Synthesis of all four diastereoisomers of 4-(carboxymethyl)proline, a conformationally constrained analogue of 2-aminoadipic acid

Roberto Pellicciari, ${ }^{*, a}$ Loredana Arenare, ${ }^{b}$ Paolo De Caprariis, ${ }^{b}$ Benedetto Natalini, ${ }^{a}$ Maura Marinozzi ${ }^{a}$ and Alessandro Galli ${ }^{\text {b }}$
${ }^{a}$ Istituto di Chimica Farmaceutica e Tecnica Farmaceutica, Università degli Studi di Perugia, Via del Liceo I, 06123 Perugia, Italy
${ }^{\text {b }}$ Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
${ }^{c}$ Dipartimento di Farmacologia Preclinica e Clinica, Università degli Studi di Firenze, Viale Morgagni 65, 50134 Firenze, Italy

The dirhodium(II) tetraacetate catalysed reaction of ethyldiazoacetate with 2,3-dihydropyrrole-2,2-dicarboxylate 5 afforded the useful 2-azabicyclo[3.1.0]hexane derivative 6. Its conversion into the proline- γ-acetic acid equivalent 9 as well as into the four isomers constituting the 4 -(carboxymethyl)proline 13 (16a-19a) whose absolute configuration was established by an alternative asymmetric synthesis of two of them is described. Freliminary data concerning the affinity of compounds 16a-19a for the NMDA site of the NMDA receptor complex are also reported.

As part of on-going studies directed to the synthesis and biological evaluation of conformationally restricted amino acid analogues, ${ }^{1}$ we report here the preparation of compounds 16a-19a, the four possible isomers of the non-proteinogenic amino acid 4-(carboxymethyl)proline 2, which incorporate the $(2 R)$ - and ($2 S$)-aminoadipic acid moieties [($2 R$)- and ($2 S$)-AA]. The $(2 R)$-isomers $16 \mathbf{a}$ and $17 \mathbf{a}$, in particular, are partially constrained analogues of ($2 R$)-AA 1, a selective competitive antagonist for the NMDA receptor site of the NMDA receptor complex. ${ }^{2}$ Previous attempts to reduce the conformational mobility of 1 in order to achieve energetically improved interactions with the NMDA receptor site have already been reported. Interestingly, $(2 R, 4 R, 5 R)$-2-amino-4,5-methanoadipic acid 3, a compound of this class, has been shown to be a selective

NMDA receptor site partial agonist, endowed with promising biological properties. ${ }^{3}$

For the preparation of compounds 16a-19a our attention was focused on the utilization of the 2-azabicyclo[3.1.0]hexane-$3,3,6$-tricarboxylate 6 , prepared as outlined in Scheme $1 .{ }^{4}$ Condensation of diethyl N -Cbz-aminomalonate with acrolein in a benzene solution of sodium ethoxide gave the known diethyl 1-Cbz-5-hydroxypyrrolidine-2,2-dicarboxylate $4^{5}(82 \%$ yield), the dehydration of which with $\mathrm{P}_{2} \mathrm{O}_{5}$ in refluxing benzene for 2 h furnished the corresponding diethyl 1-Cbz-2,3-dihy-dropyrrole-2,2-dicarboxylate 5 in 35% yield. Dirhodium(II) tetraacetate catalysed decomposition of ethyl diazoacetate in the presence of $5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 12 \mathrm{~h}\right)$ afforded the 2 azabicyclo[3.1.0] hexane derivative 6 as a ca. $1: 1$ mixture of exo and endo forms in 46% yield. ${ }^{6}$
The utilization of 6 for the preparation of the synthetically useful lactone 9 , containing a γ-imino carbonyl system in masked form, has been the object of a preliminary communication. ${ }^{4}$ This conversion was achieved by submitting 6 to partial hydrolysis $\left(0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, \mathrm{RT}, 5 \mathrm{~h}, 87 \%\right.$ yield) followed by monodecarboxylation of the resulting

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux (35%); ii, EDA, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT (46%); iii, $0.5 \mathrm{~mol} \mathrm{dm}{ }^{3} \mathrm{NaOH}$ $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}\right)$, RT (87%); iv, PhMe, reflux (75%) ; v, $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ ($\mathrm{H}_{2} \mathrm{O}$-dioxane, $5: 1$), RT (87%)
dicarboxylate 7 (PhMe , reflux, 12 h) and, finally, by acidic treatment ($6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}, \mathrm{RT}, 72 \mathrm{~h}, 87 \%$ yield) of the resulting cyclopropyl derivative 8 .

We report now a new synthetic transformation of 6 which allows the entry into the title compounds. Indeed, treatment of 6 with hydrogen in the presence of $10 \% \mathrm{Pd}-\mathrm{C}$ in MeOH at room temperature for 1.5 h leads to reductive cleavage of the cyclopropyl moiety with the consequent formation of $\mathbf{1 0}(98 \%$ yield), which was sequentially submitted to Cbz protection, partial saponification ($0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, \mathrm{RT}$, 5 h) and thermal monodecarboxylation ($\mathrm{PhMe}, 15 \mathrm{~h}$) of the dicarboxylic acid 12 to give the desired 4-(carboxymethyl)proline derivative 13 with an overall yield of 62.5% starting from

Scheme 2 Reagents and conditions: i, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}(98 \%$); ii, $\mathrm{CbzCl}, \mathrm{NaHCO}_{3}(97 \%)$; iii, $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}\right), \mathrm{RT}$ $\left(90 \%\right.$); iv, PhMe, reflux (73%); v, (+)-menthol, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ DMF ($1: 1$), 76 h ; vi, MPC (14: $63 \%, 15: 6.7 \%$); vii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, MeOH; viii, MPC (16: $42 \%, 17: 32 \%$, 18: 38%, 19: 24%); ix, $6 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl , reflux, 14 h ; x, Dowex, $50 \times 2-200$ (16a: 86%, 17a: 98%, 18a: 84%, 19a: 83%)

Table 1 Selected physicochemical properties of the four isomers 16a-19a

	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	$[\alpha]_{\mathrm{D}}^{22}$
$\mathbf{1 6 a}$	$224-225$	+66.8
17 a	$232-233$	+34.2
18 a	$228-229$	-66.5
19 a	$234-235$	-33.4

6. HPLC analysis of $\mathbf{1 3}$ showed that it was a mixture of all the four possible isomers, whose resolution required the preparation of the corresponding $(+)$-menthyl esters, ${ }^{7}$ as shown in.Scheme 2. Thus, esterification of 13 with (+)-menthol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{DMF}$ ($1: 1$) in the presence of DCC and DMAP for 76 h afforded the corresponding ($2 R$) and ($2 S$) diastereoisomeric compounds 14 and 15 , respectively, which were separated by medium pressure chromatography (MPC) in 63 and 7% yield, respectively. The $(2 R)$ derivative 14 was then submitted to catalytic hydro-
genolysis $(10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}, \mathrm{RT}, 2.5 \mathrm{~h})$ followed by MPC to afford the two esters $(2 R, 4 R)-16$ and $(2 R, 4 S)-17$ (30 and 24% yield, respectively). Analogously, the ($2 S$) derivative 15 afforded the two esters $(2 S, 4 S)-18$ and $(2 S, 4 R)-19$ in 38 and 25% yield, respectively.

Finally, each of the four isomeric esters $16-19$ was submitted to acidic hydrolysis ($6 \mathrm{~mol} \mathrm{dm}{ }^{-3}, \mathrm{HCl}$, reflux, 12 h) followed by cation exchange resin chromatography eluting with 10% pyridine in water. In this way, $(+)-(2 R, 4 R)-4$-(carboxymethyl)proline 16a, $(+)-(2 R, 4 S)-4$-(carboxymethyl)proline 17a, (-)-($2 S, 4 S$)-4-(carboxymethyl)proline $18 \mathbf{a}$ and $(-)-(2 S, 4 R)$ -4-(carboxymethyl)proline 19a were obtained in $86,96,87$ and 91% yield, respectively. ${ }^{8}$ Relevant physicochemical properties and ${ }^{13} \mathrm{C}$ NMR data of the four isomers $16 a-19 a$ are reported in Tables 1 and 2, respectively.

The assignment of the absolute configurations to the four isomers 16a-19a was made possible by the enantiomerically pure compound (EPC) synthesis of two of them (Scheme 3).

Scheme 3 Reagents and conditions: i, $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{AcOH}, 50 \mathrm{psi}(55 \%)$; ii, $6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}, 14 \mathrm{~h}$, reflux; iii, Dowex $50 \times 2-200$ (19a: 70\%, 18a: 88%); iv, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{AcOH}, 40 \mathrm{psi}(98 \%) ; \mathrm{v}, \mathrm{CbzCl}, \mathrm{NaHCO}_{3}$ (99%); vi, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 \mathrm{~h}$, RT (72.5%); vii, (+)-menthol, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ DMF ($1: 1$), $76 \mathrm{~h}\left(78 \%\right.$); viii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, MeOH; ix, MPC (26: 18%, 27: 26.5%)

Thus, Peterson condensation of the protected S-4-oxoproline with tert-butyl α-trimethylsilylacetate afforded the corresponding ($2 S$)-diester 20^{9} (34% yield) which was submitted to catalytic hydrogenation in the presence of PtO_{2} in acetic acid ($50 \mathrm{psi}, \dagger 10 \mathrm{~h}$) to give stereospecifically the known $(2 S, 4 R)$ diester 21 in 55% yield. ${ }^{9}$ Acidic hydrolysis of 21 followed by cation exchange resin chromatography eluting with 10% pyridine in water afforded (-)-($2 S, 4 R$)-4-(carboxymethyl)proline 19 a (70% yield), identical with that already reported in the literature. ${ }^{8}$
$\dagger 1 \mathrm{psi}=6.89 \mathrm{kPa}$.

Table $2{ }^{13} \mathrm{C}$ NMR data of the four isomers 16a-19a

	16a	17a	18a	19a
C-1	176.44	177.17	177.03	177.84
C-2	60.79	61.97	61.55	62.06
C-3	34.39	35.46	35.15	35.71
C-4	33.39	35.34	34.13	35.46
C-5	50.14	50.78	50.90	50.85
C-6	36.43	37.26	37.06	37.83
C-7	174.24	174.82	174.93	174.97

Table 3 Displacement of NMDA specific $\mathrm{L}-\left[{ }^{3} \mathrm{H}\right]$ glutamate binding to rat cortical membranes by the four isomers 16a-19a

	Compound
$\mathrm{IC}_{50}\left(\mu \mathrm{~mol} \mathrm{dm}^{-1}\right)^{a}$	
L-Glu	0.05 ± 0.005
NMDA	0.31 ± 0.04
16a	202 ± 43
17a	8.0 ± 2.0
18a	8.1 ± 1.4
19a	1.7 ± 0.65

${ }^{a} \mathrm{IC}_{50}$ values were calculated from inhibition curves based on 4-6 different concentrations of the compounds using the ALLFIT computer program. ${ }^{12}$ Values are the mean \pm SEM of $3-4$ separate determinations.

Conversely, catalytic hydrogenation of $\mathbf{2 0}$ with $10 \% \mathrm{Pd}-\mathrm{C}$ in acetic acid ($40 \mathrm{psi}, 12 \mathrm{~h}$) afforded 22 as an inseparable mixture of the corresponding ($2 S, 4 R$)- and ($2 S, 4 S$)-diesters which was resolved via the formation of the corresponding (+)menthyl esters. Thus, Cbz protection of 22 under mildly basic conditions followed by acidic hydrolysis $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 6 \mathrm{~h}$) of the N -Cbz ester 23 afforded the corresponding acid 24 (72.5% yield) which was esterified with $(+)$-menthol to give a mixture of the corresponding diastereoisomeric esters 25 (56% yield). Removal of the N - Cbz group from 25 followed by MPC afforded the two diesters $(2 S, 4 S)-26$ and $(2 S, 4 R)-27$ in 18 and 26.5% yield, respectively, which were then submitted to acidic hydrolysis ($6 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl) and cation exchange resin chromatography (10% pyridine in water) to yield the enantiomerically pure (-)- ($2 S$, $4 S)$-4-(carboxymethyl)proline 18a $\left\{[\alpha]_{\mathrm{D}}^{22}-66.5\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right)\right\}$ and (-)-(2S,4R)-4-(carboxymethyl)proline 19a $\left\{[\alpha]_{\mathrm{D}}^{22}-33.4\right.$ (c $0.35, \mathrm{H}_{2} \mathrm{O}$) $\}$ in 88 and 91% yield, respectively. Since the two remaining isomers 16a and 17a are enantiomers of 18a and 19a, respectively, the examination of their optical rotations (see Table 1) made the assignment of their absolute configuration straightforward.

Biological results

A preliminary evaluation of the affinity of the four isomers of 4-(carboxymethyl)proline 16a-19a at the NMDA site of the NMDA receptor complex is reported in Table 3. As previously shown, ${ }^{10.11}$ the NMDA-sensitive $\mathrm{L}-\left[{ }^{3} \mathrm{H}\right]$ Glu binding to rat cortical membranes is almost exclusively due to the interaction of the ligand with the NMDA receptor site. The results clearly indicate that none of these compounds met the goal of a potent NMDA ligand. However, the higher binding potency of the two cis-4-(carboxymethyl)prolines 17a and 19a in comparison with
the trans compounds 16a and 18a, can be explained with the suitable geometry of the former compounds which fits the pharmacophoric requirements for the interaction with the NMDA site of the NMDA receptor complex. ${ }^{1 a}$ In particular, the cis-S-proline derivative 19 a exhibited an IC_{50} value approximately five times lower than that reported for the cis-Rproline derivative 17a (see Table 3).

In conclusion, we report here the preparation of the 2 azabicyclo[3.1.0]hexane derivative 6, a versatile synthetic intermediate, and its exploitation for the preparation of the proline- γ-acetic acid equivalent 9 and for the synthesis of the four possible stereoisomers of 4 -(carboxymethyl)proline, a conformationally constrained 2 -aminoadipic acid analogue. The compounds 16a-19a have been submitted to binding studies in order to test their affinity to the NMDA site of the NMDA receptor complex; full biological characterization is in progress and the results will be reported in due time.

Experimental

Mps were determined on a Kofler micro-hot-stage apparatus and are uncorrected. IR spectra were recorded on a PerkinElmer 1320 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken on a Bruker AC 200 spectrometer and the chemical shifts are reported on the δ scale relative to tetramethylsilane. Specific rotations were recorded on a Jasco Dip-360 digital polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. HPLC was carried out on a Waters Delta Prep 3000 system equipped with a 484 UV-Visible detector and a computerized acquisition data system (Baseline 810^{TM}). Analytical reverse-phase HPLC was performed on a Beckman RP-C18 Ultrasphere ($25 \mathrm{~cm}, 4.6 \mathrm{~mm}$, $5 \mu \mathrm{~m}$ spherical silica, $80 \AA$ pore). Gas chromatographic analyses were performed on a Hewlett-Packard HP 5890-II system [column and conditions: Supelco $\mathrm{SP}^{\mathrm{TM}}-2250,30 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID, $0.20 \mu \mathrm{~m}$ f.t., $190\left(5^{\prime}\right) / 290^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}$] equipped with a flame ionization detector and a HP 3394A recorder-integrator. Combustion analyses were performed on a 1102 Automatic Analyzer, Carlo Erba (Italy). Flash chromatography was performed on Merck silica gel ($0.040-0.063 \mathrm{~mm}$). Medium pressure chromatography (MPC) was performed on Merck LiChroprep Si 60 ($0.040-0.063 \mathrm{~mm}$, lobar columns). Ether refers to diethyl ether. 10% Pyridine refers to 10% pyridine in water.

Diethyl 1-benzyloxycarbonyl-5-hydroxypyrrolidine-2,2-
 dicarboxylate 4

Sodium ethoxide ($10.2 \mathrm{~g}, 0.15 \mathrm{~mol}$) was added to a stirred solution of diethyl N-benzyloxycarbonylaminomalonate (30.0 $\mathrm{g}, 97 \mathrm{mmol}$) in anhydrous benzene ($200 \mathrm{~cm}^{3}$). After 15 min , acrylaldehyde ($5.6 \mathrm{~g}, 100 \mathrm{mmol}$) was added dropwise to this mixture over 20 min and stirring was then continued for 12 h . Evaporation of the solvent gave a residue (33 g) which was submitted to flash chromatography, eluting with light petroleum-ether ($1: 1$) to afford the title compound as a pale yellow oil ($29.0 \mathrm{~g}, 82 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00-1.40(6 \mathrm{H}, 2$ $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80-2.10\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.35-2.75(2 \mathrm{H}, \mathrm{m}$, $\left.3-\mathrm{H}_{2}\right), 3.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.90-4.30\left(4 \mathrm{H}, 2 \mathrm{~m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $5.05(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{Ph}), 5.55-5.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{H})$ and $7.20(5 \mathrm{H}$, m, ArH).

Diethyl 1-benzyloxycarbonyl-2,3-dihydropyrrole-2,2-
 dicarboxylate 5

Phosphorus pentoxide ($9.0 \mathrm{~g}, 81 \mathrm{mmol}$) was added to a solution of the pyrrolidine $4(29.0 \mathrm{~g}, 79 \mathrm{mmol})$ in anhydrous benzene ($200 \mathrm{~cm}^{3}$) and the resulting mixture was refluxed for 2 h . Filtration of the reaction mixture and evaporation of the solvent gave a residue (11 g) which was submitted to flash chromatography, eluting with light petroleum-ether (4:6), to give the title compound $(9.62 \mathrm{~g}, 35 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
1.10 and $1.25\left(6 \mathrm{H}, 2 \mathrm{t}, J 7.5,2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.20(2 \mathrm{H}, \mathrm{d}, J 15$, $\left.3-\mathrm{H}_{2}\right), 4.00$ and $4.25\left(4 \mathrm{H}, 2 \mathrm{q}, J 7.5,2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.90(1 \mathrm{H}$, $\mathrm{d}, J 15,4-\mathrm{H}), 5.12\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.60(1 \mathrm{H}, \mathrm{d}, J 30,5-\mathrm{H})$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Triethyl 2-benzyloxycarbonyl-2-azabicyclo[3.1.0]hexane-3,3,6-tricarboxylate 6
A solution of ethyl diazoacetate ($13.12 \mathrm{~g}, 115 \mathrm{mmol}$) in anhydrous dichloromethane ($250 \mathrm{~cm}^{3}$) was added dropwise over 12 h to a magnetically stirred solution of the olefin $5(9.62 \mathrm{~g}, 28$ mmol) in anhydrous dichloromethane ($100 \mathrm{~cm}^{3}$) containing $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.34 \mathrm{~g}, 3 \mathrm{mmol})$ under argon at room temperature. Evaporation of the solvent gave a residue (6.9 g) which was submitted to flash chromatography, eluting with light petroleum-ether ($1: 1$), to give the title compound as a pale yellow oil $(5.6 \mathrm{~g}, 46 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30(9 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.90$ and $2.20\left(2 \mathrm{H}, 2 \mathrm{~m}, 3-\mathrm{H}_{2}\right), 2.75(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.95(1 \mathrm{H}, 2 \mathrm{~d}, J 7, \mathrm{CHCO} 2 \mathrm{Et}), 3.95-4.35\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $5-\mathrm{H}), 5.15\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{C} \mathrm{H}_{2} \mathrm{Ph}\right)$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2-Benzyloxycarbonyl-3-ethoxycarbonyl-2-azabicyclo-

[3.1.0] hexane-3,6-dicarboxylic acid 7

A solution of the triester $6(0.320 \mathrm{~g}, 0.74 \mathrm{mmol})$ in aqueous sodium hydroxide ($0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; water-methanol 1.4:1) was magnetically stirred for 5 h at room temperature. After controlled ($t \leqslant 30^{\circ} \mathrm{C}$) evaporation of the methanol, the reaction mixture was diluted with water $\left(15 \mathrm{~cm}^{3}\right)$, acidified with $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ to $\mathrm{pH} 4-5$ and extracted with chloroform $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and flash filtration of the residue on silica gel yielded the title compound ($0.244 \mathrm{~g}, 87 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.20-1.35\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.20-2.55\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $4-$ H), $3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO} 2 \mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.25(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.30(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} 2), 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 9.70 (2 H , brs, $2 \times \mathrm{CO}_{2} \mathrm{H}$).

2-Benzyloxycarbonyl-3-ethoxycarbonyl-2-azabicyclo-

[3.1.0] hexane-6-carboxylic acid 8

A solution of the dicarboxylic acid $7(0.244 \mathrm{~g}, 0.64 \mathrm{mmol})$ in toluene ($20 \mathrm{~cm}^{3}$) was heated at reflux for 12 h . Evaporation of the solvent followed by flash filtration of the residue on silica gel yielded the title compound $(0.160 \mathrm{~g}, 75 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.10-2.60\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}\right), 2.70$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CO}_{2} \mathrm{H}\right), 4.10\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{H}\right), 4.20$ and $4.60(1 \mathrm{H}, 2 \mathrm{~m}, 2-\mathrm{H}), 5.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.00-9.50\left(1 \mathrm{H}\right.$, br $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $24.53,25.58,26.79,29.62,30.16,31.90,45.53,46.11,59.63,60.58$, $61.46,67.66,128.07,128.45,136.14,154.42,155.21,170.97$, $172.34,174.94$ and 175.55.

8-Benzyloxycarbonyl-3-oxo-8-aza-2-oxabicyclo[3.3.0]octane-

 7-carboxylic acid 9A solution of compound $8(0.160 \mathrm{~g}, 0.48 \mathrm{mmol})$ in $6 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{HCl}\left(18 \mathrm{~cm}^{3}\right.$, water-dioxane $\left.5: 1\right)$ was magnetically stirred for 72 h at room temperature. The reaction mixture was then extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$) and the combined organic phases were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent gave a solid which was recrystallized from dichloromethane-hexane to give the title compound $(0.127 \mathrm{~g}, 87 \%), \mathrm{mp} 97-99^{\circ} \mathrm{C}$; purity was 99% by HPLC (Found: C, 59.15; H, 5.0; N, 4.55. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{6}$ requires $\mathrm{C}, 59.01 ; \mathrm{H}, 4.95 ; \mathrm{N}, 4.59 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1781$ and $1717 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.90-2.10$ and $2.30-2.50(2 \mathrm{H}, 2$ $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 2.55(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.75$ and $3.10\left(2 \mathrm{H}, 2 \mathrm{~m}, 4-\mathrm{H}_{2}\right), 4.55$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.10(1 \mathrm{H}, 4 \mathrm{~d}, J 5.3,1-\mathrm{H})$, $6.90\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$ and $7.30(5 \mathrm{H}$, br s, ArH$) ; \delta_{\mathrm{C}}(50.32 \mathrm{MHz}$; CDCl_{3}) 33.61, 34.14, 34.78, 34.93, 36.58, 37.69, 59.67, 60.29, $68.10,91.68,92.00,92.58,127.75,127.88,128.00,128.26,128.55$, $135.47,154.00,174.39$ and 175.54.

Diethyl 4-[(ethoxycarbonyl)methyl]pyrrolidine-2,2-dicarboxylate 10
Hydrogen was bubbled for 1.5 h into a magnetically stirred suspension of compound $6(5.6 \mathrm{~g}, 13 \mathrm{mmol})$ in methanol (100 cm^{3}) containing $10 \% \mathrm{Pd}-\mathrm{C}(1.7 \mathrm{~g})$ at room temperature. Filtration of the mixture through Celite and evaporation of the filtrate gave the title compound as a yellow solid ($3.86 \mathrm{~g}, 98 \%$), $\mathrm{mp} 80-81^{\circ} \mathrm{C}$; purity was 99% by GC analysis; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33(6 \mathrm{H}, \mathrm{t}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30$ and $2.90\left(2 \mathrm{H}, 2 \mathrm{~m}, 3-\mathrm{H}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.85(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.32$ and $3.88\left(2 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}\right)$, $4.12\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.35(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$).

Diethyl 1-benzyloxycarbonyl-4-[(ethoxycarbonyl)methyl]-

 pyrrolidine-2,2-dicarboxylate 11Benzyl chloromethanoate $\left(1.9 \mathrm{~cm}^{3}, 13.4 \mathrm{mmol}\right)$ was added dropwise in 10 min under vigorous magnetic stirring to cold $\left(0^{\circ} \mathrm{C}\right)$ saturated aqueous $\mathrm{NaHCO}_{3}\left(70 \mathrm{~cm}^{3}\right)$ containing the pyrrolidine $10(3.86 \mathrm{~g}, 12.8 \mathrm{mmol})$. Stirring was continued for 12 h at room temperature after which the reaction mixture was extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and the residue upon flash filtration on silica gel afforded the title compound as an oil $(5.43 \mathrm{~g}, 97 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00$ $1.30\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.15$ and $2.78\left(2 \mathrm{H}, 2 \mathrm{~m}, 3-\mathrm{H}_{2}\right), 2.40$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 2.58(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.23$ and $3.90(2 \mathrm{H}, 2 \mathrm{~m}$, $\left.5-\mathrm{H}_{2}\right), 4.00-4.30\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.05-5.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.20-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

1-Benzyloxycarbonyl-4-carboxymethyl-2-ethoxycarbonyl-

 pyrrolidine-2-carboxylic acid 12The triester 11 ($5.43 \mathrm{~g}, 12.5 \mathrm{mmol}$) was added to a solution of $\mathrm{NaOH}(4.57 \mathrm{~g}, 114 \mathrm{mmol})$ in water-methanol ($200 \mathrm{~cm}^{3} ; 6: 4$) and the resulting mixture was stirred for 5 h at room temperature. The methanol was carefully removed ($t \leqslant 30^{\circ} \mathrm{C}$) and the resulting aqueous solution was acidified (to $\mathrm{pH} 4-5$) with $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ and then extracted with chloroform $\left(3 \times 60 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and flash filtration of the residue on silica gel afforded the title compound as an oil ($4.25 \mathrm{~g}, 90 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.20-2.80$ ($5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$), 3.20 and $3.90(2 \mathrm{H}, 2 \mathrm{~m}$, $\left.5-\mathrm{H}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.20$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.10\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CO}_{2} \mathrm{H}\right)$.

Ethyl 1-benzyloxycarbonyl-4-(carboxymethyl)pyrrolidine-2carboxylate 13

A solution of compound $12(4.25 \mathrm{~g}, 11.2 \mathrm{mmol})$ in toluene $\left(120 \mathrm{~cm}^{3}\right.$) was refluxed for 15 h . After evaporation of the solvent, the residue (3 g) was submitted to flash chromatography, eluting with chloroform-methanol ($99: 1$), to afford the title compound ($2.76 \mathrm{~g}, 73 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10-1.40(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.60-2.30\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.30-2.50(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 2.70(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.20$ and $3.90\left(2 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}\right)$, $4.00-4.50\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Ethyl (2R)-1-benzyloxycarbonyl-4-[(menthyloxycarbonyl)-methyl]pyrrolidine-2-carboxylate 14 and ethyl (2S)-1-benzyloxycarbonyl-4-[(menthyloxycarbonyl)methyl]pyrrolidine-2-carboxylate 15
$(+)$-Menthol ($1.53 \mathrm{~g}, 9.8 \mathrm{mmol})$ was added to a solution of the carboxylic acid $13(2.76 \mathrm{~g}, 8.2 \mathrm{mmol})$ in dichloromethane-DMF ($300 \mathrm{~cm}^{3}, 1: 1$) containing DCC $(2.0 \mathrm{~g}, 9.7 \mathrm{mmol})$ and $4-(N, N-$ dimethylamino)pyridine (DMAP) $(0.1 \mathrm{~g}, 0.82 \mathrm{mmol})$ and the resulting mixture was stirred for 76 h at room temperature. After evaporation of the solvent, the residue was taken up in ethyl
acetate $\left(150 \mathrm{~cm}^{3}\right)$ and washed with water ($2 \times 50 \mathrm{~cm}^{3}$). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a residue (3.5 g) which was submitted to MPC, eluting with light petroleum-ethyl acetate ($6: 4$), to afford the ($2 R$) derivative 14 $(2.45 \mathrm{~g}, 63 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25$ and $1.70(21 \mathrm{H}, 2 \mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and menthyl H), $1.95\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.50(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.70(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.10$ and $3.85\left(2 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}\right)$, $3.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right), 4.00-4.40\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $5.05-5.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Further elution with the same solvents gave a mixture of 14 and 15 $(0.3 \mathrm{~g})$. Continued elution with the same solvents ($7: 3$) gave the pure ($2 S$) derivative $15(0.26 \mathrm{~g}, 6.7 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.30 and $1.70\left(21 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and menthylH), $1.95(2 \mathrm{H}, \mathrm{m}$, $\left.3-\mathrm{H}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.70(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.15$ and 3.90 ($3 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}$ and $2-\mathrm{H}$), $3.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right), 4.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5 \cdot 10-5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Ethyl ($2 R, 4 R$)-4-[(menthyloxycarbonyl)methyl] pyrrolidine-2carboxylate 16 and ($2 R, 4 S$)-4-[(menthyloxycarbonyl)methyl]-pyrrolidine-2-carboxylate 17
Hydrogen was bubbled for 2.5 h into a magnetically stirred suspension of compound $14(2.45 \mathrm{~g}, 5.16 \mathrm{mmol})$ in methanol ($200 \mathrm{~cm}^{3}$) containing $10 \% \mathrm{Pd}-\mathrm{C}(0.250 \mathrm{~g})$ at room temperature. Filtration of the mixture through Celite and evaporation of the filtrate gave a residue (1.8 g) which was submitted to MPC eluting with chloroform-methanol ($99: 1$) to afford the $(2 R, 4 R)$ derivative $16(0.74 \mathrm{~g}, 42 \%), \mathrm{mp} 65-66^{\circ} \mathrm{C}$; purity was 99% by GC analysis; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20$ and $1.75(21 \mathrm{H}, 2 \mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and menthylH), 1.90 and $2.10\left(2 \mathrm{H}, 2 \mathrm{~m}, 3-\mathrm{H}_{2}\right), 2.50$ (3 $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 3.25$ and $3.60(2 \mathrm{H}$, $\left.2 \mathrm{~m}, 5-\mathrm{H}_{2}\right), 3.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right), 3.85(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and 4.15 $\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. Further elution with the same solvents gave a mixture of 16 and $17(0.43 \mathrm{~g})$. Continued elution with the same solvents gave the pure ($2 R, 4 S$) derivative $17(0.57 \mathrm{~g}, 32 \%)$, $\mathrm{mp} 122-123{ }^{\circ} \mathrm{C}$; purity was 99% by GC analysis; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.25$ and $1.75\left(21 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and menthylH), 1.95 and $2.50\left(2 \mathrm{H}, 2 \mathrm{~m}, 3-\mathrm{H}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.70(1$ $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.20$ and $3.65\left(2 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $3.80-4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right.$ and $\left.2-\mathrm{H}\right)$ and $4.20(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).

Ethyl (2S,4S)-4-[(menthyloxycarbonyl)methyl]pyrrolidine-

 2-carboxylate 18 and ($\mathbf{2 S , 4 R}$)-4-[(menthyloxycarbonyl)methyl]-pyrrolidine-2-carboxylate 19Hydrogen was bubbled for 1 h into a magnetically stirred suspension of compound $15(0.26 \mathrm{~g}, 0.55 \mathrm{mmol})$ in methanol (50 cm^{3}) containing $10 \% \mathrm{Pd}-\mathrm{C}(0.026 \mathrm{~g})$ at room temperature. Filtration of the mixture through Celite and evaporation of the filtrate gave a residue (0.2 g) which was submitted to MPC eluting with chloroform-methanol ($99: 1$) to afford the $(2 S, 4 S)$ derivative $18(0.070 \mathrm{~g}, 38 \%), \mathrm{mp} 195-196^{\circ} \mathrm{C}$; purity was controlled by GC analysis $(99 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.15$ and $1.70\left(21 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and menthylH), 1.90 and $2.15(2 \mathrm{H}, 2$ $\left.\mathrm{m}, 3-\mathrm{H}_{2}\right), 2.50\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.15(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, 3.25 and $3.55\left(2 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}\right), 3.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right)$ and 3.85 (3 H. m, 2-H and $\mathrm{CH}_{2} \mathrm{CH}_{3}$). Further elution with the same solvents gave a mixture of 18 and $19(0.065 \mathrm{~g})$. Continued elution with the same solvents gave the title compound 19 (0.045 g, 24%), mp $100-101^{\circ} \mathrm{C}$; purity was controlled by GC analysis $(99 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20$ and $1.70(21 \mathrm{H}, 2 \mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and menthylH), 1.95 and $2.35\left(2 \mathrm{H}, 2 \mathrm{~m}, 3-\mathrm{H}_{2}\right), 2.50$ ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CO}_{2}$), $2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 3.20$ and 3.55 $\left(2 \mathrm{H}, 2 \mathrm{~m}, 5-\mathrm{H}_{2}\right), 3.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right)$ and $3.85(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$).

(2R,4R)-4-(Carboxymethyl)pyrrolidine-2-carboxylic acid 16a

A magnetically stirred suspension of $16(0.160 \mathrm{~g}, 0.47 \mathrm{mmol})$ in 6 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(8 \mathrm{~cm}^{3}\right)$ was refluxed for 12 h . After cooling, the
reaction mixture was extracted with chloroform ($5 \mathrm{~cm}^{3}$) and then neutralized with 10% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ and concentrated under reduced pressure. The residue was diluted with water (5 cm^{3}) and submitted to cation exchange resin chromatography, eluting with 10% pyridine to afford the title compound $(0.070 \mathrm{~g}$, 86%), mp $224-225^{\circ} \mathrm{C}$ (Found: C, 48.35 ; H, 6.6; N, 8.15. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}$ requires $\mathrm{C}, 48.55 ; \mathrm{H}, 6.40 ; \mathrm{N}, 8.09 \%$); $[\alpha]_{\mathrm{D}}^{22}+66.8$ $\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.80-2.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{Ha}), 2.12-$ $2.30(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{Hb}), 2.32-2.60\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$, $2.80-2.95(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ha}), 3.50-3.60(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Hb})$ and $4.00-4.10$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}+\mathrm{MeOH}\right) 176.44,174.24$, $60.79,50.14,36.43,34.39$ and 33.39 .

(2R,4S)-4-(Carboxymethyl)pyrrolidine-2-carboxylic acid 17a

A magnetically stirred suspension of $17(0.100 \mathrm{~g}, 0.29 \mathrm{mmol})$ in 6 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ was refluxed for 12 h . After cooling, the reaction mixture was extracted with chloroform ($5 \mathrm{~cm}^{3}$) and then neutralized with 10% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ and concentrated under reduced pressure. The residue was diluted with water (5 cm^{3}) and submitted to cation exchange resin chromatography, eluting with 10% pyridine to afford the title compound $(0.050 \mathrm{~g}$, 98%), mp $232-233^{\circ} \mathrm{C}$ (Found: C, 48.6 ; H, 6.55; N, 8.1. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}$ requires $\mathrm{C}, 48.55 ; \mathrm{H}, 6.40 ; \mathrm{N}, 8.09 \%$); $[\alpha]_{\mathrm{D}}{ }^{22}+34.2$ (c $\left.0.5, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.50-1.70(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{Ha})$, 2.38-2.70 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, 3-\mathrm{Hb}, 4-\mathrm{H}\right), 2.85-3.00(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{Ha}), 3.40-3.60(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Hb})$ and $3.95-4.08(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}+\mathrm{MeOH} 99: 1\right) 177.17,174.82,61.97$, $50.78,37.26,35.46$ and 35.34 .
(2S,4S)-4-(Carboxymethyl)pyrrolidine-2-carboxylic acid 18a A magnetically stirred suspension of $18(0.070 \mathrm{~g}, 0.20 \mathrm{mmol})$ in 6 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(3.5 \mathrm{~cm}^{3}\right)$ was refluxed for 12 h . After cooling, the reaction mixture was extracted with chloroform ($5 \mathrm{~cm}^{3}$) and then neutralized with 10% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ and concentrated under reduced pressure. The residue was diluted with water (5 cm^{3}) and submitted to cation exchange resin chromatography, eluting with 10% pyridine to afford the title compound $(0.030 \mathrm{~g}$, 84%), mp $228-229^{\circ} \mathrm{C}$ (Found: C, 48.45 ; H, 6.6; N, 8.15 . $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}$ requires C, $48.55 ; \mathrm{H}, 6.40 ; \mathrm{N}, 8.09 \%$); $[\alpha]_{\mathrm{D}}^{22}-66.5$ (c $\left.0.5, \mathrm{H}_{2} \mathrm{O}\right)\left\{\right.$ lit. $\left.{ }^{8}[\alpha]_{\mathrm{D}}^{24}-69\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right)\right\} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.80-2.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{Ha}), 2.12-2.30(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{Hb}), 2.32-$ $2.60\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right.$ and $\left.4-\mathrm{H}\right), 2.80-2.95(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ha})$, $3.50-3.60(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Hb})$ and $4.00-4.10(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(50.32$ $\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}+\mathrm{MeOH} 99: 1$) 177.03, 174.93, 61.55, 50.90, 37.06, 35.15 and 34.13 .
(2S,4R)-4-(Carboxymethyl)pyrrolidine-2-carboxylic acid 19a A magnetically stirred suspension of $19(0.045 \mathrm{~g}, 0.132 \mathrm{mmol})$ in $6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$ was refluxed for 12 h . After cooling, the reaction mixture was extracted with chloroform ($5 \mathrm{~cm}^{3}$) and then neutralized with $10 \% \mathrm{NH}_{4} \mathrm{OH}$ and concentrated under reduced pressure. The residue was diluted with water $\left(5 \mathrm{~cm}^{3}\right)$ and submitted to cation exchange resin chromatography, eluting with 10% pyridine to afford the title compound $(0.019 \mathrm{~g}$, 83%), mp $234-235^{\circ} \mathrm{C}$ (Found: C, 48.5 ; H, 6.4; N, 8.1. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}$ requires $\left.\mathrm{C}, 48.55 ; \mathrm{H}, 6.40 ; \mathrm{N}, 8.09 \%\right)$: $[\alpha]_{\mathrm{D}}^{22}-33.4$ (c $\left.0.35, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.50-1.70(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{Ha})$, 2.20-2.68 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, 3-\mathrm{Hb}\right.$ and $\left.4-\mathrm{H}\right), 2.85-3.00(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{Ha}), 3.40-3.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Hb})$ and $3.95-4.08(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(50.32 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}+\mathrm{MeOH} 99: 1\right) 177.84,174.97,62.06$, $50.85,37.83,35.71$ and 35.46 .

Methyl (2S)-1-benzyloxycarbonyl-4-[(tert-butoxycarbonyl)-methylidene]pyrrolidine-2-carboxylate 20

tert-Butyl (trimethylsilyl)acetate ($1.634 \mathrm{~g}, 8.7 \mathrm{mmol}$) was added dropwise in 5 min via a syringe pump to a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of lithium diisopropylamide [prepared from addition of butyllithium in hexane ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, $3.5 \mathrm{~cm}^{3}$) to a

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

