This material may be protected by Copyright law (Title 17 U.S. Code)

Tetrahedron: Asymmetry, Vol. 7, No. 5, pp. 1267-1268, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0957-41669/9 \$15.00 + 0.00

\$0957-4166(96)00139-5

First Asymmetric Synthesis of (-)-(2S, 3R)-Methanoproline

Alain Hercouet*, Bernard Bessières and Maurice Le Corre.

Laboratoire de Synthèse Organique, Associé au CNRS. Université de Rennes I. Avenue du Général Leclerc, 35042 Rennes Cedex, France.

Abstract: The title amino acid was synthesized in enantiomerically pure form, starting from (S)-(-)-butanetriol 1, by condensation of cyclic sulfate 3 with methyl benzylideneglycinate. Copyright © 1996 Elsevier Science Ltd

The potential value of 2,3-methanoaminoacids as enzyme inhibitors or in the synthesis of conformationally constrained peptidomimetics was recognized some years ago^1 . During the course of our studies toward the synthesis of cyclopropane aminoacids^{2,3}, we recently reported the synthesis of (-)-(1S, 2R)-allonorcoronamic acid using a chiral cyclic sulfate as precursor³.

We now wish to report the first asymmetric synthesis of (-)-(25, 3R)-methanoproline 7, a known ethylene biosynthesis inhibitor which has already been prepared by Stammer⁴ in the racemic form, and then resolved a few years later⁵.

Thus (S)-(-)-butanetriol⁶ 1 was converted to chlorosulfite 2^7 which was purified by flash chromatography (Scheme 1). The following oxidation, using the Sharpless procedure⁸, gave sulfate 3.

Scheme 1

Condensation of this sulfate on methyl benzylideneglycinate⁹, at room temperature in DME in the presence of two equivalents of sodium hydride, was achieved following the procedure recently reported³, to give the alkylated imine 4 in quantitative yield. This reaction is diastereospecific, only the Z isomer is obtained.

Hydrolysis of the amino protective group by 1 N HCl gave the hydrochloride 5^{10} in 80% yield, that cyclized to the desired aminoester 6 when treated with K_2CO_3 . Hydrolysis of the ester group was realized by refluxing in 6 N HCl. The aminoacid zwitterion 7^{11} was then quantitatively obtained using Dowex 50X8. This new synthesis can be perform on a multigram scale with 43% overall yield from 2 and without purification of intermediates

Spectral data and specific rotation of aminoacid 7 are in accordance with those obtained by Stammer⁵.

Acknowledgement: We are grateful to the Conseil Régional de Bretagne for a doctoral fellowship to B. B..

REFERENCES

- For recent reviews see: (a), Stammer C. H., *Tetrahedron*, 1990, 46, 2231. (b) Alami A., Calmes M.,
 Daunis J. and Jacquier R., *Bull. Soc. Chim. Fr.*, 1993, 130, 5. (c) Burgess K., Ho K. K. and
 Moye-Sherman D., *Synlett*, 1994, 575.
- 2. Le Corre M., Hercouët A. and Bessières B., Tetrahedron: Asymmetry, 1995, 6, 683.
- 3. Hercouët A., Bessières B. and Le Corre M., Tetrahedron: Asymmetry, 1996, 7, 283.
- Switzer F. L., Van Halbeek H., Holt E. M., Stammer C. H. and Salveit M. E., *Tetrahedron*, 1989, 45, 609 L.
- Matsui S., Srivastava V. P., Holt E. M., Taylor E. W. and Stammer C. H., Int. J. Peptide Protein Res., 1991, 37, 306.
- 6. Hanessian S., Ugolini A., Dubé D. and Glamyan A., Can. J. Chem., 1984, 62, 2146.
- 4-chloroethyl-2-oxo-1,3,2-dioxathiolane 2. SOCl₂ (21.3 mL, 300 mmol) is added dropwise to a solution of 1 (10.61 g, 100 mmol) in CCl₄ (100 mL) and the solution is refluxed for 3h. The solvent is evaporated and the resulting oil is chromatographied over SiO₂, eluting with Et₂O to yield the two diastereomers (50:50) of 2 (11.76 g, 69 mmol, 69%). ¹H NMR (300 MHz, CDCl₃) δ 2.06-2.48 (m, 4H); 3.65- 3.76 (m, 4H); 4.05-4.07 (m, 1H), 4.38-4.44 (m, 1H), 4.53-4.58 (m, 1H); 4.76-4.81 (m, 2H) and 5.12-5.21 (m, 1H). ¹³C NMR (75.5 MHz, CDCl₃) δ 35.45 and 36.61; 40.25 and 40.77; 70.43 and 71.26; 77.48 and 80.42.
- 8. Gao Y. and Sharpless K. B., J. Am. Chem. Soc., 1988. 110, 7538.
- 9. Stork G., Leong A. Y. W. and Touzin A. M., J. Org. Chem., 1976, 41, 3491.
- 10. NMR of crude 5 : ¹H (300 MHz, CDCl₃) δ 1.62-1.74 (m, 2H), 1.98-2.05 (m, 1H), 2.19-2.26 (m, 1H), 2.41-2.46 (m, 1H), 3.67-3.82 (m, 2H), 3.78 (s, 3H) and 9.14 (br s, 3H). ¹³C (75.5 MHz, CDCl₃) δ 19.26, 24.19, 30.03, 38.40, 44.05, 53.38 and 169.73.
- 11. (-)-(2*S*, 3*R*)-Methanoproline 7: M.p. 217°C (dec) (Litt.⁵ M.p. 215°C (dec)), $\left[\alpha\right]_{D}^{20}$ -51.2 (c 1, MeOH) (Litt.⁵ $\left[\alpha\right]_{D}^{20}$ -48.2 (c 1, MeOH). ¹H NMR (300 MHz, D₂O) δ 1.27-1.31 (m, 1H), 1.44-1.49 (m, 1H), 2.03-2.21 (m, 3H), 2.86-2.91 (m, 1H) and 3.39-3.46 (m, 1H). ¹³C NMR (75.5 MHz, D₂O) δ 15.57, 27.28, 27.31, 45.40, 51.16 and 176.81.

(Received in UK 8 March 1996)

