]Jll 

bipolar transistors (a bipolar transistor has a collector, base, and emitter­
corresponding roughly to the drain, gate, and source of an MOS transistor). 

o Following the example of TTL we used VDD (V DD or V DD) to denote the 
positive supply in an NMOS chip where the devices are all n-channel transis­
tors and the drains of these devices are connected indirectly to the positive 
supply. The supply nomenclature for NMOS chips has stuck for CMOS. 
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• VDD is the name of the power supply node or net; V DD represents the value 
(uppercase since VDD is a DC quantity). Since VDD is a variable, it is italic 
(words and multiletter abbreviations use roman-thus it is VDD, but Vdrain)' 

• Logic designers often call the CMOS negative supply VSS or Vss even if it is 
actually ground or GND. I shall use VSS for the node and Vss for the value. 

• CMOS uses positive logic-VDD is logic 'I' and VSS is logic '0'. 

We tum a transistor on or off using the gate terminal. There are two kinds of 
CMOS transistors: n-channel transistors and p-channel transistors. An n-channel 
transistor requires a logic 'I' (from now on I'll just say a 'I') on the gate to make the 
switch conducting (to tum the transistor on). A p-channel transistor requires a logic 
'0' (again from now on, I'll just say a '0') on the gate to make the switch conducting 
(to tum the transistor on). The p-channel transistor symbol has a bubble on its gate 
to remind us that the gate has to be a 'I' to tum the transistor off. All this is shown in 
Figure 2.l(a) and (b). 

n-channel transistor 

drain 

gate-1 [ 

p-channel transistor 

source 

gate-9 [ 

'1 

VDD 

= 
'0' '0' '1' '1' 

source drain '1'---1 = 
'0' GND or 

':" ':" VSS 

'0'· 

'01 = 1 GND or 
':" ':" VSS 

=~ 

(a) (b) 

FIGURE 2.1 CMOS transistors as switches. (a) An n-channel transistor. (b) A p-channel 
transistor. (c) A CMOS inverter and its symbol (an equilateral triangle and a circle). 

If we connect an n-channel transistor in series with a p-channel transistor, as 
shown in Figure 2.1(c), we form an inverter. With four transistors we can form a 
two-input NAND gate (Figure 2.2a). We can also make a two-input NOR gate 
(Figure 2.2b). Logic designers normally use the terms NAND gate and logic gate (or 
just gate), but I shall try to use the terms NAND cell and logic cell rather than 
NAND gate or logic gate in this chapter to avoid any possible confusion with the 
gate terminal of a transistor. 
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off F = NAND(A, B) 
() A 

F=1 F=O B 0 1 
~--If-'-

(a) 

VDD 

(b) 

o 
1 

p-channel 
n-channel 

F = NOR(A. B) 
A 

B 0 1 B-"fq 

+---+F=-= 0 Y _-+Fc-=O 0 
.JII---+----''-j 

1 

on off 

FIGURE 2.2 CMOS logic. (a) A two-input NAND logic cell. (b) A two-input NOR logic cell. The 
n-channel and p-channel transistor switches implement the '1's and 'O's of a Karnaugh map. 

2.1 CMOS Transistors 

Figure 2.3 illustrates how electrons and holes abandon their dopant atoms leaving a 
depletion region around a transistor's source and drain. The region between source 
and drain is normally nonconducting. To make an n-channel transistor conducting, 
we must apply a positive voltage V GS (the gate voltage with respect to the source) 
that is greater than the n-channel transistor threshold voltage, Vtn (a typical value is 
0.5 V and, as far as we are presently concerned, is a constant). This establishes a thin 
("",50 A) conducting channel of electrons under the gate. MOS transistors can carry a 
very small current (the subthreshold current-a few microamperes or less) with 
V GS < VtJ11 but we shall ignore this. A transistor can be conducting (V GS> Vtn) with­
out any current flowing. To make current flow in an n-channel transistor we must 
also apply a positive voltage, V DS, to the drain with respect to the source. Figure 2.3 
shows these connections and the connection to the fourth terminal of an MOS tran­
sistor-the bulk (well, tub, or substrate) terminal. For an n-channel transistor we 
must connect the bulk to the most negative potential, GND or VSS, to reverse bias 
the bulk-to-drain and bulk-to-source pn-diodes. The arrow in the four-terminal 
n-channel transistor symbol in Figure 2.3 reflects the polarity of these pn-diodes. 
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drain 

~ VG~ source 

bulk 
+ 

GNDor 
VSS 

FIGURE 2.3 An n-channel MOS transistor. The gate-oxide thickness, T ox' is approxi­
mately 100 angstroms (0.01 Jlm). A typical transistor length, L = 2A. The bulk may be either 
the substrate or a well. The diodes represent pn-junctions that must be reverse-biased. 

The current flowing in the transistor is 

current (amperes) = charge (coulombs) per unit time (second). (2.1) 

We can express the current in terms of the total charge in the channel, Q 
(imagine taking a picture and counting the number of electrons in the channel at that 
instant). If ft(for time of flight-sometimes called the transit time) is the time that 
it takes an electron to cross between source and drain, the drain-to-source current, 

IDSn' is 

I = Q 
DSn t' 

f 
(2.2) 

We need to find Q and ft. The velocity of the electrons v (a vector) is given by 
the equation that forms the basis of Ohm's law: 

v = -II E 
f""n ' 

(2.3) 

where f.1n is the electron mobility (f.1p is the hole mobility) and E is the electric field 
(with units Ym-1). 

Typical carrier mobility values are ~ln = 500-1000 cm2y-1 s-l and 
f.1p = 100-400 cm2y-1s-l. Equation 2.3 is a vector equation, but we shall ignore the 
vertical electric field and concentrate on the horizontal electric field, E x' that moves 
the electrons between source and drain. The horizontal component of the electric 
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field is Ex = -v DS/L, directed from the drain to the source, where L is the channel 
length (see Figure 2.3). The electrons travel a distance L with horizontal velocity 
v x = -~nEx' so that 

= (2.4) 

Next we find the channel charge, Q. The channel and the gate form the plates of 
a capacitor, separated by an insulator-the gate oxide. We know that the charge on a 
linear capacitor, C, is Q = Cv. Our lower plate, the channel, is not a linear conductor. 
Charge only appears on the lower plate when the voltage between the gate and the 
channel, V GC, exceeds the n-channel threshold voltage. For our nonlinear capacitor 
we need to modify the equation for a linear capacitor to the following: 

Q = C (V GC - Vtn) . (2.5) 

The lower plate of our capacitor is resistive and conducting current, so that the 
potential in the channel, V GC, varies. In fact, V GC = V GS at the source and 
V GC = V GS - V DS at the drain. What we really should do is find an expression for the 
channel charge as a function of channel voltage and sum (integrate) the charge all 
the way across the channel, from x = 0 (at the source) to x = L (at the drain). Instead 
we shall assume that the channel voltage, V GC (x), is a linear function of distance 
from the source and take the average value of the charge, which is thus 

(2.6) 

The gate capacitance, C, is given by the formula for a parallel-plate capacitor 
with length L, width W, and plate separation equal to the gate-oxide thickness, Tox. 
Thus the gate capacitance is 

C= 
WLc ox = WLC ox' (2.7) 

where Cox is the gate-oxide dielectric permIttIvIty. For silicon dioxide, Si02, 
cox :== 3.45 X 10-11 Fm-1, so that, for a typical gate-oxide thickness of 100 A 
(lA = 1 angstrom = 0.1 nm), the gate capacitance per unit area, Cox :== 3 fF~m-2. 

Now we can express the channel charge in terms of the transistor parameters, 

(2.8) 
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Finally, the drain-source current is 

(2.9) 

The constant k~ is the process transconductance parameter (or intrinsic 
transconductance) : 

k' = II C . 
n t""n ox (2.10) 

We also define ~n> the transistor gain factor (or just gain factor) as 

(2.11) 

The factor W /L (transistor width divided by length) is the transistor shape factor. 
Equation 2.9 describes the linear region (or triode region) of operation. This 

equation is valid until V DS = V GS - V tn and then predicts that IDS decreases with 
increasing V DS' which does not make physical sense. At V DS = V GS- Vtn = V DS(sat) 
(the saturation voltage) there is no longer enough voltage between the gate and the 
drain end of the channel to support any channel charge. Clearly a small amount of 
charge remains or the current would go to zero, but with very little free charge the 
channel resistance in a small region close to the drain increases rapidly and any fur­
ther increase in V DS is dropped over this region. Thus for V DS > V GS - Vtn (the 
saturation region, or pentode region, of operation) the drain current IDS remains 
approximately constant at the saturation current, I DSn(sat)' where 

_ ~n 2. 
1 DSn (sat) - :2 (V GS - V tn ) , V DS > V GS - V tn · (2.12) 

Figure 2.4 shows the n-channel transistor I DS-V DS characteristics for a generic 
0.5j.lm CMOS process that we shall call GS. We can fit Eq. 2.12 to the long-channel 
transistor characteristics (W = 60 !lm, L = 6 !lm) in Figure 2.4(a). If I DSn(sat) = 2.5 rnA 
(with V DS = 3.0 V, V GS = 3.0 V, V tn = 0.65 V, Tox =100 A), the intrinsic transconduc­
tance is 

k' = 2(L/W)IDSn (sat) = 
II (V

GS
-V tn)2 

2 (6/60) (2.5XlO-
3

) 

(3.0 - 0.65) 2 

-5 -2 = 9.05 x 10 AV , (2.13) 

or approximately 90 !lAV-2. This value of k' , calculated in the saturation region, n 
will be different (typically lower by a factor of 2 or more) from the value of k;l 
measured in the linear region. We assumed the mobility, !In, and the threshold volt­
age, Vtll' are constants-neither of which is true, as we shall see in Section 2.1.2. 
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For the p-channel transistor III the G5 process, / DSp(sat) = -850 /lA 
(VDs =-3.0V, VGs =-3.0V, Vtp =-0.85 V, W=60/lm,L=6/lm). Then 

2 (L/W) (-/ DSp (sat)) = 2 (6/60) (850xlO-
6

) 5 2 
k~ = = 3.68xlO- A V- . (2.14) 

(V GS - Vtp) 2 (- 3.0 - (-0.85)) 2 

The next section explains the signs in Eq. 2.14. 

2.1.1 P-Channel Transistors 
The source and drain of CMOS transistors look identical; we have to know which way 
the current is flowing to distinguish them. The source of an n-channel transistor is 
lower in potential than the drain and vice versa for a p-channel transistor. In an 
n-channel transistor the threshold voltage, Vtn, is normally positive, and the terminal 
voltages V DS and V GS are also usually positive. In a p-channel transistor Vtp is nor­
mally negative and we have a choice: We can write everything in terms of the magni­
tudes of the voltages and currents or we can use negative signs in a consistent fashion. 

Here are the equations for a p-channel transistor using negative signs: 

V DS > V GS - V tp 

(2.15) 

V DS < V GS - V tp 

In these two equations Vtp is negative, and the terminal voltages V DS and V GS 
are also normally negative (and -3 V <-2 V, for example). The current /DSp is then 
negative, corresponding to conventional current flowing from source to drain of a 
p-channel transistor (and hence the negative sign for / DSp(sat) in Eq. 2.14). 

2.1.2 Velocity Saturation 
For a deep submicron transistor, Eq. 2.12 may overestimate the drain-source current 
by a factor of 2 or more. There are three reasons for this error. First, the threshold 
voltage is not constant. Second, the actual length of the channel (the electrical or 
effective length, often written as Leff) is less than the drawn (mask) length. The third 
reason is that Eq. 2.3 is not valid for high electric fields. The electrons cannot move 
any faster than about vmaxn = 105 ms-1 when the electric field is above 106 Vm-1 

(reached when 1 V is dropped across 1 /lm); the electrons become velocity 
saturated. In this case tf = Leff/vmaxll' the drain-source saturation current is inde­
pendent of the transistor length, and Eq. 2.12 becomes 

/ DSn (sat) = Wv maxnCox (V GS - Vtn); V DS > V DS (sat) (velocity saturated). (2.16) 

We can see this behavior for the short-channel transistor characteristics in 
Figure 2.4(a) and (c). 
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FIGURE 2.4 MOS n-channel 
transistor characteristics for a 
generic 0.51lrn process (G5). (a) A 
sho rt-ch an ne I trans i sto r, with 
W = 6 11m and L = 0.61lrn (drawn) 
and a long-channel transistor 
(W=60Ilrn, L=6Ilrn) (b) The 6/0.6 
characteristics represented as a 
surface. (c) A long-channel 
transistor obeys a square-law 
characteristic between los and VGS 
in the saturation region (V Os= 3 V). 
A short-channel transistor shows a 
more linear characteristic due to 
velocity saturation. Normally, all of 
the transistors used on an ASIC 
have short channels. 
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Transistor current is often specified per micron of gate width because of the 
form of Eq.2.16. As an example, suppose IDSn(sat)/W=300!-lA!-lm- 1 for the 
n-channel transistors in our G5 process (with V DS = 3.0 V, V GS = 3.0 V, V tn = 0.65 V, 

o -1 
LetT = 0.5 !-lm and Tax = 1 00 A). Then Ex"" (3 - 0.65) V / 0.5 !-lm"" 5 V!-lm , 
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-1 
37,000 ms , (2.17) 

and fJ = 0.5Ilm/37,000 ms-1 = 13 ps. 
The value for vmaxn is lower than the 105 ms-1 we expected because the carrier 

velocity is also lowered by mobility degradation due the vertical electric field­
which we have ignored. This vertical field forces the carriers to keep "bumping" in 
to the interface between the silicon and the gate oxide, slowing them down. 

2.1.3 SPICE Models 
The simulation program SPICE (which stands for Simulation Program with 
Integrated Circuit Emphasis) is often used to characterize logic cells. Table 2.1 
shows a typical set of model parameters for our G5 process. The SPICE parameter 
KP (given in IlAy-2) corresponds to k;l (and k~). SPICE parameters VTO and TOX 

correspond to Ytn (and Ytp)' and Tax. SPICE parameter Uo (given in cm2y-1s-1) 
corresponds to the ideal bulk mobility values, Iln (and IIp). Many of the other 
parameters model velocity saturation and mobility degradation (and thus the effec­
tive value of k;! and k~). 

TABLE 2.1 SPICE parameters for a generic 0.5 ~lm process, G5 (0.6 ~m drawn gate length). The 
n-channel transistor characteristics are shown in Figure 2.4 . 

. MODEL CMOSN NMOS LEVEL=3 PHI=O.7 TOX=lOE-09 XJ=O.2U TPG=l VTO=O.65 DELTA=O.7 
+ LD=5E-OS KP=2E-04 UO=550 THETA=O.27 RSH=2 Gfu~=O.6 NSUB=1.4E+17 NFS=6E+ll 
+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-IO CGSO=3.0E-IO CGBO=4.0E-IO 
+ CJ=5.6E-04 MJ=O.56 CJSW=5E-ll MJSW=O.52 PB=l 
.MODEL CMOSP PMOS LEVEL=3 PHI=O.7 TOX=lOE-09 XJ=O.2U TPG=-l VTO=-O.92 DELTA=O.29 
+ LD=3.SE-OS KP=4.9E-05 UO=135 THETA=O.lS RSH=2 GAMMA=O.47 NSUB=S.5E+16 NFS=6.SE+ll 
+ VMAX=2.5E+05 ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-IO CGSO=2.4E-IO CGBO=3.SE-IO 
+ CJ=9.3E-04 MJ=O.47 CJSW=2.9E-IO MJSW=O.SOS PB=l 

2.1.4 logic levels 
Figure 2.5 shows how to use transistors as logic switches. The bulk connection for 
the n-channel transistor in Figure 2.5(a-b) is a p-well. The bulk connection for the 
p-channel transistor is an n-well. The remaining connections show what happens 
when we try and pass a logic signal between the drain and source terminals. 

In Figure 2.5(a) we apply a logic 'I' (or V DD-I shall use these interchangeably) 
to the gate and a logic '0' (Vss) to the source (we know it is the source since elec­
trons must flow from this point, since V SS is the lowest voltage on the chip). The 
application of these voltages makes the n-channel transistor conduct current, and 
electrons flow from source to drain. 
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FIGURE 2.5 CMOS logic levels. (a) A strong '0'. (b) A weak '1'. (c) A weak '0'. (d) A strong 
'1'. (Vtn is positive and Vtp is negative.) The depth of the channels is greatly exaggerated. 
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Suppose the drain is initially at logic '1'; then the n-channel transistor will begin 
to discharge any capacitance that is connected to its drain (due to another logic cell, 
for example). This will continue until the drain terminal reaches a logic '0', and at that 
time V GD and V GS are both equal to V DD, a full logic '1'. The transistor is strongly 
conducting now (with a large channel charge, Q, but there is no current flowing since 
V DS = OV). The transistor will strongly object to attempts to change its drain termi­
nal from a logic '0'. We say that the logic level at the drain is a strong '0'. 

In Figure 2.5(b) we apply a logic '1' to the drain (it must now be the drain since 
electrons have to flow toward a logic '1'). The situation is now quite different-the 
transistor is still on but V GS is decreasing as the source voltage approaches its final 
value. In fact, the source terminal never gets to a logic '1 '-the source will stop 
increasing in voltage when V GS reaches VUJ" At this point the transistor is very 
nearly off and the source voltage creeps slowly up to V DD - Vtn- Because the transis­
tor is very nearly off, it would be easy for a logic cell connected to the source to 
change the potential there, since there is so little channel charge. The logic level at 
the source is a weak '1'. Figure 2.5( c-d) show the state of affairs for a p-channel 
transistor is the exact reverse or complement of the n-channel transistor situation. 

In summary, we have the following logic levels: 

G An n-channel transistor provides a strong '0', but a weak' 1 '. 

o A p-channel transistor provides a strong' 1 " but a weak '0'. 

Sometimes we refer to the weak versions of '0' and '1' as degraded logic levels. 
In CMOS technology we can use both types of transistor together to produce strong 
'0' logic levels as well as strong' l' logic levels. 

The CMOS Process 

Figure 2.6 outlines the steps to create an integrated circuit. The starting material is 
silicon, Si, refined from quartzite (with less than 1 impurity in 1010 silicon atoms). 
We draw a single-crystal silicon boule (or ingot) from a crucible containing a melt 
at approximately 1500°C (the melting point of silicon at 1 atm. pressure is 1414°C). 
This method is known as Czochralski growth. Acceptor (p-type) or donor (n-type) 
dopants may be introduced into the melt to alter the type of silicon grown. 

The boule is sawn to form thin circular wafers (6, 8, or 12 inches in diameter, 
and typically 600/-lm thick), and a flat is ground (the primary flat), perpendicular to 
the <110> crystal axis-as a "this edge down" indication. The boule is drawn so that 
the wafer surface is either in the (111) or (100) crystal planes. A smaller secondary 
fiat indicates the wafer crystalline orientation and doping type. A typical submicron 
CMOS processes uses p-type (l00) wafers with a resistivity of approximately 
10 Qcm-this type of wafer has two flats, 90° apart. Wafers are made by chemical 
companies and sold to the IC manufacturers. A blank 8-inch wafer costs about $100. 
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To begin IC fabrication we place a batch of wafers (a wafer lot) on a boat and 
grow a layer (typically a few thousand angstroms) of silicon dioxide, Si02, using a 
furnace. Silicon is used in the semiconductor industry not so much for the properties 
of silicon, but because of the physical, chemical, and electrical properties of its 
native oxide, Si02. An IC fabrication process contains a series of masking steps 
(that in turn contain other steps) to create the layers that define the transistors and 
metal interconnect. 

grow crystal saw 

resist 
oxide 

etch 
As+ 

FIGURE 2.6 IC fabrication. Grow crystalline silicon (1); make a wafer (2-3); grow a silicon 
dioxide (oxide) layer in a furnace (4); apply liquid photoresist (resist) (5); mask exposure (6); 
a cross-section through a wafer showing the developed resist (7); etch the oxide layer (8); ion 
implantation (9-10); strip the resist (11); strip the oxide (12). Steps similar to 4-12 are 
repeated for each layer (typically 12-20 times for a CMOS process). 

Each masking step starts by spinning a thin layer (approximately 1 f.lIn) of liquid 
photoresist (resist) onto each wafer. The wafers are baked at about 100°C to remove 
the solvent and harden the resist before being exposed to ultraviolet (UV) light 
(typically less than 200 nm wavelength) through a mask. The UV light alters the 
structure of the resist, allowing it to be removed by developing. The exposed oxide 
may then be etched (removed). Dry plasma etching etches in the vertical direction 
much faster than it does horizontally (an anisotropic etch). Wet etch techniques are 
usually isotropic. The resist functions as a mask during the etch step and transfers 
the desired pattern to the oxide layer. 

Dopant ions are then introduced into the exposed silicon areas. Figure 2.6 
illustrates the use of ion implantation. An ion implanter is a cross between a TV 
and a mass spectrometer and fires dopant ions into the silicon wafer. Ions can only 
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penetrate materials to a depth (the range, normally a few microns) that depends on 
the closely controlled implant energy (measured in ke V-usually between 10 and 
100 keV; an electron volt, 1 eV, is 1.6 x 10-19 J). By using layers ofresist, oxide, and 
polys iii con we can prevent dopant ions from reaching the silicon surface and thus 
block the silicon from receiving an implant. We control the doping level by count­
ing the number of ions we implant (by integrating the ion-beam current). The 
implant dose is measured in atoms/cm2 (typical doses are from 1013 to 1015 cm-2). 

As an alternative to ion implantation we may instead strip the resist and introduce 
dopants by diffusion from a gaseous source in a furnace. 

Once we have completed the transistor diffusion layers we can deposit layers of 
other materials. Layers of polycrystalline silicon (polysilicon or poly), Si02, and sil­
icon nitride (Si3N4), for example, may be deposited using chemical vapor 
deposition (CVD). Metal layers can be deposited using sputtering. All these layers 
are patterned using masks and similar photolithography steps to those shown in 
Figure 2.6. 

TABLE 2.2 CMOS process layers. 

Derivation from 
Mask/layer name drawn layers 

n-well =nwell1 

p-well =pwell1 

active = pdiff + ndiff 

polysilicon =poly 

n-diffusion implant2 = grow (ndiff) 

p-diffusion implant2 = grow (pdiff) 

contact = contact 

metal1 =m1 

metal2 =m2 

via2 =via2 

metal3 =m3 

glass = glass 

Alternative names for mask/layer 

bulk, substrate, tub, n-tub, moat 

bulk, substrate, tub, p-tub, moat 

thin oxide, thinox, island, gate oxide 

poly, gate 

ndiff, n-select, nplus, n+ 

pdiff, p-select, pplus, p+ 

contact cut, poly contact, diffusion contact 

first-level metal 

second-level metal 

metal2/metal3 via, m2/m3 via 

third-level metal 

passivation, overglass, pad 

MOSIS mask label 

CWN 

CWP 

CAA 

CPG 

CSN 

CSP 

CCP and CCA3 

eMF 
CMS 

CVS 

CMT 

COG 

11f only one well layer is drawn, the other mask may be derived from the drawn layer. For example, 
p-well(mask) = not(nwell(drawn)). A single-well process requires only one well mask. 

2The implant masks may be derived or drawn, 
3Largely for historical reasons the contacts to poly and contacts to active have different layer names. In the past 
this allowed a different sizing or process bias to be applied to each contact type when the mask was made. 
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Table 2.2 shows the mask layers (and their relation to the drawn layers) for a 
submicron, silicon-gate, three-level metal, self-aligned, CMOS process. A process 
in which the effective gate length is less than I ~m is referred to as a sub micron 
process. Gate lengths below 0.35 ~m are considered in the deep-submicron regime. 

Figure 2.7 shows the layers that we draw to define the masks for the logic cell 
of Figure 1.3. Potential confusion arises because we like to keep layout simple but 
maintain a "what you see is what you get" (WYSIWYG) approach. This means that 
the drawn layers do not correspond directly to the masks in all cases. 

We can construct wells in a CMOS process in several ways. In an n-well 
process, the substrate is p-type (the wafer itself) and we use an n-well mask to build 
the n-well. We do not need a p-well mask because there are no p-wells in an n-well 
process-the n-channel transistors all sit in the substrate (the wafer)-but we often 
draw the p-welliayer as though it existed. In a p-weH process we use a p-well mask 
to make the p-wells and the n-wells are the substrate. In a twin-tub (or twin-well) 
process, we create individual wells for both types of transistors, and neither well is 
the substrate (which may be either n-type or p-type). There are even triple-well pro­
cesses used to achieve even more control over the transistor performance. Whatever 
process that we use we must connect all the n-wells to the most positive potential on 
the chip, normally VDD, and all the p-wells to VSS; otherwise we may forward bias 
the bulk to source/drain pn-junctions. The bulk connections for CMOS transistors 
are not usually drawn in digital circuit schematics, but these substrate contacts 
(well contacts or tub ties) are very important. After we make the welles), we grow a 
layer (approximately 1500 A) of Si3N4 over the wafer. The active mask (CAA) 
leaves this nitride layer only in the active areas that will later become transistors or 
substrate contacts. Thus 

CAA (mask) = ndiff (drawn) v pdiff (drawn), (2.18) 

the v symbol represents OR (union) of the two drawn layers, ndiff and pdiff. Every­
thing outside the active areas is known as the field region, or just field. 

Next we implant the substrate to prevent unwanted transistors from forming in 
the field region-this is the field implant or channel-stop implant. The nitride over 
the active areas acts as an implant mask and we may use another field-implant mask 
at this step also. Following this we grow a thick (approximately 5000 A) layer of 
SiOb the field oxide (FOX). The FOX will not grow over the nitride areas. When 
we strip the nitride we are left with FOX in the areas we do not want to dope the sil­
icon. Following this we deposit, dope, mask, and etch the poly gate material, 
CPG (mask) = poly (drawn). Next we create the doped regions that form the sources, 
drains, and substrate contacts using ion implantation. The poly gate functions like 
masking tape in these steps. One implant (using phosphorous or arsenic ions) forms 
the 'Hype source/drain for the n-channel transistors and n-type substrate contacts 
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(a) nwell (b) pwell (c) ndiff (d) pdiff 

• " . .. 
II " II " " 

II II 
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II .. " II " .. .. " '" 

• • .. 
D " HI 

• " 
II .. II B " 

• " II .. .. 
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" II II 

(e) poly (f) contact (g) m1 (h) via 

(i) m2 (j) cell (k) phantom 

FIGURE 2.7 The standard cell shown in Figure 1.3. (a)-(i) The drawn layers that define 
the masks. The active mask is the union of the ndiff and pdiff drawn layers. The n-diffusion 
implant and p-diffusion implant masks are bloated versions of the ndiff and pdiff drawn layers. 
(j) The complete cell layout. (k) The phantom cell layout. Often an ASIC vendor hides the 
details of the internal cell construction. The phantom cell is used for layout by the customer 
and then "instantiated" by the ASIC vendor after layout is complete. This layout uses gray­
scale stipple patterns to distinguish between layers. 

HI 
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(CSN). A second implant (using boron ions) forms the p-type source-drain for the 
p-channel transistors and p-type substrate contacts (CSP). These implants are 
masked as follows 

CSN (mask) = grow (ndiff (drawn», 

CSP (mask) = grow (pdiff (drawn», 

(2.19) 

(2.20) 

where "grow" means that we expand or bloat the drawn ndiff and drawn pdiff layers 
slightly (usually by a few 'A,). 

During implantation the dopant ions are blocked by the resist pattern defined 
by the CSN and CSP masks. The CSN mask thus prevents the n-type regions being 
implanted with p-type dopants (and vice versa for the CSP mask). As we shall see, 
the CSN and CSP masks are not intended to define the edges of the n-type and 
p-type regions. Instead these two masks function more like newspaper that prevents 
paint from spraying everywhere. The dopant ions are also blocked from reaching the 
silicon surface by the poly gates and this aligns the edge of the source and drain 
regions to the edges of the gates (we call this a self-aligned process). In addition, 
the implants are blocked by the FOX and this defines the outside edges of the 
source, drain, and substrate contact regions. 

The only areas of the silicon surface that are doped n-type are 

n-diffusion (silicon) = (CAA (mask) /\ CSN (mask» /\ (-,CPG (mask»; (2.21) 

where the /\ symbol represents AND (the intersection of two layers); and the -, sym­
bol represents NOT. 

Similarly, the only regions that are doped p-type are 

p-diffusion (silicon) = (CAA (mask) /\ CSP (mask» /\ (-,CPG (mask». (2.22) 

If the CSN and CSP masks do not overlap, it is possible to save a mask by using 
one implant mask (CSN or CSP) for the other type (CSP or CSN). We can do this by 
using a positive resist (the pattern of resist remaining after developing is the same 
as the dark areas on the mask) for one implant step and a negative resist (vice 
versa) for the other step. However, because of the poor resolution of negative resist 
and because of difficulties in generating the implant masks automatically from the 
drawn diffusions (especially when opposite diffusion types are drawn close to each 
other or touching), it is now common to draw both implant masks as well as the two 
diffusion layers. 

It is important to remember that, even though poly is above diffusion, the 
polysilicon is deposited first and acts like masking tape. It is rather like airbrushing a 
stripe-you use masking tape and spray everywhere without worrying about making 
straight lines. The edges of the pattern will align to the edge of the tape. Here the 
analogy ends because the poly is left in place. Thus, 

n-diffusion (silicon) = (ndiff(drawn» /\ (-,poly (drawn» and 

p-diffusion (silicon) = (pdiff (drawn» /\ (-,poly (drawn». 

(2.23) 

(2.24) 
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In the ASIC industry the names nplus, n+, and n-diffusion (as well as the p-type 
equivalents) are used in various ways. These names may refer to either the drawn 
diffusion layer (that we call ndiff), the mask (CSN), or the doped region on the sili­
con (the intersection of the active and implant mask that we call n-diffusion)-very 
confusing. 

The source and drain are often formed from two separate implants. The first is a 
light implant close to the edge of the gate, the second a heavier implant that forms 
the rest of the source or drain region. The separate diffusions reduce the electric field 
near the drain end of the channel. Tailoring the device characteristics in this fashion 
is known as drain engineering and a process including these steps is referred to as 
an LDD process, for lightly doped drain; the first light implant is known as an 
LDD diffusion or LDD implant. 

nwell pwell ndiff 

(or solid) 

FIGURE 2.8 Drawn layers and an 
example set of black-and-white stipple 
patterns for a CMOS process. On top are 
the patterns as they appear in layout. 
Underneath are the magnified 8-by-8 
pixel patterns. If we are trying to simplify 
layout we may use solid black or white 
for contact and vias. If we have contacts 
and vias placed on top of one another we 
may use stipple patterns or other means 
to help distinguish between them. Each 
stipple pattern is transparent, so that 
black shows through from underneath 
when layers are superimposed. There 
are no standards for these patterns. 

m1 via1 m2 via2 m3 glass 

~~~.LfillJ~ 
(or solid) (or solid) 

Figure 2.8 shows a stipple-pattern matrix for a CMOS process. When we draw 
layout you can see through the layers-all the stipple patterns are OR' ed together. 
Figure 2.9 shows the transistor layers as they appear in layout (drawn using the pat­
terns from Figure 2.8) and as they appear on the silicon. Figure 2.10 shows the same 
thing for the interconnect layers. 

2.2.1 Sheet Resistance 
Tables 2.3 and 2.4 show the sheet resistance for each conducting layer (in decreasing 
order of resistance) for two different generations of CMOS process. 

-. 
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(a) (b) 211, 

FIGURE 2.9 The transistor layers. (a) A p-channel transistor as drawn in layout. (b) The 
corresponding silicon cross section (the heavy lines in part a show the cuts). This is how a 
p-channel transistor would look just after completing the source and drain implant steps. 

FIGURE 2.10 The interconnect layers. 
(a) Metal layers as drawn in layout. (b) The 
corresponding structure (as it might appear 
in a scanning-electron micrograph). The 
insulating layers between the metal layers 
are not shown. Contact is made to the under­
lying silicon through a platinum barrier layer. 
Each via consists of a tungsten plug. Each 
metal layer consists of a titanium-tungsten 
and aluminum-copper sandwich. Most deep 
submicron CMOS processes use metal struc­
tures similar to this. The scale, rounding, and 
irregularity of the features are realistic. 

(a) yL 
m2+via2+m3 

m2 ::-.::-. 
contact .:'.:' m3 
+m1 
+via1 
+m2 

H 

(b) y~ +z m3[ 

~ via2 

m1 

TiW 
AICu 
(3000 A) 
Wplug 

4--- (4000 A) 
211, contact '~'---_ Pt barrier 

(200 A) 

The diffusion layers, n-diffusion and p-diffusion, both have a high resistivity­
typically from 1-100 Q/square. We measure resistance in Q/ square (ohms per 
square) because for a fixed thickness of material it does not matter what the size of a 
square is-the resistance is the same. Thus the resistance of a rectangular shape of a 
sheet of material may be calculated from the number of squares it contains times the 
sheet resistance in Q/ square. We can use diffusion for very short connections inside 
a logic cell, but not for interconnect between logic cells. Poly has the next highest 
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TABLE 2.3 Sheet resistance (1 Jlm CMOS). TABLE 2.4 Sheet resistance (0.35 Jlm CMOS). 

Sheet Sheet 
Layer resistance Units Layer resistance 

n-well 1.15±0.25 kQ/square n-well 1±0.4 

poly 3.5± 2.0 Q/square poly 10±4.0 

n-diffusion 75±20 Q/square n-diffusion 3.5± 2.0 

p-diffusion 140±40 Q/square p-diffusion 2.5± 1.5 

m1/2 70±6 mQ/square m1/2/3 60±6 

m3 30±3 mQ/square metal4 30±3 

resistance to diffusion. Most submicron CMOS processes use a silicide material (a 
metallic compound of silicon) that has much lower resistivity (at several Q/square) 
than the poly or diffusion layers alone. Examples are tantalum silicide, TaSi; tung­
sten silicide, WSi; or titanium silicide, TiSi. The stoichiometry of these deposited 
silicides varies. For example, for tungsten silicide W:Si = 1 :2.6. 

There are two types of silicide process. In a silicide process only the gate is sili­
cided. This reduces the poly sheet resistance, but not that of the source-drain. In a 
self-aligned silicide (salicide) process, both the gate and the source-drain regions 
are silicided. In some processes silicide can be used to connect adjacent poly and 
diffusion (we call this feature LI, white metal, local interconnect, metalO, or mO). LI 
is useful to reduce the area of ASIC RAM cells, for example. 

Interconnect uses metal layers with resistivities of tens of mQ/square, several 
orders of magnitude less than the other layers. There are usually several layers of 
metal in a CMOS ASIC process, each separated by an insulating layer. The metal 
layer above the poly gate layer is the first-level metal (mt or metall), the next is the 
second-level metal (m2 or metaI2), and so on. We can make connections from m 1 to 
diffusion using diffusion contacts or to the poly using polysilicon contacts. 

After we etch the contact holes a thin barrier metal (typically platinum) is 
deposited over the silicon and poly. Next we form contact plugs (via plugs for con­
nections between metal layers) to reduce contact resistance and the likelihood of 
breaks in the contacts. Tungsten is commonly used for these plugs. Following this 
we form the metal layers as sandwiches. The middle of the sandwich is a layer (usu­
ally from 3000 A to 10,000 A) of aluminum and copper. The top and bottom layers 
are normally titanium-tungsten (TiW, pronounced "tie-tungsten"). Submicron pro­
cesses use chemical-mechanical polishing (CMP) to smooth the wafers flat before 
each metal deposition step to help with step coverage. 

An insulating glass, often sputtered quartz (Si02), though other materials are 
also used, is deposited between metal layers to help create a smooth surface for the 
deposition of the metal. Design rules may refer to this insulator as an intermetal 

Units 

kQ/square 

Q/square 

Q/square 

Q/square 

mQ/square 

mQ/square 
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oxide (IMO) whether they are in fact oxides or not, or interlevel dielectric (ILD). 
The IMO may be a spin-on polymer; boron-doped phosphosilicate glass (BPSG); 
Si3N4; or sandwiches of these materials (oxynitrides, for example). 

We make the connections between ml and m2 using metal vias, cuts, or just 
vias. We cannot connect m2 directly to diffusion or poly; instead we must make 
these connections through m 1 using a via. Most processes allow contacts and vias to 
be placed directly above each other without restriction, arrangements known as 
stacked vias and stacked contacts. We call a process with ml and m2 a two-level 
metal (2LM) technology. A 3LM process includes a third-level metal layer (m3 or 
meta13), and some processes include more metal layers. In this case a connection 
between ml and m2 will use an ml/m2 via, or vial; a connection between m2 and 
m3 will use an m2/m3 via, or via2, and so on. 

The minimum spacing of interconnects, the metal pitch, may increase with suc­
cessive metal layers. The minimum metal pitch is the minimum spacing between the 
centers of adjacent interconnects and is equal to the minimum metal width plus the 
minimum metal spacing. 

Aluminum interconnect tends to break when carrying a high current density. 
Collisions between high-energy electrons and atoms move the metal atoms over a 
long period of time in a process known as electro migration. Copper is added to the 
aluminum to help reduce the problem. The other solution is to reduce the current 
density by using wider than minimum-width metal lines. 

Tables 2.5 and 2.6 show maximum specified contact resistance and via 
resistance for two generations of CMOS processes. Notice that a ml contact in 
either process is equal in resistance to several hundred squares of metal. 

TABLE 2.5 Contact resistance (1/J-m 
CMOS). 

TABLE 2.6 Contact resistance (O.35/J-m 
CMOS). 

Contact/via type 

m2/m3 via (via2) 

m1/m2 via (via1) 

m 1/ p-diffusion contact 

m1/n-diffusion contact 

m1/poly contact 

Resistance 
(maximum) 

5£1 

2£1 

20£1 

20£1 

20£1 

Contact/via type 

m2/m3 via (via2) 

m1/m2 via (via1) 

m1/p-diffusion contact 

m1/n-diffusion contact 

m1/poly contact 

CMOS Design Rules 

Resistance 
(maximum) 

6£1 

6£1 

20£1 

20£1 

20£1 

Figure 2.11 defines the design rules for a CMOS process using pictures. Arrows 
between objects denote a minimum spacing, and arrows showing the size of an 

75



well 
10(1.1) 

nwell .... 

select 
pwell nwell 

2.3 CMOS DESIGN RULES 59 

poly 
contact 

active 

"""""", 

1.5" ... .. .. 2 (5.3a) 
(5.2a) r:·:·:·::·:·:·:·:·:·:~·:~·::!.·:·:·:·:·::·:·:·:·:·:·1 ................ ::. .::: -:::. ::. po Iy 

::::::-:-:-:-:-:-:::::::-:-:.:-:-:-:::::::::-:-:-:-:-:::::: 

.. "'2x2 (5.1a) 

~~~~~~~~~~~~~ 3 (4.1) contact : :? (6 .. 3C:l): ~ ~ : : nwell 

1.5 (6.2aT~~~~5: W%) 
1 (7.3) ... 

poly 
3 "~~-r---:~~~~~ contact (7.2a) 

active .J.~~~cr"J 
contact .. 

1 (7.4) 
·metal2 via2 

W3 (9.1) 

W'~m21 
2 x2 (14.1) 2 (14.4) 

m2· ..... '1 
... 1 via ... ' .... :: .(14.3) 

.. m3 

m2 

vial (6.1 a) (6.2a) 

~~~r. ~ ... 2 (8.4) 

2:7!:-:~;~ 2(S.~ ... 2x2(S.1) 
3 (8.2). .. ndiff 

e metal3 overglass (microns) 
m3 ,.6 (10.3) ~o ~0.4) 

[]
> :- :- :-: 6 .. :-~:.-;..~:.;".;,..:- 0 m3 

............ (15.1) .1-' ........... '1.' 
'f • • • . • . ••••. , .•..•.... R.. 0m2 
4(152)" .t·.·.·.·.·.·.t· . .]- ............ 'I" 15 

.. [§J' . O· '.' . '1' gl~s~ :- :. : <.< (10.5) .. vla2 . ' . ~ _ _ .' .. ,.!.1!JiIIo ... T •.• . ..... l""'9_. __ . !;;:-"l 
.......... m3' . , . , ... , ~m1 

.2(15.3) ~100x100(10.1) ... 

FIGURE 2.11 The MOSIS scalable CMOS design rules (rev. 7). Dimensions are in ?C. Rule 
numbers are in parentheses (missing rule sets 11-13 are extensions to this basic process). 
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object denote a minimum width. Rule 3.1, for example, is the minimum width of 
poly (2 A). Each of the rule numbers may have different values for different manu­
facturers-there are no standards for design rules. Tables 2.7-2.9 show the MOSIS 
scalable CMOS rules. Table 2.7 shows the layer rules for the process front end, 
which is the front end of the line (as in production line) or FEOL. Table 2.8 shows 
the rules for the process back end (BEOL), the metal interconnect, and Table 2;9 
shows the rules for the pad layer and glass layer. 

The rules in Table 2.7 and Table 2.8 are given as multiples of A. If we use 
lambda~based rules we can move between successive process generations just by 
changing the value of A. For example, we can scale 0.5 !lm layouts (A = 0.25 !lm) by 
a factor of 0.175/0.25 for a 0.35!lm process (A=0.175 !lm)-at least in theory. You 
may get an inkling of the practical problems from the fact that the values for pad 
dimensions and spacing in Table 2.9 are given in microns and not in A. This is 
because bonding to the pads is an operation that does not scale well. Often compa­
nies have two sets of design rules: one in A (with fractional A rules) and the other in 
microns. Ideally we would like to express all of the design rules in integer multiples 
of A. This was true for revisions 4-6, but not revision 7 of the MOSIS rules. In revi­
sion 7 rules 5.2a/6.2a are noninteger. The original Mead-Conway NMOS rules 
include a noninteger 1.5 A rule for the implant layer. 

2.4 Combinational Logic Cells 

The AND-OR-INVERT (AOI) and the OR-AND-INVERT (OAI) logic cells are par­
ticularly efficient in CMOS. Figure 2.12 shows an AOI221 and an OAI321 logic cell 
(the logic symbols in Figure 2.12 are not standards, but are widely used). All indices 
(the indices are the numbers after AOI or OAI) in the logic cell name greater than 1 
correspond to the inputs to the first "level" or stage-the AND gate(s) in an AOI 
cell, for example. An index of '1' corresponds to a direct input to the second-stage 
cell. We write indices in descending order; so it is AOI221 and not AOIl22 (but both 
are equivalent cells), and A0I32 not AOI23. If we have more than one direct input 
to the second stage we repeat the '1'; thus an AOI2ll cell performs the function 
Z= (A.B + C + D)'. A three-input NAND cell is an OAIlIl, but calling it that would 
be very confusing. These rules are not standard, but form a convention that we shall 
adopt and one that is widely used in the ASIC industry. 

There are many ways to represent the logical operator, AND. I shall use the 
middle dot and write A· B (rather than AB, A.B, or A /\ B); occasionally I may use 
AND(A, B). Similarly I shall write A + B as well as OR(A, B). I shall use an apos­
trophe like this, A', to denote the complement of A rather than A since sometimes it 
is difficult or inappropriate to use an overbar (vinculum) or diacritical mark 
(macron). It is possible to misinterpret AB' as AB rather than AB (but the former 
alternative would be A . B' in my convention). I shall be careful in these situations. 
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TABLE 2.7 MOSIS scalable CMOS rules version 7-the process front end. 

Layer Rule Explanation Value/A 

well (CWN, CWP) 1.1 minimum width 10 

1.2 minimum space (different potential, a hot well) 9 

1.3 minimum space (same potential) o or6 

1.4 minimum space (different well type) 0 

active (CAA) 2.1/2.2 minimum width/space 3 

2.3 source/drain active to well edge space 5 

2.4 substrate/well contact active to well edge space 3 

2.5 minimum space between active (different implant type) o or4 

poly (CPG) 3.1/3.2 minimum width/space 2 

3.3 minimum gate extension of active 2 

3.4 minimum active extension of poly 3 

3.5 minimum field poly to active space 1 

select (CSN, CSP) 4.1 minimum select spacing to channel of transistor 1 3 

4.2 minimum select overlap of active 2 

4.3 minimum select overlap of contact 1 

4.4 minimum select width and spacing 2 2 

poly contact (CCP) 5.1.a exact contact size 2x2 

5.2.a minimum poly overlap 1.5 

5.3.a minimum contact spacing 2 

active contact (CCA) 6.1.a exact contact size 2x2 

6.2.a minimum active overlap 1.5 . 

6.3.a minimum contact spacing 2 

6.4.a minimum space to gate of transistor 2 

1To ensure source and drain width. 
2Different select types may touch but not overlap. 
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TABLE 2.8 MOSIS scalable CMOS rules version 7-the process back end. 

Layer Rule Explanation Value/A 

metal1 (CMF) 7.1 minimum width 3 

7.2.a minimum space 3 

7.2.b minimum space (for minimum-width wires only) 2 

7.3 minimum overlap of poly contact 1 

7.4 minimum overlap of active contact 1 

via1 (CVA) 8.1 exact size 2x2 

8.2 minimum via spacing 3 

8.3 minimum overlap by metal1 1 

8.4 minimum spacing to contact 2 

8.5 minimum spacing to poly or active edge 2 

metal2 (CMS) 9.1 minimum width 3 

9.2.a minimum space 4 

9.2.b minimum space (for minimum-width wires only) 3 

9.3 minimum overlap of via1 1 

via2 (CVS) 14.1 exact size 2x2 

14.2 minimum space 3 

14.3 . minimum overlap by metal2 1 

14.4 minimum spacing to via1 2 

metal3 (CMT) 15.1 minimum width 6 

15.2 minimum space 4 

15.3 minimum overlap of via2 2 

TABLE 2.9 MOSIS scalable CMOS rules version 7-the pads and overglass (passivation). 

Layer 

glass (COG) 

Rule 

10.1 

10.2 

10.3 

10.4 

10.5 

Explanation 

minimum bonding-pad width 

minimum probe-pad width 

pad overlap of glass opening 

minimum pad spacing to unrelated metal2 (or metal3) 

minimum pad spacing to unrelated metal1 , poly, or active 

Value 

1 00 I-lm x 100 I-lm 

75 I-lm x 75 I-lm 

61-lm 

30 I-lm 

15 I-lm 
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AOl221 

FIGURE 2.12 Naming and num­
bering complex CMOS combinational 
cells. (a) An AND-OR-INVERT cell, 
an A01221. (b) An OR-AND-INVERT 
cell, an OA1321. Numbering is always 
in descending order. I r: ~ I r: ~------' 

AOl221 OAI321 
(a) (b) 

We can express the function of the AOI221 cell in Figure 2.12(a) as 

Z=(A· B +C· D+E)'. (2.25) 

We can also write this equation unambiguously as Z= OAI221 (A, B, C, D, E), just 
as we might write X = NAND (I, J, K) to describe the logic function X = (I· J. K)'. 

This notation is useful because, for example, if we write OAI321(P, Q, R, S, T, 
U) we immediately know that U (the sixth input) is the (only) direct input connected 
to the second stage. Sometimes we need to refer to particular inputs without listing 
them all. We can adopt another convention that letters of the input names change 
with the index position. Now we can refer to input B2 of an A0I321 cell, for exam­
ple, and know which input we are talking about without writing 

Z= A0I321(A1, A2, A3, B1, B2, C). (2.26) 

Table 2.10 shows the AOI family of logic cells with three indices (with 
branches in the family for AOI, OAI, AO, and OA cells). There are 5 types and 14 
separate members of each branch of this family. There are thus 4 x 14 = 56 cells of 
the type Xabc where X = {OAI, AOI, OA, AO} and each of the indexes a, b, and c 
can range from 1 to 3. We form the AND-OR (AO) and OR-AND (OA) cells by add­
ing an inverter to the output of an AOI or OAI cell. 

2.4.1 Pushing Bubbles 
The AOI and OAI logic cells can be built using a single stage in CMOS using 
series-parallel networks of transistors called stacks. Figure 2.13 illustrates the procedure 
to build the n-channel and p-channel stacks, using the AOI221 cell as an example. 

Here are the steps to construct any single-stage combinational CMOS logic cell: 

1. Draw a schematic icon with an inversion (bubble) on the last cell (the 
bubble-out schematic). Use de Morgan's theorems-"A NAND is an OR 
with inverted inputs and a NOR is an AND with inverted inputs"-to push the 
output bubble back to the inputs (this the dual icon or bubble-in schematic). 
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TABLE 2.10 The AOI family of cells with three index numbers or less. 

Cell type1 

Xa1 

Xa11 

Xab 

Xab1 

Xabc 

Total 

Cells 

X21, X31 

X211,X311 

X22,X33,X32 

X221, X331, X321 

X222,X333,X332,X322 

Number of unique 
cells 

2 

2 

3 

3 

4 

14 

1Xabc: X={AOI, AO, OAI, OA}; a, b, c = {2, 3}; {} means "choose one." 

A 
B 
C 
D 

z 

OR = parallel 
AND = series 

e A4 

o PU:h bubbles to the inputs 

c4 
E4 

A 
B 
C 
D 

z 

OR = parallel 
AND = serie~-j 

E __ --' 

(a) (b) (c) 

FIGURE 2.13 Constructing a CMOS logic cell-an A01221. (a) First build the dual icon by 
using de Morgan's theorem to "push" inversion bubbles to the inputs. (b) Next build the 
n-channel and p-channel stacks from series and parallel combinations of transistors. 
(c) Adjust transistor sizes so that the n-channel and p-channel stacks have equal strengths. 

2. Form the n-channel stack working from the inputs on the bubble-out 
schematic: OR translates to a parallel connection, AND translates to a series 
connection. If you have a bubble at an input, you need an inverter. 

3. Form the p-channel stack using the bubble-in schematic (ignore the inversions 
at the inputs-the bubbles on the gate terminals of the p-channel transistors 
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take care of these). If you do not have a bubble at the input gate terminals, you 
need an inverter (these will be the same input gate terminals that had bubbles 
in the bubble-out schematic). 

The two stacks are network duals (they can be derived from each other by 
swapping series connections for parallel, and parallel for series connections). The 
n-channel stack implements the strong lOts of the function and the p-channel stack 
provides the strong Ills. The final step is to adjust the drive strength of the logic cell 
by sizing the transistors. 

2.4.2 Drive Strength 
Normally we ratio the sizes of the n-channel and p-channel transistors in an inverter 
so that both types of transistors have the same resistance, or drive strength. That is, 
we make ~ 11 = ~ P . At low dopant concentrations and low electric fields lln is about 
twice IIp. To compensate we make the shape factor, W/L, of the p-channel transistor 
in an inverter about twice that of the n-channel transistor (we say the logic has a 
ratio of 2). Since the transistor lengths are normally equal to the minimum poly 
width for both types of transistors, the ratio of the transistor widths is also equal to 
2. With the high dopant concentrations and high electric fields in submicron transis­
tors the difference in mobilities is less-typically between I and 1.5. 

Logic cells in a library have a range of drive strengths. We normally call the 
minimum-size inverter a IX inverter. The drive strength of a logic cell is often used 
as a suffix; thus a IX inverter has a cell name such as INVX1 or INVDl. An inverter 
with transistors that are twice the size will be an INVX2. Drive strengths are nor­
mally scaled in a geometric ratio, so we have IX, 2X, 4X, and (sometimes) 8X or 
even higher, drive-strength cells. We can size a logic cell using these basic rules: 

• Any string of transistors connected between a power supply and the output in 
a cell with IX drive should have the same resistance as the n-channel transis­
tor in a IX inverter. 

• A transistor with shape factor W l/Ll has a resistance proportional to L1/W 1 

(so the larger WI is, the smaller the resistance). 

o Two transistors in parallel with shape factors W l/Ll and W 2/L2 are equiva­
lent to a single transistor (W l/Ll + W 2/L2)/1. For example, a 2/1 in parallel 
with a 3/1 is a 5/1. 

o Two transistors, with shape factors W llLl and W 2IL2> in series are equivalent 
to a single 1/(L l/W 1 + L2/W 2) transistor. 

For example, a transistor with shape factor 3/1 (we shall call this "a 3/1") in 
series with another 311 is equivalent to a 1/«(1/3) + (/3)) or a 3/2. We can use the 
following method to calculate equivalent transistor sizes: 

• To add transistors in parallel, make all the lengths 1 and add the widths. 

• To add transistors in series, make all the widths 1 and add the lengths. 
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We have to be careful to keep Wand L reasonable. For example, a 3/1 in series 
with a 2/1 is equivalent to a 1/((1/3) + (1/2» or 1/0.83. Since we cannot make a 
device 2 A wide and 1.66 A long, a 1/0.83 is more naturally written as 3/2.5. We like 
to keep both Wand L as integer multiples of 0.5 (equivalent to making Wand L 
integer multiples of A), but Wand L must be greater than l. 

In Figure 2.13(c) the transistors in the AOI221 cell are sized so that any string 
through the p-channel stack has a drive strength equivalent to a 2/1 p-channel tran­
sistor (we choose the worst case, if more than one transistor in parallel is conducting 
then the drive strength will be higher). The n-channel stack is sized so that it has a 
drive strength of a 1/1 n-channel transistor. The ratio in this library is thus 2. 

If we were to use four drive strengths for each of the AOI family of cells shown 
in Table 2.10, we would have a total of 224 combinational library cells-just for the 
AOI family. The synthesis tools can handle this number of cells, but we may not be 
able to design this many cells in a reasonable amount of time. Section 3.3, "Logical 
Effort," will help us choose the most logically efficient cells. 

2.4.3 Transmission Gates 
Figure 2.14(a) and (b) shows a CMOS transmission gate (TG, TX gate, pass gate, 
coupler). We connect a p-channel transistor (to transmit a strong 'I ') in parallel with 
an n-channel transistor (to transmit a strong '0'). 

S' 

strong '1m S' 
charge sharing 

'0' A~Z 

strong,o'~ 
S 

~ 
S A lSMALL~VF ~:t-_Z __ l.-VBIG~VF 

ICSMALL '1' T C B1G 

(a) (b) (c) 

FIGURE 2.14 CMOS transmission gate (TG). (a) An n-channel and p-channel transistor in 
parallel form a TG. (b) A common symbol for a TG. (c) The charge-sharing problem. 

We can express the function of a TG as 

Z=TG(A, S), (2.27) 

but this is ambiguous-if we write TG(X, Y), how do we know if X is connected to 
the gates or sources/drains of the TG? We shall always define TG(X, Y) when we 
use it. It is tempting to write TG(A, S) = A . S, but what is the value of Z when S ='0' 
in Figure 2.14(a), since Z is then left floating? A TG is a switch, not an AND logic 
cell. 
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There is a potential problem if we use a TG as a switch connecting a node Z that 
has a large capacitance, CBIG, to an input node A that has only a small capacitance 
CSMALL (see Figure 2.14c). If the initial voltage at A is VSMALL and the initial volt­
age at Z is VBIG, when we close the TG (by setting S = 'I') the final voltage on both 
nodes A and Z is 

C BIG V BIG + C SMALL V SMALL 
VF = ---------------------­

C BIG + CSMALL 
(2.28) 

Imagine we want to drive a 'I' onto node Z from node A. Suppose CBIG = 0.2 pF 
(about 10 standard loads in a 0.51lm process) and CSMALL = 0.02 pF, VBIG = 0 V and 
VSMALL = 5 V; then 

0.02 X 10-
12 

5 

0.02 X 10-12 
(2.29) 

This is not what we want at all, the "big" capacitor has forced node A to a volt­
age close to a '0'. This type of problem is known as charge sharing. We should 
make sure that either (1) node A is strong enough to overcome the big capacitor, or 
(2) insulate node A from node Z by including a buffer (an inverter, for example) 
between node A and node Z. We must not use charge to drive another logic cell­
only a logic cell can drive a logic cell. 

If we omit one of the transistors in a TG (usually the p-channel transistor) we 
have a pass transistor. There is a branch of full-custom VLSI design that uses pass­
transistor logic. Much of this is based on relay-based logic, since a single transistor 
switch looks like a relay contact. There are many problems associated with pass­
transistor logic related to charge sharing, reduced noise margins, and the difficulty 
of predicting delays. Though pass transistors may appear in an ASIC cell inside a 
library, they are not used by ASIC designers. 

We can use two' TGs to form a multiplexer (or multiplexor-people use both 
orthographies) as shown in Figure 2.15(a). We often shorten multiplexer to MUX. 
The MUX function for two data inputs, A and B, with a select signal S, is 

Z = TG(A, S') + TG(B, S). (2.30) 

We can write this as Z = A . S' + B . S, since node Z is always connected to one 
or other of the inputs (and we assume both are driven). This is a two-input MUX 
(2-to-l MUX or 2: 1 MUX). Unfortunately, we can also write the MUX function as 
Z = A· S + B . S', so it is difficult to write the MUX function unambiguously as 
Z = MUX(X, Y, Z). For example, is the select input X, Y, or Z? We shall define the 
function MUX(X, Y, Z) each time we use it. We must also be careful to label a MUX 
if we use the symbol shown in Figure 2.15(b). Symbols for a MUX are shown in 
Figure 2.15(b-d). In the IEEE notation 'G' specifies an AND dependency. Thus, in 
Figure 2.15(c), G = 'I' selects the input labeled 'I'. Figure 2.15(d) uses the common 
control block symbol (the notched rectangle). Here, GI = 'I' selects the input 'I', 
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A 

S 

B 

(a) 

f} GQ 
Z 0 1 A 

~ \C) S ~ ~ 

~tJ-o Z G1 
B ~ ~ B 1 T B 1 B 1 

S 1 S S 

(b) (d) (e) (f) 

FIGURE 2.15 The CMOS multiplexer (MUX). (a) A noninverting 2:1 MUX using transmis­
sion gates without buffering. (b) A symbol for a MUX (note how the inputs are labeled). (c) An 
IEEE standard symbol for a MUX. (d) A nonstandard, but very common, IEEE symbol for a 
MUX. (e) An inverting MUX with output buffer. (f) A noninverting buffered MUX. 

and G 1 = '0' selects the input 'I' . Strictly this form of IEEE symbol should be used 
only for elements with more than one section controlled by common signals, but the 
symbol of Figure 2.15(d) is used often for a 2:1 MUX. 

The MUX shown in Figure 2.15(a) works, but there is a potential charge­
sharing problem if we cascade MUXes (connect them in series). Instead most ASIC 
libraries use MUX cells built with a more conservative approach. We could buffer 
the output using an inverter (Figure 2.15e), but then the MUX becomes inverting. To 
build a safe, noninverting MUX we can buffer the inputs and output 
(Figure 2. 15t)-requidng 12 transistors, or 3 gate equivalents (only the gate equiva­
lent counts are shown from now on). 

Figure 2.16 shows how to use an OAI22 logic cell (and an inverter) to imple­
ment an inverting MUX. The implementation in equation form (2.5 gates) is 

ZN = A' . S' + B' . S = [(A' . S')' . (B' . S),], = [(A + S) . (B + S')]' 

= OAI22[A, S, B, NOT(S)]. (2.31) 

(both A' and NOT(A) represent an inverter, depending on which representation is 
most convenient-they are equivalent). I often use an equation to describe a cell 
implementation. 

The following factors will determine which MUX implementation is best: 

1. Do we want to minimize the delay between the select input and the output or 
between the data inputs and the output? 

2. Do we want an inverting or noninverting MUX? 
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A 

B 

FIGURE 2.16 An inverting 2:1 MUX based on an OAI22 cell. 
S 

3. Do we object to having any logic cell inputs tied directly to the source/drain 
diffusions of a transmission gate? (Some companies forbid such transmis­
sion-gate inputs-since some simulation tools cannot handle them.) 

4. Do we object to any logic cell outputs being tied to the source/drain of a trans­
mission gate? (Some companies will not allow this because of the dangers of 
charge sharing.) 

5. What drive strength do we require (and is size or speed more important)? 

A minimum-size TG is a little slower than a minimum-size inverter, so there is 
not much difference between the implementations shown in Figure 2.15 and 
Figure 2.16, but the difference can become important for 4: 1 and larger MUXes. 

2.4.4 Exclusive-OR Cell 
The two-input exclusive-OR (XOR, EXOR, not-equivalence, ring-OR) function is 

Al EB A2 = XOR(Al, A2) = Al . A2' + AI'· A2. (2.32) 

We are now using multiletter symbols, but there should be no doubt that A I' 
means anything other than NOT(A1). We can implement a two-input XOR using a 
MUX and an inverter as follows (2 gates): 

XOR(AI, A2) = MUX[NOT(AI), AI, A2], (2.33) 

where 

MUX(A, B, S) =A· S +B· S'. (2.34) 

This implementation only buffers one input and does not buffer the MUX output. 
We can use inverter buffers (3.5 gates total) or an inverting MUX so that the XOR 
cell does not have any external connections to source/drain diffusions as follows (3 
gates total): 

XOR(AI, A2) = NOT[MUX(NOT[NOT(Al)], NOT(AI), A2)]. (2.35) 

OAI22 

\ 
~N B 1 

S 
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We can also implement a two-input XOR using an AOI21 (and a NOR cell), since 

XOR(AI, A2) = AI· A21 +AI I
• A2 = [(AI· A2) + (AI + A2)1]' 

= AOI21[AI, A2, NOR(AI, A2)], (2.36) 

(2.5 gates). Similarly we can implement an exclusive-NOR (XNOR, equivalence) logic 
cell using an inverting MUX (and two inverters, total 3.5 gates) or an OAI21 logic cell 
(and a NAND cell, total 2.5 gates) as follows (using the MUX function ofEq. 2.34): 

XNOR(AI, A2) = Al . A2 + NOT(Al)· NOT(A2) 

= NOT[NOT[MUX(AI, NOT (Al), A2]] 

= OAI2l[AI, A2, NAND(AI, A2)] (2.37) 

2.5 Sequential Logic Cells 

There are two main approaches to clocking in VLSI design: muItiphase clocks or a 
single clock and synchronous design. The second approach has the following key 
advantages: (1) it allows automated design, (2) it is safe, and (3) it permits vendor 
signoff (a guarantee that the ASIC will work as simulated). These advantages of syn­
chronous design (especially the last one) usually outweigh every other consideration 
in the choice of a clocking scheme. The vast majority of ASICs use a rigid synchro­
nous design style. 

2.5.1 Latch 
Figure 2. 17(a) shows a sequential logic cell-a latch. The internal clock signals, 
CLKN (N for negative) and CLKP (P for positive), are generated from the system 
clock, CLK, by two inverters (14 and IS) that are part of every latch cell-it is usu­
ally too dangerous to have these signals supplied externally, even though it would 
save space. 

To emphasize the difference between a latch and flip-flop, sometimes people 
refer to the clock input of a latch as an enable. This makes sense when we look at 
Figure 2.17(b), which shows the operation of a latch. When the clock input is high, 
the latch is transparent-changes at the D input appear at the output Q (quite dif­
ferent from a flip-flop as we shall see). When the enable (clock) goes low 
(Figure 2.17 c), inverters 12 and 13 are connected together, forming a storage loop 
that holds the last value on D until the enable goes high again. The storage loop will 
hold its state as long as power is on; we call this a static latch. A sequential logic 
cell is different from a combinational cell because it has this feature of storage or 
memory. 

Notice that the output Q is unbuffered and connected directly to the output of 12 
(and the input of B), which is a storage node. In an ASIC library we are conserva­
tive and add an inverter to buffer the output, isolate the sensitive storage node, and 
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(a) 

latch is transparent 

ClK -->" 
D~ 

Q-.r\fV 

(b) 

• 
Q 

ClK---./ 

o 

Q 

A \ storage 

"---J loop 
,"-_..fk/ 13 

(c) 

FIGURE 2.17 CMOS latch. (a) A positive-enable latch using transmission gates without 
output buffering, the enable (clock) signal is buffered inside the latch. (b) A positive-enable 
latch is transparent while the enable is high. (c) The latch stores the last value at 0 when the 
enable goes low. 

thus invert the sense of Q. If we want both Q and QN we have to add two inverters 
to the circuit of Figure 2. 17(a). This means that a latch requires seven inverters and 
two TGs (4.5 gates). 

The latch of Figure 2.17(a) is a positive-enable D latch, active-high D latch, or 
transparent-high D latch (sometimes people also call this a D-type latch). A 
negative-enable (active-low) D latch can be built by inverting all the clock polarities 
in Figure 2. 17(a) (swap CLKN for CLKP and vice-versa). 

2.5.2 Flip-Flop 
Figure 2.18(a) shows a flip-flop constructed from two D latches: a master latch (the 
first one) and a slave latch. This flip-flop contains a total of nine inverters and four 
TGs, or 6.5 gates. In this flip-flop design the storage node S is buffered and the 
clock-to-Q delay will be one inverter delay less than the clock-to-QN delay. 

In Figure 2.18(b) the clock input is high, the master latch is transparent, and 
node M (for master) will follow the D input. Meanwhile the slave latch is discon­
nected from the master latch and is storing whatever the previous value of Q was. As 
the clock goes low (the negative edge) the slave latch is enabled and will update its 
state (and the output Q) to the value of node M at the negative edge of the clock. 
The slave latch will then keep this value of M at the output Q, despite any changes 
at the D input while the clock is low (Figure 2.18c). When the clock goes high 
again, the slave latch will store the captured value of M (and we are back where we 
started our explanation). 

Q 

t 
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master slave 

(a) 

load master 

(b) 

ClK=1 

load slave 

(c) 

ClK=O 

slave 

ClK 

(d) D 

decision M window 

Q 

FIGURE 2.18 CMOS flip-flop. (a) This negative-edge-triggered flip-flop consists of two 
latches: master and slave. (b) While the clock is high, the master latch is loaded. (c) As the 
clock goes low, the slave latch loads the value of the master latch. (d) Waveforms illustrating 
the definition of the flip-flop setup time tsu, hold time tH, and propagation delay from clock to 
Q, tpD· 
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The combination of the master and slave latches acts to capture or sample the D 
input at the negative clock edge, the active clock edge. This type of flip-flop is a 
negative-edge-triggered flip-flop and its behavior is quite different from a latch. 
The behavior is shown on the IEEE symbol by using a triangular "notch" to denote 
an edge-sensitive input. A bubble shows the input is sensitive to the negative edge. 
To build a positive-edge-triggered flip-flop we invert the polarity of all the clocks­
as we did for a latch. 

The waveforms in Figure 2.18( d) show the operation of the flip-flop as we have 
described it, and illustrate the definition of setup time (tsu) , hold time (tH)' and 
clock-to-Q propagation delay (tpD). We must keep the data stable (a fixed logic 'I' or 
'0') for a time tsu prior to the active clock edge, and stable for a time tH after the 
active clock edge (during the decision window shown). 

In Figure 2.18(d) times are measured from the points at which the waveforms 
cross 50 percent of VDD. We say the trip point is 50 percent or 0.5. Common 
choices are 0.5 or 0.65/0.35 (a signal has to reach 0.65VDD to be a 'I', and reach 
0.35V DD to be a '0'), or 0.1/0.9 (there is no standard way to write a trip point). Some 
vendors use different trip points for the input and output waveforms (especially in 
I/O cells). 

The flip-flop in Figure 2.18(a) is a D flip-flop and is by far the most widely used 
type of flip-flop in ASIC design. There are other types of flip-flops-J-K, T (toggle), 
and S-R flip-flops-that are provided in some ASIC cell libraries mainly for compat­
ibility with TTL design. Some people use the term register to mean an array (more 
than one) of flip-flops or latches (on a data bus, for example), but some people use 
register to mean a single flip-flop or a latch. This is confusing since flip-flops and 
latches are quite different in their behavior. When I am talking about logic cells, I 
use the term register to mean more than one flip-flop. 

To add an asynchronous set (Q to 'I') or asynchronous reset (Q to '0') to the 
flip-flop of Figure 2.18(a), we replace one inverter in both the master and slave 
latches with two-input NAND cells. Thus, for an active-low set, we replace 12 and 
I7 with two-input NAND cells, and, for an active-low reset, we replace 13 and 16. 
For both set and reset we replace all four inverters: 12, 13, 16, and I7. Some TTL flip­
flops have dominant reset or dominant set, but this is difficult (and dangerous) to 
do in ASIC design. An input that forces Q to 'I' is sometimes also called preset. The 
IEEE logic symbols use 'pI to denote an input with a presetting action. An input that 
forces Q to '0' is often also called clear. The IEEE symbols use 'R' to denote an input 
with a resetting action. 

2.5.3 Clocked Inverter 
Figure 2.19 shows how we can derive the structure of a clocked inverter from the 
series combination of an inverter and a TG. The arrows in Figure 2.19(b) represent 
the flow of current when the inverter is charging (/ R) or discharging (/ F) a load 
capacitance through the TG. We can break the connection between the inverter cells 
and use the circuit of Figure 2.19(c) without substantially affecting the operation of 
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the circuit. The symbol for the clocked inverter shown in Figure 2.19(d) is common, 
but by no means a standard. 

We can break this connection. 

VDD 
CLKN CLKN 

~ A ~ 
CLKP CLKP 

-= -= 

(a) (b) (c) (d) 

FIGURE 2.19 Clocked inverter. (a) An inverter plus transmission gate (TG). (b) The cur­
rent flow in the inverter and TG allows us to break the connection between the transistors in 
the inverter. (c) Breaking the connection forms a clocked inverter. (d) A common symbol. 

We can use the clocked inverter to replace the inverter-TG pairs in latches and 
flip-flops. For example, we can replace one or both of the inverters 11 and 13 
(together with the TGs that follow them) in Figure 2.17(a) by clocked inverters. 
There is not much to choose between the different implementations in this case, 
except that layout may be easier for the clocked inverter versions (since there is one 
less connection to make). 

More interesting is the flip-flop design: We can only replace inverters 11, 13, and 
17 (and the TGs that follow them) in Figure 2.18(a) by clocked inverters. We cannot 
replace inverter 16 because it is not directly connected to a TG. We can replace the 
TG attached to node M with a clocked inverter, and this will invert the sense of the 
output Q, which thus becomes QN. Now the clock-to-Q delay will be slower than 
clock-to-QN, since Q (which was QN) now comes one inverter later than QN. 

If we wish to build a flip-flop with a fast clock-to-QN delay it may be better to 
build it using clocked inverters and use inverters with TGs for a flip-flop with a fast 
clock-to-Q delay. In fact, since we do not always use both Q and QN outputs of a 
flip-flop, some libraries include Q only or QN only flip-flops that are slightly smaller 
than those with both polarity outputs. It is slightly easier to layout clocked inverters 
than an inverter plus a TG, so flip-flops in commercial libraries include a mixture of 
clocked-inverter and TG implementations. 
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2.6 Datapath Logic Cells 

Suppose we wish to build an n-bit adder (that adds two n-bit numbers) and to exploit 
the regularity of this function in the layout. We can do so using a datapath structure. 

The following two functions, SUM and COUT, implement the sum and carry 
out for a full adder (FA) with two data inputs (A, B) and a carry in, CIN: 

SUM = A EB BEB CIN = SUM(A, B, CIN) = PARITY(A, B, CIN), 

COUT=A·B +A· CIN +B· CIN= MAJ(A, B, CIN). 

(2.38) 

(2.39) 

The sum uses the parity function ('I' if there are an odd numbers of 'l's in the 
inputs). The carry out, COUT, uses the 2-of-3 majority function ('I' if the majority 
of the inputs are 'I'). \Ve can combine these two functions in a single FA logic cell, 
ADD(A[i], B[i], CIN, S[i], COUT), shown in Figure 2.20(a), where 

S[i] = SUM(A[i], B[i], CIN), 

COUT = MAJ(A[i], B[i], CIN). 

(2.40) 

(2.41) 

Now we can build a 4-bit ripple-carry adder (RCA) by connecting four of 
these ADD cells together as shown in Figure 2.20(b). The ith ADD cell is arranged 
with the following: two bus inputs A[t], B[i]; one bus output S[i); an input, CIN, that 
is the carry in from stage (i - 1) below and is also passed up to the cell above as an 
output; and an output, COUT, that is the carry out to stage (i + 1) above. In the 4-bit 
adder shown in Figure 2.20(b) we connect the carry input, CIN[O], to VSS and use 
COUT[3] and COUT[2] to indicate arithmetic overflow (in Section 2.6.1 we shall 
see why we may need both signals). Notice that we build the ADD cell so that 
COUT[2] is available at the top of the datapath when we need it. 

Figure 2.20(c) shows a layout of the ADD cell. The A inputs, B inputs, and S 
outputs all use ml interconnect running in the horizontal direction-we call these 
data signals. Other signals can enter or exit from the top or bottom and run verti­
cally across the datapath in m2-we call these control signals. We can also use m1 
for control and m2 for data, but we normally do not mix these approaches in the 
same structure. Control signals are typically clocks and other signals common to 
elements. For example, in Figure 2.20(c) the carry signals, crN and COUT, run ver­
tically in m2 between cells. To build a 4-bit adder we stack four ADD cells creating 
the array structure shown in Figure 2.20(d). In this case the A and B data bus inputs 
enter from the left and bus S, the sum, exits at the right, but we can connect A, B, 
and S to either side if we want. 

The layout of bus wide logic that operates on data signals in this fashion is 
called a datapath. The module ADD is a data path cell or data path element. Just 
as we do for standard cells we make all the datapath cells in a library the same 
height so we can abut other datapath cells on either side of the adder to create a 
more complex datapath. When people talk about a datapath they always assume that 
it is oriented so that increasing the size in bits makes the datapath grow in height, 
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CIN 

(a) 

upwards in the vertical direction, and adding different datapath elements to increase 
the function makes the datapath grow in width, in the horizontal direction-but we 
can rotate and position a completed datapath in any direction we want on a chip. 

COUT[2] COUT[3] 

A[3] 
B[3] 
A[2] 
B[2] 
A[1] 
B[1] 
A[O] 
B[O] 

(b) 

8[3] 

8[2] 

8[1] 

8[0] control 
m2~ 
~data 

m1 

(c) 

m2L. ... m.J 

COUT[2] COUT[3] 

0' 0' :::::.~.~ .. co co ::)~ 
(f) (f) ;; .. f-------t 
2 2 ~ ... J__-___i 

~ co :::: '--_,--' 
V88 

(d) 

FIGURE 2.20 A datapath adder. (a) A full-adder (FA) cell with inputs (A and B), a carry in, 
CIN, sum output, 8, and carry out, COUT. (b) A 4-bit adder. (c) The layout, using two-level 
metal, with data in m1 and control in m2.ln this example the wiring is completed outside the 
eel!; it is also possible to design the datapath cells to contain the wiring. Using three levels of 
metal, it is possible to wire over the top of the datapath cells. (d) The datapath layout. 

What is the difference between using a datapath, standard cells, or gate arrays? 
Cells are placed together in rows on a CBIC or an MGA, but there is no generally no 
regularity to the arrangement of the cells within the rows-we let software arrange 
the cells and complete the interconnect. Datapath layout automatically takes care of 
most of the interconnect between the cells with the following advantages: 

.. Regular layout produces predictable and equal delay for each bit. 

" Interconnect between cells can be built into each cell. 

There are some disadvantages of using a datapath: 

" The overhead (buffering and routing the control signals, for example) can make 
a narrow (small number of bits) datapath larger and slower than a standard-cell 
(or even gate-array) implementation. 

.. Datapath cells have to be predesigned (otherwise we are using full-custom 
design) for use in a wide range of datapath sizes. Datapath cell design can be 
harder than designing gate-array macros or standard cells. 

o Software to assemble a datapath is more complex and not as widely used as 
software for assembling standard cells or gate arrays. 
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There are some newer standard-cell and gate-array tools that can take advantage 
of regularity in a design and position cells carefully. The problem is in finding the 
regularity if it is not specified. Using a datapath is one way to specify regularity to 
ASIC design tools. 

2.6.1 Datapath Elements 

Figure 2.21 shows some typical datapath symbols for an adder (people rarely use the 
IEEE standards in ASIC datapath libraries). I use heavy lines (they are 1.5 point 
wide) with a stroke to denote a data bus (that flows in the horizontal direction in a 
datapath), and regular lines (0.5 point) to denote the control signals (that flow verti­
cally in a datapath). At the risk of adding confusion where there is none, this stroke 
to indicate a data bus has nothing to do with mixed-logic conventions. For a bus, 
A[31 :0] denotes a 32-bit bus with A[31] as the leftmost or most-significant bit or 
MSB, and A[O] as the least-significant bit or LSB. Sometimes we shall use 
A[MSB] or A[LSB] to refer to these bits. Notice that if we have an n-bit bus and 
LSB = 0, then MSB = n - 1. Also, for example, A[ 4] is the fifth bit on the bus (from 
the LSB). We use a 'L' or 'ADD' inside the symbol to denote an adder instead of '+', 
so we can attach '-' or '+/-' to the inputs for a subtracter or adder/subtracter. 

bus 
/symbol 

control~ .... 
signals ~ COUT[MSB]--COUT[MSB -1] 

A[MSB:O] 
S[MSB:O] 

A[MSB:O] 

B[MSB:O] 

B[MSB:O] 
n 

(a) (b) 

A[MSB:O] 

B[MSB:O] ! n 

data signals 
CIN[O] 

(c) 

n 

S[MSB:O] 

FIGURE 2.21 Symbols for a datapath adder. (a) A data bus is shown by a heavy line 
(1.5 point) and a bus symbol. If the bus is n-bits wide then MSB = n-1. (b) An alternative sym­
bol for an adder. (c) Control signals are shown as lightweight (0.5 point) lines. 

Some schematic datapath symbols include only data signals and omit the con­
trol signals-but we must not forget them. In Figure 2.21, for example, we may need 
to explicitly tie CIN[O] to VSS and use COUT[MSB] and COUT[MSB -1] to detect 
overflow. Why might we need both of these control signals? Table 2.11 shows the 
process of simple arithmetic for the different binary number representations, includ­
ing unsigned, signed magnitude, ones' complement, and two's complement. 
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TABLE 2.11 Binary arithmetic. 

Operation Unsigned 

Binary Number Representation 

Signed 
magnitude 

Ones' 
complement 

Two's 
complement 

no change 
if positive then MSB = 0 
else MSB= 1 

if negative then flip if negative then 

3= 

-3= 

zero = 

max. positive = 

max. negative = 

addition = 
S= A+B 

0011 

NA 

0000 

1111 = 15 

0000 =0 

bits {flip bits; add 1} 

0011 0011 0011 

1011 1100 1101 

0000 or 1000 1111 or 0000 0000 
----------

0111 = 7 0111=7 0111 = 7 

1111 =-7 1000=-7 1000=-8 

if SG(A) = SG(B) then S = 

= addend + augend S = A + B 
S=A+B A+B+COUnMS~ 
else {if B<Athen S=A-B 

SG(A) = sign of A 

addition result: 
OV = overflow, 
OR = out of range 

SG(S) = sign of S 

S= A+B 

subtraction = 
0= A-B 
=minuend 
- subtrahend 

subtraction result: 
OV = overflow, 
OR = out of range 

negation: 
Z=-A (negate) 

else S= B-A} COUT is carry out 

OR = COUT[MSB] if SG(A) = SG(B) then 
OV = COUT[MSB] 

COUT is carry out else OV = 0 (impossible) 

NA 

D=A-B 

if SG(A) = SG(B) then 
SG(S) = SG(A) 
else {if B < A then 
SG(S) = SG(A) 
else SG(S) = SG(B)} 

SG(B) = NOT(SG(B)); 
D=A+B 

OR = BOUT[MSB] as in addition 
BOUT is borrow out 

I 

NA 
Z=A; 
SG(Z) = NOT(SG(A)) 

OV= 
XOR(COUT[MSB], 
COUT[MSB-1 ]) 

NA 

Z=-B (negate); 
D=A+Z 

as in addition 

Z=NOT(A) 

OV= 
XOR(COUT[MSB], 
COUT[MSB -1]) 

NA 

Z=-B (negate); 
D=A+Z 

as in addition 

Z=NOT(A)+1 
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2.6.2 Adders 
We can view addition in terms of generate, G[i], and propagate, P[i], signals. 

method 1 method 2 

G[i] = AU] . B[i] G[i] = A[i] . B [I] (2.42) 

P[i] = A[i] EEl B[i] P[i] = A[i] + B[i] (2.43) 

C[i] = G[i] + P[i] . C[i -1] C[i] = G[i] + P[i] . C[i -1] (2.44) 

S[i] = P[i] EEl C[i -1] S[i] = A[i] EEl B[i] EEl C[i -1] (2.45) 

where C[i] is the carry-out signal from stage i, equal to the carry in of stage (i + 1). 
Thus, C[i] = COUT[i] = CIN[i + 1]. We need to be careful because C[O] might repre­
sent either the carry in or the carry out of the LSB stage. For an adder we set the 
carry in to the first stage (stage zero), C[-I] or CIN[O], to '0'. Some people use 
delete (D) or kill (K) in various ways for the complements of G[i] and P[i], but 
unfortunately others use C for COUT and D for CIN-so I avoid using any of these. 
Do not confuse the two different methods (both of which are used) in 
Eqs. 2.42-2.45 when forming the sum, since the propagate signal, P[i], is different 
for each method. 

Figure 2.22(a) shows a conventional RCA. The delay of an n-bit RCA is propor­
tional to n and is limited by the propagation of the carry signal through all of the 
stages. We can reduce delay by using pairs of "go-faster" bubbles to change AND 
and OR gates to fast two-input NAND gates as shown in Figure 2.22(a). Alterna­
tively, we can write the equations for the carry signal in two different ways: 

either 

or 

C[i] =A[i]· B[i] + P[i]· C[i-l] 

C[i] = (A[i] + B [i]) . (P[i], + C[i - 1 D, 

(2.46) 

(2.47) 

where P[i]' = NOT(P[i]). Equations 2.46 and 2.47 allow us to build the carry chain 
from two-input NAND gates, one per cell, using different logic in even and odd 
stages (Figure 2.22b): 

even stages odd stages 

Cl[i]' == P[i] . C3[i - 1] . C4[i - 1] C3[i]' = P[i] . Cl [i - 1] . C2[i - 1] (2.48) 

C2[i] = A[i] + B[i 1 C4[i]' = A[i] . B[i] (2.49) 

C[i] = Cl [i] . C2[i] C[i] = C3[i]' + C4[i]' (2.50) 

(the carry inputs to stage zero are C3[-1] = C4[-1] = '0'). We can use the RCA of 
Figure 2.22(b) in a datapath, with standard cells, or on a gate array. 
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C[i + 1] 

go-faster ~U(5 P:J 
W A[i+1] A[i+ 1] 

--t--+\--\ 

B[i+ 1] 

A[i] 

B[i] 

S[i+ 1] S[i+ 1] 

S[i] S[i] 

(a) (b) 

FIGURE 2.22 The ripple-carry adder (RCA). (a) A conventional RCA. The delay may be 
reduced slightly by adding pairs of bubbles as shown to use two-input NAND gates. (b) An 
alternative RCA circuit topology using different cells for odd and even stages and an extra 
connection between cells. The carry chain is a fast string of NAND gates (shown in bold). 

Instead of propagating the carries through each stage of an RCA, Figure 2.23 
shows a different approach. A carry-save adder (CSA) cell C5A(Al[i], A2[i], 
A3[i], CIN, 51 [i], 52[i], COUT) has three outputs: 

SI[i] = CIN (2.51) 

S2[i] = Al [i] EB A2[i] EB A3[i] = PARITY(AI [i], A2[i], A3[i]) (2.52) 

COUT = Al [i] . A2[i] + [(AI [i] + A2[i]) . A3[i]] = MAJ(AI [i], A2[i], A3[i]) (2.53) 

97



2.6 DATAPATHLOGIC CELLS 81 

The inputs, AI, A2, and A3; and outputs, SI and S2, are buses. The input, CIN, 
is the carry from stage (i -1). The carry in, CIN, is connected directly to the output 
bus S1-indicated by the schematic symbol (Figure 2.23a). We connect CIN[O] to 
VSS. The output, COUT, is the carry out to stage (i + 1). , 

A 4-bit CSA is shown in Figure 2.23(b). The arithmetic overflow signal for 
ones' complement or two's complement arithmetic, OV, is XOR(COUT[MSB], 
COUT[MSB -1]) as shown in Figure 2.23(c). In a CSA the carries are "saved" at 
each stage and shifted left onto the bus S 1. There is thus no carry propagation and 
the delay of a CSA is constant. At the output of a CSA we still need to add the S 1 
bus (all the saved carries) and the S2 bus (all the sums) to get an n-bit result using a 
final stage that is not shown in Figure 2.23(c). We might regard the n-bit sum as 
being encoded in the two buses, S 1 and S2, in the form of the parity and majority 
functions. 

We can use a CSA to add multiple inputs-as an example, an adder with four 4-
bit inputs is shown in Figure 2.23(d). The last stage sums two input buses using a 
carry-propagate adder (CPA). We have used an RCA as the CPA in Figure 2.23(d) 
and (e), but we can use any type of adder. Notice in Figure 2.23(e) how the two CSA 
cells and the RCA cell abut together horizontally to form a bit slice (or slice) and 
then the slices are stacked vertically to form the datapath. 

We can register the CSA stages by adding vectors of flip-flops as shown in 
Figure 2.23(f). This reduces the adder delay to that of the slowest adder stage, usu­
ally the CPA. By using registers between stages of combinational logic we use 
pipelining to increase the speed and pay a price of increased area (for the registers) 
and introduce latency. It takes a few clock cycles (the latency, equal to 11 clock 
cycles for an n-stage pipeline) to fill the pipeline, but once it is filled, the answers 
emerge every clock cycle. Ferris wheels work much the same way. When the fair 
opens it takes a while (latency) to fill the wheel, but once it is full the people can get 
on and off every few seconds. (We can also pipeline the RCA of Figure 2.20. We 
add i registers on the A and B inputs before ADD[i] and add (n - i) registers after the 
output S[i], with a single register before each C[i].) 

The problem with an RCA is that every stage has to wait to make its carry deci­
sion, C[i], until the previous stage has calculated C[i - 1]. If we examine the propa­
gate signals we can bypass this critical path. Thus, for example, to bypass the carries 
for bits 4-7 (stages 5-8) of an adder we can compute BYPASS = P[4].P[5].P[6].P[7] 
and then use a MUX as follows: 

C[7] = (G[7] + P[7] . C[6]) . BYPASS' + C[3] . BYPASS. (2.54) 

Adders based on this principle are called carry-bypass adders (CBA) [Sato et 
aI., 1992]. Large, custom adders employ Manchester-carry chains to compute the 
carries and the bypass operation using TGs or just pass transistors [Weste and 
Eshraghian, 1993, pp. 530-531]. These types of carry chains may be part of a pre de­
signed ASIC adder cell, but are not used by ASIC designers. 
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FIGURE 2.23 The carry-save adder (CSA). (a) A CSA cell. (b) A 4-bit CSA. (c) Symbol for 
a CSA. (d) A four-input CSA. (e) The datapath for a four-input, 4-bit adder using CSAs with a 
ripple-carry adder (RCA) as the final stage. (f) A pipelined adder. (g) The datapath for the 
pipelined version showing the pipeline registers as well as the clock control lines that use m2. 

Instead of checking the propagate signals we can check the inputs. For example 
we can compute SKIP=(A[i-l]EBB[i-1])+(A[i]EBB[i]) and then use a 2:1 
MUX to select C[iJ. Thus, 

CSKIP[iJ = (O[i] + P[i] . C[i - 1]) . SKIP' + C[i - 2] . SKIP. (2.55) 

This is a carry-skip adder [Keutzer, Malik, and Saldanha, 1991; Lehman, 1961]. 
Carry-bypass and carry-skip adders may include redundant logic (since the carry is 
computed in two different ways-we just take the first signal to arrive). We must be 
careful that the redundant logic is not optimized away during logic synthesis. 
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If we evaluate Eq. 2.44 recursively for i = 1, we get the following: 

C[l]= G[1] + P[1] . C[O} = G[l] + P[1] . (G[O] + P[l] . C[-l]) 

= G[1] + P[1] . G[O]. (2.56) 

This result means that we can "look ahead" by two stages and calculate the 
carry into the third stage (bit 2), which is C[1], using only the first-stage inputs (to 
calculate G[O]) and the second-stage inputs. This is a carry-Iookahead adder 
(CLA) [MacSorley, 1961]. If we continue expanding Eq. 2.44, we find: 

C[2]= G[2] + P[2] . G[1] + P[2] . P[1] . G[O], 

C[3]= G[3] + P[2] . G[2] + P[2] . P[l] . G[1] + P[3] . P[2] . P[1] . G[O]. (2.57) 

As we look ahead further these equations become more complex, take longer to 
calculate, and the logic becomes less regular when implemented using cells with a lim­
ited number of inputs. Datapath layout must fit in a bit slice, so the physical and logical 
structure of each bit must be similar. In a standard cell or gate array we are not so con­
cerned about a regular physical structure, but a regular logical structure simplifies 
design. The Brent-Kung adder reduces the delay and increases the regularity of the 
carry-lookahead scheme [Brent and Kung, 1982]. Figure 2.24(a) shows a regular 4-bit 
CLA, using the carry-Iookahead generator cell (CLG) shown in Figure 2.24(b). 

In a carry-select adder we duplicate two small adders (usually 4-bit or 8-bit 
adders-often CLAs) for the cases CIN = '0' and CIN = 'I' and then use a MUX to 
select the case that we need-wasteful, but fast [Bedrij, 1962]. A carry-select adder 
is often used as the fast adder in a datapath library because its layout is regular. 

We can use the carry-select, carry-bypass, and carry-skip architectures to split a 
12-bit adder, for example, into three blocks. The delay of the adder is then partly 
dependent on the delays of the MUX between each block. Suppose the delay due to 
I-bit in an adder block (we shall call this a bit delay) is approximately equal to the 
MUX delay. In this case it may be faster to make the blocks 3-, 4-, and 5-bits long 
instead of being equal in size. Now the delays into the final MUX are equal-
3 bit-delays plus 2 MUX delays for the carry signal from bits 0-6 and 5 bit-delays 
for the carry from bits 7-11. Adjusting the block size reduces the delay of large 
adders (more than 16 bits). 

We can extend the idea behind a carry-select adder as follows. Suppose we have 
an n-bit adder that generates two sums: One sum assumes a carry-in condition of '0', 
the other sum assumes a carry-in condition of 'I'. We can split this n-bit adder into 
an i-bit adder for the i LSBs and an (71 - i)-bit adder for the n - i MSBs. Both of the 
smaller adders generate two conditional sums as well as true and complement carry 
signals. The two (true and complement) carry signals from the LSB adder are used 
to select between the two (n - i + I)-bit conditional sums from the MSB adder using 
2(n - i + 1) two-input MUXes. This is a conditional-sum adder (also often abbrevi­
ated to CSA) [Sklansky, 1960]. We can recursively apply this technique. For exam­
ple, we can split a 16-bit adder using i = 8 and 71 = 8; then we can split one or both 
8-bit adders again-and so on. 
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FIGURE 2.24 The Brent-Kung carry-Iookahead adder (CLA). (a) Carry generation in a 
4-bit CLA. (b) A cell to generate the lookahead terms, C[0]-C[3]. (c) Cells L 1, L2, and L3 are 
rearranged into a tree that has less delay. Cell L4 is added to calculate C[2] that is lost in the 
translation. (d) and (e) Simplified representations of parts a and c. (f) The lookahead logic for 
an 8-bit adder. The inputs, 0-7, are the propagate and carry terms formed from the inputs to 
the adder. (g) An 8-bit Brent-Kung CLA. The outputs of the lookahead logic are the carry bits 
that (together with the inputs) form the sum. One advantage of this adder is that delays from 
the inputs to the outputs are more nearly equal than in other adders. This tends to reduce the 
number of unwanted and unnecessary switching events and thus reduces power dissipation. 
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Figure 2.25 shows the simplest form of an n-bit conditional-sum adder that uses 
n single-bit conditional adders, H (each with four outputs: two conditional sums, 
true carry, and complement carry), together with a tree of 2: 1 MUXes (Qi-J). The 
conditional-sum adder is usually the fastest of all the adders we have discussed (it is 
the fastest when logic cell delay increases with the number of inputs-this is true for 
all ASICs except FPGAs). 
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CCLk= carry in to the ith bit assuming the carry in to the jth bit is k (k= 0 or 1) 
SCLk= sum at the ith bit assuming the carry in to the jth bit is k (k= 0 or 1) 

2.6.3 

FIGURE 2.25 The conditional-sum adder. (a) A i-bit conditional adder that calculates the 
sum and carry out assuming the carry in is either '1' or '0'. (b) The multiplexer that selects 
between sums and carries. (c) A 4-bit conditional-sum adder with carry input, C[O]. 

A Simple Example 
How do we make and use datapath elements? What does a design look like? We may 
use predesigned cells from a library or build the elements ourselves from logic cells 
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using a schematic or a design language. Table 2.12 shows an 8-bit conditional-sum 
adder intended for an FPGA. This Verilog implementation uses the same structure as 
Figure 2.2S, but the equations are collapsed to use four or five variables. A basic 
logic cell in certain Xilinx FPGAs, for example, can implement two equations of the 
same four variables or one equation with five variables. The equations shown in 
Table 2.12 requires three levels of FPGA logic cells (so, for example, if each FPGA 
logic cell has a Sns delay, the 8-bit conditional-sum adder delay is lSns). 

TABLE 2.12 An 8-bit conditional-sum adder (the notation is described in Figure 2.25). 

module m8bitC8um (CO, a, b, s, C8); // Verilog conditional-sum adder for an FPGA //1 

input [7:0] CO, a, bi output [7:0] s; output C8i //2 

wire A7,A6,AS,A4,A3,A2,A1,AO,B7,B6,BS,B4,B3,B2,B1,BO,88,87,86,8S,84,83,82,81,80; //3 

wire CO, C2, C4_2_0, C4_2_1, 8S_4_0, 8S_4_1, C6, C6_4_0, C6_4_1, C8i //4 

assign {A7,A6,AS,A4,A3,A2,A1,AO} = ai assign {B7,B6,BS,B4,B3,B2,B1,BO} = b; //S 

assign s = { 87,86,8S,84,83,82,81,80 }; //6 
assign 80 = AOABOACO i // start of level 1: & = AND, A = XOR, I = OR, ! = NOT //7 

assign 81 A1 AB1 A(AO&BOI (AOIBO)&CO) i //8 

assign C2 = A1&B11 (A1IB1)&(AO&BOI (AOIBO)&CO) ; //9 

assign C4 2 ° A3&B31(A3IB3)&(A2&B2) i assign C4 2 1 = A3&B31(A3IB3)&(A2IB2) ; //10 
assign 8S 4 ° ASABS A(A4&B4); assign 8S 4 1 = ASABS A(A4IB4) i //11 

assign C6 4 ° AS&BSI(ASIBS)&(A4&B4); assign C6_4_1 = AS&BSI(ASIBS)&(A4IB4) i //12 
assign 82 
assign 83 

assign 84 
assign 8S 

assign C6 
assign 86 

assign 87 
assign C8 
endmodule 

A2 AB2 AC2 ; // start of level 2 
A3AB3A(A2&B21(A2IB2)&C2) ; 
A4AB4A(C4_2_0IC4_2_1&C2) ; 

8S_4_0& !(C4_2_0IC4_2_1&C2) 18S_4_1&(C4_2_0IC4_2_1&C2) 

C6_4_0IC6_4_1&(C4_2_0IC4_2_1&C2) 
A6 AB6 AC6 ; // start of level 3 

ArB7 A(A6&B61 (A6IB6)&C6) ; 

A7&B71(A7IB7s)&(A6&B61 (A6IB6)&C6) 

/ /13 

/ /14 
/ /1S 
/ /16 
//17 

//18 

//19 

//20 
//21 

Source: R. Halverson, University of Hawaii. 

Figure 2.26 shows the normalized delay and area figures for a set of predesigned 
datapath adders. The data in Figure 2.26 is from a series of ASIC datapath cell 
libraries (Compass Passport) that may be synthesized together with test vectors and 
simulation models. We can combine the different adder techniques, but the adders 
then lose regularity and become less suited to a datapath implementation. 

There are other adders that are not used in datapaths, but are occasionally useful 
in ASIC design. A serial adder is smaller but slower than the parallel adders we 
have described [Denyer and Renshaw, 1985]. The carry-completion adder IS a 
variable delay adder and rarely used in synchronous designs [Sklansky, 1960]. 
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FIGURE 2.26 Datapath adders. This data is from a series of sub micron datapath libraries. 
(a) Delay normalized to a two-input NAND logic cell delay (approximately equal to 250 ps in a 
0.5/lm process). For example, a 64-bit ripple-carry adder (RCA) has a delay of approximately 
30 ns in a 0.5 /lm process. The spread in delay is due to variation in delays between different 
inputs and outputs. An n-bit RCA has a delay proportional to n. The delay of an n-bit carry­
select adder is approximately proportional to log 2 n. The carry-save adder delay is constant 
(but requires a carry-propagate adder to complete an addition). (b) In a datapath library the 
area of all adders are proportional to the bit size. 

Multipliers 
Figure 2.27 shows a symmetric 6-bit array multiplier (an n-bit multiplier multiplies 
two n-bit numbers; we shall use n-bit by m-bit multiplier if the lengths are different). 
Adders aO-fO may be eliminated, which then eliminates adders al-a6, leaving an 
asymmetric CSA array of 30 (5 x 6) adders (including one half adder). An n-bit 
array multiplier has a delay proportional to n plus the delay of the CPA (adders 
b6-f6 in Figure 2.27). There are two items we can attack to improve the perfor­
mance of a multiplier: the number of partial products and the addition of the partial 
products. 

Suppose we wish to multiply 15 (the multiplicand) by 19 (the multiplier) men­
tally. It is easier to calculate 15 x 20 and subtract 15. In effect we complete the mul­
tiplication as 15 x (20 - 1) and we could write this as 15 x 2 I , with the overbar 
representing a minus sign. Now suppose we wish to multiply an 8-bit binary 
number, A, by B=OOOlOlll (decimal 16+4+2+ 1 =23). It is easier to multiply A 
by the canonical signed-digit vector (CSD vector) D= 00101001 (decimal 
32 - 8 + 1 = 23) since this requires only three add or subtract operations (and a sub-

64 
bits 
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FIGURE 2.27 Multiplication. A 6-bit array multiplier using a final carry-propagate adder 
(full-adder cells a6-f6, a ripple-carry adder). Apart from the generation of the summands this 
multiplier uses the same structure as the carry-save adder of Figure 2.23(d). 
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traction is as easy as an addition). We say B has a weight of 4 and D has a weight of 
3. By using D instead of B we have reduced the number of partial products by 1 
(=4- 3). 

We can recode (or encode) any binary number, B, as a CSD ,vector, D, as fol­
lows (canonical means there is only one CSD vector for any number): 

(2.58) 

where Ci + 1 is the carry from the sum of Bi + 1 + Bi + Ci (we start with Co = 0). 
As another example, if B = 011 (B2 = 0, Bl = 1, Bo = 1; decimal 3), then, using 

Eq.2.58, 

Do=BO+CO-2C1 = 1 +0-2= I, 

D 1 = B 1 + C1 - 2C2 = 1 + 1 - 2 = 0, 

D2 =B2 +C2-2C3 =0+ 1-0= 1, (2.59) 

so that D = 101 (decimal 4-1 = 3). CSD vectors are useful to represent fixed coeffi­
cients in digital filters, for example. 

We can recode using a radix other than 2. Suppose B is an (11 + I)-digit two's 
complement number, 

B - B B 2 B ')2 B ·2i B 2/l - 1 - B 2/1 - 0 + 1 + 2- + ... + / + ... + /1- I /l • 

We can rewrite the expression for B using the following sleight-of-hand: 

This is very useful. Consider B = 101001 (decimal 9- 32 = -23,17 = 5), 

= «-2 x 0)+ 1)20 + «-2 x 1)+ 0 + 0)22 + «-2 x 1)+ 0 + 1)24 . 

(2.60) 

(2.61 ) 

(2.62) 

Equation 2.61 tells us how to encode B as a radix-4 signed digit, E= 121 (decimal 
-16-8+ 1 =-23). To multiply by B encoded as E we only have to perform a 
multiplication by 2 (a shift) and three add/subtract operations. 
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Using Eq. 2.61 we can encode any number by taking groups of three bits at a 
time and calculating 

... , (2.63) 

where each 3-bit group overlaps by one bit. We pad B with a zero, Bn" .B1BoO, to 
match the first term in Eq. 2.61. If B has an odd number of bits, then we extend the 
sign: BnBn ... BIBOO. For example, B =01011 (eleven), encodes to E= 1 II 
(16-4-1); and B = 101 is E= II. This is called Booth encoding and reduces the 
number of partial products by a factor of two and thus considerably reduces the area 
as well as increasing the speed otour multiplier [Booth, 1951]. 

Next we turn our attention to improving the speed of addition in the CSA array. 
Figure 2.28(a) shows a section of the 6-bit array multiplier from Figure 2.27. We can 
collapse the chain of adders aO-f5 (5 adder delays) to the Wallace tree consisting of 
adders 5.1-5.4 (4 adder delays) shown in Figure 2.28(b). 

Figure 2.28(c) pictorially represents multiplication as a sort of golf course. Each 
link corresponds to an adder. The holes or dots are the outputs of one stage (and the 
inputs of the next). At each stage we have the following three choices: (1) sum three 
outputs using a full adder (denoted by a box enclosing three dots); (2) sum two out­
puts using a half adder (a box with two dots); (3) pass the outputs directly to the 
next stage. The two outputs of an adder are joined by a diagonal line (full adders use 
black dots, half adders white dots). The object of the game is to choose (1), (2), or 
(3) at each stage to maximize the performance of the multiplier. In tree-based 
multipliers there are two ways to do this-working forward and working backward. 

In a Wallace-tree multiplier we work forward from the multiplier inputs, com­
pressing the number of signals to be added at each stage [Wallace, 1960]. We can 
view an FA as a 3:2 compressor or (3, 2) counter-it counts the number of 'l's on 
the inputs. Thus, for example, an input of '101' (two 'l's) results in an output '10' (2). 
A half adder is a (2, 2) counter. To form Ps in Figure 2.29 we must add 6 summands 
(Sos, S 14, S23' S32> S41' and Sso) and 4 carries from the P 4 column. We add these in 
stages 1-7, compressing from 6:3:2:2:3:1:1. Notice that we wait until stage 5 to add 
the last carry from column P 4, and this means we expand (rather than compress) the 
number of signals (from 2 to 3) between stages 3 and 5. The maximum delay 
through the CSA array of Figure 2.29 is 6 adder delays. To this we must add the 
delay of the 4-bit (9 inputs) CPA (stage 7). There are 26 adders (6 half adders) plus 
the 4 adders in the CPA. 

In a Dadda multiplier (Figure 2.30) we work backward from the final product 
[Dadda, 1965]. Each stage has a maximum of 2, 3, 4, 6, 9, 13, 19, ... outputs (each 
successive stage is 3/2 times larger-rounded down to an integer). Thus, for 
example, in Figure 2.28(d) we require 3 stages (with 3 adder delays-plus the delay 
of a lO-bit output CPA) for a 6-bit Dadda multiplier. There are 19 adders (4 half 
adders) in the CSA plus the 10 adders (2 half adders) in the CPA. A Dadda 
multiplier is usually faster and smaller than a Wallace-tree multiplier. 
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FIGURE 2.28 Tree-based multiplication. (a) The portion of Figure 2.27 that calculates the 
sum bit, Ps, using a chain of adders (cells aO-f5). (b) We can collapse this chain to a Wallace 
tree (cells 5.1-5.5). (c) The stages of multiplication. 

In general, the number of stages and thus delay (in units of an FA delay­
excluding the CPA) for an n-bit tree-based multiplier using (3, 2) counters is 

10gl.S 11 = loglO 11/loglO 1.5 = 10glO 71/0.176. (2.64) 
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FIGURE 2.29 A 6-bit Wallace-tree multiplier. The carry-save adder (CSA) requires 26 
adders (cells 1-26, six are half adders). The final carry-propagate adder (CPA) consists of 4 
adder cells (27-30). The delay of the CSA is 6 adders. The delay of the CPA is 4 adders. 
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Figure 2.31 (a) shows how the partial-product array is constructed in a conven­
tional 4-bit multiplier. The Ferrari-Stefanelli multiplier (Figure 2.31 b) "nests" 
multipliers-the 2-bit submultipliers reduce the number of partial products [Ferrari 
and Stefanelli, 1969]. 

There are several issues in deciding between parallel multiplier architectures: 

1. Since it is easier to fold triangles rather than trapezoids into squares, a 
Wallace-tree multiplier is more suited to full-custom layout, but is slightly 
larger, than a Dadda multiplier-both are less regular than an array multiplier. 
For cell-based ASICs, a Dadda multiplier is smaller than a Wallace-tree multi­
plier. 

2. The overall multiplier speed does depend on the size and architecture of the 
final CPA, but this may be optimized independently of the CSA array. This 
means a Dadda multiplier is always at least as fast as the Wallace-tree version. 

109



o 

1 

2 

3 

--~--

-ttl-H+!+H+H-IH-H+'-

• • 

2.6 DATAPATH LOGIC CELLS 93 
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FIGURE 2.30 The 6-bit Dadda multiplier. The carry-save adder (CSA) requires 20 adders 
(cells 1-20, four are half adders). The carry-propagate adder (CPA, cells 21-30) is a ripple­
carry adder (RCA). The CSA is smaller (20 versus 26 adders), faster (3 adder delays versus 
6 adder delays), and more regular than the Wallace-tree CSA of Figure 2.29. The overall 
speed of this implementation is approximately the same as the Wallace-tree multiplier of 
Figure 2.29; however, the speed may be increased by substituting a faster CPA. 

3. The low-order bits of any parallel multiplier settle first and can be added in the 
CPA before the remaining bits settle. This allows multiplication and the final 
addition to be overlapped in time. 

4. Any of the parallel multiplier architectures may be pipelined. We may also use 
a variably pipelined approach that tailors the register locations to the size of 
the multiplier. 

5. Using (4,2), (5,3), (7, 3), or (15, 4) counters increases the stage compression 
and permits the size of the stages to be tuned. Some ASIC cell libraries contain 
a (7,3) counter-a 2-bit full-adder. A (15, 4) counter is a 3-bit full adder. 
There is a trade-off in using these counters between the speed and size of the 
logic cells and the delay as well as area of the interconnect. 

6. Power dissipation is reduced by the tree-based structures. The simplified 
carry-save logic produces fewer signal transitions and the tree structures pro­
duce fewer glitches than a chain. 
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(a) (b) (c) 

FIGURE 2.31 Ferrari-Stefanelli multiplier. (a) A conventional 4-bit array multiplier using 
AND gates to calculate the summands with (2, 2) and (3, 2) counters to sum the partial prod­
ucts. (b) A 4-bit Ferrari-Stefanelli multiplier using 2-bit submultipliers to construct the partial 
product array. (c) A circuit implementation for an inverting 2-bit submultiplier. 

7. None of the multiplier structures we have discussed take into account the pos­
sibility of staggered arrival times for different bits of the multiplicand or the 
multiplier. Optimization then requires a logic-synthesis tool. 

2.6.5 Other Arithmetic Systems 
There are other schemes for addition and multiplication that are useful in special cir­
cumstances. Addition of numbers using redundant binary encoding avoids carry 
propagation and is thus potentially very fast. Table 2.13 shows the rules for addition 
using an intermediate carry and sum that are added without the need for carry. For 
example, 

binary decimal redundant CSD 
binary vector 

1010111 87 10101001 10101001 addend 
+ 1100101 101 + 11100111 + 01100101 augend 

= 10111100 188 01001110 11001100 intermediate sum 
11000101 11000000 intermediate carry 

111000100 101001100 sum 
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TABLE 2.13 Redundant binary addition. 

Intermediate Intermediate 
A[i] B[i] A[i-1] B[i-1] sum carry 

1 1 x x 0 1 

0 A[i-l]=O/l and B[i-l]=O/l 0 

0 1 A[i-l]=l or B[i-l]=l 1 1 

1 x x 0 0 

1 1 x x 0 0 
--------- -------------------------------------------------------------------------------------------------------------------

o 

o 
1 

1 

o 
1 

o 
1 

x x 

A[i-l]=O/l and B[i-l]=O/l 

A[i-l]=l or B[i-l]=l 

x x 

o 

1 

o 

The redundant binary representation is not unique. We can represent 101 (deci­
mal), for example, by 1100101 (binary and CSD vector) or 11100111. As another 
example, 188 (decimal) can be represented by 10111100 (binary), 111000100, 
101001100, or 101000100 (CSD vector). Redundant binary addition of binary, 
redundant binary, or CSD vectors does not result in a unique sum, and addition of 
two CSD vectors does not result in a CSD vector. Each n-bit redundant binary num­
ber requires a rather wasteful 2n-bit binary number for storage. Thus 101 is repre­
sented as 010010, for example (using sign magnitude). The other disadvantage of 
redundant binary arithmetic is the need to convert to and from binary representation. 

Table 2.14 shows the (5, 3) residue number system. As an example, 11 (deci­
mal) is represented as [1,2] residue (5,3) since 11Rs = 11 mod 5 = 1 and 11R3 = 11 
mod 3 = 2. The size of this system is thus 3 x 5 = 15. We add, subtract, or multiply 
residue numbers using the modulus of each bit position-without any carry. Thus: 

4 

+ 7 
= 11 

[4, 1] 

+ [2, 1] 

= [1, 2] 

12 
- 4 

8 

[2, 0] 

- [4, 1] 
= [3, 2] 

3 

x 4 
= 12 

[3, 0] 

X [4, 1] 

= [2, 0] 

The choice of moduli determines the system size and the computing complexity. The 
most useful choices are relative primes (such as 3 and 5). With p prime, numbers of 
the form 2P and 2P - 1 are particularly useful (2P - 1 are Mersenne's numbers) 
[Waser and Flynn, 1982]. 

2.6.6 Other Datapath Operators 
Figure 2.32 shows symbols for some other datapath elements. The combinational 
datapath cells, NAND, NOR, and so on, and sequential datapath cells (flip-flops and 
latches) have standard-cell equivalents and function identically. I use a bold outline 

o 

1 

o 
1 
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TABLE 2.14 The 5, 3 residue number system. 

n residue 5 

0 0 

1 1 

2 2 

3 3 

4 4 

residue 3 n residue 5 residue 3 n residue 5 residue 3 

0 5 0 2 10 0 1 

1 6 1 0 11 1 2 

2 7 2 1 12 2 0 

0 8 3 2 13 3 1 

1 9 4 0 14 4 2 

(l point) for datapath cells instead of the regular (0.5 point) line I use for scalar sym­
bols. We call a set of identical cells a vector of datapath elements in the same way 
that a bold symbol, A, represents a vector and A represents a scalar. 

D[MSB:O] 
-~-+-I A[MSB:O) ~MSB:O) 

B[MSB:O)~ 

AI ~ Z[MSB:O) 

B[MSB:O)~ 

(c) 

(a) 

A[MSB:O) ~ Z[MSB:O) 

B[MSB:O) ¥ 
~[MSB:O] 

~ 

(b) 
A[MSB:O) 

~Z~Z B[MSB:O) 

(d) (e) (f) (g) (h) 

FIGURE 2.32 Symbols for datapath elements. (a) An array or vector of flip-flops (a regis­
ter). (b) A two-input NAND cell with databus inputs. (c) A two-input NAND cell with a control 
input. (d) A buswide MUX. (e) An incrementer/decrementer. (f) An all-zeros detector. (g) An 
all-ones detector. (h) An adder/subtracter. 

A subtracter is similar to an adder, except in a full subtracter we have a 
borrow-in signal, BIN; a borrow-out signal, BOUT; and a difference signal, DIFF: 

DIFF = A E9 NOT(B) E9 NOT(BIN) = SUM(A, NOT(B), NOT(BIN») (2.65) 

NOT(BOUT) = A . NOT(B) + A . NOT(BIN) + NOT(B) . NOT(BIN) 

= MAJ(NOT(A), B, NOT(BIN» (2.66) 
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These equations are the same as those for the FA (Eqs. 2.38 and 2.39) except 
that the B input is inverted and the sense of the carry chain is inverted. To build a 
subtracter that calculates (A - B) we invert the entire B input bus and connect the 
BIN[O] input to VDD (not to VSS as we did for CIN[O] in an adder). As an example, 
to subtract B = '~O 11' from A = '1001' we calculate '100 I' + '11 ~O' + 'I' = '011 0'. As 
with an adder, the true overflow is XOR(BOUT[MSB], BOUT[MSB - 1]). 

We can build a ripple-borrow subtracter (a type of borrow-propagate sub­
tracter), a borrow-save subtracter, and a borrow-select subtracter in the same way we 
built these adder architectures. An adder/subtracter has a control signal that gates 
the A input with an exclusive-OR cell (forming a programmable inversion) to switch 
between an adder or subtracter. Some adder/subtracters gate both inputs to allow us 
to compute (-A-B). We must be careful to connect the input to the LSB of the carry 
chain (CIN[O] or BIN[O]) when changing between addition (connect to VSS) and 
subtraction (connect to VDD). 

A barrel shifter rotates or shifts an input bus by a specified amount. For exam­
ple if we have an eight-input barrel shifter with input '1111 DODO' and we specify a 
shift of '0001 DODO' (3, coded by bit position) the right-shifted 8-bit output is 
'0001 1110'. A barrel shifter may rotate left or right (or switch between the two 
under a separate control). A barrel shifter may also have an output width that is 
smaller than the input. To use a simple example, we may have an 8-bit input and a 
4-bit output. This situation is equivalent to having a barrel shifter with two 4-bit 
inputs and a 4-bit output. Barrel shifters are used extensively in floating-point arith­
metic to align (we call this normalize and denormalize) floating-point numbers 
(with sign, exponent, and mantissa). 

A leading-one detector is used with a normalizing (left-shift) barrel shifter to 
align mantissas in floating-point numbers. The input is an n-bit bus A, the output is 
an n-bit bus, S, with a single 'I' in the bit position corresponding to the most signifi­
cant 'I' in the input. Thus, for example, if the input is A = 'DODO 010 I' the leading­
one detector output is S = 'DODO DIDO', indicating the leading one in A is in bit posi­
tion 2 (bit 7 is the MSB, bit zero is the LSB). If we feed the output, S, of the 
leading-one detector to the shift select input of a normalizing (left-shift) barrel 
shifter, the shifter will normalize the input A. In our example, with an input of 
A = 'DODO 010 1', and a left-shift of S = 'DODO 01 00', the barrel shifter will shift A left 
by five bits and the output of the shifter is Z = '1010 ~O~O'. Now that Z is aligned 
(with the MSB equal to 'I') we can multiply Z with another normalized number. 

The output of a priority encoder is the binary-encoded position of the leading 
one in an input. For example, with an input A = 'DODO 0101' the leading 1 is in bit 
position 3 (MSB is bit position 7) so the output of a 4-bit priority encoder would be 
Z = '~O 11' (3). In some cell libraries the encoding is reversed so that the MSB has an 
output code of zero, in this case Z='0101' (5). This second, reversed, encoding 
scheme is useful in floating-point arithmetic. If A is a mantissa and we normalize A 
to '1010 DODO' we have to subtract 5 from the exponent, this exponent correction is 
equal to the output of the priority encoder. 
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An accumulator is an adder/subtracter and a register. Sometimes these are 
combined with a multiplier to form a multiplier-accumulator (MAC). An 
incrementer adds 1 to the input bus, Z = A + 1, so we can use this function, together 
with a register, to negate a two's complement number for example. The implementa­
tion is Z[i] = XOR(A[i], CIN[i]) , and COUT[i] = AND(A[i], CIN[i]). The carry-in 
control input, CIN[O], thus acts as an enable: If it is set to '0' the output is the same 
as the input. 

The implementation of arithmetic cells is often a little more complicated than 
we have explained. CMOS logic is naturally inverting, so that it is faster to imple­
ment an incrementer as 

Z[i(even)] = XOR(A[i], CIN[i]) and COUT[i(even)] = NAND(A[i], CIN[i]). 

This inverts COUT, so that in the following stage we must invert it again. If we push 
an inverting bubble to the input CIN we find that: 

Z[i(odd)] = XNOR(A[i], CIN[i]) and COUT[i(even)] = NOR(NOT(A[i]), CIN[i]). 

In many datapath implementations all odd-bit cells operate on inverted carry 
signals, and thus the odd-bit and even-bit datapath elements are different. In fact, all 
the adder and subtracter datapath elements we have described may use this tech­
nique. Normally this is completely hidden from the designer in the datapath assem­
bly and any output control signals are inverted, if necessary, by inserting buffers. 

A decrementer subtracts 1 from the input bus, the logical implementation is 
Z[iJ = XOR(A[i], CIN[i]) and COUT[i] = AND(NOT(A[i]), CIN[i]). The implemen­
tation may invert the odd carry signals, with CIN[O] again acting as an enable. 

An incrementer/decrementer has a second control input that gates the input, 
inverting the input to the carry chain. This has the effect of selecting either the incre­
ment or decrement function. 

Using the all-zeros detectors and all-ones detectors, remember that, for a 4-bit 
number, for example, zero in ones' complement arithmetic is '1111' or '0000', and 
that zero in signed magnitude arithmetic is '1000' or '0000'. 

A register file (or scratchpad memory) is a bank of flip-flops arranged across 
the bus; sometimes these have the option of multiple ports (multipart register files) 
for read and write. Normally these register files are the densest logic and hardest to 
fit in a datapath. For large register files it may be more appropriate to use a multipart 
memory. We can add control logic to a register file to create a fh'st-in first-out 
register (FIFO), ar last-in first-out register (LIFO). 

In Section 2.5 we saw that the standard-cell version and gate-array macro ver­
sion of the sequential cells (latches and flip-flops) each contain their own clock buff­
ers. The reason for this is that (without intelligent placement software) we do not 
know where a standard cell or a gate-array macro will be placed on a chip. We also 
have no idea of the condition of the clock signal coming into a sequential cell. The 
ability to place the clock buffers outside the sequential cells in a datapath gives us 
more flexibility and saves space. For example, we can place the clock buffers for all 
the clocked elements at the top of the datapath (together with the buffers for the con-
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trol signals) and river route (in river routing the interconnect lines all flow in the 
same direction on the same layer) the connections to the clock lines. This saves 
space and allows us to guarantee the clock skew and timing. It may mean, however, 
that there is a fixed overhead associated with a datapath. For example, it might make 
no sense to build a 4-bit datapath if the clock and control buffers take up twice the 
space of the datapath logic. Some tools allow us to design logic using a portable 
netlist. After we complete the design we can decide whether to implement the porta­
ble netlist in a datapath, standard cells, or even a gate array, based on area, speed, or 
power considerations. 

2.7 I/O Cells 

Figure 2.33 shows a three-state bidirectional output buffer (Tri-State® is a registered 
trademark of National Semiconductor). When the output enable (OE) signal is high, 
the circuit functions as a noninverting buffer driving the value of DATAin onto the 
I/O pad. When OE is low, the output transistors or drivers, Ml and M2, are discon­
nected. This allows mUltiple drivers to be connected on a bus. It is up to the designer 
to make sure that a bus never has two drivers-a problem known as contention. 

In order to prevent the problem opposite to contention--a bus floating to an 
intermediate voltage when there are no bus drivers-we can use a bus keeper or 
bus-hold cell (TI calls this Bus-Friendly logic). A bus keeper normally acts like two 
weak (low drive-strength) cross-coupled inverters that act as a latch to retain the last 
logic state on the bus, but the latch is weak enough that it may be driven easily to 
the opposite state. Even though bus keepers act like latches, and will simulate like 
latches, they should not be used as latches, since their drive strength is weak. 

Transistors Ml and M2 in Figure 2.33 have to drive large off-chip loads. If we 
wish to change the voltage on a C = 200 pF load by 5 V in 5 ns (a slew rate of 
1 Vns-1) we will require a current in the output transistors of 

-I? -9 
IDS = C(dV/dt) = (200 x 10 -) (5/5x 10 ) = 0.2A or 200 rnA. 

Such large currents flowing in the output transistors must also flow in the power 
supply bus and can cause problems. There is always some inductance in series with 
the power supply, between the point at which the supply enters the ASIC package 
and reaches the power bus on the chip. The inductance is due to the bond wire, lead 
frame, and package pin. If we have a power-supply inductance of 2 nH and a current 
changing from zero to 1 A (32 I/O cells on a bus switching at 30 rnA each) in 5 ns, 
we will have a voltage spike on the power supply (called power-supply bounce) of 
L(dI/dt) = (2 x 10-9)(1/(5 x 10-9» = 0.4 V. 

We do several things to alleviate this problem: We can limit the number of 
simultaneously switching outputs (SSOs), we can limit the number of I/O drivers 
that can be attached to anyone VDD and GND pad, and we can design the output 
buffer to limit the slew rate of the output (we call these slew-rate limited I/O pads). 
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Quiet-I/O cells also use two separate power supplies and two sets of I/O drivers: an 
AC supply (clean or quiet supply) with small AC drivers for the I/O circuits that 
start and stop the output slewing at the beginning and end of a output transition, and 
a DC supply (noisy or dirty supply) for the transistors that handle large currents as 
they slew the output. 

The three-state buffer allows us to employ the same pad for input and output­
bidirectional I/O. When we want to use the pad as an input, we set OE low and take 
the data from DATAin. Of course, it is not necessary to have all these features on 
every pad: We can build output-only or input-only pads. 

FIGURE 2.33 A three-state bidirectional out­
put buffer. When the output enable, OE, is '1' the 
output section is enabled and drives the I/O pad. 
When OE is '0' the output buffer is placed in a 
high-impedance state. 

from core 
logic 

OE 

output 
enable 

DATAout 

DATAin 

to core 
logic 

VDD 

11 

I/O 
pad 

We can also use many of these output cell features for input cells that have to 
drive large on-chip loads (a clock pad cell, for example). Some gate arrays simply 
turn an output buffer around to drive a grid of interconnect that supplies a clock sig­
nal internally. With a typical interconnect capacitance of 0.2 pFcm-1, a grid of 
100 cm (consisting of 10 by 10 lines running all the way across a 1 cm chip) presents 
a load of 20 pF to the clock buffer. 

Some libraries include I/O cells that have passive pull-ups or pull-downs (resis­
tors) instead of the transistors, Ml and M2 (the resistors are normally still con­
structed from transistors with long gate lengths). We can also omit one of the driver 
transistors, M 1 or M2, to form open-drain outputs that require an external pull-up 
or pull-down. We can design the output driver to produce TTL output levels rather 
than CMOS logic levels. We may also add input hysteresis (using a Schmitt trigger) 
to the input buffer, 11 in Figure 2.33, to accept input data signals that contain 
glitches (from bouncing switch contacts, for example) or that are slow rising. The 
input buffer can also include a level shifter to accept TTL input levels and shift the 
input signal to CMOS levels. 

The gate oxide in CMOS transistors i.s extremely thin (l00 A or less). This 
leaves the gate oxide of the I/O cell input transistors susceptible to breakdown from 
static electricity (electrostatic discharge, or ESD). ESD arises when we or 
machines handle the package leads (like the shock I sometimes get when I touch a 
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doorknob after walking across the carpet at work). Sometimes this problem is called 
electrical overstress (EOS) since most ESD-related failures are caused not by gate­
oxide breakdown, but by the thermal stress (melting) that occurs when the n-channel 
transistor in an output driver overheats (melts) due to the large current that can flow 
in the drain diffusion connected to a pad during an ESD event. ' 

To protect the I/O cells from ESD, the input pads are normally tied to device 
structures that clamp the input voltage to below the gate breakdown voltage (which 
can be as low as 10 V with a 100 A gate oxide). Some I/O cells use transistors with a 
special ESD implant that increases breakdown voltage and provides protection. I/O 
driver transistors can also use elongated drain structures (ladder structures) and large 
drain-to-gate spacing to help limit current, but in a salicide process that lowers the 
drain resistance this is difficult. One solution is to mask the I/O cells during the sali­
cide step. Another solution is to use pnpn and npnp diffusion structures called 
silicon-controlled rectifiers (SCRs) to clamp voltages and divert current to protect 
the I/O circuits from ESD. 

There are several ways to model the capability of an I/O cell to withstand EOS. 
The human-body model (HBM) represents ESD by a 100 pF capacitor discharging 
through a 1.5 kQ resistor (this is an International Electrotechnical Committee, IEC, 
specification). Typical voltages generated by the human body are in the range of 
2-4 k V, and we often see an I/O pad cell rated by the voltage it can withstand using 
the HBM. The machine model (MM) represents an ESD event generated by auto­
mated machine handlers. Typical MM parameters use a 200 pF capacitor (typically 
charged to 200 V) discharged through a 25 Q resistor, corresponding to a peak initial 
current of nearly 10 A. The charge-device model (CDM, also called device 
charge-discharge) represents the problem when an IC package is charged, in a ship­
ping tube for example, and then grounded. If the maximum charge on a package is 
3 nC (a typical measured figure) and the package capacitance to ground is 1.5 pF, we 
can simulate this event by charging a 1.5 pF capacitor to 2 kV and discharging it 
through a 1 Q resistor. 

If the diffusion structures in the I/O cells are not designed with care, it is possi­
ble to construct an SCR structure unwittingly, and instead of protecting the transis­
tors the SCR can enter a mode where it is latched on and conducting large enough 
currents to destroy the chip. This failure mode is called latch-up. Latch-up can 
occur if the pn-diodes on a chip become forward-biased and inject minority carriers 
(electrons in p-type material, holes in lHype material) into the substrate. The 
source-substrate and drain-substrate diodes can become forward-biased due to 
power-supply bounce or output undershoot (the cell outputs fall below Vss) or 
overshoot (outputs rise to greater than V DD) for example. These injected minority 
carriers can travel fairly large distances and interact with nearby transistors causing 
latch-up. I/O cells normally surround the I/O transistors with guard rings (a contin­
uous ring of n-diffusion in an n-well connected to VDD, and a ring of p-ditIusion in 
a p-well connected to VSS) to collect these minority carriers. This is a problem that 
can also occur in the logic core and this is one reason that we normally include sub­
strate and well connections to the power supplies in every cell. 
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2 .. 8 Cell Compilers 

The process of hand crafting circuits and layout for a full-custom IC is a tedious, 
time-consuming, and error-prone task. There are two types of automated layout 
assembly tools, often known as a silicon compilers. The first type produces a spe­
cific kind of circuit, a RAM compiler or multiplier compiler, for example. The 
second type of compiler is more flexible, usually providing a programming language 
that assembles or tiles layout from an input command file, but this is full-custom IC 
design. 

We can build a register file from latches or flip-flops, but, at 4.5-6.5 gates 
(18-26 transistors) per bit, this is an expensive way to build memory. Dynamic 
RAM (DRAM) can use a cell with only one transistor, storing charge on a capacitor 
that has to be periodically refreshed as the charge leaks away. ASIC RAM is invari­
ably static (SRAM), so we do not need to refresh the bits. When we refer to RAM in 
an ASIC environment we almost always mean SRAM. Most ASIC RAMs use a six­
transistor cell (four transistors to form two cross-coupled inverters that form the 
storage loop, and two more transistors to allow us to read from and write to the cell). 
RAM compilers are available that produce single-port RAM (a single shared bus 
for read and write) as well as dual-port RAMs, and multiport RAMs. In a multi­
port RAM the compiler mayor may not handle the problem of address contention 
(attempts to read and write to the same RAM address simultaneously). RAM can be 
asynchronous (the read and write cycles are triggered by control and/or address 
transitions asynchronous to a clock) or synchronous (using the system clock). 

In addition to producing layout we also need a model compiler so that we can 
verify the circuit at the behavioral level, and we need a netlist from a netlist 
compiler so that we can simulate the circuit and verify that it works correctly at the 
structural level. Silicon compilers are thus complex pieces of software. We assume 
that a silicon compiler will produce working silicon even if every configuration has 
not been tested. This is still ASIC design, but now we are relying on the fact that the 
tool works correctly and therefore the compiled blocks are correct by construction. 

2.9 Summary 

The most important concepts that we covered in this chapter are the following: 

., The use of transistors as switches 

" The difference between a flip-flop and a latch 

G The meaning of setup time and hold time 

e Pipelines and latency 

" The difference between datapath, standard-cell, and gate-array logic cells 

• Strong and weak logic levels 
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• Pushing bubbles 

• Ratio of logic 

• Resistance per square of layers and their relative values in CMOS 

Design rules and A 

2.10 Problems 

* = Difficult,**= Very difficult, *** = Extremely difficult 
2.1 (Switches, 20 min.) (a) Draw a circuit schematic for a two-way light 

switch: flipping the switch at the top or bottom of the stairs reverses the state of two 
light bulbs, one at the top and one at the bottom of the stairs. Your schematic should 
show and label all the cables, switches, and bulbs. (b) Repeat the problem for three 
switches and one light in a warehouse. 

2.2 (Logic, 10 min.) The queen wished to choose her successor wisely. She 
blindfolded and then placed a crown on each of her three children, explaining that 
there were three red and two blue crowns, and they must deduce the color of their 
own crown. With blindfolds removed the children could see the two other crowns, 
but not their own. After a while Anne said: "My crown is red." How did she know? 

2.3 (Minus signs, 20 min.) The channel charge in an n-channel transistor is neg­
ative. (a) Should there not be a minus sign in Eq. 2.5 to account for this? (b) If so, 
then where in the derivation of Section 2.1 does the minus sign disappear to arrive at 
Eq. 2.9 for the current in an n-channel transistor? (c) The equations for the current in 
a p-channel transistor (Eq. 2.15) have the opposite sign to those for an n-channel 
transistor. Where in the derivation in Section 2.1 does the extra minus sign arise? 

'os/mA 
1 

0.3 flm, 20/20 n-ch. 

FIGURE 2.34 Transistor characteristics for a 
0.3 flm process (Problem 2.4). 
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2.4 (Transistor curves, 20 min.) Figure 2.34 shows the measured IDs-VDS char­
acteristics for a 20/20 n-channe1 transistor in a 0.3 11m (effective gate length) process 
from an ASIC foundry. Derive as much information as you can from this figure. 

2.5 (Body effect, 20 min). The equations for the drain-source current (2.9, 2.12, 
and 2.15) do not contain VSB ' the source voltage with respect to the bulk, because 
we assumed that it was zero. This is not true for the n-channel transistor whose drain 
is connected to the output in a two-input NAND gate, for example. A reverse 
substrate bias (or back-gate bias; VSB > 0 for an n-channe1 transistor) makes the 
bulk act like a second gate (the back gate) and modifies an n-channel transistor 
threshold voltage as follows: 

(2.67) 

where VtOn is measured with VSB = 0 V; <Po is called the surface potential; and y 
(gamma) is the body-effect coefficient (back-gate bias coefficient), 

(2.68) 

There are several alternative names and symbols for <Po ("phi," a positive quan­
tity for an n-channe1 transistor, typically between 0.6-0.7V)-you may also see <Pb 
(for bulk potential) or 2<PF (twice the Fermi potential, a negative quantity). In 
Eq. 2.68, £Si = EO£r= 1.053 x 10-10 Fm-1 is the permittivity of silicon (the permittiv­
ity of a vacuum EO = 8.85 X 10-12 Fm-1 and the relative permittivity of silicon is 
Er= 11.7); NA is the acceptor doping concentration in the bulk (for p-type substrate 
or well-ND for the donor concentration in an n-type substrate or well); and Cox is 
the gate capacitance per unit area given by 

(2.69) 

3. Calculate the theoretical value of y for NA = 1016 cm-3
, Tox = lOok 

b. Calculate and plot VIn for VSB ranging from OV to 5V in increments of 1 V 
assuming values of y= 0.5 VO.5, <Po = 0.6V, and VtOn = 0.5 V obtained from 
transistor characteristics. 

c. Fit a linear approximation to Vtn . 

d. Recognizing VSB ~ 0 V, rewrite Eq. 2.67 for a p-channel device. 

e. (Harder) What effect does the back-gate bias effect have on CMOS logic circuits? 

Answer: (a) 0.17 VO.5 (b) 0.50-1.3 V. 

2.6 (Sizing layout, 10 min.) Stating clearly whatever assumptions you make and 
describing the tools and methods you use, estimate the size (in A) of the standard 
cell shown in Figure 1.3. Estimate the size of each of the transistors, giving their 
channel lengths and widths (stating clearly which is which). 
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2.7 (CMOS process) (20min.) Table 2.15 shows the major steps involved in a 
typical deep submicron CMOS process. There are approximately 100 major steps in 
the process. 

a. If each major step has a yield of 0.9, what is the overall proc~ss yield? 

b. If the process yield is 90 % (not uncommon), what is the average yield at 
each major step? 

c. If each of the major steps in Table 2.15 consists of an average of five other 
microtasks, what is the average yield of each of the 500 microtasks. 

d. Suppose, for example, an operator loads and unloads a furnace five times a 
day as a micro task, how many days must the operator work without making a 
mistake to achieve this micro task yield? 

e. Does this seem reasonable? What is wrong with our model? 

f. (**60 min.) Draw the process cross-section showing, in particular, the poly, 
FOX, gate oxide, IMOs and metal layers. You may have to make some 
assumptions about the meanings and functions of the various steps and lay­
ers. Assume all layers are deposited on top of each other according to the 
thicknesses shown (do not attempt to correct for the silicon consumed during 
oxidation-even if you understand what this means). The abbreviations in 
Table 2.15 are as follows: dep. = deposition; LPCVD = low-pressure chemi­
cal vapor deposition (for growing oxide and poly); LDD = lightly doped 
drain (a way to improve transistor characteristics); SOG = silicon overglass 
(a deposited quartz to help with step coverage between metal layers). 

Answer: (a) Zero. (b) 0.999. (c) 0.9998. (d) 3 years. 

2.8 (Stipple patterns, 30min.) 

a. Check the stipple patterns in Figure 2.9. Using ruled paper draw 8-by-8 stip­
ple patterns for all the combinations of layers shown. 

b. Repeat part a for Figure 2.10. 

2.9 (Select, 20 min.) Can you draw a design-rule correct (according to the 
design rules in Tables 2.7-2.9) layout with a piece of select that has a minimum 
width of 2').., (rule 4.4)? 

2.10 (*Inverter layout, 60 min.) Using I/4-inch ruled paper (or similar) draw a 
minimum-size inverter (W IL = 1 for both p-channel and n-channel transistors). Use a 
scale of one square to 2').., and the design rules in Table 2.7-Table 2.9. Do not use m2 
or m3-only ml. Draw the nwell, pwell, ndiff, and pdiff layers, but not the implant 
layers or the active layer. Include connections to the input, output, VDD, and VSS in 
ml. There must be at least one well connection to each well (n-well to VDD, and 
p-well to VSS). Minimize the size of your cell BB. Draw the BB outline and write 
its size in ')..,2 on your drawing. Use green diagonal stripes for ndiff, brown diagonal 
stripes for pdiff, red diagonal stripes for poly, blue diagonal stripes for m 1, solid 
black for contact). Include a key on your drawing, and clearly label the input, out­
put, VDD, and VSS contacts. 
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TABLE 2.15 CMOS process steps (Problem 2.7).1 

Step Depth Step Depth Step Depth 

substrate 32 resist strip 63 m1 mask 

2 oxide 1 dep. 500 33 WSi anneal 64 m1 etch 

3 nitride 1 dep. 1500 34 nLDD mask 65 resist strip 

4 n-well mask 35 nLDD implant 66 base oxide dep. 6000 

5 n-well etch 36 resist strip 67 SOG coat1/2 3000 

6 n-well implant 37 pLOD mask 68 SOG cure/etch -4000 

7 resist strip 38 pLOD implant 69 cap oxide dep. 4000 

8 blocking oxide dep. 2000 39 resist strip 70 via1 mask 

9 nitride 1 strip 40 spacer oxide dep. 3000 71 via1 etch -2500 

10 p-well implant 41 WSi anneal 72 resist strip 

11 p-well drive 42 SO oxide dep 200 73 TiWdep. 2000 

12 active oxide dep. 250 43 n+ mask 74 AICu/TiW dep. 4000 

13 nitride 2 dep. 1500 44 n+ implant 75 m2 mask 

14 active mask 45 resist strip 76 m2 etch 

15 active etch 46 ESD mask 77 resist strip 

16 resist strip 47 ESD implant 78 base oxide dep. 6000 

17 field mask 48 resist strip 79 SOG coat 1/2 3000 

18 field implant 49 p+ mask 80 SOG cure/etch -4000 

19 resist strip 50 p+ implant 81 cap oxide dep. 4000 

20 field oxide dep. 5000 51 resist strip 82 via2 mask 

21 nitride 2 strip 52 implant anneal 83 via2 etch -2500 

22 sacrificial oxide dep. 300 53 LPCVD oxide dep. 1500 84 resist strip 

23 Vt adjust implant 54 BPSG dep./densify 4000 85 TiWdep. 2000 

24 gate oxide dep. 80 55 contact mask 86 AICu/TiW dep. 4000 

25 LPCVD poly dep. 1500 56 contact etch -2500 87 m3 mask 

26 deglaze 57 resist strip 88 m3 etch 

27 WSi dep. 1500 58 Pt dep. 200 89 resist strip 

28 LPCVD oxide dep. 750 59 Pt sinter 90 oxide dep. 4000 

29 poly mask 60 Pt strip 92 nitride dep. 10,000 

30 oxide etch 61 TiW dep. 2000 93 pad mask 

31 polycide etch 62 AICu/TiW dep. 4000 94 pad etch 

1 Depths of layers are in angstroms (negative values are etch depths). For abbreviations used, see Problem 2.7. 
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2.11 (*AOI221 Layout, 120min.) Layout the AOI221 shown in Figure 2.13 
with the design rules of Tables 2.7-2.9 and using Figure 1.3 as a guide. Label clearly 
the m1 corresponding to the inputs, output, VDD bus, and GND (VSS) bus. Remem­
ber to include substrate contacts. What is the size of your BB in 'A 2? . 

2.12 (Resistance, 20 min.) 

a. Using the values for sheet resistance shown in Table 2.3, calculate the resis­
tance of a 200'A long (in the direction of current flow) by 3'A wide piece of 
each of the layers. 

b. Estimate the resistance of an 8-inch, 1O.Q cm, p-type, <100> wafer, measured 
(i) from edge to edge across a diameter and (ii) from face center to the face 
center on the other side. 

2.13 (*Layout graphics, 120 min.) Write a tutorial for capturing layout. As an 
example: 

To capture EPSF (encapsulated PostScript format) from Tanner Research's 
L-Edit for documentation, Macintosh version ... Create a black-and-white technology 
file, use Setup, Layers ... , in L-Edit. The method described here does not work well 
for grayscale or color. Use File, Print..., Destination check button File to print from 
L-Edit to an EPS (encapsulated PostScript) file. After you choose Save, a dialog box 
appears. Select Format: EPS Enhanced Mac Preview, ASCII, Level 1 Compatible, 
Font Inclusion: None. Save the file. Switch to Frame. Create an Anchored Frame. 
Use File, Import, File ... to bring up a dialog box. Check button Copy into Docu­
ment, select Format: EPSF. Import the EPS file that will appear as a "page image". 
Grab the graphic inside the Anchored Frame and move the "page image" around. 
There will be a footer with text on the "page image" that you may want to hide by 
using the Anchored Frame edges to crop the image. 

Your instructions should be precise, concise, assume nothing, and use the names 
of menu items, buttons and so on exactly as they appear to the user. Most of the lay­
out figures in this book were created using L-Edit running on a Macintosh, with 
labels added in FrameMaker. Most of the layouts use the Compass layout editor. 

2.14 (Transistor resistance, 20min.) Calculate IDS and the resistance (the DC 
value VDs/IDS as well as the AC value av DS/aI DS as appropriate) of long-channel 
transistors with the following parameters, under the specified conditions. In each 
case state whether the transistor is in the saturation region, linear region, or off: 

(i) n-channel: Vtn = 0.5 V, ~n = 40 flAV-2 : 

Vcs =3.3V: a. VDs =3.3V b. VDS=O.OV c. VCs=O.OY, VDs =3.3V 

(ii) p-channel: Y tp =-0.6 Y, ~p = 20 flAy-2 : 

VCs=O.OV: a. VDS=O.OY b. VDs =-5.0V c. Vcs=-5.0V, VDs =-5.0V 

2.15 (Circuit theory, 15 min.) You accidentally created the "inverter" shown in 
Figure 2.35 on a full-custom ASIC currently being fabricated. Will it work? Your 
manager wants a yes or no answer. Your group is a little more understanding: You 
are to make a presentation to them to explain the problems ahead. Prepare two foils 
as well as a one page list of alternatives and recommendations. 
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FIGURE 2.35 A CMOS "inverter" with n-channel and p-channel 
transistors swapped (Problem 2.15). 

2.16 (Mask resolution, 10 min.) People use LaserWriters to make printed­
circuit boards all the time. 

a. Do you think it is possible to make an IC mask using a 600 dpi (dots per inch) 
LaserWriter and a transparency? 

b. What would A be? 

c. (Harder) See if you can use a microscope to look at the dot and the rectangu­
lar bars (serifs) of a letter 'i' from the output of a LaserWriter on paper (most 
are 300 dpi or 600 dpi). Estimate A. What is causing the problem? Why is 
there no rush to generate 1200 dpi LaserWriters for paper? Put a page of this 
textbook under the microscope: can you see the difference? What are the 
similar problems printing patterns on a wafer? 

2.17 (Lambda, 10 min.) Estimate A 

a. for your TV screen, 

b. for your computer monitor, 

c. (harder) a photograph. 

2.18 (Pass-transistor logic, 10 min.) 

a. In Figure 2.36 suppose we set A = B = C = D = 'I', what is the value of F? 

b. What is the logic strength of the signal at F? 

c. If V DD = 5 V and Vtn = 0.6 V, what would the voltage at the source and drain 
terminals of MI, M2, and M3 be? 

d. Will this circuit still work if V DD = 3 V? 

e. At what point does it stop working? 

FIGURE 2.36 A pass transistor chain (Problem 
2.18). 

M1 M2 M3 F 
ALJLf1----.I 

TTT 
B C o 
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2.19 (Transistor parameters, 20 min.) Calculate the (a) electron and (b) hole 
mobility for the transistor parameters given in Section 2.1 if k' = 80 !lA y-2 and 

, 2 n 
k =40!lAY-p . 

Answer: (a) 0.023 m2y-1s-l. 

2.20 (Quantum behavior, 10 min.) The average thermal energy of an electron is 
approximately kT, where k = 1.38 X 10-23 JK-1 is Boltzmann's constant and T is the 
absolute temperature in kelvin. 

a. The kinetic energy of an electron is (l/2)mv2, where v is due to random ther­
mal motion, and m = 9.11 x 10-31 kg is the rest mass. What is v at 300 K? 

b. The electron wavelength I = hlp, where h = 6.62 X 10-34 Js is the Planck con­
stant, and p = mv is the electron momentum. What is I at 25°C? 

c. Compare the thermal velocity with the saturation velocity. 

d. Compare the electron wavelength with the MOS channel length and with the 
gate-oxide thickness in a 0.25 !lm process and a 0.1 !lm process. 

2.21 (Gallium arsenide, 5 min.) The electron mobility in GaAs is about 
8500 cm2y-1s-l; the hole mobility is about 400 cm2y-1s-l. If we could make com­
plementary n-channel and p-channel GaAs transistors (the same way that we do in a 
CMOS process) what would the ratio of a GaAs inverter be to equalize rise and fall 
times? About how much faster would you expect GaAs transistors to be than silicon 
for the same transistor sizes? 

2.22 (Margaret of Anjou, 5 min.) 

a. Why is it ones' complement but two's complement? 

b. Why Queen's University, Belfast but Queens' College, Cambridge? 

2.23 (Logic cell equations, 5 min.) Show that Eq. 2.31, 2.36, and 2.37 are conect. 

2.24 (Cany-Iookahead equations, 10 min.) 

a. Derive the cany-Iookahead equations for i = 8. Write them in the same form 
as Eq. 2.56. 

b. Derive the equations for the Brent-Kung structure for i = 8. 

2.25 (OAI cells, 20 min.) Draw a circuit schematic, including transistor sizes, 
for (a) an OAI321 cell, (b) an A0I321 cell. (c) Which do you think will be larger? 

2.26 (**Making stipple patterns) Construct a set of black-and-white, transpar­
ent, 8-by-8 stipple patterns for a CMOS process in which we draw both well layers, 
the active layer, poly, and both diffusion implant layers separately. Consider only the 
layers up to m1 (but include ml and the contact layer). One useful tool is the Apple 
Macintosh Control Panel, 'General Controls,' that changes the Mac desktop pattern. 

a. (60 min.) Create a set of patterns with which you can detect any enors (for 
example, n-well and p-well overlap, or n-implant and p-implant overlap). 

b. (60 min.+) Using a layout of an inverter as an example, find a set of patterns 
that allows you to trace transistors and connections (a very qualitative goal). 

c. (Days+) Find a set of grayscale stipple patterns that allow you to produce lay­
outs that "look nice" in a report (much, much harder than it sounds). 
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2.27 (AOI and OAI cells, 10 min.). Draw the circuit schematics for an AOI22 
and an OAI22 cell. Clearly label each transistor as on or off for each cell for an 
input vector of (AI, A2, B1, B2) = (0101). 

2.28 (Flip-flops and latches, 10 min.) In no more than 20 words describe the 
difference between a flip-flop and a latch. 

2.29 (** An old argument) Should setup and hold times appear under maximum, 
minimum, or typical in a data sheet? (From Peter Alike.) 

2.30 (***Setup, 20 min.) "There is no such thing as a setup and hold time, just 
two setup times-for a 'I' and for a '0'." Comment. (From Clemenz Portmann.) 

2.31 (Subtracter, 20 min.) Show that you can rewrite the equations for a full 
subtracter (Eqs. 2.65-2.66) to be the same as a full adder-except that A is inverted 
in the borrow out equation, as follows: 

DIFF = A EB B EB BIN = SUM(A, B, BIN) (2.70) 

BOUT = NOT (A) . B + NOT(A) . BIN + B . BIN = MAJ(NOT(A), B, CIN) (2.71) 

Explain very carefully why we need to connect BIN[O] to VSS. Show that for a 
subtracter implemented by inverting the B input of an adder and setting CIN[O] = '1', 
the true overflow for ones' complement or two's complement representations is 
XOR(CIN[MSB], CIN[MSB -1]). Does this hold for the above subtracter? 

2.32 (Complex CMOS cells) Logic synthesis has completely changed the 
nature of combinational logic design. Synthesis tools like to see a huge selection of 
cells from which to choose in order to optimize speed or area. 

a. (20 min.) How many AOInnnn cells are there, if the maximum value of 11 = 4? 

b. (30 min.) Consider cells of the form AOInnnn where n can be negative-indi­
cating a set of inputs are inverted. Thus, an AOI-22 (where the hyphen '-' 
indicates the following input is inverted) is a NOR(NOR(A, B), AND(C, D», 
for example. How many logically different cells of the AOhxxx family are 
there if x can be '-2', '-I', 'I', or '2' with no more than four inputs? Remember 
the AOI family includes OAI, AO, and OA cells as well as just AOI. List 
them using an extension to the notation for a cell with mixed-sign inputs: for 
example, an AOO-1)1 cell is NOT(NOR(AND(A, NOT(B», C». Hint: Be 
very careful because some cells with negative inputs are logically equivalent 
to others with positive inputs. 

c. (10 min.) If we include NAND and NOR cells with inverting inputs in a 
library, how many different cells in the NAND family are there with four or 
fewer inputs (the NAND family includes NOR, AND, and OR cells)? 

d. (30 min.) How many cells in the AOI and NAND families are there with four 
inputs or less that use fewer than eight transistors? Include cells that are logi­
cally equivalent but have different physical implementations. For example, a 
NAND 1-1 cell, requiring six transistors, is logically equivalent to an ORl-l 
cell that requires eight transistors. The OR 1-1 implementation may be useful 
because the output inverter can easily be sized to produce an ORl-1 cell with 
higher drive. 
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e. (**60 min.) How many cells are there with fewer than four inputs that do not 
fit into the AOI or NAND families? Hint: There is an inverter, a buffer, a 
half-adder, and the three-input majority function, for example. 

f. (***) Recommend a better, user-friendly, naming system (which is also CAD 
tool compatible) for combinational cells. 

2.33 (**Design rules, 60 min.) A typical set of deep submicron CMOS design 
rules is shown in Table 2.16. Design rules are often confusing and use the following 
"buzz-words," perhaps to prevent others from understanding them. 

The end cap is the extension of poly gate beyond the active or diffusion. 

Overlap. Normally one material is completely contained within the other, over­
lap is then the amount of the "surround." 

Extension refers to the extension of diffusion beyond the poly gate. 

Same (in a spacing rule) means the space to the same type of diffusion or implant. 

Opposite refers to the space to the opposite type of diffusion or implant. 

A dogbone is the area surrounding a contact. Often the spacing to a dogbone 
contact is allowed be slightly less than to an isolated line. 

Field is the area outside the active regions. The field oxide (sandwiched 
between the diffusion layers and the poly or ml layers) is thicker than the gate 
oxide and separates transistors. 

Exact refers to contacts that are all the same size to simplify fabrication. 

A butting contact consists of two adjacent diffusions of the opposite type (con­
nected with metal). This occurs when a well contact is placed next to a source 
contact. 

Fat metal. Some design rules use different spacing for metal lines that are 
wider than a certain amount. 

a. Draw a copy of the MOSIS rules as shown in Figure 2.11, but using the rule 
numbers and values in microns and A from Table 2.l6. 

b. How compatible are the two sets of rules? 

2.34 (ESD, lOmin.) 

a. Explain carefully why a CMOS device can withstand a 2000 V ESD event 
when the gate breakdown voltage is only 5-10 V, but that shorting a device 
pin to a 10 V supply can destroy it. 

b. Explain why an electric shock from a 240 VAC supply can kill you, but an 
3000 VDC shock from a static charge (walking across a nylon carpet and 
touching a metal doorknob) only gives you a surprise. 

2.35 (*Stacks in CMOS cells, 60 min.) 

3. Given a CMOS cell of the form AOlijk or OAlijk (i, j, k> 0) derive an equa­
tion for the height (the number of transistors in series) and the width (the 
number of transistor in parallel) of the n-channel and p-channel stacks. 

b. Suppose we increase the number of indices to four, i.e. AOlijkl. How do your 
equations change? 
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TABLE 2.16 ASIC design rules (Problem 2.33). Absolute values in microns are given for A = 0.2 flm. 

Layer Rule1 
flm A Layer Rule flm 'A 

nwell N.1 width 2 1 1.1 width 0.6 

N.2 sp. (same) 1 1.2 sp. (same) 0.6 

diff 0.1 width 0.5 1.3 sp. to diff (same) 0.55 

0.2 transistor width 0.6 1.4 sp. to butting diff 0 

0.3 sp. (same) 0.6 1.4 ov. of diff 0.25 1.25 

0.4 sp. (opposite) 0.8 4 1.5 sp. to poly on active 0.5 2.5 

0.5 p+ (nwell) to n+ (pwell) 2.4 12 1.6 sp. (opposite) 0.3 1.5 

0.6 nwell ov. of n+ 0.6 3 1.7 sp. to butting implant 0 0 

0.7 nwell sp. to p+ 0.6 3 contact C.1 size (exact) 0.4 2 

0.8 extension over gate 0.6 3 C.2sp. 0.6 3 

0.9 nwell ov. of p+ 1.2 6 C.3 poly ov. 0.3 1.5 

0.10 nwell sp. to n+ 1.2 6 C.4 diff ov. (2 sides/others) 0.25/0.35 1.25/1.75 

poly P.1 width 0.4 2 C.5 metal ov. 0.25 1.25 

P.2 gate 0.4 2 C.6 sp. to poly 0.3 1.5 

P.3 sp. (over active) 0.6 3 C.7 poly contact to diff 0.5 2.5 

P.4 sp. (over field) 0.5 2.5 Mn.1 width 0.6/0.7/1.0 3/3.5/4 

P.5 short sp. (dogbone) 0.45 2.25 + m2/m3 Mn.2 sp. (fat> 25 'A is 5 'A) 0.6/0.7/1.0 3/3.5/4 

P.6 end cap 0.45 2.25 Mn.3 sp. (dogbone) 0.5 2.5 

P.7 sp. to diffusion 0.2 1 Vn.1 size (exact) 0.4 2 

Vn.2 sp. 0.8 4 

Vn.3 metal ov. 0.25 1.25 

1 sp. = space; ov. = overlap; same = same diffusion or implant type; opposite = opposite implant or diffusion type; 
diff = p+ or n+; p+ = p+ diffusion; n+ = n+ diffusion; implant= p+ or n+ implant select. 

c. If the stack height cannot be greater than three, which three-index AOIUk and 
OAlijk cells are illegal? Often limiting the stack height to three or four is a 
design rule for radiation-hard libraries-useful for satellites. 

2.36 (Duals, 20 min.) Draw the n-channel stack (including device sizes, assum­
ing a ratio of 2) that complements the p-channel stack shown in Figure 2.37. 

2.37 (***FPGA conditional-sum adder, days+) A Xilinx application-note (M. 
Klein, "Conditional sum adder adds 16 bits in 33 ns," Xilinx Application Brief, 
Xilinx data book, 1992, p. 6-26) describes a 16-bit conditional-sum adder using 41 
CLBs in three stages of addition; see also [Sklansky, 1960]. A Xilinx XC3000 or 
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FIGURE 2.37 A p-channel stack 
using a bridge device, E (Problem 
2.36). 
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XC4000 CLB can perform any logic function of five variables, or two functions of 
(the same) four variables. Can you find a solution with fewer CLBs in three stages? 
Hint: R. P. Halverson of the University of Hawaii produced a solution with 36 CLBs. 

2.38 (Encoding, 10min.) Booth's algorithm was suggested by a shortcut used 
by operators of decimal calculating machines that required turning a handle. To mul­
tiply 5 by 23 you set the levers to 5 and turned the handle three times, change gears 
and turn twice more. 

a. What is the equivalent of 142343? 

b. How many turns do we save using the shortcut? 

2.39 (CSD, 20min.) 

a. Show how to convert 1010 111 (decimal 87) to the CSD vector 10 10100 I. 
b. Convert 1000101 to the CSD vector. 

c. How do you know that 1 I 1 00 11 I (decimal 10 1) is not the CSD vector rep­
resentation of 11 001 0 1 (decimal lOJ)? 

2.11 Bibliography 

The topics of this chapter are covered in more detail in Weste and Eshraghian 
[1993]. The simulator SPICE was developed at UC Berkeley and now has many 
commercial derivatives including Meta Software's HSPICE and Microsim's PSpice. 
Mead [1989] gives a description of MOS transistor operation in the subthreshold 
region of operation. Muller and Kamins provide an introduction to device physics 
[1977 and 1986]. Sze [1988]; Chang and Sze [1996]; and Campbell [1996] cover 
process technology in detail at an advanced level. Rabaey [1996] describes full­
custom CMOS datapath circuit design, Chandrakasan and Brodersen [1995] describe 
low-power datapath design. Books by Brodersen [1992] and Gajski [1988] cover sil­
icon compilers. Mukherjee [1986] covers CMOS process and fabrication issues at an 
introductory level. Texts on analog ASIC design include Haskard and May [1988), 
and Trontelj [1989]. J. Y. Chen [1990] and Uyemura [1992] provide an analysis of 
combinational and sequential logic design. The book by Diaz [1995] contains hard 
to find material on I/O cell design for ESD protection. The patent literature is the 
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only source for often proprietary high-speed and quiet I/O design. Wakerly [1994] 
and Katz [1994] are basic references for CMOS logic design (including sequential 
logic and binary arithmetic) though they emphasize PLDs rather than ASICs. 
Advanced material on computer arithmetic can be found in books by Hwang [1979]; 
Waser and Flynn [1982]; Cavanagh [1984]; and C. H. Chen [1992]. 

A large number of papers on digital arithmetic were published in the 1960s. In 
ASIC design we work at the architectural level and not at the transistor level and so 
this early work is useful. Many of these early papers appeared in the IRE 
Transactions on Computers that changed to IRE Transactions on Electronic 
Computers (ISSN 0367-7508, 1963-67) and then to the IEEE Transactions on 
Computers (ISSN 0018-9340, 1967-). A series of important papers on multipliers 
appeared in Alta Frequenza (ISSN 0002-6557, 1932-89; ISSN 1120-1908, 1989-) 
[Dadda, 1965; Dadda and Ferrari, 1968]. Copies of these papers may be obtained 
through interlibrary loans (in the United States from Texas A&M library, for exam­
ple). The two volumes by Swartzlander [1990] contain reprints of some of these arti­
cles. Ranganathan [1993] contains reprints of more recent articles. Papers on CMOS 
logic and arithmetic may be found in the reports of the following conferences: 
Proceedings of the Symposium on Computer Arithmetic (QA 76.9.C62.S95a, ISSN 
1063-6889), IEEE International Conference on Computer Design (TK7888.4.I35a, 
ISSN 1063-6404), and the IEEE International Solid-State Circuits Conference 
(TK7870.I58; ISSN 0074-8587, 1960-68; ISSN 0193-6530, 1969-). Papers on arith­
metic and algorithms that are more theoretical in nature can be found in the Journal 
of the Association of Computing Machinery. Online ACM journal articles can be 
found at http://www.acm.org. 
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Once we have decided to use an ASIC design style-using predefined and 
precharacterized cells from a library-we need to design or buy a cell library. Even 
though it is not necessary a knowledge of ASIC library design makes it easier to use 
library cells effectively. 

3.1 Transistors as Resistors 

In Section 2.1, "CMOS Transistors," we modeled transistors using ideal switches. If 
this model were accurate, logic cells would have no delay. 

The ramp input, v (inl), to the inverter in Figure 3.1 (a) rises quickly from zero 
to VDD. In response the output, v(outl), falls from VDD to zero. In Figure 3.1(b) 
we measure the propagation delay of the inverter, tpD, using an input trip point of 
0.5 and output trip points of 0.35 (falling, tPDf) and 0.65 (rising, tpD,.J. Initially the 
n-channel transistor, ml, is off. As the input rises, ml turns on in the saturation region 
(V DS > V GS - Vtl) before entering the linear region (V DS < V GS - Vt/). We model 
transistor ml with a resistor, Rpd (Figure 3.1c); this is the pull-down resistance. The 
equivalent resistance of m2 is the pull-up resistance, Rpll" 
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(a) 

Voo 
-lOS 
.. p 

outl 

• II I -00sp + 10Sn) oSn '::" 

ml: 

t'=O 
... ~ 

off saturation 

(b) 

linear 

(c) 

FIGURE 3.1 A model for CMOS logic delay. (a) A CMOS inverter with a load capacitance, 
Couto (b) Input, v (inl), and output, v( outl), waveforms showing the definition of the falling 
propagation delay, tpDf. In this case delay is measured from the input trip point of 0.5. The out­
put trip points are 0.35 (falling) and 0.65 (rising). The model predicts tpDf"" Rpd( Cp + Cout). 
(c) The model for the inverter includes: the input capacitance, C; the pull-up resistance (Rpu) 
and pull-down resistance (Rpd); and the parasitic output capacitance, Cp-

Delay is created by the pull-up and pull-down resistances, Rpd and Rpu' together 
with the parasitic capacitance at the output of the cell, Cp (the intrinsic output 
capacitance) and the load capacitance (or extrinsic output capacitance), Cout 
(Figure 3.1c). If we assume a constant value for Rpd' the output reaches a lower trip 
point of 0.35 when (Figure 3.1 b), 

[ 
-tPDf ] 

0.35VDD = VDDexp R (C +C)· 
pel out p 

(3.1) 

An output trip point of 0.35 is convenient because In 0/0.35) = 1.04 = 1 and thus 

t PDf = Rpel (Cout + C p) In(0.~5) = Rpd (Cout + C p). (3.2) 

The expression for the rising delay (with a 0.65 output trip point) is identical in 
form. Delay thus increases linearly with the load capacitance. We often measure 
load capacitance in terms of a standard load-the input capacitance presented by a 
particular cell (often an inverter or two-input NAND cell). 

We may adjust the delay for different trip points. For example, for output trip points 
of 0.1/0.9 we multiply Eg. 3.2 by -In (0.1) = 2.3, because exp (-2.3) = 0.100. 
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Figure 3.2 shows the DC characteristics of a CMOS inverter. To form 
Figure 3.2(b) we take the n-channel transistor surface (Figure 2Ab) and add that for 
a p-channel transistor (rotated to account for the connections). Seen from above, the 
intersection of the two surfaces is the static transfer curve of Figure 3.2(a)-along 
this path the transistor currents are equal and there is no output current to change the 
output voltage. Seen from one side, the intersection is the curve of Figure 3.2(c). 

(a) (b) 

v(outl) IV o 
nonequilibrium path 

~ 

.~ 
v nonequilibrium path 

2 

1 

equilibrium 
path 

IOSn=-IOSp 

o +-.====;====:::s;;;;:::====-, 
o 1 2 3 

v (inl ) IV 

FIGURE 3.2 CMOS inverter characteristics. 
(a) This static inverter transfer curve is traced as the 
inverter switches slowly enough to be in equilibrium 
at all times (Iosn = -Iosp). (b) This surface corre­
sponds to the current flowing in the n-channel transis­
tor (falling delay) and p-channel transistor (rising 
delay) for any trajectory. (c) The current that flows 
through both transistors as the inverter switches 
along the equilibrium path. 
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The input waveform, v( inl), and the output load (which determines the tran­
sistor currents) dictate the path we take on the surface of Figure 3.2(b) as the 
inverter switches. We can thus see that the currents through the transistors (and thus 
the pull-up and pull-down resistance values) will vary in a nonlinear way during 
switching. Deriving theoretical values for the pull-up and pull-down resistance val­
ues is difficult-instead we work the problem backward by picking the trip points, 
simulating the propagation delays, and then calculating resistance values that fit the 
model. 

Figure 3.3 shows a simulation experiment (using the G5 process SPICE parame­
ters from Table 2.1). From the results in Figure 3.3(c) we can see that Rpd= 817 Q 

and Rpu = 1281 Q for this inverter (with shape factors of 6/0.6 for the n-channel tran­
sistor and 12/0.6 for the p-channel) using 0.5 (input) and 0.35/0.65 (output) trip 
points. Changing the trip points would give different resistance values. 

We can check that 817 Q is a reasonable value for the pull-down resistance. In 
the saturation region I DS(sat) is (to first order) independent of V DS. For an n-channel 
transistor from our generic 0.5 !lm process (G5 from Section 2.1) with shape factor 
W!L=6/0.6, IDSn(sat)=2.5mA (at VGs =3V and VDs =3V). The pull-down 
resistance, R 1, that would give the same drain-source current is 

-3 
Rl = 3.0V / (2.5 x 10 A) = 1200 Q. (3.3) 

This value is greater than, but not too different from, our measured pull-down 
resistance of 817 Q. We might expect this result since Figure 3.2b shows that the 
pull-down resistance reaches its maximum value at V GS = 3V, V DS = 3Y. We could 
adjust the ratio of the logic so that the rising and falling delays were equal; then 
R =Rpd = Rpu is the pull resistance. 

Next, we check our model against the simulation results. The model predicts 

-t' 
v ( au t1) "=' V D D exp R ( C + C ) for t' > 0 

pd out P 

(3.4) 

(t' is measured from the point at which the input crosses the 0.5 trip point, t' = 0 at 
t = 20 ps). With C p = 4 standard loads = 4 x 0.034 pF = 0.136 pF, 

(3.5) 

To make a comparison with the simulation we need to use In 0/0.35) = l.04 and 
not approximately 1 as we have assumed, so that (with all times in ps) 

Equation 3.6 is plotted in Figure 3.3(d). For v (outl) = 1.05 V (equal to the 
0.35 output trip point), Eq. 3.6 predicts t=20+ 149.112"=' 169ps and agrees with 
Figure 3.3(b)-it should because we derived the model from these results! 
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FIGURE 3.3 Delay. (a) LogicWorks schematic for inverters driving 1, 2, 4, and 8 standard 
loads (1 standard load = 0.034 pF in this case). (b) Transient response (falling delay only) 
from PSpice. The postprocessor Probe was used to mark each waveform as it crosses its trip 
point (0.5 for the input, 0.35 for the outputs). For example v( outl 4) (4 standard loads) 
crosses 1.0467 V (",0.35 VDD ) at t= 169.93 ps. (c) Falling and rising delays as a function of 
load. The slopes in pspF-1 corresponds to the pull-up resistance (1281 Q) and pull-down 
resistance (817 Q). (d) Comparison of the delay model (valid for t > 20 ps) and simulation (4 
standard loads). Both are equal at the 0.35 trip point. 

400ps 
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Now we find Cp- From Figure 3.3(c) and Eq. 3.2 

tPDr = (52 + 1281Cout) ps =} Cpr = 52/1281 = O.041pF 

tPDf = (38 + 817Cout) ps =} C pf = 38/817 = O.047pF 

(rising) 

(falling) 
(3.7) 

These intrinsic parasitic capacitance values depend on the choice of output trip 
points, even though C pfRpdf and C prRpdr are constant for a given input trip point 
and waveform, because the pull-up and pull-down resistances depend on the choice 
of output trip points. We take a closer look at parasitic capacitance next. 

3.2 Transistor Parasitic Capacitance 

Logic-cell delay results from transistor resistance, transistor (intrinsic) parasitic 
capacitance, and load (extrinsic) capacitance. When one logic cell drives another, 
the parasitic input capacitance of the driven cell becomes the load capacitance of the 
driving cell and this will determine the delay of the driving cell. 

Figure 3.4 shows the components of transistor parasitic capacitance. SPICE 
prints all of the MOS parameter values for each transistor at the DC operating point. 
The following values were printed by PSpice (v5.4) for the simulation of Figure 3.3: 

NAME ml m2 

MODEL CMOSN CMOSP 

ID 7.49E-ll -7.49E-ll 

VGS O.OOE+OO -3.00E+OO 

VDS 3.00E+OO -4.40E-OS 
VBS O.OOE+OO O.OOE+OO 

VTH 4.14E-Ol -S.96E-Ol 
VDSAT 3.S1E-02 -1.7SE+OO 

GM 1. 7SE-09 2.S2E-ll 
GDS 1.24E-IO 1.72E-03 

GMB 6.02E-IO 7.02E-12 
CBD 2.06E-IS 1.71E-14 

CBS 4.4SE-IS 1.71E-14 
CGSOV 1. SOE-IS 2.SSE-IS 
CGDOV 1. SOE-IS 2.SSE-IS 
CGBOV 2.00E-16 2.01E-16 
CGS O.OOE+OO 1.lOE-14 
CGD O.OOE+OO 1.lOE-14 
CGB 3.SSE-IS O.OOE+OO 

The parameters ID (IDS), VGS, VDS, VBS, VTH (Vt), and VDSAT (V DS(sat) are DC 
parameters. The parameters GM, GDS, and GMB are small-signal conductances (colTe­
sponding to dI DS/dV GS' dI DS/dV DS' and dI DS/ dV BS' respectively). The 
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channel edge ____ ---r-__ 0 
Gassw '----"'" o 

Gaosw 

(a) 
GND or 
VSS 

GaSJ 

(g) 

Gao 

= GaoJ+ Gaosw 
D + GaOJGATE 

S+ 
Gas 

GGS cGSOV I = GasJ+ Gassw 
B -= + GaSJGATE (d) 

FIGURE 3.4 Transistor parasitic capacitance. (a) An n-channel MOS transistor with 
(drawn) gate length L and width W. (b) The gate capacitance is split into: the constant overlap 
capacitances CGSOV, CGDOV, and CGBOV and the variable capacitances GGS, GGB, and GGo. 
which depend on the operating region. (c) A view showing how the different capacitances are 
approximated by planar components (T FOX is the field-oxide thickness). (d) GBs and GBO are 
the sum of the area (GBSJ, GBDJ) , sidewall (GBSs lM GBOSW ) , and channel edge (GBSJGATE' 
GBOJGATE) capacitances. (e)-(f) The dimensions of the gate, overlap, and sidewall capaci­
tances (LD is the lateral diffusion). 

-
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remaining parameters are the parasitic capacitances. Table 3.1 shows the calculation 
of these capacitance values for the n-channel transistor ml (with W = 6 11m and 
L = 0.6 11m) in Figure 3.3(a). 

3.2.1 Junction Capacitance 
The junction capacitances, C BD and CBS, consist of two parts: junction area and 
sidewall; both have different physical characteristics with parameters: CJ and MJ for 
the junction, CJSW and MJSW for the sidewall, and PB is common. These capaci­
tances depend on the voltage across the junction (V DB and VSB)' The calculations in 
Table 3.1 assume both source and drain regions are 6 11m x 1.2 11m rectangles, so that 
AD = As = 7.2 (Ilm)2, and the perimeters (excluding the 1.21lm channel edge) are 
PD = Ps = 6 + 1.2 + 1.2 = 8.4 11m. We exclude the channel edge because the sidewalls 
facing the channel (corresponding to CBSJGATE and CBDJGATE in Figure 3.4) are dif­
ferent from the sidewalls that face the field. There is no standard method to allow for 
this. It is a mistake to exclude the gate edge assuming it is accounted for in the rest 
of the model-it is not. A pessimistic simulation includes the channel edge in PD 
and Ps (but a true worst-case analysis would use more accurate models and worst­
case model parameters). In HSPICE there is a separate mechanism to account for the 
channel edge capacitance (using parameters ACM and CJGATE). In Table 3.1 we have 
neglected CJGATE' 

For the p-channel transistor m2 (W = 12 11m and L = 0.6 11m) the source and 
drain regions are 12 ~lm x 1.2 11m rectangles, so that AD = As = 14 (Ilm)2, and the 
perimeters are PD = Ps = 12 + 1.2 + 1.2 = 14 11m (these parameters are rounded to 
two significant figures solely to simplify the figures and tables). 

In passing, notice that a 1.21lm strip of diffusion in a 0.61lm process 
CA = 0.3 ~lm) is only 4A wide-wide enough to place a contact only with aggressive 
spacing rules. The conservative rules in Figure 2.11 would require a diffusion width 
of at least 2 (rule 6.4a) + 2 (rule 6.3a) + 1.5 (rule 6.2a) = S.SA. 

3.2.2 Overlap Capacitance 
The overlap capacitance calculations for CGSOV and CGDOV in Table 3.1 account for 
lateral diffusion (the amount the source and drain extend under the gate) using 
SPICE parameter LD = SE-08 or LD = 0.05 11m. Not all versions of SPICE use the 
equivalent parameter for width reduction, WD (assumed zero in Table 3.1), in calcu­
lating CGDOV and not all versions subtract W D to form W EFF' 

3.2.3 Gate Capacitance 
The gate capacitance calculations in Table 3.1 depend on the operating region. The 
gate-source capacitance Ccs varies from zero when the transistor is off to O.SCo 
(0.5 x 1.035 x 10-15 = 5.18 X 10-16 F) in the linear region to (2/3)Co in the saturation 
region (6.9 x 10-16 F). The gate-drain capacitance CCD varies from zero (off) to 
O.SCo (linear region) and back to zero (saturation region). 
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TABLE 3.1 Calculations of parasitic capacitances for an n-channel MOS transistor. 

PSpice Equation Values 1 for VGS = OV, VDS = 3V, V SB = OV 

CBD 
C BD = CBDJ+CBDSW 

C BDJ = AnCJ (1 + V DB1<l>B) 
-m] 

(<l>B = PB) 

C BDSW = PnCJSw(l+VDBI<l>B) 
-mJSW 

(Pn mayor may not include channel edge) 

CBS 
CBS = C BSJ + C BSSW 

-IS -16 -IS 
C BD = 1.855xlO + 2.04xlO = 2.06xlO F 

C BDJ = (4.032xlO-
1S

) (l + (3/1)) -0.S6 

= 1.86xlO-
1SF 

C
BDSW 

= (4.2xlO-16
) (1 + (3/1))-0.S2 

= 2.04xlO-
16F 

-IS -16 -IS 
CBS = 4.032xlO + 4.2xlO = 4.45xlO F 

ASCJ = (7.2xlO-
12

) (5.6xlO-
4

) = 4.03xlO-
1S

F 

-6 -11 -16 
PSCJSW = (8.4xlO ) (5xlO ) = 4.2xlO F 

_ •• _ •••• __ ••• _ •• _ •••• __ ._. • ••••••••••• _ •••••• _ •• _ •• _ ••• _._ •••• __ •• _._ ••• ____ •• ___ •• __ •• __ •• _ •• _ •••••••••• _ •••••• _._ •••••• _ ••••• _ ••••••••• _ •• _ •• _ •••••••• _._ .. , ..... _ ........ _ •• __ ••• _. ____ ._ •••••• m •• __ "._ _ ••• ___ • __ •• _. __ •••• _. __ ._ ••• _ •• __ •• __ ••• __ ••• _ ••••• ___ • __ ••••••• _ ••• _._. _________ ••••• _._._. __ •••• 

CGSOV CGSOV = W EFF CGSO ; W EFF = W - 2W n -6 -10 -16 
CGSOV = (6xlO ) (3xlO ) = 1.8xlO F 

CGDOV CGnOV = WEFF CGSO CGnOV = (6xlO-6
) (3xlO-1O

) = 1.8xlO-15F 

CGBOV = (0.5xlO-6
) (4xlO-1O

) = 2x10-16F CGBOV CGBOV = LEFF CGBO ; LEFF = L - 2Ln 

CGS 

CGD 

CGB 

11nput 

C GS1CO = 0 (off) , 0.5 (lin.) , 0.66 (sat.) 

W EFFLEFFcox 
Co (oxide capacitance) = --T=---

ox 

Co = (6xlO-
6

) (0.5xlO-
6

) (0.00345) 

-14 
= 1.03xlO F. 

CGS = O.OF 

CGDICO = 0 (off), 0.5 (lin.), = 0 (sat.) C GD = O.OF 
_._- ----_ .. - .. ~ ... ,,_.-_."_ ..... - ..... -..... _-- - _ ....... _--_ ... _-_._-_.-._._-'--_ .... __ ... _._ .... _--_ ... _-_._.- .. -.- .. ~--.~ ...... . 

C GB = O(on), =CO in series with Cs (off) CCB = 3.88xlO-1S F, Cs=depletion capacitance 

.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=l VTO=0.65 DELTA=0.7 
+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6 NSUB=1.4E+17 NFS=6E+ll 

+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-IO CGSO=3.0E-IO CGBO=4.0E-IO 

+ CJ=5.6E-04 MJ=0.56 CJSW=5E-ll MJSW=0.52 PB=l 
ml outl inl 0 0 cmosn W=6U L=0.6U AS=7.2P AD=7.2P PS=8.4U PD=8.4U 
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The gate-bulk capacitance CGB may be viewed as two capacitors in series: the 
fixed gate-oxide capacitance, Co = WEFF LEFF COX /Tox' and the variable depletion 
capacitance, C S = W EFF LEFF cSi / xcz, formed by the depletion region that extends 
under the gate (with varying depth xd)' As the transistor turns on the conducting 
channel appears and shields the bulk from the gate-and at this point CGB falls to 
zero. Even with V GS = 0 V, the depletion width under the gate is finite and thus 
CGB z 4 X 10-15 F is less than CO"" 10-16 F. In fact, since CGB "" 0.5 Co' we can tell 
that at V GS = 0 V, C S z Co· 

Figure 3.5 shows the variation of the parasitic capacitance values. 

capacitance/fF off saturation linear 
<II!I ~ ~ ... "III ... 
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6 ! \ 
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--11--- CBD --O--CBS 

CGS 

inverter input voltage, v ( inl) / V 

---+-- CGSOV ----<>----- CGDOV 

---&.----- CGBOV --8----CGD -----0--- CGB 

FIGURE 3.5 The variation of n-channel transistor parasitic capacitance. Values were 
obtained from a series of DC simulations using PSpice vS.4, the parameters shown in 
Table 3.1 (LEVEL=3), and by varying the input voltage, v (inl), of the inverter in 
Figure 3.3(a). Data points are joined by straight lines. Note that CGSOV = CGDOV. 

3.2.4 Input Slew Rate 
Figure 3.6 shows an experiment to monitor the input capacitance of an inverter as it 
switches. We have introduced another variable-the delay of the input ramp or the 
slew rate of the input. 

In Figure 3 .6(b) the input ramp is 40 ps long with a slew rate of 3 V /40 ps or 
75 GVs-1-as in our previous experiments-and the output of the inverter hardly 
moves before the input has changed. The input capacitance varies from 20 to 40 fF 
with an average value of approximately 34 fF for both transitions-we can measure 
the average value in Probe by plotting AVG ( - i (Vin) ). 
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FIGURE 3.6 The input capacitance of an inverter. (a) Input capacitance is measured by monitoring the input 
current to the inverter, i (Vin). (b) Very fast switching. The current, i (Vin), is multiplied by the input ramp delay 
(M = 0.04 ns) and divided by the voltage swing (l-, V = V DO = 3 V) to give the equivalent input capacitance, 
C = i M / l-, \I. Thus an adjusted input current of 40 fA corresponds to an input capacitance of 40 fF. The current, 
i (Vin), is positive for the rising edge of the input and negative for the falling edge. (c) Very slow switching. The 
input capacitance is now equal for both transitions. 

In Figure 3.6(c) the input ramp is slow enough (300 ns) that we are switching 
under almost equilibrium conditions-at each voltage we allow the output to find its 
level on the static transfer curve of Figure 3.2(a). The switching waveforms are quite 
different. The average input capacitance is now approximately 0.04 pF (a 20 percent 
difference). The propagation delay (using an input trip point of 0.5 and an output 
trip point of 0.35) is negative and approximately 150-127 =-23 ns. By changing 
the input slew rate we have broken our model. For the moment we shall ignore this 
problem and proceed. 
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The calculations in Table 3.1 and behavior of Figures 3.5 and 3.6 are very com­
plex. How can we find the value of the parasitic capacitance, C, to fit the model of 
Figure 3.1 ? Once again, as we did for pull resistance and the intrinsic output capaci­
tance, instead of trying to derive a theoretical value for C, we adjust the value to fit 
the model. Before we formulate another experiment we should bear in mind the fol­
lowing questions that the experiment of Figure 3.6 raises: Is it valid to replace the 
nonlinear input capacitance with a linear component? Is it valid to use a linear input 
ramp when the normal waveforms are so nonlinear? 

Figure 3.7 shows an experiment crafted to answer these questions. The experi­
ment has the following two steps: 

1. Adjust c2 to model the input capacitance of mS / 6; then C = c2 = 0.0335 pF. 

2. Remove all the parasitic capacitances for inverter m9 / lO-except for the gate 
capacitances Ccs, CCD' and CCB-and then adjust c3 (0.01 pF) and c4 

(0.025 pF) to model the effect of these missing parasitics. 

We can summarize our findings from this and previous experiments as follows: 

1. Since the waveforms in Figure 3.7 match, we can model the input capacitance 
of a logic cell with a linear capacitor. However, we know the input capacitance 
may vary (by up to 20 percent in our example) with the input slew rate. 

2. The input waveform to the inverter m3/m4 in Figure 3.7 is from another 
inverter-not a linear ramp. The difference in slew rate causes an error. The 
measured delay is 85 ps (0.085 ns), whereas our model (Eq. 3.7) predicts 

tPDr = (38 + 817Cout) ps = (38 + (817) (0.0335)) ps = 65ps. (3.8) 

3. The total gate-oxide capacitance in our inverter with Tox = 100A is 

(W L + W L)£ T 
11 11 P P ox ox 

(3.9) 
-4 

(34.5xlO ) «6) (0.6) + (12) (0.6)) pF = 0.037 pF. 

4. All the transistor parasitic capacitances excluding the gate capacitance con­
tribute 0.01 pF of the 0.0335 pF input capacitance-about 30 percent. The gate 
capacitances contribute the rest-O.025 pF (about 70 percent). 

The last two observations are useful. Since the gate capacitances are nonlinear, 
we only see about 0.025/0.037 or 70 percent of the 0.037 pF gate-oxide capacitance, 
Co' in the input capacitance, C. This means that it happens by chance that the total 
gate-oxide capacitance is also a rough estimate of the gate input capacitance, 
C z Co. Using Land W rather than LEFF and WEFF in Eq. 3.9 helps this estimate. 
The accuracy of this estimate depends on the fact that the junction capacitances are 
approximately one-third of the gate-oxide capacitance-which happens to be true 
for many CMOS processes for the shapes of transistors that normally occur in logic 
cells. In the next section we shall use this estimate to help us design logic cells. 
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FIGURE 3.7 Parasitic capacitance. (a) All devices in this circuit include parasitic capaci­
tance. (b) This circuit uses linear capacitors to model the parasitic capacitance of m9/l0. 
The load formed by the inverter (mS and m6) is modeled by a 0.0335 pF capacitor (c2); the 
parasitic capacitance due to the overlap of the gates of m3 and m4 with their source, drain, 
and bulk terminals is modeled by a 0.01 pF capacitor (c3); and the effect of the parasitic 
capacitance at the drain terminals of m3 and m4 is modeled by a 0.025 pF capacitor (c4). 
(c) The two circuits compared. The delay shown (1.22-1.135=0.085 ns) is equal to tporfor 
the inverterm3/ 4. (d) An exact match would have both waveforms equal at the 0.35 trip point 
(1.05 V). 

Logical Effort 

In this section we explore a delay model based on logical effort, a term coined by 
Ivan Sutherland and Robert Sproull [1991], that has as its basis the time-constant 
analysis of Carver Mead, Chuck Seitz, and others. 
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We add a "catch all" nonideal component of delay, tq, to Eq. 3.2 that includes: 
(1) delay due to internal parasitic capacitance; (2) the time for the input to reach the 
switching threshold of the cell; and (3) the dependence of the delay on the slew rate 
of the input waveform. With these assumptions we can express the delay as follows: 

(3.10) 

(The input capacitance of the logic cell is C, but we do not need it yet.) 
We will use a standard-cell library for a 3.3 V, 0.5 11m (0.6 11m drawn) technol­

ogy (from Compass) to illustrate our model. We call this technology C5; it is almost 
identical to the G5 process from Section 2.1 (the Compass library uses a more accu­
rate and more complicated SPICE model than the generic process). The equation for 
the delay of a IX drive, two-input NAND cell is in the form of Eq. 3.10 (Cout is in 
pF): 

tpD = (0.07 + l.46Cout + 0.15) ns. (3.11) 

The delay due to the intrinsic output capacitance (0.07 ns, equal to RCp) and the 
nonideal delay (tq = 0.15 ns) are specified separately. The nonideal delay is a consid­
erable fraction of the total delay, so we may hardly ignore it. If data books do not 
specify these components of delay separately, we have to estimate the fractions of 
the constant part of a delay equation to assign to RCp and tq (here the ratio RCp/tq is 
approximately 2). 

The data book tells us the input trip point is 0.5 and the output trip points are 
0.35 and 0.65. We can use Eq. 3.11 to estimate the pull resistance for this cell as 
R z l.46 nspF-1 or about l.5 kD.. Equation 3.11 is for the falling delay; the data book 
equation for the rising delay gives slightly different values (but within 10 percent of 
the falling delay values). 

We can scale any logic cell by a scaling factor s (transistor gates become s times 
wider, but the gate lengths stay the same), and as a result the pull resistance R will 
decrease to R/s and the parasitic capacitance Cp will increase to sCpo Since tq is non­
ideal, by definition it is hard to predict how it will scale. We shall assume that tq 
scales linearly with s for all cells. The total cell delay then scales as follows: 

(3.12) 

For example, the delay equation for a 2X drive (s = 2), two-input NAND cell is 

t PD = (0.03 + O.75C out + 0.51) ns. (3.13) 

Compared to the IX version (Eq. 3.11), the output parasitic delay has decreased 
to 0.03 ns (from 0.07 ns), whereas we predicted it would remain constant (the differ­
ence is because of the layout); the pull resistance has decreased by a factor of 2 from 
1.5 kQ to 0.75 kQ, as we would expect; and the nonideal delay has increased to 
0.51 ns (from 0.15 ns). The differences between our predictions and the actual values 
give us a measure of the model accuracy. 
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We rewrite Eq. 3.12 usmg the input capacitance of the scaled logic cell, 
Cin = sC, 

(3.14) 

Finally we normalize the delay using the time constant formed from the pull 
resistance Rinv and the input capacitance Cinv of a minimum-size inverter: 

(3.15) 

The time constant tau, 

1: = R. C. lnv lnv' (3.16) 

is a basic property of any CMOS technology. We shall measure delays in terms of 1:. 

The delay equation for a IX (minimum-size) inverter in the C5 library is 

tpD = (0.06+ 1.60Cout +0.1O)ns. (3.17) 

Thus tqinv = 0.1 ns and Rinv = 1.60 kQ. The input capacitance of the IX inverter (the 
standard load for this library) is specified in the data book as Cinv = 0.036 pF; thus 
1: = (0.036 pF)(l.60 kQ) = 0.06 ns for the C5 technology. 

The use of logical effort consists of rearranging and understanding the meaning 
of the various terms in Eq. 3.15. The delay equation is the sum of three terms, 

d = f+p+q. (3.18) 

We give these terms special names as follows: 

delay = effort delay + parasitic delay + nonideal delay. (3.19) 

The effort delay fwe write as a product of logical effort, g, and electrical effort, h: 

f = gh. (3.20) 

So we can further partition delay into the following terms: 

delay = logical effort x electrical effort + parasitic delay + nonideal delay. (3.21) 

The logical effort g is a function of the type of logic cell, 

RC 
g =-. 

1: 
(3.22) 

What size of logic cell do the Rand C refer to? It does not matter because the Rand 
C will change as we scale a logic cell, but the RC product stays the same-the 
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Measure the input 
capacitance of a 
minimum-size 
inverter. 

logical effort is independent of the size of a logic cell. We can find the logical effort 
by scaling down the logic cell so that it has the same drive capability as the lX 
minimum-size inverter. Then the logical effort, g, is the ratio of the input capaci­
tance, Cin , of the IX version of the logic cell to Cinv (see Figure 3.8). 

\ 2 units of 4 ~~~g~a~te~capacitanc:2C 

\ 
Make the cell have the same Measure ratio of cell input 
drive strength as a capacitance to that of a 
minimum-size inverter. minimum-size inverter. 

(a) (b) (c) 

FIGURE 3.8 Logical effort. (a) The input capacitance, qnv, looking into the input of a 
minimum-size inverter in terms of the gate capacitance of a minimum-size device. (b) Sizing 
a logic cell to have the same drive strength as a minimum-size inverter (assuming a logic ratio 
of 2). The input capacitance looking into one of the logic-cell terminals is then qn' (c) The log­
ical effort of a cell is qn/ qnv' For a two-input N,L\ND cell, the logical effort, g= 4/3. 

The electrical effort h depends only on the load capacitance Cout connected to 
the output of the logic cell and the input capacitance of the logic cell, Cin; thus 

h = Cout 
C' 

m 

(3.23) 

The parasitic delay p depends on the intrinsic parasitic capacitance Cp of the 
logic cell, so that 

(3.24) 

Table 3.2 shows the logical efforts for single-stage logic cells. Suppose the 
minimum-size inverter has an n-channel transistor with W/L = 1 and a p-channel 
transistor with W /L = 2 (logic ratio, r, of 2). Then each two-input NAND logic cell 
input is connected to an n-channel transistor with W /L = 2 and a p-channel transistor 
with W /L = 2. The input capacitance of the two-input NAND logic cell divided by 

149



3.3 LOGICAL EFFORT 133 

that of the inverter is thus 4/3. This is the logical effort of a two-input NAND when 
r = 2. Logical effort depends on the ratio of the logic. For an n-input NAND cell 

TABLE 3.2 Cell effort, parasitic delay, and non ideal delay (in units oh) for single-stage CMOS cells. 

Cell 

inverter 

n-input NAND 

Cell effort 
(logic ratio = 2) 

1 (by definition) 

(n+2)/3 

Cell effort 
(logic ratio = r) 

1 (by definition) 

(n+r)/(r+1) 

Parasitic delaytr Nonideal delay/'t 

Piny (by definition) 1 qinv (by definition) 1 

npinv 

n-input NOR (2n+ 1 )/3 (nr+ 1 )/(r+ 1) n Piny n qinv 

1 For the Compass O.S)lm technology (C5): Piny = 1.0, qinv = 1.7, Rinv = 1.5 kn, qnv = 0.036 pF. 

with ratio r, the p-channel transistors are W!L = r/1, and the n-channel transistors are 
W!L = n/1. For a NOR cell the n-channel transistors are 1/1 and the p-channel tran­
sistors are nr/l. 

The parasitic delay arises from parasitic capacitance at the output node of a 
single-stage logic cell and most (but not all) of this is due to the source and drain 
capacitance. The parasitic delay of a minimum-size inverter is 

C 
-p­

Piny = C. 
my 

(3.2S) 

The parasitic delay is a constant, for any technology. For our CS technology we 
know RCp =0.06ns and, using Eq. 3.17 for a minimum-size inverter, we can calcu­
late Piny = RC/r = 0.06/0.06 = 1 (this is purely a coincidence). Thus Cp is about 
equal to Ciny and is approximately 0.036 pF. There is a large error in calculating Piny 

from extracted delay values that are so small. Often we can calculate Piny more accu­
rately from estimating the parasitic capacitance from layout. 

Because RC p is constant, the parasitic delay is equal to the ratio of parasitic 
capacitance of a logic cell to the parasitic capacitance of a minimum-size inverter. In 
practice this ratio is very difficult to calculate-it depends on the layout. We can 
approximate the parasitic delay by assuming it is proportional to the sum of the 
widths of the n-channel and p-channel transistors connected to the output. Table 3.2 
shows the parasitic delay for different cells in terms of Piny' 

The nonideal delay q is hard to predict and depends mainly on the physical size 
of the logic cell (proportional to the cell area in general, or width in the case of a 
standard cell or a gate-array macro), 

(3.26) 
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We define qinv in the same way we defined Piny. An n-input cell is approximately 
11 times larger than an inverter, giving the values for nonideal delay shown in 
Table 3.2. For our C5 technology, from Eq. 3.17, qinv = tqinvlt = 0.1 ns/0.06 ns =1.7. 

3.3.1 Predicting Delay 

As an example, let us predict the delay of a three-input NOR logic cell with 2X 
drive, driving a net with a fanout of four, with a total load capacitance (comprising 
the input capacitance of the four cells we are driving plus the interconnect) of 0.3 pF. 

From Table 3.2 we see P = 3Pinv and q = 3qinv for this cell. We can calculate Cin 
from the fact that the input gate capacitance of a IX drive, three-input NOR logic 
cell is equal to gCinv, and for a 2X logic cell, Cin = 2gCinv. Thus, 

g (0.3pF) = 
2g (Cin ) 

(0.3pF) 
2 (0.036pF) . 

(3.27) 

(Notice that g cancels out in this equation, we shall discuss this in the next section.) 
The delay of the NOR logic cell, in units of't, is thus 

(0.3 x 10-12
) 

d = gh + P + q = 2 + (3) (1) + (3) (1.7) 
(2) (0.036 x 10-

1 
) (3.28) 

= (4.1666667 + 3 + 5.1) 

= 12.266667't, 

equivalent to an absolute delay, tpD:O::: 12.3 x 0.06 ns = 0.74 ns. 
The delay for a 2X drive, three-input NOR logic cell in the C5 library is 

t PD = (0.03 + 0.72C out + 0.60) ns. (3.29) 

With Cout = 0.3 pF, 

tpD = 0.03+0.72(0.3) +0.60 = 0.846ns, (3.30) 

compared to our prediction of 0.74 ns. Almost all of the error here comes from the 
inaccuracy in predicting the nonideal delay. Logical effort gives us a method to 
examine relative delays and not accurately calculate absolute delays. More impor­
tant is that logical effort gives us an insight into why logic has the delay it does. 

3.3.2 logica.l Area and logical 
Figure 3.9 shows a single-stage OR-AND-INVERT cell that has different logical 
efforts at each input. The logical effort for the OAI221 is the logical-effort vector 
g = (7/3, 7/3, 5/3). For example, the first element of this vector, 7/3, is the logical 
effort of inputs A and B in Figure 3.9. 
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FIGURE 3.9 An OAI221 
logic cell with different logical 
efforts at each input. In this 
case 9 = (7/3, 7/3, 5/3). The 
logical effort for inputs A and B 
is 7/3, the logical effort for 
inputs C and D is also 7/3, and 
for input E the logical effort is 
5/3. The logical area is the sum 
of the transistor areas, 33 logi­
cal squares. 

A 
B 
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We can calculate the area of the transistors in a logic cell (ignoring the routing 
area, drain area, and source area) in units of a minimum-size n-channel transistor­
we call these units logical squares. We call the transistor area the logical area. For 
example, the logical area of a IX drive cell, OAI22IXI, is calculated as follows: 

• n-channel transistor sizes: 3/1 + 4 x (3/1) 

• p-channel transistor sizes: 2/1 + 4 x ( 4/1 ) 

• total logical area = 2 + (4 x 4) + (5 x 3) = 33 logical squares 

Figure 3.10 shows a single-stage AOI221 cen, with g = (8/3, 8/3, 6/3). The cal-
culation of the logical area (for a AOI221Xl) is as follows: 

• n-channel transistor sizes: 1/1 + 4 x (2/1) 

• p-channel transistor sizes: 6/1 + 4 x (6/1) 

o logical area = 1 + (4 x 2) + (5 x 6) = 39 logical squares 

These calculations show us that the single-stage AOI221, with an area of 33 
logical squares and logical effort of (7/3, 7/3, 5/3), is more logically efficient than 
the single-stage OAI221 logic cell with a larger area of 39 logical squares and larger 
logical effort of (8/3, 8/3,6/3). 

3.3.3 Logical Paths 
When we calculated the delay of the NOR logic cell in Section 3.3.1, the answer did 
not depend on the logical effort of the cell, g (it cancelled out in Eqs. 3.27 and 3.28). 
This is because g is a measure of the input capacitance of a IX drive logic cell. 
Since we were not driving the NOR logic cell with another logic cell, the input 
capacitance of the NOR logic cell had no effect on the delay. This is what we do in a 
data book-we measure logic-cell delay using an ideal input waveform that is the 
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FIGURE 3.10 An AND-OR-INVERT 
cell, anA01221, with logical-effort vector, 
g= (8/3, 813, 7/3). The logical area is 39 
logical squares. 

A 
B 
C 
D 
E __ -J 

z 

same no matter what the input capacitance of the cell. Instead let us calculate the 
delay of a logic cell when it is driven by a minimum-size inverter. To do this we 
need to extend the notion of logical effort. 

So far we have only considered a single-stage logic cell, but we can extend the 
idea of logical effort to a chain of logic cells or logical path. Consider the logic path 
when we use a minimum-size inverter (go = 1, Po = 1, qo = 1.7) to drive one input of a 
2X drive, three-input NOR logic cell with gi = (nr + 1)/(r + 1), PI = 3, qi =3, and a 
load equal to four standard loads. If the logic ratio is r = 1.5, then gl = 5.5/2.5 = 2.2. 

The delay of the inverter is 

= (1) (2) (2.2) + 1 + 1.7 

= 7.1. (3.31) 

Of this 7.11 delay we can attribute 4.41 to the loading of the NOR logic cell input 
capacitance, which is 2g 1Cinv' The delay of the NOR logic cell is, as before, 
d 1 = g 1 h 1 + PI + q 1 = 12.3, making the total delay 7.1 + 12.3 = 19.4, so the abso­
lute delay is (19.4) (0.06 ns) = 1.164 ns, or about 1.2 ns. 

We can see that the path delay D is the sum of the logical effort, parasitic delay, 
and nonideal delay at each stage. In general, we can write the path delay as 

D = 'V g.h. + 'V (p. + q.) . L..; I I L..; I I 
(3.32) 

i E path i E path 
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3.3.4 Multistage Cells 
Consider the following function (a multistage AOI221 logic cell): 

ZN(Al, A2, Bl, B2, C) = NOT(NAND(NAND(Al, A2), AOI21(Bl, B2, C))) 

= (((Al·A2)'·(Bl·B2+C)')')' = (Al·A2+Bl·B2+C)' 

= AOI221(Al, A2, Bl, B2, C). (3.33) 

Figure 3.11 (a) shows this implementation with each input driven by a minimum-size 
inverter so we can measure the effect of the cell input capacitance. 

(a) 

g1 = (2, 1.6) 
P1 =3 
q1 = 5.4 

delay d1 

2.oT 1.6T 

d1 = (goho + Po + qo) + (g2h2 + P2 + q2) + (g3h3 + P3 + q3) + (g4h4 + P4 + q4) 

= (1 x 1.4 + 1 + 1.7) + (1.4 x 1 + 2 + 3.4) + (1.4 x 0.7 + 2 + 3.4) + (1 x CL + 1 + 1.7) = 20 + CL 

(b) 

AOl221 

d1 =(1 x2.6+1 +1.7)+(1 xCL +5+8.5)=18.8+CL 

(b) is 
slightly 
faster 
than (a) 

FIGURE 3.11 Logical paths. (a) An AOl221 logic cell constructed as a multistage cell from 
smaller cells. (b) A single-stage AOl221 logic cell. 
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The logical efforts of each of the logic cells in Figure 3.11 (a) are as follows: 

go=g4=g(NOT) = 1, 

gl = g (AOI21) = (2, (2r + l)/(r + 1) = (2,4/2.5) = (2, 1.6), 

g2 = g3 = g(NAND2) = (r + 2)/(r + 1) = (3.5)/(2.5) = 1.4. (3.34) 

Each of the logic cells in Figure 3.11 has a IX drive strength. This means that 
the input capacitance of each logic cell is given, as shown in the figure, by gCinv. 

Using Eq. 3.32 we can calculate the delay from the input of the inverter driving 
A 1 to the output ZN as 

dl = (1) (1.4) +1+1.7+1.4(1) +2+3.4 

+ (1.4) (0.7) +2+3.4+ (1)CL + 1 + 1.7 (3.35) 

= (20+CL )· 

In Eq. 3.35 we have normalized the output load, CL> by dividing it by a standard 
load (equal to Cinv). We can calculate the delays of the other paths similarly. 

More interesting is to compare the multistage implementation with the single­
stage version. In our C5 technology, with a logic ratio, r = 1.5, we can calculate the 
logical effort for a single-stage AOI221 logic cell as 

g(AOI221) = «3r + 2)/(1' + 1), (31' + 2)/(1' + 1), (3r + 1)/(r + 1» 

= (6.5/2.5,6.5/2.5,5.5/2.5) = (2.6, 2.6, 2.2). (3.36) 

This gives the delay from an inverter driving the A input to the output ZN of the 
single-stage logic cell as 

dl = «(1)(2.6)+I+1.7+(1)CL +5+8.5)= (l8.8+CL). (3.37) 

The single-stage delay is very close to the delay for the multistage version of 
this logic cell. In some ASIC libraries the AOI221 is implemented as a multistage 
logic cell instead of using a single stage. It raises the question: Can we make the 
multistage logic cell any faster by adjusting the scale of the intermediate logic cells? 

3.3.5 Optimum Delay 
Before we can attack the question of how to optimize delay in a logic path, we shall 
need some more definitions. The path logical effort G is the product of logical 
efforts on a path: 

G = IT gi· 
i E path 

(3.38) 
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The path electrical effort H is the product of the electrical efforts on the path, 

C 
H = II h. = ~ 

I C.' 
i E path m 

(3.39) 

where Cout is the last output capacitance on the path (the load) and Cin is the first 
input capacitance on the path. 

The path effort F is the product of the path electrical effort and logical efforts, 

F = GH. (3.40) 

The optimum effort delay for each stage is found by minimizing the path delay 
D by varying the electrical efforts of each stage hi, while keeping H, the path electri­
cal effort fixed. The optimum effort delay is achieved when each stage operates with 
equal effort, 

j. = g.h. = Fl/N. 
I I I 

This a useful result. The optimum path delay is then 

where P + Q is the sum of path parasitic delay and nonideal delay, 

P+Q = I. Pi+qj" 
i E path 

(3.41) 

(3.42) 

(3.43) 

We can use these results to improve the AOI221 multistage implementation of 
Figure 3.11(a). Assume that we need a IX cell, so the output inverter (cell 4) must 
have IX drive strength. This fixes the capacitance we must drive as Cout = Cinv (the 
capacitance at the input of this inverter). The input inverters are included to measure 
the effect of the cell input capacitance, so we cannot cheat by altering these. This 
fixes the input capacitance as Cin = Cinv . In this case H = 1. 

The logic cells that we can scale on the path from the A input to the output are 
NAND logic cells labeled as 2 and 3. In this case 

(3.44) 

Thus F = GH = 1.95 and the optimum stage effort is 1.95(1/3) = 1.25, so that the 
optimum delay NFI/N = 3.75. From Figure 3.11(a) we see that 

(3.45) 

This means that even if we scale the sizes of the cells to their optimum values, we 
only save a fraction of a 1: (3.8 - 3.75 = 0.05). This is a useful result (and one that is 
true in general)-the delay is not very sensitive to the scale of the cells. In this case 
it means that we can reduce the size of the two NAND cells in the multicell imple-
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mentation of an AOI221 without sacrificing speed. We can use logical effort to pre­
dict what the change in delay will be for any given cell sizes. 

We can use logical effort in the design of logic cells and in the design of logic 
that uses logic cells. If we do have the flexibility to continuously size each logic cell 
(which in ASIC design we normally do not, we usually have to choose from IX, 2X, 
4X drive strengths), each logic stage can be sized using the equation for the 
individual stage electrical efforts, 

A Fl/N 
h·=-

I gi 
(3.46) 

For example, even though we know that it will not improve the delay by much, 
let us size the cells in Figure 3.11(a). We shall work backward starting at the fixed 
load capacitance at the input of the last inverter. 

For NAND cell 3, gh = 1.25; thus (since g = 1.4), h =Cout/Cin = 0.893. The out­
put capacitance, Cout' for this NAND cell is the input capacitance of the inverter­
fixed as 1 standard load, Cinv' This fixes the input capacitance, Cin , of NAND cell 3 
at 1/0.893 = 1.12 standard loads. Thus, the scale of NAND cell 3 is 1.12/1.4 or 0.8X. 

Now for NAND cell 2, gh = 1.25; Cout for NAND cell 2 is the Cin of NAND cell 
3. Thus Cin for NAND cell 2 is 1.12/0.893 = 1.254 standard loads. This means the 
scale of NAND cell 2 is 1.254/1.4 or 0.9X. 

The optimum sizes of the NAND cells are not very different from IX in this 
case because H = 1 and we are only driving a load no bigger than the input capaci­
tance. This raises the question: What is the optimum stage effort if we have to drive 
a large load, H» I? Notice that, so far, we have only calculated the optimum stage 
effort when we have a fixed number of stages, N. We have said nothing about the sit­
uation in which we are free to choose, N, the number of stages. 

3.3.6 Optimum Number of Stages 
Suppose we have a chain of N inverters each with equal stage effort,f = gh. Neglect­
ing parasitic and nonideal delay, the total path delay is Nf = N gh = Nh, since g = 1 
for an inverter. Suppose we need to drive a path electrical effort H; then hN = H, or 
Nln h = InH. Thus the delay, Nh = hlnH/ln h. Since lnH is fixed, we can only vary 
h/ln (h). Figure 3.12 shows that this is a very shallow function with a minimum at 
h=e z 2.718. At this point lnh= 1 and the total delay is Ne=elnH. This result is 
particularly useful in driving large loads either on-chip (the clock, for example) or 
off-chip (I/O pad drivers, for example). 

Figure 3.12 shows us how to minimize delay regardless of area or power and 
neglecting parasitic and nonideal delays. More complicated equations can be 
derived, including nonideal effects, when we wish to trade off delay for smaller area 
or reduced power. 
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FIGURE 3.12 Stage effort. 
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Delay of N inverter stages driving 
a path effort of H = Gout/ qn. 

2 3 4 5 6 7 8 9 10 
stage electrical effort, h = H11N 

The optimum cell layout for each process generation changes because the design 
rules for each ASIC vendor's process are always slightly different-even for the 
same generation of technology. For example, two companies may have very similar 
0.35 11m CMOS process technologies, but the third-level metal spacing might be 
slightly different. If a cell library is to be used with both processes, we could con­
struct the library by adopting the most stringent rules from each process. A library 
constructed in this fashion may not be competitive with one that is constructed spe­
cifically for each process. Even though ASIC vendors prize their design rules as 
secret, it turns out that they are similar-except for a few details. Unfortunately, it is 
the details that stop us moving designs from one process to another. Unless we are a 
very large customer it is difficult to have an ASIC vendor change or waive design 
rules for us. We would like all vendors to agree on a common set of design rules. 
This is, in fact, easier than it sounds. The reason that most vendors have similar 
rules is because most vendors use the same manufacturing equipment and a similar 
process. It is possible to construct a highest common denominator library that 
extracts the most from the current manufacturing capability. Some library companies 
and the large Japanese ASIC vendors are adopting this approach. 

Layout of library cells is either hand-crafted or uses some form of symbolic 
layout. Symbolic layout is usually performed in one of two ways: using either inter­
active graphics or a text layout language. Shapes are represented by simple lines or 
rectangles, known as sticks or logs, in symbolic layout. The actual dimensions of 
the sticks or logs are determined after layout is completed in a postprocessing step. 

158



142 CHAPTER 3 ASIC LIBRARY DESIGN 

An alternative to graphical symbolic layout uses a text layout language, similar to a 
programming language such as C, that directs a program to assemble layout. The 
spacing and dimensions of the layout shapes are defined in terms of variables rather 
than constants. These variables can be changed after symbolic layout is complete to 
adjust the layout spacing to a specific process. 

Mapping symbolic layout to a specific process technology uses 10-20 percent 
more area than hand-crafted layout (though this can then be further reduced to 5-10 
percent with compaction). Most symbolic layout systems do not allow 45° layout 
and this introduces a further area penalty (my experience shows this is about 
5-15 percent). As libraries get larger, and the capability to quickly move libraries 
and ASIC designs between different generations of process technologies becomes 
more important, the advantages of symbolic layout may outweigh the disadvantages. 

3.5 Library Architecture 

Figure 3. 13 (a) shows cell use data from over 150 CMOS gate array designs. These 
results are remarkably similar to that from other ASIC designs using different librar­
ies and different technologies and show that typically 80 percent of an ASIC uses 
less than 20 percent of the cell library. 

We can use the data in Figure 3 .13( a) to derive some useful conclusions about 
the number and types of cells to be included in a library. Before we do this, a few 
words of caution are in order. First, the data shown in Figure 3.13(a) tells us about 
cells that are included a library. This data cannot tell us anything about cells that are 
not (and perhaps should be) included in a library. Second, the type of design entry 
we use-and the type of ASIC we are designing-can dramatically affect the profile 
of the use of different cell types. For example, if we use a high-level design lan­
guage, together with logic synthesis, to enter an ASIC design, this will favor the use 
of the complex combinational cells (cells of the AOI family that are particularly area 
efficient in CMOS, but are difficult to work with when we design by hand). 

Figure 3.13(a) tells us which cells we use most often, but does not take into 
account the cell area. What we really want to know are which cells are most impor­
tant in determining the area of an ASIC. Figure 3.13(b) shows the area of the cells­
normalized to the area of a minimum-size inverter. If we take the data in 
Figure 3.13(a) and multiply by the cell areas, we can derive a new measure of the 
contribution of each cell in a library (Figure 3.13c). This new measure, cell 
importance, is a measure of how much area each cell in a library contributes to a 
typical ASIC. For example, we can see from Figure 3.13(c) that a D flip-flop (with a 
cell importance of 3.5) contributes 3.5 times as much area on a typical ASIC than 
does an inverter (with a cell importance of 1). 

Figure 3.13(c) shows cell importance ordered by the cell frequency of use and 
normalized to an inverter. We can rearrange this data in terms of cell importance, as 
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FiGURE 3.13 Cell library statistics. 
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shown in Figure 3.13(d), and normalized so that now the most important cell, a D 
flip-flop, has a cell importance of 1. Figure 3 .13( e) includes the cell use data on the 
same scale as the cell importance data. Both show roughly the same shape, reflecting 
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that both measures obey an 80-20 rule. Roughly 20 percent of the cells in a library 
correspond to 80 percent of the ASIC area and 80 percent of the cells. we use (but not 
the same 20 percent-that is why cell importance is useful). 

Figure 3.13(e) shows us that the most important cells, measured by their contri­
bution to the area of an ASIC, are not necessarily the cells that we use most often. If 
we wish to build or buy a dense library, we must concentrate on the area of those 
cells that have the highest cell importance-not the most common cells. 

3.6 Gate-Array Design 

Each logic cell or macro in a gate-array library is predesigned using fixed tiles of 
transistors known as the gate-array base cell (or just base cell). We call the 
arrangement of base cells across a whole chip in a complete gate array the 
gate-array base (or just base). ASIC vendors offer a selection of bases, with a dif­
ferent total numbers of transistors on each base. For example, if our ASIC design 
uses 48k equivalent gates and the ASIC vendor offers gate arrays bases with 50k-, 
75k-, and lOOk-gates, we will probably have to use the 75k-gate base (because it is 
unlikely that we can use 48/50 or 96 percent of the transistors on the 50k-gate base). 

We isolate the transistors on a gate array from one another either with thick field 
oxide (in the case of oxide-isolated gate arrays) or by using other transistors that are 
wired permanently off (in gate-isolated gate arrays). Channeled and channelless gate 
arrays may use either gate isolation or oxide isolation. 

Figure 3.l4(a) shows a base cell for a gate-isolated gate array. This base cell 
has two transistors: one p-channel and one n-channel. When these base cells are 
placed next to each other, the n-diffusion and p-diffusion layers form continuous 
strips that run across the entire chip broken only at the poly gates that cross at 
regularly spaced intervals (Figure 3.l4b). The metal interconnect spacing determines 
the separation of the transistors. The metal spacing is determined by the design rules 
for the metal and contacts. In Figure 3.14(c) we have shown all possible locations 
for a contact in the base cell. There is room for 21 contacts in this cell and thus room 
for 21 interconnect lines running in a horizontal direction (we use m 1 running hori­
zontally). We say that there are 21 horizontal tracks in this cell or that the cell is 21 
tracks high. In a similar fashion the space that we need for a vertical interconnect 
(m2) is called a vertical track. The horizontal and vertical track widths are not nec­
essarily equal, because the design rules for m1 and m2 are not always equal. 

We isolate logic cells from each other in gate-isolated gate arrays by connecting 
transistor gates to the supply bus-hence the name, gate isolation. If we connect the 
gate of an n-channel transistor to V ss, we isolate the regions of n-diffusion on each 
side of that transistor (we call this an isolator transistor or device, or just isolator). 
Similarly if we connect the gate of a p-channel transistor to V DD, we isolate adjacent 
p-diffusion regions. 
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FIGURE 3.14 The construction of a gate-isolated gate array. (a) The one-track-wide base 
cell containing one p-channel and one n-channel transistor. (b) Three base cells: the center 
base cell is being used to isolate the base cells on either side from each other. (c) A base cell 
including all pos~ible contact positions (there is room for 21 contacts in the vertical direction, 
showing the base cell has a height of 21 tracks). 

Oxide-isolated gate arrays often contain four transistors in the base cell: the two 
n-channel transistors share an n-diffusion strip and the two p-channel transistors 
share a p-diffusion strip. This means that the two n-channel transistors in each base 
cell are electrically connected in series, as are the p-channel transistors. The base 
cells are isolated from each other using oxide isolation. During the fabrication pro-
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cess a layer of the thick field oxide is left in place between each base cell and this 
separates the p-diffusion and n-diffusion regions of adjacent base cells. 

Figure 3.15 shows an oxide-isolated gate array. This cell contains eight tran­
sistors (which occupy six vertical tracks) plu~ one-half of a single track that contains 
the well contacts and substrate connections that we can consider to be shared by 
each base cell. 
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FIGURE 3.15 An oxide-isolated gate-array base cell. The figure shows two base cells, 
each containing eight transistors and two well contacts. The p-channel and n-channel transis­
tors are each 4 tracks high (corresponding to the width of the transistor). The leftmost vertical 
track of the left base cell includes all 12 possible contact pOSitions (the height of the cell is 12 
tracks). As outlined here, the base cell is 7 tracks wide (we could also consider the base cell 
to be half this width). 

Figure 3.16 shows a base cell in which the gates of the n-channel and p-channel 
transistors are connected on the polysilicon layer. Connecting the gates in poly saves 
contacts and a metal interconnect in the center of the cell where interconnect is most 
congested. The drawback of the preconnected gates is a loss in flexibility in cell 
design. Implementing memory and logic based on transmission gates will be less 
efficient using this type of base cell, for example. 
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FIGURE 3.16 This oxide-isolated gate-array base cell is 14 tracks high and 4 tracks wide. 
VDD (tracks 3 and 4) and GND (tracks 11 and 12) are each 2 tracks wide. The metal lines to 
the left of the cell indicate the 10 horizontal routing tracks (tracks 1, 2, 5-10, 13, 14). Notice 
that the p-channel and n-channel polysilicon gates are tied together in the center of the cell. 
The well contacts are short, leaving room for a poly cross-under in each base cell. 

Figure 3.17 shows the metal personalization for a D flip-flop macro in a gate­
isolated gate array using a base cell similar to that shown in Figure 3.14(a). This 
macro uses 20 base cells, for a total of 40 transistors, equivalent to 10 gates. 

The gates of the base cells shown in Figures 3.14-3.16 are bent. The bent gate 
allows contacts to the gates to be placed on the same grid as the contacts to diffu­
sion. The polysilicon gates run in the space between adjacent metal interconnect 
lines. This saves space and also simplifies the routing software. 
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FIGURE 3.17 An example of a flip-flop macro in a gate-isolated gate-array library. Only the 
first-level metallization and contact pattern (the personalization) is shown on the right, but this 
is enough information to derive the schematic. The base cell is shown on the left. This macro 
is 20 tracks wide. 

There are many trade-offs that determine the gate-array base cell height. One 
factor is the number of wires that can be run horizontally through the base cell. This 
will determine the capacity of the routing channel formed from an unused row of 
base cells. The base cell height also determines how easy it is to wire the logic mac­
ros since it determines how much space for wiring is available inside the macros. 

There are other factors that determine the width of the base-cell transistors. The 
widths of the p-channel and n-channel transistors are slightly different in 
Figure 3.14(a). The p-channel transistors are 6 tracks wide and the n-channel transis­
tors are 5 tracks wide. The ratio for this gate-array library is thus approximately 1.2. 
Most gate-array libraries are approaching a ratio of 1. 
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3.6 GATE-ARRAY DESIGN 149 

ASIC designers are using ever-increasing amounts of RAM on gate arrays. It is 
inefficient to use the normal base cell for a static RAM cell and the size of RAM on 
an embedded gate array is fixed. As an alternative we can change the design of the 
base cell. A base cell designed for use as RAM has extra transistors (either four­
two n-channel and two p-channel-or two n-channel; usually minimum width) 
allowing a six-transistor RAM cell to be built using one base cell instead of the two 
or three that we would normally need. This is one of the advantages of the eBA 
(cell-based array) base cell shown in Figure 3.18. 
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D p-well 

7 
.. 

0 .......... n-diff 
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FIGURE 3.18 The SiARC/Synopsys cell-based array (CBA) basic cell. 
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3.7 Standard-Cell Design 

Figure 3.19 shows the components of the standard cell from Figure 1.3. Each stan­
dard cell in a library is rectangular with the same height but different widths. The 
bounding box (BB) of a logic cell is the smallest rectangle that encloses all of the 
geometry of the cell. The cell BB is normally determined by the well layers. Cell 
connectors or terminals (the logical connectors) must be placed on the cell 
abutment box (AB). The physical connector (the piece of metal to which we con­
nect wires) must normally overlap the abutment box slightly, usually by at least 1 'A, 
to assure connection without leaving a tiny space between the ends of two wires. 
The standard cells are constructed so they can all be placed next to each other hori­
zontally with the cell ABs touching (we abut two cells). 

A standard cell (a D flip-flop with clear) is shown in Figure 3.20 and illustrates 
the following features of standard-cell layout: 

• Layout using 45° angles. This can save 10%-20% in area compared to a cell 
that uses only Manhattan or 90° geometry. Some ASIC vendors do not allow 
transistors with 45° angles; others do not allow 45° angles at all. 

• Connectors are at the top and bottom of the cell on m2 on a routing grid 
equal to the vertical (m2) track spacing. This is a double-entry cell intended 
for a two-level metal process. A standard cell designed for a three-level 
metal process has connectors in the center of the cell. 

• Transistor sizes vary to optimize the area and performance but maintain a 
fixed ratio to balance rise times and fall times. 

o The cell height is 64 'A (all cells in the library are the same height) with a: hor­
izontal (m 1) track spacing of 8 'A. This is close to the minimum height that 
can accommodate the most complex cells in a library. 

• The power rails are placed at the top and bottom, maintaining a certain width 
inside the cell and abut with the power rails in adjacent cells. 

• The well contacts (substrate connections) are placed inside the cell at regular 
intervals. Additional well contacts may be placed in spacers between cells. 

• In this case both wells are drawn. Some libraries minimize the well or moat 
area to reduce leakage and parasitic capacitance. 

" Most commercial standard cells use m 1 for the power rails, m 1 for internal 
connections, and avoid using m2 where possible except for cell connectors. 

When a library developer creates a gate-array, standard-cell, or datapath library, 
there is a trade-off between using wide, high-drive transistors that result in large 
cells with high-speed performance and using smaller transistors that result in smaller 
cells that consume less power. A performance-optimized library with large ceils 
might be used for ASICs in a high-performance workstation, for example. An area­
optimized library might be used in an ASIC for a battery-powered portable computer. 
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FIGURE 3.19 (a) The standard cell shown in Figure 1.3. (b) Diffusion, poly, and contact 
layers. (c) m1 and contact layers. (d) The equivalent schematic. 
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FIGURE 3.20 A D flip-flop standard cell. The wide power buses and transistors show thisis 
a performance-optimized cell. This double-entry cell is intended for a two-level metal process 
and channel routing. The five connectors run vertically through the cell on m2 (the extra short 
vertical metal line is an internal crossover). 

3m8 Datapath-Cell Design 

Figure 3.21 shows a datapath flip-flop. The primary, thicker, power buses run verti­
cally on m2 with thinner, internal power running horizontally on ml. The control 
signals (clock in this case) run verticaily through the cell on m2. The control signals 
that are common to the cells above and below are connected directly in m2. The 
other signals (data, g, and gbar in this example) are brought out to the wiring chan­
nel between the rows of datapath cells. 

Figure 3.22 is the schematic for Figure 3.21. This flip-flop uses a pair of cross­
coupled inverters for storage in both the master and slave latches. This leads to a 
smaller and potentially faster layout than the flip-flop circuits that we use in gate­
array and standard-cell ASIC libraries. The device sizes of the inverters in the data­
path flip-flops are adjusted so that the state of the latches may be changed. Normally 
using this type of circuit is dangerous in an uncontrolled environment. However, 
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VSS VDD 

FIGURE A datapath D flip-flop cell. 

because the datapath structure is regular and known, the parasitic capacitances that 
affect the operation of the logic cell are also known. This is another advantage of the 
datapath structure. 

Figure 3.23 shows an example of a datapath. Figure 3.23(a) depicts a two-level 
metal version showing the space between rows or slices of the datapath. In this case 
there are many connections to be brought out to the right of the datapath, and this 
causes the routing channel to be larger than normal and thus easily seen. 
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FIGURE 3.22 The schematic of the datapath D flip-flop cell shown in Figure 3.21. 
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Figure 3.23(b) shows a three-level metal version of the same datapath. In this case 
more of the routing is completed over the top of the datapath slices, reducing the 
size of the routing channel. 

FIGURE 3.23 A datapath. (a) Imple­
mented in a two-level metal process. (b) 
Implemented in a three-level metal process. 

(a) 

(b) 

171



3.9 SUMMARY 155 

3.9 Summary 

In this chapter we covered ASIC libraries: cell design, layout, and characterization. 
The most important concepts that we covered in this chapter were 

• Tau, logical effort, and the prediction of delay 

• Sizes of cells, and their drive strengths 

• Cell importance 

• The difference between gate-array macros, standard cells, and datapath cells 

3.10 Problems 

* = difficult, ** = very difficult, *** = extremely difficult 

3.1 (Pull resistance, lOmin.) 

a. Show that, for small V DS' an n-channel transistor looks like a resistor, 
R = II (~n (V DD - V tn))· 

b. If VGS=VDD , VDS=O, and k;l =200 ).lAV-2 (equal to the n-channel transistor 
SPICE parameter KP in Table 2.1), find the pull resistance, R, for a 6/0.6 tran­
sistor in the linear region. 

Answer: (b) 213 Q. 

3.2 (Inversion layer depth, 15 min.) In the absence of surface charge, Gauss's 
law demands continuity of the electric displacement vector, D = cE, at the silicon 
surface, so that coxEox = cSiESi, where Cox = 3.9, cSi = 11.7. 

a. Assuming the potential at the surface is V GS - V t = 2.5 V, calculate Eox and 
ESi ifTox = 100 A. 

b. Assume that carrier density DC exp (-q<p/kT) , where <p is the potential; calcu­
late the distance below the surface at which the inversion charge density falls 
to 10 percent of its value at the surface. 

c. Comment on the accuracy of your answers. 

Answer: (a) 2.5 x 108 Vm-1, 0.833 x 108 Vm-1. (b) 7.16 A. 
3.3 (Depletion layer depth, 15 min.) The depth of the depletion region under the 

gate is given by x I = J(2cs ·<p ) I (qNA ) , where <p = 2VT ln (NA/n.) is the sur-e ISS I 

face potential at strong inversion. Calculate <Ps and Xci assuming: 
cSi=l.0359xlO-10Pm-1, the substrate doping, NA =1.4x10 17 cm-3, the intrinsic 
carrier concentration ni = 1.45 x 1010 cm-3 (at room temperature), and the thermal 
voltage VT = kT/q = 25.9 m V. 

Answer: 0.833 V, 900 A. 
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3.4 (Logical effort, 45 min.) Calculate the logical effort at each input of an 
A0I122 cell. Find an expression that allows you to calculate the logical effort for 
each input of an AOlnnnn cell for n = 1, 2, 3. 

3.5 (Gate-array macro design, 120 miI1.) Draw a IX drive, two-input NAND 
cell using the gate-array base cells shown in Figures 3.14(a)-3.16 (lay a piece of 
thin paper over the figures and draw the contacts and metal personalization only). 
Label the inputs and outputs. Layout a IX drive, four-input NAND cell using the 
same base array cells. Now layout a 2X drive, four-input NAND cell (think about 
this one). Make sure that you size your transistors properly to balance rise times and 
fall times. 

3.6 (Flip-flop library, 20 min.) Suppose we wish to build a library of flip-flops. 
We want to have flops with: positive-edge and negative-edge triggering: clear, preset 
(either, both, or neither); synchronous or asynchronous reset and preset controls if 
present (but not mixed on the same flip-flop); all flip-flops with or without scan as 
an option; flip-flops with Q and Qbar (either or both). How many flip-flops is that? 
(***) How would you attempt to prioritize which flip-flops to include in a library? 

3.7 (AOI and OAI cell ratios, 30 min.) In Figure 2.13(c) we adjusted the sizes 
of the transistors assuming that there was only one path through the n-channel and 
p-channel stacks. Suppose that p-channel transistors A, B, C, and D are all on and 
p-channel transistor E turns on. What is the equivalent resistance of the p-channel 
stack in this case? 

3.8 (**Eight-input AND, 60 min.) This question is an example in the paper by 
Sutherland and Sproull [1991] on logical effort. Figure 3.24 shows three different 
ways to design an eight-input AND cell, using NAND and NOR cells. 

3. Find the logical effort at each input for A, B, C. Assume a logic ratio of 2. 

b. Find the parasitic delay for A, B, C. Assume the parasitic delay of an inverter 
is 0.6. 

c. Show that the path delays are given by the following equations where H is the 
path electrical effort, if we ignore the nonideal delays: 

(i) 2 (3.3311)°·5 + 5.4 (alternative A) 
(ii) 2 (3.3311)°·5 + 3.6 (alternative B) 

(iii) 4 (2.9611)°·25 + 4.2 (alternative C) 
Use these equations to determine the best alternative for = 2 and 11 = 32. 

(SpeciaJ logic cells, 30 min.) Many ASIC cell libraries contain "special" 
logic cells. For example the Compass libraries contain a two-input NAND cell with 
an inverted input, FNO 1 = (A + B'). This saves routing area, is faster than using two 
separate cells, and is useful because the combination of a two-input NAND gate 
with one inverted input is heavily used by synthesis tools. Other "special" cells 
include: 

e FN02 = MAB == (A·B + A·C + B·e)' 

• FN03 = AOI2-2 = «(A'·B') + (C·D))' = (A + B)(C' + D') = OA2-2 
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~ 
FIGURE 3.24 An 
eight-input AND cell 
(Problem 3.8). 

• FN04 = OAI2-2 

• FN05 = A·B' = (A' + B)' 

A 

a. Draw schematics for these cells. 

b. Calculate the logical effort and logical area for each cell. 

c. Can you explain where and why these cells might be useful? 

3.10 PROBLEMS 157 

3.10 (Euler paths, 60 min.) There are several ways to arrange the stacks in the 
AOI211 cell shown in Figure 3.25. For example, the n-channel transistor A can be 
below B without altering the function. Which arrangement would you predict gives 
a faster delay from A to Z and why? The p-channel transistors A and B can be above 
or below transistors C and D. How many distinct ways of arranging the transistors 
are there for this cell? What effect do the different arrangements have on layout? 
What effects do these different arrangements have on the cell performance? 

A 
B 

AOl211 

c---{---
0----1 

z 

FIGURE 3.25 There are several ways to arrange the transistors in this AOl211 cell (Prob­
lem 3.10). 
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3.11 (* AOI and OAI cell efficiency, 60 min.) A standard-cell library data book 
contains the following data: 

• AOI22I: tR = 1.06-1.1Sns; tF= 1.09-1.S5ns; Cin = 0.2I-0.28pF; We = 28.8flm 

• OAI22I: tR= 0.77-1.0Sns; tF=0.8I-0.o96ns; Cin = 0.2S-0.39pF; We= 22.4flm 

(We is the cell width, the cell height is 25.6 flm.) Calculate the (a) logical effort and 
(b) logical area for the AOl22I and OAl22I cells. 

The implementation of the OAl22I in this library uses a single stage, 

OAI22I = OAI22I(aI, a2, bI, b2, c), 

whereas the AOl22I uses the following multistage implementation: 

AOl22I = NOT(NAND(NAND(al, a2), AOI2I(bl, b2, c»). 

(c) What are the alternative implementations for these two cells? (d) From your 
answers attempt to explain the implementations chosen. 

3.12 (**Logical efficiency, 60 min.) Extending Problem 3.11, let us compare an 
A0I33 with an OAI33 cell. (a) Calculate the logical effort and (b) logical areas for 
these cells. 

The A0I33 uses a single-stage implementation as follows: 

A0I33 = A0I33(aI, a2, a3, bI, b2, b3). 

The OAI33 uses the following multistage implementation: 

OAI33 = NOT[NOR[NOR(aI, a2, a3), NOR(bI, b2, b3)]]. 

(c) Calculate the path delay, D, as a function of path electrical effort, H, for both 
of these implementations ignoring parasitic and nonideal delays. (d) Use Eq. 3.42 to 
calculate the optimum path delay for these cells. (e) Compare and explain the differ­
ences between your answers to parts d and e for H = 1,2,4, and 8. 

The timing data from the data book is as follows (the cell height is 2S.6/-Lm): 

o A0I33: tR=0.70-1.06ns; tF=0.72-1.1Sns; Cin =0.21-0.28pF; We =3S.2flm 

o OAI33: tR= 1.06-1.70ns; tF= 1.42-1.98ns; Cin =0.31-0.36pF; We = 48/-Lm 

(f) How does this data compare with your theoretical analysis? 

3.13 (EXOR cells and logical effort, 60 min.) Show how to implement a 
two-input EXOR cell using an AOI22 and two inverters. Using logical effort, com­
pare this with an implementation using an AOI21 cell and a NOR cell. 

3.14 (***XNOR cells, 60 min.) Table 3.3 shows the implementation of XNOR 
cells in a standard-cell library. Analyze this data llsing the concept of logical effort. 

3.15 (***Extensions to logical effort, 60 min.) The path branching effort B is 
the product of branching efforts: 

B = IT hi' 
i E path 

(3.47) 
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TABLE 3.3 Implementations of XNOR cells in CMOS (Problem 3.14). 

Cell Implementation 

NAND[OR(a1 ,a2),NAND(a1 ,a2)] 

NOT[NOT[MUX[a1, NOT(a1 ),a2)]] 

NOT[NOT[MUX(a1 ,NOT(a1 ),a2)]] 

NAND[OR(a1 ,a2),NAND(a1 ,a2)] 

Library 1: XNOR2D1 

Library 2: XNOR2D1 

Library 1 : XNOR2D2 

Library 2: XNOR2D2 

Library 1: XNOR3D1 

Library 1: XNOR3D2 

NOT[NOT[MUX(a1, NOT(a1), NOT(MUX(a3, NOT(a3),a2)))]] 

NOT[NOT[MUX(a1, NOT(a1), NOT(MUX(a3, NOT(a3),a2)))]] 

The branching effort is the ratio of the on-path plus off-path capacitance to the 
on-path capacitance. The path effort F becomes the product of the path electrical 
effort, path branching effort, and path logical effort: 

F = GBH. (3.48) 

Show that the path delay D is 

D = 2.. gib/li + L Pi' (3.49) 
i E path i E path 

(***) Show that the optimum path delay is then 

D = NFI/N + P= N (GBH) liN + P. (3.50) 

3.16 (*Circuits from layout, 120 min.) Figure 3.26 shows a D flip-flop with 
clear from a 1.0!lm standard-cell library. Figure 3.27 shows two layout views of this 
D flip-flop. Construct the circuit diagram for this flip-flop, labeling the nodes and 
transistors as shown. Include the transistor sizes-use estimates for transistors with 
45° gates-you only need W IL values, you can assume the gate lengths are all 
L = 2A, equal to the minimum feature size. Label the inputs and outputs to the cell 
and identify their functions. 

3.17 (Flip-flop circuits, 30 min.) Draw the circuit schematic for a 
positive-edge-triggered D flip-flop with active-high set and reset (base your sche­
matic on Figure 2.18a, a negative-edge-triggered D flip-flop). Describe the problem 
when both SET and RESET are high. 

If we want an active-high set or reset we can: (1) use an inverter on the set or 
reset signal or (2) we can substitute NOR cells. Since NOR cells are slower than 
NAND cells, which we do depends on whether we want to optimize for speed or 
area. 

Thus, the largest flip-flop would be one with both Q and QN outputs, active 
high set and reset-requiring four TX gates, three inverters (four of the seven we 
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FIGURE 3.26 A D flip-flop from a 1.0 11m standard-cell library (Problem 3.16). 

normally need are replaced with NAND cells), four NAND cells, and two inverters 
to invert the set and reset, making a total of 34 transistors, or 8.5 gates. 

3.18 (Set and reset, 10 min.) Show how to add a synchronous set or a 
synchronous reset to the flip-flop of Figure 2.18(a) using a two-input MUX. 

3.19 (Clocked inverters, 45 min.) Using PSpice compare the delay of an 
inverter with transmission gate with that of a clocked inverter using the 05 process 
SPICE parameters from Table 2.1. 

3.20 (S-R, T, J-K flip-flops, 30 min.) The characteristic equation for a D flip­
flop is Qt+l = D. The characteristic equation for a J-K flip-flop is Qt+l = J(Qt)' + K'Qt. 

a. Show how you can build a J-K flip-flop using a D flip-flop. 

The characteristic equation for a T flip-flop (toggle flip-flop) is Qt+l = (Qt)' . 
Show how to build a T flip-flop using a D flip-flop. 

c. The characteristic equation does not show the timing behavior of a sequential 
element-the characteristic equation for a D latch is the same as that for a D 
flip-flop. The characteristic equation for an S-R latch and an S-R flip-flop is 
Qt+l = S + R'Qt. An S-R flip-flop is sometimes called a pulse-triggered flip­
flop. Find out the behavior of an S-R latch and an S-R flip-flop and describe 
the differences between these elements and a D latch and a D flip-flop. 

Explain why it is probably not a good idea to use an S-R flip-flop in an ASIC 
design. 
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a b c d 

FIGURE 3.27 (Top) A standard cell showing the diffusion (n-diffusion and p-diffusion), poly, 
and contact layers (the n-well and p-well are not shown). (Bottom) Shows the m1, contact, 
m2, and via layers. Problem 3.16 traces this circuit for this cell. 

3.21 (**Optimum logic, 60 min.) Suppose we have a fixed logic path of length 
111. We want to know how many (if any) buffer stages we should add at the output of 

e 
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this path to optimize the total path delay given the output load capacitance. 

tion: 

a. If the total number of stages is N (logic path of length 111 plus N - 111 invert­
ers), show that the total path delay is 

111 

~ liN I D=NP + (p.+q.)+(N-n 1)(p· +q. ). 
I I IIlV IIlV 

(3.51) 

i = 1 

The optimum number of stages is given by the solution to the following equa-

aD a _=_(Npl/N+(N-n)(p. +q. ))=0 aN aN 1 IJ1V IJ1V • 
(3.52) 

b. Show that the solutions to this equation can be written in terms of pl/N (the 
optimum stage effort) where N is the optimum number of stages: 

P 11 N (1-ln P 11 N) + (p. + q. ) = O. 
Inv 111 v 

(3.53) 

3.22 (XOR and XNOR cells, 60 min.) Table 3.4 shows the implementations of 
two- and three-input XOR cells in an ASIC standard-cell library (DI are the IX 
drive cells, and D2 are the 2X drive versions). Can you explain the choices for the 
two-input XOR cell and complete the table for the three-input XOR cell? 

TABLE 3.4 Implementations of XOR cells (Problem 3.22). 

Cell Actual implementation 1 

XOR2D1 AOl21 [a1, a2, NOR(a1 ,a2)] 

XOR2D2 NOT[MUX(a1, NOT(a1), a2)] 

XOR3D1 NOT[MUX[a1, NOT(a1), NOT(MUX(a3, NOT(a3), a2))]] 

XOR3D2 NOT[MUX[a1, NOT(a1), NOT(MUX(a3, NOT(a3), a2))]] 

1MUX(a, b, c)=a·c+b·c' 

Alternative impJementation(s) 

NOT[MUX(a1, NOT(a1), a2)] 

AOI22(a1, a2, NOT(a1), NOT(a2)) 

AOl21 [a1, a2, NOR(a1, a2)] 

AOI22(a1, a2, NOT(a1), NOT(a2)) 

? 

? 

3.23 (Library density, 10 min.) Derive an upper limit on cell density as follows: 
Assume a chip consists only of two-input NAND cells with no routing channels 
between rows (often achievable in a 3LM process with over-the-cell routing). 

3. Explain how many vertical tracks you need to connect to a two-input NAND 
cell, assuming each connection requires a separate track. 

-- -- - _ ... _- - ... ~-----------
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b. If the NAND cell is 64A high with a vertical track width of SA, calculate the 
NAND cell area, carefully explaining any assumptions. 

c. Calculate the cell density (in gate/mi12) for a 0.35 ~m process, A = 0.17 5 ~m. 

Answer: 3 tracks, 47 ~m2, 13.7 gates/mi12 or 21 x 103 gates/mm? 

3.24 (Gate-array density, 20 min.) The LSI Logic 10k and lOOk gate arrays use 
a four-transistor base cell, equivalent to 1 gate, that is 12 tracks high and 3 tracks 
wide. 

a. If a metal track is SA, where A= 0.75 ~m for a l.5 ~m technology, calculate 
the area of the LSI Logic base cell AL in mi12. 

b. If we could use every base cell in the gate array, the cell density would be 
Dc = l/AL · Assume that, because of routing area and inefficiency of the gate 
array, we can use only 50 percent of the base cells for logic. What is Dc for 
the LSI Logic 1.5 ~Lm array? 

c. Chip cell density Dc is about l.0 gate/mil2 for a 1 ~m technology (a two­
input NAND cell occupies an area 25 ~m on a side in a technology whose 
transistors are 1 ~m long). This can change by a factor of 2 or more for a 
gate-array/standard-cell ASIC or high-density/high-performance library. 
Assume that cell density Dc scales ideally with technology. If the minimum 
feature size of a technology is 2A, then Dc oc lIA 2. rl'hus, for example, a 
1.5 ~m technology should have a cell density of roughly 0/1.5)2 gates/mi12. 
How does this agree with your estimate for the LSI Logic array? 

3.25 (SiArc RAM, 10 min.) Suppose we need 16 k-bit of SRAM and 20 k-gate 
of random logic on a channelless gate array. Assume a base cell with four transistors 
and that we can build a RAM cell using two of these base cells. The RAM bits will 
require 32k base cells and the random logic will require 20k base cells. Suppose the 
base cell area is 12 tracks high, 3 tracks wide, and the horizontal and vertical track 
spacing is equal at SA. 

a. Calculate the total area of the base cells we need. Now suppose we redesign 
the gate-array base cell so that we can build a RAM bit cell using a single 
base cell that is 20 tracks high, 3 tracks wide, and has 4 logic cell transistors 
and 4 RAM cell transistors. Assume that since the base cell now contains S 
transistors we only need 12 k base cells to implement 20 k-gate of random 
logic (the new base cell is less efficient than the old cell for implementing 
random logic). 

b. Calculate the base cell area using the new base cell design. 

c. Comment. 

Answer: 1.2 x 108 A2, 1.1 X 108 A2. 

3.26 (***Gate-array base cell, 60 min.) Figure 3.2S shows a simple gate-array 
base cell. Use the design rules shown in Table 2.16 (Problem 2.33) to calculate the 
minimum size of this base cell. Do this by determining which design rules apply to 
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the labels shown adjacent to each space or width in the figure. In most cases each of 
the spaces is determined by a single rule related to the region labeled, for example, 
the contact width labeled 'cc' is 2A determined by rule C.l, the exact contact size. 
There is one exception, shown in the figure., Space 'aa' (bounding box, BB, to edge 
of pdiff) and width 'bb' (edge of pdiff to edge of contact) are determined by the min­
imum space labeled 'xx' (bounding box, BB, to poly edge) and width 'yy' (edge of 
poly to edge of contact). Space 'xx' is one half of the poly to poly spacing over field 
(rule P.4) because two base cells abut as shown in the figure. Width 'yy' is equal to 
the minimum poly overlap of contact (rule C.3). The distance 'aa + bb' is thus deter­
mined by the minimum distance 'xx + yy', as shown. The other distances are more 
straightforward to determine. 

Answer: 40A high by 26.25A wide. 

3.27 (CIF, 15 min.) Here is the part of the CIF for a standard cell that describes 
the n-well (CWN) and p-well (CWP) structure. The statement B length height 

xCenter I yCenter is CIF for a box (CIF dimensions are in centimicrons, 
0.01 )lm): 

DS1iLCWNiB6000 

1560 13600,3660iB2480 60 11840,2850iB2320 60 15440,2850;LCWP;B680 60 

13740,2730;B6000 1380 13600,2010; 

a. Draw the wells and BB. Label the dimensions in microns and A (A = 0.4 )lm). 

b. This is a double-entry cell with m2 connectors at top and bottom. For this 
cell library the cell AB is 3A (120 centimicrons, determined by the well 
rules) inside the cell BB on all sides. What is the size of the cell AB in 
microns and ;,,? 

c. The vertical (m2) routing pitch (the distance between centers of adjacent ver­
tical m2 interconnect lines) is equal to the vertical track spacing and is 8A 
(320 centimicrons). How many vertical tracks are there in this cell? 

3.28 (CIF, 60 min.) Figure 3.29 shows an example of CIF that describes a sin-
gle rectangle (box) of m 1 with an accompanying label. 

The CIF code has the following meaning: 

o Lines 1-5 are CIF comments. 

o Line 6 is a definition start for symbol 1 and marks the beginning of a sym~ 
bol definition (a symbol is a piece of layout, symbol numbers are unique 
identifiers). The integers 2 and 8 define a scaling factor 2/8 (= 0.25) to be 
applied to distance measurements (the ClF unit, after scaling, is a centimi~ 
cron or 0.01 )lm). 

o Line 7 is a user extension or expansion (all extensions begin with a digit). 
L-Edit uses user extension 9 for cell names (CellO in this case). 

o Line 8 is a user extension for a cell label located on layer CM (first-level 
metal in this technology) located at x = 60 units, y = 180 units (60, 180). 
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aa+bb 

=xx+yy 

= 2.75 
= (0.5 x P.4 + C.3) 

yy 

= 1.5 
= C.3 

xx 
= 1.25 
= 0.5 x P.4 

BB = cell bounding box 

BB 

base 
cell 1 

BB 

base 
cell 2 

k 

~~ ____________________________ .. _q ______ ~ BB 

FIGURE 3.28 A simple gate-array base cell (Problem 3.26). 

Applying the scaling factor of 0.25, this translates to (15, 45) in centimicrons 
or (0.5, 1.5) in lambda. 

o Line 9 is a layer specification or command (begins with L). 

• Line 10 is a box command and describes a box with (in order) length, L, of 
240 units; width, W, of 120 units; and center at x = 120 units and y = 300 units. 
Applying the DS scaling factor of 0.25 gives L = 60, W = 30, center = (30, 
75)(centimicrons) or L = 2, W = 1, center = (l, 2.5) in lambda. 

e Line 11 is the definition finish (DS and DF must be paired). 

o Line 12 is the end command. 

182



166 CHAPTER 3 ASIC LIBRARY DESIGN 

(CIF written by the Tanner Research 

layout editor: L-Edit); --1 

(TECHNOLOGY: VLSIcmn6); --2 

(DATE: Thu, Jun 27, 1996); --3 

(FABCELL: NONE); --4 

(SCALING: 1 CIF unit = 1/120 Lambda, 1 

Lambda = 3/10 Microns); 

DS1 2 8; 

9 CellO; 

94 LabelText 60 180 CM; 

LCM; 

B 240 120 120 300; 

DF; 

--5 

--6 

--7 
--8 

--9 

--10 
--11 

LSI} ..... p IT p:·:rt 
I .. _" "_" ._ • .&.~'" 

E --12 + 
FIGURE 3.29 A simple CIF example (Problem 3.28). 

You receive a CIF file whose mask-layer names are different from those in the 
technology file that you are using. The mapping between layer names is shown in 
Table 3.5. 

a. Write an awk or sed script (or use another automated editing technique) to 
change the layer names. At this point you realize that there are several layer 
names (LTRAN, LESD) in the input file that are not required (or recognized) 
by your layout software (these particular examples are for software to recog­
nize unused transistors in a gate array, and for an ESD implant in I/O 
devices). 

b. (**) Enhance your script to completely remove an unwanted layer from the 
CIF file. There are some comments and CIF constructs that are not supported 
by your editor. Here is one example: 

(BB: 39.2,82.6 72.8,122.5 in lambda); 

Comments in this format specify the AB and BB for the cell. Other CIF user 
extensions, not recognized by your software, are used for labels for power supplies 
and connectors: 

4A 1680 3360 2800 4844; 

4M a 1 2292 4028 2356 4092 CM2; 

4M z 4 2639 4090 2703 4154 CM2; 

4X vdd 2 2800 4774 180 * * metal; 

c. (**) Add code to remove all these constructs from the elF file. 
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TABLE 3.5 Mapping elF layer names (Problem 3.28).1 

Input mask MOSISmask Input mask MOSIS mask Input mask MOSIS mask 
label label label label label label 

LCNW CWN LCN02 CSN LCM2 CMS 

LCPW CWP LCP02 CSP LCC2 CVS 

none3 CAA LCC4 CCA LCM3 CMT 

LCP CPG LCM CMF none COG 

1This mapping is for input to a layout editor; the CIF may have to be modified again when written out from the 
layout editor. 

2Map the input diffusion layers to the implant select layers. On output from the layout editor these -layers should 
be sized up to generate the "real" implant select layers. 

3There is no active layer in the input. Instead use the diffusion layers. 
4There is only one contact layer in the input; map all contacts to CAA.There is no easy way to generate the 
MOSIS CCP layer. This prevents handling of poly and diffusion contacts separately. 

3.11 Bibliography 

The first part of this chapter is covered in greater detail in Weste and Eshraghian 
[1993]. The experiments presented in this chapter may be reproduced using PSpice 
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available from MicroSim containing PC versions of their software together with ref­
erence manuals in Adobe Acrobat format that are readable on all platforms. Other 
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that is hard to find. The patent literature is the best reference for high-speed and 
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There are two types of programmable ASICs: programmable logic devices (PLDs) 
and field-programmable gate arrays (FPGAs). The distinction between the two is 
blurred. The only real difference is their heritage. PLDs started as small devices that 
could replace a handful of TTL parts, and they have grown to look very much like 
their younger relations, the FPGAs. We shall group both types of programmable 
ASICs together as FPGAs. 

An FPGA is a chip that you, as a systems designer, can program yourself. An IC 
foundry produces FPGAs with some connections missing. You perform design entry 
and simulation. Next, special software creates a string of bits describing the extra 
connections required to make your design-the configuration file. You then connect 
a computer to the chip and program the chip to make the necessary connections 
according to the configuration file. There is no customization of any mask level for 
an FPGA, allowing the FPGA to be manufactured as a standard part in high volume. 

FPGAs are popular with microsystems designers because they fill a gap between 
TTL and PLD design and modern, complex, and often expensive ASICs. FPGAs are 
ideal for prototyping systems or for low-volume production. FPGA vendors do not 
need an IC fabrication facility to produce the chips; instead they contract IC found­
ries to produce their parts. Being fabless relieves the FPGA vendors of the huge bur­
den of building and running a fabrication plant (a new submicron fab costs hundreds 
of millions of dollars). Instead FPGA companies put their effort into the FPGA 
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architecture and the software, where it is much easier to make a profit than building 
chips. They often sell the chips through distributors, but sell design software and 
any necessary programming hardware directly. 

All FPGAs have certain key elements in common. All FPGAs have a regular 
array of basic logic cells that are configured using a programming technology. The 
chip inputs and outputs use special I/O logic cells that are different from the basic 
logic cells. A programmable interconnect scheme forms the wiring between the two 
types of logic cells. Finally, the designer uses custom software, tailored to each pro­
gramming technology and FPGA architecture, to design and implement the pro­
grammable connections. The programming technology in an FPGA determines the 
type of basic logic cell and the interconnect scheme. The logic cells and intercon­
nection scheme, in turn, determine the design of the input and output circuits as well 
as the programming scheme. 

The programming technology mayor may not be permanent. You cannot undo 
the permanent programming in one-time programmable (OTP) FPGAs. Repro­
grammable or erasable devices may be reused many times. We shall discuss the dif­
ferent programming technologies in the following sections. 

4.1 The Antifuse 

An antifuse is the opposite of a regular fuse-an antifuse is normally an open 
circuit until you force a programming current through it (about 5 mA). In a 
poly-diffusion antifuse the high current density causes a large power dissipation in a 
small area, which melts a thin insulating dielectric between polysilicon and diffusion 
electrodes and forms a thin (about 20 nm in diameter), permanent, and resistive sili­
con link. The programming process also drives dopant atoms from the poly and dif­
fusion electrodes into the link, and the final level of doping determines the 
resistance value of the link. Actel calls its antifuse a programmable low-impedance 
circuit element (PLICETIVI). 

Figure 4.1 shows a poly-diffusion antifuse with an oxide-nitride-oxide (ONO) 
dielectric sandwich of: silicon dioxide (Si02) grown over the n-type antifuse diffu­
sion, a silicon nitride (Si3N4) layer, and another thin Si02 layer. The layered ONO 
dielectric results in a tighter spread of blown antifuse resistance values than using a 
single-oxide dielectric. The effective electrical thickness is equivalent to 10 nm of 
Si02 (Si3N4 has a higher dielectric constant than Si02, so the actual thickness is less 
than 10 nm). Sometimes this device is called a fuse even though it is an antifuse, and 
both terms are often used interchangeably. 

The fabrication process and the programming current control the average resis­
tance of a blown antifuse, but values vary as shown in Figure 4.2. In a particular 
technology a programming current of 5 mA may result in an average blown antifuse 
resistance of about 500 Q. Increasing the programming current to 15 mA might 
reduce the average antifuse resistance to 100 Q. Antifuses separate interconnect 
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FIGURE 4.1 Actel antifuse. (a) A cross section. (b) A simplified drawing. The ONO 
(oxide-nitride-oxide) dielectric is less than 10 nm thick, so this diagram is not to scale. 
(c) From above, an antifuse is approximately the same size as a contact. 

wires on the FPGA chip and the programmer blows an antifuse to make a permanent 
connection. Once an antifuse is programmed, the process cannot be reversed. This is 
an OTP technology (and radiation hard). An Actel 1010, for example, contains 
112,000 antifuses (see Table 4.1), but we typically only need to program about 
2 percent of the fuses on an Actel chip. 

TABLE 4.1 Number of 
antifuses on Actel FPGAs. 

Device Antifuses 

A1010 112,000 

A1020 186,000 

A1225 250,000 

A1240 400,000 

percentage 

100 
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FIGURE 4.2 The resistance of blown Actel antifuses. The 
average antifuse resistance depends on the programming 
current. The resistance values shown here are typical for a 
programming current of 5 mA. 

To design and program an Actel FPGA, designers iterate between design entry 
and simulation. When they are satisfied the design is correct they plug the chip 
into a socket on a special programming box, called an Activator, that generates 
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the programming voltage. A PC downloads the configuration file to the Activator 
instructing it to blow the necessary antifuses on the chip. When the chip is pro­
grammed it may be removed from the Activator without harming the configuration 
data and the chip assembled into a system. One disadvantage of this procedure is 
that modern packages with hundreds of thin "metal leads are susceptible to damage 
when they are inserted and removed from sockets. The advantage of other program­
ming technologies is that chips may be programmed after they have been assembled 
on a printed-circuit board-a feature known as in-system programming (ISP). 

The Actel antifuse technology uses a modified CMOS process. A double-metal, 
single-poly CMOS process typically uses about 12 masks-the Actel process 
requires an additional three masks. The n-type antifuse diffusion and antifuse 
polysilicon require an extra two masks and a 40 nm (thicker than normal) gate oxide 
(for the high-voltage transistors that handle 18 V to program the antifuses) uses one 
more masking step. Actel and Data General performed the initial experiments to 
develop the PLICE technology and Actel has licensed the technology to Texas 
Instruments (TI). 

The programming time for an ACT 1 device is 5 to 10 minutes. Improvements 
in programming make the programming time for the ACT 2 and ACT 3 devices 
about the same as the ACT 1. A 5-day work week, with 8-hour days, contains about 
2400 minutes. This is enough time to program 240 to 480 Actel parts per week with 
100 percent efficiency and no hardware down time. A production schedule of more 
than 1000 parts per month requires multiple or gang programmers. 

4.1.1 Metal-Metal Antifuse 
Figure 4.3 shows a QuickLogic metal-metal antifuse (ViaLinkTM). The link is an 
alloy of tungsten, titanium, and silicon with a bulk resistance of about 500 !-lQcm. 

There are two advantages of a metal-metal antifuse over a poly-diffusion 
antifuse. The first is that connections to a metal-metal antifuse are direct to metal­
the wiring layers. Connections from a poly-diffusion antifuse to the wiring layers 
require extra space and create additional parasitic capacitance. The second advan­
tage is that the direct connection to the low-resistance metal layers makes it easier to 
use larger programming currents to reduce the antifuse resistance. For example, the 
antifuse resistance R "'" 0.8/1, with the programming current I in rnA and R in Q , for 
the QuickLogic antifuse. Figure 4.4 shows that the average QuickLogic metal-metal 
antifuse resistance is approximately 80 Q (with a standard deviation of about 10 Q) 
using a programming current of 15 rnA as opposed to an average antifuse resistance 
of 500 Q (with a programming current of 5 rnA) for a poly-diffusion antifuse. 

The size of an antifuse is limited by the resolution of the lithography equipment 
used to makes ICs. The Actel antifuse connects diffusion and polysilicon, and both 
these materials are too resistive for use as signal interconnects. To connect the anti­
fuse to the metal layers requires contacts that take up more space than the antifuse 
itself, reducing the advantage of the small antifuse size. However, the antifuse is so 
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FIGURE 4.3 Metal-metal antifuse. (a) An idealized (but to scale) cross section of a 
QuickLogic metal-metal antifuse in a two-level metal process. (b) A metal-metal antifuse in 
a three-level metal process that uses contact plugs. The conductive link usually forms at the 
corner of the via where the electric field is highest during programming. 

FIGURE 4.4 Resistance values for the 
QuickLogic metal-metal antifuse. A higher pro­
gramming current (about 15 mA), made possible 
partly by the direct connections to metal, has 
reduced the antifuse resistance from the 
poly-diffusion antifuse resistance values shown 
in Figure 4.2. 
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small that it is normally the contact and metal spacing design rules that limit how 
closely the antifuses may be packed rather than the size of the antifuse itself. 

An antifuse is resistive and the addition of contacts adds parasitic capacitance. 
The intrinsic parasitic capacitance of an antifuse is small (approximately 1-2 fF in a 
1 J.lm CMOS process), but to this we must add the extrinsic parasitic capacitance 
that includes the capacitance of the diffusion and poly electrodes (in a 
poly-diffusion antifuse) and connecting metal wires (approximately 10 fF). These 
unwanted parasitic elements can add considerable RC interconnect delay if the num­
ber of antifuses connected in series is not kept to an absolute minimum. Clever rout­
ing techniques are therefore crucial to antifuse-based FPGAs. 

The long-term reliability of antifuses is an important issue since there is a ten­
dency for the antifuse properties to change over time. There have been some prob­
lems in this area, but as a result we now know an enormous amount about this 

o 
(J) 

4 

o 
o 

! 
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failure mechanism. There are many failure mechanisms in ICs-electromigration is 
a classic example-and engineers have learned to deal with these problems. Engi­
neers design the circuits to keep the failure rate below acceptable limits and systems 
designers accept the statistics. All the FPGA vendors that use antifuse technology 
have extensive information on long-term reliability in their data books. 

4.2 Static RAM 

An example of static RAM (SRAM) programming technology is shown in 
Figure 4.5. This Xilinx SRAM configuration cell is constructed from two cross­
coupled inverters and uses a standard CMOS process. The configuration cell drives 
the gates of other transistors on the chip-either turning pass transistors or transmis­
sion gates on to make a connection or off to break a connection. 

FIGURE 4.5 The Xilinx SRAM (static 
RAM) configuration cell. The outputs of the 
cross-coupled inverter (configuration con-
trol) are connected to the gates of pass tran- READ or ---,-0 
sistors or transmission gates. The cell is WRITE ~ 
programmed using the WRITE and DATA 
lines. DATA ----' 

..--------1 .... Q 
configuration 

1---__ ---111>- Q' control 

The advantages of SRAM programming technology are that designers can reuse 
chips during proto typing and a system can be manufactured using ISP. This pro­
gramming technology is also useful for upgrades-a customer can be sent a new 
configuration file to reprogram a chip, not a new chip. Designers can also update or 
change a system on thefty in reconfigurable hardware. 

The disadvantage of using SRAM programming technology is that you need to 
keep power supplied to the programmable ASIC (at a low level) for the volatile 
SRAM to retain the connection information. Alternatively you can load the configu­
ration data from a permanently programmed memory (typically a programmable 
read-only memory or PROM) every time you tum the system on. The total size of 
an SRAM configuration cell plus the transistor switch that the SRAM cell drives is 
also larger than the programming devices used in the antifuse technologies. 

" EPROM and EEPROM Technology 

Altera MAX 5000 EPLDs and Xilinx EPLDs both use UV-erasable electrically 
programmable read-only memory (EPROM) cells as their programming technol­
ogy. Altera's EPROM cell is shown in Figure 4.6. The EPROM cell is almost as 
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small as an antifuse. An EPROM transistor looks like a normal MOS transistor 
except it has a second, floating, gate (gatel in Figure 4.6). Applying a programming 
voltage Vpp (usually greater than 12 V) to the drain of the n-channel EPROM tran­
sistor programs the EPROM cell. A high electric field causes electrons flowing 
toward the drain to move so fast they "jump" across the insulating gate oxide where 
they are trapped on the bottom, floating, gate. We say these energetic electrons are 
hot and the effect is known as hot-electron injection or avalanche injection. 
EPROM technology is sometimes called floating-gate avalanche MOS (FAMOS). 

hv 

(a) (b) (c) 

FIGURE 4.6 An EPROM transistor. (a) With a high (> 12 V) programming voltage, Vpp, 
applied to the drain, electrons gain enough energy to "jump" onto the floating gate (gate1). 
(b) Electrons stuck on gate 1 raise the th reshold voltage so that the transistor is always off for 
normal operating voltages. (c) Ultraviolet light provides enough energy forthe electrons stuck 
on gate1 to "jump" back to the bulk, allowing the transistor to operate normally. 

Electrons trapped on the floating gate raise the threshold voltage of the 
n-chaqnel EPROM transistor (Figure 4.6b). Once programmed, an n-channel 
EPROM device remains off even with V DD applied to the top gate. An unpro­
grammed l1-channel device will turn 011 as normal with a top-gate voltage of V DD. 

The programming voltage is applied either from a special programming box or by 
using on-chip charge pumps. Exposure to an ultraviolet (UV) lamp will erase the 
EPROM cell (Figure 4.6c). An absorbed light quantum gives an electron enough 
energy to jump from the floating gate. To erase a part we place it under a UV lamp 
(Xilinx specifies one hour within 1 inch of a 12,000IlWcm-2 source for its EPLDs). 
The manufacturer provides a software program that checks to see if a part is erased. 
You can buy an EPLD part in a windowed package for development, erase it, and 
use it again, or buy it in a nonwindowed package and program (or burn) the part 
once only for production. The packages get hot while they are being erased, so that 
windowed option is available with only ceramic packages, which are more expen­
sive than plastic packages. 
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Programming an EEPROM transistor is similar to programming an UV -erasable 
EPROM transistor, but the erase mechanism is different. In an EEPROM transistor 
an electric field is also used to remove electrons from the floating gate of a pro­
grammed transistor. This is faster than using a UV lamp and the chip does not have 
to be removed from the system. If the part contains circuits to generate both pro­
gram and erase voltages, it may use ISP. 

4.4 Practical Issues 

System companies often select an ASIC technology first, which narrows the choice 
of software design tools. The software then influences the choice of computer. Most 
computer-aided engineering (CAE) software for FPGA design uses some type of 
security. For workstations this usually means floating licenses (any of 11 users on a 
network can use the tools) or node-locked licenses (only n particular computers can 
use the tools) using the hostid (or host LD., a serial number unique to each com­
puter) in the boot EPROM (a chip containing start-up instructions). For PCs this is a 
hardware key, similar to the View logic key illustrated in Figure 4.7. Some keys use 
the serial port (requiring extra cables and adapters); most now use the parallel port. 
There are often conflicts between keys and other hardware/software. For example, 
for a while some security keys did not work with the serial-port driver on Intel 
motherboards-users had to buy another serial-port I/O card. 

FIGURE 4.7 CAE companies use hardware security keys that fit at the back of a 
PC (this one is shown at about one-half the real size). Each piece of software 
requires a separate key, so that a typical design system may have a half dozen or 
more keys daisy-chained on one socket. This presents both mechanical and soft­
ware conflict problems. Software will not run without a key, so it is easily possible to 
have $60,000 worth of keys attached to a single PC. 

Most FPGA vendors offer software on multiple platforms. The performance dif­
ference between workstations and PCs is becoming blurred, but the time taken for 
the place-and-route step for Actel and Xilinx designs seems to remain constant­
typically taking tens of minutes to over an hour for a large design-bounded by 
designers' tolerances. 

A great deal of time during FPGA design is spent in schematic entry, editing 
files, and documentation. This often requires moving between programs and this is 
difficult on IBM-compatible PC platforms. Currently most large CAD and CAE pro­
grams completely take over the PC; for example you cannot always run third-party 
design entry and the FPGA vendor design systems simultaneously. 
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There are many other factors to be considered in choosing hardware: 

• Software packages are normally less expensive on a PC. 

o Peripherals are less expensive and easier to configure on a PC. 
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• Maintenance contracts are usually necessary and expensive for workstations. 

• There is a much larger network of users to provide support for PC users. 

• It is easier to upgrade a PC than a workstation. 

4.4.1 FPGAs in Use 
I once placed an order for a small number of FPGAs for prototyping and received a 
sales receipt with a scheduled shipping date three months away. Apparently, two 
customers had recently disrupted the vendor's product planning by placing large 
orders. Companies buying parts from suppliers often keep an inventory to cover 
emergencies such as a defective lot or manufacturing problems. For example, 
assume that a company keeps two months of inventory to ensure that it has parts in 
case of unforeseen problems. This risk inventory or safety supply, at a sales volume 
of 2000 parts per month, is 4000 parts, which, at an ASIC price of $5 per part, costs 
the company $20,000. FPGAs are normally sold through distributors, and, instead of 
keeping a risk inventory, a company can order parts as it needs them using a 
just-in-time (JIT) inventory system. This means that the distributors rather than the 
customer carry inventory (though the distributors wish to minimize inventory as 
well). The downside is that other customers may change their demands, causing 
unpredictable supply difficulties. 

There are no standards for FPGAs equivalent to those in the TTL and PLD 
worlds; there are no standard pin assignments for VDD or GND, and each FPGA 
vendor uses different power and signal I/O pin arrangements. Most FPGA packages 
are intended for surface-mount printed-circuit boards (PCBs). However, surface 
mounting requires more expensive PCB test equipment and vapor soldering rather 
than bed-of-nails testers and surface-wave soldering. An alternative is to use sock­
eted parts. Several FPGA vendors publish socket-reliability tests in their data books. 

Using sockets raises its own set of problems. First, it is difficult to find wire­
wrap sockets for surface-mount parts. Second, sockets may change the pin configu­
ration. For example, when you use an FPGA in a PLCC package and plug it into a 
socket that has a PGA footprint, the resulting arrangement of pins is different from 
the same FPGA in a PGA package. This means you cannot use the same board lay­
out for a prototype PCB (which uses the socketed PLCe part) as for the production 
PCB (which uses the PGA part). The same problem occurs when you use through­
hole mounted parts for prototyping and surface-mount parts for production. To deal 
with this you can add a small piece to your prototype board that you use as a con­
verter. This can be sawn off on the production boards-saving a board iteration. 

Pin assignment can also cause a problem if you plan to convert an FPGA design 
to an MGA or CBIC. In most cases it is desirable to keep the same pin assignment 
as the FPGA (this is known as pin locking or I/O locking), so that the same PCB 
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can be used in production for both types of devices. There are often restrictions for 
custom gate arrays on the number and location of power pads and package pins. 
Systems designers must consider these problems before designing the FPGA and 
PCB. 

4.5 Specifications 

All FPGA manufactures are contif\ually improving their products to increase perfor­
mance and reduce price. Often this means changing the design of an FPGA or mov­
ing a part from one process generation to the next without changing the part number 
(and often without changing the specifications). 

FPGA companies usually explain their part history in their data books.l The fol­
lowing history of Actel FPGA ACT 1 part numbers illustrates changes typical 
throughout the IC industry as products develop and mature: 

• The Actel ACT 1 A1010/A1020 used a 2!-lm process. 

• The Actel A1010A/A1020A used a 1.2!-lm process. 

• The Actel A1020B was a die revision (including a shrink to a 1.0!-lm pro­
cess). At this time the A1020, A1020A, and A1020B all had different speeds. 

• Actel graded parts into three speed bins as they phased in new processes, 
dropping the distinction between the different die suffixes. 

• At the same time as tbe transition to die rev. 'B', Actel began specifying timing 
at worst-case commercial conditions rather than at typical conditions. 

From this history we can see that it is often possible to have parts from the same 
family that use different circuit designs, processes, and die sizes, are manufactured 
in different locations, and operate at very different speeds. FPGA companies ensure 
that their products always meet the current published worst-case specifications, but 
there is no guarantee that the average performance follows the typical specifications, 
and there are usually no best-case specifications. 

There are also situations in which two parts with identical part numbers can 
have different performance-when different ASIC foundries produce the same parts. 
Since FPGA companies are fabless, second sourcing is very common. For example, 
TI began making the TPC1010A/l020A to be equivalent to the original Actel ACT 1 
parts produced elsewhere. The TI timing information for the TPC1010A/1020A was 
the same as the 2!-lm Actel specifications, but TI used a faster 1.2!-lm process. This 
meant that "equivalent" parts with the same part numbers were much faster than a 
designer expected. Often this type of information can only be obtained by large cus­
tomers in the form of a qualification kit from FPGA vendors. 

1 See, for example, p.1-8 of the Xilinx 1994 data book. 
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A similar situation arises when the FPGA manufacturer adjusts its product mix 
by selling fast parts under a slower part number in a procedure known as 
down-binning. This is not a problem for synchronous designs that always work 
when parts are faster than expected, but is another reason to avoid asynchronous 
designs that may not always work when parts are much faster than expected. 

4.6 PREP Benchmarks 

Which type of FPGA is best? This is an impossible question to answer. The 
Programmable Electronics Performance Company (PREP) is a nonprofit organi­
zation that organized a series of benchmarks for programmable ASICs. The nine 
PREP benchmark circuits in the version 1.3 suite are: 

1. An 8-bit datapath consisting of 4: 1 MUX, register, and shift-register 

2. An 8-bit timer-counter consisting of two registers, a 4: 1 MUX, a counter and 
a comparator 

3. A small state machine (8 states, 8 inputs, and 8 outputs) 

4. A larger state machine (16 states, 8 inputs, and 8 outputs) 

5. An ALU consisting of a 4 x 4 multiplier, an 8-bit adder, and an 8-bit register 

6. A 16-bit accumulator 

7. A 16-bit counter with synchronous load and enable 

8. A 16-bit prescaled counter with load and enable 

9. A 16-bit address decoder 

The data for these benchmarks is archived at http://www . prep. argo PREP's 
online information includes Verilog and VHDL source code and test benches (pro­
vided by Synplicity) as well as additional synthesis benchmarks including a bit-slice 
processor, multiplier, and R4000 MIPS RISC microprocessor. 

One problem with the FPGA benchmark suite is that the examples are small, 
allowing FPGA vendors to replicate multiple instances of the same circuit on an 
FPGA. This does not reflect the wayan FPGA is used in practice. Another problem 
is that the FPGA vendors badly misused the results. PREP made the data available 
in a spreadsheet form and thus inadvertently challenged the marketing department of 
each FPGA vendor to find a way that company could claim to win the benchmarks 
(usually by manipulating the data using a complicated weighting scheme). The 
PREP benchmarks do demonstrate the large variation in performance between dif­
ferent FPGA architectures that results from differences in the type and mix of logic. 
This shows that designers should be careful in evaluating others' results and per­
forming their own experiments. 
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4.7 FPGA Economics 

FPGA vendors offer a wide variety of packaging, speed, and qualification (military, 
industrial, or commercial) options in each family. For example, there are several 
hundred possible part combinations for the Xilinx LCA series. Figure 4.8 shows the 
Xilinx part-naming convention, which is similar to that used by other FPGA vendors. 

FIGURE 4.8 Xilinx part-naming convention. 

XC4010-10 PG156C 1 ~t.- temperature. range L number of pins 
package 
speed 

'------- device type 

Table 4.2 shows the various codes used by manufacturers in their FPGA part 
numbers. Not all possible part combinations are available, not all packaging combi­
nations are available, and not all I/O options are available in all packages. For exam­
ple, it is quite common for an FPGA vendor to offer a chip that has more I/O cells 
than pins on the package. This allows the use of cheaper plastic packages without 
having to produce separate chip designs for each different package. Thus a customer 
can buy an Actel A1020 that has 69 I/O cells in an inexpensive 44-pin PLCC pack­
age but uses only 34 pins for I/O-the other 10 (=44 - 34) pins are required for pro­
gramming and power: three for GND, four for VDD, one for MODE (a pin that 
controls four other multifunction pins), and one for VPP (the programming voltage). 
A designer who needs all 69 l/Os can buy the A1020 in a bigger package. Tables in 
the FPGA manufacturers' data books show the availability, and these matrices 
change constantly. 

4.7.1 FPGA Pricing 
Asking "How much do FPGAs cost?" is rather like asking "How much does a car 
cost?" Prices of cars are published, but pricing schemes used by semiconductor 
manufactures are closely guarded secrets. Many FPGA companies use a pricing 
strategy based on a cost model that uses a series of multipliers or adders for each 
part option to calculate the suggested price for their distributors. Although the FPGA 
companies will not divulge their methods, it is possible to reverse engineer these 
factors to create a pricing matrix. 

Many FPGA vendors sell parts through distributors. This can introduce some 
problems for the designer. For example, in 1992 the Xilinx XC3000 series offered 
the following part options: 

o Five different size parts: XC30{ 20, 30, 42, 64, 90} 

o Three different speed grades or bins: {50, 70, 100} 
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TABLE 4.2 Programmable ASIC part codes. 

Item Code Description Code Description 

Manufacturer's A Actel ATT AT&T (Lucent) 
code XC Xilinx isp Lattice Logic 

EPM Altera MAX M5 AMD MACH 5 is on the device 

EPF Altera FLEX OL QuickLogic 

CY7C Cypress 

Package PLor PC 
type PO 

CO or CB 

PG 

plastic J-Ieaded chip carrier, PLCC 

plastic quad flatpack, POFP 

ceramic quad flatpack, COFP 

ceramic pin-grid array, PGA 

VQ 

TO 

PP 

WB, 

very thin quad flatpack, VOFP 

thin plastic flatpack, TOFP 

plastic pin-grid array, PPGA 

ball-grid array, BGA 
PB 

---- ----------------------------------------------

Application C 

I 

M 

commercial 

industrial 

military 

B 

E 

MIL -STD-883 

extended 

TABLE 4.3 1992 base Actel 
FPGA prices. 

TABLE 4.4 1992 base Xilinx XC3000 
FPGA prices. 

Actel part 

Ai 01 OA-PL44C 

A1020A-PL44C 

A 1225-P01 OOC 

A 1240-P0144C 

A 1280-P0160C 

1 H92 base price 

$23.25 

$43.30 

$105.00 

$175.00 

$305.00 

Xilinx part 

XC3020-50PC68C 

XC3030-50PC44C 

XC3042-50PC84C 

XC3064-50PC84C 

XC3090-50PC84C 

G Ten different packages: {PC68, PC84, PG84, PQI00, CQI00, PP132, 
PG132, CQ184, PPl7S, PGl7Sl 

e Four application ranges or qualification types: {C, 1, M, B 1 
where { 1 means "Choose one." 

This range of options gave a total of 600 possible XC3000 products, of which 
127 were actually available from Xilinx, each with a different part code. If a 
designer is uncertain as to exact size, speed, or package required, then they might 
easily need price information on several dozen different part numbers. Distributors 
know the price information-it is given to each distributor by the FPGA vendors. 
Sometimes the distributors are reluctant to give pricing information out-for the 

1 H92 base price 

$26.00 

$34.20 

$52.00 

$87.00 

$133.30 
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TABLE 4.5 Actel price adjustment factors. 

Purchase quantity, all types 

(1-9) (10-99) (100-999) 

100% 96% 84% 

Purchase time, in (100-999) quantity 

1H92 2H92 93 

100% 80-95% 60-80% 

Qualification type, same package 

Commercial Industrial Military 883-8 

100% 

Speed bin1 

ACT 1-Std 

100% 

Package type 

A1010: 

Ai 020: 

A1225: 

A1240: 

A1280: 

120% 

ACT 1-1 

115% 

PL44, 64, 84 

100% 

PL44, 64, 84 

100% 

PQ100 

100% 

P0144 

100% 

POi60 

100% 

150% 

ACT 1-2 

140% 

PQ100 

125% 

PQ100 

125% 

PG100 

175% 

PG132 
>-~ _ •• - •••••••• _ ••••• _._- ._. --."."-, .. _--"-_.---,-_ .. 

140% 

PG176 

145% 

230-300% 

ACT 2-Std 

100% 

PG84 

400% 

JQ44, 68, 84 

270% 

C0172 

160% 

ACT 2-1 

120% 

PG84 

275% 

CQ84 

400% 

1 Actel speed bins are: Std = standard speed grade; 1 = medium speed grade; 2 = fastest speed grade. 

same reason car salespeople do not always like to advertise the pricing scheme for 
cars. However, pricing of the components of a microelectronics system is a vital fac-

199



4.7 FPGA ECONOMICS 183 

tor in making decisions such as whether to use FPGAs or some alternative technol­
ogy. Designers would like to know how FPGAs are priced and how prices may 
change. 

4.7.2 Pricing Examples 
Table 4.3 shows the prices of the least-expensive version of the Actel ACT 1 and 
ACT 2 FPGA families, the base prices, in the first half of 1992 (lH92). Table 4.4 
shows the 1H92 base prices for the Xilinx XC3000 FPGA family. Current FPGA 
prices are much lower. As an example, the least-expensive XC3000 part, the 
XC3020A-7PC68C, was $13.75 in 1996-nearly half the 1992 price. 

Using historical prices helps prevent accusations of bias or distortion, but still 
realistically illustrates the pricing schemes that are used. We shall use these base 
prices to illustrate how to estimate the sticker price of an FPGA by adding options­
as we might for a car. To estimate the price of any part, multiply the base prices by 
the adjustment factors (shown in Table 4.5 for the Actel parts). 

The adjustment factors in Table 4.5 were calculated by taking averages across a 
matrix of prices. Not all combinations of product types are available (for example, 
there was no military version of an A1280-1 in 1H92). The dependence of price over 
time is especially variable. An example price calculation for an Actel part is shown 
in Table 4.6. Many FPGA vendors use similar pricing models. 

TABLE 4.6 Example Actel part-price calculation using the base prices of 
Table 4.3 and the adjustment factors of Table 4.5. 

Example: Ai 020A-2-PQ1 001 in (100-999) quantity, purchased 1 H92. 

Factor Example Value 

Base price A1020A $43.30 

Quantity 100-999 84% 

Time 1H92 100% 

Qualification type Industrial (I) 120% 

Speed bin 1 2 140% 

Package PQ100 125% 

Estimated price (1 H92) $76.38 

Actual Actel price (1 H92) $75.60 

1The speed bin is a manufacturer's code (usually a number) that follows the family part 
number and indicates the maximum operating speed of the device. 
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Some distributors now include FPGA prices and availability online (for example, 
Marshall at http://marshall. com for Xilinx parts) so that is possible to complete 
an up-to-date analysis at any time. Most distributors carry only one FPGA vendor; not 
all of the distributors publish prices; and not all FPGA vendors sell through distribu­
tors. Currently Hamilton-Avnet, at http://www.hh.avnet.com. carries Xilinx; and 
Wyle, at http://www.wyle.com. carries Actel and Altera. 

4.8 Summary 

In this chapter we have covered FPGA programming technologies including anti­
fuse, SRAM, and EPROM technologies; the programming technology is linked to 
all the other aspects of a programmable ASIC. Table 4.7 summarizes the program­
ming technologies and the fabrication processes used by programmable ASIC ven­
dors. 

TABLE 4.7 Programmable ASIC technologies. 

Programming 
technology 

Size of 
programming 
element 

Process 

Programming 
method 

Programming 
technology 

Size of 
programming 
element 

Process 

Actel 

Poly-diffusion 
antifuse, PLICE 

Small but requires 
contacts to metal 

Special: CMOS plus 
three extra masks. 

Special hardware 

QuickLogic 

Metal-metal 
antifuse, ViaLink 

Smallest 

Special, CMOS plus 
ViaLink 

Xilinx LCA 1 

Erasable SRAM 
ISP 

Two inverters plus 
pass and switch 
devices. Largest. 

Standard CMOS 

PC card, PROM, or 
serial port 

Crosspoint 

Metal-polysilicon 
antifuse 

Small 

Special, CMOS plus 
antifuse 

Altera EPLD Xilinx EPLD 

UV-erasable EPROM UV-erasable EPROM 
(MAX 5k) 
EEPROM (MAX7/9k) 

One n-channel 
EPROM device. 
Medium. 

Standard EPROM 
and EEPROM 

ISP (MAX 9k) or 
EPROM programmer 

Atmel 

Erasable SRAM. 
ISP. 

Two inverters plus 
pass and switch 
devices. Largest. 

Standard CMOS 

One n-channel 
EPROM device. 
Medium. 

Standard EPROM 

EPROM programmer 

Altera FLEX 

Erasable SRAM. 
ISP. 

Two inverters plus 
pass and switch 
devices. Largest. 

Standard CMOS 

Programming Special hardware Special hardware PC card, PROM, or PC card, PROM, or 
method serial port serial port 

1 Lucent (formerly AT&T) FPGAs have almost identical :Jroperties to the Xilinx LCA family. 
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All FPGAs have the following key elements: 

• The programming technology 

• The basic logic cells 

• The I/O logic cells 

• Programmable interconnect 

• Software to design and program the FPGA 

4.9 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

4.1 (Antifuse properties, 20 min.) In this problem we examine some of the 
physical and electrical features of the antifuse programming process. 

a. If the programming current of an antifuse is 5 rnA and the link diameter that 
is formed is 20 nm, what is the current density during programming? 

b. If the average antifuse resistance is 500 Q after programming is complete and 
the programming current is 5 rnA, what is the voltage across the antifuse at 
completion of programming? 

c. What power is dissipated in the antifuse link at the end of programming? 

d. Suppose we wish to reduce the antifuse resistance from 500 Q to 50 Q. If the 
antifuse link is a tall, thin cylinder, what is the diameter of a 50 Q antifuse? 

e. Assume we need to keep the power dissipated per unit volume of the antifuse 
link the same at the end of the programming process for both 500 Q and 50 Q 
antifuses. What current density is required to program a 50 Q antifuse? 

f. With these assumptions what is the required programming current for a 50 Q 
antifuse? Comment on your answer and the assumptions that you have made. 

4.2 (Actel antifuse programming, 20 min.) In this problem we examine the time 
taken to program an antifuse-based FPGA. 

a. We have stated that it takes about 5 to 10 minutes to program an Actel part. 
Given the number of antifuses on the smallest Actel part, and the number of 
antifuses that need to be blown on average, work out the equivalent time it 
takes to blow one antifuse. Does this seem reasonable? 

b. Because of a failure process known as electromigration, the current density in 
a metal wire on a chip is limited to about 50kAcm-2. You can exceed this 
current for a short time as long as the time average does not exceed the limit. 
Suppose we want to use a minimum metal width to connect the programming 
transistors: Would these facts help explain your answer to part a? 

c. What other factors might be involved in the process of blowing antifuses that 
may help explain your answer to part a? 
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4.3 (*Xilinx cell) Estimate the area components of a Xilinx cell as follows: 

a. (30 min.) Assume the two inverters in the cross-coupled SRAM cell are mini­
mum size (they are not, the p-channels-or n-channels-in one inverter need 
to be weak-long and narrow-but ignore this). Assume the read-write 
device is minimum size. Estimate the size of the SRAM cell including an 
allowance for wiring (state your assumptions clearly). 

b. (15 min.) Assume a single n-channel pass transistor is connected to the 
SRAM cell and has an on-resistance of 500 Q (equal to the average Actel 
ACT 1 antifuse resistance for comparison; the actual Xilinx pass transistors 
have closer to 1 kQ on-resistance). Estimate the transistor size. Assume the 
gate voltage of the pass transistor is at 5 V, and the source and drain voltages 
are both at 0 V (the best case). Hint: Use the parameters from Section 3.1, 
"Transistors as Resistors." 

c. (15 min.) Compare your total area estimates of the cell with other FPGA tech­
nologies. Explain why the assumptions you made may be too simple, and 
suggest ways to make more accurate estimates. 

4.4 (FPGA vendors, 60 min.) Update the information shown in Table 4.7 using 
the online information provided by FPGA vendors. 

4.5 (Prices) Adjustment factors, calculated from averages across the Xilinx 
price matrix, are shown in Table 4.8 (the adjustment factors for the Xilinx military 
and MIL-STD parts vary so wildly that it is not possible to use a simple model to 
predict these prices). 

a. (5 min.) Estimate the price ofaXC3042-70PG1321 in 100+ quantity, pur­
chased in IH92. 

b. (30 min.) Use the 1992 prices in Figure 4.9 to derive as much of the informa­
tion shown in Table 4.8 as you can, explaining your methods. 

3042 (1-24) (25-99) (100+) 
50PC84C $52.00 $47.30 $40.05 

50PC841 $67.30 $61.25 $51.80 

70PC84C $56.50 $51.40 $43.50 

FIGURE 4.9 Xilinx XC3042 
70PC841 $73.30 $66.70 $56.45 

prices (1992). Problem 4.5 100PC84C $67.70 $61.60 $52.15 
reconstructs part of Table 4.8 125PC84C $114.00 $103.75 $87.80 
from this data. 50PP132C $124.50 $113.30 $95.85 

50PQ100C $60.40 

50PG84C $161.50 

50CQ100C $194.50 

50PG132C $191.20 
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TABLE 4.8 Xilinx price adjustment factors (1992) for Problem 4.5 

Purchase quantity, all types 

(1-24) (25-99) (100+) (5000+) 

100% 91 % 77% 70% 

Purchase time, in (100-999) quantity 

1 H92 + 18 months 

100% 60% 

Qualification type, same package 

Commercial Industrial Military 883-B 

100% 

Speed bin 

50 

100% 

Package type 

130% varies 

70 100 
... "' ..... " ... -~, ..... ~ ." ._ .... _."."._ .... _ .. , .. ,_ ...... - ... _ ..... _ ..... _ ...... _ .. _ .. _ ... . 

110% 130% 

3020: PC68 PC84 

varies 

125 

220% 

P0100 
-----.--~--.--.--.---.---.--------.----------~---.---------

100% 106% 127% 

3030: PC44 PC68 PC84 

100% 107% 113% 

3042: PC84 P0100 PP132 

100% 175% 240% 

3064: PC84 P0160 PP132 

100% 150% 190% 

3090: PC84 P0160 PP175 

100% 130% 150% 

PG84 

340% 

P0100 

135% 

PG84 

310% 

PG132 

260% 

PG175 

230% 

C0100 

490% 

PG84 

330% 

PG132 

370% 

C0164 

240% 

c. (Hours) Construct a table (using the format of Table 4.8) for a current FPGA 
family. You may have to be creative in capturing the HTML and filtering it 
into a spreadsheet. Hint: In Microsoft Word 5.0 you can select columns of 
text by holding down the Option key. 

C0100 

375% 
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Answer: (a) $211.85 (the actual Xilinx price was $210.20). 

4.6 (PREP benchmarks, 60 min.) Download the PREP 1.3 benchmark results as 
spreadsheets from http://www . prep. org. Split the participating companies 
among groups and challenge each group to produce an averaging or analysis scheme 
that shows the group's assigned company as a "winner." For hints on this problem, 
consult advertisements in past issues of EE Times. 

4.7 (FPGA patents) Patents are a good place to find information on FPGAs. 

a. Find U.S. Patent 5,440,245, Galbraith et al. "Logic module with configurable 
combinational and sequential blocks." Find and explain a method to paste the 
figures into a report. 

b. Conduct a patent search on FPGAs. Good places to start are the U.S. Patent and 
Trademark Office (PTO) at http://www . uspto. gOY and the IBM patent 
resource at http://patent.womplex . ibm. com. Until 1996 the full text of 
recent U.S. patents was available at http://www . town. hall. org/patent; 
this is still a good site to visit for references to other locations. Table 4.9 lists the 
patents awarded to the major FPGA companies up until 1996 (in the case of 
Actel and Altera the list includes only patents issued after 1990, corresponding 
roughly to patent numbers greater than number 5,000,000, which was issued in 
March 1990). 

4.8 (**Maskworks, days) If you really want to find out about FPGA technology 
you tear chips apart. There is another way. Most U.S. companies register their chips 
as a type of copyright called a Maskwork. You will often see a little circle contain­
ing an "M" on a chip in the same way that a copyright sign is a circle surrounding 
the letter "C". Companies that require a Maskwork are required to deposit plots and 
samples of the chips with a branch of the Library of Congress. These plots are open 
for public inspection in Washington, D.C. It is perfectly legal to use this informa­
tion. You have to sign a visitors' book, and most of the names in the book are J apa­
nese. Research Maskworks and write a summary of its implications, the protection it 
provides, and (if you can find them) the rules for the materials that must be depos­
ited with the authorities. 
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TABLE 4.9 FPGA Patents (U.S.). 

QuickLogic Xilinx 5,329,181 4,713,557 5,308,795 5,008,855 5,280,203 
5,416,367 5,436,575 5,329,174 4,706,216 5,304;871 5,274,581 
5,397,939 5,432,719 5,329,181 4,695,740 5,299,150 Altera 5,272,368 
5,396,127 5,430,687 5,321,704 4,642,487 5,286,992 5,477,474 5,268,598 
5,362,676 5,430,390 5,319,254 5,272,388 5,473,266 5,260,611 
5,319,238 5,426,379 5,319,252 Actel 5,272,101 5,463,328 5,260,610 
5,302,546 5,426,378 5,302,866 5,479,113 5,266,829 5,444,394 5,258,668 
5,220,213 5,422,833 5,295,090 5,477,165 5,254,886 5,438,295 5,247,478 
5,196,724 5,414,377 5,291,079 5,469,396 5,223,792 5,436,575 5,247,477 

5,410,194 5,245,277 5,464,790 5,208,530 5,436,574 5,243,233 
Intel 5,410,189 5,224,056 5,457,644 5,198,705 5,434,514 5,241,224 

4,543,5941 5,399,925 5,166,858 5,451,887 5,194,759 5,432,467 5,237,219 
5,399,924 5,155,432 5,449,947 5,191,241 5,414,312 5,220,533 

Crosspoint 5,394,104 5,148,390 5,448,185 5,187,393 5,399,922 5,220,214 
5,440,453 5,386,154 5,068,603 5,440,245 5,181,096 5,384,499 5,200,920 
5,394,103 5,367,207 5,047,710 5,432,441 5,172,014 5,376,844 5,166,604 
5,384,481 5,365,125 5,028,821 5,414,364 5,171,715 5,371,422 5,162,680 
5,322,812 5,362,999 5,023,606 5,412,244 5,163,180 5,369,314 5,144,167 
5,313,119 5,361,229 5,012,135 5,411,917 5,134,457 5,359,243 5,138,576 
5,233,217 5,360,747 4,967,107 5,404,029 5,132,571 5,359,242 5,128,565 
5,221,865 5,359,536 4,940,909 5,391,942 5,130,777 5,353,248 5,121,006 

5,349,691 4,902,910 5,387,812 5,126,282 5,352,940 5,111,423 
Concurrent 5,349,250 4,870,302 5,373,169 5,111,262 5,350,954 5,097,208 
5,218,240 5,349,249 4,855,669 5,371,414 5,107,146 5,349,255 5,091,661 
5,144,166 5,349,248 4,855,619 5,369,054 5,095,228 5,341,308 5,066,873 
5,089,973 5,343,406 4,847,612 5,367,208 5,087,958 5,341,048 5,045,772 

5,337,255 4,835,418 5,365,165 5,083,083 5,341,044 
Plus Logic 5,349,248 4,821,233 5,341,092 5,073,729 5,329,487 
5,028,821 5,343,406 4,820,937 5,341,043 5,070,384 5,317,210 
5,023,606 5,337,255 4,783,607 5,341,030 5,057,451 5,315,172 
5,012,135 5,332,929 4,758,985 5,317,698 5,055,718 5,301,416 
4,967,107 5,331,226 4,750,155 5,316,971 5,017,813 5,294,975 
4,940,909 5,331,220 4,746,822 5,309,091 5,015,885 5,285,153 

1 Mohsen's patent on the antifuse structure. 
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4.10 Bibliography 

Books by Ukeiley [1993], Chan [1994], and Trimberger [1994] are dedicated to 
FPGAs and their uses. The International Workshop on Field-Programmable Logic 
and Applications describes the latest developments and applications of FPGAs 
[Grlinbacher and Hartenstein, 1992; Hartenstein and Servit, 1994; Moore and Luk, 
1995; Hmtenstein and Glesner, 1996]. Many of the FPGA vendors have Web sites 
that include white papers and technical documentation. The annual IEEE Interna­
tional Electron Devices Meeting (IEDM, ISSN 0163-1918, TK 7801.I53) is a forum 
for presenting new device and IC technology including new FPGA programming 
technologies. The IEEE Transaction on Electron Devices (ISSN 0018-9383) is the 
archival source for developments in device technology. 

There is a large U.S. patent literature on FPGAs (see Table 4.9). Sometimes the 
FPGA vendors hide the basic low-level structures from the user to simplify their 
description or to prevent the competition from understanding their secrets. Patents 
have to explain the details of operation (otherwise they will not be awarded or can­
not be enforced), so sometimes it can be useful to at least know where to look. One 
place to start is the front or back of the data book, which often contains a list of the 
manufacturer's patents. 
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All programmable ASICs or FPGAs contain a basic logic cell replicated in a regular 
array across the chip (analogous to a base cell in an MGA). There are the following 
three different types of basic logic cells: (1) multiplexer based, (2) look-up table 
based, and (3) programmable array logic. The choice among these depends on the 
programming technology. We shall see examples of each in this chapter. 

5.1 ActelACT 

The basic logic cells in the Actel ACT family of FPGAs are called Logic Modules. 
The ACT 1 family uses just one type of Logic Module and the ACT 2 and ACT 3 
FPGA families both use two different types of Logic Module. 

5.1.1 ACT 1 logic Module 
The functional behavior of the Actel ACT 1 Logic Module is shown in Figure 5.1 (a). 
Figure 5.1(b) represents a possible circuit-level implementation. We can build a 
logic function using an Actel Logic Module by connecting logic signals to some or 
all of the Logic Module inputs, and by connecting any remaining Logic Module 
inputs to VDD or GND. As an example, Figure 5.1(c) shows the connections to 
implement the function F = A . B + B' . C + D. How did we know what connections to 
make? To understand how the Actel Logic Module works, we take a detour via mul­
tiplexer logic and some theory. 
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Logic Module 

ActelACT 
0000000000 00 0 o 0 g 0 

l!iiiiiHiiiiiiiiiiil 
00000000000000 

(a) 

(b) 

Logic Module 

F 

(c) 

D 

'1' 

C 

D 

'1' 

A 

'0' 
B 

Logic Module 

F = (A . B) + (B' . C) + D 

(d) 

FIGURE 5.1 The Actel ACT architecture. (a) Organization of the basic logic cells. (b) The 
ACT 1 Logic Module. (c) An implementation using pass transistors (without any buffering). 
(d) An example logic macro. (Source: Actel.) 

5.1.2 Shannon's Expansion Theorem 
In logic design we often have to deal with functions of many variables. We need a 
method to break down these large functions into smaller pieces. Using the Shannon 
expansion theorem, we can expand a Boolean logic function F in terms of (or with 
respect to) a Boolean variable A, 

F=A· F (A= 'I') + A'· F (A = '0'), (5.1) 

where F (A = 1) represents the function F evaluated with A set equal to'l '. 
For example, we can expand the following function F with respect to (I shall 

use the abbreviation wrt) A, 

F = A' . B + A· B . C' + A' . B' . C 

= A· (B· C') + A'· (B + B'· C). (5.2) 

We have split F into two smaller functions. We call F (A = ' 1 ') = B . C' the 
cofactor of F wrt A in Eq. 5.2. I shall sometimes write the cofactor of F wrt A as FA 
(the cofactor of F wrt A' is F A')' We may expand a function wrt any of its variables. 
For example, if we expand F wrt B instead of A, 

F = A'· B + A· B· C' + A'· B' · C 

= B . (A' + A . C') + B' . (A' . C). (5.3) 
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We can continue to expand a function as many times as it has variables until we 
reach the canonical form (a unique representation for any Boolean function that 
uses only minterms. A minterm is a product term that contains all the variables of 
F-such as A· B' . C). Expanding Eq. 5.3 again, this time wrt C, gives 

F = C . (A' . B + A' . B') + C' . (A· B + A' . B). (5.4) 

As another example, we will use the Shannon expansion theorem to implement 
the following function using the ACT 1 Logic Module: 

F=(A· B) +(B'· C)+D. 

First we expand F wrt B: 

F=B· (A+D) +B'· (C+D) 

= B . F2 + B' . Fl. 

(5.5) 

(5.6) 

Equation 5.6 describes a 2:1 MUX, with B selecting between two inputs: 
F (A = 'I') and F (A = '0'). In fact Eq. 5.6 also describes the output of the ACT 1 
Logic Module in Figure 5.l! Now we need to split up F1 and F2 in Eq. 5.6. Suppose 
we expand F2 = FB wrt A, and FI = FB, wrt C: 

F2 = A + D = (A· 1) + (A' . D), 

FI = C + D = (C· 1) + (C' . D). 

(5.7) 

(5.8) 

From Eqs. 5.6-5.8 we see that we may implement F by arranging for A, B, C to 
appear on the select lines and 'I' and D to be the data inputs of the MUXes in the 
ACT 1 Logic Module. This is the implementation shown in Figure 5.I(d), with con­
nections: AO = D, Al = '1', BO= D, Bl = 'I', SA = C, SB = A, SO = '0', and SI = B. 

Now that we know that we can implement Boolean functions using MUXes, 
how do we know which functions we can implement and how to implement them? 

5.1.3 Multiplexer Logic as Function Generators 
Figure 5.2 illustrates the 16 different ways to arrange' l's on a Karnaugh map corre­
sponding to the 16 logic functions, F (A, B), of two variables. Two of these func­
tions are not very interesting (F='O', and F='I'). Of the 16 functions, Table 5.1 
shows the 10 that we can implement using just one 2: 1 MUX. Of these 10 functions, 
the following six are useful: 

• INV The MUX acts as an inverter for one input only. 

9 BUF. The MUX just passes one of the MUX inputs directly to the output. 

• AND. A two-input AND. 

G OR. A two-input OR. 

o AND1-1. A two-input AND gate with inverted input, equivalent to an 
NOR-ll. 

• NORI-l. A two-input NOR gate with inverted input, equivalent to an 
AND-II. 
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F F F 
A A A 

B 0 1 B 0 1 B 0 1 

0 0 0 0 0 1 1 

FIGURE 5.2 The logic functions 1 0 1 1 1 
of two variables. 

4 ways to 6 ways to 4 ways to 
arrange arrange arrange 
one'1' two'1's one '0' 

14 functions of 2 variables (and F = '0', F = '1' makes 16) 

TABLE 5.1 Boolean functions using a 2:1 MUX. 

Minterm Function 
M14 

Function, F F= Canonical form Minterms1 code2 number3 AO A1 SA 

1 '0' '0' '0' none 0000 0 0 0 0 

2 NOR1-1(A, B) (A+ B')' A'·B 1 0010 2 B 0 A 

3 NOT(A) A' A'· B'+A'·B 0,1 0011 3 0 1 A 

4 AND1-1 (A, B) A·B' A·B' 2 0100 4 A 0 B 

5 NOT(B) B' A'· B'+A·B' 0,2 0101 5 0 1 B 

6 BUF(B) B A'·B+ A·B 1,3 1010 6 0 B 1 

7 AND(A. B) A·B A·B 3 1000 8 0 B A 

8 BUF(A) A A·B'+A·B 2,3 1100 9 0 A 1 

9 OR(A, B) A+B A' . B + A . B' + A . B 1,2,3 1110 13 B 1 A 

10 '1' '1 ' A' . B' + A' . B + A . B' + A . B 0,1,2,3 1111 15 1 1 

1The minterm numbers are formed from the product terms of the canonical form. For example, A· B' = 10 = 2. 
2The minterm code is formed from the minterms. A '1' denotes the presence of that minterm. 
3The function number is the decimal version of the minterm code. 
4Connections to a two-input MUX: AO and A 1 are the data inputs and SA is the select input (see Eq. 5.11). 

Figure 5.3(a) shows how we might view a 2: 1 MUX as a function wheel, a 
three-input black box that can generate anyone of the six functions of two-input 
variables: BUF, INV, AND-II, ANDl-l, OR, AND. We can write the output of a 
function wheel as 

FI = WHEEL I (A, B). (5.9) 
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where I define the wheel function as follows: 

WHEELI (A, B) = MUX (AO, AI, SA). (5.10) 

The MUX function is not unique; we shall define it as 

MUX (AO, AI, SA) = AO . SA' + Al . SA. (5.11) 

The inputs (AO, AI, SA) are described using the notation 

AO, AI, SA = {A, B, '0', 'I'} (5.12) 

to mean that each of the inputs (AO, AI, and SA) may be any of the values: A, B, '0', 
or '1'. I chose the name of the wheel function because it is rather like a dial that you 
set to your choice of function. Figure 5.3(b) shows that the ACT 1 Logic Module is 
a function generator built from two function wheels, a 2: I MUX, and a two-input 
OR gate. 

A0=1YM1 F1 
Ai 1 

SA 

L 
SO 
S1 

M1 

A,B .... 

WHEEL2 

SO 
S1 

t 

A two-input MUX 
can implement 
these functions, 
selected by AD, 
Ai, and SA. WHEEL The ACT 1 Logic Module can 

implement these functions. 

(a) (b) 

FIGURE 5.3 The ACT 1 Logic Module as a Boolean function generator. (a) A 2:1 MUX 
viewed as a function wheel. (b) The ACT 1 Logic Module viewed as two function wheels, an 
OR gate, and a 2:1 MUX. 

We can describe the ACT 1 Logic Module in terms of two WHEEL functions: 

F=MUX [WHEELl, WHEEL2, OR (SO, Sl)] (5.13) 

S3 
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Now, for example, to implement a two-input NAND gate, F = NAND (A, 
B) = (A . B)" using an ACT 1 Logic Module we first express F as the output of a 2: 1 
MUX. To split up F we expand it wrt A (or wrt B; since F is symmetric in A and B): 

F = A· (B') + A' . Cl') (5.14) 

Thus to make a two-input NAND gate we assign WHEELI to implement 
INV (B), and WHEEL2 to implement 'I'. We must also set the select input to the 
MUX connecting WHEELI and WHEEL2, SO + S 1 = A-we can do this with 
SO=A, SI ='1'. 

Before we get too carried away, we need to realize that we do not have to worry 
about how to use Logic Modules to construct combinational logic functions-this 
has already been done for us. For example, if we need a two-input NAND gate, we 
just use a NAND gate symbol and software takes care of connecting the inputs in the 
right way to the Logic Module. 

How did Actel design its Logic Modules? One of Actel's engineers wrote a pro­
gram that calculates how many functions of two, three, and four variables a given 
circuit would provide. The engineers tested many different circuits and chose the 
best one: a small, logically efficient circuit that implemented many functions. For 
example, the ACT 1 Logic Module can implement all two-input functions, most 
functions with three inputs, and many with four inputs. 

Apart from being able to implement a wide variety of combinational logic func­
tions, the ACT 1 module can implement sequential logic cells in a flexible and effi­
cient manner. For example, you can use one ACT 1 Logic Module for a transparent 
latch or two Logic Modules for a flip-flop. The use of latches rather than flip-flops 
does require a shift to a two-phase clocking scheme using two nonoverlapping 
clocks and two clock trees. Two-phase synchronous design using latches is efficient 
and fast but, to handle the timing complexities of two clocks requires changes to 
synthesis and simulation software that have not occurred. This means that most peo­
ple still use flip-flops in their designs, and these require two Logic Modules. 

5.1.4 ACT 2 and ACT 3 logic Modules 
Using two ACT 1 Logic Modules for a flip-flop also requires added interconnect and 
associated parasitic capacitance to connect the two Logic Modules. To produce an 
efficient two-module flip-flop macro we could use extra antifuses in the Logic 
Module to cut down on the parasitic connections. However, the extra antifuses 
would have an adverse impact on the performance of the Logic Module in other 
macros. The alternative is to use a separate flip-flop module, reducing flexibility and 
increasing layout complexity. In the ACT 1 family Actel chose to use just one type 
of Logic Module. The ACT 2 and ACT 3 architectures use two different types of 
Logic Modules, and one of them does include the equivalent of a D flip-flop. 
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Figure SA shows the ACT 2 and ACT 3 Logic Modules. The ACT 2 C-Module 
is similar to the ACT 1 Logic Module but is capable of implementing five-input 
logic functions. Actel calls its C-module a combinatorial module even though the 
module implements combinational logic. John Wakerly blames MMI for the intro­
duction of the term combinatorial [Wakerly, 1994, p. 404]. 

The use of MUXes in the Actel Logic Modules (and in other places) can cause 
confusion in using and creating logic macros. For the Actel library, setting S = '0' 
selects input A of a two-input MUX. For other libraries setting S = 'I' selects input 
A. This can lead to some very hard to find errors when moving schematics between 
libraries. Similar problems arise in flip-flops and latches with MUX inputs. A safer 
way to label the inputs of a two-input MUX is with '0' and 'I', corresponding to the 
input selected when the select input is 'I' or '0'. This notation can be extended to big­
ger MUXes, but in Figure 5 A, does the input combination SO = 'I' and S 1 = '0' select 
input DlO or input DOl? These problems are not caused by Actel, but by failure to 
use the IEEE standard symbols in this area. 

The S-Module (sequential module) contains the same combinational function 
capability as the C-Module together with a sequential element that can be config­
ured as a flip-flop. Figure 5A(d) shows the sequential element implementation in the 
ACT 2 and ACT 3 architectures. 

5.1.5 Timing Model and Critical Path 
Figure 5.5(a) shows the timing model for the ACT family.l This is a simple timing 
model since it deals only with logic buried inside a chip and allows us only to esti­
mate delays. We cannot predict the exact delays on an Actel chip until we have per­
formed the place-and-route step and know how much delay is contributed by the 
interconnect. Since we cannot determine the exact delay before physical layout is 
complete, we call the Actel architecture nondeterministic. 

Even though we cannot determine the preroute delays exactly, it is still impor­
tant to estimate the delay on a logic path. For example, Figure 5.5(a) shows a typical 
situation deep inside an ASIC. Internal signal II may be from the output of a register 
(flip-flop). We then pass through some combinational logic, Cl, through a register, 
S 1, and then another register, S2. The register-to-register delay consists of a 
clock-Q delay, plus any combinational delay between registers, and the setup time 
for the next flip-flop. The speed of our system will depend on the slowest 
register-register delay or critical path between registers. We cannot make our clock 
period any longer than this or the signal will not reach the second register in time to 
be clocked. 

Figure 5.5(a) shows an internal logic signal, II, that is an input to a C-module, 
Cl. Cl is drawn in Figure 5.5(a) as a box with a symbol comprising the overlapping 
letters "C" and "L" (borrowed from carpenters who use this symbol to mark the 
centerline on a piece of wood). We use this symbol to describe combinational logic. 

11994 data book, p. 1-101. 
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FIGURE 5.4 The Actel ACT 2 and ACT 3 Logic Modules. (a) The C-Module for combina­
tionallogic. (b) The ACT 2 S-Module. (c) The ACT 3 S-Module. (d) The equivalent circuit 
(without buffering) of the SE (sequential element). (e) The sequential element configured as 
a positive-edge-triggered D flip-flop. (Source: Actel.) 

For the standard-speed grade ACT 3 (we shall look at speed grading in 
Section 5.1.6) the delay between the input of a C-module and the output is specified 
in the data book as a parameter, tpD, with a maximum value of 3.0 ns. 

The output of C 1 is an input to an S-Module, S 1, configured to implement com­
binational logic and a D flip-flop. The Actel data book specifies the minimum setup 
time for this D flip-flop as tSUD = 0.8 ns. This means we need to get the data to the 
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input of Sl at least 0.8 ns before the rising clock edge (for a positive-edge-triggered 
flip-flop). If we do this, then there is still enough time for the data to go through the 
combinational logic inside S 1 and reach the input of the flip-flop inside S 1 in time to 
be clocked. We can guarantee that this will work because the combinational logic 
delay inside S 1 is fixed. ' 

The S-Module seems like good value-we get all the combinational logic func­
tions of a C-module (with delay tpD of 3 ns) as well as the setup time for a flip-flop 
for only 0.8 ns? " .not really. Next I will explain why not. 

Figure S.S(b) shows what is happening inside an S-Module. The setup and hold 
times, as measured inside (not outside) the S-Module, of the flip-flop are t'SUD and 
t'H (a prime denotes parameters that are measured inside the S-Module). The 
clock-Q propagation delay is t'co. The parameters t'SUD' t'H' and t'co'are measured 
using the internal clock signal CLKi. The propagation delay of the combinational 
logic inside the S-Module is t'pD' The delay of the combinational logic that drives 
the flip-flop clock signal (Figure SAd) is t'CLKD' 

From outside the S-Module, with reference to the outside clock signal CLKl: 

tSUD = t'SUD + (t'PD - t'CLKD), 

tH = t'H - (t'PD - t'CLKD)' 

tco = t'co + t'CLKD' (S.1S) 

Figure S.S(c) shows an example of flip-flop timing. We have no way of knowing 
what the internal flip-flop parameters t'SUD' t'H' and t'co actually are, but we can 
assume some reasonable values (just for illustration purposes): 

t'SUD = OA ns, t'H = 0.9 ns, t'co = OA ns. (S.16) 

We do know the delay, t'PD' of the combinational logic inside the S-Module. It 
is exactly the same as the C-Module delay, so t'PD = 3 ns for the ACT 3. We do not 
know t'CLKD; we shall assume a reasonable value of t'CLKD = 2.6 ns (the exact value 
does not matter in the following argument). 

Next we calculate the external S-Module parameters from Eg. S.IS as follows: 

tSUD = 0.8 ns, tH = O.S ns, tco = 3.0 ns. (S.17) 

These are the same as the ACT 3 S-Module parameters shown in Figure S.5(a), and I 
chose t'CLKD and the values in Eg. S.16 so that they would be the same. So now we 
see where the combinational logic delay of 3.0 ns has gone: OA ns went into increas­
ing the setup time and 2.6 ns went into increasing the clock-output delay, tco. 

From the outside we can say that the combinational logic delay is buried in the 
flip-flop setup time. FPGA vendors will point this out as an advantage that they 
have. Of course, we are not getting something for nothing here. It is like borrowing 
money-you have to pay it back. 
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FIGURE 5.5 The Actel ACT timing model. (a) Timing parameters for a 'Std' speed grade 
ACT 3. (Source: Actel.) (b) Flip-flop timing. (c) An example of flip-flop timing based on ACT 3 
parameters. 
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5.1.6 Speed Grading 
Most FPGA vendors sort chips according to their speed (the sorting is known as 
speed grading or speed binning, because parts are automatically sorted into plastic 
bins by the production tester). You pay more for the faster parts. In-the case of the 
ACT family of FPGAs, Actel measures performance with a special binning circuit, 
included on every chip, that consists of an input buffer driving a string of buffers or 
inverters followed by an output buffer. The parts are sorted from measurements on 
the binning circuit according to Logic Module propagation delay. The propagation 
delay, tpD' is defined as the average of the rising (tpLH) and falling (tpHd propaga­
tion delays of a Logic Module 

(5.18) 

Since the transistor properties match so well across a chip, measurements on the 
binning circuit closely correlate with the speed of the rest of the Logic Modules on 
the die. Since the speeds of die on the same wafer also match well, most of the good 
die on a wafer fall into the same speed bin. Actel speed grades are: a 'Std' speed 
grade, a 'I' speed grade that is approximately 15 percent faster, a '2' speed grade that 
is approximately 25 percent faster than 'Std', and a '3' speed grade that is approxi­
mately 35 percent faster than 'Std'. 

5.1.7 Worst-Case Timing 
If you use fully synchronous design techniques you only have to worry about how 
slow your circuit may be-not how fast. Designers thus need to know the maximum 
delays they may encounter, which we call the worst-case timing. Maximum delays 
in CMOS logic occur when operating under minimum voltage, maximum tempera­
ture, and slow-slow process conditions. (A slow-slow process refers to a process 
variation, or process corner, which results in slow p-channel transistors and slow 
n-channel transistors-we can also have fast-fast, slow-fast, and fast-slow process 
corners.) 

Eiectronic equipment has to survive in a variety of environments and ASIC 
manufacturers offer several classes of qualification for different applications: 

o Commercial. V DD = 5 V ± 5%, TA (ambient) = 0 to +70 ac. 
e Industrial. VDD = 5V ± 10%, TA (ambient) =-40 to +85 ac. 
• Military: V DD = 5 V ± 10%, T c (case) =-55 to + 125 ac. 
e Military: Standard MIL-STD-883C Class B. 

c Military extended: Unmanned spacecraft. 

ASICs for commercial application are cheapest; ASICs for the Cruise missile 
are very, very expensive. Notice that commercial and industrial application parts are 
specified with respect to the ambient temperature TA (room temperature or the 
temperature inside the box containing the ASIC). Military specifications are relative 
to the package case temperature, T c. What is really important is the temperature of 
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the transistors on the chip, the junction temperature, T J, which is always higher 
than TA (unless we dissipate zero power). For most applications that dissipate a few 
hundred m W, T J is only 5-10 °C higher than T A- To calculate the value of T J we 
need to know the power dissipated by the chip and the thennal properties of the 
package-we shall return to this in Section 6.6.1, "Power Dissipation." 

Manufacturers have to specify their operating conditions with respect to TJ and 
not T A, since they have no idea how much power purchasers will dissipate in their 
designs or which package they will use. Actel used to specify timing under nominal 
operating conditions: VDD = 5.0 V, and TJ = 25°C. Actel and most other manufactur­
ers now specify parameters under worst-case commercial conditions: V DD = 4.75 V, 
and TJ =+70°C. 

Table 5.2 shows the ACT 3 commercial worst-case timing.2 In this table Actel 
has included some estimates of the variable routing delay shown in Figure 5.5(a). 
These delay estimates depend on the number of gates connected to a gate output (the 
fanout). 

When you design microelectronic systems (or design anything) you must use 
worst-case figures (just as you would design a bridge for the worst-case load). To 
convert nominal or typical timing figures to the worst case (or best case), we use 
measured, or empirically derived, constants called derating factors that are 
expressed either as a table or a graph. For example, Table 5.3 shows the ACT 3 der­
ating factors from commercial worst-case to industrial worst-case and military 
worst-case conditions (assuming TJ=TA). The ACT 1 and ACT 2 derating factors 
are approximately the same.3 

TABLE 5.2 ACT 3 timing parameters.1 

Fanout 

Family Delay2 1 2 3 4 8 

ACT 3-3 (data book) tpo 2.9 3.2 3.4 3.7 4.8 

ACT3-2 (calculated) tpo/0.85 3.41 3.76 4.00 4.35 5.65 

ACT3-1 (calculated) tpo/0.75 3.87 4.27 4.53 4.93 6.40 

ACT3-Std (calculated) tpo/0.65 4.46 4.92 5.23 5.69 7.38 

Source: Actel. 

1 Voo = 4.75 V, TJ(junction) = 70 ac. Logic module plus routing delay. All propagation delays in nanoseconds. 
2 The Actel'1' speed grade is 15 % faster than 'Std'; '2' is 25 % faster than 'Std'; '3' is 35 % faster than 'Std'. 

2ACT 3: May 1995 data sheet, p. 1-173. ACT 2: 1994 data book, p. 1-51. 

31994 data book, p. 1-12 (ACT 1), p. 1-52 (ACT 2), May 1995 data sheet, p. 1-174 (ACT 3). 
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TABLE 5.3 ACT 3 derating factors.1 

Temperature T J (junction)fOC 

VDD/V -55 -40 0 25 70 85 125 

4.5 0.72 0.76 0.85 0.90 1.04 1.07 1.17 

4.75 0.70 0.73 0.82 0.87 1.00 1.03 1.12 

5.00 0.68 0.71 0.79 0.84 0.97 1.00 1.09 

5.25 0.66 0.69 0.77 0.82 0.94 0.97 1.06 

5.5 0.63 0.66 0.74 0.79 0.90 0.93 1.01 

Source: Actel. 

1 Worst-case commercial: Voo=4.75V, TA(ambient) = +70°C. Commercial: Voo =5V±5%, TA(ambient) = 0 
to +70°C. Industrial: Voo = 5V±10%, TA (ambient) = -40 to +85 °C. Military Voo = 5V±10 %, T c (case) = -55 
to +125°C. 

As an example of a timing calculation, suppose we have a Logic Module on a 
'Std' speed grade Al415A (an ACT 3 part) that drives four other Logic Modules and 
we wish to estimate the delay under worst-case industrial conditions. From the data 
in Table 5.2 we see that the Logic Module delay for an ACT 3 'Std' part with a 
fanout of four is tpD = 5.7 ns (commercial worst-case conditions, assuming TJ = TA). 

If this were the slowest path between flip-flops (very unlikely since we have 
only one stage of combinational logic in this path), our estimated critical path 
delay between registers, tCRIT, would be the combinational logic delay plus the 
flip-flop setup time plus the clock-output delay: 

tCRIT (w-c commercial) = tpD + tSUD + tco 

=S.7ns+0.8ns+3.0ns =9.Sns. (S.19) 

(I use w-c as an abbreviation for worst-case.) Next we need to adjust the timing to 
worst-case industrial conditions. The appropriate derating factor is 1.07 (from 
Table 5.3); so the estimated delay is 

tCRIT (w-c industrial) = 1.07 x 9.S ns = 10.2 ns. (5.20) 

Let us jump ahead a little and assume that we can calculate that 
T J = T A + 20°C = 105°C in our application. To find the derating factor at 105°C we 
linearly interpolate between the values for 85°C (1.07) and 125°C 0.17) from 
Table 5.3). The interpolated derating factor is 1.12 and thus 

tCRIT (w-c industrial, TJ = 105°C) = 1.12 x 9.5 ns = 10.6 ns, (5.21) 

giving us an operating frequency of just less than 100 MHz. 
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It may seem unfair to calculate the worst-case performance for the slowest 
speed grade under the harshest industrial conditions-but the examples in the data 
books are always for the fastest speed grades under less stringent commercial condi­
tions. If we want to illustrate the use of derating, then the delays can only get worse 
than the data book values! The ultimate word on logic delays for all FPGAs is the 
timing analysis provided by the FPGA design tools. However, you should be able to 
calculate whether or not the answer that you get from such a tool is reasonable. 

5.1.8 Actel Logic Module Analysis 
The sizes of the ACT family Logic Modules are close to the size of the base cell of 
an MGA. We say that the Actel ACT FPGAs use a fine-grain architecture. An 
advantage of a fine-grain architecture is that, whatever the mix of combinational 
logic to flip-flops in your application, you can probably still use 90 percent of an 
Actel FPGA. Another advantage is that synthesis software has an easier time map­
ping logic efficiently to the simple Actel modules. 

The physical symmetry of the ACT Logic Modules greatly simplifies the place­
and-route step. In many cases the router can swap equivalent pins on opposite sides 
of the module to ease channel routing. The design of the Actel Logic Modules is a 
balance between efficiency of implementation and efficiency of utilization. A simple 
Logic Module may reduce performance in some areas-as I have pointed out-but 
allows the use of fast and robust place-and-route software. Fast, robust routing is an 
important part of Actel FPGAs (see Section 7.1, "Actel ACT"). 

5.2 Xilinx LeA 

Xilinx LCA (a trademark, denoting logic cell array) basic logic cells, configurable 
logic blocks or CLBs, are bigger and more complex than the Actel or QuickLogic 
cells. The Xilinx LCA basic logic cell is an example of a coarse-grain architecture. 
The Xilinx CLBs contain both combinational logic and flip-flops. 

5.2.1 XC3000 ClB 
The XC3000 CLB, shown in Figure 5.6, has five logic inputs (A-E), a common 
clock input (K), an asynchronous direct-reset input (RD), and an enable (EC). Using 
programmable MUXes connected to the SRAM programming cells, you can inde­
pendently connect each of the two CLB outputs (X and Y) to the output of the flip­
flops (QX and QY) or to the output of the combinational logic (F and G). 

A 32-bit look-up table (LUT), stored in 32 bits of SRAM, provides the ability 
to implement combinational logic. Suppose you need to implement the function 
F = A . B . C· D· E (a five-input AND). You set the contents of LUT cell number 31 
(with address '11111') in the 32-bit SRAM to a '1'; all the other SRAM cells are set 
to '0'. When you apply the input variables as an address to the 32-bit SRAM, only 
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(global reset) GJ programmable MUX 

FIGURE 5.6 The Xilinx XC3000 CLB (configurable logic block). (Source:Xilinx.) 

when ABCDE = '11111' will the output F be a '1'. This means that the CLB propaga­
tion delay is fixed, equal to the LUT access time, and independent of the logic func­
tion you implement. 

There are seven inputs for the combinational logic in the XC3000 CLB: the five 
CLB inputs (A-E), and the flip-flop outputs (QX and QY). There are two outputs 
from the LUT (F and G). Since a 32-bit LUT requires only five variables to form a 
unique address (32 = 25), there are several ways to use the LUT: 

e You can use five of the seven possible inputs (A-E, QX, QY) with the entire 
32-bit LUT. The CLB outputs (F and G) are then identical. 

• You can split the 32-bit LUT in half to implement two functions of four vari­
ables each. You can choose four input variables from the seven inputs (A-E, 
QX, QY). You have to choose two of the inputs from the five CLB inputs 
(A-E); then one function output connects to F and the other output connects 
to G. 
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• You can split the 32-bit LUT in half, using one of the seven input variables 
as a select input to a 2:1 MUX that switches between F and G. This allows 
you to implement some functions of six and seven variables. 

5.2.2 XC4000 Logic Block 
Figure 5.7 shows the CLB used in the XC4000 series of Xilinx FPGAs. This is a 
fairly complicated basic logic cell containing 2 four-input LUTs that feed a three­
input LUT. The XC4000 CLB also has special fast carry logic hard-wired between 
CLBs. MUX control logic maps four control inputs (CI-C4) into the four inputs: 
LUT input HI, direct in (DIN), enable clock (EC), and a set/reset control (SIR) for 
the flip-flops. The control inputs (CI-C4) can also be used to control the use of the 
F' and G' LUTs as 32 bits of SRAM. 
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FIGURE 5.7 The Xilinx XC4000 family CLB (configurable logic block). (Source:Xilinx.) 
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5.2.3 XC5200 logic Block 
Figure 5.8 shows the basic logic cell, a Logic Cell or LC, used in the XC5200 fam­
ily of Xilinx LCA FPGAs.4 The LC is similar to the CLBs in the 
XC2000/3000/4000 CLBs, but simpler. Xilinx retained the term CLB in the XC5200 
to mean a group of four LCs (LCO-LC3). 

The XC5200 LC contains a four-input LUT, a flip-flop, and MUXes to handle 
signal switching. The arithmetic carry logic is separate from the LUTs. A limited 
capability to cascade functions is provided (using the MUX labeled F5_MUX in 
logic cells LCO and LC2 in Figure 5.8) to gang two LCs in parallel to provide the 
equivalent of a five-input LUT. 

LCO to LC1 and 
LC2 to LC3 only co Logic Cell (LC) 

carry 
chain 3 

~ ~ programmable MUX CI CE, CK, CLR 
CLB 

(4 LCs in a CLB) 

5.2.4 

FIGURE 5.8 The Xilinx XC5200 family LC (Logic Cell) and CLB (configurable logic block). 
(Source: Xilinx.) 

Xiiinx 
The use of a LUT in a Xilinx CLB to implement combinational logic is both an 
advantage and a disadvantage. It means, for example, that an inverter is as slow as a 
five-input NAND. On the other hand a LUT simplifies timing of synchronous logic, 

4 Xilinx decided to use Logic Cell as a trademark in 1995 rather as if IBM were to use Com­
puter as a trademark today. Thus we should now only talk of a Xilinx Logic Cell (with capital let­
tel's) and not Xilinx logic cells. 

224



208 CHAPTER 5 PROGRAMMABLE ASIC LOGIC CELLS 

simplifies the basic logic cell, and matches the Xilinx SRAM programming technol­
ogy well. A LUT also provides the possibility, used in the XC4000, of using the 
LUT directly as SRAM. You can configure the XC4000 CLB as a memory-either 
two 16 x 1 SRAMs or a 32 x 1 SRAM, but this is expensive RAM. 

Figure 5.9 shows the timing model for Xilinx LCA FPGAs.5 Xilinx uses two 
speed-grade systems. The first uses the maximum guaranteed toggle rate of a CLB 
flip-flop measured in MHz as a suffix-so higher is faster. For example a Xilinx 
XC3020-125 has a toggle frequency of 125 MHz. The other Xilinx naming system 
(which supersedes the old scheme, since toggle frequency is rather meaningless) 
uses the approximate delay time of the combinational logic in a CLB in nanosec­
onds-so lower is faster in this case. Thus, for example, an XC4010-6 has 
tILO = 6.0 ns (the correspondence between speed grade and tILO is fairly accurate for 
the XC2000, XC4000, and XC5200 but is less accurate for the XC3000). 

FIGURE 5.9 The Xilinx LCA 
timing model. The paths show 
different uses of CLBs (config­
urable logic blocks). The 
parameters shown are for an 
XC521 0-6. (Source: Xilinx.) 
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The inclusion of flip-flops and combinational logic inside the basic logic cell 
leads to efficient implementation of state machines, for example. The coarse-grain 
architecture of the Xilinx CLBs maximizes performance given the size of the SRAM 
programming technology element. As a result of the increased complexity of the 
basic logic cell we shall see (in Section 7.2, "Xilinx LCA") that the routing between 
cells is more complex than other FPGAs that use a simpler basic logic cell. 

50ctober 1995 (Version 3.0) data sheet. 
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5.3 Altera FLEX 

Figure 5.10 shows the basic logic cell, a Logic Element (LE), that Altera uses in its 
FLEX 8000 series of FPGAs. Apart from the cascade logic (which is slightly sim­
pler in the FLEX LE) the FLEX cell resembles the XC5200 LC architecture shown 
in Figure 5.8. This is not surprising since both architectures are based on the same 
SRAM programming technology. The FLEX LE uses a four-input LUT, a flip-flop, 
cascade logic, and carry logic. Eight LEs are stacked to form a Logic Array Block 
(the same term as used in the MAX series, but with a different meaning). 
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o DDDDDD 0 

g DDDDDD g 
g DDDDDD g 
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FIGURE 5.10 The Altera FLEX architecture. (a) Chip floorplan. (b) LAB (Logic Array 
Block). (c) Details of the LE (Logic Element). (Source:Altera (adapted with permission).) 

5.4 Altera MAX 

Suppose we have a simple two-level logic circuit that implements a sum of products 
as shown in Figure 5.11(a). We may redraw any two-level circuit using a regular 
structure (Figure 5.11b): a vector of buffers, followed by a vector of AND gates 
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FIGURE 5.11 Logic arrays. (a) Two-level logic. (b) Organized sum of products. 
(c) A programmable-AND plane. (d) EPROM logic array. (e) Wired logic. 
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(which construct the product terms) that feed OR gates (which form the sums of the 
product terms). We can simplify this representation still further (Figure S.llc), by 
drawing the input lines to a multiple-input AND gate as if they were one horizontal 
wire, which we call a product-term line. A structure such as Figure 5.11 (c) is called 
programmable array logic, first introduced by Monolithic Memories as the PAL 
series of devices. 

Because the arrangement of Figure S.ll(c) is very similar to a ROM, we some­
times call a horizontal product-term line, which would be the bit output from a 
ROM, the bit line. The vertical input line is the word line. Figure S.ll(d) and (e) 
show how to build the programmable-AND array (or product-term array) from 
EPROM transistors. The horizontal product-term lines connect to the vertical input 
lines using the EPROM transistors as pull-downs at each possible connection. 
Applying a '1' to the gate of an unprogrammed EPROM transistor pulls the product­
term line low to a '0'. A programmed n-channel transistor has a threshold voltage 
higher than V DD and is therefore always of! Thus a programmed transistor has no 
effect on the product-term line. 

Notice that connecting the n-channel EPROM transistors to a pull-up resistor 
as shown in Figure S.ll(e) produces a wired-logic function-the output is high only 
if all of the outputs are high, resulting in a wired-AND function of the outputs. The 
product-term line is low when any of the inputs are high. Thus, to convert the wired­
logic array into a programmable-AND array, we need to invert the sense of the 
inputs. We often conveniently omit these details when we draw the schematics of 
logic arrays, usually implemented as NOR-NOR arrays (so we need to invert the 
outputs as well). They are not minor details when you implement the layout, how­
ever. 

Figure 5.12 shows how a programmable-AND array can be combined with other 
logic into a macrocell that contains a flip-flop. For example, the widely used 22VIO 
PLD, also called a registered PAL, essentially contains 10 of the macrocells shown 
in Figure 5.12. The part number, 22VI0, denotes that there are 22 inputs (44 vertical 
input lines for both true and complement forms of the inputs) to the programmable 
AND array and 10 macrocells. The PLD or registered PAL shown in Figure 5.12 has 
an 2i xjk programmable-AND array. 

5.4.1 logic Expanders 
The basic logic cell for the Altera MAX architecture, a macrocell, is a descendant of 
the PAL. Using the logic expander, shown in Figure 5.13 to generate extra logic 
terms, it is possible to implement functions that require more product terms than are 
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programmable AND array (2ixjk) 

••• 

• 

i inputs 

• 
k macrocells ..... , .... " .... , ..... , .... , : 

FIGURE 5.12 A registered PAL with i inputs, j productterms, and k macrocells. 

available in a simple PAL macrocell. As an example, consider the following func­
tion: 

F = A' . C . D + B'· C . D + A . B + B . C. (5.22) 

This function has four product terms and thus we cannot implement F using a mac­
rocell that has only a three-wide OR array (such as the one shown in Figure 5.13). If 
we rewrite F as a "sum of (products of products)" like this: 

F = (A' + B') . C . D + (A + C) . B 

= (A . B)' (C . D) + (A' . C)' . B ; (5.23) 

we can use logic expanders to form the expander terms (A . B), and (A' . C)' (see 
Figure 5.13). We can even share these extra product terms with other macrocells if 
we need to. We call the extra logic gates that form these shareable product terms a 
shared logic expander, or just shared expander. 

The disadvantage of the shared expanders is the extra logic delay incurred 
because of the second pass that you need to take through the product-term array. We 
usually do not know before the logic tools assign logic to macrocells (logic 
assignment) whether we need to use the logic expanders. Since we cannot predict 
the exact timing the Altera MAX architecture is not strictly deterministic. However, 
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expander product terms 

(AB)' (A' ·C)' '0' or '1' 

programmable inversion 

Q 

A'·C·O + B'·C·O + A·B + B·C' 
= ((A' + B')C·D) + (A+C')B 

Expander terms 
require an extra 
pass through 
the logic matrix. 

= ((AB)'(C·O)) + (A'·C)'B 

t 
Expander terms allow 
functions with many 
product terms to be 
implemented with a 
narrow OR array. 

inputs 

-$- unprogrammed 
EPROM 
transistor 

FIGURE 5.13 Expander logic and programmable inversion. An expander increases the 
number of product terms available and programmable inversion allows you to reduce the 
number of product terms you need. 

once we do know whether a signal has to go through the array once or twice, we can 
simply and accurately predict the delay. This is a very important and useful feature 
of the Altera MAX architecture. 

The expander terms are sometimes called helper terms when you use a PAL. If 
you use helper terms in a 22VlO, for example, you have to go out to the chip I/O 
pad and then back into the programmable array again, using two-pass logic. 

Another common feature in complex PLDs, also used in some PLDs, is shown 
in Figure 5.13. Programming one input of the XOR gate at the macrocell output 
allows you to choose whether or not to invert the output (a 'I' for inversion or to a 'a' 
for no inversion). This programmable inversion can reduce the required number of 
product terms by using a de Morgan equivalent representation instead of a conven­
tional sum-of-products form, as shown in Figure 5.14. 

As an example of using programmable inversion, consider the function 

F=A· B'+A· C' +A· D'+A'· C· D, (5.24) 

which requires four product terms-one too many for a three-wide OR array. 
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F AB F' AB 

00 01 11 10 

CO 00 0 0 1 

01 

11 
Pi 

P4 10 

P3 
F = A-B' + A·C' + A·O' + A'·C·O 

(a) (b) 

FIGURE 5.14 Use of programmed inversion to simplify logic: (a) The function 
F = A . B' + A . C' + A . 0' + A' . C . 0 requires four product terms (P1-P4) to implement while 
(b) the complement, F' = A . B . C . 0 + A' ·0' + A' . C' requires only three product terms 
(P1-P3). 

If we generate the complement of F instead, 

F' = A· B . C· D + A' . D' + A' . C' , (5.25) 

this has only three product terms. To create F we invert F', using programmable 
inversion. 

Figure 5.15 shows an Altera MAX macrocell and illustrates the architectures of 
several different product families. The implementation details vary among the fami­
lies, but the basic features: wide programmable-AND array, narrow fixed-OR array, 
logic expanders, and programmable inversion-are very similar.6 Each family has 
the following individual characteristics: 

e A typical MAX 5000 chip has: 8 dedicated inputs (with both true and com­
plement forms); 24 inputs from the chip wide interconnect (true and comple­
ment); and either 32 or 64 shared expander terms (single polarity). The MAX 
5000 LAB looks like a 32V16 PLD (ignoring the expander terms). 

" The MAX 7000 LAB has 36 inputs from the chipwide interconnect and 16 
shared expander terms; the MAX 7000 LAB looks like a 36V16 PLD. 

o The MAX 9000 LAB has 33 inputs from the chipwide interconnect and 16 
local feedback inputs (as well as 16 shared expander terms); the MAX 9000 
LAB looks like a 49V16 PLD. 

61995 data book p. 274 (5000), p. 160 (7000), p. 126 (9000). 
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per LAB 
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i output 

........... ~ ........ , .................. _._--------_.------,------ ------_ .. _._.-- .. --. 

(c) 

other 
macrocells 
in LAB 

FIGURE 5.15 The Altera MAX architecture. (a) Organization of logic and interconnect. 
(b) A MAX family LAB (Logic Array Block). (c) A MAX family macrocell. The macrocell details 
vary between the MAX families-the functions shown here are closest to those of the MAX 
9000 family macrocells. 

Timing Model 
Figure 5.16 shows the Altera MAX timing model for local signals.? For example, in 
Figure 5.16(a) an internal signal, II, enters the local array (the LAB interconnect 
with a fixed delay t1 = tLOCAL = 0.5 ns), passes through the AND array (delay 

7 March 1995 data sheet, v2. 
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(a) 

(c) 

(e) 

tLOCAL tLAO tsu tRO (b) 

local logic setup register local 11 
array array delay 

~ ~ ~~ total = 8.5 ns 

LA M1 

tLOCAL tLAo tpExp tsu tRO (d) 

local logic parallel setup register 12 
array array expander delay 

~ ~ 1~ ~~ total = 9.5 ns 

LA M1 

LA 

tLOCAL tLAo tSEXP tLOCAL tCOMB (1) 13 

local logic shared local combinational 
array array expander array 

~ ~ 5~ ~ ~ total = 11 ns 

LA 

LA 

FIGURE 5.16 The timing model for the Altera MAX architecture. (a) A direct path through 
the logic array and a register. (b) Timing for the direct path. (c) Using a parallel expander. 
(d) Parallel expander timing. (e) Making two passes through the logic array to use a shared 
expander. (f) Timing for the shared expander (there is no register in this path). All timing val­
ues are in nanoseconds for the MAX 9000 series, '15' speed grade. (Source: Altera.) 
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t2 = tLAD = 4.0 ns), and to the macrocell flip-flop (with setup time, t3 = tsu = 3.0 ns, 
and clock-Q or register delay, t4 = tRD= 1.0 ns). The path delay is thus: 
0.5 + 4 + 3 + 1 = 8.5 ns. 

Figure 5.16(c) illustrates the use of a parallel logic expander. This is different 
from the case of the shared expander (Figure 5.13), which required two passes in 
series through the product-term array. Using a parallel logic expander, the extra 
product term is generated in an adjacent macrocell in parallel with other product 
terms (not in series-as in a shared expander). 

We can illustrate the difference between a parallel expander and a shared 
expander using an example function that we have used before (Eq. 5.22), 

F=A'· C ·D+B'· C ·D+A·B +B· C' . (5.26) 

This time we shall use macrocell M1 in Figure 5.16(d) to implement F1 equal to 
the sum of the first three product terms in Eq. 5.26. We use F1 (using the parallel 
expander connection between adjacent macrocells shown in Figure 5.15) as an input 
to macrocell M2. Now we can form F = Fl + B . C' without using more than three 
inputs of an OR gate (the MAX 5000 has a three-wide OR array in the macrocell, 
the MAX 9000, as shown in Figure 5.15, is capable of handling five product terms 
in one macrocell-but the principle is the same). The total delay is the same as 
before, except that we add the delay of a parallel expander, tpEXP = 1.0 ns. Total 
delay is then 8.5 + 1 = 9.5 ns. 

Figure 5.16(e) and (f) shows the use of a shared expander-similar to 
Figure 5.13. 

The Altera MAX macrocell is more like a PLD than the other FPGA architec­
tures discussed here; that is why Altera calls the MAX architecture a complex PLD. 
This means that the MAX architecture works well in applications for which PLDs 
are most useful: simple, fast logic with many inputs or variables. 

5.4.3 Power Dissipation in Complex PlDs 
A programmable-AND array in any PLD built using EPROM or EEPROM transis­
tors uses a passive pull-up (a resistor or current source), and these macrocells con­
sume static power. Altera uses a switch called the Turbo Bit to control the current 
in the programmable-AND array in each macrocell. For the MAX 7000, static cur­
rent varies between 1.4 rnA and 2.2 rnA per macrocell in high-power mode (the cur­
rent depends on the part-generally, but not always, the larger 7000 parts have 
lower operating currents) and between 0.6 rnA and 0.8 rnA in low-power mode. For 
the MAX 9000, the static current is 0.6 rnA per macrocell in high-current mode and 
0.3 rnA in low-power mode, independent of the part size.8 Since there are 16 macro­
cells in a LAB and up to 35 LABs on the largest MAX 9000 chip (16 x 35 = 560 
macrocells), just the static power dissipation in low-power mode can be substantial 

81995 data book, p. 1-47. 
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(560 x 0.3 rnA x 5 V = 840 mW). If all the macrocells are in high-power mode, the 
static power will double. This is the price you pay for having an (up to) 114-wide 
AND gate delay of a few nanoseconds (tLAD = 4.0 ns) in the MAX 9000. For any 
MAX 9000 macrocell in the low-power mode it is necessary to add a delay of 
between 15 ns and 20 ns to any signal path through the local interconnect and logic 
array (including tLAD and tpEXP)· 

5.5 Summary 

Table 5.4 is a look-up table to Tables 5.5-5.9, which summarize the features of the 
logic cells used by the various FPGA vendors. 

TABLE 5.4 Logic cell tables. 

Programmable ASIC family 

Table 5.5 Actel (ACT 1) 
Xilinx (XC3000) 
Actel (ACT 2) 
Xilinx (XC4000) 

" ........ ,,~.-.. --.-.. -~-.. ~ -'-'--'~"'-"-"'--.. -- .. -...... . ... ". "-." .. -~. _ .. " .. '" _._ ......... _ ....... . 

Table 5.6 Altera MAX (EPM 5000) 

Table 5.7 

Xilinx EPLD (XC7200/7300) 
QuickLogic (pASIC 1) 

--- -------
Crosspoint (CP20K) 
Altera MAX (EPM 7000) 
Atmel (AT6000) 

The key points in this chapter are: 

Programmable ASIC family 

Table 5.8 Actel (ACT 3) 

Table 5.9 

Xilinx LCA (XC5200) 
Altera FLEX (8000/1 Ok) 

." ... -... "~".. _ .......... ".""-."' .... " ....• -.~ .... -....... ---.-,,~.-.. 

AMD MACH 5 
Actel3200DX 
Altera MAX (EPM 9000) 

• The use of multiplexers, look-up tables, and programmable logic arrays 

G The difference between fine-grain and coarse-grain FPGA architectures 

o Worst-case timing design 

e Flip-flop timing 

e Timing models 

G Components of power dissipation in programmable ASICs 

e Deterministic and nondeterministic FPGA architectures 

Next, in Chapter 6, we shall examine the I/O cells used by the various program­
mable ASIC families. 
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TABLE 5.5 Logic cells used by programmable ASICs. 

Basic 
logic cell 

Actel ACT 1 Xilinx XC3000 ActelACT2 

Logic module (LM) CLB (Configurable C-Module (combina-
Logic Block) torial-module) and 

8-Module (sequen-
tial module) 

Xilinx XC4000 

CLB (Configurable 
Logic Block) 

._._. __ ... _ .. _ ..... _ .. __ ........... _._ ....... _._._._._. __ ._._ .... __ . __ . __ ._ .. __ .. ,,_ .... __ . __ ._._._. __ ._ ... _ .. _._._._ .. __ ._. ___ ..... __ . __ ...... __ .. ______ ·_·_···_·· __ ·.·_.w._ .. _._ .... _. ___ ._._ ....... __ . _______ ... _._._ .. ___ ...... _ ...... _. _____ . __ ._. ___ .... _ .. ___ . _______ ._ .. _ ..... _ .. ___ ._ .. ____ ....... ___ ... ____ .. _._._._. __ ._ ..... __ ... ___ . ______ ._._. __ ... _. __ .. . 

Logic cell 
contents 

Logic path 
delay 

Three 2:1 MUXes 32-bit LUT, 2 D C-Module: 4:1 MUX, 32-bit LUT, 2 D flip-
plus OR gate flip-flops, 9 MUXes 2-input OR, 2-input flops, 10 MUXes, 

Fixed· 

AND including fast carry 
8-Module: 4-input logic 
MUX, 2-input OR, E-suftix parts contain 
latch or D flip-flop dual-port RAM. 

Fixed with ability to Fixed Fixed with ability to 
bypass FF bypass FF 

••• _ ••• _ ••• _ ............ _ ......... _ ••••••• _ •••••• _ ••• _ ...... __ ••• __ ...... __ •••• __ •• _._ •• _._. __ ._ ••• __ ._ ........ ___ ._ •••••••• _ •••••••• _ .. " •••••••• _ ••• __ •••••••• __ ••• __ •••••• _ •••• ~ •••• ~., •• ~._ ..... _. __ •••• __ ••••• _ .... __ ._ ......... ~ .... ~. • ..... _ •• _._~~~~_~ ••••••• _ •• _ ... __ ••• •• <o •••••• ~ ... _ ........... _~_~~._ ••••••••• _ •• __ ._. __ ._ ••••• _ ••• "' ••• ~ ••• ~ .......... __ •• _ ••• _._~ •• ~ •• _<_~_ ...... __ ._.~_ .. _~ .. _ ... . 

Combinational 
logic 
functions 

-------_. 
Flip-flop (FF) 
implementation 

Basic logic cells 
in each chip 

Most 3-input, many 
4-input functions 
(total 702 macros) 

All 5-input functions 
plus 2 D flip-flops 

Most 3- and 4-input 
functions (total 766 
macros) 

Two 4-input LUTs plus 
combiner with ninth 
input 
CLB as 32-bit 8RAM 
(except D-suftix parts) 

---_.------_ ... _------------_._-----_._-----------
1 LM required for 2 D-flip-flops per 1 8-Module per D 2 D flip-flops per CLB 
latch, 2 LMs required CLB, latches can be flip-flop; some FFs 
for flip-flops built from pre-FF require 2 modules. 

LMs: 

A1010: 352 
(8Rx44C) 
=295+ 571/0 

A1020:616 
(14 Rx44C) 
=547 +691/0 

logic. 
.-------------------------.----.. --------.. -.~ .. -

64 (XC3020IAlL, A1225: 64 (XC4002A) 
XC3120/A) 451 = 231 8 + 220 C 100 (XC40031A1E/H) 
100 (XC3030IAlL, 144 (XC4004A) 
XC31301 A) A 1240: 196 (XC40051 AlE/H) 
144 (XC30421A1L, 684=3488 + 336 C 256 (XC4006/E) 
XC3142/A) 324 (XC4008/E) 
224 (XC30641A1L, A1280: 400 (XC4010/D/E) 
XC3164/A) 1232 =6248 + 576 (XC4013/D/E) 
320 (XC3090IAlL, 608 C 784 (XC4020/E) 
XC3190/A) 1024 (XC4025/E) 
484 (XC3195/A) 
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TABLE 5.6 Logic cells used by programmable ASICs. 

Basic 
logic cell 

Logic cell 
contents 

Logic path 
delay 

..... -.. _-_.-.......... _ ... -. __ ....... -

Combinational 
logic functions 
per logic cell 

Flip-flop (FF) 
implementation 

Basic logic cells 
in each chip 

Altera MAX 5000 

16 macrocells in a LAB 
(Logic Array Block) except 
EPM5032, which has 32 
macrocells in a single LAB 

Xilinx XC720017300 

9 macrocells within a FB 
(Functional Block), fast 
FBs (FFBs) omit ALU 

QuickLogic pASIC 1 

Logic Cell (LC) 

......... -, ... __ .. _ .... _-_..... ..-" .. -......... -.. -.. --.~, ••..... ---.. -....... -.--.. -.--.. --., .. -.-.-.-..... -.------... -.. ~.-~-.".-.... --.--.-.•....... -.. _ ...... _ .... _--_ ... _ ........ _-_ .. - ........... __ .... -.-... _._._---_. __ ._ .. -... __ •.•... _._ ....... _ ...... _ .. _ ... _ .. _ .. __ ... _- ....... __ ...... __ . __ .. _._-_ .... -.-.... -.--.-~ ... -.. ,,-,,-.... - .. 

Macrocell: 64-106-wide Macrocell: 21-wide AND, Four 2-input and two 6-
AND, 3-wide OR array, 1 16-wide OR array, 1 input AND, three 2:1 
flip-flop, 2 MUXes, pro- flip-flop, 1 ALU MUXes and one D flip-flop 
grammable inversion. FB looks like 21 V9 PLD. 
32-64 shared logic 
expander OR terms. 
LAB looks like a 32V16 
PLD. 

----_._---------.--_._---_.- ._-_. -----_._-------------- --------

Fixed (unless using Fixed 
shared logic expanders) 

.............. -.---..... '" ., ................. _. .._ ...... _ .. _ .. " ........ _."., . .,---_._ .. _." .... _ ... _--- ... _ ....... -_ .. _ .... _ .. _._.-

Wide input functions with 
ability to share product 
terms 

1 D flip-flop or latch per 
macrocell. More can be 
constructed in arrays. 

LABs: 
32 (EPM5032) 
64 (EPM5064) 

128 (EPM5128) 
128 (EPM5130) 
192 (EPM5192) 

Wide input functions with 
added 2-input ALU 

1 D flip-flop or latch per 
macrocell 

FBs: 
4 (XC7236A) 
8 (XC7272A) 
2 (XC7318) 
4 (XC7336) 
6 (XC7354) 
8 (XC7372) 

12 (XC731 08) 
16 (XC73144) 

Fixed 

All 3-input functions 

1 D flip-flop per LC. LCs 
for other flip-flops not 
specified. 

48 (OL6X8) 
96 (OL8X12) 

192 (OL12X16) 
384 (OL 16X24) 
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TABLE 5.7 Logic cells used by programmable ASICs. 

Basic 
logic cell 

Crosspoint CP20K 

Transistor-pair tile (TPT), 
RAM-logic Tile (RL T) 

Altera MAX 7k 

16 macrocells in a LAB 
(Logic Array Block) 

Atmel AT6000 

Cell 

_. __ ._---_._ ...•.. _. __ .... _--_ ........ _. . ... _ .. _ ......... _." ... __ .. _...... . .. _- .... _ .. _ .. __ .. _ .. _. __ .. _._ .. _ .. __ ._-_ .•..... __ ...... __ .-_. __ .. _._._._._----... ---_._. .". __ ._ .......•. __ .. _. __ ._ .. _ .. _-_._ .. __ ._-----_._. __ .. _ ... _-_. __ ._ .... _._ .. _._-_ ..... -._ .... _._ .. __ .. _ .. _ .•...... _--_ .. -._._._. . ...... _ ..•. __ ._--_ ... _ .. _ ..... __ ...... _ .. __ ...... .-......... _._ .... _ .... _ ....... __ ._.-
Logic cell 
contents 

Logic path 
delay 

TPT: 2 transistors 
(0.5 gate). RLT: 3 
inverters, two 3-input 
NANDs, 2-input NAND, 
2-input AND. 

Variable 

Macrocell: wide AND, 5-
wide OR array, 1 flip-flop, 3 
MUXes, programmable 
inversion. 16 shared logic 
expander OR terms, plus 
parallel logic expander. 
LAB looks like a 36V16 
PLD. 

Two 5:1 MUXes, two 4:1 
MUXes, 3:1 MUX, three 
2:1 MUXes, 6 pass gates, 
four 2-input gates, 1 D 
flip-flop 

Fixed (unless using Variable 
shared logic expanders) 

•• on •••• _ ••••••••• _ ••• _ •••• _ •••••• ____ ._ •••• _ •••••••••• _ ••• _ ••••••• "' ._ ••••••••••••••••• " •••••••••••• _ •••• _ ••••• _ ......... _.~_., .... "' .... _~ .... _~ ...... _'" ............ _ .... " ... ~.~. • .......... __ .... _ .. __ ~ ••• _ ..... ~_. ___ ._~ ...... ~ .. _ ........ ___ •• _, •• " •• __ ...... ~ •• _. ___ ,_ •• _ ••• _._ •• _ .. _ .. _ .......... _._ •••••• _. • ........ _ ••••• ,, ___ ••••• __ ... _............... • ............ " •••••• _ ••••••••• __ ••••• __ • _ •• __ •• _ ..... _,," ... _ ..... " ...... ~ •••• 

Combinational 
functions 
per logic cell 

TPT is smaller than a gate, Wide input functions with 
approx. 2 TPTs = 1 gate. ability to share product 

terms 

1-, 2-, and 3-input 
combinational 
configurations: 
44 logical states and 72 
physical states 

-_. __ .... _-_ ... _------_._-- _._-_._--------_. __ . __ ._--_. __ ._------_. __ .. __ .... _ ..... _._ ... _._ .•.. _. __ ... __ .. __ .. __ ._ ..... _-_._ .. _ .. __ ._--
Flip-flop (FF) 
implementation 

Basic logic cells 
in each chip 

D flip-flop requires 2 RLTs 1 D flip-flop or latch per 1 D flip-flop per cell 
and 9 TPTs macrocell. More can be 

TPTs: 
1760 (20220) 

15,876 (22000) 

RLTs: 
440 (20220) 

3969 (22000) 

constructed in arrays. 

Macrocells: 
32 (EPM7032N) 
64 (EPM7064) 
96 (EPM7096) 

128 (EPM70128E) 
160 (EPM70160E) 
192 (EPM70192E) 
256 (EPM70256E) 

1024 (AT6002) 
1600 (AT6003) 
3136 (AT6005) 
6400(AT6010) 
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TABLE 5.8 Logic cells used by programmable ASICs. 

Basic 
logic cell 

Actel ACT 3 

2 types of Logic 
Module: C-Module and 
S-Module (similar but not 
identical to ACT 2) 

Xilinx XC5200 Altera FLEX 8000/1 Ok 

4 Logic Cells (LC) in a CLB 8 Logic Elements (LE) in a 
(Configurable Logic Block) Logic Array Block (LAB) 

••••• _ •••••• __ •• _ ••••• __ ._ •• _ •• ,. __ ........ __ ._ ••• _ •••• _._ •• _ •• M ............ _____ ._ •• _._ ••• _ •• _ •••• _ ••••• __ •••••••••• __ ••• ___ ••••••• _ •••• __ ._....... • •••••••• _ • __ •• _ ••• _ ..... _ •• __ ••• _ •••• ~_.,,_ ••••• __ ••••• "._ •• _ ••••••• __ •• _._ •• _ •••••••• ,_ ••••••• _. ___ •• _._ ••• _ ••• _. __ •• ___ ._. __ ....... _._._ •••• _ •• __ •• _._. ____ ._._ ••• _._._ ••••••• _ •• __ ••• _ 

Logic cell contents 
(LUT= look-up table) 

Logic path delay 

C-Module: 4:1 MUX, 
2-input OR, 2-input AND. 
S-Module: 4:1 MUX, 
2-input OR, latch or D 
flip-flop. 

Fixed 

LC has 16-bit LUT, 1 
flip-flop (or latch), 4 
MUXes 

Fixed 

16-bit LUT, 
1 programmable flip-flop or 
latch, MUX logic for con­
trol, carry logic, cascade 
logic 

Fixed with ability to 
bypass FF 

-------------------------------------- ----------------------------
Combinational 
functions 
per logic cell 

Most 3- and 4-input func­
tions (total 766 macros) 

----------------------------
Flip-flop (FF) 
implementation 

Basic logic cells 
in each chip 

1 D flip-flop (or latch) per 
S-Module; some FFs 
require 2 modules. 

A 1415: 104 S + 96 C 
A1425: 160S+ 150C 
A1440: 288S+276C 
A1460: 432 S +416 C 
A 14100: 697 S + 680 C 

One 4-input LUT per LC 
may be combined with 
adjacent LC to form 
5-input LUT 

1 D flip-flop (or latch) per 
LC (4 per CLB) 

64 CLB (XC5202) 
120 CLB (XC5204) 
196 CLB (XC5206) 
324 CLB (XC521 0) 
484 CLB (XC5215) 

4-input LUT may be 
cascaded with adjacent LE 

1 D flip-flop (or latch) per 
LE 

LEs: 
208 (EPF8282/v/A/AV) 
336 (EPF8452/A) 
504 (EPF8636A) 
672 (EPF8820/A) 

1008 (EPF81188/A) 
1296 (EPF815001 A) 

576 (EPF1 OK1 0) 
1152 (EPF1 OK20) 
1728 (EPF1 OK30) 
2304 (EPF1 OK40) 
2880 (EPF1 OK50) 
3744 (EPF1 OK70) 
4992 (EPF1 OK1 00) 
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5.5 SUMMARY 223 

TABLE 5.9 Logic cells used by programmable ASICs. 

Basic 
logic cell 

Logic cell 
contents 

Logic path 
delay 

AMDMACH 5 Actel 3200DX 

4 PAL Blocks in a Based on ACT 2, plus 
Segment, 16 macrocells in D-module (decode) and 
a PAL Block dual-port SRAM 

20-bit to 32-bit wide OR 
array, switching logic, XOR 
gate, programmable flip­
flop 

C-Module: 4:1 MUX, 2-input 
OR, 2-input AND 
S-Module: 4-input MUX, 
2-input OR, latch or D flip­
flop 

D-module: 7-inputAND, 
2-input XOR 

__ •. _ •• _ •• __ .•• _. • ••..•• ~ •• "._ • •• ~ .... '_H·". 

Fixed Fixed 

Altera MAX 9000 

16 macrocells in a LAB 
(Logic Array Block) 

Macrocell: 114-wide AND, 
5-wide OR array, 1 flip­
flop, 5 MUXes, program­
mable inversion. 16 
shared logic expander OR 
terms, plus parallel logic 
expander. 
LAB looks like a 49V16 
PLD. 

Fixed (unless using 
expanders) 

Combinational func- Wide input functions Most 3- and 4-input functions Wide input functions with 
tions per logic cell 

Flip-flop (FF) 
implementation 

Basic logic cells 
in each chip 

(total 766 macros) ability to share product 
terms 

._ .... _--_ .. _-_ .. -_ .. --. __ .-.....• "--"-.. -.... ~-,,~----~ .. --.. - ...... -_.--.. .._ ..... - --.-.-.. --.. ------~----.-.---... - .... --.,-----------.. ------ ----------

1 D flip-flop or latch per 
macrocell 

128 (M5-128) 
192 (M5-192) 
256 (M5-256) 
320 (M5-320) 
384 (M5-384) 
512 (M5-512) 

............................... 

1 D flip-flop or latch per 1 D flip-flop or latch per 
S-Module; some FFs require macrocell. More can be 
2 modules. constructed in arrays . 

A3265DX: 510 S + Macrocells: 
475C+20D 320 (EPM9320) 4x5 
A32100DX: 700 S + LABs 
662 C + 20 D + 2 kSRAM 400 (EPM9400) 5 x 5 
A32140D): 954 S + LABs 
912 C + 24 D 480 (EPM9480) 6x 5 
A32200DX: 1 230 S + LABs 
1 184C+24D+2.5kSRAM 560 (EPM9560) 7x5 
A32300DX: 1 888 S + LABs 
1 833C+28 D+3kSRAM 
A32400DX: 2 526 S + 
2 466C+28 D+4kSRAM 
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5.6 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

5.1 (Using the ACT 1 Logic Module, 30 min.) Consider the Actel ACT 1 Logic 
Module shown in Figure 5.1. Show how to implement: (a) a three-input NOR gate, 
(b) a three-input majority function gate, (c) a 2:1 MUX, (d) a half adder, (e) a three­
input XOR gate, and (f) a four-input MUX. 

5.2 (Worst-case and best-case timing, 10 min.) Seasoned digital CMOS design­
ers do not worry too much when their designs stop working when they get too hot or 
when they reduce the supply voltage, but an ASIC that stops working either when 
increasing the supply voltage above normal or when it gets cold causes panic. Why? 

5.3 (Typical to worst-case variation, 10 min.) The 1994 Actel data book (p. 1-5) 
remarks that: "the total derating factor from typical to worst-case for a standard 
ACT 1 array is only 1.19:1, compared to 2:1 for a masked gate array." 

a. Can you explain why this is when the basic ACT 1 CMOS process is identical 
to a CMOS process for masked gate arrays? 

b. There is a price to pay for the reduced spread in timing delays from typical to 
worst-case in an ACT 1 array. What is this disadvantage of the ACT 1 array 
over a masked gate array? 

5.4 (ACT 2/3 sequential element, 30 min.). Show how the Actel ACT 2 and 
ACT 3 sequential element of Figure 5.4 (used in the S-Module) can be wired to 
implement: 

a. a positive-edge-triggered flip-flop with clear, 

b. a negative-edge-triggered flip-flop with clear, 

c. a transparent-high latch, 

d. a transparent-low latch, and 

e. how it can be made totally transparent. 

5.5 (*ACT 1 logic functions, 40min.+) 

a. How many different combinational functions of four logic variables are 
there? 

b. of 11 variables? Hint: Consider the truth table. 

c. The ACT 1 module can implement 213 of the 256 functions with three vari­
ables. How many of the 43 three-input functions that it cannot implement can 
you find? 

d. (harder) Show that if you have access to both the true and complement form 
of the input variables you can implement all 256 logic functions of three 
variables with the ACT 1 Logic Module. 

5.6 (Actel and Xilinx, 10 min.) The Actel Logic Modules (ACT 1, ACT 2, and 
ACT 3) have eight inputs and can implement most three-input logic functions and a 
few logic functions with four input variables. In contrast, the Xilinx XC5200 CLB, 
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5.6 PROBLEMS 225 

for example, has only four inputs but can implement all logic functions with four or 
fewer variables. Why would Actel choose these logic cell designs and how can they 
be competitive with the Xilinx FPGA (which they are)? 

5.7 (Actel address decoders, 10 min.) The maximum number of inputs that the 
ACT 1 Logic Module can handle is four. The ACT 2jACT 3 C-module increases this 
to five. 

a. How many ACT 1 Logic Modules do you need to implement a 32-bit wide 
address decoder (a 32-input AND gate)? 

b. How many ACT 2jACT 3 C-modules do you need? 

5.8 (Altera shared logic expanders, 30 min.) Consider an Altera MAX 5000 
logic array with three product-term lines. You cannot directly implement the func­
tion Z = A . B . C + A· B' . C' + A' . B . C' + A' . B' . C with a programmable array logic 
macrocell that has only three product-term lines, since Z has four product terms. 

a. How many Boolean functions of three variables are there that cannot be 
implemented with a programmable array logic macrocell that has only three 
product terms? Hint: Use a Kamaugh map to consider how many Boolean 
functions of three variables have more than three product terms in their sum­
of-products representation. 

b. Show how to use shared logic expanders that feed terms back into the 
product-term array to implement the function Z using a macrocell with three 
product terms. 

c. How many shared expander lines do you need to add to be able to implement 
all the Boolean functions of three variables? 

d. What is the largest number of product terms that you need to implement a 
Boolean function with n variables? 

5.9 (Splitting the XC3000 CLB, 20 min.) In Section 5.2.1 we noted "You can 
split the (XC3000) 32-bit LUT in half, using one of the seven input variables to 
switch between the F and G outputs. This technique can implement some functions 
of six and seven variables." 

a. Show which functions of six and seven variables can, and 

b. which functions cannot, be implemented using this method. 

5.10 (Programmable inversion, 20 min.) Section 5.4 described how the Altera 
MAX series logic cells can use programmable inversion to reduce the number of 
product terms needed to implement a function. Give another example of a function 
of four variables that requires four product terms. Is there a way to tell how many 
product terms a function may require? 

5.11 (Table look-up mapping, 20 min.) Consider a four-input LUT (used in the 
CLB in the Xilinx XC2000, the first generation of Xilinx FPGAs, and in the 
XC5200 LE). This CLB can implement any Boolean function of four variables. 
Consider the function 

Z = (A· (B + C)) + (B· D) + (E· F· G . H .1). (5.27) 
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"Ve can use four CLBs to implement Z as follows: 

CLB 1: Z = Z 1 + (B . D) + Z3 , 

CLB2: ZI = A . (B + C) , 

CLB3: Z3 = E . F . G . Z5 , 

CLB4: Z5=H·I. (5.28) 

What is the length of the critical path? Find a better assignment in terms of area 
and critical path. 

5.12 (Multiplexer mapping, 10 min.) Consider the function: 

F = (A· B) + (B'· C) + D. (5.29) 

Use Shannon's expansion theorem to expand F wrt B: 

F = B . Fl + B' . F2 . (5.30) 

In other words express F in terms of B, B', Fl, and F2 (Hint: Fl is a function of 
A and D only, F2 is a function of C and D only). Now expand Fl wrt A, and F2 wrt 
C. Using your answer, implement F using a single ACT 1 Logic Module. 

5.13 (*Xilinx hazards, 10 min.) Explain why the outputs of the Xilinx CLBs are 
hazard-free for input changes in only one variable. Is this important? 

5.14 (** Actel S-Modules, 10 min.) Notice that CLR is tied to the input corre­
sponding to BO of the C-module in the ACT 2 S-Module but the CLR input is sepa­
rate from the BO input in the ACT 3 version. Why? 

5.15 (**Timing estimates, 60 min.) Using data book values for an FPGA archi­
tecture that you choose, and explaining your calculations carefully, estimate the 
(worst-case commercial) delay for the following functions: (a) 16-bit address 
decoder, (b) 8-bit ripple-carry adder, (c) 8-bit ripple-carry counter. Give your 
answers in terms of the data book symbols, and using actual parameters, for a speed 
grade that you specify, give an example calculation with the delay in ns. 

5.16 (Actel logic. 30 min.) Table 5.10 shows how to use the Actel ACT 1 Logic 
Module to implement some of the 16 functions of two input variables. Complete this 
table. 

5.17 (ACT 1 module implementation, 120 min.) 

3. Show that the circuit shown in Figure 5.17, with buffered inputs and outputs, 
is equivalent to the one shown in Figure 5.1. 

h. Show that the circuit for the ACT 1 Logic Module shown in Figure 5.18 is 
also the same. 

c. Convert the circuit of Figure 5.18 to one that uses more efficient CMOS 
gates: inverters, AOI, and NAND gates. 

d. (harder) Assume that the ACT 1 Logic Module has the equivalent of a 2X 
drive and the logic ratio is close to one. Compare your answer to part c 
against Figure 5.17 in terms of logical efficiency and logical area. 
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TABLE 5.10 Boolean functions using the ACT 1 Logic Module (Problem 5.16). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Function,F F= Canonical form 

° ° ° AND(A, B) A·B A·B 

AND1-1 (A, B) A·B' A·B' 

NOR(A, B) A+B A'·B' 

NOR1-1 (A, B) A+B' A'·B 

A A A· B'+A· B 

B B A'· B+ A· B 

NOT(A) A' A'· B'+A'· B 

NOT(B) B' A'· B'+A· B' 

EXOR(A, B) AEBB A'· B+A· B' 

EXNOR(A, B) (A EB B)' A'· B'+A· B 

OR(A, B) A+B A' . B + A . B' + A . B 

OR1-1(A, B) A+B' A' . B' + A . B' + A . B 

NAND(A, B) (A· B)' A' . B' + A' . B + A . B' 

NAND1-1 (A, B) (A· B')' A' . B' + A' . B + A . B 

1 1 A'·B'+A'·B+A·B'+A·B 

FIGU RE 5.17 An alternative 
implementation of the ACT 1 Logic 
Module shown in Figure 5.1 (Prob­
lem 5.17). 

Min-
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2 
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1 
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0,1,3 

0,1,2,3 

AO 

Ai 

SA 
BO 

B1 

AO 

0 

0 

A 

B 

0 

0 

0 

0 

B 

1 

SB 
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S1-------1 

M1 M2 OR1 

A1 SA BO B1 SB SO S1 

0 0 

B A 

° B 

0 A 

A 1 

B 1 

1 A 

1 B 

1 A 

1 1 

F 
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AND1 
AO 

SA ~---i 
Ai 

OUT 
FIGURE 5.18 A schematic 
equivalent of the Actel ACT 1 
Logic Module (Problem 5.17). 

BO 

SB 

B1 

SO 
S1 

NOR1 

5.18 (**Xilinx CLB analysis, 60 min.) Table 5.11 shows some information 
derived from a die photo in the AT&T ATT3000 series data book that shows the 
eight by eight CLB matrix on an ATT3020 (equivalent to a XC3020) clearly. By 
measuring the die size in the photo and knowing the actual die size we can calculate 
the size of a CLB matrix element (ME) that includes a single XC3000 CLB as 
approximately 277 mi12. The ME includes interconnect, SRAM, programming, and 
other resources as well as a CLB. 

TABLE 5.11 ATT3020 die information (Problem 5.18}.1 

Parameter Data book 

3020 die width 183.5 mil 

3020 die height 219.3 mil 

3000 ME width 

3000 ME height 

3000 ME area 

Die photo 

4.1 cm 

4.9cm 

0.325cm 

0.425cm 

Calculated 

14.55 mil = 370 !-lm 

19.02 mil = 483!-lm 

277mil2 

3020 pad pitch 1.6 mm/pad 7.21 mil/pad 

1 Data from AT&T data book, July 1992, p. 3-76, MN92-024FPGA 

3. The minimum feature size in the AT&T Holmdel twin-tub V process used for 
the ATT3000 family is 0.9 ~lln. Using a value of A = 0.45 !-lm, calculate the 
Xilinx XC3000 ME size in 1",2. 
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b. Estimate, explaining your assumptions, the area of the XC4000 ME, and the 
XC5200 ME (both in Ah. 

c. Table 5.12 shows the ATT3000 die information. Using a value of 277 mil2 for 
the ATT/XC3000 ME area, complete this table. 

TABLE 5.12 ATT3000 die information {Problem 5.18).1 

Die Die height Die width Die area mil2 Die area CLBs ME area 
mil mil cm2 mil2 

3020 219.3 183.5 40,242 0.26 8x8 

3030 259.8 215.0 55,857 0.36 10 x 10 

3042 295.3 242.5 71,610 0.46 12 x 12 

3064 270.9 366.5 99,285 0.64 16 x 14 

3090 437.0 299.2 130,750 0.84 16 x 20 

ME area 
cm2 

1 Data from AT&T data book, July 1992, p. 3-75, MN92-024FPGA. 1 mil2 = 10-6 in2 = 2.542 x 10-6 cm2 = 
6.452 x 10-6 cm2 

5.7 Bibliography 

The book by Brown et a1. [1992] on FPGAs deals with commercially available 
FPGAs and logic block architecture. There are several easily readable articles on 
FPGAs in the July 1993 issue of the IEEE Proceedings including articles by Rose et 
a1. [1993] and Greene et a1. [1993]. Greene's article is a good place to start digging 
deeper into the Actel FPGA architecture and gives an idea of the very complex prob­
lem of programming antifuses, something we have not discussed. Trimberger, who 
works at Xilinx, has edited a book on FPGAs [1994]. For those wishing to under­
stand even more about the trade-offs in the different programmable ASIC architec­
tures, a student of Stanford Professor Abbas EI Gamal (one of the cofounders of 
Actel) has completed a Ph.D. on this topic [Kouloheris, 1993]. The best resources 
for information on FPGAs and their logic cells are the manufacturer's data sheets, 
data books, and application notes. The data books change every year or so as new 
products are released, so it is difficult to give specific references, but Xilinx, Actel, 
and Altera currently produce huge volumes complete with excellent design guides 
and application notes-you should obtain each of these even if you are not currently 
using that particular technology. Many of these are also online in Adobe Acrobat and 
PostScript format as well as in CD-ROM format (see also the bibliography in 
Chapter 4). 
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All programmable ASICs contain some type of input/output cell (I/O cell). These 
I/O cells handle driving logic signals off-chip, receiving and conditioning external 
inputs, as well as handling such things as electrostatic protection. This chapter 
explains the different types of I/O cells that are used in programmable ASICs and 
their functions. 

The following are different types of I/O requirements. 

$ DC Olltput. Driving a resistive load at DC or low frequency (less than 
1 MHz). Example loads are light-emitting diodes (LEDs), relays, small 
motors, and such. Can we supply an output signal with enough voltage, cur­
rent, power, or energy? 

• AC output. Driving a capacitive load with a high-speed (greater than 1 MHz) 
logic signal off-chip. Example loads are other logic chips, a data or address 
bus, ribbon cable. Can we supply a valid signal fast enough? 

• DC input. Example sources are a switch, sensor, or another logic chip. Can 
we correctly interpret the digital value of the input? 

• AC input. Example sources are high-speed logic signals (higher than 1 MHz) 
from another chip. Can we correctly interpret the input quickly enough? 
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232 CHAPTER 6 PROGRAMMABLE ASIC I/O CELLS. 

• Clock input. Examples are system clocks or signals on a synchronous bus. 
Can we transfer the timing information from the input to the appropriate 
places on the chip correctly and quickly enough? 

• Power input. We need to supply power to the I/O cells and the logic in the 
core, without introducing voltage drops or noise. We may also need a sepa­
rate power supply to program the chip. 

These issues are common to all FPGAs (and all ICs) so that the design of FPGA I/O 
cells is driven by the I/O requirements as well as the programming technology. 

6.1 DC Output 

Figure 6.1 shows a robot arm driven by three small motors together with switches to 
control the motors. The motor armature current varies between 50 rnA and nearly 
0.5 A when the motor is stalled. Can we replace the switches with an FPGA and 
drive the motors directly? 

FIGURE 6.1 A robot arm. 
(a) Three small DC motors drive the 
arm. (b) Switches control each motor. 

0tp en-c lose c:b ~p-down 
~ ~ 

left-right 

(a) 

motor 

direction control 

(b) 

Figure 6.2 shows a CMOS complementary output buffer used in many FPGA 
I/O cells and its DC characteristics. Data books typically specify the output charac­
teristics at two points, A (V OHmin' IOHmaJ and B (V OLmax' IOLmaJ, as shown in 
Figure 6.2( d). As an example, values for the Xilinx XC5200 are as follows 1: 

" V OLmux = 0.4 V, low-level output voltage at IOLmax = 8.0 rnA. 

o V OHmin = 4.0 V, high-level output voltage at IOHmax = -8.0 rnA. 

By convention the output current, 10' is positive if it flows into the output. 
Input currents, if there are any, are positive if they flow into the inputs. The Xilinx 
XC5200 specifications show that the output buffer can force the output pad to 0.4 V 
or lower and sink no more than 8 rnA if the load requires it. CMOS logic inputs that 
may be connected to the pad draw minute amounts of current, but bipolar TTL 
inputs can require several milliamperes. Similarly, when the output is 4 V, the buffer 

IXC5200 data sheet, October 1995 (v. 3.0). 
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6.1 DC OUTPUT 233 

can source 8 rnA. It is common to say that V OLmax = 0.4 V and V OHmin = 4.0 V for a 
technology-without referring to the current values at which these are measured­
strictly this is incorrect. 

VOL fOf-{, , 
(negative) I 

r~ 

I i 8mA 
~~~----~~~.Vo 

o t tVoo off ,~,-

V OLmax V OHmin 
(a) (b) (c) (d) 

FIGURE 6.2 (a) A CMOS complementary output buffer. (b) Pull-down transistor M2 (M1 is 
off) sinks (to GND) a current fOL through a pull-up resistor, R1. (c) Pull-up transistor M1 (M2 
is off) sources (from VDD) a current -fOH UOH is negative) through a pull-down resistor, R2 . 
(d) Output characteristics. 

If we force the output voltage, V 0, of an output buffer, using a voltage supply, 
and measure the output current, 10 , that results, we find that a buffer is capable of 
sourcing and sinking far more than the specified IOHmax and IOLmax values. Most 
vendors do not specify output characteristics because they are difficult to measure in 
production. Thus we normally do not know the value of IOLpeak or IOHpeak; typical 
values range from 50 to 200 rnA. 

Can we drive the motors by connecting several output buffers in parallel to 
reach a peak drive current of 0.5 A? Some FPGA vendors do specifically allow you 
to connect adjacent output cells in parallel to increase the output drive. If the output 
cells are not adjacent or are on different chips, there is a risk of contention. Conten­
tion will occur if, due to delays in the signal arriving at two output cells, one output 
buffer tries to drive an output high while the other output buffer is trying to drive the 
same output low. If this happens we essentially short VDD to GND for a brief 
period. Although contention for short periods may not be destructive, it increases 
power dissipation and should be avoided.2 

It is thus possible to parallel outputs to increase the DC drive capability, but it is 
not a good idea to do so because we may damage or destroy the chip (by exceeding 
the maximum metal electromigration limits). Figure 6.3 shows an alternative-a 

2 Actel specifies a maximum 1/0 current of ± 20 rnA for ACT3 family (1994 data book, 
p. 1-93) and its ES family. Altera specifies the maximum DC output current per pin, for example 
±25 rnA for the FLEX 10k (July 1995, v. 1 data sheet, p. 42). 
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simple circuit to boost the drive capability of the output buffers. If we need more 
power we could use two operational amplifiers (op-amps) connected as voltage fol­
lowers in a bridge configuration. For even more power we could use discrete power 
MOSFETs or power op-amps. 

FIGURE 6.3 A circuit to drive a small 
electric motor (0.5 A) using ASIC 1/0 buff­
ers. Any npn transistors with a reasonable 
gain (/3 "" 1 00) that are capable of handling 
the peak current (0.5 A) will work with an 
output buffer that is capable of sourcing 
more than 5 mA. The 470 Q resistors drop 
up to 5 V if an output buffer current 
approaches 10 mA, reducing the drive to 
the output transistors. 

lOmax = 10 mA (continuous) 

M2 

-1 
..L 

ASIC 

6.1.1 Totem-Pole Output 
Figure 6.4(a) and (b) shows a totem-pole output buffer and its DC characteristics. It 
is similar to the TTL totem-pole output from which it gets its name (the totem-pole 

VOO VOO 

1/0 '0 01 '0 

pad '0 Vo '0 Vo 

M2 +1 -1 ~2 VOO Vo Vo 
-= -= -= 

+1 
-= 

VOO-Vtn -0.5V VOO +0.5V 

(a) (b) (c) (d) 

FIGURE 6.4 Output buffer characteristics. (a) A CMOS totem-pole output stage (both M1 
and M2 are n-channel transistors). (b) Totem-pole output characteristics. (c) Clamp diodes, 
01 and 02, in an output buffer (these diodes are present in all output buffers-totem-pole or 
complementary). (d) The clamp diodes start to conduct as the output voltage exceeds the 
supply voltage bounds. 
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circuit has two stacked transistors of the same type, whereas a complementary out­
put uses transistors of opposite types). The high-level voltage, VOHmin' for a totem 
pole is lower than V DD' Typically V OHm in is in the range of 3.5 V to 4.0 V (with 
V DD = 5 V), which makes rising and falling delays more symmetrical and more 
closely matches TTL voltage levels. The disadvantage is that the totem pole will 
typically only drive the output as high as 3-4 V; so this would not be a good choice 
of FPGA output buffer to work with the circuit shown in Figure 6.3. 

6.1.2 Clamp Diodes 
Figure 6.4(c) show the connection of clamp diodes (DI and D2) that prevent the I/O 
pad from voltage excursions greater than VDD and less than Vss. Figure 6.4(d) shows 
the resulting characteristics. 

6.2 AC Output 

Figure 6.5 shows an example of an off-chip three-state bus. Chips that have inputs 
and outputs connected to a bus are called bus transceivers. Can we use FPGAs to 
perform the role of bus transceivers? We will focus on one bit, BI, on bus BUSA, 
and we shall call it BUSA.B 1. We need unique names to refer to signals on each 
chip; thus CHIP1.0E means the signal OE inside CHIP1. Notice that CHIP1.0E is 
not connected to CHIP2.0E. 

Figure 6.6 shows the timing of part of a bus transaction (a sequence of signals 
on a bus): 

1. Initially CHIP2 drives BUSA.BI high (CHIP2.DI is 'I' and CHIP2.0E is 'I'). 

2. The buffer output enable on CHIP2 (CHIP2.0E) goes low, floating the bus. 
The bus will stay high because we have a bus keeper, BKI. 

3. The buffer output enable on CHIP3 (CHIP3.0E) goes high and the buffer 
drives a low onto the bus (CHIP3.Dl is '0'). 

We wish to calculate the delays involved in driving the off-chip bus in 
Figure 6.6. In order to find tfloat' we need to understand how Actel specifies the 
delays for its I/O cells. Figure 6.7(a) shows the circuit used for measuring I/O delays 
for the ACT FPGAs. These measurements do not use the same trip points that are 
used to characterize the internal logic (Actel uses input and output trip points of 0.5 
for internal logic delays). 

Notice in Figure 6.7(a) that when the output enable E is '0' the output is 
three-stated (high-impedance or hi-Z). Different companies use different polarity 
and naming conventions for the "output enable" signal on a three-state buffer. To 
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(a) 

chip pins 
(1SpF each) 

ClK (33 MHz) 
BUSA.B1 

1SpF 

SpF 

7 
card connectors 

I (SpF each) 

=fSpF 

I3SpF 
~ , 

PCB trace: 3S cm at 1 pFcm-1 

BUSA.B1 
Va 

(b) cBusTj 
90pF 1 

CHIP1: semicustom ASIC CHIP2: ACT2/3 FPGA CHIP3: XC3000 FPGA 

FIGURE 6.5 A three-state bus. (a) Bus parasitic capacitance. (b) The output buffers in 
each chip. The ASIC CHIP1 contains a bus keeper, BK1. 

FIGURE 6.6 Three-state bus timing for 
Figure 6.S. The on-chip delays, t20E and 
t30 E, for the logic that generates signals 
CHIP2.E1 and CHIP3.E1 are derived from 
the timing models described in Chapter S 
(the minimum values for each chip would be 
the clock-to-Q delay times). 

VOHmin 

BUSA.B1 

CHIP2.0E 
(ACT2I3) 

CHIP3.0E 
(XC3000) 

ClK 

'1' hi-Z hi-Z to '0' 
~ ... "'1'" ...... 

-J 
tfloat tactivel 

-SO% 

'0' 

VILmax 
(Xilinx) 

VOLmax 

tspare 
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Voo 
(a) (b) 

E T
VDD D Vss 

S1 
VOHmin D _ 1.5V 

PAD ~ VOLmax S2 
S1 open, tOHL 

-= -= S2 open 11.2 ns 

(c) Voo (d) 

J- 50% - 50% 
E '------ Vss E '------Vss 

PAD--+-___ 11.5V I Voo 
I\... 10%_i_ 

I J .. VOHmin 
PAD - 1.5V 90%1 Vss l. ~ .. t. .. t.VOLmax 

S1 closed, tENZL tENLZ 
S2 open 15.5 ns 11.1 ns 

S1 open, tENZH tEN HZ 
S2 closed 11.8 ns 9.4 ns 

I ~ r-- tRC 
tfr .. l..- pull-up 

time to float delay 
J ~ r-- tRc 

tff ~ pull-down 
time to float delay 

FIGURE 6.7 (a) The test circuit for characterizing the ACT 2 and ACT 31/0 delay parame­
ters. (b) Output buffer propagation delays from the data input to PAD (output enable, E, is 
high). (c) Three-state delay with D low. (d) Three-state delay with D high. Delays are shown 
for ACT 2 'Std' speed grade, worst-case commercial conditions (RL = 1 kQ, CL = 50 pF, 
VOHmin = 2.4 V, VOLmax = 0.5 V). (The Actel three-state buffer is named TRIBUFF, an input 
buffer INBUF, and the output buffer, OUTBUF.) 

measure the buffer delay (measured from the change in the enable signal, E) Actel 
uses a resistor load (RL = 1 kQ for ACT 2). The resistor pulls the buffer output high 
or low depending on whether we are measuring: 

o tENZL' when the output switches from hi-Z to '0'. 

o tENLZ' when the output switches from '0' to hi-Z. 

o tENZH, when the output switches from hi-Z to '1 '. 

e tENHZ' when the output switches from' 1 ' to hi-Z. 

Other vendors specify the time to float a three-state output buffer directly (tti­
and tft' in Figure 6.7c and d). This delay time has different names (and definitions): 
disable time, time to begin hi-Z, or time to turn off. 
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Actel does not specify the time to float but, since RLC L = 50 ns, we know 
t RC = -R L C LIn 0.9 or approximately 5.3 ns. Now we can estimate that 

tfr = tENLZ - tRC = 11.1- 5.3 = 5.8 ns, and tff = 9.4 - 5.3 = 4.1 ns, 

and thus the Actel buffer can float the bus in tfloat = 4.1 ns (Figure 6.6). 
The Xilinx FPGA is responsible for the second part of the bus transaction. The 

time to make the buffer CHIP2.B 1 active is tactive' Once the buffer is active, the out­
put transistors turn on, conducting a current Ipeak' The output voltage Vo across the 
load capacitance, CBUS, will slew or change at a steady rate, dVo/dt=Ipeak/CBUS; 
thus tslew = CBUSll Vol I peak, where 1l V 0 is the change in output voltage. 

Vendors do not always provide enough information to calculate tactive and tslew 
separately, but we can usually estimate their sum. Xilinx specifies the time from the 
three-state input switching to the time the "pad is active and valid" for an XC3000-
125 switching with a 50 pF load, to be tactive = tTSON = 11 ns (fast option), and 27 ns 
(slew-rate limited option).3 If we need to drive the bus in less than one clock cycle 
(30 ns), we will definitely need to use the fast option. 

A supplement to the XC3000 timing data specifies the additional fall delay for 
switching large capacitive loads (above 50 pF) as RfaIl = 0.06 nspF-l (falling) and 
Rrise= 0.12 nspF-I (rising) using the fast output option.4 We can thus estimate that 

and 

Ipeak z (5 V) I (-0.06 X 103 sF-I) z -84 rnA 

Ipeak z (5 V) I (0.12 x 103 sF-I) z 42mA 

Now we can calculate, 

(falling) 

(rising). 

tslew = RfaII (CBUs -50pF) = (90pF-50pF) (0.06nspF-1) or 2.4 ns, 

for a total falling delay of 11 + 2.4 = 13.4 ns. The rising delay is slower at 
11+(40pF)(0.12nspF-1) or 15.8ns. This leaves (30-15.8)ns, or about 14ns 
worst-case, to generate the output enable signal CHIP2.0E (t30E in Figure 6.6) and 
still leave time tspare before the bus data is latched on the next clock edge. We can 
thus probably use a XC3000 part for a 30 MHz bus transceiver, but only if we use 
the fast slew-rate option. 

An aside: Our example looks a little like the PCI bus used on Pentium and 
PowerPC systems, but the bus transactions are simplified. PCI buses use a sustained 
three-state system (s/t/s). On the PCI bus an sltls driver must drive the bus high 
for at least one clock cycle before letting it float. A new driver may not start driving 
the bus until a clock edge after the previous driver tloats it. After such a turnaround 
cycle a new driver will always find the bus parked high. 

31994 data book, p. 2-159. 

4Applicalion Note XAPP 024.000, AclditionalXC3000 Data, 1994 clata book p. 8-15. 
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6.2.1 Supply Bounce 
Figure 6.8(a) shows an n-channel transistor, MI, that is part of an output buffer driv­
ing an output pad, OUTl; M2 and M3 form an inverter connected to an input pad, 
INl; and M4 and M5 are part of another output buffer connected to an output pad, 
OUT2. As Ml sinks current pulling OUTl low (Vol in Figure 6.8b), a substantial 
current IOL may flow in the resistance, R s, and inductance, Ls, that are between the 
on-chip GND net and the off-chip, external ground connection. 

VDD VDD 

TTL'1' 

VDD 
Vo1 

VOHmin 

(b) 2.5 V ............................. . 
OUT2 1.4 V········ ..................... . 

V OLmax .................. . 

Vo2 

ti: 'O'to~ 
GND (c) false '1' .---1.4 V····· ....................... . 

tOL 

R Vss 
M1 switching S VOLP 
causes ground L 1.4 V:::::'··:::::::::::::::::::::: 

VOLmax 

Vi1 

3.0V 
bounce ~ov ............ . (d) false '0' 

1.4V······ ~ ..... . 
OV······························· 

(a) 

FIGURE 6.8 Supply bounce. (a) As the pull-down device, M1, switches, it causes the GND 
net (value Vss) to bounce. (b) The supply bounce is dependent on the output slew rate. 
(c) Ground bounce can cause other output buffers to generate a logic glitch. (d) Bounce can 
also cause errors on other inputs. 

The voltage drop across Rs and Ls causes a spike (or transient) on the GND net, 
changing the value of Vss, leading to a problem known as supply bounce. The situ­
ation is illustrated in Figure 6.8(a), with Vss bouncing to a maximum of VOL? This 
ground bounce causes the voltage at the output, \102, to bounce also. If the threshold 
of the gate that OUT2 is driving is a TTL level at 1.4 V, for example, a ground 
bounce of more than 1.4 V will cause a logic high glitch (a momentary transition 
from one logic level to the opposite logic level and back again). 

Ground bounce may also cause problems at chip inputs. Suppose the inverter 
M2/M3 is set to have a TTL threshold of 1.4 V and the input, INl, is at a fixed volt­
age equal to 3 V (a respectable logic high for bipolar TTL). In this case a ground 
bounce of greater than 1.6 V will cause the input, IN 1, to see a logic low instead of a 

t 
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high and a glitch will be generated on the inverter output, II. Supply bounce can 
also occur on the VDD net, but this is usually less severe because the pull-up tran­
sistors in an output buffer are usually weaker than the pull-down transistors. The 
risk of generating a glitch is also greater at the low logic level for TTL-threshold 
inputs and TTL-level outputs because the low-level noise margins are smaller than 
the high-level noise margins in TTL. 

Sixteen SSOs, with each output driving 150 pF on a bus, can generate a ground 
bounce of 1.5 V or more. We cannot simulate this problem easily with FPGAs 
because we are not normally given the characteristics of the output devices. As a 
rule of thumb we wish to keep ground bounce below 1 V. To help do this we can 
limit the maximum number of SSOs, and we can limit the number of I/O buffers that 
share GND and VDD pads. 

To further reduce the problem, FPGAs now provide options to limit the current 
flowing in the output buffers, reducing the slew rate and slowing them down. Some 
FPGAs also have quiet I/O circuits that sense when the input to an output buffer 
changes. The quiet I/O then starts to change the output using small transistors; 
shortly afterwards the large output transistors "drop-in." As the output approaches 
its final value, the large transistors "kick-out," reducing the supply bounce. 

6.2.2 Transmission Lines 
Most of the problems with driving large capacitive loads at high speed occur on a 
bus, and in this case we may have to consider the bus as a transmission line. 
Figure 6.9(a) shows how a transmission line appears to a driver, D1, and receiver, 
R1, as a constant impedance, the characteristic impedance of the line, Zo0 For a 
typical PCB trace, Zo is between 50 Q and 100 Q. 

The voltages on a transmission line are determined by the value of the driver 
source resistance, Ro, and the way that we terminate the end of the transmission line. 
In Figure 6.9(a) the termination is just the capacitance of the receiver, Cin- As the 
driver switches between 5 V and 0 V, it launches a voltage wave down the line, as 
shown in Figure 6. 9(b). The wave will be Zo / (Ro + Zo) times 5 V in magnitude, so 
that if Ro is equal to Zo, the wave will be 2.5 V. 

Notice that it does not matter what is at the far end of the line. The bus driver 
sees only Zo and not Cin- Imagine the transmission line as a tunnel; all the bus driver 
can see at the entrance is a little way into the tunnel-it could be 500 m or 5 km 
long. To find out, we have to go with the wave to the end, turn around, come back, 
and tell the bus driver. The final result will be the same whether the transmission 
line is there or not, but with a transmission line it takes a little longer for the volt­
ages and currents to settle down. This is rather like the difference between having a 
conversation by telephone or by post. 

The propagation delay (or time of flight), ti' for a typical PCB trace is approxi­
mately 1 ns for every 15 cm of trace (the signal velocity is about one-half the speed 
of light). A voltage wave launched on a transmission line takes a time tf to get to the 
end of the line, where it finds the load capacitance, Cin- Since no current can flow at 
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o tOt 

------'~. 

VOHmin 

~Zo Zo ~ 
~ 

tf VOLmax ...................... . 

1 ns per 15 cm 

(a) (b) (c) 

FIGURE 6.9 Transmission lines. (a) A printed-circuit board (PCB) trace is a transmission 
(TX) line. (b) A driver launches an incident wave, which is reflected at the end of the line. (c) A 
connection starts to look like a transmission line when the signal rise time is about equal to 
twice the line delay (2tt). 

this point, there must be a reflection that exactly cancels the incident wave so that 
the voltage at the input to the receiver, at V2, becomes exactly zero at time tf The 
reflected wave travels back down the line and finally causes the voltage at the output 
of the driver, at VI' to be exactly zero at time 2tf In practice the nonidealities of the 
driver and the line cause the waves to have finite rise times. We start to see transmis­
sion line behavior if the rise time of the driver is less than 2tt , as shown in 
Figure 6.9(c). 

There are several ways to terminate a transmission line. Figure 6.10 illustrates 
the following methods: 

e Open-circuit or capacitive termination. The bus termination is the input 
capacitance of the receivers (usually less than 20 pF). The PCI bus uses this 
method. 

e Parallel resistive terminatioll. This requires substantial DC current 
(5 V /100 Q = 50 mA for a 100 Q line). It is used by bipolar logic, for exam­
ple emitter-coupled logic (ECL), where we typically do not care how much 
power we use. 

o Thevenill termination. Connecting 300 Q in parallel with 150 Q across a 5 V 
supply is equivalent to a 100 Q termination connected to a 1.6 V source. This 
reduces the DC current drain on the drivers but adds a resistance directly 
across the supply. 

• Series termination at the source. Adding a resistor in series with the driver so 
that the sum of the driver source resistance (which is usually 50 Q or even 
less) and the termination resistor matches the line impedance (usually around 
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(a) 

100 Q). The disadvantage is that it generates reflections that may be close to 
the switching threshold. 

• Parallel termination with a voltage bias. This is awkward because it requires 
a third supply and is normally used only for a specialized high-speed bus. 

• Parallel termination with a series capacitance. This removes the requirement 
for DC current but introduces other problems. 

~300Q 

~100Q ~100Q 

(b) (c) 

~~100Q }-{>-
R1 -::­

~50.Q 

C1 ~ 100 pF 

T 
(d) (f) -

FIGURE 6.10 Transmission line termination. (a) Open-circuit or capacitive termination. 
(b) Parallel resistive termination. (c) Thevenin termination. (d) Series termination at the 
source. (e) Parallel termination using a voltage bias. (f) Parallel termination with a series 
capacitor. . 

Until recently most bus protocols required strong bipolar or BiCMOS output buff­
ers capable of driving all the way between logic levels. The PCI standard uses weaker 
CMOS drivers that rely on reflection from the end of the bus to allow the intermediate 
receivers to see the full logic value. Many FPGA vendors now offer complete PCI 
functions that the ASIC designer can "drop in" to an FPGA [PCI, 1995]. 

An alternative to using a transmission line that operates across the full swing of 
the supply voltage is to use current-mode signaling or differential signals with low­
voltage swings. These and other techniques are used in specialized bus structures 
and in high-speed DRAM. Examples are Rambus, and Gunning transistor logic 
(GTL). These are analog rather than digital circuits, but ASIC methods apply if the 
interface circuits are available as cells, hiding some of the complexity from the 
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designer. For example, Rambus offers a Rambus access cell (RAC) for standard­
cell design (but not yet for an FPGA). Directions to more information on these top­
ics are in the bibliography at the end of this chapter. 

6.3 DC Input 

Suppose we have a pushbutton switch connected to the input of an FPGA as shown 
in Figure 6.11(a). Most FPGA input pads are directly connected to a buffer. We need 
to ensure that the input of this buffer never floats to a voltage between valid logic 
levels (which could cause both n-channel and p-channel transistors in the buffer to 
turn on, leading to oscillation or excessive power dissipation) and so we use the 
optional pull-up resistor (usually about 100 kQ) that is available on many FPGAs 
(we could also connect a I kQ pull-up or pull-down resistor externally). 

Contacts may bounce as a switch is operated (Figure 6.11 b). In the case of a 
Xilinx XC4000 the effective pull-up resistance is 5-50 kQ (since the specified pull­
up current is between 0.2 and 2.0 rnA) and forms an RC time constant with the para­
sitic capacitance of the input pad and the external circuit. This time constant (typi­
cally hundreds of nanoseconds) will normally be much less than the time over which 
the contacts bounce (typically many milliseconds). The buffer output may thus be a 
series of pulses extending for several milliseconds. It is up to you to deal with this in 
your logic. For example, you may want to debounce the waveform in Figure 6.11 (b) 
using an SR flip-flop. 

Switch closes, 
bounces,and 
closes again. 

FIGURE 6.11 A switch input. (a) A 
pushbutton switch connected to an 
input buffer with a pull-up resistor. 
(b) As the switch bounces several 
pulses may be generated. 

1.4V ------------ ----
OV I! , 
V. t1 I I t4 I t CinT 

",,10pF -= 12f-LJ-L 

(a) 

A bouncing switch may create a noisy waveform in the time domain, we may 
also have noise in the voltage level of our input signal. The Schmitt-trigger inverter 
in Figure 6.12(a) has a lower switching threshold of 2 V and an upper switching 
threshold of 3 V. The difference between these thresholds is the hysteresis, equal to 
I V in this case. If we apply the noisy waveform shown in Figure 6.12(b) to an 

t2 t3 t5 

(b) 
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JIlL 

5.0V .. 
2.5V 

inverter with no hysteresis, there will be a glitch at the output, as shown in 
Figure 6.12(c). As long as the noise on the waveform does not exceed the hysteresis, 
the Schmitt-trigger inverter will produce the glitch-free output of Figure 6.12(d). 

Most FPGA input buffers have a small hysteresis (the 200 m V that Xilinx uses 
is a typical figure) centered around 1.4 V (for compatibility with TTL), as shown in 
Figure 6.12(e). Notice that the drawing inside the symbol for a Schmitt trigger looks 
like the transfer characteristic for a buffer, but is backward for an inverter. Hystere­
sis in the input buffer also helps prevent oscillation and noise problems with inputs 
that have slow rise times, though most FPGA manufacturers still have a restriction 
that input signals must have a rise time faster than several hundred nanoseconds. 

(b) "in 
5V 

hysteresis 
3V 

2.5V 
2V 

I/opad·~ 

"in Vout 

Vout = 200 mV .. 
OV 5.0V" .. 

(c) Vout 1 
2.5 V ~.J-t=----

OV 
OV 

~ 

(no hysteresis) !::::===+-=~-... glitch 

t (d) o V c:~::::;::.. __ ~_ .. ~ 

OV1.4V 5VV; 
In 

(a) (e) 

FIGURE 6.12 DC input. (a) A Schmitt-trigger inverter. (b) A noisy input signal. (c) Output 
from an inverter with no hysteresis. (d) Hysteresis helps prevent glitches. (e) A typical FPGA 
input buffer with a hysteresis of 200 mV centered around a threshold of 1.4 V. 

6.3.1 Noise Margins 
Figure 6. 13 (a) and (b) show the worst-case DC transfer characteristics of a CMOS 
inverter. Figure 6.13(a) shows a situation in which the process and device sizes cre­
ate the lowest possible switching threshold. We define the maximum voltage that 
will be recognized as a '0' as the point at which the gain (Vout/Vin) of the inverter is 
-1. This point is VILmax = IV in the example shown in Figure 6.13(a). This means 
that any input voltage that is lower than 1 V will definitely be recognized as a '0', 
even with the most unfavorable inverter characteristics. At the other worst-case 
extreme we define the minimum voltage that will be recognized as a 'I' as 
VIHmin = 3.5V (for the example in Figure 6.13b). 
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FIGURE 6.13 Noise margins. (a) Transfer characteristics of a CMOS inverter with the low­
est switching threshold. (b) The highest switching threshold. (c) A graphical representation of 
CMOS logic thresholds. (d) Logic thresholds at the inputs and outputs of a logic gate or an 
ASIC. (e) The switching thresholds viewed as a plug and socket. (f) CMOS plugs fit CMOS 
sockets and the clearances are the noise margins. 

Figure 6.13( c) depicts the following relationships between the various voltage 
levels at the inputs and outputs of a logic gate: 

e A logic 'I' output must be between V OHmin and V DD' 

G A logic '0' output must be between Vss and VOLmax' 

o A logic 'I' input must be above the high-level input voltage, VIHmin. 

o A logic '0' input must be below the low-level input voltage, V ILmax' 

• Clamp diodes prevent an input exceeding V DD or going lower than Vss. 

The voltages, VOHmin' VOLmax' V IHmin, and VILmax' are the logic thresholds for 
a technology. A logic signal outside the areas bounded by these logic thresholds is 
"bad"-an unrecognizable logic level in an electronic no-man's land. Figure 6.l3(d) 
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TTL 

2.0 V .---..,-L--, 

o . 8 V "---"-r-'-' 

TTL 

(a) 

shows typical logic thresholds for a CMOS-compatible FPGA. The VIHmin and 
VILmax logic thresholds come from measurements in Figure 6.13(a) and (b) and 
VOHmin and VOLmax come from the measurements shown in Figure 6.2(c). 

Figure 6.13( d) illustrates how logic thresholds form a plug and socket for any 
gate, group of gates, or even a chip. If a plug fits a socket, we can connect the two 
components together and they will have compatible logic levels. For example, 
Figure 6.13(e) shows that we can connect two CMOS gates or chips together. 

5.0V 

2.7V 

0.4 V 
O.OV 

~:J~:~I :::~ 
O.OV 

CMOS 

(b) 

TTL CMOS 

TTL CMOS 

(c) 

TTUCM~OS ~:~: V 

2.0V.· .....•.. 
0.8V . ...... 0.4 V 

O.OV 
TTUCMOS 

(d) 

FIGURE 6.14 TTL and CMOS logic thresholds. (a) TTL logic thresholds. (b) Typical 
CMOS logic thresholds. (c) A TTL plug will not fit in a CMOS socket. (d) Raising VOHmin 
solves the problem. 

Figure 6.13(f) shows that we can even add some noise that shifts the input lev­
els and the plug will still fit into the socket. In fact, we can shift the plug down by 
exactly VOHmin- VIHmin (4.5-3.5= 1 V) and still maintain a valid '1'. We can shift 
the plug up by VILmax- VOLmax (1.0-0.5 =0.5 V) and still maintain a valid '0'. 
These clearances between plug and socket are the noise margins: 

VNMH = VOHmin - VIHmin and V NML = V ILmax - V OLmax . (6.1) 

For two logic systems to be compatible, the plug must fit the socket. This 
requires both the high-level noise margin (VNMH) and the low-level noise margin 
(V NML) to be positive. We also want both noise margins to be as large as possible to 
give us maximum immunity from noise and other problems at an interface. 

Figure 6.14(a) and (b) show the logic thresholds for TTL together with typical 
CMOS logic thresholds. Figure 6.14(c) shows the problem with trying to plug a TTL 
chip into a CMOS input level-the lowest permissible TTL output level, 
VOHmin = 2.7 V, is too low to be recognized as a logic' l' by the CMOS input. This is 
fixed by most FPGA manufacturers by raising VOHmin to around 3.8-4.0V 
(Figure 6.14d). Table 6.1 lists the logic thresholds for several FPGAs. 

6.3.2 Mixed-Voltage Systems 
To reduce power consumption and allow CMOS logic to be scaled below 0.5 11m it 
is necessary to reduce the power supply voltage below 5 V. The JEDEC 8 [JEDEC 
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I/O] series of standards sets the next lower supply voltage as 3.3 ± 0.3 V. 
Figure 6.15(a) and (b) shows that the 3 V CMOS I/O logic-thresholds can be made 
compatible with 5 V systems. Some FPGAs can operate on both 3 V and 5 V sup­
plies, typically using one voltage for internal (or core) logic, V DDint and another for 
the I/O circuits, VDDI10 (Figure 6.15c). 

TABLE 6.1 FPGA logic thresholds. 

I/O options Input levels Output levels (high current) Output levels (low current) 

V1H V1l VOH IOH VOL IOl VOH IOH VOL IOl 
Input Output (min) (max) (min) (max) (max) (max) (min) (max) (max) (max) 

XC30001 TTL 2.0 0.8 3.86 -4.0 0.40 4.0 

CMOS 3.852 0.93 3.86 -4.0 0.40 4.0 

XC3000L 2.0 0.8 2.40 -4.0 0.40 4.0 -0.1 0.2 0.1 

2.0 0.8 2.40 -4.0 0.40 12.0 
..... _. __ ...... _ ..... _. ... _-- ... __ ._._ .. _ ... _. __ .. - ............... _--_ ...... 

XC4000Hb TTL TTL 2.0 0.8 2.40 -4.0 0.50 24.0 

CMOS CMOS 3.852 0.93 4.007 -1.0 0.50 24.0 

XC81 TTL R 2.0 0.8 3.86 -4.0 0.50 24.0 

CMOS C 3.852 0.93 3.86 -4.0 0.40 4.0 

ACT 2/3 2.0 0.8 2.4 -8.0 0.50 12.0 3.84 -4.0 0.33 6.0 

FLEX1 3V/5V 2.0 0.8 2.4 -4.0 0.45 12.0 

1XC2000, XC3000/A have identical thresholds. XC3100/A thresholds are identical to XC3000 except for ±8mA 
source-sink current. XC5200 thresholds are identical to XC31 OOA. 

20efined as 0.7 Voo, calculated with VOOmax = 5.5 V. 
30efined as 0.2 V DO, calculated with V DOmin = 4.5 V. 
40efined as VOO - 0.2 V, calculated with VOOmin = 3.0V. 
5XC4000, XC4000A have identical 1/0 thresholds except XC4000A has -24 mA sink current. 
6XC4000H/E have identical 1/0 thresholds except XC4000E has -12 mA sink current. Options are independent. 
70efined as VOO - 0.5 V, calculated with VOOmin = 4.5 V. 
81nput and output options are independent. 
9MAX 9000 has identical thresholds to FLEX 10k. 
Note: All voltages in volts, all currents in milliamperes. 

There is one problem when we mix 3 V and 5 V supplies that is shown in 
Figure 6.15( d). If we apply a voltage to a chip input that exceeds the power supply 
of a chip, it is possible to power a chip inadvertently through the clamp diodes. In 
the worst case this may cause a voltage as high as 2.5 V (= 5.5 V - 3.0 V) to appear 
across the clamp diode, which will cause a very large current (several hundred milli­
amperes) to flow. One way to prevent damage is to include a series resistor between 
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the chips, typically around 1 kQ. This solution does not work for all chips in all sys­
tems. A difficult problem in ASIC I/O design is constructing 5 V-tolerant I/O. Most 
solutions may never surface (there is little point in patenting a solution to a problem 
that will go away before the patent is granted). 

FIGURE 6.15 Mixed­
voltage systems. (a) TTL 
levels. (b) Low-voltage 
CMOS levels. (c) A mixed­
voltage ASIC. (d) A problem 
when connecting two chips 
with different supply volt­
ages-caused by the input 
clamp diodes. 

Similar problems can arise in several other situations: 

• when you connect two ASICs with "different" 5 V supplies; 

• when you power down one ASIC in a system but not another, or one ASIC 
powers down faster than another; 

• on system power-up or system reset. 

TTL 

2.0 V r-=""""-, 

0.8 V ~'-T"-" 
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5.0V 
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004 V 
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AC Input 

CMOS3V 

2.0V~;:~~ 
0.8V~004V 

O.OV 
CMOS3V 

(b) 

CHIP1 

core I/O 

(c) 

CHIP2 

Suppose we wish to connect an input bus containing sampled data from an analog­
to-digital converter (AID) that is running at a clock frequency of 100 kHz to an 
FPGA that is running from a system clock on a bus at 10 MHz (a NuBus). We are to 
perform some filtering and calculations on the sampled data before placing it on the 
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NuBus. We cannot just connect the AID output bus to our FPGA, because we have 
no idea when the AID data will change. Even though the AID data rate (a sample 
every lO!ls or every 100 NuBus clock cycles) is much lower than the NuBus clock, 
if the data happens to arrive just before we are due to place an output on the NuBus, 
we have no time to perform any calculations. Instead we want to register the data at 
the input to give us a whole NuBus clock cycle (100 ns) to perform the calculations. 
We know that we should have the AID data at the flip-flop input for at least the flip­
flop setup time before the NuBus clock edge. Unfortunately there is no way to guar­
antee this; the AID converter clock and the NuBus clock are completely indepen­
dent. Thus it is entirely possible that every now and again the AID data will change 
just before the NuBus clock edge. 

6.4.1 Metastability 
If we change the data input to a flip-flop (or a latch) too close to the clock edge 
(called a setup or hold-time violation), we run into a problem called metastability, 
illustrated in Figure 6.16. In this situation the flip-flop cannot decide whether its out-

FIGURE 6.16 Metastability. 
(a) Data coming from one system is an 
asynchronous input to another. (b) A 
flip-flop has a very narrow decision 
window bounded by the setup and hold 
times. If the data input changes inside 
this decision window, the output may 
be metastable-neither '1' or '0'. 

(a) 

(b) 

decision setup and hold window 
window (limits of decision window) 

C~~ --::."'"' ... !.;[ ............ 1.;: ~ \ SO%r 

~ I metastable output I 
Q1 ___ --t-'i /' ««<1 s Z < I 

~~ i I /~ziJ% 
r- tr + tpd =d·'·'·C··;SU2 
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put should be a 'I' or a '0' for a long time. If the flip-flop makes a decision, at a time 
tr after the clock edge, as to whether its output is a 'I' or a '0', there is a small, but 
finite, probability that the flip-flop will decide the output is a 'I' when it should have 
been a '0' or vice versa. This situation, called an upset, can happen when the data is 
corning from the outside world and the flip-flop can't determine when it will arrive; 
this is an asynchronous signal, because it is not synchronized to the chip clock. -

Experimentally we find that the probability of upset, p, is 

-t 
P = Toexp-r, 

't c 

(6.2) 

(per data event, per clock edge, in one second, with units Hz-1·Hz-1·s-1) where tr is 
the time a sampler (flip-flop or latch) has to resolve the sampler output; To and 'tc 
are constants of the sampler circuit design. Let us see how serious this problem is in 
practice. If tr = S ns, 'tc = 0.1 ns, and To = 0.1 s, Eq. 6.2 gives the upset probability as 

( 
-9 J - (S x 10 ) -23 

P = 0.1 exp -9 = 2 x 10 s, 
(0.1 x 10 ) 

(6.3) 

which is very small, but the data and clock may be running at several MHz, causing 
the sampler plenty of opportunities for upset. 

The mean time between upsets (MTBU, similar to MTBF-mean time 
between failures) is 

MTBU = 1 = (6.4) 
T of cloCkf data' 

where icIock is the clock frequency andfctata is the data frequency. 
If t,.=Sns, 'tc =0.1 ns, To=O.1 s (as in the previous example),f~lock= 100 MHz, 

and fctata = 1 MHz, then 

MTBU = 
( 

S X 10-
9 J exp 9 

0.1 x 10- 8 
= 5.2 x 10 seconds, (6.S) 

or about 16 years (l08 seconds is three years, and a day is 105 seconds). An MTBU of 
16 years may seem safe, but suppose we have a 64-bit input bus using 64 flip-flops. If 
each flip-flop has an MTBU of 16 years, our system-level MTBF is three months. If 

267



6.4 AC INPUT 251 

we ship 1000 systems we would have an average of 10 systems failing every day. 
'What can we do? 

The parameter 'tc is the inverse of the gain-bandwidth product, GB, of the 
sampler at the instant of sampling. It is a constant that is independent of whether we 
are sampling a positive or negative data edge. It may be determined by a small­
signal analysis of the sampler at the sampling instant or by measurement. It cannot 
be determined by simulating the transient response of the flip-flop to a metastable 
event since the gain and bandwidth both normally change as a function of time. We 
cannot change 'tc-

The parameter To (units of time) is a function of the process technology and the 
circuit design. It may be different for sampling a positive or negative data edge, but 
normally only one value of To is given. Attempts have been made to calculate To 
and to relate it to a physical quantity. The best method is by measurement or simula­
tion of metastable events. We cannot change To. 

Given a good flip-flop or latch design, 'tc and To should be similar for compara­
ble CMOS processes (so, for example, all 0.5!lm processes should have approxi­
mately the same 'tc and To). The only parameter we can change when using a flip­
flop or latch from a cell library is tr , and we should allow as much resolution time as 

TABLE 6.2 Metastability parameters for FPGA flip-flops. These figures are not 
guaranteed by the vendors. 

FPGA Tots 're ls 

ActelACT 1 1.0E-09 2.17E-10 

Xilinx XC3020-70 1.SE-10 2.71E-10 

QuickLogic OL i2x16-0 2.94E-i1 2.91 E-i0 

Quic~Logic OL 12xi6-1 8.38E-i1 2.09E-10 

QuickLogic OL i2x16-2 i.23E-i0 i.8SE-i0 

Xilinx XC81 00 2.1SE-i2 4.6SE-10 

Xilinx XC8i 00 synchronizer i.S9E-17 2.07E-10 

Altera MAX 7000 2.98E-17 2.00E-10 

Altera FLEX 8000 1.01 E-i3 7.89E-i1 

Sources: ActelApril1992data book, p. 5-1, gives CI =To= 1O-9Hz-I, C2 = 1/'tc =4.6052 ns-1, 
or 'tc =2.17E-10 s and To = 1.0E-09 s. Xilinx gives K1 =To= 1.5E-I0 sand 
K2= I/'tc = 3.69E9 s-l, 'tc = 2.71E-1O s, for the XC3020-70 (p. 8-20 of 1994 data book). 
QuickLogic pASIC 1 QL12XI6: 'tc = 0.2 ns to 0.3 ns, To= 0.3E-10 s to 1.2E-IO s (1994 data 
book, p. 5-25, Fig. 2). XilinxXC8100 data, 'tc =4.65E-IO sand To= 2.15E-12 s, is from October 
1995 (v. 1.0) data sheet, Fig.17 (the XC81 00 was discontinued in August 1996). Altera 1995 data 
book p. 437, Table 1. 
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MTBF/s 

1012 

108 
(3 years) 

2 

we can after the output of a latch before the signal is clocked again. If we use a 
flip-flop constructed from two latches in series (a master-slave design), then we are 
sampling the data twice. The resolution time for the first sample tr is fixed, it is half 
the clock cycle (if the clock is high and low for equal times-we say the clock has a 
50 percent duty cycle, or equal mark-space' ratio). Using such a flip-flop we need 
to allow as much time as we can before we clock the second sample by connecting 
two flip-flops in series, without any combinational logic between them, if possible. 
If you are really in trouble, the next step is to divide the clock so you can extend the 
resolution time even further. 

Table 6.2 shows flip-flop metastability parameters and Figure 6.17 graphs the 
metastability data for fc10ck = 10 MHz and fdata = 1 MHz. From this graph we can see 
the enormous variation in MTBF caused by small variations in 'tco For example, in 
the QuickLogic pAS Ie 1 series the range of To from 0.3 to 1.2 x lO-1Os is 4: 1, but it 
is the range of 'tc = 0.2 - 0.3 ns (a variation of only 1: 1.5) that is responsible for the 
enormous variation in MTBF (nearly four orders of magnitude at tr = 5 ns). The vari­
ation in 'tc is caused by the variation in GB between the QuickLogic speed grades. 
Variation in the other vendors' parts will be similar, but most vendors do not show 
this information. To be safe, build a large safety margin for MTBF into any design­
it is not unreasonable to use a margin of four orders of magnitude. 

II QuickLogic pASIC 1-0 

0 QuickLogic pASIC 1-1 

• QuickLogic pASIC 1-2 

<> Actel ACT 1 

.6. Xilinx XC3020-70 

3 

fclock = 10 MHz 

fdata = 1 MHz 

4 5 
resolution 
time, fr/ns 

FIGURE 6.17 Mean time between failures (MTBF) as a function of resolution time. The 
data is from FPGA vendors' data books for a single flip-flop with clock frequency of 10 MHz 
and a data input frequency of 1 MHz (see Table 6.2). 
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Some cell libraries include a synchronizer, built from two flip-flops in cascade, 
that greatly reduces the effective values of'tc and To over a single flip-flop. The pen­
alty is an extra clock cycle of latency. 

To compare discrete TTL parts with ASIC flip-flops, the 74AS4374 TTL 
metastable-hardened dual flip-flops, from TI, have 'tc = 0.42 ns and To = 4 ns. The 
parameter TO ranges from about 10 s for the 74LS74 (a regular flip-flop) to 4 ns for 
the 74AS4374 (over nine orders of magnitude different); 'tc only varies from 0.42 ns 
(74AS374) to 1.3 ns (74LS74), but this small variation in 'tc is just as important. 

6.5 Clock Input 

When we bring the clock signal onto a chip, we may need to adjust the logic level 
(clock signals are often driven by TTL drivers with a high current output capability) 
and then we need to distribute the clock signal around the chip as it is needed. 
FPGAs normally provide special clock buffers and clock networks. We need to min­
imize the clock delay (or latency), but we also need to minimize the clock skew. 

6.5.1 Registered Inputs 
Some FPGAs provide a flip-flop or latch that you can use as part of the I/O circuit 
(registered I/O). For other FPGAs you have to use a flip-flop or latch using the basic 
logic cell in the core. In either case the important parameter is the input setup time. 
We can measure the setup with respect to the clock signal at the flip-flop or the clock 
signal at the clock input pad. The difference between these two parameters is the 
clock delay. 

Figure 6.18 shows part of the I/O timing model for a Xilinx XC40005-6.5 

• tpICK is the fixed setup time for a flip-flop relative to the flip-flop clock. 

o tskew is the variable clock skew, the signed delay between two clock edges. 

" tpG is the variable clock delay or latency. 

To calculate the flip-flop setup time (tPSUFmin) relative to the clock pad (which 
is the parameter system designers need to know), we subtract the clock delay, so that 

tpSUF = tpICK - tpG' (6.6) 

The problem is that we cannot easily calculate tpG, since it depends on the clock dis­
tribution scheme and where the flip-flop is on the chip. Instead Xilinx specifies 

5The Xilinx XC4005-6 timing parameters are from the 1994 data book p. 2-50 to p. 2-53. 
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FIGURE 6.18 Clock input. (a) Timing model with values for a Xilinx XC4005-6. (b) A sim­
plified view of clock distribution. (c) Timing diagram. Xilinx eliminates the variable internal 
delay tpG' by specifying a pin-to-pin setup time, t PSUFmin = 2 ns. 

tPSUFmin directly, measured from the data pad to the clock pad; this time is called a 
pin-to-pin timing parameter. Notice tPSUFmin = 2 ns * tpICK - tPGmax = -1 ns. 

Figure 6.19 shows that the hold time for a XC4005-6 flip-flop (tCKI) with 
respect to the flip-flop clock is zero. However, the pin-to-pin hold time including the 
clock delay is tpHF = 5.5 ns. We can remove this inconvenient hold-time restriction 
by delaying the input signal. Including a programmable delay allows Xilinx to guar­
antee the pin-to-pin hold time (tpH) as zero. The penalty is an increase in the pin-to­
pin setup time (tpsu) to 21 ns (from 2 ns) for the XC400S-6, for example. 

We also have to account for clock delay when we register an output. Figure 6.20 
shows the timing model diagram for the clock-to-output delay. 
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FIGURE 6.19 Programmable input delay. (a) Pin-to-pin timing model with values from an 
XC400S-6. (b) Timing diagrams with and without programmable delay. 

FIGURE 6.20 Registered 
output. (a) Timing model with 
values for an XC400S-6 pro­
grammed with the fast slew­
rate option. (b) Timing dia­
gram. 
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The last item that we need to bring onto an FPGA is the power. We may need multi­
ple VDD and GND power pads to reduce supply bounce or separate VDD pads for 
mixed-voltage supplies. We may also need to provide power for on-chip program­
ming (in the case of antifuse or EPROM programming technology). The package 
type and number of pins will determine the number of power pins, which, in turn, 
affects the number of SSOs you can have in a design. 
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TABLE 6.3 

Package1 

CPGA 

CPGA 

CPGA 

CPGA 

CPGA 

CPGA 

COFP 

COFP 

POFP 

POFP 

POFP 

VOFP 

PLCC 

PLCC 

PLCC 

PPGA 

6.6.1 Power Dissipation 
As a general rule a plastic package can dissipate about 1 W, and more expensive 
ceramic packages can dissipate up to about 2 W. Table 6.3 shows the thermal charac­
teristics of common packages. In a high-speed (high-power) design the ASIC power 

Thermal characteristics of ASIC packages. 

Pin Max. power 8JA /oCW-1 8JA fOCW-1 

count PmaxIW (still air)2,3 (still air)4 

84 33 32-38 

100 35 

132 30 

175 25 16 

207 22 

257 15 

84 40 

172 25 

100 1.0 55 56-75 

160 1.75 33 30-33 

208 2.0 33 27-32 

80 68 

44 52 44 

68 45 28-35 

84 1.5 44 

132 33-34 

1 CPGA = ceramic pin-grid array; COFP = ceramic quad flatpack; PQFP = 
plastic quad flatpack; VOFP = very thin quad flatpack; PLCC = plastic 
leaded chip carrier; PPGA = plastic pin-grid array. 

2 8JA varies with die size. 
30ata from Actel1994 data book p. t-9, p. 1-45, and p. 1-94. 
4Data from Xilinx 1994 data book p. 4-26 and p. 4-27. 

consumption may dictate your choice of packages. Actel provides a formula for cal­
culating typical dynamic chip power consumption of their FPGAs. The formula for 
the ACT 2 and ACT 3 FPGAs are complex; therefore we shall use the simpler for­
mula for the ACT 1 FPGAs as an example6: 

61994 data book, p.1-9 
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Total chip power = 0.2 (N x Fl) + 0.085 (M x F2) + 0.8 (PxF3) mW (6.7) 

where 

Fl = average logic module switching rate in MHz 

F2 = average clock pin switching rate in MHz 

F3 = average I/O switching rate in MHz 

M = number of logic modules connected to the clock pin 

N = number of logic modules used on the chip 

P = number of I/O pairs used (input + output), with 50 pF load 

As an example of a power-dissipation calculation, consider an Actel 1020B-2 
with a 20 MHz clock. We shall initially assume 100 percent utilization of the 547 
Logic Modules and assume that each switches at an average speed of 5 MHz. We 
shall also initially assume that we use all of the 69 I/O Modules and that each 
switches at an average speed of 5 MHz. Using Eq. 6.7, the Logic Modules dissipate 

P LM = (0.2) (547) (5) = 547 mW, (6.8) 

and the I/O Module dissipation is 

P 10 = (0.8) (69) (5) = 276 mW. (6.9) 

If we assume the clock buffer drives 20 percent of the Logic Modules, then the 
additional power dissipation due to the clock buffer is 

P eLK = (0.085) (547) (0.2) (5) = 46.495 mW. (6.10) 

The total power dissipation is thus 

P D = (547 + 276 + 46.5) = 869.5 mW, (6.11) 

or about 900 mW (with an accuracy of certainly no better than ± 100 mW). 
Suppose we intend to use a very thin quad fiatpack (VQFP) with no cooling 

(because we are trying to save area and board height). From Table 6.3 the thermal 
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resistance, aJA, is approximately 68 °CW-1 for an 80-pin VQFP. Thus the maximum 
junction temperature under industrial worst-case conditions (TA =85 °C) will be 

TJ = (85 + (0.87) (68)) = l44.16°C, (6.12) 

(with an accuracy of no better than 10 °C). Actel specifies the maximum junction 
temperature for its devices as TJrnax = 150°C (TJrnax for Altera is also 150°C, for 
Xilinx TJrnax = 125°C). Our calculated value is much too close to the rated maximum 
for comfort; therefore we need to go back and check our assumptions for power dis­
sipation. At or near 100 percent module utilization is not unreasonable for an Actel 
device, but more questionable is that all nodes and l/Os switch at 5 MHz. 

Our real mistake is trying to use a VQFP package with a high aJA for a high­
speed design. Suppose we use an 84-pin PLCC package instead. From Table 6.3 the 
thermal resistance, aJA, for this alternative package is approximately 44°CW-1. 

Now the worst-case junction temperature will be a more reasonable 

TJ = (85 + (0.87) (44)) = 123.28°C. (6.13) 

It is possible to estimate the power dissipation of the Actel architecture because 
the routing is regular and the interconnect capacitance is well controlled (it has to be 
since we must minimize the number of series antifuses we use). For most other 
architectures it is much more difficult to estimate power dissipation. The exception, 
as we saw in Section 5.4 "Altera MAX," are the programmable ASICs based on pro­
grammable logic arrays with passive pull-ups where a substantial part of the power 
dissipation is static. 

6.6.2 Power-On Reset 
Each FPGA has its own power-on reset sequence. For example, a Xilinx FPGA con­
figures all flip-flops (in either the CLBs or lOBs) as either SET or RESET. After 
chip programming is complete, the global SETjRESET signal forces all flip-flops on 
the chip to a known state. This is important since it may determine the initial state of 
a state machine, for example. 

6.7 Xilinx I/O Block 

The Xilinx I/O cell is the input/output block (lOB). Figure 6.21 shows the Xilinx 
XC4000 lOB, which is similar to the lOB in the XC2000, XC3000, and XC5200 but 
performs a superset of the options in these other Xilinx FPGAs. 
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FIGURE 6.21 The Xilinx XC4000 family lOB (input/output block). (Source: Xilinx.) 

The outputs contain features that allow you to do the following: 

• Switch between a totem-pole and a complementary output (XC4000H). 

• Include a passive pull-up or pull-down (both n-channel devices) with a typical 
resistance of about 50 kQ. 

• Invert the three-state control (output enable OE or three-state, TS). 

• Include a flip-flop, or latch, or a direct connection in the output path. 

• Control the slew rate of the output. 

The features on the inputs allow you to do the following: 

• Configure the input buffer with TTL or CMOS thresholds. 

• Include a flip-flop, or latch, or a direct connection in the input path. 

• Switch in a delay to eliminate an input hold time. 

Figure 6.22 shows the timing model for the XC5200 family.? It is similar to the 
timing model for all the other Xilinx LCA FPGAs with one exception-the XC5200 
does not have registers in the I/O cell; you go directly to the core CLBs to include a 
flip-flop or latch on an input or output. 

70ctober 1995 (v. 3.0) data sheet. 
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tpsu 

pin-to-pin 
setup 

8.5 ns 

tplD tD1CK tcKO tllO tiCK tCKO top 

input (slow) setup clock to combinational setup clock to output 
output logic output 4.6 ns (fast) 

11.4 ns 0.8ns 5.8ns 5.6ns 2.3ns 5.8ns 9.5 ns (slow) 
~ ... ... • ... ... 

IOB1 CLB1 CLB2 CLB3 IOB3 

global clock 
buffer 

tBUFG' global buffer delay = 9.4 ns 

13 ;...-....-------1 

input (fast), tplDF = 5.7 ns 
------------... 

~ = variable routing delay 

ct = combinational logic 

IOB4 

clock to output 
tOKPO 
10.1 ns (fast) 
14.9 ns (slow) 

FIGURE 6.22 The Xilinx LCA (Logic Cell Array) timing model. The paths show different 
uses of CLBs (Configurable Logic Blocks) and lOBs (Input/Output Blocks). The parameters 
shown are for an XC5210-6. (Source: Xilinx.) 

6.7.1 Boundary Scan 
Testing PCBs can be done using a bed-of-nails tester. This approach becomes very 
difficult with closer IC pin spacing and more sophisticated assembly methods using 
surface-mount technology and multilayer boards. The IEEE implemented boundary­
scan standard 1149.1 to simplify the problem of testing at the board level. The Joint 
Test Action Group (JTAG) developed the standard; thus the terms JTAG boundary 
scan or just JTAG are commonly used. 

Many FPGAs contain a standard boundary-scan test logic structure with a four­
pin interface. By using these four signals, you can program the chip using ISP, as 
well as serially load commands and data into the chips to control the outputs and 
check the inputs. This is a great improvement over bed-of-nails testing. We shall 
cover boundary scan in detail in Section 14.6, "Scan Test." 
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6.8 OTHER I/O CELLS 261 

6.8 Other I/O Cells 

The Altera MAX 5000 and 7000 use the I/O Control Block (IOC) shown in 
Figure 6.23. In the MAX 5000, all inputs pass through the chipwide interconnect. 
The MAX 7000E has special fast inputs that are connected directly to macrocell reg­
isters in order to reduce the setup time for registered inputs. 

FIGURE 6.23 A simplified block 
diagram of the Altera I/O Control 
Block (lOC) used in the MAX 5000 
and MAX 7000 series. The I/O pin 
feedback allows the I/O pad to be 
isolated from the macrocell. It is 
thus possible to use a LAB without 
using up an I/O pad (as you often 
have to do using a PLD such as a 
22V1 0). The PIA is the chipwide 
interconnect. 

Programmable 
Interconnect Array (PIA) 

output enable 

6-1210Cs 
per LAB 

I/O Control 
Block (IOC) 

The FLEX 8000 and 10k use the I/O Element (JOE) shown in Figure 6.24 (the 
MAX 9000 IOC is similar). The interface to the IOE is directly to the chipwide 
interconnect rather than the core logic. There is a separate bus, the Peripheral Con­
trol Bus, for the IOE control signals: clock, preset, clear, and output enable. 

The AMD MACH 5 family has some I/O features not currently found on other 
programmable ASICs. The MACH 5 family has 3.3 V and 5 V versions that are both 
suitable for mixed-voltage designs. The 3 V versions accept 5 V inputs, and the out­
puts of the 3 V versions do not drive above 3.3 V. You can apply a voltage up to 
5.5 V to device inputs before you connect VDD (this is known as hot insertion or 
hot switching, allowing you to swap cards with power still applied without causing 
latch-up). During power-up and power-down, all I/Os are three-state, and there is no 
I/O current during power-down, allowing power-down while connected to an active 
bus. All MACH 5 devices in the same package have the same pin configuration, so 
you can increase or reduce the size of device after completing the board layout. 
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FIGURE 6.24 A simplified block dia­
gram of the Altera I/O Element (IOE), 
used in the FLEX 8000 and 10k series. 
The MAX 9000 10C (I/O Cell) is similar. 
The FastTrack Interconnect bus is the 
chipwide interconnect. The PCB is used 
for control signals common to each 10E. 

FastTrack Interconnect 
data in 

M EN 

M 

Q 

FF1 

slew-rate 
control 

Peripheral 

r--------' GJ = programmable MUX 

Control Bus (PCB) 
[MJ = programmable memory 

6.9 Summary 

Among the options available in I/O cells are: different drive strengths, TTL­
compatibility, registered or direct inputs, registered or direct outputs, pull-up resis­
tors, over-voltage protection, slew-rate control, and boundary-scan. Table 6.4 shows 
a list of features. Interfacing an ASIC with a system starts at the outputs where you 
check the voltage levels first, then the current levels. Table 6.5 is a look-up table for 
Tables 6.6 and 6.7, which show the I/O resources present in each type of program­
mable ASIC (using the abbreviations of Table 6.4). 

Important points that we covered in this chapter are the following: 

" Outputs can typically source or sink 5-10 rnA continuously into a DC load, 
and 50-200 rnA transiently into an AC load. 

s Input buffers can be CMOS (threshold at 0.5V DD) or TTL 0.4 V). 

" Input buffers normally have a small hysteresis (100-200 m V). 

o CMOS inputs must never be left floating. 

$ Clamp diodes to GND and VDD are present on every pin. 

o Inputs and outputs can be registered or direct. 

.. I/O registers can be in the I/O cell or in the core. 

e Metastability is a problem when working with asynchronous inputs. 
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TABLE 6.4 1/0 options for programmable ASICs. 

Code1 1/0 Option Function 

IT/C TTUCMOS input Programmable input buffer threshold 

OTIC nUCMOS output Complementary or totem-pole output 

nSNK Sink capability Maximum current sink ability (e.g., 12SNK is 10= 12 mA sink) 

nSRC Source capability Maximum current source ability (e.g., 12SRC is 10=-12 mA source) 

5/3 5V/3V Separate I/O and core voltage supplies 

OD Open drain/collector Programmable open-drain at the output buffer 

TS Three-state Output buffer with three-state control 

SR Slew-rate control Fast or slew-rate limited output buffer to reduce ground bounce 

PD Pull-down Programmable pull-down device or resistor at the I/O pad 

PU Pull-up Programmable pull-up device or resistor at the 110 pad 

EP Enable polarity Driver control can be positive (three-state) or negative (enable). 

RI Registered input Inputs may be registered in I/O cell. 

RO Registered output Outputs may be registered in I/O cell. 

RIO Registered 110 Both inputs and outputs may be registered in I/O cell. 

ID Input delay Input delay to eliminate input hold time 

JTAG JTAG Boundary-scan test 

SCH Schmitt trigger Schmitt trigger or input hysteresis 

HOT Hot insertion Inputs protected from hot insertion 

PCI PCI compliant Output buffer characteristics comply with PCI specifications. 

1These codes are used in Tables 6.6 and 6.7. 

Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

6.1 (I/O resources, 60 min.) Obtain the specifications for the latest version of 
your choice of FPGA vendor from a data book or online data sheet and complete a 
table in the same format as Tables 6.6 and 6.7. 

6.2 (I/O timing, 60 min.) On-chip delays are only half the battle in a typical 
design. Using data book parameters for an FPGA that you choose, estimate (worst­
case commercial) how long it takes to bring a signal on-chip; through an input regis-

280



264 CHAPTER 6 PROGRAMMABLE ASIC I/O CELLS 

TABLE 6.5 I/O Cell Tables. 

Programmable ASIC family Table Programmable ASIC family Table 

Actel (ACT 1) 
Xilinx (XC3000) 
Actel (ACT 2) 
Altera MAX (EPM 5k) 

Actel (ACT 3) 

Xilinx EPLD (XC7200/7300) 
QuickLogic (pASIC 1) 
Crosspoint (CP20K) 

Table 6.6 

Xilinx LCA (XC5200) 
Altera FLEX (8000/1 Ok) 
AMD MACH 5 
Actel3200DX 
Altera MAX (EPM 9000) 
Xilinx (XC81 00) 

Table 6.7 

Altera MAX (EPM 7000) 
Atmel (AT6000) 

AT&T ORCA (2C) 
Xilinx (XC4000) 

tel' (a flip-flop); through a combinational function (assume an inverter); and back off 
chip again through another (flip-flop) register. Give your answer in three parts: 

a. The delay from a CMOS-level pad input (trip-point of 0.5) to the D input of 
the input register plus the flip-flop setup time. 

b. The delay (measured from the clock, so include the clock-to-Q delay) 
through the inverter to the output register plus the setup time. 

c. The delay from the output register (measured from the clock edge) to the out­
put pad (trip point of 0.5) with a 50 pF load. 

In each case give your answers: (i) Using data book symbols (specify which 
symbols and where in the data books you found them); and (ii) as calculated values, 
in nanoseconds, using a speed grade that you specify. State and explain very clearly 
any assumptions that you need to make about the clock to determine the setup times. 

6.3 (Clock timing, 30 min.) When we calculate FPGA timing we need to 
include the time it takes to bring the clock onto the chip. For an FPGA you choose, 
estimate (worst-case commercial) the delay from the clock pad (0.5 trip-point) to the 
clock pin of an internal flip-flop 

3. in terms of data book symbols (specify which and where you found them-
tAB on p. 2-32 of the ABC 1994 data book, for example), and 

b. as calculated values in nanoseconds. 

6.4 (**Bipolar drivers, 60 min.) The circuit in Figure 6.3 uses npn transistors. 

3. Design a similar circuit that uses pnp transistors. 

b. The pnp circuit may work better, why? 

c. Design an even better circuit that uses npn and pnp transistors. 

d. Explain why your circuit is even better. 

e. Draw a diagram for a controller using op-amps instead of bipolar transistors. 
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TABLE 6.6 Programmable ASIC 1/0 logic resources. 

Actel (ACT 1) Xilinx (XC3000) Actel (ACT 2) 

I/O cell name I/O module lOB (Input/Output Block) I/O module 
·--------------·----1----.. --------·----·-·---·---·---·----.. --.. ---... -.. -.-----.-.-------.-------------.. --.-----------·---2---·--.. --.. -·--·-·------.. --·----
I/O cell functions TS, 10SRC, 10SNK TS, RIO, IT/C, PU, 4SRC, TS, (RIO) ,10SRC, 

Number of I/O cells 

1/0 cell name 

I/O cell functions 

Number of I/O cells 

Max. I/O: 
57 (1010) 
69 (1020) 

Altera MAX 5000 

I/O control block 

TS, 4SRC, 8SNK 

8 (5016) 
-64 (5192) 

4SNK, 8SRC (3100), 10SNK 
8SNK (3100) 

Max. I/O: 
64 (3020) 
144 (3090) 

Xilinx EPLD 

I/O block 

(TS), , 5/3, 4SRC, 
12SNK 

38 (7336)-156 (73144) 
36 (7236) 
-72 (7272) 

Max. I/O: 
83 (1225) 
140 (1280) 

QuickLogic (pASIC 1) 

Bidirectional input/output 
cell & dedicated input cell 

TS 

32 
-104 (QL16X24) 

Crosspoint (CP20K) Altera MAX 7000 Atmel (AT6000) 

I/O cell name I/O cell 10C (I/O Control Block) Entrance and exit cells 
..... ~~ ... ~ •... --.. -.----.. -.. --.-.. . .... _... .......... ~ " .. -.,,~ .. ~."~'-'''-''-' ....... _ .. _._._ .. _._._ ... _ ..... ".-._ .. , .. -_ .... _., ...... _ .. -- .".... .. ........... ,,_ ..... __ .- ._ ..... - ... -.----..... -~ ........ ~-..... . 

I/O cell functions TS, SR, I CIT , JTAG, SCH TS, SR, 5/3, PCI, 4SRC, TS, SR, PU, OD, IT/C, 
12SNK 16SRC, 16SNK 

.......................... _. __ ............. __ ....... _ •••• _....... •••••••• .. •••• .. •••••• .................. __ •• ... _HO •••••• _ •• •• •• _ •••••••••••••• _ .................... _ ••••••••••••• _ ........ _ ......... _ ••• _ •• __ ._._ .... .. 

Number of I/O cells 91 (20220) 
-270 (22000) 

1 Code definitions are listed in Table 6.4. 
2 ACT 2 I/O Module is separate from the I/O Pad Driver. 

36(7032) 96(6002) 
-164(7256) -160(6010) 

3Xilinx EPLD uses a mixture of I/O blocks, input-only blocks, and output-only blocks. The I/O blocks and input 
only blocks contain the equivalent of a D flip-flop (configured to be a flip-flop or latch). 

48 I/O are dedicated inputs on all parts. 

6.5 (Xilinx output buffers, 15 min.) For the Xilinx XC2000 and XC3000 
series8: IOLpeak = 120 rnA and IOHpeak = 80 rnA; for the XC4000 family: 
IOLpeak = 160 rnA and IOHpeak = 130 rnA; and for the XC7300 senes: 
IOLpeak = 100 rnA and IOHpeak = 65 rnA. For a typical 0.8-1.0 !-im process: 

81994 databook, p. 8-15 and p. 9-23. 
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TABLE 6.7 Programmable ASIC 1/0 logic resources (contd.). 

Actel (ACT 3) Xilinx LCA (XC5200) Altera FLEX (800011 Ok) 

I/O cell name 1/0 Module lOB (110 Block) 10E (110 Element) 

1/0 cell functions 1 TS, SR, (RIO)2, 8SRC, TS, PU, PO, JTAG TS, SR, RI or RO, JTAG, 
12SNK PCI(8k), 4SRC, 12SNK 

---_. __ ._-. __ . __ . __ ._------_._._."._--_._._------.... -_._--------_._-------_. __ .. _._---_. __ ._. __ ._------_._-_ .. _-._-_ ... _ .. _._._------_ .. _-_.,.-._--_._-, .. _-.. __ .-_._---_ .. _--._. 
Number of I/O cells 80 (1415) 84 (5202) 78 (8282)-208 (81500) 

-228 (14100) -244 (5215) 150 (10K10) 
-406 (1 OK1 00) 

AMDMACH5 Actel3200DX Altera MAX (EPM 9000) 

1/0 cell name 1/0 Cell 110 Module 10E (1/0 Element) 
--------_._------------ ------------------------_._------
1/0 cell functions TS, 3.2SRC, 16SNK, PCI Same as ACT 2 TS, SR, 5/3, PCI, JTAG, 

Number of I/O cells 120 (M5-128) 
-256 (M5-512) 

Xilinx (XC81 00)3 

126 (A3265DX) 
-292 (A32400DX) 

AT&TORCA2C 

4SRC,8SNK 

168 (9320) 
-216 (9560) 

Xilinx (XC4000) 

1/0 cell name 1/0 Cell PIC (Programmable 
input/output cells) 

lOB (110 Block) 

, .•... _ ....... _ .. _" ................ _ .•. __ ._ ........ _ .. _ .. _.m_ ..... _ .... _ ... _ .. _ .. , __ .", ....... h •• _...... " •••••••••••••••••••• , •••• _._ ••••• _ •• _ ••• _. ___ ", ••• _ •• __ ••• ___ _ 

1/0 cell functions TS, PU, IT/C (global), 
JTAG, PCI, 4SRC, 
4/24SNK4 

TS, IT/C, 10, PU, PO, 00, TS, RIO, JTAG, 10, IT/C, 
JTAG, PCI, (6SRC and OTIC, PU, PO, 4SRC, 
12SNK) or (3SRC and 12SNK, 24SNK 

Number of 1/0 cells 32 (8100) 
-208 (8109) 

6SNK), SCH (4000AlH) 
.................... -............................ -_ .................. . 

160 (2C04) 
-480 (2C40) 

80(4003) 
-256(4025) 

1 Code definitions are listed in Table 6.4. 
2 ACT 3 110 Module is separate from the 1/0 Pad Driver. 
3Discontinued August 1986. 
4Two output modes: Capacitive (4SNK) and Resistive (24SNK). 

p-channel (2011): IDS = 3.0-5.0 rnA with VDs =-5V, VGs=-5V 
n-channel (2011): IDS = 7.5-10.0 rnA with V DS = 5 V, V GS = 5 V 

a. Calculate the effective sizes of the transistors in the Xilinx output buffer. 

b. Why might these only be "effective" sizes? 

c. The Xilinx data book gives values for "source current and output high imped­
ance" shown in Table 6.S. Graph the buffer characteristics when sourcing 
current. 
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d. Explain which parts in Table 6.8 use complementary output buffers and 
which use totem-pole outputs and explain how you can tell. 

e. Can you explain how Xilinx arrived at the figures for impedance? 

f. Comment on the method that Xilinx used. 

g. Suggest and calculate a better measure of impedance. 

TABLE 6.8 Xilinx output buffer characteristics. 

Vo (output voltage)1/V 

Part 4 3 2 Impedance/Q 

10 (2018) -30 -52 -60 30 

10 (3020) -35 -60 -75 30 

10 (4005) 0 -12 -50 25 

10 (73108) 0 -10 -26 40 

1 Currents in milliamperes. 

6.6 (Xilinx logic levels, 10 min.) Most manufacturers measure VOLmax with 
V DD set to its minimum value, Xilinx measures V OLmax at V DDmax. For example, 
for the Xilinx XC40009

: VOLmax = 0.4 Vat IOLmax = 12 rnA and VDDmax. A footnote 
also explains that VOLmax is measured with "50 % of the outputs simultaneously 
sinking 12 rnA." 

a. Can you explain why Xilinx measures V OLmax this way? 

b. What information do you need to know to estimate V OLmax if all the other 
outputs were not sourcing or sinking any current. 

6.7 (Output levels, 10 min.) In Figure 6.7(b-d) the PAD signal is labeled with 
different levels: In Figure 6.7(b) the PAD high and low levels are VOHmin and 
VOLmax respectively, in Figure 6.7(c) they are V DD and VOLmax' and in Figure 6.7(c) 
they are VOHmin and Vss. 

a. Explain why this is. 

b. In no more than 20 words explain the difference between V DD and V OHmin as 
well as the difference between V OLmax and V ss. 

6.8 (TTL and CMOS outputs, 10 min.) The ACT 2 figures for tDLH and tDHL in 
Figure 6.7 are for the CMOS levels. For TTL levels the figures are (with the CMOS 
figures in parentheses): tDLH = 10.6 ns (13.5 ns), and tDHL = 13.4 ns (11.2 ns). The 
output buffer is the same in both cases, but the delays are measured using different 
levels. Explain the differences in these delays quantitatively. 

9 Xilinx 1994 data book, p. 2-48. 
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268 CHAPTER 6 PROGRAMMABLE ASIC I/O CELLS 

6.9 (Bus-keeper contention, 30 min.) Figure 6.25 shows a three-state bus, simi­
lar to Figure 6.5, that has a bus keeper on CHIP1 and a pull-up resistor that is part of 
a Xilinx lOB on CHIP2-we have a type of bus-keeper contention. For the XC3000 
the pull-up current is 0.02-0.17mA and thus RL1 is between 5 and 50kQ (1994 
data book, p. 2-155). 

FIGURE 6.25 A bus 
keeper, BKi , and pull-up 
resistor, RL 1, on the 
same bus. 

a. Explain what might happen when both the bus drivers turn off. 

b. Have you considered all possibilities? 

c. Is bus-keeper contention a problem? 

d. In the PCI specification control signals are required to be sustained three­
state. A driver must deassert a control signal to the inactive state (high for the 
PCI control signals) for at least one clock cycle before three-stating the line. 
This means that a driver has to "put the signal back where it found it." Does 
this affect your answers? 

e. Suggest a "fix" that stops you having to worry about any potential problems. 

BUSA.Bi 90pF 
,-----------------------~-, 

CHIPi CHIP2 

6.10 (Short-circuit, 10 min.) What happens if you short-circuit the output of a 
complementary output buffer to (a) GND and (b) VDD? (c) What difference does it 
make if the output buffer is complementary or a totem-pole? 

6.11 (Transmission line bias, 10 min.) 

a. Why do we adjust the resistors in Figure 6.1O(c) so that the Thevenin equiva-
lent voltage source is 1.6 V? 

b. What current does a driver have to sink if we want V OLmax = 0.4 V? 

c. What current does a driver have to source if we want V OHmin = 2.4 V? 

6.12 (Ground resistance, 10 min.) Calculate the resistance of an aluminum 
GND net that is 0.5 mm long and 10 !-lm wide. 

6.13 (*Temperature) (a) (30 min.) You are about to ship a product and you have 
a problem with an FPGA. A high case temperature is causing it to be slower than 
you thought. You calculated the power dissipation, but you forgot that the InLet 
microprocessor is toasting the next door FPGA. You have no easy way to calculate 
TJ now, so we need to measure it in order to redesign the FPGA with fixed I/O loca-
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tions. You remember that a diode forward voltage has a temperature coefficient of 
about -2 m voC-1 and there are clamp diodes on the FPGA I/O. Explain, using cir­
cuit diagrams, how to measure the TJ of an FPGA in-circuit using: a voltage supply, 
DVM, thermometer, resistors, spoon, and a coffee maker. (b) (**120 min.) Try it. 

6.14 (Delay measurement, 10 min.) Sumo Silicon has a new process ready 
before we do and Sumo's data book timing figures are much better than ours. 
Explain how to reduce our logic delays by changing our measurement circuits and 
trip points. 

6.15 (Data sheets, 10 min.) In the 1994 data book Xilinx specifies 
VILmin = 0.3 V (and VILmax = 0.8 V) for the XC2000L. Why does this surprise you 
and what do you think the value for VILmin really is? FPGA vendors produce thou­
sands of pages of data every year with virtually no errors. It is important to have the 
confidence to question a potential error. 

6.16 (GTL, 60 min.) Find the original reference to Gunning transistor logic. 
Write a one-page summary of its uses and how it works. 

6.17 (Thresholds, 10 min.) With some FPGAs it is possible to configure an out­
put at TTL thresholds and an input (on the same pad) at CMOS thresholds. Can you 
think of a reason why you might want to do this? . 

6.18 (Input levels, 10 min.) When we define VIHmin = 0.7V DD' why do we cal­
culate the minimum value of V/H using VDDmax = 5.5 V? 

6.19 (Metastability equations, 30 min.) 

3. From Eq. 6.4 show that if we make two measurements of tr and MTBF then: 

trl - tr2 
~c = ~------~~-----

lnMTBFl -lnMTBF2' 

trl 
exp-

~c 

To = MTBF f f 
1 c d 

b. MTBU is extremely sensitive to variations in ~c' show that: 

-ld MTBU = 
G ~c 

-t 
r 

2' 
~c 

(6.14) 

(6.15) 

(6.16) 

c. Show that the variation in MTBU is related to the variation in ~c by the fol­
lowing expression: 

( ~MTBU) = -tr(~~cJ. 
MTBU ~c ~c 

(6.17) 
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10 

1S0mA 

0 
0 

10L 

-IOH 

6.20 (*** Alternative metastability solutions, 120 min.) Write a minitutorial on 
metastability solutions. The best sources for this type of information are usually 
application notes written by FPGA and TTL manufacturers, many of which are 
available on the Web (TI is a good source on this topic). 

6.21 (Altera 8000 I/O, 10 min) Figure 6.26 shows the Altera FLEX 8000 I/O 
characteristics. Determine as much as you are able to from these figures. 

VOOI/O=SV VOOIIO = 3.3 V V 001/0 = 3.3 V 

VOOint=S V 
10 

V OOint = 3.3 V 
10 

VOOint= S V 

7SmA 
10L 1S0mA 

120mA 10L 

2SmA 
-IOH 

0 0 
4V SV Vo 0 3.3V 4V Vo 0 3.3V SV Vo 

(a) (b) (c) 

FIGURE 6.26 (a) Altera FLEX 8000 I/O characteristics operating at S V. (b) EPF8282V I/O 
operating at 3.3 V. (c) Characteristics with mixed SV and 3.3 V I/O operation. 

6.22 (Power calculation, 60 min.) Suppose we wish to limit power dissipation 
on an ACT 1 AI020 chip to below 1 W for a 44-pin PLCC package. 

a. Derive an equation for the number of logic modules, number of I/O modules, 
number of modules connected to the clock and system clock frequency in 
terms of the package parameters and the worst-case TA . 

b. Assume: 

100 percent utilization of lIOs, 
50 percent are outputs connected to a 50 pF load, 
100 percent utilization of logic modules, 
10 percent of the logic modules are connected to the clock, 
20 percent of the logic modules toggle every clock cycle, 
20 percent of the lIOs toggle every clock cycle. 

Determine an upper limit on clock frequency. 

c. Next vary each of the assumptions you made in part b. Draw graphs showing 
the variation of clock frequency as you vary each of the above parameters, 
including the power dissipation limit (a spreadsheet will help). 

d. Can you draw any conclusions from this exercise? 
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6.23 (Switch debounce, 30 min) Design a logic circuit to "debounce" the output 
from a buffer whose input is connected to a bounce-prone switch. Your system oper­
ates at a clock frequency of 1 MHz. 

6.24 (Plugs and sockets, 30 min.) Draw the plugs and sockets (to scale) for the 
technologies in Table 6.9. 

TABLE 6.9 TTL-compatible CMOS logic thresholds (Problems 6.24 and 6.25}.1 

Input levels Output levels driving TTL Output levels driving CMOS2 

Family VIHmin VILmax VOHmin IOHmax VOLmax IOLmax VOHmin IOHmax VOLmax 

74HCT 2.0 0.8 3.84 -4.0 0.33 4.0 4.4 -0.02 

74HC 3.85 1.35 3.84 -4.0 0.33 4.0 4.4 -0.02 

74ACT 2.0 0.8 3.76 -24.0 0.37 24.0 4.4 -0.05 

74AC 3.85 1.35 3.76 -24.0 0.37 24.0 4.4 -0.05 

1 All voltages in volts, all currents in milliamperes. 
2'IHmax=±0.001 mA, 'ILmax=±O.001 mA for all families. 

6.25 (TTL compatibility, 30 min.) Explain very carefully, giving an example 
using actual figures from the tables, how you would determine the compatibility 
between the TTL and CMOS logic thresholds shown in Table 6.9 and Table 6.10 and 
the FPGA logic thresholds in Table 6.1. 

TABLE 6.10 TTL logic thresholds (Problem 6.25).1 

TTL Family2 VIHmin VILmax VOHmin IOHmax VOLmax IOLmax IIHmax IILmax 

74S 2.0 0.8 2.7 -1.0 0.5 20.0 0.05 -2.0 

74LS 2.0 0.8 2.7 -0.4 0.5 8.0 0.02 -0.4 

74ALS 2.0 0.8 2.7 -0.4 0.5 8.0 0.02 -0.2 

74AS 2.0 0.8 2.7 -2.0 0.5 20.0 0.02 -0.5 

74F 2.0 0.8 2.7 -1.0 0.5 20.0 0.02 -0.6 

74FCT 2.0 0.8 2.4 -15.0 0.5 48.0 ±0.005 ±0.005 

74FCT-T 2.0 0.8 2.4 -8.0 0.5 48.0 ±0.005 ±0.005 

1 All voltages in volts, all currents in milliamperes 
20ther (older) TTL and CMOS logic families include 4000, 74, 74H, and 74L 

0.1 

0.1 

0.1 

0.1 

IOLmax 

0.02 

0.02 

0.05 

0.05 
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6.26 (ECL, 30 min.) Emitter-coupled logic (ECL) uses a posItlve supply, 
Vcc=OV, and a negative supply, VEE =-5.2 V. The highest logic voltage allowed is 
-0.81 V and the lowest is -1.85 V. Table 6.11 shows the ECL 10K thresholds. 

a. Calculate the high-level and low-level noise margins. 

b. Find out the lOOK thresholds and 

c. calculate the lOOK noise margins. 

TABLE 6.11 ECl logic thresholds (Problem 6.26). 

ECl10K 

ECl100K 

VILmaxfV VOHmin/V VOLmaxIV 

-1.105 -1.475 -0.980 -1.630 

6.27 (Schmitt trigger, 30 min.) Find out the typical hysteresis for a TTL 
Schmitt trigger. What are the advantages and disadvantages of changing the hystere­
sis? 

6.28 (Hysteresis, 20 min.) 

a. Draw the transfer curve for an inverting buffer with very high gain that has a 
switching threshold centered at 2.2 V and 300 m V hysteresis. 

b. If the center of the characteristic shifts by -0.3 V and +0.4 V and the hystere­
sis varies from 260mV to 350mV, calculate VIHmin and VILmax. 

6.29 (Driving an LED, 30 min.) Find out the typical current and voltage drive 
required by an LED and design a circuit to drive it. List your sources of information. 

6.30 (**Driving TTL, 60 min.) Find out the input current requirements of dif­
ferent TTL families and write a minitutorial on the I/O requirements (in particular 
the current) when driving high and low levels onto a bus. 

Bibliography 

Wakerly's [1994] book describes TTL and CMOS logic thresholds as well as noise 
margins. The specification of digital I/O interfaces (voltage and current levels) is 
defined by the JEDEC (part of the Electronic Industries Association, EIA) JC-16 
committee standards [JEDEC I/O]. Standards for ESD measurement are not as well 
defined; companies use a range of specifications: MIL-STD-883, EIAJ, a published 
model used by AT&T (see, for example, p. 5-13 to p. 5-19 in the AT&T 1995 FPGA 
data book) as well as JEDEC and ANSI/IEEE standards [JEDEC I/O, JEDEC ESD, 
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ANSI/IEEE ESD]. You are not likely to find any of these standards at the library, but 
they are available through specialist technical document distributors (typical 1996 
costs were about $25 for the JEDEC documents; catalogs are generally free of 
charge). These standards are not technical reports, most only contain a few pages, 
but they are the source of the parameters that you see in data sheets. 

6.12 References 

Page numbers in brackets after a reference indicate its location in the chapter body. 
[JEDEC I/O] [po 246] In numerical (not chronological) order the relevant JEDEC standards for 

I/O are: 
JESDS-A. Interface Standard for Nominal 3 V /3.3 V Supply Digital Integrated Circuits 

(June 1994). This standard replaces JEDEC Standards S, S-I, and S-I-A and defines the DC 
interface parameters for digital circuits operating from a power supply of nominal 3 V/3.3 V. 
JESDS-2. Standard for Operating Voltages and Interface Levels for Low Voltage Emitter­
Coupled Logic (ECL) Integrated Circuits (March 1993). Describes 300K ECL (voltage and 
temperature compensated, with threshold levels compatible with lOOK ECL). 
JESDS-3. Gunning Transceiver Logic (GTL) Low-Level, High-Speed Interface Standard for 
Digital Integrated Circuits (Nov. 1993). Defines the DC input and output specifications for a 
low-level, high-speed interface for integrated circuits. 
JESDS-4. Center-Tap-Terminated (CTT) Low-Level, High-Speed Interface Standard for 
Digital Integrated Circuits (Nov. 1993). Defines the DC I/O specifications for a low-level, 
high-speed interface for integrated circuits that can be a superset of LVCMOS and LVTTL. 
JESDS-S. 2.S V +/- 0.2 V (Normal Range), and l.S V-2.7 V (Wide Range) Power Supply 
Voltage and Interface Standard for Nonterminated Digital Integrated Circuit (Oct. 1995). 
Defines power supply voltage ranges, DC interface parameters for a high-speed, low-voltage 
family of nonterminated digital circuits. 
JESDS-6. High Speed Transceiver Logic (HSTL): A I.S V Output Buffer Supply Voltage 
Based Interface Standard for Digital Integrated Circuits (Aug. 1995). Describes a 1.S V 
high-performance CMOS interface suitable for high I/O count CMOS and BiCMOS devices 
operating at over 200 MHz. 
JESDI2-6. Interface Standard for Semicustom Integrated Circuits (March 1991). Defines 
logic interface levels for CMOS, TTL, and ECL inputs and outputs for S V operation. 

[JEDEC ESD, ANSI/IEEE ESD] The JEDEC and IEEE standards for ESD are: 
JESD22-ClOl. Field Induced Charged Device Model Test Method for Electrostatic Dis­
charge Withstand Thresholds of Microelectronic Components (May 1995). Describes 
Charged Device Model that simulates charging/discharging events that occur in production 
equipment and processes. Potential for CDM ESD events occur with metal-to-metal contact 
in manufacturing. 
ANSI/EOS/ESD SS.I-1993. Electrostatic Discharge (ESD) Sensitivity Testing, Human 
Body Model (HBM), Component Level. 
ANSI/lEEE C62.47 -1992. Guide on Electrostatic Discharge (ESD): Characterization of the 
ESD Environment. 
ANSI/IEEE l1S1-1991. Latchup Test Methods for CMOS and BiCMOS Integrated Circuit 
Process Characterization. 
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PCI Local Bus Specification, Revision 2.1, June 1, 1995. Available from PCI Special Interest 
Group, PO Box 14070, Portland OR 97214. (800) 433-5177 (U.S.), (503)797-4207 (Interna­
tional). 282 p. Detailed description of the electrical and mechanical requirements for the PCI 
Bus written for engineers who already understand the basic operation of the bus protocol. 
[p.242] 

Wakerly, J. F. 1994. Digital Design: Principles and Practices. 2nd ed. Englewood Cliffs, NJ: 
Prentice-Hall, 840 p. ISBN 0-13-211459-3. TK7874.65.W34. [po 272] 
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7.3 Xilinx EPLD 7.8 Problems 

7.4 Altera MAX 5000 and 7000 7.9 Bibliography 

7.5 Altera MAX 9000 7.10 References 

All FPGAs contain some type of programmable interconnect. The structure and 
complexity of the interconnect is largely determined by the programming technol­
ogy and the architecture of the basic logic cell. The raw material that we have to 
work with in building the interconnect is aluminum-based metallization, which has a 
sheet resistance of approximately 50 mQ/square and a line capacitance of 
0.2 pFcm-1

. The first programmable ASICs were constructed using two layers of 
metal; newer programmable ASICs use three or more layers of metal interconnect. 

ActelACT 

The Actel ACT family interconnect scheme shown in Figure 7.1 is similar to a chan­
neled gate alTay. The channel routing uses dedicated rectangular areas of fixed size 
within the chip called wiring channels (or just channels). The horizontal channels 
run across the chip in the horizontal direction. In the vertical direction there are similar 
vertical channels that run over the top of the basic logic cells, the Logic Modules. 
Within the horizontal or vertical channels wires run horizontally or vertically, respec­
tively, within tracks. Each track holds one wire. The capacity of a fIxed wiring chan­
nel is equal to the number of tracks it contains. Figure 7.2 shows a detailed view of the 
channel and the connections to each Logic Module-the input stubs and output 
stubs. 
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ActelACT 

Each LM has 8 inputs: 
4 input stubs on top 
and 4 on bottom. output 

stub 

long 
vertical 
track 

routing channels: 7 or 13 
(A1 01 0/20) full-size and 2 
half-size (top and bottom) 

Each LM output drives 
an output stub that 
spans 2 channels up 
and 2 channels down. 

Logic Modules (LM): 
8 or 14 (A1 01 0/20) 
rows of 44 modules 

FIGURE 7.1 The interconnect architecture used in an Actel ACT family FPGA. (Source:Actel.) 

In a channeled gate array the designer decides the location and length of the 
interconnect within a channel. In an FPGA the interconnect is fixed at the time of 
manufacture. To allow programming of the interconnect, Actel divides the fixed 
interconnect wires within each channel into various lengths or wire segments. We 
call this segmented channel routing, a variation on channel routing. Antifuses join 
the wire segments. The designer then programs the interconnections by blowing 
antifuses and making connections between wire segments; unwanted connections 
are left unprogrammed. A statistical analysis of many different layouts determines 
the optimum number and the lengths of the wire segments. 

7.1.1 Routing Resources 
The ACT 1 interconnection architecture uses 22 horizontal tracks per channel for 
signal routing with three tracks dedicated to VDD, GND, and the global clock 
(GCLK), making a total of 25 tracks per channel. Horizontal segments vary in 
length from four columns of Logic Modules to the entire row of modules (Actel 
calls these long segments long lines). 

Four Logic Module inputs are available to the channel below the Logic Module 
and four inputs to the channel above the Logic Module. Thus eight vertical tracks 
per Logic Module are available for inputs (four from the Logic Module above the 
channel and four from the Logic Module below). These connections are the input 
stubs. 

293



5 vertical tracks: 4 ~ 
tracks for output stubs, ~ 
1 track for long vertical '1-'-----' 

track (LVT) 

channel 
height 

track 
10 

number 
15 

8\:ertical 
tr(lcks for 
input. . 
stubs 

20 •••• 

module 
height 

column width 

7.1 ACTEL ACT 277 

ActelACT 
000000000000°0 

l!illi!l!l!!!!!!!!!!!!1 
g:::)":::::::::::::::::8 
OODODDOOOODDOD 

expanded view of 
part of the channel 

dedicated 
connection 
to module 
output-no 
antifuse 
needed 

25 horizontal 
tracks per 
channel, varying 
between 4 
columns and 44 
columns long: 22 
signal tracks, 
global clock, 
VDD, and GND 

FIGURE 7.2 ACT 1 horizontal and vertical channel architecture. (Source: Actel.) 

The single Logic Module output connects to a vertical track that extends across 
the two channels above the module and across the two channels below the module. 
This is the output stub. Thus module outputs use four vertical tracks per module 
(counting two tracks from the modules below, and two tracks from the modules 
above each channel). One vertical track per column is a long vertical track (LVT) 
that spans the entire height of the chip (the 1020 contains some segmented LVTs). 
There are thus a total of 13 vertical tracks per column in the ACT 1 architecture 
(eight for inputs, four for outputs, and one for an LVT). 

Table 7.1 shows the routing resources for both the ACT 1 and ACT 2 families. 
The last two columns show the total number of antifuses (including antifuses in the 
I/O cells) on each chip and the total number of antifuses assuming the wiring chan­
nels are fully populated with antifuses (an antifuse at every horizontal and vertical 
interconnect intersection). The ACT 1 devices are very nearly fully populated. 
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TABLE 7.1 

A1010 

A1020 

A1225A 

A1240A 

A1280A 

Actel FPGA routing resources. 

Horizontal Vertical Total 
tracks per tracks per antifuses 
channel, H column, V Rows,R Columns, C on each chip HxVxR xC 

22 

22 

36 

36 

36 

13 8 44 112,000 100,672 

13 14 44 186,000 176,176 

15 13 46 250,000 322,920 

15 14 62 400,000 468,720 

15 18 82 750,000 797,040 

If the Logic Module at the end of a net is less than two rows away from the 
driver module, a connection requires two antifuses, a vertical track, and two hori­
zontal segments. If the modules are more than two rows apart, a connection between 
them will require a long vertical track together with another vertical track (the out­
put stub) and two horizontal tracks. To connect these tracks will require a total of 
four antifuses in series and this will add delay due to the resistance of the antifuses. 
To examine the extent of this delay problem we need some help from the analysis of 
RC networks. 

7.1.2 Elmore's Constant 
Figure 7.3 shows an RC tree-representing a net with a fanout of two. We shall 
assume that all nodes are initially charged to V DD = 1 V, and that we short node 0 to 
ground, so Vo = 0 V, at time t = 0 sec. We need to find the node voltages, VIto V 4, as 
a function of time. A similar problem arose in the design of wideband vacuum tube 
distributed amplifiers in the 1940s. Elmore found a measure of delay that we can use 
today [Rubenstein, Penfield, and Horowitz, 1983]. 

The current in branch k of the network is 

. dVk 
I =-C-. 

Ie k dt 
(7.1) 

The linear superposition of the branch currents gives the voltage at node i as 

II dV 
V. = - '" R, .C Ie -

k
, 

I L..t IU • dt (7.2) 

k = I 

where Rki is the resistance of the path to Vo (ground in this case) shared by node k 
and node i. So, for example, R24 = R l , R22 =R I+R2, and R3I = RI . 
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R22 node 

f 
... 

V2 voltage 

R24 R2Ic2 1V .. 
'2 

R1 V R3 R4 V4 1 -::-

I
C1 I c. 
'1 '4 

OV 
-::- -::- -::- -::- t=O 

time, tJ s 
(a) (b) 

FIGURE 7.3 Measuring the delay of a net. (a) An RC tree. (b) The waveforms as a result 
of closing the switch at t = O. 

Unfortunately, Eq. 7.2 is a complicated set of coupled equations that we cannot 
easily solve. We know the node voltages have different values at each point in time, 
but, since the waveforms are similar, let us assume the slopes (the time derivatives) 
of the waveforms are related to each other. Suppose we express the slope of node 
voltage Vk as a constant, Clk> times the slope of Vi, 

dVk dV i 
-:it = Cl k dt . (7.3) 

Consider the following measure of the error, E, of our approximation: 

(7.4) 

The error, E, is a minimum when Clk = 1 since initially Viet = 0) = Vk(t = 0) = 1 V 
(we normalized the voltages) and Viet = 00) = Vk(t = 00) = o. 

Now we can rewrite Eq. 7.2, setting Clk= 1, as follows: 

11 dV. 
V=_~RC-l 

i L.J ki k dt . 
k=1 

This is a linear first-order differential equation with the following solution: 

11 

LDi = L RkiCk · 

k = I 

(7.5) 

(7.6) 
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L4 L2 

The time constant 'tDi is often called the Elmore delay and is different for each 
node. We shall refer to 'tDi as the Elmore time constant to remind us that, if we 
approximate Vi by an exponential waveform, the delay of the RC tree using 
0.35/0.65 trip points is approximately 'tDi seconds. 

7.1.3 RC Delay in Antifuse Connections 
Suppose a single antifuse, with resistance R l' connects to a wire segment with para­
sitic capacitance C I' Then a connection employing a single antifuse will delay the 
signal passing along that connection by approximately one time constant, or RIC 1 

seconds. If we have more than one antifuse, we need to use the Elmore time constant 
to estimate the interconnect delay. 

,: ;,":'" 

LM2 

L3-te--ffi-

~LO)---'t!t-.LJ ~1'r' 
LM 1 interconnect model antifuse model 

(a) (b) 

FIGURE 7.4 Actei routing model. (a) A four-antifuse connection. LO is an output stub, L 1 
and L3 are horizontal tracks, L2 is a long vertical track (LVT), and L4 is an input stub. (b) An 
RC-tree model. Each antifuse is modeled by a resistance and each interconnect segment is 
modeled by a capacitance. 

For example, suppose we have the four-antifuse connection shown III 

Figure 7.4. Then, from Eq. 7.6, 

'tD4 = R l4C1 +R24C2+R34C3+R44C4 

= (Rl+R2+R3+R4)C4+ (Rj+R2+R3)C3 + (Rj+R2)C2+RICI' 

If all the antifuse resistances are approximately equal (a reasonably good 
assumption) and the antifuse resistance is much larger than the resistance of any of 
the metal lines, LI-LS, shown in Figure 7.4 (a very good assumption) then 
R j =R2 = R3 = R4 =R, and the Elmore time constant is 

(7.7) 
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Suppose now that the capacitance of each interconnect segment (including all 
the antifuses and programming transistors that may be attached) is approximately 
constant, and equal to C. A connection with two antifuses will generate a 3RC time 
constant, a connection with three antifuses a 6RC time constant, and a connection 
with four antifuses gives a 10RC time constant. This analysis is disturbing-it says 
that the interconnect delay grows quadratically (oc 112) as we increase the intercon­
nect length and the number of antifuses, 11. The situation is worse when the interme­
diate wire segments have larger capacitance than that of the short input stubs and 
output stubs. Unfortunately, this is the situation in an Actel FPGA where the hori­
zontal and vertical segments in a connection may be quite long. 

7.1.4 Antifuse Parasitic Capacitance 
We can determine the number of antifuses connected to the horizontal and vertical 
lines for the Actel architecture. Each column contains 13 vertical signal tracks and 
each channel contains 25 horizontal tracks (22 of these are used for signals). Thus, 
assuming the channels are fully populated with antifuses, 

• An input stub (1 channel) connects to 25 antifuses. 

• An output stub (4 channels) connects to 100 (25 x 4) antifuses. 

• An LVT (1010, 8 channels) connects to 200 (25 x 8) antifuses. 

• An LVT (1020, 14 channels) connects to 350 (25 x 14) antifuses. 

• A four-column horizontal track connects to 52 (13 x 4) antifuses. 

• A 44-column horizontal track connects to 572 (13 x 44) antifuses. 

A connection to the diffusion of an Actel antifuse has a parasitic capacitance 
due to the diffusion junction. The poly silicon of the antifuse has a parasitic capaci­
tance due to the thin oxide. These capacitances are approximately equal. For a 2 flm 
CMOS process the capacitance to ground of the diffusion is 200 to 300 aFflm-2 
(area component) and 400 to 550 aFflm-1 (perimeter component). Thus, including 
both area and perimeter effects, a 16 flm2 diffusion contact (consisting of a 2 flm by 
2 flm opening plus the required overlap) has a parasitic capacitance of 10-14 fF. If 
we assume an antifuse has a parasitic capacitance of approximately 10 iF in a 1.0 or 
1.2 flm process, we can calculate the parasitic capacitances shown in Table 7.2. 

We can use the figures from Table 7.2 to estimate the interconnect delays. First 
we calculate the following resistance and capacitance values: 

1. The antifuse resistance is assumed to be R = 0.5 kQ. 

2. Co = 1.2 pF is the sum of the gate output capacitance (which we shall neglect) 
and the output stub capacitance (1.0 pF due to antifuses, 0.2 pF due to metal). 
The contribution from this term is zero in our calculation because we have 
neglected the pull resistance of the driving gate. 

3. C 1 = C3 = 0.59 pF (0.52 pF due to antifuses, 0.07 pF due to metal) correspond­
ing to a minimum-length horizontal track. 
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TABLE 7.2 Actel interconnect parameters. 

Parameter 

Technology 

Die height (A 1010) 

Die width (A 1010) 

Die area (A 1010) 

Logic Module (LM) height (Y1) 

LM width (X) 

LM area (X xY1) 

Channel height (Y2) 

Channel area per LM (X xY2) 

LM and routing area (XxY1 +XxY2) 

Antifuse capacitance 

Metal capacitance 

Output stub length 
(spans 3 LMs + 4 channels) 

Output stub metal capacitance 

Output stub antifuse connections 

Output stub antifuse capacitance 

Horiz. track length 

Horiz. track metal capacitance 

Horiz. track antifuse connections 

Horiz. track antifuse capacitance 

Long vertical track (LVT) 

LVT metal capacitance 

LVT track antifuse connections 

LVT track antifuse capacitance 

Antifuse resistance (ACT 1) 

A1 010/A1 020 

2.0 llm, A = 1.0 llm 

240 mil 

360 mil 

86,400 mi1 2=56 MA2 

180 llm = 180 A 

150 llm = 150 A 

27,000 llm2 = 27 kA 2 

25 tracks = 287 llm 

43,050 llm2 = 43 kA 2 

70,000 llm2 = 70 kA 2 

0.2pFmm-1 

4 channels = 1688 llm 

0.34pF 

100 

4-44 cols. = 600-6600 llm 

0.1-1.3pF 

52-572 antifuses 

8-14 channels = 3760 -6580 llm 

0.08-0.13 pF 

200-350 antifuses 

A 101 OBI A 1 020B 

1.2 llm, A = 0.6 llm 

144mil 

216mil 

31,104 mil2 = 56 MA2 

1 08 llm = 180 A 

9011m= 150A 

9,720 llm2 = 27 kA 2 

25 tracks = 170 llm 

15,300 llm2 = 43 kA 2 

25,000 llm2 = 70 kA2 

10fF 

0.2pFmm-1 

4 channels =1 012 llm 

0.20pF 

100 

1.0pF 

4-44 cols. = 360-3960 llm 

0.07-0.8pF 

52-572 antifuses 

0.52-5.72 pF 

8-14 channels = 2240-3920 llm 

0.45-0.8 pF 

200-350 antifuses 

2-3.5pF 

O.5kQ (typ.), 0.7kQ (max.) 

4. C2 = 4.3 pF (3.5 pF due to antifuses, 0.8 pF due to metal) corresponding to a 
LVT in a 1020B. 

5. The estimated input capacitance of a gate is C4 = 0.02 pF (the exact value will 
depend on which input of a Logic Module we connect to). 
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From Eq. 7.7, the Elmore time constant for a four-antifuse connection is 

'tD4 (4) (0.5) (0.02) + (3) (0.5) (0.59) + (2) (0.5) (4.3) + (0.5) (0.59) 
(7.8) 

= 5.52ns. 

This matches delays obtained from the Actel delay calculator. For example, an 
LVT adds between 5-lOns delay in an ACT 1 FPGA (6-12ns for ACT 2, and 
4-14 ns for ACT 3). The LVT connection is about the slowest connection that we 
can make in an ACT array. Normally less than 10 percent of all connections need to 
use an LVT and we see why Actel takes great care to make sure that this is the case. 

7.1.5 ACT 2 and ACT 3 Interconnect 
The ACT 1 architecture uses two antifuses for routing nearby modules, three anti­
fuses to join horizontal segments, and four antifuses to use a horizontal or vertical 
long track. The ACT 2 and ACT 3 architectures use increased interconnect resources 
over the ACT 1 device that we have described. This reduces further the number of 
connections that need more than two antifuses. Delay is also reduced by decreasing 
the population of antifuses in the channels, and by decreasing the antifuse resistance 
of certain critical antifuses (by increasing the programming current). 

The channel density is the absolute minimum number of tracks needed in a 
channel to make a given set of connections (see Section 17.2.2, "Measurement of 
Channel Density"). Software to route connections using channeled routing is so effi­
cient that, given complete freedom in location of wires, a channel router can usually 
complete the connections with the number of tracks equal or close to the theoretical 
minimum, the channel density. Actel's studies on segmented channel routing have 
shown that increasing the number of horizontal tracks slightly (by approximately 
10 percent) above density can lead to very high routing completion rates. 

The ACT 2 devices have 36 horizontal tracks per channel rather than the 22 
available in the ACT 1 architecture. Horizontal track segments in an ACT 3 device 
range from a module pair to the full channel length. Vertical tracks are: input (with a 
two channel span: one up, one down); output (with a four-channel span: two up, two 
down); and long (LVT). Four LVTs are shared by each column pair. The ACT 2/3 
Logic Modules can accept five inputs, rather than four inputs for the ACT 1 mod­
ules, and thus the ACT 2/3 Logic Modules need an extra two vertical tracks per 
channel. The number of tracks per column thus increases from 13 to 15 in the 
ACT 2/3 architecture. 

The greatest challenge facing the Actel FPGA architects is the resistance of the 
poly silicon-diffusion antifuse. The nominal antifuse resistance in the ACT 1-2 
1-2!-lm processes (with a 5 rnA programming current) is approximately 500 Q and, 
in the worst case, may be as high as 700 Q. The high resistance severely limits the 
number of antifuses in a connection. The ACT 2/3 devices assign a special antifuse 
to each output allowing a direct connection to an LVT. This reduces the number of 
antifuses in a connection using an LVT to three. This type of antifuse (a fast fuse) is 
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blown at a higher current than the other antifuses to give them about half the nomi­
nal resistance (about 0.25 kQ for ACT 2) of a normal antifuse. The nominal antifuse 
resistance is reduced further in the ACT 3 (using a 0.8 11m process) to 200 Q (Actel 
does not state whether this value is for a normal or fast fuse). However, it is the 
worst-case antifuse resistance that will determine the worst-case performance. 

7.2 Xilinx LeA 

Figure 7.5 shows the hierarchical Xilinx LCA interconnect architecture. 

• The vertical lines and horizontal lines run between CLBs. 

• The general-purpose interconnect joins switch boxes (also known as 
magic boxes or switching matrices). 

• The long lines run across the entire chip. It is possible to form internal buses 
using long lines and the three-state buffers that are next to each CLB. 

• The direct connections (not used on the XC4000) bypass the switch matri­
ces and directly connect adjacent CLBs. 

• The Programmable Interconnection Points (PIPs) are programmable pass 
transistors that connect the CLB inputs and outputs to the routing network. 

• The bidirectional (BIDI) interconnect buffers restore the logic level and 
logic strength on long interconnect paths. 

Table 7.3 shows the interconnect data for an XC3020, a typical Xilinx LCA 
FPGA, that uses two-level metal interconnect. Figure 7.6 shows the switching 
matrix. Programming a switch matrix allows a number of different connections 
between the general-purpose interconnect. 

In Figure 7.6 (d), (g), and (h): 

• C1 = 3CP1 + 3Cp2 + O.5CLX is the parasitic capacitance due to the switch 
matrix and PIPs (F4, C4, G4) for CLBl, and half of the line capacitance for 
the double-length line adjacent to CLB 1. 

• CPl and Rpi are the switching-matrix parasitic capacitance and resistance. 

• Cp2 and RP2 are the parasitic capacitance and resistance for the PIP connect­
ing YQ of CLBI and F4 of CLB3. 

• C2 = O.5CLX + CLX accounts for half of the line adjacent to CLB 1 and the line 
adjacent to CLB2. 

• C3 = O.5CLX accounts for half of the line adjacent to CLB3. 

o C4 = O.5CLX +3CP2 + CLX +3C p1 accounts for half of the line adjacent to 
CLB3, the PIPs of CLB3 (C4, G4, YQ), and the rest of the line and switch 
matrix capacitance following CLB3. 
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longlines --------, 

double-length lines 

double-length lines 

G1 F4 C4 G4 YO 

Y 

G3 
CLB3 

F1 
X F3 

XO F2 G2 G2 

FIGURE 7.5 Xilinx LCA interconnect. (a) The LCA architecture (notice the matrix element 
size is larger than a CLB). (b) A simplified representation of the interconnect resources. Each 
of the lines is a bus. 

We can determine Elmore's time constant for the connection shown 111 

Figure 7.6 as 

1:D= RP2 (CP2 + C2 + 3Cpl ) + (Rp2 + R pl ) (3C pI + C3 + C p2 ) 

+ (2RP2 + Rpl ) (CP2 + C4) . (7.9) 

(7.10) 

We need to know the pass-transistor resistance Rp. For example, suppose 
Rp = lkQ. If k;l = 50 I-LAV-2

, then (with V tn = 0.65 V and V DD = 3.3 V) 

1 
= = 7.5. (7.11) 

(50 x 10-
6

) (1 x 10
3

) (3.3 - 0.65) 

1 
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TABLE 7.3 XC3000 interconnect parameters. 

Parameter XC3020 

Technology 1.0 /lm, "A = 0.5/lm 

Die height 220 mil 

Die width 

Die area 

CLB matrix height (Y) 

CLB matrix width (X) 

CLB matrix area (XxY) 

Matrix transistor resistance, Rp1 

Matrix transistor parasitic capacitance, Cp1 

PIP transistor resistance, Rp2 

PIP transistor parasitic capacitance, Cp2 

Single-length line (X, Y) 

Single-length line capacitance: ClX, ClY 

Horizontal Longline (8X) 

Horizontal Longline metal capacitance, Cll 

180mil 

39,600 mil2 = 102 M"A 2 

480 /lm = 960 "A 

370 /lm = 740 "A 

17,600 /lm2 = 71 0 k"A 2 

0.5-1kQ 

0.01-0.02 pF 

0.5-1kQ 

0.01-0.02 pF 

370 /lm, 480/lm 

0.075 pF, 0.1 pF 

8 cols. = 2960 /lm 

0.6pF 

If L = 1 /lm, both source and drain areas are 7.5 /lm long and approximately 
3/lm wide (determined by diffusion overlap of contact, contact width, and contact­
to-gate spacing, rules 6.1a+6.2a+6.4a=5.5"A in Table 2.7). Both drain and source 
areas are thus 23/lm2 and the sidewall perimeters are 14 /lm (excluding the sidewall 
facing the channel). If we have a diffusion capacitance of 140 aF/lm-2 (area) and 
500 aF/lm-1 (perimeter), typical values for a 1.0 ~lm process, the parasitic source 
and drain capacitance is 

(7.12) 

If we assume Cp =O.Ol pF and CLx =0.075pF (Table 7.3), 

1:D= (36) (1) (0.01) + (7) (1) (0.075) = 0.885 ns. (7.13) 

A delay of approximately 1 ns agrees with the typical values from the XACT delay 
calculator and is about the fastest connection we can make between two CLBs. 
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FIGURE 7.6 Components of interconnect delay in a Xilinx LCA array. (a) A portion of the 
interconnect around the CLBs. (b) A switching matrix. (c) A detailed view inside the switching 
matrix showing the pass-transistor arrangement. (d) The equivalent circuit for the connection 
between nets 6 and 20 using the matrix. (e) A view of the interconnect at a Programmable 
Interconnection Point (PIP). (f) and (g) The equivalent schematic of a PIP connection. (h) The 
complete RC delay path. 
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Xilinx EPLD 
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00000000000000000000000000000000 H 

(b) (a) (c) 

FIGURE 7.7 The Xilinx EPLD UIM (Universal Interconnection Module). (a) A simplified 
block diagram of the UIM. The UIM bus width, n, varies from 68 (XC7236) to 198 (XC731 08). 
(b) The UIM is actually a large programmable AND array. (c) The parasitic capacitance of the 
EPROM cell. 

7m3 Xilinx EPLD 

The Xilinx EPLD family uses an interconnect bus known as Universal 
Interconnection Module (UIM) to distribute signals within the FPGA. The VIM, 
shown in Figure 7.7, is a programmable AND array with constant delay from any 
input to any output. In Figure 7.7: 

G CG is the fixed gate capacitance of the EPROM device. 

o CD is the fixed drain parasitic capacitance of the EPROM device. 

Q C B is the variable horizontal bus ("bit" line) capacitance. 

o Cw is the variable vertical bus ("word" line) capacitance. 

Figure 7.7 shows the VIM has 21 output connections to each FB.1 Thus the 
XC7272 VIM (with a 4 x 2 array of eight FBs as shown in Figure 7.7) has 168 
(8 x 21) output connections. Most (but not all) of the nine I/O cells attached to each 
FB have two input connections to the VIM, one from a chip input and one feedback 

11994 data book p. 3-62 and p. 3-78. 
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from the macrocell output. For example, the XC7272 has 18 I/O cells that are out­
puts only and thus have only one connection to the DIM, so n = (18 x 8) - 18 = 126 
input connections. Now we can calculate the number of tracks in the DIM: the 
XC7272, for example, has H = 126 tracks and V = 168/2 = 84 tracks. The actual 
physical height, V, of the DIM is determined by the size of the FBs, and is close to 
the die height. 

The DIM ranges in size with the number of FBs. For the smallest XC7236 (with 
a 2 x 2 array of four FBs), the DIM has n = 68 inputs and 84 outputs. For the 
XC73108 (with a 6x2 array of 12 FBs), the DIM has n= 198 inputs. The DIM is a 
large array with large parasitic capacitance; it employs a highly optimized structure 
that uses EPROM devices and a sense amplifier at each output. The signal swing on 
the DIM uses less than the full V DD = 5 V to reduce the interconnect delay. 

7.4 Altera MAX 5000 and 7000 

Altera MAX 5000 devices (except the EPM5032, which has only one LAB) and all 
MAX 7000 devices use a Programmable Interconnect Array (PIA), shown in 
Figure 7.8. The PIA is a cross-point switch for logic signals traveling between 
LABs. The advantages of this architecture (which uses a fixed number of connec­
tions) over programmable interconnection schemes (which use a variable number of 

Altera MAX 5000/7000 
000000000000000000 

8 tplA 0 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o LABS .. LAB6 0 
000000000000000000 

(a) 

M4 

macrocells 

(b) (c) 

FIGURE 7.8 A simplified block diagram of the Altera MAX interconnect scheme. (a) The 
PIA (Programmable Interconnect Array) is deterministic-delay is independent of the path 
length. (b) Each LAB (Logic Array Block) contains a programmable AND array. 
(c) Interconnect timing within a LAB is also fixed. 
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connections) is the fixed routing delay. An additional benefit of the simpler nature of 
a large regular interconnect structure is the simplification and improved speed of the 
placement and routing software. 

Figure 7.8(a) illustrates that the delay between any two LABs, tpIA, is fixed. The 
delay between LAB 1 and LAB2 (which are adjacent) is the same as the delay 
between LABl and LAB6 (on opposite corners of the die). It may seem rather 
strange to slow down all connections to the speed of the longest possible connec­
tion-a large penalty to pay to achieve a deterministic architecture. However, it 
gives Altera the opportunity to highly optimize all of the connections since they are 
completely fixed. 

7.5 Altera MAX 9000 

Figure 7.9 shows the Altera MAX 9000 interconnect architecture. The size of the 
MAX 9000 LAB arrays varies between 4 x 5 (rows x columns) for the EPM9320 and 
7 x 5 for the EPM9560. The MAX 9000 is an extremely coarse-grained architecture, 
typical of complex PLDs, but the LABs themselves have a finer structure. Some­
times we say that complex PLDs with arrays (LABs in the Altera MAX family) that 
are themselves arrays (of macrocells) have a dual-grain architecture. 

FIGURE 7.9 The Altera MAX 
9000 interconnect scheme. (a) 
A 4 x 5 array of Logic Array 
Blocks (LABs), the same size as 
the EMP9400 chip. (b) A simpli­
fied block diagram of the inter­
connect architecture showing 
the connection of the FastTrack 
buses to a LAB. 

Altera MAX 9000 row FastTrack row 
96 FastTrack 00000000000000000000 00 

o 0 
o 0 
o 0 
o 0 
o 0 

o 0 n~ o 0 
~ ~~~++-r~D~--------~~1 

~--~--~--+-~~- ~ 
o 0 
o 0 
o 0 

~ --}-~-+-~~- ~ 
o 0 
o 0 
o 0 

~ -~-+-+-~~- ~ 
o 0 
o 0 
o 0 
o 0 

00 00000000000000000 0 

column FastTrack 

(a) 

114-wide 
LAB local 
array 

16 
macrocells 

(b) 

48 

column 
FastTrack 

In Figure 7.9(b), boxes A, B, and C represent the interconnection between the 
FastTrack buses and the 16 macrocells in each LAB: 

• Box A connects a macrocell to one row channel. 

o Box B connects three column channels to two row channels. 

• Box C connects a macrocell to three column channels. 
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7.6 Altera FLEX 

Figure 7.10 shows the interconnect used in the Altera FLEX family of complex 
PLDs. Altera refers to the FLEX interconnect and MAX 9000 interconnect by the 
same name, FastTrack, but the two are different because the granularity of the logic 
cell arrays is different. The FLEX architecture is of finer grain than the MAX 
arrays-because of the difference in programming technology. The FLEX horizontal 
interconnect is much denser (at 168 channels per row) than the vertical interconnect 
(16 channels per column), creating an aspect ratio for the interconnect of over 10:1 
(168:16). This imbalance is partly due to the aspect ratio of the die, the array, and 
the aspect ratio of the basic logic cell, the LAB. 

Altera FLEX / row FastTrack 

~ 
FastTrack aspect 

gOooooooooooooooo_oooooooooooooo 0 Caw 10 ratio 
o 0 

gODDD 0 0 00 00 0 0 0 0 0 000 ODD g 1 16 
g g row ~ 
g ; 168 FastTrack 
gODDooDODDODDOoDDDDoro g~ 
o g 
g g 24 
o 
gODOODDODDDDDODDDDDODD g 
o 0 

g g Logic Array 
o 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DOg Block (LAB) 
o ~ 0 
~ ~ a 
OOOQODDODDODDDDOO yLlOODDDODOOOOOOD 0 32-wide 
column FastTrack/ LAB local 

interconnect 
(a) 

8 

8 Logic 
Elements 
(LEs) 

(b) 

A B 

c 

column 
FastTrack 

FIGURE 7.10 The Altera FLEX interconnect scheme. (a) The row and column FastTrack 
interconnect. The chip shown, with 4 rows x 21 columns, is the same size as the EPF8820. 
(b) A simplified diagram of the interconnect architecture showing the connections between 
the FastTrack buses and a LAB. Boxes A, B, and C represent the bus-to-bus connections. 

As an example, the EPF8820 has 4 rows and 21 columns of LABs 
(Figure 7.1 Oa). Ignoring, for simplicity's sake, what happens at the edge of the die 
we can total the routing channels as follows: 

• Horizontal channels = 4 rows x 168 channels/row = 672 channels. 

• Vertical channels = 21 rows x 16 channels/row = 336 channels. 
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It appears that there is still approximately twice (672:336) as much interconnect 
capacity in the horizontal direction as the vertical. If we look inside the boxes A, B, 
and C in Figure 7.1O(b) we see that for individual lines on each bus: 

• Box A connects an LE to two row channels. 

• Box B connects two column channels to a row channel. 

• Box C connects an LE to two column channels. 

There is some dependence between boxes A and B since they contain MUXes rather 
than direct connections, but essentially there are twice as many connections to the 
column FastTrack as the row FastTrack, thus restoring the balance in interconnect 
capacity. 

7.7 Summary 

The RC product of the parasitic elements of an antifuse and a pass transistor are not 
too different. However, an SRAM cell is much larger than an antifuse which leads to 
coarser interconnect architectures for SRAM-based programmable ASICs. The 
EPROM device lends itself to large wired-logic structures. These differences in pro­
gramming technology lead to different architectures: 

• The antifuse FPGA architectures are dense and regular. 

• The SRAM architectures contain nested structures of interconnect resources. 

• The complex PLD architectures use long interconnect lines but achieve deter­
ministic routing. 

Table 7.4 is a look-up table for Tables 7.5 and 7.6, which summarize the fea­
tures of the logic cells used by the various FPGA vendors. 

TABLE 7.4 110 Cell Tables. 

Table 

Table 7.5 

Programmable ASIC family 

Actel (ACT 1) 
Xilinx (XC3000) 
Actel (ACT 2) 
Xilinx (XC4000) 
Altera MAX (EPM 5000) 
Xilinx EPLD (XC7200/7300) 
Actel (ACT 3) 
QuickLogic (pASIC 1) 
Crosspoint (CP20K) 
Altera MAX (EPM 7000) 
Atmel (AT6000) 
Xilinx LCA (XC5200) 

Table 

Table 7.6 

Programmable ASIC family 

Xilinx (XC81 00) 
Lucent ORCA (2C) 
Altera FLEX (8000/1 Ok) 
AMD MACH 5 
Actel3200DX 
Altera MAX (EPM 9000) 
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TABLE 7.5 Programmable ASIC interconnect. 

Interconnect 
between logic cells 
(tracks = trks) 

Actel (ACT 1) 

Channeled array 
with segmented 
routing, long lines: 
25 trks/ch. (horiz.); 
13 trks/Ch. (vert.); 
< 4 antifuses/path 

Interconnect delay Variable 
---

Interconnect inside Poly-diffusion 
logic cells antifuse 

Interconnect 
between logic cells 

Interconnect delay 

Interconnect inside 
logic cells 

Interconnect 
between logic cells 

Interconnect delay 

Altera (MAX 5000) 

Cross-bar PIA 
( Programmable 
Interconnect Archi-
tecture) using 
EPROM program-
mable-AND array 

Fixed 

EPROM 

Crosspoint 
(CP20K) 

Programmable 
highly 
interconnected 
matrix 

Variable 

Interconnect inside Metal-metal 
logic cells antifuse 

Xilinx (XC3000) 

Switch box, PI Ps 
(Programmable 
Interconnect Points), 
3-state internal bus, 
and long lines 

Variable 

32-bit SRAM LUT 

Xilinx EPLD 

UIM (Universal 
Interconnect Matrix) 
using EPROM 
programmable-AND 
array 

Fixed 

EPROM 

Altera MAX 
(MAX 7000) 

Fixed cross-bar PIA 
(Programmable 
Interconnect 
Architecture) 

Fixed 

EEPROM 
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Actel (ACT 2) 

Channeled array 
with segmented 
routing, long lines: 
36 trks/ch. (horiz.); 
15 trks/ch. (vert.); 
< 4 antifuses/path 

Variable 

Poly-diffusion 
antifuse 

QuickLogic 
(pASIC 1) 

Programmable 
fully populated 
antifuse matrix 

Variable 

Metal-metal 
anti fuse 

Atmel (AT6000) 

Programmable 
regular, local, and 
express bus scheme 
with line repeaters 

Variable 

SRAM 

Xilinx (XC4000) 

Switch box, PI Ps 
(Programmable 
Interconnect Points), 
3-state internal bus, 
and long lines 

Variable 

32-bit SRAM 
LUT 

Actel (ACT 3) 

Channeled array 
with segmented 
routing, long lines: 
<4 antifuses/path 

Variable 

Poly-diffusion 
antifuse 

Xilinx LCA 
(XC5200) 

Switch box, PIPs 
(Programmable 
Interconnect Points), 
3-state internal bus, 
and long lines 

Variable 

i6-bit SRAM 
LUT 
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TABLE 7.6 Programmable ASIC interconnect (continued). 

Xilinx (XC81 00) Lucent ORCA 2C Altera FLEX 8000/1 Ok 

Interconnect between 
logic cells 

Channeled array with 
segmented routing, long 
lines. Programmable fully 
populated antifuse matrix. 

Switch box, SRAM pro­
grammable interconnect, 
3-state internal bus, and 
long lines 

Rowand column 
FastTrack between LABs 

Interconnect delay Variable Variable Fixed with small variation 
in delay in row FastTrack 

.-.. _ .•... _ ....•. _._ .. _-_ .. __ ...... _ •... __ ._-_._._. __ .---.-.--..... ----.----.--.--.-.. -.-.-...... - .... - .. --.-.... -. __ .. __ ... _ .. _--_ ..... - ......... -"-"'--"'--'"'' ............ ," ...... __ ... _ ..... _ ..... __ ........ _ ....... _._ .... _ ... - .......... - ... --...•..... -......... --.. ---.. -.---.--.- " .. "._ .. _ ........ _._-_ .... _ .... __ .. _ .... _--.. _._ .... _ ..... -.... -.---.-...... -.-.. --.--....• -..... -.----... --.--.-

Interconnect inside logic Antifuse 
cells 

SRAM LUTs and MUXs LAB local interconnect 
between LEs. 16-bit 
SRAM LUT in LE. 

AMDMACH 5 Actel 3200DX Altera MAX 9000 

Interconnect between 
logic cells 

EPROM programmable 
array 

Channeled gate array 
with segmented routing, 
long lines 

Rowand column 
FastTrack between LABs 

Interconnect delay Fixed Variable Fixed 
._------------------------

Interconnect inside logic EPROM 
cells 

Poly-diffusion antifuse 

The key points covered in this chapter are: 

Programmable AND array 
inside LAB, EEPROM 
MUXes 

" The difference between deterministic and nondeterministic interconnect 

" Estimating interconnect delay 

" Elmore's constant 

Next, in Chapter 8, we shall cover the software you need to design with the var­
ious FPGA families and explain how FPGAs are programmed. 

7.8 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

7.1 (*Xilinx interconnect, 120 min.) 

a. Write a minitutorial (one or two pages) explaining what you need to know to 
run and use the XACT delay calculator. Explain how to choose the part, set 
the display preferences, make connections to CLBs and the interconnect, and 
obtain timing figures. 
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b. Use the XACT editor to determine typical delays using the longlines, a 
switch matrix, the PIPs, and BIDI buffers (see the Xilinx data book for more 
detailed explanations of the interconnect structure). Draw six different typi­
cal paths using these elements and show the components of delay. Include 
screen shots showing the layout of the paths and cells with detailed explana­
tions of the figures. 

c. Construct a path using the TBUFs, the three-state buffers, driving a longline 
(do not forget the pull-up). Show the XACT calculated delay for your path 
and explain the number from data book parameters (list them and the page 
number from the data book). 

d. Extend one simple path to the I/O and explain the input and output timing, 
again using the data book. 

e. Include screen shots from the layout editor showing you example paths. 

f. Bury all the ASCII (but not binary) files you used and the tools produced 
inside your report using "Hidden Text." Include explanations as to what these 
files are and which parts of the report they go with. This includes any sche­
matic files, netlist files, and all files produced by the Xilinx tools. Use a sepa­
rate directory for this problem and make a list in your report of all files 
(binary and ASCII) with explanations of what each file is. 

7.2 (*Actel interconnect, 120 min.) Use the Actel chip editor to explore the 
properties of the interconnect scheme in a similar fashion to Problem 7.1 with the 
following changes: in part b make at least six different paths using various antifuse 
connections and explain the numbers from the delay calculator. Omit part c. 

7.3 (* Altera MAX interconnect, 120 min.) Use the Altera tools to determine the 
properties of the MAX or FLEX interconnect in a similar fashion to Problem 7.1 
with the following changes: In parts band c construct at least six example circuits 
that show the various paths through the FastTrack or PIA chip-level interconnect, 
the local LAB array, the LAB, and the macrocells. 

7.4 (**Custom ASICs, 120 min.) 

a. Write a minitutorial (one or two pages) explaining how to run an ASIC tool 
(Compass/Mentor/Cadence/Tanner). Enter a simple circuit (using schematic 
entry or synthesis and cells from a cell library) and obtain a delay estimate. 

b. Construct at least six example circuits that show various logic paths using 
various logic cells (for example: an inverter, a full adder). 

c. Perform a timing simulation (either using a static timing verifier or using a 
logic simulator). Compare your results with those from a data book. 

d. Extract the circuit to include the parasitic capacitances from layout in your 
circuit netlist and run a simulation to predict the delays. 

e. Compare the results that include routing capacitance with the data book val­
ues for the logic cell delays and with the values predicted before routing. 
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f. Extend one simple path to the outputs of the chip by including I/O pads in 
your circuit and explain the input and output timing predictions. 

g. Bury the ASCII files you used and the tools produced inside your report. 

7.5 (** Actel stubs, 60 min.) 

a. Which metal layers do you think Actel assigns to the horizontal and vertical 
interconnect in the ACT 1-3 architectures and why? 

b. Why do the ACT 1-3 input stubs not extend over more than two channels 
above and below the Logic Modules, since this would reduce the need for 
LVTs? 

c. The ACT 2 data sheet describes the output stubs as "twisted" (or interwoven) 
so that they occupy only four tracks. Show that the stubs occupy four vertical 
tracks whether they are twisted or not. 

d. Suggest the real reason for the twisted stubs. 

7.6 (A three-input NAND in ACT 1, 30 min.) The macros that require two 
ACT 1 modules include the three-input NAND (others include four-input NAND, 
AND,NOR). 

a. What is the problem with trying to implement a three-input NAND gate using 
the Actel ACT 1 Logic Module? 

b. Suggest a modification to the ACT 1 Logic Module that would allow the 
implementation of a three-input NAND using one of your new Logic Mod­
ules. 

c. Can you think of a reason why Actel did not use your modification to its 
Logic Module design? Hint: The modification has to do with routing, and not 
the logic itself. 

7.7 (*Actel architecture, 60 min.) This is a long but relatively straightforward 
problem that "reverse-engineers" the Actel architecture. If you measured the chip 
photo on the front of the April 1990 Actel data book, you would find the following: 

1. Die height (scribe to scribe) = 170 mm. 

2. Channel height = 8 mm (there are 7 full-height and 2 half-height channels). 

3. Logic Module height = 5 mm (there are 8 rows of Logic Modules). 

4. Column (Logic Module) width = 4.2 mm. 

(The scribe line is an area at the edge of a die where a cut is made by a dia­
mond saw when the dice are separated.) An Actel 1010 die in 2!lm technology is 
240 mil high by 360 mil wide (p. 4-17 in the 1990 data book). Assuming these data 
book dimensions are scribe to scribe, calculate (a) the Logic Module height, (b) the 
channel height, and (c) the column (Logic Module) width. 

Given that there are 25 tracks per horizontal channel, and 13 tracks per column 
in the vertical direction, calculate (d) the horizontal channel track spacing and (e) 
the vertical channel track spacing. (f) Using the fact that each output stub spans two 
channels above and below the Logic Module, calculate the height of the output stub. 
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We can now estimate the capacitance of the Logic Module stubs and inter­
connect. Assume the interconnect capacitance is 0.2 pFmm-l. (g) Calculate the 
capacitance of an output stub and an input stub. (h) Calculate the width and thus the 
capacitance of the horizontal tracks that are from four columns to 44 columns long. 

You should not have to make any other assumptions to calculate these figures, 
but if you do, state them clearly. The figures you have calculated are summarized in 
Table 7.2. 

7.8 (Xilinx bank shots, 20 min.) Figure 7.11 shows a magic box. Explain how 
to use a "bank shot" to enter one side of the box, bounce off another, and exit on a 
third side. What is the delay involved in this maneuver? 

FIGURE 7.11 A Xilinx magic box 
showing one set of connections from 
connection 1 (Problem 7.8). 

7.9 Bibliography 

1 

o 
The paper by Greene et al. [1993] (reprinted in the 1994 Actel data book) is a good 
description of the Actel interconnect. The 1995 AT&T data book contains a very 
detailed account of the routing for the ORCA series of FPGAs, which is similar to 
the Xilinx LCA interconnect. You can learn a great deal about the details of the 
Lucent and Xilinx interconnect architecture from the AT&T data book. The Xilinx 
data book gives a good high-level overview of SRAM-based FPGA interconnect. 
The best way to learn about any FPGA interconnect is to use the software tools pro­
vided by the vendor. The Xilinx XACT editor that shows point-to-point routing 
delays on a graphical representation of the chip layout is an easy way to become 
familiar with the interconnect properties. The book by Brown et al. [1992] covers 
FPGA interconnect from a theoretical point of view, concentrating on routing for 
LUT based FPGAs, and also describes specialized routing algorithms for FPGAs. 

7.10 References 

Brown, S. D., et al. 1992. Field-Programmable Gate Arrays. Norwell, MA: Kluwer Academic, 
206 p. ISBN 0-7923-9248-5. TK7872.L64F54. Contents: Introduction to FPGAs, Commer­
cially Available FPGAs, Technology Mapping for FPGAs, Logic Block Architecture, Rout­
ing for FPGAs, Flexibility of FPGA Routing Resources, A Theoretical Model for FPGA 
Routing. Includes an introduction to commercially available FPGAs. The rest of the book 

314



298 CHAPTER 7 PROGRAMMABLE ASIC INTERCONNECT 

covers research on logic synthesis for FPGAs and FPGA architectures, concentrating on 
LUT-based architectures. 

Greene, J., et al. 1993. "Antifuse field programmable gate arrays." Proceedings of the IEEE, 
vol. 81, no. 7, pp. 1042-1056, 1993. Review article describing the Actel FPGAs. (Included 
in the Actel 1994 data book.) 

Rubenstein, J., P. Penfield, and M. A. Horowitz. 1983. "Signal delay in RC tree networks." 
IEEE Transactions on CAD, vol. CAD-2, no. 3, July 1983, pp. 202-211. Derives bounds for 
the response of RC networks excited by an input step voltage. 

315



PROGRAMMABLE 
ASIC DESIGN 
SOFTWARE 

8.1 Design Systems 8.5 

8.2 Logic Synthesis 8.6 

8.3 The Halfgate ASIC 8.7 

8.4 Summary 

Problems 

Bibliography 

References 

There are five components of a programmable ASIC or FPGA: (1) the programming 
technology, (2) the basic logic cell, (3) the I/O cell, (4) the interconnect, and (5) the 
design software that allows you to program the ASIC. The design software is much 
more closely tied to the FPGA architecture than is the case for other types of ASICs. 

8.t Design Systems 

The sequence of steps for FPGA design is similar to the sequence discussed in 
Section 1.2, "Design Flow." As for any ASIC a designer needs design-entry soft­
ware, a cell library, and physical-design software. Each of the FPGA vendors sells 
design kits that include all the software and hardware that a designer needs. Many 
of these kits use design-entry software produced by a different company. Often 
designers buy that software from the FPGA vendor. This is called an original 
equipment manufacturer (OEM) arrangement-similar to buying a car with a ste­
reo manufactured by an electronics company but labeled with the automobile com­
pany's name. Design entry uses cell libraries that are unique to each FPGA vendor. 
All of the FPGA vendors produce their own physical-design software so they can 
tune the algorithms to their own architecture. 
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Unfortunately, there are no standards in FPGA design. Thus, for example, 
Xilinx calls its 2:1 MUX an M2 1 with inputs labeled DO, Dl, and 80 with output o. 
Actel calls a 2: 1 MUX an MX2 with inputs A, B, and 8 with output Y. This problem is 
not peculiar to Xilinx and Actel; each ASIC vendor names its logic cells, buffers, 
pads, and so on in a different manner. Consequently designers may not be able to 
transfer a netlist using one ASIC vendor library to another. Worse than this, design­
ers may not even be able to transfer a design between two FPGA families made by 
the same FPGA vendor! 

One solution to the lack of standards for cell libraries is to use a generic cell 
library, independent from any particular FPGA vendor. For example, most of the 
FPGA libraries include symbols that are equivalent to TTL 7400 logic series parts. 
The FPGA vendor's own software automatically handles the conversion from sche­
matic symbols to the logic cells of the FPGA. 

Schematic entry is not the only method of design entry for FPGAs. Some 
designers are happier describing control logic and state machines in terms of state 
diagrams and logic equations. A solution to some of the problems with schematic 
entry for FPGA design is to use one of several hardware description languages 
(HDLs) for which there are some standards. There are two sets of languages in com­
mon use. One set has evolved from the design of programmable logic devices 
(PLDs). The ABEL (pronounced "able"), CUPL ("cupple"), and PALASM 
("pal-azzam") languages are simple and easy to learn. These languages are useful 
for describing state machines and combinational logic. The other set of HDLs 
includes VHDL and Verilog, which are higher-level and are more complex but are 
capable of describing complete ASICs and systems. 

After completing design entry and generating a netlist, the next step is simulation. 
Two types of simulators are normally used for FPGA design. The first is a logic simu­
lator for behavioral, functional, and timing simulation. This tool can catch any design 
errors. The designer provides input waveforms to the simulator and checks to see that 
the outputs are as expected. At this point, using a nondeterministic architecture, logic 
path delays are only estimates, since the wiring delays will not be known until after 
physical design (place-and-route) is complete. Designers then add or back-annotate 
the postlayout timing information to the postlayout netlist (also called a back­
annotated netlist). This is followed by a postlayout timing simulation. 

The second type of simulator, the type most often used in FPGA design, is a 
timing-analysis tool. A timing analyzer is a static simulator and removes the need 
for input waveforms. Instead the timing analyzer checks for critical paths that limit 
the speed of operation-signal paths that have large delays caused, say, by a high 
fanout net. Designers can set a certain delay restriction on a net or path as a timing 
constraint; if the actual delay is longer, this is a timing violation. In most design 
systems we can return to design entry and tag critical paths with attributes before 
completing the place-and-route step again. The next time we use the place-and-route 
software it will pay special attention to those signals we have labeled as critical in 
order to minimize the routing delays associated with those signals. The problem is 
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that this iterative process can be lengthy and sometimes nonconvergent. Each time 
timing violations are fixed, others appear. This is especially a problem with place­
and-route software that uses random algorithms (and forms a chaotic system). More 
complex (and expensive) logic synthesizers can automate this iterat,ive stage of the 
design process. The critical path information is calculated in the logic synthesizer, 
and timing constraints are created in a feedforward path (this is called forward­
annotation) to direct the place-and-route software. 

Although some FPGAs are reprogrammable, it is not a good idea to rely on this 
fact. It is very tempting to program the FPGA, test it, make changes to the netlist, 
and then keep programming the device until it works. This process is much more 
time consuming and much less reliable than performing thorough simulation. It is 
quite possible, for example, to get a chip working in an experimental fashion with­
out really knowing why. The danger here is that the design may fail under some 
other set of operating conditions or circumstances. Simulation is the proper way to 
catch and correct these potential disasters. 

8.1.1 Xilinx 
Figure 8.1 shows the Xilinx design system. Using third-party design-entry software, 
the designer creates a netlist that forms the input to the Xilinx software. Utility soft­
ware (pin2xnf for FutureNet DASH and wir2xnf for Viewlogic, for example) 
translate the netlist into a Xilinx netlist format (XNF) file. In the next step the Xil­
inx program xnfmap takes the XNF netlist and maps the logic into the Xilinx Logic 
Cell Array (LCA) architecture. The output from the mapping step is a MAP file. 
The schematic MAP file may then be merged with other MAP files using 
xnfmerge. This technique is useful to merge different pieces of a design, some cre­
ated using schematic entry and others created, for example, using logic synthesis. A 
translator program map21ca translates from the logic gates (NAND gates, NOR 
gates, and so on) to the required CLB configurations and produces an unrouted LCA 
file. The Xilinx place-and-route software (apr or ppr) takes the unrouted LCA file 
and performs the allocation of CLBs and completes the routing. The result is a 
routed LCA file. A control program xmake (that works like the make program in C) 
can automatically handle the mapping, merging, and place-and-route steps. Follow­
ing the place-and-route step, the logic and wiring delays are known and the postlay­
out netlist may be generated. After a postlayout simulation the download file or BIT 
file used to program the FPGA (or a PROM that will load the FPGA) is generated 
using the Xilinx makebi ts program. 

Xilinx also provides a software program (Xilinx design editor, XDE) that per­
mits manual control over the placement and routing of a XiI in x FPGA. The designer 
views a graphical representation of the FPGA, showing all the CLBs and intercon­
nect, and can make or alter connections by pointing and clicking. This program is 
useful to check an automatically generated layout, or to explore critical routing 
paths, or to change and hand tune a critical connection, for example. 
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1.12 ns 

~ 

netlist without 
'--.,---' delays 

partition logic 
into CLBs 

10011000 ... 

to FPGA or PROM 

Xilinx cell 
. library 

FIGURE 8.1 The Xilinx FPGA design flow. The numbers next to the steps in the flow corre­
spond to those in the general ASIC design flow of Figure 1.10. 

Xilinx uses a system called X-BLOX for creating regular structures such as vec­
tored instances and datapaths. This system works with the Xilinx XNF netlist for­
mat. Other vendors, notably Actel and Altera, use a standard called RelationaHy 
Placed Modules (RPM), based on the EDIF standard, that ensures that the pieces of 
an 8-bit adder, for example, are treated as a macro and stay together during place­
ment. 
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8.1.2 Actel 

Actel FPGA design uses third-party design entry and simulators. After creating a 
netlist, a designer uses the Actel software for the place-and-route step. The Actel 
design software, like other FPGA and ASIC design systems, employs a large number 
of file formats with associated filename extensions. Table 8.1 shows some of the 
Actel file extensions and their meanings. 

TABLE 8.1 

ADL 

IPF 

CRT 

VALIDATED 

COB 

VLD 

PIN 

DFR 

LOC 

PLI 

SEG 

STF 

RTI 

FUS 

DEL 

AVI 

File types used by Actel design software. 

Main design netlist 

Partial or complete pin assignment for the design 

Net criticality 

Audit information 

List of macros removed from design 

Information, warning, and error messages 

Complete pin assignment for the design 

Information about routability and 110 assignment quality 

Placement of non-I/O macros, pin swapping, and freeway assignment 

Feedback from placement step 

Assignment of horizontal routing segments 

Back-annotation timing 

Feedback from routing step 

Fuse coordinates (column-track, row-track) 

Delays for input pins, nets, and I/O modules 

Fuse programming times and currents for last chip programmed 

Actel software can also map hardware description files from other programma­
ble logic design software into the Actel FPGA architecture. As an example, 
Table 8.2 shows a text description of a state machine using an HDL from a company 
called LOGjiC. You can then convert the LOGjiC code to the PALASM code shown 
in Table 8.2. The Actel software can take the PALASM code and merge it with other 
PALASM files or netlists. 

8.1.3 Altera 
Altera uses a self-contained design system for its complex PLDs that performs design 
entry, simulation, and programming of the parts. Altera also provides an input and out­
put interface to ED IF so that designers may use third-party schematic entry or a logic 
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TABLE 8.2 FPGA state-machine language. 

LOGIiC state-machine language PALASM version 

* IDENTIFICATION 

sequence detector 

LOG/iC code 

*X-NAMES 

X; !input 

*Y-NAMES 

TITLE sequence detector 
CHIP MEALY U8ER 
CLK Z QQ2 QQl X 
EQUATION8 
Z = X * QQ2 * QQl 
QQ2 := X * QQl + X * QQ2 
QQl := X * QQ2 + X * /QQl 

D; !output, D = 1 when three l's appear on X 

* FLOW-TABLE 

;State, X input, Y output, next state 

81, Xl, YO, F2; 

81, XO, YO, Fl; 

82, Xl, YO, F3; 

82, XO, YO, Fl; 

83, Xl, YO, F4; 

83, XO, YO, Fl; 

84, Xl, Yl, F4; 

84, XO, YO, Fl; 

*8TATE-AS8IGNMENT 

BINARY; 

*RUN-CONTROL 

PROGFORMAT P-EQUATION8; 

*END 

synthesizer. We have seen that the interconnect scheme in the Altera complex PLDs is 
nearly deterministic, simplifying the physical-design software as well as eliminating 
the need for back-annotation and a postlayout simulation. As Altera FPGAs become 
larger and more complex, there are some exceptions to this rule. Some special cases 
require signals to make more than one pass through the routing structures or travel 
large distances across the Altera FastTrack interconnect. It is possible to tell if this will 
be the case only by trying to place and route an Altera device. 

8.2 Logic Synthesis 

Designers are increasingly using logic synthesis as a replacement for schematic 
entry. As microelectronic systems and their ASICs become more complex, the use of 
schematics becomes less practical. For example, a complex ASIC that contains over 
10,000 gates might require hundreds of pages of schematics at the gate level. As 
another example, it is easier to write A = B + C than to draw a schematic for a 32-bit 
adder at the gate level. 
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The term logic synthesis is used to cover a broad range of software and software 
capabilities. Many logic synthesizers are based on logic minimization. Logic mini:­
mization is usually performed in one of two ways, either using a set of rules or using 
algorithms. Early logic-minimization software was designed using algorithms for 
two-level logic minimization and developed into multilevel logic-optimization soft­
ware. Two-level and multilevel logic minimization is well suited to random logic 
that is to be implemented using a CBIC, MGA, or PLD. In these technologies, two­
level logic can be implemented very efficiently. Logic minimization for FPGAs, 
including complex PLDs, is more difficult than other types of ASICs, because of the 
complex basic logic cells in FPGAs. 

There are two ways to use logic synthesis in the design of FPGAs. The first and 
simplest method takes a hardware description, optimizes the logic, and then pro­
duces a netlist. The netlist is then passed to software that maps the netlist to an 
FPGA architecture. The disadvantage of this method is the inefficiency of decou­
pIing the logic optimization from the mapping step. The second, more complicated, 
but more efficient method, takes the hardware description and directly optimizes the 
logic for a specific FPGA architecture. 

Some logic synthesizers produce files in PALASM, ABEL, or CUPL formats. 
Software provided by the FPGA vendor then take these files and maps the logic to 
the FPGA architecture. The FPGA mapping software requires detailed knowledge of 
the FPGA architecture. This makes it difficult for third-party companies to create 
logic synthesis software that can map directly to the FPGA. 

A problem with design-entry systems is the difficulty of moving netlists 
between different FPGA vendors. Once you have completed a design using an 
FPGA cell library, for example, you are committed to using that type of FPGA 
unless you repeat design entry using a different cell library. ASIC designers do not 
like this approach since it exposes them to the mercy of a single ASIC vendor. Logic 
synthesizers offer a degree of independence from FPGA vendors (universally 
referred to vendor independence, but this should, perhaps, be designer indepen­
dence) by delaying the point in the design cycle at which designers need to make a 
decision on which FPGA to use. Of course, now designers become dependent on the 
synthesis software company. 

8.2.1 FPGA Synthesis 
For low-level logic synthesis, PALASM is a de facto standard as the lowest­
common-denominator interchange format. Most FPGA design systems are capable 
of converting their own native formats into a PALASM file. The most common pro­
grammable logic design systems are ABEL from Data I/O, CUPL from P-CAD, 
LOG/iC from IsData, PALASM2 from AMD, and PGA-Designer from Minc. At a 
higher level, CAD companies (Cadence, Compass, Mentor, and Synopsys are exam­
ples) support most FPGA cell libraries. This allows you to map from a VHDL or 
Verilog description to an EDIF netlist that is compatible with FPGA design soft-
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ware. Sometimes you have to buy the cell library from the software company, some­
times from the FPGA vendor. 

TABLE 8.3 The VHDL code for the sequence detector of Table 8.2. 

entity detector is port (X, eLK: in BIT; Z : out BIT); end; 

architecture behave of detector is 

type states is (81, 82, 83, 84); 

signal current, next: states; 
begin 

combinational: process begin 

case current is 
when 81 

if X 

when 82 

if X 

when 83 

if X 

when 84 

if X 

end case; 
end process 

=> 

= ' I' then Z <= '0 I; 

=> 

= ' 1 ' then Z <= f 0' ; 

=> 

= ' I' then Z <= to I; 
=> 

= ' l' then Z <= I I' ; 

next <= 83; else Z <= f 0 I; next <= 81 ; end if; 

next <= 82; else Z <= 10 1
; next <= 81; end if; 

next <= 82; else Z <= 10 1 
; next <= 81; end if; 

next <= 84; else Z <= 10 ' i next <= 81; end if 

sequential: process begin 
wait until eLK'event and eLK 

end process; 
'I'; current <= next 

end behave; 

As an example, Table 8.3 shows a VHDL model for a pattern detector to check 
for a sequence of three 'l's (excluding the code for the I/O pads). Table 8.4 shows a 
script or command file that runs the Synopsys software to generate an EDIF netlist 
from this VHDL that targets the TI version of the Actel FPGA parts. A script is a 
recipe that tells the software what to do. If we wanted to retarget this design to 
another type of FPGA or an MGA or CBIC ASIC, for example, we may only need a 
new set of cell libraries and to change the script (if we are lucky). In practice, we 
shall probably find we need to make a few changes in the VHDL code (in the areas 
of I/O pads, for example, that are different for each kind of ASIC). We now have a 
portable design and a measure of vendor independence. We have also introduced 
some dependence on the Synopsys software since the code in Table 8.3 might be 
portable, but the script (which is just as important a part of the design) in Table 8.4 
may only be used with the Synopsys software. Nevertheless, using logic synthesis 
results in a more portable design than using schematic entry. 
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TABLE 8.4 The Synopsys script for the VHDL code of Table 8.3. 

search_path = "." 

1* use the TI cell libraries /* 
link_library = tpclO.db 
target_library = tpclO.db 
symbol_library = tpclO.sdb 
read -f vhdl detector.vhd 
current_design = detector 
write -n -f db -hierarchy -0 detector.db '. 
/* design checking 1* 
check_design> detector. rpt . - - - - - - - - . 

8.3 The Halfgate ASIC 

report_design> detector.rpt 
/* optimize for area 1* 
max area 0.0 
compile 
write -h -f db -0 detector_opt.db 
report -area -cell -timing> detector.rpt 
/* write EDIF netlist 1* 
write -h -f edif -0 detector.edf 
quit 

This section illustrates FPGA design using a very simple ASIC-a single inverter. 
The hidden details of the design and construction of this "halfgate FPGA" are quite 
complicated. Fortunately, most of the inner workings of the design software are nor­
mally hidden from the designer. However, when software breaks, as it sometimes 
does, it is important to know how things work in order to fix the problem. The 
formats, filenames, and flow will change, but the information needed at each stage 
and the order in which it is conveyed will stay much the same. 

8.3.1 Xilinx 
Table 8.5 shows an FPGA design flow using Compass and Xilinx software. On the 
left of Table 8.5 is a script for the Compass programs-scripts for Cadence, Mentor, 
and Synopsys software are similar, but not all design software has the capability to 
be run on autopilot using scripts and a command language. The diagrams in 
Table 8.5 illustrate what is happening at each of the design steps. The following 
numbered comments, corresponding to the labels in Table 8.5, highlight the impor­
tant steps: 

1. The Verilog code, in half gate. v, describes a single inverter. 

2. The script runs the logic synthesizer that converts the Verilog description to an 
inverter (using elements from the Xilinx XC4000 library) and saves the result 
in a netlist, halfgate_p.nls (a Compass internal format). 

3. The script next fLlns the logic optimizer for FPGAs. This program also adds the 
I/O pads. In this case, logic optimization implements the inverter by using an 
inverting output pad. The software writes out the netlist as halfgate_p.xnf. 

4. A timing simulation is run on the netlist halfgate p. nls (the Compass 
format netlist). This netlist uses the default delays-every gate has a delay of 
1 ns. 
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TABLE S.5 Design flow for the Xilinx implementation of the halfgate ASIC. 

# halfgate.xilinx.inp 

shell setdef 

Script 

path working xc4000d xblox cmoschOOOx 
quit 

asic 

open [vjhalfgate 
synthesize 

save [nlsjhalfgate_p 
quit 

fpga 

set tag xc4000 

set opt area 

optimize [nlsjhalfgate_p 
quit 

qtv 

open [nlsjhalfgate_p 

trace critical 

print trace [txtjhalfgate_p 
quit 

shell vuterm 

exec xnfmerge -p 4003PC84 halfgate_p > /dev/null 

exec xnfprep halfgate_p > /dev/null 

exec ppr halfgate_p > /dev/null 

exec makebits -w halfgate_p > /dev/null 

exec lca2xnf -g -v halfgate_p halfgate_b > /dev/null 
quit 

manager notice 

utility netlist 

open [xnfjhalfgate_b 

save [nlsjhalfgate_b 

save (edfjhalfgate_b 

quit 

qtv 

open [nlsjhalfgate_b 

trace critical 

print trace [txtjhalfgate_b 

quit 
XSYM2 

Design flow 

myOutput = -mylnput 

mylnput ~YOutPut 

myOutpuCOBUF 

mylnput ~YOutPut 

~1ns 

XSYM1 
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TABLE 8.6 The Xilinx files for the halfgate ASIC. 

Verilog file (half gate. v) 

module halfgate(myInput, myOutput); input myInput; output myOutput; wire myOutput; 
assign myOutput = -myInput; 

endmodule 

Preroute XNF file (halfgate _p. xnf) 

LCANET, 5 

USER, FPGA-Optimizer, 4.1, Date:960710 , 
Option: Area 

PROG, FPGA-Optimizer, 4.1, "Lib=4000" 
PART, 4010PG191 

PWR, 0, GND 

PWR, 1, VCC 
SYM, _IN _ myInput _ IBUF, IBUF, LIBVER = 2.0.0 

PIN, I, I, myInput, 

: .. PIN, 0, 0, IN_myInput, 

END 

EXT, myInput, I, 
SYM, myOutput _ obuf, OBUF, LIBVER = 2.0.0, 

PIN, I, I, _IN_myInput" INV 
PIN, 0, 0, myOutput, 
END 

EXT, myOutput, 0, 

EOF 

LCAfile (halfgate_p.lca) 

;: halfgate_p.lca (4003PC84-4), makebits 
5.2.0, Tue Jul 16 20:09:43 1996 
Version 2 

Design 4003PC84 4 0 
Speed -4 

Addnet PAD_myInput PAD61.I2 PADl.0 
Netdelay PAD_myInput PADl.0 3.1 

Program PAD_myInput {65G521} {65G287} 

{65G50} {63G50} {52G50} {45G50} 
NProgram PAD_myInput col.B.long.3:PADl.0 

col.B.long.3:row.G.local.l 

col.B.long.3:row.M.local.5-s MB. 
40.1.14 MB.40.1.35 row.M.local.5:PAD61.I2 

Editblk PAD61 

Base 10 

:.-Config INFF: II: 12:10: OUT: PAD: TRI: 
Endblk 
Editblk PADI 
Base 10 

Config INFF: II: 12: 0: OUT:O:NOT PAD: 
TRI: 

Endblk 

Nameblk PAD61 myInput 
Nameblk PADI myOutput 
Intnet myOutput PAD myOutput 

Intnet myInput PAD myInput 
System FGG 0 VERS 2 ! 

System FGG 1 GDO 0 ! 

Postroute XNF file (halfgate _b. xnf) 

LCANET, 4 
PROG, LCA2XNF, 5.2.0, "COMMAND = -g -v 
halfgate_p halfgate_b TIME = Tue Jul 16 

21:53:31 1996" 

PART, 4003PC84-4 
SYM, XSYMl, OBUF, SLOW 

PIN, 0, 0, myOutput, 3.0 
PIN, I, I, IN_myInput, 8.6, INV 

JiI>'- END 
SYM, XSYM2, IBUF 

END 

PIN, 0, 0, IN_myInput, 2.8 

PIN, I, I, myInput 

EXT, myOutput, 0, 10 
EXT, myInput, I, 29 

EOF 
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5. At this point the script has run all of the Xilinx programs required to complete 
the place-and-route step. The Xilinx programs have created several files, the 
most important of which is halfgate _p .lea, which describes the FPGA lay­
out. This postroute netlist is converted to halfgate _b. nls (the added suffix 
'b' stands for back-annotation). Next a timing simulation is performed on the 
postroute netlist, which now includes delays, to find the delay from the input 
(mylnput) to the output (myOutput). This is the critical-and only-path. 
The simulation (not shown) reveals that the delay is 2.8 ns (for the input 
buffer) plus 11.6 ns (for the output buffer), for a total delay of 14.4 ns (this is 
for a XC4003 in a PC84 package, and default speed grade '4'). 

Table 8.6 shows the key Xilinx files that are created. The preroute file, 
halfgate _p. xnf, describes the IBUF and OBUF library cells but does not contain 
any delays. The LCA file, half gate p .lea, contains all the physical design infor­
mation, including the locations of the pads and I/O cells on the FPGA (PAD61 for 
mylnput and PADI for myOutput), as well as the details of the programmable con­
nections between these I/O Cells. The postroute file, half gate _b. xnf, is similar to 
the preroute version except that now the delays are included. Xilinx assigns delays 
to a pin (connector or terminal of a cell). In this case 2.8 ns is assigned to the output 
of the input buffer, 8.6 ns is assigned to the input of the output buffer, and finally 
3.0 ns is assigned to the output of the output buffer. 

8.3.2 Actel 

The key Actel files for the halfgate design are the netlist file, half gate _ io. adl, 

and the STF delay file for back-annotation, halfgate _ io. stf. Both of these files 
are shown in Table 8.7 (the STF file is large and only the last few lines, which con­
tain the delay information, are shown in the table). 

8.3.3 Altera 
Because Altera complex PLDs use a deterministic routing structure, they can be 
designed more easily using a self-contained software package-an "all-in-one" soft­
ware package using a single interface. We shall assume that we can generate a netlist 
that the Altera software can accept using Cadence, Mentor, or Compass software 
with an Altera design kit (the most convenient format is EDIF). 

Table 8.8 shows the EDIF preroute netlist in a format that the Altera software 
can accept. This netlist file describes a single inverter (the line . cellRef not'). 

The majority of the ED IF code in Table 8.8 is a standard template to pass informa­
tion about how the VDD and VSS nodes are named, which libraries are used, the 
name of the design, and so on. We shall cover EDIF in Chapter 9. 

Table 8.9 shows a small part of the reports generated by the Altera software 
after completion of the place-and-route step. This report tells us how the software 
has used the basic logic cells, interconnect, and I/O cells to implement our design. 
With practice it is possible to read the information from reports such as Table 8.9 
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TABLE 8.7 The Actel files for the halfgate ASIC. 

ADL file 

HEADER 

FILEID ADL ./halfgate_io.adl 85e8053b 

CHECKSUM 85e8053b 

PROGRAM certify 

VERSION 23/1 

ALSMAJORREV 2 

ALSMINORREV 3 

ALSPATCHREV .1 

NODEID 72705192 

VAR FAMILY 1400 

ENDHEADER 

DEF halfgate_io; mylnput, myOutput. 

USE ADLIB:INBUF; INBUF 2. 

USE ADLIB:OUTBUF; OUTBUF_3. 

USE ADLIB:INV; u2. 

NET DEF_NET_8; u2:A, INBUF_2:Y. 

NET DEF_NET_9; 

NET DEF_NET_11; 

NET DEF_NET_12; 

END. 

mylnput, INBUF_2:PAD. 

OUTBUF_3:D, u2:Y. 

myOutput, OUTBUF 3:PAD. 

STF file 

HEADER 

FILEID STF ./halfgate_io.stf c96ef4d8 

lines omitted '" (126 lines total) 

DEF halfgate_io. 

USE; INBUF_2/uO; 

TPADH: ' 11: 26: 37' , 

TPADL: ' 13: 30: 41 ' , 

TPADE: ' 12: 29: 41 ' , 

TPADD: '20:48:70', 

TYH:'8:20:27', 

TYL: ' 12 : 2 8 : 3 9 ' . 

PIN u2:A; 

RDEL:'13:31:42' , 

FDEL: ' 11 : 26 : 37 ' . 

USE ; OUTBUF_3/UO; 

TPADH: ' 11: 26: 37 ' , 

TP ADL: ' 13 : 3 0 : 4 1 ' , 

TPADE:'12:29:41' , 

TPADD:'20:48:70', 

TYH: ' 8 : 20 : 27 ' , 

TYL: ' 12 : 2 8 : 3 9 ' . 

PIN OUTBUF_3/UO:D; 

RDEL:'14:32:45', 

FDEL: ' 11 : 26 : 37 ' . 

END. 

directly, but it is a little easier if we also look at the netlist. The EDIF version of 
postroute netlist for this example is large. Fortunately, the Altera software can also 
generate a Verilog version of the postroute netlist. Here is the generated Verilog pos­
troute netlist, halfgate _p. vo (not .. v'), for the halfgate design: 

II halfgate_p (EPM7032LC44) ~ffiX+plus II Version 5.1 RC6 10103/94 

II Wed Jul 17 04:07:10 1996 

'timescale 100 ps I 100 ps 

module TRI_halfgate_p( IN, OE, OUT ); input IN; input OEi output OUT; 

bufif1 ( OUT, IN, OE ); 

specify 

specparam TTRI = 40; specparam TTXZ 

(IN => OUT) = (TTRI,TTRI); 

60; specparam TTZX 60; 
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TABLE 8.8 EDIF netlist in Altera format for the halfgate ASIC. 

(edif halfgate_p 
(edifVersion 2 0 0) 

(edifLevel 0) 
(keywordMap 

(keywordLevel 0» 
(status 

(written 

(timeStamp 1996 7 10 23 
55 8) 

(program "COMPASS Design 

Automation -- EDIF Interface" 

(version "v9r1.2 last 

updated 26-Mar-96"» 

(author "mikes"») 
(library flex8kd 

(edifLevel 0) 
(technology 
(numberDefinition 
(simulationInfo 

(logicValue H) 

(logicvalue L») 
(cell not 
(cellType GENERIC) 

(view COMPASS_mde_view 
(viewType NETLIST) 

(interface 

(port IN 

(direction INPUT» 
(port OUT 
(direction OUTPUT» 

(designator 

"@@Label"»» ) 
(library working 

(edifLevel 0) 

(technology 
(numberDefinition 

(simulationInfo 

(logicValue H) 

(logicvalue L») 
(cell halfgate_p 

(cellType GENERIC) 
(view COMPASS_nls_view 

(viewType NETLIST) 
(interface 

(port myInput 

(direction INPUT» 
(port myOutput 

(direction OUTPUT» 
(designator "@@Label"» 

(contents 
(instance B1_i1 

(viewRef 
COMPASS mde view 

(cellRef not 

(libraryRef 

flex8kd) ) ) ) 
(net myInput 

( joined 

(portRef myInput) 
(portRef IN 

(instanceRef 

B1_il»» 
(net myOutput 

( joined 

(portRef myOutput) 

(portRef OUT 

(instanceRef 

B1_i1»» 
(net VDD 

( joined 

(property global 

(string "vcc"») 
(net VSS 
(joined) 

(property global 

(string "gnd"»»») 
(design halfgate_p 

(cellRef halfgate_p 

(libraryRef working»» 

(OE => OUT) 
endspecify 

endmodule 

(0,0, TTXZ, TTZX, TTXZ, TTZX); 

module halfgate_p (myInput, myOutput); 
input myInput; output myOutput; supplyO gnd; supply1 vcc; 
wire B1_i1, myInput, myOutput, N_8, N_10, N_11, N_12, N_14; 

TRI_halfgate_p tri_2 ( .OUT(myOutput), .IN(N_8), .OE(vcc) )i 

TRANSPORT transport_3 ( N_8, N_8_A ); 
de£param transport_3.DELAY = 10, 
and delay_3 ( N_8_A, B1_i1 ); 

xor xor2_4 ( B1_i1, N_10, N_14 ); 
or or1_5 ( N_10, N_11 ); 
TRANSPORT transport_6 NIl, N 11 A ); 
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TABLE 8.9 Report for the halfgate ASIC fitted to an Altera MAX 7000 complex PLD. 

** INPUTS ** 
Shareable 
Expanders Fan-In Fan-Out 

Pin LC LAB Primitive Code Total Shared nla INP FBK OUT FBK Name 
43 INPUT 0 0 0 0 0 0 1 mylnput 

** OUTPUTS ** 

Shareable 
Expanders Fan-In Fan-Out 

Pin LC LAB Primitive Code Total Shared nla INP FBK OUT FBK Name 
41 17 B OUTPUT t 0 0 0 1 0 0 0 myOutput 

** LOGIC CELL INTERCONNECTIONS ** 
Logic Array Block 'B' : 

+- LC17 myOutput 

I 
LC I I A B I Name 

Pin 

43 -> * I - * I mylnput 

* = The logic cell or pin is an input to the logic cell (or LAB) through the PIA. 
The logic cell or pin is not an input to the logic cell (or LAB). 

defparam transport_6.DELAY = 60; 
and and1 6 ( N_11_A, N_12 ); 

TRANSPORT transport_7 ( N_12, N_12_A ); 
defparam transport_7.DELAY = 40; 

not not_7 ( N_12_A, mylnput ); 

TRANSPORT transport_8 ( N_14, N_14 A ); 
defparam transport_8.DELAY = 60; 

and and1 8 N_14_A, gnd ); 
endmodule 

The Verilog model for our ASIC, halfgate_p, is written in terms of other 
models: and, xor, or, not, TRI _ halfgate _p, TRANSPORT. The first four of these 
are, primitive models for basic logic cells and are built into the Verilog simulator. 
The model for TRI _ halfgate _p is generated together with the rest of the code. We 
also need the following model for TRANSPORT, which contains the delay information 
for the Altera MAX complex PLD. This code is part of a file (a It _ max2. vo) that is 
generated automatically. 

II MAX+plus II version 5.1 RC6 10103/94 Wed Jul 17 04:07:10 1996 
'timescale 100 ps I 100 ps 

module TRANSPORT ( OUT, IN ); input IN; output OUT; reg OUTR; 
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wire OUT = OUTR; parameter DELAY 0; 

'ifdef ZeroDelaySim 

always @IN OUTR <= IN; 
'else 

always @IN OUTR <= #DELAY IN; 

'endif 

'ifdef Silos 

initial #0 OUTR IN; 
'endif 

endmodule 

The Altera software can also write the following VHDL postroute netlist: 

ha1fgate_p (EPM7032LC44) MAX+plus II Version 5.1 RC6 10/03/94 

Wed Jul 17 04:07:10 1996 

LIBRARY IEEE; USE IEEE.std_1ogic_1164.all; 

ENTITY n_tri_ha1fgate_p IS 

GENERIC (ttri: TIME := 1 ns; ttxz: TIME := 1 ns; ttzx: TIME := 1 ns); 

PORT (inO : IN X01Z; oe : IN X01Z; outO: OUT X01Z); 

END n_tri_halfgate_p; 

ARCHITECTURE behavior OF n_tri_halfgate_p IS 

BEGIN 

PROCESS (inO, oe) BEGIN 

IF oe'EVENT THEN 

IF oe = '0' THEN outO <= TRANSPORT 'Z' AFTER ttxz; 

ELSIF oe = '1' THEN outO <= TRANSPORT inO AFTER ttzx; 

END IF; 

ELSIF oe = '1' THEN outO <= TRANSPORT inO AFTER ttri; 

END IF; 

END PROCESS; 

END behavior; 

LIBRARY IEEE; USE IEEE.std_logic_1164.all; USE work.n_tri_halfgate_p; 

ENTITY n_halfgate_p IS 

PORT ( myInput : IN X01Z; myOutput : OUT X01Z); 

END n_ha1fgate_p; 

ARCHITECTURE EPM7032LC44 OF n_halfgate_p IS 

SIGNAL gnd : X01Z := '0'; SIGNAL vcc : X01Z := '1'; 

SIGNAL n_8, B1_i1, n_10, n_11, n_12, n 14 

COMPONENT n_tri_halfgate_p 

GENERIC (ttri, ttxz, ttzx: TIME); 

X01Z; 

PORT (inO, oe : IN X01Z; outO : OUT X01Z); 

END COMPONENT; 

BEGIN 

PROCESS (myInput) BEGIN ASSERT myInput /= 'X' OR Now = 0 ns 

REPORT "Unknown value on myInput" SEVERITY Warning; 
END PROCESS; 

n tri 2: n_tri_halfgate_p 
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GENERIC MAP (ttri => 4 ns, ttxz => 6 ns, ttzx => 6 ns) 
PORT MAP (inO => n_S, oe => vcc, outO => myOutput)i 

n_delay_3: n_S <= TRANSPORT Bl il AFTER 1 nSi 
n xor 4: Bl il <= n 10 XOR n_14i 

n_or_S: n_l0 <= n_11i 

nand 6: n 11 <= TRANSPORT n 12 AFTER 6 nSi 

n not 7: n 12 <= TRANSPORT NOT myInput AFTER 4 nSi 

nand S: n 14 <= TRANSPORT gnd AFTER 6 nSi 
END EPM7032LC44i 
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LIBRARY IEEEi USE IEEE.std_logic_1164.a11i USE work.n_halfgate_Pi 
ENTITY halfgate_p IS 

PORT ( myInput : IN std_logici myOutput : OUT std_logic)i 

END halfgate_Pi 
ARCHITECTURE EPM7032LC44 OF halfgate_p IS 

COMPONENT n_halfgate_p PORT (myInput : IN XOIZi myOutput 

END COMPONENTi 
BEGIN 

n_O: n_halfgate_p 

OUT XOIZ)i 

PORT MAP ( myInput => TO_XOIZ(myInput), myOutput => myOutput)i 

END EPM7032LC44i 

The VHDL is a little harder to decipher than the Verilog, so the schematic for 
the VHDL postroute netlist is shown in Figure 8.2. This VHDL netlist is identical in 
function to the Verilog netlist, but the net names and component names are different. 
Compare Figure 8.2 with Figure 5.15(c) in Section 5.4, "Alter a MAX," which shows 
the Altera basic logic cell and Figure 6.23 in Section 6.8, "Other I/O Cells," which 
describes the Altera I/O cell. The software has fixed the inputs to the various ele­
ments in the Altera MAX device to implement a single inverter. 

8.3.4 Comparison 
The halfgate ASIC design illustrates the differences between a nondeterministic 
coarse-grained FPGA (Xilinx XC4000), a nondeterministic fine-grained FPGA 
(Actel ACT 3), and a deterministic complex PLD (Altera MAX 7000). These differ­
ences, summarized as follows, were apparent even in the halfgate design: 

1. The Xilinx LCA architecture does not permit an accurate timing analysis until 
after place and route. This is because of the coarse-grained nondeterministic 
architecture. 

2. The Actel ACT architecture is nondeterministic, but the fine-grained structure 
allows fairly accurate preroute timing prediction. 

3. The Altera MAX complex PLD requires logic to be fitted to the product steer­
ing and programmable array logic. The Altera MAX 7000 has an almost deter­
ministic architecture, which allows accurate preroute timing. 
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Programmable 
Interconnect Array (PIA) 

OE output enable 

vcc 

110 Control 
Block (IOC) 

FIGURE 8.2 The VHDL version of the postroute Altera MAX 7000 schematic for the half­
gate ASIC. Compare this with Figure 5.15(c) and Figure 6.23. 

8.4 SUfl1mary 

The important concepts covered in this chapter are: 

• FPGA design flow: design entry, simulation, physical design, and program-
mmg 

• Schematic entry, hardware design languages, logic synthesis 

• PALASM as a common low-level hardware description 

G EDIF, Verilog, and VHDL as vendor-independent netlist standards 

Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

8.1 (Files, 60 min.) Create a version of Table 8.1 for your design system. 

8.2 (Scripts, 60 min.) Create a version of Table 8.5 for your design system. 
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8.3 (Halfgate, 60 min.) 

a. Using an FPGA of your choice, estimate the preroute delay of a single 
inverter (including I/O delays). 

b. Complete a halfgate design and explain the postroute delays (make sure you 
know what conditions are being used-worst-case commercial, for example). 

8.4 (***Xilinx die analysis, 120 min.) The data in Table 8.10 shows some infor­
mation derived from a die photo of an ATT3020 (equivalent to a Xilinx 3020) in the 
AT &T data book. The die photo shows the CLBs clearly enough that we can mea­
sure their size. Then, knowing the actual die size, we can calculate the CLB size and 
other parameters. From your knowledge of the contents of the XC3020 CLB, as well 
as the programming and interconnect structures, make an estimate (showing all of 
your approximations and explaining all of your assumptions) of the CLB area and 
compare this to the value of 277 mils2 shown in Table 8.10. You will need to calcu­
late the number of logic gates in each CLB including the LUT resources. Estimate 
how many pass transistors and memory elements are required as well as calculate 
how many routing resources are assigned to each CLB. Hint: You may need to use 
the Xilinx software, look at the Xii in x data books, or even the AT&T (Lucent) Orca 
documentation. 

TABLE 8.10 ATT3020 die information (Problem 8.4). 

Parameter Specified in data book Measured on die photo Calculated from die photo 

183.5 mil 

219.3 mil 

3020 die width 

3020 die height 

3000 CLB width 

3000 CLB height 

3000 CLB area 

4.1 em 

4.9 em 

0.325 em 

0.425 em 

14.55 mil = 370 11m 

19.02 mil = 483 11m 

277 mils2 

3020 pad pitch 1.61 mm/pad 

Source: AT&T Data Book, July 1992, p. 3-76, MN92-024FPGA. 

8.5 (***FPGA process, 120 min.) Table 8.11 describes AT&T's 0.9 11m twin-tub 
V CMOS process, with 0.75 11m minimum design rules and 0.6 11m effective channel 
length and silicided (TiS2) poly, source, and drain. This is the process used by AT&T 
to second-source the Xilinx XC3000 family of FPGAs. Calculate the parasitic resis­
tance and capacitance parameters for the interconnect. 

8.6 (Xilinx die costs, 10 min.) Table 8.12 shows the AT&T ATT3000 series die 
information. Assume a 6-inch wafer that costs $2000 to fabricate and has a 90 per­
cent yield. (a) What are the die costs? (b) Compare these figures to the costs of 
XC3020 parts in 1992 and comment. 

7.21 mil/pad 
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TABLE 8.11 ATT3000 O.9J..lm twin-tub V CMOS process (Problem 8.5). 

Parameter 

Die thickness, tdie 
Wafer diameter, WD 

Wafer thickness, Wt 

Minimum feature size, 2A 

Effective gate length, Left (n-channel and p-channel) 

First-level metal, m1 

Second-level metal, m2 

m1 width 

m2 width 

m1 thickness 

m2 thickness 

m1 spacing 

m2 spacing 

D1 dielectric thickness, boron/phosphorus doped glass 

D2 dielectric thickness, undoped glass 

Minimum contact size 

Minimum via size 

Isolation oxide, FOX 

Gate oxide 

Value 

21 mil 

5inch 

25 mil 

0.75 j..1m 

0.6j..1m 

TiiAICuSi 

AICuSi 

0.9j..1m 

1.2j..1m 

0.5j..1m 

1.0j..1m 

1.0j..1m 

1.3j..1m 

3500A 

9000A 

1.0j..1m 

1.2j..1m 

3500 A 

150A 

Source: AT&T Data Book, July 1992, p. 2-37 and p. 3-76, MN92-024FPGA. 

TABLE 8.12 ATT3000 die information (Problem 8.6). 

Die height Die width Die area Die area 
Die Imils Imils Imils2 Icm2 CLBs 

3020 219.3 183.5 40,242 0.26 8x8 

3030 259.8 215.0 55,857 0.36 10 x 10 

3042 295.3 242.5 71,610 0.46 12 x 12 

3064 270.9 366.5 99,285 0.64 16 x 14 

3090 437.0 299.2 130,750 0.84 16 x20 

Die perimeter 110 
Imils pads 

806 74 

950 98 

1076 118 

1275 142 

1472 166 

Source: AT&T Data Book, July 1992, p. 3-75, MN92-024FPGA. 1 mil2 = 2.542 x 10-6 cm2 = 6.452 x 10-6 cm2. 
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8.7 (Pad density) Table 8.12 shows the number of pads on each of the 
AT&T 3000 (equivalent to the Xilinx XC3000) die. Calculate the pad densities in 
mil/pad for each part and compare with the figure for the ATT3020 in Table 8.10. 

8.8 (Xilinx HardWire, 10 min.) Xilinx manufactures nonprogrammable versions 
of its LCA family of FPGAs. These HardWire chips are useful when a customer 
wishes to convert to high-volume production. The Xilinx 1996 Product overview 
(p. 16) shows two die photographs: one, an XC3090 (with the four quadrants of 
8 x 10 CLB matrices visible), which is 32 mm x 47 mm; the other shows the 
HardWire version (24 mm x 29 mm). Estimate the die size of the HardWire version 
from the data in Table 8.12 and estimate the percentage of a Xilinx LCA that is 
taken up by SRAM. 

Answer: 60,500 mils2; 50 %. 

8.9 (Xilinx XDE, 10 min.) During his yearly appraisal Dewey explains to you 
how he improved three Xilinx designs last year and managed to use 100 percent of 
the CLBs on these LCA chips by means of the XDE manual place-and-route pro­
gram. As Dewey's boss, rank Dewey from 1 (bad) to 5 (outstanding) and explain 
your ranking in a space that has room for no more than 20 words. 

8.10 (Clocks, 60 min) (From a discussion on an Internet newsgroup including 
comments from Peter Alfke of Xilinx) "Xilinx guarantees that the minimum value 
for any delay parameter is always more than 25 % of the maximum value for that 
same parameter, as published for the fastest speed grade offered at any time. Many 
parameters have been reduced significantly over the years, but the clock delay has 
not. For example, comparing the fastest available XC3020-70 in 1988 with the fast­
est available XC3020A-6 (1996): 

o logic delay (tILO) decreased from 9 ns to 4.1 ns 

• output-to-pad delay decreased from 10 ns to 5 ns 

o internal-clock-to-output pad delay decreased from 13 ns to 7 ns 

The internal speed has more than doubled, but the worst-case clock distribution 
delay specification has only changed from 6.0 ns (1988) to 5.7 ns (1996)." 

Comment on the reasons for these changes and their repercussions. 

8.11 (State-machine design) 

a. (10 min.) Draw the state diagram for the LOGjiC code in Table 8.2. 

b. (10 min.) Show, using an example input sequence, that the detector works. 

c. (10 min.) Show that the state equations and the encoding for the PALASM 
code in Table 8.2 correctly describe the sequence detector state machine. 

d. (30 min.) Convert this design to a different format of your choice: schematic, 
low-level design language, or HDL. 

e. (30 min.) Simulate and test your design. 
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8.12 (FPGA software, 60 min.) Write a minitutorial (less than 2 pages) on using 
your FPGA design system. An example set of instructions for the Altera 
MAX PLUS II software on a Unix system are shown below: 

Setup: 

1. Copy -altera/M+2/maxplus2. ini into -you/yourDirectory (call this 
the working directory). 

2. Edit maxplus2. ini and point the DESIGN_NAME to your design 

3. Copy -altera/M+2/compass .lmf and -altera/M+2/compass. edc into 
your working directory. 

4. Copy -al tera/M+2 / foo. acf into your working directory and rename it 
mydesign. acf if your design name is mydesign. edf. 

5. Set the environment as follows: 

setenv LM_LICENSE_FILE -altera/maxplus2/adm/license.altera 

set path=($path -altera/maxplus5.1/bin) 

and run the programs in batch mode: maxplus2 -c mydesign.edf. Add to this 
information on any peculiarities of the system you are using (handling of overwrit­
ing of files, filename extensions and when they are created, arguments required to 
run the programs, and so on). 

8.13 (Help, 20 min.) Print the "help" for the key programs in your FPGA system 
and form it into a condensed "cheat-sheet." Most programs echo help instruction 
when called with a I -help I or '? I argument (this ought to be a standard). For 
example, in the Actel system the key programs are edn2adl, ad12edn, and als (in 
newer versions ad12edn is now an option to als). Hint: Actel does not use I -help I 

argument, but you can get instructions on the syntax for each option individually. 
Table 8.13 shows an example for the Xilinx xdelay program. 

8.6 Bibliography 

There are few books on FPGA design software. Skahill's book [1996] covers PLD 
and FPGA design with Cypress FPGAs and the Cypress Warp design system. 
Connor has written two articles in EDN describing a complete FPGA design project 
[1992]. Most of the information on design software is available from the software 
companies themselves-increasingly in online form. There is still some material that 
is only available through the BBS or from a file-transfer protocol (ftp) site. There 
is also a great deal of valuable material available in data books printed between 
1990 and 1995, prior to the explosion of the use of the Internet in the late-1990s. I 
have included pointers to these sources in the following sections. 
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TABLE 8.13 Xilinx xdelay arguments. 

usage: xdelay [<options>] [<lcafile> .. ] 
where <options> are: 

-help 

-timespec 

-s 

-x 
-t <template file> 

Print this help. 

Do timespec based delay analysis. 
Write short xdelay report. 

Write long xdelay report. 

Read <template file>. 
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-r 

-0 <file> 

Use two letter style block names in output. 
Send output to file. 

-w 
-u <speed> 

Write design file, after retiming net delays. 

Use the <speed> speed grade. 

-d Don't trace delay paths. 

-convert <input .lca file> <new part type> <output .lca file> 
Convert the input design to a new part type. 

Specify no arguments to run xdelay in interactive mode. 

To Select Report Specify Option 

TimeSpec summary -time spec 

Short path details -s 
Long path details -x 

Analyze summary none of -s, -x or -timespec 

A template file can be specified with the -t option to further filter the selected 

report. Only those template commands relevant to the selected report will be used. 

Using -wand -d options together will insert delay information into the design file(s), 

without tracing any paths. 

The ~convert option may not be used with any other options. 

8.6.1 FPGA Vendors 
Actel (http://www.actel.com) has a Frequently Asked Questions (FAQ) guide 
that is an indication of the most common problems with FPGA design: 

o Software versions, installation, and security, and not having enough com­
puter memory 

o XII, Motif, and OpenWindows-problems with paths and fonts. Compatibil­
ity problems with Windows 95 and NT 

• Including I/O pads in a design using schematic entry and logic synthesis­
problems with the commands and the exact syntax to use 
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• Using third-party software for schematic entry or logic synthesis and 
libraries-problems with versions and paths 

• EDIF netlist issues 

It seems most of these problems never go away-they just keep resurfacing. If 
you design a halfgate ASIC, an inverter, start-to-finish, as soon as you get a new set 
of software, this will alert you to most of the problems you are likely to encounter. 

The May 1989 Actel data book contains details of the early antifuse experi­
ments. The Actel April 1990 data book has a chip photo of the Actel 1010 on the 
cover (from which some useful information may be derived). Reliability reports and 
article reprints are now included in the data books (see, for example, [Actel, 1996]). 
There is PowerPoint presentation on FPGAs (arehi tee. exe) and the Actel FPGA 
architecture at its Web site. 

The Xilinx data book (see, for example, [Xilinx, 1996]) contains several hun­
dred pages of information on LCA parts. Xilinx produced a separate User Guide and 
Tutorials book that contains over 600 pages of application notes, guides, and tutori­
als on designing with FPGAs and Xilinx FPGAs in particular. XCELL is the quar­
terly Xilinx Newsletter, first published in 1988. It is available online and contains 
useful tips and pointers to new application notes. There is an extensive set of Xilinx 
Application Notes at http://www . xilinx. eoml apps. A 250-page guide to using 
the Synopsys software (hdl dg. pdf) covers many of the problems users experience 
in using any logic synthesizer for FPGA design. 

Xilinx provides design kits for its EPLD FPGAs for third-party software such as 
the Viewlogic design entry and simulation programs. The interconnect architecture 
in the Xilinx EPLD FPGA is deterministic and so postlayout timing results are close 
to prelayout estimates. 

AMD, before it sold its stake in Xilinx, published the 1989/1990 Programmable 
Data Array Book, which was distinct from the Xilinx data book. The AMD data 
book contains useful information and code for programs to download configuration 
files to Xilinx FPGAs from a PC that are still useful. 

Altera publishes a series of loose-leaf application notes on a variety of topics, 
some of them are in the data book (see, for example [Altera, 1996]), but some are 
not. Most of these application notes are available as the AN series of documents at 
http://www.altera.eom/html/literature. This includes guides on using 
Cadence, Mentor, Viewlogic, and Synopsys software. The 100-page Synopsys guide 
(as sig. pdf) explains many of the limitations of logic synthesizers for FPGA 
design and includes the complete VHDL source code for a voice-mail machine as an 
example. 

Atmel has a series of data sheets and application notes for its PLD logic at 
http://www.atmel.eom. Some of the data sheets (for the ATV2500, for example, 
available as doc 156. pdf) also include examples of the use of CUPL and ABEL. An 
application note in Atmel's data book (available as doc 16 8. pdf) includes the ABEL 
source code for a video frame grabber and a description of the NTSC video format. 
Atmel offers a review of its links to third-party software in a section "PLD Software 
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Tools Overview" in its data book (available online as doc150 .pdf at 
http://www.atmel.com/atmel/products). Atmel uses an IBM-compatible PC­
based system based on the Viewlogic software. Schematic entry uses View draw and 
simulation uses Viewsim. Atmel provides a separate program, a fitter, to optimize a 
schematic for its FPGA architecture. The output from this software generates an 
optimized schematic. The place-and-route software then works with this new sche­
matic. Atmel provides an interactive editor similar to the Xilinx design editor that 
allows the designer to perform placement manually. Atmel also supports PLD design 
software such as Synario from Data I/O. 

The QuickLogic design kit uses the ECS (Engineering Capture System) devel­
oped by the CAD/CAM Group and now part of DATA I/O. Simulation uses X-SIM, 
a product of Silicon Automation Systems. 

Cypress has a low-cost design system (for QuickLogic and its own series of 
complex PLDs) called Warp that uses VHDL for design entry. 

8.6.2 Third-Party Software 
There is a bewildering array of software and software companies that make, sell, and 
develop products for PLD and FPGA design. These are referred to as third-party 
vendors. In the remainder of this section we shall describe (in alphabetical order) 
some of the available third-party software. This list changes frequently and for more 
information you might search the EE sites from the Bibliography in Chapter 1. 

Accel (http://www . edac. org/EDAC/Companies) produces Tango and 
P-CAD (which used to belong to Personal CAD Systems) that are a low-cost and 
popular schematic-entry and PCB layout software for PCs. Currently there are no 
FPGA vendors that support P-CAD or Tango directly. The missing ingredient is a set 
of libraries with the appropriate schematic symbols for the logic macros and cells 
used by the FPGA vendor. 

AMD (http://www.amd.com) produces the Mach series of PLDs and is also 
the owner of PALASM. All of the FPGA vendors use the PALASM and PALASM2 
languages as interchange formats. Using PALASM is an easy way to incorporate a 
PLD into an FPGA. 

Antares (http://www.anteresco.com) is a spin-off from Mentor Corporation 
formed from Exemplar Logic, a company specializing in synthesis software for 
PLDs and FPGAs, and Model Technology, who produce a VHDL and Verilog simu­
lator using a common kernel. 

Cadence (http://www.cadence.com) is one of the largest EDA companies. 
They offer design kits for PLD and FPGA design with its schematic-entry 
(Composer) and logic-synthesis (Concept) software. The Cadence Web site has 
some pictures of ASIC and FPGA design flow in its third-party support area. To find 
these, search for "FPGA" from the main menu. 
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Compass Design Automation (http://www.compass-da.com) is a spin-off 
from VLSI Technology that specializes in ASIC design software and cell libraries. 
As part of its system design software, this vendor includes compilers and libraries 
for Xilinx, Actel, and Altera FPGAs. 

Data I/O (http://www.data-io.com) makes the FutureNet DASH schematic­
entry program primarily for IBM-compatible PCs. Version 5 also has an ED IF 200 
netlist writer, and an optional program PLDlinx to convert designs to ABEL. Data 
I/O's ABEL is a very widely used PLD design standard. Most FPGA software allows 
the merging of ABEL files with netlists from schematic-entry programs. Usually you 
have to translate ABEL to PALASM first and then merge the PALASM file with any 
netlists that you created from schematics. ABEL is available on SUN workstations, 
IBM-compatible PC-DOS, and Macintosh platforms. The Macintosh version is 
available through Capilano Computing, using its Design Works program. Data I/O 
has extended its ABEL language for use with FPGA design. ABEL-FPGA is a set of 
software that can accept hardware descriptions in ABEL-HDL. ABEL-HDL is an 
extension of the ABEL language which is optimized for programmable logic. One of 
the features of ABEL-HDL is a set of naming extensions, dot extensions, which 
allow the designer to specify how certain signals will be mapped into an FPGA. 

Data I/O also makes a number of programmers. For example, the Unisite 
PROM programmer can be used to program Actel, Altera MAX, and Xilinx EPLD 
devices. 

Data I/O has recently launched a separate division called Synario Design Auto­
mation (http://www.synario.com) that has taken over ABEL and produces a 
new series of PLD and FPGA design software under the Synario banner. 

Exemplar, now part of Antares, writes many of the software modules for logic 
synthesis used by other companies in their FPGA synthesis software. Exemplar pro­
vides a software package that allows you to enter hardware descriptions in ABEL, 
PALASM, CUPL, or Minc formats. 

ISDATA produces a system called LOG/iC that can be used for FPGA design. 
LOG/iC produces JEDEC fusemap files, which can be converted and merged with 
netlists created with other vendors' software. An evaluation diskette contains 
LOG/iC software that programs the Lattice GAL16V8. ISDATA also makes a pro­
gram called STATE/view for design using state diagrams and flow charts and works 
with LOG/iC and ABEL. HINT is a program that accepts a subset of VHDL and 
compiles to the LOG/iC language. 

Logical Devices (http://www.logicaldevices.com) acquired CUPL, a 
widely used programming language for PLDs, from Personal CAD Systems in 1987. 
Most FPGA vendors allow you to use files in CUPL format indirectly. Usually you 
translate to the PALASM format first in order to incorporate any logic you design 
with CUPL. Logical Devices also sells EPROM programming hardware. They man­
ufacture programmers for FPGAs. 
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Mentor Graphics Corporation (http://www.mentorg.com) is a large EDA 
company. Mentor produces schematic-entry and logic-synthesis software, IDEA Sta­
tion and FPGA Station, that interface to the major FPGA vendors (see also Antares). 

Minc's PLDesigner software allows the entry of PLD designs using a mixture of 
truth tables, waveforms, Minc's Design Synthesis Language (DSL), schematic 
entry, or a netlist (in EDIF format). Another Minc program PGADesigner includes 
the ability to target FPGAs as well as PLDs. This program is compatible with the 
OrCAD, P-CAD, and FutureNet DASH schematic-entry programs. 

OrCAD (http://www.orcad.com) is a popular low-cost PC schematic-entry 
program supported directly by a number of FPGA vendors. 

Simucad (http://www.simucad.com) produces PC-SILOS, a low-cost logic­
simulation program for PCs machines. Xilinx used to bundle Simucad with 
FutureNet DASH in its least expensive, entry-level design kit. 

Synopsys (http://www.synopsys.com) sells logic-synthesis software. There 
are two main products: the Design Compiler for ASIC design and the FPGA Com­
piler for FPGA design. FPGA Express is a PC-based FPGA logic synthesizer. There 
is an extensive on-line help system available for Synopsys customers. 

Tanner Research (http://www.tanner.com) offers a variety of ASIC design 
software and a "burning service"; you send them the download files to program the 
FPGAs and Tanner Research programs the parts and ships them to you. Tanner 
Research also offers an Actel schematic library for its schematic-entry program 
S-Edit. 

Texas Instruments (TI) and Minc produces mapping software between TI's gate 
alTays and FPGAs (TI's relationship with Actel is somewhere between a second­
source and a partner). Mapping software allows designers to design for a TI gate alTay, 
for example, but prototype in FPGAs. Alternatively you could take an existing FPGA 
design and map it into a TI gate alTay. This type of design flow is popular with vendors 
such as AT&T (Lucent), TI, and Motorola who would like you to prototype with their 
FPGAs before transfelTing any high-volume products to their ASICs. 

Viewlogic (http://www.viewlogic.com) produces the Workview and 
PRODesigner systems that are sets of ASIC design programs available on a variety of 
platforms. The Workview software consists of a schematic-entry program Viewdraw; 
two simulators: Viewsim and Viewfault; a synthesis tool, Viewgen; Viewplace for lay­
out interface; Viewtrace for simulation analysis; and Viewwave for graphical display. 
There is also a package, Viewbase, that is a set of software routines enabling program­
mers to access Viewlogic's database in order to create EDIF, VHDL, and CFI (CAD 
Framework Initiative) interfaces. Most of the FPGA vendors have a means to incorpo­
rate Viewlogic's schematic netlists using Viewlogic's WIR netlist format. Viewlogic 
provides a number of applications notes (TECHniques) and includes a list of bug fixes, 
software limitations, and workarounds online. 
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8.7 References 

Page numbers in brackets after a reference indicate its location in the chapter body. 
Actel. 1996. FPGA Data Book and Design Guide. No catalog information. Available from Actel 

Corporation, 955 East Arques Avenue, Sunnyvale, CA 94086-4533, (408) 739-1010. Con­
tains design guides and applications notes, including: Estimating Capacity and Performance 
for ACT 2 FPGA Designs (describes circuits to connect FPGAs to PALs); Binning Circuit of 
Actel FPGAs (describes circuits and data for performance measurement); Global Clock Net­
works (describes clock distribution schemes); Fast On and Off Chip Delays with ACT 2 I/O 
Latches (describes techniques to improve I/O performance); Board Level Considerations for 
Actel FPGAs (describes ground bounce and SSO problems); A Power-On Reset (POR) Cir­
cuit for Actel Devices (describes problems caused by slowly rising supply voltage); Imple­
menting Load (sic) Latency Fast Counters with ACT 2 FPGAs; Oscillators for Actel FPGAs 
(describes crystal and RC oscillators); Designing a DRAM Controller Using Language­
Based Synthesis (a detailed Verilog description of a 4 MB DRAM controller including 
refresh). See also the Actel Web site. [po 322] 

Altera. 1996. Data Book. No catalog information. Available from Altera Corporation, 2610 
Orchard Parkway, San Jose, CA 95134-2020, (408) 944-0952. Contains information on the 
FLEX iOk and 8000 complex PLDs; MAX 9000,7000, and 5000 complex PLDs; FLASH­
logic; and EPLDs. A limited number of application notes are also included. More informa­
tion may be found at the Altera Web site. [po 322] 

Connor, D. 1992. "Taking the first steps." EDN, April 9, p. 98. ISSN 0012-7515. The second 
part of this article, "Migrating to FPGAs: Any designer can do it," was published in EDN, 
April 23, 1992, p. 120. See also http://www.ednmag.com. Both articles are reprinted 
in the 1994 Actel Data Book. A description of designing, simulating, and testing a voicemail 
system using View logic software. [po 320] 

Skahill, K. 1996. VHDLfor Programmable Logic. Menlo Park, CA: Addison-Wesley, 593 p. 
ISBN 0-201-89573-0. TK7885.7.S55. Covers VHDL design for PLDs using Cypress Warp 
design system. [po 320] 

Xilinx. 1996. The Programmable Logic Data Book. No catalog information. Available from 
Xilinx Corporation, 2100 Logic Drive, San Jose, CA 95124-3400, (408) 559-7778. Contains 
details of XC9500, XC7300, and xcnoo CPLDs; XC5200, XC4000, XC3000 LCA 
FPGAs; and XC6200 sea-of-gates FPGAs. Earlier editions of this data book (the 1994 edi­
tion, for example) contained a section titled "Best of XCELL" that contained extremely use­
ful design information. Much of this design material is now only available online, at the 
Xilinx Web site. [po 322] 

343



LOW-LEVEL 
DESIGN ENTRY 

9.1 Schematic Entry 

9.2 Low-Level Design Languages 

9.3 PLA Tools 

9.4 EDIF 

9.5 CFI Design Representation 

9.6 Summary 

9.7 Problems 

9.8 Bibliography 

9.9 References 

The purpose of design entry is to describe a microelectronic system to a set of elec­
tronic-design automation (EDA) tools. Electronic systems used to be, and many 
still are, constructed from off-the-shelf components, such as TTL ICs. Design entry 
for these systems now usually consists of drawing a picture, a schematic. The sche­
matic shows how all the components are connected together, the connectivity of an 
ASIC. This type of design-entry process is called schematic enh'y, or schematic 
capture. A circuit schematic describes an ASIC in the same wayan architect's plan 
describes a building. 

The circuit schematic is a picture, an easy format for us to understand and use, 
but computers need to work with an ASCII or binary version of the schematic that 
we call a netlist. The output of a schematic-entry tool is thus a netlist file that con­
tains a description of all the components in a design and their interconnections. 

Not all the design information may be conveyed in a circuit schematic or netlist, 
because not all of the functions of an ASIC are described by the connectivity infor­
mation. For example, suppose we use a programmable ASIC for some random logic 
functions. Part of the ASIC might be designed using a text language. In this case 
design entry also includes writing the code. What if an ASIC in our system contains 
a programmable memory (PROM)? Is the PROM microcode, the' 1 's and 'O's, part of 
design entry? The operation of our system is certainly dependent on the correct pro­
gramming of the PROM. So perhaps the PROM code ought to be considered part of 
design entry. On the other hand nobody would consider the operating-system code 
that is loaded into a RAM on an ASIC to be a part of design entry. Obviously, then, 
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there are several different forms of design entry. In each case it is important to make 
sure that you have completely specified the system-not only so that it can be cor­
rectly constructed, but so that someone else can understand how the system is put 
together. Design entry is thus an important part of documentation. 

Until recently most ASIC design entry used schematic entry. As ASICs have 
become more complex, other design-entry methods are becoming common. Alterna­
tive design-entry methods can use graphical methods, such as a schematic, or text 
files, such as a programming language. Using a hardware description language 
(HDL) for design entry allows us to generate netlists directly using logic synthesis. 
We will concentrate on low-level design-entry methods together with their advan­
tages and disadvantages in this chapter. 

9.1 Schematic Entry 

Schematic entry is the most common method of design entry for ASICs and is 
likely to be useful in one form or another for some time. HDLs are replacing con­
ventional gate-level schematic entry, but new graphical tools based on schematic 
entry are now being used to create large amounts of HDL code. 

Circuit schematics are drawn on schematic sheets. Standard schematic sheet 
sizes (Table 9.1) are ANSI A-E (more common in the United States) and ISO 
A4-AO (more common in Europe). Usually a frame or border is drawn around the 
schematic containing boxes that list the name and number of the schematic page, the 
designer, the date of the drawing, and a list of any modifications or changes. 

TABLE 9.1 ANSI (American National Standards Institute) and ISO (International 
Standards Organization) schematic sheet sizes. 

ANSI sheet Size (inches) ISO sheet Size (cm) 

A 

B 

C 

D 

E 

8.5 xii AS 21.0 x 14.8 

11 x 17 A4 29.7 x 21.0 

17 x 22 A3 42.0 x 29.7 

22x34 A2 59.4 x 42.0 

34x44 Ai 84.0 x 59.4 

AO 118.9 x 84.0 

Figure 9.1 shows the "spades" and "shovels," the recognized symbols for AND, 
NAND, OR, and NOR gates. One of the problems with these recommendations is 
that the corner points of the shapes do not always lie on a grid point (using a reason­
able grid size). 
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