

US006490661B1

(12) United States Patent Keller et al.

(10) Patent No.: US 6,490,661 B1

(45) **Date of Patent:** Dec. 3, 2002

(54) MAINTAINING CACHE COHERENCY DURING A MEMORY READ OPERATION IN A MULTIPROCESSING COMPUTER SYSTEM

(75) Inventors: James B. Keller, Palo Alto, CA (US); Derrick R. Meyer, Austin, TX (US)

(73) Assignee: Advanced Micro Devices, Inc.,

Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/217,212

(22) Filed: Dec. 21, 1998

(51) Int. Cl.⁷ G06F 13/14

(52) U.S. Cl. 711/150; 711/141; 711/130

(56) References Cited

U.S. PATENT DOCUMENTS

5,303,362 A 4/1994 Butts, Jr. et al. 5,412,788 A 5/1995 Collins et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

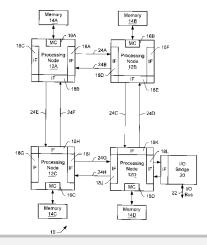
EP	0.379.771	8/1990
EP	0 412 353	2/1991
		_,
EP	0 611 026	8/1994
EP	0 777 184	6/1997
EP	817 076	1/1998

OTHER PUBLICATIONS

Kumar, et al., "Efficient and Scalable Cache Coherence Schemes for Shared Memory Hypercube Multiprocessors," IEEE, XP000533913, Pub Date Nov. 14, 1994, pp. 498–507.

Laudon, et al., "The SGI Origin: A ccNUMA Highly Scalable Server," XP000656582, Silicon Graphics, Inc., ACM, 1997, pp. 241–251.

Jhang et al., "A New Write-Invalidate Snooping Cache Coherence Protocol for Split Transaction Bus-Based Multiprocessor Systems," IEEE TENCON, Oct. 1993, pp. 229–232.


Prete, "RST Cache Memory Design for a Tightly Coupled Multiprocessor System," IEEE Micro, vol. 11, No. 2, Apr. 1991, pp. 16–19 and 40–52.

Primary Examiner—Hong Kim (74) Attorney, Agent, or Firm—Lawrence J. Merkel

(57) ABSTRACT

A messaging scheme that accomplishes cache-coherent data transfers during a memory read operation in a multiprocessing computer system is described. A source processing node sends a read command to a target processing node to read data from a designated memory location in a system memory associated with the target processing node. In response to the read command, the target processing node transmits a probe command to all the remaining processing nodes in the computer system regardless of whether one or more of the remaining nodes have a copy of the data cached in their respective cache memories. Probe command causes each node to maintain cache coherency by appropriately changing the state of the cache block containing the requested data and by causing the node having an updated copy of the cache block to send the cache block to the source node. Each processing node that receives a probe command sends, in return, a probe response indicating whether that processing node has a cached copy of the data and the state of the cached copy if the responding node has the cached copy. The target node sends a read response including the requested data to the source node. The source node waits for responses from the target node and from each of the remaining node in the system and acknowledges the receipt of requested data by sending a source done response to the target node.

35 Claims, 13 Drawing Sheets

US 6,490,661 B1

Page 2

U.S	i.]	PATENT	DOCUMENTS		6,049,851	Α	*		Bryg et al 711/141
					6,070,231	Α		5/2000	Ottinger 711/141
5,517,494 A		5/1996	Green		6,085,263	Α		7/2000	Sharma et al.
5,537,575 A	*	7/1996	Foley et al	711/141	6,098,115	Α		8/2000	Eberhard et al 710/7
5,560,038 A			Haddock		6,101,420	Α		8/2000	VanDoren et al.
5,659,708 A		8/1997	Arimilli et al	711/146	6,108,737	Α	*	8/2000	Sharma et al 710/107
5,673,413 A		9/1997	Deshpande et al.		6,108,752	Α		8/2000	Van Doren et al.
5,684,977 A		11/1997	Van Loo et al.		6,112,281	Α		8/2000	Bamford et al.
5,749,095 A		5/1998	Hagersten		6,138,218	Α	*	10/2000	Arimilli et al 711/146
5,859,983 A		1/1999	Heller et al	709/251	6,199,153				Razdan et al 711/172
5,878,268 A		3/1999	Hagersten		6,209,065				Van Doren et al 711/150
5,887,138 A		3/1999	Hagersten et al	709/215	6,249,846	B 1	*	6/2001	Van Doren et al 710/39
5,893,144 A		4/1999	Wood et al	711/122	6,275,905	В1			Keller et al 711/141
5,927,118 A		7/1999	Minote et al.		6,286,090				Steely et al 711/152
5,966,729 A		10/1999	Phelps		6,292,705				Wang et al 700/5
5,987,544 A	*	11/1999	Bannon et al	710/100	6,295,853				Razdan et al.
5,991,819 A		11/1999	Young	709/253	6,370,621			4/2002	
6,012,127 A			McDonald et al		6,393,529			5/2002	
6.018.791 A			Arimilli et al		0,373,327	וט		5,2002	ixener
	*		Irie et al		* cited by exa	mir	ner		

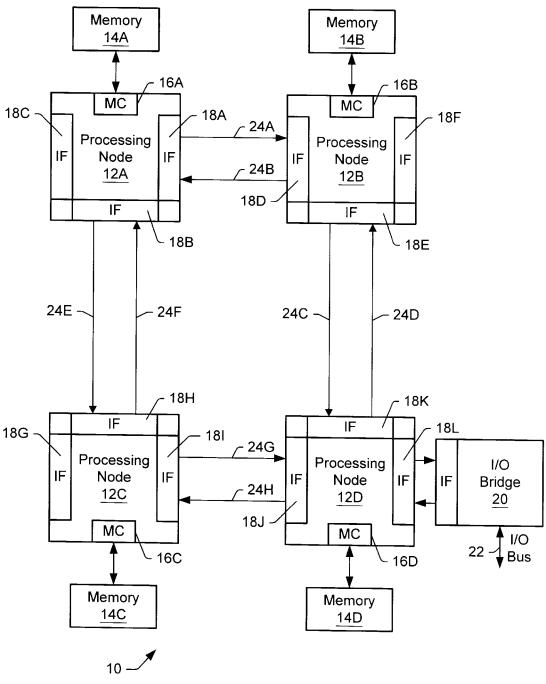


Fig. 1

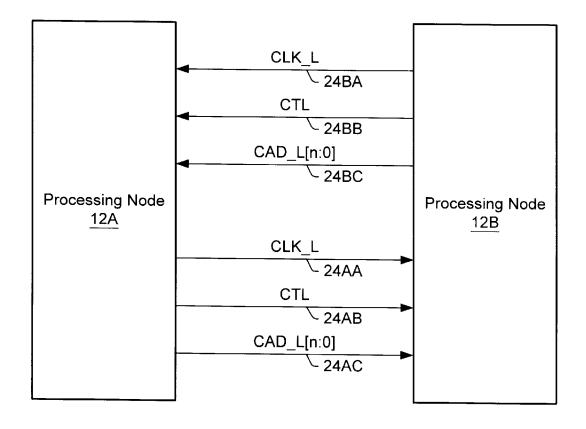


Fig. 2

US	6.	490 .	661	B1
\mathbf{c}	~,	., 0,	UUL	

Bit Time	7	6	5	4	3	2	1	0
1	Pac	ved or ket- cific	CMD[5:0]					
2	Reserved or Packet-Specific							

Fig. 3

Bit Time	7	6	5	4	3	2	1	0		
1		Node :0]	CMD[5:0]							
2		Tag :0]		SrcNo	DestNode [3:2]					
3		served ket-Spe		SrcTag[6:2]						
4	Addr[7:0]									
5	Addr[15:8]									
6	Addr[23:16]									
7	Addr[31:24]									
8	Addr[39:32]									

Fig. 4

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

